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Abstract. Refactoring aims at improving the quality of design while preserving 
its semantic. Providing an automatic support for refactoring is a challenging 
problem. This problem can be considered as an optimization problem where the 
goal is to find appropriate refactoring suggestions using a set of refactoring ex-
amples. However, some of the refactorings proposed using this approach do not 
necessarily make sense depending on the context and the semantic of the sys-
tem under analysis. This paper proposes an approach that tackles this problem 
by adapting the Interactive Genetic Algorithm (IGA) which enables to interact 
with users and integrate their feedbacks into a classic GA. The proposed algo-
rithm uses a fitness function that combines the structural similarity between the 
analyzed design model and models from a base of examples, and the designers’ 
ratings of the refactorings proposed during execution of the classic GA. Ex-
perimentation with the approach yielded interesting and promising results.  

Keywords: Software maintenance, Interactive Genetic Algorithm, Model refac-
toring, Refactoring by example.      

1 Introduction 

Software maintenance is considered the most expensive activity in the software sys-
tem lifecycle [1]. Maintenance tasks can be seen as incremental modifications to a 
software system that aim to add or adjust some functionality or to correct some design 
flaws. However, as the time goes by, the system’s conceptual integrity erodes and its 
quality degrades; this deterioration is known in the literature as the software decay 
problem [2]. A common and widely used technique to cope with this problem is to 
continuously restructure the software system to improve its structure and design. The 
process of restructuring object oriented systems is commonly called refactoring [3]. 
According to Fowler [2], refactoring is the disciplined process of cleaning up code to 
improve the software structure while preserving its external behavior. Many research-
ers have been working on providing support for refactoring operations (e.g., [4], [2], 
and [5]). Existing tools provide different environments to manually or automatically 
apply refactoring operations to correct, for example, code smells. Indeed, existing 
work has, for the most part, focused on refactorings at the source code level. Actually, 
the rise of the model-driven engineering (MDE) approach increased the interest and 
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the needs for tools supporting refactoring at the model-level. In MDE, abstract models 
are successively refined into more concrete models, and a model refactoring tool will 
be of great value within this context. 

The search-based refactoring approaches proved their effectiveness to propose 
refactorings to improve the model’s design quality. They adapted some of the known 
heuristics methods (e.g. Simulated annealing, Hill_climbing) as proposed in [6-8] and 
Genetic Algorithms as in [9]. These approaches relied, for the most part, on a combi-
nation of quality metrics to formulate their optimization goal (i.e., the fitness func-
tion). A major problem founded in these approaches is that the quality metrics con-
sider only the structural properties of the system under study; the semantic properties 
of the system are not considered. In this context, Mens and Tourwé [3] argue that 
most of the refactoring tools cannot offer a full-automatic support because part of the 
necessary knowledge Ӎ especially those related to the semantics Ӎ for performing the 
refactoring remains implicit in designers’ heads. Indeed, recognizing opportunities of 
model refactoring remains a challenging issue that is related to the model marking 
process within the context of MDE which is a notoriously difficult problem that  
requires design knowledge and expertise [10].  

To take into account the semantics of the software system, we propose a model 
refactoring approach based on an Interactive Genetic Algorithm (IGAs) [11]. Two 
types of knowledge are considered in this approach. The first one comes from the 
examples of refactorings. For this purpose, we hypothesize that the knowledge re-
quired to propose appropriate refactorings for a given object-oriented model may be 
inferred from other existing models’ refactorings when there is some structural simi-
larities between these models and the given model. From this perspective, the refac-
toring is seen as an optimization problem that is solved using a Genetic Algorithm 
(GA). The second type of knowledge comes from the designer's knowledge. For this 
purpose, the designer is involved in the optimization process by continuously interact-
ing with the GA algorithm; this enables to adjust the results of the GA progressively 
exploiting the designer’s feedback. Hence the proposed approach (MOREX+I: MOdel 
REfactoring by eXample plus Interaction) relies on a set of refactoring examples and 
designer's feedbacks to propose sequences of refactorings. MOREX+I takes as input 
an initial model, a base of examples of refactored models and a list of metrics calcu-
lated on both the initial model and the models in the base of examples, and it gener-
ates as output a solution to the refactoring problem. In this paper, we focus on UML 
class diagrams. In this case, a solution is defined as a sequence of refactorings that 
maximize as much as possible the similarity between the initial and revised class dia-
grams (i.e., the class diagrams in the base of examples) while considering designer's 
feedbacks. 

The primary contributions of the paper are 3-fold: 1) We introduce a model refac-
toring approach based on the use of examples. The approach combines implicitly the 
detection and the correction of design defects at the model-level by proposing a se-
quence of refactorings that must be applied on a given model. 2) We use the IGA to 
allow the integration of feedbacks provided by designers upon solutions produced 
during the GA evolution. 3) We report the results of an evaluation of our approach.  
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The paper is organized as follows. Section 2 is dedicated to the background where 
we introduce some basic concepts and the related work. The overall approach is de-
scribed in Section 3. Section 4 reports on the experimental settings and results, while 
Section 5 concludes the paper and outlines some future directions to our work. 

2 Background  

2.1 Class Diagrams Refactorings and Quality Metrics 

Model refactoring is a controlled technique for improving the design (e.g., class dia-
grams) of an existing model. It involves applying a series of small refactoring opera-
tions to improve the design quality of the model while preserving its behavior. Many 
refactorings were proposed and codified in the literature (see e.g., [2]). In our ap-
proach, we consider a subset of the 72 refactorings defined in [2]; i.e., only those 
refactorings that can be applied to UML class diagrams. Indeed, some of the refactor-
ings in [2] may be applied on design models (e.g. Move_Method, Rename_method, 
Move_Attribute, Extract_Class etc.) while others cannot be (e.g. Extract_Method, 
Inline_Method, Replace_Temp_With_Query etc. ). In our approach we considered a 
list of twelve refactorings (e.g. Extract_class, Push_down_method, Pull_up_method, 
etc.) based on [2]. The choice of these refactorings was mainly based on two factors: 
1) they apply at the class diagram-level; and 2) they can be link to a set of model  
metrics (i.e., metrics which are impacted when applying these refactorings).  

Metrics provide useful information that help assessing the level of conformance of 
a software system to a desired quality [12]. Metrics can also help detecting some simi-
larities between software systems. The most widely used metrics for class diagrams 
are the ones defined by Genero et al. [13]. In the context of our approach, we used a 
list of sixteen metrics (e.g. Number of attributes: NA, Number of methods: NMeth, 
Number of dependencies: NDep, etc.) including the eleven metrics defined in [13] to 
which we have added a set of simple metrics (e.g., number of private methods in a 
class, number of public methods in a class). All these metrics are related to the class 
entity which is the main entity in a class diagram. 

2.2 Interactive Genetic Algorithm (IGA)  

Heuristic search are serving to promote discovery or learning [14]. There is a variety 
of methods which support the heuristic search as hill_climbing [15], genetic algo-
rithms (GA) [16], etc. GA is a powerful heuristic search optimization method inspired 
by the Darwinian theory of evolution [17]. The basic idea behind GA is to explore the 
search space by making a population of candidate solutions, also called individuals, 
evolve toward a “good” solution of a specific problem. Each individual (i.e., a solu-
tion) of the population is evaluated by a fitness function that determines a quantitative 
measure of its ability to solve the target problem. Exploration of the search space is 
achieved by selecting individuals (in the current population) that have the best fitness 
values and evolving them by using genetic operators, such as crossover and mutation. 
The crossover operator insures generation of new children, or offspring, based on 
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parent individuals while the mutation operator is applied to modify some randomly 
selected nodes in a single individual. The mutation operator introduces diversity into 
the population and allows escaping local optima found during the search. Once selec-
tion, mutation and crossover have been applied according to given probabilities, indi-
viduals of the newly created generation are evaluated using the fitness function. This 
process is repeated iteratively, until a stopping criterion is met. This criterion usually 
corresponds to a fixed number of generations.  

Interactive GA (IGAs) [18] combines a genetic algorithm with the interaction with 
the user so that he can assign a fitness to each individual. This way IGA integrates the 
user's knowledge during the regular evolution process of GA. For this reason, IGA 
can be used to solve problems that cannot be easily solved by GA [19]. A variety of 
application domains of IGA include development of fashion design systems [19], 
music composition systems [20], software re-modularization [21] and some other 
IGAs’ applications in other fields [11]. One of the key elements in IGAs is the man-
agement of the number of interactions with the user and the way an individual is 
evaluated by the user. 

2.3 Related Work 

Model refactoring is still at a relatively young stage of development compared to the 
work that has been done on source-code refactoring. Most of existing approaches for 
automating refactoring activities at the model-level are based on rules that can be 
expressed as assertions (i.e., invariants, pre-and post-conditions) [22, 23], or graph 
transformations targeting refactoring operations in general [24, 25] or design patterns’ 
applications in particular (e.g., [26]). In [22] invariants are used to detect some parts 
of the model that require refactoring and the refactorings are expressed using declara-
tive rules. However, a complete specification of refactorings requires an important 
number of rules and the refactoring rules must be complete, consistent, non-redundant 
and correct. In [26] refactoring rules are used to specify design patterns’ applications. 
In this context, design problems solved by these patterns are represented using models 
and the refactoring rules transform these models according to the solutions proposed 
by the patterns. However, not all design problems are representable using models. 
Finally an issue that is common to most of these approaches is the problem of se-
quencing and composing refactoring rules. This is related to the control of rules’ ap-
plications within rule-based transformational approaches in general.  

Our approach is inspired by contributions in search-based software engineering 
(SBSE) (e.g. [6, 7, 9, 27, 28]). Techniques based on SBSE are a good alternative to 
tackle many of the above mentioned issues [9]. For example, a heuristic-based ap-
proach is presented in [6, 7, 27] in which various software metrics are used as indica-
tors for the need of a certain refactoring. In [27], a genetic algorithm is used to sug-
gest refactorings to improve the class structure of a system. The algorithm uses a fit-
ness function that relies on a set of existing object oriented metrics. Harman and Tratt 
[6] propose to use the Pareto optimality concept to improve search-based refactoring 
approaches when the evaluation function is based on a weighted sum of metrics. Both 
the approaches in [27] and [6] were limited to the Move Method refactoring  
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operation. In [7], the authors present a comparative study of four heuristic search 
techniques applied to the refactoring problem. The fitness function used in this study 
was based on a set of 11 metrics. The results of the experiments on five open-source 
systems showed that hill-climbing performs better than the other algorithms. In [28], 
the authors proposed an automated refactoring approach that uses genetic program-
ming (GP) to support the composition of refactorings that introduce design patterns. 
The fitness function used to evaluate the applied refactorings relies on the same set of 
metrics as in [12] and a bonus value given for the presence of design patterns in the 
refactored design. Our approach can be seen as linked to this approach as we aim at 
proposing a combination of refactorings that must be applied to a design model. Our 
approach was inspired by the work in [21] where the authors apply an Interactive 
Genetic Algorithm to the re-modularization problem which can be seen as a specific 
subtype of the refactoring problem. Our work is also related to the approach in [29] 
where the authors apply an SBSE approach to model transformations. However this 
approach focuses on general model transformations while our focus is on refactorings 
which are commonly codified transformations that aim at correcting design defaults.  

To conclude, most of the approaches that tackled the refactoring as an optimization 
problem by the use of some heuristics suppose, to some extent, that a refactoring op-
eration is appropriate when it optimizes the fitness function (FF). Most of these ap-
proaches defined their FF as a combination of quality metrics to approximate the 
quality of a model. However, refactoring operations are design transformations which 
are context-sensitive. To be appropriately used, they require some knowledge of the 
system to be refactored. Indeed, the fact that the values of some metrics were im-
proved after some refactorings does not necessarily mean or ensure that these refac-
torings make sense. This observation is at the origin of the work described in this 
paper as described in the next section. 

3 Heuristic Search Using Interactive Genetic Algorithm 

3.1 Interactive Genetic Algorithm Adaptation 

The approach proposed in this paper exploits examples of model refactorings, a heu-
ristic search technique and the designer’s feedback to automatically suggest se-
quences of refactorings that can be applied on a given model (i.e., a UML class dia-
gram). A high-level view of our adaptation of IGA to the model refactoring problem 
is given in Fig. 1. The algorithm takes as input a set of quality metrics, a set of model 
refactoring examples, a percentage value corresponding to the percentage of a popula-
tion of solutions that the designer is willing to evaluate, the maximum number of 
iterations for the algorithm and the number of interactions with the designer. First, the 
algorithm runs classic GA (line 2) for a number of iterations (i.e., the maximum num-
ber of iterations divided by the number of interactions). Then a percentage of solu-
tions from the current population is selected (line 3). In lines 4 to 7, we get designers' 
feedbacks for each refactoring in each selected solution and we update their fitness 
function. We generate a new population (p+1) of individuals (line 8) by iteratively 
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selecting pairs of parent individuals from population p and applying the crossover 
operator to them; each pair of parent individuals produces two children (solutions). 
We include both the parent and child variants in the new population. Then we apply 
the mutation operator, with a probability score, for both parent and child to ensure the 
solution diversity; this produces the population for the next generation. The algorithm 
terminates when the maximum iteration number is reached, and returns the best set of 
refactorings’ sequences (i.e., best solutions from all iterations). 
 

Input: Set of quality metrics  
Input: Set of model refactoring examples 
Input: Percentage (P%)  
Input: MaxNbrIterations 
Input: NbrOfInteractions  
Output: A sequence of refactorings 
1: for i = 1 . . . NbrOfInteractions do 
2:   Evolve GA for NbrIterations 
3:  Select P% of best solutions from the current population. 
4:  for-each selected solution do 
5:   Ask the designer whether each refactoring within      
   the selected solution makes sense.  
6:   Update the FF of the selected solution to integrate  
   the feedback. 
7:  end for-each 
8:   Create a new GA population using the updated solutions 
9: end for 
10: Continue (non-interactive) GA evolution until it converges    
    or it reaches maxNbrIterations 

Fig. 1. High-level pseudo-code for IGA adaptation to our problem 

In the following subsections we present the details of the regular GA adaptation to 
the problem of generating refactoring sequences and how we collect the designers’ 
feedbacks and integrate it in the fitness function computation. 

3.2 Representing an Individual and Generating the Initial Population 

An individual (i.e., a candidate solution) is a set of blocks. The upper part of Fig. 2 
shows an individual with three blocks. The first part of the block contains the class 
(e.g. Order) chosen from the initial model (model under analysis) called CIM, the 
second part contains the class (e.g Person) from the base of examples that was 
matched to CIM called CBE, and finally the third part contains a list of refactorings 
(e.g. Pull_Up_Method(calc_taxes(), LineOrder, Orde)) which is a subset of the refac-
torings that were applied to CBE (in its subsequent versions) and that can be applied 
to CIM. In our approach, classes from the model (CIMs) and the base of examples 
(CBEs) are represented using predicates that describe their attributes, methods and 
relationships. In addition, the representation of a CBE class includes a list of refactor-
ings that were applied to this class in a subsequent version of the system’s model to 
which CBE belongs. The subset of a CBE subsequent refactorings that are applicable 
to a CIM class constitutes the third part of the block having CIM as its first part and 
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CBE as its second part. Hence, the selection of the refactorings to be considered in a 
block is subjected to some constraints to avoid conflicts and incoherence errors. For 
example, if we have a Move_attribute refactoring operation in the CBE class and the 
CIM class doesn’t contain any attribute, then this refactoring operation is discarded as 
we cannot apply it to the CIM class. 

Hence the individual represents a sequence of refactoring operations to apply and 
the classes of the initial model on which they apply. The bottom part of Fig. 2 shows 
the fragments of an initial model before and after the refactorings proposed by the 
individual (at the top of the figure) were applied. 

 
Order ProductLineOrder

Pull_Up_Method(calc_taxes(), LineOrder, Order) Rename_Attribute(tax, taxStatus) Move_Attribute(quantity, Product, LineOrder)

Pull_Up_Method(calc_SubTotal(), LineOrder, Order) 
Rename_Attribute(tax, taxStatus)
Move_Attribute(quantity, Product, LineOrder)

Person Teacher Agency

 

Fig. 2. Individual representation 

To generate an initial population, we start by defining the maximum individual 
size. This parameter can be specified either by the user or randomly. Thus, the indi-
viduals have different sizes. Then, for each individual we randomly assign: 1) a set of 
classes from the initial model that is under analysis and their matched classes from the 
base of examples, and 2) a set of refactorings that we can possibly apply on the initial 
model class among the refactorings proposed from the base of examples class. 

3.3 Genetic Operators 

Selection: To select the individuals that will undergo the crossover and mutation op-
erators, we used the stochastic universal sampling (SUS) [17], in which the probabil-
ity of selection of an individual is directly proportional to its relative fitness in the 
population. For each iteration, we use SUS to select 50% of individuals from popula-
tion p for the new population p+1. These (population_size/2) selected individuals will 
“give birth” to another (population_size/2) new individuals using crossover operator. 

Crossover: For each crossover, two individuals are selected by applying the SUS se-
lection [17]. Even though individuals are selected, the crossover happens only with a 
certain probability. The crossover operator allows creating two offspring p’1 and p’2 
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from the two selected parents p1 and p2 as follows: A random position, k, is selected. 
The first k refactorings of p1 become the first k elements of p’2. Similarly, the first k 
refactorings of p2 become the first k refactorings of p’1. The rest of refactorings (from 
position k+1 until the end of the sequence) in each parent p1 and p2 are kept. For 
instance, Fig. 3 illustrates the crossover operator applied to two individuals (parents) 
p1 and p2 where the position k takes the value 2. 

Mutation: The mutation operator consists of randomly changing one or more elements 
in the solution. Hence, given a selected individual, the mutation operator first ran-
domly selects some refactorings among the refactoring sequence proposed by the 
individual. Then the selected refactorings are replaced by other refactorings. Fig. 4 
illustrates the effect of a mutation on an individual. 

 

Fig. 3. Crossover operator 

 

Fig. 4. Mutation operator 

3.4 Evaluating an Individual within the Classic GA 

The quality of an individual is proportional to the quality of the refactoring operations 
composing it. In fact, the execution of these refactorings modifies various model 
fragments; the quality of a solution is determined with respect to the expected refac-
tored model. However, our goal is to find a way to infer correct refactorings using the 
knowledge that has been accumulated through refactorings of other models of past 
projects and feedbacks given by designers. Specifically, we want to exploit the simi-
larities between the actual model and other models to infer the sequence of refactor-
ings that we must apply. Our intuition is that a candidate solution that displays a high 
similarity between the classes of the model and those chosen from the examples base 
should give the best sequence of refactorings. Hence, the fitness function aims to 

Order ProductLineOrder

Pull_Up_Method(calc_taxes(), LineOrder, Order) Rename_Attribute(tax, taxStatus) Move_Attribute(quantity, Product, LineOrder)
P1:

School Pilot

Add_parameter(version : String) Move_Attribute(typePlane, Pilot, Plane)

P2:

P’1:

P’2:

Teacher Agency

Course Student

School Pilot

Add_parameter(version : String) Move_Attribute(typePlane, Pilot, Plane)

Course Student

Order LineOrder

Pull_Up_Method(calc_taxes(), LineOrder, Order) Rename_Attribute(tax, taxStatus)

Person Teacher

Product

Move_Attribute(quantity, Product, LineOrder)

Agency

K = 2

Person

 

Order ProductLineOrder

Pull_Up_Method(calc_taxes(), LinePrder, Order) Rename_Attribute(tax, taxStatus) Move_Attribute(quantity, Product, LineOrder)

Order ProductLineOrder

Pull_Up_Method(calc_taxes(), LinePrder, Order) Rename_Method(calc_SubTotal, calc_TotalLine) Move_Attribute(quantity, Product, LineOrder)

Person Teacher Agency

Person AgencyStudent
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maximize the similarity between the classes of the model in comparison to the revised 
ones in the base of examples. In this context, we introduce first a similarity measure 
between two classes denoted by Similarity and defined by formula 1 and 2. ݈ܵ݅݉݅ܽݕݐ݅ݎ ሺܫܯܥ, ሻܧܤܥ ൌ   ଵ௠ ∑ ܵ݅݉ሺܫܯܥ௜, ௜ሻ௠௜ୀଵܧܤܥ  (1) 

ܵ݅݉ ሺܫܯܥ௜, ௜ሻܧܤܥ ൌ  
ەۖۖ
۔ۖ
ۓۖ ௜ܫܯܥ ݂݅          1 ൌ ௜ܫܯܥ ݂݅      ௜  0ܧܤܥ  ൌ ௜ܧܤܥ ݎ݋ 0  ൌ 0  ஼ெூ೔஼஻ா೔ ௜ܫܯܥ ݂݅      ൏ ௜ ஼஻ா೔஼ெூ೔ܧܤܥ  ௜ܧܤܥ ݂݅      ൏ ௜ܫܯܥ 

 (2) 

Where m is the number of metrics considered in this project. CIMi is the ith metric 
value of the class CIM in the initial model while CBEi is the ith metric value of the 
class CBE in the base of examples. Using the similarity between classes, we define 
the fitness function of a solution, normalized in the range [0, 1], as:  ݂ ൌ  ଵ௡ ∑ ,஻௝ܫܯܥሺݕݐ݅ݎ݈ܽ݅݉݅ܵ ஻௝ሻ௡௝ୀଵܧܤܥ   (3) 

Where n is the number of blocks in the solution and CMIBj and CBEBj are the classes 
composing the first two parts of the jth block of the solution. To illustrate how the 
fitness function is computed, we consider a system containing two classes as shown in 
Table 1 and a base of examples containing two classes shown in Table 2. In this ex-
ample we use six metrics and these metrics are given for each class in the model in 
Table 1 and each class of the base of examples in Table 2. 

Table 1. Classes from the initial model and their metrics values 

CMI NPvA NPbA NPbMeth NPvMeth NAss NGen 
LineOrder 4 1 3 1 1 1 
Product 2 2 6 0 1 0 

Table 2. Classes from the base of examples and their metrics values 

CBE NPvA NPbA NPbMeth NPvMeth NAss NGen 
Student 2 1 3 0 3 0 
Plane 5 1 4 0 1 0 

 
Consider an individual/solution I1 composed by two blocks (LineOrder/Student 

and Product/Plane). The fitness function of I1 is calculated as follows: ࡵࢌ૚ ൌ 112 ൤൬24 ൅ 1 ൅ 1 ൅ 0 ൅ 13 ൅ 0൰ ൅  ൬25 ൅ 12 ൅ 46 ൅ 0 ൅ 1 ൅ 0൰൨ ൌ 0,45 
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3.5 Collecting and Integrating the Feedbacks from Designers 

Model refactoring is a design operation that is context-sensitive. In addition, depend-
ing on the semantics of the system under analysis and the system’s evolution as  
foreseen by different designers, a refactoring proposed by the classic GA can be con-
sidered as mandatory by a designer and as acceptable by another. Even if a sequence 
of refactorings optimizes the fitness function (as defined in the previous section), that 
does not ensure that these refactorings conform to and preserve the semantics of the 
system. Consequently, we use Interactive GA (IGA) to partly tackle this problem by 
interacting with designers and getting their feedbacks on a number of the proposed 
refactoring sequences. To do so, we adopted a five level scale to rate the proposed 
refactorings; i.e., we distinguish five types of rating that a designer can assign to a 
proposed refactoring. The meaning and the value of each type of rating are as follows:   

• Critical (value = 1): it is mandatory to apply the proposed refactoring;  
• Desirable (value = 0.8): it is useful to apply the refactoring to enhance some aspect 

of the model but it’s not mandatory;  
• Neutral (value = 0.5): the refactoring is applicable but the designer does not see it 

as necessary or desirable;  
• Undesirable (value = 0.3): the refactoring is applicable but it is not useful and 

could alter the semantics of the system;  
• Inappropriate (value = 0): the refactoring should not be applied because it breaks 

the semantics of the system. 

As described in section 3.1., during the execution of IGA, the designer is asked to rate 
a percentage of the best solutions found by the classic GA after a defined number of 
iterations. For each of the selected solutions, the designer assigns a rating for each 
refactoring included in the solution. Depending on the values entered by the designer, 
we re-evaluate the global fitness function of the solution as follows. For each block of 
the solution, we compute the block rating as an average of the ratings of the refactor-
ings in the block. Then we compute the overall designer’s rating as an average of all 
blocks ratings. Finally, the new fitness function of the solution is computed as an 
average of its old fitness function and the overall designer’s rating. The new values of 
the fitness functions of the selected solutions are injected back into the IGA process to 
form a new population of individuals. 

4 Experiments 

The goal of the experiment is to evaluate the efficiency of our approach for the gen-
eration of the refactorings’ sequences. In particular the experiment aimed at answer-
ing the following research questions:  

• RQ1: To what extent can the interactive approach generate correct refactorings’ 
sequences? 

• RQ2: What types of refactorings are correctly suggested? 
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To answer these questions we implemented and tested the approach on open source 
projects. In particular, to answer RQ1, we used an existing corpus of known models 
refactorings to evaluate the precision and recall of our approach, and to answer RQ2, 
we investigated the type of refactorings that were suggested by our tool. In this sec-
tion, we present the experimental setup and discuss the results of this experiment. 

4.1 Supporting Tool and Experimental Setup 

We implemented our approach as a plugin within the EclipseTM development envi-
ronment. Fig. 5 shows a screenshot of the model refactoring plugin perspective. This 
plugin takes as input a base of examples of refactored models and an initial model to 
refactor. The user specifies the population size, the number of iterations, the individ-
ual size, the number of mutations, the number of interactions, and the percentage of 
the solutions shown in each interaction. It generates as output an optimal sequence of 
refactorings to be applied on the analyzed system. 

 

Fig. 5. Model Refactoring Plugin 

To build the base of examples, we used the Ref-Finder tool [43] to collect the 
refactoring that were applied on six Java open source projects (Ant, JabRef, JGraphx, 
JHotDraw, JRDF, and Xom). Ref-Finder helps retrieving the refactorings that a sys-
tem has undergone by comparing different versions of the system. We manually vali-
dated the refactorings returned by Ref-finder before including them in the base of 
examples. To answer the research questions reported above, we analyzed two open-
source Java projects in our experiment. We have chosen these open source projects 
because they are medium-sized open-source projects and they have been actively 
developed over the past 10 years. The participants in the experiment were three Ph.D 
students enrolled in Software Engineering and all of them are familiar with the two 
analyzed systems and have a strong background in object-oriented refactoring. 

4.2 Results and Discussions 

To assess the accuracy of the approach, we compute the precision and recall of our 
IGA algorithm when applied to the two projects under analysis. In the context of our 
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study, the precision denotes the fraction of correctly proposed refactorings among the 
set of all proposed refactorings. The recall indicates the fraction of correctly proposed 
refactorings among the set of all actually applied refactorings in the subsequent ver-
sions of the analyzed projects. To assess the validity of the proposed refactorings, we 
compare them to those returned by Ref-Finder when applied to the two projects and 
their subsequent versions. The precision and recall results might vary depending on 
the refactorings used, which are randomly generated, though guided by a meta-
heuristic. Fig. 6 and Fig. 7 show the results of 23 executions of our approach on 
Xerces and GanttProject, respectively. Each of these figures displays the precision 
and the recall values for each execution.  
 

 

Fig. 6. Multiple execution results for Xerces Fig. 7. Multiple Execution results for 
GanttProject 

 
Generally, the average precision and recall (around 88%) allows us to positively 

answer our first research question RQ1 and conclude that the results obtained by our 
approach are very encouraging. The precision in the two projects under analysis (on 
average 90% of all executions) proves that a big number of the refactorings proposed 
by our approach were indeed applied to the system’s model in its subsequent version 
(i.e., the proposed refactorings match, in most cases, those returned by Ref-Finder 
when applied on the system’s model and its subsequent version). To ensure that our 
results are relatively stable, we compared the results of the multiple executions (23) of 
the approach on the two analyzed projects shown in Fig. 6 and Fig. 7. The precision 
and recall scores are approximately the same for different executions in the two con-
sidered projects. We also compared the sequences of refactorings returned by differ-
ent executions of our algorithm on the same project. We found that when a class 
(from the model under analysis) is part of two different returned sequences, the refac-
toring operations proposed for this class within these sequences are similar. We con-
sequently conclude that our approach is stable. 

Our experiment through the interactions with designers allowed us to answer the 
second research question RQ2 by inferring the types of refactorings they recognized 
as good refactorings. Fig. 8 shows that 82% of the the Move_method and 
Pull_up_method refactorings proposed during the executions are recognized as good 
refactoring versus only 70% of the Rename_method refactorings. We noticed also, 
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that only 9 of 12 refactorings used in the approach are considered in this analysis. 
This may result from the quality of the base of examples or from the random factor 
which characterizes genetic algorithm. We made a further analysis to understand the 
causes of such results. We found out that through the interactions, the designers have 
to recognize the meaningless refactorings and penalize them by assigning them a 0 as 
a rating value; this has significantly reduced the number of these types of refactorings 
in the optimal solution. 

65
70
75
80
85

 

Fig. 8. Distribution of refactorings recognized as correct refactorings through intercations 

Despite the good results, we noticed a very slight decrease in recall versus preci-
sion in the analyzed projects. Our analysis pointed out towards two factors. The first 
factor is the project domain. In this study we tried to propose refactorings using a base 
of examples which contains different projects from different domains. We noticed 
that some projects focus on some types of refactorings compared to others (i.e., some 
projects in the base of examples has a big frequency of «pull_up_Attribute» and 
«pull_up_method»). The second factor is the number and types of refactorings con-
sidered in this experimentation. Indeed, we noticed that some refactorings (e.g., 
«pull_up_method», «pull_up_Attribute», «add_parameter») are located correctly in 
our approach. We have no certainty that these factors can improve the results but we 
consider analyzing them as a future work to further clarify many issues. 

4.3 Threats to Validity 

We have some points that we consider as threats to the generalization of our ap-
proach. The most important one is the use of the Ref_finder Tool to build the base of 
examples and at the same time we compare the results obtained by our algorithm to 
those given by Ref_finder. Other threats can be related to the IGAs parameters set-
ting. Although we applied the approach on two systems, further experimentation is 
needed. Also, the reliability of the proposed approach requires an example set of ap-
plied refactoring on different systems. It can be argued that constituting such a set 
might require more work than these examples. In our study, we showed that by using 
some open source projects, the approach can be used out of the box and will produce 
good refactoring results for the studied systems. In an industrial setting, we could 
expect a company to start with some few open source projects, and gradually enrich 
its refactoring examples to include context-specific data. This is essential if we con-
sider that different languages and software infrastructures have different best/worst 
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practices. Finally, since we viewed the model refactorings’ generation problem as a 
combinatorial problem addressed with heuristic search, it is important to contrast the 
results with the execution time. We executed the plugin on a standard desktop com-
puter (i7 CPU running at 2.67 GHz with 8GB of RAM). The number of interactions 
was set to 50. The execution time for refactorings’ generation with a number of itera-
tions (stopping criteria) fixed to 1000 was less than seventy minutes. This indicates 
that our approach is reasonably scalable from the performance standpoint. 

5 Conclusion and Future Work 

In this article, we presented a new approach that aims to suggest appropriate se-
quences of refactorings that can be applied on a given design model and in particular 
on a UML class diagram. To do so, we adapted Interactive Genetic Algorithms 
(IGAs) to build an algorithm which exploits both existing model refactoring examples 
and the designer's knowledge during the search process for opportunities of model 
refactorings. We implemented the approach as a plugin integrated within the Eclipse 
platform and we performed multiple executions of the approach on two open source 
projects. The results of our experiment have shown that the approach is stable regard-
ing its correctness, completeness and the type and number of the proposed refactor-
ings per class. IGA has significantly reduced the number of meaningless refactorings 
in the optimal solutions for these executions. While the results of the approach are 
very promising, we plan to extend it in different ways. One issue that we want to ad-
dress as a future work is related to the base of examples. In the future we want to 
extend our base of examples to include more refactoring operations. We also want to 
study and analyze the impact of using domain-specific examples on the quality of the 
proposed sequences of refactorings. Actually, we kept the random aspect that charac-
terizes genetic algorithms even in the choice of the projects used in the base of exam-
ples without prioritizing one or more specific projects on others to correct the one 
under analysis. Finally, we want to apply the approach on other open source projects 
and further analyze the type of refactorings that are correctly suggested. 
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