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Abstract. In current model-driven engineering practices, metamodels
are modified followed by an update of transformation rules. Next, the
updated transformation mechanism should be validated to ensure qual-
ity and robustness. Model transformation testing is a recently proposed
effective technique used to validate transformation mechanisms. In this
paper, a more efficient approach to model transformation testing is pro-
posed by refactoring the existing test case models, employed to test pre-
vious metamodel and transformation mechanism versions, to cover new
changes. To this end, a multi-objective optimization algorithm is em-
ployed to generate test case models that maximizes the coverage of the
new metamodel while minimizing the number of test case model refac-
torings as well as test case model elements that have become invalid due
to the new changes. Validation results on a widely used transformation
mechanism confirm the effectiveness of our approach.

Keywords: search-based software engineering, testing, model transfor-
mation, multi-objective optimization.

1 Introduction

Model-Driven Engineering (MDE) considers models as first-class artifacts dur-
ing the software lifecycle. The number of available tools, techniques, and ap-
proaches for MDE are growing that support a wide variety of activities such as
model creation, model transformation, and code generation. The use of different
domain-specific modeling languages and diverse versions of the same language
increases the need for interoperability between languages and their accompa-
nying tools [1]. Therefore, metamodels are regularly updated along with their
respective transformation mechanism.

Afterwards, the updated transformation mechanism should be validated to
assure quality and robustness. One efficient validation method proposed recently
is model transformation testing [1,2] which consists of generating source models
as test cases, applying the transformation mechanism to them, and verifying the
result using an oracle function such as a comparison with an expected result. Two
challenges are: (1) the efficient generation of test cases, and (2) the definition of
the oracle function. This paper focuses on the efficient generation of test cases
in the form of source models.
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The generation of test case models for model transformation mechanisms is
challenging because many issues need to be addressed. As explained in [3], testing
model transformation is distinct from testing traditional implementations; the
input data are models that are complex when compared to simple data types
which complicates the generation and evaluation of test case models [4]. The
basis of the work presented in this paper starts from the observation that most
existing approaches in testing evolved transformation mechanisms regenerate all
test cases from scratch. However, this can be a very fastidious task since the
expected output for all test cases needs to be completely redefined by hand.
Furthermore, when the number of changes made between metamodel versions
is relatively small in comparison to metamodel sizes, redefining all test case
output is inefficient. A better strategy is to revise existing test cases to cover
new changes in metamodels to reduce the effort required to manually redefine
expected test case output.

In this paper, a multi-objective search-based approach is used to generate test
case models that maximizes the coverage of a newly updated metamodel while
minimizing the number of refactorings applied to existing test case models in
addition to minimizing the number of test case model elements that have be-
come invalid due to the new changes. The proposed algorithm is an adaptation
of multi-objective simulated annealing (MOSA) [5] and aims to find a Pareto
optimal solution consisting of test case model refactorings that will yield the
new test case models when applied to existing test case models of the previous
version metamodel that best satisfy the three criteria previously mentioned. This
approach is implemented and evaluated on a known case of transforming UML
1.4 class diagrams to UML 2.0 class diagrams [6]. Results detailing the effective-
ness of the proposed approach are compared to results of a traditional simulated
annealing (SA) approach (whose single objective is to maximize metamodel cov-
erage) to create UML 2.0 test case models in two scenarios: (1) updating test
case models for UML 1.4 and (2) creating new test case models from scratch.
Results indicate that the proposed approach holds great promise as using MOSA
from previous test case models attains slightly less metamodel coverage than us-
ing SA with, however, significantly less refactorings and invalid model elements
while always outperforming both methods starting from scratch.

The primary contributions of this paper are summarized as follows: (1) A novel
formulation of the model transformation testing problem is introduced using a
novel multi-objective optimization technique, and (2) results of an empirical
study comparing the proposed MOSA approach to a traditional SA approach in
scenarios starting from previous test case models and from scratch are reported.
The obtained results provide evidence supporting the claim that the proposed
MOSA approach requires less manual effort to update expected output than SA
and starting from existing test case models is more effective than regenerating
all test case models from scratch.
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2 Methodology

In this section, the three main components of any search-based approach are
defined: the solution representation, change operators, and objective function.

2.1 Solution Representation

Since the proposed approach needs to modify test case models in response to
changes at the metamodel level, the solution produced should yield a modified
version of the original test case models that best conforms to the updated meta-
model. This can be done primarily in one of two different ways: the solution
could either consist of the actual updated test case model itself, or represent
a structure that, when applied to the original test case models, produces the
updated test case models. The latter was chosen for this problem in the form
of lists of model refactorings, because it allows a sequence of refactorings to be
modified at any point in the sequence.

For example, if a search-based method was employed to generate the new test
case models and a suboptimal refactoring was included in the best found test case
model solution at some point in the search process, it would be difficult to reverse
the application of the suboptimal refactoring to the best found test case model
solution if the test case model was modified directly. This is because it would
need to search and find the refactoring in the space of all possible refactorings to
apply to the test case model to reverse or change the suboptimal refactoring. By
modifying a list of model refactorings, it is easier for the search process to remove
or modify the suboptimal refactoring because it has direct access to the model
refactorings included in the best found solution. Furthermore, maintaining a list
of the best sequence of refactorings found during the search process gives direct
information about what exactly was changed from the previous version test case
models that makes updating the expected output a simpler task.

Each element in the lists of refactorings solution representation is a list of
model refactorings that corresponds to a test case model. Each list of model
refactorings is comprised of model refactorings that are applied to the corre-
sponding test case model in the order in which they appear in the list. Applying
these refactorings transforms the existing test case models into the updated test
case models for the updated metamodel. An example of model refactorings that
can be applied to UML class diagrams are shown in Table 1. Figure 1 shows an
example of a possible list of UML refactorings for a test case model that moves
method getAge from class Employee to class Person, adds a Salary field to the
Employee class, and then removes the Job class, in that order.

MoveMethod(getAge, Employee, Person) AddField(Salary, Employee) RemoveClass(Job)

Fig. 1. Example list of UML class diagram model refactorings



212 J. Shelburg, M. Kessentini, and D.R. Tauritz

Table 1. UML class diagram model refactorings

Add Field Add Association Move Field Push Down Field

Add Method Add Generalization Move Method Push Down Method

Add Class Remove Method Extract Class Pull Up Field

Remove Field Remove Association Extract Subclass Pull Up Method

Remove Class Remove Generalization Extract Superclass Collapse Hierarchy

Change Bi- to Uni-Directional Association Change Uni- to Bi-Directional Association

2.2 Change Operators

The only change operator employed in MOSA is mutation. When mutating a
given test case model’s list of refactorings, the type of mutation to perform is
first determined from a user-defined probability distribution that chooses be-
tween inserting a refactoring into the list, removing a refactoring from the list,
or modifying a refactoring in the list. When inserting a refactoring into a list of
refactorings, an insertion point between refactorings is first chosen, including ei-
ther ends of the list. The refactorings that appear in the list before the insertion
point are first applied to the test case model in the order in which they appear
in the list. A refactoring is then randomly generated for the refactored test case
model as it exists at the selection point, applied to the model, and inserted into
the list at the insertion point. The refactorings that appear after the insertion
point in the list are then validated in the order in which they appear by first
checking their validity and subsequently applying them to the test case model if
they are valid. If a refactoring is found to be invalid due to a conflict caused by
the insertion of the new refactoring into the list, the refactoring is removed from
the list. An invalid refactoring could occur, for example, if a new refactoring is
inserted into the front of a list that removes a specific class attribute that is refer-
enced in an existing refactoring later in the list. If such an occurrence happened,
the existing refactoring that references the now-removed class attribute will be
removed from the list. When performing a mutation that removes a refactoring
from a list of refactorings, a refactoring is selected at random and removed from
the list. Validation is performed in the same manner as when inserting a refac-
toring for those refactorings that appear after the removed refactoring in the list
of refactorings.

When mutating a refactoring in the list of refactorings, a refactoring is first
randomly selected. Then, one of three types of mutations is selected for appli-
cation to the selected refactoring using a user-defined probability distribution:
(1) replace the selected refactoring with a new randomly-generated refactoring,
(2) replace the selected refactoring with a new randomly-generated refactoring
of the same refactoring type (e.g., replace a MoveField refactoring with a new
randomly generated MoveField refactoring), or (3) mutate a parameter of the
selected refactoring. An example of a refactoring parameter mutation is chang-
ing the target class of a MoveMethod refactoring to another randomly chosen
class in the model. Validation for all three types of refactoring mutations are
performed in the same manner as described previously.
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2.3 Objective Functions

Objective functions are a very important component of any search-based algo-
rithm, because they define the metrics upon which solutions are compared that
ultimately guides the search process. In the context of determining the quality of
lists of refactorings to be applied to test case models in response to metamodel
changes, three objective functions that define characteristics of a good solution
are: (1) maximize updated metamodel coverage, (2) minimize model elements
that do not conform to the updated metamodel, and (3) minimize the number
of refactorings used to refactor the existing test case models.

Maximizing the coverage of the updated metamodel is imperative because
the sole purpose of test case models is to ensure that the model transformation
mechanisms are robust. Minimizing the number of invalid test case model ele-
ments due to metamodel changes ensures that the test case models themselves
are free of defects in order to properly assess the quality of the model transfor-
mation mechanism being tested. Finally, minimizing the number of refactorings
used to refactor the test case models reduces the amount of effort required to
update the expected output for the test case model transformations.

Metamodel Coverage. Since UML metamodels are utilized in the experi-
mentation described in this paper, UML metamodel coverage is described here;
however, note that different methods of calculating metamodel coverage may ex-
ist for different metamodel types. The method used to derive UML metamodel
coverage was first introduced in [4]. This method begins by a priori performing
partition analysis in which the types of coverage criteria taken into consideration
for a given problem are chosen. For metamodel coverage, an adaptation of the
same three coverage criteria from [4] are used. These criteria are association-end
multiplicities (AEM), class attributes (CA), and generalizations (GN). AEM
refers to the types of multiplicities used in associations included in a metamodel
such as 0..1, 1..1, or 1..N. CA refers to the types of class attributes included in a
metamodel such as integer, string, or boolean. Since the metamodels used in the
empirical tests in this paper support class operations in addition to attributes,
class method return types are included in CA. GN refers to the coverage of
classes that belong to each of the following categories: superclass, subclass, both
superclass and subclass, and neither superclass nor subclass.

Each coverage criterion must be partitioned into logical partitions that, when
unioned together, represent all the value types each criterion could take on. These
partitions are then assigned representative values to represent each coverage
criterion partition. For example, if a metamodel allows for classes to have an
integer attribute, then the integer class attribute element is included in the CA
coverage criterion. The values an integer class attribute can take on can be split
into partitions whose representative values are <-1, -1, 0, 1, and >1, for example.
An example of partition analysis and a subset of the coverage items generated
from its representative values are shown in Table 2 and Table 3, respectively.

After representative values are defined, a set of coverage items for the updated
metamodel is created. In our adaptation of the coverage item set creation method
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Table 2. Partition analysis example showing
associated representative values for given cov-
erage criteria

Coverage Criteria Representative Values
CA: boolean true, false
CA: integer <-1, -1, 0, 1, >1
CA: float <-1.0, -1.0, 0.0, 1.0, >1.0
CA: string Null, ‘’, ‘something’
AEM: 1..1 1
AEM: 1..N 1, N
GN sub, super, both, neither

Table 3. Subset of coverage
items created from representa-
tive values found in Table 2

Coverage Items
CA: -1 AEM: N
CA: ‘something’ GN: super
AEM: 1 AEM: N
AEM: 1 GN: neither
CA: false CA: >1.0
CA: Null AEM: 1

introduced in [4], this is done by calculating all possible 2-tuple combinations
of representative values from all partitions of all coverage criteria types that are
included in the updated metamodel. The only exception to this are coverage
items containing two different GN representative values, because they would
be impossible to satisfy. This is done to ensure the robustness of the model
transformation mechanism for all possible valid combinations of representative
values. The metamodel coverage objective value for given test case models and
updated metamodel is determined by calculating the percentage of metamodel
coverage items the test case models satisfy. For example, if a given updated
metamodel included associations with end multiplicities of 1..1 → 1..N, then
the derived coverage items would include associations with end-multiplicities of
1 → 1 and 1 → N. Additionally, if a given updated metamodel also included
boolean class attributes, then the additional coverage items would include classes
with a boolean attribute and association end multiplicity of true and 1, false and
1, true and N, and false and N, respectively. For a more in-depth example of
a model and the coverage items it would satisfy, refer to Figure 2 and Table 4,
respectively.

Fig. 2. Example test case model

Table 4. Coverage items satisfied
by the example shown in Figure 2

Coverage Items

CA: ‘something’ CA: 1.0

CA: ‘something’ AEM: 1

CA: 1.0 AEM: 1

CA: ‘something’ GN: super

CA: 1.0 GN: super

AEM: 1 GN: super

CA: -1 GN: sub

CA: false AEM: N

AEM: 1 AEM: N

AEM: N GN: neither

CA: false GN: neither
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Metamodel Conformity. Unlike the bacteriological approach used to auto-
matically generate test case models from scratch in [4], the proposed approach
is initialized with test case models that were created to conform to a metamodel
that may contain metamodel elements that are not compatible with the updated
metamodel. Because of this, there may exist test case model elements that do
not conform to the updated metamodel, and if so, should be removed or modified
to improve the validity of the test case models by reducing the number of invalid
model elements. Calculating the metamodel conformity objective value of given
test case models and updated metamodel is done by summing up the number of
test case model elements from all test case models that do not conform to the
updated metamodel. For example, say Metamodel v1.0 includes integer class
attributes while Metamodel v2.0 does not. All integer model elements from the
test case models for Metamodel v1.0 are invalid in Metamodel v2.0, so they need
to be removed or modified to a valid class attribute type to improve the validity
of the test case models themselves.

Number of Refactorings. While automatically generating test case models
in an attempt to maximize metamodel coverage has been previously explored
and improving metamodel conformity of test case models by itself can be ac-
complished trivially by removing or modifying nonconforming test case model
elements, performing these tasks by finding a minimal number of refactorings
to apply to existing test case models has not yet been explored to our knowl-
edge. By minimizing the number of refactorings required to update existing test
case models for an updated metamodel, the task of updating expected test case
model transformation output is simplified. The challenge of finding a minimal
set of refactorings to apply to test case models to maximize metamodel coverage
and minimize the number of nonconforming test case model elements stems from
the fact that there are a multitude of different refactoring sequences that can be
applied to achieve the same resulting test case models. Calculating the number
of refactorings is done by summing up the number of refactorings in the lists of
refactorings.

2.4 Search-Based Approach

Simulated Annealing (SA). SA is a local search heuristic inspired by the
concept of annealing in metallurgy where metal is heated, raising its energy
and relieving it of defects due to its ability to move around more easily. As its
temperature drops, the metal’s energy drops and eventually it settles in a more
stable state and becomes rigid. This technique is replicated in SA by initializing a
temperature variable with a “high temperature” value and slowly decreasing the
temperature for a set number of iterations by multiplying it by a value α every
iteration, where 0 < α < 1. During each iteration, a mutation operator is applied
to a copy of the resulting solution from the previous iteration. If the mutated
solution has the same or better fitness than the previous one, it is kept and used
for the next iteration. If the mutated solution has a worse fitness, a probability
of keeping the mutated solution and using it in the next iteration is calculated
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using an acceptance probability function. The acceptance probability function
takes as input the difference in fitness of the two solutions as well as the current
temperature value and outputs the acceptance probability such that smaller
differences in solution fitness and higher temperature values will yield higher
acceptance probabilities. In effect, this means that for each passing iteration, the
probability of keeping a mutated solution with worse fitness decreases, resulting
in a search policy that, in general, transitions from an explorative policy to an
exploitative policy. The initial lenience towards accepting solutions with worse
fitness values is what allows simulated annealing to escape local minima/maxima.

Multi-Objective Simulated Annealing (MOSA). Traditional SA is not
suitable for the automatic test case model generation as described previously
because a solution’s fitness consists of three separate objective functions and SA
cannot directly compare solutions based on multiple criteria. Furthermore, even
if SA had the ability to determine relative solution fitness, there would still be
the problem of quantifying the fitness disparity between solutions as a scalar
value for use in the acceptance probability function. MOSA overcomes these
problems. When comparing the relative fitness of solutions, MOSA utilizes the
idea of Pareto optimality using dominance as a basis for comparison. Solution
A is said to dominate solution B if: (1) every objective value for solution A is
the same or better than the corresponding objective value for solution B, and
(2) solution A has at least one objective value that is strictly better than the
corresponding objective value of solution B. If solution A does not dominate
solution B and solution B does not dominate solution A, then these solutions
are said to belong to the same non-dominating front. In MOSA, the mutated
solution will be kept and used for the next iteration if it dominates or is in
the same non-dominating front as the solution from the previous iteration. To
determine the probability that the mutated solution dominated by the solution
from the previous iteration will be kept and used for the next iteration of MOSA,
there are a number of possible acceptance probability functions that can be
utilized. Since previous work has noted that the average cost criteria yields good
performance [5], we have utilized it. The average cost criteria simply takes the
average of the differences of each objective value between two solutions, i and j,
over all objectives D, as shown in Equation 1. The final acceptance probability
function used in MOSA is shown in Equation 2.

c(i, j) =

|D|∑

k=1

(ck(j)− ck(i))

|D| (1)
AcceptProb(i, j, temp) = e

−abs(c(i,j))
temp

(2)

MOSA Adaptation for Generating Test Case Models. When using the
number of refactorings fitness criterion along with mutations that add, modify,
or remove refactorings in MOSA, a slight modification of the definition of domi-
nance is required in order to obtain quality results. The problem with using the
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traditional definition of dominance in this case is that “remove refactoring” mu-
tations will always generate a solution that is at least in the same non-dominated
front as the non-mutated solution because it utilizes less refactorings, thus mak-
ing it strictly better in at least one objective. In MOSA, this means that the
non-mutated solution will always be discarded in favor of the mutated solution
that it will use in the following iteration. The problem with this is that the prob-
ability of an add refactoring or modify refactoring mutation yielding a mutated
solution that is in the same non-dominated front or better is much less than that
of a mutation removing a refactoring (100%). This is because the only way an
add or modify refactoring mutation could at least be in the same non-dominated
front is if it satisfied a previously unsatisfied metamodel coverage item, removed
an invalid model element, or modified an invalid model element to make it valid.
As a result, solutions tend to gravitate towards solutions with less refactorings
that eventually results in solutions with the least possible number of refactorings,
one refactoring per each test case model. This was found to be the case in exper-
iments executed with the traditional dominance implementation. The problem
is alleviated by modifying how dominance is determined in MOSA such that a
mutated solution with less refactorings and less metamodel coverage or more
invalid model elements than the non-mutated solution is considered to be dom-
inated by the non-mutated solution. In other words, MOSA will only transition
from the non-mutated solution from the previous iteration to the new mutated
solution (using the “remove refactoring” mutation) with 100% probability if the
mutated solution dominates the non-mutated solution. If the mutated solution
has less refactorings but also less metamodel coverage or more invalid model
elements, then it will only be accepted and used for the next iteration given the
probability calculated by the acceptance probability function.

The second problem to overcome is how to use the metamodel coverage, num-
ber of invalid model elements, and number of refactoring values in the acceptance
probability function in a meaningful way. As they are, these three values take on
values in different scales: metamodel coverage takes on values between 0% and
100% (0.0 and 1.0), number of invalid model elements takes on values between
0 and the initial number of invalid model elements before MOSA begins, and
the number of refactorings takes on the value of any nonnegative integer. In or-
der to make the average of differences between fitness criteria values meaningful,
normalization is performed. Metamodel coverage does not require any normaliza-
tion as its values already lie between 0.0 and 1.0 and thus all differences between
metamodel coverage values will as well. The only operation necessary is to take
the absolute value of the difference to ensure it is positive as shown in Equa-
tion 3. To normalize the difference between numbers of invalid model elements,
simply take the absolute value of the difference between the number of invalid
model elements values and divide by the number of invalid model elements from
the initial test case models as shown in Equation 4.

CovDiff = abs(Cov(i)− Cov(j)) (3) InvDiff =
abs(Inv(i)− Inv(j))

Inv0
(4)
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To normalize the difference in number of refactorings, the maximum number of
refactorings should be used as a divisor. Since there is theoretically no upper
bound to the possible number of refactorings that the lists of refactorings could
have, a reasonable estimate is required. For this estimate, the sum of the initial
number of unsatisfied coverage items and the number of invalid model elements
of the starting test case models is used because it assumes that each coverage
item and invalid model element will take one refactoring to satisfy and remove,
respectively. As shown in Equation 5, the normalization of the difference in
number of refactorings is calculated by taking the absolute value of the difference
in number of refactorings divided by the sum of the initial number of unsatisfied
coverage items and the number of invalid model elements of the starting test
case models.

NumRefDiff =
abs(NumRef(i)−NumRef(j))

UnsatCovItems0 + Inv0
(5)

2.5 Implementation

Before using MOSA to generate the lists of refactorings, a maximum model size
must be declared to ensure a balance between the size of the test cases and the
number of test cases is maintained. As explained in [4], smaller test cases allow
for easier understanding and diagnosis when an error arises while the number
of test cases should be reasonable in order to maintain an acceptable execution
time and amount of effort for defining an oracle function.

After the maximum model size is declared, the automatic test case model
generation begins. The algorithm iterates through all test case models once. For
each test case model, its corresponding list of refactorings is initialized with
one randomly-generated refactoring before the adapted MOSA algorithm is exe-
cuted. After the algorithm has iterated over every test case model, the final lists
of refactorings for each test case model are output along with the resulting test
case models yielded from the application of the refactorings. The pseudocode for
this algorithm is shown in Algorithm 1. It is important to note that although
search is done for refactorings at the test case model level, the objective func-
tions are executed on the overall running solution of the entire set of updated
test case models at any given iteration. This means that, for example, if the
space of refactoring lists for a particular test case model is being searched and a
mutation is performed that covers a new coverage item for that test case model,
but a list of refactorings for another test case model from a previous iteration
already covered that particular coverage item, then there is no increase in the
metamodel coverage objective function. The value yielded from the metamodel
coverage objective function will only increase if a coverage item is covered that
has not already been covered by any other test case model with their refactorings
in the overall solution.
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Algorithm 1. Pseudocode for adapted MOSA for generating test case models

function MOSA(testCaseModels, maxModelSize, initialTemperature, α)
ListOfRefactorings.setMaxModelSize(maxModelSize)
solution ← list()
for testCaseModel in testCaseModels do

refactorings ← ListOfRefactorings(testCaseModel)
temp ← initialTemperature
for iteration = 1 → maxIterations do

newRefactorings ← copy(refactorings)
newRefactorings.mutate()
if newRefactorings.dominates(refactorings) then

refactorings ← newRefactorings
else if u[0.0,1.0] < AcceptProb(refactorings,newRefactorings,temp) then

refactorings ← newRefactorings
temp ← temp × α

solution.push(refactorings)
return listsOfRefactorings

3 Experimentation

3.1 Experimental Setting

To test the effectiveness of the proposed approach, experiments were carried out
to evolve test case models for the UML 2.0 metamodel. In the implementation
used, the UML 2.0 metamodel generated 857 coverage items that needed to be
satisfied in order to obtain 100% metamodel coverage. To discover if initializing
the test case models with those of a previous metamodel version was beneficial,
experiments were done starting from a set of test case models that conform to
UML 1.4 as well as a set of new test case models. Each test case model in the
set of UML 1.4 test case models consists of between 17 and 23 model elements
that collectively satisfy 46.58% of the UML 2.0 metamodel coverage items and
have 60 model elements that are invalid with respect to the UML 2.0 metamodel,
while each test case model in the set of new test case models consists of only five
class model elements, collectively satisfy 0% of the UML 2.0 metamodel coverage
items, and have no invalid model elements. Both sets are comprised of 20 test
case models each.

To justify the multi-objective approach proposed in this paper, the same ex-
periments were carried out using an SA approach utilizing only metamodel cov-
erage like in previous works [4]. All experiments were run 30 times in order to
establish statistical significance. For each of the 20 test case models, 10,000 it-
erations of SA were performed with a starting temperature of 0.0003 and an
alpha value of 0.99965. The starting temperature and alpha values were chosen
because they yielded the best results in empirical preliminary tests for both SA
and MOSA. All probability distributions used by the search process (e.g., to
determine the type of mutation to execute or refactoring to generate) were such
that each discrete possibility had equal chance of being selected.
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3.2 Results

The complete results from all four experiment configurations can be found in
Table 5. The SA approaches outperformed the corresponding MOSA approaches
in the metamodel coverage objective as shown in Figure 3 while, however, using
a far greater number of refactorings as shown in Figure 5. Figure 4 shows that
the MOSA experiment that started with the UML 1.4 test case models removed
all 60 test case model elements every run while the corresponding SA experiment
removed less than half of the invalid test case model elements on average. All
differences in results were determined to be statistically significant employing a
two-tailed t-test with α = 0.05.

Table 5. Empirical results with standard deviations in parentheses

From Scratch From Existing Models
SA MOSA SA MOSA

Coverage 83.82% (0.05%) 63.36% (0.04%) 96.20% (<0.01%) 91.70% (0.01%)

Invalid - - 35.47 (4.03) 0.00 (0.00)

Num. Ref. 1185.87 (176.69) 315.17 (18.08) 726.87 (34.15) 348.90 (13.60)

Fig. 3. Metamodel coverage versus
iterations

Fig. 4. Invalid model elements versus
iterations

3.3 Discussion

With respect to the metamodel coverage objective, it is intuitive that the SA ap-
proaches would outperform the MOSA approaches, albeit by a relatively small
margin when starting from existing test case models, because the MOSA ap-
proaches must balance conflicting objectives while the SA approaches do not.
As a result, the lists of refactorings yielded from the MOSA approaches are
more effective in terms of metamodel coverage per refactoring than the ones
yielded from SA. Combined with the fact that the total number of refactorings
yielded by the MOSA approaches are drastically less than those yielded by the
SA approaches, this means that the effort required to implement the changes
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Fig. 5. Refactorings versus iterations

to expected output is less and overall more effective using the MOSA approach
under the assumption that an increase in refactorings made to test case models
increases the amount of effort required to update the test case expected output.

Furthermore, the results show that the approaches that start with existing test
case models of a previous metamodel version outperform the same approaches
that generate completely new models. This also helps reduce the effort required
to update the expected test case output because portions of the expected output
for the existing test cases will not need to be modified. Furthermore, if a user is
already familiar with the previous test case models that were initially used as a
basis for the new test case models, that knowledge can be leveraged to further
decrease the amount of effort required to update expected output.

4 Related Work

Fleurey et al. [4,7] and Steel et al. [8] discuss the reasons why testing model
transformations is distinct from testing traditional implementations: the input
data are models that are complex in comparison to simple data types. Both
papers describe how to generate test data in MDE by adapting existing tech-
niques, including functional criteria [2] and bacteriologic approaches [3]. Lin et
al. [9] propose a testing framework for model transformation built on their mod-
eling tools and transformation engine that offers a support tool for test case
construction, test execution, and test comparison; however, the test case models
are manually developed in this work.

Some other approaches are specific to test case generation for graph transfor-
mation mechanisms. Küster [10] addresses the problem of model transformation
validation in a way that is very specific to graph transformation by focusing on
the verification of transformation rules with respect to termination and conflu-
ence. This work is concerned with the verification of transformation properties
rather than the validation (testing) of their correctness. Darabos et al. [11] inves-
tigate the testing of graph transformations by considering graph transformation



222 J. Shelburg, M. Kessentini, and D.R. Tauritz

rules as the transformation specification and propose to generate test data from
this specification. Darabos et al. propose several faulty models that can occur
when performing pattern matching as well as a test case generation technique
that targets those particular faults. Compared to the multiobjective search-based
approach proposed in this paper, Darabos’ work is specific to graph-based trans-
formation testing. Mottu et al. [1] describe six different oracle functions to eval-
uate the correctness of an output model. In [12], the authors suggest manually
determining the expected transformation outcome and comparing it with the
actual transformation outcome using a simple graph-comparison algorithm.

Themulti-objective search-basedapproachproposed in this paper is inspired by
contributions in the domain of Search-Based Software Engineering (SBSE) [13].
SBSE uses search-based approaches to solve optimization problems in software
engineering, and once a software engineering task is framed as a search problem,
many search algorithms can be applied to solve that problem. These search-based
approaches are also used to solve problems in software testing [14,15,12]. The gen-
eral idea behind the proposed approach is that possible test case model refactor-
ings define a search space and multiple conflicting test case model criteria are in-
tegrated into multiple objective functions. These components guide the search ap-
proach in an attempt to find an optimal set of test case model refactorings that
yields a set of adequate updated test case models.

Although the problem of generating test cases at the code level is well-studied,
there are few works that generate test cases at the model level to test transforma-
tion mechanisms. To our knowledge, there is currently no other work that utilizes
existing test case models of a previous metamodel to generate test case models
for an updated metamodel. Furthermore, this is the first adaptation of heuristic
search algorithms to take into consideration multiple objectives when generating
source models (test cases) similar to the data that will be transformed.

5 Conclusion and Future Work

Empirical results show that MOSA can automatically generate quality test case
models from existing test case models in response to metamodel changes. The
new test case models are generated with minimal refactorings so the effort re-
quired to update expected test case model transformation output is reduced.
While SA is able to achieve slightly better overall metamodel coverage, the
number of refactorings, and thus required effort, is substantially greater. Further-
more, the MOSA approach is able to reliably remove test case model elements
that become invalid due to metamodel changes.

To generalize our proposed approach and ensure its robustness, we plan to
extend our validation to other metamodels such as Petri nets and relational
schema. Furthermore, comparative studies will be performed between different
multiobjective metaheuristic algorithms as well as between processing all test
case models at once to yield an overall single list of refactorings and the proposed
method of processing each test case model one at a time.
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