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Preface

Message from the SSBSE 2013 General Chair

It is my pleasure to welcome you to the proceedings of the 5th Symposium
on Search-Based Software Engineering, SSBSE 2013, held in St. Petersburg,
Russia, once the imperial capital of Russia. For the second time in the history of
SSBSE, the symposium was co-located with the joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE. With work on search-based
software engineering (SBSE) now becoming common in mainstream software
engineering conferences like ESEC/FSE, SBSE offers an increasingly popular
and exciting field to work in. The wide range of topics covered by SBSE is
reflected in the strong collection of papers presented in this volume.

Many people contributed to the organization of this event and its proceed-
ings, and so there are many people to thank. I am grateful to Bertrand Meyer,
the General Chair of ESEC/FSE, and the ESEC/FSE Steering Committee for
allowing us to co-locate with their prestigious event in St. Petersburg. Thanks
in particular are due to Nadia Polikarpova and Lidia Perovskaya, who took care
of the local arrangements and the interface between ESEC/FSE and SSBSE.

It was a pleasure to work with Yuanyuan Zhang and Guenther Ruhe, our
Program Chairs. Many thanks for their hard work in managing the Program
Committee, review process, and putting the program together. Thanks also go to
Gregory Kapfhammer, who managed the Graduate Student Track with a record
number of submissions. I would also like to thank Phil McMinn, who fearlessly
accepted the challenge of setting up the new SSBSE challenge track. The SSBSE
challenge is a wonderful opportunity to showcase the advances and achievements
of our community, and will hopefully become an integral part of this series of
events. I would like to thank the Program Committee, who supported all these
tracks throughout a long and fragmented review process with their invaluable
efforts in reviewing and commenting on the papers. I am very happy we were able
to host two outstanding keynote speakers, Xin Yao and Westley Weimer, and
David White with a tutorial. Finally, the program could not be formed without
the work of the authors themselves, whom we thank for their high-quality work.

Thanks are also due to the Publicity Chairs, Shin Yoo, Kirsten Walcott-
Justive, and Dongsum Kim. In particular I would like to thank Shin Yoo for
managing our social networks on Twitter and Facebook, and maintaining our
webpage, even from within airport taxis. Thanks to Fedor Tsarev, our Local
Chair. I am grateful to Springer for publishing the proceedings of SSBSE. Thanks
also to the Steering Committee, chaired by Mark Harman, and the General Chair
of SSBSE 2012, Angelo Susi, who provided me with useful suggestions during
the preparation of the event.
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Finally, thanks are due to our sponsors, and to Tanja Vos for her support
in securing industrial sponsorship. Thanks to UCL CREST, Google, Microsoft
Research, Berner & Mattner, IBM, the FITTEST project, the RISCOSS project,
and Softeam. Thanks also to Gillian Callaghan and Joanne Suter at the Univer-
sity of Sheffield, who assisted me in managing the finances of this event.

If you were not able to attend SSBSE 2013, I hope that you will enjoy reading
the papers contained in this volume, and consider submitting a paper to SSBSE
2014.

June 2013 Gordon Fraser



Preface VII

Message from the SSBSE 2013 Program Chairs

On behalf of the SSBSE 2013 Program Committee, it is our pleasure to present
these Proceedings of the 5th International Symposium on Search-Based Software
Engineering. This year, the symposium was held in the beautiful and historic
city of St. Petersburg, Russia. SSBSE 2013 continued the established tradition
of bringing together the international SBSE community in an annual event to
discuss and to celebrate the most recent results and progress in the field.

For the first time, SSBSE 2013 invited submissions to the SBSE Challenge
Track. We challenged researchers to use their SBSE expertise and apply their
existing tools by analyzing all or part of a software program from a selected list.
We were happy to receive submissions from 156 authors coming from 24 different
countries (Australia, Austria, Brazil, Canada, China, Czech Republic, Finland,
France, Germany, India, Ireland, Luxembourg, New Zealand, Norway, Portugal,
Russia, Spain, Sweden, Switzerland, The Netherlands, Tunisia, Turkey, UK and
USA).

In all, 50 papers were submitted to the Research, Graduate Student and SBSE
Challenge Tracks (39 to the Research Track - full and short papers, 4 to the
SBSE Challenge Track, and 9 to the PhD Student Track). All submitted papers
were reviewed by at least three experts in the field. After further discussions, 28
papers were accepted for presentation at the symposium. Fourteen submissions
were accepted as full research papers and six were accepted as short papers. Six
submissions were accepted as Graduate Student papers. In the SBSE Challenge
Track, two papers were accepted.

We would like to thank all the members of the SSBSE 2013 ProgramCommit-
tee. Their continuing support was essential in improving the quality of accepted
submissions and the resulting success of the conference. We also wish to espe-
cially thank the General Chair, Gordon Fraser, who managed the organization
of every single aspect in order to make the conference special to all of us. We
thank Gregory Kapfhammer, SSBSE 2013 Student Track Chair, for managing
the submissions of the bright young minds who will be responsible for the future
of the SBSE field. We also thank Phil McInn, who managed the challenge of at-
tracting submissions and successfully running the new challenge track. Last, but
certainly not least, we would like to thank Kornelia Streb for all her enthusiastic
support and contribution in preparation of these proceedings.

Maintaining a successful tradition, SSBSE 2013 attendees had the opportu-
nity to learn from experts both from the research fields of search as well as soft-
ware engineering, in two outstanding keynotes and one tutorial talk. This year,
we had the honor of receiving a keynote from Westley Weimer on “Advances
in Automated Program Repair and a Call to Arms” and providing a survey on
the recent success and momentum in the subfield of automated program repair.
Furthermore, we had a keynote from Xin Yao, who talked about the state of
the art in “Multi-objective Approaches to Search-Based Software Engineering.”
In addition, a tutorial was presented by David White on the emerging topic of
“Cloud Computing and SBSE.”



VIII Preface

We would like to thank all the authors who submitted papers to SSBSE 2013,
regardless of acceptance or rejection, and everyone who attended the conference.
We hope that with these proceedings, anybody who did not have the chance to
be in St. Petersburg will have the opportunity to feel the liveliness, growth and
increasing impact of the SBSE community. Above all, we feel honored for the
opportunity to serve as Program Chairs of SSBSE and we hope that everyone
enjoyed the symposium!

June 2013 Guenther Ruhe
Yuanyuan Zhang
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Joachim Wegener Berner and Mattner, Germany
Westley Weimer University of Virginia, USA
David White University of Glasgow, UK

Challenge Chair

Phil McMinn University of Sheffield, UK

Publicity Committee

Shin Yoo University College London, UK (Chair)
Kristen Walcott-Justice University of Colorado/Colorado Spring, USA
Dongsun Kim Hong Kong University of Science & Technology,

Hong Kong

Local Chair

Fedor Tsarev St. Petersburg State University of Information
Technologies, Mechanics and Optics,
Russia

Steering Committee

Mark Harman UCL, UK
Andrea Arcuri Simula, Norway
Myra Cohen University of Nebraska Lincoln, USA
Massimiliano Di Penta University of Sannio, Italy
Gordon Fraser University of Sheffield, UK
Phil McMinn University of Sheffield, UK
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Advances in Automated Program Repair

and a Call to Arms

Westley Weimer

University of Virginia
weimer@virginia.edu

Abstract. In this keynote address I survey recent success and momen-
tum in the subfield of automated program repair. I also encourage the
search-based software engineering community to rise to various chal-
lenges and opportunities associated with test oracle generation, large-
scale human studies, and reproducible research through benchmarks.

I discuss recent advances in automated program repair, focusing on the
search-based GenProg technique but also presenting a broad overview
of the subfield. I argue that while many automated repair techniques
are “correct by construction” or otherwise produce only a single repair
(e.g., AFix [13], Axis [17], Coker and Hafiz [4], Demsky and Rinard [7],
Gopinath et al. [12], Jolt [2], Juzi [8], etc.), the majority can be cate-
gorized as “generate and validate” approaches that enumerate and test
elements of a space of candidate repairs and are thus directly amenable
to search-based software engineering and mutation testing insights (e.g.,
ARC [1], AutoFix-E [23], ARMOR [3], CASC [24], ClearView [21], De-
broy and Wong [6], FINCH [20], PACHIKA [5], PAR [14], SemFix [18],
Sidiroglou and Keromytis [22], etc.). I discuss challenges and advances
such as scalability, test suite quality, and repair quality while attempt-
ing to convey the excitement surrounding a subfield that has grown so
quickly in the last few years that it merited its own session at the 2013
International Conference on Software Engineering [3,4,14,18]. Time per-
mitting, I provide a frank discussion of mistakes made and lessons learned
with GenProg [15].

In the second part of the talk, I pose three challenges to the SBSE com-
munity. I argue for the importance of human studies in automated soft-
ware engineering. I present and describe multiple “how to” examples of
using crowdsourcing (e.g., Amazon’s Mechanical Turk) and massive on-
line education (MOOCs) to enable SBSE-related human studies [10,11].
I argue that we should leverage our great strength in testing to tackle
the increasingly-critical problem of test oracle generation (e.g., [9]) —
not just test data generation — and draw supportive analogies with
the subfields of specification mining and invariant detection [16,19]. Fi-
nally, I challenge the SBSE community to facilitate reproducible research
and scientific advancement through benchmark creation, and support the
need for such efforts with statistics from previous accepted papers.

G. Ruhe and Y. Zhang (Eds.): SSBSE 2013, LNCS 8084, pp. 1–3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Some Recent Work on Multi-objective

Approaches to Search-Based Software
Engineering

Xin Yao

CERCIA, School of Computer Science
University of Birmingham

Edgbaston, Birmingham B15 2TT, UK
x.yao@cs.bham.ac.uk

http://www.cs.bham.ac.uk/~xin

Abstract. Multi-objective algorithms have been used to solve difficult
software engineering problems for a long time. This article summarises
some selected recent work of applying latest meta-heuristic optimisa-
tion algorithms and machine learning algorithms to software engineering
problems, including software module clustering, testing resource alloca-
tion in modular software system, protocol tuning, Java container testing,
software project scheduling, software project effort estimation, and soft-
ware defect prediction. References will be given, from which the details
of such application of computational intelligence techniques to software
engineering problems can be found.

1 Introduction

Although multi-objective algorithms has been applied to software engineering for
many years, there has been a renewed interest in recent years due to the avail-
ability of more advanced algorithms and the increased challenges in software
engineering that make many existing techniques for software engineering inef-
fective and/or inefficient. This paper reviews some selected work in recent years
in computational intelligence techniques for software engineering, including soft-
ware module clustering, testing resource allocation in modular software system,
protocol tuning, Java container testing, software project scheduling, software
project effort estimation, and software defect prediction. The key computational
intelligence techniques used include multi-objective evolutionary optimisation,
multi-objective ensemble learning and class imbalance learning.

In addition to existing work, this article will also introduce some speculative
ideas of future applications of computational intelligence techniques in software
engineering, including negative correlation for N-version programming and fur-
ther development of co-evolution in software engineering.

G. Ruhe and Y. Zhang (Eds.): SSBSE 2013, LNCS 8084, pp. 4–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Multi-objective Approach to Software Module
Clustering

2.1 Software Module Clustering Problem

Software module clustering is the problem of automatically organizing software
units into modules to improve the program structure [1]. A well-modularized
software system is easier and cheaper to develop and maintain. A good module
structure is regarded as one that has a high degree of cohesion and a low degree of
coupling. Cohesion refers to the degree to which the elements of a module belong
together. High cohesion is associated with several desirable traits of software
including robustness, reliability, reusability, and understandability. Coupling or
dependency is the degree to which each module relies on other modules.

Define Modularisation Factor, MF (k), for cluster k as follows [1]:

MF =

{
0 if i = 0
i

i+ 1
2 j

if i > 0. (1)

where i is the number of intra-edges and j is that of inter-edges. That is, j is the
sum of edge weights for all edges that originate or terminate in cluster k. The
reason for the occurrence of the term j/2 in the above equation (rather than
merely j) is to split the penalty of the inter-edge across the two clusters that
connected by that edge. If the module dependency graph (MDG) is unweighted,
then the weights are set to 1.

Modularisation quality (MQ) has been used to evaluate the quality of module
clustering results. The MQ can be calculated in terms of MF (k) as [1]

MQ =

n∑
k=1

MFk (2)

where k is the number of clusters.
The software module system is represented using a directed graph called the

Module Dependency Graph (MDG) [1]. The MDG contains modules (as nodes)
and their relationships (as edges). Edges can be weighted to indicate a strength
of relationship or unweighted, merely to indicate the presence of absence of a
relationship.

Bunch [1] was the state-of-the-art tool for software module clustering. It used
hill-climbing to maximise the MQ. Two improvements can be made to improve
bunch: one is to use a better search algorithm algorithm than hill-climbing, and
the other is to treat cohesion and coupling as separate objectives, rather than
using MQ, which is a combination of the two.

2.2 Multi-objective Approaches to Software Module Clustering

In order to implement the above two improvements, a multi-objective approach
to software module clustering was proposed [2]. In addition to cohesion and
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coupling, MQ was considered as a separate objective in order to facilitate the
comparison between the new algorithm and Bunch, which used MQ. Because
of the flexibility of the multi-objective framework, we can consider another ob-
jective where we want to maximise the number of modularised clusters. Two
different multi-objective approaches are investigated. The first one is called the
Maximizing Cluster Approach (MCA), which has the fifth objective for min-
imising the number of isolated clusters (i.e., clusters containing a single module
only). The second one is the Equal-size Cluster Approach (ECA), which has the
fifth objective for minimising the difference between the maximum and minimum
number of modules in a cluster.

Because most existing algorithms were not designed to handle a large number
of objectives [3], a two-archive algorithm for dealing with a larger number of
objectives [4] was adopted in our study.

2.3 Research Questions

Five research questions were investigated through comprehensive experimental
studies [2]:

1. How well does the two-archive multi-objective algorithm perform when com-
pared against the Bunch approach using the MQ value as the assessment
criterion?
Somewhat surprisingly, ECA was never outperformed by the hill-climber,
which was the state-of-the-art that specifically designed to optimise MQ.
In particular, ECA outperformed the hill-climber for all weighted MDGs
significantly.

2. How well do the two archive algorithm and the Bunch perform at optimizing
cohesion and coupling separately?
For both cohesion and coupling, in all but one of the problems studied,
the ECA approach outperforms the hill-climbing approach with statistical
significance. The remaining case has no statistically significant difference
between ECA and Bunch.

3. How good is the Pareto front achieved by the two approaches?
Our results provide strong evidence that ECA outperforms hill climbing for
both weighted and unweighted cases.

4. What do the distributions of the sets of solutions produced by each algorithm
look like?
The resulting locations indicate that the three approaches produce solutions
in different parts of the solution space. This indicates that no one solution
should be preferred over the others for a complete explanation of the module
clustering problem. While the results for the ECA multi-objective approach
indicate that it performs very well in terms of MQ value, non-dominated
solutions, cohesion and coupling, this does not mean that the other two
approaches are not worthy of consideration, because the results suggest that
they search different areas of the solution space.
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5. What is the computational expense of executing each of the two approaches
in terms of the number of fitness evaluations required?
Hill climbing is at least two orders of magnitude faster. Whether the addi-
tional cost is justified by the superior results will depend upon the application
domain. In many cases, re-modularization is an activity that is performed
occasionally and for which software engineers may be prepared to wait for
results if this additional waiting time produces significantly better results.
Given the same amount of time, the hill-climber was still outperformed by
ECA.

It is important to note that this work neither demonstrates nor implies any nec-
essary association between quality of systems and the modularization produced
by the approach used in this paper. Indeed, module quality may depend on many
factors, which may include cohesion and coupling, but which is unlikely to be
limited to merely these two factors. However, no matter what quality metrics
might be, the multi-objective approach as proposed here would be equally useful.

3 Multi-objective Approach to Testing Resource
Allocation in Modular Software Systems

A software system is typically comprised of a number of modules. Each mod-
ule needs to be assigned appropriate testing resources before the testing phase.
Hence, a natural question is how to allocate the testing resources to the modules
so that the reliability of entire software system is maximized.

We formulated the optimal testing resource allocation problem (OTRAP) as
two types of multi-objective problems [5], considering the reliability of the system
and the testing cost as two separate objectives. NSGA-II was used to solve this
two-objective problem.

The total testing resource consumed was also taken into account as the third
objective. A Harmonic Distance Based Multi-Objective Evolutionary Algorithm
(HaD-MOEA) was proposed and applied to the three-objective problem [5] be-
cause of the weakness of NSGA-II in dealing with the three objective problems.

Our multi-objective evolutionary algorithms (MOEAs) not only managed to
achieve almost the same solution quality as that which can be attained by single-
objective approaches, but also found simultaneously a set of alternative solutions.
These solutions showed different trade-offs between the reliability of a system
and the testing cost, and hence can facilitate informed planning of a testing
phase.

When comparing NSGA-II and HaD-MOEA [5], both algorithms performed
well on the bi-objective problems, while HaD-MOEA performed significantly
better than NSGA-II on the tri-objective problems, for which the total testing
resource expenditure is not determined in advance. The superiority of HaD-
MOEA consistently holds for all four tested systems.
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4 Protocol Tuning in Sensor Networks Using
Multi-objective Evolutionary Algorithms

Protocol tuning can yield significant gains in energy efficiency and resource re-
quirements, which is of particular importance for sensornet systems in which
resource availability is severely restricted.

In our study [6], we first apply factorial design and statistical model fit-
ting methods to reject insignificant factors and locate regions of the problem
space containing near-optimal solutions by principled search. Then we apply
the Strength Pareto Evolutionary Algorithm 2 and Two-Archive evolutionary
algorithms to explore the problem space.

Our results showed that multi-objective evolutionary algorithms (MOEAs)
can significantly outperform a simple factorial design experimental approach
when tuning sensornet protocols against multiple objectives, producing higher
quality solutions with lower experimental overhead. The two-archive algorithm
outperformed the SPEA2 algorithm, at each generation and in the final evolved
solution, for each protocol considered in this paper.

This work shows that MOEAs can be a vert effective approach to considering
trade-offs between functional and non-functional requirements of a system and
the trade-offs among different non-functional requirements. Multi-objective ap-
proaches enable us to incorporate different requirements easily It enables us to
understand the trade-off between functional and non-functional requirements,
as well as the trade-off among different non-functional requirements.

5 Multi-objective Ensemble Learning for Software Effort
Estimation

Software effort estimation (SEE) can be formulated as a multi-objective learning
problem, where different objectives correspond to different performance
measures [7]. A multi-objective evolutionary algorithm (MOEA) is used to bet-
ter understand the trade-off among different performance measures by creat-
ing SEE models through simultaneous optimisation of these measures. Such a
multi-objective approach can learn robust SEE models, whose goodness does not
change significantly when different performance measure was used. It also natu-
ral fits to ensemble learning, where the ensemble diversity is created by different
individual learner using different performance measures. A good trade-off among
different measures can be obtained by using an ensemble of MOEA solutions.
This ensemble performs similarly or better than a model that does not consider
these measures explicitly. Extensive experimental studies have been carried out
to evaluate our multi-objective learning approach and compare it against ex-
isting work. In our work, we considered three performance measures, i.e., LSD,
MMRE and PRED(25), although other measure can also be considered easily
in the multi-objective learning framework. The MOEA used is HaD-MOEA [5].
The base learner considered is MLP. The results show clearly the advantages of
the multi-objective approach over the existing work [7].
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5.1 Online Learning Approach to Software Effort Estimation Using
Cross-Company Data

Few work in SEE considered temporal information in learning the model, es-
pecially about concept drift. We have proposed a novel formulation of SEE as
a online learning problem using cross-company data [8]. First, we learn a SEE
model using the cross-company data. Then as individual in-company project
data become available, the SEE model will be further learned online. Contrary
to many previous studies, our research showed that cross-company data can be
made useful and beneficial in learning in-company SEE models. Online learning
with concept drifts played an important role.

6 Class Imbalance Learning for Software Defect
Prediction

Software defect prediction (SDP) has often been formulated as a supervised
learning problem without any special consideration of class imbalance. However,
the class distribution for SDP is highly imbalanced, because defects are also a
very small minority in comparison to correct software. Our recent work demon-
strated that algorithms that incorporate class imbalance handling techniques
can outperform those that do not in SDP [9].

We propose a dynamic version of AdaBoost.NC that adjusts its parameter
automatically during training based on a performance criterion. AdaBoost.NC
is an ensemble leanring algorithm that combines the advantages of boosting
and negative correlation. The PROMISE data set was used in the experimental
study.

Instead of treating SDP as a classification problem, wteher balanced or not,
one can also rank software modules in order of defect-proneness because this is
important to ensure that testing resources are allocated efficiently. Learning-to-
rank algorithms can be used to learn such a rank directly, rather than trying to
predict the number of defects in each module [10].

7 From SBSE to AISE

Artificial intelligence (AI) techniques have provided many inspirations for im-
proving software engineering, both in terms of the engineering process as well as
the software product. The application of AI techniques in software engineering
is a well established research area that has been around for decades. There have
been dedicated conferences, workshops, and journal special issues on applications
of AI techniques to software engineering.

In recent years, there has been a renewed interest in this area, driven by the
need to cope with increased software size and complexity and the advances in AI.
Search-based software engineering [18] provided some examples of how difficult
software engineering problems can be solved more effectively using search and
optimisation algorithms.
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It is interesting to note that search-based software engineering does not pro-
vide merely novel search and optimisation algorithms, such as evolutionary al-
gorithms, to solve existing software engineering problems. It helps to promote
rethinking and reformulation of classical software engineering problems in dif-
ferent ways. For example, explicit reformulation of some hard software engineer-
ing problems as true multi-objective problems, instead of using the traditional
weighted sum approach, has led to both better solutions to the problems as well
as richer information that can be provided to software engineers [19, 20]. Such
information about trade-off among different objectives, i.e., competing criteria,
can be very hard to obtained using classical approaches.

However, most work in search-based software engineering has been focused on
increasing the efficiency of solving a software engineering problem, e.g., testing,
requirement prioritisation, project scheduling/planning, etc. Much fewer work
has been reported in the literature about AI techniques used in constructing
and synthesizing actual software. Automatic programming has always been a
dream for some people, but somehow not as popular as some other research
topics.

The advances in evolutionary computation, especially in genetic programming
[21], has re-ignited people’s interest in automatic programming. For example,
after the idea of automatic bug fixing was first proposed and demonstrated [11],
industrial scale software has been tested using this approach and bugs fixed [22].
The continuous need to test and improve a software system can be modelled as a
competitive co-evolutionary process [12], where the programs try to improve and
gain a higher fitness by passing all the testing cases while all the testing cases
will evolve to be more challenging to the programs. The fitness of a testing case
is determined by its ability to fail programs. Such competitive co-evolution can
create ”arms race” between programs and testing cases, which help to improve
the programs automatically. In fact, competitive co-evolution has been used in
other engineering design domains with success.

In the rest of this article, we will describe briefly a few future research di-
rections in combining AI with software engineering. Some research topics are
related to better understanding of what we have been doing and how to advance
the state-of-the-art based on the insight gained. Some other topics are more ad-
venturous and long-term. Of course, these are not meant to be comprehensive.
They reflect the biased and limited views of the author.

8 Fundamental Understanding of Algorithms and
Problems

Many AI techniques have been applied to solve difficult software engineering
problems with success. For example, many search and optimisation algorithms
have been applied to software engineering [23]. In almost all such cases, only
results from computational experiments were reported. Few analyses of the al-
gorithms and the problems were offered. It was not always clear why a particular
algorithm was used, whether a better one could be developed, which features of
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the algorithm make it a success, what software engineering problem characteris-
tics were exploited by the algorithm, what is the relationship between algorithm
features and problem characteristics. It is essential to have deep theoretical un-
derstanding of both algorithms and the problems in order to progress the research
to a higher level than currently is.

Some recent work in understanding search algorithms has been on scalability,
especially from computational time complexity’s point of view [13]. If a search
algorithm is used to solve a software engineering problem, how will the algorithm
scale as the problem size increases? How do different features of an algorithms in-
fluence the algorithm’s performance?While there have been experimental studies
on such issues, more rigorous theoretical analyses are needed. In fact, theoretical
analyses could reveal insights that are not easily obtainable using experimental
studies. For example, a recent study [24] first showed rigorously that not only
the interaction between mutation and selection in an evolutionary algorithm
is important, the parameter settings (e.g., the mutation rate) can also drasti-
cally change the behaviour of an algorithm, from having a polynomial time to
exponential time. Such theoretical results are important because it shows that
operators should be designed and considered collectively, not in isolation, during
the algorithm design process. Parameter settings may need more than just a few
trial-and-error attempts.

The research in the theoretical analysis of search algorithms for software engi-
neering problems is still at its initial stage with few results [14, 25]. Much more
work is needed in this area.

A research topic that is inherently linked to the computational time complex-
ity analysis of search algorithms is the analysis of software engineering problems.
Unlike the classical analysis of computational time complexity, which considers
the problem hardness independent of any algorithms, we are always very in-
terested in the relationship between algorithms and problems so that we can
gain insight into when to use which algorithms to solve what problems (or even
problem instances). Fitness landscapes induced by an algorithm on a software
engineering problem can be analysed to gain such insight. Although the results
so far (e.g., [26]) are very preliminary, research in this direction holds much
promise because any insight gained could potentially be very useful in guiding
the design of new algorithms. Furthermore, one can use the information from
the fitness landscape to guide search dynamically, which is one of our on-going
research work [27].

9 Constructing Reliable Software Systems from Multiple
Less Reliable Versions

Correctness and reliability have always been paramount in software engineer-
ing, just like in every other engineering fields. Nobody is interested in incorrect
and unreliable software systems. Two major approaches, broadly speaking, in
software engineering to software correctness and reliability are formal methods
and empirical software testing. Formal methods try to prove the correctness of
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software mathematically, while testing tries to discover as many defects in the
software as possible. Neither approach is perfect and neither scales well to large
software systems.

Furthermore, almost all the existing approaches to enhancing software relia-
bility assume prior knowledge of the environments in which the software will be
used. While this is indeed the case for some applications, it is not true for some
other applications where the environments in which the software will be used
are unknown and contain uncertainty. A functionally correct software, which
has been proven mathematically to be correct, may not be operating correctly
in an uncertain environment because of unexpected memory space shortage or
limited communications bandwidth. In addition to software correctness, there is
an increasing need for software robustness, i.e., the ability of software to operate
correctly in unseen environments.

We can learn from other engineering design domains where ensemble ap-
proaches have been used to design fault-tolerant circuits [15] and better machine
learning systems [16]. The idea behind the ensemble approach to designing large
and complex software systems is straightforward. Instead of trying to develop a
monolithic system with an ever-increasing size and complexity, it seems to be
more practical to develop a number of different software components/versions,
as a whole they will perform the same functions as the monolithic system, but
more reliably.

The ensemble idea actually appeared in very different domains in different
forms. Not only is it popular within the machine learning community [16], it
also has its incarnation in software engineering, i.e., in N-version programming
[28–30], where “N-version programming is defined as the independent generation
of N ≥ 2 functionally equivalent programs from the same initial specification.”
It was proposed as an approach to software fault-tolerance. Many key issues
were discussed then, including the need of redundancy in the software system
and notions of design diversity and software distinctness [28–30]. One of the
main hypothesis was that different versions were unlikely to have the same types
of defects and hence created opportunities for the entire ensemble to be more
reliable than any individual versions. However, N-version programming was criti-
cised over the years, because independence among different software development
teams can hardly be achieved [31].

What has changed since then? Why should we re-visit this old idea? There
have been some recent developments in machine learning and evolutionary com-
putation, which could help to move the old idea forward. First, instead of relying
on human programming teams, it is now possible to produce programs or algo-
rithms automatically through genetic programming, although for small scale
programs for the time being. Second, we now understand much better what “di-
versity” and ”distinctness” mean. There are various diversity measures [17, 32]
that we can use and adapt for the software engineering domain. Third, we can
do better than just maintaining independence among different versions by ac-
tively creating and promoting negative correlation [16] among different versions.
We can learn from the initial success of using negative correlation in designing
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fault tolerant circuits and transfer such knowledge to software engineering. In
the future, we will automatically generate N diverse versions of the software such
that the integration of the N versions, e.g., the ensemble, will be more reliable
than any individual versions. Lessons, and algorithms, from constructing diverse
and accurate machine learning ensembles [33] can be learnt for the benefit of
developing reliable software systems from multiple unreliable versions.

10 Concluding Remarks

This article covers two major parts. The first part reviews selected work related
to search-based software engineering. The second part includes some speculations
on possible future research directions, which go beyond search-based software
engineering towards artificial intelligence inspired software engineering.
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Abstract. Global spend on Cloud Computing is estimated to be worth
$131 billion and growing at annual rate of 19% [1]. It represents one of
the most disruptive innovations within the computing industry, and offers
great opportunities for researchers in Search Based Software Engineering
(SBSE).

In the same way as the development of large scale electricity gen-
eration, the physical centralisation of computing resources that Cloud
Computing involves provides opportunities for economies of scale [2].
Furthermore, it enables more extensive consolidation and optimisation
of resource usage than previously possible: whereas in the past we have
been resigned to the phenomenon of wasted spare cycles, the Cloud of-
fers opportunities for large-scale consolidation, along with standardised
measurement and control of resource consumption.

There are two key stakeholders within the Cloud Computing sector:
providers, such as Amazon and Google, and clients, the consumers of
Cloud services paying for infrastructure and other utilities by the hour.
Both providers and clients are greatly concerned with solving optimisa-
tion problems that determine their resource usage, and ultimately their
expenditure. Example resources include CPU time, physical RAM usage,
storage consumption, and network bandwidth.

From the point of view of the provider, improving utilisation leads
to greater return on capital investment – hence the emergence of over-
subscription policies [3], where more resources are promised to clients
than are physically provisioned. Similarly, clients wish to reduce their re-
source demands because there is a direct relationship between resource
consumption and operating cost. The rise of Cloud Computing has in
many cases made explicit the cost of computation that was previously
considered only as depreciation of capital investment.

Example optimisation problems include: the configuration of servers,
virtualisation, and operating systems to reduce storage and memory us-
age; transformation of software and architectures to adapt them to a
Cloud platform; the intelligent placement of virtual machines to improve
consolidation, reduce business risks and manage network usage; exten-
sive, online and continuous testing to improve robustness; policy-level
decisions such as management of scalability, demand modelling and spot
market participation; and automated online software maintenance and
improvement [4].

A relentless focus on efficiency offers researchers in SBSE the oppor-
tunity to make an important contribution. The field has an established
record in solving similar optimisation problems within software engineer-
ing, and treating non-functional concerns as first class objectives.

G. Ruhe and Y. Zhang (Eds.): SSBSE 2013, LNCS 8084, pp. 16–18, 2013.
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The way in which software is deployed within Cloud systems also
offers exciting possibilities for SBSE researchers, principally due to its
centralised nature. Software is no longer deployed or versioned in the tra-
ditional manner, and this consequently enables dynamic, controlled and
sometimes partial deployment of new code (a procedure known as “ca-
narying” [5]). A key insight is that many different versions of software
can be employed simultaneously, and that manipulation of this multi-
faceted distribution solves some of the problems traditionally faced by
SBSE practitioners.

For example, consider recent work in bug fixing [6] [7]. One of the
greatest challenges facing automatically and dynamically applying such
work is ensuring that the existing semantics of a program are not dis-
turbed in the process of correcting a bug. By running a form of N-Version
programming on a Cloud platform, differences in behaviour caused by
automated software repair could be rejected or reported.

Similarly, the extensive use of virtualisation improves the repeata-
bility of execution. Technologies such as Xen [8] provide snapshotting,
enabling a virtual machine to be paused, cloned and restarted (with some
limitations). This lends itself to improving the robustness of automated
repair and optimisation methods: we can rollback servers and examine
hypothetical scenarios. Furthermore, due to the elasticity of the Cloud,
we can quickly procure extra execution environments to test software on
demand.

Applying traditional SBSE work to the Cloud will not be straightfor-
ward, and requires further development of both theory and implemen-
tation: many problems in the Cloud are real-time and dynamic; there
are competing objectives and complex relationships between concerns;
the problems faced and the software itself are distributed. One exciting
example of how we may begin to adapt to this environment is Yoo’s
proposed amortised optimisation [9].

The process of researching Cloud Computing is in itself a challenge,
because the nature of the industry is secretive and closed. There is com-
petitive advantage to be gained in proprietary technology, and as a result
much detail of how deployed systems function is not available. Thus, we
must occasionally re-invent the wheel and in some cases restrict ourselves
to synthetic case studies or else recognise the limited reach we can have
within certain subdomains.

More pressing is the concern about research evaluation: how can we
evaluate our research ideas effectively? This problem is not limited to
SBSE alone. There are parallels with difficulties carrying out network-
ing research, and we may adopt that field’s existing methods of mod-
elling, simulation, testbed construction, and instrumentation. A recent
and novel alternative is to construct a scale model, such that a low-cost
system with similar logical properties to a commercial Cloud can be used
for prototyping [10].

In summary, the rise of Cloud Computing provides great opportunities
for SBSE research, both in terms of the problems that SBSE may be used
to solve, and also the capabilities that Cloud Computing provides, which
offer truly new methods of deploying SBSE techniques.
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Abstract. During the integration test of aspect-oriented software, it is
necessary to determine an aspect-class integration and test order, asso-
ciated to a minimal possible stubbing cost. To determine such optimal
orders an approach based on multi-objective evolutionary algorithms was
proposed. It generates a set of good orders with a balanced compromise
among different measures and factors that may influence the stubbing
process. However, in the literature there are different strategies proposed
to aspect-class integration. For instance, the classes and aspects can be
integrated in a combined strategy, or in an incremental way. The few
works evaluating such strategies do not consider the multi-objective and
coupling based approach. Given the importance of such approach to re-
duce testing efforts, in this work, we conduct an empirical study and
present results from the application of the multi-objective approach with
both mentioned strategies. The approach is implemented with four cou-
pling measures and three evolutionary algorithms that are also evaluated:
NSGA-II, SPEA2 and PAES. We observe that different strategies imply
in different ways to explore the search space. Moreover, other results
related to the practical use of both strategies are presented.

Keywords: Integration testing, aspect-oriented software, MOEAs.

1 Introduction

Testing aspect-oriented (AO) software is an active research area [1,6,16,25]. Sev-
eral testing criteria have been proposed, as well as, testing tools have been de-
veloped exploring specific characteristics of the AO context, where new kind of
faults and difficulties for testing are found. For example, some authors point out
the importance of testing adequately existing dependencies between aspects and
classes. To address this kind of test, existing works suggest different strategies.
In the Incremental strategy [6,17,25,26] the classes are tested first, and after, the
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aspects are integrated. This strategy presents some advantages such as easy im-
plementation and fault localization. The Combined strategy generates sequences
to test the interactions among classes and aspects in a combined way [21]. This
strategy seems to be more practical since classes and aspects probably are tested
together if both are under development.

Both strategies present points in favour and against. However to apply both it
is necessary to establish an order of classes and aspects to be tested. The problem
of determining such order, which minimizes the costs for stubs construction, is
referred as CAITO (Class and Aspect Integration and Test Order) [8]. The costs
are associated to the number of stubs and other factors related to different
measures, to the test plans, and to the software development context.

Solutions to this problem are proposed based on a dependency graph, the
extended ORD (Object Relation Diagram) [20]. In such graph the nodes repre-
sent either aspects or classes, and the edges represent the relationships between
them. When dependency cycles exist in the graph, it is necessary to break the
dependency and to construct a stub. There are evidences that is very common
to find complex dependency cycles in Java programs [18]. In the AO context
is very usual to find crosscutting concerns that are dependent of other cross-
cutting concerns, implying in dependency between aspects, and between classes
and aspects [21]. To break the cycles and establish the test order, different ap-
proaches, from the object-oriented (OO) context, were adapted. The work of
Ré et al. [20] uses the approach of Briand et al. [5] based on the Tarjan’s algo-
rithm. Other works use search-based algorithms [4]. Similarly to what happens in
the OO context [22], most promising results were obtained with multi-objective
algorithms [4]. These algorithms allow generation of more adequate solutions,
evaluated according to Pareto’s dominance concepts [19] and represent a good
trade-off between objectives that can be in conflict.

In a previous work [8], we introduced a multi-objective and evolutionary
coupling-based approach, named MECBA, to solve the CAITO problem. The
approach treats the problem as a constrained combinatorial multi-objective op-
timization problem, where the goal is to find a test order set that satisfies con-
straints and optimizes different factors related to the stubbing process. The
approach consists of some generic steps that include: the definition of a model
to represent the dependency between classes and aspects, the quantification of
the stubbing costs, and the optimization through multi-objective algorithms. At
the end, a set of good solutions is produced and used by the testers according
to the test goals and resources. However, the evaluation results reported in the
AO context [4,8] were obtained with the Combined strategy, which integrates
classes and aspects without any distinction among them.

Considering this fact, and following up on our previous work [8], in this paper
we present results from MECBA evaluation with three evolutionary algorithms:
NSGA-II, SPEA2 and PAES, and both strategies: Incremental and Combined.
In the evaluation, we used the same systems and methodology adopted in our
previous work [8] with the goal of answering the following questions:
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– RQ1. How are the Incremental and Combined strategies results with respect
to the stubbing process? It is important to know which strategy presents
better solutions regarding costs related to the number of stubs and other
factors. To evaluate costs, in our paper we consider four objectives (coupling
measures) that consist on the number of: attributes, operations, types of
return and types of operation parameters.

– RQ2. Does the kind of used evolutionary algorithm influence on the perfor-
mance of the strategies? This question aims at investigating the performance
of each integration strategy used with different kind of evolution strategies
implemented by the three algorithms.

– RQ3. Does the selected strategy influence on the performance of the al-
gorithms? This question aims at investigating the fact that some strategy
can impose restrictions for the search space and maybe this influence in the
results of the evolutionary algorithms.

– RQ4. How is the behaviour of each strategy to exploring the search space
in the presence of four objectives? This question is derived from RQ3. It
is expected that the Incremental strategy influences the exploitation on the
search space due to its rule that integrates classes first and aspects later.

In our study context, both strategies achieve good results in order to make the
integration test of aspect-oriented software less labour-intensive and expensive.
The kind of evolutionary algorithm seems not to influence on the strategy per-
formance, but we observed that the Incremental strategy explores the search
space in a different way and finds the best results with PAES for one system.

The paper is organized as follows. Section 2 contains related work. Section 3
reviews the MECBA approach. Section 4 describes how the evaluation was con-
ducted: systems, strategies and algorithms used. Section 5 presents and analyses
the results, comparing the performance of algorithms and strategies, and an-
swering our research questions. Section 6 concludes the paper.

2 Related Work

The use of the search-based multi-objective approaches to solve different testing
problems is subject of someworks found in the literature [15,24].On the other hand,
we observe works that studied the application of search-based techniques for AO
testing, where in general the approaches are adapted from the OO context [8,13].
Among such works we can include that ones addressing the CAITO problem.

In the OO context the solution of the integration and test order is an ac-
tive research area, subject of a recent survey [23]. Most promising approaches
are based on search-based algorithms [3,22]. In the AO context, other relations
and ways to combine the aspects are necessary. The work of Ceccato et al. [6]
uses a strategy in which the classes are first tested without integrating aspects.
After this, the aspects are integrated and tested with the classes, and, at the
end, the classes are tested in the presence of the aspects. Solutions based on
graphs were investigated by Ré et al. [20,21]. The authors propose an extended
ORD to consider dependency relations between classes and aspects, and different
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graph-based strategies to perform the integration and test of AO software. They
are: i) Combined: aspects and classes are integrated and tested together; ii) In-
cremental: first only classes are integrated and tested, and after the aspects; iii)
Reverse: applies the reverse combined order; and iv) Random: applies a random
selected order. As a result of the study, the Combined and Incremental strategies
performed better than the other ones, producing a lower number of stubs. Due
to this, only these strategies are being considered in our evaluation.

The use of evolutionary algorithms in the AO context is recent. Galvan et
al. [11] introduced a simple and mono-objective GA that uses an aggregation of
functions to the CAITO problem. This algorithm presented better solutions than
the approach based on graphs and on the Tarjan’s algorithm, proposed by Ré et
al. After this, the multi-objective algorithms were successfully explored in the AO
context using two objectives, number of attributes and operations [4] reaching
better results than traditional and simple GA-based approaches. Motivated by
this fact we introduced in a previous work [8] the MECBA approach to the
CAITO problem. This approach, described in the next section, produces a set
of good (non-dominated) solutions considering all the objectives.

The work of Ré et al. [21] provides some idea about the strategies perfor-
mance. However, the strategies were only evaluated with a kind of algorithm
and approach: the Tarjan’s algorithm and Briand et al’s approach [5]. Other
limitations are: the strategies were applied to only one small system, with six
classes and five aspects; and the different factors that may influence the stubbing
costs were not considered, since the traditional approaches are very difficult to be
adapted to consider such factors. In comparison with the traditional approaches,
the evolutionary approaches do not have such limitation and present better re-
sults [4], but the strategy used in all evaluations [8] is always the Combined one.
Considering this fact, a comparison of both strategies with the multi-objective
approach using four coupling measures is the goal of the present paper. To do
this, the Incremental approach was also implemented in the MECBA approach,
subject of the next section.

3 The MECBA Approach

The MECBA approach includes a set of steps that produce artifacts and allows
the use of different coupling measures for solving the CAITO problem through
multi-objective evolutionary algorithms. It has the following steps: construction
of the dependency model, definition of the cost model, multi-objective optimiza-
tion, and selection of test orders. Next, we present how the steps were conducted
in our study. The methodology adopted is similar to our previous work [8].

3.1 Construction of Dependency Model

This model specifies the kind of dependencies that should be considered. It
can be obtained from a design model or from the source code. This last one
generally provides more information and were used in our study. The model
adopted is the extended ORD [20]. In the ORD the vertexes are classes, and
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the edges represent the dependencies between classes. In the extended ORD,
the vertexes represent a module that can be both classes and aspects, and the
following new relationships were proposed: Crosscutting Association: association
generated by a pointcut with a class method or other advice; Use: is generated by
a relation between advices and pointcuts, and between pointcuts; Association:
occurs between objects involved in pointcuts; Intertype Declaration: occurs when
there are intertype relationships between aspects and the base class; Inheritance:
represents inheritance relationships among aspects or among classes and aspects.

As in other related works [20,21], we consider that Inheritance and Intertype
declarations dependencies cannot be broken. This means that base modules must
precede child modules in any test order. The dependencies that cannot be broken
are an input for the algorithms, called dependency matrix. In the algorithms
these constraints are checked during the generation of initial population and
in the application of mutation and crossover operators. The treatment strategy
involves a scan of the constraints from beginning to end of the chromosome,
making sure that the precedence among the modules are not being broken.

3.2 Definition of the Cost Model

Our model is composed by a set of objectives to be minimized: these objectives
are related to collected measures that serve as fitness functions. As mentioned
before, several possible measures and factors can be used, such as coupling,
cohesion and time constraints. We used the same coupling measures adopted by
most related works [3,8,21]. They generally measure the dependencies between
server and client modules. Considering that: (i) mi and mj are two coupled
modules and mi depends on mj , (ii) modules are either classes or aspects, and
(iii) the operation term represents class methods, aspect methods and aspect
advices. The measures are defined as:

Attribute Coupling (A): number of attributes locally declared in mj when
references or pointers to instances of mj appear in the argument list of some
operations in mi, as the type of their return value, in the list of attributes of mi,
or as local parameters of operations of mi. It counts the number of attributes
that would have to be handled in the stub if the dependency were broken.

Operation Coupling (O): number of operations locally declared in mj which
are invoked by operations of mi. It counts the number of operations that would
have to be emulated in the stub if the dependency were broken.

Number of distinct return types (R): number of distinct return types of the
operations locally declared in mj that are called by operations of mi. Returns
of type void are not counted as return type.

Number of distinct parameter types (P): number of distinct parameters of
operations locally declared in mj and called by operations of mi. When there is
overloading operations, the number of parameters is equal to the sum of all dis-
tinct parameter types among all implementations of each overloaded operation.
The worst case is considered, represented by situations in which the coupling
consists of calls to all implementation of a given operation.
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The measures A and O are commonly used in related work. In the other hand,
the measures R and P allow to consider different factors related directly to the
stub complexity. Furthermore, O, R and P are interdependent.

3.3 Multi-Objective Optimization

This step is the application of the multi-objective evolutionary algorithm
(MOEA). In our study we used three variants of GAs, which adopt different evolu-
tion and diversificationmethodologies. They are: NSGA-II (Non-dominated Sort-
ingGenetic Algorithm) [9], SPEA2 (StrengthParetoEvolutionaryAlgorithm) [27]
and PAES (Pareto Archived Evolution Strategy) [14]. Such MOEAs were chosen
due to twomain reasons. First, evolutionary algorithms have presented better per-
formance, in the OO context, than other bio-inspired algorithms, such as PACO
and MTabu [22]. Second, they implement different evolution strategies, and this
help us to investigate the influence of the strategies in the search space.

For each generation NSGA-II sorts the individuals, from parent and offspring
populations, considering the non-dominance relation, creating several fronts and,
after the sorting, solutions with lower dominance are discarded. These fronts
characterize the elitism strategy adopted by NSGA-II. This algorithm also uses
a diversity operator (crowding distance) that sorts the individuals according to
their distance from the neighbours of the border for each objective, in order to
ensure greater spread of solutions.

SPEA2 maintains an external archive that stores non-dominated solutions in
addition to its regular population. Some of them are selected for the evolutionary
process. For each solution in the archive and in the population, a strength value
is calculated, which is used as fitness of the individuals. The strength value of a
solution i corresponds to the number j of individuals, belonging to the archive
and to the population, dominated by i. The archive size s is fixed. When the
number n of solutions exceeds s, a clustering algorithm is used to reduce n.

PAES works with a population concept that is different from other evolu-
tionary algorithms strategies, since only one solution is maintained in each gen-
eration. The strategy to generate new individuals is to use only the mutation
operator. As the algorithm works with only one solution for generation there is
no possibility to use the crossover operator. Like in SPEA2, there is an exter-
nal archive that is populated with the non-dominated solutions found along the
evolutionary process. If the external archive size is exceeded, a diversity strategy
is applied on the set of solutions in order to remove the similar solutions and to
maintain wide the exploitation of a search space.

The implementation of those three algorithms used the same problem repre-
sentation (chromosome). Since the CAITO problem is related to permutations
of modules (classes and aspects), which form testing orders, the chromosome is
represented by a vector of integers where each vector position corresponds to a
module. The size of the chromosome is equal to the number of modules of each
system. Thus, being each module represented by a number, an example of a valid
solution for a problem with 5 modules is (2, 4, 3, 1, 5). In this example, the first
module to be tested and integrated is the module represented by number 2.
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For both strategies (Combined and Incremental), the crossover operator fol-
lows the technique of Two Points Crossover, which swaps two genes inside two
randomly selected points to form the children. The remaining genes are used
to complete the solution, from left to right. There is no difference for crossover
between the strategies. Despite of the division of classes and aspects, in the
Incremental strategy implementation, the Two Points Crossover preserves the
restriction. The technique Swap Mutation was used for the mutation operator.
In the Incremental strategy if the randomly selected gene is a class, the gene to
be swapped must be another class. In the other hand, if the gene is an aspect, it
must be swapped by another aspect, in order to maintain the boundary between
classes and aspects in the chromosome.

The use of crossover and mutation operators can generate test orders that
break the precedence constraints between the modules. As mentioned, Inheri-
tance and Intertype declarations dependencies cannot be broken. This means
that base modules must precede child modules in any test order. The strategy
adopted to deal with these constraints consists in to check the test order, and
if an invalid solution is generated, the module that breaks the dependency con-
straint is placed at the end of the test order according to the module type, for
instance, in the Incremental, if the module is a class, it must be placed at the
end of the classes space; and analogously for aspects.

The fitness function (objectives) is calculated from five matrices, inputs to the
algorithms, associated to (i) dependencies between modules; (ii) measure A; (iii)
measure O; (iv) measure R; and (v) measure P. These measures are generally cal-
culated during the software design, however it is difficult to obtain architectural
design documentation of complex systems to conduct experiments. So, reverse
engineering was performed to identify the existing dependencies between mod-
ules from programs code using the same parser adopted in our previous work [8].
Based on the dependency matrices, the precedence constraints are defined. The
sum of the dependencies between the modules for each measure corresponds to
an objective, and the goal is to minimize all objectives.

4 Evaluation Study Description

In order to answer the research questions we conduct an empirical study with four
systems following the same methodology for the MOEAs application described
in [8], now with the additional strategy - Incremental. The used systems are
most complex systems than that ones used in related work, in terms of number
of lines of code and dependencies (see their characteristics in Table 1).

We used the NSGA-II, SPEA2 and PAES versions available at jMetal [10] with
the same parameters values adopted in our previous work [8], where an empirical

Table 1. Used Systems

System LOC
# # # Dependencies

Classes Aspects I U As It PointCuts Advices Total

AJHotDraw 18586 290 31 234 1177 140 40 0 1 1592
AJHSQLDB 68550 276 15 107 960 271 0 0 0 1338

HealthWatcher 5479 95 22 64 290 34 3 1 7 399
Toll System 2496 53 24 24 109 46 4 0 5 188
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parameters tuning was done [2]. Such values are: population size = 300; number
of fitness evaluation = 60000; mutation rate = 0.02; crossover rate = 0.95; and
archive size = 250 (required only by SPEA2 and PAES). The MOEAs executed
the same number of fitness evaluations in order to analyse whether they produce
similar solutions when they are restricted to the same resources. Each algorithm
was executed 30 runs for each AO system. In each run, each MOEA found an
approximation set of solutions named PFapprox. Furthermore, for each MOEA
it is obtained a set, called PFknown, formed by all non-dominated solutions
achieved in all runs. Considering that PFtrue is not known, in our study, this
set was obtained by the union of the non-dominated solutions from all PFapprox

found by NSGA-II, SPEA2 and PAES according to [28]. PFapprox, PFknown

and PFtrue are necessary to calculate the quality indicators used to evaluate the
results. The quality indicators are described below.

The most accepted indicator for performance assessment of multi-objective al-
gorithms is the Hypervolume (HV) [28]. Comparing two PFapprox sets: whenever
one PFapprox completely dominates another PFapprox, the HV of the former will
be greater than the HV of the latter. The HV indicator calculates the volume in
the region enclosed from the PFapprox to a reference point. A reference point is
a point dominated by the solutions of all the PFsapprox found.

The Coverage (C) [28] indicator calculates the dominance between two sets
of solutions. C provides a direct comparison of how many solutions achieved by
an algorithm A are dominated by those achieved by an algorithm B. C(PFa,
PFb) represents a value between 0 e 1 according to how much the set PFb is
dominated by set PFa. When dealing with many-objective optimization (four
or more objective functions), then this measure will likely fail because the non-
dominance probability among two solutions randomly drawn from the decision
space rapidly goes to one as the number of objectives increases. Therefore, the
coverage, here it is used as secondary indicator.

The third indicator, Euclidean Distance from the Ideal Solution (ED), it is
not a quality indicator, instead, it is used as a measure to help the decision
maker in his/her final decision, i.e., from all the solutions provided which one
to select. ED is used to find the closest solution to the best objectives. An ideal
solution has the minimum value of each objective, considering a minimization
problem [7]. These minimum values are obtained from all PFtrue’s solutions.

5 Results and Analysis

In this section the results are analysed considering the number of solutions found
(test orders), the three indicators, solutions distribution on the search space, and
number of stubs for classes and aspects. After that, we summarize our findings
in order to answer our research questions.

Table 2 presents the number of solutions achieved by the MOEAs using each
strategy. The number of solutions achieved in each strategy that belong to the
set PFtrue is presented in parentheses. The total number of solutions in PFtrue

is observed in the second and fifth columns. It is possible that the same solution
was found by different algorithms or strategies.
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Table 2. Number of Solutions

MOEA
AJHotDraw AJHSQLDB

PFtrue Combined Incremental PFtrue Combined Incremental

NSGA-II 95 (93) 122 (1) 244 (0) 205 (0)
PAES 106 68 (3) 77 (8) 393 428 (112) 318 (281)
SPEA2 76 (0) 188 (2) 317 (0) 172 (0)

HealthWatcher Toll System

NSGA-II 1 (1) 1 (1) 1 (1) 1 (1)
PAES 1 1 (1) 1 (1) 1 1 (1) 1 (1)
SPEA2 1 (1) 1 (1) 1 (1) 1 (1)

Regarding to the system AJHotDraw, we can notice that the number of solu-
tions found by all MOEAs is greater for the strategy Incremental. On the other
hand, for AJHSQLDB, the MOEAs achieved the greatest number of solutions
with the strategy Combined. For the systems HealthWatcher and Toll System we
observe that the objectives are not interdependent, since only one solution was
found. Taking into account AJHotDraw and AJHSQLDB, the greatest number
of solutions found in PFknown does not imply in the quality of solutions, since
there are cases in which lower number of solutions in PFknown represents greater
number of solutions in PFtrue considering the objectives, i.e., lower values for
each objective, for instance, the solutions found by NSGA-II with Combined
strategy for AJHotDraw. According to the results presented in Table 2, NSGA-
II found more solutions in PFtrue for AJHotDraw (93) whereas PAES achieved
the greatest number for AJHSQLDB (281). For HealthWatcher and Toll System,
all algorithms found the optimal solution for both strategies. Hence, they were
not considered in the analysis hereafter.

Table 3 presents mean and standard deviation for HV indicator, considering
the 30 runs of each MOEA. Friedman statistical test [12] was applied to assess
the statistical difference among all MOEAs with both strategies. For all cases,
the test did not point out difference, except for AJHSQLDB, where PAES is the
best with any strategy, and NSGA-II and SPEA2 are equivalent. In this case,
there is no statistical difference between PAES with Incremental or Combined
strategy. For Health Watcher and Toll System, the test did not point out any
significant difference considering this indicator.

Table 4 presents the comparison between both strategies using the Coverage
indicator. Considering NSGA-II, the solutions found by Combined are better.
For PAES, the solutions found by Incremental cover the most solutions found
by Combined. And, for SPEA2, Combined was better for AJHotDraw and In-
cremental was better for AJHSQLDB.

Taking into account AJHotDraw and AJHSQLDB, Figures 1 and 2, respec-
tively, allow analysing how the MOEAs explore the search space using each
strategy. These pictures present the solutions distributed on the search space.

Table 3. Mean and Standard Deviation of Hypervolume

System
NSGA-II PAES SPEA2

Combined Incremental Combined Incremental Combined Incremental

AJHotDraw
8.31E+06 8.05E+06 7.45E+06 7.67E+06 7.46E+06 7.52E+06
(1.08E+06) (1.08E+06) (1.17E+06) (1.00E+06) (9.49E+05) (1.04E+06)

AJHSQLDB
2.09E+10 2.06E+10 4.62E+10 4.61E+10 1.81E+10 1.57E+10
(8.04E+09) (7.42E+09) (4.53E+09) (5.58E+09) (5.96E+09) (6.70E+09)
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Table 4. Coverage Indicator for the Strategies

MOEA
AJHotDraw AJHSQLDB

C(Com,Inc) C(Inc,Com) C(Com,Inc) C(Inc,Com)

NSGA-II 0.991803 0.0210526 0.609756 0.389344
PAES 0.311688 0.485294 0.116352 0.738318
SPEA2 0.702128 0.210526 0.0639535 0.33123

We grouped the measures that are more related in two pictures: (i) one with
the measures (A,O), and (ii) another with the measures (O,R,P) in order to
present them in three-dimensional graphics. Regarding the graphics presented
in Figure 1 it is possible to observe that solutions achieved with the Incremen-
tal strategy are more spread on the search space. It seems that the restriction
of the strategy enforces the MOEAs to explore other regions of search space,
consequently increasing the number of solutions, and achieving as a result, the
greatest number of solutions.

In Figure 2 we can notice that the Incremental strategy solutions form groups,
they are restricted to certain areas of the search space. As observed in Table 2,
the number of Combined strategy solutions, for AJHSQLDB, is greater than
the solutions found for AJHotDraw, therefore for AJHSQLDB the restriction
of Incremental seems to limit the search space, justifying the lowest number of
solutions.

Table 5 presents the cost of solutions with the lowest Euclidean distance from
the ideal solution. Based on such results we cannot state that some strategy is
better. It is possible to observe that the best ED solutions, independently of the
strategy, were achieved by NSGA-II and PAES, respectively for AJHotDraw and
AJHSQLDB, as pointed by indicator HV (Table 3).

Table 5. Lowest ED’s and Solutions Cost

System
Ideal

Strategy NSGA-II PAES SPEA2
Solution

AJHotDraw (37,13,0,18)
Combined

17.492856 18.220867 21.610183
(45,17,1,33) (46,18,1,33) (52,17,1,33)

Incremental
17.029386 18.275667 18.681542
(46,19,2,31) (44,18,2,34) (45,18,2,34)

AJHSQLDB
(1270,212,

Combined
304.417477 181.207064 245.224387

89,136)
(1428,403,172,292) (1335,329,140,247) (1441,337,139,249)

Incremental
237.981092 171.802212 274.581500

(1374,369,160,263) (1334,322,143,238) (1459,367,157,241)

Table 6 presents the mean numbers of stubs, stubs for classes and stubs for
aspects considering all solutions for each strategy and MOEA. Orders requiring
aspect stubs were found only for AJHSQLDB, with NSGA-II and PAES when
using the Combined strategy. This was expected since in the Incremental strat-
egy, aspects are at the order end. Again we cannot point some strategy as the
best, since a lower mean was not found by a single strategy. Among the MOEAs,
NSGA-II with Combined strategy achieved the lowest mean number of stubs for
AJHotDraw, and PAES with Incremental strategy, for AJHSQLDB.

In order to analyse the number of stubs required for each strategy when
solutions with the same cost were found, we composed two sets with all MOEAs
solutions: (i) one set with solutions of the Combined strategy; and (ii) another
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Fig. 1. Search Space of AJHotDraw

Table 6. Mean Number of Stubs for Classes and Aspects

Algorithm Strategy
AJHotDraw AJHSQLDB

# Stubs # Stubs
Sol. Total Class Aspect Sol. Total Class Aspect

NSGA-II
Combined 95 98.04 98.04 0 244 165.81 163.87 1.93
Incremental 122 100.93 100.93 0 205 163.69 163.69 0

PAES
Combined 68 107.47 107.47 0 428 132.27 132.26 0.01
Incremental 77 110.13 110.13 0 318 129.21 129.21 0

SPEA2
Combined 76 99.87 99.87 0 317 157.01 157.01 0
Incremental 188 102.61 102.61 0 172 157.99 157.99 0

set with solutions of the Incremental strategy. From both sets we obtained the
solutions with same cost. The solutions with the same cost were found only for
AJHotDraw and they are presented in Table 7. In these cases, both strategies
achieved solutions with the lowest number of stubs for classes and aspects, then
none overcame the other at this point.
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Fig. 2. Search Space of AJHSQLDB

Table 7. Number of Stubs for AJHotDraw Solutions with the Same Cost

Solution Cost
Combined Incremental

Total Class Aspect Total Class Aspect

(44,18,2,34) 91 91 0 99 99 0
(56,18,3,30) 101 101 0 93 93 0
(94,14,2,29) 101 101 0 116 116 0
(57,15,0,31) 101 101 0 99 99 0
(66,18,5,27) 100 100 0 98 98 0

Finally, aiming at answering our research questions, we summarize our find-
ings as follows:

– RQ1: From the results we cannot point out one strategy as the best, since
in all analysis about the stubbing process, considering all the four measures,
both strategies achieved good solutions. Although, we use only four AO
systems, what can be not significant to find particularities of each strategy.
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– RQ2: During the experiment, we did not observe any influence of the algo-
rithm used on the performance of the strategies. It seems that the charac-
teristics of the program have an important role.

– RQ3: Independently of the adopted strategy, the behaviour of the MOEAs
was the same. All MOEAs found the optimal solution for Toll System and
HealthWatcher with both strategies. NSGA-II was the best MOEA for
AJHotDraw and PAES was the best for AJHSQLDB. Similar results were
obtained in the previous work [8] where only the Combined strategy was
used. So, in the context of our exploratory study, the answer for this ques-
tion is that the strategies do not influence on the MOEA performance.

– RQ4: When a lower number of solutions was achieved by Combined strat-
egy, the restriction of Incremental seems to enforce the MOEAs to explore
different areas of the search space (Figure 1). On the other hand, when the
number of solutions found by Combined was greater, the restriction imposed
by Incremental limits the solutions in certain areas of search space, so the
solutions form groups (Figure 2). So, to answer the question, we can state
that the strategy influences on the search space exploitation, however it does
not represent significant difference in the stubbing process.

Besides the findings regarding the research questions, we observed that the per-
formance of both strategies and algorithms is related to the systems character-
istics under development and test. The low number of aspects in relation to the
number of classes can explain why it was not necessary to develop stubs for
aspects. Other possible explanation is on the kind of dependencies between as-
pects and classes. However, it was not possible to establish this kind of relation
between system characteristics and strategy/algorithm. Other empirical studies
are necessary involving a greater number of AO systems in order to identify
such characteristics, that can be size, complexity, number of classes and aspects,
number and types of dependency relations, number of dependency cycles, etc.

We observe in the experiment that the Combined strategy is able to generate
some solutions obtained by the Incremental strategy. If they are good solutions
it will be chosen anyway in the evolution process independently of the strategy
adopted and can be selected by the tester in the last MECBA step. From this,
we can state a guideline to choose a strategy. The Combined strategy may be
chosen for any case, except in the presence of restrictions related to the software
development requiring the integration of aspects after classes, when Incremental
one should be applied. With respect to the algorithms if the systems are simple,
any evolutionary algorithms can be selected. In more complex cases, PAES is
the best choice among the MOEAs.

6 Conclusions

This work presented results from the application of the MECBA approach with
two different integration strategies (Combined and Incremental) and three dis-
tinct MOEAs (NSGA-II, SPEA2 and PAES) with four objectives for solving the
CAITO problem in four AO real systems.
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We observe that both strategies achieve good orders to integrate and test
AO systems independently of the used MOEA. We could not pointed out which
strategy has the best performance with respect to the stubbing cost since they
achieved similar results in all points that we analysed. However, we observed
that the MOEA does not influence on the strategy performance, and Incremental
strategy obliges the MOEAs to explore the search space in a different way. Hence,
in the context of our study, we conclude that both strategies can be used with
MECBA to solve efficiently the CAITO problem. NSGA-II and PAES have better
results than SPEA2, so one of them can be adopted in further studies.

The main threat of our study is that the results are limited to the systems
used and can not be generalized. So, to obtain better evidences about the inte-
gration strategies, it is interesting to perform a larger study involving other AO
systems. Other points to be considered in further studies include the analysis of
the aspects details, such as the dependencies between them and their complex-
ity; the number of dependency cycles between modules; and the proportion of
classes/aspects in the system. Such kind of analysis allow the identification of
the most suitable situations to apply each strategy.
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Abstract. Since its inception, SBSE has supported many different software en-
gineering activities, including some which aim on improving or correcting  
existing systems. In such cases, search results may propose changes to the or-
ganization of the systems. Extensive changes may be inconvenient for develop-
ers, who maintain a mental model about the state of the system and use this 
knowledge to be productive in their daily business. Thus, a balance between op-
timization objectives and their impact on system structure may be pursued. In 
this paper, we introduce incremental search-based software engineering, an ex-
tension to SBSE which suggests optimizing a system through a sequence of  
restricted search turns, each limited to a maximum number of changes, so that 
developers can become aware of these changes before a new turn is enacted. 
We report on a study addressing the cost of breaking a search into a sequence of 
restricted turns and conclude that, at least for the selected problem and  
instances, there is indeed huge penalty in doing so. 

Keywords: incremental optimization, interactive optimization, Hill Climbing, 
software module clustering. 

1 Introduction 

In the course of twelve years since it was given a name, Search-based Software Engi-
neering (SBSE) has been applied to many problems, including but not limited to test-
ing [6, 14], requirement selection [3, 8], software design [7, 9, 10, 15], cost estimation 
[4, 11], project planning [2, 5], and process analysis [12, 13].  

For many of these problems, heuristic search is performed when the software de-
velopment project is in a planning stage. In such context, the solution found by the 
search algorithm eventually imparts new knowledge to the person or group responsi-
ble for making a decision regarding the problem. After a decision is made, the devel-
opment team is given the task to put the solution to practice. For instance, consider 
the next release problem [3], which involves selecting a set of requirements to be 
implemented and deployed in a new version of a software product. Heuristic search 
supports the product manager in planning the features that will be added in the next 
release. The product manager may examine one or more search results, change them 
according to restrictions and assumptions which were not informed to the search 
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process, and create a release plan to be implemented by the team. Nevertheless, 
search results are taken into account before the development of the new release is 
started. 

On the other hand, some problems addressed through SBSE approaches are related 
to scenarios in which a system already exists and heuristic search is applied to correct 
or improve the current state of that system. For instance, consider the problem of 
selecting a set of refactoring transformations to be applied to a software component in 
order to make it easier to reuse. In such a case, a version of the component already 
exists and the search process is applied to transform it into something better, accord-
ing to the fitness functions driving the optimization. This is a typical SBSE applica-
tion for maintenance purposes, which involves issues such as refactoring [16], soft-
ware module clustering [9, 10], and design reorganization [15]. 

In scenarios related to the second group of problems there are developers who 
know about the state of the system before search results are applied. Such knowledge 
helps them in their daily job, pointing possible sources for a fault or parts of the de-
sign or source code which are related to a given feature. If the search comes out with 
a solution which is completely different from the current state of the system and this 
solution is put to practice, developers may find it difficult to work on the system be-
cause, despite the benefits brought by optimization, they might have to learn about its 
new organization. This may result in loss of quality, productivity, and ultimately re-
sistance against using automated optimization approaches. 

In this paper, we introduce the concept of incremental search-based software engi-
neering (ISBSE) which takes into consideration the current state of a system and a 
maximum level of disturbance that can be applied to it without extensive loss of de-
veloper’s knowledge (and the problems derived from this loss). ISBSE suggests ap-
plying automated search as a sequence of time-spaced small changes to a system, 
instead of a single, unrestricted and extensive change to its organization. By preserv-
ing the knowledge held by developers, adoption of heuristic search to support  
maintenance projects may increase. Moreover, due to its periodic interventions in the 
software development process, ISBSE may be a useful vehicle to collect information 
about human intention, as required by interactive search processes [10]. 

Despite of the advantages related to preserving developer’s knowledge, there may 
be penalties associated with breaking an unrestricted search into smaller parts. We 
report on an experimental study that analyzed these potential losses on the context of 
the software clustering problem. We have observed that restricted optimization turns 
may lead the system to many local minima, proposing changes to the state of the  
system which are undone by further turns. The contributions of this paper include: 

• Introducing the concept of incremental search-based software engineering, in the 
sense of breaking an unrestricted search into a sequence of restricted searches; 

• Proposing an incremental approach to deal with the software module clustering 
problem in the context of software maintenance; 

• The design, execution, and reporting of an experimental study that evaluated the 
penalties incurred in adopting ISBSE for the software module clustering problem. 
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This paper is organized into 6 sections. The first section conveys this introduction. Sec-
tion 2 discusses the concepts underlying ISBSE. Section 3 proposes an ISBSE approach 
to software module clustering. Section 4 presents an experimental study on the penalties 
incurred by performing a sequence of restricted optimizations turns instead of an unre-
stricted search. Section 5 discusses the relation between ISBSE and interactive search-
based optimization. Finally, Section 6 closes the report with our concluding remarks. 

2 Incremental Search-Based Software Engineering 

Search-based software engineering suggests reformulating Software Engineering 
problems as optimization problems and using search techniques to find (close to) 
optimal solutions for them. Incremental Search-based Software Engineering inherits 
this definition and adds a constraint requiring search techniques to be applied in a 
sequence of small steps, so that the solution proposed by each optimization turn does 
not substantially change the state of the system. This is a contrast to the “big bang” 
approach (suitable in a planning stage) in which extensive changes may be required to 
take the system from its current state to one representing the optimal solution. ISBSE 
takes a long term view on improvements to be garnered from optimization, each turn 
bringing the system closer to overall search objectives but also allowing developers to 
swiftly incorporate the suggested changes to their knowledge about the organization 
of the system. Optimization becomes integrated to the software development process, 
serving human developers with bits of insight while improving the system towards a 
better picture on regard of the selected fitness functions. 

This “optimization with a human perspective” is strongly related with the mainten-
ance of a mental model for the current state of the system [17, 25, 26]. Typically, 
software developers remember the structure of modules, classes, attributes, and me-
thods for the parts of the system on which they have worked. They use this know-
ledge as leverage to perform their job, knowing in the large what parts of the software 
they have to change to add, modify, or correct a feature. If the system’s structure is 
extensively disrupted, despite of the benefits brought by the new organization (such as 
more cohesion or less coupling), the short-term benefits of having the leverage pro-
vided by the mental model are gone and developers may require more time to perform 
their tasks and introduce more errors in the process. Thus, ISBSE accepts a smooth 
and potentially slow move towards long-term optimization goals in order to allow 
time for developers to become aware of the required changes to system structure. 

Harman suggests that a problem must present two ingredients to be amenable to 
assessment through heuristic optimization [1]: a representation for the problem and a 
fitness function to drive the optimization process towards solutions which maximize 
expected benefits or minimize potential hazards. ISBSE adds two ingredients to these 
requirements: a representation for the current state of a system, using the same encod-
ing selected for the problem, and a function which receives two search solutions, say 
A and B, and returns a set of transformations required to convert solution A into B. 
The first ingredient enables the representation of the current state of the system as a 
solution, while the second identifies changes that must be applied to a system to build 
a solution. The function allows calculating the cognitive distance (developer’s  
perspective) between the state of the system and any solution produced by the search. 
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Suppose a problem having n fitness function, f1, ..., fn, each requiring a vector of 
parameters X representing a solution. Mono-objective SBSE approaches to this prob-
lem might be represented as O(f1,…,fn) → X. Let this formulation be known as an 
unrestricted optimization, in the sense that no limits are imposed in the number of 
changes required to take a system from its current state to that suggested by solution 
X. Accept that there exists a function Δ, Δ(X, X’) → {T}, where X and X’ represent 
solutions and T represents an elementary transformation that converts a solution XA to 
a solution XB, so that T(XA) → XB. Thus, {T} is the list of transformations that con-
verts solution X to solution X’. Then, an ISBSE approach to the same problem could 
be defined as a sequence of restricted optimizations Ot(f1, …, fn, X0, Xt-1, Δ, α) → Xt, 
where t > 0, X0 represents the current state of the system, Xt represents the result of an 
optimization turn Ot, and α represents the maximum number of changes acceptable in 
an optimization turn, that is, |Δ(Xt-1, Xt)| ≤ α for all t > 0. 

Thus, besides creating the representation for the current state of the system and 
providing the transformation identification function, an analyst resorting to an ISBSE 
approach has to define the size of each optimization turn (step size, or α) and the 
frequency under which a new restricted optimization turn will be performed. Step size 
may influence the number of required restricted turns to achieve the same objective 
values produced by a single, unrestricted optimization. This relation is explored in the 
experimental study reported on Section 4. 

There may be at least two ways to incrementally address a Software Engineering 
problem from a search perspective. The first alternative involves performing an unre-
stricted optimization to identify all transformations that should be applied to the sys-
tem to attain the results presented by its solution. Afterwards, a sequence of optimiza-
tion turns would be executed to select the best permutation in which these transforma-
tions should be applied, so that each turn would involve up to the maximum number 
of changes accepted by the analyst. This strategy is depicted in Algorithm 1. 

O1(f1,…,fn, X0, X0, Δ, α): Xtarget = O(f1,…,fn) 
   Ttarget = Δ(X0, Xtarget) 
   T1 = Permutation Selection (f1,…,fn, Ttarget, X0, α) 
   Ttarget = Ttarget – T1 
   return T1(X0) 

Ot(f1,…,fn, X0, Xt-1, Δ, α): If Ttarget = ∅ then stop 
   Tt = Permutation Selection (f1,…,fn, Ttarget, Xt-1, α) 
   Ttarget = Ttarget – Tt 

   return Tt(Xt-1) 

Algorithm 1. – ISBSE through permutations of results selected by an unrestricted search 

The second alternative involves performing a sequence of independent, restricted 
optimization turns considering the present state of the system at the start of each turn 
and a constraint on the number of changes to be applied to the solution. In such a  
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case, the transformation identification function becomes part of the evaluation 
process, prohibiting solutions which involve more changes than the maximum number 
accepted by the analyst. This strategy is presented in Algorithm 2. 

Ot(f1,…,fn, X0, Xt-1, Δ, α): loop 

     Xt = O(f1,…,fn) 
     Tt = Δ(Xt-1, Xt) 
    until | Tt | ≤ α 
    return Tt(Xt-1) 

Algorithm 2. – ISBSE through a sequence of independent restricted searches 

Each alternative has its own advantages and disadvantages. As each turn optimizes 
the solution bounded by the distance constraint, the second alternative may not walk a 
straight path from the current state of the system to the (close to) optimal state. Cer-
tain changes might be considered useful on a given optimization turn, just to be un-
done after a few more turns, as a large number of changes might take the system from 
local minima to states with better fitness. We call these changes downturns, as they 
may confuse developers, who might see the optimization process as a random walk, 
changing the system back and forth in unpredictable ways. Downturns, on the other 
hand, do not happen in the first alternative, since all transformations toward the best 
solution found by the unrestricted search are known beforehand. 

Despite of downturns, we defend the adoption of the second alternative because it 
can incorporate changes made by developers into the optimization. Since useful soft-
ware tends to be constantly changed to remain useful and it may take considerable 
time to perform the complete sequence of restricted optimization turns, it seems rea-
sonable to accept that developers may change the system during this period and that 
those changes should be taken into account in the optimization. Also, as will be dis-
cussed on Section 5, the execution of several independent, restricted optimizations 
may allow capturing information about developer’s intention and feeding these data 
into an interactive optimization process. Thus, in the next sections we present an ap-
plication of ISBSE and experimentally evaluate the cost of downturns in this context. 

3 An Application of ISBSE on Software Module Clustering 

Software module clustering addresses the problem of finding a proper distribution for 
the modules representing domain concepts and computational constructs comprising a 
software system into larger, container-like structures. A good module distribution aids 
in identifying modules responsible for a given functionality [22], provides easier na-
vigation among software parts [18] and enhances source code comprehension [21]. 
Therefore, it supports the development and maintenance of a software system. 

A high-quality module distribution usually presents two characteristics: (i) mod-
ules pertaining to a given cluster depend on other modules from the same cluster to 
perform their duties; and (ii) modules pertaining to a given cluster do not depend on 
many external modules, that is, from other clusters, to perform their job. Thus, finding 
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a good module distribution requires knowing which modules depend on one another 
in order to distribute them to clusters according to these dependencies. A module A 
depends on a module B if it requires some function, procedure, or definition declared 
in module B to perform its duties. 

The software module clustering problem can be modeled as a graph partition prob-
lem which minimizes coupling (inter-edges or edges between different clusters) and 
maximizes cohesion (intra-edges or edges within a cluster). In a seminal work in the 
field, Mancoridis et al. [19] used a Hill Climbing search to find the best module dis-
tribution for a system. The search is guided by a fitness function called modulariza-
tion quality (MQ), which looks for a balance between the number of intra- and  
inter-cluster edges, rewarding clusters with many internal dependencies and  
penalizing them for dependencies on other clusters.  

Harman et al. [23] compare MQ with a second fitness function called EVM [24] 
regarding its robustness to the presence of noise in a set of dependencies. EVM is 
calculated as a sum of cluster scores and a given cluster’ score is calculated as fol-
lows: starting from zero, for each pair of modules in the cluster the score is incre-
mented if there is dependency between the modules; otherwise, it is decremented. 
EVM rewards modules which depend on other modules pertaining to the same cluster 
and penalizes those depending on modules from other clusters. When compared to a 
baseline module distribution, clusterings based on EVM were found to degrade more 
slowly in the presence of noise (random dependencies added to the original module 
dependency structure) than clusterings based on MQ. Barros [9] also found that the 
convergence of search processes based on EVM is faster than that based on MQ. 
Thus, EVM was used as the main fitness function for the software clustering problem 
throughout our experimental study and MQ was used as a surrogate measure. 

Software clustering is a good candidate problem for introducing ISBSE. First and 
foremost, it is a maintenance problem, usually addressed for systems that already 
exist and, thus, there also exists developer memory on their current distribution of 
modules to clusters. Next, it presents the aspects that make it amenable for SBSE 
approaches: a large search space and quickly calculated fitness functions (MQ and 
EVM). The most frequently used strategy to encode solutions for this problem (see 
section 4.1) makes it simple to represent the current state of the system as a solution 
(first ISBSE requirement). Finally, the Hill Climbing search algorithm, which is fre-
quently used to find solutions for the problem, can accommodate annotations on 
which modules are being moved from cluster to cluster as the search proceeds. Thus, 
one can modify the algorithm to record the set of transformations required to take an 
initial solution to the optimal state on each turn (second ISBSE requirement). 

4 Empirical Design 

This section conveys the design for an experimental study addressing the software 
module clustering problem through the tenets of ISBSE. This is a characterization 
study, in which we assess the number of restricted optimization turns required to take 
a problem instance (a software system) from its current state (a given distribution of 
modules to clusters) to the best solution found by an unrestricted optimization  
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(another distribution of modules to clusters) and the number of downturns observed in 
the process. We do not compare different optimization techniques, but observe the 
relative loss incurred by performing a set of restricted optimization turns instead of an 
unrestricted, single optimization search. 

4.1 Algorithm and Solution Encoding 

The experiment used Hill Climbing searches to find solutions for the software cluster-
ing problem. Given a software system with N modules, an unrestricted search started 
by creating N clusters and assigning each module to a cluster according to the current 
state of the system. That is, modules located in the same cluster in the present system 
design occupied the same cluster in the initial solution. Thus, if the system had m < N 
clusters, N-m clusters remained empty (without modules) in the initial solution. A 
solution is represented as a vector with one entry per module, each entry containing 
an integer number in the [0, N-1] interval which indicates the cluster to which the 
related module is associated. Solution fitness was calculated, stored as the best solu-
tion found so far, and the main loop of the search followed.  

The main loop attempted to find solutions with better fitness by iteratively moving 
a single module to a distinct cluster. The first module was selected and a move to any 
other cluster than the currently occupied one was evaluated. After all clusters had 
been evaluated for the first module, the search followed a similar procedure for the 
second one, the third, and so on. Whenever a solution with higher fitness was found, 
the new solution replaced the best known so far, and the main loop repeated its trials 
from the first module. If no movement could improve fitness, the search stopped. The 
search also stopped after a predefined budget of 2,000 times N2 fitness evaluations 
was consumed, where N is the number of modules. The search approach was similar 
to the one followed Mancoridis et al. [19] and evaluation budget size was compatible 
with other works on the field [9, 20]. 

Restricted Hill Climbing searches representing the turns proposed by ISBSE were 
applied in sequence and followed the same search strategy described above, except 
for two differences: (a) while the first optimization turn used the current state of the 
system as starting solution, the following turns used the results of their preceding turn 
as starting point; and (b) after a predetermined number of module movements to dis-
tinct clusters were performed, the search was interrupted regardless of achieving a 
local maxima or consuming the available evaluation budget. Item (a) represented the 
sequence of improvements from an initial architecture to an improved one (on the 
perspective of the fitness function at hand), while item (b) enforced a maximum  
number of changes to be performed on each optimization turn. 

4.2 Instances Used in the Experiment 

The experiment was executed upon 32 real-world instances. We have selected open-
source or free-software projects of distinct sizes, all developed in Java. We have also 
included a small IS developed for a Brazilian company in our instance pool  
(the SEEMP instance). Module dependency data was collected using the PF-CDA  
open-source static analysis tool. Table 1 presents the characteristics of the instances. 
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Table 1. Characteristics of the instances used in the experiment 

Problem Instance Modules Clusters Dependencies 
jodamoney: Money type management library v0.6 26 2 102 
jxlsreader: Library for reading Excel files v1.0 27 1 73 
seemp: Small information system 31 9 61 
apache_zip: File compression utility 36 2 86 
udtjava: Native implementation for the UDT protocol v0.5 56 7 227 
javaocr: Written text recognition library 59 13 155 
servletapi: Java Servlets API v2.3 63 4 131 
pfcda_base: Source code analisys software - model classes v1.1.1 67 8 197 
forms: GUI form handling library v1.3.0 68 5 270 
jscatterplot: Library for scatter-plot charts (part of JTreeview) v1.1.6 74 1 232 
jfluid: Java profiler v1.7.0 82 4 315 
jxlscore: Library to represent Excel files v1.0 83 10 330 
jpassword96: Password management program - model classes v0.5 96 7 361 
junit: Unit testing library v3.8.1 100 6 276 
xmldom: Java XML DOM classes v1.0 119 9 209 
tinytim: Topic Maps Engine v2.0 134 9 564 
jkaryoscope: Library for karyoscope charts (part of JTreeview) v1.1.6 136 1 460 
gae_core: Google App Engine core classes v2.5.1 140 22 375 
javacc: Yacc implementation for Java v1.7 154 6 722 
javageom: Java geometry library v0.11.0 172 21 1,445 
jdendogram: Library for dendogram charts (part of JTreeview) v1.1.6 177 1 583 
xmlapi: Java XML API v1.0 184 17 413 
jmetal: Heuristic search algorithms library v3.1 190 46 1,137 
dom4j: Alternative XML API for Java v1.5.2 195 16 930 
pdf_renderer: Java PDF file renderer v0.2.1 199 10 629 
jung_model: Jung Graph - model classes v2.0.1 207 21 603 
jconsole: Java Console (part of JDK) v1.7.0 220 4 859 
jung_visualization: Jung Graph - visualization classes v2.0.1 221 11 919 
pfcda_swing: Source code analisys software - GUI classes v1.1.1 252 37 885 
jpassword269: Password management program - complete v0.5 269 10 1,348 
jml: Java MSN Messenger Library v1.0 270 15 1,745 
notelab: Digital notebook for tablets v0.2.1 299 50 1,349 

These instances were selected to cover a wide range of software products of differ-
ent sizes, smoothly covering the space from small systems with less than 30 modules 
to mid-size systems with about 300 modules. For all further analysis, a module is a 
source code file, possibly conveying more than a single class. Since larger applica-
tions are usually divided into smaller deployment units, which can be independently 
subjected to the clustering process, we believe that the selected instances are repre-
sentative of real systems. Finally, concentration on the Java language was due to the 
availability of an open-source static analysis tool.  

4.3 Data Collection 

For each instance we first collected the EVM value for the current distribution of 
modules to clusters (EVM0), that is, the fitness of the solution as designed by the 
software development team. Then, we performed an unrestricted Hill Climbing search 
and computed the EVM value for the best solution found (EVMC), as well as the 
number of module movements required to achieve this fitness (MOVC) departing 
from the current distribution of modules to clusters.  

Afterwards, we performed a sequence of restricted Hill Climbing searches, using 5 
module movements as the maximum acceptable number of changes on each  
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optimization turn (step size = 5). We recorded the number of turns (TRN5) required to 
take the system from its initial state to a module distribution compatible with the 
EVM value found by the unrestricted search. We have also computed the number of 
downturns (DTN5) incurred during the search, that is, the number of modules which 
were moved to a cluster A in a given turn, but then moved to a cluster B, A ≠ B, in a 
later turn. 

The step size for the sequence of restricted optimizations was selected as a lower 
bound to the number of module movements which a development team could reme-
morize after each optimization turn. As this number is related to developers’ short-
term memory, we have used the 7±2 Miller number [27] as a reference and selected 5 
as a lower bound to the number of movements. To determine how much this parame-
ter affected our results, we performed similar sequences of restricted optimizations 
using 6, 7, 8, and 9 as step sizes. Thus, we produced and recorded the number of op-
timization turns (TRN6 … TRN9) and downturns (DTN6 … DTN9) on each scenario. 

This experimental study aimed to determine if the nominal difference between 
EVM0 and EVMC or the number of module movements required by the unrestricted 
search (MOVC) were correlated to instance size (number of modules) or complexity 
(number of dependencies). Similarly, we wanted to evaluate if the number of optimi-
zation turns or downturns were correlated to instance characteristics. Finally, we 
wanted to observe whether varying the step size would significantly change the num-
ber of required turns or downturns for our selected instances.  

4.4 Analysis and Results 

Table 2 presents the results collected from our experimental study for each instance 
listed in Table 1. The EVM0 column presents the EVM value for the initial design of the 
referred instance (that is, the current state of the system). The EVMC column presents 
the EVM found by the unrestricted Hill Climbing search. The MOVC column conveys 
the number of module movements required to take the system from its present distribu-
tion of modules to clusters to the best distribution found by the unrestricted search. The 
TRN5 column presents the number of restricted optimization turns, each with up to 5 
module movements, required to achieve the same fitness of the unrestricted search. The 
DTN5 column presents the number of downturns observed during the sequence of re-
stricted optimizations. Columns TRNX and DTNX, where X varies from 6 to 9, represent 
similar values to TRN5 and DTN5 for step sizes 6, 7, 8, and 9, respectively. All numbers 
in Table 2 are deterministic, since all searches depart from the current solution and no 
random restart is enacted during the searches. 

From Table 2 we observe that the difference between EVM0 and EVMC is quite 
large: it is 2,372 on average, strongly influenced by jdendogram (14,778), jpassword 
(8,970), and jkaryoscope (8,587). If these instances are suppressed, the average dif-
ference becomes 1,502. In relative terms, the average difference between the initial 
EVM and that found by the unrestricted search is more than 20 times larger than 
EVMC (for no instance this difference is smaller than 170%). This is an interesting 
result because either all these programs have bad design or we (as a research commu-
nity interested in the clustering problem) seem to be pursuing a different quality indi-
cator than developers. To check whether the metric we have used would influence  
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this result, we have performed a similar optimization procedure using MQ instead of 
EVM. The optimization with MQ fared better, producing an average nominal differ-
ence of 3.5 (max 14.91) and a percentile difference of 46% (max 100%). 

Table 2. Results collected from unrestricted and restricted optimization turns. It can be 
observed that, even for small instances, a long sequence of restricted optimization turns is 
required to achieve the same results provided by an unrestricted optimization process. 

Problem Instance EVM0 EVMC MOVC TRN5 DTN5 TRN6 DTN6 TRN7 DTN7 TRN8 DTN8 TRN9 DTN9 
jodamoney -33 28 14 6 10 4 5 4 8 3 6 2 3 
jxlsreader -205 26 25 8 11 6 9 5 6 5 8 4 6 
seemp -51 19 17 5 6 4 6 4 6 3 5 3 3 
apache_zip -302 29 34 12 24 10 21 8 15 7 19 6 17 
udtjava -126 65 33 12 22 10 19 8 13 7 17 6 11 
javaocr -28 39 29 8 7 7 7 6 9 5 6 4 7 
servletapi -338 49 59 21 41 19 49 14 34 12 35 10 27 
pfcda_base -410 45 58 20 39 18 44 13 26 12 30 10 29 
forms -412 77 56 18 32 15 28 11 19 11 26 9 20 
jscatterplot -2,355 58 73 26 54 20 44 17 46 14 37 12 32 
Jfluid -964 60 75 30 73 23 60 20 61 17 53 15 55 
jxlscore -200 81 62 22 44 19 45 16 42 13 38 11 32 
jpassword96 -523 79 80 30 66 24 61 19 51 17 50 14 43 
junit -1,229 52 88 30 60 24 54 20 46 16 38 14 36 
xmldom -1,654 41 102 35 70 28 63 24 61 20 54 17 45 
tinytim -915 133 113 41 88 34 84 27 74 23 66 20 61 
jkaryoscope -8,484 103 135 48 101 38 89 31 79 27 79 24 74 
gae_core -929 65 97 34 68 26 52 22 50 17 37 14 28 
javacc -3,695 154 142 52 110 40 90 34 87 28 77 24 67 
javageom -295 359 118 44 92 35 83 29 79 25 71 22 69 
jdendogram -14,656 122 176 64 142 50 119 41 111 35 100 31 97 
xmlapi -1,841 98 151 53 107 41 90 35 87 30 86 26 74 
jmetal -470 170 124 44 86 34 72 28 65 25 63 22 63 
dom4j -1,851 180 167 59 123 49 120 40 104 35 107 30 97 
pdf_renderer -2,171 108 171 69 165 52 133 44 122 38 119 32 107 
jung_model -1,373 147 176 58 109 47 100 39 89 32 77 28 72 
jconsole -11,198 163 212 80 186 61 153 50 134 43 125 37 115 
jung_visualization -2,541 186 189 75 175 59 154 48 140 41 130 36 127 
pfcda_swing -674 215 175 60 116 46 94 39 87 32 76 29 78 
jpassword269 -8,725 245 250 87 185 68 154 56 137 49 142 42 128 
jml -2,750 266 224 85 184 67 162 55 148 47 137 42 137 
notelab -788 251 198 59 92 48 82 39 65 34 70 29 59 

We observe medium correlation between EVM0 and the number of modules (-0.72) 
and the number of dependencies (-0.61). Throughout this paper, all correlations were 
calculated using the non-parametric Spearman rank-order coefficient and the R Statis-
tics System, v2.15.3. We also observe strong correlation between EVMC and the 
number of modules (+0.91) and the number of dependencies (+0.98). The same hap-
pens for the number of module movements on the unrestricted optimization, which is 
strongly correlated with both the number of modules (+0.98) and the number of de-
pendencies (+0.90). Thus, we observe that the larger or the more complex the soft-
ware system, the more module movements will be required to take the system from its 
present state to the module distribution found by the unrestricted optimization. The 
same results hold for MQ, though the unrestricted search with this metric required 
fewer module movements than the search using EVM for 31 out of 32 instances. 

To assess the impact of running a sequence of restricted optimizations instead of a 
single, unrestricted search we must observe the TRN and DTN columns in Table 2. 
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The average number of restricted optimization turns required with a step size of five 
module movements is 40, while the average number of downturns is 84. These num-
bers are strongly correlated to the number of modules (+0.96 for TRN5 and +0.93 for 
DTN5) and dependencies (+0.89 for TRN5 and +0.87 for DTN5). If we take a large 
system, such as jml, 85 restricted turns would be required to take the system from its 
present state to the best EVM found by the unrestricted search. Moreover, 184 mod-
ules would be moved to a cluster in a turn just to be moved to another cluster later. To 
depict how large are these numbers, if an architect decided to perform one turn per 
week, it would take almost 20 months to fully optimize the system. Moreover, the 
unrestricted search requires 224 module movements, but a total of 408 movements 
would be required by restricted optimization due to the large number of downturns. 
Thus, we observe that there is significant cost in breaking the unrestricted search into 
small chunks, both in terms of the time required to reach the (close to) optimal state 
and the number of module movements that are later discarded. 

These results present improvements if larger step sizes are acceptable. Table 3 
shows the average TRN and DTN values for different step sizes. All results are 
strongly correlated with both the number of modules and dependencies. If we consid-
er the jml instance with a step size of 9 movements, incremental optimization required 
42 turns and incurred in 137 downturns to reach the effectiveness of the unrestricted 
search. Thus, it seems reasonable to use larger step sizes for large instances, possibly 
a fraction of their number of modules with a lower bound of 5 for small instances. 
Optimization with the MQ and a step size of 5 module movements confirms the pat-
tern observed with EVM, but requires less restricted turns for 26 out of 32 instances 
(on average, EVM requires 6.4 times more turns) and produces less downturns in 24 
out of 32 instances (on average, EVM produces 11.9 times more downturns).  

Table 3. Average number of restricted optimization turns required to achieve the EVM value 
found by the unrestricted optimization and average number of downturns observed, according 
to step size 

 TRN5 DTN5 TRN6 DTN6 TRN7 DTN7 TRN8 DTN8 TRN9 DTN9 
Average value 
per instance 

40 84 32 73 26 66 23 62 20 57 

Figure 1 presents the evolution of EVM values over restricted optimization turns in 
an instance basis and using a step size of 5 module movements. The vertical axis of 
each chart represents EVM values, varying from EVM0 (at the bottom) to EVMC (at 
the top). The horizontal axis represents the number of optimization turns, from zero to 
TRN5 for the related instance. We observe that some instances present super-linear 
growth in the first optimization turns (see jxlsreader), while others present a closer to 
linear behavior (see javaocr). Other instances also lag behind linear behavior on the 
first turns before increasing the pace towards EVMC (see xmldom). Smaller step sizes 
may be considered for instances which present expressive improvements on their first 
turns, attaining gains from optimization while preserving developers’ knowledge. On 
the other hand, larger step sizes may be considered for those instances which are 
reacting more slowly to the optimization process, fastening their evolution towards 
the best solution found by the unrestricted optimization process.  



 An Experimental Study on Incremental Search-Based Software Engineering 45 

 

 

 

Fig. 1. EVM evolution over the restricted optimization turns for the selected instances 
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Thus, overall we can conclude, at least for the software module clustering problem 
and the selected instances, that there is a high penalty for breaking an unrestricted 
search into a sequence of restricted optimization turns. This penalty takes the form of 
a large number of required restricted optimization turns and module movement down-
turns, which are both strongly correlated with instance size (number of modules) and 
complexity (number of dependencies). Possibly more important, the size of the  
penalty depends on the fitness function selected for the optimization. 

5 Incremental x Interactive SBSE 

According to its definition, ISBSE is not intrinsically interactive, at least in the sense 
of stopping the search to collect information from human operators in order to help 
converging to a better solution. Instead of putting humans in the loop, ISBSE puts 
optimization as part of their daily business, that is, as part of a software process.  

Nevertheless, as the turns comprising the sequence of restricted optimizations that 
characterize an ISBSE approach are spaced in time and human intervention in the 
software is expected to occur between consecutive turns, we can collect information 
on how developers have interacted with the changes suggested by the optimization to 
guide further optimization turns. ISBSE allows capturing developer’s intention in a 
non-obstructive way: the optimization process can monitor whether the development 
team has reverted one or more changes proposed by former optimization turns and 
take such undesired changes as constraints to be attended by the following turns, add-
ing the benefit of interactive optimization to the incremental perspective without hav-
ing to directly question developers about their needs or perceptions. 

For instance, suppose a given restricted turn suggested moving a module A from 
cluster C1 to cluster C2. Let it be that the development team disagreed with this 
change and moved the module back to C1. When a new restricted optimization turn is 
ready to run, it may check whether changes suggested by former turns are still res-
pected in the software design. Those which were not performed as suggested or were 
rewound by developers may be recorded as constraint so that they are not suggested 
again by further restricted turns. This may lead to a reduction in the number of down-
turns, as some moves will be prevented and some optimization paths will be closed to 
further investigation. Thus, a composition of incremental and interactive optimization 
may be an interesting research area for SBSE. 

6 Concluding Remarks 

In this paper we introduced the concept of incremental search-based software engi-
neering, an extension to SBSE approaches which suggests that optimization should be 
performed in small bits at a time, preventing the application of search results to pro-
mote extensive changes to the state of a system and, thus, disrupt the mental models 
maintained by developers on regard of its structure. We have performed an experi-
mental study to address potential losses in breaking large optimization processes into 
sequences of restricted optimization turns for the software clustering problem.  
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Results suggest that the penalty for breaking the search may be large, but it also de-
pends on instance size, instance complexity, the number of changes accepted on each 
restricted optimization turn, and (most interestingly) on the fitness function driving 
the search. The experiment used a deterministic Hill Climbing search, but further 
work may explore stochastic search by shuffling the order in which modules are con-
sidered. 

One of the most interesting results found during our research is the dependence be-
tween the size of penalties incurred by adopting a sequence of restricted optimization 
turns and the fitness function used to drive the search. Despite of being less resilient 
to noisy dependencies between modules, the MQ fitness function required less re-
stricted optimization turns to achieve the same performance of an unrestricted search 
than the EVM function for 26 out of 32 instances. Moreover, MQ induced the search 
to significantly less downturns than EVM (almost 12 times less, on average). Thus, as 
it occurs with dynamic adaptive SBSE [28, 29], the adoption of ISBSE adds new 
requirements for fitness functions: a regular fitness landscape which allows a se-
quence of neighborhood-limited optimizations to follow a path as straight as possible 
to the one followed by an unrestricted search. Once again we see the two-fold rela-
tionship between SBSE and metrics [30], in which the first requires the latter to guide 
search processes but, at the same time, may help shaping new metrics as it prescribes 
new requirements and purposes for them. Further works may extend the present one 
to address this issue, as well as generalize and refine the terms used as part of ISBSE 
definition, such as turns, downturns, and restricted optimization. 
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Abstract. Software bad-smells, also called design anomalies, refer to design 
situations that may adversely affect the maintenance of software. Bad-smells 
are unlikely to cause failures directly, but may do it indirectly. In general, they 
make a system difficult to change, which may in turn introduce bugs. Although 
these bad practices are sometimes unavoidable, they should be in general fixed 
by the development teams and removed from their code base as early as 
possible. In this paper, we propose, for the first time, the use of competitive 
coevolutionary search to the code-smells detection problem. We believe that 
such approach to code-smells detection is attractive because it allows 
combining the generation of code-smell examples with the production of 
detection rules based on quality metrics. The main idea is to evolve two 
populations simutaneously where the first one generates a set of detection rules 
(combination of quality metrics) that maximizes the coverage of a base of code-
smell examples and the second one maximizes the number of generated 
“artificial” code-smells that are not covered by solutions (detection rules) of the 
first population. The statistical analysis of the obtained results shows that our 
proposed approach is promising when compared to two single population-based 
metaheuristics on a variety of benchmarks.  

1 Introduction 

In general, object oriented software systems need to follow some traditional set of 
design principles such as data abstraction, encapsulation, and modularity [8]. 
However, some of these non-functional requirements can be violated by developers 
for many reasons like inexperience with object-oriented design principles, deadline 
stress, and much focus on only implementing main functionality. 

As a consequence, there has been much research focusing on the study of bad 
design practices, also called code-smells, defects, anti-patterns or anomalies [8, 9, 11] 
in the literature. Although these bad practices are sometimes unavoidable, they should 
be in general prevented by the development teams and removed from their code base 
as early as possible. In fact, detecting and removing these code-smells help 
developers to easily understand source code [9]. In this work, we focus on the 
detection of code-smells.  
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The vast majority of existing work in code-smells detection relies on declarative 
rule specification [19, 20]. In these settings, rules are manually defined to identify the 
key symptoms that characterize a code-smell using combinations of mainly 
quantitative (metrics), structural, and/or lexical information. However, in an 
exhaustive scenario, the number of possible code-smells to manually characterize 
with rules can be large. For each code-smell, rules that are expressed in terms of 
metric combinations need substantial calibration efforts to find the right threshold 
value for each metric. Another important issue is that translating symptoms into rules 
is not obvious because there is no consensual symptom-based definition of code-
smells [9]. When consensus exists, the same symptom could be associated to many 
code-smells types, which may compromise the precise identification of code-smell 
types. These difficulties explain a large portion of the high false-positive rates 
reported in existing research.   

In this paper, we start from the observation that most of existing works related to 
the use of SBSE or machine learning techniques [12, 13] require a high number of 
code-smell examples (data) to provide efficient solutions that can be based on 
detection rules or classification algorithms. However, code-smells are not usually 
documented by developers (unlike bugs report). To this end, we introduce an 
alternative approach based on the use of a Competitive Co-Evolutionary Algorithm 
(CCEA) [2]. We believe that a CCEA approach to code-smells detection is attractive 
because it allows us to combine the generation of code-smell examples with the 
generation of detection rules based on quality metrics. We show how this combination 
can be formulated as two populations in a Competitive Co-evolutionary search. In 
CCEA, two populations of solutions evolve simultaneously with the fitness of each 
depending upon the current population of the other. The first population generates a 
set of detection rules (combination of quality metrics) that maximizes the coverage of 
a base of code-smell examples and simultaneously a second population tries to 
maximize the number of generated “artificial” code-smells that are not covered by 
solutions (detection rules) of the first population. The artificial code-smell examples 
are generated based on the notion of deviance from well-designed code fragments.  

We implemented our CCEA approach and evaluated it on four systems [14, 15,  
16, 17] using an existing benchmark [19, 13]. We report the results on the 
effectiveness and efficiency of our approach, compared to different existing single 
population-based approaches [12, 18]. The statistical analysis of our results indicates 
that the CCEA approach has great promise; CCEA significantly outperforms both 
random and single population-based approaches with an average of more than 80% of 
precision and recall based on an existing benchmark containing four large open 
source systems [14, 15, 16, 17].  

The primary contributions of this paper can be summarized as follows: (1) the 
paper introduces a novel formulation of the code-smell’s problem using Competitive 
Co-evolution and, to the best of our knowledge, this is the first paper in the literature 
to use competitive co-evolution to detect code-smells; (2) The paper reports the 
results of an empirical study with an implementation of our co-evolutionary approach, 
compared to existing single population approaches [12, 18]. The obtained results 
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provide evidence to support the claim that competitive co-evolution is more efficient 
and effective than single population evolution. 

The remainder of this paper is as follows: Section 2 presents the relevant 
background and the motivation for the presented work; Section 3 describes the search 
algorithm; an evaluation of the algorithm is explained and its results are discussed in 
Section 4; Section 5 is dedicated to related work. Finally, concluding remarks and 
future work are provided in Section 6. 

2 Code-Smells Detection Overview 

In this section, we first provide the necessary background of detecting code-smells 
and discuss the challenges and open problems that are addressed by our proposal.  

2.1 Definitions 

Code-smells, also called design anomalies or design defects, refer to design situations 
that adversely affect the software maintenance. As stated by [9], bad-smells are 
unlikely to cause failures directly, but may do it indirectly. In general, they make a 
system difficult to change, which may in turn introduce bugs. Different types of code-
smells, presenting a variety of symptoms, have been studied in the intent of 
facilitating their detection [20] and suggesting improvement solutions. In [20], Beck 
defines 22 sets of symptoms of code smells. These include large classes, feature envy, 
long parameter lists, and lazy classes. Each code-smell type is accompanied by 
refactoring suggestions to remove it. Brown et al. [9] define another category of code-
smells that are documented in the literature, and named anti-patterns. In our approach, 
we focus on the three following code-smell types: Blob: It is found in designs where 
one large class monopolizes the behavior of a system (or part of it), and the other 
classes primarily encapsulate data; Spaghetti Code: It is a code with a complex and 
tangled control structure; Functional Decomposition: It occurs when a class is 
designed with the intent of performing a single function. This is found in code 
produced by non-experienced object-oriented developers. We choose these code-
smell types in our experiments because they are the most frequent and hard to detect 
and fix based on a recent empirical study [19, 13]. 

The code-smells’ detection process consists in finding code fragments that violate 
structure or semantic properties such as the ones related to coupling and complexity. 
In this setting, internal attributes used to define these properties, are captured through 
software metrics and properties are expressed in terms of valid values for these 
metrics [21]. This follows a long tradition of using software metrics to evaluate the 
quality of the design including the detection of code-smells [11]. The most widely-
used metrics are the ones defined by [21]. These metrics include Depth of Inheritance 
Tree, Weighted Methods per Class, Cohesion and Coupling Between Objects (CBO), 
etc. In this paper, we use variations of these metrics and adaptations of procedural 
ones as well, e.g., the number of lines of code in a class, number of lines of code in a 
method, number of attributes in a class, number of methods, lack of cohesion in 
methods, number of accessors, and number of private fields. We are using in this 
paper these metrics to generate code-smell examples and also detection rules.   
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2.2 Detection Issues 

Overall, there is no general consensus on how to decide if a particular design 
fragment is a code-smell. In fact, deciding which classes are Blob candidates heavily 
depends on the interpretation of each analyst. In some contexts, an apparent violation 
of a design principle may be consensually accepted as normal practice. For example, a 
“Log” class responsible for maintaining a log of events in a program, used by a large 
number of classes, is a common and acceptable practice. However, from a strict code-
smell definition, it can be considered as a class with an abnormally large coupling. 
Another issue is related to the definition of thresholds when dealing with quantitative 
information. For example, the Blob detection involves information such as class size. 
Although we can measure the size of a class, an appropriate threshold value is not 
trivial to define. A class considered large in a given program/community of users 
could be considered average in another. 

Most of existing work related to the use of SBSE or machine learning techniques 
require a high number of code-smell examples to provide efficient solutions that can 
be based on detection rules or classification algorithms. However, code-smells are not 
usually documented by developers (not like bugs for example that are documented in 
bug reports). Thus, it is difficult to find these code-smell examples except in few 
open-source systems that are evaluated manually. 

Finally, detecting dozens of code-smells occurrences in a system is not always 
helpful except if the list of code-smells is sorted by priority. In addition to the 
presence of false positives that may create a rejection reaction from development 
teams, the process of using the detected lists, understanding the code-smell 
candidates, selecting the true positives, and correcting them is long, expensive, and 
not always profitable. Thus, it is important to identify the type of code-smells when 
detecting them to help developers to prioritize the list of detected code-smells. 

3 Competitive Coevolution for Code-Smells Detection 

This section address the different issues described in Section 2 using CCEA. We first 
present an overview of the competitive coevolution algorithms and, subsequently, 
provide the details of our adaptation of CCEA to detect code-smells. 

3.1 Approach Overview  

3.1.1   Competitive Co-evolution Algorithms 
The idea of Co-evolutionary algorithms (CCEAs) comes from the biological 
observation which shows that co-evolving some number of species defined as 
collections of phenotypically similar individuals is more realistic than simply 
evolving a population containing representatives of one species. Hence, instead of 
evolving a population (globally or spatially distributed) of similar individuals 
representing a global solution, it is more appropriate to co-evolve subpopulations of 
individuals representing specific parts of the global solution [1]. There are two types 
of co-evolution in the related literature: (1) Cooperation and (2) Competition. 
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Cooperation consists in subdividing the problem at hand into different sub-problems 
of smaller sizes than the original one and then solving it in a cooperative manner. In 
fact, each sub-population helps the others with the aim to solve the original problem. 
Competition consists in making solutions belonging to different species competing 
with each others with the goal to create fitter individuals in each species. Since we are 
interested in this paper in competitive co-evolution, we just detail, in what follows, 
competitive CCEAs. Differently to canonic EAs, in competitive CCEAs the 
population is subdivided into a pre-specified number of sub-populations (each 
denoting a species) where the fitness value of a particular individual depends on the 
fitness values of other individuals belonging to other sub-populations. The interaction 
in terms of fitness assignment could be seen as a competition between the individuals 
because an improvement of the fitness value of a particular individual leads to the 
degradation of the fitness value of some others. Such competition between different 
solutions belonging to different species allows not only guiding the search of each 
sub-population towards fitter individuals but also escaping from local optima [2]. 
Several competitive CCEAs have been demonstrated to be effective and efficient in 
solving different kinds of problems such as the sorting network problem [3] and the 
integrated manufacturing planning and scheduling one [4]. Within the SBSE 
community, there are three works using competitive CCEAs such as: (1) Wilkerson et 
al. [5] tackling the software correction problem, (2) Arcuri and Ya [6] handling the 
bug fixing problem and (3) Adamopoulos et al. [7] tackling the mutation testing 
problem. In this paper, we present the first adaptation of CCEA to detect code-smells. 

3.1.2   Competitive Co-evolution-Based Code-Smells Detection 
The concept of co-evolution is based on the idea that two populations are evolved in 
parallel with a specific designed genetic algorithm (GA) [2]. The main component of 
our proposal is the competitive co-evolutionary algorithm. This type of co-evolution 
is comparable to what happens between prey and predators. Preys are the potential 
solutions to the optimization problem, while the predators are individuals aiming to 
check the survival ability of prey. In general, faster prey escape predators easily, thus 
they have higher chance of generating offspring. This influences the predators, since 
they need to evolve as well to get faster if they need to survive.  

As described in Figure 1, based on this metaphor two populations evolves in 
parallel to reach two objectives in a competitive way. The first population uses 
knowledge from code-smells’ examples (input) to generate detection rules based on 
quality metrics (input). It takes as inputs a base (i.e. a set) of code smells’ examples, 
and takes, as controlling parameters, a set of quality metrics [21] and generates as 
output a set of rules. The rule generation process chooses randomly, from the metrics 
provided list, a combination of quality metrics (and their threshold values) to detect a 
specific code-smell. Consequently, a solution is a set of rules that best detect the 
code-smells of the base of examples. For example, the following rule states that a 
class c having more than 10 attributes and more than 20 methods is considered as a 
blob  smell: R1: IF NAD(c)≥10 AND NMD(c)≥20 Then Blob(c). In this exemplified 
sample rule, the number of attributes (NAD) and the number of methods (NMD) of a 
class correspond to two quality metrics that are used to detect a blob. The detection 
rules solutions are evaluated based on the coverage of the base of code-smell 
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examples (input) and also the coverage of generated “artificial” code-smells by the 
second population. These two measures are to maximize by the population of 
detection rules solutions. 

 

Fig. 1. Approach overview 

The second population executed in parallel uses well-designed code examples to 
generate “artificial” code-smells based on the notion of deviation from a reference 
(well-designed) set of code fragments [18].The generation process of artificial code-
smell examples is performed using a heuristic search that maximizes on one hand, the 
distance between generated code-smell examples and reference code examples and, 
on the other hand, minimizes the number of generated examples that are not detected 
by the first population (detection rules). The similarity function used is based on the 
distance (difference) between quality metrics [21].  

 

Fig. 2. Competitive co-evolutionary algorithm for code-smells detection 

Figure 2 describe the overall process of CCEA for code-smells detection. The first 
step of the algorithm consists of generating randomly two populations. In our case, a 
first population generates detection rules from the list of metrics (input) and a second 
population generates “artificial” code-smell examples. Each population is evaluated 
using a fitness function. The first population maximizes the coverage of both: code-
smells in the base of examples and generate “artificial” code-smell examples 
generated by the second population. The second population maximizes the number of 
generated code-smell examples that are not covered/detected by the first population 
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and the distance with a reference (well-designed) set of code fragments. Then, change 
operators (selection, cross-over and mutation) are applied to generated new solutions 
(populations). The process is iterated until a termination criterion is met (e.g. number 
of iterations). Next we describe our adaptation of CCEA [2] to the test cases 
generation problem in more details. 

3.2 Competitive Co-evolutionary Adaptation 

In this section, the main contribution of the paper is presented, namely, a method for 
evolving test case models in parallel with mutation analysis using CCEA.   

3.2.1   Solution Representations 
For the first population that generated detection rules, a solution is composed of 
terminals and functions. After evaluating many parameters related to the code-smells 
detection problem, the terminal set and the function set are decided as follows. The 
terminals correspond to different quality metrics with their threshold values (constant 
values). The functions that can be used between these metrics are Union (OR) and 
Intersection (AND). More formally, each candidate solution S  in this problem is a 
sequence of detection rules where each rule is represented by a binary tree such that:  

(1) each leaf-node (Terminal) L  belongs to the set of metrics (such as number 
of methods, number of attributes, etc.) and their corresponding thresholds 
generated randomly.  

(2) each internal-node (Functions) N belongs to the Connective (logic operators) 
set C = {AND, OR}. 

The set of candidates solutions (rules) corresponds to a logic program that is 
represented as a forest of AND-OR trees.  

For the second population, the generated code-smell examples represent artificial 
code fragments composed by code elements. Thus, these examples are represented as 
a vector where each dimension is a code element. We represent these elements as sets 
of predicates. Each predicate type corresponds to a construct type of an object-
oriented system: Class (C), attribute (A), method (M), parameter (P), generalization 
(G), and method invocation relationship between classes (R). For example, the 
sequence of predicates CGAAMPPM corresponds to a class with a generalization link, 
containing two attributes and two methods. The first method has two parameters. 
Predicates include details about the associated constructs (visibility, types, etc.). 
These details (thereafter called parameters) determine ways a code fragment can 
deviate from a notion of normality.  

To generate initial populations, we start by defining the maximum tree/vector 
length (max number of metrics/code-elements per solution). The tree/vector length is 
proportional to the number of metrics/code-elements to use for code-smells detection. 
Sometimes, a high tree/vector length does not mean that the results are more precise. 
These parameters can be specified either by the user or chosen randomly.  
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3.2.2   Fitness Functions 
The fitness function quantifies the quality of the proposed solutions (individuals). For 
the first population, to evaluate detection-rules solutions the fitness function is based 
on: (1) maximizing the coverage of the base of code-smell examples (input) and (2) 
maximizing the number of covered “artificial” code-smells generated by the second 
population executed in parallel. For the second population, executed in parallel, to 
evaluate generated code-smell examples the fitness function is based on: (1) a 
dissimilarity score, to maximize, between generated code-smells and different 
reference code fragments and (2) maximizing the number of generated code-smell 
examples un-covered by the solutions of the first population (detection rules). In the 
following, we detail these functions. 

The objective function of the first population checks to maximize the number of 
detected code-smells in comparison to the expected ones in the base of examples 
(input) and the generated “artificial” code-smells by the second population. In this 
context, we define this objective function of a particular solution S, normalized in the 
range [ ]1,0  as follows:  
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where r is the minimum number (among all generated detection solutions) of detected 
“artificial” code-smells divided by the number of generated ones (precision), p is the 
number of detected code-smells after executing the solution (detection rules) on 
systems of the base of code-smell examples, t is the number of expected code-smells 
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The second population should seek to optimize the following two objectives: 

(1) Maximize the generality of the generated “artificial” code-smells by 
maximizing the similarity with the reference code examples; 

(2) Maximize the number of un-covered “artificial” code-smells by the solutions 
of the first population (detection rules) 

These two objectives define the cost function that evaluates the quality of a solution 
and, then guides the search. The cost of a solution D (set of generated code-smells) is 
evaluated as the average costs of the included code-smells. Formally, the fitness 
function to maximize is 
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where w is the number of code elements (e.g. classes) in the reference code (c), l is 
the number of metrics, M is a metric (such as number of methods, number of 
attributes, etc.) and z is the minimum number of artificial code-smells (among all 
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solutions) un-covered by the solutions of the first population over the number of 
generated “artificial” code-smells. 

3.2.3   Change Operators 
Selection 
In this work, we use an elitist scheme for both selection phases with the aim to: (1) 
exploit good genes of fittest solutions and (2) preserve the best individuals along the 
evolutionary process. The two selections schemes are described as follows. 
Concerning parent selection, once the population individuals are evaluated, we select 
the 2/P  best individuals of the population P to fulfill the mating pool, which size is 

equal to 2/P . This allows exploiting the past experience of the EA in discovering 

the best chromosomes’ genes. Once this step is performed, we apply genetic operators 
(crossover and mutation) to produce the offspring population Q, which has the same 
size as P ( QP = ). Since crossover and mutation are stochastic operators, some 

offspring individuals can be worse than some of P individuals. In order to ensure 
elitism, we merge both population P and Q into U ( PQPU 2=+= ), and then the 

population P for the next generation will be composed by the P  fittest individuals 

from U. By doing this, we ensure that we do not encourage the survival of a worse 
individual over a better one.                  

Mutation 
For the first population, the mutation operator can be applied to a function node, or a 
terminal node. It starts by randomly selected a node in the tree. Then, if the selected 
node is a terminal (quality metric), it is replaced by another terminal (metric or 
another threshold value); if it is a function (AND-OR), it is replaced by a new 
function; and if tree mutation is to be carried out, the node and its subtree are replaced 
by a new randomly generated subtree.  

For the second population, the mutation operator consists of randomly changing a 
predicate (code element) in the generated predicates. 

Crossover 
For the first population, two parent individuals are selected and a subtree is picked on 
each one. Then crossover swaps the nodes and their relative subtrees from one parent 
to the other. This operator must ensure the respect of the depth limits. The crossover 
operator can be applied with only parents having the same rules category (code-smell 
type to detect). Each child thus combines information from both parents. In any given 
generation, a variant will be the parent in at most one crossover operation. 

For the second population, the crossover operator allows to create two offspring o1 
and o2 from the two selected parents p1 and p2. It is defined as follows: 

(1) A random position k, is selected in the predicate sequences. 
(2) The first k elements of p1 become the first k elements of o1. Similarly, the 

first k elements of p2 become the first k elements of o2. 
(3) The remaining elements of, respectively, p1 and p2 are added as second parts 

of, respectively, o2 and o1. 
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For instance, if k = 3 and p1 = CAMMPPP and p2 = CMPRMPP, then o1 = 
CAMRMPP and o2 = CMPMPPP. 

4 Validation 

In order to evaluate our approach for detecting code-smells using CCEA, we 
conducted a set of experiments based on four large open source systems 
[14] [15] [16] [17].  

4.1 Research Questions and Objectives  

The study was conducted to quantitatively assess the completeness and correctness of 
our code-smells detection approach when applied in real-world settings and to 
compare its performance with existing approaches [12] [18]. More specifically, we 
aimed at answering the following research questions (RQ): 

• RQ1: To what extent can the proposed approach detect efficiently code-
smells (in terms of correctness and completeness)? 

• RQ2: To what extent does the competitive co-evolution approach performs 
better than the considered single-population ones? 

To answer RQ1, we used an existing corpus [19] [13] containing an extensive study of 
code-smells on different open-source systems: (1) ArgoUML v0.26 [16], (2) Xerces 
v2.7 [15], (3) Ant-Apache v1.5 [14], and (4) Azureus v2.3.0.6 [17]. Our goal is to 
evaluate the correctness and the completeness of our CCEA code-smells detection 
approach. For RQ2, we compared our results to those produced, over 30 runs, by 
existing single-population approaches [12] [18]. Further details about our 
experimental setting are discussed in the next subsection. 

4.2 Experimental Settings 

Our study considers the extensive evolution of different open-source Java analyzed in 
the literature [13] [18] [19]. The corpus [19] [13] used includes Apache Ant [14], 
ArgoUML [16], Azureus [17] and Xerces-J [15]. Table 1 reports the size in terms of 
classes of the analyzed systems. The table also reports the number of code-smells 
identified manually in the different systems. More than 700 code-smells have been 
identified manually. Indeed, in [13] [18] [19], authors asked different groups of 
developers to analyze the libraries to tag instances of specific code-smells to validate 
their detection techniques. For replication purposes, they provided a corpus of 
describing instances of different code-smells that includes blob classes, spaghetti 
code, and functional decompositions. These represent different types of design risks. 
In our study, we verified the capacity of our approach to locate classes that 
correspond to instances of these code-smells.  

We choose the above-mentioned open source systems because they are 
medium/large-sized open-source projects and were analyzed in the related work.  
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The initial versions of Apache Ant were known to be of poor quality, which has led to 
major revised versions. Xerces-J, ArgoUML, and Azureus have been actively 
developed over the past 10 years, and their design has not been responsible for a 
slowdown of their developments. 

Table 1. The Systems Studied. 

Systems Number of classes 
Number of code-
smells 

ArgoUML v0.26 1358 138 
Xerces v2.7 991 82 
Ant-Apache v1.5 1024 103 
Azureus v2.3.0.6 1449 108 

For the first population, one open source project is evaluated by using the 
remaining systems as a base of code-smells’ examples to generate detection rules. For 
the second population, JHotdraw [22] was chosen as an example of reference code 
because it contains very few known code-smells. Thus, in our experiments, we used 
all the classes of JHotdraw as our example set of well-designed code.  

When applying precision and recall in the context of our study, the precision 
denotes the fraction of correctly detected code-smells among the set of all detected 
code-smells. The recall indicates the fraction of correctly detected code-smells among 
the set of all manually identified code-smells (i.e., how many code-smells have not 
been missed).  

We remove the system to evaluate from the base of code-smell examples when 
executing our CCEA algorithm then precision and recall scores are calculated 
automatically based on a comparison between the detected code-smells and expected 
ones. We compared our results with existing single-population approaches [12, 18]. 
We used precision and recall scores for all these comparisons over 51 runs. Since the 
used algorithms are meta-heuristics, they produce different results on every run when 
applied to the same problem instance. To cope with this stochastic nature, we used the 
Wilcoxon rank sum test [23] in the comparative study. For our experiment, we 
generated at each iteration up-to 150 “artificial” code-smells from deviation with 
JHotDraw (about a quarter of the number of reference examples) with a maximum 
size of 256 characters. We used the same parameter setting for CCEA and single-
population algorithms [12, 18]. The population size is fixed to 100 and the number of 
generations to 1000. In this way, all algorithms perform 100000 evaluations. A 
maximum of 15 rules per solution and a set of 13 metrics are considered for the first 
population [21]. These standard parameters are widely used in the literature [2, 6, 7].  

4.3 Results and Discussions 

Tables 2 and 3 summarize our findings. Overall, as described in table 2, we were able 
to detect code-smells on the different systems with an average precision higher than 
83%. For Xerces, and Ant-Apache, the precision is highest than other systems with 
more than 92%. This is can be explained by the fact that these systems are smaller than 
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others and contain lower number of code-smells to detect. For ArgoUML, the precision 
is also high (around 90%) and most of detected code-smells are correct. This is 
confirms that our CCEA precision results are independent from the size of the systems 
to evaluate. For Azureus, the precision using CCEA is the lowest (71%) but still 
acceptable. Azureus contains a high number of spaghetti-code that are difficult to 
detect using metrics. For the same dataset, we can conclude that our CCEA approach 
performs much better (with a 99% confidence level) than existing single-population 
approaches (Genetic Programming and Artificial Immune Systems) [12, 18] on the 
different systems since the median precision scores are much higher by using CCEA. 
In fact, CCEA provides better results since both single-population approaches (GP and 
AIS) are using only manually collected examples however CCEA has the strength to 
generate also automatically code-smell examples during the optimization process. GP 
and AIS requires high number of examples to achieve good detection results.  

Table 2. Precision median values of CCEA, GP, and AIS over 30 independent simulation runs 

 CCEA GP [18] AIS [12] 

Systems Precision  Precision  p-value Precision p-value 

Azureusv2.3.0.6 71 62 < 0.01 65 < 0.01 

Argo 
UMLv0.26 

91 81 < 0.01 77 < 0.01 

Xercesv2.7 93 84 < 0.01 83 < 0.01 

Ant-
Apachev1.5 

93 86 < 0.01 86 < 0.01 

The same statistical analysis methodology is performed to compare the recall 
median values. According to table 3, all median recall values of GP/AIS are 
statistically different from the CCEA ones on almost problem instances. Thus, it is 
clear that CCEA performs better than GP and AIS. The average recall score of CCEA 
on the different systems is around 85% (better than precision). Azureus has the lowest 
recall score with 74%. In fact, Azureus has the highest number of expected code-
smells. Single-population approaches (GP and AIS) provide also good results (an 
average of 72%) but lower than CCEA ones. Overall, all the three code smell types are 
detected with good precision and recall scores in the different systems since the 
average precision and recall scores on the different systems is higher than 85%.  

The reliability of the proposed approach requires an example set of good code and 
code-smell examples. It can be argued that constituting such a set might require more 
work than identifying and adapting code-smells detection rules. In our study, we 
showed that by using JHotdraw directly, without any adaptation, the CCEA method can 
be used out of the box and this will produce good detection results for the detection of 
code-smells for the eight studied systems. In an industrial setting, we could expect a 
company to start with JHotDraw, and gradually transform its set of good code 
examples to include context-specific data. This might be essential if we consider that 
different languages and software infrastructures have different best/worst practices. 
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Figures 2 shows that only code-smell examples extracted from three different open 
source systems can be used to obtain good precision and recall scores. In fact, since 
CCEA generates “artificial” code smell examples thus only few manually collected 
code-smells are required to achieve good detection results. This reduces the effort 
required by developers to inspect systems to produce code-smell examples.  

Table 3. Recall median values of CCEA, GP, and AIS over 30 independent simulation runs 

 CCEA GP [18] AIS [12] 

Systems Recall  Recall p-value Recall  p-value 

Azureus v2.3.0.6 74 62 < 0.01 66 < 0.01 

ArgoUMLv 0.26 84 79 < 0.01 88 < 0.01 

Xercesv2.7 88 83 < 0.01 86 < 0.01 

Ant-Apachev1.5 92 80 < 0.01 84 < 0.01 

 

 

Fig. 3. The impact of number of systems in the base of examples on the detection results 
(Xerces) 

Finally, all the algorithms under comparison were executed on machines with Intel 
Xeon 3 GHz processors and 8 GB RAM. We recall that all algorithms were run for 
100 000 evaluations for all algorithms. This allows us to make fair comparisons in 
terms of CPU times. The average execution time for all the three algorithms over 30 
runs is comparable with an average of 1h and 22 minutes for CCEA, 1h and 13 minutes 
for GP, and finally 1h and 4 minutes for AIS. We consider that this represents scalable 
results since code-smells detection algorithms are not used in real-time settings. 

5 Related Work 

In the literature, the first book that has been specially written for design smells was by 
Brown et al. [9] which provide broad-spectrum and large views on design smells, and  
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antipatterns that aimed at a wide audience for academic community as well as in 
industry. Indeed, in [20], Fowler and Beck have described a list of design smells 
which may possibly exist on a program. They suggested that software maintainers 
should manually inspect the program to detect existing design smells. In addition, 
they specify particular refactorings for each code-smell type.  

Moha et al. [19] described code-smell symptoms using a domain-specific-language 
(DSL) for their approach called DECOR. They proposed a consistent vocabulary and 
DSL to specify antipatterns based on the review of existing work on design code-
smells found in the literature. Symptoms descriptions are later mapped to detection 
algorithms. Similarly, Munro [24] have proposed description and symptoms-based 
approach using a precise definition of bad smells from the informal descriptions given 
by the originators Fowler and Beck [20]. The characteristics of design code-smells 
have been used to systematically define a set of measurements and interpretation rules 
for a subset of design code-smells as a template form. This template consists of three 
main parts: (1) a code smell name, (2) a text-based description of its characteristics, 
and (3) heuristics for its detection. Marinescu [10] have proposed a mechanism called 
"detection strategy" for formulating metrics-based rules that capture deviations from 
good design principles and heuristics. Detection strategies allow to a maintainer to 
directly locate classes or methods affected by a particular design code-smell. As such, 
Marinescu has defined detection strategies for capturing around ten important flaws of 
object-oriented design found in the literature.  

Our approach is inspired by contributions in the domain of Search-Based Software 
Engineering (SBSE) [25]. SBSE uses search-based approaches to solve optimization 
problems in software engineering. Once a software engineering task is framed as a 
search problem, many search algorithms can be applied to solve that problem. In [18], 
we have proposed another approach, based on search-based techniques, for the 
automatic detection of potential code-smells in code. The detection is based on the 
notion that the more code deviates from good practices, the more likely it is bad. In 
another work [12], we generated detection rules defined as combinations of 
metrics/thresholds that better conform to known instances of bad-smells (examples). 
Then, the correction solutions, a combination of refactoring operations, should 
minimize the number of bad-smells detected using the detection rules. Thus, our 
previous work treats the detection and correction as two different steps. In this work, 
we combine between our two previous work [12, 18] using CCEA to detect code-
smells.Based on recent SBSE surveys [25], the use of parallel metaheuristic search is 
still very limited in software engineering. Indeed, there is no work that uses 
cooperative parallel metaheuristic search to detect code smells. This is the first 
adaptation of cooperative parallel metaheuristics to solve a software engineering 
problem. However, there is mainly three works that used CCEA for SBSE problems: 
Wilkerson et al. [5] tackling the software correction problem, Arcuri and Ya [6] 
handling the bug fixing problem and Adamopoulos et al. [7] tackling the mutation 
testing problem. 
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6 Conclusion 

In this paper, we described a new search-based approach for code-smells detection. In 
our competitive co-evolutionary adaptation, two populations evolve simultaneously 
with the objective of each depending upon the current population of the other. The 
first population generates a set of detection rules that maximizes the coverage of 
code-smell examples and “artificial” code smells, and simultaneously a second 
population tries to maximize the number of “artificial” code-smells that cannot be 
detected by detection rules generated by the first population. We implemented our 
approach and evaluated it on four open-source systems. Promising results are 
obtained where precision and recall scores were higher than 80% on an existing 
benchmark [19] [13].  

Future work should validate our approach with more open-source systems in order 
to conclude about the general applicability of our methodology. Also, in this paper, 
we only focused on only three types of code-smell. We are planning to extend the 
approach by automating the detection various other types. 
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Abstract. We propose a multi-objective genetic algorithm method to prioritize 
state-based test cases to achieve several competing objectives such as budget 
and coverage of data flow information, while hopefully detecting faults as early 
as possible when executing prioritized test cases. The experimental results indi-
cate that our approach is useful and effective: prioritizations quickly achieve 
maximum data flow coverage and this results in early fault detection; prioritiza-
tions perform much better than random orders with much smaller variance. 

Keywords: State-based testing, Prioritization, Multi-objective optimization, 
Genetic algorithm.  

1 Introduction 

The earlier defects are detected the better. During testing this can be achieved by pri-
oritizing test case executions: test cases with higher (estimated) defect detection capa-
bilities are executed earlier than others. Such a prioritization (or ranking) also allows 
one to stop test case execution when the budget dedicated to this activity is exhausted.  

In this paper, we address the problem of ordering the execution of black-box test 
cases. Specifically, we rank state-based test cases derived according to the well-
known transition tree method [1] as it has been shown to be a good compromise 
among available selection criteria [2] (e.g., all-transition pairs, all-transitions [3]). 
Prioritization is performed according to the data-flow the test cases cover in the test 
model since this relates to fault detection [4], and tester-defined constraints: goal to 
reach in terms of data-flow coverage and/or maximum budget (cost) of the execution 
of prioritized test cases. As a result, finding a ranking is a multi-objective optimiza-
tion problem, which we solve with a multi-objective genetic algorithm. The solution 
is an optimal test sequence in the sense that it aims to find as many defects as possible 
as early as possible when executing prioritized test cases. We evaluate how optimal is 
approach on a data structure class that exhibits a state-based behavior.  

Section 2 discusses related work. Section 3 describes our multi-objective genetic 
algorithm. Section 4 reports on a case study. Conclusions are drawn in Section 5. 
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2 Related Work 

Our work relates to state-based testing, data-flow identification from operation con-
tracts, and test case prioritization. 

State-based testing consists in devising transition sequences to exercise different 
elements of the state model, as stated by a selection criterion [3]. Several alternative 
criteria exist [1, 3], including all transitions, all transition pairs, full predicates (an 
adaptation of MC/DC to guards), and round-trip path (transition) tree. Binder’s round-
trip path tree [1] adapts Chow’s W method [5] to UML state machines, and has been 
shown empirically to be a good compromise in terms of cost and effectiveness (at 
detecting faults) between all transitions and all transition pairs (or full predicate) [2], 
even though effectiveness depends on the way the tree has been built [6]. The reader 
interested in more details on this criterion is referred to the above literature. 

To ascertain the state reached by an implementation at the end of a test case execu-
tion and use that information in a test oracle, one can rely on the state invariant (when 
the system state is observable, as in our case) or other characteristics of the state ma-
chine as in protocol conformance testing [5, 7].  

One of the main challenges of state-based testing is the path feasibility problem, 
that is, determining whether a transition sequence derived according to a selection 
criterion is feasible (i.e., one can find test inputs for the sequence such that it ex-
ecutes). This problem, akin to the path sensitization problem in white-box testing [8], 
is known to be un-decidable [9]. We assume test cases (i.e., transition sequences) are 
feasible and we focus on prioritizing them. 

Operation contracts include pre- and post-conditions. In UML, they can be ex-
pressed using the OCL [10]. Briand et al. [4] provided rules for identifying definitions 
and uses of model elements from OCL operation contracts and transition guard condi-
tions, and applied those rules to UML state machine diagrams. Then, they used  
well-known criteria such as all-definitions and all-DU-paths to define test cases. One 
important observation they made on three different case studies is that the set of DU-
paths equals the set of DU-pairs in the test model obtained when applying their strategy 
(i.e., only one definition-clear path from the definition to the use for each DU-pair). It is 
therefore sufficient to determine DU-pairs to cover DU-paths. This may not be the case 
in general though, and only further studies will confirm (or not) this result. They also 
noticed that the data flow analysis they propose can be used as an indicator of the defect 
revealing power of a test suite. A general rule is that in a set of alternative transition 
trees derived from a state machine diagram, the transition tree covering the most data 
flow information (in the model) has a better capability to detect defects. Since the other 
data-flow analysis methods for UML state machines were less complete (e.g., support 
the UML notation to a lesser extent) [4], we adopted the rules defined by Briand et al. 

Test case prioritization has received a lot of attention in two areas of software 
testing [11]: ranking system level test cases, and prioritization during regression test-
ing. In both cases the objective is to rank the test cases such that the most beneficial 
ones (according to some criterion) are executed first. Criteria for prioritization are 
varied, e.g., coverage (e.g., code, model element, requirements), priority, criticality.  
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Prioritization algorithms mostly employ greedy algorithms (e.g., [12]) or single objec-
tive meta-heuristic search (e.g., [13]). Harman concludes that test prioritization re-
quires a multi-objective optimization [14]. To the best of our knowledge, there is no 
technique prioritizing state-based test cases using data flow information. 

3 Genetic Algorithm 

As advocated by Harman [14], we present below a multi-objective optimization (with 
four, possibly conflicting objectives), relying on a genetic algorithm, to produce a test 
order of transition tree paths [1] for state based testing, while accounting for several  
criteria (see below). The conflicting objectives place a partial ordering on the search 
space. GAs are well suited to this situation as they rely on a population of solutions: 
Individuals in the population can represent solutions that are close to an optimum and 
represent different tradeoffs among the various objectives. 

For a given multi-objective problem, the Pareto (optimal) front refers to optimal 
trade-off solutions between the objectives. Because a GA works on a population of 
individual solutions it is possible to find many solutions in the Pareto optimal set, 
which thus present the many possible tradeoffs. Deciding which solution to select 
from that set is left with a decision maker, rather than the optimization algorithm. We 
have not explored ways to present the result of the optimization to a decision-maker. 

We used SPEA2 [15] to implement our multi-objective GA. With SPEA2, a popu-
lation P and an archive A evolve. During fitness assignment at iteration t, individuals 
in both Pt and At are evaluated. During selection, the non-dominated individuals of Pt 
and At (i.e., the interesting tradeoffs) are copied into archive At+1. SPEA2 has a clus-
tering mechanism that removes some non-dominated solutions (that are too close to 
others) and therefore maintains the size of the archive constant while preserving di-
versity in the archive. Next, the genetic selection operator is applied on the individu-
als of At+1 to fill a mating pool, and cross-over and mutation operators are applied to 
that pool to generate Pt+1. This continues until a number of generations is reached. 

3.1 Chromosome Representation 

Given our objective, a chromosome is a sequence of test cases. Since the data flow 
analysis method we use is based on data definitions and uses along transitions, we 
need to record the sequence of transitions in test cases forming the chromosome. (As 
transitions are uniquely identified, the chromosome also includes information about 
the sequence of states.) The chromosome is therefore made of genes and each gene is 
a test case (test path in the state machine). Chromosomes have the same number of 
genes (length) since the number of test paths in a test suite does not change, once set.  

3.2 Objectives for Optimization: Cost, Data Flow, User-Defined Criteria 

The cost of testing is related to time and resources needed to execute messages 
(events) in test cases [1]. There is no general way to quantify test design costs, set up 
costs, execution costs. The number of test cases has been used as a surrogate measure 
of cost. Since we have test cases (paths) of varying lengths, we instead assume test 
case cost to be proportional to the number of transitions triggered by the test case.  
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Following our previous work [4], we compute two different data flow coverage 
rates: CallDefs(tp), resp. CallDU(tp), is the number of definitions (resp. DU-pairs) covered 
by test path tp divided by the total number of definitions (resp. DU-pairs) that can be 
covered by the whole test suite. We also use similar, finer grained measures for indi-
vidual transitions triggered in test paths: CallDefs(t) and CallDU(t) for transition t. (There 
may be definitions and DU-pairs in the model that are not covered by the whole test 
suite. These are not considered here.) In the rest of the paper, we simply write C(tp) or 
C(t) when the criterion is not relevant to the discussion.  

In practice, in addition to the desire to obtain a ratio coverage to cost as high as 
possible, a user may want to achieve a specific data flow coverage rate or may have 
a limited budget to execute test cases, resulting in additional constraints to consider. 

3.3 Fitness Functions 

In general, a user would expect a good solution to the prioritization problem to in-
crease cumulative coverage as fast as possible, so as to (hopefully) detect faults as 
early as possible, while keeping cost as low as possible. In addition, when there is a 
target coverage rate, we expect a good solution to reach that value as early as possi-
ble, and when a budget is provided, we expect a good solution to achieve a coverage 
rate as high as possible for that budget. We first discuss the fitness functions and then 
discuss the necessary change of budget and coverage objectives during optimization. 

Four Fitness Functions. When a tester has a limited budget T (i.e., maximum al-
lowed cost, which is smaller or equal to the total cost of the whole test suite) but 
needs to have enough confidence in the SUT by specifying a minimum coverage rate 
SC to achieve, the tester wants to (see illustration in Fig. 1):  

- Maximize the sum of the cumulative coverage rates within the specified test 

cost, i.e., maximize ; where C(i,j) denotes the cumula-

tive coverage rate at test cost j for chromosome i (i.e., up to transition j of chro-
mosome i), i.e., C(j) of chromosome i as we defined it earlier. 

- Maximize the cumulative coverage rate at the specified budget, i.e., maximize 

.
 

Objective SC may not be achievable given T, in which case the tester would still want 
to maximize coverage reached at T, that is (see illustration in Fig. 1): 

- Minimize the area bounded by the solution’s cumulative coverage rate curve, the 
y-axis and the straight (horizontal) line defined by SC, i.e., minimize  

, where , the 

first test cost l for which the cumulative coverage rate reaches or exceeds SC. 

- Minimize the test cost to reach SC, i.e., minimize . 

f1(i) = (T − j +1) *C(i, j)
j=1

j=T



f
2
(i) = C (i,T )

f3 (i) = (T
j=1

j=T −1

 − j +1)* (SC −C( i, j)) T = l | C(i,l −1) < SC ∧C (i,l) ≥ SC

f 4 (i) = T
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substitutes the user specified SC with SC’ using the following heuristic: SC’ is the 
average of cumulative coverage rates at T of all solutions in the set of retained solu-
tions. Once again, the rationale is to encourage the competition between individual 
solutions by using all the fitness functions.  

One question remains to be answered: When should SC be lowered to SC’? In par-
ticular, it is unlikely that any solution in the initial population will reach SC within T 
if we assume the initial population to be constructed randomly (which is often the 
case in optimizations), and this does not necessarily mean that SC is too high. We 
only want to substitute SC with SC’ if no solution reaches SC within T after the 
search reaches a steady state, for example when the population average coverage rate 
at T does not improve by more than 3% over 50 generations. This is what we used in 
our GA, and we let the test engineer provide values for the number of generations to 
monitor for improvements (50 in the above example) and the minimum percentage of 
improvement in population average coverage rate (3 in the above example). 

 

Fig. 2. Illustrating test cost update 

3.4 Genetic Algorithm Operators 

Crossover: Partially Matched Crossover [16]. Two crossing points are randomly 
picked for two parent chromosomes. The section between the two crossover points is 
called the matching section. The GA then swaps the matching sections in the two 
parents to form two children. This will (likely) result into duplicated genes in chro-
mosomes: in our case, a test case appearing twice. A matching relationship is then 
identified to remove gene duplication, i.e., to identify how the duplicated genes before 
and after the matching section have to be changed. The matching relationship between 
two genes, one from the child chromosome (gc) in the matching section and one from 
the parent chromosome (gp), is defined as follows: gc matches gp if and only if gc 
and gp appear at the same place in the two chromosomes (i.e., at the same index in the 
sequences of genes). For each gene c outside of the matching section in a child chro-
mosome, the GA identifies a gene c’ in the matching section of that chromosome that 
is a duplicate of c (same gene but at a different position in the chromosome). If such a 
duplicate gene c’ exists, the GA recursively applies the matching relationship to c’ 
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until the result is a gene that does not appear in the matching section of the chromo-
some. The result then replaces gene c in the child chromosome.  

Consider the example of Fig. 3 with parent chromosomes Parent1 and Parent2 and 
matching section comprising genes 2 to 5. Swapping the matching sections results in 
the “proto” children 1 and 2. In proto child 1, genes A, B and I are duplicated. A at 
index 5 in proto child 1 matches F at index 5 in Parent1, and F at index 2 in proto 
child 1 matches C at index 2 in Parent 1. Therefore A at index 0 in proto child 1 is 
replaced by C to remove duplication. This is repeated for all the genes outside of the 
matching section. The result is child 1 and child 2. 

 

Fig. 3. Crossover example 

Mutation (Reordering Mutation). We used three mutation operators [17]: 

- Inversion: This operator converts a (randomly selected) sub-sequence of genes 
into its inverse. For instance, chromosome G1G2G3G4G5G6 would be trans-
formed into chromosome G1G2G5G4G3G6, assuming the randomly selected 
sub-sequence is the one underlined. 

- Insertion: This operator randomly takes one gene and randomly moves it at any 
position in the chromosome. For instance, chromosome G1G2G3G4G5G6 would 
be transformed into chromosome G1G4G2G3G5G6, assuming the gene at posi-
tion 3 is randomly selected and is randomly moved to position 1 (we start at 0). 

- Reciprocal exchange (a.k.a. swap mutation): This operator randomly selects two 
genes and exchanges their positions. For instance, chromosome 
G1G2G3G4G5G6 would be transformed into chromosome G1G4G3G2G5G6, 
assuming genes at positions 1 and 3 are randomly selected. 

3.5 Genetic Algorithm Parameters 

The efficiency of a GA is highly dependent on a number of parameters, such as the 
population size, the archive size, the number of generations (as a stopping criterion), 
the crossover rate and the mutation rate. An inadequate selection of parameter values 
can lead to premature convergence or loss of good solutions.  

A GA with a too small population may not adequately explore the search space 
while a GA with a too large population may take a long time to converge. Following 
Goldberg’s work [16], De Jong applied a population size of 50 in a study for five 
optimizations [18]. Grefenstette [19] instead suggested a population size of 30. In 
other GA applications, a population size of 50 to 100 is widely used by many re-
searchers (e.g., [20, 21]). But for a multi-objective GA, some authors tend to use a 
larger population size than for a traditional GA, and suggest a size of 30 to 80 for 
each objective (e.g., [22]). In our GA application, we use a population size of 50 for 
each objective, i.e., 200 in total.  

Proto chi ld 1 A B F I  B  A  G H  I    Child 1 C E F  I  B A G H  D
Proto chi ld 2 E D C D E F G H C Child 2 B  I  C D E F G H A

Parent 2 E D F  I  B A G H C
Parent 1  A B C D E F G H  I

A->F->C, B->E
B->E, I->D
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In SPEA2, the size of the archive set determines how elitist the algorithm is. A 
small archive set will strengthen elitism, but the risk is that some (interesting) non-
dominated solutions may not have room in the archive and may therefore not be kept 
by the GA. Archive sizes in the range [1/4, 4] of the population size are acceptable 
and perform well [22]. To keep computation time within reasonable bounds, we set 
the archive size to half the population size.   

If the number of generations is too small, the evolution may stop although existing 
solutions may have a high probability of improving. If the number of generations is 
too large, the computation time may not be acceptable. Balancing budget and evolu-
tion, as studied in the literature where SPEA2 is used [23, 24], we used 500 genera-
tions for each trial execution of our GA. 

The crossover rate is an important factor as well. A moderate crossover rate is able 
to achieve a good balance between exploration in the whole search space and exploi-
tation of a specific area in the search space. Consistent with some studies that observe 
a crossover rate in the range [0.45, 0.95] performs well [25], we set it to 0.7.  

The mutation rate also affects the performance of the genetic algorithm (e.g., [16, 
19, 22]). We selected the widely used GA mutation rate of 0.01 [19, 23, 26]. 

4 Case Study 

4.1 Design 

We first generated a transition tree test suite. We then applied the multi-objective GA 
to generate test case sequences. We tried different values for user inputs (cost T, cov-
erage SC) to study their impact on trends in coverage and mutation rates. (We tried 
several executions of the GA for each configuration to account for its stochastic na-
ture. We observed similar results and only discuss results for one execution of each 
configuration.) Then we seeded mutants into the source code of the case study system 
and executed GA-evolved test case sequences to obtain their mutant detection capa-
bility. As a baseline of comparison, we generated random orders of test case se-
quences and determined their mutant detection capability. Finally, we compared the 
data flow coverage rate and the mutant detection capability of the different orders to 
verify whether the GA-evolved test case sequences detect these mutants earlier, and 
whether with a user-specified test cost, the GA-evolved sequences detect more  
mutants. 

Our case study aims to answer the three following research questions: Can the data 
flow information derived at the model level help testers identify interesting (data flow 
coverage, fault detection) test cases prioritizations (Q1)? Do the GA-evolved test case 
sequences detect defects in source code earlier than randomly ordered test case se-
quences, or detect more defects within a limited budget (Q2)? What is the variation 
(standard deviation) in defect detection of GA-evolved test case sequences (using data 
flow information at the model level), and how does it compare with the variation in 
defect detection of random test case sequences (Q3)? 
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Random Test Case Sequences. As a baseline of comparison with SPEA2 solutions, 
we generated the same number of random test case sequences as the size of the 
SPEA2 archive set at the end of an SPEA2 evolution. In addition, since GA ordered 
non-dominated solutions entail the same cost, we ensured the generated random test 
case sequences matched that cost.  

Criteria to Compare Test Case Sequences. To answer the research questions, we 
compare data flow coverage and mutant detection rates. Because at the end of each 
GA execution we obtain a set of non-dominated solutions, we compare the average 
rate of the whole set with the average rate of a set of randomly ordered test case  
sequences.  

Comparing Data Flow. With N test case sequences, the data flow coverage rate at 

each test cost i on average is: .  

Comparing Mutation Rate. The average of the percentage of faults detected (APFD) 
metric [12], and its APFDc extension (“cost-cognizant APFD”) that accounts for va-
rying test case costs and varying faults severities [27] were defined for comparing test 
case prioritizations during regression testing. Since solutions returned by our GA 
executions may not have the same number of test cases, we cannot use APFD 
(APFDc). We therefore defined our own metric. 

Let m(k,i) be the mutation rate of test case sequence k at test cost i, i.e., the number 
of detected mutants up to the i-th test cost divided by the number of all known detect-
able mutants. With N test case sequences, the mutation rate at each test cost on aver-

age is . We then compare the set of mutation rate M(i) from the 

GA-evolved sequences with the set of mutation rate M(i) from a set of random  
sequences. 

User-Defined Inputs (Cost and Coverage). In our GA application, a tester has to 
define a goal in terms of minimum data-flow coverage and maximum cost. Since 
100% coverage can be too expensive and empirical results indicate 90% is a reasona-
ble target (e.g., [2, 28]), we selected data flow coverage rates of 90% and 80% (both 
for all-definitions and all-DU pairs) as inputs.  

With respect to budget (cost) input, since our GA can provide a reduced test cost, 
which satisfies data flow coverage requirements, we set the cost to 80% and 90% of 
the total cost of the full test suite because we want to reduce test costs in proportion to 
the specified data flow coverage rates (which we set to 80% and 90%). To comple-
ment the study of the impact of a specified test cost, we then use test cost values a bit 
larger and smaller than the one discovered by the GA. For example, if with user input 
data (T=90%, SC=90%) our GA reduces test cost T to T’=45 (i.e., a cost of 45 is suf-
ficient to reach SC), we then try the optimization again twice, with pairs of input data 
(T=50%, SC=90%) and (T=40%, SC=90%). In the former case, we expect our GA 
application to return similar results as with input (T=90%, SC=90%). Since these 
results might be very similar to the initial inputs, we will not report all detailed  

DF i( ) = 1
N

C k,i( )
k=1

N



M i( ) = 1N m k,i( )
k=1

N
∑
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results. In the latter case, we expect our GA application to present solutions that can 
reach a cumulative coverage SC’ (smaller than SC) for test cost T=40% and we will 
discuss them when presenting results. 

Mutation Operators. We used MuJava [29], using all its mutation operators (me-
thod-level and class-level), to automatically generate mutants for our case study since 
this is a well-accepted procedure to study effectiveness of test techniques [30]. We do 
not discuss further the list of mutation operators we used because of lack of space and 
since MuJava automatically decides which operators it could use on our case study. 

Since we prioritize the test cases in an existing test suite, the best mutation rate of 
the prioritizations is the one of that initial test suite. Since this test suite may not kill 
all mutants created by MuJava, we only consider the mutants killed by the initial test 
suite when comparing the mutation rate of prioritizations. 

There is significant variation in terms of detection rates across faults/mutants: mu-
tants that are only killed by less than 1.5% of the initial test cases are considered to be 
“very hard to kill” whereas mutants that are killed by 1.5% to 5% of the test cases are 
considered to be “hard to kill” [30]. In our case study, 4.9% of the mutants are hard to 
kill whereas 0.7% of the mutants are very hard to kill. 

The OrderedSet Case Study. The case study is a data structure that implements a set 
of integer values and has the capability to resize itself when more room is required to 
add elements. We chose this case study since it has a complex state-based behaviour 
(because of the resizing capability), even though it is small in size, and events trigger-
ing inputs have parameters (the elements to add/remove to/from the set). The case 
study is 232 LOC (24 methods), the test suite to prioritize has 165 test cases, includ-
ing 916 triggered transitions. The test cases exercise 152 definitions and 619 DU pairs 
in the model. MuJava created 575 mutants. The test case average mutation rate is 
27.1%. 

Although it represents a typical case where a state machine is used to model beha-
vior (a complex data structure) the case study system is admittedly small. However, 
this kind of complex data structure is usually modeled using state machines in UML-
based development [31]. Additionally, it is very uncommon in practice to model sub-
systems or entire systems using state machines, as this is far too complex in realistic 
cases. So we believe our case study is representative of a large set of situations. 

4.2 Results 

Following the procedure described earlier, with 80% and 90% data flow coverage 
rates (SC) and 80% and 90% of total costs (T), we analyzed the coverage and muta-
tion rates of GA-evolved sequences (all the sequences from the Pareto front are  
considered) and random sequences. Fig. 3 (a) shows example results for definition 
coverage and specific values for SC and T, but other results for DU-pairs (Fig. 4) and 
other values of SC and T show similar trends. We can clearly see that GA-evolved 
sequences increase their data flow coverage rates quicker than random sequences, 
which is the intended behaviour, except for the initial part of the sequence (as further 
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cost 2. Since many mutants are killed by simply executing the methods where they are 
seeded, and a large proportion of the mutants are seeded in the methods (in)directly 
called in this test case, that test case becomes a quite effective test case.  

We notice the random sequences do very well in terms of mutation rate. We found 
that 42% of the mutants are seeded into method union(), that around 45% of the test 
cases invoke this method, and that 2/3 of those test cases exercise the system in a way 
similar to the effective test case discussed previously. These form a powerful set of 
test cases, with mutation rates between 40% and 55%. The fact that random sequences 
are close to GA-evolved sequences (for low cost values only) is therefore a result of 
test cases that exercise a lot of the functionalities at once and kill easy to find mutants.  

Similar observations can be made from Fig. 4 (b) when optimizing for DU-pairs 
and observing mutation rate. We find a large number of very effective test cases to 
randomly select from, thus the good performance of the random order. A plateau can 
also be observed for the GA-evolved orders, though at a much higher cost (around 60) 
than when optimizing for definitions. 

5 Conclusion 

In this paper, we presented a solution to the problem of ordering the execution of 
black-box test cases derived from state machines, and proposed a heuristic search 
technique for obtaining test case sequences maximizing chances of early fault detec-
tion. Specifically, we rank state-based test cases derived according to the transition 
tree method according to the amount of data-flow the test cases cover in the test 
model. Prioritization aims to achieve maximum data flow coverage as soon as possi-
ble, while accounting for user-defined criteria such as maximum testing budget or 
minimum data flow coverage. As a result we propose a multi-objective optimization 
with four different objective functions. We dedicated a fair amount of the paper to the 
design of our GA and our case study to facilitate replications and comparisons. 

We evaluated our approach on one case study that exhibits a state-based behaviour: 
a complex data structure class. Results indeed show that our optimization leads to test 
case sequences that have a sharp increase in data flow coverage early, which is the 
desired behaviour, and that this translates into early fault detection, with much less 
variance, when compared to randomly generated sequences. Data is available for two 
other case studies that confirm these results, which could not be included here. 

Another lesson we have learnt regarding multi-objective optimization, though we 
did not have room to elaborate on this in the paper, is the likely presence of deceptive 
attractors in the search space [32]. In our optimization, a deceptive attractor is a sub-
sequence in the chromosome that will lead to a local optimum rather than a global 
optimum. We identified that, in our solution, the presence of deceptive attractors is 
likely a by-product of the genetic algorithm we used (i.e., SPEA2) since it relies on 
the phenotype to maintain diversity in solutions, while optimization should also rely 
on the genotype to maintain diversity. We did not try to change the implementation of 
the well-known, multi-objective optimization algorithm (SPEA2) we used to solve 
this problem, and leave this to future work. 
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Future work should include the following: Using a greedy algorithm which takes 
into account a single metric being optimized, such as coverage rate, to produce priori-
tizations is another baseline of comparison that can be considered; Studying the im-
pact of the ease of detection of mutants on results (e.g., easy to kill mutants, i.e., those 
killed by 90% of the test cases for instance could be removed from the analysis). 
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Abstract. A dynamically adaptive system (DAS) self-reconfigures at
run time in order to handle adverse combinations of system and environ-
mental conditions. Techniques are needed to make DASs more resilient
to system and environmental uncertainty. Furthermore, automated sup-
port to validate that a DAS provides acceptable behavior even through
reconfigurations are essential to address assurance concerns. This paper
introduces Fenrir, an evolutionary computation-based approach to ad-
dress these challenges. By explicitly searching for diverse and interesting
operational contexts and examining the resulting execution traces gen-
erated by a DAS as it reconfigures in response to adverse conditions,
Fenrir can discover undesirable behaviors triggered by unexpected en-
vironmental conditions at design time, which can be used to revise the
system appropriately. We illustrate Fenrir by applying it to a dynami-
cally adaptive remote data mirroring network that must efficiently diffuse
data even in the face of adverse network conditions.

Keywords: search-based software engineering, novelty search, genetic
algorithm, software assurance.

1 Introduction

A dynamically adaptive system (DAS) can self-reconfigure at run time by trig-
gering adaptive logic to switch between configurations in order to continually
satisfy its requirements even as its operating context changes. For example, a
hand-held device may need to dynamically upload an error-correction communi-
cation protocol if the network is lossy or noisy. Despite this self-reconfiguration
capability, a DAS may encounter operational contexts of which it was not ex-
plicitly designed to handle. If the DAS encounters such an operational context,
then it is possible that it will no longer satisfy its requirements as well as exhibit
other possibly undesirable behaviors at run time. This paper presents Fenrir,
a design-time approach for automatically exploring how a broad range of com-
binations of system and environmental conditions impact the behavior of a DAS
and its ability to satisfy its requirements.

In general, it is difficult to identify all possible operating contexts that a DAS
may encounter during execution [7,6,18,28]. While design-time techniques have
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been developed for testing a DAS [4,20,21,22,24,25,31], these are typically re-
stricted to evaluating requirements satisfaction within specific operational con-
texts and do not always consider code-level behaviors. Researchers have also
applied search-based heuristics, including evolutionary algorithms, to efficiently
generate conditions that can cause failures in a system under test to provide
code coverage [2,15,16]. Automated techniques are needed to make a DAS more
resilient to different operational contexts as well as validate that it provides
acceptable behavior even through reconfigurations.

This paper introduces Fenrir,1 an evolutionary computation-based approach
that explores how varying operational contexts affect a DAS at the code level
at run time. In particular, Fenrir searches for combinations of system and
environmental parameters that exercise a DAS’s self-reconfiguration capabilities,
possibly in unanticipated ways. Tracing the execution path of a DAS can provide
insights into its behavior, including the conditions that triggered an adaptation,
the adaptation path itself, and the functional behavior exhibited by the DAS
after the adaptation. At design time, an adaptation engineer can analyze the
resulting execution traces to identify possible bug fixes within the DAS code, as
well as optimizations to improve the run-time self-adaptation capabilities of the
DAS.

Fenrir leverages novelty search [17], an evolutionary computation technique,
to explicitly search for diverse DAS execution traces. Specifically, Fenrir uses
novelty search to guide the generation of diverse DAS operational contexts com-
prising combinations of system and environmental conditions that produce pre-
viously unexamined DAS execution traces. Since we do not know in advance
which combinations of environmental conditions will adversely affect system be-
havior, we cannot define an explicit fitness function for generating the opera-
tional contexts. Instead, we opt for diverse operational contexts with the intent
of considering a representative set of “all” operational contexts. Fenrir then
executes the DAS under these differing operational contexts in order to evalu-
ate their effects upon the DAS’s execution trace. As part of its search for novel
execution traces, Fenrir analyzes and compares the traces to determine which
operational contexts generate the most diverse behaviors within the DAS.

We demonstrate Fenrir by applying it to an industry-provided problem,
management of a remote data mirroring (RDM) network [12,13]. An RDM net-
work must replicate and distribute data to all mirrors within the network as links
fail and messages are dropped or delayed. Experimental results demonstrate that
Fenrir provides a significantly greater coverage of execution paths than can be
found with randomized testing. The remainder of this paper is as follows. Sec-
tion 2 provides background information on RDMs, evolutionary algorithms, and
execution tracing. Section 3 describes the implementation of Fenrir with an
RDM network as a motivating example. Following, Section 4 presents our ex-
perimental results, and then Section 5 discusses related work. Lastly, Section 6
summarizes our findings and presents future directions.

1 In Norse mythology, Fenrir is the son of Loki, god of mischief.
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2 Background

In addition to overviewing the key enabling technologies used in this work, this
section also overviews the remote data mirroring application.

2.1 Remote Data Mirroring

Remote data mirroring (RDM) [12,13] is a data protection technique that can
maintain data availability and prevent loss by storing data copies, or replicates,
in physically remote locations. An RDM is configurable in terms of its network
topology as well as the method and timing of data distribution among data
mirrors. Network topology may be configured as a minimum spanning tree or
redundant topology. Two key data distribution methods are used. Synchronous
distribution automatically distributes each modification to all other nodes, and
asynchronous distribution batches modifications in order to combine edits made
to the data. Asynchronous propagation provides better network performance,
however it also has weaker data protection as batched data could be lost when
a data mirror fails. In our case, an RDM network is modeled as a DAS to
dynamically manage reconfiguration of network topology and data distribution.

2.2 Genetic Algorithms

A genetic algorithm (GA) [11] is a stochastic search-based technique grounded in
Darwinian evolution that leverages natural selection to efficiently find solutions
for complex problems. GAs represent a solution as a population, or collection,
of genomes that encode candidate solutions. A fitness function evaluates the
quality of each individual genome within the population in order to guide the
search process towards an optimal solution. New genomes are produced through
crossover and mutation operators. In particular, crossover exchanges portions of
existing genomes and mutation randomly modifies a genome. The best perform-
ing individuals are retained at the end of each iteration, or generation, via the
selection operator. These operations are repeated until a viable solution is found
or the maximum number of generations is reached.

Novelty search [17] is another type of genetic algorithm that explicitly searches
for unique solutions in order to avoid becoming caught in local optima. Novelty
search replaces the fitness function in a traditional genetic algorithm with a
novelty function that uses a distance metric, such as Euclidean distance [3], to
determine the distance between a candidate solution and its k -nearest solutions.
Furthermore, a solution may be added to a novelty archive in order to track
areas of the space of all possible solutions that have been already thoroughly
explored.

2.3 Execution Tracing

Following the execution path of a software system can provide insights into
system behavior at run time, as it may behave differently than intended due
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to uncertainty within its operating context. Tracing system execution has been
applied to various aspects of software analysis, from understanding the behavior
of distributed systems [19] to identifying interactions between the software and
hardware of superscalar processors [23]. An execution trace can be generated by
introducing logging statements. Many different approaches to software logging
exist [34], however for this paper we consider a subset of branch coverage [10]
as our metric for tracing execution paths. Branch coverage follows all possible
paths that a program may take during execution, such as method invocations,
if-else, or try-catch blocks.

3 Approach

Fenrir is a design-time assurance technique for exploring possible execution
paths that a DAS may take in response to changing environmental and system
contexts. Conceptually, we consider a DAS (see Figure 1) to comprise a collection
of target (non-adaptive) configurations, TCi, connected by adaptive logic, Aij ,
that moves execution from one target configuration (TCi) to another (TCj) [35].
Therefore, the functional logic of the system (i.e., requirements) is implemented
by the target configurations, where each target configuration may differ in how
it implements the requirements (e.g., different performance requirements), and
how it may handle specific environmental conditions.

Fenrir starts with instrumented code for both the adaptive logic and func-
tional logic for a DAS. Then the set of operating contexts that can trigger DAS
self-reconfigurations are generated using novelty search, in order to provide a
diverse and representative set of environmental and system contexts that the
DAS may encounter during execution. These operating contexts are based on
different combinations of identified sources of uncertainty that may affect the
DAS at run time, where the combinations may be unintuitive, but feasible, and
therefore not anticipated by a human developer. Next, the instrumented DAS is
executed for different operational contexts, where each operational context will
have a corresponding execution trace that reflects the execution path of a DAS
as it self-reconfigures and executes its target configurations. This trace provides
information necessary to fully realize the complexity inherent within the DAS
as it executes and performs self-reconfigurations.

Figure 2 provides an overview of a DAS that has been instrumented with
logging statements. The instrumented DAS is split into two parts: Configuration
and Adaptation Manager. The Configuration refers to the collection of target
configurations connected by the adaptive logic as shown in Figure 1, and the
Adaptation Manager comprises a monitoring, decision logic, and reconfiguration
engine to manage the self-adaptation capabilities for the DAS. Together, these
two parts make up the system that can reconfigure itself at run time in order to
handle uncertainties within its operating context.

Logging statements are then inserted into both the Configuration and Adapta-
tionManager to provide an engineer with information regarding the target configu-
ration state, conditions that trigger adaptations, and steps taken during
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Fig. 2. Overview of an instrumented DAS

self-reconfiguration at each time step throughout execution. Furthermore, the in-
strumented DAS requires an operational context to specify the sources of environ-
mental and system uncertainty, as previously identified by the domain engineer.
The DAS generates a trace that represents the execution path for a given set of
environmental conditions.

The remainder of this section describes how Fenrir generates novel execu-
tion traces. First, we present an overview of Fenrir and state its assumptions,
required inputs, and expected outputs. We then discuss each step in the Fenrir
process.

3.1 Assumptions, Inputs, and Outputs

Fenrir requires instrumented executable code for a DAS to exercise the adap-
tive logic and functional logic triggered by different operational contexts. In
particular, the instrumented code within the DAS should provide a measure of
branch coverage in order to properly report the various execution paths that a
DAS may traverse. Furthermore, the logging statements should monitor possible
exceptions or error conditions that may arise.
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Fenrir produces a collection of operational contexts, each with a correspond-
ing execution trace generated by the DAS. The operational contexts specify
sources of system and environmental uncertainty, their likelihood of occurrence,
and their impact or severity to the system. Each operational context may trigger
adaptations within the DAS, thereby creating a vast set of possible execution
paths. Execution traces contain information specific to each explored path, pro-
viding insights into the overall performance of the DAS throughout execution. In
particular, information regarding the invoking module, line number, a descrip-
tion of intended behavior, and a flag indicating if an exception has occurred is
provided for further analysis.

3.2 Fenrir Process

The data flow diagram (DFD) in Figure 3 provides a process overview for using
Fenrir. Each step is described next in detail.
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Fenrir Archive
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Fig. 3. DFD diagram of Fenrir process
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Fig. 4. Genome representation

(1) Generate Operational Contexts. Fenrir uses novelty search [17],
an evolutionary computation-based technique, to generate operational contexts
that specify the sources of environmental and system uncertainty. Operational
contexts are represented as genomes within a population. Each genome comprises
a vector of genes of length n, where n defines the number of environmental and
system sources of uncertainty. Each gene defines the likelihood and impact of
occurrence for each source. Figure 4 illustrates a sample genome used by Fenrir
to configure sources of uncertainty. For instance, the displayed genome has a
parameter for a network link failure that has a 15% chance of occurrence, and,
at most, 10% of all network links within the RDM network can fail at any given
time step. Each generated operational context is then applied to an instrumented
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DAS, resulting in an execution trace. Both the operational context and execution
trace are provided as inputs to the novelty value calculation, as is described in
the following subsection.

Novelty search is similar in approach to genetic algorithms [11], however it
differs in the search objective. Novelty search aims to create a set of diverse
solutions that are representative of the solution space, whereas a genetic algo-
rithm searches instead for an optimal solution. The novelty search process is
constrained by a set of parameters that govern how new solutions are created.
These include population size, crossover and mutation rates, a termination cri-
terion, and a novelty threshold value. Population size determines the number
of genomes created per generation, and a starting population is randomly gen-
erated that specifies different sources of uncertainty based on the system and
environmental conditions. The crossover and mutation rates define the num-
ber of new genomes that may be created through recombination and random
modifications, respectively. The termination criterion defines the number of gen-
erations that the novelty search algorithm will run before termination, and the
novelty threshold provides a baseline value for inclusion of a solution within
the novelty archive. New genomes are created in each subsequent generation
via the crossover and mutation operators. Crossover creates new genomes by
swapping genes between two candidate genomes, and mutation produces a new
genome by randomly mutating a gene within the original candidate.

(2) Compute Novelty and Archive Solutions. Fenrir calculates a nov-
elty value for each solution within a population by first constructing a weighted
call graph (WCG) [1] from each corresponding execution trace then calculat-
ing the difference against every other solution within the novelty archive in a
pair-wise fashion. The WCG is an extension to a program call graph [27] and is
represented as a directed graph, with nodes populated by unique identifiers corre-
sponding to each logging statement, directed edges symbolizing execution order,
and weights representing execution frequency. Figures 5(a) and 5(b) present an
example of a WCG with corresponding example code, respectively, where each
node represents a statement from the execution trace, and each edge label rep-
resents the execution frequency (i.e., weight).

The novelty value is computed by calculating the differences in nodes and
edges between two WCGs, as shown in Equation 1, and then applying a Man-
hattan distance metric [3] to measure the distance between each WCG, as shown
in Equation 2. Any novelty value that exceeds the novelty archive threshold, or
is within the top 10% of all novelty values, is then added to the novelty archive
at the end of each generation.

dist(μi, μj) = len({v ∈ gi} ⊕ {v ∈ gj}) + len({e ∈ gi} ⊕ {e ∈ gj})) (1)

p(μ, k) =
1

k

k∑
i=1

dist(μi, μj) (2)
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void main() {
  wrapper(TRUE);
}

b:

void wrapper(bool flag) {
    int i, k = 0;
   if (flag) {
        while (i < 3) ++i; 
    else
        while (k < 2) --k;
    callFunction(i, k);
}

a. WCG b. Corresponding code.

Fig. 5. WCG Example

Upon completion, Fenrir returns a set of operational contexts, each with their
corresponding execution trace stored in the novelty archive. Together, these
outputs provide insight into the behavior of the DAS throughout execution,
including triggers to self-reconfigurations, parameters for each target configura-
tion, raised exceptions, and unwanted or unnecessary adaptations. Unnecessary
adaptations refer to adaptations that may occur as the DAS transitions back and
forth between target configurations before finally settling on a new target con-
figuration to handle the current operating context. Unacceptable behaviors may
then be corrected through bug fixes, augmentation of target configurations, or by
introducing satisfaction methods such as RELAX [6,33] that tolerate flexibility
in DAS requirements.

4 Experimental Results

This section describes our experimental setup and discusses the experimental
results found from applying Fenrir to an RDM application.

4.1 Experimental Setup

For this work, we implemented an RDM network as a completely connected
graph. Each node represents an RDM and each edge represents a network link.
Our network was configured to comprise 25 RDMs and 300 network links that
may be activated and used to transfer data between RDMs. Logging statements
comprise a unique identifier, module information such as function name, line
number, and a custom description, and are inserted into the RDM source code
to properly generate an execution trace. The RDM was executed for 150 time
steps, with 20 data items randomly inserted into varying RDMs that were then
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responsible for distribution of those data items to all other RDMs. Furthermore,
the novelty search algorithm was configured to run for 15 generations with a pop-
ulation size of 20 individual solutions per generation. The crossover, mutation,
and novelty threshold rates were set to 25%, 50%, and 10%, respectively.

Environmental uncertainties, such as dropped messages or unpredictable net-
work link failures, can be applied to the RDM network throughout a given ex-
ecution. The RDM network may then self-adapt in response to these adverse
conditions in order to properly continue its execution. A self-adaptation results
in a target system configuration and series of reconfiguration steps that en-
ables a safe transition of the RDM network from the current configuration to
target configuration. This adaptation may include updates to the underlying
network topology, such as changing to a minimum spanning tree, or updating
network propagation parameters, such as moving from synchronous to asyn-
chronous propagation.

In order to validate our approach, we compared and evaluated the resulting
execution traces produced by Fenrir with the novelty metric previously intro-
duced in Equations 1 and 2. To demonstrate the effectiveness of novelty search,
we compared Fenrir execution traces with those generated for random opera-
tional contexts. We compared Fenrir results to random testing since we could
not define an explicit fitness function because we do not know a priori which
operational contexts adversely impact the system. As such, Fenrir provides a
means for us to consider a representative set of all possible operational contexts.
For statistical purposes, we conducted 50 trials of each experiment and, where
applicable, plotted or reported the mean values with corresponding error bars
or deviations.

4.2 DAS Execution in an Uncertain Environment

For this experiment, we define the null hypothesis H0 to state that there is
no difference between execution traces generated by configurations produced by
novelty and those created by random search. We further define the alternate hy-
pothesis H1 to state that there is a difference between execution traces generated
from novelty search (Fenrir) and random search.

Figure 6 presents two box plots with the novelty distances obtained by the
novelty archive generated by Fenrir and a randomized search algorithm. As this
plot demonstrates, Fenrir generated execution traces that achieved statistically
significant higher novelty values than those generated by a randomized search al-
gorithm (p < 0.001, Welch Two Sample t-test). This plot also demonstrates that
Fenrir discovered execution traces with negative kurtosis, thereby suggesting
that the distribution of operational contexts were skewed towards larger novelty
values. These results enable us to reject our null hypothesis, H0. Furthermore,
these results enable us to accept our alternate hypothesis, H1, as novelty search
discovered a significantly larger number of unique DAS execution paths when
compared to the randomized search algorithm. Figure 6 also demonstrates that
the solutions generated by Fenrir provide a better representation of the solution
space with fewer operational contexts, as the Fenrir box plot contains novelty
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Fig. 6. Novelty distance comparison between novelty and random search

values from 30 solutions, and the randomized search box plot contains novelty
values from 300 solutions. As such, using Fenrir enables a DAS developer to
assess behavior assurance of a DAS in uncertain environments more efficiently,
both in terms of computation time and information to be analyzed.

Figure 7 presents two separate RDM network execution paths that were gen-
erated by novelty search, with each represented as a WCG. Each node represents
a unique logging point and each directed edge represents a sequential execution
from one node to the next. The weight on each edge indicates the frequency that
the statement was executed. For instance, in Figure 7(a), the weight on the edge
between Nodes (g) and (h) shows that Node (g) was executed 28 times and then
Node (h) was executed once. Further analysis of the execution trace indicates
that the RDM network consisted of 28 data mirrors. Visual inspection of Fig-
ures 7(a) and 7(b) indicates that Fenrir is able to find execution paths that vary
greatly in both structure and in frequency of executed instructions. The large
variance in structure helps us to better understand the complexity of the DAS
behavior in response to different operational contexts. Furthermore, the diver-
sity of execution traces can be used to focus our efforts in revising the functional
and/or adaptive logic in order to reduce complexity, optimize configurations, or
repair erroneous behavior and code.

Threats to Validity. This research was a proof of concept study to deter-
mine the feasibility of using execution trace data for a DAS to determine what
evolutionary computation-generated system and system and environmental con-
ditions warrant dynamic adaptation. We applied our technique to a problem that
was provided by industrial collaborators. Threats to validity include whether this



Validating Code-Level Behavior of Dynamic Adaptive Systems 91

da g
 1

b c
 1e  1

i
300

h
 1

z

 300

j
300 1

k l
 300

m b1 1620
 300o p

300n 300
q r300

 1

s

 300

 300  300

 300 300

 1

 28  300  8100

 300

 10200  8100  8100

 300

300

(a) Execution Path 1

da g
 1

b c
 1

e
  300

i
 300

h
 1

 34

 300 1

 300   300

(b) Execution Path 2

Fig. 7. Unique execution paths

technique will achieve similar results with other DAS implementations and other
problem domains. Furthermore, as an optimization to maintain trace files that
are manageable in size, we focused on coverage points rather than providing full
branching code coverage. As such, exploration of additional code coverage may
be necessary to provide extended information on the generated execution paths.

5 Related Work

This section presents related work on approaches for providing code coverage,
evolving randomized unit test data, automated methods for testing distributed
systems, and automatically exploring how uncertainty affects requirements.

Code Coverage. Assurance of a system can be augmented by providing a
measure of code coverage testing. Chen et al. [5] proposed code coverage as an
approach for enhancing the reliability measurements of software systems dur-
ing testing. A software system may successfully pass all test cases in a testing
suite and yet can still have latent errors. Augmenting traditional testing with
code coverage analysis can improve testing reliability. Furthermore, instrument-
ing software to provide code coverage can be a non-trivial task, incurring extra
time and overhead. Tikir and Hollingsworth [32] have introduced an approach
that can dynamically insert and remove logging calls in a codebase. Moreover,
optimizations to traditional logging techniques were introduced in order to re-
duce both the number of instrumentation points and program slowdown. Finally,
automated code coverage, as well as automated model coverage, can be provided
via gray-box testing [14]. Gray-box testing can be provided through a combina-
tion of white-box parameterized unit testing and black-box model-based testing.
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In this approach, oracle-verified test sequences are combined with a suite of pa-
rameter values to maximize code coverage, and provides insights into system
behaviors at both the model and code levels. Each of these approaches is con-
cerned with providing an overall measure of code coverage, where Fenrir targets
code segments that provide differing paths of execution in the DAS, including
branching and self-reconfiguration paths, thereby providing a finer-grained mea-
sure of execution.

Evolved Randomized Unit Testing. A diverse set of system tests can be
created automatically with evolutionary computation. Nighthawk [2] uses a ge-
netic algorithm to explore the space of parameters that control the generation
of randomized unit tests with respect to fitness values provided by coverage
and method invocation metrics. EvoSuite [9] uses evolutionary algorithms to
create whole test suites that focus on a single coverage criterion (i.e., introduc-
ing artificial defects into a program). In contrast to each of these approaches,
Fenrir instead provides feedback through execution traces to demonstrate the
vast amount of possible states that a DAS may encounter at run time, as opposed
to defining test suites for validation.

Automated Testing of Distributed Systems. Distributed systems comprise
asynchronous processes that can also send and receive data asynchronously, and
as a result can contain a large number of possible execution paths. Sen and
Agha [30] have proposed the use of concolic execution, or simultaneous concrete
and symbolic execution, in order to determine a partial order of events incurred
in an execution path. Concolic execution was proven to efficiently and exhaus-
tively explore unique execution paths in a distributed system. Furthermore, au-
tomated fault injection can explore and evaluate fault tolerance to ensure that a
distributed system continually satisfies its requirements specification [8] and en-
sures system dependability [29]. Conversely, Fenrir explores how a system can
handle faults by studying its reaction to varying operational contexts, rather
than by direct injection of faults into the system.

Automatically Exploring Uncertainty in Requirements. Ramirez et
al. [26] introduced Loki, an approach for creating novel system and environmen-
tal conditions that can affect DAS behavior, and in doing so uncover unexpected
or latent errors within a DAS’s requirements specification. Fenrir extends Loki
by exploring uncertainty at the code level in an effort to distinguish how a DAS
will react in uncertain situations and attempt to uncover errors made in the
implementation of a DAS.

6 Conclusion

In this paper we presented Fenrir, an approach that applies novelty search
at design time to automatically generate operational contexts that can affect a
DAS during execution at the code level. Specifically, Fenrir introduces logging
statements to trace a DAS’s execution path and then uses the distance between
execution paths to measure the level of novelty between operational contexts.
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By creating a set of configurations that more extensively exercise a DAS, it is pos-
sible to identify undesirable behaviors or inconsistencies between requirements
and system implementation. We demonstrated the use of Fenrir on an RDM
network that was responsible for replicating data across a network. This network
was subjected to uncertainty in the form of random link failures and dropped
or delayed messages. Experimental results from this case study established that
Fenrir was able to successfully generate more unique execution paths with a
smaller set of execution traces than purely random search. Future directions for
Fenrir will extend the technique and apply it to additional applications. We
are investigating different distance metrics for novelty search as well as other
evolutionary strategies to generate unique execution traces.
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Abstract. Refactoring aims at improving the quality of design while preserving 
its semantic. Providing an automatic support for refactoring is a challenging 
problem. This problem can be considered as an optimization problem where the 
goal is to find appropriate refactoring suggestions using a set of refactoring ex-
amples. However, some of the refactorings proposed using this approach do not 
necessarily make sense depending on the context and the semantic of the sys-
tem under analysis. This paper proposes an approach that tackles this problem 
by adapting the Interactive Genetic Algorithm (IGA) which enables to interact 
with users and integrate their feedbacks into a classic GA. The proposed algo-
rithm uses a fitness function that combines the structural similarity between the 
analyzed design model and models from a base of examples, and the designers’ 
ratings of the refactorings proposed during execution of the classic GA. Ex-
perimentation with the approach yielded interesting and promising results.  

Keywords: Software maintenance, Interactive Genetic Algorithm, Model refac-
toring, Refactoring by example.      

1 Introduction 

Software maintenance is considered the most expensive activity in the software sys-
tem lifecycle [1]. Maintenance tasks can be seen as incremental modifications to a 
software system that aim to add or adjust some functionality or to correct some design 
flaws. However, as the time goes by, the system’s conceptual integrity erodes and its 
quality degrades; this deterioration is known in the literature as the software decay 
problem [2]. A common and widely used technique to cope with this problem is to 
continuously restructure the software system to improve its structure and design. The 
process of restructuring object oriented systems is commonly called refactoring [3]. 
According to Fowler [2], refactoring is the disciplined process of cleaning up code to 
improve the software structure while preserving its external behavior. Many research-
ers have been working on providing support for refactoring operations (e.g., [4], [2], 
and [5]). Existing tools provide different environments to manually or automatically 
apply refactoring operations to correct, for example, code smells. Indeed, existing 
work has, for the most part, focused on refactorings at the source code level. Actually, 
the rise of the model-driven engineering (MDE) approach increased the interest and 
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the needs for tools supporting refactoring at the model-level. In MDE, abstract models 
are successively refined into more concrete models, and a model refactoring tool will 
be of great value within this context. 

The search-based refactoring approaches proved their effectiveness to propose 
refactorings to improve the model’s design quality. They adapted some of the known 
heuristics methods (e.g. Simulated annealing, Hill_climbing) as proposed in [6-8] and 
Genetic Algorithms as in [9]. These approaches relied, for the most part, on a combi-
nation of quality metrics to formulate their optimization goal (i.e., the fitness func-
tion). A major problem founded in these approaches is that the quality metrics con-
sider only the structural properties of the system under study; the semantic properties 
of the system are not considered. In this context, Mens and Tourwé [3] argue that 
most of the refactoring tools cannot offer a full-automatic support because part of the 
necessary knowledge Ӎ especially those related to the semantics Ӎ for performing the 
refactoring remains implicit in designers’ heads. Indeed, recognizing opportunities of 
model refactoring remains a challenging issue that is related to the model marking 
process within the context of MDE which is a notoriously difficult problem that  
requires design knowledge and expertise [10].  

To take into account the semantics of the software system, we propose a model 
refactoring approach based on an Interactive Genetic Algorithm (IGAs) [11]. Two 
types of knowledge are considered in this approach. The first one comes from the 
examples of refactorings. For this purpose, we hypothesize that the knowledge re-
quired to propose appropriate refactorings for a given object-oriented model may be 
inferred from other existing models’ refactorings when there is some structural simi-
larities between these models and the given model. From this perspective, the refac-
toring is seen as an optimization problem that is solved using a Genetic Algorithm 
(GA). The second type of knowledge comes from the designer's knowledge. For this 
purpose, the designer is involved in the optimization process by continuously interact-
ing with the GA algorithm; this enables to adjust the results of the GA progressively 
exploiting the designer’s feedback. Hence the proposed approach (MOREX+I: MOdel 
REfactoring by eXample plus Interaction) relies on a set of refactoring examples and 
designer's feedbacks to propose sequences of refactorings. MOREX+I takes as input 
an initial model, a base of examples of refactored models and a list of metrics calcu-
lated on both the initial model and the models in the base of examples, and it gener-
ates as output a solution to the refactoring problem. In this paper, we focus on UML 
class diagrams. In this case, a solution is defined as a sequence of refactorings that 
maximize as much as possible the similarity between the initial and revised class dia-
grams (i.e., the class diagrams in the base of examples) while considering designer's 
feedbacks. 

The primary contributions of the paper are 3-fold: 1) We introduce a model refac-
toring approach based on the use of examples. The approach combines implicitly the 
detection and the correction of design defects at the model-level by proposing a se-
quence of refactorings that must be applied on a given model. 2) We use the IGA to 
allow the integration of feedbacks provided by designers upon solutions produced 
during the GA evolution. 3) We report the results of an evaluation of our approach.  
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The paper is organized as follows. Section 2 is dedicated to the background where 
we introduce some basic concepts and the related work. The overall approach is de-
scribed in Section 3. Section 4 reports on the experimental settings and results, while 
Section 5 concludes the paper and outlines some future directions to our work. 

2 Background  

2.1 Class Diagrams Refactorings and Quality Metrics 

Model refactoring is a controlled technique for improving the design (e.g., class dia-
grams) of an existing model. It involves applying a series of small refactoring opera-
tions to improve the design quality of the model while preserving its behavior. Many 
refactorings were proposed and codified in the literature (see e.g., [2]). In our ap-
proach, we consider a subset of the 72 refactorings defined in [2]; i.e., only those 
refactorings that can be applied to UML class diagrams. Indeed, some of the refactor-
ings in [2] may be applied on design models (e.g. Move_Method, Rename_method, 
Move_Attribute, Extract_Class etc.) while others cannot be (e.g. Extract_Method, 
Inline_Method, Replace_Temp_With_Query etc. ). In our approach we considered a 
list of twelve refactorings (e.g. Extract_class, Push_down_method, Pull_up_method, 
etc.) based on [2]. The choice of these refactorings was mainly based on two factors: 
1) they apply at the class diagram-level; and 2) they can be link to a set of model  
metrics (i.e., metrics which are impacted when applying these refactorings).  

Metrics provide useful information that help assessing the level of conformance of 
a software system to a desired quality [12]. Metrics can also help detecting some simi-
larities between software systems. The most widely used metrics for class diagrams 
are the ones defined by Genero et al. [13]. In the context of our approach, we used a 
list of sixteen metrics (e.g. Number of attributes: NA, Number of methods: NMeth, 
Number of dependencies: NDep, etc.) including the eleven metrics defined in [13] to 
which we have added a set of simple metrics (e.g., number of private methods in a 
class, number of public methods in a class). All these metrics are related to the class 
entity which is the main entity in a class diagram. 

2.2 Interactive Genetic Algorithm (IGA)  

Heuristic search are serving to promote discovery or learning [14]. There is a variety 
of methods which support the heuristic search as hill_climbing [15], genetic algo-
rithms (GA) [16], etc. GA is a powerful heuristic search optimization method inspired 
by the Darwinian theory of evolution [17]. The basic idea behind GA is to explore the 
search space by making a population of candidate solutions, also called individuals, 
evolve toward a “good” solution of a specific problem. Each individual (i.e., a solu-
tion) of the population is evaluated by a fitness function that determines a quantitative 
measure of its ability to solve the target problem. Exploration of the search space is 
achieved by selecting individuals (in the current population) that have the best fitness 
values and evolving them by using genetic operators, such as crossover and mutation. 
The crossover operator insures generation of new children, or offspring, based on 
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parent individuals while the mutation operator is applied to modify some randomly 
selected nodes in a single individual. The mutation operator introduces diversity into 
the population and allows escaping local optima found during the search. Once selec-
tion, mutation and crossover have been applied according to given probabilities, indi-
viduals of the newly created generation are evaluated using the fitness function. This 
process is repeated iteratively, until a stopping criterion is met. This criterion usually 
corresponds to a fixed number of generations.  

Interactive GA (IGAs) [18] combines a genetic algorithm with the interaction with 
the user so that he can assign a fitness to each individual. This way IGA integrates the 
user's knowledge during the regular evolution process of GA. For this reason, IGA 
can be used to solve problems that cannot be easily solved by GA [19]. A variety of 
application domains of IGA include development of fashion design systems [19], 
music composition systems [20], software re-modularization [21] and some other 
IGAs’ applications in other fields [11]. One of the key elements in IGAs is the man-
agement of the number of interactions with the user and the way an individual is 
evaluated by the user. 

2.3 Related Work 

Model refactoring is still at a relatively young stage of development compared to the 
work that has been done on source-code refactoring. Most of existing approaches for 
automating refactoring activities at the model-level are based on rules that can be 
expressed as assertions (i.e., invariants, pre-and post-conditions) [22, 23], or graph 
transformations targeting refactoring operations in general [24, 25] or design patterns’ 
applications in particular (e.g., [26]). In [22] invariants are used to detect some parts 
of the model that require refactoring and the refactorings are expressed using declara-
tive rules. However, a complete specification of refactorings requires an important 
number of rules and the refactoring rules must be complete, consistent, non-redundant 
and correct. In [26] refactoring rules are used to specify design patterns’ applications. 
In this context, design problems solved by these patterns are represented using models 
and the refactoring rules transform these models according to the solutions proposed 
by the patterns. However, not all design problems are representable using models. 
Finally an issue that is common to most of these approaches is the problem of se-
quencing and composing refactoring rules. This is related to the control of rules’ ap-
plications within rule-based transformational approaches in general.  

Our approach is inspired by contributions in search-based software engineering 
(SBSE) (e.g. [6, 7, 9, 27, 28]). Techniques based on SBSE are a good alternative to 
tackle many of the above mentioned issues [9]. For example, a heuristic-based ap-
proach is presented in [6, 7, 27] in which various software metrics are used as indica-
tors for the need of a certain refactoring. In [27], a genetic algorithm is used to sug-
gest refactorings to improve the class structure of a system. The algorithm uses a fit-
ness function that relies on a set of existing object oriented metrics. Harman and Tratt 
[6] propose to use the Pareto optimality concept to improve search-based refactoring 
approaches when the evaluation function is based on a weighted sum of metrics. Both 
the approaches in [27] and [6] were limited to the Move Method refactoring  
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operation. In [7], the authors present a comparative study of four heuristic search 
techniques applied to the refactoring problem. The fitness function used in this study 
was based on a set of 11 metrics. The results of the experiments on five open-source 
systems showed that hill-climbing performs better than the other algorithms. In [28], 
the authors proposed an automated refactoring approach that uses genetic program-
ming (GP) to support the composition of refactorings that introduce design patterns. 
The fitness function used to evaluate the applied refactorings relies on the same set of 
metrics as in [12] and a bonus value given for the presence of design patterns in the 
refactored design. Our approach can be seen as linked to this approach as we aim at 
proposing a combination of refactorings that must be applied to a design model. Our 
approach was inspired by the work in [21] where the authors apply an Interactive 
Genetic Algorithm to the re-modularization problem which can be seen as a specific 
subtype of the refactoring problem. Our work is also related to the approach in [29] 
where the authors apply an SBSE approach to model transformations. However this 
approach focuses on general model transformations while our focus is on refactorings 
which are commonly codified transformations that aim at correcting design defaults.  

To conclude, most of the approaches that tackled the refactoring as an optimization 
problem by the use of some heuristics suppose, to some extent, that a refactoring op-
eration is appropriate when it optimizes the fitness function (FF). Most of these ap-
proaches defined their FF as a combination of quality metrics to approximate the 
quality of a model. However, refactoring operations are design transformations which 
are context-sensitive. To be appropriately used, they require some knowledge of the 
system to be refactored. Indeed, the fact that the values of some metrics were im-
proved after some refactorings does not necessarily mean or ensure that these refac-
torings make sense. This observation is at the origin of the work described in this 
paper as described in the next section. 

3 Heuristic Search Using Interactive Genetic Algorithm 

3.1 Interactive Genetic Algorithm Adaptation 

The approach proposed in this paper exploits examples of model refactorings, a heu-
ristic search technique and the designer’s feedback to automatically suggest se-
quences of refactorings that can be applied on a given model (i.e., a UML class dia-
gram). A high-level view of our adaptation of IGA to the model refactoring problem 
is given in Fig. 1. The algorithm takes as input a set of quality metrics, a set of model 
refactoring examples, a percentage value corresponding to the percentage of a popula-
tion of solutions that the designer is willing to evaluate, the maximum number of 
iterations for the algorithm and the number of interactions with the designer. First, the 
algorithm runs classic GA (line 2) for a number of iterations (i.e., the maximum num-
ber of iterations divided by the number of interactions). Then a percentage of solu-
tions from the current population is selected (line 3). In lines 4 to 7, we get designers' 
feedbacks for each refactoring in each selected solution and we update their fitness 
function. We generate a new population (p+1) of individuals (line 8) by iteratively 
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selecting pairs of parent individuals from population p and applying the crossover 
operator to them; each pair of parent individuals produces two children (solutions). 
We include both the parent and child variants in the new population. Then we apply 
the mutation operator, with a probability score, for both parent and child to ensure the 
solution diversity; this produces the population for the next generation. The algorithm 
terminates when the maximum iteration number is reached, and returns the best set of 
refactorings’ sequences (i.e., best solutions from all iterations). 
 

Input: Set of quality metrics  
Input: Set of model refactoring examples 
Input: Percentage (P%)  
Input: MaxNbrIterations 
Input: NbrOfInteractions  
Output: A sequence of refactorings 
1: for i = 1 . . . NbrOfInteractions do 
2:   Evolve GA for NbrIterations 
3:  Select P% of best solutions from the current population. 
4:  for-each selected solution do 
5:   Ask the designer whether each refactoring within      
   the selected solution makes sense.  
6:   Update the FF of the selected solution to integrate  
   the feedback. 
7:  end for-each 
8:   Create a new GA population using the updated solutions 
9: end for 
10: Continue (non-interactive) GA evolution until it converges    
    or it reaches maxNbrIterations 

Fig. 1. High-level pseudo-code for IGA adaptation to our problem 

In the following subsections we present the details of the regular GA adaptation to 
the problem of generating refactoring sequences and how we collect the designers’ 
feedbacks and integrate it in the fitness function computation. 

3.2 Representing an Individual and Generating the Initial Population 

An individual (i.e., a candidate solution) is a set of blocks. The upper part of Fig. 2 
shows an individual with three blocks. The first part of the block contains the class 
(e.g. Order) chosen from the initial model (model under analysis) called CIM, the 
second part contains the class (e.g Person) from the base of examples that was 
matched to CIM called CBE, and finally the third part contains a list of refactorings 
(e.g. Pull_Up_Method(calc_taxes(), LineOrder, Orde)) which is a subset of the refac-
torings that were applied to CBE (in its subsequent versions) and that can be applied 
to CIM. In our approach, classes from the model (CIMs) and the base of examples 
(CBEs) are represented using predicates that describe their attributes, methods and 
relationships. In addition, the representation of a CBE class includes a list of refactor-
ings that were applied to this class in a subsequent version of the system’s model to 
which CBE belongs. The subset of a CBE subsequent refactorings that are applicable 
to a CIM class constitutes the third part of the block having CIM as its first part and 



102 A. Ghannem, G. El Boussaidi, and M. Kessentini 

 

CBE as its second part. Hence, the selection of the refactorings to be considered in a 
block is subjected to some constraints to avoid conflicts and incoherence errors. For 
example, if we have a Move_attribute refactoring operation in the CBE class and the 
CIM class doesn’t contain any attribute, then this refactoring operation is discarded as 
we cannot apply it to the CIM class. 

Hence the individual represents a sequence of refactoring operations to apply and 
the classes of the initial model on which they apply. The bottom part of Fig. 2 shows 
the fragments of an initial model before and after the refactorings proposed by the 
individual (at the top of the figure) were applied. 

 
Order ProductLineOrder

Pull_Up_Method(calc_taxes(), LineOrder, Order) Rename_Attribute(tax, taxStatus) Move_Attribute(quantity, Product, LineOrder)

Pull_Up_Method(calc_SubTotal(), LineOrder, Order) 
Rename_Attribute(tax, taxStatus)
Move_Attribute(quantity, Product, LineOrder)

Person Teacher Agency

 

Fig. 2. Individual representation 

To generate an initial population, we start by defining the maximum individual 
size. This parameter can be specified either by the user or randomly. Thus, the indi-
viduals have different sizes. Then, for each individual we randomly assign: 1) a set of 
classes from the initial model that is under analysis and their matched classes from the 
base of examples, and 2) a set of refactorings that we can possibly apply on the initial 
model class among the refactorings proposed from the base of examples class. 

3.3 Genetic Operators 

Selection: To select the individuals that will undergo the crossover and mutation op-
erators, we used the stochastic universal sampling (SUS) [17], in which the probabil-
ity of selection of an individual is directly proportional to its relative fitness in the 
population. For each iteration, we use SUS to select 50% of individuals from popula-
tion p for the new population p+1. These (population_size/2) selected individuals will 
“give birth” to another (population_size/2) new individuals using crossover operator. 

Crossover: For each crossover, two individuals are selected by applying the SUS se-
lection [17]. Even though individuals are selected, the crossover happens only with a 
certain probability. The crossover operator allows creating two offspring p’1 and p’2 
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from the two selected parents p1 and p2 as follows: A random position, k, is selected. 
The first k refactorings of p1 become the first k elements of p’2. Similarly, the first k 
refactorings of p2 become the first k refactorings of p’1. The rest of refactorings (from 
position k+1 until the end of the sequence) in each parent p1 and p2 are kept. For 
instance, Fig. 3 illustrates the crossover operator applied to two individuals (parents) 
p1 and p2 where the position k takes the value 2. 

Mutation: The mutation operator consists of randomly changing one or more elements 
in the solution. Hence, given a selected individual, the mutation operator first ran-
domly selects some refactorings among the refactoring sequence proposed by the 
individual. Then the selected refactorings are replaced by other refactorings. Fig. 4 
illustrates the effect of a mutation on an individual. 

 

Fig. 3. Crossover operator 

 

Fig. 4. Mutation operator 

3.4 Evaluating an Individual within the Classic GA 

The quality of an individual is proportional to the quality of the refactoring operations 
composing it. In fact, the execution of these refactorings modifies various model 
fragments; the quality of a solution is determined with respect to the expected refac-
tored model. However, our goal is to find a way to infer correct refactorings using the 
knowledge that has been accumulated through refactorings of other models of past 
projects and feedbacks given by designers. Specifically, we want to exploit the simi-
larities between the actual model and other models to infer the sequence of refactor-
ings that we must apply. Our intuition is that a candidate solution that displays a high 
similarity between the classes of the model and those chosen from the examples base 
should give the best sequence of refactorings. Hence, the fitness function aims to 

Order ProductLineOrder

Pull_Up_Method(calc_taxes(), LineOrder, Order) Rename_Attribute(tax, taxStatus) Move_Attribute(quantity, Product, LineOrder)
P1:

School Pilot

Add_parameter(version : String) Move_Attribute(typePlane, Pilot, Plane)

P2:

P’1:

P’2:

Teacher Agency

Course Student

School Pilot

Add_parameter(version : String) Move_Attribute(typePlane, Pilot, Plane)

Course Student

Order LineOrder

Pull_Up_Method(calc_taxes(), LineOrder, Order) Rename_Attribute(tax, taxStatus)

Person Teacher

Product

Move_Attribute(quantity, Product, LineOrder)

Agency

K = 2

Person

 

Order ProductLineOrder

Pull_Up_Method(calc_taxes(), LinePrder, Order) Rename_Attribute(tax, taxStatus) Move_Attribute(quantity, Product, LineOrder)

Order ProductLineOrder

Pull_Up_Method(calc_taxes(), LinePrder, Order) Rename_Method(calc_SubTotal, calc_TotalLine) Move_Attribute(quantity, Product, LineOrder)

Person Teacher Agency

Person AgencyStudent
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maximize the similarity between the classes of the model in comparison to the revised 
ones in the base of examples. In this context, we introduce first a similarity measure 
between two classes denoted by Similarity and defined by formula 1 and 2. ݈ܵ݅݉݅ܽݕݐ݅ݎ ሺܫܯܥ, ሻܧܤܥ ൌ   ଵ௠ ∑ ܵ݅݉ሺܫܯܥ௜, ௜ሻ௠௜ୀଵܧܤܥ  (1) 

ܵ݅݉ ሺܫܯܥ௜, ௜ሻܧܤܥ ൌ  
ەۖۖ
۔ۖ
ۓۖ ௜ܫܯܥ ݂݅          1 ൌ ௜ܫܯܥ ݂݅      ௜  0ܧܤܥ  ൌ ௜ܧܤܥ ݎ݋ 0  ൌ 0  ஼ெூ೔஼஻ா೔ ௜ܫܯܥ ݂݅      ൏ ௜ ஼஻ா೔஼ெூ೔ܧܤܥ  ௜ܧܤܥ ݂݅      ൏ ௜ܫܯܥ 

 (2) 

Where m is the number of metrics considered in this project. CIMi is the ith metric 
value of the class CIM in the initial model while CBEi is the ith metric value of the 
class CBE in the base of examples. Using the similarity between classes, we define 
the fitness function of a solution, normalized in the range [0, 1], as:  ݂ ൌ  ଵ௡ ∑ ,஻௝ܫܯܥሺݕݐ݅ݎ݈ܽ݅݉݅ܵ ஻௝ሻ௡௝ୀଵܧܤܥ   (3) 

Where n is the number of blocks in the solution and CMIBj and CBEBj are the classes 
composing the first two parts of the jth block of the solution. To illustrate how the 
fitness function is computed, we consider a system containing two classes as shown in 
Table 1 and a base of examples containing two classes shown in Table 2. In this ex-
ample we use six metrics and these metrics are given for each class in the model in 
Table 1 and each class of the base of examples in Table 2. 

Table 1. Classes from the initial model and their metrics values 

CMI NPvA NPbA NPbMeth NPvMeth NAss NGen 
LineOrder 4 1 3 1 1 1 
Product 2 2 6 0 1 0 

Table 2. Classes from the base of examples and their metrics values 

CBE NPvA NPbA NPbMeth NPvMeth NAss NGen 
Student 2 1 3 0 3 0 
Plane 5 1 4 0 1 0 

 
Consider an individual/solution I1 composed by two blocks (LineOrder/Student 

and Product/Plane). The fitness function of I1 is calculated as follows: ࡵࢌ૚ ൌ 112 ൤൬24 ൅ 1 ൅ 1 ൅ 0 ൅ 13 ൅ 0൰ ൅  ൬25 ൅ 12 ൅ 46 ൅ 0 ൅ 1 ൅ 0൰൨ ൌ 0,45 
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3.5 Collecting and Integrating the Feedbacks from Designers 

Model refactoring is a design operation that is context-sensitive. In addition, depend-
ing on the semantics of the system under analysis and the system’s evolution as  
foreseen by different designers, a refactoring proposed by the classic GA can be con-
sidered as mandatory by a designer and as acceptable by another. Even if a sequence 
of refactorings optimizes the fitness function (as defined in the previous section), that 
does not ensure that these refactorings conform to and preserve the semantics of the 
system. Consequently, we use Interactive GA (IGA) to partly tackle this problem by 
interacting with designers and getting their feedbacks on a number of the proposed 
refactoring sequences. To do so, we adopted a five level scale to rate the proposed 
refactorings; i.e., we distinguish five types of rating that a designer can assign to a 
proposed refactoring. The meaning and the value of each type of rating are as follows:   

• Critical (value = 1): it is mandatory to apply the proposed refactoring;  
• Desirable (value = 0.8): it is useful to apply the refactoring to enhance some aspect 

of the model but it’s not mandatory;  
• Neutral (value = 0.5): the refactoring is applicable but the designer does not see it 

as necessary or desirable;  
• Undesirable (value = 0.3): the refactoring is applicable but it is not useful and 

could alter the semantics of the system;  
• Inappropriate (value = 0): the refactoring should not be applied because it breaks 

the semantics of the system. 

As described in section 3.1., during the execution of IGA, the designer is asked to rate 
a percentage of the best solutions found by the classic GA after a defined number of 
iterations. For each of the selected solutions, the designer assigns a rating for each 
refactoring included in the solution. Depending on the values entered by the designer, 
we re-evaluate the global fitness function of the solution as follows. For each block of 
the solution, we compute the block rating as an average of the ratings of the refactor-
ings in the block. Then we compute the overall designer’s rating as an average of all 
blocks ratings. Finally, the new fitness function of the solution is computed as an 
average of its old fitness function and the overall designer’s rating. The new values of 
the fitness functions of the selected solutions are injected back into the IGA process to 
form a new population of individuals. 

4 Experiments 

The goal of the experiment is to evaluate the efficiency of our approach for the gen-
eration of the refactorings’ sequences. In particular the experiment aimed at answer-
ing the following research questions:  

• RQ1: To what extent can the interactive approach generate correct refactorings’ 
sequences? 

• RQ2: What types of refactorings are correctly suggested? 
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To answer these questions we implemented and tested the approach on open source 
projects. In particular, to answer RQ1, we used an existing corpus of known models 
refactorings to evaluate the precision and recall of our approach, and to answer RQ2, 
we investigated the type of refactorings that were suggested by our tool. In this sec-
tion, we present the experimental setup and discuss the results of this experiment. 

4.1 Supporting Tool and Experimental Setup 

We implemented our approach as a plugin within the EclipseTM development envi-
ronment. Fig. 5 shows a screenshot of the model refactoring plugin perspective. This 
plugin takes as input a base of examples of refactored models and an initial model to 
refactor. The user specifies the population size, the number of iterations, the individ-
ual size, the number of mutations, the number of interactions, and the percentage of 
the solutions shown in each interaction. It generates as output an optimal sequence of 
refactorings to be applied on the analyzed system. 

 

Fig. 5. Model Refactoring Plugin 

To build the base of examples, we used the Ref-Finder tool [43] to collect the 
refactoring that were applied on six Java open source projects (Ant, JabRef, JGraphx, 
JHotDraw, JRDF, and Xom). Ref-Finder helps retrieving the refactorings that a sys-
tem has undergone by comparing different versions of the system. We manually vali-
dated the refactorings returned by Ref-finder before including them in the base of 
examples. To answer the research questions reported above, we analyzed two open-
source Java projects in our experiment. We have chosen these open source projects 
because they are medium-sized open-source projects and they have been actively 
developed over the past 10 years. The participants in the experiment were three Ph.D 
students enrolled in Software Engineering and all of them are familiar with the two 
analyzed systems and have a strong background in object-oriented refactoring. 

4.2 Results and Discussions 

To assess the accuracy of the approach, we compute the precision and recall of our 
IGA algorithm when applied to the two projects under analysis. In the context of our 
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study, the precision denotes the fraction of correctly proposed refactorings among the 
set of all proposed refactorings. The recall indicates the fraction of correctly proposed 
refactorings among the set of all actually applied refactorings in the subsequent ver-
sions of the analyzed projects. To assess the validity of the proposed refactorings, we 
compare them to those returned by Ref-Finder when applied to the two projects and 
their subsequent versions. The precision and recall results might vary depending on 
the refactorings used, which are randomly generated, though guided by a meta-
heuristic. Fig. 6 and Fig. 7 show the results of 23 executions of our approach on 
Xerces and GanttProject, respectively. Each of these figures displays the precision 
and the recall values for each execution.  
 

 

Fig. 6. Multiple execution results for Xerces Fig. 7. Multiple Execution results for 
GanttProject 

 
Generally, the average precision and recall (around 88%) allows us to positively 

answer our first research question RQ1 and conclude that the results obtained by our 
approach are very encouraging. The precision in the two projects under analysis (on 
average 90% of all executions) proves that a big number of the refactorings proposed 
by our approach were indeed applied to the system’s model in its subsequent version 
(i.e., the proposed refactorings match, in most cases, those returned by Ref-Finder 
when applied on the system’s model and its subsequent version). To ensure that our 
results are relatively stable, we compared the results of the multiple executions (23) of 
the approach on the two analyzed projects shown in Fig. 6 and Fig. 7. The precision 
and recall scores are approximately the same for different executions in the two con-
sidered projects. We also compared the sequences of refactorings returned by differ-
ent executions of our algorithm on the same project. We found that when a class 
(from the model under analysis) is part of two different returned sequences, the refac-
toring operations proposed for this class within these sequences are similar. We con-
sequently conclude that our approach is stable. 

Our experiment through the interactions with designers allowed us to answer the 
second research question RQ2 by inferring the types of refactorings they recognized 
as good refactorings. Fig. 8 shows that 82% of the the Move_method and 
Pull_up_method refactorings proposed during the executions are recognized as good 
refactoring versus only 70% of the Rename_method refactorings. We noticed also, 
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that only 9 of 12 refactorings used in the approach are considered in this analysis. 
This may result from the quality of the base of examples or from the random factor 
which characterizes genetic algorithm. We made a further analysis to understand the 
causes of such results. We found out that through the interactions, the designers have 
to recognize the meaningless refactorings and penalize them by assigning them a 0 as 
a rating value; this has significantly reduced the number of these types of refactorings 
in the optimal solution. 

65
70
75
80
85

 

Fig. 8. Distribution of refactorings recognized as correct refactorings through intercations 

Despite the good results, we noticed a very slight decrease in recall versus preci-
sion in the analyzed projects. Our analysis pointed out towards two factors. The first 
factor is the project domain. In this study we tried to propose refactorings using a base 
of examples which contains different projects from different domains. We noticed 
that some projects focus on some types of refactorings compared to others (i.e., some 
projects in the base of examples has a big frequency of «pull_up_Attribute» and 
«pull_up_method»). The second factor is the number and types of refactorings con-
sidered in this experimentation. Indeed, we noticed that some refactorings (e.g., 
«pull_up_method», «pull_up_Attribute», «add_parameter») are located correctly in 
our approach. We have no certainty that these factors can improve the results but we 
consider analyzing them as a future work to further clarify many issues. 

4.3 Threats to Validity 

We have some points that we consider as threats to the generalization of our ap-
proach. The most important one is the use of the Ref_finder Tool to build the base of 
examples and at the same time we compare the results obtained by our algorithm to 
those given by Ref_finder. Other threats can be related to the IGAs parameters set-
ting. Although we applied the approach on two systems, further experimentation is 
needed. Also, the reliability of the proposed approach requires an example set of ap-
plied refactoring on different systems. It can be argued that constituting such a set 
might require more work than these examples. In our study, we showed that by using 
some open source projects, the approach can be used out of the box and will produce 
good refactoring results for the studied systems. In an industrial setting, we could 
expect a company to start with some few open source projects, and gradually enrich 
its refactoring examples to include context-specific data. This is essential if we con-
sider that different languages and software infrastructures have different best/worst 
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practices. Finally, since we viewed the model refactorings’ generation problem as a 
combinatorial problem addressed with heuristic search, it is important to contrast the 
results with the execution time. We executed the plugin on a standard desktop com-
puter (i7 CPU running at 2.67 GHz with 8GB of RAM). The number of interactions 
was set to 50. The execution time for refactorings’ generation with a number of itera-
tions (stopping criteria) fixed to 1000 was less than seventy minutes. This indicates 
that our approach is reasonably scalable from the performance standpoint. 

5 Conclusion and Future Work 

In this article, we presented a new approach that aims to suggest appropriate se-
quences of refactorings that can be applied on a given design model and in particular 
on a UML class diagram. To do so, we adapted Interactive Genetic Algorithms 
(IGAs) to build an algorithm which exploits both existing model refactoring examples 
and the designer's knowledge during the search process for opportunities of model 
refactorings. We implemented the approach as a plugin integrated within the Eclipse 
platform and we performed multiple executions of the approach on two open source 
projects. The results of our experiment have shown that the approach is stable regard-
ing its correctness, completeness and the type and number of the proposed refactor-
ings per class. IGA has significantly reduced the number of meaningless refactorings 
in the optimal solutions for these executions. While the results of the approach are 
very promising, we plan to extend it in different ways. One issue that we want to ad-
dress as a future work is related to the base of examples. In the future we want to 
extend our base of examples to include more refactoring operations. We also want to 
study and analyze the impact of using domain-specific examples on the quality of the 
proposed sequences of refactorings. Actually, we kept the random aspect that charac-
terizes genetic algorithms even in the choice of the projects used in the base of exam-
ples without prioritizing one or more specific projects on others to correct the one 
under analysis. Finally, we want to apply the approach on other open source projects 
and further analyze the type of refactorings that are correctly suggested. 
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Abstract. Multi-Objective Evolutionary Algorithms (MOEAs) have
been widely used to address regression test optimization problems, in-
cluding test case selection and test suite minimization. GPU-based par-
allel MOEAs are proposed to increase execution efficiency to fulfill the
industrial demands. When using binary representation in MOEAs, the
fitness evaluation can be transformed a parallel matrix multiplication
that is implemented on GPU easily and more efficiently. Such GPU-
based parallel MOEAs may achieve higher level of speed-up for test case
prioritization because the computation load of fitness evaluation in test
case prioritization is more than that in test case selection or test suite
minimization. However, the non-applicability of binary representation in
the test case prioritization results in the challenge of parallel fitness eval-
uation on GPU. In this paper, we present a GPU-based parallel fitness
evaluation and three novel parallel crossover computation schemes based
on ordinal and sequential representations, which form a fine-grained par-
allel framework for multi-objective test case prioritization. The empirical
studies based on eight benchmarks and one open source program show
a maximum of 120x speed-up achieved.

Keywords: Test Case Prioritization, Mulit-Objective Optimization,
NSGA-II, GPU, CUDA.

1 Introduction

Test suite optimization has been widely used to reduce the cost of regression
testing [1], in which test case prioritization [2] is a technique that sorts test
cases order so that those test cases with the highest priority, according to some
test adequacy criteria, can run as soon as possible. Many related studies have
been proposed in literature [3,4,5,6]. One dimension of the research is to consider
test case prioritization as a search problem [7], where search based optimization
algorithms are used to find optimal solution with respect to a certain adequacy
criterion. Li et al. [7] compared the effectiveness of several search algorithms on
test case prioritization, but just for single objective optimization. However, test
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case prioritization can address a wide variety of objectives in regression testing.
Such test case prioritization becomes a multi-objective optimization problem.

Over the past few decades, a number of different EAs were suggested to solve
multi-objective optimization problems, including Zitzler and Thiele’s SPEA [8],
Knowles and Corne’s Pareto-archived PAES [9], and Rudolph’s elitist GA [10].
Deb et al. proposed a fast multi-objective genetic algorithm (NSGA-II) [11],
which enabled much better spread of solutions and better convergence close to
the truly optimal set for most optimization problems. NSGA-II has also been
widely used in search based software engineering (SBSE), such as regression test
case selection [12] and requirements management [13].

Since EAs work with a population of solutions, they have classified as “embar-
rassingly parallel” because of their scalability in parallel fitness evaluations [14].
Recently, GPU computing has been recognized as a powerful way to achieve
high-performance on long-running scientific applications [15]. Consequently EAs
on GPU have attracted a growing interest and a lot of research work on GPU
have been proposed: genetic algorithm [16], hybrid of genetic algorithm and lo-
cal search [17], island model evolutionary algorithm [15]. Yoo et al. [14] applied
GPU-based MOEAs to multi-objective test suite minimization, in which the
fitness computation was transformed into a matrix multiplication that can be
implemented on GPU easily and more efficiently.

This paper focuses on the GPU-based parallelism for multi-objective test case
prioritization. The motivation is that the fitness evaluation in test case prioritiza-
tion is much more complex than that in test case selection or test suite minimiza-
tion, as test case prioritization is to re-order test suite that all test cases have to
be involved in fitness evaluation. Such parallel computation can be more scalable.
However, the challenge comes from chromosome representation, where the binary
coding, which is used in test case selection and test suite minimization, cannot be
used in test case prioritization. Consequently the technique proposed by Yoo et
al. [14] would not be able to be adapted into test case prioritization.

We present a new GPU-based parallel fitness evaluation algorithm for test
case prioritization, namely the coarse-grained GPU-based parallel framework.
Furthermore, we propose parallel crossover computation schemes for ordinal and
sequential coding, namely the fine-grained parallel framework. The primary con-
tributions of this paper are as follows:

1. The paper firstly proposes three types of GPU-based parallel crossover
schemes using ordinal representation and sequential representations in EAs.
Experimental results show that the best scheme achieves up to 14x times
speed-up than that of CPU-based.

2. This paper presents a fine-grained parallel framework for multi-objective
test case prioritization using graphic processing units, where both fitness
evaluation and crossover computation are implemented on GPU.

3. Empirical studies based on eight benchmark subjects and one large open
source program are implemented, of which a maximum of dramatic speed-
up over 120x are achieved, and the results also suggest that it will get increase
more as the program size increased.
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The rest of this paper is organized as follows. Section 2 presents backgrounds of
multi-objective test case prioritization and GPU-based evolutionary computa-
tion. Section 3 describes the details of how to parallel multi-objective test case
prioritization on GPU through different parallel schemes of genetic operations.
The empirical study and corresponding results analysis are described in section 4
and Section 5. Section 6 discusses related work and Section 7 is the conclusion.

2 Backgrounds

2.1 Multi-objective Test Case Prioritization

The purpose of test case prioritization is to increase the likelihood that if the
test cases are used for regression testing in the given ordering, they will be much
closer to meet some objectives than they would if they are executed in some
other ordering [2]. Various prioritization criteria are often applied to a test suite
in reality. The multi-objective test case prioritization is defined as follows:

Definition 1 (Multi-objective Test Case Prioritization). Given: a test
suite, T , the set of permutations of T , PT ; a vector of M objective functions,
fi, i = 1, 2, . . . ,M .

Problem: to find T ′ ⊂ PT such that T ′ is a Pareto-optimal permutation set
with respect to the objective functions, fi, i = 1, 2, . . . ,M .

Here, the objective functions are the mathematical descriptions of the concerned
prioritization criteria. Pareto-optimal is a notion from economics with a broad
range of applications in engineering, which means that given a set of alterna-
tive allocations and a set of individuals, allocation A is an improvement over
allocation B, without making any other worse off.

2.2 Parallel Multi-Objective Evolutionary Algorithms

Scalability problem is one of the main barrier to widely use of evolutionary al-
gorithms in Software Engineering [14]. A simple engineering problem may cost
several hours or even months by using MOEAs due to the huge scale of popula-
tion size and large number of iterations. The request for greater MOEA efficiency
has integrated MOEAs and parallel processing to yield parallel MOEAs. In order
to parallelize MOEAs, researchers were aware of intuitively executed either sev-
eral MOEAs on different processors or distributing an MOEA population among
multi-processors in a natural manner [18]. Three major parallel paradigms are
implemented on CPU in the current MOEA literature, and they are Master-
slave, Island and Diffusion models. The master-slave model MOEAs [19,20] are
based on the idea that the computational bottleneck in MOEAs is fitness evalu-
ation, so objective function evaluations are distributed among several slave pro-
cessors while a master processor manages the entire process. The island model
MOEAs [21] are based on the phenomenon of natural populations relatively iso-
lated from each other. The straightforward implementation runs a number of
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MOEA populations independently, which are trying to obtain the Pareto opti-
mal solutions and migrations that take place between sub-populations according
to a certain rate.

2.3 GPU Computing

Over the past several decades, the major architectures exploited for parallelism
are distributed, clustered and multi-core, whereas General-purpose computing
on graphics processing units (GPGPU) is a huge shift of paradigm in paral-
lel computing in recent years. GPU has evolved into a highly parallel, multi-
threaded, multi-core processor with tremendous computational horsepower and
very high memory bandwidth. For example, NVIDIA GeForce GTX480 (the
graphic card used for this research), based on the Fermi architecture, which
provides 168GFlops peak double-precision arithmetic rate and 177.4GB/s mem-
ory bandwidth, is faster compared to the CPU. In general, the growth rate of
the GPU’s computational capabilities significantly outpaces the often-quoted
Moore’s Law as applied to traditional microprocessors [22]. Regarding the log-
ical organization of GPU, a thread on GPU can be seen as an element of the
data to be processed and threads are organized into so called thread blocks. A
kernel is executed by multiple thread blocks and blocks can be organized into
one-dimensional or two-dimensional grid.

3 Parallel NSGA-II Framework on CPU+GPU
Architecture

NSGA-II is one of the most well known MOEAs, in which fitness evaluation is
a task with a high frequency and large data size computation. In traditional
implementations of NSGA-II, binary representation is often used to represent
individuals, and accomplishes the genetic operations in a bit-wise way for each
generation. However, this representation is no longer suitable in multi-objective
test case prioritization, because an order of test cases cannot be transformed
into a binary string. This, in hence, may lead to another issue that the principle
of the genetic operations in other representations is different from that in binary
representation, as well as in the parallel schemes. In this section we consider the
ordinal and sequential representations and present a coarse-grained framework
with only parallel fitness evolution on GPU and a fine-grained framework with
additional parallel crossover computation on GPU.

Figure 1 presents the parallel framework on CPU+GPU architecture. The
task distribution is clearly defined: CPU manages the entire NSGA-II evolution
process except fitness evaluation and crossover which are paralleled on GPU.

3.1 Coarse-Grained Parallel Framework on GPU

Although NSGA-II adds elitism to the simple evolution, fitness evaluation is still
the most time-consuming part. Fortunately, the parallel feature of fitness eval-
uation is more intuitive than any other parts of the algorithm. During fitness
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Fig. 1. The parallel NSGA-II framework on CPU+GPU architecture, in which (a)
is the coarse-grained GPU-based parallel, where fitness evaluation is implemented on
GPU; (b), (c), (d) are three types of fine-grained GPU-based parallel, where crossover
computation is implemented on GPU

evaluation, multiple individuals in a population can be seen as multiple data,
while the calculation of fitness for these individuals is regarded to be single
instruction. This Single Instruction Multiple Data (SIMD) architecture facili-
tates the massive data-parallelism of GPGPU computing and results in higher
performance.

Figure 1(a) illustrates the parallel fitness evaluation scheme (PFES) on GPU.
CPU sends a number of individuals to GPU where the kernel function of fitness
evaluation is executed and then the evaluation results return back to CPU. Since
there is no dependence among individuals at the population level, fitness evalu-
ations can simultaneously run on each individual without latency. However, at
the individual level, fitness evaluation needs to traverse each gene according to
their positions. The parallelism is therefore restricted by the order relationship
among genes. Therefore, the parallelism of PFES is only on the population level.
The GPU computing resource can be divided as follows: one GPU thread is asso-
ciated with one individual and the number of GPU threads equals to population
size. This is so called a “coarse-grained” scheme.

However, depending on population size and the number of iterations, the
data transmission between CPU and GPU will become more frequent, which
may cause a performance decrease and thus directly influences the accelerating
effect of PFES.

3.2 Fine-Gained Parallel Framework on GPU

This section focuses on fine-grained strategywith three parallel crossover schemes.
With binary representation, it is easy to divide the GPU computing resource
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naturally, where one GPU thread is associated with one gene of the chromosome.
However there is no research that contribute to further discussion about the par-
allelism with other representations. In the following subsections, we present three
parallel crossover schemes with ordinal and sequential representations.

Parallel General Crossover Scheme (PGCS). General crossover scheme is
based on sequential coding. For a test suite with N test cases in multi-objective
test case prioritization problem, an individual is encoded as an N -sized array in
sequential representation, and the value of each element indicates the position
of a particular test case in the sequence string. Therefore, the sequence string
that contains order dependency information cannot accomplish crossover in a
bit-wise way. Among the number of sequential representation based crossover
operators, we apply the one adopted by Antoniol et al. [23]. Two offsprings (o1
and o2) are formed from two parents (p1 and p2) as follows:

1. A random position k is selected in the chromosome.
2. The first k elements of p1 become the first k elements of o1.
3. The last N − k elements of o1 are the sequence of the N − k elements which

remain when the k elements selected from p1 are removed from p2.
4. o2 is obtained similarly, composed of the first N − k elements of p2 and the

remaining elements of p1 (when the first N − k elements of p2 are removed).

In order to execute crossover computation on GPU, all individuals and crossover
points are transmitted to GPU global memory where two chromosomes are as-
signed to one GPU thread, and then generate two offspring. Figure 1(b) gives
an illustration of two particular parents executing the general crossover in one
GPU thread, where I1,I2...Ii and Ij are all individuals stored in GPU global
memory. The kernel function takes input array of selected parents and crossover
points from global memory, and generates the same number of offspring in the
global memory.

Although this parallel scheme is simple and easy to implement, it doesn’t fully
utilize the parallel capability of GPU. The computational task of each thread
in this scheme is too heavy and GPU only allocates popsize/2 (popsize denotes
the number of the individuals in a population) threads, so the speed-up may not
be very high due to the poor degree of parallelism.

Parallel Ordinal Crossover Scheme (POCS). Besides the sequential repre-
sentation of individuals, some other representations are also suggested, in which
the research on ordinal representation is one of the essential branches. The main
idea is to enable a sequential representation to do a bit-wise crossover that used
in binary representation. It eliminates the order dependency of each element
in sequential representation by transformation, and then binary representation
based crossover operation can be reused.

Ordinal representation is firstly proposed for Travelling Salesman Problem [24],
in which it refers to represent a travelling path by using an order list that is
composed by all cities. For a travelling path, each city in the path gets a gene
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representation according to its position in the order list, then all city genes
that are connected become the representation of the travelling path. Mean-
while, in multi-objective test case prioritization problem, we can get the or-
dinal string of each individual in the same way. For instance, if the order list is
C = (1, 2, 3, 4, 5, 6, 7, 8, 9), and one sequence string of the test cases is 1 − 2 −
4− 3− 8− 5− 9− 6− 7, according to the above mentioned, this sequence string
is converted to the ordinal string l = (112141311).

Hence, this parallel crossover scheme is to associate one individual with one
GPU thread block, and each thread is associated with one element in an ordi-
nal string. From this point, the degree of parallelism is higher than PGCS. An
illustration of two selected parents is doing ordinal crossover in one GPU block
is shown in Figure 1(c). It can be clearly seen that Ii is an individual in global
memory, and Ti is a test case of Ii. We implemented the ordinal crossover in a
kernel function: the inputs of this kernel are the selected parents Ii and an array
of crossover points, while the outputs are the generated offsprings. Individuals
are represented as ordinal strings, each Ti in parent string would know its right
position in offspring string after simultaneously comparing the crossover points
with the gene’s position in the parent string. Since one thread block represents
an individual, the corresponding crossover points are stored in shared memory,
so that all threads in a block can access the crossover points at the same time
and in a faster way.

Even if this scheme improves the efficiency of the parallelism, there still exists
two limitations :

1. The transformation between ordinal string and sequence string can become
frequent and thus leads to a considerable performance decrease;

2. The maximum size of test suite, which depends on the number of threads,
is constrained by the graphic card.

Parallel Scan Crossover Scheme (PSCS). Regarding the sequential repre-
sentation based crossover, the output position of each element to be written in
offspring should have been known before implementing crossover. It depends on,
in other words, what the other threads output if one thread is associated with
one element. This parallel crossover scheme is to use Scan operation (or the
all-prefix-sums operation), which is one of the simplest and most useful parallel
algorithms to build blocks. The operation is defined as follows [25]:

Definition 2 (Scan operation). Scan operation takes a binary associative
operator with identity I, and an ordered set of n elements

[a0, a1, . . . , an − 1],

and returns the order set

[I, a0, (a0 ⊕ a1), . . . , (a0 ⊕ a1 ⊕ . . .⊕ an−2)](exclusive)

[a0, (a0 ⊕ a1), . . . , (a0 ⊕ a1 ⊕ . . .⊕ an−1)](inclusive)
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Fig. 2. An example of sequential representation based crossover using scan operation

Scan operation has a variety of applications in many fields. The partition parallel
pattern, which is widely used in radix sort, building trees and cell-list etc, is one
of its basic implementations. Scan operation can parallelly merge the same type
of elements and give the new locations of the elements. Figure 2 illustrates how
the scan operation can be used in sequential representation based single point
crossover. As shown in the dot box of Figure 2, scan operation can move a number
of marked elements forward to the front in a chromosome. For two chromosomes
P1 and P2 with decided crossover point, all elements before the crossover point
of P1 are marked in P2, and vice verse. Then scan operation is applied to the
two marked chromosomes and P ′

1 and P ′
2 are generated. Finally the crossover

operation is applied between P1 and P ′
2, where all elements before the cross point

of P ′
2 are replace by the elements at the same position of P1, and the offspring

O2 is produced. Similarly, P2 and P ′
1 would produce O1.

4 Experimentation

4.1 Research Questions

The following two research questions motivated this study:

RQ1 What are effectiveness of three types crossover parallel schemes?

RQ2 What are the speed-up achieved by using fine-grained parallel framework
over the original CPU-based framework for multi-objective test case priori-
tization problem?

4.2 Subjects

In the empirical study,there are a variety of subjects including eight benchmarks
from the Software-artifact Infrastructure Repository (SIR)1 and an open source
program of V8 2. V8 is an open source JavaScript engine which is written in
C++ and used by Google Chrome. In the experiment a core code file, named
“objects.cc”, of V8 is selected. Table 1 provides the size of subjects in terms of
source lines of code (SLOC) and the size of test case pool.

1 http://sir.unl.edu/
2 http://code.google.com/p/v8/
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Table 1. Subjects and the corresponding test pool size

Subject SLOC Test Pool Size

printtokens 209 4130
printtokens2 198 4115
schedule 129 2650
schedule2 135 2710
replace 273 5542
tcas 73 1608
flex 3406 1472
space 3813 13550
V8 11876 9287

4.3 Experiment Implementation

The multi-objective test case prioritization is the target of this paper. Har-
man [26] presented several examples of regression test objectives that incorpo-
rated into Multi-objective Regression Test Optimization (MORTO) approaches.
Such objectives are categorized into two types, those to be maximized (called
‘value’) and those to be minimized (called ‘cost’). In this study, we instantiate
the objectives with statement coverage as a measure of test adequacy (‘value’)
and execution time as a measure of cost, because these have been widely studied
from the outset and natural candidates for a MORTO. The Average Percent
of Statement Coverage(APSC) and Effect Execute Time(EET) are defined as
following:

APSC = 1− TS1 + TS2 + ...+ TSM

NM
+

1

2N
(1)

EET =

N
′∑

i=0

ETi (2)

Where T is a test suite containing N test cases, S is statements of the software
under test, TSi means the first test case covering the statement i, N ′ is the
number of test case which firstly achieves the biggest coverage rate, and ETi is
the time consuming of test case i in this generation.

In order to measure the effect of multi-object criteria to the test case prioriti-
zation, NSGA-II[11], which is one of the most popular Pareto dominance based
multi-objective evolutionary algorithms(MOEAs), is used in the experiments.
NSGA-II algorithm is configured with the parameters as follows:

– Population size: 256
– Test suite size: 256
– Maximum number of generation: 250
– Selection: roulette selection
– Mutation: simple inversion mutation [24]
– Probability of crossover and mutation: 0.9 and 1/n (n is the test suite size)
– Independent execution times: 30
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Because of the limit of the shared memory on GPU, the population size and test
suite size is set to 256.

All configurations have been evaluated on a machine with Intel Core i5-2300
CPU (2.80GHz clock speed and 4GB memory), and a NVIDIA GeForce GTX
480 graphic card (15 multiprocessors), running on Windows 7 64bit.

4.4 Evaluation

The object of the following experiments is to evaluate the impact of the GPU
version of parallel schemes in terms of efficiency. So execution time and speed-
up rate have been reported to compare with the CPU version. Execution time
of each step of NSGA-II for each generation is recorded by using system clock.
Speed-up is calculated by dividing the time that the corresponding part of the
CPU version took with the time that the GPU version of parallel schemes took.

5 Results

This section mainly answers the two research questions proposed in section 4.1.
Section 5.1 presents the speed-up results of fitness with general crossover on
GPU and the coarse-grained of parallel schemes, section 5.2 compares the three
types of GPU-based parallel crossover schemes of fine-grained strategy.

5.1 Speed-Up of Parallel Crossover Schemes

In order to address RQ1, the experiment compares the three types of GPU-based
parallel crossover schemes in term of average execution time of each crossover
computation.

Subjects TCPU TPGCS TPOCS TPSCS

printtokens 0.1571 0.0644 0.0376 0.0113
printtokens2 0.1513 0.0746 0.0375 0.0107
replace 0.1590 0.0703 0.0372 0.0108
schedule 0.1567 0.0841 0.0372 0.0108
schedule2 0.1594 0.0625 0.0373 0.0108
tcas 0.1565 0.0820 0.0373 0.0110
flex 0.1584 0.0717 0.0396 0.0118
space 0.1582 0.0648 0.0370 0.0109
v8 0.1566 0.0784 0.0397 0.0109
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Fig. 3. The average execution time of crossover (in seconds) and speed-up results of
three different parallel algorithm

In Figure 3 we can see the details of execution time with CPU approach and
fine-grained approach and the speed up rate. The first column is the execution
time on CPU and other columns are fine-grained approach execution time with
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speed-up rate. Compared with the serial execution result, the speed-up of PGCS
is more than almost 2x times in the programs, the POCS is more than 4x times,
and the PSCS is the best, nearly 14x times than the serial execution result. The
most important is that all the speed-up rate is all stable in different scale of
the programs, because the crossover speed-up rate is only related to number of
test case which we used in experiment. The PGCS parallel scheme is simple and
easy to implement, but it doesn’t fully use the parallel capability of GPU that
only popsize/2 threads are allocated. In POCS scheme, since one thread block
represents an individual, the corresponding crossover points are stored in shared
memory which different block has its own shared memory and every thread can
visit it more quick than global memory, so all the threads in a block can access
the crossover point at the same time and in a faster way. But compared with
sequence string, transformation from an ordinal string may become frequent and
thus may lead a considerable performance decrease. The PSCS scheme would be
better than POCS because genes do not need to compare with the crossover
point, and no data dependence during the whole process, so the speed-up of
PSCS is the best in the three schemes.

Table 2. The standard deviation σ for three types of crossover parallel schemes.(in
seconds)

Subjects σPGCS σPOCS σPSCS

printtokens 13.946 × 10−3 0.870 × 10−3 0.200 × 10−3

printtokens2 12.359 × 10−3 0.338 × 10−3 0.238 × 10−3

replace 17.331 × 10−3 0.247 × 10−3 0.290 × 10−3

schedule 15.889 × 10−3 0.324 × 10−3 0.268 × 10−3

schedule2 14.566 × 10−3 0.298 × 10−3 0.304 × 10−3

tcas 16.874 × 10−3 0.305 × 10−3 0.258 × 10−3

flex 12.213 × 10−3 0.231 × 10−3 0.210 × 10−3

space 12.450 × 10−3 0.234 × 10−3 0.245 × 10−3

V8 14.576 × 10−3 0.256 × 10−3 0.256 × 10−3

Table 2 presents the standard deviation of the three parallel crossover schemes
for all the subjects, the results show that PGCS has much bigger standard
deviation than the other two. This indicates that the accelerated effectiveness of
PGCS is less stable. The reason for this result is that there is one GPU thread
responsible for the crossover of a couple of individuals in PGCS, so the execution
time of each GPU thread is associated with the complexity of the crossover
algorithm that has been chosen(Antoniol’s single point crossover [27] was used
in this experiment). The complexity of Antoniol’s algorithm is O(x(n − x)),
where x is crossover position and n is the length of the chromosome. Because x
is randomly generated, so the complexity changes are effected only by x. Thus
the execution time of each GPU thread is unstable and the overall execution
time of PGCS is also unstable.
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5.2 Speed-Up of Fine-Grained Parallel Framework

In the previous section, we empirically compared three types of crossover schemes,
in which the scan-based crossover scheme achieves the largest speed-ups and the
lowest standard deviation. In this section, we combine the parallel fitness evalu-
ation and scan-based parallel crossover computation together, to investigate the
whole speed-up achieved.

Figure 4 presents the table with data of execution time of each generation of
NSGA-II on CPU and GPU, and the figure of the speed-up. The table shows
that GPU execution speed-up effect is very different between different programs.
About V 8 program, the speed-up rate of parallel execution is more than 100x
than serial execution results and tcas also has more than 2x speed-up. It may
because we use C with CUDA run-time API in the parallel execution code, we
can have more obvious speed-up effect. The former six programs are less than
300 lines code, and their speed-up rates are all less than 10x times. Compared
with these programs, other three programs are all large scale programs, and their
speed-up rates are all more than 90x times, specially the speed-up rate of V 8,
the biggest program, is also having the largest speed up.

Subjects TCPU TGPU Speed up

printtokens 4.719s 0.567s 8.32
printtokens2 2.328s 0.553s 4.20
replace 4.623s 0.559s 8.27
schedule 2.054s 0.561s 3.66
schedule2 2.326s 0.552s 4.21
tcas 1.434s 0.558s 2.56
flex 134.193s 1.406s 95.44
space 142.206s 1.477s 96.28
V8 939.882s 7.291s 128.90
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Fig. 4. The average execution time of each generation on CPU and on GPU using
fine-grained parallel framework and the speed-up

6 Related Work

Test case prioritization had been considered as a single-objective optimization
problem [7]. Yoo and Harman [12] introduced the Multi-Objective Evolutionary
Algorithm(MOEA) to test case selection and test suite minimization. For test
case prioritization, Islam et al. [28] applied MOEA to prioritize test cases based
on latent semantic indexing on multi-objects of code coverage and requirement
coverage information.

Parallel execution of MOEAs had been suggested and investigated as a so-
lution to the efficiency problem suffered by, in which the study of GPU based
parallel MOEAs is a new orientation proposed recently.

Because of GPU based parallel computing mechanism and fast float-point op-
eration, it has shown great advantages in scientific computing fields, and achieved
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many successful applications. Kromer et al. [29] implemented Genetic Algorithm
(GA) on GPU for clustering problem, where the fitness function of computing
the distance between pins and objects is parallelly implemented on GPU and an
large speed-up is achieved. Zhou and Tan [30] presented a GPU based parallel
Particle Swarm Optimization (PSO) algorithm. To further improve the speed-
up, dual or multi GPU graphics card was introduced in the architecture. Qin et
al. [31] presented an improved differential evolution with multi-kernel function
on GPU platform.

GPU-based MOEAs are first introduced to multi-objective optimization on
regression testing by Yoo et al. [14], where NSGA-II is implemented with openCL
on GPU to multi-objective test suite minimization problem. In this study, only
binary representation is considered and the fitness computation is turned into
a matrix multiplication that can be implemented on GPU easily and more effi-
ciently. This paper focuses on test case prioritization where binary representation
is not suitable, so sequential coding and ordinal coding are used in NSGA-II in-
stead. Further to implement fitness evaluation on GPU, we proposed three types
of parallel crossover schemes in which the scan-based parallel crossover is the first
applied in sequential representation.

7 Conclusion and Future Work

This paper presents a highly efficient GPU-based parallel fitness evaluation
scheme and three novel parallel crossover computation schemes in the NSGA-II
based multi-objective test case prioritization. It is the first exploration for the
parallelism of genetic operations, and the empirical results based on eight bench-
marks and one open source subject show that the speed-up rates of at least 2x
to 10x times. The results also show that the proposed combination of parallel
fitness evaluation and crossover computation can achieve a speed-up of over 100x
times compared to CPU based, and the larger the scale of program under test,
the higher speed-up rate of GPU achieves.

For future work, we will evaluate the proposed parallel schemes for more
large real-world applications to prove their availability. Moreover, GPU-based
implementations of other MOEAs will be attempted.

Acknowledgements. This research work is supported in part by National
Natural Science Foundation of China No.61170082 and No.61073035 and by
Program for New Century Excellent Talents in University NCET-12-0757.

References

1. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Software Testing, Verification and Reliability 22(2), 67–120 (2012)

2. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Test case prioritization: An
empirical study. In: Proceedings of the IEEE International Conference on Software
Maintenance, Los Alamitos, California, USA, pp. 179–188. IEEE Computer Society
Press (1999)



124 Z. Li et al.

3. Rothermel, G., Untch, R., Chu, C., Harrold, M.J.: Prioritizing test cases for regres-
sion testing. IEEE Transactions on Software Engineering 27(10), 929–948 (2001)

4. Elbaum, S., Malishevsky, A., Rothermel, G.: Test case prioritization: a family
of empirical studies. IEEE Transactions on Software Engineering 28(2), 159–182
(2002)

5. Wong, W.E., Horgan, J.R., London, S., Bellcore, H.A.: A study of effective regres-
sion testing in practice. In: Proceedings of the Eighth International Symposium on
Software Reliability Engineering (ISSRE 1997), vol. 264. IEEE Computer Society
(1997)

6. Kim, J.M., Porter, A.: A history-based test prioritization technique for regression
testing in resource constrained environments. In: Proceedings of the 24th Interna-
tional Conference on Software Engineering, ICSE 2002, pp. 119–129 (2002)

7. Li, Z., Harman, M., Hierons, R.: Meta-heuristic search algorithms for regression
test case prioritization. IEEE Transactions on Software Engineering 33(4), 225–237
(2007)

8. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and
applications, vol. 63. Shaker, Ithaca (1999)

9. Knowles, J., Corne, D.: The pareto archived evolution strategy: a new baseline algo-
rithm for pareto multiobjective optimisation. In: Proceedings of the 1999 Congress
on Evolutionary Computation, CEC 1999, vol. 1, p. 105 (1999)

10. Rudolph, G.: Evolutionary search under partially ordered fitness sets.
HT014601767 (2001)

11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

12. Yoo, S., Harman, M.: Pareto efficient multi-objective test case selection. In: In-
ternational Symposium on Software Testing and Analysis (ISSTA 2007), London,
United Kingdom, pp. 140–150. Association for Computer Machinery (July 2007)

13. Zhang, Y., Harman, M., Lim, S.L.: Empirical evaluation of search based re-
quirements interaction management. Information and Software Technology 55(1),
126–152 (2013)

14. Yoo, S., Harman, M., Ur, S.: Highly scalable multi objective test suite minimisation
using graphics cards. In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS,
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Abstract. Software is frequently refactored to improve its design, either as part 
of an agile development process or as part of a major design overhaul. In either 
case, it is very useful to determine what refactorings have recently taken place 
in order to comprehend better the software and its development trajectory. To 
this end, we have developed an approach to automate the detection of source 
code refactorings using structural information extracted from the source code. 
Our approach takes as input a list of possible refactorings, a set of structural 
metrics and the initial and revised versions of the source code. It generates as 
output a sequence of detected changes expressed as refactorings. This refactor-
ing sequence is determined by a search-based process that minimizes the me-
trics variation between the revised version of the software and the version 
yielded by the application of the refactoring sequence to the initial version of 
the software. We use both global and local heuristic search algorithms to ex-
plore the space of possible solutions. In applying our approach to several ver-
sions of four open source projects we find the average Precision and Recall to 
be over 90%, thus confirming the effectiveness of our detection approach. 

Keywords: Search-based software engineering, refactoring, software metrics. 

1 Introduction 

Software systems are frequently refined and restructured for many reasons such as 
bug-fixing or source code modification to accommodate requirement changes. To 
perform these activities, one of the most widely used techniques is refactoring which 
improves design structure while preserving external behavior [6].  Many techniques to 
support refactoring have been proposed in the literature [9][10][16][18]. The majority 
of these techniques enable the application of manual or automated refactoring to fix 
design problems, e.g., bad smells [10].  

A related but distinct problem arises when a software developer is faced with a 
version of an application that has been recently refactored. They may wish to com-
prehend what changes have occurred since the previous version, or the changes may 
require that other parts of the software be changed as well [2]. It would be very useful 
for them to know what refactorings have been applied to the previous version of the 
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software to create the current, revised version. In addition, the detection of changes 
between different code versions can be used for regression testing. We address this 
problem in this paper, by using a stochastic search through the space of possible re-
factorings, using the metrics profile of the revised software to guide the search. The 
approach proposed in this paper is best suited to the root canal refactoring scenario 
where the software has undergone significant refactoring, rather than the floss refac-
toring scenario where refactorings are interspersed with changes to functionality [26]. 

A number of existing approaches attempt to detect changes between two software 
versions by identifying the specific refactoring operations that lead from the initial pro-
gram to the revised version. We distinguish between two categories in this existing 
work: the first category [3][4][5] detects only atomic differences (elementary refactor-
ings), while the second category [18] is also able to detect complex differences (compo-
site refactorings). Our approach can be classified in the second category. In general, 
existing approaches attempt to detect differences between software versions using the 
pre- and post-conditions that are specified for each refactoring. In this case, the specified 
pre- and post-conditions are compared with the changes that are detected by comparing 
the source and revised code. It may be relatively easy to detect explicit refactoring oper-
ations using pre- and post-conditions by performing code matching, however complex 
refactorings that represent a composition of atomic operations are far more difficult to 
detect. In addition to this problem, the number of possible changes between initial and 
revised software versions can be very large, so calculating pre- and post-conditions for 
these possible changes is likely to be a very onerous task. 

To overcome the above-mentioned limitations, we propose to consider the detec-
tion of refactorings between software versions as an optimization problem using 
structural metrics. Our approach takes as input a complete set of refactoring types and 
a set of software metrics, and generates as output a list of detected changes expressed 
as refactorings. In this case, a solution is defined as the sequence of refactoring opera-
tions that minimizes the metrics variation between the revised version of the software 
and the version yielded by the application of the refactoring sequence to the initial 
version of the software. Due to the large number of possible refactoring combinations, 
an enumerative approach is infeasible, so a heuristic method is used to explore the 
space of possible solutions. To this end, we adapt and use a genetic algorithm [12] to 
perform a global heuristic search. The list of refactorings generated can be used by 
software engineers in a practical context to understand how the software has evolved 
since its previous revision. 

The primary contributions of the paper can be summarized as follows: (1) we in-
troduce a novel refactoring detection approach using structural measures. Our propos-
al does not require an expert to write conditions for each possible combination of 
refactorings. Indeed, we identify hidden (implicit) refactorings that are difficult to 
detect by other means. (2) We report the results of an evaluation of our approach; we 
used four large open-source systems that have an extensive evolution history [23]. 
These systems were analyzed manually to find the applied refactorings between dif-
ferent versions. (3) We report the comparison results of our approach as applied using 
a genetic algorithm, random search, simulated annealing [13] and our previous work 
[18] over 30 runs.  
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The remainder of this paper is organized as follows. Section 2 is dedicated to the 
problem statement, while Section 3 describes the details of our approach. Section 4 
explains the experimental method, the results of which are discussed in Section 5. 
Section 6 introduces related work, and the paper concludes with Section 7.  

2 Problem Statement 

In this section, we start by providing the definitions of important concepts used in our 
proposal. Following this, we detail the challenges that are addressed by our approach. 

2.1 Background: Software Metrics and Refactoring 

In general, internal attributes are captured through software metrics and higher-level 
properties are expressed in terms of valid values for these metrics [27]. In this paper, 
we use a number of metrics including Depth of Inheritance Tree (DIT), Weighted 
Methods per Class (WMC) and Coupling Between Objects (CBO). We also use varia-
tions of the following metrics: the number of lines of code in a class (LOCCLASS), 
number of lines of code in a method (LOCMETHOD), number of attributes in a class 
(NAD), number of methods (NMD), lack of cohesion in methods (LCOM5), number 
of accessors (NACC), and number of private fields (NPRIVFIELD).  

Refactoring is the standard technique used in practice to improve the design of 
software either as part of radical restructuring or as a component of an agile develop-
ment methodology. The best-known catalog of software refactorings is that of Fowler 
et al. [6], which include refactorings such as push down field: moves a field from 
some class to those subclasses that require it, add parameter: adds a new parameter to 
a method, move method: moves a method from one class to another. In our work, we 
make use of a subset of Fowler’s refactorings.  

2.2 Challenges 

Several notable techniques have been proposed to detect the changes applied to 
source code by either recording the changes directly as they are applied by a develop-
er, or by analyzing two versions of a model and computing the differences between 
them. Although change recording produces a very precise change log efficiently, this 
technique is often not applicable in practice because a tight integration with the editor 
is necessary. Existing model comparison tools are capable of detecting atomic 
changes only. However, the composition of these atomic changes can lead to complex 
refactoring that cannot be detected using such comparison tools [14]. Only a few ap-
proaches have been proposed that address also the detection of high-level changes 
[18]. These approaches search for change patterns of pre-defined high-level opera-
tions among the atomic changes obtained from model comparison tools and, if a 
change pattern of a high-level operation is found, the pre- and post-conditions of the 
respective operation are evaluated before an occurrence of the operation is reported. A 
detailed case study of such an approach revealed that good results can be achieved as 
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long as there are no overlapping sequences of systematic operations; that is, opera-
tions are applied in a sequence, whereas one operation is necessary before a  
subsequent operation can be applied. Moreover, in several scenarios the subsequent 
operations render the post-conditions of the preceding operations invalid such that 
current approaches are not able to detect the operations correctly. However, overlap-
ping sequences of systematic operations occur quite frequently, and the problem of 
finding the appropriate sequence in which to apply a given set of refactorings has 
been addressed [17]. Moreover, the graph-comparison approaches [18] cannot detect, 
on average, all changes. In fact, this problem has the same complexity as the graph 
isomorphism problem, which is NP-hard. In particular, we can find a generated  
model/code and an expected model that look different (contain different model/code  
elements) but have the same meaning (semantics).  

To address these challenges, we describe in the next section how to consider the 
detection of refactorings between different software versions as an optimization  
problem using structural metrics.  

3 Refactoring Detection by Studying Metrics Variation 

This section shows how the above-mentioned issues can be addressed and describes 
the principles that underlie the proposed method for detecting refactorings from struc-
tural information. Therefore, we first present an overview of the search-based algo-
rithm employed and subsequently provide the details of the approach and our  
adaptation of a genetic algorithm to detect refactorings. 

3.1 Overview 

The general structure of our approach is introduced in Fig. 1. The approach takes as 
input the initial and revised source code, a set quality metrics and a complete set of 
refactoring types. The approach generates a set of refactorings that represents the 
evolution from the initial source code to the revised one. An Eclipse plug-in [25] is 
used to calculate metrics values from the revised code version and the new version 
obtained after applying the proposed solution (refactoring sequence). The process of 
detecting refactorings can be viewed as the mechanism that finds the best way to 
combine refactoring operations of the input set of refactoring types, in order to mi-
nimize the dissimilarity between the metrics value of the revised code and the code 
that results from applying the detected refactorings. 

 

Fig. 1. Overview 
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Due to the large number of possible refactoring solutions, we consider the detec-
tion of refactoring between different software versions as an optimization problem. 
The algorithm explores a huge search space. In fact, the search space is determined 
not only by the number of possible refactoring combinations, but also by the order in 
which they are applied. To explore this huge search space, we use a global search by 
the use of a Genetic Algorithm (GA). This algorithm and its adaptation to the refac-
toring problem are described in the next section. 

3.2 Genetic Algorithm Adaptation 

This section describes how a Genetic Algorithm (GA) is adapted to detect  
refactorings using software metrics variation.  

3.2.1   Genetic Algorithm 
Genetic algorithms (GA) are a heuristic search optimization method inspired by the 
Darwinian theory of evolution [12]. The basic idea is to explore the search space by 
creating a population of candidate solutions, also called individuals, and evolve them 
towards an optimal solution of a specific problem. In GA, a solution can be 
represented as a vector. Each dimension of this vector contains symbols that are ap-
propriate for the target problem. Each individual of the population is evaluated by a 
fitness function that determines a quantitative measure of its ability to solve the target 
problem. The exploration of the search space is achieved by evolution of candidate 
solutions using selection and genetic operators, such as crossover and mutation. Once 
selection, mutation and crossover have been applied according to given probabilities, 
individuals of the newly created generation are evaluated using the fitness function. 
This process is repeated iteratively, until a stopping criterion is met.  

3.2.2   Adaptation 
A high level view of our GA approach to the refactoring detection problem using 
structural information is described in this section. The algorithm takes as input two 
versions of the same object-oriented system, a set of structural metrics and a complete 
set of refactoring types; and generates as output a solution, which corresponds to a 
sequence of refactoring operations that minimize the dissimilarity in the metrics varia-
tion between the revised code and the new code version (after applying the refactoring 
sequence to the initial code).  

The algorithm starts by extracting the structural information (metrics measure) 
from the expected code version. Then it constructs an initial population of solutions 

(refactorings combination), generated randomly using a set of refactorings and eva-
luates them. The next step includes the main GA loop, which explores the search 
space. During each iteration, we evaluate the quality of each solution (individual) in 
the population, and the solution having the best fitness is saved. A new code version 
is obtained after applying the proposed refactoring operations (solution). Then the 
algorithm calculates the new metrics value of the obtained code. The next step com-
pares (dissimilarity score) between the expected metrics value and those obtained in 
the new code. We generate a new population of solutions using the crossover operator 
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to the selected solutions; each pair of parent solutions produces two children (new 
solutions). We include the parent and child variants in the population and then apply 
the mutation operator to each variant; this produces the population for the next gener-
ation. An invalid child can simply be replaced by a new one randomly. The algorithm 
terminates when it achieves the termination criterion (maximum iteration number), 
and returns the best refactoring sequence found. The following three subsections de-
scribe more precisely our adaption of GA to the refactorings detection problem.  

3.2.2.1   Solution Representation 
We consider the potential solution as a vector of refactoring operations. Figure 2 shows 
an example where the solution represents a sequence of refactoring operations to be 
applied. The order of application of the refactorings corresponds to their order in the 
table (dimension number). The execution of these refactorings must conform to certain 
semantics and postconditions (to avoid conflicts and incoherence semantic errors). For 
example, we cannot remove a method from a class that was already moved to another 
class, thus the preconditions of each refactoring have to be fulfilled before its execution. 
If the preconditions are not met, we partially regenerate the solution randomly. 

For instance, the solution represented in Figure 2 comprises two dimensions cor-
responding to two refactoring operations to apply in an initial version (V1). In fact, 
the two refactorings are Push Feature that is applied to the reference description and 
Unfold Class that is applied to the class Description. After applying the proposed 
refactorings we obtain a new model that will be compared with the expected revised 
model using a fitness function.  

To generate an initial population, we start by defining the maximum vector length 
including the number of refactorings. These parameters can be specified either by the  
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user or chosen randomly. Thus, the individuals have different vector length (struc-
ture). Then, for each individual we randomly assign one refactoring, with its parame-
ters, to each dimension. 

3.2.2.2   Fitness Function 
Solutions are evaluated using a fitness function that determines their efficiency. This 
function is based on a metrics variation (dissimilarity score) to minimize between the 
new code version (after applying proposed refactorings) and the revised version of the 
software.  

After applying a generated solution (proposed refactorings) to the initial code ver-
sion V1, the fitness function calculates the difference between the metrics value on 
the two code versions (V1 and the expected revised version). Fitness function can be 
formulated as follows: 

Fitness_function = )()( '

1 1
ji

n

i

m

j
ji eveeve

= =

−  

Where: 

 n: maximum number of code elements (classes) between the two versions 
 m: number of quality metrics 
 vei(ej) = value of metrici for the class ej in the expected revised version V2 
 ve’j(ej) = value of metricj for the class ej in the new version V’1 (after apply-

ing the solution on the initial version V1) 

Some metrics have been normalized to [0, 1] since otherwise the fitness function 
could be dominated by a single metric. To illustrate the fitness function, we consider 
the example shown in Fig. 3. The model V2 of Fig. 3 is considered as the expected 
revised model and V2 of Fig. 2 (V’2 in Fig. 3) as the generated model after applying 
the refactoring solution. We use as input two quality metrics: metric1 = NOM  
(Number Of Methods) and metric2 = NOA (Number Of Attributes). Thus, the fitness  
function in this case is: 

( ) ( ) ( ) ( )( ) 11100110010000000 =−+−+−+−+−+−+−+−  

 

Fig. 3. Comparison between expected and revised versions 
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3.2.2.3   Change Operators  
Selection. To select the individuals that will undergo the crossover and mutation op-
erators, we use Stochastic Universal Sampling (SUS) [12], in which the probability of 
selection of an individual is directly proportional to its relative fitness in the popula-
tion. SUS is a random selection algorithm that gives higher probability of selection to 
the fittest solutions, while still giving a chance to every solution. 

Crossover. For each crossover, two individuals are selected by applying SUS selec-
tion. Even though individuals are selected, the crossover happens only with a certain 
probability. 

The crossover operator allows creating two offspring P1’ and P2’ from the two se-
lected parents P1 and P2. It is defined as follows. A random position k is selected. The 
first k refactorings of P1 become the first k elements of P1’. Similarly, the first k  
refactorings of P2 become the first k refactorings of P2’.  

Fig. 4 shows an example of the crossover process. In this example, P1 and P2 are 
combined to generate two new solutions. The right sub-vector of P1 is combined with 
the left sub-vector of P2 to form the first child, and the right sub-vector of P2 is com-
bined with the left sub-vector of P1 to form the second child. In Fig. 4, the position k 
takes the value 1. The second refactoring of P1 becomes the second element of P2. 
Similarly, the second refactoring of P2 become the second refactorings of P1. 

Mutation. The mutation operator consists of randomly changing one or more dimen-
sions (refactoring) in the solution (vector). Given a selected individual, the mutation 
operator first randomly selects some dimensions in the vector representation of the 
individual. Then the selected dimensions are replaced by other refactorings. Further-
more, the mutation can only modify the parameters of some dimensions without 
changing the type of the refactoring involved.  

 

Fig. 4. The Crossover operator 
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Fig. 5. The Mutation operators 



134 R. Mahouachi, M. Kessentini, and M. Ó Cinnéide 

 

Fig. 5 illustrates the effect of a mutation that replaced the dimension number one 
Push Feature (description) by Push Feature (version). 

4 Evaluation 

In order to evaluate the feasibility of our approach for detecting refactorings, we con-
ducted an experiment based on different versions of real-world large open source 
systems [19][20][21][22]. We start by presenting our research questions. Then, we 
describe and discuss the obtained results. 

4.1 Goals and Objectives 

The study was conducted to quantitatively assess the completeness and correctness of 
our approach when applied to a real-world scenario and to compare its performance 
with existing approaches. More specifically, we aimed at answering the following 
research questions RQ1) To what extent can the proposed approach detect changes 
between different code versions (in terms of correctness and completeness)? RQ2) 
What types of changes (refactorings) does it detect correctly? RQ3) How does the 
performance of the GA compare with that of random search and local search (simu-
lated annealing 13)? 

To answer RQ1, we used an existing corpus [23][16] containing an extensive evo-
lution of four large open source systems to evaluate the correctness and completeness 
of our approach. To answer RQ2, we investigated the type of changes that were 
found. For the remaining question RQ3, we compared our GA results to those pro-
duced by random search and simulated annealing (SA). Further details about our  
experiments setting are discussed in the next subsection. 

4.2 Experimental Setup 

We used an existing corpus 2316 of 81 releases of four open source Java projects, 
namely Apache Ant [19], ArgoUML [20], JHotdraw [21], and Xerces-J [22]. Apache 
Ant is a build tool and library specifically conceived for Java applications. ArgoUML 
is an open source UML modeling tool. Xerces is a family of software packages for 
parsing and manipulating XML, and implements a number of standard APIs for XML 
parsing. JHotdraw is a framework used to build graphic editors. Table I reports cha-
racteristics of the analyzed systems. The table also reports the number of refactoring 
operations (as well as the number of different kinds of refactorings) identified ma-
nually for the different systems. In all, we identified more than 16000 refactoring 
applications. However, we selected some specific versions of these open source sys-
tem to analyze the results manually (since it is a very tedious task). Thus, as described 
in table I, we are considering a total of around 9586 refactorings applied between 
different versions. 

We choose Xerces-J, JHotDraw, ArgoUML, and Apache Ant because they are me-
dium-sized open-source projects and were analyzed in related work. The initial  
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versions of GMF and Apache Ant are known to be of poor quality, which has led to 
major revised versions. Xerces-J, ArgoUML, and JHotDraw have been actively de-
veloped over the past 10 years, and their design has not been responsible for a  
slowdown of their developments.  

For this experiment, Ref-Finder [5] was used in [23] to automatically detect refac-
toring operations of 34 different types on 72 releases of the different open source 
systems. From the refactorings detected by Ref-Finder, 9586 refactorings have been 
manually validated as correct refactorings. In total, 34 different types of refactoring 
operations have been applied. The evolution of the different versions provides a rela-
tively large set of revisions. In total, the evolution of the considered versions compris-
es 81 revisions that involved at least one refactoring operation. Overall, 9586 refactor-
ing operations have been applied, whereas one transition between two revisions con-
tains on average 116 refactorings. Most of the commits comprise between 1 and 29 
refactorings. Table 1 describes the number of expected refactorings to be detected by 
our approach on the different code versions. These operations cover 34 refactoring 
types (e.g. move method, move feature, etc.). Finally, we used a set of 18 quality 
metrics that are available on an existing Eclipse plug-in [25].     

Table 1. The Systems Studied 

System Number of expected refactoring Classes (min, max) 

Apache Ant 1094 87, 1191 
ArgoUML 1967 777, 1519 
JHotdraw 1884 291, 603 
Xerces-J 4641 181, 776 

To assess the accuracy of our approach, we compute the standard Information Re-
trieval measures of Precision and Recall. In the context of our study, Precision de-
notes the fraction of correctly detected refactoring operations among the set of all 
detected operations. Recall indicates the fraction of correctly detected refactoring 
operations among the set of all expected refactorings (i.e., how many operations have 
not been missed). In general, Precision denotes the probability that a detected opera-
tion is correct while Recall is the probability that an actually applied operation is de-
tected. Thus, both values may range from 0 to 1, whereas a higher value is better than 
a lower one. The quality of our results was measured by two methods: Automatic 
Correctness (AC) and Manual Correctness (MC). Automatic correctness consists of 
comparing the detected changes to the reference/expected ones, operation-by-
operation using Precision (AP) and Recall (AR). AC method has the advantage of 
being automatic and objective. However, since different refactoring combinations 
exist that describe the same evolution (different changes but same new code version), 
AC could reject a good solution because it yields different refactoring operations from 
reference/expected ones. To account for those situations, we also use MC, which in-
volves manually evaluating the detected changes, here again operation-by-operation. 
In addition, we compared the performance of random search and simulated annealing, 
using AC scores for these comparisons. 
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4.3 Results and Discussions 

Table 2 summarizes our results over 30 runs. Our approach detects 9387 refactoring 
operations. Overall, we were able to find 8912 refactoring operations correctly among 
all 9586 operations (i.e., Recall of 93%), whereas fewer than 600 operations have 
been incorrectly detected, which leads to a Precision of around 92%. It is worth not-
ing that the evolution history of these four open source systems is very different. As 
the studied evolution of the remaining systems covers a time period of ten years, they 
have a large number of refactorings to be detected. However, our proposal performs 
well on the large evolutions of these systems. For Apache, most of the detected 
changes are correct with 96% and 94% respectively for Precision and Recall. For 
ArgoUML and JHotDraw, they have approximately the same number of refactorings 
to detect and our approach detected most of them with an average Precision of 98% 
and average Recall of 95%. Xerces-J is the larger system that we studied with more 
than 4646 refactoring applied over 10 years and our proposal succeeds in detecting 
almost all of them with a Precision and Recall of more than 91%. Thus, overall we 
can conclude that using our approach we could identify most of the applied operations 
correctly with an average of 92% of Precision and 94% of Recall. We noticed also 
that our technique does not have a bias towards the types of refactoring since most of 
them were detected (RQ2). 

With regards to manual correctness (MC), the Precision and Recall scores for all 
the four open source systems were improved since we found interesting refactoring 
alternatives that deviate from the reference ones proposed by the developers/experts. 
In addition, we found that the sequence of applying the refactoring is sometimes dif-
ferent between generated refactoring and reference ones. We found that sometimes a 
different sequence can reduce the number of refactorings required. Another observa-
tion is that the Precision and Recall scores depend on the number of changes. When 
the number of changes increases then Precision and Recall decrease. However, we 
still have acceptable scores even when a large number of changes has occurred. 

Table 2. Average Detection Results 

Model AP: Precision AR: Recall MP:Precision MR: Recall 

Apache Ant 
1033/1073= 
96% 

1033/1094 = 
94% 

1037/1073 = 
96% 

1037/1094 = 
95% 

ArgoUML 
1874/1904 = 
98% 

1874/1967 = 
95% 

1877/1904 = 
98% 

1877/1967 = 
95% 

JHot-Draw 
1769/1874 = 
94% 

1769/1884 = 
93% 

1791/1874 = 
95% 

1791/1884 = 
94% 

Xerces-J 
4236/4536 = 
93% 

4236/4641 = 
91% 

4247/4536 = 
93% 

4247/4641 = 
91% 

Fig. 4 illustrates the comparison between the results obtained using GA, random 
search and simulated annealing (SA). The detection results for SA were also accepta-
ble. Especially, with the smaller system (ApacheAnt) the Precision is better using SA 
than GA. In fact, GA is a global search that gives good results when the search space 
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is large. For this reason, GA performs well with large systems. However, compared to 
GA, SA takes a lot of time to converge to an optimal solution as it requires many 
more iterations. In our experiments, we used the same number of iterations as a ter-
mination criterion (10000 iterations). In addition, to ensure the stability of the results 
during the comparison we calculated an average of Precision and Recall over 30 runs. 
Finally, the random search did not perform well on all the systems due to the huge 
search space to explore.  

The correlation between the number of used metrics and the Recall and Precision 
values is analyzed in Figure 5 based on the data gathered in our study. More precisely, 
we calculate the Precision and Recall for different versions of the larger system 
Xerces-J. We conclude that the Precision and Recall depends on the number of me-
trics employed. When the number of metrics decreases then the Precision and Recall 
decrease. For example, the Recall/Precision decreases from 90% to 62% when the 
number of metrics decreases from 18 to 8. However, number of metrics used on our 
experiments can be considered as reasonable.  

 

 

Fig. 6. Comparison between GA, SA and Random Search (average Precision and Recall over 
30 runs) 

 

Fig. 7. The impact of the number of used metrics on the detection results (Xerces-J) 



138 R. Mahouachi, M. Kessentini, and M. Ó Cinnéide 

 

Finally, it is important to contrast the results with the execution time. The execu-
tion time for finding the optimal refactoring solution with a fixed number of 10000 
iterations (stopping criteria) was less than 30 minutes on the larger open source sys-
tem (Xerces-J). This indicates that our approach is reasonably scalable from the per-
formance standpoint. 

Our proposal has some limitations that we will address in our future work. The ma-
jor challenge in this work lies in the assumption made in section 3.2.1.2, that each 
class in the original source maps to one class in the revised version. Sometimes after 
radical refactoring it becomes very difficult to understand/detect the changes with a 
high precision score. One possibility is to explore the use of semantic measures in 
order to find a suitable matching between the names of classes. Another challenge 
that is not addressed, in this work, is conflict and dependency in the refactoring se-
quence. This only appears experimentally when a large number of refactorings are 
applied to a small number of classes. We will address this problem in our future work 
by finding the best sequence that minimizes the number of conflicts.  

5 Related Work 

With respect to the contribution of this work, we survey existing work in the area of 
refactoring detection and we also state further applications of search-based techniques 
in the field of software engineering. 

The easiest way to detect applied refactorings is to track their execution in the de-
velopment environment directly. Refactoring tracking is realized by [1] in program-
ming environments and by [2] in modeling environments. All these approaches highly 
depend on the development environment, which has to track the refactorings as they 
are applied. Furthermore, manual refactorings are not detectable and refactorings that 
have in fact been made obsolete by successive changes are likely to be wrongly de-
tected. In contrast to refactoring tracking approaches, state-based refactoring detection 
mechanisms aim to reveal refactorings a posteriori on the base of the two successive 
versions of a software artifact. Several approaches are tailored to detect refactorings 
in program code. For instance, Dig et al. [2] propose an approach to detect applied 
refactorings in Java code. They first perform a fast syntactic analysis and, subsequent-
ly, a semantic analysis in which operational aspects like method call graphs are also 
considered. Weissgerber and Diehl [3] take a similar approach where after a prepro-
cessing and a syntactical analysis have been conducted, conditions indicating the 
application of a refactoring are evaluated. Recent work by Kim et al. [4][5] on the 
Ref-Finder tool involves an approach for refactoring detection that improves on sev-
eral issues left open in previous approaches. In particular, the Ref-Finder tool is capa-
ble of detecting complex refactorings that comprise a set of atomic refactorings by 
using logic-based rules executed by a logic programming engine.  

Our approach is inspired by contributions in Search-Based Software Engineering 
(SBSE) [24]. As the name indicates, SBSE uses a search-based approach to solve 
optimization problems in software engineering. Once a software engineering task is 
framed as a search problem, by defining it in terms of solution representation, fitness 
function and solution change operators, there are many search algorithms that can be 
applied to solve that problem. To the best of our knowledge, the idea of detecting 
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refactorings from structural information using search-based techniques was not stu-
died before. However, several other works are proposed to find refactoring opportuni-
ties using search-based techniques [15, 16, 18]. We proposed a search-based approach 
to detect changes between different model versions by comparing them [18]. Howev-
er, the comparison between two model versions is a difficult task. In fact, this prob-
lem has the same complexity as the graph isomorphism problem, which is NP-hard. In 
particular, we can find a generated model and an expected model that look different 
(i.e., contain different model elements) but have the same semantics. Moreover, in 
[18] detected refactorings are related only to the model level. In the work of O’Keeffe 
and Ó Cinnéide [15], software design improvement is treated as an optimization prob-
lem. The authors use a combination of 12 metrics to measure the improvements 
achieved when sequences of simple refactorings are applied, such as moving methods 
between classes. The goal of the optimization is to refactor a program to a revised 
version that has improved quality based of a set of software metrics. Another applica-
tion of this approach by Ó Cinnéide et al. [16] uses search-based refactoring to assess 
software metrics and explore relationships between them.  

6 Conclusion 

In this paper we introduce a novel, search-based approach to software refactoring 
detection between an initial software version and a refactored software version. Our 
approach is based on representing a proposed solution as a sequence of refactorings, 
and evaluating this solution in terms of its metrics profile as compared with the me-
trics profile of the refactored software version. Framing the problem in this manner 
enables us to use a Genetic Algorithm to evolve better solutions whose metric profiles 
more closely match that of the refactored software version. Our key hypothesis is that 
as the metric profiles converge, so too will the evolved refactoring sequence converge 
to the actual refactoring sequence that was originally applied to generate the refac-
tored version from the initial version. 

We evaluated our approach on four real-world, open source software applications 
involving a total of 81 different versions and a total of 9,586 refactorings (as verified 
manually). Experiments show the Precision of our approach to be 92% and the Recall 
93%, which provide strong evidence of the validity of our approach. As part of future 
work, we will investigate situations where no direct mapping exists between the ele-
ments of the initial software version and the refactored version, study the effects vari-
ous metrics have on the quality of refactoring sequences obtained and attempt to  
classify the detected model changes as risky or not in terms of quality improvement. 
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Abstract. The number and the complexity of software components embedded in
today’s vehicles is rapidly increasing. A large group of these components mon-
itor and control the operating conditions of physical devices (e.g., components
controlling engines, brakes, and airbags). These controllers are known as contin-
uous controllers. In this paper, we study testing of continuous controllers at the
Model-in-Loop (MiL) level where both the controller and the environment are
represented by models and connected in a closed feedback loop system. We iden-
tify a set of common requirements characterizing the desired behavior of contin-
uous controllers, and develop a search-based technique to automatically generate
test cases for these requirements. We evaluated our approach by applying it to a
real automotive air compressor module. Our experience shows that our approach
automatically generates several test cases for which the MiL level simulations
indicate potential violations of the system requirements. Further, not only do our
approach generates better test cases faster than random test case generation, but
we also achieve better results than test scenarios devised by domain experts.

1 Introduction

Modern vehicles are increasingly equipped with Electronic Control Units (ECUs). The
amount and the complexity of software embedded in the ECUs of today’s vehicles is
rapidly increasing. To ensure the high quality of software and software-based functions
on ECUs, the automotive and ECU manufacturers have to rely on effective techniques
for verification and validation of their software systems. A large group of automotive
software functions require to monitor and control the operating conditions of physical
components. Examples are functions controlling engines, brakes, seatbelts, and airbags.
These controllers are widely studied in the control theory domain as continuous con-
trollers [1,2] where the focus has been to optimize their design for a specific platform or
a specific hardware configuration [3,4]. Yet a complementary and important problem,
of how to systematically and automatically test controllers to ensure their correctness
and safety, has received almost no attention in the control engineering research [1].

In this paper, we concentrate on the problem of automatic and systematic test case
generation for continuous controllers. The principal challenges when analyzing such
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controllers stem from their continuous interactions with the physical environment, usu-
ally through feedback loops where the environment impacts computations and vice
versa. We study the testing of controllers at an early stage where both the controller
and the environment are represented by models and connected in a closed feedback
loop process. In model-based approaches to embedded software design, this level is
referred to as Model-in-the-Loop (MiL) testing.

Testing continuous aspects of control systems is challenging and is not yet sup-
ported by existing tools and techniques [4,1,3]. There is a large body of research on
testing mixed discrete-continuous behaviors of embedded software systems where the
system under test is represented using state machines, hybrid automata, hybrid petri
nets, etc [5,6,7]. These techniques, however, are not amenable to testing purely continu-
ous controllers described in terms of mathematical models, and in particular, differential
equations. A number of commercial verification and testing tools have been developed,
aiming to generate test cases for MATLAB/Simulink models, namely the Simulink De-
sign Verifier software [8], and Reactis Tester [9]. Currently, these tools handle only
combinatorial and logical blocks of the MATLAB/Simulink models, and fail to gener-
ate test cases that specifically evaluate continuous blocks (e.g., integrators) [1].

Contributions. In this paper, we propose a search-based approach to automate gen-
eration of MiL level test cases for continuous controllers. We identify a set of com-
mon requirements characterizing the desired behavior of such controllers. We develop
a search-based technique to generate stress test cases attempting to violate these re-
quirements by combining explorative and exploitative search algorithms [10]. Specifi-
cally, we first apply a purely explorative random search to evaluate a number of input
signals distributed across the search space. Combining the domain experts’ knowledge
and random search results, we select a number of regions that are more likely to lead to
requirement violations in practice. We then start from the worst case input signals found
during exploration, and apply an exploitative single-state search [10] to the selected re-
gions to identify test cases for the controller requirements. Our search algorithms rely
on objective functions created by formalizing the controller requirements. We evaluated
our approach by applying it to an automotive air compressor module. Our experiments
show that our approach automatically generates several test cases for which the MiL
level simulations indicate potential errors in the controller or the environment models.
Furthermore, the resulting test cases had not been previously found by manual testing
based on domain expertise. Our industry partner is interested to investigate these test
cases further by evaluating them in a more realistic setting (e.g., by testing them on their
Hardware-in-the-Loop (HiL) platform). In addition, our approach computes test cases
better and faster than a random test case generation strategy.

2 MiL Testing of Continuous Controllers: Practice and Challenges

Control system development involves building of control software (controllers) to in-
teract with mechatronic systems usually referred to as plants or environment [2]. An
example of such controllers is shown in Figure 1. These controllers are commonly used
in many domains such as manufacturing, robotics, and automotive. Model-based devel-
opment of control systems is typically carried out in three major levels described be-
low. The models created through these levels become increasingly more similar to real
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controllers, while verification and testing of these models become successively more
complex and expensive.

Model-in-the-Loop (MiL): At this level, a model for the controller and a model for
the plant are created in the same notation and connected in the same diagram. In many
sectors and in particular in the automotive domain, these models are created in MAT-
LAB/Simulink. The MiL simulation and testing is performed entirely in a virtual envi-
ronment and without any need to any physical component. The focus of MiL testing is
to verify the control algorithm, and to ensure that the interactions between the controller
and the plant do not violate the system requirements.

Software-in-the-Loop (SiL): At this level, the controller model is converted to code
(either autocoded or manually). This often includes the conversion of floating point
data types into fixed-point values as well as addition of hardware-specific libraries.
The testing at the SiL-level is still performed in a virtual and simulated environment
like MiL, but the focus is on controller code which can run on the target platform.
Further, in contrast to verifying the algorithms, SiL testing aims to ensure correctness of
floating point to fixed-point conversion and the conformance of code to control models
(particularly in the case of manual coding).

Hardware-in-the-Loop (HiL): At this level, the controller software is fully installed
into the final control system (e.g., in our case, the controller software is installed on the
ECUs). The plant is either a real piece of hardware, or is some software that runs on a
real-time computer with physical signal simulation to lead the controller into believing
that it is being used on a real plant. The main objective of HiL is to verify the integration
of hardware and software in a more realistic environment. HiL testing is the closest to
reality, but is also the most expensive and slowest among the three testing levels.

In this paper, among the above three levels, we focus on the MiL level testing. MiL
testing is the primary level intended for verification of the control algorithms logic
and ensuring the satisfaction of their requirements. Development and testing at this
level is considerably fast as the engineers can quickly modify the control model and
immediately test the system. Furthermore, MiL testing is entirely performed in a virtual
environment, enabling execution of a large number of test cases in a small amount of
time. Finally, the MiL level test cases can later be used at SiL and HiL levels either
directly or after some adaptations.

Currently, in most companies, MiL level testing of controllers is limited to running
the controller-plant Simulink model (e.g., Figure 1) for a small number of simulations,
and manually inspecting the results of individual simulations. The simulations are often
selected based on the engineers’ domain knowledge and experience, but in a rather
ad hoc way. Such simulations are useful for checking the overall sanity of the control
algorithms, but cannot be taken as a substitute for MiL testing. Manual simulations fail
to find erroneous scenarios that the engineers might not be aware of a priori. Identifying
such scenarios later during SiL/HiL is much more difficult and expensive than during
MiL testing. Also, manual simulation is by definition limited in scale and scope.

Our goal is to develop an automated MiL testing technique to verify controller-plant
systems. To do so, we formalize the properties of continuous controllers regarding the
functional, performance, and safety aspects. We develop an automated test case gener-
ation approach to evaluate controllers with respect to these properties. In our work, the



144 R. Matinnejad et al.

test inputs are signals, and the test outputs are measured over the simulation diagrams
generated by MATLAB/Simulink plant models. The simulations are discretized where
the controller output is sampled at a rate of a few milliseconds. To generate test cases,
we combine two search algorithms: (1) An explorative random search that allows us to
achieve high diversity of test inputs in the space, and to identify the most critical regions
that need to be explored further. (2) An exploitative search that enables us to focus our
search and compute worst case scenarios in the identified critical regions.

3 Background on Continuous Controllers

Figure 1 shows an overview of a controller-plant model at the MiL level. Both the
controller and the plant are captured as models and linked via virtual connections. We
refer to the input of the controller-plant system as desired or reference value. For ex-
ample, the desired value may represent the location we want a robot to move to, the
speed we require an engine to reach, or the position we need a valve to arrive at.The
system output or the actual value represents the actual state/position/speed of the hard-
ware components in the plant. The actual value is expected to reach the desired value
over a certain time limit, making the Error, i.e., the difference between the actual and
desired values, eventually zero. The task of the controller is to eliminate the error by
manipulating the plant to obtain the desired effect on the system output.

Plant 
Model

Controller
(SUT) 

Desired value Error 

Actual value

System output+
-

Fig. 1. MiL level Controller-Plant Model

The overall objective of the controller in Figure 1 may sound simple. In reality, how-
ever, the design of such controllers requires calculating proper corrective actions for the
controller to stabilize the system within a certain time limit, and further, to guarantee
that the hardware components will eventually reach the desired state without oscillating
too much around it and without any damage. Controllers design is typically captured
via complex differential equations known as proportional-integral-derivative (PID) [2].
For example, Figure 2(a) represents an example output diagram for a typical controller.
As shown in the figure, the actual value starts at an initial value (here zero), and gradu-
ally moves to reach and stabilize at a value close to the desired value. To ensure that a
controller design is satisfactory, engineers perform simulations, and analyze the output
simulation diagram with respect to a number of requirements. After careful investiga-
tions, we identified the following requirements for controllers:

Liveness (functional): The controller shall guarantee that the actual value will reach
and stabilize at the desired value within x seconds. This is to ensure that the controller
indeed satisfies its main functional requirement.

Smoothness (safety): The actual value shall not change abruptly when it is close to
the desired one. That is, the difference between the actual and desired values shall not
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exceed w, once the difference has already reached v for the first time. This is to ensure
that the controller does not damage any physical devices by sharply changing the actual
value when the error is small.

Responsiveness (performance): The difference between the actual and desired values
shall be at most y within z seconds, ensuring the controller responds within a time limit.

The above three generic requirements are illustrated on a typical controller output
diagram in Figure 2 where the parameters x, v, w, y, and z are represented. As shown
in the figure, given specific controller requirements with concrete parameters and given
an output diagram of a controller under test, we can determine whether that particular
controller output satisfies the given requirements.
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Fig. 2. The controller requirements illustrated on the controller output: (a) Liveness, (b) Smooth-
ness, and (c) Responsiveness

Having discussed the controller requirements and outputs, we now describe how
we generate input test values for a given controller. Typically, controllers have a large
number of configuration parameters that affect their behaviors. For the configuration
parameters, we use a value assignment commonly used for HiL testing, and focus on
two essential controller inputs in our MiL testing approach: (1) the initial actual value,
and (2) the desired value. Among these two inputs, the desired value can be easily
manipulated externally. However, since the controller is a closed loop system, it is not
generally possible to start the system from an arbitrary initial state. In other words, the
initial actual state depends on the plant model and cannot be manipulated externally. For
the same reason, in output simulation diagrams (e.g., Figure 2), it is often assumed that
the controller starts from an initial value of zero. However, assuming that the system
always starts from zero is like testing a cruise controller only for positive car speed
increases, and missing a whole range of speed decreasing scenarios.

To eliminate this restriction, we provide two consecutive signals for the desired value
of the controller (see Figure 3(a)): The first one sets the controller at the initial desired
value, and the second signal moves the controller to the final desired value. We refer
to these input signals as step functions or step signals. The lengths of the two signals
in a step signal are equal (see Figure 3(a)), and should be sufficiently long to give
the controller enough time to stabilize at each of the initial and final desired values.
Figure 3(b) shows an example of a controller output diagram for the input step function
in Figure 3(a). The three controller properties can be evaluated on the actual output
diagram in Figure 3(b) in a similar way as that shown in Figure 2.
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Fig. 3. Controller input step functions: (a) Step function. (b) Output of the controller (actual)
given the input step function (desired).

In the next section, we describe our automated search-based approach to MiL testing
of controller-plant systems. Our approach automatically generates input step signals
such as the one in Figure 3(a), produces controller output diagrams for each input signal,
and evaluates the three controller properties on the output diagram. Our search is guided
by a number of heuristics to identify the input signals that are more likely to violate
the controller requirements. Our approach relies on the fact that, during MiL, a large
number of simulations can be generated quickly and without breaking any physical
devices. Using this characteristic, we propose to replace the existing manual MiL testing
with our search-based automated approach that enables the evaluation of a large number
of output simulation diagrams and the identification of critical controller input values.

4 Search-Based Automated Controller MiL Testing

In this section, we describe our search-based algorithm for automating MiL testing
of controllers. We first describe the search elements and discuss how we formulate
controller testing as a search problem in Section 4.1. We, then, show how we combine
search algorithms to guide and automate MiL testing of controllers in Section 4.2.

4.1 Search Elements

Given a controller-plant model and a set of controller properties, our search algorithms,
irrespective of their heuristics, perform the following common tasks: (1) They generate
input signals to the controller, i.e., step function in Figure 3(a). (2) They receive the
output, i.e., Actual in Figure 3(b), from the model, and evaluate the output against the
controller properties formalizing requirements. Below, we first formalize the controller
input and output, and define the search space for our problem. We then formalize the
three objective functions to evaluate the properties over the controller output.

Controller input and output: Let T = {0, . . . , T } be a set of time points during which
we observe the controller behavior, and let min and max be the minimum and maximum
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values for the Actual and Desired attributes in Figure 1. In our work, since input is as-
sumed to be a step function, the observation time T is chosen to be long enough so that
the controller can reach and stabilize at two different Desired positions successively
(e.g., see Figure 3(b)). Note that Actual and Desired are of the same type and bounded
within the same range, denoted by [min . . . max]. As discussed in Section 3, the test
inputs are step functions representing the Desired values (e.g. Figure 3(a)). We define
an input step function in our approach to be a function Desired : T → {min, . . . , max}
such that there exist a pair Initial Desired and Final Desired of values in
[min . . .max] that satisfy the following conditions:

∀t · 0 ≤ t < T
2 ⇒ Desired(t) = Initial Desired

∧
∀t · T

2 ≤ t < T ⇒ Desired(t) = Final Desired

We define the controller output, i.e., Actual, to be a function
Actual : T → {min, . . . , max} that is produced by the given controller-plant model,
e.g., in MATLAB/Simulink environment.

Search Space: The search space in our problem is the set of all possible input func-
tions, i.e., the Desired function. Each Desired function is characterized by the pair
Initial Desired and Final Desired values. In control system development, it is
common to use floating-point data types at MiL level. Therefore, the search space
in our work is the set of all pairs of floating point values for Initial Desired and
Final Desired within the [min . . . max] range.

Objective Functions: Our goal is to guide the search to identify input functions in the
search space that are more likely to break the properties discussed in Section 3. To do
so, we create three objective functions corresponding to the three controller properties.

– Liveness: Let x be the liveness property parameter in Section 3. We define the
liveness objective function OL as: maxx+T

2 <t≤T {|Desired(t)− Actual(t)|}
I.e., OL is the max of the difference between Desired and Actual after time x+ T

2 .
– Smoothness: Let v be the smoothness property parameter in Section 3. Let tc ∈ T

be such that tc > T
2 and

|Desired(tc)− Actual(tc)| ≤ v
∧

∀t · T
2 ≤ t < tc ⇒ |Desired(t)− Actual(t)| > v

That is, tc is the first point in time after T
2 where the difference between Actual

and Final Desired values has reached v. We then define the smoothness objective
function OS as: max tc<t≤T {|Desired(t)− Actual(t)|}
That is, OS is the maximum difference between Desired and Actual after tc.

– Responsiveness: Let y be the responsiveness parameter in Section 3. We define
the responsiveness objective function OR to be equal to tr such that tr ∈ T and
tr > T

2 and
|Desired(tr)− Actual(tr)| ≤ y

∧
∀t · T

2 ≤ t < tr ⇒ |Desired(t)− Actual(t)| > y

That is, OR is the first point in time after T
2 where the difference between Actual

and Final Desired values has reached y.

We did not use w from the smoothness and z from the responsiveness properties in def-
initions of OS and OR. These parameters determine pass/fail conditions for test cases,
and are not required to guide the search. Further, w and z depend on the specific hard-
ware characteristics and vary from customer to customer. Hence, they are not known
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at the MiL level. Specifically, we define OS to measure the maximum overshoot rather
than to determine whether an overshoot exceeds w, or not. Similarly, we define OR to
measure the actual response time without comparing it with z.

The three above objective functions are heuristics and provide numerical approxi-
mations of the controller properties, allowing us to compare different test inputs. The
higher the objective function value, the more likely it is that the test input violates the
requirement corresponding to that objective function. We use these objective functions
in our search algorithms discussed in the next section.

4.2 Search Algorithms

Figure 4 shows an overview of our automated MiL testing approach. In the first step,
we receive a controller-plant model (e.g., in MATLAB/Simulink) and a set of objective
functions obtained from requirements. We divide the input search space into a set of
regions, and assign to each region a value indicating the evaluation of a given input
objective function on that region based on random search (Exploration). We refer to the
result as a HeatMap diagram [11]. Based on domain expert knowledge, we select some
of the regions that are more likely to include critical and realistic errors. In the second
step, we focus our search on the selected regions and employ a single-state heuristic
search to identify within those regions the worst-case scenarios to test the controller.

+
Controller-

plant 
model

Objective 
Functions  

HeatMap 
Diagram  

Worst-Case 
Scenarios

List of 
Critical 
Regions

2. Singl-State 
Search

Domain
Expert

1. Exploration

Fig. 4. An overview of our automated approach to MiL testing of continuous controllers

In the first step of our approach in Figure 4, we apply a random (unguided) search to
the entire search space. The search explores diverse test inputs to provide an unbiased
estimate of the average objective function values at different regions of the search space.
In the second step, we apply a heuristic single-state search to a selection of regions in
order to find worst-case scenarios that may violate the controller properties.

Figure 5(a) shows the random search algorithm used in the first step. The algorithm
takes as input a controller-plant model M and an objective function O, and produces a
HeatMap diagram (e.g., see Figure 5(b)). Briefly, the algorithm divides the search space
S of M into a number of equal regions. It then generates a random point p in S in line
4. The dimensions of p characterize an input step function Desired which is given to
M as input in line 6. The model M is executed in Matlab/Simulink to generate the
Actual output. The objective function O is then computed based on the Desired and
Actual functions. The tuple (p, o) where o is the value of the objective function at p is
added to P . The algorithm stops when the number of generated points in each region
is at least N . Finding an appropriate value for N is a trade off between accuracy and
efficiency. Since executingM is relatively expensive, it is not efficient to generate many
points (large N ). Likewise, a small number of points in each region is unlikely to give
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(a)
Algorithm. RANDOMEXPLORATION

Input: A controller-plant model M with input search space S.
An objective function O. An observation time T .

Output: An overview diagram (HeatMap).

1. Partition S into equal sub-regions
2. Let P = {}
3. repeat
4. Let p = (Initial Desired, Final Desired) be

a random point in S
5. Let Desired be a step function generated based on p and T
6. Run M with the Desired input to obtain the Actual output
7. o = O(Desired, Actual)
8. P = {(p, o)} ∪ P
9. until there are at least N points in each region of S do
10. Create a HeatMap diagram based on P

(b)
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Fig. 5. The first step of our approach in Figure 4: (a) The exploration algorithm. (b) An example
HeatMap diagram produced by the algorithm in (a).

us an accurate estimate of the average objective function for that region. In Section 5,
we discuss how we select a value for N for our controller case study.

The output of the algorithm in Figure 5(a) is a set P of (p, o) tuples where p is a
point and o is the objective function value for p. We visualize the set P via HeatMap
diagrams [11] where the axes are the initial and final desired values. In HeatMaps, each
region is assigned the average value of the values of the points within that region. The
intervals of the region values are then mapped into different shades, generating a shaded
diagrams such as the one in Figure 5(b). In our work, we generate three HeatMap dia-
grams corresponding to the three objective functions OL, OS and OR (see Section 4.1).
We run the algorithm once, but we compute OL, OS and OR separately for each point.

The HeatMap diagrams generated in the first step are reviewed by domain ex-
perts.They select a set of regions that are more likely to include realistic and critical
inputs. For example, the diagram in Figure 5(b) is generated based on an air compres-
sor controller model evaluated for the smoothness objective function OS . This con-
troller compresses the air by moving a flap between its open position (indicated by 0)
and its closed position (indicated by 1.0). There are about 10 to 12 dark regions, i.e.,
the regions with the highest OS values in Figure 5(b). These regions have initial flap
positions between 0.4 to 1.0 and final flap positions between 0.5 and 1.0. Among these
regions, the domain expert chooses to focus on the regions with the initial value be-
tween 0.8 and 1.0. This is because, in practice, there is more probability of damage
when a closed (or a nearly closed) flap is being moved.

Figure 6(a) presents our single-state search algorithm for the second step of the pro-
cedure in Figure 4. The single-state search starts with the point with the worst (highest)
objective function value among those computed by the random search in Figure 5(a).
It then iteratively generates new points by tweaking the current point (line 8) and eval-
uates the given objective function on the points. Finally, it reports the point with the
worst (highest) objective function value. In contrast to random search, the single-state
search is guided by an objective function and performs a tweak operation. The design
of the tweak is very important and affects the effectiveness of the search. In our work,
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(a)
Algorithm. SINGLESTATE-
SEARCH

Input: A controller-plant model M . A region r.
The set P computed by the algorithm in Figure 5(a).
An objective function O.

Output: The worst case scenario testCase .

1. P ′ = {(p, o) ∈ P | p ∈ r}
2. Let (p, o) ∈ P ′ s.t. for all (p′, o′) ∈ P ′, we have o ≥ o′

3. worstFound = o
4. for K iterations :
5. Let Desired be a step function generated by p
6. Run M with the Desired input to obtain

the Actual output
7. v = O(Desired, Actual)
8. if v > worstFound :
9. worstFound = v

testCase = p
10. p = Tweak(p)
11. return testCase

(b)

time
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Fig. 6. The second step of our approach in Figure 4: (a) The single-state search algorithm. (b) An
example output diagram produced by the algorithm in (a)

we use the (1+1) EA tweak operator [10]. Specifically, at each iteration, we shift p in
the space by adding values x′ and y′ to the dimensions of p. The x′ and y′ values are
selected from a normal distribution with mean μ = 0 and variance σ2. The value of σ
enables us to control the degree of exploration vs. exploitation in the search. With a low
σ, (1+1) EA becomes highly exploitative allowing to reach an optimum fast. But for a
noisy landscape, we need a more explorative (1+1) EA with a high σ [10]. We discuss
in Section 5 how we select σ. Since the search is driven by the objective function, we
have to run the search three times separately for OL, OS and OR.

Figure 6(b) shows the worst case scenario computed by our algorithm for the smooth-
ness objective function applied to an air compressor controller. As shown in the figure,
the controller has an undershoot around 0.2 when it moves from an initial desired value
of 0.8 and is about to stabilize at a final desired value of 0.3.

5 Evaluation

To empirically evaluate our approach, we performed several experiments reported in
this section. The experiments are designed to answer the following research questions:

RQ1: In practice, do the HeatMap diagrams help determine a list of critical regions?
RQ2: Does our single-state search algorithm effectively and efficiently identify worst-
case scenarios within a region?
RQ3: Can we use the information in the HeatMap diagrams to explain the performance
of the single-state search in the second step?

Setup. To perform the experiment, we applied our approach in Figure 4 to a case study
from our industry partner. Our case study is a Supercharger Bypass Flap Position
Control (SBPC) module. SBPC is an air compressor blowing into a turbo-compressor to
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increase the air pressure, and consequently the engine torque at low engine speeds. The
SBPC module includes a controller component that determines the position of a me-
chanical flap. In SBPC, the desired and actual values in Figure 1 represent the desired
and actual positions of the flap, respectively. The flap position is a float value bounded
within [0...1] (open when 0 and closed when 1.0). The SBPC module is implemented
and simulated in Matlab/Simulink. Its Simulink model has 21 input and 42 output vari-
ables, among which the flap position is the main controller output. It is a complex and
hierarchical function with 34 sub-components decomposed into 6 abstraction levels. On
average, each sub-component has 21 Simulink blocks and 4 MATLAB function blocks.
We set the simulation time (the observation time) to 2 sec, i.e., T = 2s. The controller
property parameters were given as follows: x = 0.9s, y = 0.03, and v = 0.05.

We ran the experiment on Amazon micro instance machines which is equal to two
Amazon EC2 compute units. Each EC2 compute unit has a CPU capacity of a 1.0-1.2
GHz 2007 Xeon processor. A single 2-sec simulation of the SBPC Simulink model
(e.g., Figure 6(b)) takes about 31 sec on the Amazon machine.

RQ1. A HeatMap diagram is effective if it has the following properties: (1) The region
shades are stable and do not change on different runs of the exploration algorithm.
(2) The regions are not so fine grained that it leads to generating too many points during
exploration. (3) The regions are not too coarse grained such that the points generated
within one region have drastically different objective function values.

(a) Liveness (b) Smoothness (c) Responsiveness

Fig. 7. HeatMap diagrams generated for our case study for the Liveness (a), Smoothness (b) and
Responsiveness (c) requirements

For the SBPC module, the search space S is the set of all points with float dimensions
in the [0..1]× [0..1] square. We decided to generate around 1000 points in S during the
exploration step. We divided up S into 100 equal squares with 0.1 × 0.1 dimensions,
and let N = 10, i.e., at least 10 points are simulated in each region during exploration.
The exploration algorithm takes on average about 8.5 hours on an Amazon machine
and can therefore be run overnight.

We executed our exploration algorithm three times for SBPC and for each of our
three objective functions. For each function, the region shades remained completely
unchanged across the three different runs. In all the resulting HeatMap diagrams, the
points in the same region have close objective function values. On average, the variance
over the objective function values for an individual region was about 0.001. Hence, we
concluded that N = 10 is suitable for our case study.
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The resulting HeatMap diagrams, shown in Figure 7, were presented to our industry
partner. They found the diagrams visually appealing and useful. They noted that the
diagrams, in addition to enabling the identification of critical regions, can be used in
the following ways: (1) They can gain confidence about the controller behaviors over
the light shaded regions of the diagrams. (2) The diagrams enable them to investigate
potential anomalies in the controller behavior. Specifically, since controllers have con-
tinuous behaviors, we expect a smooth shade change over the search space going from
clear to dark. A sharp contrast such as a dark region neighboring a light-shaded region
may potentially indicate an abnormal behavior that needs to be further investigated.

RQ2. For the second step of our approach in Figure 4, we opt for a single-state search
method in contrast to a population search such as Genetic Algorithms (GA) [10]. In our
work, a single computation of the fitness function takes a long time (31s), and hence,
fitness computation for a set of points (a population) would be very inefficient. We
implemented the Tweak statement in the algorithm in Figure 6(a) using the (1+1) EA
heuristic [10] by letting σ = 0.01. Given σ = 0.01 and a point located at the center
of a 0.1 × 0.1 region, the result of the tweak stays inside the region with a probability
around 99%. Obviously, this probability decreases when the point moves closer to the
corners. In our search, we discard the points that are generated outside of the regions,
and never generate simulations for them. In addition, for σ = 0.01, the (1+1) EA search
tends to converge to a point not far from the search starting point. This is because with
the probability of 70%, the result of the tweak for this search does not change neither
dimension of a point further than 0.01.
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Fig. 8. Comparing (1+1) EA and random search average and distribution values for two represen-
tative HeatMap regions: (a)-(c) Diagrams related to the region specified by dashed white circle in
Figure 7(b). (d)-(f) Diagrams related to the region specified by dashed white circle in Figure 7(a).
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We applied (1+1) EA to 11 different regions of the HeatMap diagrams in Figure 7
that were selected by our domain experts among the regions with the highest objec-
tive function average values. Among these, three were chosen for Liveness, four for
Smoothness and four for Responsiveness. As shown in Figure 6(a), for each region, we
start the search from the worst point found in that region during the exploration step.
This enables us to reuse the existing search result from the first step. Each time we
run (1+1) EA for 100 iterations, i.e., K = 100. This is because the search has always
reached a plateau after 100 iterations in our experiments. On average, both (1+1) EA
and random search took about around one hour to run for 100 iterations.

We identified 11 worst case scenarios. Figure 6(b) shows the simulation for one
of these scenarios concerning smoothness. The simulations for all 11 regions indicate
potential violations of the controller requirements that might be due to errors in the
controller or plant models. To precisely identify the sources of violations and to take
the right course of action, our industry partner plans to apply the resulting scenarios at
the HiL testing level. In our work, we could identify better results than test scenarios
devised by domain experts. For example, Figure 6(b) shows an undershoot scenario
around 0.2 for the SBPC controller. The maximum identified undershoot/overshoot for
this controller by manual testing was around 0.05. Similarly, for the responsiveness
property, we found a scenario in which it takes 200ms for the actual value to get close
enough to the desired value while the maximum corresponding value in manual testing
was around 50ms.

Note that in all the 11 regions, the results of the single-state search (step 2 in Figure
4) showed improvements over the scenarios identified by pure exploration (step 1 in
Figure 4). On average, the results of the single-state search showed a 12% increase
for liveness, a 35% increase for smoothness, and a 18% increase for responsiveness
compared to the result of the exploration algorithm.

Random search within each selected region was used as a baseline to evaluate the
efficiency and effectiveness of (1+1) EA in finding worst-case scenarios. In order to
account for randomness in these algorithms, each of them was run for 50 rounds. We
used 22 concurrent Amazon machines to run random search and (1+1) EA for 11 re-
gions. The comparison results for two representative HeatMap regions are shown in
Figure 8. Figures 8(a)-(c) are related to the HeatMap region specified in Figure 7(b),
and Figures 8(d)-(f) are related to that in Figure 7(a). Figures 8(a) and (d) compare the
average objective function values for 50 different runs of (1+1) EA and random search
over 100 iterations, and Figures 8(b) and (e) (resp. (c) and (f)) show the distributions
of the objective function values for (1+1) EA (resp. random search) over 100 iterations
using box plots. To avoid clutter, we removed the outliers from the box plots.

Note that the computation time for a single (1+1) EA iteration and a single random
search iteration are both almost equal to the computation time for an objective function,
i.e., 31s. Hence, the horizontal axis of the diagrams in Figure 8 shows the number of
iterations instead of the computation time. In addition, we start both random search and
(1+1) EA from the same initial point, i.e., the worst case from the exploration step.

Overall in all the regions, (1+1) EA eventually reaches its plateau at a value higher
than the random search plateau value. Further, (1+1) EA is more deterministic than ran-
dom, i.e., the distribution of (1+1) EA has a smaller variance than that of random search,
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especially when reaching the plateau (see Figure 8). In some regions (e.g., Figure 8(d)),
however, random reaches its plateau slightly faster than (1+1) EA, while in some other
regions (e.g. Figure 8(a)), (1+1) EA is faster. We will discuss the relationship between
the region landscape and the performance of (1+1) EA in RQ3.
RQ3. We drew the landscape for the 11 regions in our experiment. For example, Fig-
ure 9 shows the landscape for two selected regions in Figures 7(a) and 7(b). Specifically,
Figure 9(a) shows the landscape for the region in Figure 7(b) where (1+1) EA is faster
than random, and Figure 9(b) shows the landscape for the region in Figure 7(a) where
(1+1) EA is slower than random search.
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Fig. 9. Diagrams representing the landscape for two representative HeatMap regions: (a) Land-
scape for the region in Figure 7(b). (b) Landscape for the region in Figure 7(a).

Our observations show that the regions surrounded mostly by dark shaded regions
typically have a clear gradient between the initial point of the search and the worst case
point (see e.g., Figure 9(a)). However, dark regions located in a generally light shaded
area have a noisier shape with several local optimum (see e.g., Figure 9(b)). It is known
that for regions like Figure 9(a), exploitative search works best, while for those like Fig-
ure 9(b), explorative search is most suitable [10]. This is confirmed in our work where
for Figure 9(a), our exploitative search, i.e., (1+1) EA with σ = 0.01, is faster and more
effective than random search, whereas for Figure 9(b), our search is slower than random
search. We applied a more explorative version of (1+1) EA where we let σ = 0.03 to the
region in Figure 9(b). The result (Figure 10) shows that the more explorative (1+1) EA
is now both faster and more effective than random search. We conjecture that, from the
HeatMap diagrams, we can predict which search algorithm to use for the single-state
search step. Specifically, for dark regions surrounded by dark shaded areas, we suggest
an exploitative (1+1) EA (e.g., σ = 0.01), while for dark regions located in light shaded
areas, we recommend a more explorative (1+1) EA (e.g., σ = 0.03).

6 Related Work

Testing continuous control systems presents a number of challenges, and is not yet sup-
ported by existing tools and techniques [4,1,3]. The modeling languages that have been
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Fig. 10. Comparing average values for (1+1) EA with σ = 0.01, (1+1) EA with σ = 0.03, and
random search for the region in Figure 7(a)

developed to capture embedded software systems mostly deal with discrete-event or
mixed discrete-continuous systems [5,1,7]. Examples of these languages include timed
automata [12], hybrid automata [6], and Stateflow [13]. Automated reasoning tools built
for these languages largely rely on formal methods, e.g., model checking [4]. Formal
methods are more amenable to verification of logical and state-based behaviors such
as invariance and reachability properties. Further, their scalability to large and realistic
systems is still unknown. In our work, we focused on pure continuous systems, and
evaluated our work on a representative industrial case study.

Search-based techniques have been previously applied to discrete event embedded
systems in the context of model-based testing [14]. The main prerequisite in these ap-
proaches, e.g [15], is that the system or its environment has to be modeled in UML or
its extensions. While being a modeling standard, UML has been rarely used in control
system development. In our work, we apply our search to Matlab/Simulink models that
are actually developed by our industry partner as part of their development process.
Furthermore, our approach is not specifically tied to any particular modeling language,
and can be applied to any executable controller-plant model.

Continuous controllers have been widely studied in the control theory domain where
the focus has been to optimize their design for a specific platform or a specific hard-
ware configuration [3,4]. There has been some approaches to automated signal anal-
ysis where simulation outputs are verified against customized boolean properties im-
plemented via Matlab blocks [16]. In our work, we automatically evaluate quantita-
tive objective functions over controller outputs. In addition, the signal analysis method
in [16] does neither address systematic testing, nor does it include identification and
formalization of the requirements.

Finally, a number of commercial verification and testing tools have been developed,
aiming to generate test cases for MATLAB/Simulink models, namely the Simulink De-
sign Verifier software [8], and Reactis Tester [9]. To evaluate requirements using these
tools, the MATLAB/Simulink models need to be augmented with boolean assertions.
The existing assertion checking mechanism, however, handles combinatorial and log-
ical blocks only, and fails to evaluate the continuous MATLAB/Simulink blocks (e.g.,
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integrator blocks) [1]. As for the continuous behaviors, these tools follow a methodol-
ogy that considers the MiL models to be the test oracles [1]. Under this assumption, the
MiL level testing can never identify the inaccuracies in the controller-plant models. In
our work, however, we rely on controller requirements as test oracles, and are able to
identify requirement violations in the MiL level models.

7 Conclusions

In this paper, we proposed a search-based approach to automate generation of Model-
in-the-loop level test cases for continuous controllers. We identified and formalized
a set of common requirements for this class of controllers. Our proposed technique
relies on a combination of explorative and exploitative search algorithms. We evaluated
our approach by applying it to an automotive air compressor module. Our experiments
showed that our approach automatically generates several test cases that had not been
previously found by manual testing based on domain expertise. The test cases indicate
potential violations of the requirements at the MiL level, and our industry partner is
interested in investigating them further by evaluating the test cases at the Hardware-
in-the-loop level. In addition, we demonstrated the effectiveness and efficiency of our
search strategy by showing that our approach computes better test cases and is faster
than a pure random test case generation strategy.

In future, we plan to perform more case studies with various controllers and from dif-
ferent domains to demonstrate generalizability and scalability of our work. In addition,
we are interested to experiment with various search methods and improve our results
by tuning and combining them. Finally, in collaboration with our industry partner, we
plan to expand upon our current MiL testing results and investigate the identified test
cases at the HiL level.
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Abstract. A novel framework for predicting regression test failures is
proposed. The basic principle embodied in the framework is to use per-
formance analysis tools to capture the runtime behaviour of a program as
it executes each test in a regression suite. The performance information is
then used to build a dynamically predictive model of test outcomes. Our
framework is evaluated using a genetic algorithm for dynamic metric se-
lection in combination with state-of-the-art machine learning classifiers.
We show that if a program is modified and some tests subsequently fail,
then it is possible to predict with considerable accuracy which of the
remaining tests will also fail which can be used to help prioritise tests in
time constrained testing environments.

Keywords: regression testing, test failure prediction, program analysis,
machine learning, genetic metric selection.

1 Introduction

Regression testing is a software engineering activity in which a suite of tests
covering the expected behaviour of a software system are executed to verify a
system’s integrity after modification. As new features are added to a system,
regression tests are re-run and outputs compared against expected results to
ensure new feature code and system changes have not introduced bugs into old
feature sets.

Ideally, we would like to run all regression tests as part of the normal develop-
ment process when each new feature is committed. However, regression testing
the large number of tests required to cover (an ever expanding) previous feature
set can take considerable time. For example, the regression test suite [14, 15]
used in Section 4 of this work takes approximately 12 hours to execute fully in
our environment which makes on-line regression testing difficult.

Recently authors concerned with regression testing have began looking to
performance analysis and machine learning to aid software engineering [1] and
in this paper we propose a method that joins performance analysis [2], machine
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learning [3] and genetic algorithms [4] to predict the outcome of unexecuted
regression tests in a large regression test suite. A contribution of our work is
the inclusion of a set of unique execution metrics measured from the dynamic
execution path of the program to compliment the pass/fail and coverage metrics
used in previous work [5]. Since the dynamic execution paths corresponding to
different test inputs on the same program, to greater or lesser degrees, overlap,
this information is useful for modelling the interrelationships between tests and
therefore for predicting test outcomes as we will soon show.

One problem with modelling interactions based on execution paths is that even
small programs can have a very high execution path trace length and therefore
there can be an extremely large number of dynamic metrics describing even a
simple test’s execution [6]. We solve this problem by using dynamic analysis
tools to compress the program’s execution trace information into a set of key
metrics that we consider could be important determiners and then we use a
genetic algorithm to select the best subset of these metrics for a final predictive
model as detailed later in this paper.

Our results show that it is indeed possible to predict, with high accuracy,
which future regression tests will fail. Additionally we present results showing
which of our measurement metrics has the greatest impact on model prediction
accuracy. For software engineers, the results presented in this paper demonstrate
that the proposed approach could be useful for either ranking tests (e.g. in order
to execute those most likely to fail first) or for skipping tests (e.g. in order to
avoid executing both tests in a pair if the test outcomes have high correlation).
For dynamic instrumentation tool makers and quality assurance professionals
the results indicate the value of key performance analysis metrics and could help
focus future research in dynamic measurement tool development.

2 Dynamic Performance Analysis

Before we introduce our algorithm to predict regression test correlations, we first
present an overview of the Open Performance Analysis Toolkit (OpenPAT) [2]
which provides the dynamic execution path measurements we need. OpenPAT [2]
is an open source performance analysis toolkit that analyses program execution
paths.

OpenPAT is derived from 3S [7,8] and, like its predecessor, OpenPAT instru-
ments programs by inserting measurement stubs at critical points in a program’s
assembly code as illustrated in Figure 1(a). At runtime, the stubs back-up the
main program’s state and measure characteristics such as timing information
which they pass on to one or more analysis tools for consolidation and later
reporting as illustrated in Figure 1(b).

The approach of static assembly instrumentation and dynamic analysis can be
used with any program that compiles to assembly [7,8] and combines the low exe-
cution overhead advantages of traditional one time instrumentation toolkits such
as SUIF [9] with the dynamic performance measurement accuracy advantages
of modern frameworks such as Gilk [10], Valgrind [11] and Pin [12]. OpenPAT
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Fig. 1. The Open Performance Analysis Toolkit (OpenPAT) approach of combining
static instrumentation with dynamic analysis

extends the 3S meaning of a “program that compiles to assembly” to include
programs that compile to assembly bytecodes running on a virtual machine [2]
such as .NET and Java so that the same tools can be used to analyse pro-
grams targeted for native and interpreted environments. In addition to allowing
the same tools to gather runtime measurements for a wide range of languages,
OpenPAT adds several other features that can be of value for regression testing
including test case code coverage metrics, ranged instrumentation and assembly
block to source code correspondence information [2].

OpenPAT comes with a number of analysis tools that provide unique dynamic
and structural analysis metrics. We will concentrate on the metrics provided by
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just one of these tools, the OpenPAT version 3.0.0 hotspot tool discussed further
in Section 3.2, which will be sufficient for demonstrating that we can provide
high regression test prediction accuracy with our approach of combining dynamic
performance metrics with machine learning and genetic algorithms which we
describe next.

3 Approach to Predicting Regression Test Failures

We now describe the framework we have constructed for building predictive
models of regression test outcomes based on dynamic execution measurements.
We begin with an overview of the framework followed by a subsection describing
the role of evolutionary search in our approach.

3.1 Framework Overview

Our framework for predicting test failures and ranking tests is explained with
reference to Figure 2. The hypothesis underlying our framework is that dynamic
execution metrics measured for a correct execution of a program contain char-
acteristics that describe how the program needs to operate internally in order
to produce valid outputs and that machine learning can use this information to
better discern the relationships between different tests than simply relying on
the test code coverage intersection metrics of previous work [5].

The basic framework process is to run a suite of initial regression tests on a
program at a time when the program is known to be correct and to save the
correct test results for future comparison as in an unguided traditional testing
approach. At the same time, we also record dynamic and structural metrics for
the program’s execution for every test case using OpenPAT. These additional
OpenPAT metrics are referred to as “per test metrics” in Figure 2.

After the program has been modified we re-run the same tests. If the modifi-
cation has introduced a bug in previous tested features one or more tests will fail.
As each test completes, our framework takes the set of tests that have already
been executed (where the executed tests are labelled with either “P” or “F” for
pass or fail respectively), combines them with the dynamic metrics measured for
the correct version of the program, and constructs a table of labelled examples
suitable for machine learning.

The table consists of one row for each test that has been executed with
columns corresponding to the metrics measured by OpenPAT for the original
“correct” version of the program and the known pass/fail results from the “in-
correct” version. The table is used to build a dynamically predictive model of
test failure as shown in Figure 2. This model in turn is used to label all of
the remaining outstanding tests with a failure probability based on the original
OpenPAT measurements that can be used to rank tests.

With the test failure rank predictions, a developer is equipped to decide
whether to:
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Fig. 2. Flow of information in the test failure prediction system. The inputs are the
regression test suite and two versions of the program, one correct and one faulty.
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Table 1. Structural and dynamic metrics measured by our version of the OpenPAT
hotspot tool. We added the ticks min and ticks max timing metrics to the basic
hotspot tool provided in the OpenPAT version 3.0.0 pre-release 1 distribution our
selves by simply inserting min and max counters in the OP MEASUREMENT T and per
entrance updates in the OpenPAT version 3.0.0 hotspot OP TOOL ANALYSE function.

Metric Class Description

source file Structural Source file where a code section is located
source line Structural Line in the source file being executed
instructions Structural Number of assembly instructions in a code section
order Dynamic Order in which code sections were first executed
entries Dynamic Number of times a code section was executed
ticks min Dynamic Minimum CPU cycles a code section took to execute
ticks max Dynamic Maximum CPU cycles a code section took to execute
ticks sum Dynamic Total CPU cycles to execute a code section

1. execute the remaining tests that are most likely to fail first in order to provide
additional information to support their debug process or

2. execute the remaining tests that are not likely to fail first to identify if
unrelated features are affected or

3. execute the remaining tests that the learning classifier is not sure about
(probability of failure around 50%) in order to strengthen the prediction
probabilities for the remaining tests, which requires retraining the model.

The exact decision will be developer, context and business process dependent,
but the decision is supported by our algorithm’s predictions which we need to
be of high quality to be of any practical value.

3.2 Program Test Metrics

The OpenPAT toolkit includes a wide range of metrics available at a fine-grained
level for each code section aka “assembly basic block”, in the program. Because
a typical program can have a large number of code sections [22], we can quickly
obtain an extremely high dimensionality (that being code sections times metrics
per section) in the dataset. Unfortunately, many machine learning algorithms
do not perform well when data dimensionality is high compared to the number
of labelled examples used for training [21]. Therefore it is desirable to reduce
the data dimensionality somehow and we discuss our use of a genetic algorithm
for metric selection later in this work. First however, we describe the specific
OpenPAT metrics that we used to measure each program’s execution per-test.

The OpenPAT 3.0.0 hotspot tool provides a number of useful program anal-
ysis metrics that we use for machine learning. These metrics fall broadly into
two categories: structural metrics and dynamic metrics. These are described in
Table 1.

The source file and source line structural measures of the hotspot

tool together with the dynamic entries measure give, in effect, test coverage
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information. Specifically, each code section that is executed will have an entries

figure of at least one and as the static metrics map the number of entries back
to specific code lines we know that every code section that is executed by a test
will have entries ≥ 1 and 0 otherwise.

The structural instructions metric can be considered a measure of source
line complexity. Code that is more complex such as long formulas will, in general,
expand to more assembly instructions than simpler code and so the number
of assembly instructions associated with a code section can be an important
indicator of potential logical issue points.

The dynamic order metric is a program execution path indicator. Program
code sections that execute earlier in a program’s execution path are assigned
an earlier execution order by OpenPAT. For example, if a program consists of
three code sections A, B and C, and A is executed first, then B executes in a
loop 100 times followed finally by C, the OpenPAT execution order for the three
blocks would be 1, 2 and 3 respectively (with B having an entries figure of
100 because of the loop). While it is true that a program’s execution path can
be test input data dependent, the internal path of tests is expected to provide
information about dependent chains of sub-feature tests through predictable
sub-path patterns. Thus (a possibly shifted) order metric chain can be useful
in identifying test dependencies in addition to the traditional measure of the
structural intersection of covered lines which is also identified by the hotspot

tool as explained above.
The dynamic ticks min, ticks max and ticks sum metrics provide actual

CPU execution cycle measurements for the blocks of code executing in a pro-
gram. The ticks min and ticks max can be used to ascertain information about
cache and data access patterns in a program’s execution. For example, if code
section B executes repeatedly in a loop on a single set of data obtained from
main memory, then the second time B executes it could take considerably less
time than the first if the data being operated on is still in the CPU’s cache.
As another example, if the same data is used by A and B and A executes be-
fore B then B’s ticks max figure could be close to its ticks min figure because
the overhead of initial cache loading was suffered by A. The ticks sum met-
ric is the total time a code section takes to execute and can compliment the
instructions and entries figures in providing an execution time dimension to
the computational complexity for a line of source code.

While the eight metrics of Table 1 are expected to provide useful information
for test case outcome correlation prediction for the reasons outlined above, some
can be expected to be of more predictive importance than others. Thus we will
evaluate the importance of the different metrics as predictors of regression test
set outcomes in Section 4.5 using a genetic search to find the best subset of the
metrics to train a machine learning classifier with.

4 Evaluation

In this section we describe the actual implementation of our framework concept
and provide comprehensive practical evaluation results.
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Table 2. Siemens HR Variant v 2.2 [14,15] programs and their test suites. The Code
Lines column is the source lines excluding comments and blank lines in the program,
the Code Sections column refers to OpenPAT version 3.0.0 compiled program basic
blocks, #Faulty Versions is the number of faulty versions of the programs supplied,
#Tests is the number of feature tests in the benchmark suite and #Failing Tests is the
average number of failing feature tests for each of the faulty program versions.

Program Name Code Lines Code Sections #Faulty Versions #Tests #Failing Tests

print tokens 472 315 7 4,072 69
print tokens2 399 286 10 4,057 224
replace 512 442 31 5,542 107
schedule 292 244 8 2,638 96
schedule2 301 264 9 2,638 33
tcas 141 150 41 1,592 39
tot info 440 259 23 1,026 84

4.1 Programs and Regression Test Suites

In order to evaluate our method, we need one or more programs, each with a
corresponding suite of regression tests. We require correct and faulty versions of
the programs so that pass and fail test results can be used to test the predictive
power of our approach. To this end, we used the public benchmark of faulty
programs originally developed by Siemens and discussed in [14, 15].

Table 2 describes the program suite. There are in total seven different pro-
grams, all written in the C programming language, each program accompanied
by over a thousand feature tests. Each program also comes with a varying num-
ber of faulty, buggy variants.

The figures in Table 2 reflect some minor adjustments we made to the original
dataset. In particular, there are three faulty versions that fail no tests. This leaves
129 buggy variants of the seven programs in total. Many of the test suites also
have a small number of duplicate tests, and the number of tests in the table
reflects the test suite sizes after removal of these duplicates.

4.2 Metric Volume and Balance for the Benchmarks

We took measurements for the correct versions of each program as they exe-
cuted every test. These measurements were used to compute the metrics for our
datasets.

We then compiled each faulty program and re-ran the tests again, this time
to determine which tests would pass or fail as a consequence of the bugs injected
into the faulty versions. These pass/fail outcomes became the ground truth labels
for our datasets. Note that there are 129 datasets in total, one for each faulty
program version, with the number of instances in each dataset being equal to
the number of (non-duplicate) tests in the corresponding program’s test suite.

The dynamic performance execution measurements that we used were acquired
using OpenPAT’s hotspot tool. Specifically, we measured the eight metrics of
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Table 1 for each code section in the program as described in Section 3.2. As the
number of code sections in the benchmark set ranged from 150 for tcas to 442
for replace, the total metric measurements for each program test case ranged
from 1,262 to 3,653. Such a large number of metrics can cause issues for machine
learning algorithms [21] as introduced in Section 3.2 and is the justification for
our inclusion of Genetic Algorithms in this work which we discuss further in Sec-
tion 4.4.

In addition to the large number of metrics caused by the fine measurement
granularity available in OpenPAT, there was also quite a large degree of class
imbalance in the datasets as the number of failing tests for the faulty benchmarks
of Table 2 is only a small proportion of the total number of regression tests for
each program. This class imbalance has severe impact on how any predictive
modelling scheme can be evaluated as discussed in the next section.

4.3 Prediction Quality Assessment

In order to evaluate the effectiveness of our method, it was necessary to decide
on a scheme for measuring and comparing regression test outcome predictions
made by different implementations of our basic approach. The simplest measure,
prediction accuracy, is not ideal for the Siemens test suite [14,15] because there
are only a small percentage of failing tests for each program as shown in Table 2.
In fact the average number of failing tests is only 3% for the programs of Table 2,
so even a näıve prediction scheme that simply classified all tests as passing would
already achieve an average accuracy of around 97% for the regression test suite.

An alternative, and the prediction quality metric we use in this paper, is to
report Area Under the Curve (AUC) [16], a different machine learning perfor-
mance metric that focusses on the trade-off between true positives and false
positives as the classification threshold changes. AUC reports a number between
0.5 (for a random classifier) and 1.0 (for a perfect classifier). The advantage of
this metric is that it is not sensitive to class imbalance, and therefore a classifier
predicting that all tests pass will achieve the worst possible AUC of 0.5.

4.4 Predictive Algorithm Selection

In total, we evaluated nine different combinations of test class (pass/fail) pre-
diction algorithms on our datasets, as detailed in Table 3. The prediction algo-
rithms consist of three machine learning approaches: Naive Bayes [18], a simple
bayesian classifier that assumes conditional independence of metrics; Sequen-
tial Minimal Optimization [19], a linear support vector machine classifier; and
Random Forests [20], a state-of-the-art method based on an ensemble of trees.
We used the implementations of these algorithms from Weka 3.7.7 [3] with all
default settings, except for the Random Forests algorithm that had its number
of trees set to 100.

To allow us to evaluate the relative importance of different dynamic measure-
ment metrics on regression test prediction quality we used three versions of each
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Table 3. The nine algorithmic combinations used to predict regression test outcomes.
Each of the machine learning algorithms has three forms: one with all eight Open-
PAT dynamic metrics as input, a second with the metrics pre-selected by a Genetic
Algorithm and the third with coverage-only metrics.

Class Prediction Algorithm Metric Selection Algorithm

NB: Naive Bayes ALL eight hotspot metrics or
SMO: Sequential Minimal Opt. × GA: metrics selected by a Genetic Algorithm or
RF: Random Forests CV: Coverage only metrics

dataset for each of the three machine learning approaches: the first dataset ver-
sion comprised all of the OpenPAT metric measurement information; the second
version comprised a subset of the metric information; and the third supplied only
the coverage information from Table 1. To select the metric subset for the second
variant of the datasets we used a Simple Genetic Algorithm [4] with a fitness
function that rewards correlation of the metrics with the test outcomes (i.e. pass
or fail) while explicitly penalising redundancy between metrics as described in
Hall [13]. Our genetic algorithm (GA) was again a Weka 3.7.7 implementation
and was a simple binary GA with “1” on a chromosome to indicate the presence
of a particular OpenPAT metric or coverage feature and a “0” to indicate its ab-
sence. The GA was executed for 100 generations with all other default settings,
and it was applied only to the training split of the dataset as described below.

We trained and tested each combination of class prediction and metric selec-
tion algorithm with randomly selected subsets of the regression tests for each of
the faulty versions of the benchmark programs. In all cases, the selected training
tests comprised 25% of the total tests (simulating 25% of the regression suite be-
ing executed), and the remainder of the tests (i.e. 75%) were used for evaluating
the model’s predictive power.

We performed ten randomised training and predictive power assessment runs
for each of the nine algorithmic combinations of Table 3 and the 129 faulty
program versions of our test suite yielding a total of 129 × 10 × 9 = 11, 610
individual experimental runs. Prediction quality figures were computed to assess
the quality of each experimental run as discussed next.

4.5 Results

The average Area Under the Curve (AUC) performance quality results of our
nine experimental runs across the 129 faulty program versions and nine algorithm
combinations are presented in Table 4 below. The best performing classifier
algorithm for each program has been emphasised in the tables for the reader’s
convenience.

From the table, three observations can be made. Firstly, the Random Forests
algorithm is clearly the best performing classification method. The linear support
vector machine classifier Sequential Minimal Optimization frequently comes a
close second, but overall it is unable to improve on Random Forests. The Naive
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Table 4. Average Area Under the Curve (AUC) prediction quality results by program
and algorithmic classifier. Each column provides results for one of the machine learning
classifiers used with a subset of OpenPAT metric data from Table 3. For example the
first three columns give the results for the Naive Bayes machine learning classifier
used with all the OpenPAT metrics, a subset of the metrics selected by a Genetic
Algorithm (GA) and just the OpenPAT coverage metrics (CV) respectively as discussed
in Section 4.4.

Naive Bayes Seq. Min. Opt. Random Forests
program ALL GA CV ALL GA CV ALL GA CV

print tokens 0.614 0.677 0.500 0.793 0.807 0.761 0.866 0.872 0.810
print tokens2 0.820 0.858 0.500 0.934 0.937 0.931 0.968 0.967 0.936
replace 0.726 0.812 0.500 0.917 0.914 0.884 0.913 0.916 0.877
schedule 0.644 0.718 0.500 0.817 0.823 0.789 0.831 0.843 0.791
schedule2 0.613 0.714 0.500 0.856 0.851 0.778 0.879 0.872 0.845
tcas 0.820 0.857 0.500 0.868 0.864 0.734 0.860 0.857 0.883
tot info 0.765 0.823 0.500 0.925 0.931 0.879 0.944 0.944 0.887

Bayes classifier is universally the worst classifier. It is also apparent that the best
algorithmic classifier’s predictive abilities are always much more accurate than
random guessing.

Secondly, the inclusion of the OpenPAT metrics improves performance in most
cases compared to using simple code coverage. This is most obvious in the case
of Naive Bayes, where code coverage (i.e. CV) features alone are insufficient to
train the model at all, as demonstrated by the AUC measures being at 0.5 which
indicates no predictive power.

The third observation is that for four of seven benchmarks, the best prediction
quality was achieved using a Genetic Algorithm to select a subset of the Open-
PAT metrics so as not to “overwhelm” the machine learning algorithm with all
the OpenPAT metrics as discussed in Section 4.2. In fact, considering each of
the machine learning algorithms in isolation, we see that the GA variant of the
classification algorithm gives the best results for:

1. all seven of the benchmarks using the Naive Bayes algorithm

2. four of the seven benchmarks using Sequential Minimal Optimization and

3. four of the seven benchmarks using Random Forests

which indicates the value of the GA metric sub-selector in these tests.
In order to examine the performance of the GA more closely, we looked at

the OpenPAT metrics selected by it during all runs for Naive Bayes over all
129 datasets. The results are shown in Table 5, and they give the probability of
each metric being selected by the GA, averaged over faulty version and run. The
results show that while the different metrics are selected fairly uniformly, there
is a slight bias towards ticks sum, entries and order. It is also valuable to
note that while the GA only selects 30% of the available attributes for use with
the Naive Bayes algorithm, the predictive quality of the GA variant is better
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Table 5. Importance of the OpenPAT hotspot tool metrics as indicated by the
probability that each metric was selected by the Genetic Algorithm for the Naive
Bayes machine learning algorithm

Metric Class GA Selection Prob.

source file Structural 29%
source line Structural 29%
instructions Structural 29%
order Dynamic 30%
entries Dynamic 31%
ticks min Dynamic 29%
ticks max Dynamic 29%
ticks sum Dynamic 31%

than the Naive Bayes approach using all the available metrics as shown by the
ALL column of Table 4 for every benchmark considered here.

As previously indicated, the genetic algorithm allows the Naive Bayes classi-
fier to perform better with larger initial metric volumes (number of metrics used
times program code sections the metrics are measured for) than would other-
wise be possible. While the GA metric subset selection improvement was less pro-
nounced for the other machine learning algorithms for these small benchmarks,
the Genetic Algorithm improvements are already valuable for these benchmarks
and are expected to become more pronounced for larger commercial and open
source programs as the metric volume increases [22].

5 Conclusion

We have presented a framework for using dynamic execution measurements taken
during the regression testing of correct versions of a program for predicting future
regression test failures using genetic search and machine learning algorithms. Our
experiments demonstrate that combining dynamic performance metric informa-
tion with machine learning and genetic algorithms can provide improved test
result accuracy predictions over approaches that use test code coverage metric
intersections alone. This increased prediction accuracy could lead to reductions
in regression testing time and allow regression testing to be more frequently
applied to feature modifications to support on-line software quality assessment.

While we restricted our experiments to the well known Siemens test suite [14,
15] and eight OpenPAT metrics [2] in this paper, the approach as presented
is directly applicable to larger software programs and additional dynamic pro-
gram analysis metrics. Future work may consider incorporating dynamic metric
information gathered during testing (not just prior information gathered for
the correct program version) into the method, adding new dynamic measure-
ment metrics from OpenPAT including for example detailed internal control flow
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information, evaluating the accuracy of the approach with different training sets
sizes, different prediction quality metrics, and different code section sizes, and
evaluating the benefits of the GA metric selection feature with different machine
learning algorithms on larger commercial and open-source programs [22].
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Abstract. Selecting a set of requirements to be included in the next
software release, which has become to be known as the Next Release
Problem, is an important issue in the iterative and incremental software
development model. Since software development is performed under a
dynamic environment, some requirements aspects, like importance and
effort cost values, are highly subject to uncertainties, which should be
taken into account when solving this problem through a search technique.
Current robust approaches for dealing with these uncertainties are very
conservative, since they perform the selection of the requirements consid-
ering all possible uncertainties realizations. Thereby, this paper presents
an evolution of this robust model, exploiting the recoverable robust opti-
mization framework, which is capable of producing recoverable solutions
for the Next Release Problem. Several experiments were performed over
synthetic and real-world instances, with all results showing that the re-
covery strategy handles well the conservatism and adds more quality to
the robust solutions.

Keywords: Recoverable robustness, next release problem, search based
software engineering.

1 Introduction

In an iterative and incremental software development model, the selection of a
set of requirements to be added to the next software release is known as the
Next Release Problem (NRP). In such problem, each requirement is represented
by an importance, which refers to the value aggregated to the client when the
requirement is included in the next release, and a cost value, related to the effort
required to implement the requirement. In that context, the next release problem
consists in selecting a subset of requirements in such a way that the sum of their
importance is maximized, with the cost needed to implement those requirements
respecting the release’s available budget [1].

Therefore, in order to employ a search technique to solve the NRP, it is nec-
essary to obtain the importance and cost values of each requirement. The im-
portance values could be indicated by the client and the costs determined by the
development team. In both cases, these values are acquired through estimations,
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which can be hard to make due to the dynamic environment in which software
development takes place.

In fact, changes in the requirements characteristics can be fairly dangerous for
the whole system development. As can be perceived in the sensitivity analysis
by Harman et. al [2], small changes in the requirements features may have a high
impact on the requirements selection. Thereby, it is paramount to consider the
uncertainties related to the requirement’s importance and cost when solving the
NRP through optimization techniques [3].

The robust optimization is an operational research framework that identifies
and quantifies uncertainties in generic optimization problems [4]. It started to
gain more visibility after the first works in [5] and [6]. The robust optimization
framework consists of two steps. The first step seeks to identify and quantify all
uncertainties related to the problem. Using these information about the uncer-
tainties, the second step consists of building a model which seeks robust solutions,
that is, solutions which are feasible for every realization of the uncertainties.

The robust optimization framework has been previously applied to the NRP
[7]. In that paper, it was considered that the requirements importance could
assume different values due to the occurrence of certain events. The require-
ment’s importance was then calculated by taking into account all these possible
values and the respective occurrence probabilities. In order to examine the cost
uncertainties, it was defined a robustness control parameter, which indicated the
expected level of failure in the team cost estimations. This parameter actually
stipulates how many requirements will have their real cost higher than the orig-
inal estimate. Since there is no way to know in advance which requirements
will have different real cost values, this approach guaranteed that, even if the
team missed the cost of the most expensive requirements, the produced solution
would still be feasible. Experiments showed that the penalization with regard to
solution quality due to robustness is relatively small. This approach, however,
can still be considered conservative, because it assumes that, invariably, some
requirements are wrongfully estimated, and their real costs will be as high as
possible. Since the requirements selection is made considering the worst possible
cost uncertainty values, any different requirements’ cost realization will cause a
waste of resources.

In the work by Liebchen et. al [8], seeking to handle the conservatism of
the “classical” robust optimization, named strict robustness, it was introduced
a new concept of robustness, the recoverable robustness. A recoverable robust
solution is the one which, for a limited set of uncertainties realizations, can be
made feasible or recovered, by a limited effort [9]. Accordingly, the recoverable
robustness framework can improve the model in [7], producing a more “realist”
requirements selection for the next release problem.

In this context, this papers aims at answering the following research questions:

– RQ1: How to model the Next Release Problem considering the recoverable
robustness framework?

– RQ2: How much is gained in solution quality with the new recoverable robust
model when compared with the strict robust model?
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Consequently, the original and main contribution of this paper relates to the
tackling of the uncertainties in the Next Release Problem using the recoverable
robustness framework.

The remaining of this paper is organized as follows: in Section 2 the recover-
able robustness framework is explained in more details, while in Section 3, the
recoverable robust NRP model is evolved. Section 4 exhibits and examines the
experiments designed to evaluate the proposed formulation. Finally, Section 5
concludes the paper and points out some future research directions.

2 The Recoverable Robustness Framework

The recoverable robustness framework is composed of three main steps, as dis-
cussed in [9] and presented next:

1. Identify the uncertainties related to the problem (step Ω)
2. Develop a model which produces recoverable solutions (step M)
3. Define a set of possible recovery algorithms (step A)

These three steps are intrinsically connected. The model M is developed by
considering the uncertainties identified in Ω. The recovery algorithms A recover
solutions generated by M . Therefore, the triple (Ω,M,A) does not only states
that recovery is possible, but explicitly demonstrates how this recovery can be
performed.

For steps Ω and M , different modeling techniques can be employed from the
strict robustness literature, however, step A is a little trickier and can be formal-
ized as follows:

Definition 1. Let Fω be the set of feasible solutions under uncertainties real-
ization ω. A recovery algorithm A is the one which for every solution x under
realization ω, it generates a feasible solution, i.e., A(x, ω) ∈ Fω

Therefore, the output of a recoverable robust problem is genuinely a pair (x,A),
called precaution, which is composed of the solution x and a recovery algorithm
A. In the case where some uncertainty realization makes the solution x unfeasible,
it can be recovered by applying the algorithm A.

A generic recoverable robust problem can then be stated as follows:

optimize: f(x)

subject to: ∀ω ⊆ Ω : A(x, ω) ∈ Fω

In a practical context, one way to limit the effort needed to recover a solution is
to consider the number of changes to that solution during the recovery process.
Employing this bound in the recovery phase, the concept of k-recoverable robust-
ness was proposed by Büsing et. al [10][11]. This new approach is an attempt to
control the recovery phase. The recovery control parameter k acts as a limit to
the recovery algorithm, i.e., A(x, ω, k) must recover the solution making at most
k changes to the original solution. A k -recoverable robust problem can be stated
as:
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optimize: f(x)

subject to: ∀ω ⊆ Ω : A(x, ω, k) ∈ Fω

In the next section, this framework will be employed to the Next Release
Problem.

3 Evolving a Recoverable Robust Next Release Problem
Formulation

Given a set of requirements R = {r1, r2, . . . , rN}, the requirement ri importance
and cost values are represented by vi and ci, respectively. A classic formulation
of the Next Release Problem is presented next:

maximize:
N∑
i=1

vixi (1)

subject to:
N∑
i=1

cixi ≤ b (2)

where b is the release budget. The solution X can be represented as a vector
{x1, x2, . . . , xN} where xi = 1 indicates that the requirement ri is included in the
next release, xi = 0 otherwise.

As discussed earlier, the occurrence of certain events can change some re-
quirements’ characteristics, including the importance value. Thereby, this type
of uncertainty seems adequate to be treated in a discrete and probabilistic way,
using the concept of scenarios, as in [7].

A scenario can be defined as a set of importance values due to the occur-
rence of certain event. Thus, it is defined a set of scenarios S = {s1, s2, . . . , sM},
where each scenario is represented by s ⊂ S|s = {vs1, vs2 , . . . , vsN}, with vsi indicat-
ing the importance of requirement ri under scenario s. The range a requirement
importance value can vary is discrete and depends on the set of scenarios. In
the assignment of these importance values, the probability of each event taking
place can be considered. Thus, for each scenario s it is defined an occurrence
probability ps, with

∑M
s=1 ps = 1. The requirement importance value vi is then

defined as:

vi =

M∑
s=1

vsi ps (3)

The uncertainty related to the requirement’s cost is different. Usually, the cost
variation is different from one requirement to another and this difference may
not be discrete. Thus, it is unlikely that one would be able to raise a set of
scenarios based on possible events. Thereby, the requirement’s cost uncertainty
will be quantified in a continuous and deterministic way. Let ci be the estimated
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requirement cost. It is defined a value ĉi, which indicates the maximum expected
cost variation. These values are used to generate lower and upper bounds to the
real requirement cost c̄i, so that ci − ĉi ≤ c̄i ≤ ci + ĉi.

An alternative robust formulation to the release total cost is presented next:

N∑
i=1

cixi +

N∑
i=1

ĉixi (4)

In the above case, besides the requirements’ costs, it is also considered the cost
variation of all requirements selected to the next release. This approach guaran-
tees that, even in the worst possible case, i.e., when all requirements will cost
their upper bounds (ci + ĉi), the budget constraint will be satisfied. Clearly, this
model is very conservative since it assumes that the development team will miss
all cost estimates by the maximum amount.

In order to minimize this conservatism, the release cost considered in the NRP
robust formulation proposed in [7] can be seen below:

N∑
i=1

cixi +maxW⊆R,|W |≤Γ

∑
i∈W

ĉixi (5)

In this model, a control parameter Γ is defined, indicating the maximum number
of requirements that may have real costs different from the original estimates.
For instance, in a situation where the development team estimates are histor-
ically 20% incorrect, in a project with 50 requirements, the control parameter
would be Γ = 10. In order to calculate the release total cost, the variation of
all requirements will no longer be considered, but only the variation of the Γ

requirements in which the cost variation sum is maximum, represented by the
subset W ⊆ R. This model guarantees that, even if the team misses the costs of
the requirements with highest variations, the generated solution would still be
feasible.

Both robust approaches assume that some requirements cost estimates are
wrong, and the real cost of these requirements will be the highest possible. From
these assumptions, these models find solutions to all possible uncertainties real-
izations, which characterize them as strict robust approaches. As stated earlier,
these kind of robust solutions are still conservative and may waste a considerably
amount of resources.

This paper evolves the formulation in [7] by proposing a k-recoverable robust
model to the NRP. This improved model would be able to find non-conservative
solutions when the requirements costs are correctly estimated, i.e, solutions as
close as possible to the classic NRP model. At the same time, if some cost
uncertainty realization makes the solution unfeasible due to budget constraints,
the solution would be recovered by removing at most k requirements. In order to
model the release total cost so that the produced solution has the aforementioned
characteristics, the following functions are defined:
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basicCost(X) =

N∑
i=1

cixi (6)

uncertaintyLoss(X,Γ ) = maxW⊆R,|W |≤Γ

∑
i∈W

ĉixi (7)

recoveryGain(X, k) = minY⊆R,|Y |=k

∑
i∈Y

cixi (8)

The function basicCost() returns the classic NRP release total cost, i.e, the cost
sum of all requirements selected to the next release. The function uncertaintyLoss(Γ )

represents the robustness level [7] and calculates the sum of the Γ maximum re-
quirements cost variations. Finally, recoveryGain(k) is controlled by the recovery
parameter k and can be considered as the recovery level. It represents the sum of
the k minimum requirements cost estimates. For a certain solution, this recovery
level indicates the minimum cost that can be removed from the release in case
of recovery.

Thus, in the recoverable robust NRP model proposed in this paper, the release
total cost is computed as:

max(basicCost(X), basicCost(X) + uncertaintyLoss(X,Γ )− recoveryGain(X, k)) (9)

The robustness parameter Γ indicates how many requirements could have been
wrongfully estimated while the recovery parameter k denotes the number of re-
quirements that can be removed during the recovery operation. Depending on the
robustness and recovery paramaters configuration, the value of recoveryGain(k)

may be bigger than the uncertaintyLoss(Γ ) value, which would cause a robust re-
lease cost smaller than the classic release cost. Such solution would be necessary
to recover even if all requirements costs were correctly estimated, which does not
make sense in a practical next release planning environment. In order to avoid
this situation, the above release cost formulation guarantees that a solution will
not have its total cost lower than the classic NRP model.

Interestingly, this recoverable robust formulation for the release cost can be
seen as a generalization of the strict robust and classic models. When considering
the recovery parameter k = 0, meaning that recovery is not allowed, we get the
same robust formulation present in [7]. Using k = 0 and Γ = N , there is no recovery
and all cost variations will be considered, characterizing the conservative case
shown in Equation (4). Finally, considering k = Γ = 0, the model falls back into
the classic NRP model in Equation (2).

Accordingly to the importance and cost uncertainties quantification (step ω)
presented above, it is presented next the proposed formal model that seeks k-
recoverable solutions to the Next Release Problem (step M), partially answering
the research question RQ1.

The proposed formulation generates a feasible solution to the NRP, guarantee-
ing that, even if some cost uncertainty realization makes this solution unfeasible
due to budget constraints, by removing at most k requirements, the solution will
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be recovered to be once again feasible. To perform this recovery, the proposed al-
gorithm (Algorithm 1) can recover a solution by losing the minimum importance
amount.

maximize:
N∑
i=1

M∑
s=1

vsi psxi

subject to: max(basicCost(),

basicCost() + uncertaintyLoss(Γ )− recoveryGain(k)) ≤ b

where, basicCost() =

N∑
i=1

cixi

uncertaintyLoss(Γ ) = maxW⊆R,|W |≤Γ

∑
i∈W

ĉixi

recoveryGain(k) = minY⊆R,|Y |=k

∑
i∈Y

cixi

xi ∈ {0, 1}
R is the set of requirements

N is the number of requirements

M is the number of scenarios

ps is the scenario s occurrence probability

vsi is the value of requirement ri in scenario s

ci is the cost of requirement ri

ĉi is the cost variation of ri

Γ is the robustness control parameter

k is the recovery control parameter

b is the release budget

Algorithm 1. Minimum Value Loss Recovery Algorithm

while release is unfeasible do
remove the less valuable requirement
if new release cost ≤ b then

return recovered solution
end if

end while

This recovery algorithm is straightforward and consists in removing less valu-
able requirements until the solution becomes feasible once again. As the model
guarantees that any k requirements can be removed, the model can recover the
release by losing the minimum importance value as possible.
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This proposed recovery algorithm represents the last step (step A) in the
application of the recoverable robustness framework to the NRP, fully answering
the research question RQ1.

4 Experimental Evaluation

In order to ensure robustness to a solution, some loss regarding quality is in-
evitable. This measure of loss has become to be known in the literature as the
“price of robustness” [12]. As mentioned earlier, strict robust models are conser-
vative approaches that usually waste a significant amount of resources. Under
specific conditions, these models may present a relatively high “price of robust-
ness”. The research question RQ2 is related to how much is gained in solution
quality when we employ the proposed recoverable robustness model instead of
the strict model presented in [7].

In order to permit the full replication of all experiments, all synthetic and
real-world instances are available at the paper supporting webpage - http://
www.larces.uece.br/ jeff/recoverablenrp -, which also contains all results
that have to be omitted from this paper due to space constraints.

4.1 Settings

Experiments were performed over 7 synthetic and 14 real-world instances. In the
synthetic instance set, each instance has 3 scenarios in which the requirements
importance values vsi can assume integer values between 1 and 10. The effort cost
also varies from 1 to 10. The instances were generated with different numbers of
requirements, from 50 to 200. In this paper, the synthetic instance name is in the
format I S R, where R is the number of requirements. The instance I S 120, for
example, is a synthetic one and has 120 requirements. The real-world instances
were adapted from the work by Xuan et. al [13]. These instances were extracted
from bug repositories of two big open source projects, Eclipse (a java integrated
development environment) [14] and Mozilla (a set of web applications) [15]. Each
bug is considered a requirement. Its importance is calculated by the number of
users that commented on that bug report. The bug severity is mapped to the
requirement’s cost. Both importance and cost values were normalized to the
1 to 10 interval. Seven instances were extracted from each bug repository. The
instances are formed by the most important requirements and contain from 50 to
200 requirements. The real-world instance name is in the format I Re P R, where
P represents the project (E for Eclipse and M for Mozilla) and R indicates the
number of requirements. The instance I Re M 200, for example, was extracted
from the Mozilla bug repository and has 200 requirements.

For all instances, synthetic and real, the cost variation ĉi of each requirement
was configured as a random number between 0 and 50% of the respective re-
quirement cost ci. To make the selection problem more complex, we ensure that
it is not possible to select all requirements to the next release by setting the
release available budget to 70% of the sum of all requirements’ costs.

http://www.larces.uece.br/~jeff/recoverablenrp
http://www.larces.uece.br/~jeff/recoverablenrp
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Different configurations of the robustness parameter Γ and the recovery pa-
rameter k were evaluated. For each instance, the parameter Γ was set to Γ =

{0, 0.2N, 0.4N, . . . , N}, where N is the number of requirements, while the recovery
parameter k was set to k = {0, 0.1N, 0.2N, . . . ,N}.

In [7], both Genetic Algorithm and Simulated Annealing were employed to
solve the NRP strict robust model. Since the Genetic Algorithm [16] achieved
better results overall, in this paper we apply only this metaheuristic. In our
GA, the population is composed by N (number of requirements) individuals.
The initial population is randomly generated. All individuals that have a re-
lease cost bigger than the available budget are discarded and new individuals
are randomly generated. This process is repeated until the initial population
is composed only by feasible individuals. Crossover probability is set to 0.9,
using one point crossover. Mutation is performed for each requirement with a
1/(10N) probability. It consists of a single requirement inclusion/exclusion. Both
crossover and mutation operators might generate invalid individuals. Therefore,
a repairing method was designed, randomly removing requirements from the in-
dividual until the solution becomes feasible. The implementation employs the
elitism strategy, with 20% of the best individuals in the population being au-
tomatically included in the next generation. The algorithm returns the best
individual after 10000 generations. These parameters were all set based on the
results of experiments specifically designed to this purpose.

All results, including fitness value averages and standard deviations, were
obtained from 10 executions of the algorithm for each instance.

As mentioned early, ensuring robustness to a solution causes some loss regard-
ing quality. In order to measure this “price of robustness”, a ‘reduction metric’
is introduced, which indicates the percentage of loss in fitness value in a certain
configuration of the parameters k and Γ , when compared with the classic NRP
model (k = Γ = 0). Thus, assuming αi

j as the fitness value average for k = i.N and

Γ = j.N , the ‘reduction metric’ δij is calculated as follows:

δij = 100 × (1−
αi
j

α0
0

) (10)

4.2 Results and Analysis

Table 1 presents the fitness values computed by the Genetic Algorithm for some
of the synthetic instances. The Γ = 0 rows represent the classic NRP while the
k = 0 column presents the results for the strict robust model in [7].

Considering the results for the strict robust model in [7], as the robustness
parameter Γ increases, there is a loss in solution quality. By allowing recovery, the
proposed recoverable model improves the solutions. As the recovery parameter
k increases, there is a gain in solution quality when compared with the strict
model fitness values. For a recovery level of 20%, for example, the generated
solutions are in average 2.9% better in terms of quality. Also, in average, a 10%
recovery level represents a 1.5% improvement in fitness value, when comparing
the proposed recoverable model with the strict model in [7].
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Table 1. Fitness values results for some of the synthetic instances, regarding different
values for both robustness and recovery parameters

Instance Γ
k

0 0.2N 0.3N 0.5N 0.7N N

I
S

5
0

0 256.83 ± 0.30 256.83 ± 0.30 256.83 ± 0.30 256.83 ± 0.30 256.83 ± 0.30 256.83 ± 0.30

0.2N 243.69 ± 0.00 251.78 ± 0.43 256.93 ± 0.00 256.81 ± 0.36 256.93 ± 0.00 256.93 ± 0.00

0.4N 237.31 ± 0.55 246.08 ± 0.00 253.61 ± 0.41 256.83 ± 0.30 256.93 ± 0.00 256.93 ± 0.00

0.6N 233.93 ± 0.41 242.33 ± 0.49 250.34 ± 0.53 256.69 ± 0.48 256.93 ± 0.00 256.93 ± 0.00

0.8N 233.03 ± 0.25 241.13 ± 0.30 249.05 ± 0.00 256.93 ± 0.00 256.93 ± 0.00 256.93 ± 0.00

N 233.08 ± 0.26 241.25 ± 0.07 249.05 ± 0.00 256.93 ± 0.00 256.93 ± 0.00 256.93 ± 0.00

I
S

1
2
0

0 581.21 ± 0.38 581.21 ± 0.38 581.21 ± 0.38 581.21 ± 0.38 581.21 ± 0.38 581.21 ± 0.38

0.2N 544.49 ± 0.70 563.05 ± 0.75 578.32 ± 0.49 581.37 ± 0.31 581.34 ± 0.46 581.53 ± 0.25

0.4N 531.82 ± 0.62 549.96 ± 0.28 564.25 ± 0.66 581.37 ± 0.34 581.24 ± 0.58 581.45 ± 0.19

0.6N 526.27 ± 0.70 544.28 ± 0.53 559.02 ± 0.41 581.45 ± 0.44 581.08 ± 0.76 581.51 ± 0.32

0.8N 525.98 ± 0.49 543.27 ± 0.56 557.17 ± 0.61 581.54 ± 0.29 581.32 ± 0.48 581.15 ± 0.60

N 525.58 ± 0.58 543.51 ± 0.43 557.70 ± 0.31 581.43 ± 0.53 581.55 ± 0.43 581.46 ± 0.40

I
S

2
0
0

0 946.62 ± 1.24 946.62 ± 1.24 946.62 ± 1.24 946.62 ± 1.24 946.62 ± 1.24 946.62 ± 1.24

0.2N 886.95 ± 0.69 923.70 ± 1.12 947.08 ± 1.05 947.37 ± 0.76 946.96 ± 1.04 947.92 ± 0.58

0.4N 861.32 ± 1.51 898.55 ± 1.13 928.37 ± 1.15 947.55 ± 1.12 946.56 ± 0.96 946.95 ± 0.80

0.6N 851.83 ± 0.97 887.56 ± 1.44 917.67 ± 0.68 947.54 ± 0.86 947.36 ± 1.33 947.61 ± 1.05

0.8N 850.16 ± 1.17 885.93 ± 0.90 915.04 ± 0.93 947.72 ± 1.38 947.08 ± 1.17 947.84 ± 0.77

N 850.64 ± 1.01 885.93 ± 1.29 914.99 ± 1.70 946.94 ± 0.79 946.99 ± 1.18 946.77 ± 1.27

As the recovery level grows, the fitness values converge to the classic NRP
model. The recovery stability point is around 40% for most instances. Thereby,
a lower robustness parameter (a small quantity of wrongfully estimated require-
ments) reaches the classic NRP model with a lower recovery parameter.

It is also noteworthy the considerably low standard deviation presented by
the Genetic Algorithm. For most experimental results shown in the table, the
standard deviation is less than 1, reaching no more than 1.7.

Figure 1 presents the fitness results for some of the instances that were not
shown in Table 1. The solutions clearly converge to the classic NRP as k increases,
as stated above. Since k = 0 represents the fitness value for the strict model in [7],
for all robustness parameters values, every recovery level increase adds quality
to the solution.
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Fig. 1. Fitness value results for synthetic instances I S 70 and I S 170
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Table 2 presents the reduction factors for some of the synthetic instances. As
it has been mentioned, this value indicates the percentage of fitness value loss
of some robust solution when compared to the classic NRP (Γ = k = 0).

Table 2. Reduction factor results for some of the synthetic instances, regarding dif-
ferent values for both robustness and recovery parameters

Instance Γ
k

0 0.2N 0.3N 0.5N 0.7N N

I
S

5
0

0.2N 5.12 1.97 0.04 0.01 0.04 0.04
0.4N 7.60 4.19 1.25 0.00 0.04 0.04
0.6N 8.92 5.65 2.52 0.06 0.04 0.04
0.8N 9.26 6.11 3.03 0.04 0.04 0.04
N 9.25 6.07 3.03 0.04 0.04 0.04

I
S

1
2
0 0.2N 6.32 3.12 0.50 0.03 0.02 0.06

0.4N 8.50 5.38 2.92 0.03 0.01 0.04
0.6N 9.45 6.35 3.82 0.04 0.02 0.05
0.8N 9.50 6.53 4.14 0.06 0.02 0.01
N 9.57 6.49 4.04 0.04 0.06 0.04

I
S

2
0
0 0.2N 6.30 2.42 0.05 0.08 0.04 0.14

0.4N 9.01 5.08 1.93 0.10 0.01 0.03
0.6N 10.01 6.24 3.06 0.10 0.08 0.10
0.8N 10.19 6.41 3.34 0.12 0.05 0.13
N 10.14 6.41 3.34 0.03 0.04 0.02

The conservatism of the strict model in [7] produces a reduction factor higher
than 9% for most of the robustness levels. By allowing recovery, the proposed
model becomes less conservative and there is an improvement in the reduction
factor measure. In average, the reduction factor is 40% lower for each 10% re-
covery level increase. As the recovery stability point is reached, the reduction
factor is almost none, i.e, the solution is virtually equal to the one generated by
the classic NRP model. These results are consistent to state the improvement in
solution quality for all recovery levels, even the small ones.

Figure 2 presents the reduction factors for some of the synthetic instances.
The results are very similar to those presented in Table 2, as the reduction factor
has a 40% decrease for each 10% recovery level increase, in average.
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Table 3 presents the fitness values for some real-world instances. Due to space
constraints, only one instance from each bug repository is presented.

Table 3. Fitness values results for real-world instances I Re E 100 and I Re M 150

Instance Γ
k

0 0.2N 0.3N 0.5N 0.7N N

I
R

e
E

1
0
0

0 296.73 ± 0.60 296.73 ± 0.60 296.73 ± 0.60 296.73 ± 0.60 296.73 ± 0.60 296.73 ± 0.60

0.2N 270.55 ± 1.01 286.64 ± 0.71 297.00 ± 0.42 296.73 ± 0.45 296.82 ± 0.61 296.82 ± 0.45

0.4N 259.73 ± 1.52 274.45 ± 0.76 294.09 ± 0.61 296.91 ± 0.60 296.36 ± 0.70 296.82 ± 0.73

0.6N 254.45 ± 1.31 268.82 ± 1.08 288.36 ± 0.36 296.82 ± 0.73 296.82 ± 0.45 296.73 ± 0.83

0.8N 254.55 ± 1.35 267.00 ± 1.41 286.82 ± 0.45 296.64 ± 0.58 296.82 ± 0.61 296.55 ± 0.89

N 254.55 ± 1.22 268.36 ± 0.79 286.82 ± 0.45 296.73 ± 0.45 296.45 ± 0.76 296.55 ± 0.68

I
R

e
M

1
5
0 0 423.64 ± 0.59 423.64 ± 0.59 423.64 ± 0.59 423.64 ± 0.59 423.64 ± 0.59 423.64 ± 0.59

0.2N 394.93 ± 0.50 419.00 ± 0.97 423.93 ± 0.48 423.93 ± 0.36 423.93 ± 0.58 424.00 ± 0.35

0.4N 379.64 ± 0.73 402.79 ± 0.87 423.71 ± 0.62 423.93 ± 0.36 423.79 ± 0.56 423.71 ± 0.62

0.6N 375.57 ± 0.43 397.29 ± 0.70 423.43 ± 0.53 424.07 ± 0.46 423.86 ± 0.35 424.14 ± 0.43

0.8N 375.43 ± 0.80 396.50 ± 0.59 422.57 ± 0.65 424.00 ± 0.65 423.79 ± 0.33 424.14 ± 0.29

N 374.93 ± 0.67 396.57 ± 0.83 422.71 ± 0.77 424.00 ± 0.57 424.00 ± 0.65 423.86 ± 0.47

As can be seen, the proposed recoverable model performs nearly the same for
both synthetic and real-world instances, which helps to validate the first results.
When recovery is not allowed, the fitness value tends to get worse as the robust-
ness level increases. As recovery is enabled, this conservatism is handled and the
solutions converge to the classic NRP. Once again, even for small recovery levels,
there is already a gain in solution quality when compared with the strict model
in [7]. The standard deviation remains considerably small, reaching at most 1.41.

Figure 3 presents fitness value results for some real-world instances, where one
instance of each bug repository is presented. The behavior of these real instance
results are very similar to the synthetic ones, as could have been seen in Table
3. There is a gain in solution quality for all recovery levels under all robustness
parameters values.
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Fig. 3. Fitness value results for real-world instances I Re E 50 and I Re M 200

Table 4 presents the reduction factor results for some real-world instances.
The conservatism of the model in [7], regarding the real instances, produced a
reduction factor even higher than the synthetic instances, reaching more than
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Table 4. Reduction factor results for real-world instances I Re E 100 and I Re M 150

Instance Γ
k

0 0.2N 0.3N 0.5N 0.7N N

I
R

e
E

1
0
0 0.2N 8.82 3.40 0.09 0.00 0.03 0.03

0.4N 12.47 7.51 0.89 0.06 0.12 0.03
0.6N 14.25 9.41 2.82 0.03 0.03 0.00
0.8N 14.22 10.02 3.34 0.03 0.03 0.06
N 14.22 9.56 3.34 0.00 0.09 0.06

I
R

e
M

1
5
0 0.2N 6.78 1.10 0.07 0.07 0.07 0.08

0.4N 10.39 4.92 0.02 0.07 0.03 0.02
0.6N 11.35 6.22 0.05 0.10 0.05 0.12
0.8N 11.38 6.41 0.25 0.08 0.03 0.12
N 11.50 6.39 0.22 0.08 0.08 0.05

14% in some cases. The proposed recoverable robust model behavior was nearly
identical of the synthetic instances, despite the high reduction factor when k = 0,
a recovery level of 20% decreased the reduction almost to the half.

In conclusion, all results are consistent to show that the proposed recoverable
robust model have improved previous robust models to the NRP, in order to
handle the conservatism by allowing a release recovery. Results are very similar
for both synthetic and real-world instances, pointing out the model’s reliability
and applicability.

Finally, all presented results have helped in answering the research question
RQ2, stating the improvement in solution quality when using the new recoverable
robust model for the Next Release Problem.

4.3 Recovery Analysis

In this section, it will be analysed the fitness value behavior when some require-
ments are wrongfully estimated and, consequently, recovery becomes necessary
to fulfill the budget constraint.

The fitness value before recovery is the same as presented in the early sections.
The fitness value after recovery is computed assuming that the costs of the Γ

requirements with highest variations were the ones wrongfully estimated, forcing
the recovery algorithm to remove a considerably number of requirements in order
to make the release feasible once again.

Since the proposed model performs nearly identical for both synthetic and
real-world instances, as shown in previous sections, only a synthetic instance
will be considered in the analysis.

Table 5 presents the fitness value results before and after recovery for the
instance I S 120, with the results after recovery being highlighted.

Since the fitness values before recovery are the same as in this previous sec-
tions, as the recovery parameter k increases, the fitness values converge to the
classic NRP. However, the fitness values after recovery behaves the opposite,
since as the recovery levels grow, the solutions lose in quality if the recovery is
performed, as can be seen in the table. That behavior highlights an interesting
characteristic of the recoverable robust framework, that is, the recovery possi-
bility can be considered a bet, that is, if the requirements’ costs are correctly
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Table 5. Before and after recovery fitness values comparison for the instance I S 120

Instance Γ
k

0 0.2N 0.3N 0.5N 0.7N N

I
S

1
2
0

0
581.21 ± 0.38 581.21 ± 0.38 581.21 ± 0.38 581.21 ± 0.38 581.21 ± 0.38 581.21 ± 0.38

581.21 ± 0.38 581.21 ± 0.38 581.21 ± 0.38 581.21 ± 0.38 581.21 ± 0.38 581.21 ± 0.38

0.2N
544.49 ± 0.70 563.05 ± 0.75 578.32 ± 0.49 581.37 ± 0.31 581.34 ± 0.46 581.53 ± 0.25

544.49 ± 0.70 533.24 ± 3.58 521.99 ± 3.95 515.28 ± 7.82 517.84 ± 4.76 510.28 ± 7.45

0.4N
531.82 ± 0.62 549.96 ± 0.28 564.25 ± 0.66 581.37 ± 0.34 581.24 ± 0.58 581.45 ± 0.19

531.82 ± 0.62 522.84 ± 2.98 510.81 ± 5.07 486.17 ± 5.10 484.22 ± 6.75 482.69 ± 6.01

0.6N
526.27 ± 0.70 544.28 ± 0.53 559.02 ± 0.41 581.45 ± 0.44 581.08 ± 0.76 581.51 ± 0.32

526.27 ± 0.70 518.04 ± 2.67 509.58 ± 4.55 480.49 ± 7.82 478.16 ± 5.39 478.11 ± 6.70

0.8N
525.98 ± 0.49 543.27 ± 0.56 557.17 ± 0.61 581.54 ± 0.29 581.32 ± 0.48 581.15 ± 0.60

525.98 ± 0.49 518.07 ± 1.39 509.17 ± 3.28 482.48 ± 7.41 478.70 ± 3.40 485.00 ± 5.51

N
525.58 ± 0.58 543.51 ± 0.43 557.70 ± 0.31 581.43 ± 0.53 581.55 ± 0.43 581.46 ± 0.40

525.58 ± 0.58 518.89 ± 2.43 509.38 ± 4.35 478.75 ± 4.28 481.24 ± 5.74 480.83 ± 8.82

estimated, the solutions will behave very similarly to the ones from the classic
NRP and significantly better than the results produced by the original robust
framework. On the other hand, if the requirements’ costs are wrongfully esti-
mated, the solution after recovery will be worse than the conservative robust
model. The decision maker must be aware of this trade-off to choose the robust-
ness and recovery parameters which fit better in a particular release planning
situation.

It is also worthwhile to highlight the considerable increase in the standard
deviation for the fitness values after recovery. While for the before recovery
values the highest standard deviation is 0.76, when considering the after recovery
values, the highest standard deviation was 8.82.

Due to space constraints, it is not possible to show more after recovery results
and analyis in this paper, but all results and instances are available at the paper
supporting webpage, as mentioned previously.

5 Conclusion and Future Works

The Next Release Problem is an important activity in the iterative and incremen-
tal software development model. Since the requirements’ characteristics, such as
importance and cost, may change during the release development, robust ap-
proaches have been proposed to address this uncertainty in the NRP. However,
the current robust methods to the NRP are very conservative because they select
a subset of requirements in order to fulfill all possible uncertainties realizations.

This paper proposed an improvement to the state-of-art robust models to the
NRP by considering the recoverable robust optimization framework. This mod-
eling technique can handle the conservatism of the classic robust methods by
adding a recovery possibility to the solution. If some cost uncertainty realiza-
tion make the solution unfeasible due to budget constraints, the release can be
recovered removing a controlled quantity of requirements.

The improved recoverable robust method was applied to both synthetic and
real-world instances, varying the number of requirements in each instance. The
real-world instances were extracted from bug repositories of two big open source
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projects, Eclipse and Mozilla. Experiments were performed in order to measure
how much is the gain in solution quality when using the improved recoverable
model instead of the conservative robust models.

For all instances and for all robustness level configurations, a small recovery
level allows the production of solutions with more quality than the conservative
strict robust models. Furthermore, as the recovery possibility increases, there is
more gain in solution quality. However, if recovery is necessary, depending on
the uncertainty realization, the solution quality after recovery can be worse than
the conservative model. Therefore, the recovery possibility is a risky decision to
make and it is fundamental to perform a deep analysis in order to choose the
best robustness and recovery levels for each situation.

As a future research direction, the recoverable robust optimization framework
can be used to tackle other problems that have to cope with uncertainty in the
SBSE field. Specifically related to the next release problem, the interdependen-
cies between requirements could be considered. Furthermore, other experiments
could be performed, varying the release available budget and using other strate-
gies to cope with the cost uncertainty.
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ported by CNPq (MCT/CNPq 14/2011 - Universal) with number 481417/2011-7.
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Abstract. Selection and prioritization of software requirements represents an 
area of interest in Search-Based Software Engineering (SBSE) and its main fo-
cus is finding and selecting a set of requirements that may be part of a software 
release. This paper uses a systematic review to investigate which SBSE ap-
proaches have been proposed to address software requirement selection and 
prioritization problems. The search strategy identified 30 articles in this area 
and they were analyzed for 18 previously established quality criteria. The re-
sults of this systematic review show which aspects of the requirements selection 
and prioritization problems were addressed by researchers, the methods ap-
proaches and search techniques currently adopted to address these problems, 
and the strengths and weaknesses of each of these techniques. The review pro-
vides a map showing the gaps and trends in the field, which can be useful to 
guide further research.  

Keywords: requirements selection, requirement prioritization, systematic review. 

1 Introduction 

Requirements engineering is the branch of software engineering concerned with the 
real-world goals for functions and constraints on software systems. It is also con-
cerned with the relationship of these factors to precise specifications of software 
structure, behavior, and to their evolution over time and across software families 
(Zave, 1997).  

Requirements engineering process goals are to create and maintain system re-
quirement artifacts. In this process multiple activities are performed, such as require-
ments elicitation, analysis and management of changes throughout the software  
development life-cycle (Somerville, 2007). 

Software engineering practices aim to ensure that a software product meets the 
needs of its users (Cheng & Atlee, 2007). Software requirements should express the 
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needs and constraints fixed for a software product that contribute to the solution of 
some real world problem (Kotonya & Sommerville, 1998).  Software is becoming 
complex and the number of requirements that must be met is increasing and conse-
quently software development processes are commonly performed in an incremental 
way.  An increment is composed of a set of requirements that form an operational 
product a version of software, for the user (Pressman, 2002). Thus, the requirements 
engineer is faced with a scenario that will have several decisions, constraints (such as, 
budgetary limitations and technical issues) and specifications regarding the selection 
of requirements that will be part of the next version of the software. 

Consequently, the main objective in selecting software requirements is to identify 
optimal choices for a set of requirements and to exploit trade-off decision-making to 
satisfy the demands of stakeholders, while at the same time making sure that there are 
sufficient resources to undertake the selected task (Zhang ,2010). 

In a requirements engineering process a human expert faces a scenario in which 
there are several decisions and considerations to be taken into account, such as  
requirement interdependencies, project costs, different kinds of customers, budget 
constraints, etc. An analysis of software requirements, selection and prioritization of 
them is important because mistakes and misunderstandings as this early stage in the 
software development lifecycle can be extremely costly (Zhang, 2010).  

Several approaches have been proposed in the literature to support selecting and 
prioritizing requirements in software development projects (Karlsson et al. 1998), 
such as Analytical Hierarchy Process(Saaty, 1980), Cost-Value (Karlsson & Ryan, 
1997), B-tree(Heger, 2004), and other traditional methods (Aasem et al. 2010; Wieg-
ers, 1999; Fellow & Hooks, 1998; Boehm et al., 2001). Some of these approaches use 
techniques that can assist in finding a better set of software requirements according to 
a set of goals and constraints. 

Recently, non-exhaustive and automated search methods have emerged as an alter-
native strategy to solve some problems of software requirements selection to meet the 
demands of the users of software. A well known strategy to solve this problem is Next 
Release Problem (NRP).  According to Bagnall (Bagnall et al, 2001), the objective of 
NRP is to select a set of requirements that are deliverable within a company budget 
and which meet the demands of their customers. According to Zhang (Zhang, 2010) 
this objective allows stakeholders to receive an increment that is a complete system as 
soon as possible and ensures that the most important requirements are delivered first. 
Thus, new software requirements can be released during each increment according to 
stakeholder’ feedback. 

NRP is an area within a field named Search-Based Software Engineering (SBSE). 
Currently, several types of these techniques have been proposed and significant re-
sults have been obtained in the selection process of software requirements. It is there-
fore necessary to understand how applications are being used in this area, what  
techniques are being used, the type of modeling to use in addressing this selection 
problem and what the current trends are in this area focusing on requirements selec-
tion and prioritization. As there is still no consensus about which techniques to apply, 
a systematic review was performed in order to obtain a better understanding and com-
prehension about software requirements selection and prioritization and trends in this 
area.  
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In the systematic review presented in this paper we are interested in understanding 
what has been proposed to solve the problems about the selection and prioritization of 
requirements using Search-Based Software Engineering. This review followed the 
guidelines proposed by Kitchenham et al (2004) and (Kitchenham, 2004). The paper 
is structured as follows. The next section has some background about requirements 
selection and prioritization with the SBSE approach. Section 3 formally presents the 
systematic review process. The results obtained and discussions about these are de-
scribed in Section 4. Finally, in section 5 conclusions are drawn and future work is 
proposed. 

2 Software Requirements Selection and Prioritization 

In the context of software development, the systematic review conducted here focuses 
on the selection of a set of requirements for the release of the next version of software 
(Harman et al. 2012). More specifically, this approach was launched when Bagnall 
(Bagnall et al. 2001) formulated the "Next Release Problem" (NRP) as a search  
problem.  

This problem is illustrated in Figure 1, which can be identified by a set R = {r1, r2, 
r3, ... rn} software requirements, which are offered by another set C = {c1, c2, c3,..., 
cn) formed by customers. It is assumed that all requirements are independent, i.e. no 
requirements depend on requirements. 

 
Fig. 1. The structure of the next release problem (Bagnall, 2001) 

With these two sets, Bagnall assumed that there is a cost vector for the require-
ments in R called cost = [cost1,cost2,cost3,...,costn]. Each cost ci is associated to 
fulfilling the requirement ri. 



 A Systematic Review of Software Requirements Selection and Prioritization 191 

 

As each customer has a degree of importance for the company, there is the exis-
tence of a set of relative weights W = {w1, w2, w3, ..., wn} associated with each cus-
tomer in the set C. In various situations, the same requirements are desired by more 
than one customer, however, its importance may be different for each customer (Del 
Sagrado et al, 2011). Thus, the importance that a requirement ri has for customer i is 
given by value (ri, ci) where a value higher than 0 means the customer ci gets the 
requirement ri and 0 otherwise (Harman et al., 2012). Under these assumptions, the 
overall satisfaction or score is measured as a weighted sum of its importance values 
for all the customers and this can be formalized as: 

                                                          score=∑ . ݅ݓ ,݅ݎሺ ݁ݑ݈ܽݒ ܿ݅ሻ௡௜ୀଵ . (1) 

In general, the single-objective NRP can be modeled as follows: 

 Maximize ∑ . ݅ݓ ,݅ݎሺ ݁ݑ݈ܽݒ ܿ݅ሻ௡௜ୀଵ  (2) 

                                      subject to                                            ∑ . ݅ݐݏ݋ܿ c݅௡௜ୀଵ   ≤ B (3) 

where B is the budget designated by the company  and  ci =1 means if the customer i 
will have its requirements satisfied and  ci =0 otherwise. 

Consequently, NRP consists of selecting a set among all the requirements of a 
software package such that the cost, in terms of money or resources, of fulfilling these 
requirements is minimum and the satisfaction of all the users of that system is maxi-
mum (Durillo et al,, 2009). Thus, it ensures that the most important requirements are 
released first so that the maximum attainable benefits of the new system are gained 
earliest (Zhang et al. 2008). 

From this initial comprehension of the problem new studies have emerged in the 
area with a more specific focus, for example using more than one objective to be op-
timized (Zhang et al., 2007), requirements interdependencies (Carlshamre et al., 
2001), requirement selection and scheduling (Li et al, 2007), requirements interaction 
(Del Sagrado et al., 2011) and release planning (Van den Akker, 2008; Greer & Ruhe, 
2004). 

2.1 SBSE Techniques Applied to the Software Requirements Selection and 
Prioritization 

To obtain solutions for software requirements selection and prioritization through 
SBSE approaches, there is a need for techniques that assist in the process of under-
standing, analyzing, and interpreting results obtained for inclusion of requirements for 
the next version of the software. The types of techniques can be differentiated accord-
ing to the way they approach the problem, e.g. single or multiple objective (Harman et 
al., 2012). In the simplest cases (single objective), a fair comparison between some 
algorithms (for example, simulated annealing and Hill Climbing) observing the 
amount of effort required by each search and elementary statistical analysis can be 
used to analyze the best solution for a set of requirements (Harman et al., 2012) to 
here. 
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However, in practice, a software engineer is more likely to have many conflicting ob-
jectives to address when determining the set of requirements to include in the next release 
of the software. As such, the multiple objective formulation is more likely to be appropri-
ate than the single objective NRP (Zhang et al. 2007). Therefore,  when the goal of mod-
eling the problem is the optimization of multiple objectives and multiple constraints, 
there is a need for more advanced techniques to improve the search for solutions,  
because, contrary to single objective optimization, the solution of a  multi-objective prob-
lem is not a single point, but a set of solutions. One technique is the use of Pareto Optim-
al, in which several optimization objectives are combined, but without needing to decide 
which takes precedence over the others (Harman et al., 2012, Harman, 2007). Given its 
efficiency, several studies have emerged using this technique in software requirements 
(Durillo et al., 2009, Saliu & Ruhe, 2007, Zhang et al.,2007). 

Another type of technique that has been widely used by researchers in this area is 
Genetic Algorithm (GA), a bio-inspired search algorithm based on the evolution of 
the collection of individuals resulting from natural selection and natural genetics 
(Goldberg, 1989). According to Talbi (Talbi, 2009), A GA usually applies a crossover 
operator to two solutions which play a major role, plus a mutation operator that ran-
domly modifies the individual contents to promote diversity.  

One of the most commonly used is NSGA-II developed by Deb (Deb et al., 2002), 
which is often used in complex problems involving the selection and prioritization of 
requirements (Zhang & Harman, 2010, Finkelstein et al.2008).  

Another way of approaching NRP problems is the use of hybridisation.  According to 
Harman (Harman et al., 2012), hybridisation with non-SBSE techniques can also be bene-
ficial, for example, the Greedy algorithm (Talbi, 2009) has been used to inject solution 
into other evolutionary algorithms in order to accelerate the process of finding solutions. 

3 Systematic Review Process 

A systematic review (SR) is a technique to identify, evaluate and interpret relevant 
research in a particular area of interest, a research question or a specific phenomenon 
of interest (Kitchenham 2004). More specifically, systematic reviews provide a con-
cise summary of evidence available regarding a given area of interest. This approach 
uses explicit and rigorous methods to identify, critically evaluate and synthesize rele-
vant studies on a particular topic (Dyba et al. 2007). There are several reasons for 
performing a systematic review (Kitchenham 2004), for example to summarize the 
available evidence regarding a treatment of a technology; identify gaps in current 
research in order to suggest areas to promote new research and provide a framework 
in order to properly position new research activities. 

A SR usually comprises the steps of a) planning (identification of the need for a 
review and development of a review protocol), b) conducting (identification of re-
search, selection of primary studies, study quality assessment, data extraction and data 
synthesis) and c) report writing. 

This systematic review is for a PhD project, showing the strengths and weaknesses 
of software requirements selection and prioritization using SBSE approaches and 
identifying possible research trends and fields of interest. The phases of the work are 
demonstrated and discussed. Two researchers participated in the process:  a doctoral 
student who was responsible for carrying out the three steps outlined above, and a 
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senior researcher who was responsible for validating the review protocol and monitor-
ing all the steps comprising the systematic review. 

3.1 Planning the Review – Fundamental Questions 

As previously mentioned, a systematic review requires a well specified protocol that 
describes the dynamics of the process. One of the most important activities at the 
planning stage is the proper formulation of a research question or specific questions 
that must be answered by the systematic review. All other phases of the process are 
dependent on this formulation (Dyba et al. 2007). 

The aim of our study was to examine the current state of software requirements se-
lection and prioritization methods, focusing in Search-Based software engineering 
methods. From this, our research question (RQ) for this systematic review is: 

 “What is the state of the art for the application of search-based optimization in the 
process of software requirements selection and prioritization?” 

This is a topic of scientific and professional importance because this is becoming in-
creasingly used, given the power to support the attainment of (close to) optimum solutions 
in a problem as complex as the selection and prioritization of requirements in software 
projects (Zhang et al. 2008). This question can be split into other questions: 

─ RQ1: What types of modeling are being used in selection and prioritization of 
software requirements with a focus on SBSE? 

─ RQ2: What methods are used for selection and prioritization of software require-
ments with a focus on SBSE? 

─ RQ3: What search techniques are used for the process of selecting and prioritizing 
requirements with a focus on SBSE? 

In RQ1 aspects concerning modeling relate to how the problem of software require-
ments selection and prioritization are covered and how they are addressed to find 
possible solutions. In other words, how organized the fitness function and the con-
straints are to form the model representation (Harman & Jones 2001). 

Regarding methods (RQ2), these can be understood as a way of obtaining solutions 
to the problem at hand, in general, such as meta-heuristics or hybridization. In this 
case, approaches to operations research techniques can be used as a solution to the 
problem of selecting and prioritizing software requirements (Harman, 2007). Finally, 
RQ3 addresses search techniques for selecting and prioritizing software requirements. 
In this case, the term search technique refers to the ways to tackle the problem by 
observing their proposed goals and objectives, for example, the use of a genetic algo-
rithm or exact algorithm. The question RQ3 is derived from RQ2 showing in details 
the search techniques that were used in methods of approach. 

These questions were essential for determining the structure and content of this re-
view, and also for guiding the process because all other parts of this systematic review 
are derived from these issues. 

3.2 Identification of Research – Search Strategy 

In order to perform an exhaustive search for primary studies, our search strategy  
consisted of a manual search in the major conference and online search in relevant 
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libraries. To ensure the quality of this review, we manually searched in the major 
conference in this area, the Symposium on Search-Based Software Engineering 
(SSBSE) (2009-2012). After this, the following electronic databases were searched as 
we considered these to be most relevant: IEEE Xplore, ACM Digital Library, ISI Web 
of Science, SpringerLink, and Science Direct. 

For the online search in digital libraries, search keywords are very important to ob-
tain good results, so they have to be chosen carefully. Finding an answer to the re-
search question includes selecting appropriate information resources and executing an 
accurate search strategy. Then, based on our research question, we experimented with 
different search criteria using different combinations of strings. The following basic 
search strings were considered the most appropriate for the SR: 

 
1. Software requirements AND selection 
2. Software requirements AND prioritization 
3. Search Based AND requirements optimization 
4. Search Based and requirements selection 
5. Search Based AND requirements prioritization 

 
All these search terms were combined by using the Boolean “OR” operator, which 
implies that an article only had to include any one of the terms to be retrieved. That is, 
we searched: 1 OR 2 OR 3 OR 4 OR 5. The search terms “software requirements”, 
“selection” and “prioritization” are derived from the terms of the specific area. The 
inclusion of the term “Search Based” was due to the need to restrict the search to 
articles that were in the area of software engineering with SBSE approach, to avoid 
recovering articles that focused on requirements selection and/or prioritization in 
research fields other than SBSE. We applied the search terms to the titles, abstracts, 
and keywords of the articles in the identified electronic databases.  

Due to the different functions and features of search engines, the search strings for 
the digital libraries were similar and we had to implement the search strategy indivi-
dually for each database. This created considerable extra work as we had to perform 
several trial searches only to find out how each of the databases handled different 
Boolean expressions. The stages of the study can be seen in Figure 2. 

 

 

Fig. 2. Stages of the study selection process 

 
 

 

 

 

 

 

 

Stage 1 
Identify relevant studies - Search databases 
and conference proceedings n=1446 

Stage 2 Exclude studies on the basis of title n=728 

Stage 3 Exclude studies on the basis of abstracts n=167 

Stage 4 Obtain primary papers and critically appraise 
studies n=30 
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3.3 Study Selection Criteria and Procedures  

The inclusion and exclusion criteria were defined in the review protocol that we de-
veloped for this systematic review. The included primary studies should belong to one 
of the following categories: 

• Category A: Studies which propose a new model or approach using SBSE that can 
be applied in software requirement selection and/or prioritization; or 

• Category B: Studies which apply existing models and techniques to software re-
quirement selection and/or prioritization using SBSE.  

The following studies would be excluded during the study selection phase: 

• Studies on software requirements selection or prioritization that do not use a 
Search-Based Software Engineering approach 

• Studies on training, editorials, article, summaries, interviews, prefaces, news, re-
views, correspondence, tutorials, poster session, workshops and panels. 

Thus, studies were eligible for inclusion in our review if they presented all the charac-
teristics from SBSE and passed the minimum quality threshold (Table 1- Section 
Quality Assessment). The SR included studies published from 2001 to 2012 and only 
studies written in English were included.  

The reason for choosing studies from 2001 was due to usage optimization methods 
in software engineering as described in (Harman & Jones 2001), when the term SBSE 
was created and the studies in this area were categorized in the SBSE field.  

As can be seen in Figure 2, our study selection started searching for relevant stu-
dies based on their titles, abstracts and keywords. Relevant studies are the potential 
candidates for primary studies and the full papers were fully analyzed. We reviewed 
each relevant study to determine whether it was a primary study. This was necessary 
because in the software requirements engineering area, title, abstract and keywords 
are not usually enough to determine the content of a paper. Therefore, we reviewed 
the full paper before making a final decision on whether to include or exclude it. 
More specifically, at stage 1, duplicate citations were identified and removed. In the 
second stage, we excluded studies that were clearly not about software engineering 
requirements. Titles that were clearly outside the scope of the systematic review were 
removed. However, in case of doubt, some articles were considered for the third 
stage. In this phase, studies were excluded on the basis of abstracts if their focus was 
not software requirements selection or prioritization using the SBSE approach. How-
ever, some abstracts are poor or misleading and several gave little information about 
what was in the article. Therefore, at this stage we included all the studies that shared 
some characteristics with our proposed SR. Finally, if the article was not clear from 
the title, abstract and keywords it was included for a deep quality assessment. 

3.4 Quality Assessment 

We chose eighteen criteria to obtain and assess each primary study resulting from 
stage 4. These criteria were based on a study presented in (Barros & Dias-neto, 2011) 
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in which the authors developed a systematic approach to assess experimental studies 
in the SBSE field. 

From this, we developed a checklist in which every question has “yes” or “no” an-
swer. Table 1 presents this study quality assessment checklist. For a better under-
standing of the evaluation, we decided to divide these criteria into five groups. The 
first one refers to general aspects and structural information about the article and is to 
assess whether the selected work is within the context of experiments in the area of 
software engineering (Jedlitschka & Pfahl, 2005; Kitchenham et al., 2010; Sjoberg, 
Hannay, Hansen & Kampenes, 2005). 

Table 1. Quality Criteria 

 

The other groups are related to threats to the validity of experiments in SBSE. As 
proposed by Wohlin (Wohlin et al, 2000) threats to validity are risks associated with 
the design, implementation and analysis of results from experimental studies. The 
criteria included in the group of internal validity are to evaluate if the relationship is 
between the observed treatment and the outcome. That is, the experiment must ensure 
that it is a relationship of cause and not the result of a factor over which the researcher 
has no control. 

The group about conclusion validity contains criteria that relate treatment and out-
comes, therefore statistical procedures must be used to evaluate the significance of  
 

 
Quality Criteria 

General 
1- Is there a proper introduction to the article? 
2-Does it have a clear idea of the research objectives? 
3- Is there a clear statement of the results? 
4- Are there any limitations or restrictions on the results? 
5- Does the study make a projection of value for research and practice? 
 
Internal Validity 
6- Is the source code used in the study discussed and made available to other researchers? 
7- Does the article details the procedure for collecting the data used in the experiment? 
8-Does the article present an explicit definition of the target instance (random and real)? 
 
Conclusion Validity  
9- Does the experiment consider random variations (different runs) in the algorithms presented? 
10- Is the hypothesis of the study formally presented? 
11- Are statistical inference tests used? 
12- Is there a significant basis for comparison between the techniques used and the best known solutions? 
 
Construction Validity 
13- Does the article discuss the model adopted for the optimization process? 
14- Does the article discuss the validity of effectiveness measures? 
 
External Validity 
15- Does the study clearly show the strategy of selecting instances? (real data or randomly generated) 
16- Does the study treat the variation in the complexity of the instances used in the experiment? 
17- Does the study use real world instances in the experiment? 
18- Does the study present the parameter values used in the experiment? 
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results (Barros & Dias-neto, 2011).The construction validity group contains criteria 
concerned with the relationship between theory and observation (Wohlin et al., 2000). 
Finally, the last set of criteria deals with external validity by focusing on the generali-
zation of the results observed in an experiment for a larger population, beyond the 
instances that make up the sample used in the study (Barros & Dias-neto, 2011). 

In the remainder of this work, each quality criterion is identified with the Q and the 
number of the criteria, for example, Q1 refers to the first Quality criteria in Table 1. 

4 Results and Discussion 

We identified 30 studies on software requirements selection and prioritization. Table 
2 presents the articles that were selected after applying the inclusion and exclusion 
criteria depicted in our systematic review protocol. As can be seen in this table, the 
selected studies are sorted and given an identification number (id), year of publica-
tion, and paper title.  

First of all, the quantitative data (Figures 3 to 8) relating to the problem of select-
ing and prioritizing software requirements are presented in the following sequence: (i) 
problem addressed discussed in the selected studies, (ii) methods/approaches used for 
solving the problem, (iii) search techniques adopted and, finally, (iv) analysis of ar-
ticles through quality criteria adopted for assessment of experimental studies in SBSE 
(Table 1).  

After the presentation of these results, the qualitative data extracted was analyzed, 
showing recent trends and possibilities, strengths and weaknesses in the field. Initial-
ly, the results indicated a growing number of publications from 2009 (Table 2). In this 
case, this is the result of the increase in the total publication number, due to the crea-
tion of the International Symposium on Search-Based Software Engineering, where 
the program adopted multiple areas, and specifically in 2010 when an area was dedi-
cated to requirements selection and prioritization alone.  

With regard to problem addressed in software requirements selection, Figure 3 
shows quantitative data about selection and prioritization requirements approaches 
presented in the selected papers. Five kinds of works were identified: NRP (Next 
Release Problem), MONRP (Multiple Objective Next Release Problem), RP (Release 
Planning), Prior (Prioritization of requirements), RIM (Requirements Interaction 
Management). The most frequently addressed problem is the Next Release Problem, 
however, more recent articles show a growing interest in MONRP.  

These data answer the first research question (RQ 1) about what types of modeling 
are being used in selection and prioritization of software requirements with a focus on 
SBSE. Observing Table 2 and the data in Figure 3, it can be seen that initially the 
studies focused on single objective modeling. However, MONRP is a recent trend as 
in 2007 (Zhang, Harman, & Mansouri, 2007) published their work arguing that the 
multi-objective formulation is more realistic than the single objective one, because 
requirements engineering is characterized by the presence of many complex and con-
flicting demands. 
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Table 2. Selected Studies 

 

 

Year Title References 

2009 Search Based Data Sensitivity Analysis applied to Requirement 
Engineering 

Harman, M., Krinke, J., Ren, J., 
Yoo, S. 

2010 Search Based Optimization of Requirements Interaction Manage-
ment 

Zhang, Y, Harman, M 

2007 The Multi-Objective Next Release Problem 
Zhang, Y, Harman, M. & Mansouri, 
S.A 

2009 A Study of The Multi-Objective Next Release Problem Durillo, J.J. et al 

2008 Software Product Release Planning Through optimization and 
what-if Analysis. 

Van den Akker, M. et al 

2010 Using Interactive GA for Requirements Priorization Tonella, P., Susi, A. & Palma, F 

2001 The Next Release Problem 
Bagnall, A., Rayward-Smith, 
V.;Whittley, I 

2004 Software Release Planning: an evolutionary and iterative approach Greer, D ;Ruhe, G 

2011 Software Next Release Planning Approach Through Exact Optimi-
zation 

Freitas, F.,  Coutinho, D. & T. 
Souza, J.,. 

2009 A New Approach to The Software Release Planning Colares, F. et al. 

2010 An Integrated Approach for Requirement Selection and Scheduling 
in Software Release Planning 

Li, C. et al 

2007 Flexible Release Planning using Integer Linear Programming Van Den Akker, J.M. et al 

2009 A search based approach to fairness analysis in requirement as-
signments to aid negotiation, mediation and decision making 

Finkelstein, A., Harman, M., 
Mansouri, S. A., Ren, J., Zhang, Y. 

2008 A systematic approach for solving the wicked problem of software 
release planning 

Ngo-The, A,Ruhe, Guenther 

2011 A Study of The Bi-Objective Next Release Problem Durillo, J.J. et al. 

2010 Comparing  The Performance of Metaheuristics for the Analysis of 
Multi-stakeholder Tradeoffs in Requirements Optimisation 

Zhang, Y. et al. 

2012 Empirical Evaluation of Search Based Requirements Interaction 
Management 

Zhang, Y., Harman, M., Lim, S.L 

2006 Search Based Approaches to Component Selection and Priorization 
for the Next Release Problem 

Baker et al. 

2007 Bi-Objective Release Planning for Evolving Software Saliu, M. Ruhe, G 

2010 Ant Colony Optimization for the Next Release Problem 
Del Sagrado, J., Del Aguila, I., 
Orellana, F. 

2003 Quantitative Studies in Software Release Planning under Risk and 
Resource Constraints 

Ruhe, Günther, Greer, Des 

2005 Supporting Software Release Planning Decision for Evolving Sys-
tems 

Saliu, O.,Ruhe, G 

2010 A Hybrid ACO Algorithm for The Next Release Problem Jiang, H., Zhang, J., et al.. 

2012 Software Requirements Selection using Quantum-inspired Elitist 
Multi-objective Evolutionary Algorithm 

Kumari, A.C., Srinivas, K. & 
Science, C 

2005 Determination of the Next Release of a Software product: an Ap-
proach using Integer Linear Programming 

Van Den Akker,J.M et al. 

2012 Interactive Requirements Priorization using a Genetic Algorithm Tonella, P., Susi, A,Palma, F 

2012 Solving the Large Scale Next Release Problem with a Backbone-
based Multilevel Algorithm 

Xuan, J. et al. 

2005 Software Release Planning for Evolving Systems Saliu, Omolade,Ruhe, Guenther 

2010 Approximate Backbone Based Multilevel Algorithm for Next Re-
lease Problem 

Jiang, H., Xuan, J. , Ren, Z. 

2011 An Ant Colony Optimization Approach to the software Release 
Planning Problem with Dependent Requirements 

Souza, J.T. et al 
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Regarding Research Question 2 (RQ2), about what methods are used for selection 
and prioritization of software requirements with a focus on SBSE, the results can be 
seen in Figure 4. They can be divided into four groups: 1) Metaheuristics 2) exact 
search techniques to obtain optimal solutions 3) hybrid methods containing both the 
meta-heuristics and exact search techniques; and 4) a new formulation created to 
tackle the problem. It was observed that meta-heuristics is arguably the most com-
monly applied method in experiments in search of solutions for requirements selec-
tion and prioritization problems. Indeed, given the complex interrelationships between 
requirements, generally it is quite costly to find an optimal solution. Therefore, the 
use of meta-heuristics may be more appropriate when there is uncertainty and diffi-
culty in finding a single optimal solution. 

 

 

                 Fig. 3. Problem addressed                              Fig. 4.   Methods adopted     

 

Fig. 5. Search Techniques  
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With regard to which methods are used for the process of selecting and prioritizing 
requirements with a focus on SBSE (RQ 3), the results obtained in our systematic 
review can be seen in Figure 5. Multiple search techniques are used in experiments to 
obtain good solutions. According to the data obtained, it is evident that the NSGA-II 
(Non-Sorted Genetic Algorithm II) is the most frequently used algorithm, followed by 
Genetic Algorithm, Integer Linear Programming, and Greedy.  

Random Search is used for comparison of results and is not considered as a  
method to solve the problem of selecting and prioritizing requirements. Many authors 
consider NSGA-II to be the fastest and most effective solution for a search in  
large and complex spaces, therefore the choice of this method is probably the most 
remembered.  

With respect to the constructs of quality criteria (see Table 1), initially, as to the 
general validity, practically all items showed excellent rates.  

Figure 6 shows the results obtained regarding internal validity. These data show 
that nearly half of the articles do not provide the source code used in the experiments 
(Q6) and more than 20 articles do not detail the procedure for collecting the data used 
in the experiment (Q7). Regarding question 8, definition of instance destination (ran-
dom or real), more than 20 studies meet this criterion.  

Regarding conclusion validity, Figure 7 shows the data. About Q9 (if the experi-
ment consider random variations (different runs) in the algorithms presented), only 16 
papers did this. In the case of Q10 (the hypothesis of the study formally presented), 19 
papers do not do this. Concerning the quality criterion 11 (Q11- use of statistical infe-
rence test), only 12 papers did this, and finally, Q12- if there is a significant basis for 
comparison between the techniques used and the best known solutions), 17 articles 
fulfill this.  

In relation to items that address construct validity, good numbers are obtained, 29 
items match criterion 13 (the article discusses the model adopted for the optimization 
process) and 24 meet criterion 14 (the article discusses the validity of effectiveness 
measures). 

Finally, with regard to external validity, Figure 8 shows the results obtained. In this 
Figure it is possible to identify that criterion 18 concerning the presentation of the 
parameter values used in the study, almost all the studies did this however, in Q15  
(if the study clearly shows the strategy of selecting instances (real data or randomly 
generated) only16 observed this and for Q16 (if the study deals with the variation  
in the complexity of the instances used in the experiment) only 10 did this.  
About whether the study used real world instances in experiment (Q17), 17 articles 
did this. 

Overall, the quality criteria discussed here and found by the systematic review 
show which criteria should be best observed for more robust and reliable experiments. 
As for the qualitative aspect of the articles, some important observations can be sum-
marized:  
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                 Fig. 6. Internal Validity                                   Fig. 7. Conclusion Validity 

 

Fig. 8. External Validity 

(a) Recent trend to use of multi-objective modeling 
(b) Incorporation of new search techniques 
(c) Focus on randomly generated data 
(d) Little comparison between real and experimental data 
(e) Lack of generalization of the models 
(f) Experiments with data on a small scale 
(g) No categorization of requirements (functional or nonfunctional) 
(h) Few studies consider interdependency between software requirements 
(i) Modeling consideration only restriction related to budget or costs. 

In the studies analyzed in this systematic review it can be seen that there is a recent 
trend for the use of multi-objective modeling, something to be expected given the 
power of this type of modeling to solve many conflicting objectives relating to a set of 
requirements to include in the next release of the software.  
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Additionally new techniques have been incorporated to help obtain solutions, espe-
cially from technical Metaheuristics (see Figure 5). However, many still consider 
modeling only cost and budget constraints, something that is useful, but is not  
practiced in reality in the process of software development. Besides this, all of the 
studies analyzed did not distinguish non-functional from functional requirements, and 
only a few consider interdependence between requirements. Regarding experiment 
format, most studies use only experimental data on a small scale, which restricts the 
application of results in real situations, on larger scales and generalization. 

According to qualitative and quantitative data shown here, we have identified some 
gaps and trends in the area (Figure 9) and propose some points of interest that can be 
taken into consideration for new research undertaken by the scientific community.  
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Fig. 9. Gaps and tendencies in SBSE focusing on requirements selection and prioritization 
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Some items are being researched, such as: (i) the adoption of multi-objective mod-
eling, (ii) usage of hybrid methods to get better solutions, for example, the Hill 
Climbing Local search in conjunction with Ant Colony Optimization (Jiang, Zhang, et 
al, 2010), (iii) the interdependencies between requirements, exploring the most com-
mon interaction types, such as, precedence, value-related, cost-related, AND operator 
and exclusive OR,  and  (iv) usage of experiments on a large scale and multilevel 
approach, however, there are few studies that use these features. Therefore, there is 
the possibility of using exact optimization (e.g. mathematical programming and con-
straint programming) combined with several metaheuristic, such as, evolutionary 
algorithms, parallel metaheuristics to improve the results obtained in a search. 

Recently, a multilevel approach proposes to solve large scales NRP instances ex-
ploring iteratively the search spaces by multilevel reductions and refinements (Jiang, 
Xuan & Ren, 2010). It is a recent trend in SBSE filed and may be further explored in 
cases of experiments on a large scale experiments. 

In terms of innovation for the area three factors may contribute to performing ex-
periments closer to the reality of a software engineer:  

(i)  Conduct experiments in SBSE that categorize and differentiate functional and 
non-functional requirements given that there are differences between them, thus, 
further experiments can be performed and the results obtained may correspond 
the reality of the software industry. Currently, there are no studies in NRP that 
achieves this differentiation and its consequences,  

(ii)  Add user judgment in modeling the problem of selecting and prioritizing  
requirements. This may lead to better results and experiments closer to the user 
requirements,  

(iii)  The inclusion of new restrictions could make the experiments closer to the reali-
ty of the software industry, where uncertainties, risks, factors related to project 
deadlines and the use of software process have a significant impact on software 
development.  

A promising area that can be observed for software requirements selection is robust 
optimization, where various aspects of risks and uncertainties are added to optimiza-
tion models. According to Ben-Tal and Nemirovski (Ben-Tal & Nemirovski, 2001), 
Robust Optimization is a modeling methodology, combined with computational tools, 
to process optimization problems in which the data are uncertain and is only known to 
belong to some uncertainty set. This method can be very effective in the engineering 
process requirements since human experts faces a scenario with multiple decisions 
where there are several associated uncertainties and risks. 

Figure 9 presents the gaps and tendencies in SBSE focusing on requirements selec-
tion and prioritization according to the results obtained in this systematic review. It is 
important to note that the eight areas present in that figure can be used in conjunction, 
may enable studies and experiments in the selection and prioritization of software 
requirements more effective, achieving better results and closer to the reality of the 
software industry. 
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5 Conclusions 

Requirements engineering is a complex discipline that covers multiple activities in the 
software development process. Some important tasks such as selecting and prioritiza-
tion requirements can be an extremely arduous and exhaustive task throughout the 
process, depending on the size of the software features of the application domain, 
interdependence between requirements, among others. 

In order to support the search for automated and less exhaustive solutions Search-
Based Software Engineering has emerged with the characteristic to address the prob-
lems of software engineering as a search based optimization problem. 

Given the growth of this approach and obtaining meaningful results, the work de-
veloped here studied and identified the state of the art applications of optimization  
in the process of software requirements selection and prioritization using SBSE  
approach.  

It was possible to identify the techniques and approaches which are already estab-
lished in the area, such as mono-objective modeling and NSGA-II, as well as identify 
some gaps in conducting experiments and possible future trends in this field.  

This systematic review not only identified the techniques and methods most fre-
quently used in the experiments, but also analyzed some quality criteria that must be 
taken into consideration when approaching  the arduous task of selecting and priori-
tizing requirements. Some key points can be considered for further experiments: 

• Insertion of statistical inference tests that can support the results obtained. 
• Formal presentation of the hypothesis for a better understanding of what is 

the desired result 
• Adoption of real world instances (for example, data from the software indus-

try) to be closer to software industry reality. 
 

From the qualitative results extracted from the analyzed articles it can be seen that 
multi-goal modeling is a trend that is growing in the current studies, however, there is 
much room to create models even closer to the reality of software engineers. Insertion 
of the user judgment and the inclusion of new restrictions, such risks and uncertain-
ties, constitute an open field for exploration. Consideration of the interdependence 
between requirements already being used, however, still requires further elaboration. 

Future work includes studying the use of robust optimization to include new fitness 
functions and new restrictions in the modeling process. 
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Abstract. In current model-driven engineering practices, metamodels
are modified followed by an update of transformation rules. Next, the
updated transformation mechanism should be validated to ensure qual-
ity and robustness. Model transformation testing is a recently proposed
effective technique used to validate transformation mechanisms. In this
paper, a more efficient approach to model transformation testing is pro-
posed by refactoring the existing test case models, employed to test pre-
vious metamodel and transformation mechanism versions, to cover new
changes. To this end, a multi-objective optimization algorithm is em-
ployed to generate test case models that maximizes the coverage of the
new metamodel while minimizing the number of test case model refac-
torings as well as test case model elements that have become invalid due
to the new changes. Validation results on a widely used transformation
mechanism confirm the effectiveness of our approach.

Keywords: search-based software engineering, testing, model transfor-
mation, multi-objective optimization.

1 Introduction

Model-Driven Engineering (MDE) considers models as first-class artifacts dur-
ing the software lifecycle. The number of available tools, techniques, and ap-
proaches for MDE are growing that support a wide variety of activities such as
model creation, model transformation, and code generation. The use of different
domain-specific modeling languages and diverse versions of the same language
increases the need for interoperability between languages and their accompa-
nying tools [1]. Therefore, metamodels are regularly updated along with their
respective transformation mechanism.

Afterwards, the updated transformation mechanism should be validated to
assure quality and robustness. One efficient validation method proposed recently
is model transformation testing [1,2] which consists of generating source models
as test cases, applying the transformation mechanism to them, and verifying the
result using an oracle function such as a comparison with an expected result. Two
challenges are: (1) the efficient generation of test cases, and (2) the definition of
the oracle function. This paper focuses on the efficient generation of test cases
in the form of source models.
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The generation of test case models for model transformation mechanisms is
challenging because many issues need to be addressed. As explained in [3], testing
model transformation is distinct from testing traditional implementations; the
input data are models that are complex when compared to simple data types
which complicates the generation and evaluation of test case models [4]. The
basis of the work presented in this paper starts from the observation that most
existing approaches in testing evolved transformation mechanisms regenerate all
test cases from scratch. However, this can be a very fastidious task since the
expected output for all test cases needs to be completely redefined by hand.
Furthermore, when the number of changes made between metamodel versions
is relatively small in comparison to metamodel sizes, redefining all test case
output is inefficient. A better strategy is to revise existing test cases to cover
new changes in metamodels to reduce the effort required to manually redefine
expected test case output.

In this paper, a multi-objective search-based approach is used to generate test
case models that maximizes the coverage of a newly updated metamodel while
minimizing the number of refactorings applied to existing test case models in
addition to minimizing the number of test case model elements that have be-
come invalid due to the new changes. The proposed algorithm is an adaptation
of multi-objective simulated annealing (MOSA) [5] and aims to find a Pareto
optimal solution consisting of test case model refactorings that will yield the
new test case models when applied to existing test case models of the previous
version metamodel that best satisfy the three criteria previously mentioned. This
approach is implemented and evaluated on a known case of transforming UML
1.4 class diagrams to UML 2.0 class diagrams [6]. Results detailing the effective-
ness of the proposed approach are compared to results of a traditional simulated
annealing (SA) approach (whose single objective is to maximize metamodel cov-
erage) to create UML 2.0 test case models in two scenarios: (1) updating test
case models for UML 1.4 and (2) creating new test case models from scratch.
Results indicate that the proposed approach holds great promise as using MOSA
from previous test case models attains slightly less metamodel coverage than us-
ing SA with, however, significantly less refactorings and invalid model elements
while always outperforming both methods starting from scratch.

The primary contributions of this paper are summarized as follows: (1) A novel
formulation of the model transformation testing problem is introduced using a
novel multi-objective optimization technique, and (2) results of an empirical
study comparing the proposed MOSA approach to a traditional SA approach in
scenarios starting from previous test case models and from scratch are reported.
The obtained results provide evidence supporting the claim that the proposed
MOSA approach requires less manual effort to update expected output than SA
and starting from existing test case models is more effective than regenerating
all test case models from scratch.
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2 Methodology

In this section, the three main components of any search-based approach are
defined: the solution representation, change operators, and objective function.

2.1 Solution Representation

Since the proposed approach needs to modify test case models in response to
changes at the metamodel level, the solution produced should yield a modified
version of the original test case models that best conforms to the updated meta-
model. This can be done primarily in one of two different ways: the solution
could either consist of the actual updated test case model itself, or represent
a structure that, when applied to the original test case models, produces the
updated test case models. The latter was chosen for this problem in the form
of lists of model refactorings, because it allows a sequence of refactorings to be
modified at any point in the sequence.

For example, if a search-based method was employed to generate the new test
case models and a suboptimal refactoring was included in the best found test case
model solution at some point in the search process, it would be difficult to reverse
the application of the suboptimal refactoring to the best found test case model
solution if the test case model was modified directly. This is because it would
need to search and find the refactoring in the space of all possible refactorings to
apply to the test case model to reverse or change the suboptimal refactoring. By
modifying a list of model refactorings, it is easier for the search process to remove
or modify the suboptimal refactoring because it has direct access to the model
refactorings included in the best found solution. Furthermore, maintaining a list
of the best sequence of refactorings found during the search process gives direct
information about what exactly was changed from the previous version test case
models that makes updating the expected output a simpler task.

Each element in the lists of refactorings solution representation is a list of
model refactorings that corresponds to a test case model. Each list of model
refactorings is comprised of model refactorings that are applied to the corre-
sponding test case model in the order in which they appear in the list. Applying
these refactorings transforms the existing test case models into the updated test
case models for the updated metamodel. An example of model refactorings that
can be applied to UML class diagrams are shown in Table 1. Figure 1 shows an
example of a possible list of UML refactorings for a test case model that moves
method getAge from class Employee to class Person, adds a Salary field to the
Employee class, and then removes the Job class, in that order.

MoveMethod(getAge, Employee, Person) AddField(Salary, Employee) RemoveClass(Job)

Fig. 1. Example list of UML class diagram model refactorings
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Table 1. UML class diagram model refactorings

Add Field Add Association Move Field Push Down Field

Add Method Add Generalization Move Method Push Down Method

Add Class Remove Method Extract Class Pull Up Field

Remove Field Remove Association Extract Subclass Pull Up Method

Remove Class Remove Generalization Extract Superclass Collapse Hierarchy

Change Bi- to Uni-Directional Association Change Uni- to Bi-Directional Association

2.2 Change Operators

The only change operator employed in MOSA is mutation. When mutating a
given test case model’s list of refactorings, the type of mutation to perform is
first determined from a user-defined probability distribution that chooses be-
tween inserting a refactoring into the list, removing a refactoring from the list,
or modifying a refactoring in the list. When inserting a refactoring into a list of
refactorings, an insertion point between refactorings is first chosen, including ei-
ther ends of the list. The refactorings that appear in the list before the insertion
point are first applied to the test case model in the order in which they appear
in the list. A refactoring is then randomly generated for the refactored test case
model as it exists at the selection point, applied to the model, and inserted into
the list at the insertion point. The refactorings that appear after the insertion
point in the list are then validated in the order in which they appear by first
checking their validity and subsequently applying them to the test case model if
they are valid. If a refactoring is found to be invalid due to a conflict caused by
the insertion of the new refactoring into the list, the refactoring is removed from
the list. An invalid refactoring could occur, for example, if a new refactoring is
inserted into the front of a list that removes a specific class attribute that is refer-
enced in an existing refactoring later in the list. If such an occurrence happened,
the existing refactoring that references the now-removed class attribute will be
removed from the list. When performing a mutation that removes a refactoring
from a list of refactorings, a refactoring is selected at random and removed from
the list. Validation is performed in the same manner as when inserting a refac-
toring for those refactorings that appear after the removed refactoring in the list
of refactorings.

When mutating a refactoring in the list of refactorings, a refactoring is first
randomly selected. Then, one of three types of mutations is selected for appli-
cation to the selected refactoring using a user-defined probability distribution:
(1) replace the selected refactoring with a new randomly-generated refactoring,
(2) replace the selected refactoring with a new randomly-generated refactoring
of the same refactoring type (e.g., replace a MoveField refactoring with a new
randomly generated MoveField refactoring), or (3) mutate a parameter of the
selected refactoring. An example of a refactoring parameter mutation is chang-
ing the target class of a MoveMethod refactoring to another randomly chosen
class in the model. Validation for all three types of refactoring mutations are
performed in the same manner as described previously.
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2.3 Objective Functions

Objective functions are a very important component of any search-based algo-
rithm, because they define the metrics upon which solutions are compared that
ultimately guides the search process. In the context of determining the quality of
lists of refactorings to be applied to test case models in response to metamodel
changes, three objective functions that define characteristics of a good solution
are: (1) maximize updated metamodel coverage, (2) minimize model elements
that do not conform to the updated metamodel, and (3) minimize the number
of refactorings used to refactor the existing test case models.

Maximizing the coverage of the updated metamodel is imperative because
the sole purpose of test case models is to ensure that the model transformation
mechanisms are robust. Minimizing the number of invalid test case model ele-
ments due to metamodel changes ensures that the test case models themselves
are free of defects in order to properly assess the quality of the model transfor-
mation mechanism being tested. Finally, minimizing the number of refactorings
used to refactor the test case models reduces the amount of effort required to
update the expected output for the test case model transformations.

Metamodel Coverage. Since UML metamodels are utilized in the experi-
mentation described in this paper, UML metamodel coverage is described here;
however, note that different methods of calculating metamodel coverage may ex-
ist for different metamodel types. The method used to derive UML metamodel
coverage was first introduced in [4]. This method begins by a priori performing
partition analysis in which the types of coverage criteria taken into consideration
for a given problem are chosen. For metamodel coverage, an adaptation of the
same three coverage criteria from [4] are used. These criteria are association-end
multiplicities (AEM), class attributes (CA), and generalizations (GN). AEM
refers to the types of multiplicities used in associations included in a metamodel
such as 0..1, 1..1, or 1..N. CA refers to the types of class attributes included in a
metamodel such as integer, string, or boolean. Since the metamodels used in the
empirical tests in this paper support class operations in addition to attributes,
class method return types are included in CA. GN refers to the coverage of
classes that belong to each of the following categories: superclass, subclass, both
superclass and subclass, and neither superclass nor subclass.

Each coverage criterion must be partitioned into logical partitions that, when
unioned together, represent all the value types each criterion could take on. These
partitions are then assigned representative values to represent each coverage
criterion partition. For example, if a metamodel allows for classes to have an
integer attribute, then the integer class attribute element is included in the CA
coverage criterion. The values an integer class attribute can take on can be split
into partitions whose representative values are <-1, -1, 0, 1, and >1, for example.
An example of partition analysis and a subset of the coverage items generated
from its representative values are shown in Table 2 and Table 3, respectively.

After representative values are defined, a set of coverage items for the updated
metamodel is created. In our adaptation of the coverage item set creation method
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Table 2. Partition analysis example showing
associated representative values for given cov-
erage criteria

Coverage Criteria Representative Values
CA: boolean true, false
CA: integer <-1, -1, 0, 1, >1
CA: float <-1.0, -1.0, 0.0, 1.0, >1.0
CA: string Null, ‘’, ‘something’
AEM: 1..1 1
AEM: 1..N 1, N
GN sub, super, both, neither

Table 3. Subset of coverage
items created from representa-
tive values found in Table 2

Coverage Items
CA: -1 AEM: N
CA: ‘something’ GN: super
AEM: 1 AEM: N
AEM: 1 GN: neither
CA: false CA: >1.0
CA: Null AEM: 1

introduced in [4], this is done by calculating all possible 2-tuple combinations
of representative values from all partitions of all coverage criteria types that are
included in the updated metamodel. The only exception to this are coverage
items containing two different GN representative values, because they would
be impossible to satisfy. This is done to ensure the robustness of the model
transformation mechanism for all possible valid combinations of representative
values. The metamodel coverage objective value for given test case models and
updated metamodel is determined by calculating the percentage of metamodel
coverage items the test case models satisfy. For example, if a given updated
metamodel included associations with end multiplicities of 1..1 → 1..N, then
the derived coverage items would include associations with end-multiplicities of
1 → 1 and 1 → N. Additionally, if a given updated metamodel also included
boolean class attributes, then the additional coverage items would include classes
with a boolean attribute and association end multiplicity of true and 1, false and
1, true and N, and false and N, respectively. For a more in-depth example of
a model and the coverage items it would satisfy, refer to Figure 2 and Table 4,
respectively.

Fig. 2. Example test case model

Table 4. Coverage items satisfied
by the example shown in Figure 2

Coverage Items

CA: ‘something’ CA: 1.0

CA: ‘something’ AEM: 1

CA: 1.0 AEM: 1

CA: ‘something’ GN: super

CA: 1.0 GN: super

AEM: 1 GN: super

CA: -1 GN: sub

CA: false AEM: N

AEM: 1 AEM: N

AEM: N GN: neither

CA: false GN: neither
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Metamodel Conformity. Unlike the bacteriological approach used to auto-
matically generate test case models from scratch in [4], the proposed approach
is initialized with test case models that were created to conform to a metamodel
that may contain metamodel elements that are not compatible with the updated
metamodel. Because of this, there may exist test case model elements that do
not conform to the updated metamodel, and if so, should be removed or modified
to improve the validity of the test case models by reducing the number of invalid
model elements. Calculating the metamodel conformity objective value of given
test case models and updated metamodel is done by summing up the number of
test case model elements from all test case models that do not conform to the
updated metamodel. For example, say Metamodel v1.0 includes integer class
attributes while Metamodel v2.0 does not. All integer model elements from the
test case models for Metamodel v1.0 are invalid in Metamodel v2.0, so they need
to be removed or modified to a valid class attribute type to improve the validity
of the test case models themselves.

Number of Refactorings. While automatically generating test case models
in an attempt to maximize metamodel coverage has been previously explored
and improving metamodel conformity of test case models by itself can be ac-
complished trivially by removing or modifying nonconforming test case model
elements, performing these tasks by finding a minimal number of refactorings
to apply to existing test case models has not yet been explored to our knowl-
edge. By minimizing the number of refactorings required to update existing test
case models for an updated metamodel, the task of updating expected test case
model transformation output is simplified. The challenge of finding a minimal
set of refactorings to apply to test case models to maximize metamodel coverage
and minimize the number of nonconforming test case model elements stems from
the fact that there are a multitude of different refactoring sequences that can be
applied to achieve the same resulting test case models. Calculating the number
of refactorings is done by summing up the number of refactorings in the lists of
refactorings.

2.4 Search-Based Approach

Simulated Annealing (SA). SA is a local search heuristic inspired by the
concept of annealing in metallurgy where metal is heated, raising its energy
and relieving it of defects due to its ability to move around more easily. As its
temperature drops, the metal’s energy drops and eventually it settles in a more
stable state and becomes rigid. This technique is replicated in SA by initializing a
temperature variable with a “high temperature” value and slowly decreasing the
temperature for a set number of iterations by multiplying it by a value α every
iteration, where 0 < α < 1. During each iteration, a mutation operator is applied
to a copy of the resulting solution from the previous iteration. If the mutated
solution has the same or better fitness than the previous one, it is kept and used
for the next iteration. If the mutated solution has a worse fitness, a probability
of keeping the mutated solution and using it in the next iteration is calculated
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using an acceptance probability function. The acceptance probability function
takes as input the difference in fitness of the two solutions as well as the current
temperature value and outputs the acceptance probability such that smaller
differences in solution fitness and higher temperature values will yield higher
acceptance probabilities. In effect, this means that for each passing iteration, the
probability of keeping a mutated solution with worse fitness decreases, resulting
in a search policy that, in general, transitions from an explorative policy to an
exploitative policy. The initial lenience towards accepting solutions with worse
fitness values is what allows simulated annealing to escape local minima/maxima.

Multi-Objective Simulated Annealing (MOSA). Traditional SA is not
suitable for the automatic test case model generation as described previously
because a solution’s fitness consists of three separate objective functions and SA
cannot directly compare solutions based on multiple criteria. Furthermore, even
if SA had the ability to determine relative solution fitness, there would still be
the problem of quantifying the fitness disparity between solutions as a scalar
value for use in the acceptance probability function. MOSA overcomes these
problems. When comparing the relative fitness of solutions, MOSA utilizes the
idea of Pareto optimality using dominance as a basis for comparison. Solution
A is said to dominate solution B if: (1) every objective value for solution A is
the same or better than the corresponding objective value for solution B, and
(2) solution A has at least one objective value that is strictly better than the
corresponding objective value of solution B. If solution A does not dominate
solution B and solution B does not dominate solution A, then these solutions
are said to belong to the same non-dominating front. In MOSA, the mutated
solution will be kept and used for the next iteration if it dominates or is in
the same non-dominating front as the solution from the previous iteration. To
determine the probability that the mutated solution dominated by the solution
from the previous iteration will be kept and used for the next iteration of MOSA,
there are a number of possible acceptance probability functions that can be
utilized. Since previous work has noted that the average cost criteria yields good
performance [5], we have utilized it. The average cost criteria simply takes the
average of the differences of each objective value between two solutions, i and j,
over all objectives D, as shown in Equation 1. The final acceptance probability
function used in MOSA is shown in Equation 2.

c(i, j) =

|D|∑
k=1

(ck(j)− ck(i))

|D| (1)
AcceptProb(i, j, temp) = e

−abs(c(i,j))
temp

(2)

MOSA Adaptation for Generating Test Case Models. When using the
number of refactorings fitness criterion along with mutations that add, modify,
or remove refactorings in MOSA, a slight modification of the definition of domi-
nance is required in order to obtain quality results. The problem with using the
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traditional definition of dominance in this case is that “remove refactoring” mu-
tations will always generate a solution that is at least in the same non-dominated
front as the non-mutated solution because it utilizes less refactorings, thus mak-
ing it strictly better in at least one objective. In MOSA, this means that the
non-mutated solution will always be discarded in favor of the mutated solution
that it will use in the following iteration. The problem with this is that the prob-
ability of an add refactoring or modify refactoring mutation yielding a mutated
solution that is in the same non-dominated front or better is much less than that
of a mutation removing a refactoring (100%). This is because the only way an
add or modify refactoring mutation could at least be in the same non-dominated
front is if it satisfied a previously unsatisfied metamodel coverage item, removed
an invalid model element, or modified an invalid model element to make it valid.
As a result, solutions tend to gravitate towards solutions with less refactorings
that eventually results in solutions with the least possible number of refactorings,
one refactoring per each test case model. This was found to be the case in exper-
iments executed with the traditional dominance implementation. The problem
is alleviated by modifying how dominance is determined in MOSA such that a
mutated solution with less refactorings and less metamodel coverage or more
invalid model elements than the non-mutated solution is considered to be dom-
inated by the non-mutated solution. In other words, MOSA will only transition
from the non-mutated solution from the previous iteration to the new mutated
solution (using the “remove refactoring” mutation) with 100% probability if the
mutated solution dominates the non-mutated solution. If the mutated solution
has less refactorings but also less metamodel coverage or more invalid model
elements, then it will only be accepted and used for the next iteration given the
probability calculated by the acceptance probability function.

The second problem to overcome is how to use the metamodel coverage, num-
ber of invalid model elements, and number of refactoring values in the acceptance
probability function in a meaningful way. As they are, these three values take on
values in different scales: metamodel coverage takes on values between 0% and
100% (0.0 and 1.0), number of invalid model elements takes on values between
0 and the initial number of invalid model elements before MOSA begins, and
the number of refactorings takes on the value of any nonnegative integer. In or-
der to make the average of differences between fitness criteria values meaningful,
normalization is performed. Metamodel coverage does not require any normaliza-
tion as its values already lie between 0.0 and 1.0 and thus all differences between
metamodel coverage values will as well. The only operation necessary is to take
the absolute value of the difference to ensure it is positive as shown in Equa-
tion 3. To normalize the difference between numbers of invalid model elements,
simply take the absolute value of the difference between the number of invalid
model elements values and divide by the number of invalid model elements from
the initial test case models as shown in Equation 4.

CovDiff = abs(Cov(i)− Cov(j)) (3) InvDiff =
abs(Inv(i)− Inv(j))

Inv0
(4)
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To normalize the difference in number of refactorings, the maximum number of
refactorings should be used as a divisor. Since there is theoretically no upper
bound to the possible number of refactorings that the lists of refactorings could
have, a reasonable estimate is required. For this estimate, the sum of the initial
number of unsatisfied coverage items and the number of invalid model elements
of the starting test case models is used because it assumes that each coverage
item and invalid model element will take one refactoring to satisfy and remove,
respectively. As shown in Equation 5, the normalization of the difference in
number of refactorings is calculated by taking the absolute value of the difference
in number of refactorings divided by the sum of the initial number of unsatisfied
coverage items and the number of invalid model elements of the starting test
case models.

NumRefDiff =
abs(NumRef(i)−NumRef(j))

UnsatCovItems0 + Inv0
(5)

2.5 Implementation

Before using MOSA to generate the lists of refactorings, a maximum model size
must be declared to ensure a balance between the size of the test cases and the
number of test cases is maintained. As explained in [4], smaller test cases allow
for easier understanding and diagnosis when an error arises while the number
of test cases should be reasonable in order to maintain an acceptable execution
time and amount of effort for defining an oracle function.

After the maximum model size is declared, the automatic test case model
generation begins. The algorithm iterates through all test case models once. For
each test case model, its corresponding list of refactorings is initialized with
one randomly-generated refactoring before the adapted MOSA algorithm is exe-
cuted. After the algorithm has iterated over every test case model, the final lists
of refactorings for each test case model are output along with the resulting test
case models yielded from the application of the refactorings. The pseudocode for
this algorithm is shown in Algorithm 1. It is important to note that although
search is done for refactorings at the test case model level, the objective func-
tions are executed on the overall running solution of the entire set of updated
test case models at any given iteration. This means that, for example, if the
space of refactoring lists for a particular test case model is being searched and a
mutation is performed that covers a new coverage item for that test case model,
but a list of refactorings for another test case model from a previous iteration
already covered that particular coverage item, then there is no increase in the
metamodel coverage objective function. The value yielded from the metamodel
coverage objective function will only increase if a coverage item is covered that
has not already been covered by any other test case model with their refactorings
in the overall solution.
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Algorithm 1. Pseudocode for adapted MOSA for generating test case models

function MOSA(testCaseModels, maxModelSize, initialTemperature, α)
ListOfRefactorings.setMaxModelSize(maxModelSize)
solution ← list()
for testCaseModel in testCaseModels do

refactorings ← ListOfRefactorings(testCaseModel)
temp ← initialTemperature
for iteration = 1 → maxIterations do

newRefactorings ← copy(refactorings)
newRefactorings.mutate()
if newRefactorings.dominates(refactorings) then

refactorings ← newRefactorings
else if u[0.0,1.0] < AcceptProb(refactorings,newRefactorings,temp) then

refactorings ← newRefactorings
temp ← temp × α

solution.push(refactorings)
return listsOfRefactorings

3 Experimentation

3.1 Experimental Setting

To test the effectiveness of the proposed approach, experiments were carried out
to evolve test case models for the UML 2.0 metamodel. In the implementation
used, the UML 2.0 metamodel generated 857 coverage items that needed to be
satisfied in order to obtain 100% metamodel coverage. To discover if initializing
the test case models with those of a previous metamodel version was beneficial,
experiments were done starting from a set of test case models that conform to
UML 1.4 as well as a set of new test case models. Each test case model in the
set of UML 1.4 test case models consists of between 17 and 23 model elements
that collectively satisfy 46.58% of the UML 2.0 metamodel coverage items and
have 60 model elements that are invalid with respect to the UML 2.0 metamodel,
while each test case model in the set of new test case models consists of only five
class model elements, collectively satisfy 0% of the UML 2.0 metamodel coverage
items, and have no invalid model elements. Both sets are comprised of 20 test
case models each.

To justify the multi-objective approach proposed in this paper, the same ex-
periments were carried out using an SA approach utilizing only metamodel cov-
erage like in previous works [4]. All experiments were run 30 times in order to
establish statistical significance. For each of the 20 test case models, 10,000 it-
erations of SA were performed with a starting temperature of 0.0003 and an
alpha value of 0.99965. The starting temperature and alpha values were chosen
because they yielded the best results in empirical preliminary tests for both SA
and MOSA. All probability distributions used by the search process (e.g., to
determine the type of mutation to execute or refactoring to generate) were such
that each discrete possibility had equal chance of being selected.
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3.2 Results

The complete results from all four experiment configurations can be found in
Table 5. The SA approaches outperformed the corresponding MOSA approaches
in the metamodel coverage objective as shown in Figure 3 while, however, using
a far greater number of refactorings as shown in Figure 5. Figure 4 shows that
the MOSA experiment that started with the UML 1.4 test case models removed
all 60 test case model elements every run while the corresponding SA experiment
removed less than half of the invalid test case model elements on average. All
differences in results were determined to be statistically significant employing a
two-tailed t-test with α = 0.05.

Table 5. Empirical results with standard deviations in parentheses

From Scratch From Existing Models
SA MOSA SA MOSA

Coverage 83.82% (0.05%) 63.36% (0.04%) 96.20% (<0.01%) 91.70% (0.01%)

Invalid - - 35.47 (4.03) 0.00 (0.00)

Num. Ref. 1185.87 (176.69) 315.17 (18.08) 726.87 (34.15) 348.90 (13.60)

Fig. 3. Metamodel coverage versus
iterations

Fig. 4. Invalid model elements versus
iterations

3.3 Discussion

With respect to the metamodel coverage objective, it is intuitive that the SA ap-
proaches would outperform the MOSA approaches, albeit by a relatively small
margin when starting from existing test case models, because the MOSA ap-
proaches must balance conflicting objectives while the SA approaches do not.
As a result, the lists of refactorings yielded from the MOSA approaches are
more effective in terms of metamodel coverage per refactoring than the ones
yielded from SA. Combined with the fact that the total number of refactorings
yielded by the MOSA approaches are drastically less than those yielded by the
SA approaches, this means that the effort required to implement the changes
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Fig. 5. Refactorings versus iterations

to expected output is less and overall more effective using the MOSA approach
under the assumption that an increase in refactorings made to test case models
increases the amount of effort required to update the test case expected output.

Furthermore, the results show that the approaches that start with existing test
case models of a previous metamodel version outperform the same approaches
that generate completely new models. This also helps reduce the effort required
to update the expected test case output because portions of the expected output
for the existing test cases will not need to be modified. Furthermore, if a user is
already familiar with the previous test case models that were initially used as a
basis for the new test case models, that knowledge can be leveraged to further
decrease the amount of effort required to update expected output.

4 Related Work

Fleurey et al. [4,7] and Steel et al. [8] discuss the reasons why testing model
transformations is distinct from testing traditional implementations: the input
data are models that are complex in comparison to simple data types. Both
papers describe how to generate test data in MDE by adapting existing tech-
niques, including functional criteria [2] and bacteriologic approaches [3]. Lin et
al. [9] propose a testing framework for model transformation built on their mod-
eling tools and transformation engine that offers a support tool for test case
construction, test execution, and test comparison; however, the test case models
are manually developed in this work.

Some other approaches are specific to test case generation for graph transfor-
mation mechanisms. Küster [10] addresses the problem of model transformation
validation in a way that is very specific to graph transformation by focusing on
the verification of transformation rules with respect to termination and conflu-
ence. This work is concerned with the verification of transformation properties
rather than the validation (testing) of their correctness. Darabos et al. [11] inves-
tigate the testing of graph transformations by considering graph transformation
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rules as the transformation specification and propose to generate test data from
this specification. Darabos et al. propose several faulty models that can occur
when performing pattern matching as well as a test case generation technique
that targets those particular faults. Compared to the multiobjective search-based
approach proposed in this paper, Darabos’ work is specific to graph-based trans-
formation testing. Mottu et al. [1] describe six different oracle functions to eval-
uate the correctness of an output model. In [12], the authors suggest manually
determining the expected transformation outcome and comparing it with the
actual transformation outcome using a simple graph-comparison algorithm.

Themulti-objective search-basedapproachproposed in this paper is inspired by
contributions in the domain of Search-Based Software Engineering (SBSE) [13].
SBSE uses search-based approaches to solve optimization problems in software
engineering, and once a software engineering task is framed as a search problem,
many search algorithms can be applied to solve that problem. These search-based
approaches are also used to solve problems in software testing [14,15,12]. The gen-
eral idea behind the proposed approach is that possible test case model refactor-
ings define a search space and multiple conflicting test case model criteria are in-
tegrated into multiple objective functions. These components guide the search ap-
proach in an attempt to find an optimal set of test case model refactorings that
yields a set of adequate updated test case models.

Although the problem of generating test cases at the code level is well-studied,
there are few works that generate test cases at the model level to test transforma-
tion mechanisms. To our knowledge, there is currently no other work that utilizes
existing test case models of a previous metamodel to generate test case models
for an updated metamodel. Furthermore, this is the first adaptation of heuristic
search algorithms to take into consideration multiple objectives when generating
source models (test cases) similar to the data that will be transformed.

5 Conclusion and Future Work

Empirical results show that MOSA can automatically generate quality test case
models from existing test case models in response to metamodel changes. The
new test case models are generated with minimal refactorings so the effort re-
quired to update expected test case model transformation output is reduced.
While SA is able to achieve slightly better overall metamodel coverage, the
number of refactorings, and thus required effort, is substantially greater. Further-
more, the MOSA approach is able to reliably remove test case model elements
that become invalid due to metamodel changes.

To generalize our proposed approach and ensure its robustness, we plan to
extend our validation to other metamodels such as Petri nets and relational
schema. Furthermore, comparative studies will be performed between different
multiobjective metaheuristic algorithms as well as between processing all test
case models at once to yield an overall single list of refactorings and the proposed
method of processing each test case model one at a time.
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Abstract. Fault localisation uses so-called risk evaluation formulæ to
guide the localisation process. For more than a decade, the design and
improvement of these formulæ has been conducted entirely manually
through iterative publication in the fault localisation literature. How-
ever, recently we demonstrated that SBSE could be used to automat-
ically design such formulæ by recasting this as a problem for Genetic
Programming(GP). In this paper we prove that our GP has produced
four previously unknown globally optimal formulæ. Though other human
competitive results have previously been reported in the SBSE literature,
this is the first SBSE result, in any application domain, for which hu-
man competitiveness has been formally proved. We also show that some
of these formulæ exhibit counter-intuitive characteristics, making them
less likely to have been found solely by further human effort.

1 Introduction

Early work demonstrated the wide applicability of SBSE to many different soft-
ware engineering domains, perhaps surprising some software engineers, who had
previously thought computational search inadmissible in their areas of activity.
However, now that SBSE is a mature [7] and well-established ‘standard’ ap-
proach to software engineering [9,11], the SBSE research agenda should become
more ambitious in order to continue to stimulate further development.

One area in which more work is needed lies in the development of techniques
that are human competitive, a long-sought goal of all optimisation approaches.
Such results are inherently compelling demonstrations of the value of SBSE
for which the scientific evidence should be sufficient to convince even the most
skeptical software engineer.

Recent work has produced specific claims for human competitive results in
SBSE [19], while much other SBSE work is already implicitly partly human
competitive, since it automates aspects of software engineering for which human
effort is simply too expensive [11, 15, 17]. In this paper we seek to go a step
further. We seek not only to demonstrate that our SBSE results are human
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competitive, but also that we have provably optimal results in an area for which
many years of human effort have been expended by very capable scientists to
construct just such optimal results.

The area for which we are able to demonstrate provably optimal and human
competitive results is fault localisation. We focus on Spectrum-Based Fault Lo-
calisation (SBFL), a well-known and widely-studied fault localisation approach.
SBFL ranks statements according to a risk evaluation formula. The faulty state-
ment should ideally be ranked at the top. Designing an effective risk evaluation
formula has been one of the most widely studied aspects of SBFL: known for-
mulæ include Tarantula [14], Ochiai [1], Wong [20] and many others.

There has been more than a decade of risk evaluation formulæ development,
all of which has remained entirely manual. This development has called upon the
considerable ingenuity of many different groups of researchers, all of which have
peer-reviewed expertise and results on the introduction of each of their proposed
formulæ. Therefore, any approach which could automatically find an equivalent
or better performing formula would clearly be human competitive, and at the
highest level of intellectual challenge too.

Recently, Genetic Programming (GP) has been successfully applied to au-
tomatic design of risk evaluation formulæ [23]. Empirical results showed that,
among the 30 GP-evolved formulæ, six are very effective and can outperform
some human-designed formulæ. However, this analysis was entirely empirical;
we cannot be sure that the evaluation formulæ found by our GP approach are
always superior.

Fortunately, Xie et al. developed a framework to support the theoretical anal-
ysis of risk evaluation formulæ performance [21,22]. Xie et al. analysed 30 manu-
ally designed risk evaluation formulæ, identifying a fault localisation effectiveness
hierarchy between formulæ. The results of the theoretical analysis showed that
there exist two maximal groups of human defined formulæ, namely ER1 and
ER5, for programs with single fault.

In this paper, we apply the same theoretical framework to the 30 GP-evolved
formulæ discovered by GP and reported by Yoo at SSBSE 2012 [23]. The results
show that, among these 30 GP-evolved formulæ, four formulæ, namely GP02,
GP03, GP13, and GP19 are optimal: GP13 is proved to be equivalent to the
human-discovered optima ER1, while the remaining three formulæ form three
distinct and entirely new groups of optima.

Interestingly, some of the optimal GP-evolved formulæ display characteristics
that are best described as ‘unintuitive’. This is a common observation for compu-
tational search; it finds niche results that are not always obvious and sometimes
highly counter-intuitive; SBSE is no exception [11]. Since our results are both
optimal, yet counter-intuitive, they are not only human competitive with respect
to the past decade of human effort, but also unlikely to have been discovered by
further decade of human effort.

The contributions of this paper are as follows:

– We prove that one of the risk-evaluation formulæ from the previous work [23]
belongs to the same equivalence group as two known maximal formulæ,
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extending the maximal group ER1 [21] to ER1’. This shows provable human
competitiveness for the first time in SBSE.

– We also prove that three other formulæ from the previous work [23] form
their own maximal groups.

– Our analysis of the evolved formulæ shows the flexibility of GP in designing
risk evaluation formulæ. For some formulæ, GP follows the same design
intuition as humans; for others, GP does not conform to the human intuition
but still produces maximal formulæ.

The rest of the paper is organised as follows. Section 2 describes the foundations
of Spectrum-Based Fault Localisation (SBFL) and the theoretical framework
that uses set-membership to provably compare risk evaluation formulæ. Section 3
contains proofs of maximality for GP02, GP03, GP13, and GP19. Section 4
discusses the insights gained from an in-depth analysis of GP-evolved formulæ.
Section 5 presents related work and Section 6 concludes.

2 Background

2.1 Spectrum-Based Fault Localisation (SBFL)

SBFL uses testing results and program spectrum to do fault localisation. The
testing result is whether a test case is failed or passed. While the program spec-
trum records the run-time profiles about various program entities for a specific
test suite. The program entities could be statements, branches, paths, etc.; and
the run-time information could be the binary coverage status, the execution fre-
quency, etc. The most widely used program spectrum involves statement and its
binary coverage status in a test execution [2, 14].
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)

PG:

⎛
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Fig. 1. Information for conventional SBFL

Consider a program PG=<s1, s2, ..., sn> with n statements and a test suite
of m test cases TS={t1, t2, ..., tm}. Figure 1 shows the information required by
SBFL. RE records all the testing results, in which p and f indicate passed and
failed, respectively. Matrix MS represents the program spectrum, where the (ith,
jth) element represents the coverage information of statement si, by test case
tj , with 1 indicating si is executed, and 0 otherwise. In fact, the jth column
represents the execution slice of tj .
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For each statement si, its relevant testing result can be represented as a tuple
i=(eif , e

i
p, n

i
f , n

i
p), where e

i
f and eip represent the number of test cases in TS that

execute it and return the testing result of failure or pass, respectively; ni
f and

ni
p denote the number of test cases that do not execute it, and return the testing

result of failure or pass, respectively. A risk evaluation formula R is then applied
to the tuple corresponding to each statement si to calculate the suspiciousness
score that indicates its risk of being faulty. Ideally, the faulty statement should
be at or near the top of the ranking, so that the developer can save time if the
program statements are examined following the ranking order.

The most commonly adopted intuition in designing risk evaluation formulæ is
that statements associated with more failed or less passed testing results should
not have lower risks. Formulæ that comply with this intuition include Taran-
tula [12], Jaccard [4], Ochiai [1], Naish1 and Naish2 [16], among others.

2.2 Theoretical Framework

With the development of more and more risk evaluation formulæ, people began to
investigate their performance. Xie et al. [21] have recently developed a theoretical
framework to analysis the performance between different formulæ. Since we will
apply this theoretical framework in this paper, thus we briefly describe it before
presenting the analysis on GP-evolved formulæ.

Definition 1. Given a program with n statements PG=<s1, s2, ..., sn>, a test
suite of m test cases TS={t1, t2, ..., tm}, and a risk evaluation formula R, which
assigns a risk value to each program statement. For each statement si, a vector
i=<eif , e

i
p, n

i
f , n

i
p> can be constructed from TS, and R(si) is a function of i. For

any faulty statement sf , following three subsets are defined.

SR
B = {si∈S|R(si)>R(sf ), 1≤i≤n}

SR
F = {si∈S|R(si)=R(sf ), 1≤i≤n}

SR
A = {si∈S|R(si)<R(sf ), 1≤i≤n}

That is, SR
B , S

R
F and SR

A consist of statements of which the risk values are higher
than, equal to and lower than the risk value of sf , respectively.

In practice, a tie-breaking scheme may be required to determine the order of
the statements with same risk values. The theoretical analysis only investigates
consistent tie-breaking schemes, which are defined as follows.

Definition 2. Given any two sets of statements S1 and S2, which contain el-
ements having the same risk values. A tie-breaking scheme returns the ordered
statement lists O1 and O2 for S1 and S2, respectively. The tie-breaking scheme
is said to be consistent, if all elements common to S1 and S2 have the same
relative order in O1 and O2.

The effectiveness measurement is referred to as Expense metric, which is the
percentage of code that needs to be examined before the faulty statement is
identified [23]. A lower Expense of formula R indicates a better performance.
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Let E1 and E2 denote the Expenses with respect to the same faulty statement
for risk evaluation formulæ R1 and R2, respectively. We define two types of
relations between R1 and R2 as follows.

Definition 3 (Better). R1 is said to be better than R2 (denoted as R1 → R2)
if for any program, faulty statement sf , test suite and consistent tie-breaking
scheme, we have E1≤E2.

Definition 4 (Equivalent). R1 and R2 are said to be equivalent (denoted as
R1 ↔ R2), if for any program, faulty statement sf , test suite and consistent
tie-breaking scheme, we have E1=E2.

It is obvious from the definition that R1 → R2 means R1 is equal to or more
effective than R2. As a reminder, if R1 → R2 holds but R2 → R1 does not hold,
R1 → R2 is said to be a strictly “better” relation. In the theoretical framework,
there are several assumptions, which are listed as follows.

1. A testing oracle exists, that is, for any test case, the testing result of either
fail or pass can be decided.

2. We have the assumption of perfect bug detection that the fault can always
be identified once the faulty statement is examined.

3. We exclude omission faults, because SBFL is designed to assign risk values
to the existent statements.

4. We assume that the test suite contains at least one passing test case and one
failing test case.

As a reminder, our analysis only focuses on statements that are covered by the
given test suite (that is, any statement si such that eip+eif > 0). This is because
a statement that is never covered by any test case in the given test suite cannot
be the faulty statement that triggers the observed failure and hence should be
ignored (or effectively deemed to have the lowest risk values). For readers who
are interested in all the detailed justifications, validity and impacts of the above
assumptions, please refer to [21].

Given a test suite TS, let T denote its size, F denote the number of failed
test cases and P denote the number of passed test cases. Immediately after the
definitions and the above assumptions, we have 1≤F<T , 1≤P<T , and P+F=T ,
as well as the following lemmas.

Lemma 1. For any i=<eif , e
i
p, n

i
f , n

i
p>, we have eif+eip>0, eif+ni

f=F , eip+ni
p=

P , eif≤F and eip≤P .

Lemma 2. For any faulty statement sf with f=<eff , e
f
p , n

f
f , n

f
p>, if sf is the

only faulty statement in the program, we have eff=F and nf
f=0.

A sufficient condition for the equivalence between two risk evaluation formulae
is as follows.
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Theorem 1. Let R1 and R2 be two risk evaluation formulæ. If we have SR1

B =

SR2

B , SR1

F =SR2

F and SR1

A =SR2

A for any program, faulty statement sf and test
suite, then R1 ↔ R2.

Xie et al. [21] have applied the above theoretical framework on 30 manually de-
signed formulæ, identifying two groups of most effective formulæ for programs
with single fault, namely the maximal groups of formulæ. The definition of max-
imal formula is as follows.

Definition 5. A risk evaluation formula R1 is said to be a maximal formula of
a set of formulæ, if for any element R2 of this set of formulæ, R2 → R1 implies
R2 ↔ R1.

3 Theoretical Analysis of GP-Evolved Risk Evaluation
Formulæ

3.1 Risk Evaluation Formulæ Generated by GP

Yoo [23] has generated 30 GP-evolved formulæ. There are 10 out of the 30 for-
mulæ which need unreasonable additional assumptions, and, hence, are excluded
in this study1. Therefore, our investigation will focus on the remaining 20 for-
mulæ (namely, GP01, GP02, GP03, GP06, GP08, GP11, GP12, GP13, GP14,
GP15, GP16, GP18, GP19, GP20, GP21, GP22, GP24, GP26, GP28 and GP30).
As a reminder, the following analysis is for programs with single fault.

The above mentioned theoretical framework has proved the equivalence of
the formulae within ER1 (consists of Naish1 and Naish2) and ER5 (consists of
Wong1, Russel & Rao, and Binary), as well as their maximality, for programs
with single fault [22]. By using the theoretical framework above, we are able to
prove that among the 20 GP-evolved formulæ, GP02, GP03, GP13 and GP19
are maximal formulæ for programs with single fault. More specifically, GP02,
GP03 and GP19 are distinct maximal formulæ to ER1 and ER5; while GP13
is equivalent to ER1. In the following discussion, the group which consists of
Naish1, Naish2 and GP13 will be referred to as ER1’. We have also proved that
ER1’ is strictly better than all the other remaining 16 GP-evolved formulæ under
investigation. However, since the focus of this paper is to identify the maximal
(that is, maximally effective) GP-evolved formulæ, we will only provide the de-
tailed proofs for the maximality of GP02, GP03, GP13 and GP19. Definitions
of the involved formulæ are listed in Table 1.

3.2 Maximal GP-Evolved Risk Evaluation Formulæ

Before presenting our proof, we need the following lemmas for ER1 (consists of
Naish1 and Naish2) and GP13.

1 The reason for exclusion is primarily to avoid division by zero. For example,
GP04 [23] contains 1

ep−np
, i.e., it assumes ep �= np. We consider assumptions of

this kind unrealistic.
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Table 1. Investigated formulæ

Name Formula expression

ER1’
Naish1

{
−1 if ef<F
P − ep if ef=F

Naish2 ef − ep
ep+np+1

GP13 ef (1 +
1

2ep+ef
)

ER5
Wong1 ef

Russel & Rao
ef

ef+nf+ep+np

Binary

{
0 if ef<F
1 if ef=F

GP02 2(ef +
√
np) +

√
ep

GP03
√
|e2f −√

ep|

GP19 ef
√
|ep − ef + nf − np|

Lemma 3. For Naish1 and Naish2, which are shown to be equivalent to each
other in the previous work [22], we have SN1

B =SN2
B =XOp, SN1

F =SN2
F =Y Op and

SN1
A =SN2

A =ZOp, where

XOp={si|eif=F and efp>eip, 1≤i≤n} (1)

Y Op={si|eif=F and efp=eip, 1≤i≤n} (2)

ZOp=S\XOp\Y Op (3)

Lemma 4. For GP13, we have SGP13
B =XOp, SGP13

F =Y Op and SGP13
A =ZOp,

respectively.

Proof. Since eff=F , it follows immediately from the definition of GP13 that

SGP13
B ={si|eif (1+

1

2eip + eif
)>F (1+

1

2efp+F
), 1≤i≤n} (4)

SGP13
F ={si|eif (1+

1

2eip + eif
)=F (1+

1

2efp+F
), 1≤i≤n} (5)

1. To prove that SGP13
B = XOp.

(a) To prove XOp⊆SGP13
B .

For any si∈XOp, we have F (1+ 1
2eip+F )>F (1+ 1

2efp+F
) because efp>eip and

F>0. Since eif=F , we have eif(1+
1

2eip+ei
f

)>F (1+ 1

2efp+F
), which implies

si∈SGP13
B . Thus, we have proved XOp⊆SGP13

B .
(b) To prove SGP13

B ⊆XOp.
For any si∈SGP13

B , we have eif(1+
1

2eip+eif
)>F (1+ 1

2efp+F
). Let us consider

the following two exhaustive cases.
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– Case (i) eif<F . First, consider the sub-case that eif=0. Then we

have eif(1+
1

2eip+eif
)=0. It follows from the definition of SGP13

B that

0>F (1+ 1

2efp+F
), which is however contradictory to F>0 and efp≥0.

Thus, it is impossible to have eif=0. Now, consider the sub-case

that 0<eif<F . After re-arranging the terms, the expression

eif (1+
1

2eip+eif
) − F (1+ 1

2efp+F
) becomes (

eif
2eip+eif

− F

2efp+F
) − (F−eif).

Since 0<eif<F , this expression can be further re-written as ( 1

1+2
eip

ei
f

− 1

1+2
e
f
p
F

)−(F−eif ). Since
eip
eif
≥0 and

efp
F ≥0, we have 0< 1

1+2
eip

ei
f

≤1 and

0< 1

1+2
e
f
p
F

≤1. As a consequence, we have ( 1

1+2
eip

ei
f

− 1

1+2
e
f
p
F

)<1. Since

both F and eif are positive and non-negative integers, respectively,

eif<F implies (F−eif )≥1. Thus, we have ( 1

1+2
eip

ei
f

− 1

1+2
e
f
p
F

)−(F−eif)

<0, which however is contradictory to eif (1+
1

2eip+eif
)>F (1+ 1

2efp+F
).

Therefore, it is impossible to have 0<eif<F . Therefore, we have

proved that if si∈SGP13
B , we cannot have eif<F .

– Case (ii) eif=F . Assume further eip≥efp . Obviously, we have F (1 +
1

2eip+F )≤F (1+ 1

2efp+F
), which can be re-written as eif (1+

1
2eip+eif

) ≤
F (1+ 1

2efp+F
). However, this is contradictory to F (1+ 1

2eip+F ) > F (1+

1

2efp+F
). Thus, the only possible case is efp>eip.

Therefore, we have proved that if si∈SGP13
B , then eif=F and efp>eip,

which imply si∈XOp. Therefore, SGP13
B ⊆XOp.

In conclusion, we have proved XOp⊆SGP13
B and SGP13

B ⊆XOp. Therefore,
SGP13
B = XOp.

2. To prove that SGP13
F = Y Op.

(a) To prove Y Op⊆SGP13
F .

For any si∈Y Op, we have eif (1+
1

2eip+eif
)=F (1+ 1

2efp+F
) because eif=F and

efp=eip. After the definition of SGP13
F , si∈SGP13

F . Thus, we have proved

Y Op⊆SGP13
F .

(b) To prove SGP13
F ⊆Y Op.

For any si∈SGP13
F , we have eif(1+

1
2eip+eif

)=F (1+ 1

2efp+F
). Let us consider

the following two exhaustive cases.
– Case (i) eif<F . First, consider the sub-case that eif=0. Then we

have eif(1+
1

2eip+eif
)=0. It follows from the definition of SGP13

F that

0=F (1+ 1

2efp+F
), which is however contradictory to F>0 and efp≥0.

Thus, it is impossible to have eif=0. Now, consider the sub-case

that 0<eif<F . Similar to the above proof of SGP13
B ⊆XOp, we can
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prove that ( 1

1+2
eip

ei
f

− 1

1+2
e
f
p
F

)<(F−eif ), which is however contradic-

tory to eif (1+
1

2eip+eif
)=F (1+ 1

2efp+F
). Therefore, it is impossible to

have 0<eif<F . Therefore, we have proved that if si∈SGP13
F , then we

cannot have eif<F .

– Case (ii) eif=F . Assume further eip 
=efp . Obviously, we have F (1 +
1

2eip+F ) 
= F (1+ 1

2efp+F
), which can be re-written as eif(1+

1
2eip+ei

f

) 
=
F (1 + 1

2efp+F
). However, this is contradictory to eif (1 + 1

2eip+eif
) =

F (1 + 1

2efp+F
). Thus, the only possible case is efp=eip.

We have proved that if si∈SGP13
F , then eif=F and efp=eip, which imply

si∈Y Op. Therefore, SGP13
F ⊆Y Op.

In conclusion, we have proved Y Op⊆SGP13
F and SGP13

F ⊆Y Op. Therefore, we
have SGP13

F = Y Op.
3. To prove that SGP13

A = ZOp.
After Definition 1, we have SGP13

A =S\SGP13
B \SGP13

F and ZOp=S\XOp\Y Op,
where S denotes the set of all investigated statements. Since we have proved
SGP13
B = XOp and SGP13

F = Y Op, it is obvious that SGP13
A = ZOp.

Now, we are ready to prove that GP13, Naish1 and Naish2 belong to the same
group of equivalent formulæ (referred to as ER1’).

Proposition 1. GP13 ↔ Naish1 and GP13 ↔ Naish2.

Proof. Refer to Lemma 3 and Lemma 4, we have SN1
B = SN2

B = SGP13
B , SN1

F =
SN2
F = SGP13

F and SN1
A =SN2

A =SGP13
A , respectively. After Theorem 1, GP13 ↔

Naish1 and GP13 ↔ Naish2.

Apart from GP13, we have three new maximal GP-evolved formulæ for programs
with single fault, namely, GP02, GP03 and GP19. Unlike GP13, these three
formulæ do not belong to ER1’ or ER5.

Proposition 2. GP02, GP03, GP19, ER1’ and ER5 are distinct maximal for-
mulæ (or groups of equivalent formulæ).

Proof. To prove this, we will demonstrate that neither R1 → R2 nor R2 →
R1 is held, where R1 and R2 are any two of these five formulæ (or groups of
equivalent formulæ). Consider the following two program PG1 and PG2 as shown
in Figure 2 and Figure 3, respectively. Suppose two test suites TS11 and TS12
are applied on PG1 and two test suites TS21 and TS22 are applied on PG2.
Vector i with respect to these test suites and programs are listed in Table 2.

Table 3 lists the statement divisions for these five formulæ with respect to
TS11 and TS12 applied on PG1, while Table 4 lists the statement divisions for
these five formulæ with respect to TS21 and TS22 applied on PG2.

Suppose we adopt the “ORIGINAL ORDER” as the tie-breaking scheme.
Then the corresponding rankings of the faulty statement for these five formulæ
are as Table 5. From this table, we have demonstrated that



Provably Optimal and Human-Competitive Results 233

Fig. 2. Program PG1 Fig. 3. Program PG2

Table 2. i for PG1 and PG2 with different test suites

Statement
i=<eif , e

i
p, n

i
f , n

i
p>

TS11 TS12 TS21 TS22

s1 <1, 6, 0, 0> <1, 8, 0, 0> <2, 15, 0, 0> <10, 15, 0, 0>

s2 <0, 1, 1, 5> <0, 6, 1, 2> <0, 1, 2, 14> <0, 1, 10, 14>

s3 <1, 5, 0, 1> <1, 2, 0, 6> <2, 14, 0, 1> <10, 14, 0, 1>

s4 <1, 4, 0, 2> <1, 1, 0, 7> <1, 7, 1, 8> <9, 0, 1, 15>

s5 <0, 1, 1, 5> <0, 1, 1, 7> <1, 7, 1, 8> <1, 14, 9, 1>

s6 <1, 5, 0, 1> <1, 2, 0, 6> <2, 14, 0, 1> <10, 14, 0, 1>

s7 <1, 4, 0, 2> <1, 1, 0, 7> <1, 8, 1, 7> <5, 6, 5, 9>

s8 <0, 1, 1, 5> <0, 1, 1, 7> <1, 6, 1, 9> <5, 8, 5, 7>

s9 <1, 5, 0, 1> <1, 2, 0, 6> <2, 14, 0, 1> <10, 14, 0, 1>

s10 <1, 4, 0, 2> <1, 1, 0, 7> <1, 9, 1, 6> <1, 12, 9, 3>

s11 <0, 1, 1, 5> <0, 1, 1, 7> <1, 5, 1, 10> <9, 2, 1, 13>

– With TS12 ER1’ → GP02 does not hold; with TS21 GP02 → ER1’ does
not hold.

– With TS12 ER5 → GP02 does not hold; with TS21 GP02 → ER5 does not
hold

– With TS11 ER1’ → GP03 does not hold; with TS12 GP03 → ER1’ does
not hold.

– With TS11 ER5 → GP03 does not hold; with TS12 GP03 → ER5 does not
hold.

– With TS11 ER1’ → GP19 does not hold; with TS12 GP19 → ER1’ does
not hold.

– With TS11 ER5 → GP19 does not hold; with TS12 GP19 → ER5 does not
hold.
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Table 3. Statement division for PG1 with TS11 and TS12

Statement TS11 TS12

ER1’
SR
B = {s4, s7, s10} SR

B = {s4, s7, s10}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1, s2, s5, s8, s11} SR

A = {s1, s2, s5, s8, s11}

ER5
SR
B = ∅ SR

B = ∅
SR
F = {s1, s3, s4, s6, s7, s9, s10} SR

F = {s1, s3, s4, s6, s7, s9, s10}
SR
A = {s2, s5, s8, s11} SR

A = {s2, s5, s8, s11}

GP02
SR
B = {s4, s7, s10} SR

B = ∅
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1, s2, s5, s8, s11} SR

A = {s1, s2, s4, s5, s7, s8, s10, s11}

GP03
SR
B = {s1} SR

B = {s1, s2, s5, s8, s11}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s2, s4, s5, s7, s8, s10, s11} SR

A = {s4, s7, s10}

GP19
SR
B = {s1} SR

B = {s1, s4, s7, s10}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s2, s4, s5, s7, s8, s10, s11} SR

A = {s2, s5, s8, s11}

– With TS11 GP02 → GP03 does not hold; with TS12 GP03 → GP02 does
not hold.

– With TS11 GP02 → GP19 does not hold; with TS12 GP19 → GP02 does
not hold.

– With TS21 GP03 → GP19 does not hold; with TS22 GP19 → GP03 does
not hold.

In summary, we have proved that for any two of these five formulæ (or groups of
equivalent formulæ)R1 and R2, neither R1 → R2 norR2 → R1 is held. Therefore,
GP02, GP03, GP19, ER1’ and ER5 are five distinct maximal formulæ (or groups
of equivalent formulæ).

4 Discussion

Yoo [23] used a small number of programs and faults to evolve new risk evaluation
formulæ: more precisely, four subject programs and 20 mutants for evolution.
To quote Yoo, “the results should be treated with caution” since “there is no
guarantee that the studied programs and faults are representative of all possible
programs and faults”.

In this paper, we use the theoretical framework recently proposed by Xie
et al. [21] to analyse Yoo’s GP-evolved risk evaluation formulæ for programs
with single fault. Among Yoo’s formulæ, four have been proved to be maximal,
namely, GP02, GP03, GP13 and GP19, where GP13 forms a new maximal group
of equivalent formulæ with Naish1 and Naish2. This new maximal group is re-
ferred to as ER1’); while GP02, GP03 and GP19 are distinct to ER1’ and ER5.
Moreover, ER1’ is strictly better than the remaining 16 GP-evolved formulæ
under investigation.

Results in this paper are exempt from the inherent disadvantages of exper-
imental studies, and hence are definite conclusions for any program and fault
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Table 4. Statement division for PG2 with TS21 and TS22

Statement TS21 TS22

ER1’
SR
B = ∅ SR

B = ∅
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1, s2, s4, s5, s7, s8, s10, s11} SR

A = {s1, s2, s4, s5, s7, s8, s10, s11}

ER5
SR
B = ∅ SR

B = ∅
SR
F = {s1, s3, s6, s9} SR

F = {s1, s3, s6, s9}
SR
A = {s2, s4, s5, s7, s8, s10, s11} SR

A = {s2, s4, s5, s7, s8, s10, s11}

GP02
SR
B = {s4, s5, s7, s8, s10, s11} SR

B = {s4, s11}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1, s2} SR

A = {s1, s2, s5, s7, s8, s10}

GP03
SR
B = {s2, s4, s5, s7, s8, s10, s11} SR

B = ∅
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1} SR

A = {s1, s2, s4, s5, s7, s8, s10, s11}

GP19
SR
B = {s1} SR

B = {s1, s4, s11}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s2, s4, s5, s7, s8, s10, s11} SR

A = {s2, s5, s7, s8, s10}

Table 5. Rankings of faulty statement for five formulæ

Statement
PG1 (sf=s9) PG2 (sf=s3)

TS11 TS12 TS21 TS22

ER1’ 6 6 1 1

ER5 6 6 2 2

GP02 6 3 7 3

GP03 4 8 8 1

GP19 4 7 2 4

under the assumptions that are commonly adopted by the SBFL community. It
is a surprise that without exhausting all possible programs and faults, GP can
still deliver maximal formulæ. Moreover, the process of evolving a risk evaluation
formula is totally automatic and does not need any human intelligence. Thus,
the cost of designing risk evaluation formulæ can be significantly reduced.

From analysing formulæ in ER1’, we note some common features. First, they
all involve two independent parameters2 ef and ep. Secondly, all these three
formulæ comply with the commonly adopted intuition that statements asso-
ciated with more failed or less passed testing results should never have lower
risks. Finally, in all these three formulæ, any statement si with eif<F always

has lower risk value than statement sj with ejf=F . With respect to ER1’, the
evolved formula follows the known intuition. However, interestingly enough, the
other maximal formulæ, GP02, GP03, and GP19, do not conform to the same
intuition. Let us elaborate. Given two statements, s1 and s2:

2 By definition, np = P−ep and nf = F−ef .
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– GP02: If ep
1=ep

2, then ef
1>ef

2 implies GP02(s1)>GP02(s2), which is con-
sistent with the commonly adopted intuition. However, if ef

1=ef
2, then

ep
1<ep

2 does not necessarily imply GP02(s1)≥GP02(s2). For example, ef
1 =

ef
2 = 1, P=8, ep

1=1 and ep
2=2, then we have GP02(s1)=2·(1+

√
8− 1)+1,

which is less than GP02(s2)=2 · (1 +
√
8− 2) +

√
2. This does not comply

with the commonly adopted intuition.
– GP03: If ep

1 = ep
2, then ef

1 > ef
2 does not necessarily imply GP03(s1)

≥ GP03(s2). For example, ep
1=ep

2=25, ef
1=2 and ef

2=1, then we have
GP03(s1)=1, which is less than GP03(s2)=2. This does not comply with the
commonly adopted intuition. Moreover, if ef

1=ef
2, then ep

1<ep
2 does not

necessarily imply GP03(s1)≥GP03(s2). For example, ef
1=ef

2=1, ep
1=16

and ep
2=25, then we have GP03(s1)=

√
3, which is less than GP03(s2)=2.

As a consequence, the commonly adopted intuition is not complied.
– GP19: If ep

1=ep
2, then ef

1>ef
2 does not necessarily imply GP19(s1) ≥

GP19(s2). For example, P=20, ep
1=ep

2=10; F=4, ef
1=2 and ef

2=1, then
we have GP19(s1)=0, which is less than GP19(s2)=

√
2. This example demon-

strates that the commonly adopted intuition is not complied. Moreover,
if ef

1=ef
2, then ep

1<ep
2 does not necessarily imply GP19(s1)≥GP19(s2).

For example, F=2, ef
1=ef

2=1; P=10, ep
1=8 and ep

2=9, then we have
GP19(s1)=

√
6, which is less than GP19(s2)=

√
8. This does not comply with

the commonly adopted intuition.

Formulæ defined by human beings are more likely to be confined to the perceived
intuition and background of the designer. Thus, it is possible that some maximal
formulæ may be overlooked by humans. However, GP does not suffer from this
problem and has the advantage of being unbiased. As explained in the above
examples for GP02, GP03 and GP19, GP is able to define maximal formulæ
based on intuitions that humans would rarely consider.

5 Related Work

Spectrum-Based Fault Localisation (SBFL) is also referred to as statistical fault
localisation: it aims to identify statements that are suspected to contain the root
cause for software failure by examining a large number of passing and failing
test executions. Tarantula [14] was the first SBFL risk evaluation formula that
originally started its life as a visualisation tool. Many other formulaæ followed,
applying different statistical analysis to compute the ranking of suspiciousness
statements [2, 3, 5, 18, 20], all of which have been designed manually: Yoo [23] is
the first to use Genetic Programming to automatically evolve an SBFL formula.

The predominant method for evaluating SBFL risk evaluation formulæ in
the literature has been empirical studies [6, 13, 24]. However, recent advances in
theoretical analysis of SBFL have provided optimality proof for specific program
structures [16], as well as proofs of equivalence/dominance relations for arbitrary
combinations of faulty source code and test suites [21].
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6 Conclusion

Search-based techniques have been widely used in software engineering, such
as testing, maintenance, etc [8, 10]. Recently, Yoo [23] has successfully utilized
a search-based technique, namely, Genetic Programming, to generate effective
risk evaluation formulæ for SBFL. In this paper, by using the recently developed
theoretical framework by Xie et al. [21] on Yoo’s GP-evolved formulæ, we have
demonstrated that four formulæ are maximal for programs with single fault,
namely, GP02, GP03, GP13 and GP19. The results provide a strong support
that Genetic Programming can be an ideal tool for designing risk evaluation
formulæ. GP not only can deliver maximal formulæ having the same features as
some maximal formulæ designed by humans, but also can help to provide novel
insights and intuitions about effective formulæ that humans may overlook.
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Abstract. Two notions of “search” can be used to enhance the soft-
ware engineering process — the notion of searching for optimal archi-
tectures/designs using AI-motivated optimization algorithms, and the
notion of searching for reusable components using query-driven search
engines. To date these possibilities have largely been explored separately
within different communities. In this paper we suggest there is a syn-
ergy between the two approaches, and that a hybrid approach which
integrates their strengths could be more useful and powerful than either
approach individually. After first characterizing the two approaches we
discuss some of the opportunities and challenges involved in their syner-
getic integration.

Keywords: Search-Based Software Engineering, Search-Driven
Software Engineering, Software Metric, Software Measurement, Test-
Driven Search.

1 Introduction

The concept of “search-based” software engineering (SBSE) [1] has gained a
great deal of traction over the last few years as a paradigm for software devel-
opment driven by the use of sophisticated optimization algorithms to find the
“best” realization of a software system according to some quantified measure
of quality or goodness [2]. There is a well-established research community pur-
suing this vision with a successful workshop (now symposium1) series bearing
this name. However, this is not the only meaningful and useful interpretation of
“search” in connection with software engineering. Another interpretation of the
term, which has its roots in the software reuse community, is software engineer-
ing driven by engines and tools that “search” for components, tests and other
useful software artefacts within the vast amounts of software available in pub-
lic and private repositories. In this second interpretation, “search” is meant in
the sense of google-like search engines rather than “search” algorithms from the
realm of artificial intelligence. This second interpretation, which we will refer to

1 e.g. SSBSE, http://ssbse.org/

G. Ruhe and Y. Zhang (Eds.): SSBSE 2013, LNCS 8084, pp. 239–244, 2013.
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in the remainder of the paper as “search-driven” software engineering (SDSE),
also has an active research community, with associated workshops2, although
the term has not become the label for that community. At first glance SBSE
and SDSE might appear to be unrelated, and perhaps even incompatible. It is
certainly true that they have different foci and use different concepts, tools and
techniques to fulfil their goals. However, we believe that far from being unre-
lated and incompatible, the two interpretations are in fact highly synergistic and
reinforce each other’s strengths whilst compensating for each other’s weaknesses.

The main weakness of SBSE approaches is scalability. Optimizing fitness mea-
sures over all possible realizations of a software system, right down to the small-
est grained components, is not a practical proposition for all but the smallest
systems because of the sheer number of possible realizations to consider. This is
why research based on the use of optimization algorithms in software engineering
has tended to focus on high-level architectural choices rather than on detailed
component implementations. The latest generation of software-search engines, in
contrast, can support rapid searches over vast indexes of software components,
often with very high precision. For example, merobase3 currently has an index
of around nine million components and has the ability, in certain circumstances,
to return results with 100% precision [3].

The main weakness of SDSE is lack of goal orientation. More specifically, the
current generation of search engines and code recommendation tools based on
them provide little help to developers to select the “best” component from the
many candidates in the result set. Although they do employ ranking algorithms
(e.g. [4][5]) to try to prioritize components according to “how well” they match
the search query, the ranking algorithms are application independent and de-
velopers usually have to browse through the returned candidates manually and
make ad hoc judgements about their “fitness” to their application. This, how-
ever, is precisely the strength of artificial intelligence (AI) based optimization
algorithms [6] — finding the best solution for the problem in hand in a goal
driven way.

Combining the goal orientation of SBSE approaches with the efficiency of
SDSE approaches therefore has the potential to yield more scalable approaches
that are able to more effectively find optimum solutions to software engineering
problems using reusable components. The key to achieving this synergy is to
find the optimal interface between SBSE (AI-based) search algorithms and SDSE
(query-driven) search engines based on the right kinds of metrics [7]. The key is to
find the most effective criteria and level of granularity to decide when to call upon
a query-driven search engine from within a goal-driven, optimization algorithm,
and to align the metrics that they use to rank components or solutions.

In the remainder of this paper we present a vision for how such a hybrid
approach might be realized and how it might be used. For want of a better term
we refer to it as “search-enhanced software engineering” (SESE).

2 e.g. SUITE, http://resuite.org/
3 http://merobase.com/

http://resuite.org/
http://merobase.com/
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2 Realizing Search-Enhanced Software Engineering

Figure 1 provides a schematic picture of how SESE might work. The top left of
the picture shows two alternative ways of architecting a system, S, from com-
ponents. The top architecture of S has three types of components, A, B, and
C, while the bottom architecture has two types of components X and Y. The
top center of the picture schematically represents functionality matching re-
suable components that have been discovered by a code search engine. Thus,
for example, A1, A2 and A3 are different realizations of A with different imple-
mentations and non-functional properties. An example of such a non-functional
property might be energy efficiency. Ideally the search engine ranks the com-
ponents according to their energy efficiency. The top right of the figure shows
different energy efficiency curves for different possible ways of building S from
alternative combinations of the reusable candidates. The figure shows that the
configuration with the highest global maximum is composed of X1 and Y2, even
though Y2 is not the most energy efficient variant of Y.

A code search engine (i.e. SDSE) by itself could not arrive at such a conclusion
because it is not able to optimize the selection of components based on the global,
emergent properties of the different architecture. An AI search algorithm (i.e.
SBSE) could in principle arrive at such a conclusion but only if it walked over all
components in the index of the search engine, which is usually in the millions. In
practice this is not possible within a reasonable time frame. The only effective
way of finding the best architecture and component configuration is therefore
to combine SDSE and SBSE, as indicated in the bottom part of the figure.
This shows the general situation in which the lower level components in the
eventual architecture have been “discovered” by a search engine while the best
higher level composition of the candidate components has been “discovered” by
the AI search algorithm. While this hybrid approach may theoretically miss a
possible optimum, in practice it facilitates the consideration of a significantly
larger number of possible configurations. The key challenge, therefore is to find
the optimal level of granularity at which to integrate SDSE into SBSE. If the
level is too high, too many possible global optimal solutions could be missed,
but if the level is too low, the time taken to reach a conclusion could be too long.

To realize such a vision of SESE, the code search engines that support the
SDSE ingredient must have two important properties which currently lie outside
the capabilities of most search engines at the current time — the ability to return
search results with very high precision (i.e. that match the requirements) and
the ability to rank components according to some purpose-relevant criteria.

High-Precision Search Results. Most of the code search engines available
today still use relatively simple text-based queries (similar to those of general
purpose search engines like google) which have very low precision. The latest
generation of code search engines support more sophisticated interface and sig-
nature based queries which offer much better results [8], but these are still too
imprecise to drive the SESE scenario described above because the likelihood of
any individual in the result set being fit for purpose is too low. What is required,



242 C. Atkinson, M. Kessel, and M. Schumacher

A
C

B

System architectures Reusable components

X

Y

Problem-aware search (SBSE)

Problem-unaware search (SDSE)

A1

(A1,B2,C1)

(A2,B1,C2)

A2
A3

X1
X2

Y1
Y2

Y3
Y4

C1
C2

B1
B2

B3
B4

(X1, Y2)

(X1, Y1)

……

Problem-oriented optimizations

S

S

Fig. 1. Schematic illustration of envisioned hybrid SESE approach

ideally, is a search engine that is able to deliver results that are 100% certain
to be “fit-for-purpose” from a functional perspective. At the present time the
only practical, working example of a search mechanism able to return results
with this level of precision is test-driven search (TDS) [3]. As its name implies,
a test-driven search takes a test definition, similar to those used in test-driven
development approaches [9], and applies it to each of the candidates returned
in a standard search to filter out those components that do not pass. The re-
sulting filtered result set therefore contains only those components that are fit-
for-purpose according to the tests [10]. Merobase is the only code search engine
which currently offers such a TDS capability online.

Purpose-Relevant Ranking. TDS addresses the problem of returning com-
ponents that are 100% fit-for-purpose according to the tests defined for them.
However, it does not address the problem that the returned components are
not ranked according to criteria that match the overall optimization goals of the
project. The aim of the ranking algorithms used in the current generation of code
search engines is to order components according to how likely they are to match
the functionality that the searcher is looking for [4]. In other words they rank
the components according to functional rather than non-functional criteria. For
example, Hummel [5] ranks the set of candidates according to the “closeness” of
their syntactic matches, leading to the presentation of candidates with high syn-
tactic matches first. When TDS is used as the basis for establishing the result
set, however, such a ranking approach is superfluous because the components
are guaranteed to be functionally fit-for-purpose. It is therefore possible to rank
the components according to non-functional criteria such as metrics used in the
SBSE optimization algorithms (i.e. “Metrics as Fitness Functions” [7], [11]).

While it is relatively easy to determine so called “internal”, structural metrics
on components (e.g. lines of code, cyclomatic complexity etc.) it is much more
difficult to determine “external”, user-relevant metrics that could serve as the
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basis for a fitness function. The only class of metrics for which this is possible
are dynamic metrics that can be measured by observing running software (e.g.
execution time, energy usage). By definition, therefore, TDS provides a perfect
foundation for calculating such metrics because it involves the execution of each
component in the initial result set returned by a basic search. Nevertheless,
instrumenting software execution platforms to measure useful properties is a
non-trivial task. One of our current research goals at the University of Mannheim
is to obtain energy-usage metrics for components during the TDS processes by
using specially instrumented hardware.

3 Bottom-Up, Optimized Development

The SBSE approach described in the previous section essentially assumes a top-
down process of software development in which the candidate architectures are
first designed independently, without any knowledge of the available components,
and then code search engines are used to explore the component repository to see
if any suitable components are available. This is acceptable if the architecture
is just represented by a component diagram, but when a lot of effort has to be
put into defining the architecture and desired components (e.g. test cases) this
approach becomes itself suboptimal. It would be much better if the architecture
candidates could be designed with some knowledge of the available components
— in other words, if the process could proceed in a more bottom-up way. This,
however, creates the new challenge of defining metrics that make it possible to
compare the non-functional properties of components with different functionality
— so called “Functionality-independent Metrics” (FIMs).

Coming up with end-user relevent FIMs is a major challenge because some
technique is needed to judge the “work done” [12] by components in order to
indicate whether one operates in a “better” way than another even it does some-
thing different. For example, to compare the effective power of two types of car
it is much better to use the power-to-weight ratio than the raw power metric.
To support such FIMs for software components some abstract way of comparing
functionality such as “feature points” is needed. This is another one of the chal-
lenges we are working on at the University of Mannheim. By observing software
components during TDSs and applying various static analysis techniques, we are
in the processes of creating a database of profiles and metrics for the merobase
component repository. This provides the basis for calculating FIMs to support
the efficient, bottom-up development of optimized software architectures.

Optimization algorithms in SBSE are chosen depending on the individual op-
timization problem under investigation [6]. To use FIM-based fitness functions
in SBSE approaches, it is therefore necessary to select an appropriate optimiza-
tion algorithm. This, in general means that single- as well as multi-objective
optimization problems need to be accommodated. Single optimization problems
exist in cases where only one FIM is applied. Experiments are required to deter-
mine a well-suited optimization algorithm based on FIM-based fitness functions.
Multi-objective optimization problems exist, for instance, if several FIM dimen-
sions need to be optimized. Pareto optimality [6] may be a candidate for such a
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case, for example, as it supports the optimization of multiple, possibly conflicting
dimensions.

4 Conclusion

In this paper we have explained why we believe that a hybrid mix of SBSE and
SDSE technologies offer the most effective way of creating optimized software
systems based on the available reusable components. However, to support such a
hybrid approach, which we refer to as SESE, enhanced code search engines pro-
viding high precision results, ranked according to user-relevant, non-functional
metrics are needed. Ideally, they should also support the use of functionality-
independent metrics. When such search engines become available the challenge
will be to integrate them effectively into SBSE optimization algorithms. At the
University of Mannheim we are focussing on the SDSE aspect of this challenge
by developing suitable metrics and ranking approaches.
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Abstract. Despite the high number of existing works in software testing within 
the SBSE community, there are very few ones that address the problematic of 
agent testing. The most prominent work in this direction is by Nguyen et al. 
[13], which formulates this problem as a bi-objective optimization problem to 
search for hard test cases from a robustness viewpoint. In this paper, we extend 
this work by: (1) proposing a new seven-objective formulation of this problem 
and (2) solving it by means of a preference-based many-objective evolutionary 
method. The obtained results show that our approach generates harder test cases 
than Nguyen et al. method ones. Moreover, Nguyen et al. method becomes a 
special case of our method since the user can incorporate his/her preferences 
within the search process by emphasizing some testing aspects over others. 

Keywords: Agent testing, many-objective optimization, user’s preferences. 

1 Introduction 

Software testing is a software development phase that aims to evaluate the product 
quality and enhance it by detecting errors and problems [11]. Despite the big efforts 
performed in the software testing research field, such activity remains complex and so 
expensive from the effort viewpoint and also the cost one. For this reason, researchers 
have proposed a new testing approach called Search-Based Software Testing (SBST) 
[7]. The latter consists in modeling the software testing problem as an optimization 
problem and then solving it by using a particular search method (usually metaheuris-
tic) such as Evolutionary Algorithms (EAs), tabu search, etc. The SBST approach is a 
sub area of Search Based Software Engineering (SBSE) [7] and it is applied to several 
testing types [9], [10]. It has shown a great effectiveness and efficiency in achieving 
the testing goals. 

There is little work in testing autonomous agents in regard what has already 
achieved in software testing [4], [14]. The pro-activity characteristic of software agent 
makes its test a hard task since it may react in different manners for the same input 
over time. Recently, Nguyen et al. [13] have proposed a search-based method to test 
autonomous agents. In fact, Nguyen et al. identified two soft goals that are robustness 
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and efficiency to test an autonomous Cleaner agent that has to keep clean a square 
area of an airport. However, they detailed/used only the robustness soft goal by pro-
posing only two objective functions that drive the used multi-objective EA (i.e., 
NSGA-II [5]). The proposed Evolutionary Testing (ET) method has demonstrated its 
effectiveness in finding test cases that reply to the two considered objective functions 
belonging to the robustness soft goal. 

In this paper, we propose a Preference-based Many-Objective Evolutionary Testing 
(P-MOET) method which corresponds to an extension of Nguyen et al.’s work [13]. 
The main idea is to propose additional objective functions corresponding to different 
soft goals with the aim to generate harder test cases ( a hard test case is a test case 
that urges the agent to not achieve the soft goals) than Nguyen et al.’s method ones, 
and then solving the new obtained problem by considering all objective functions 
simultaneously. The main contributions of this work are as follows: (1) proposing five 
additional objective functions corresponding to different soft goals, (2) solving the 
obtained problem in a many-objective fashion [8], (3) Offering the user the ability to 
incorporate his/her preferences by emphasizing some objectives (testing aspects) over 
others by means of the use of the reference point concept [3], [2] and (4) outperform-
ing in average an existing approach [13] when generating test cases on the same expe-
rimental environment. 

2 Proposed Approach 

2.1 New Many-Objective Formulation for Autonomous Agent Testing Problem 

We propose a new many-objective formulation for the ET problem that considers 
simultaneously seven objectives. This formulation is stated as follows: 

                                         
TufufufufMin )](),...,(),([)( 721=                                    (1) 

where the test case u is encoded as follows ),,...,,,,( 2211 nn yxyxyxu =  such that xi 

and yi are respectively the abscissa and the ordinate of the object i in the area to clean. 
Table 1 summarized the seven used objective functions (the two first ones are defined 
in [13] and the five new ones are proposed by us). The latter are classified into four 
families based on the ensured soft goal where TPC(u) is the Total Power Consump-
tion, NEO(u) is the Number of Encountered Obstacles, ACW(u) is the Amount of 
Collected Waste during a specified amount of time that we fixed to 10 seconds in this 
work, NDNW(u) is the Number of times that the agent Drops to collect the Nearest 
Waste, NDND(u) is the Number of times that the agent Drops to put the waste in the 
Nearest Dustbin, NDNC(u) is the Number of times that the agent Drops to go to the 
Nearest Charging station when its battery is low, and NRSD(u) is the Number of times 
that the agent does not Respect the Safety Distance. All these quantities are computed 
when executing the Cleaner agent on the test case u. The expected outcomes are hard 
test cases that obstruct the agents under test from reaching the soft-goals under con-
sideration. When multiple soft-goals are considered at once, we expect to obtain test 
cases that satisfy multiple hard-to-find conditions simultaneously. 
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Table 1. Classification of used objectives with their objective functions 

Soft goal family Objective Objective function 
Robustness Maintain battery )(/1)(1 uTPCuf =  

Avoid obstacle )(/1)(2 uNEOuf =  

Efficiency Clean up waste )()(3 uACWuf =  

Stability Collect the nearest waste )(/1)(4 uNDNWuf =  

Put the waste into the nearest dustbin )(/1)(5 uNDNDuf =  
Go to the nearest charging station )(/1)(6 uNDNCuf =  

Safety Maintain a separation distance from obstacle )(/1)(7 uNRSDuf =  
 

2.2 P-MOET: Preference-Based Many-Objective Evolutionary Testing Method 

To solve our many-objective ET problem, we use a proposed preference-based 
MOEA, called r-NSGA-II (reference solution-based NSGA-II) [3]. Fig. 1 describes 
the adaptation of r-NSGA-II algorithm to our many-objective autonomous agent test-
ing problem. The algorithm basic iteration begins by generating the parent population 
Pt of size N. After that, each test case from Pt is executed on the Cleaner agent mod-
ule. Once all Pt test cases are evaluated, we apply binary tournament selection and 
genetic operators (crossover and mutation) to generate the offspring population Qt of 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Generate randomly the initial population P0 of test cases  

t � 0; Evaluate the initial population (Pt) of test cases  

Apply binary tournament selection and then genetic opera-
tors on Pt to generate the offspring population Qt  

Test case 
execution 

with Cleaner 
agent module 

Evaluate the offspring population Qt  

Merge Pt and Qt to obtain the union population Ut  

 No Apply r-dominated sorting to Ut  

  Yes 
END Assign crowding distance to the different fronts of Ut  

t � t+1; Apply environmental selection to form Pt  

Test case to execute Output Pt (i.e., the ROI) 
Collected data required for functions’ evaluations 

 

Fig. 1. Adaptation schema of r-NSGA-II to the many-objective agent testing problem 
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size N. We form Ut by merging Pt and Qt (the size of Ut is then 2N). We apply non-r-
dominated sorting based on the r-dominance relation to sort Ut into several non-r-
dominated fronts. After that, Pt+1 is filled with individuals of the best non-r-dominated 
fronts, one at a time. Since overall population size is 2N, not all fronts may be ac-
commodated in N slots available in the new population Pt+1. When the last allowed 
front is being considered, it may contain more solutions than the remaining available 
slots in Pt+1. Hence, only least crowded solutions of the last considered front are saved 
and the others are rejected. Concerning the Cleaner agent module, we have 
downloaded it from its authors’ Web site via the URL [12], and then we have ad-
justed it to our work. We note that the overall adaptation of r-NSGA-II to the many-
objective autonomous agent testing problem is named P-MOET. 

3 Experimental Study 

When generating test cases for agents based on the considered soft goals or goals 
(objectives), the user may prefer: (1) emphasizing some soft goals/goals over others 
or (2) emphasizing all soft goals/goals simultaneously. For this reason, different sce-
narios are used and summarized in table 2. 

Table 2. Used scenarios with their reference points 

Scenario N° Preferred soft goal(s) Used reference point 
1 Robustness A = (0.1, 0.1, 0.9, 0.7, 0.8, 0.7, 0.8) 
2 Efficiency B = (0.7, 0.8, 0.1, 0.6, 0.8, 0.7, 0.8) 
3 Stability C = (0.7, 0.8, 0.9, 0.1, 0.1, 0.1, 0.8) 
4 Safety D = (0.7, 0.8, 0.9, 0.7, 0.8, 0.6, 0.1) 
5 All soft goals E = (0.1, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1)  

Table 3. Median values of the test case hardness metrics for the 5 P-MOET scenarios and 
Nguyen et al. work [13] over 51 runs on Cleaner agent module. The p-values of the Wilcoxon 
test, with α = 0.05, have shown that all the results are statistically different from each others. 
Best values regarding hardness are mentioned in bold. 

Scenario N° TPC NEO ACW NDNW NDND NDNC NRSD 
1 335 4 2 1 1 1 4 
2 300 2 1 0 0 1 0 
3 295 1 2 4 3 3 2 
4 250 3 2 2 1 1 8 
5 330 3 2 3 2 2 6 

Nguyen et al. 335 4 2 1 0 0 4 
 

For instance, for scenario 1, we emphasize only the objectives related to the ro-
bustness soft goal with the aim to generate test cases that consume so much power 
and increase the probability of crashing with the different existing obstacles. This is 
achieved by using the reference point A= (0.1, 0.1, 0.9, 0.7, 0.8, 0.7, 0.8) where we 
emphasize just the two first objectives (mentioned with bold numbers) by fixing them  
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    (a)                                          (b)                                              (c) 

Fig. 2. Representative test cases for: (a) scenario 3, (a) scenario 5 and (b) Nguyen et al. work 

to a low value (< 0.4) and the other aspiration (i.e., desired) values are set to high values 
(> 0.6). We restricted each objective value to the normalized interval [0,1] in order to 
ease the expression of user’s preferences. For each scenario, we run the P-MOET 
method with a population of 50 individuals for 100 generations. Then we select ran-
domly a representative test case from the obtained ROI [1]. The difficulties related to the 
obtained test cases are assessed based on the following metrics: (1) TPC, (2) NEO, (3) 
ACW, (4) NDNW, (5) NDND, (6) NDNC and (7) NRSD. In fact, each scenario test case 
is executed 51 times on the Cleaner agent module and the different metrics’ values are 
recorded. After that, we record the median values in table 3. Due to the stochastic as-
pects of the results, we use the Wilcoxon rank sum hypothesis test in a pairwise com-
parison fashion, with a 95% confidence level (α = 0.05), in order to detect whether the 
results are significant or not. According to table 3, we observe that the P-MOET method 
has demonstrated its ability and flexibility in replying to the requirements of each sce-
nario. For example, scenario 3 has the maximal values regarding the stability metrics 
(NDNW, NDND and NDNC). This observation shows the effectiveness of our method in 
solving the 7-objective agent testing problem while respecting user’s preferences. Simi-
lar observations are obtained for the scenarios 1, 2 and 4. Although scenario 5 does not 
present any best value regarding the test case hardness metrics, it seems to be the sce-
nario that provides the hardest test case set. In fact, this scenario emphasizes all the soft 
goals simultaneously, which is demanding. Consequently, it makes a compromise be-
tween: (1) robustness, (2) efficiency, (3) stability and (4) safety. For this reason, it fur-
nishes the hardest test cases. This result is emphasized by fig. 2(a-b) which illustrates 
two test cases for the third scenario and the fifth one. 

Next, we compare the P-MOET scenario 5 against Nguyen et al.’s work. From table 3, 
we remark that Nguyen et al. method’s representative test case has the maximal values for 
the TPC and NEO metrics. The same observation is obtained for scenario 1. We can say 
that the P-MOET can reproduce the Nguyen et al. method test cases by running scenario 
1. Fig. 2(c) illustrates the test case of Nguyen et al. method. When comparing the latter 
with the test case of P-MOET scenario 5, we remark that although the fifth scenario test 
case does not present any best value in terms of the considered hardness metrics in table 3, 
we observe from fig. 2(b-c) that the scenario 5 test case is harder than Nguyen et al. 
method one. This is illustrated by the locations of the different objects in the environment 
for each test case in regard to the semantic meaning of objects’ locations. 
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4 Conclusions and Future Works 

In this paper, we have proposed, for the first time, a preference-based many-objective 
method for autonomous agent testing. The latter has shown its ability to generate 
harder test cases than Nguyen et al. method ones. The obtained results confirm the 
effectiveness of our method. For future research, we plan to extend this work to test a 
multi-agent system in an attempt to evaluate cooperation, coordination and competi-
tion between different agents that can have different internal architectures. Moreover, 
it would be interesting to analyze test cases residing in knee regions [2] where the 
trade-offs between the testing objectives are maximal. 
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Abstract. Opinion is divided over the effectiveness of random testing.
It produces test cases cheaply, but struggles with boundary conditions
and is labour intensive without an automated oracle. We have created
a search-based testing technique that evolves multiple sets of efficient
subdomains, from which small but effective test suites can be randomly
sampled. The new technique handles boundary conditions by targeting
different mutants with each set of subdomains. It achieves an average
230% improvement in mutation score over conventional random testing.

1 Introduction

Random testing is a straightforward and inexpensive software testing technique
[1]. It generates a large number of test cases, then verifies the results using an
automated oracle. Although formal analysis has shown random testing can be
efficient [2], experienced practitioners still see it as ineffective [3]. This paper
uses meta-heuristic search to identify sets of input subdomains whose sampling
increases fault finding capability and efficiency. The evolved subdomains can be
used for program analysis and regression testing. In common with much testing
research, we adopt mutation score as the measure of fault finding effectiveness;
for details of mutation testing the reader is referred to Jia and Harman [4].

A subdomain is a specific range within the program input domain. Generating
tests from the entire domain can require an infeasible number of test cases, so
subdomains are used to make random testing more efficient. It can be difficult to
determine a priori which subdomains to use in random testing. The well known
Triangle program, commonly used in testing research, has three integer inputs
(a, b and c) and its branches contain conditions such as a=b=c. Michael et al.
[5] selected over 8000 test cases from the entire input domain, but exercised less
than half of the branches. Duran [1] selected 25 test cases from the subdomains
((1..5), (1..5), (1..5)) and exercised all the branches. We address the following
problems of conventional random testing by evolving efficient subdomains:

1. It is inefficient for faults that require specific boundary conditions
– We evolve multiple sets of subdomains to target boundary conditions more
efficiently than sampling over a single large subdomain.

2. Without an automated oracle, random testing is labour intensive
– Our technique requires fewer test cases than is typical for random testing,
thus reducing the human effort required to create test oracles.

G. Ruhe and Y. Zhang (Eds.): SSBSE 2013, LNCS 8084, pp. 251–256, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Background

2.1 Evolution Strategies

Evolution strategies are optimisation algorithms inspired by the process of adap-
tation in nature [6]. In contrast to some genetic algorithms, they optimise numer-
ical values rather than bit strings and emphasise mutation over recombination
[6]. New candidate solutions are produced by applying a (typically Gaussian)
update function (F ) to existing sets of values, x′

1 . . . x
′
n = F (x1 . . . xn). Evolu-

tion strategies are suited to fine tuning numerical properties, as disruption from
crossover is largely avoided. Amongst many other applications, they have been
used to optimise image compression [7], network design [8] and web crawling [9].

2.2 CMA-ES

Covariance Matrix Adaptation Evolution Strategies (CMA-ES) represent the
search neighbourhood with a multivariate normal distribution [10]. They use a
mean vector for the currently favoured solution, a scaling factor for the step size
and a covariance matrix for the shape. Adaptation is performed to achieve fast,
but not premature convergence, taking into account pairwise dependencies in
the covariance matrix and fitness in both time and space [10].

CMA-ES are popular because they can solve difficult optimisation problems
without the need for manual parameter tuning. CMA-ES have been shown to be
particularly effective at non-linear optimisation. In a recent black-box compar-
ison study with 25 benchmark functions, CMA-ES outperformed eleven other
algorithms in terms of the number of function evaluations before the global op-
timum value is reached [11].

3 Subdomain Optimisation

In previous work [12] we evolved a single subdomain for each input parameter.
This increased the mutation score of eight benchmark programs. Yet, one of the
programs (Tcas) required manual scaling of its constants and another program
(Replace) still had less than 50% mutation score. In the new approach, multiple
sets of subdomains are evolved for each program. Each set targets a different
group of mutants. This enables us to kill more mutants with fewer test cases.

A candidate solution consists of subdomains in the following three forms:

Numerical subdomains
are represented with a lower and upper value. Test input values are selected
only between these two values (inclusive).

Boolean probability values
are described with an integer value between 0 and 100. This value represents
the percentage probability that a generated parameter value is ‘true’.

Character array distributions
are fixed in length (by default to five characters). Each special character
(wildcard, closure etc.) is given its own probability of inclusion.
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Algorithm 1. Optimisation for subdomains [al..au], [bl..bu], .. [Nl..Nu]

1: Select initial random values for al, au, bl, bu, .. Nl and Nu.
2: repeat
3: for s = 1 → 100 do
4: Generate 5 test cases from [al..au], [bl..bu], .. [Nl..Nu].
5: Count and record the number of times each mutant is killed by the test cases.
6: end for
7: Calculate subdomain fitness (see Equation 1).
8: Sample new values from multivariate normal distribution centred around current

best candidate: (al, au, bl, bu, ..Nl, Nu, σ
2) → (a′

l, a
′
u, b

′
l, b

′
u, ..N

′
l , N

′
u, σ

2).
9: until ∃m ∈ M,T imesKilled(m) ≥ 95

Algorithm 1 outlines the main process used in searching for subdomains. Due
to limitations in space, only numerical subdomains are described, but a simi-
lar process occurs with Boolean probabilities and character array distributions.
Subdomains are preferred that consistently kill the same group of mutants. This
is achieved by maximising variance in the number of times each mutant is killed
and minimising variance in the number of times the same mutant is killed (see
Equation 1). A mutant is considered to be covered if it is killed at least 95 times
out of 100 by 5 test cases sampled from the subdomains. Once subdomains are
found to cover a group of mutants, the search continues with the remaining mu-
tants. If no new mutants have been covered after 50 generations, the program is
stretched to make one of the mutants easier to kill. We terminate the search if,
after the stretching process is completed, no new mutants have been covered.

∑
s∈S

∑
m∈M

(Ks,m − K̄m)2

(K̄m − K̄)2
(1)

(S is the set of test suites, M is the set of mutants, K is the number of kill events)

4 Program Stretching

Stretching a program [13] involves transformation of its code and a new fitness
function. Instead of targeting a group of mutants, we maximise the number of
times a particular single mutant is killed, targeting mutants that have been killed
the most number of times first. By gradually restoring the program back to the
original mutant, we drag the subdomain values along with it.

The following three ‘stretch’ modes are used in this research:

Path stretching
forces branch conditions leading up to a mutant to be true or false, depending
on whether the branch was taken the last time the mutant was killed.

Mutation stretching
alters the mutation by an offset of 100, for example x >= y → x > y becomes
x > y + 100 with the aim of increasing its impact on the program.

Branch condition stretching
adds an offset of 100 to a difficult branch condition in order to make it easier
to meet, for example x == y becomes (x <= y + 100)&&(y <= x+ 100).
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Path stretching is applied first to ensure the mutation is reached. If the mutant
still cannot be killed a sufficient number of times, the mutation is stretched. Once
the stretchedmutant has been covered, it is gradually unstretchedbydecrementing
themutation offset and removing restrictions on the branch conditions. If restoring
a branch condition prevents the mutant from being covered, the difficult branch
condition is also stretched then gradually restored. The aim in program stretching
is to dynamically alter the fitness landscape so as tomake the necessary subdomain
values more readily available to the search process. Once stretching is completed,
the main fitness function is reapplied to take advantage of the stretching process
on other mutants that are killed by similar input values.

5 Experiments

We applied the new technique to four programs (see Table 1). Tcas has 10 numer-
ical and 2 Boolean input parameters. Its subdomains can be represented with 10
lower and upper values, along with 2 percentage probabilities. Replace requires a
search pattern, a replacement string and a source file. We limit the search and re-
placement strings to 5 characters and the source file to 10 characters (or copies of
the search string). SingularValueDecomposition and SchurTransformation take
matrices. We generate diagonals of a four-by-four matrix for SingularValueDe-
composition and values of a three-by-three matrix for SchurTransformation.

Table 1. Test programs used in the experiments)

Program Mutants LOC Function

Tcas 267 120 Air traffic control
Replace 1632 500 Substring replacement
SingularValueDecomposition 2769 298 Matrix decomposition
SchurTransformation 2125 497 Matrix transformation

6 Results

We compared our approach for evolving multiple sets of subdomains with our
previous approach [12] (which evolves a single set without program stretching)
and random testing in the interval [0..100]. The results are presented graphically
in Figure 1 and numerically in Table 2. To allow a fair comparison, we used
the same number of test cases in each approach. The number of test cases is
determined by sampling 5 test cases from each subdomain in the new approach.

Multiple sets of subdomains achieved 33% higher mutation score on average
than single sets and 230% higher than random testing. The new technique is par-
ticularly effective at meeting difficult branch conditions. To achieve the results
shown in Figure 1, single sets required manual parameter scaling [12]. Multiple
sets did not need this. Unlike the single set approach, multiple sets achieved
a higher mutation score for Tcas and Replace than previous experiments with
dynamic symbolic execution [12]. Random testing outperformed multiple sets on
SchurTransformation, but each approach scored close to 100% on this program.
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(a) Tcas (b) Replace

(c) SingularValueDecomposition (d) SchurTransformation

Fig. 1. Percentage of mutants covered by evolved subdomains (averaged over 100 trials)

On average, the time required to evolve multiple sets of subdomains is 11.6%
greater than single sets. Yet, on a case by case basis there are more significant
differences. It took over seven times longer to evolve single sets of subdomains
for Tcas than multiple sets, but almost twice as long to evolve multiple sets for
Replace than single sets. Depending on the program under test, there are cogent
advantages to using multiple sets for mutation score and computational expense.

Similar mutation scores were previously achieved for random testing and the
single set approach using fewer test cases [12]. It seems sensible to consider
whether the number of subdomains in the multiple sets approach can be reduced.
We can use k-means clustering to select a diverse subset of subdomains. Selecting
10 sets of subdomains (50 test cases) for Replace gave a mutation score of 0.549,
higher than that of the single set approach, but lower than that for the complete
set of subdomains. This compares with a mutation score of 0.514 when selecting
10 subdomains at random.

Table 2. Summary of results (averaged over 100 trials)

Program
Mutation Score Time (mins)

Test Cases
Single Multiple Single Multiple

Tcas 0.457 0.780 364 50.6 205
Replace 0.520 0.566 746 1410 455
SingularValueDecomposition 0.397 0.632 524 546 125
SchurTransformation 0.986 0.920 958 885 45
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7 Conclusions

Evolving multiple sets of subdomains achieved a higher mutation score than
single sets, except for one trivially easy to test program. It was computation-
ally more expensive to evolve multiple sets for Replace, but cheaper for Tcas.
Subdomain optimisation is expensive to perform but cheap to re-use and it signif-
icantly reduces human cost in the absence of an automated oracle. It is efficient
at meeting boundary conditions (e.g. those in the Tcas program) and can be
used to predict fault-finding ability. Further work will investigate the potential
for a two-stage process, starting with single set optimisation then progressing to
multiple sets for more difficult to kill mutants. Research effort will also be spent
finding ways to select smaller subsets of subdomains to minimise labour cost.

Acknowledgment. Dr Yue Jia for his suggestions and helpful discussion.
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Abstract. Genetic Programming (GP) has long been applied to several SBSE
problems. Recently there has been much interest in using GP and its variants
to solve demanding problems in which the code evolved by GP is intended for
deployment. This paper investigates the application of genetic improvement to
a challenging problem of improving a well-studied system: a Boolean satisfia-
bility (SAT) solver called MiniSAT. Many programmers have tried to make this
very popular solver even faster and a separate SAT competition track has been
created to facilitate this goal. Thus genetically improving MiniSAT poses a great
challenge. Moreover, due to a wide range of applications of SAT solving tech-
nologies any improvement could have a great impact. Our initial results show
that there is some room for improvement. However, a significantly more efficient
version of MiniSAT is yet to be discovered.

Keywords: Genetic Improvement, GISMOE, SAT.

1 Introduction

Genetic improvement [2,8,9,12,15] seeks to use SBSE to automatically improve pro-
grams according to one or more fitness function. Typically, an evolutionary algorithm
has been used based on genetic programming [2,12,15] or a hybrid of genetic program-
ming and other techniques [8,9].

This paper investigates the application of genetic improvement to a challenging prob-
lem of improving the MiniSAT [5] system. This is a significant challenge, because Mini-
SAT has been iteratively improved over many years by expert human programmers, to
address the demand for more efficient SAT solvers and also in response to repeated calls
for competition entries in the MiniSat hack track of SAT competitions [1].

We therefore chose MiniSAT because it represents one of the most stringent chal-
lenges available for automated genetic improvement using SBSE. Our goal is to inves-
tigate the degree to which genetic improvement can automatically improve a system
that has been very widely and well studied and for objectives that have been repeatedly
attacked by expert humans.

We report initial results of experiments aimed at the genetic improvement of Mini-
SAT using the GISMOE approach to genetic improvement [8]. Our primary findings
are that one can achieve a more efficient version of MiniSAT by simply getting rid off
assertions and statements related to statistical data. Moreover, deleting certain optimisa-
tions leads to faster runs on some SAT instances. However, a significantly more efficient
version of the system is yet to be discovered.

G. Ruhe and Y. Zhang (Eds.): SSBSE 2013, LNCS 8084, pp. 257–262, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 MiniSAT

MiniSAT is a well-known open-source C++ solver for Boolean satisfiability problems
(SAT). It implements the core technologies of modern SAT solving, including: unit
propagation, conflict-driven clause learning and watched literals [13], to name a few.
The solver has been widely adopted due to its efficiency, small size and availability of
ample documentation. It is used as a backend solver in several other tools, including
Satisfiability Modulo Theories (SMT) solvers, constraint solvers and solvers for de-
ciding Quantified Boolean Formulae (QBF) . MiniSAT has also served as a reference
solver in SAT competitions.

In the last few years progress in SAT solving technologies involved only minor
changes to the solvers’ code. Thus in 2009 a new track has been introduced into the
SAT competition, called MiniSAT hack track. In order to enter this track one needs to
modify the code of MiniSAT. This solver has been improved by many expert human
programmers over the years, thus we wanted to see how well an automated approach
scales. We used genetic improvement in order to find a more efficient version of the
solver. In our experiments we used the latest version of the solver - MiniSAT-2.2.01.

3 Our Approach to the Genetic Improvement of MiniSAT

Our objective is to find a version of MiniSAT that is correct, i.e answers whether an
instance is satisfiable or not, and that is faster than the unmodified solver. We used
test cases from SAT competitions2. The training test suite was divided into five groups:
satisfiable/unsatisfiable instances on which MiniSAT runs for less than 1 second, sat-
isfiable/unsatisfiable instances on which MiniSAT runs for between 1 and 10 seconds
and a mixture of satisfiable and unsatisfiable SAT instances on which MiniSAT runs for
between 10 and 20 seconds.

We modified the SAT solver at the level of source code. We used a specialised BNF
grammar to make sure that the evolved code is syntactically correct. Thus individuals
produced have a good chance of compiling and thus high chances of running. We used
time-outs to force termination of individuals which run significantly longer than the
unmodified solver. We changed the code by using three operations:

– copy : copies a line of code in another place,
– replace : replaces a line of code with another line of code,
– delete : deletes a line of code.

There were a few special cases involving loops and if conditions, namely the same
three operations (copy, replace and delete) were applied to conditions in if statements,
while and for loops3.

1 Solver available at: http://minisat.se/MiniSat.html.
2 Instances available at: http://www.satcompetition.org/.
3 Note here, however, that a part of a for loop, for instance, could have only been replaced

with the same part of another for loop. For instance, ‘i + +’ could have been replaced with
‘j ++’, but not ‘j = 0’.
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We modified two C++ files: Solver.cc, containing the core solving algorithm (321
out of 582 lines of code), and SimpSolver.cc, which simplifies the input instance (327
out of 480 lines of code).

Furthermore, we were evolving a list of changes, that is, a list of copy, replace and
delete instructions. We only kept such lists in memory, instead of multiple copies of an
evolved source code.

For each generation the top half of the population was selected. These were either
mutated, by adding some of the three operations mentioned above, or crossover was
applied, which simply merged two lists of changes together. Mutation and crossover
took place with 50% probability each. New individuals were created by selecting one
of the three mutation operations.

For each generation five problems were randomly chosen from the five groups of test
cases. Fitness was evaluated as follows: if correct answer was returned by an individual,
2 points were added; if, additionally, the modified program was faster, 1 more point
was added. Only individuals with 10 or more points were considered for selection. In
order to avoid environmental factors, we counted the number of lines used to establish
whether a mutated program was more efficient than the original one. The whole process
is presented in Figure 1.

Fig. 1. GP improvement of MiniSAT

4 Initial Results

A summary of our results is shown in Table 1. We refer to versions of MiniSAT that run
faster than the unmodified solver on the maximum set of instances as ‘best individuals’.

We ran our experiments on a test suite with 71 test cases taken from the 2011 SAT
competition. Each generation contained 20 individuals. Time limit was set to 25 seconds
and it took 14 hours to produce 100 generations. We only modified the Solver.cc file,
containing the core solving algorithm. Of all programs generated 73% of them com-
piled. The best one was more efficient than the unmodified solver on 70 SAT instances,
in terms of lines of code used. However, the modified versions mostly just removed
assertions as well as some statistical data. Some optimisations have also been deleted,
but these in turn led to longer runtimes on certain instances.

Next, we selected the test cases from only the application tracks of SAT competitions.
MiniSAT was able to find an answer for 107 problems out of 500 instances tested within
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Table 1. Results of genetically improving MiniSAT. The ‘Improved’ column shows the number
of test cases on which the best generated version of the solver was more efficient. The ‘Best
improvement’ column shows the highest decrease in lines used for some test case, not necessarily
achieved by the best individual.

Test cases Type Population size Generations Compiles Improved Best improvement
71 various 20 100 73% 70 0.937%

107 application 20 100 73% 107 0.859%
107 application 100 20 66% 106 0.858%

the time limit, which was set to 25 seconds for each instance. Therefore, the 107 SAT
problems were used for GP. Again we set population size to 20 and the number of
generations to 100 and around 73% of individuals compiled. In 34 generations there was
an individual that was more efficient than the unmodified solver on all five randomly
selected test cases. The best one was more efficient on all 107 instances. However,
it only removed assertions and operations on variables used for statistical purposes.
We also ran the experiments with population size 100 for 20 generations and achieved
similar results (with the exception that 66% of modified programs compiled). In all
cases the number of lines used by a ‘better’ version of MiniSAT generated was less by
at most 1% and the average number of lines used during each solver run was in the order
of 1010. None of the individuals produced led to large performance improvements. Most
of the changes involved deletion of assertions, operations used for gathering statistical
data or deletion of minor optimisations.

To sum up, in our experiments genetic improvement has mostly found ways to pare
down MiniSAT implementation. This was achieved by removing non-essential code
like assertions. Another type of change performed by GP was removal of minor op-
timisations. We will provide an example: A SAT instance is composed of constraints
called clauses, hence SAT solvers try to find a variable assignment that satisfies all the
clauses. MiniSAT contains a function called satisfied that checks the satisfiability
of a clause and removes it from the database if it’s already satisfied by some variable
assignment that cannot be changed. GP disabled this function by setting the second part
of the main for loop to zero. Thus, during a run of such a modified solver at each vari-
able assignment all clauses were checked for satisfiability, even though some of them
could have already been satisfied. On the other hand, the main body of the satisfied
function was not executed.

5 Related Work

Genetic Programming (GP) has long been applied to several SBSE problems including
project management and testing.

More recently, there has been much interest in using GP and variants and hybrids
of GP to solve demanding problems in which the code evolved by GP is intended for
deployment, rather than merely as a source of decision support (but not ultimate deploy-
ment as a working software system). Much of the recent upsurge in interest in GP can
be traced back to the seminal work of Arcuri and Yao on bug fixing using GP [3] and
the development of this agenda into practical, scalable systems for automated program
repair [11,14]. Recent results indicate that these automated repairs may prove to be as
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maintainable as human generated patches [6] and that the patches can be computed
cheaply using cloud computing [7].

While previous work on bug fixing has already scaled to large real world systems,
work on whole system genetic improvement has not previously scaled as well. How-
ever, recently Langdon and Harman [10] demonstrated scalability of whole program
genetic improvement for a system of 50,000 Lines of Code on a real-world bioinfor-
matics system. They were able to use a GP hybrid to find new evolved versions of the
DNA sequence analysis system Bowtie2 that are, on average, 70 times faster than the
original (and semantically slightly improved) when applied to DNA sequences from
the 1,000 genome dataset.

A general framework of genetic improvement in set out on the ASE 2012 keynote
paper by Harman et al. [8]. In the work reported here we adapt the approach developed
by Langdon and Harman [10] applied to the Bowtie2 system to seek to optimise the
MiniSAT system. Any improvements for implementations of SAT solving that we are
able to achieve may have benefits for the wide and diverse applications of SAT solving.
Even if we can only optimise a SAT solver for a subdomain of application (such as
all constraints of a particular type), then this may allow us to use genetic improvement
to achieve a kind of partial evaluation [4]. Such partial evaluation of SAT solving by
genetic improvement may be useful in specific applications for which a known subset
of formulae of the desired type are prevalent.

6 Conclusions and Future Work

Genetic improvement has successfully been applied to systems such as Bowtie2, lead-
ing to significant speed-ups. Therefore, we wanted to investigate if this could be
achieved on a well-known software system that is easy to analyse and has been engi-
neered by many expert human programmers. Hence we chose MiniSAT, a very popular
Boolean satisfiability (SAT) solver that has been thoroughly studied. MiniSAT hack
track of SAT competitions was specifically designed to encourage people to make mi-
nor changes to MiniSAT code that could lead to significant runtime improvements, and
hence some new insights into SAT solving technology. We wanted to check how an
automated approach scales.

If Genetic Programming (GP) is allowed to only apply mutations and crossover at
the level of lines of source code, it turns out that little can be done to improve the current
version of MiniSAT. Most changes simply pare down MiniSAT implementation. These
involve deletion of assertions as well as operations used for producing statistical data.
Some minor optimisations have also been removed by GP. A version of the solver that
is significantly more efficient than the unmodified MiniSAT solver is yet to be discov-
ered. We intend to conduct further experiments. We plan to remove assertions from the
GP process and also conduct mutations on smaller constructs than a line of code. One
possibility is to mutate mathematical expressions. Further experiments with varying
population and generation size are also desirable. Furthermore, using a certain type of
test cases, exhibiting, for instance, similar structure, could help find improvements spe-
cific for such classes of problems. We have already started experiments in this direction
by considering test cases from the application tracks of SAT competitions. However,
other classes of problems are yet to be investigated.
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Abstract. Search-based techniques can be used to identify whether a
concurrent program exhibits faults such as race conditions, deadlocks,
and starvation: a fitness function is used to guide the search to a re-
gion of the program’s state space in which these concurrency faults are
more likely occur. In this short paper, we propose that contracts speci-
fied by the developer as part of the program’s implementation could be
used to provide additional guidance to the search. We sketch an example
of how contracts might be used in this way, and outline our plans for
investigating this verification approach.

1 Introduction

Concurrency is often necessary if programs are to make the most efficient use
of modern computing architectures. In particular, multiprocessor manufacturers
have shifted focus from increasing CPU clock speeds to producing processors
with multiple cores in the pursuit of better performance. For a program to realise
this potential performance improvement it must be able to use more than one
of the cores at the same time.

However, multi-threaded programs may exhibit concurrency-specific faults
which are both difficult to avoid during development and to identify during
testing. Race conditions can occur when more than one thread manipulates a
shared data structure simultaneously, potentially resulting in the corruption of
the data structure and consequential functional faults in the program. Race
conditions may be avoided by an arbitration mechanism, such as locking, that
controls access to shared resources. However, such mechanisms may give rise to
non-functional faults such as deadlocks when a cycle of threads are each waiting
to acquire a lock held by the next thread in the cycle and so none of them are
able to proceed; and starvation when one thread is continually denied access to
a shared resource as a result of the method of arbitration.

Verification of concurrent programs is thus complicated by the need to con-
sider not only input data, but also the relative times at which key events occur,
such as lock acquisitions and accesses to shared resources, across all of the pro-
gram’s threads. The temporal order of such events is referred to as an interleaving
of the threads. The timings of such key events are not typically constrained and
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© Springer-Verlag Berlin Heidelberg 2013



264 C.M. Poskitt and S. Poulding

so each invocation of the program can have a different interleaving as a result of
non-determinism in the hardware and software platform on which the program
runs. Therefore verification techniques—both dynamic testing as well as more
formal static approaches—must consider many possible interleavings in order to
assess the likelihood of a concurrency fault.

A number of effective search-based techniques have been demonstrated for
this purpose, each using a fitness function to guide the search algorithm to
interleavings that could cause concurrency faults.

In this short paper, we propose that contracts provided by the developer could
provide additional information with which to guide the search, and therefore
improve the practicality of verifying concurrent programs using search-based
techniques.

2 Background and Related Work

One approach to detecting concurrency faults is model checking, a static tech-
nique that builds an abstract model of the concurrent program from its de-
sign or implementation. The model is used to determine all possible states of
the program and the valid transitions between these states. By exhaustively
analysing all reachable model states for the existence of concurrency faults, all
thread interleavings—not just those that occurred in a single invocation of the
program—may be verified. However, since the set of model states is formed by
a product of the states of each thread in the program, the number of states to
be checked grows very quickly with the size of the program and the number of
threads.

Alternatively, the set of possible interleavings can be explored during dynamic
testing of the program itself by exerting control over the relative timings of key
events in each thread. This can be achieved by inserting instructions that intro-
duce delays around critical operations such as the acquisition of locks. However,
as for the model checking, the number of potential interleavings that must be
explored grows very quickly with the program size.

Search-based techniques can be used to locate counterexamples—specific
thread interleavings (or equivalently, model states) in which concurrent faults
arise—rather than an exhaustive exploration of the entire space. Such an ap-
proach does not guarantee the absence of such faults, but can demonstrate the
presence of faults. If the metaheuristic algorithm can efficiently locate regions
of the search space (i.e. the set of possible thread interleavings or model states)
that potentially give rise to concurrency faults, this is a practical alternative to
exhaustive exploration of all possible interleavings/model states.

An important factor that determines the efficiency of a search is the fitness
function which guides the metaheuristic algorithm. For many types of concur-
rency faults, the fault either exists or it does not: for example, a deadlock cannot
be ‘partial’. Thus a fitness function based only on the existence of the fault it-
self would provide no guidance to the metaheuristic algorithm, and the function
must instead utilise other information to identify interleavings/model states that
are ‘closer’ to one that exhibits the concurrency fault.
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For example, Godefroid and Khurshid [4], Alba et al. [1], and Shousha et al.
[7], each describe the use of a genetic algorithm to locate deadlocks in models of
concurrent programs; Staunton and Clark [8] describe an estimation of distribu-
tion algorithm using N-grams with the same objective. The fitness function used
by Godefroid and Khurshid utilises the total number of transitions out of model
states visited on the path to the current state. The rationale is that minimising
this sum will guide the search to states with no outgoing transitions: such a state
represents a deadlock. The fitness functions used by the other three algorithms
all utilise the number of blocked threads (those waiting to acquire locks) in the
current state as one of the metrics to guide the search. The rationale in this
case is that the more threads that are waiting to acquire locks, the more likely
a deadlock state is to occur.

Bhattacharya et al. [2] use hill climbing and simulated annealing to identify
potential race conditions through dynamic testing. A simulator is used to execute
the program as this allows control of the thread interleaving by injecting timing
delays while removing other sources of non-determinism. The fitness function
is based on the timing between write accesses to the same memory location
by different threads. The rationale is that by reducing the gap between write
accesses, a race condition is more likely to arise.

3 Using Contracts to Guide Search

3.1 Our Proposed Use of Contracts

The search-based techniques discussed in the previous section used a fitness
function to efficiently guide the search to regions of the space of thread in-
terleavings/model states in which concurrency faults are most likely to occur.
Nevertheless, some of the fitness functions return values from only a small range
of discrete values. For example, the metric of the number of blocked threads—
used in the functions that guide the search to deadlock states during model
checking—takes only integer values between 0 and the total number of threads
in the program. Thus many states may have the same fitness, and the search is
provided with no guidance as to how to choose between them in order to reach
a state that has, in this example, more blocked threads.

We propose that there is opportunity to provide additional guidance to the
search by utilising developer-specified contracts. The objective would be to im-
prove the efficiency of the search algorithm by incorporating additional informa-
tion into the fitness function.

We do not envisage contracts taking the form of exhaustive specifications.
Instead we propose the use of formal contracts of the type used in the Design
by Contract approach to software development. Examples of this type of con-
tract are the preconditions, invariants and postconditions specified in the Eiffel
programming language using the require, invariant, and ensure constructs re-
spectively [5]; and equivalent constructs in the Java Modeling Language (JML)
[3]. Such contracts do not necessarily change the semantics of a program un-
less the developer chooses to enable runtime checking for contract violations
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(for example, in order to localise bugs in development builds), and there is no
requirement on them to be exhaustive. However they do document the behaviour
of the program intended and assumed by the developer in a form that might not
otherwise be easily inferable from the program code itself. It is this information
that we believe could be used to guide the search.

For example, a contract could document the assumption that the developer
has made as to how other threads will access the shared resources used by a
particular section of code. The search could then attempt to locate thread inter-
leavings that break this assumption using a fitness function derived automati-
cally from the contract. The rationale would be that if the assumption made by
the developer can be invalidated, it is likely that such interleavings could give
rise to concurrency faults.

Alternatively, a contract could be used to guide the search to particular data
states that increase the likelihood of concurrency faults. This possibility is mo-
tivated by the observation that most of the existing fitness functions consider
only metrics related to interleavings—such as the number of blocked threads
or time between access to a shared memory location—but not the data that,
for example, satisfies guards on code that performs operations likely to cause
concurrency faults. This additional information in the fitness function could be
used to guide the selection of input data as well as thread interleavings.

Our proposal to use developer-specified assumptions in search-based algo-
rithms contrasts with their use in more analytical approaches. For example,
the approach of [10] uses an SMT solver to construct sequences of interfering
instructions that drive a program under test to break the assumptions.

3.2 An Example

As a motivating example, we consider a program written in concurrent Eiffel
with SCOOP (for Simple Concurrent Object-Oriented Programming). SCOOP
[5,6] is an experimental object-oriented concurrency model which has contracts
as a central concept, making it an interesting starting point for our work.

An object in the model can be declared with a special type using the keyword
separate, meaning that applications of routines to it may occur on a different
processor (an abstraction of threads, physical cores, etc.), and that calls to com-
mands (i.e. routines that do not return results) are executed asynchronously.
Every object belongs to exactly one processor; no other processor can access its
state. Calls to separate objects are only allowed if the current processor con-
trols the processors owning those objects; this is guaranteed if they are passed
as arguments, in which case they are automatically and exclusively locked for
the duration of the routine’s execution.

SCOOP supports pre- and postconditions for routines (preceded by require
and ensure respectively). In a sequential setting, preconditions are (optionally)
checked before executing the routine. In a concurrent setting, preconditions are
interpreted as wait conditions. That is, the execution of the routine is delayed
until simultaneously the precondition is satisfied and the processors handling the
separate objects controlled.
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Suppose we have a simple program that has a bounded buffer, on which we can
store integers and from which we can consume them—provided that respectively,
the buffer is not full or empty. We give possible implementations of a store

routine below, using both the Eiffel SCOOP model (left) and Java (right). Both
implementations involve waiting if the buffer is full. In the SCOOP version, an
(asynchronous) execution would first wait for the separate a_buffer object to
become available and for the precondition to hold; then, the buffer is locked, a
new element is pushed, and the lock released. The Java version is intended to
do the same, but when waiting for buffer space to become available (with the
call to buffer.wait()), relies on an (unspecified) consumer object notifying this
store thread that it has consumed an element from the buffer.

store ( a_buffer : separate
BOUNDED_BUFFER [INTEGER] ;
an_element : INTEGER)

require
a_buffer . count < a_buffer . size

do
a_buffer . put ( an_element )

ensure
not a_buffer . is_empty
a_buffer . count = old a_buffer .

count + 1
end

public void store ( BBuffer<Integer>
buffer , int element ) {

synchronized ( buffer ) {
while ( ! ( buffer . size ( ) <

buffer . maxSize ( ) ) ) {
try {

buffer . wait ( ) ;
} catch
( InterruptedException e ) {}

}
buffer . push ( element ) ;

} }

We have only given fragments of the whole programs, but already, with the
precondition in the SCOOP version, we can infer a “region of interest” in the
state space, i.e. a region where concurrency bugs may be more likely to reveal
themselves. In our example, this region involves states in which the buffer is ap-
proaching its bound. A poor design of the SCOOP program might, for example,
lead to a call of store waiting for an unacceptably long time, e.g. if consumers
are starved of access to a full buffer. In the Java version, threads that are blocked
because of a full buffer may never be awoken, for example, if the implementa-
tion of consumers fails to notify threads when the buffer is no longer full. These
bugs would not be observed outside of that region of interest, and with a suffi-
ciently large bound on the buffer, naive testing strategies might not encounter
them. The information provided by the precondition should be incorporated into
the fitness function to guide the search towards this region of interest, perhaps
by converting the contract’s Boolean condition to a metric similar in nature to
the branch distance [9] used in other forms of search-based testing. Note that
the precondition is essentially exposing information that is present in the Java
program, but would be more difficult for search to extract in that form.

This is a simple motivating example, and though illustrated with SCOOP,
we hope that the approach will generalise to other concurrent object-oriented
languages by allowing routines to be annotated with some notion of contract.
Furthermore, the example we considered used a functional precondition. We are
also interested in how search might be guided by a contract language offering
non-functional preconditions, such as expressions about patterns of access or
deadlock-free resource usage.
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4 Conclusions and Next Steps

In this short paper, we have proposed the use of contracts in concurrent programs
for guiding search-based techniques towards regions of the state space where
concurrency faults may be more likely. We placed our proposal within the context
of the state-of-the-art, and sketched an example in a concurrent object-oriented
programming model to discuss how contracts might be exploited.

Our next step is to empirically evaluate our proposal on realistic software
with preconditions expressed in JML, the wait conditions of SCOOP, or another
suitable language. We also plan to investigate whether and how search-based
techniques can benefit from simple non-functional contracts in the code.
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Abstract. Planning a Global Software Development project is a challenging 
task, as it involves balancing both technical and business related issues. On the 
other hand, the selected software architecture also influences the distributed de-
velopment, making the separate development of components either easier or 
more difficult. This kind of planning problem with multiple variables is difficult 
to solve using deterministic methods. In this work, we propose an approach 
based on genetic algorithms for planning global software projects. 

Keywords: global software development, work assignment, work scheduling, 
project planning, software architecture, genetic algorithms. 

1 Introduction 

Global Software Development (GSD) is a major trend in software engineering. GSD 
is usually characterized by engagements with different national and organizational 
cultures in different geographic locations and time zones, using various traditional 
and IT-enabled means to collaborate [1]. Project planning activities such as work 
assignment and work scheduling need to be performed carefully in GSD, because 
performing them improperly may increase the cost and duration of the project. Plan-
ning of GSD is challenging, because it involves multiple choices related not only to 
assigning and scheduling the work in a heterogeneous environment but also to the 
ways software architecture supports the work division. While planning a GSD project, 
the communication problems caused by geographical, time-zone, and socio-cultural 
distances between the teams [1] should be considered. Moreover, the software archi-
tecture decisions that support the work assignment should also be taken into account. 

Software architecture may ease or hamper distributed development [2]. In order to 
assign the work, first the target system needs to be divided into a set of components, 
which can be developed as independently as possible. Since the architecture dictates 
the decomposition of the system and dependencies between the components, it deter-
mines the potential work units, too. In particular, the solutions that influence coupling 
between components are important for the work allocation: the more loosely coupled 
two components are, the easier it is to develop them separately [3]. Here we call such 
decisions decoupling solutions. 
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Given the large variety of different, partly conflicting factors that have to be taken 
into account in finding an optimal GSD work plan and the huge search space, using a 
deterministic search method is difficult. For example, the problem of assigning 10 
tasks to 10 available teams has a search space of 10 billion (1010). In this paper we 
propose a genetic algorithm (GA) based approach as a novel method to solve the GSD 
work plan optimization problem. The approach takes information about the target 
system and the organization as input and finds a near-optimal work assignment plan 
and work schedule, together with supporting decoupling solutions. 

Several studies, such as [4] and [5], have applied genetic algorithms in the area of 
project management. However, we have not found any studies that applied genetic 
algorithms to project management problems in GSD. Moreover, our study differs 
from those concerning project management by taking into account architectural solu-
tions and considering the team distribution effect on cost and duration of the project. 

The paper is structured as follows. In the following section we formulate the prob-
lem to be solved by the proposed approach. In Section 3 we present our GA-based 
approach for solving the GSD optimization problem. The results from early experi-
ments are discussed in Section 4. Finally, we conclude with some remarks on future 
work in Section 5. We assume that the reader is familiar with the basics of GAs, as 
given, e.g., by Michalewicz [6]. 

2 GSD Optimization Problem and Work Plan 

2.1 GSD Optimization Problem 

The GSD optimization problem can be formally expressed as a tuple (C, T), where C 
is a component graph and T is the team graph. The component graph C is a labeled 
graph representing two relationships between the components (nodes): dependency 
and precedence (edges). Dependency relationships are determined based on the func-
tional decomposition of system, which is assumed to be decided by the architect. If 
component c1 needs the services of component c2, then c1 depends on c2. This implies 
that when developing component c1, some information is needed of component c2 
(e.g. service interfaces, service protocols, and the meaning of services), implying need 
for communication between the teams developing the components. On the other hand, 
precedence is a relationship expressing the preferred development order of the com-
ponents: if component c1 precedes component c2, then c1 should be developed before 
c2. The precedence relationships are assumed to be determined by the architect based 
on various facts known about the components. For example, a situation where com-
ponent c1 produces large data entities used by component c2, implies that component 
c1 precedes component c2. Using this relationship, the architect or project manager can 
express various types of additional information concerning the development order, 
which cannot be deduced by any automatic means. 

The team graph T is a labeled graph, where the teams are nodes connected by 
edges representing the communication between the teams. Each edge is labeled by the 
communication distance [7] of the two teams. The communication distance is as-
sumed to take into account factors like geographical, time-zone, language, cultural 
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and social differences. The communication distance is assumed to be estimated by the 
project manager using appropriate coarse scale (e.g. short, medium, long). 

Each component ci in the component graph is characterized by several attributes. 
These attributes include the estimated effort and skills required for developing the 
component. We assume that the effort can be estimated using any known software 
cost estimation method, such as COCOMO II [8]. Similarly, each team has several 
characteristics. These include the capacity of the team in person hours per day, the set 
of skills possessed by the team, average cost of the team per day and maximum num-
ber of hours the team can spend on the project. 

2.2 Work Plan 

The solution produced by the genetic algorithm is expressed in the form of a work 
plan. A work plan provides the decoupling solutions introduced between the compo-
nents, allocation of components to suitable teams and a schedule specifying the order 
in which teams should develop the components. Moreover, a work plan should satisfy 
the following constraints: every component should be assigned to a team that has 
necessary skills to develop it and no team should be assigned more work than the 
maximum number of hours they can spend on the project. The work plan can be for-
mally expressed as a tuple (C’, wf), where C’ is a component graph extended with 
decoupling solutions and wf is the work allocation function: wf(c) = (i, k) indicates 
that component c will be developed by team i as its k:th work item. In the component 
graph C’, some of the dependency relationships of C have been refined into specific 
decoupling solution relationships, indicating that the components are interacting 
through a particular decoupling solution.  

2.3 Decoupling Solutions 

Above we have assumed that decoupling solutions can be applied between components 
to reduce the need for communication between the teams. There are different decoupl-
ing solutions, such as various message-based communication techniques [9] (like JMS 
[10] or IBM WebSphere MQ [11]), REST interfaces [12], broker-based service infra-
structures like CORBA [13] or Web services [14], Publisher-Subscriber solutions [3], or 
just well-defined, documented and properly maintained interfaces. Messaging is typical-
ly used in system integration as a powerful decoupling pattern [3], reducing the mutual 
dependencies of subsystems. The application of REST interfaces also reduces the coupl-
ing between components, as components interact through uniform interfaces rather than 
using specific methods. Similarly, brokers detach the client and server components from 
each other. The application of each decoupling solution influences the amount of coupl-
ing between the components, and therefore the amount of communication needed to 
develop the components. For example, if two components are communicating using 
messages, they rely only on the messaging infrastructure and can be developed to large 
extent independently. In this work, we use two decoupling solutions, taken from the 
opposite ends of the spectrum: messaging (representing strong decoupling) and well-
defined interfaces (representing weak decoupling). 
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3 A GA Based Approach to Solve GSD Optimization Problem 

The overall setup is presented in Fig. 1. The initial work plan is given as input to the 
approach. The initial work plan consists of a component graph (without decoupling 
solutions) and a random assignment of components to teams and a random develop-
ment order for the teams. The initial work plan is encoded into a chromosome form by 
specifying the information about each available component. The chromosome is then 
used to generate an initial population of chromosomes (i.e., work plans). 

During the evolution, the work plans are subjected to mutations and crossover. The 
mutations include introducing or removing a decoupling solution between the compo-
nents, changing the assignment of a component from one team to another team, and 
changing the schedule, i.e., changing the position of the component in the team’s 
development order. The mutation that changes the team assignment is applied only if 
the application does not violate the constraints to be satisfied by a work plan. The 
crossover operation is implemented as a traditional one-point crossover. Each muta-
tion is selected with a roulette wheel selection [6]. Null mutation and crossover are 
also included in the wheel. The size of each slice of the wheel is in proportion to the 
given probability of the respective mutation.  

In each generation, the fitness function is used to evaluate the goodness of the work 
plan in terms of cost and duration. In calculating the duration, the basic effort of the 
component, the effort required by the component for communicating with compo-
nents in other teams, the effort required by the component for using the introduced 
decoupling solution, and the time spent by the team waiting before developing the 
preceded component are taken into account. The communication distance between the 
teams and coupling resulted due to the applied decoupling solution are considered in 
calculating the communication effort required by a component. In calculating the 
effort required for using a decoupled solution, the complexity of the applied decoupl-
ing solution is considered. The team’s development order is used in calculating the 
waiting time spent by the team. The cost is calculated by summing the money paid to 
the teams for the time they spent on the project. For each generation, the Selection of 
the individuals for each generation is made with the same kind of roulette wheel me-
thod as was used for choosing the mutations. 

As the result, the genetic algorithm produces a work plan proposal, which contains 
work assignment plan and schedule plan along with the applied decoupling solutions. 
Moreover, it also estimates the duration and cost required to realize the work plan. 

 

Fig. 1. GA based approach to solve GSD optimization problem 
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4 Preliminary Experiments 

To experiment with our approach, we use an example project in which a sketched 
home control system is planned to be developed with four teams, which are T1, T2, T3 
and T4. The communication distance is short between teams T1-T3, medium between 
teams T2-T4, and long between teams T1-T2, T1-T4, T3-T2, T3-T4. The average cost per 
day is high for teams T1 and T3, medium for team T2, low for team T4. As discussed 
earlier, each team is also given additional characteristics such as skills possessed by 
the team, maximum time the team can spend on the project, etc. The component graph 
of home control system contains 12 components, 15 dependency relationships and 8 
precedence relationships. Moreover, each component is given an estimated effort and 
skill required to develop the component. The initial work plan for home control sys-
tem is obtained by randomly assigning each component to a team and giving it a ran-
dom position in the team’s development order. 

In the experiments, our main interest was to study whether GA produces work 
plans that are in line with common sense reasoning when either cost or duration is 
emphasized over the other. To study this phenomenon, we performed two different 
tests using the initial work plan of home control system. Each test was run for 10 
times and for both the tests GA was executed with a population of 100 individuals for 
250 generations. 

In the first test, we emphasized duration over cost. In this test, the GA favored so-
lutions that have few inter-team dependencies between distant teams (T1-T4, T3-T4), 
and moved majority of work to closer teams (T1, T3). The decrease in the inter-team 
dependencies decreases the need for communication effort, which decreases the dura-
tion of the planned software. However, the cost of the planned software increased as 
the majority of work was moved to expensive teams (T1, T3). The cost was empha-
sized over duration in the second test. In this test, the GA favored solutions in which 
majority of work was moved to low cost team (T4). This decreased the cost of the 
planned software, but increased the duration, as the number of inter-team dependen-
cies between distant teams (T1-T2, T1-T4, T3-T2, T3-T4) were increased. The generated 
work plans showed that GA was behaving in a sensible way demonstrating the con-
flicting nature of cost and duration, i.e., duration required to realize the work plan can 
be decreased at the expense of cost and vice-versa.  

5 Conclusions 

We have proposed a GA based approach to plan GSD projects. Planning a GSD 
project is challenging as it involves organization, personnel, business and architecture. 
For this kind of problem, the project manager does not necessarily want to just see an 
optimal solution produced by a tool, but rather she needs guidance on how prioritizing 
or constraining different factors will influence the result. A major advantage of the 
proposed approach is that it can be used to develop a guidance tool for choosing the 
right balance of the different factors. Developing this kind of tool support is our main 
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research objective in the future. Furthermore, our future work involves applying the 
approach on industrial data, and evaluating the results together with practitioners. 
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Abstract. In this paper we report on the evolution of Apache Ant, a build au-
tomation tool developed in Java. We observed a typical case of architectural 
mismatch in this system: its original simple design was lost due to maintenance 
and addition of new features. We have applied SBSE techniques to determine 
whether the search would be able to recover at least parts of the original design, 
in a metrics-based optimization. We observed that current SBSE techniques 
produce complex designs, but they also allow us to study the limitations of 
present design metrics. In the end, we propose a new research perspective join-
ing software clustering and refactoring selection to improve software evolution. 

Keywords: Apache Ant, Hill Climbing search, software module clustering. 

1 Assessing the Evolution of Apache Ant’s Architecture 

Apache Ant (or simply Ant) is a build automation tool frequently used to support conti-
nuous integration (CI). CI is a software development practice in which members of a 
team integrate their work frequently, usually once per day and person [1]. Integration 
involves executing a set of tasks, which build and verify the software. Some of these 
tasks are mechanical and repetitive, and a build automation tool (such as Ant) automates 
their execution. Ant uses XML files to describe what tasks must be executed (and in 
which order) during integration. These tasks typically involve downloading code from a 
version control system, copying files, compiling code, executing unit tests, building 
deployment descriptors, and so on. They must be properly sequenced and specific per-
sons must be notified if errors are found during their execution. 

Twenty-four versions of Ant were released since its inception in 2003, including 9 
major and 15 minor versions. All versions were implemented in Java. The first ver-
sion (v1.1.0) had 102 classes distributed into 4 packages. The software grew over the 
last years, as a large number of task definitions were added. The current version 
(v1.9.0, released in March, 2013) surpasses 1,100 classes organized in 60 packages.  

Figure 1 presents Ant’s conceptual architecture, with its major packages and de-
pendencies among them. The architecture has 3 major components: a utility library 
(util), an automation and notification framework (ant), and a set of task definitions 
(taskdefs). Task definitions may use the utility library and the framework to perform 
their tasks, while the framework may use the libraries to provide its services. 
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Figure 2 shows package dependency 
charts for 6 versions of Ant: points 
represent packages and lines represent 
dependencies between two packages. A 
package A depends on a package B if at 
least one class from A depends on at 
least one class from B to implement its 
features. Due to space limitation, only 
versions introducing major architectural 
changes are presented, and dependency 
direction and package names are sup-
pressed. 

ant.taskdefs

ant

util

 

Fig. 1. – Reference architecture for Ant 

(a) Version 1.1.0 (b) Version 1.2.0 

 
(c) Version 1.4.0 (d) Version 1.6.0 

 
(e) Version 1.8.0 (f) Version 1.9.0 

 

Fig. 2. – Architecture overview for six major versions of Apache Ant 
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Instead of presenting a detailed description for the project’s architecture evolution, 
the charts in Figure 2 intend to show how complexity is incorporated to originally 
simple software as it evolves. Many package dependencies were created and the com-
ponents of the original architecture cannot be easily found in charts for recent ver-
sions. This reduces reusability, understandability, and testability. In a typical case of 
architectural mismatch [9], small changes made by developers on a daily basis over 
the course of the software life-cycle, have increased the distance between the current 
implementation and the original design. It’s a creeping fact of software development: 
useful software is required to change; changed software (frequently) slowly decays. 

2 But, Can SBSE Help Rescuing the Architecture? 

Software module clustering addresses the problem of finding a proper distribution for 
the modules representing domain concepts and computational constructs comprising a 
program into larger, container-like structures. In this sense, software clustering is 
strongly associated to the definition of components and their connections in software 
architectures. Due to the huge number of alternative module distributions for non-
trivial programs, this problem has been addressed with SBSE approaches.  

The most commonly used mono-objective models for the software clustering prob-
lem rely on graphs describing dependencies among classes and optimize (maximize) 
one of two alternative fitness functions: MQ and EVM. Using different formulations, 
these fitness functions aim for a balance between coupling (related to the number of 
dependencies between packages, to be minimized) and cohesion (related to the num-
ber of dependencies within packages, to be maximized). For more information on the 
problem, its models, and fitness functions, the interested reader may refer to [2, 3, 4]. 

 
(a) EVM fitness function (b) MQ fitness function 

 

Fig. 3. – Optimized architecture for Apache Ant version 1.8.2 

We have optimized Ant’s version 1.8.2 according both to EVM and MQ in order to 
improve its module dependency structure and observe whether the search process 
might reverse the architectural mismatch. Figure 3 presents the solutions found after 
executing the search based on EVM (Figure 3.a) and MQ (Figure 3.b). We have used 
a Hill Climbing search with random restarts, consuming a fitness function evaluation 
budget of 1,000 N2, where N is the number of classes in the program (1,090 classes 
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for Ant version 1.8.2). This was a large-scale optimization process, considering that 
published papers addressing the software clustering problem usually report on in-
stances up to 300 modules. Each optimization process (one for EVM, one for MQ) 
took about 4 days in a dedicated 2.6 GHz Core i7 computer with 4 Gb RAM. 

But how can we evaluate whether the optimized versions have improved the design 
presented of Ant version 1.8.2? One possible way is to consider metrics. Table 1 
presents 6 structural metrics for version 1.8.2 and the two module distributions result-
ing from optimization based on distinct fitness functions. Table columns represent, 
from left to right, the number of packages on each version, EVM value, MQ value, 
average class elegance (NAC), and average values for variations of LCOM [6] and 
CBO [7]. 

Table 1. – Metrics for the original and optimized versions of Apache Ant 

Version Packages EVM MQ NAC LCOM CBO 

Original v1.8.2 59 -51,615 21.37 39.2 0.79 55.6 
EVM-optimized 363 -8,170 51.71 7.2 0.46 10.6 
MQ-optimized 103 -12,336 43.09 14.2 0.71 32.1 

 

Class elegance (NAC) was proposed by Simons and Parmee [5] as a way to eva-
luate the concentration of classes in a few packages in a software design. It is calcu-
lated as the standard deviation of the number of classes on each package and is  
expected to be a small number, denoting that all packages have roughly the same 
number of classes. Both optimized versions improve class elegance, which is quite 
high in the original version. Special attention must be given to the EVM-optimized 
version, which presents an expressive reduction for this measurement.    

LCOM was proposed by Henderson-Sellers [6] and calculates the lack of cohesion 
in a class according to common usage of attributes by its methods – the more methods 
sharing attributes, the smaller (more desirable) the value for this metric. Being de-
fined in the [0, 1] interval, LCOM values close to zero denote greater cohesion. Here, 
we have borrowed and adapted the concept for package cohesion: instead of methods 
referencing attributes, we consider the number of classes from a given package which 
depend on other classes residing on the same package. Lack of cohesion is observed 
when most classes in a package do not depend on other classes from the same pack-
age, leading to a large LCOM value. As can be observed in Table 1, both optimized 
versions improve LCOM, specially the EVM-optimized version. 

CBO was introduced by Chidamber and Kemerer [7] and calculates the coupling of 
a class A by counting the number of classes upon which A depends to implement its 
features. Again, we have adapted the concept to packages: the coupling of a package 
A is calculated as the number of packages on which it depends to perform its duties, 
that is, the number of packages conveying classes upon which classes residing on 
package A depend to implement their features. Again, both optimized versions im-
prove this measure when compared to the original version. And again, the EVM-
optimized version outperforms the MQ-optimized one in improving this metric. 

Finally, both optimized versions improve their related fitness functions. The EVM-
optimized version even provides a module distribution with better MQ than the  
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MQ-optimized version. They also improve cohesion (both decrease the original LCOM) 
and coupling (both decrease the original CBO). Finally, they also increase class elegance 
when compared to the original version. Thus, from a metrics perspective, both optimized 
versions seem superior to the original version. But why is their design so complex? Do 
they really take the software to a state in which maintenance, reusability, and testability 
are easier than in version 1.8.2? The visual impression given by the meshes of dependen-
cies in Figure 3 do not contribute much to such a perception. 

One major problem with the optimized versions is that they excessively increase 
the number of packages in the design. As a result of this increase, the average package 
has fewer classes – those few classes which are strongly interrelated (decreasing aver-
age LCOM). The increased number of packages also decreases average CBO – there 
are so many packages and so few classes on each package that the average number of 
dependencies between packages is relatively small. Finally, the reduced number of 
classes on each package also contributes to reducing the standard deviation used to 
calculate NAC, thus yielding a sense of better elegance.  

Overall, the optimized versions seem to be “cheating” the software engineer: they 
are “improving the design” from a metrics point-of-view by spreading the classes 
along a large number of packages, which might not be a real improvement in the eyes 
of the development team. To serve as a reference, Lanza and Marinescu [8] suggest 
that the average number of classes per package in Java programs is 17 (with 6 consi-
dered as a lower-bound and 26 as an upper-bound). 

3 Then, Can We Conclude that SBSE Is Not Helpful? 

That can hardly be true! First and foremost, without performing the optimization we 
would never be able to observe the behavior of even simple metrics in a large system, 
such as Apache Ant. Even using simple techniques, it took four days to optimize the 
program. Finding (close to) optimal solutions would probably be an unfeasible task in 
any other way except using algorithmic optimization. 

Moreover, we have to acknowledge that optimization worked as commanded, 
though not as expected. EVM and MQ values increased significantly, but as one 
might pick the shortest path to a given destination, the optimization process opted to 
increase the number of packages in order to improve metrics. Although a large num-
ber of packages with few classes might not be considered a good design [8], the 
search leveraged on an aspect which was not covered by the selected metrics.  

Thus, in the least SBSE helps determining to which extent metrics might be useful 
in searching for solutions for a given problem. As seen in the former section, it seems 
that using the simple metrics we teach our students to pursue while designing soft-
ware may not help in the large. We may need more complex metrics. We may need 
more than metrics. In this sense, SBSE-style optimization helps to improve our body 
of knowledge on software architecture and software design. 

4 So, Given These Perceptions, What Can We Do? 

We have not further investigated the field (though we intend to), but since current 
metrics seem unable to produce credible optimization results starting from scratch, 
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one possible alternative is to leverage knowledge possessed by developers [12]. May-
be the package organization conceived for the reference architecture of a given pro-
gram or its present architecture can be used as starting point for module distribution. 

One direction we intend to investigate is using Dependency Structure Matrices 
(DSM), as proposed by Sangal and Waldman [10]. The authors, who have also ana-
lyzed Apache Ant, suggest that dependencies between packages might be depicted in 
the lower triangular part of a square dependency lattice and that dependencies appear-
ing out of this region might be signaled to and corrected (refactored) by developers. 

A problem arising from this suggestion is determining which refactoring transfor-
mations should be applied to get rid of these undesired dependencies and in which 
order might they be employed. Considering that we might be able to handle large 
programs with severely mismatched architectures, the number of possible transforma-
tions (along with their permutations) may be huge. Supported by a history of success-
ful attempts to use SBSE approaches to select refactoring strategies [11], search-based 
techniques may be useful to produce permutations of refactoring transformations 
sought to recover a project towards its reference architecture. 
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Abstract. The eCrash tool employs Strongly-Typed Genetic Program-
ming to automate the generation of test data for the structural unit
testing of Object-Oriented Java programs. This paper depicts the re-
sults attained by utilising eCrash to generate test data for the classes of
the Apache Ant project.
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1 Introduction

The application of Evolutionary Algorithms (EAs) to test data generation is of-
ten referred to as Evolutionary Testing [8] or Search-Based Test Data Generation
[4]. Significant success has been achieved by applying EAs and other metaheuris-
tics to automate the generation of test data for Object-Oriented (OO) software
testing. eCrash is a Java-based test data generation tool for OO software, which
was developed in order to support the research steps which led to the presenta-
tion of Ribeiro’s PhD thesis [7]; it embodied the Evolutionary Testing approach
proposed and allowed experimenting with novel techniques.

The empirical studies which supported previous research were conducted util-
ising container classes as Test Objects; these were considered suitable subjects
for experimentation in the absence of a set of adequate benchmark programs.
This paper depicts the results attained by applying the eCrash tool to generate
test data for the (much more complex) Apache Ant1 project. These results were
analysed and compared to those yielded by the Randoop [6] and EvoSuite [1]
test data generation tools.

1 https://ant.apache.org/
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2 The eCrash Tool

The eCrash tool employs EAs to automate the generation of test data for the
structural unit testing of OO Java programs. For evolving test data, the Strongly-
Typed Genetic Programming (STGP) paradigm [5] is utilized. STGP is espe-
cially suited for this purpose: it allows the definition of constraints that eliminate
invalid combinations of operations, thus restraining the search space to the set
of compilable Test Programs; and has already been extended to support more
complex type systems, including generics, inheritance, and polymorphism. The
Test Data evaluation process involves instrumenting the Test Object, and ex-
ecuting it using the generated Test Programs as inputs; the trace information
collected during execution allows deriving coverage metrics. The aim is that of
efficiently guiding the search process towards achieving full structural coverage
of the Test Object.

Test Object analysis is performed offline, before Test Data generation takes
place. The main tasks involved in this process are those of: defining the Test Clus-
ter, i.e. the transitive set of classes which are relevant for testing the class under
test; building the Control Flow Graphs required for assessing the structural cov-
erage attained and the quality of the generated Test Programs; generating the
Function Set defining the STGP constraints (automatically and solely with basis
on Test Cluster information); and parametrizing the Test Program generation
process, namely the ECJ framework [3] which is utilized for evolving individuals.

Test Data generation involves the iterative evolution of potential solutions to
the problem with basis on the STGP technique. Test Programs are synthesised
with basis on the generated STGP individuals, and then executed and evaluated
dynamically. Those Test Programs that exercise previously untraversed struc-
tures of the Test Object (i.e., the method under test) are selected for inclusion
on the Test Set, which may then be provided to an external unit testing frame-
work (e.g., JUnit). Additional outputs include statistics about the Test Data
generation process, such as the level of coverage attained, the number of Test
Programs generated, and the time spent performing these tasks.

3 Experimental Study

The experiments detailed in this Section involved the generation of structural
test data for the public members of the Apache Ant project, Release 1.8.4 for
posterior execution and analysis. The results obtained by eCrash were measured
up against those obtained by applying Randoop, a widely-used random testing
framework, and EvoSuite, a state of the art search-based test data generation
tool, to the same Test Object and in similar conditions. Cobertura2 was utilised
for gathering structural coverage (line and branch) information; even though
eCrash and Evosuite provide this data, the usage of Cobertura ensured that the
results yielded by the different test data generation tools were analysed in the
same manner.

2 http://cobertura.sourceforge.org

http://cobertura.sourceforge.org
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3.1 Setup

The Apache Ant project encompasses a total of 1188 classes. However, given that
at its current stage of development the eCrash tool is limited (as is Randoop) to
generation of test data for the public members (i.e., methods and constructors)
of public, concrete and outer classes, the set of classes under test was restricted
to the subset of 684 classes which fit these restrictions. The 684 classes tested
encompassed a total of 5342 public methods and 861 public constructors. Three
runs were executed for each tool, in which each class was tested individually
using the set of configurations described in the remaining of this Section.

The stopping criteria considered were: eCrash – achieving full structural cov-
erage of the method under test, or a maximum of 50 generations (each with a
population of 30 individuals/test programs); Evosuite – achieving full structural
coverage of the class under test (non-public members included), or a maximum of
13605 test programs; and Randoop – reaching a maximum of 13605 test programs
per class. The reason for defining an upper limit to the number of test programs
per class for the EvoSuite and Randoop tools has to do with the fact that their
generation approach is class-oriented, whereas eCrash’s is method-oriented; given
that the classes under test include an average of 9.07 public members, and that
eCrash generated a maximum of 1500 test programs per method, EvoSuite and
Randoop where allowed a maximum of 13605 (9.07 * 1500) test programs per
class. The other parameters for eCrash remained with their default values, in-
cluding the probabilities for the GP operators (mutation=0.34, crossover=0.33,
reproduction=0.33) and the size for the GP trees (min-size=4, max-size=18).

3.2 Results

This Section summarizes and discusses the results attained in this experimental
study. The full data set is available online at:

– http://eden.dei.uc.pt/~afnog/ssbsechallenge2013.html

Table 1 presents an overview of the results obtained for each tool. The coverage
values achieved by the test set provided in the Apache Ant’s distribution are
also presented for comparison purposes. In this test set, 261 files contain valid
JUnit tests: 218 files correspond to a specific class under test; 41 files seem to
test simultaneously features from several classes; and a total of 1828 test cases
(methods starting with “test”) were identified. The number of members to be
tested is difficult to infer due to the structural characteristics of the test code.

The analysis of this data allows concluding that Evosuite’s runs achieved the
best values for coverage (51% LC and 41% BC by Evosuite, 44% LC and 28%
BC by eCrash, and 34% LC and 22% BC), which is, in a way, consistent with our
expectations, mostly due to the fact that: (i) Randoop is not oriented towards
achieving coverage; and (2) eCrash is still in a prototype stage of development,
while Evosuite has evolved greatly in recent years. Even though we may consider
it natural for Evosuite to have achieved better results, we must highlight that
the results achieved by eCrash are quite remarkable if we take into account its

http://eden.dei.uc.pt/~afnog/ssbsechallenge2013.html
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Table 1. Number of classes and members successfully tested; global percentage of line
and branch coverage attained by each tool

Property Crash Evosuite Randoop Manual

Number of tested classes 652 646 614 >= 218
Number of tested members 5868 7830 3735 N/A
Percentage of global Line Coverage 44% 51% 34% 45%
Percentage of global Branch Coverage 28% 41% 22% 40%

current approach – testing only public members – and some of the eCrash’s
identified limitations. It is also interesting to note that the test set included in
the Apache Ant release achieved a total of 45% BC and 40% LC. No details
were provided about the methodology utilised to generate these tests or their
purpose, which makes it difficult to make comparisons and draw conclusions;
nevertheless, the test set appears to have been defined manually by a software
tester, which may explain the higher percentage of BC achieved.

It should be pointed out that all tools faced issues that impeded some classes
and members from being tested. eCrash was unable to generate tests for some
instance methods which blocked the process (either by stopping it, which was
the case with the class Launcher, or by entering an infinite loop), and some
static methods in situations in which there were no public constructors providing
instances of necessary data types. The former issue is due to a problem with the
Test Object, whereas the latter is related with a limitation of the eCrash tool
which should be addressed in future releases; nevertheless, they prevented a total
of 32 classes from being tested. Likewise, Randoop failed to generate tests for
a total of 70 classes for reasons unknown to the authors. Evosuite managed to
generate test suites for 646 classes; 24 were qualified as classes with untestable
methods; and for 24 classes, the test data generation failed due to classpath
related issues which we were unable to solve in a timely manner. In summary,
eCrash generated tests for 95.32% of the classes and 94.60% of their public
members; Randoop generated tests for 89.77% of the classes and 60.21% of their
public members; and Evosuite created test suites for 94.44% of the classes, and
tested 88.45% of the methods identified as testable (8852 methods in 646 classes).

Figures 1a and 1b report the box-plots of the coverage values achieved by each
tool (eC - eCrash, R - Randoop and Ev - Evosuite) for the set of classes analysed.
It is possible to observe that the worst results were obtained by Randoop, and
that Evosuite attained the best values. In turn, eCrash has encouraging values:
almost 75% of the classes with LC over 40 %; and 50 % of the classes with BC
over 40 %. Also, there are no substantial differences in the amount of collateral
coverage generated by the tests in the project. Collateral coverage is the coverage
obtained for class A during the process of testing class B.

By analysing the classes in which eCrash was unable to achieve BC it is pos-
sible to pinpoint some problematic methods, which: use reflection and try to
access a particular method or class that is not specified (e.g., TaskAdapter);
try to access/load a set of jars or classes (e.g., Launcher, SplitClassLoader);
perform logging tasks (e.g., ProfileLogger); deal with input requests and gen-
erate tasks and threads (e.g., DemuxInputStream); wait for valid inputs (e.g.,
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(a) Line Coverage (b) Line Coverage

Fig. 1. Coverage values for eCrash, Randoop and Evosuite; blue boxes: coverage with-
out collateral coverage; green boxes: coverage values with collateral coverage

DefaultInputHandler); manage files/folders that do not exist, send e-mails or
download files (e.g., MimeMailer); implement compilers (e.g., JavacExternal) or
extensions for compilers (e.g., ForkingSunRmic); perform operations on com-
pressed files (e.g., Untar); manage, import or execute a set of sequential Apache
Ant’s tasks (e.g., Sequential); encapsulate Unix commands (e.g., Chown); and
deal with audio and image (e.g., Draw). Some of these issues were pointed out
in [2] as problems that should be addressed by testing tools.

Randoop and Evosuite also encountered problems to successfully address the
hindrances posed by those methods. Randoop was only able to achieve some
level of BC in 1/79 classes in which eCrash failed to do so (TaskAdapter: 25%),
whereas Evosuite had a higher success rate achieving values for BC in 26/79
classes, e.g.: TaskAdapter (62.50%), Untar (40%) and Sequential (100%).

4 Conclusions

This paper presents an experimental study in which the eCrash Evolutionary
Testing tool was utilised to generate structural Test Data for the Apache Ant
project. Positive results were achieved, providing strong indicators of the effec-
tiveness and efficiency of the approach, the quality and robustness of the tool,
and its applicability to large and complex software products. The results were
measured up against those obtained by applying Randoop and EvoSuite. eCrash
yielded better coverage results than Randoop; the fact that eCrash utilizes a
search-based technique to actively seek the goal of attaining structural coverage
makes it more adequate to automate the generation of Test Data that is able to
exercise a higher percentage of the Test Object’s instructions. When compared
to the results yielded by EvoSuite, however, eCrash’s performance fell short; it
was, nevertheless, promising, and the discussion of the results obtained leads to
the conclusion that there is clear potential for improvement.

This was, in fact, the first time that eCrash was applied to a Test Object of this
complexity. In future releases, we expect to be able to address several problems,
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most notably that of including private members and inner classes as search
goals. Additional tasks include defining strategies for refining the Test Cluster
so as to sample the search space as adequately as possible, e.g. by performing
a preliminary static analysis of the Test Object; improving the techniques for
dealing with static methods and inner classes; and supporting the testing of
classes that handle files and folders, class loaders, and threads. In the past, we
have also proposed several techniques for enhancing the automated test data
generation process which we did not utilise in this study (e.g., input domain
reduction, adaptive constraint selection, object reuse [7]) and that may have a
significant impact on the eCrash’s performance in future studies.

Future work also includes utilising eCrash in a different scope, namely that of
generating Test Data with the intention of gathering information about software
properties which are only observable during runtime, for the purpose of obtaining
insight about certain software properties (e.g., maintainability).
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Abstract. We propose a test suite generation technique from extended finite 
state machines based on a genetic algorithm that fulfills multiple (conflicting) 
objectives. We aim at maximizing coverage and feasibility of a set of test cases 
while minimizing similarity between these cases and minimizing overall cost. 

1 Introduction 

Extended Finite State Machines (EFSMs) are widely used in system modeling and a 
great volume of research exists in the area of state-based testing. Due to the presence 
of guard conditions and action in the EFSM, not all the paths in an EFSM are feasible 
[1]. Another challenge is decreasing cost and increasing effectiveness of generated 
test suites to make them scalable to large industrial applications. This can be achieved 
for instance through increasing test case diversity [2].  

Search-Based Software Engineering (SBSE) has emerged in the field of software 
engineering since the nature of software engineering problems makes them perfect for 
the application of meta-heuristic search techniques. Search-based methods can be 
very helpful in solving problems in which there are tradeoffs between different con-
straints. They can provide solutions when optima are either theoretically impossible 
or practically infeasible [3]. SBSE has proved to be very successful and there has 
been a significant increase in the interest and research contributions in this field in the 
past five years [5]. One of the first applications of SSBSE has been in software testing 
and dates back to 1976 [6]. In search-based software testing (SBST) a meta-heuristic 
search method is used to automate or partially automate a testing task [4]. 

In this paper, we propose an SBST technique for test suite generation from EFSMs. 
We use a multi-objective genetic algorithm to search for an adequate test suite that is 
most likely feasible, has minimum cost, and has low similarity between its test paths. 

2 Related Work 

Others before us have investigated the application of SBST to state-based testing. 
Hemmati et al. proposed a similarity based test case selection technique that uses 
search based techniques to maximize test case diversity [2]. In a series of case studies 
they used different similarity measures as fitness function and considered different 
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search based algorithms: greedy, clustering-based, hill climbing and GA. Kalaji et al. 
[8] use a GA to generate (likely) feasible test paths from EFSMs and then generate 
input sequences that trigger those test paths. The GA is used to find a (likely) feasible 
(their fitness function) test path that executes each transition.  

Fraser and Arcuri [12] proposed to generate a complete test suite at once (instead 
of one test case at a time) from Java program code. To the best of our knowledge, 
generating a complete test suite from software development artifacts other than code, 
as we do, has not been addressed before. 

Our approach differs from previous contributions in the following aspects. (1) We 
create an adequate test suite at once rather than one test case at a time. We believe the 
latter is a sub-optimal strategy/optimization, and that our solution is a more global 
optimization. This is one among other benefits of generating a complete test suite 
[12]. (2) We use a multi-objective GA to simultaneously account for test case diversi-
ty within the test suite, feasibility of individual test cases, cost and coverage. We note 
that addressing multiple test objectives is one of the open problems in SBT [4]. 

3 Proposed Approach 

This section presents our solution to the problem of generating a test suite for an 
EFSM using a multi-objective GA. We first describe what a chromosome and its 
genes represent (section 3.1) and then discuss the other components of the GA: muta-
tion and crossover operators (sections  3.2 and  3.3), fitness functions (section  3.4). We 
finish this section by discussing some GA parameters (section  3.5). 

3.1 Chromosomes and Genes 

A chromosome is a solution to the optimization problem, that is, in our context an 
entire test suite. The genes are the elements that compose a chromosome (test suite). 
A gene is therefore a test case, that is, a sequence of transitions of the state model 
(a.k.a. test path). One of the objectives of test suite construction is to achieve a certain 
level of coverage according to a selection criterion. Since different adequate (i.e., 
satisfying a criterion) test suites usually exist and have varying number of test cases, 
our GA has chromosomes of variable length (i.e., variable number of test cases). The 
test paths (genes) have variable length too. We generate the initial population random-
ly. To make every randomly generated traversal of the graph representing an EFSM 
valid, we use an encoding similar to the one in [8]. 

3.2 Mutation Operator 

Since a chromosome contains many different pieces of information, a chromosome 
can be mutated in many different ways. We have defined seven different mutation 
operators. During each mutation one of the following operators is selected randomly 
with equal probability: (1) Adding a gene to a chromosome, i.e., a randomly generat-
ed gene (i.e., test path) is added to the chromosome (test suite); (2) Removing a gene 



290 N. Asoudeh and Y. L

 

from a chromosome, i.e., a 
(3) Replacing a gene, i.e., 
generated gene; (4) Remov
selected gene (i.e., test pat
from the path; (5) Adding 
gene is mutated by random
test path (gene), i.e., a rand
of its transitions with a ne
tween randomly selected t
mechanism we borrow from
ly to the random generation
of the graph representing th

3.3 Crossover Operato

Crossover creates two new 
exchanging some genetic i
again, we shall ask ourselv
ent) chromosomes. Simila
exchange two genes (test p
can also exchange genetic 
can select two parent chrom
ents, and exchange transitio

3.4 Fitness Functions 

As previously mentioned, w
needs to be maximized, Si
needs to be maximized and 

To determine the feasibi
analysis of data flow depen
types of data flow dependen
are assigned penalty values 
defined in one transition o
subsequent transitions in th
signed a penalty. This info
gene (test path) in a chrom
for the chromosome as the s
a chromosome ci, made of 
where feasibility(gj) is comp

Our intuition, as well as
possible to increase fault de
larities between pairs of te
(chromosome). Different si
the measures [2], which is n
length chromosomes), is 

Labiche 

randomly selected gene is removed from the chromosom
a randomly selected gene is replaced by a new random

ving a transition from a test path (gene), i.e., a random
th) is mutated by removing a randomly selected transit
a transition to a test path (gene), i.e., a randomly selec

mly adding a transition to it; (6) Changing a transition o
domly selected gene is mutated by randomly replacing 
ew one; (7) Exchanging randomly selected transitions 
est paths (genes) of the same test suite (chromosome

m [8]. Each time a test path is modified, we ensure, simi
n of a entire path, that the resulting path is a valid trave
he EFSM. 

or 

chromosomes from two existing (parent) chromosomes
nformation, i.e., genes, from/between those parents. O

ves what information can be exchanged between two (p
arly to traditionally defined crossover operators, we 
paths) between two parent chromosomes (test suites). 
information at the transition level between test paths. 

mosomes, select one gene (test path) in each of those p
on sequence information between those two genes. 

we are considering four fitness functions: Feasibility, wh
imilarity, which needs to be minimized, coverage, wh
cost, which needs to be minimized. 

ility of a test path, we reuse previous work that relies on
ndencies between the transitions of a test path [8]. Differ
ncies that might exist between two transitions of a test p
based on their possible effect on feasibility. If a variabl
f a path and it is used in a guard condition of one of 

his path the path can become unfeasible and should be 
ormation is used to obtain a feasibility measure for e

mosome (test suite) and then to obtain a feasibility meas
sum of the feasibility values of its genes. This feasibility
n genes is then: 
puted as explained by Kalaji and colleagues [8].  
s others’ [2], is that test paths should be as dissimilar
etection. We are therefore interested in computing the si
est paths (genes) to obtain a similarity value for a test su
imilarity measures can be used as fitness function. One
not limited to identical length sequences (we have varia
the Levenshtein distance [9]. To change the dista

me; 
mly 
mly 
tion 
cted 
of a 
one 
be-

e), a 
ilar-
ersal 

s by 
Once 

par-
can 
We 
We 
par-

hich 
hich 

n an 
rent 
path 
le is 
the 
as-

each 
sure 
y of 

 

r as 
mi-
uite 
e of 
able 
ance  



 A Multi-

 

measure into a similarity me
point and penalize mismatc
point). More sophisticated 
matches and gaps can be us
some) is the sum of the simi
in that chromosome. The o
follows: 

Different coverage crite
age criterion to compute b
will be the number of dist
The fitness function is to m

The last objective is red
fine cost of test path as its l
test suite is the sum of its te

3.5 Genetic Algorithm 

There are a number of fac
population size of 200, wh
[7]: i.e., a value in range 
objective functions. Based
crossover rate of 0.7 and a 
trols elitism in a multi-obje
Pareto set (elite members).
maximum size of the Pare
population is between ¼ an

4 Initial Results 

We performed a case study
We selected a Cruise Cont
not have guards or actions (
quence we have really thre
of our approach and focus
customized the MATLAB G

Fig. 2 shows a sample P
case study. It plots coverag
ing to the Pareto front. Nu
corresponding test suite (th
corresponds to a test suite w

• Test path 1: < T1, T6, T4

T2, T3, T5, T9, T14, T16, T
• Test path 2: < T5, T14, T1

• Test path 3: < T5, T9, T11

-objective Genetic Algorithm for Generating Test Suites 

easure we reward each match between two sequences by 
ches and gaps by simply ignoring them (i.e., assigning
measures (e.g. Needleman-Wunsch) which penalize m

sed as well. The similarity measure for a test suite (chrom
ilarity measures computed for each pair of test paths (gen
bjective function needs to be minimized, and is defined

. 
eria can be used as objective function. One possible cov
based on the current encoding is transition coverage. T
tinct transitions covered by each test suite (chromosom

minimize the number of uncovered transitions. 
ducing the cost of a test suite as much as possible. We 
length (i.e., number of transitions it exercises). The cos
est paths’ cost. This fitness functions is to be minimized

Parameters 

ctors that highly affect success of a GA. We selecte
hich conforms to what has been suggested in the literat

[30, 80] (we selected 50) multiplied by the number
d on results from previous studies [11] we selected
mutation rate of 0.01. The Pareto Fraction parameter c

ective GA since it limits the number of individuals on 
 Based on a previous study [7], which suggests to set 
to set such that the ratio of the Pareto set over the en

nd 4, we set the maximum size of the Pareto set to 0.35. 

y to have an initial evaluation of our proposed approa
trol system as a first case study because, although it d
(Fig. 1) and therefore all test paths are feasible (as a con

ee fitness functions), it allowed us to check the correctn
s on the three other fitness functions. To run our GA 
Global Optimization Toolbox [10] multi-objective GA. 
Pareto front after running our multi-objective GA for 

ge level versus similarity measure in each test suite belo
umerical values above each point represent the cost of 
he third fitness function). The point marked with an arr
which consists of the following three test paths: 

4, T5, T13, T12, T8, T6, T7, T4, T1, T2, T4, T2, T5, T8, T6, 
T18, T21, T24 ,T28 , T17, T20 > 

16, T15, T3  > 
1, T10, T14, T16, T19, T23, T25, T26, T23, T22, T6 > 

291 

one 
g no 
mis-
mo-
nes) 
d as 

ver-
This 
me). 

de-
st of 
. 

ed a 
ture 
r of 
d a 

con-
the 
the 

ntire 
 

ach. 
does 
nse-
ness 

we 
 
this 

ong-
the 

row 

T2, 



292 N. Asoudeh and Y. Labiche 

 

 

Fig. 1. Cruise Control State Machine 

The total number of transitions (cost) in this test suite is 48. Both test paths 2 and 3 
start with T5, so similarity measure is one and because T27 is not covered coverage 
penalty is one as well. 

5 Plan and Future Work 

As previously mentioned, although we have implemented all four fitness functions, 
we only used three of them in the case study. We are currently working on another 
case study where paths are not necessarily feasible, thus requiring all four fitness 
functions. Also we aim at investigating different ways of improving the GA itself 
(e.g., using test paths that improve one or more fitness measure, instead of randomly 
generated ones, in the mutation operator, using different mutation operators with dif-
ferent probabilities and observing the effects). We also plan to study other possible 
 

 

Fig. 2. Pareto front corresponding to cruise control case study 
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measures to compute coverage (e.g., transition pairs) and similarity (see [2]) of a test 
suite. Another interesting variation of our GA is one in which fitness functions have 
different weights. Also we plan to examine different strategies for creating the initial 
population. Last, we plan on studying the effectiveness at finding faults of the differ-
ent test suites we generate and compare our test suites with others (e.g., [8]). 
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Abstract. Instead of performing exhaustive testing that tests all possible com-
binations of input parameter values of a system, it is better to switch to a more 
efficient and effective testing technique i.e., pair wise testing. In pair wise test-
ing, test cases are designed to cover all possible combinations of each pair of 
input parameter values. It has been shown that the problem of finding the min-
imum set of test cases for pair-wise testing is an NP complete problem. In this 
paper we apply genetic algorithm, a meta heuristic search algorithm, to find an 
optimal solution to the pair-wise test set generation problem. We present a me-
thod to generate initial population using hamming distance and an algorithm to 
find crossover points for combining individuals selected for reproduction. We 
describe the implementation of the proposed approach by extending an open 
source tool PWiseGen and evaluate the effectiveness of the proposed approach. 
Empirical results indicate that our approach can generate test sets with higher 
fitness level by covering more pairs of input parameter values. 

Keywords: pair-wise testing, genetic algorithms, hamming distance, crossover 
points. 

1 Introduction 

For exhaustive testing of a system having n input parameters where, each parameter 
can take k1, k2,…kn discrete values respectively, a total of k1 * k2 *…kn number of test 
cases will be required to test all possible combinations of input parameter values. 
Exhaustive testing is either not feasible or very expensive and time consuming. In-
stead of performing exhaustive testing, it is better to switch to a more efficient and 
effective testing technique i.e., combinatorial testing. Combinatorial testing is a tech-
nique that is based on the principle that most of the faults in a system are triggered 
due to the interaction of two or more parameters. Extensive research has been done in 
the area of applying combinatorial testing techniques for testing traditional applica-
tions [1-4] as well as GUI [5] and web applications [6-7]. In combinatorial testing, 
test sets are generated to cover all possible t-way (2-way, 3-way etc.) combination of 
input parameters. However, empirical studies show that test set covering all possible 
2-way combination of input parameter values is effective for many software systems 
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[1-3]. Pair-wise testing is a combinatorial testing technique that can reduce cost and 
increase effectiveness of testing by generating test sets to cover every possible pair of 
input parameter values for a system, without losing much of the fault detection capa-
bility [4]. However, the problem of finding minimum number of test cases for pair-
wise testing is an NP-complete problem [4]. In this paper, we explore how genetic 
algorithms (GAs) can be effectively applied to find a solution to pair-wise test set 
generation problem.  

The remainder of this paper is organized as follows. Section 2 briefly presents the 
related work. Section 3 describes the proposed approach. Section 4 reports some ex-
perimental results. Section 5 concludes the paper and future plans are discussed. 

2 Related Work 

Existing methods to generate optimal test set for pair-wise testing are broadly classi-
fied into algebraic methods [8], recursive methods [9], greedy methods [1-4] and meta 
heuristic methods [10-17]. Since finding an optimal test set is an NP complete prob-
lem, hence most of the existing solutions are approximate in a sense that although a 
solution has been found in reasonable time but it is not necessarily an optimal solu-
tion. Algebraic methods mostly used by mathematicians, use an orthogonal array 
approach to construct covering arrays. In recursive methods, large covering arrays are 
constructed from smaller ones. Greedy methods generate a test set by creating one test 
at a time until all the combinations are covered. Meta heuristic methods use stochastic 
algorithms like simulated annealing [10], tabu search [11], ant colony optimization 
[12], swarm optimization [13] and GAs [14-17]. Ghazi and Ahmed [14] applied GA 
to find pair-wise test set. They presented the results of experimental studies; however 
their input set was small and the generated test set was not optimal. McCraffey [15] 
proposed a technique, Genetic Algorithm for Pairwise Test Sets (GAPTS) to generate 
an optimal pair-wise test set. Empirical studies performed by the author in [16] 
showed that the size of test sets generated by GAPTS were comparable to or better 
than other algorithms proposed in past. Flores and Cheon [17] applied GA to find an 
optimal solution to pair-wise test set generation problem. They proposed many va-
riants of crossover and mutation to prevent stagnation and to generate good solution. 
They developed an open source tool PWiseGen to implement their approach. 

3 Pair-Wise Test Set Generation 

This paper aims at developing a powerful GA for finding an optimal pair-wise test set 
to achieve 100% pair-wise combination of input parameter values. As compared to 
existing GA based approaches, our approach enhances the performance by a) using 
maximum hamming distance to create an initial population and b) proposing an algo-
rithm to determine crossover points during reproduction. Below we explain these 
features in detail. 
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3.1 Initial Population 

In GAs, an initial population is created randomly that represents possible solutions to 
the given problem. In our case, an individual (chromosome) represents a test set, 
which is a set of test cases wherein the size of a test case is equal to the number of 
input parameters. A test case contains one value corresponding to each input parame-
ter and we use integer encoding to encode test cases, as suggested in [15]. This paper 
presents a hamming distance based approach to create an initial population of test 
sets. Hamming distance between two test cases in a test set is the number of elements 
in which they differ. Let M be the population size and N be the test set (TS) size. For 
each test set in M, 50% (first N/2) of the test cases in TS are created randomly. Let 
tc1, tc2 … tci represents the test cases in TS generated till now. To create the next test 
case tcj where j=i+1, a candidate test case cj is generated randomly and the hamming 
distance of cj from tci, for all i: 1 ≤ i≤ j-1, denoted by distance (cj), is calculated as: 

൫݁ܿ݊ܽݐݏ݅݀  ௝ܿ൯ ൌ  ∑ HDሺtc୧ ୧ୀ୨ିଵ୧ୀଵ , c୨ሻ (1) 

Where, HD (tci, cj) is the hamming distance between tci and cj. An average distance 
denoted by avg_distance (cj) is calculated as follows.                                            ܽ݁ܿ݊ܽݐݏ݅݀_݃ݒሺ ௝ܿሻ ൌ ሺ݁ܿ݊ܽݐݏ݅݀ ௝ܿሻ/ሺ݆ െ 1ሻ (2) 

Candidate test case cj is included in the test set TS only if 

൫݁ܿ݊ܽݐݏ݅݀_݃ݒܽ                                                   ௝ܿ ൯ ൒ α ൈ ூܰ௉                      (3) 

Where, α is a diversity factor whose value ranges from 0.3 to 0.4 and NIP is the num-
ber of input parameters. Equation 3 implies that a candidate test case cj is included 
only if it covers at least 30%-40% distinct input parameter values as compared to 
those covered by (j-1) test cases. We performed extensive study with varying diversi-
ty factor and reached to a conclusion that a value lower than 0.3 will allow almost 
identical test cases in the test set which may lead to premature convergence to a non 
optimal solution while a value higher than 0.4 increases the population diversity 
which leads to slow convergence. The process is repeated until remaining N/2 test 
cases are generated for the test set TS. Each test set in the population is associated 
with a fitness value. The fitness function is defined as the number of distinct pairs of 
input parameter values covered by the test set. The use of hamming distance to create 
N/2 test cases in each test set enhances the quality of initial population. Although this 
approach slightly increases the time to generate initial population, but it results in the 
generation of better quality test set in less number of iterations as compared to ran-
dom technique used to generate initial population. Hence, there is a trade-off between 
fitness and time. 

3.2 Single or Multipoint Crossover 

During crossover, individuals are selected from the population with the intention of 
producing better individuals by combining features of selected parents. Crossover can 



 An Approach to Test Set Generation for Pair-Wise Testing Using Genetic Algorithms 297 

 

be performed either at a single point or at multiple points. A number of variants of 
single crossover point and multiple crossover points are presented in [17], where the 
crossover points are either fixed or are determined randomly. An algorithm to deter-
mine crossover points is presented in Figure 1. The algorithm takes as input a test set 
TS and the desired number of crossover points, k. It returns crossover points by se-
lecting test cases in the test set TS that covers least number of distinct pairs. If there is 
more than one test case that covers least number of distinct pairs, each test case will 
have equal probability of getting selected for crossover. Application of this algorithm 
to determine crossover points, either single or multiple, produces offspring with high-
er fitness values as compared to those produced when random crossover points are 
used. 

begin 
   count the number of times each pair is covered by the test set TS  

for each test case tci ϵ TS 
  Count the number of unique pairs covered by tci and store it in list L 
 endfor  
 initialize counter i=0 
 while (i < k) 
  find the test case tcj that covers least number of unique pairs  
  set boundaries of tcj as crossover point 
  mark entry corresponding to tcj in L as integer.max 
 endwhile 
end 

Fig. 1. Algorithm to find crossover points 

4 Experimental Setup and Empirical Evaluation 

The key features discussed in previous section are implemented using an open source 
tool: PWiseGen available at [18]. PWiseGen is an extensible, reusable and configura-
ble tool written in java to generate pair-wise test set using GAs [17]. We extended 
PWiseGen by adding to it the capability to generate initial population using hamming 
distance. We created a concrete class HammingPopulationInitializer () which imple-
ments the interface PopulationInitializer() to create initial population using hamming 
distance. Next we created a concrete class crossoverpoint () that extends the abstract 
class CrossoverStrategy(), to find crossover points using the algorithm shown in Fig-
ure 1. These two features are incorporated in PWiseGen by adding information about 
the new components in the XML based configuration file.  

We studied empirically the effectiveness of the proposed approach by conducting a 
series of experiments. The experiments were conducted on the existing tool: PWiseGen 
and its three variants namely a) PWiseGen-I - uses hamming distance to create initial 
population and crossover points are generated randomly b) PWiseGen-II - initial popu-
lation is generated randomly and uses algorithm in Figure 1 to find crossover points and 
c) PWiseGen-III - uses hamming distance to create initial population and algorithm in 
Figure 1 to find crossover points. The efficiency of proposed approach was evaluated 
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using six benchmark problems of different sizes: 34, 313, 415317229, 41339235, 2100 and 1020 
where xy means a problem with y input parameters, each with x distinct values. These 
six benchmark input sets were supplied to PWiseGen and its three variants. Single point 
crossover is used during experimentation. The effectiveness of the proposed approach 
was evaluated in terms of the fitness level of the generated test set for all the six bench-
mark problems. The fitness level for each problem is calculated after multiple runs of 
GA. In all the three variants of PWiseGen, values of other GA parameters (mutation 
rate, population size etc.) are kept same as in PWiseGen. The results of conducted expe-
riments are shown in Figure 2. As can be seen from Figure 2, PWiseGen-III yields supe-
rior or equal results as compared to other variants except in the last case. PWiseGen-I 
and PWiseGen-II also generates higher fitness test set as compared to PWiseGen.  

   

Fig. 2. Comparison of fitness level of test set generated by PWiseGen and its three variants for 
the six benchmark problems 

5 Conclusion and Future Work 

In this paper, we have presented an approach to generate test set for pair-wise testing. 
Our approach has two salient features. First, an approach to generate initial population 
using hamming distance is employed. Second, an algorithm to determine crossover 
points is proposed. Empirical results show that the proposed approach generates test 
set with higher fitness level in less number of iterations as compared to the test set 
generated when random techniques are used for population initialization and determi-
nation of crossover points. In future, we plan to conduct experiments on more input 
sets to thoroughly check the effectiveness of our approach and explore the trade-off 
between fitness and time. 
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Abstract. Generation of performance tests for programming challenge
tasks is considered. A number of evolutionary approaches are compared
on two different solutions of an example problem. It is shown that us-
ing helper-objectives enhances evolutionary algorithms in the consid-
ered case. The general approach involves automated selection of such
objectives.

Keywords: test generation, programming challenges, multi-objective
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1 Introduction

Programming challenge tasks are given at programming contests [1, 2]. Generally,
a task consists of a problem formulation, input data format and output data
format. Solutions are checked using pre-written tests. A test represents input
data. In order to pass the test, a solution should provide correct output data
within certain time and memory limits.

The goal of our research is to automatically generate performance tests. To
clarify what exactly a performance test in this paper is, we say that the aim
of performance test generation is to create such a test that running time of the
tested solution on this tests exceeds the time limit. In order to generate tests,
evolutionary algorithms [3] are used, as proposed in our previous work [4].

Although the running time is the objective to optimize, using it as a fitness
function is not efficient. We propose using some helper-objectives [5] instead of
or along with the running time objective. Such approach is inspired by multi-
objectivization and helper-objective optimization techniques [5–7].

The exclusive part of this paper is consideration of helper-objectives for two
different solutions and comparative analysis of 10 algorithms which were used
to generate tests against these solutions.
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2 Research Goal

The goal of the research is to explore different evolutionary approaches for per-
formance test generation. The approaches to be explored are listed in Section 3.
We generate performance tests against two different solutions of an example
programming challenge task. The task, its solutions and corresponding helper-
objectives are described below.

2.1 Programming Challenge Task

As in [4], we consider a programming challenge task “Ships. Version 2”. This
task is located at the Timus Online Judge [2] under the number 1394.

The task formulation is as follows. There are N ships, each of length si, and
M havens, each of length hj . It is needed to allocate ships to the havens, such
that the total length of all ships assigned to the j-th haven does not exceed hj .
It is guaranteed that the correct assignment always exists. The constraints are
N ≤ 99, 2 ≤ M ≤ 9, 1 ≤ si ≤ 100,

∑
si =

∑
hj. The time limit is one second,

and the memory limit is 64 megabytes.
Due to the fact that this problem is NP-hard [8] and the high limits on the

input data, it is very unlikely that every possible problem instance can be solved
under the specified time and memory limits. However, for the most sophisticated
solutions it is very difficult to construct a test which makes them exceed the time
limit.

2.2 Helper-Objectives

The target objective to be maximized is running time of a programming challenge
task solution. However, it is inefficient to use running time as a fitness function,
since it is platform-dependent, quantified and noisy [4]. In order to solve this
issue, we suggest including counters in the solution code. The counters can be
used as helper-objectives [5]. The pseudocodes of the Solution-1 and Solution-2
with the included helper-objectives are shown below.

Solution-1 with included helper-objectives: I, P, R

Read the input data

I := 0, P := 0, R := 0

while(solution not found)

Randomly shuffle ships

Call the recursive dynamic programming based ship arranging procedure

For each call to this procedure, R := R + 1

In each innermost loop, P := P + 1

if (solution is found)

Write the answer

else

I := I + 1

end if

end while
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Solution-2 with included helper-objectives: I, L, Q

Read the input data

I := 0, L := 0, last := 0

while (solution not found) do

Randomly shuffle ships and havens

last := 0

Call the recursive ship arranging procedure

For each call to this procedure, last := last + 1

if (solution is found) then

Write the answer

else

I := I + 1

L := L + last

last := 0

end if

end while

Q := 1000000000 * I + last

The main difference between the solutions is the implementation of the ship
arranging procedure. Unfortunately, we are not able to put more detailed code in
this article, because of the programming challenge rules that prevent publication
of solutions. However, it will be obvious from the experiment results that the
solutions have different performance.

3 Approach

In this section different evolutionary approaches of test generation are described.
Evolutionary algorithms can be used to optimize either a single objective or
several ones. The objective can stay the same during the evolutionary algorithm
run (a fixed objective), or we can select the objective to be optimized at each stage
of the optimization process (a dynamic objective). The evolutionary algorithms,
as well as helper-objective selection strategies are described below.

3.1 Evolutionary Algorithms

Single-Objective Genetic Algorithm (GA). The single-objective evolu-
tionary algorithm is a genetic algorithm (GA) with the population size of 200.
To create a new population a tournament selection with tournament size of 2
and the probability of selecting a better individual of 0.9 is used. After that,
the crossover and mutation operators similar to [4] are applied with the prob-
ability of 1.0. To form a new population, the elitist strategy is used with the
elite size of five individuals. If for 1000 generations the best fitness value does
not change, then the current population is cleared and initialized with newly
created individuals.



Generation of Tests for Programming Challenge Tasks Using Helpers 303

Multi-Objective Evolutionary Algorithm (NSGA-II). For optimization
of more than one objective, a fast variant of the NSGA-II algorithm [9] proposed
in [10] is used. Except for the version of tournament selection and nondominated
sorting based selection strategy, which is traditionally used in NGSA-II algo-
rithms, the evolutionary operation pipeline is the same as in the single-objective
case.

3.2 Helper-Objective Selection

Selection by M. T. Jensen. We consider two selection methods. The first one
was proposed by M. T. Jensen [5]. According to this method, a helper-objective
is chosen randomly from the set of helper-objectives and is being optimized for
a fixed number of populations. Then the next helper-objective is chosen, and so
on. This method implies using two-objective evolutionary algorithm, where the
first objective is the running time and the second one is a helper-objective.

Reinforcement Learning Selection (RL). The other selection method is
EA + RL method [7]. The fitness function is chosen with reinforcement learning
from a set that includes the target objective and the helper ones. The choice is in-
fluenced by a reward that depends on the target objective (running time) growth.
So the target objective is already taken into account and a single-objective evo-
lutionary algorithm can be used.

In this work, delayed Q-learning algorithm [11] is used. It is restarted every 50
generations, which aims at preventing stagnation. The update period is m = 5,
the bonus reward is ε = 0.001 and discount factor is γ = 0.1. The discount
parameter used to calculate the reward is set to k = 0.5. All the parameter
values are set on the basis of preliminary experiment results.

4 Experiment

Tests for each considered solution were generated using all the considered algo-
rithms with each compatible objective. Each algorithm was run for 100 times,
then the results were averaged. The termination condition was either evolving
of a test that made the solution to exceed the time limit (a successful run), or
reaching the population number limit, which was 10000 populations.

The results for the Solution-1 are shown in the Table 1. T denotes the run-
ning time of the solution, σ is the diversity of the population number in a run.
Populations refer to the mean number of populations needed to exceed the time
limit, the smaller it is the more efficient the corresponding algorithm is. Note
that using running time as a fitness function is inefficient, as was expected.

In the fixed objective case, multi-objective optimization significantly outper-
forms single-objective one, no matter what helper-objective is used. In the dy-
namic objective case, multi-objective optimization is also good enough. Although
in this example NSGA-II with a fixed objective outperforms all the other ap-
proaches, using dynamic objective can be more preferable in general, as shown
below.
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Table 1. Results of test generation for the Solution-1

Algorithm Fitness functions Successful runs, %
Populations
Mean σ

Fixed objective

GA I 99 2999 1986
GA R 93 3153 3742
GA P 54 12621 12770
GA T 0 – –
NSGA-II T, I 100 203 119
NSGA-II T, R 100 440 381
NSGA-II T, P 100 448 360

Dynamic objective

GA + RL all 65 9636 9538
NSGA-II + RL all 99 895 1215
NSGA-II + Jensen all 100 882 786

The results for the Solution-2 are shown in the Table 2. In the fixed objective
case, only the objective Q is efficient. Although this objective provides the best
performance, we usually do not know this in advance and should perform runs
with each helper-objective.

At the same time, all the dynamic objective methods are efficient. In dynamic
objective approach one run is enough, the most efficient objective is chosen
automatically. So the dynamic helper objective approach is both general and
efficient one.

Table 2. Results of test generation for the Solution-2

Algorithm Fitness functions Successful runs, %
Generations
Mean σ

Fixed objective

GA Q 95 3815 3466
GA I 54 12669 12873
GA L 51 13755 14082
GA T 0 – –
NSGA-II T, Q 95 2217 3136
NSGA-II T, I 45 15861 16723
NSGA-II T, L 20 41330 44768

Dynamic objective

GA + RL all 80 5817 6160
NSGA-II + RL all 72 6679 7764
NSGA-II+Jensen all 75 6103 7076
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5 Conclusion

A number of approaches for generation of performance tests against program-
ming challenge solutions were compared. It was shown that using helper-
objectives significantly improves the optimization process. We suggest using
multi-objective evolutionary algorithms with dynamic helper-objectives, which
is a general and efficient method. Further work involves formalization of a class
of problems that can be efficiently solved using the proposed approach. Another
future goal is implementation of automated insertion of helper-objectives in the
solution code, since currently such insertion is made manually.
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Abstract. The use of Genetic Programming (GP) to optimise increas-
ingly large software code has been enabled through biasing the appli-
cation of GP operators to code areas relevant to the optimisation of
interest. As previous approaches have used various forms of static bias
applied before the application of GP, we show the emergence of bias
learned within the GP process itself which improves solution finding
probability in a similar way. As this variant technique is sensitive to the
evolutionary lineage, we argue that it may more accurately provide bias
in programs which have undergone heavier modification and thus find
solutions addressing more complex issues.

1 Introduction

By posing software modification as a search problem [8], Genetic Programming
[16] can be used to modify software for various purposes [17,18,23,21]. A gen-
eral issue with the use of GP is that when larger programs are considered,
the increased number of possible sub-tree and location combinations reduces
the chance of finding a solution [6,4]. This poses a problem for the application
of GP to source code modification as many programs contain complex inter-
dependencies.

Previous approaches have used node selection bias to shape and scale software
to within the practical ability of GP algorithms [21,13]. While bias has been
applied statically in these approaches, we inspect how bias can emerge as an
integral part of the GP algorithm. In previous work, bias was allocated to nodes
involved in offspring generation through observing parent-offspring functionality
differences [5] with the effect of dis-improving GP.

In this paper we present a bias allocation rule dependent on the primary
software trait of interest, the objective of our optimisation being improvement
of performance or reduction in cost of executing the program. The magnitude of
bias is calculated from the difference between parent and offspring performance
measures as opposed to being fixed [5] or random [2]. Our results show this rule
can improve GPs ability to find a better solution and demonstrate the emergence
of appropriate bias.

G. Ruhe and Y. Zhang (Eds.): SSBSE 2013, LNCS 8084, pp. 306–311, 2013.
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2 Related Work

GPs utility for various software modification tasks, including software optimi-
sation, has been demonstrated at different levels of abstraction such as design
pattern [19,14], line of code [21], statement [13], Java source code [3,23,5] and
bytecode [15]. These works raise the question of there being a tension between
the granularity of change and the optimisations that GP can practically find. It
would appear that as the granularity of change becomes finer, the search space
increases, and GP is less able to adequately search the solution space. If a more
coarse granularity is used, GP can make larger jumps across the search space
but risks entirely excluding a range of potentially important solutions.

As real-world software may have multiple requirements, and only a single
one is required to change as in the case of bug fixing, the portion of the code
which needs to be modified can be expected to be small [21,13]. Portions of code
which are likely to be relevant can be highlighted through runtime analysis of the
code using various test cases for bug fixing [21] or by observing how execution
frequency of statements increases with input size for optimisation [13]. The result
of analysis provides probabilities for each modification point in the code and
determines how likely GP will make a change at each point when applied. The
probabilities are specific to the initial version of the software and not to any
versions which emerge under evolution. What is distinct about these works is
that a software patch is evolved as opposed to the entire program representation.

Finding good locations for modification (good nodes to apply operators to)
within programs can be done “online” as part of the GP algorithm and can
be achieved in a number of ways. The best offspring program can be found by
repeatedly pruning sub-trees [9]. This approach is computationally intensive due
to the large number of re-evaluations performed. The usefulness of each sub-tree
in a program can be stored in a central location and updated as it occurs in
new individuals [12]. This is a sub-tree centric approach mainly concerned with
exploration of the search space by avoiding trees which appear correct or have
not been executed. By assigning fitness to subtrees, evolutionary search can be
focused on subtrees which have a low fitness measure [10].

Measuring the frequency of terminals in successful programs can be used to
bias the distribution of these terminals in future programs [7]. This approach
is concerned with removing terminals superfluous to the problem at hand. It is
unclear how this would help in scenarios where the initial population is seeded
with programs which presumably contain mostly relevant terminals. Bias can
be introduced at the grammar level to influence how new code segments are
generated [22].

Attaching parameters to every node in a program yields bias which can be
unique to each program [2]. Updating bias is achieved by the addition of random
noise to the parameters at each node and a useful bias is allowed to emerge
through standard evolutionary pressure. While Angeline’s approach is beneficial,
we speculate that a promising individual could be changed in a less-than-optimal
location in a non-optimal direction due to arbitrary allocation of noise within
the parameter tree.
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3 Experimental Setup

Our GP setup involves per-individual node bias [2] applied to a Java implemen-
tation of naive bubble-sort [23], using Eclipse’s Java Development Tools (JDT)
[20] to modify an Abstract Syntax Tree representation (AST) of the sort and
enforce typing. Primitives for our GP system are gathered from the seed pro-
gram with the manual addition of the equal to operator (“==”) and postfix
decrement operator (“- -”). A population size of 250 is used for 100 generations
created with a crossover rate of 0.8 and a mutation rate of 0.2. The max program
length is set to 20 lines and the max number of operator applications is 100.

The initial GP population is created by repeatedly mutating the seed program
shown in Listing 1.1. Mutation operates by selecting a node from the AST and
then deciding whether to mutate or delete that node. When applying crossover,
a clone is made of the first chosen parent. Our crossover operator selects a node
in the parent clone, and then selects a node of matching type from the second
parent.

The fitness function we use is a value calculated using normalised performance
and functionality measures as shown in Figure 1. We measure performance as
the number of instructions executed by the JVM when the program is passed
a series of test arrays using a bytecode counter [11]. Arrays of size 10, 100 and
1000 are randomly populated with values that are almost sorted, reverse sorted
and completely random in location.

F =
Cindividual

Cseed
+ 100 · Smax − Sindividual

Smax
(1)

Fig. 1. Fitness is the weighted sum of normalised performance (individual instruction
count over seed instruction count) and functionality score (test case error over max
test case score)

Random node selection is used as the control benchmark against which our
version of node bias and selection is compared. We introduce node selection
bias through the use of a parameter tree [2]. When deciding where to apply
our crossover or mutation operator, we perform tournament selection based on
values in the parameter tree. Parameter tree values are initially set to 1 for every
node in the program. Where mutation is performed on a node, the nodes existing
value is inherited and updated. Where crossover is performed, all values from
the cloned parent are inherited. Values for nodes in the selected subtree from the
second parent are kept as the subtree replaces a subtree in the cloned parent.

We extend previous work [5] with a bias update rule which depends on whether
functionality has been entirely lost after offspring creation. Bias is decreased if all
functionality has been lost by a magnitude of how much functionality has been
lost as per the normalised functionality score. If some functionality is maintained,
bias is increased by the parent fitness over offspring fitness. Bias is updated in
both the parent and offspring.
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Listing 1.1 shows a naive version of bubble sort which presents a problem
that requires at minimum 2 changes to find the optimisation [23], replacing
“i++” with “length- -”. While this is a simple problem, it presents an example
of imperative code with which we can observe the probability of various GP
techniques in finding this optimisation.

Listing 1.1. Inefficient bubble sort

public static void sort( Integer[] a, Integer length){

for (int i=0; i < length; i++) {

for (int j=0; j < length - 1; j++) {

if (a[j] > a[j + 1]) {

int k=a[j];

a[j]=a[j + 1];

a[j + 1]=k;

}

}

}

}
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Our results as graphed in Figure 2 show the averages of the best fitness-es
found in each generation for standard GP and GP with our node bias mechanism.
The bias introduced by the rule set outperforms unbiased node selection, and
on average has a higher probability of finding the optimisation yielding a lower
average fitness.

A post-analysis of bias in programs shows high bias among leaf nodes. Ide-
ally our approach should not just culminate in a bias which only distinguishes
between leaf and internal nodes, but should also highlight locations for change
throughout all program nodes.

4 Conclusion

As our work and that of Angeline [2] show improvement in GP, we seek to more
rigorously inspect how this behaviour emerges. Initially our research will expand
our experimentation by tuning the rules we use for allocating bias.

We believe that updating bias as part of the GP algorithm, as opposed to
before the application of GP, should allow the algorithm to find improvements
in more complex code given that bias can emerge and evolve as the individuals
evolve. Bias may remain more predictive for producing offspring if it is updated
in the specific context of the parent program. A comparison with other bias
techniques would show whether different techniques yield different improvements
in terms of complexity.

To inspect how our approach scales, software which shows gradual perfor-
mance improvement through a succession of changes as found in a typical code
repository would be ideal. Code that has gone through incremental evolution at
the hands of human programmers would provide an excellent test case to ob-
serve how GP can compare. We seek to inspect the type of problems that this
form of GP can address with the hope that the improvement of this technique
can find more complex solutions. If we can find evidence of its utility on more
complex software, we may then proceed to generalise the technique on differ-
ent types of software. While our results are preliminary with regard to analysis,
many research questions are exposed for future work.
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Abstract. Dynamic and heterogeneous service-oriented systems present
challenges when developing composite applications that exhibit specified
quality properties. Resource heterogeneity, mobility, and a large number
of spatially distributed service providers complicate the process of com-
posing complex applications with specified QoS requirements. This PhD
project aims at enabling the efficient run-time generation of service com-
positions that share functionality, but differ in their trade-offs between
multiple competing and conflicting quality objectives such as application
response time, availability and consumption of resources. In this paper
we present a research roadmap towards an approach for flexible service
composition in dynamic and heterogeneous environments.

1 Introduction

Pervasive and mobile computation is about systems consisting of a large num-
ber of computational nodes with heterogeneous capabilities communicating over
highly dynamic networks. Service composition [1] is an appropriate paradigm for
creating complex applications in such environments where nodes’ resources, such
as data, network and hardware components, are offered as software services.

Mobile computing and pervasive applications present unique challenges when
trying to compose applications with specified QoS due to the resource hetero-
geneity and high dynamism of both nodes and underlying networks caused by
their inherent mobility. When composing services in such systems, continuous
adaptation and optimisation must maintain the required functional and QoS
levels of the application as the system evolves. The motivating scenario of our
research is a fire-fighter decision support system [2]. The goal of the system is to
combine services provided by heterogeneous devices such as sensors and tablets,
to compose complex applications for assisting fire-fighters to make well-informed
decisions within a crisis. For example, during a forest fire, a commanding officer
may combine information (e.g. fire position, weather conditions) and prediction
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Network “RELATE” (Grant Agreement No. 264840).

G. Ruhe and Y. Zhang (Eds.): SSBSE 2013, LNCS 8084, pp. 312–317, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Exploring Optimal Compositions in Heterogeneous and Dynamic Systems 313

services for estimating the evolution of the fire. The composed application must
exhibit minimum response time to respect the above time-critical scenario.

Traditional approaches try to optimise the QoS of a composite application by
considering only the selection of which concrete services to be coordinated by
a central orchestrator [3,4]. However, they neglect to consider how the coordi-
nation of a composite application may affect its quality. To address this issue,
we propose a flexible service composition model which considers the following
three degrees of freedom (DoFs) for modifying the quality of a composition: (a)
service selection, (b) orchestration partitioning, and (c) orchestrator node selec-
tion. These DoFs formulate the space of candidate configurations all of which
realise the functionality of the targeted composite application, but each of which
exhibits different QoS properties. The highly dynamic nature of the studied sys-
tems require timely exploration of configurations which best satisfy user’s goals.
This PhD aims to provide a run-time optimisation-based approach for auto-
matic exploration of trade-off composite applications that share functionality,
but where each of them differs in their quality trade-offs.

The paper is organised as follows. Section 2 presents the background to our
research followed by Section 3 which states our research problem and roadmap.
Section 4 describes the proposed approach. Section 5 discusses related work,
before Section 6 summarises the expected contributions of this PhD.

2 Background

Service composition creates complex applications by aggregating services to pro-
vide composite functionality that none of the services could provide by itself. We
use the concepts of Concrete Service (CS) which refers to an invocable service,
and Abstract Service (AS) which abstractly defines the functionality of a service.
Let a composite application be represented as a directed graph, as shown in Fig.
1, consisting of a node set AS = 〈AS1, AS1, · · · , ASn〉 of abstract services and an
edge set DF = 〈(ASi, ASj) : i 
= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n〉 of data flow between
abstract services, where ASi is the source and ASj the data destination.

Fig. 1. An example abstract workflow plan

Currently, service composition is identified with Orchestration where a cen-
tral entity coordinates the control and data flow between participating services.
Choreography defines the interaction protocol between services from a global
perspective with an emphasis on P2P collaboration. Decentralised Orchestration
[5] lies between these two extremes where the coordination of the application is
distributed to many nodes. Each orchestrating node integrates a local workflow
engine and has only a partial view of the overall composition. The orchestrators
cooperate with one another towards realising the complete application.
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3 Problem Statement and Our Research Roadmap

In systems consisting of a large number of highly dynamic and heterogeneous
nodes, the approaches of centralised orchestration and fully decentralised chore-
ography result in suboptimal configurations [6] as they do not exploit the dy-
namic resource heterogeneity of both the nodes and the underlying networks.

Fig. 2. The research roadmap of this PhD

To fill this gap, we propose the research plan depicted in Fig. 2 where darker
colours indicate higher progress achieved so far. The first goal of this PhD project
is to select an appropriate application scenario. The chosen scenario is a fire-
fighter decision support system where heterogeneous nodes are deployed in an
area of interest and form an ad-hoc network [2]. Then, we focus on provid-
ing a service composition model by enabling flexible coordination of composite
applications. In step 3, based on the chosen model, we choose an appropriate rep-
resentation of the space of possible composition configurations. Step 4 concerns
the identification of the metrics of interest which will be used as the optimisa-
tion objectives towards exploring trade-off configurations. To estimate the real
objective function of a configuration we use a resource-consuming simulation. As
search algorithms require a large number of objective function evaluations to con-
verge to a set of optimal solutions, we propose the replacement of the expensive
simulation by surrogate models for approximating the quality values of a com-
position configuration (step 5). After choosing the problem representation and
an appropriate (surrogate) objective function for guiding the search process, the
next step is to define a suitable search algorithm for exploring trade-off, where
we will particularly investigate the applicability of stochastic metaheuristics. Fi-
nally, we plan to validate the applicability of the overall approach and use the
finding to refine the chosen representation, simulation, and optimisation.

4 The Proposed Approach

We now present our approach to enable automated exploration of optimal com-
posite applications in dynamic and heterogeneous service-based environments.
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4.1 Modelling Flexible Service Composition

Firstly, we propose a formulation for flexible composition of applications in dy-
namic and heterogeneous systems. We call the Degree of Freedom (DoF) a param-
eter of a configuration which is free to be varied to affect application’s QoS while
leaving its functionality unaffected. We propose the consideration of the following
three DoFs for modifying a composition configuration: (a) selection of particu-
lar concrete services to implement the abstract services of the composition plan;
(b) distribution of the control of the overall application into sub-orchestrations;
and (c) selection of the nodes to host the various sub-orchestrations. The set
of choices for realising a composition is called service composition configuration,
while the set of all possible configurations is called design space.

Current composition approaches try to optimise the quality of a composite
application by considering only the selection of particular services to partici-
pate in a centralised orchestration. However, in the context of highly mobile
resource-constrained systems which are characterised by intermittent connectiv-
ity, it is hard to assume that a resource-rich orchestrator has a reliable access to
all services in a composition or that such an entity even exists. The proposed ap-
proach chooses flexibly the appropriate level of decentralisation for a composite
application based on the resource availability of the participating nodes.

Fig. 3. An example concrete service composition configuration

In Fig. 3, 8 nodes share their services for composing the application in Fig. 1.
To define a composition configuration, we have to make decisions for each of the
three mentioned DoFs. Firstly, we have to select which concrete services to im-
plement the abstract services of the application (1st DoF). In our example, CS12
is chosen for realising AS1 out of two possible choices (CS11 and CS12). Then,
the initial composite application is decomposed into two sub-orchestrations (2nd
DoF). Finally, Node2 is responsible for coordinating the first sub-orchestration
and Node4 for the second one (3rd DoF).

4.2 Formulating Our Optimisation Problem

When considering multiple criteria, such as response time and battery consump-
tion, there is no single optimal solution. Instead, there exist a set of Pareto-
optimal solutions. Without having further information about user’s goals, none



316 D. Efstathiou et al.

of these trade-off solutions can be said to be better than another. To enable the
exploration of trade-off configurations, we define the following:

Definition 1. Distributed Service Orchestration Problem

Given: A set of m abstract services that compose the service composition plan
P , a set of n nodes where each node provides a single concrete service and can
coordinate a single orchestration, a mapping between concrete service implemen-
tations and abstract services, and a set of q quality objectives Q = {Q1, · · · , Qq}.
Problem: Find a representative set of composition configurations, all of which
implement the functionality described by P , but differ in their quality trade-offs
according to Q, by using different design options for the mentioned DoFs.

To solve an optimisation problem we have to define two key ingredients [7]:
(i) a problem representation, and (ii) an objective function. The last step is to
employ an optimisation algorithm for exploring the solution space.

Representation. We have designed a metamodel for specifying the space of
possible composition configurations that realise a composite application, which
is omitted due to lack of space. Based on this metamodel, we are able to produce
model instances like the one described in Fig. 3.

Objective Function. To simulate the studied scenario, we plan to use the NS-31

to measure the QoS properties (or else optimisation objectives) of candidate con-
figurations. Search-based algorithms require a large number of objective function
evaluations to explore a set of trade-off solutions. However, the high computa-
tional cost of the simulator makes impossible its usage for runtime exploration
of trade-off configurations.

Surrogate-Based Optimisation (SBO) [8] aims at reducing the computational
time of optimisation problems by replacing expensive objective functions with
surrogate models. The goal of surrogate models is to approximate the values of
the real objective functions as close as possible and also be orders of magni-
tude cheaper to compute. Surrogate models can be built by using data samples
produced by simulation runs for predicting quality properties of composition
configurations, such as response time and battery consumption.

4.3 Validation Strategy

The goal is to understand the ability of our approach to explore promising com-
position configurations by various simulation-based empirical studies. The use of
simulation avoids the costly and impractical physical testing of such systems and
gives us statistical power by allowing repeated experiments. Firstly, we aim to
study the suitability of the proposed formulation for composing applications in
highly dynamic and heterogeneous environments. Then, we will investigate the
ability of the developed surrogate models to guide the search towards promising
areas of the search space. Finally, we plan to study the ability of the developed
SBO technique to provide configurations of high-quality during runtime by mea-
suring the execution time for exploring solutions of acceptable quality.

1 http://www.nsnam.org/

http://www.nsnam.org/
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5 Related Work

QoS-aware service composition approaches can be grouped into centralised and
decentralised. In the first category, the goal is to find the set of concrete services
to participate in a centralised orchestration that offer the required functionality,
respect user’s preferences and constraints, and optimise composition’s QoS [3,4].
However, these approaches focus on networks with abundant bandwidth and
stationary nodes and neglect to study the problems of centralised orchestration.

On the other hand, Schuhmann et al. [6] proposed a hybrid configuration of
distributed applications in the context of pervasive environments by adjusting
the level of decentralisation based on the number of available resource-rich nodes.
Fdhila et al. [9] proposed a decentralised approach for composing applications
by decentralising a composition into partitions of services that communicate
frequently, towards optimising the overall QoS of the composition. However,
existing approaches do not adapt automatically to changing conditions such as
resource availability and network connectivity.

6 Contributions

The expected contributions of this PhD can be summarised as: (i) a design
space formulation for flexible composition of applications in highly dynamic and
heterogeneous service-based environments; (ii) a search-based approach for effi-
ciently exploring trade-off compositions ; and (iii) a surrogate-assisted approach
for accelerating the search process of optimal configurations.
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Web Service Decentralization. In: SoSyM, pp. 1–21 (2012)



Applying Search in an Automatic
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Abstract. Automated random testing has been shown to be effective
at finding faults in a variety of contexts and is deployed in several test-
ing frameworks. AutoTest is one such framework, targeting programs
written in Eiffel, an object-oriented language natively supporting exe-
cutable pre- and postconditions; these respectively serving as test filters
and test oracles. In this paper, we propose the integration of search-based
techniques—along the lines of Tracey—to try and guide the tool towards
input data that leads to violations of the postconditions present in the
code; input data that random testing alone might miss, or take longer
to find. Furthermore, we propose to minimise the performance impact of
this extension by applying GPU programming to amenable parts of the
computation.

1 Introduction

Automated random testing has become widely used, in part because it is inex-
pensive to run, relatively simple to implement, and most importantly has been
demonstrated to be effective at finding bugs in programs; the technique having
been implemented in several testing frameworks including AutoTest [7], Korat
[1], and Randoop [8]. Using random testing comes with the cost of only using
straightforward strategies, and in particular, not leveraging information from
previous executions or specifications that—if provided—might otherwise help
guide towards test data revealing undiscovered bugs.

The AutoTest framework targets programs written in the object-oriented
language Eiffel, which natively supports contracts [6], i.e. executable pre- and
postconditions for routines (although the framework could be adapted to other
contract-equipped languages such as Java with JML). Contracts go hand-in-
hand with random testing, with preconditions serving as filters for test data,
and postconditions serving as test oracles. Furthermore, there are techniques to
guide the selection of inputs towards ones that satisfy preconditions, e.g. the
precondition-satisfaction strategy of AutoTest [12]. We claim in this short pa-
per however that there is still more to be gained from contracts in automated
testing. In particular, we propose that contracts are ideal for integration with
search-based techniques for test data generation [5]; passing tests could be “mea-
sured” against how close they are to violating the postconditions, with fitness
functions then favouring input data that optimises this measure. This strategy

G. Ruhe and Y. Zhang (Eds.): SSBSE 2013, LNCS 8084, pp. 318–323, 2013.
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exploits ready-to-use contracts to focus the generation of test data towards ob-
jects that get closer to violating postconditions, hence possibly revealing bugs
that random testing alone might miss, or take longer to find.

Applying search to test data generation is of course a computationally more
expensive task—whilst the envisaged techniques might reveal individual bugs
that random testing might miss, the approach quickly loses appeal if the ratio
of bugs encountered over time suffers. Hence, we propose to investigate how
to implement the computationally expensive parts on modern GPU devices,
following on from previous work in the search community (e.g. [13]).

The rest of the paper is structured as follows: Section 2 provides an overview
of AutoTest and how search-based techniques might be applied; Section 3 spec-
ulates on measuring how “close” input data is to deriving outputs that vio-
late postconditions; Section 4 discusses the application of GPU computation to
search; and Section 5 outlines our plans and concludes.

2 Extending the AutoTest Workflow

Having introduced the idea of AutoTest in the previous section, we illustrate
its workflow via a simple example. Consider the square root routine in List-
ing 1; implementation details are not given, but we provide its contract. The
precondition, given after require, expresses that the input is non-negative; the
postcondition, given after ensure, expresses the same. Recall that in AutoTest,
preconditions are filters and postconditions are oracles. Hence in this example,
sqrt is only tested on non-negative inputs, and any negative output indicates
that its implementation does not meet its specification.

sqrt ( a : DOUBLE) : DOUBLE
require

a >= 0
ensure

Result >= 0
end

Listing 1. Square root contracts

The current workflow of AutoTest is roughly as follows: firstly, random inputs
satisfying the routine’s precondition are generated. Secondly, the routine is exe-
cuted on the generated data. If there is a postcondition violation, then the test
fails and is recorded. Otherwise, the test passes. The overall picture is shown in
Figure 1.

This workflow however does not take into account information from successful
test cases. Currently, we can say that they satisfied the test oracle; but more
interestingly, can we measure how “close” they came to failing it, and use this
information in search to derive input data that gets even closer? A high-level
picture of the proposed extension to AutoTest is shown in Figure 2. We discuss
the issues of search and measuring “closeness” in the following section.
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Fig. 1. High-level overview of the AutoTest workflow

Fig. 2. High-level overview of the proposed extension to the AutoTest workflow

We remark that search was applied to AutoTest previously in [10]; however,
their approach differs in that they use genetic algorithms to generate an effi-
cient testing strategy by evolving random ones. Other authors [3] have suggested
that condition coverage on postconditions—in a testing tool for Java programs
equipped with contracts—seems promising in generating test data, but as far as
we know, did not publish implementations or evaluations of such algorithms.

3 Optimising Postcondition Violations

A key part of our proposal involves evaluating how “close” input data is to
deriving a postcondition violation. We propose to follow Tracey [11], who defined
objective functions for logical connectives and relations over data of primitive
types. The concepts can be applied to similarly simple contracts, so we illustrate
with an example (based on the counter algorithm presented in [11,5]). A faulty
wrapping counter is shown in Listing 2. It is supposed to take an integer between
0 and 10 (see the precondition), returning that integer incremented by 1 if it was
less than 10, and 0 otherwise (see the postcondition).

We can negate the postcondition, and add it in conjunction to the precondi-
tion to form a constraint only satisfiable by input data that derives a fault; for
example:

(n ≥ 0 ∨ n ≤ 10) ∧ ¬((n = 10 → Result = 0) ∧ (n 
= 10 → Result = n+ 1)).

We can apply Tracey’s objective functions to the relations and connectives of the
constraint, yielding a value indicating the “closeness” to satisfying it (smaller
values indicating that we are closer). For example, for relations a = b, we can
define obj(a = b) to return the absolute difference between the values of a and
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cyclic_increment ( n : INTEGER) : INTEGER
require

n >= 0 and n <= 10
do

i f ( n > 10) then
Result := 0

else
Result := n + 1

end
ensure

( n = 10 implies Result = 0) and ( n /= 10 implies Result = n + 1)
end

Listing 2. Faulty wrapping counter

b. Other relational predicates can be measured in a similar fashion. Objective
functions are defined inductively for logical connectives. For example, consider
the formula a∨b. A suitable definition of obj(a∨b) would be min(obj(a), obj(b)),
i.e. the minimum value of the two parameters. With a fitness function including
such a measure, we hope to apply metaheuristic search techniques [4], optimising
the search towards input data that gets closer to violating postconditions (i.e.
revealing bugs).

In our wrapping counter example, the smallest output of the objective function
should be yielded for n = 10, since the implementation incorrectly increments
the counter for this value.

For real object-oriented programs, we encounter the challenge of hidden states:
objects tend to conceal their implementation details. For example, a routine of
a bounded buffer might assert in its postcondition that the buffer is not full.
Expressed as buffer.count < buffer.size, we can apply objective functions
as we have described. However, the postcondition might instead be expressed
as not buffer.is_full, i.e. a Boolean query. Boolean queries are not informa-
tive for metaheuristic search because of their “all or nothing” nature. In this
example, we cannot distinguish between a buffer that is completely empty and
another that is close to being full. Postconditions containing Boolean queries
should be transformed into equivalent postconditions that are more amenable
for testing. A solution proposed by [2] is to “expand” Boolean queries using
their specifications; an approach compatible with our contract-based one. For
example, the postcondition of is_full might express that the result is true if
and only if count >= size; this being an assertion to which objective functions
can be applied more successfully.

4 Performance Considerations

The ideas described in the previous sections do not come for free. Additional
computation increases the running time of the tool, and may adversely affect the
ratio of bugs found over time. In order to keep the performance as reasonable as
possible, we propose to apply GPU computing to speed-up the computationally
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intensive aspects of the search. Consider for example the family of genetic algo-
rithms (GAs). The population can be encoded as a numerical vector, and the
fitness function as a vector function f : Rn → R.

Essentially, the GA input can be represented as a matrix m× n, where m is
the population size, and n is the size of the chromosome vector. Thus, to evaluate
a fitness function, one just needs to apply some vector function to each matrix
row. A mutation operation (changing chromosomes of some species subset) can
also be performed row-wise. Crossover operation is also essentially row-based.

GPUs are very different to conventional CPUs. Whereas CPUs are designed
as general-purpose computing devices, with lots of optimisations like branch pre-
diction, multi-level caches, etc., the processing units of GPUs are much simpler.
A GPU’s processing unit cannot handle the processing of arbitrary data as effi-
ciently as CPUs can; they do not possess sophisticated hardware optimisations.
However, there are many more processing cores on a GPU device, compared to
the CPU. GPUs are tuned for data parallelism, implementing the SIMD (Single
Instruction - Multiple Data) processing model, allowing the execution of thou-
sands of threads in parallel. GPUs have proven to be extremely efficient with
matrix-style computations [9], providing a convincing speed-up of 2-3 orders of
magnitude.

GPU acceleration was used for the problem of minimising test suite size in [13],
and demonstrated that speed-ups of over 25x are possible using GPU computing.

5 Research Plans and Conclusion

The proposed ideas—namely implementing search-based techniques to improve
the fault discovery rate of a contract-based random testing tool, and using GPU
acceleration to limit the performance hit—need to be carefully evaluated. While
we believe that search will enhance the quality of inputs in AutoTest, there are
several risks and challenges to be dealt with along the way to confirming or
disproving this hypothesis.

A first challenge is the previously mentioned implementation hiding in object-
oriented languges, that makes guided search ineffective without first transforming
Boolean queries into postconditions that are better suited for objective functions.
A second challenge: one should never forget that the goal of testing tools is to
reveal as many faults as possible. That is why the enhanced tool needs to be
tested against previously successful strategies, e.g. the precondition-satisfaction
strategy [12] of AutoTest.

Thirdly, some thought needs to be given as to the particular type of search
algorithm to apply (e.g. a genetic algorithm), and how to best encode the objects
and data on which these algorithms operate. The final choice will be determined
by the quality of inferred data and amenability to GPU-style computations. Fi-
nally, one needs to take into account, that GPU acceleration may be overwhelmed
by the additional overhead of copying data from main memory to the GPU, and
vice versa. Thus, GPU computing should only be applied to computationally
intensive parts of the proposed AutoTest workflow.
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