
Chapter 14
Using Fuzzy Grey Cognitive Maps for Industrial
Processes Control

Jose L. Salmeron and Elpiniki I. Papageorgiou

Abstract Recently, Fuzzy Grey Cognitive Maps (FGCM) has been proposed as a
Grey System theory-based FCM extension. Grey systems have become a very effec-
tive theory for solving problems within environments with high uncertainty, under
discrete small and incomplete data sets. The benefits of FGCMs over conventional
FCMs make evident the significance of developing a greyness-based cognitive model
such as FGCM. In this chapter, the FGCM model and the proposed NHL learning
algorithm were applied within an industrial problem, concerning a chemical process
control process with two tanks, three valves, one heating element and two ther-
mometers for each tank. The proposed mathematical formulation of FGCMs and the
implementation of the NHL algorithm have been successfully applied. This type of
learning rule accompanied with the good knowledge of the given system, guarantee
the successful implementation of the proposed technique in industrial process control
problems.

1 Introduction

Fuzzy Cognitive Maps (FCMs) constitute neuro-fuzzy systems, which are able to
model complex systems [5, 6]. Recently, Fuzzy Grey Cognitive Maps (FGCM) has
been proposed as a FCM extension [15]. It is an innovative and flexible model based
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on Grey Systems Theory and Fuzzy Cognitive Maps. FGCM is based on GST, that
it has become a very worthy theory for solving problems within domains with high
uncertainty, under discrete small and incomplete data sets [16, 18, 19].

FGCMs offer several advantages in comparison with others similar techniques.
First, the FGCM model is designed specifically for multiple meanings (grey) envi-
ronments. Second, FGCM allows the defining of relationships between concepts.
Through this characteristic, more reliable decisional models for interrelated environ-
ments are defined. Third, the FGCM technique is able to quantify the grey influence
of the relationships between concepts. Through this attribute, a better support in grey
environments can be reached. Finally, with this FGCM model it is possible to develop
a what-if analysis with the purpose of describing possible grey scenarios. IT projects
risks are modelled to illustrate the proposed technique.

Furthermore, FGCMs provide an intuitive, yet precise way of expressing con-
cepts and reasoning about them at their natural level of abstraction [18, 19]. By
transforming decision modelling into causal graphs, decision makers with no techni-
cal background can understand all of the components in a given situation. In addition,
with a FGCM, it is possible to identify and consider the most relevant factor that
seems to affect the expected target variable.

In this work, it is investigated the application of the mathematical formulation
of FGCMs and the efficient NHL algorithm for FGCMs in simulating process con-
trol problems in industry. More specifically, the FGCM modeling procedure and its
new unsupervised learning algorithm of NHL are applied to model and analyze a
benchmark two-tank process control problem in industry [20, 21].

The unsupervised Hebbian learning rule improves the FGCM structure, eliminates
the deficiencies in the usage of FGCM and enhances the flexibility and dynamical
behavior of the FGCM model. The FGCM model and its updated FGCM structure
after learning, guarantee the successful implementation of the proposed modeling
procedure for real case problems.

The outline of this chapter is as follows. Section 2 presents briefly the Grey Sys-
tem Theory. Section 3 describes the Fuzzy Grey Cognitive Maps technique. Section 4
introduces the experiments. In Sect. 5, the discussion of the results and Sect. 6 con-
cludes the chapter.

2 Grey Systems Theory

Grey Systems Theory (GST) has become a worthy set of techniques within environ-
ments with high uncertainty, under discrete small and incomplete data sets [3]. GST
is designed to study small data samples with poor information. It has been success-
fully applied in engineering, energy, agriculture, geology, meteorology, medicine,
industry, military science, transportation, business, and so on.

According to the degree of known information, if the system information is fully
known (whole understanding), the system is called a white system, while the system
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information is completely unknown is called a black system. A system with partial
information known and partial information unknown is grey system.

GST considers the information fuzziness, because it can flexibly deal with it [7, 8,
23]. Moreover, fuzzy mathematics holds some previous information (usually based
on experience); while grey systems deal with objective data, they do not require any
more information other than the data sets that need to be disposed [22]. Moreover,
GST fits better with multiple meanings environments than fuzzy logic.

Let U be the universal set. Then a grey set G ∈ U is defined by its both mappings.
Note that

G =
{

μG (g) : g → [0, 1]
μ

G
(g) : g → [0, 1] (1)

where μ
G

(x) is the lower membership function, μG (x) is the upper one and
μ

G
(x) ≤ μG (x). Also, GST extends fuzzy logic, since the grey set G becomes

a fuzzy set when μ
G

(x) = μG (x).
The crisp value of a grey number is unknown, but we know the range within the

value is included.
A grey number with both a lower limit (g) and an upper limit (g) is called an

interval grey number [8], and it is denoted as ⊗g ∈
[
g, g

]
|g ≤ g. If a grey number

⊗g has just lower limit is denoted as ⊗g ∈
[
g,+∞

)
, and if it has only upper limit is

⊗g ∈ (−∞, g]. A black number would be ⊗g ∈ (−∞,+∞), and a white number

is ⊗g ∈
[
g, g

]
, g = g. There is not any information available about black numbers

and the whole information is known about white numbers.
The conversion of grey numbers in white ones is called whitenization [8], and the

whitenization value is computed as follows

ĝ = α · g + (1 − α) · g | α ∈ [0, 1] (2)

when α = 0.5 is called equal mean whitenization.
The length of a grey number is computed as � (⊗g) =| g − g |. In that sense, if

the length of the grey number is zero (� (⊗g) = 0), it is a white number. In other
sense, if � (⊗g) = ∞, the grey number is not necessarily a black number, because

the length of a grey number with only one limit (lower or upper), ⊗g ∈
[
g,+∞

)
or ⊗g ∈ (−∞, g], is infinite but it is not a black number.

A more detailed explanation of grey numbers operations and FGCMs can be found
at [15].
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3 Fuzzy Grey Cognitive Maps

3.1 Theoretical Background

Fuzzy Grey Cognitive Map is an innovative soft computing technique. FGCMs are
dynamical systems involving feedback, where the effect of change in a node may
affect other nodes, which in turn can affect the node initiating the change [15].
A FGCM models unstructured knowledge through causalities through imprecise
concepts and grey relationships between them based on FCM [5, 6].

The FGCM nodes are variables, representing concepts. The relationships between
nodes are represented by directed edges. An edge linking two nodes models the grey
causal influence of the causal variable on the effect variable.

Since FGCMs are hybrid methods mixing grey systems and neural networks, each
cause is measured by its grey intensity as

⊗ wi j ∈
[
wi j , wi j

]
| wi j ≤ wi j , {wi j , wi j } ∈ [−1,+1] (3)

where i is the pre-synaptic (cause) node and j the post-synaptic (effect) one.
FGCM dynamics begins with the design of the initial grey vector state ⊗C0,

which represents a proposed initial grey stimuli. We denote the initial grey vector
state with n nodes as

⊗C(0) =
(
⊗c(0)

1 ⊗ c(0)
2 . . . ⊗ c(0)

n

)

=
( [

c(0)
1 , c(0)

1

] [
c(0)

2 , c(0)
2

]
. . .

[
c(0)

n , c(0)
n

] ) (4)

The updated nodes’ states [15] are computed in an iterative inference process with
an activation function, which mapping monotonically the grey node value into its
normalized range [0,+1] or [−1,+1]. The unipolar sigmoid function is the most
used one [2] in FCM and FGCM when the concept value maps in the range [0, 1].
If f (·) is a sigmoid, then the i component of the grey vector state ⊗C(t+1) after the
inference would be update with the Eq. 5.
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⊗c(t+1)
j = f

(
⊗c(t)

j +
n∑

i=1

⊗wi j · ⊗c(t)
i

)

= f
(
⊗c(t+)

j

)

= f
([

c(t+)
j , c(t+)

j

])

=
[

f
(

c(t+)
j

)
, f

(
c(t+)

j

)]
(5)

=
[(

1 + e−λ·c(t+)
j

)−1

,

(
1 + e−λ·c(t+)

j

)−1
]

=
[
c(t+1)

j , c(t+1)
j

]

On the other hand, when the concepts’ states map in the range [−1,+1] the
function used would be the hyperbolic tangent.

The nodes’ states evolve along the FGCM dynamics. The FGCM inference process
finish when the stability is reached. The steady grey vector state represents the effect
of the initial grey vector state on the state of each FGCM node.

After its inference process, the FGCM reaches one stable state following a number
of iterations. It settles down to a fixed pattern of node states, the so-called grey
hidden pattern or grey fixed-point attractor. Furthermore, the state could to keep
cycling between several fixed states, known as a limit grey cycle. Using a continuous
activation function, a third state would be a grey chaotic attractor. It happens when,
instead of stabilizing, the FGCM continues to produce different grey vector states
for each iteration [1].

3.2 FGCM Construction

FGCMs, as FCMs [4, 9–11], can be built by experts or with raw data. We focus on
a deductive approach based on experts’ knowledge about the system’s domain. The
experts’ team establish the number and categories of nodes (or concepts) relevant
for the FGCM model. Furthermore, experts know which nodes influence others; for
the corresponding nodes they determine the intensity of the influence and its sign
(negative or positive). Each expert, indeed, determines the influence of one node on
another as negative or positive and then evaluates the degree of influence using a
linguistic variable, such as strong influence, medium influence, weak influence, etc.
This is a procedure commonly used for FCM [13].

For FGCMs a grey causal weight should be determined. It is a little bit complex
because it is not a fuzzy number, but a grey one. In this sense, we will use a class of grey

numbers that vibrate around a base value, denoted as ⊗wa
i j ∈

[
wa

i j − θ, wa
i j + θ

]
.

Moreover, the vibration value θ would be determined according with the uncer-
tainty about the base value. If the base value has not uncertainty associated, then
θ = 0. This is the case for a white number. If the base value is completely unknown,



242 J. L. Salmeron and E. I. Papageorgiou

then θ = ∞ for the general case and θ ≤ {1|2} in FGCM models. The base value
wa

i j is calculated as weights in FCM [13].
The Eq. 6 shows the computation of the ⊗wa

i j upper and lower limits.

⊗ wa
i j ∈

⎧⎪⎪⎨
⎪⎪⎩

[−1,+1] i f (a + θ > +1) ∧ (a − θ < −1)

[a − θ,+1] i f (−1 ≤ a − θ ≤ +1) ∧ (a + θ > +1)

[−1, a + θ ] i f (−1 ≤ a + θ ≤ +1) ∧ (a − θ < −1)

[a − θ, a + θ ] i f (−1 ≤ a − θ ≤ +1) ∧ (−1 ≤ a + θ ≤ +1)

(6)

3.3 FGCM’s Benefits Over FCM

FGCMs have several benefits over conventional FCM [14]. A FGCM compute the
desired steady states of the models by handling uncertainty and hesitancy present
in the experts judgements for causal relations among concepts as well as within the
initial concepts states.

FCM would need measures of the associated uncertainty in weights and concepts.
The FGCM concepts have a greyness value to represent the degree of uncertainty
associated to each node and each edge. Note that, even if the FCM dynamics would
get the same steady state than FGCM after the whitenization process, the FGCM
proposal handles the inner fuzziness and grey uncertainty.

Furthermore, it is possible to compute different whitenization state values. This
paper uses the equal mean whitenization with α = 0.5, but it is possible to calculate
an optimistic or pessimistic whitenization. The whitenization value vibrates between
the grey number limits. The final whitenization value depends of the parameter α.
Lower α values generate higher whitenization values closer to the upper limit.

Furthermore, FGCM includes greyness as an uncertainty measurement. Higher
values of greyness mean that the results have a higher uncertainty degree. It is com-
puted as follows

φ(⊗Ci ) = |�(⊗Ci )|
�(⊗ψ)

(7)

where |�(⊗Ci )| is the absolute value of the length of grey node ⊗Ci state value, and
�(⊗ψ) is the absolute value of the range in the information space, denoted by ⊗ψ .
FGCM maps the nodes’ states within an interval [0, 1] or [−1,+1] if negative values
are allowed. In this sense,

�(⊗ψ) =
{

1 i f {⊗Ci ,⊗wi } ⊆ [0, 1]
2 i f {⊗Ci ,⊗wi } ⊆ [−1,+1]

(8)

As an overview, FGCM model shows several advantages over the FCM one [17],
as the following:

• The reasoning process’ output would incorporate the greyness expressed in grey
values.
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• It is a generalization and can be applied to closer approximate decision making in
humans.

• It enables modelling of the uncertainty and experts hesitancy associated to the
description of the causal relations between the concepts and to the concept states.

• FGCMs are able to model more kinds of relationships than FCM do. For instance,
it is possible to run models with relations where the intensity is not known at all
(⊗wi ∈ [−1,+1]) or just partially known.

3.4 Learning FGCMs with Nonlinear Hebbian Rules

Recently, Nonlinear Hebbian (NHL) based algorithm has been applied to FGCM
Learning [14]. The learning algorithm extracts hidden and worthy knowledge from
experts. It can increase the FGCMs effectiveness and their implementation in real-
world problems.

The NHL algorithm is based on that all FGCM nodes are triggering at each
iteration and updating their states grey values. During the FGCM dynamics the
edges’ grey weights are updated and the new weight ⊗w(t)

j i is derived for iteration
step t .

The NHL rule for updating FGCM grey weights is computed as follows

Δ ⊗ w(t)
j i = ηk · ⊗c(t−1)

j · (⊗c(t−1)
i − ⊗c(t−1)

j · ⊗w(t−1)
j i ) (9)

Also, this proposal introduces three criteria for the NHL-FGCM algorithm. The
first criterion is the maximization of the objective function J , which has been defined
by Hebbs rule

maximize J = E{z2}
subject to: || w || = 1

(10)

where J = ∑m
k=1(Ok)

2, O are the output values, m the number of output nodes,
z = f (·), and f is the activation function.

The second one is the minimization of the difference between two subsequent
value of the outputs values.

| O(t+1)
k − O(t)

k |< ε (11)

where ε is the tolerance value (usually 0.001). Finally, the third criterion is the
stability of the grey vector state.
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Fig. 1 An illustration of the chemical process example [12, 21]

4 Experiments

In order to investigate and demonstrate the performance of the proposed FGCM
model, in comparison with conventional FCM, an industrial application, concerning
a chemical process control problem, has been considered. FCMs were successfully
applied to model control process [21] and in this study, our purpose is to show the
functionality of FGCMs to effectively model and analyze known chemical process
control problems in industry.

4.1 Process Control Problem Description

We consider the reference chemical process control system described in [20]. It
consists of two tanks, three valves, one heating element and two thermometers for
each tank, as depicted in Fig. 1.

Each tank has an inlet valve and an outlet valve. The outlet valve of the first tank
is the inlet valve of the second tank. The objective of the control system is firstly to
keep the height of liquid, in both tanks, between some limits, an upper limit Hmax

and a low limit Hmin , and secondly the temperature of the liquid in both tanks must
be kept between a maximum value Tmax and a minimum value Tmin .

The temperature of the liquid in tank 1 is regulated through a heating element.
The temperature of the liquid in tank 2 is measured through a sensor thermometer;
when the temperature of the liquid two decreases, valve 2 needs opening, so hot
liquid comes into tank 2 from tank 1. The control objective is to keep values of these
variables in the following range of values:

H1min ≤ H1 ≤ H1max

H2min ≤ H2 ≤ H2max

T 1min ≤ T 1 ≤ T 1max

T 2min ≤ T 2 ≤ T 2max

(12)
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Fig. 2 FGCM control model

where, according to the experts, H1min = 0.55, H1max = 0.75, H2min = 0.75,
H2max = 0.80, T 1min = 0.75, T 1max = 0.82, T 2min = 0.65, and T 2max = 0.75.

Three experts constructed the FCM and jointly determined the concepts of the
FCM [13, 20]. Variables and states of the system, such as the height of the liquid in
each tank or the temperature, are the concepts of the FCM model, which describes
the system. The values of the concepts correspond to the real measurements of the
physical magnitude. Each concept of the FCM takes a value, which ranges in the
interval [0, 1] and it is obtained after threshold the real measurement of the variable
or state, which each concept represent.

4.2 FGCM Model

Based on the conventional FCM proposed in [20] for the considered problem we
constructed a FGCM model sharing a similar structure. It consists of eight concepts,
as illustrated in Fig. 2.

For the purposes of our study, the three experts that participated in [20, 21]
assigned new if-then rules that describe the influences from concepts ci to con-
cepts c j , i = 1 . . . 5, j = 1 . . . 5. The inferences of the rules are linguistic weights
described by grey weights as Eq. 3.
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Table 1 FGCM nodes and their descriptions

Concept Description

c1 Represents the amount of liquid as measured by its height H within the tank 1; it
depends on the operational state of valves 1 and 2

c2 Represents the amount of liquid as measured by its height H within the tank 2; it
depends on the operational state of valves 2 and 3

c3 Represents the state of valve 1; it may be closed, open or partially open
c4 Represents the state of valve 2; it may be closed, open or partially open
c5 Represents the state of valve 3; it may be closed, open or partially open
c6 Represents the temperature of the liquid in tank 1
c7 Represents the temperature of the liquid in tank 2
c8 Represents the operation of the heating element, which has different levels of operation

and which increases the temperature of the liquid in tank 1

Table 2 FGCM edges and grey weights

Grey weight Grey value Greynessa Grey weight Grey value Greynessa

w13 [0.13, 0.43] 0.2 w42 [0.7, 0.9] 0.1
w14 [0.28, 0.48] 0.1 w47 [−0.16, 0.34] 0.25
w24 [0.6, 0.8] 0.1 w52 [−0.52,−0.32] 0.1
w25 [0.5, 0.7] 0.1 w63 [0.3, 0.5] 0.1
w31 [0.51, 1.0] 0.245 w68 [0.43, 0.63] 0.1
w41 [−0.9,−0.7] 0.1 w74 [0.2, 0.4] 0.1
w86 [0.35, 0.85] 0.25
a Note that greyness is not the same value of vibration

For the construction process of FGCMs, the three experts were also assigned
the vibration values of each one fuzzy relationship. Thus, grey weights with their
vibration values as obtained from the experts for the construction of the FGCM model
are apposed in Table 1. The greyness of each one weight is calculated following the
mathematical formulation suggested by Salmeron [15] and described in Sect. 2.

The final grey weights with their greyness, apposed in Table 2, are used for the
simulation analysis of FGCM dynamics.

4.3 FGCM Dynamics

We have performed two experiments. The first one aims to demonstrate the perfor-
mance of FGCM instead of the conventional FCM, on a real case scenario, whereas
the second one is more general and aims to demonstrate its performance on initial
grey values of concepts.

• First case study of FGCM control problem. A set of real measurements were
provided as input to FGCM as in the case of conventional FCM model in [21]. For



14 Using Fuzzy Grey Cognitive Maps for Industrial Processes Control 247

Table 3 First case study-results without learning

Node Grey steady state Greyness Whitenization

c1 [0.7295, 0.7500] 0.0205 0.7398
c2 [0.8000, 0.8000] 0.0000 0.8000
c3 [0.7553, 0.8291] 0.0738 0.7922
c4 [0.5877, 0.7749] 0.1872 0.6813
c5 [0.5280, 0.5804] 0.0534 0.5542
c6 [0.7913, 0.8200] 0.0287 0.8056
c7 [0.6920, 0.7409] 0.0489 0.7165
c8 [0.7330, 0.8201] 0.0872 0.7765

the first case study, the initial grey vector is formed as follows

⊗c1 =
(
[0.48, 0.48], [0.57, 0.57], [0.58, 0.58], [0.68, 0.68],
[0.58, 0.58], [0.59, 0.59], [0.52, 0.52], [0.58, 0.58]

) (13)

The results of the reasoning process obtained with FGCM without learning (Eq. 5)
and FGCM with NHL learning (Eq. 9), at each iteration t , till convergence at a
steady state are apposed in Tables 3 and 5.
The results in both cases show that the four decision output nodes take values
within the decision ranges. Especially in the case of FGCMs with NHL learning
the values of concepts converge at a steady state which is the upper limit of the
decision range with zero greyness. The zero greyness in decision concepts show
that the system performs with an efficient way to the acceptable steady state. The
updated adjacency matrix for case study 1 is shown at Eq. 16.

• Second case study of FGCM control problem. In this case, a more general
scenario considering grey values (not white ones as the previous case study) of
concepts as initial ones, in a measurement range was considered. For the second
case study, the initial grey vector is formed as follows

⊗c2 =
(
[0.55, 0.75], [0.7, 0.8], [0.4, 0.7], [0.5, 0.8],
[0.4, 0.7], [0.7, 0.85], [0.65, 0.8], [0.3, 0.7]

) (14)

The results of the reasoning process obtained with FGCM without learning (Eq. 5)
and FGCM with NHL learning (Eq. 9), at each iteration t , till convergence at a
steady state are apposed in Tables 4 and 6.
The results in both cases also show that the four decision output nodes take values
within the decision ranges. Especially in the case of NHL algorithm, the results
show that the output values of four decision concepts reach the upper limit of
the Eq. 12 with a zero greyness value. The zero greyness means that there is no
uncertainty in the decision concepts at the steady state. This is a meaningful result
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Table 4 Second case study-results without learning

Node Grey steady state Greyness Whitenization

c1 [0.7294, 0.7500] 0.0206 0.7397
c2 [0.8000, 0.8000] 0.0000 0.8000
c3 [0.7553, 0.8291] 0.0738 0.7922
c4 [0.5875, 0.7750] 0.1875 0.6813
c5 [0.5279, 0.5804] 0.0525 0.5542
c6 [0.7912, 0.8200] 0.0288 0.8056
c7 [0.6920, 0.7410] 0.0491 0.7165
c8 [0.7329, 0.8201] 0.0872 0.7765

Table 5 First case study-results with NHL learning

Node Grey steady state Greyness Whitenization

c1 [0.7500, 0.7500] 0.0000 0.7500
c2 [0.8000, 0.8000] 0.0000 0.8000
c3 [0.9933, 0.9980] 0.0047 0.9956
c4 [0.9917, 0.9986] 0.0068 0.9952
c5 [0.9952, 0.9965] 0.0013 0.9959
c6 [0.8200, 0.8200] 0.0000 0.8200
c7 [0.7500, 0.7500] 0.0000 0.7500
c8 [0.9922, 0.9981] 0.0059 0.9951

Table 6 Second case study-results with NHL learning

Node Grey steady state Greyness Whitenization

c1 [0.7500, 0.7500] 0.0000 0.7500
c2 [0.8000, 0.8000] 0.0000 0.8000
c3 [0.9939, 0.9986] 0.0046 0.9963
c4 [0.9922, 0.9989] 0.0067 0.9956
c5 [0.9960, 0.9975] 0.0015 0.9968
c6 [0.8200, 0.8200] 0.0000 0.8200
c7 [0.7500, 0.7500] 0.0000 0.7500
c8 [0.9929, 0.9986] 0.0057 0.9958

which shows that the decision concepts can be calculated with a zero uncertainty
degree. The updated adjacency matrix for case study 2 is shown at Eq. 17.

• Third case study of FGCM control problem. In this scenario, random grey
values of concepts were used as initial ones. Following the reasoning process of
FGCM without learning (Eq. 5) and FGCM with NHL learning (Eq. 9), the results
apposed in Table 5 were produced. For the third case study, the initial grey vector
is formed as follows
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⊗crand
3 =

(
[0.34, 0.54], [0.25, 0.46], [0.19, 0.53], [0.37, 0.82],
[0.93, 0.94], [0.29, 0.83], [0.42, 0.84], [0.88, 0.98]

) (15)

The results in both cases also show that the four decision output nodes take values
within the decision ranges. The updated adjacency matrix for case study 2 is shown
at Eq. 18.

It is obvious, that in all the examined cases, the output concepts take values with the
accepted limits and with very small or zero greyness.

5 Discussion of Results

The most significant weaknesses of the FCMs, namely their dependence on the
experts beliefs, and the potential convergence to undesired steady states, can be
overcome by learning procedures. However, in this work, we succeeded to produce
desired equilibrium regions for the four decision-outputs of the process control prob-
lem without using learning algorithms in FGCMs.

The results produced by the FGCM model without learning are acceptable and
control the system without any learning process. Furthermore, if the NHL learning
process is used in the case of FGCMs, the outputs continue to be within the desired
limits having the advantage of zero greyness. The whitenization values reach the
upper limit of the desired ranges (Eqs. 3, 4, 5 above).

Also, it is proved that using the NHL algorithm in FGCMs we improve the con-
ventional FCM model trained with NHL algorithm [12], which exhibit equilibrium
behavior within the desired regions. With the proposed procedure the experts sug-
gest the initial grey weights of the FGCM, and then using the NHL algorithm a new
weight matrix is derived that can be used for any set of initial values of concepts.

It is concluded that, the FGCM and the FGCM with NHL learning affect the
dynamical behavior of the system and the equilibrium values for decision concepts
are within desired regions defined at Eq. 12.

The NHL algorithm is problem-dependent, starts using the initial weight matrix
but all the process is independent from the initial values for grey concepts and the
system succeed to converge in desired equilibrium regions for appropriate learning
parameters.

The results of the FGCM dynamics show that the capability of FGCM to produce
a length and greyness estimation at the outputs offers an advantage over FCM; the
output greyness can be considered as an additional indicator of the quality of a
decision, with respect to the information incompleteness at the input of the cognitive
map. This is an important cue regarding the quality of the decisions obtained from
FGCM in the presence of uncertainty.

The new FGCM model that copes with the inability of the current models to
co-evaluate the greyness introduced into a complex system due to uncertainty and
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imperfect facts is explored in this work. The mathematical formalization of the grey
systems theory has been considered instead of the conventional fuzzy sets theory,
which is the basis of the current FCM models. The applicability of the proposed
FGCM model extends to a variety of domains. In this paper, we demonstrated its
effectiveness with numeric, reproducible examples, on chemical process control for
decision making.

6 Conclusions

In this work, the FGCM model and the proposed NHL learning algorithm were
applied for processing an industrial process control problem. The proposed mathe-
matical formulation of FGCMs and the implementation of the NHL algorithm have
been effectively applied. Experimental results based on simulations of a process con-
trol system, verify the effectiveness, validity and especially the advantageous behav-
ior of the proposed grey-based methodology of constructing and learning FCMs.

The benefits of FGCMs over conventional FCMs make evident the significance of
developing a greyness-based cognitive model such as FGCM. The case studies pre-
sented in this paper are representative and facilitate both demonstration and bench-
marking purposes. The development of more complex models are enabled by the
proposed mathematical framework, involving more interacting factors, by following
the same methodological approach.

The proposed NHL algorithm sustains a formal methodology for FGCMs training,
improving the functional FCM reliability and providing the FCM developers with
learning parameters to adjust the influence of concepts. This type of learning rule
accompanied with the good knowledge of the given system, guarantee the successful
implementation of the proposed process in industrial process control problems.

Future research objectives include the exploration of even more challenging appli-
cations and improvements of the presented model towards further approximation of
human cognition and intuition.

Appendix

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[0.52,0.53][0.56,0.56][0.48,1.00][0.63,1.00][0.65,0.66][0.57,0.58][0.52,0.53][0.64,0.70]
[0.53,0.54][0.57,0.57][0.67,0.71][0.79,1.00][0.72,1.00][0.58,0.59][0.53,0.54][0.66,0.71]
[0.24,1.00][0.55,0.61][0.64,0.77][0.64,0.77][0.65,0.73][0.56,0.63][0.51,0.57][0.63,0.77]
[0.51,0.57][0.50,1.00][0.64,0.77][0.64,0.78][0.66,0.73][0.56,0.63][0.01,1.00][0.63,0.78]
[0.53,0.54][0.56,0.57][0.66,0.73][0.66,0.73][0.67,0.69][0.58,0.59][0.53,0.54][0.65,0.74]
[0.54,0.54][0.57,0.58][0.60,1.00][0.67,0.72][0.67,0.68][0.59,0.59][0.54,0.54][0.66,1.00]
[0.52,0.53][0.56,0.56][0.65,0.69][0.59,1.00][0.65,0.66][0.57,0.58][0.52,0.53][0.64,0.70]
[0.51,0.58][0.54,0.62][0.63,0.77][0.63,0.78][0.65,0.73][0.18,1.00][0.51,0.58][0.62,0.78]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)
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A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[0.55,0.57][0.60,0.61][0.49,1.00][0.65,1.00][0.70,0.72][0.61,0.63][0.56,0.57][0.68,0.75]
[0.56,0.58][0.61,0.62][0.70,0.76][0.80,1.00][0.72,1.00][0.62,0.63][0.57,0.58][0.69,0.77]
[0.20,1.00][0.57,0.65][0.65,0.82][0.66,0.83][0.68,0.78][0.58,0.67][0.53,0.62][0.64,0.83]
[0.53,0.62][0.48,1.00][0.65,0.83][0.65,0.84][0.68,0.78][0.58,0.68][0.00,1.00][0.64,0.84]
[0.55,0.58][0.59,0.62][0.68,0.78][0.68,0.79][0.70,0.75][0.61,0.64][0.55,0.58][0.67,0.79]
[0.57,0.58][0.61,0.62][0.60,1.00][0.70,0.78][0.71,0.73][0.62,0.64][0.57,0.58][0.66,1.00]
[0.55,0.57][0.60,0.61][0.69,0.74][0.60,1.00][0.69,0.71][0.61,0.62][0.56,0.57][0.67,0.75]
[0.52,0.62][0.56,0.67][0.64,0.83][0.65,0.84][0.67,0.79][0.16,1.00][0.52,0.63][0.63,0.84]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

A3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[0.58,0.61][0.62,0.65][0.50,1.00][0.66,1.00][0.74,0.77][0.64,0.67][0.58,0.61][0.72,0.81]
[0.59,0.61][0.64,0.65][0.73,0.81][0.82,1.00][0.75,1.00][0.65,0.68][0.60,0.62][0.72,0.82]
[0.17,1.00][0.59,0.69][0.66,0.87][0.67,0.89][0.70,0.84][0.60,0.72][0.55,0.66][0.66,0.89]
[0.54,0.66][0.44,1.00][0.65,0.88][0.65,0.90][0.70,0.85][0.59,0.73][0.00,1.00][0.65,0.91]
[0.56,0.61][0.60,0.64][0.68,0.82][0.69,0.83][0.73,0.79][0.61,0.67][0.57,0.62][0.69,0.84]
[0.58,0.62][0.63,0.66][0.60,1.00][0.72,0.84][0.74,0.80][0.64,0.69][0.59,0.63][0.68,1.00]
[0.58,0.61][0.62,0.65][0.71,0.80][0.61,1.00][0.73,0.78][0.63,0.67][0.58,0.62][0.71,0.81]
[0.53,0.66][0.56,0.69][0.63,0.88][0.64,0.90][0.69,0.84][0.12,1.00][0.53,0.67][0.64,0.90]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)
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