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Abstract The challenging problem of complex systems modeling methods with
learning capabilities and characteristics that utilize existence knowledge and human
experience is investigated using Fuzzy Cognitive Maps (FCMs). FCMs are ideal
causal cognition tools for modeling and simulating dynamic systems. Their useful-
ness has been proved from their wide applicability in diverse domains. They gained
momentum due to their simplicity, flexibility to model design, adaptability to dif-
ferent situations, and ease of use. In general, they model the behavior of a complex
system utilizing experts knowledge and/or available knowledge from existing data-
bases. They are mainly used for knowledge representation and decision support
where their modeling features and their learning capabilities make them efficient
to support these tasks. This chapter gathers the methods and learning algorithms
of FCMs applied to modeling and decision making tasks. A comprehensive survey
of the current modeling methodologies and learning algorithms of FCMs is pre-
sented. The leading methods and learning algorithms, concentrated on modeling, are
described analytically and analyzed presenting experimental results of a known case
study. The main features of computational methodologies are compared and future
research directions are outlined.
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1 Introduction

Fuzzy Cognitive Map (FCM) is a method for modeling complex systems utilizing
existence knowledge and human experience. It has learning capabilities and charac-
teristics which improve its structure and computational behavior [39, 44, 63]. It was
introduced by Kosko [31], as an extension to cognitive maps [10], providing a pow-
erful machinery for modeling of dynamical systems. As a knowledge representation
and reasoning technique, it depicts a system in a form that corresponds closely to
the way humans perceive it. Also, it is able to incorporate experts’ knowledge and
available knowledge from data in the form of rules [44, 63, 69, 71]. This approach
represents knowledge by emphasizing causal connections and map structure.

The resulting fuzzy model is used to analyze, simulate, and test the influence of
parameters and predict system behavior. The FCM model is easily understandable,
even by a non-technical audience, and each parameter has a perceivable meaning [61].

Due to their simplicity, support of inconsistent knowledge, and circle causalities
for knowledge modeling and inferring, FCM was applied to many diverse scientific
areas including engineering [79], medicine [55, 68], business [85], software engi-
neering [36, 67], environmental sciences [29, 46], politics [8], and so on. Most of
the applications concern knowledge modeling and decision making tasks (i.e. [1, 3,
4, 6, 8, 9, 12, 21, 23, 25, 30, 34, 37, 42, 47, 48, 50–53, 58, 61, 62, 68, 72, 74]).

Also, a number of FCM modeling methodologies and/or FCM extensions for mod-
eling systems have been proposed [49]. These FCM-based approaches refer either to
FCM extensions or to enhance FCM structures inheriting characteristics and advan-
tages of other intelligent techniques. The current extensions are usually designed
to solve three FCM drawbacks [49], uncertainty modeling (FGCM, iFCM, BDD-
FCM, RCM), dynamic issues (DCN, DRFCM, FCM, E-FCM, FTCM, TQFCM),
and rule-based knowledge representation (RBFCM, FRI-FCM). The extensions of
conventional FCM seem to be a useful trend for overcoming FCM limitations.

The ability of FCMs to improve their operation on the light of experience (learn-
ing of the connection matrix) is a crucial issue in modeling. The adaptation of the
connection matrix (known as weight matrix) can be carried out by diverse unsuper-
vised and evolutionary type learning methods, such as unsupervised learning based
on the Hebbian method [51–53, 57], supervised ones with the use of evolutionary
computation [5, 11, 17, 18, 59, 74–76] and/or gradient-based methods [38, 86]. In
most known approaches to learning FCMs, the set of concept labels C is provided
a-priori by expert, and only the weight matrix is drawn from raw data.

This chapter is devoted to the presentation of methods and learning algorithms
for FCM-based modeling. FCMs will be proved to be useful to exploit the know-
ledge and experiences that human have accumulated for years on the operation of a
complex system. Also, it will be shown how the FCM-based methods and its lear-
ning capabilities have been used for decision analysis and support research. These
methodologies and algorithms contribute to engineers’ intention to construct intelli-
gent decision support systems, since the more intelligent a system is, more symbolic
and fuzzy representation it utilizes [25, 70, 79].
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2 Theoretical Background

Fuzzy Cognitive Map is a combination of fuzzy logic and cognitive mapping, and it
is a way to represent knowledge of systems which are characterized of uncertainty
and complex processes. FCMs were introduced by [31, 32] and since then they have
gradually emerged as a powerful paradigm for knowledge representation [66]. They
provide a more flexible and natural mechanism for knowledge representation and
reasoning, which are essential to intelligent systems [40, 55, 64, 80, 81].

A FCM consists of factors (concepts/nodes) which represent the important ele-
ments of the mapped system, and directed arcs, which represent the causal relation-
ships between the factors. The directed arcs are labeled with fuzzy values in the
interval [0, 1] or [−1,+1], that show the strength of impact between the concepts.
The fuzzy part allows us to have degrees of causality, represented as links between
the concepts of these diagrams. This structure establishes the forward and backward
propagation of causality, admitting the knowledge base to increase when concepts
and links between them are increased.

Each of FCM’s edges is associated with a weight value that reflects the strength
of the corresponding relation. This value is usually normalized to the interval [0, 1]
or [−1,+1]. The matrix E stores the weights assigned to the pairs of concepts. We
assume that the concepts are indexed by subscripts i (cause node) and j (effect node).

In the simplest case, it is possible to distinguish Binary Cognitive Maps (BCM) for
which the concept labels are mapped to binary states denoted as Ai ∈ {0, 1}, where the
value 1 means that the concept is activated. The weights of BCM are usually mapped
to the crisp set, i.e., ei j ∈ {−1, 0, 1}. The value 1 represents, positive causality,
understood e.g. such way, that the activation (change from 0 to 1) of concept ci occurs
concurrently with the same activation of concept c j or that deactivation (change from
1 to 0) ci occurs concurrently with the same deactivation of concept c j . The value
−1 represents the opposite situation, in which the activation of ci deactivates the
concepts c j or viceversa. The ei j = 0 means that there are no concurrently occurring
changes of the states of the concepts. In FCMs, each node quantifies a degree to
which the corresponding concept in the system is active at iteration step.

Usually, experts develop an FCM or a mental model manually based on their
knowledge in a related area. At first, they identify key domain aspects, namely con-
cepts. Secondly, each expert identifies the causal relationships among these concepts
and estimates causal relationships strengths. This achieved digraph (FCM) shows
not only the components and their relationships but also the strengths (Fig. 1).

Once the FCM is constructed, it can receive data from its input concepts, perform
reasoning and infer decisions as values of its output concepts [32, 79].

3 Fuzzy Cognitive Map Reasoning

For FCM reasoning process, a simple mathematical formulation is usually used. Val-
ues of the concept Ci in time t are represented by the state vector Ai (k), and the state of
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Fig. 1 This figure is a simple
FCM representation is illus-
trated which has five generic
vertices (F1 – F5) and the
weights (weighted edges)
showing the relationships
between concepts

the whole FCM could be described by the state vector A(k) = [Ai (k), . . . , An(k)],
which represents a point within a fuzzy hypercube I n = [0, 1]n that the system
achieves at a certain point.

The whole system with an input vector A(0) describes a time trace within a
multidimensional space I n , which can gradually converge to an equilibrium point,
or a chaotic point or periodic attractor within a fuzzy hypercube. To which attractor
the system will converge depends on the value of the input vector A(0).

The value Ai of each concept Ci in a moment k + 1 is calculated by the sum of
the previous value of Ai in a precedent moment t with the product of the value A j

of the cause node C j in precedent moment k and the value of the cause-effect link
ei j . The mathematical representation of FCMs has the following form:

Ai (k + 1) = f

⎛
⎝Ai (k) +

N∑
j=1

A j (k) · e ji

⎞
⎠ (1)

where f (·) is a threshold (activation) function [82, 83]. Sigmoid threshold function
gives values of concepts in the range [0, 1] and its mathematical type is:

f (x) = 1

1 + e−m·x (2)

where m is a real positive number and x is the value A(k)
i on the equilibrium point

[79, 82]. A concept is turned on or activated by making its vector element 1 or 0
or in [0, 1]. The transformation function is used to reduce unbounded weighted sum
to a certain range, which hinders quantitative analysis, but allows for qualitative
comparisons between concepts [79].

New state vectors showing the effect of the activated concept are computed using
method of successive substitution, i.e., by iteratively multiplying the previous state
vector by the relational matrix using standard matrix multiplication Ak = Ak−1 +
(Ak−1 · W ). The iteration stops when a limit vector is reached, i.e., when Ak = Ak−1
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or when Ak − Ak−1 ≤ e; where e is a residua, whose value depends on the application
type (and in most applications is equal to 0.001). Thus, a final vector A f is obtained,
where the decision concepts are assessed to clarify the final decision of the specific
decision support system.

4 FCM for Decision Support

Real-world problems are not static, the environment changes continuously while
decision makers attempt to make a choice, and that it also changes as a result of
those choices. In fact, most of real-world decision making is dynamic. Critical deci-
sions in finance, sales, engineering, manufacturing, and other fields need interrelated
resource-constrained decisions under hardly complex and uncertain environments.

Overall, decision support includes selecting the optimal strategy for reaching
goals, from several strategies. The risks and uncertainties associated with each alter-
native shape a set of constraints with influence over this process [7]. Real-world
issues are often composed by several elements interrelated in so complex ways. In
addition, they are frequently dynamic, since they evolve with time by the interactions
among elements [63].

Intelligent DSS often incorporates Artificial Intelligence (AI) techniques of
knowledge representation and rule-based inferencing. Intelligent DSSs have resulted
from the use of artificial intelligence techniques to improve the performance of more
traditional systems. AI techniques are used in DSS knowledge bases and inferential
procedures [47].

One promising tool for modeling and controlling complex systems is the FCM, and
it has emerged as alternative tool for representing and analyzing the systems behavior.
FCMs illustrate different aspects in the system’s behavior and these concepts interact
with each other showing the dynamics of the system.

The main goal of building a FCM around a problem is to be able to forecast
the outcome by letting the relevant issues interact with one another. In this sense, it
can be used for finding out whether a decision is consistent with the whole set of
stated causal assertions [63]. FCM application may contribute to the effort for more
intelligent control methods and for the development of autonomous decision making
systems.

By using FCMs for decision support, we also get the following benefits [63]:

• Simplicity. By transforming decision problems into causal graphs, decision makers
with no technical background can easily understand all of the components in a
given problem and their relationships.

• Simulation and prediction. With FCMs, it is possible to determine the most critical
factor that appears to affect the target variable and to simulate its impact.

• Timeliness. By relying on FCM models, the decision maker has a strong support,
and hence is able to decide faster.
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• Reliability. By relying on FCM models from a reputable source, decision makers
have the guarantee, or the expectation, that it was built with all the required care,
including extensive testing and some validation techniques.

• Investment. FCM models is a way to save the know-how and ingenuity of the best
decision makers; to turn a volatile asset into a permanent one.

• Efficiency. Decision makers can aim at the best decisions in their fields of excel-
lence, and for the remainder rely on someone else’s expertise modeled in FCMs.
In this sense, FCM models could be an efficiency trigger.

• Visual modeling. FCMs provide an intuitive, yet precise way of representing con-
cepts and reasoning about them at their natural level of abstraction.

In addition, FCMs represent knowledge efficiently, handle fuzziness, model sit-
uations including uncertain descriptions, adaptive to different situations, and it is
flexible to new knowledge.

5 FCM Models/Methodologies

5.1 Rule-based FCMs

Rule-based Fuzzy Cognitive Maps (RB-FCM) are a FCM evolution covering several
types of interrelations, not just monotonic causality [15, 16]. RB-FCM represents
the complex real-world qualitative systems dynamics with feedback and allow the
simulation of events modeling their impact in the system.

RB-FCM are iterative fuzzy rule based systems dealing feedback with fuzzy
mechanisms. RB-FCM timing and innovative methods with uncertainty propagation.
RB-FCM proposes additional types of relations between concepts as follows causal,
inference, alternatives, probabilistic, opposition, conjunction, and so on. Moreover,
they include a new fuzzy operation (Fuzzy Carry Accumulation) to model qualitative
causal relations (Fuzzy Causal Relations) (Figs. 2 and 3).

In addition, RB-FCM represent time in different ways. The RB-FCM modeler
must be able to identify the implicit time in each relationship. Base Time (B-Time)
represents the highest level of temporal detail that a simulation can provide in the
RB-FCM model (the resolution of the simulation). B-Time must always be implicit
while designing each rule in RB-FCM, because if B-Time is one day the meaning of
a rule is different than the B-Time is one year.

5.2 Dynamical Cognitive Networks

Dynamical Cognitive Network (DCN), proposed by [40], improves FCM by quanti-
fying the concepts and introducing nonlinear, dynamic functions to the edges. There-
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Fig. 2 Rule-based fuzzy cognitive maps. It is illustrated with a couple of nodes (c1 and c3) and a
RBFCM relationship between them. Fuzzy rules and defuzzification process to compute the new
state c3

Fig. 3 This figure shows the
three kind of relationships
in FGCM. The relationship
between x2 and x3 is a white
one, between x1 and x2 is a
grey one, and between x3 and
x1 is a black one. FCMs just
represent white relationships

fore, DCNs are able to model the dynamic nature of causal processes and perform
sensible inference robustly.

DCN relies on the Laplacian framework to represent the causal relationships. The
transformation between fuzzy knowledge and Laplacian functions imposes more
efforts to DCN modelers. Each DCN node (concept) have its own value set, according
on how accurately it needs to be represent.

In this sense, DCNs are more flexible and scalable than conventional FCMs. A
DCN can be as simple as a Cognitive Map, a FCM, or as complex as a nonlinear
dynamic system. DCNs consider the causal inference factors: the value of the cause,
the value of the causal relationship and the degrees of the effect. DCNs improve FCMs
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by quantifying the state’s concepts and introducing non-linear, dynamic functions to
the edges.

The value set of the DCN (ΦG) is the product space of the spaces (Φv∈G), where
Φv are the spaces of the concepts which G contains. It is then defined as follows:

ΦG =
∏
v∈G

Φv

= {x |x = (x1, . . . , xn)T , xi ∈ Φvi i = 1, . . . , n} (3)

where G is a digraph representing the DCN adjacency matrix. The concept value set
of a concept v is an order set denoted by Φv; every element of the set is a possible
state of the concept.

Every DCN concept has its own value set (a binary set, a triple set, a fuzzy set, or a
real interval) according to its properties. Moreover, FCMs does not handle dynamics.

5.3 Fuzzy Grey Cognitive Maps

Fuzzy Grey Cognitive Map (FGCM) is an FCM-based generalization designed for
environments with high uncertainty, under discrete incomplete and small data sets
[65] and it is based on Grey Systems Theory. The FGCM nodes are variables and
the relationships between them are represented by grey weighted directed edges. An
interval grey weight between the nodes xi and x j is denoted as ⊗wi j ∈ [wi j , wi j ]
and it has a lower limit (wi j ) and an upper limit (wi j ). FGCMs represent the human
intelligence better than FCM, because it is able to represent unclear relations between
nodes and incomplete information about the modeled system better than FCMs do.

The state values of the nodes are updated in an iterative process with an activation
function, which is used to map monotonically the grey node value into the range [65].

⊗C(t + 1) = f

(
C(t) · A(⊗)

)

= f

(
⊗ C∗(t + 1)

)

= f

(
(⊗c∗

1(t + 1),⊗c∗
2(t + 1), . . . ,⊗c∗

n(t + 1))

)

=
(

f (⊗c∗
1(t + 1)), f (⊗c∗

2(t + 1)), . . . , f (⊗c∗
n(t + 1))

)

=
(

⊗ c1(t + 1),⊗c2(t + 1), . . . ,⊗cn(t + 1)

)
(4)

where A(⊗) is the grey adjacency matrix, and f (·) the grey activation function.
Usually, the grey activation function is a unipolar grey sigmoid
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⊗ wi (t + 1) ∈
[

1

1 + e−λ·w∗
i (t+1)

,
1

1 + e−λ·w∗
i (t+1)

]
(5)

or a grey hyperbolic tangent

⊗ wi (t + 1) ∈
[

eλ·w∗
i (t+1) − e−λ·w∗

i (t+1)

eλ·w∗
i (t+1) + e−λ·w∗

i (t+1)
,

eλ·w∗
i (t+1) − e−λ·w∗

i (t+1)

eλ·w∗
i (t+1) + e−λ·w∗

i (t+1)

]
(6)

5.4 Intuitionistic FCMs

Intuitionistic FCMs (iFCM) cope with the inability of the FCM models to co-evaluate
the hesitancy introduced into the modeled problems due to imperfect facts, indecision
and lack of information [49]. iFCM proposal is effective with numeric, reproducible
examples, on process control and decision support.

iFCMs include the Intuitionistic Fuzzy Sets (IFS) to handle the experts’ hesitancy
in their judgements. It improves conventional FCM through the intuitionistic theory
so that it models the degree of hesitancy in the relations defined by the experts (Fig. 4).

The experts propose the cause-effect relations between two concepts, and the
degree to which the expert hesitates to express that relation. IFS is a generalization
of conventional fuzzy sets since the IFS membership is a fuzzy logical value rather
than a single truth value.

Fig. 4 A relation between a couple of nodes (x1 and x2) in iFCM-II. Each node has an impact
weight and a hesitancy weight
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iFCM-I proposal just considers the hesitancy of the influence between a couple
of concepts. On the other hand, iFCM-II introduced hesitancy in the determination
of concept values [49]. The hesitancy of the element x of a fuzzy set A is defined as
follows

πA(x) = 1 − μA(x) − γA(x) (7)

The iFCM-I iterative reasoning process is computed as follows

ci (t + 1) = f

(
(2 · ci (t + 1)) +

n∑
i=1

((2 · c j (t + 1)) · ζ j i · wμ
j i · (1 − wπ

j i ))

)
(8)

where ci ∈ [0, 1], i = 1, . . . , n represent real node values at iteration k, wμ
j i ∈ [0, 1]

and wπ
j i ∈ [0, 1] represent the impact weight and the hesitancy weight and factor ζ j i

models the sign (positive or negative) impact between the related concepts.
iFCM-II considers that nodes i = 1, . . . , n are modeled with linguistic variables

represented by IFSs as follows

Lci
n = {〈x, vμ

i (x), vγ

i (x)|x ∈ E+〉} (9)

5.5 Dynamic Random Fuzzy Cognitive Maps

Dynamic Random Fuzzy Cognitive Maps (DRFCM) improves conventional FCMs
with the nodes’ activation probability and including a nonlinear dynamic function
within the inference process [2]. The main proposal of the DRFCMs is focused on
the dynamic causal relationships. The edges’ weight are updated during the FCM
dynamics to adapt them better to the new conditions. DRFCM considers on-line
adaptive procedures of the system like real-world problems.

The node’s state on the DRFCM (the probability of activation of a given concept
ci ) is computed as follows

p j = min{ϕ+
j , max{ri , ϕ

−
j }} (10)

where
ϕ+

j = max
i=1...n

{min{qi , w+
i j }} (11)

ϕ−
j = max

i=1...n
{min{qi , w−

i j }} (12)

r j = max
i=1...n

{w+
i, j , w−

i j } (13)

where r j is the fire rate, and wi j represents how node ci have influence over the node
c j . If the relationship between both nodes is direct then w+

i j > 0 and w−
i j = 0. On the
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other hand, if the former relationship is inverse then w−
i j > 0 and w+

i j = 0. Finally,

if doesn’t exist a relationship among them, then w+
i j = w−

i j = 0.

5.6 Fuzzy Cognitive Networks

Fuzzy Cognitive Networks (FCNs) is an extension of FCMs [13, 33]. The edges’
weights are updated in each iteration providing a quicker and smoother convergence.
FCNs store the formerly operational situations in a fuzzy rule database avoiding
intensive interference with the real-world system updating.

FCNs always get equilibrium points with a continuous differentiable sigmoid-like
activation functions with non expansive (or even contractive) properties.

FCNs’ adjacency matrix is extracted from physical system historical data. More-
over, FCNs are in continuous interaction with the system they model. The main con-
tribution is the updating mechanism that get feedback from the real-world system
and its storage of the ongoing knowledge throughout the system dynamics (Fig. 5).

The FCN’s updating process takes into account feedback node states from the
real-world system. The proposed updating rule is based on the conventional delta
rule as follows

δ j (k) = csystem
j (k) − cFC N

j (k)

= csystem
j (k) −

(
1 + e

−
( ∑n

i=1,i �= j csystem
i (k) · wi j (k) + csystem

j (k)
))−1

(14)

wi j (k) = wi j (k − 1) + a · δ j (k − 1) · (1 − δ j (k − 1)) · cFC N
j (k − 1) (15)

where a is the learning rate and δ j (k) is the error at iteration k, usually set at a = 0.1,
cFC N

i (k) refers i to the response of the FCN at k iteration, when the nodes take their
state values from the system’s feedback.

Fig. 5 This figure illustrates the interactive operation of a FCN-based system. The experts offer
information related to the structure and the initial weights of the FCN. The desired values represent
the system’s goals
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5.7 Evolutionary Fuzzy Cognitive Maps

Evolutionary Fuzzy Cognitive Maps (E-FCM) simulate real-time concepts states
[14]. Their use was examined to model the complex and dynamic causal-related
context variables. E-FCM models every temporal state value, which is named as
Evolving State in the running process.

Nodes states evolve in real-time, based on their internal states, external assign-
ment, even external causalities. The nodes update their internal states in an asynchro-
nous way with a tiny mutation probability. The causal relationship E represents the
strength and probability of the causal effect between a couple of nodes. This proposal
considers a couple of system’s uncertainty fuzziness and randomness as follows

E = [W, S, Pm] (16)

where W is a vector of relationships weights, S is a vector of the signs of causal
relationships, Pm is a vector of the causal edges probabilities, and m the number of
edges.

The E-FCM causal weights can be computed as the statistical correlation of the
input data (changes in the presynaptic nodes) and output data (changes in the post-
synaptic nodes) if training datasets are available.

wi j = Cov(ci , c j )√
var(ci ) · var(c j )

(17)

where var(ci ) is the variance of the changes in the node state ci , and Cov(ci , c j ) is
the co-variance of the changes in node state ci and the changes in node state c j .

The updating rule is computed as follows

Δci (t + T ) = f
(

k1 · ∑n
j=0 Δc j (t) · wi j + k2 · 
ci (t)

)

ci (t + T ) = ci (t) + 
ci (t + T )
(18)

where T is the time for concept i to update its value (Evolving Time schedule), and
k1 and k2 are two weight constants.

E-FCM allows different update time schedule for each node, an asynchronous
update of the concepts’ state. As a result, nodes can evolve in a dynamic and proba-
bilistically way.

5.8 Fuzzy Time Cognitive Maps

Fuzzy Time Cognitive Maps (FTCM) is an FCM extension including time in node’s
edges [56]. FTCMs model the delay of the influence between the presynaptic node
over the postsynaptic one. The relationships between a couple of nodes has two
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values, the conventional weight and the time lag.

� = {wi j , ti j } | ti j ≥ 1 (19)

FTCM introduces dummy nodes for value-preserving and translate the FTCM
with time delays to unit-time delays (Fig. 6). In addition, it allows comparison of the
results between the model dynamics of FTCM and FCM for analyzing time delay
effects on the system.

5.9 Fuzzy Rules Incorporated with Fuzzy Cognitive Maps

Fuzzy Rules Incorporated with FCMs (FRI-FCM) extends conventional FCM inher-
iting the rule-based representation of RB-FCMs to describe the systems under a
connected point of view [72]. FRI-FCM translates the reasoning mechanism of con-
ventional FCMs to a set of fuzzy IF-THEN rules. FRI-FCM inherits the representation
of RB-FCMs to represent the causality underlying the modeled systems.

The FRI-FCM proposal is a four-layer fuzzy neural network designed to enhance
the capability of conventional FCMs to automatically identify membership functions
and quantify the causalities from raw data [72].

FRI-FCM makes comprehensive use of the dimensional data underlying input
vectors state and avoids troublesome degrading of the fuzzy rules activations when
the input dimensions are increasing [47].

Fig. 6 This figure shows a FTCM with time delays in the upper side and its translation in a unit-time
FTCM with dummy nodes
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5.10 Fuzzy Cognitive Maps Extensions Comparison

Table 1 shows advantages, disadvantages of each FCM modeling method and in
which domain, it is suggested for decision support. In this sense, we propose the
following kinds of domains:

As a result, DCN, DRFCM, FCN, and FTCM are suitable for Type I domains
where the environments are dynamic and it could include time delays. FGCM and
iFCM are better for Type II where the real world has a high uncertainty level. For Type
III domain the best approaches are Rule-based FCM, FGCM, iFCM, and FRI-FCM
and for Type IV EFCM is the best modeling option.

6 Learning Algorithms for FCMs

The learning approaches for FCMs are concentrated on learning the connection
matrix E , i.e. causal relationships (edges), and their strength (weights) based either
on expert intervention and/or on the available historical data. According to the avail-
able type of knowledge, the learning techniques could be categorized into three
groups; Hebbian-based, population-based and hybrid, combining the main aspects
of Hebbian-based and evolution-based type learning algorithms [45].

They have been compared recently in a review work [45], where their main features
were described and the degree of success of each one was pinpointed. However, after

Table 1 FCM extensions comparison

FCM extension Advantages Disavantages Domain

Rule-based FCM Include fuzzy rules Complex inference Type III
Dynamical cognitive

network
Nonlinear dynamic functions Higher modeling efforts Type I

Fuzzy Grey CM Include model uncertainty Higher modeling efforts Type II
Type III

Intuitionistic FCM Include model uncertainty Higher modeling efforts Type II
Type III

Dynamic random FCM Nonlinear dynamic function Complex inference Type I
Fuzzy cognitive network Quicker and smoother convergence Complex inference Type I

Always convergence
Evolutionary FCM Real-time simulation Higher modeling efforts Type IV

Dynamic variables Complex inference
Different update schedule

Fuzzy time cognitive
map

Represent time delays Non-static analysis Type I

Fuzzy rules incorporated
with FCM

Include fuzzy rules Neural network topology Type III
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Type I Dynamic systems with uncertainties and/or time delays.
Type II Extremely uncertain environment.
Type III Human decision making oriented.
Type IV Real-time systems and control.

this review study, new learning methodologies were emerged and investigated for
constructing FCMs especially from data.

The following three subsections describe each algorithm category from the three
groups, presenting also, new learning algorithms for evolutionary-based and hybrid
techniques as well as their domain applications. At the end of this section, the main
advantages and disadvantages of each one learning category are described showing
the appropriateness of each one according to the problem domain.

6.1 Hebbian-based Methods

Dickerson and Kosko were the first who attempted the suggestion of a simple Differ-
ential Hebbian Learning (DHL) method [19, 20], which is based on Hebbian theory
[26]. During DHL learning the values of weights are iteratively updated until the
desired structure is found. In general, the weights in the connection matrix are modi-
fied only when the corresponding concept value changes. The main drawback of this
learning method is that the formula updates weights between each pair of concepts
taking into account only these two concepts and ignoring the influence from other
concepts.

An improved version of DHL learning, namely Balanced Differential Algorithm
(BDA), was introduced by Huerga [28]. That algorithm eliminates one of the limi-
tations of DHL method by taking into account the entire concept values that change
at the same time when updating the weights. More specifically, it takes into consid-
eration changes in all concepts if they occur at the same iteration and has the same
direction; however it was applied only to binary FCMs, which limits its application
areas.

One year later, Papageorgiou and her colleagues introduced two unsupervised
Hebbian-based learning algorithms, such as Active Hebbian Learning (AHL) and
Nonlinear Hebbian Learning (NHL) which were able to iteratively adjust FCM
weights and thus the learning of FCMs was mainly based on experts’ intervention
[12, 48, 50–52, 55]. In NHL approach, experts are required to suggest nodes that
are directly connected and only these edges are modified during learning.

The experts have to indicate sign of each edge according to its physical inter-
pretation and only the non-zero edges are updated. Also, the experts have to define
decision concepts and specify range of values that these concepts can take. The
validation is based on checking whether the model state satisfies these constrains.
In a nutshell, the NHL algorithm allows obtaining model that retains initial graph
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structure imposed by expert(s), and therefore requires human intervention before the
learning process starts.

In AHL approach [52] experts determine the desired set of concepts, the initial
structure, as well as the sequence of activation concepts. A seven-step AHL proce-
dure, which is based on Hebbian learning, is iteratively used to adjust the weights to
satisfy predefined stopping criteria. This approach exploited the task of determination
of the sequence of activation concepts.

Later, Stach and coworkers [76] proposed an improved version of the NHL
method, called Data-Driven Nonlinear Hebbian Learning (DD-NHL), which is based
on the same learning principle as NHL. However, it takes advantage of historical data
(a simulation of the actual system) and uses output/decision concepts to improve the
learning quality. An empirical comparative study have shown that if historical data are
available, then the DD-NHL method produces better FCM models when compared
with those developed using the generic NHL method.

6.2 Population-based Methods

In the case of population-based algorithms, the experts are substituted by historical
data and the corresponding learning algorithms or optimization algorithms are used
to estimate the entries of the connection matrix E . The population-based learning
algorithms are usually oriented towards finding models that mimic the input data.
They are optimization techniques, and for this reason, they are computationally quite
demanding. Several population-based algorithms, such as evolutionary strategies
[34], genetic algorithms [23, 74], real coded generic algorithm—RCGA [73–75],
Swarm Intelligence [43], Chaotic Simulated Annealing [4], Tabu search [6], game-
based learning [37], Ant Colony Optimization [21], extended Great Deluge algorithm
[89], Bing Bang-Big Crunch [87] for training FCMs have been proposed.

Due to the need of developing new approaches for an automated generation of
fuzzy cognitive maps using historical data, some innovative and promising learning
algorithms have been proposed recently. For example, an Ant Colony Optimization
(ACO) algorithm was presented in order to learn FCM models from multiple observed
response sequences. Experiments on simulated data suggest that the proposed ACO
based FCM learning algorithm is capable of learning FCM with at least 40 nodes.
The performance of the algorithm was tested on both single response sequence and
multiple response sequences. The ACO approach was compared to these algorithms
through experiments. The proposed ACO algorithm outperforms RCGA, NHL and
DD-NHL in terms of model error and SS mean measures when multiple response
sequences are used in the learning process [21].

Also, a new learning algorithm, which is called Big Bang-Big Crunch, was pro-
posed for an automated generation of Fuzzy Cognitive Maps from data. Two real-
world examples, namely a process control system and radiation therapy process, and
one synthetic model are used to emphasize the effectiveness and usefulness of the
proposed methodology.
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Moreover, the evolutionary mechanism of Cellular Automata (CA) was used to
learn the connection matrix of FCM [18]. One-dimension cellular automata were
used to code weight parameters, and the cellular states were chosen within the range
[0, 1] to form a cell space. In order to guide the optimization direction effectively and
accelerate the speed of convergence, a mutation operator was added in the algorithm.
This approach was applied on modeling the short-term stock prediction. The data
come from Shanghai Securities Exchange, dating from 2002-02-27 to 2002-06-20,
52 days of them were used for training and the rest were used for testing. However,
through the experimental analysis, the system error was fluctuating randomly, which
explains the non-convergence of the evolution of CA.

A new adaptation algorithm focused on FCM design and optimization, the so-
called Self-Organizing Migration Algorithms (SOMA), was proposed by Vascak
[84] and was compared also to other methods like particle swarm optimization,
simulated annealing, active and nonlinear Hebbian learning on experiments with
catching targets for future purposes of robotic soccer. Obtained results showed the
advantageous characteristics of the proposed method which are apparent and useful
for other application domains.

Moreover, supervised learning using gradient method was proposed by Yastrebov
& Piotrowska [86], as a modification of the weights in the direction of steepest
descent of error function. Although this gradient-based method seems a promising
approach, it needs further theoretical foundation and experimental analysis.

Little research has been done on the goal-oriented analysis with FCM. A method-
ology for decision support was suggested, which uses an immune algorithm to find
the initial state of system in given goal state. The proposed algorithm takes the error
objective function and constraints as antigen, through genetic evolution, and antibody
that most fits the antigen becomes the solution [35].

6.2.1 Evolutionary Approaches for Prediction Tasks

The prediction of multivariate time series is one of the targeted applications of evolu-
tionary fuzzy cognitive maps (FCM). The objective of the research presented in [22]
was to construct the FCM model of prostate cancer using real clinical data and then
to apply this model to the prediction of patient’s health state. Due to the requirements
of the problem state, an improved evolutionary approach for learning of FCM model
was proposed. The focus point of the new method was to improve the effectiveness
of long-term prediction [22]. The evolutionary approach was verified experimen-
tally using real clinical data acquired during a period of two years. A preliminary
pilot-evaluation study with 40 men patient cases suffering with prostate cancer was
accomplished. The in-sample and out-of-sample prediction errors were calculated
and their decreased values showed the justification of the proposed approach for the
cases of long-term prediction.

In the theoretical part, addressing these requirements of the medical problem, a
multi-step enhancement of the evolutionary algorithm applied to learn the FCM was
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introduced. The advantage of using this method was justified theoretically and then
verified experimentally [41].

6.2.2 Learning Approaches for Classification Tasks

Papakostas et al. [55] implemented FCMs for pattern recognition tasks. In their
study, a new hybrid classifier was proposed as an alternative classification structure,
which exploited both neural networks and FCMs to ensure improved classification
capabilities. A simple GA was used to find a common weight set which, for dif-
ferent initial state of the input concepts, the hybrid classifier equilibrate to different
points. Recently, Papakostas et al. [54] presented some Hebbian-based approaches
for pattern recognition, showing the advantages and the limitations of each one.

Another very challenging learning category, which has also been applied for clas-
sification tasks and recently emerged, is the Ensemble learning [49]. This ensemble
learning method inherits the main ideas of ensemble based learning approaches, such
as bagging and boosting. FCM ensemble learning is an approach where the model
is trained using non linear Hebbian learning (NHL) algorithm and further its perfor-
mance is enhanced using ensemble techniques. The Fuzzy Cognitive Map ensembles
were used to learn the produced FCM by the already known and efficient data driven
NHL algorithm. This new proposed approach of FCM ensembles, applied to a case
study regarding the identification of autism, showed results with higher classification
accuracy instead of the NHL alone learning technique.

6.3 Hybrid Learning Methods

In this type of FCM learning methodology, the learning goal is to modify/update
weight matrices based on initial experience and historical data at a two stage process.
The algorithms proposed in the literature target different application requirements
and try to overcome some limitations of FCMs. Little literature exists towards this
direction [42, 88]. Papageorgiou and Groumpos [42], proposed for first time a hybrid
learning scheme composed of Hebbian type and differential evolution algorithms and
showed its applicability for in real-world problems for decision making tasks.

Later, Ren [60] presented a hybrid FCM learning method combining NHL and
Extended Great Deluge Algorithm (EGDA). This hybrid learning approach has the
efficiency of NHL and global optimization ability of EGDA. The FCM is trained
at first with the use of NHL, in order to get a set of weights close to optimization
structure, and then using EGDA the model is optimized for error minimization. The
results were on a simple FCM structure, therefore more complex structures need to
be experimented to approve this type of learning.

Another hybrid scheme using RCGA and NHL algorithm was presented by Zhu
and Zhang [88], and investigated in a problem of partner selection. Their algorithm
inherits the main features of each one learning technique, of RCGA population-based
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algorithm and NHL type, thus combining expert and data input. Although the first
results are encouraging, more research would be essential.

6.3.1 Learning Algorithms Advantages and Limitations

Most of the FCM learning algorithms are devoted to the FCM modeling and optimiza-
tion. They adapt the weight matrix using the available knowledge from experts and/or
historical data. The produced FCM model after training follows system’s/problem’s
characteristics. In the case of evolutionary computation techniques, the FCM design
is based on the minimization of an error/cost or fitness function. The fitness function
for each population-based algorithm might be modified according to the problem
type [45]. Some studies have shown that the population-based algorithms increase
FCM functionality, robustness and have generalization abilities [45].

Table 2 describes the main applications of FCM learning algorithms which con-
cern the modeling/design, optimization, prediction and decision support. Also the
main domains of each one FCM-based application are apposed in Table 2.

Each one learning category has its advantages and limitations, which make it
appropriate to specific type of problems according to the data and knowledge avail-
ability. Table 3 gathers the most significant advantages and limitations of each one
learning category. It is highlighted the usefulness of each one FCM modeling/design
and optimization.

Table 2 Learning algorithms for FCM modeling, optimization, prediction and decision support

Description Learning algorithms Domain

FCM modeling/design DHL, AHL, DD-NHL, NHL-PSO,
Extended Great Deluge
Algorithm (EGDA),
NHL-ECGA, NHL-RCGA,
memetic PSO, Tabu search,
Simulated annealing, Evolution
strategies, RCGA, Parallel
RCGA, Sparse RCGA, Divide
& Conquer, Immune algorithm.

Industrial process control, mineral
processing, game world,
radiotherapy modeling, partner
selection problem, Robotic
soccer navigation

FCM optimization ACO, Cellular Automata, Big
Bang-Big Crunch,
Gradient-based, migration
algorithms, Differential
Evolution (DE).

Numerical examples, one tank
process control, Robotic soccer
navigation, radiotherapy
optimization

FCM predic-
tion/classification

Hebbian-based (AHL, NHL),
DD-NHL, GA, Ensemble
learning, evolutionary FCMs
for time series prediction

Pattern recognition, Classification,
Time-series prediction

FCM-based decision
support

GA for multi-objective decision,
genetic algorithm, Differential
Evolution (DE), PSO, Hybrid
algorithm (NHL-DE)

Medicine, politics, e-business
company, squad of soldiers in
combat
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Table 3 FCM learning comparison

Advantages Limitations

Hebbian-based Connections have a physical
meaning

Small deviations of weights from the
initial ones

Connections keep their signs Dependence on experts
No time consuming Dependence on initial states and

connections
Easy of use Higher simulation errors
No multiple historical data Low generalization ability

Population-based Model concepts with precise values Learn FCM from multiple observed
response sequences

Cost function optimization Large number of historical data
Low simulation error Large number of processors
Increase functionality Time consuming
Robustness Adjustment of enough learning

parameters
Generalization ability Availability of historical data

Problem with convergence issues

One challenge is to develop efficient semi-automated algorithms to encounter
the limitations/problems, presented in Table 3, such as hybrid and ensemble learning
algorithms. The semi-automated methods are preferred if some structural constraints
have been imposed on the map by the experts. The hybrid learning approaches, which
are based on functionalities of Hebbian and population-based learning algorithms
and inherit the advantages and disadvantages of both of them, emerge less limitations
as most of them can overcome from the fusion of both computational methods. Thus,
their operation could be more advantageous in the case of modeling complex systems
and systems with time evolving.

If the only criterion is the quality of the model’s dynamic behavior then the
fully automated genetic optimization seems to be the best solution [74, 75, 78]. The
population-based methods have wider applicability due to their ability to learn FCMs
from multiple observed response sequences; they are able to predict time-series, to
classify patterns, to simulate chaotic behavior, to model the evolving virtual systems,
etc [45].

The main drawback of the population-based learning methods is that they provide
solutions that are hard or impossible to interpret and which may lead to incorrect static
analysis. Some experimental results that concern both static and dynamic properties
of the FCMs learned with the genetic-based methods are promising [73].

7 Example Case Study on FCM Design Using Learning Methods

An example process control problem which was described in [51] was selected to
show the effectiveness of each one learning algorithm for FCM design. We concen-
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trate our presentation results on FCM design and adaptation methods using learning
algorithms described previously. This process control problem is a well-established
case study as it was used by most researchers to experimentally analyze and test their
suggested learning techniques. A brief description of how this FCM model can be
used to perform various tasks of analysis and simulations in order to obtain useful
knowledge about the system being modeled, is presented in [73].

This chemical process problem consists of a tank with three valves that influence
the amount of liquid within the tank. Valve 1 and valve 2 empty two different kinds
of liquid into the tank, and during the mixing of the two liquids a chemical reaction
takes place. Valve 3 opens when a proper mixing of the two liquids is accomplished.

A gauge sensor located inside the tank measures the specific gravity of the pro-
duced liquid. The desired quantity of the liquid within the tank depends (a) on the
value of the specific gravity G, which should range between a minimum (Gmin) and a
maximum value (Gmax ), and (b) on the height H of the liquid within the tank, which
should also range within a minimum Hmin and a maximum value Hmax . In this case
process control aims to maintain the values of G and H within the desired ranges,
which are:

0.74 ≤ G ≤ 0.80 (20)

0.68 ≤ H ≤ 0.74 (21)

The FCM model for this system involves the following five concepts:

Concept 1 (c1) represents the amount of liquid as measured by its height H within
the tank; it depends on the operational state of valves 1, 2 and 3.

Concept 2 (c2) represents the state of valve 1; it may be closed, open or partially
open.

Concept 3 (c3) represents the state of valve 2; it may be closed, open or partially
open.

Concept 4 (c4) represents the state of valve 3; it may be closed, open or partially
open.

Concept 5 (c5) represents the specific gravity G of the liquid within the tank.

Since the monitored parameters of this problem are the specific gravity and the
height, the decision concepts (DC) of the cognitive map are the concepts c1 and c5.
These concepts are connected as illustrated in the form of a graph shown in Fig. 7,
which also shows the weights associated with directed connections between all pairs
of the concepts.

We use the process control system in Fig. 7 to investigate the quality of models
learned using the state-of-the-art learning methods which exist in the literature. The
usage of different FCM development methods may result in different maps. Following
that, we focus on the central theme of this chapter which is the design of FCM-
based models, defining concepts relevant to a given system and weighted connections
(weights) between the selected concepts.

More specifically, the following learning approaches have been implementing to
learn this FCM model: AHL, NHL, NHL-DE, DDNHL, RCGA, PSO, ACO, memetic
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Fig. 7 This figure shows the
tank control model

PSO, and Big Bang-Big Crunch. These nine different learning methodologies were
tested experimentally in this process control problem. The simulation results of the
conventional FCM model which describes the process control, were used as data to
learn the FCM model [74].

Since the RCGA and other evolutionary-based methods were initialized with a
100 randomly generated maps, whereas the three Hebbian-based methods use just
a single map, the experiments for all Hebbian-based were repeated 100 times using
the 100 initial maps generated for the RCGA and method. The final output was
selected as the map that provides simulations either with the lowest value of the
simulation-error or with the minimum cost function.

Table 4 presents a summary of the results for the nine learning approaches applied
in this process control problem. Both matrix-error and calculation-error (concern-
ing either simulation error or cost/fitness function minimization) were calculated to
quantify the quality with respect to both the static and the dynamic analysis. The aver-
age values together with the corresponding standard deviations (shown in brackets)
are reported.

Matri x − error = 1

N · (N − 1)

N∑
i=1

N∑
j=1

(westimated
i j − wreal

i j ) (22)

where westimated
i j and wreal

i j are the estimated weights after learning and real (initial)
weights respectively. The simulation error is computed as follows

Simulation − error = 1

N · (K − 1)

K−1∑
k=1

N∑
j=1

|DCestimated
i − DCreal

i | (23)

where DCestimated
i and DCreal

i are the estimated and real values of decision concepts
(DC), K is the number of available iterations to compare and N is the number of
concepts. The cost function is calculated as follows
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Table 4 Applied learning methods in a case study problem

Learning
method

Weight matrix
error

Error calculation
(Simulation error
or cost function)

Authors

AHL 0.303 (0.187) 0.069 Simulation-error [Papageorgiou et al.
2004]

NHL 0.236 (0.162) 0.064 Simulation-error [Papageorgiou et al.
2003]

NHL-DE 0.192 (0.034) 10−4 Fitness function [Papageorgiou &
Groumpos, 2005]

DDNHL 0.245 (0.145) 0.056 Simulation-error [Stach et al. 2008]
RCGA 0.255 (0.154) 0.001 Cost function [Stach et al. 2004, 2007,

2010]
PSO 0.186 (0.032) 10−4 Fitness function

F(W)
Papageorgiou et al.

2004, Petalas et al.
2005

ACO 0.193 (0.036) 10−8 Fitness function
F(W)

Ding et al. 2011

Big Bang-
Big
Crunch

N/A 1.57x10−6 Cost function Yesil and Urbas, 2010

Memetic
PSO

0.191 (0.034) 10−8 Fitness function
F(W)

Petalas et al. 2005

Cost − f unction = 1

N · (K − 1)

K−1∑
k=1

N∑
j=1

(DCestimated
i − DCreal

i )2 (24)

It is observed that the weight matrix-error values obtained with maps learned
using the population-based methods are substantially lower than the errors of the
AHL, NHL and DDNHL. This happens due to the small deviations of the learned
weights around their initial values. The ACO, PSO, Big Bang-Big Crunch have shown
better performance regarding the quality of the produced maps than the RCGA and
Hebbian-based models. In the case of AHL, the matrix error increases as all the zero
weights are updated to new non-zero values.

Concerning the simulation-error values obtained with maps learned using the
Hebbian-based methods are higher than the errors of the other population-based
approaches. In spite of the relatively different connection matrix generated by
population-based algorithms, the error/cost function or fitness function minimiza-
tion is very small (equals 0.001 if we consider only the final state). This observation
can be generalized, based on experiments reported in the literature (e.g. reference
[77]), to a statement that the structurally different maps can generate very similar sim-
ulations. The population-based approaches find a number of suboptimal solutions,
which in the case of PSO and memetic PSO can be a large one. This is acceptable
due to the operation of the evolutionary approaches for optimization tasks.
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Summarizing, population-based methods outperform Hebbian-based in terms of
model error. The evolutionary learning algorithms use fitness functions for design
and optimization tasks, thus defining the problem constraints more efficiently in
learning approach.

8 Conclusions and Future Directions

FCM-based methods and computational learning algorithms have emerged attention
throughout recent years for modeling and decision support tasks. Many successful
applications in diverse domains clearly imply the effectiveness of these methodolo-
gies and learning techniques devoted to FCM modeling and decision making.

There is a considerable number of methodologies and learning approaches for
FCMs resulted from several years of research and are exploited in this chapter.
They emerged to eliminate the drawbacks and limitations of the conventional FCMs,
thus improving and automating FCM modeling and construction. It is a research
challenge for proposing powerful or efficient FCM-based methodologies and learning
algorithms for modeling the complex and difficult tasks of systems evolving.

Models developed by experts are vulnerable to subjectivity of expert(s) beliefs
and could be difficult to be developed for complex problems that involve dozens of
concepts. Although maps developed by experts provide an accurate static analysis
of FCM model, they may lead to inaccurate dynamic analysis.

These limitations motivated researchers towards the use of learning algorithms
that would provide models with a more accurate representation of FCM system.
The hybrid learning approaches, seem to be more feasible than Hebbian-type or
population-based type in order to design an FCM, and this is a promising direction for
FCM learning. Therefore, new approaches are required for training FCMs effectively
which will increase their potential application in practice.

Recent interest in new FCM methodologies and computational algorithms sug-
gests that these will be the main direction for future research. Even though the first
step towards automatic construction of FCM from data was made, there are problems
that still need to be overcome.

Although there are many recent attempts toward modeling and learning of FCMs,
the application of FCM technique to a wide variety of scientific areas makes crucial
the development of a commonly used tool that can assist the creation and simulation of
FCMs. Few attempts have been made towards the creation of such a tool, ie. FCMap-
per (http://www.fcmappers.net/), jfcm (http://jfcm.megadix.it/), FCM designer tool,
FCModeler tool.

Although many scientists construct their own FCMs, using experts knowledge
and experience, there is no solid and standard representation of them that would
make them easily reusable and transportable. There is not any standard software or
programming tool that would simulate these FCMs, so every scientist has to create
his own program and software system for simulating and analyzing FCMs.

The development of a software system would be very useful in research commu-
nity because it could be able to assist the creation and simulation of dynamic FCMs,

http://www.fcmappers.net/
http://jfcm.megadix.it/
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facilitate knowledge sharing and reuse of this knowledge and include learning algo-
rithms and theoretical foundations for a dynamic behavior as well.

Finally, more research is needed on modeling, learning, automatic construction,
knowledge representation and software tools development. New theoretical contri-
butions could be included in current or emerging FCM extensions as well.
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