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Abstract. Multi-label classifications exist in many real world applications. This 
paper empirically studies the performance of a variety of multi-label 
classification algorithms. Some of them are developed based on problem 
transformation. Some of them are developed based on adaption. Our 
experimental results show that the adaptive Multi-Label K-Nearest Neighbor 
performs the best, followed by Random k-Label Set, followed by Classifier 
Chain and Binary Relevance. Adaboost.MH performs the worst, followed by 
Pruned Problem Transformation. Our experimental results also provide us the 
confidence of existing correlations among multi-labels. These insights shed 
light for future research directions on multi-label classifications. 
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1 Introduction 

Multi-label classifications deal with multiple labels being assigned to every instance 
in a dataset. That is, an instance can be assigned more than one class simultaneously. 
It is concerned with learning a model that outputs a bipartition of a set of labels into 
relevant and irrelevant with respect to a query instance. This type of classification 
differs in some respect from traditional single label classifications in that one of 
multiple labels is allocated to an instance in the dataset. In single-label classifications 
each instance is associated with a single label and a classifier learns to associate each 
new test instance with one of these known labels [1, 4]. 

Multi-label classification tasks exist in many real-world applications, such as, gene 
classification in bioinformatics [8], medical diagnosis, document classification, music 
annotation, image recognition, and so on. All these applications require effective and 
efficient multi-label classification algorithms. There exist a variety of multi-label 
classification algorithms [10]. For data mining practitioners, it is very important for 
them to know the general knowledge on which algorithms perform the best, such that 
they can try to apply it first. For data mining researchers, it is important to investigate 
the performance of the existing algorithms to get insights, such that they can use the 
clue to guide their research on developing more effective multi-label classification 
algorithms.  
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Current existing multi-label classification algorithms are developed based on two 
basic approaches: algorithm adaptation and problem transformation. Problem 
transformation is easy to understand. We discuss it first.  

Before we discuss the procedure of problem transformation, let us review 
traditional classifications a bit. On the contrast, traditional classifications can be 
called single label classifications. Giving a set L of labels, traditional single label 
classifications choose one label from the set to assign to an instance. If |L| = 2, then 
the problem is binary classification. Otherwise, if |L| > 2, it becomes a multi-class 
classification problem. On the contrary, multi-label learning is to assign multiple 
different labels to a test instance simultaneously [9].  

Problem transformation is to transfer multi-label classifications into multiple 
traditional single label classifications, specifically, multiple binary classifications. 
Figure 1 shows an example of the process of transferring a multi-label classification 
(movie classification) into multiple binary classifications (yes or no).  

 

Fig. 1. An example of multi-label problem transformation 

After a multi-label classification problem is transferred into multiple binary 
classification ones. All the traditional classification algorithms can be applied directly 
to build a classifier for each binary dataset and make prediction for its correlated test 
instances. The prediction for a multi-label instance is made by aggregating outputs 
from autonomous binary classifiers. Binary Relevance (BR) [3, 11], Classifier Chain 
[3], Random k-Label Set [7], and Pruned Problem Transformation [12] are the 
examples of classifiers, which use problem transformation. We will briefly review 
these algorithms in the following section and make comparison among them in 
Section 4. 

Different algorithms have their method for classifying multi-label instances. For 
example a classifier which employs problem transformation for its classification may 
apply a probability distribution over the transformed dataset to rank and assign labels 
to the test instances. In ranking, the task is to order labels, so that the topmost labels 
have a greater probability to assign to the test instance. This way the class with the 
highest probability will be ranked first, the class with the second best probability will 
be ranked second, and so on.  



 A Study on Multi-label Classification 139 

The second method used in multi-label classifications is algorithm adaptation. It 
extends existing traditional classification algorithms to perform multi-label 
classifications directly, for example, Adaboost.MH [15] and Multi-label K-Nearest 
Neighbor (MLKNN) [5]. Adaboost.MH is an adaptation of Adaboost [13] for multi-
label classifications. MLKNN is an adaption of the traditional k-NN algorithm for 
multi-label classifications.  

Algorithm adaption completely differs from problem transformation in that no 
binary transformation made. Instead, the algorithm learns the structure and co-
relations that exist among labels to classify a test instance after being trained. Thus, it 
is very useful to investigate the performance of multi-label classification algorithms, 
which are developed based on the two approaches. The investigating results will 
guide data mining researchers in their future research on developing better multi-label 
classification algorithms. 

The rest of the paper is organized as follows. Section 2 introduces the popular 
multi-label classification algorithms which we will make comparison empirically. 
Section 3 introduces five popular performance metrics specifically designed for multi-
label classifications. In Section 4, we describe the experiments we have conducted. 
They consist of the setting of the experiments, the experimental results, and the 
analysis of the experimental results. Section 5 concludes with a summary of our work 
and a discussion of future work. 

2 Popular Multi-label Classification Algorithms 

We briefly review the six popular multi-label classification algorithms (i.e. Binary 
relevance [3, 11], Classifier Chain [3], Random K-Label Set [7], Pruned Problem 
Transformation [12], AdaBoost.MH [15], and Multi-label K-Nearest Neighbor [5]) in 
this section, which are used in our experiments in Section 4. 

2.1 Binary Relevance (BR) 

As we introduced before, Binary Relevance [3, 11] is one of the popular problem 
transformation approaches. It transfers a multi-label classification into multiple binary 
classifications (Figure 1). After the transformation, a traditional classification 
algorithm is applied to build multiple binary classifiers. Each classifier is responsible 
for predicting the presence or absence of each corresponding label which belongs to 
L. For example, if the total number of labels for a dataset is 70, then 70 binary 
classifiers would be trained for each label, with a 0 or 1 association. When classifying 
a new instance, this approach outputs the union of the labels that are predicted by all 
the binary classifiers. 

2.2 Classifier Chain (CC) 

Classifier Chain (CC in short) [3] is also a problem transformation method for multi-
label classifications. It combines the computational efficiency of binary relevance and 
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label dependency for classifications [3]. Classifiers are linked along a chain, where 
each classifier deals with the binary relevance problem associated with a label in |L|. 
This is how classifier chain works. When a training set is passed to the algorithm, it 
creates a chain of classifiers C1, C2, C3, ..., C|L|, where |L| is the total number of labels 
for the dataset. Each of the multi-labels of the dataset is transformed into a binary 
problem. Thus, each classifier (C1, ..., C|L|) is responsible for learning and predicting 
binary associations (0 or 1) for each label. If a test instance X is introduced to the 
trained model, the classification process for X starts from C1 and runs down along the 
chain of classifiers. Each classifier determines the probability of X to be classified 
into L1, L2, L3, ..., L|L|. It sort of builds a binary tree, where each link in the chain is 
extended with a 0 or 1 label association. This chaining method passes label 
information between classifiers, allowing CC to take into account label correlations 
and thus overcoming the label independence problem.  

2.3 Random k-Label Set (RAkEL) 

RAkEL [7] was proposed to solve performance issues of Label Powerset (LP). LP is a 
simple problem transformation method, but time consuming. It produces all subsets 
LP(L) of the multi-label set L, and treats each subset as a label. Then, it transforms the 
multi-label classification into traditional single label classification. Because LP 
produces a great number of labels, it could cause imbalanced issues, considering the 
number of labels versus the number of instances. In addition, the size of the generated 
labels incurs considerable computational costs [7]. RAkEL improves it by randomly 
selecting k-sized label sets from L, and then performing the typical LP approach on 
these generated subsets.  

2.4 Pruned Problem Transformation (PPT) 

Pruned Problem Transformation [12] is also an improvement of LP. The only 
improvement is that PPT prunes away the power subsets LP(L) that occur fewer times 
than a small user-defined threshold (usually 2 or 3). Removing certain information 
might skew or cause information to be lost. In order to avoid this issue, PPT 
optionally split each of the multi-label set into subsets. Thus, the subsets could occur 
more than the user-defined threshold.  

2.5 AdaBoost.MH (AD) 

Adaboost [13] is a short form of adaptive boosting. Boosting is a meta-algorithm, 
meaning it can be used in conjunction with other learning algorithms for improving 
their performance. It combines inaccurate and rough rules to produce accurate results. 
Given a base learning algorithm, Adaboost works by initially setting the weights of all 
training instances to be equal. Then it calls the base learning algorithm several times. 
For each call, the weight of incorrectly classified instances is increased. This is to 
help the base learning algorithm focus on the misclassified instance until it is 
correctly classified. AdaBoost.MH [15] is an adaptation of Adaboost for multi-label 
classifications. Adaboost.MH works similarly like the adaboost algorithm, except that 
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it breaks the multi-label classification down into a binary problem where each test 
instance is classified according to its label association (either 0 or 1).  

2.6 Multi-Label K-Nearest Neighbor (MLKNN) 

MLkNN [5] is an adaption of the traditional k-NN algorithm for multi-label 
classifications. It is one of lazy learning algorithms. The algorithm identifies, for each 
unseen test instance, the k nearest neighbors in the training set. It calculates prior 
probabilities from the k nearest training instances, and then finds the maximum 
posteriori probability to determine the label set for the test instance.  

3 Performance Metrics 

The performance evaluation of multi-label classification is much more complicated 
than traditional classification. In this Section, we introduce five popular performance 
metrics specifically designed for multi-label classifications [6, 15, 16], i.e., Hamming 
Loss, Average Precision, One-Error, Coverage, and Ranking Loss. Before describing 
their definitions, we explain the related notations first. Supposing there is a multi-
label dataset D = {(xi, Yi) | 1 ≤  i  ≤ p}, notations presented in the formulas below are: 
h(xi) represents a set of proper labels for xi ; ∆ represents symmetric difference; h(xi , 
y)  represents the value of confidence for y to be a label of xi; rankh(xi , y) returns the 

rank of y from  h(xi , y); and iy  represents the complementary of yi [14]. 

3.1 Hamming Loss (HL) 

Hamming Loss takes into account prediction errors, which labels are incorrectly 
predicted and which labels were not predicted at all [14]. It takes into account how 
many instance-label pairs are misclassified. The smaller the value, the better the 
performance is.  
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3.2 Average Precision (AP) 

Average Precision evaluates the average fraction of labels ranked above a particular 
label which belongs to L [14]. It is often used for the evaluation of information 
retrieval tasks. The bigger the value of Average Precision, the better the classification 
performance is. 
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3.3 One-Error (OE) 

This measure calculates the number of times that the top-ranked label predicted is  
not in the original label set of an instance. So it checks whether the top-ranked label  
is relevant, and ignores the relevancy of all other labels. The smaller the value of  
One- Error, the better the performance is. 

OE =  = ∈ ∉
p

i iiYy yyxh
p 1

])],(max[[arg
1

 (3)

3.4 Coverage (CV) 

Coverage measures how far we need, on average, to go down the list of labels in order 
to cover all the possible labels assigned to an instance [14]. The goal of coverage is to 
assess the performance of a classifier for all the possible labels of instances. The 
smaller the value of Coverage, the better the performance is. 
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3.5 Ranking Loss (RL) 

Ranking Loss computes the average fraction of label pairs which are not correctly 
ordered [14] for an instance. The smaller the value of Ranking Loss, the better the 
performance is. 
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4 Experiments 

In this section, we will make thorough comparisons among the six multi-label 
classification algorithms introduced in Section 2, by applying them on eleven 
datasets. We evaluate their performance using the five popular metrics described in 
Section 3.  

4.1 Experimental Setup 

In our experiments, we try to conduct experiments on all available datasets listed in 
MULAN [10] website1. We have not obtained experimental results for some datasets, 

                                                           
1 http://mulan.sourceforge.net/datasets.html 
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because of the limitation of our computer memory. The specifications of the computer 
used is a 64-bit Operating System, x64-based processor, Intel(R) Core(TM) i5-2467M 
with 8GB memory. We succeeded in the eleven multi-label datasets: Cal500 (human-
generated musical annotations), Corel5k (learning a lexicon for a fixed image 
recognition), Emotions (music emotion detection), Enron (email messages) [2], 
Genbase (classification of protein families), Medical (variables consisting of illnesses 
and treatments), Scene (semantic indexing of still images), Yeast (gene function 
classification), Bookmarks (text tagging suggestion), Mediamill (multimedia 
analysis), and Bibtex (text tagging suggestion). The detail characteristics of the eleven 
datasets are listed in Table 1.  

Table 1. Description of the datasets used in the experiments 

Name #Instances #Training Inst. #Test Inst. Nominal Numeric Labels 
Cal500 502   0 68 174 
Corel5k 5000 4501 499 499 0 374 
Emotions 593 391 202 0 72 6 
Enron 1702 1123 579 1001 0 53 
Genbase 662 463 199 1186 0 27 
Medical 978 333 645 1449 0 45 
Scene 2407 1211 1196 0 294 6 
Yeast 2417 1500 917 0 103 14 

Bookmarks 87856   2150 0 208 

Mediamill 43907   0 120 101 

Bibtex 7395 4880 2515 1836 0 159 
 
Each dataset comes along with an xml header file specifying the names of the 

labels and hierarchical relationships among them [10]. Except Cal500, Bookmarks, 
and Mediamill, eight datasets in Table 1 are already separated into training and test 
sets. For each of these datasets, we loaded two files, an XML file, and the ARFF files 
for the train and test set.  

We conduct experiments on the six classification algorithms described in Section 2 
for each dataset. If a dataset is separated into a training and test set already, we only 
run each classification algorithm once on its training set, and report its performance 
over its test set. We have to explain how we conduct experiments on Bibtex. Because 
of memory limitation, we could not obtain experimental results using its original 
training and test set directly. Thus, we have to sample our training set (2000 instances, 
the maximum number of instances our computer can handle) and testing set (1200 
instances) from its original training and test set respectively to conduct experiments.  

There are three datasets: Cal500, Bookmarks, and Mediamill, which are not 
separated into train and test sets. We resample them using randomization and repeat 
the process ten times. The average results are presented in the paper. For Cal500, we 
split its whole dataset into 70% for training and 30% for testing each time. For 
Bookmarks and Mediamill, we sample 2000 instances as the training set and 1200 
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instances as the test set each time. Again, the size 2000 is the proper number of 
instances that our computer can process.  

Notice that in our experiment the default base learner is used for the six multi-label 
classification algorithms. Specifically, J48 is used in conjunction with Binary 
Relevance and Classifier Chain. LabelPowerset, in conjunction with J48 is used as the 
base learner for RAkEL. J48 pruning tree is used for Pruned Problem Transformation. 
Adaboost.MH uses AdaBoostM1 as its base learner, which in turn uses decision 
stump as its base learner [17]. 

4.2 Experimental Results 

Tables 2 through 9 show the experimental results of all of the six multi-label 
classification algorithms on eight datasets, i.e., Emotions, Enron, Genbase, Medical, 
Scene, Yeast, Mediamill, and Bibtex. Tables 10 through 12 show the experimental 
results of some of the six multi-label classification algorithms on three datasets: i.e., 
Cal500, Corel5k, and Bookmarks. This is because some of the algorithms run out of 
memory. For Cal500, we will show the experimental results for the algorithms except 
PPT. For Corel5k, we will show the experimental results for the algorithms except 
Adaboost.MH. For Bookmarks, we will show the experimental results for the 
algorithms except PPT and RAkEL. Based on the experimental results, we highlight 
the best in bold, highlight the second in italic, and underline the worst, for each of the 
five performance metrics for each dataset. Again, only for Average Precision, a higher 
value is better. For the rest four metrics, a lower value is better.  

Table 2. Experimental results on Emotion 

 HL AP OE CV RL 
CC 0.2896 0.6726 0.4455 2.8267 0.3383 
RAKEL 0.2228 0.7841 0.2871 2.0545 0.1841 
AD 0.3160 0.5906 0.5248 3.0842 0.4295 
PPT 0.3127 0.6928 0.4208 2.6832 0.3135 
BR 0.2599 0.6959 0.3663 2.8069 0.3103 
MLKNN 0.2087 0.7965 0.2822 1.8762 0.1586 

Table 3. Experimental results on Enron 

 HL AP OE CV RL 

CC 0.0530 0.5722 0.4162 23.2919 0.1794 

RAKEL 0.0509 0.6051 0.2815 24.7841 0.2030 

AD 0.0619 0.4574 0.4594 27.7789 0.2370 

PPT 0.0727 0.4703 0.5043 27.8152 0.2613 

BR 0.0540 0.5746 0.4059 24.7997 0.1861 

MLKNN 0.0514 0.6345 0.2798 13.1813 0.0934 
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Table 4. Experimental results on Genbase 

 HL AP OE CV RL 
CC 0.0011 0.9918 0.0050 0.3166 0.0018 
RAKEL 0.0011 0.9900 0.0101 0.2965 0.0016 
AD 0.0456 0.3184 0.7286 14.0704 0.5281 
PPT 0.0026 0.9864 0.0000 0.5176 0.0063 
BR 0.0011 0.9918 0.0050 0.3166 0.0018 
MLKNN 0.0052 0.9931 0.0000 0.5779 0.0062 

Table 5. Experimental results on Medical 

 HL AP OE CV RL 
CC 0.0103 0.8268 0.1907 4.4341 0.0756 
RAKEL 0.0113 0.8126 0.2031 4.0946 0.0732 
AD 0.0276 0.3571 0.7395 13.8512 0.2858 
PPT 0.0173 0.7476 0.2713 5.9364 0.1051 
BR 0.0106 0.8226 0.1969 4.4450 0.0763 
MLKNN 0.0188 0.7266 0.3535 3.5442 0.0586 

Table 6. Experimental results on Scene 

 HL AP OE CV RL 

CC 0.1392 0.7295 0.3712 1.3094 0.2365 

RAKEL 0.1150 0.8150 0.2977 0.6873 0.1166 

AD 0.1810 0.4302 0.7860 2.5819 0.4898 

PPT 0.1623 0.7248 0.4130 1.1714 0.2134 

BR 0.1389 0.7115 0.4264 1.2809 0.2307 

MLKNN 0.0953 0.8513 0.2425 0.5652 0.0925 

Table 7. Experimental results on Yeast 

 HL AP OE CV RL 
CC 0.2638 0.6295 0.3490 9.0349 0.3286 
RAKEL 0.2328 0.7102 0.2901 7.6696 0.2240 
AD 0.2330 0.5930 0.2497 9.2454 0.3821 
PPT 0.2947 0.6470 0.3391 8.5627 0.3130 
BR 0.2588 0.6164 0.4024 9.2857 0.3206 
MLKNN 0.1980 0.7574 0.2421 6.3642 0.1707 
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Table 8. Experimental results (in average) on Mediamill 

 HL AP OE CV RL 
CC 0.0518 0.4324 0.5086 45.1207 0.1661 
RAKEL 0.0481 0.4969 0.3147 46.0259 0.1745 
AD 0.0382 0.4503 0.2543 59.2112 0.2395 
PPT 0.0448 0.4222 0.3362 54.9310 0.2380 
BR 0.0534 0.3757 0.6336 51.9397 0.2107 
MLKNN 0.0404 0.5682 0.2457 29.8017 0.1060 

Table 9. Experimental results on sampled Bibtex 

 HL AP OE CV RL 
CC 0.0145 0.3784 0.5415 66.2824 0.2496 
RAKEL 0.0136 0.3602 0.5183 72.6379 0.3097 
AD 0.0149 0.0859 0.8505 104.302 0.5181 
PPT 0.0196 0.2938 0.6445 76.4153 0.3393 
BR 0.0141 0.3781 0.5316 68.3189 0.2615 
MLKNN 0.0138 0.2753 0.6611 66.2425 0.2744 

Table 10. Experimental results (in average) on Cal500  

 HL AP OE CV RL 
CC 0.1789 0.3053 0.7616 169.8146 0.3746 
RAKEL 0.1700 0.3829 0.3709 166.3377 0.2983 
AD 0.1423 0.2319 0.0927 169.3974 0.5642 
BR 0.1659 0.3198 0.8013 170.1391 0.3466 
MLKNN 0.1375 0.4916 0.1060 128.9934 0.1823 

Table 11. Experimental results on Corel5k  

 HL AP OE CV RL 
CC 0.0101 0.2392 0.7240 161.74 0.1826 
RAKEL 0.0096 0.1296 0.7260 333.23 0.6381 

PPT 0.0163 0.1767 0.8040 268.01 0.4332 
BR 0.0098 0.2550 0.7080 124.91 0.1429 

MLKNN 0.0093 0.2656 0.7060 113.04 0.1297 

Table 12. Experimental results (in average) on bookmarks  

 HL AP OE CV RL 

CC 0.0112 0.2159 0.8168 84.1414 0.2834 

AD 0.0104 0.1166 0.9529 109.528 0.4230 

BR 0.0118 0.2299 0.7853 82.5759 0.2818 

MLKNN 0.0096 0.2423 0.7644 80.5183 0.2704 
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In order to see clearly and to show the general knowledge of the performance of 
the six multi-label classification algorithms, Table 13 shows the average values of the 
five performance metrics over the eight datasets (Emotions, Enron, Genbase, Medical, 
Scene, Yeast, Mediamill, and Bibtex), from Table 2 to 9. The experimental results of 
other three datasets (Cal500, Corel5k, and Bookmarks) are not included in Table 13, 
because we did not obtain results for some of the six multi-label classification 
algorithms, which ran out of memory. Partial experimental results for the three 
datasets are shown in Tables 10 through 12.  

We further summarize the comparisons among the six multi-label classification 
algorithms through ranking over the eight datasets. For each of the eight datasets, we 
ranked the performance of the six algorithms from 1 (best) to 6 (worst) on each 
metric. The average rank of the six algorithms on each metric is shown in Table 14. 
Further, we average the average ranks for each of the six algorithms across the five 
performance metrics in the last column of Table 14. Again, the experimental results of 
other three datasets (Cal500, Corel5k, and Bookmarks) are not included. 

In Table 13 and 14, we also highlight the best in bold, highlight the second in 
italic, and underline the worst for each of the five performance metrics and the overall 
average ranks (Table 14 only) for the six algorithms. 

Table 13. Average Results of the eight datasets for different algorithms 

 HL AP OE CV RL 
CC 0.1029 0.6541 0.3534 19.077 0.1969 
RAKEL 0.0869 0.6967 0.2753 19.781 0.1608 
AD 0.1147 0.4103 0.5741 29.265 0.3887 
PPT 0.1158 0.6231 0.3661 22.254 0.2237 
BR 0.0988 0.6458 0.3710 20.399 0.1997 
MLKNN 0.0789 0.7003 0.2883 15.269 0.1200 

Table 14. Average ranks of different algorithms on the eight datasets 

 HL AP OE CV RL Average 
CC 3.375 3.00 3.5 3.125 3.125 3.225 
RAKEL 2.0 2.625 2.375 2.375 2.5 2.375 
AD 4.5 4.5 4.625 5.75 5.75 5.025 
PPT 4.75 4.125 3.625 4.375 4.375 4.25 
BR 3.25 3.5 3.625 4.0 3.25 3.525 
MLKNN 2.0 2.0 2.0 1.5 1.5 1.8 

 
Table 14 shows that MLKNN performs the best. Its average ranks on all five 

performance metrics are the best (lowest values). Its overall rank value across the five 
performance metrics is 1.8, much lower than the second position RAkEL, whose 
overall rank value is 2.375. This is also supported by its ranks on each of the eight 
datasets, from Table 2 to 9. The average performance over the eight datasets shown in 
Table 13 also supports this. Table 13 shows that MLKNN achieves the lowest values 
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on the lowest-best metrics: Hamming Loss (HL), Coverage (CV), and Ranking Loss 
(RL), and achieves the highest value on the highest-best metric Average Precision 
(AP). Although we did not include the experimental results of three datasets (Cal500, 
Corel5k, and Bookmarks) into the summarization, their experimental results shown in 
Tables 10 through 12 completely support the conclusion. 

Table 14 shows that RAKEL occupies the second position on all performance 
metrics, including the tied best in Hamming Loss (HL). Its overall rank 2.375 is also 
in the second position. Thus, we can conclude that RAkEL is the second best among 
the six algorithms. This is supported by its ranks on each of the eight datasets, from 
Table 2 to 9. The average performance over the eight datasets shown in Table 13 also 
supports this. Table 13 shows that RAkEL achieves the lowest value on the lowest-
best metric One-Error (OE). It also achieves the second lowest in the lowest-best 
metrics: Hamming Loss (HL) and Ranking Loss (RL), and achieves the second 
highest value on the highest-best metric Average Precision (AP).  

Table 14 shows that Adaboost.MH (AD) performs the worst. Its average ranks on 
all five performance metrics are the worst (highest values). Its overall rank value 
across the five performance metrics is 5.025, close to the maximum value 6.0. This is 
supported by its ranks on each of the eight datasets, from Table 2 to 9. The average 
performance over the eight datasets shown in Table 13 also supports this. Table 13 
shows that AD achieves the highest values on the lowest-best metrics: One-Error 
(OE), Coverage (CV), and Ranking Loss (RL), and achieves the lowest value on the 
highest-best metric Average Precision (AP).  

Table 14 shows that Classifier Chain (CC), Binary Relevance (BR), and Pruned 
Problem Transformation (PPT) take the middle positions. We can see that CC is the 
best, followed by BR, followed by PPT, among the three algorithms. Table 13 also 
shows this relationship. CC combines the binary relevance and the multi-label 
dependency. The better performance from CC shows that the label dependency exists, 
and needs to be utilized in multi-label classifications. That RAkEL performs the 
second also supports this. The potential drawback of Binary Relevance is the multi-
label independency assumption. 

In general, MLKNN performs the best, followed by RAkEL, followed by Classifier 
Chain and Binary Relevance. Classifier Chain improves the performance of Binary 
Relevance. Adaboost.MH performs the worst, followed by Pruned Problem 
Transformation. Why does Adaboost.MH perform the worst? We conjecture that the 
possible reason is its default base learner, decision stump. In the future, we will 
further investigate this.  

5 Conclusion 

In this paper, we provide an empirical comparison on six multi-label classification 
algorithms using eleven datasets. Our experiments show that the adaptive multi-label 
learning algorithm MLKNN performs the best, followed by RAkEL, followed by 
Classifier Chain and Binary Relevance. Adaboost.MH performs the worst, followed 
by Pruned Problem Transformation. This provides the guide for multi-label 
classification practitioners and saves their time to try and to estimate the possible 
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achievement. This also stimulates us to study adapting traditional single label 
classification algorithms for multi-label problems. Our experimental results also 
provide us the confidence on the conjecture: there exist correlations among multi-
labels. The multi-label independency assumption is not succeeded in most of datasets. 
How to utilize the correlations among these labels will shed a light for our future 
research. 

We will continue to evaluate the performance of existing multi-label classification 
algorithms. In the same time, we are going to design novel algorithms for multi-
classifications with the insights found in the experiments.  
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