
Formal Modelling, Analysis

and Verification of Hybrid Systems

Naijun Zhan, Shuling Wang, and Hengjun Zhao

State Key Lab. of Comput. Sci., Inst. of Software, Chinese Academy of Sciences

Abstract. Hybrid systems is a mathematical model of embedded sys-
tems, and has been widely used in the design of complex embedded sys-
tems. In this chapter, we will introduce our systematic approach to formal
modelling, analysis and verification of hybrid systems. In our framework,
a hybrid system is modelled using Hybird CSP (HCSP), and specified
and reasoned about by Hybrid Hoare Logic (HHL), which is an extension
of Hoare logic to hybrid systems. For deductive verification of hybrid sys-
tems, a complete approach to generating polynomial invariants for poly-
nomial hybrid systems is proposed; meanwhile, a theorem prover for HHL
that can provide tool support for the verification has been implemented.
We give some case studies from real world, for instance, Chinese High-
Speed Train Control System at Level 3 (CTCS-3). In addition, based
on our invariant generation approach, we consider how to synthesize a
switching logic for a considered hybrid system by reduction to constraint
solving, to meet a given safety, liveness, optimality requirement, or any
of their combinations. We also discuss other issues of hybrid systems,
e.g., stability analysis.

Keywords: Hybrid systems, Hybrid CSP, Hybrid Hoare Logic, Invari-
ant, Theorem proving.

1 Introduction

Our modern life increasingly depends on embedded systems. How to develop
correct complex embedded systems is a grand challenge for computer science and
control theory. The model-based method is thought to be an effective method to
designing complex embedded systems. Using this approach at the very beginning,
an abstract model of the system to be developed with precise mathematical
semantics is defined. Extensive analysis and verification on the abstract model
are then committed so that errors can be identified and corrected at the very
early stage. Then, a higher-level abstract model is refined to a lower-level abstract
model, even to source code, step by step, using model-transformation techniques.

Hybrid systems, combining formal models for discrete reactive systems and
continuous models for dynamical systems [1,59], is a mathematical model of em-
bedded systems. There are hugely numerous work that have been done related to
hybrid systems. Please refer to [4,42] for a survey. Modeling discrete components
by finite automata, and attaching state-dependent ordinary differential equations

Z. Liu, J. Woodcock, and H. Zhu (Eds.): Theories of Programming, LNCS 8050, pp. 207–281, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

208 N. Zhan, S. Wang, and H. Zhao

to the discrete states in order to capture the impact of the discrete component
on the continuous environment, yields hybrid automata [1], which are by far the
most widely used model of hybrid systems in academia. Hybrid automata are,
however, analogs of state machine, with little support for structured descrip-
tion, and consequently, a number of formalisms have been proposed to facilitate
modular descriptions of complex systems. These include modeling environments
such as SHIFT [28] and PTOLEMY [31] for hierarchical specification of hybrid
behavior; models such as hybrid I/O automata [58], hybrid modules [2], and
CHARON [9], for compositional treatment of concurrent hybrid behavior; Hy-
brid CSP (HCSP) [37,98] for process algebra based specification and verification
of hybrid behavior; and differential dynamic logic [65,66] and hybrid Hoare logic
(HHL) [55,86] for logic-based specification and compositional analysis of hybrid
behavior. Industrial variants include the Simulink/Stateflow environment, which
does, however, lack a uniquely defined —depending on the use case, there are
semantical variations— and comprehensive formal semantics.

With most hybrid system models being rooted in automata-based models,
their pertinent verification techniques have accordingly adopted the automaton-
based approach to verification in the past, mainly being based on directly com-
puting exact representations or safe approximations of reachable state sets. For
example, based on model-checking [22,71], the reachability problems of some sim-
ple hybrid systems, like timed automata [8], multirate automata [1], initialized
rectangular automata [70,41], and so on, have been solved; based on the decision
procedure of Tarski algebra [83], in [53] methods for computing reachable sets
for three classes of special linear hybrid systems were investigated. Due to in-
finiteness of the underlying state spaces, symbolic representations, often paired
with safe approximation within a computationally reasonably efficient symbolic
representation, and abstraction techniques are generally applied in reachable set
computation. For example, the tool HYTECH [3] was the first model checker to
implement exact symbolic reachability analysis of linear hybrid automata1 by
using polyhedra-based technique; while the tools CHECKMATE [20] and d/dt
[11] compute over-approximations of reachable sets of linear hybrid systems1 us-
ing polyhedral representations; related techniques use lazy theorem proving for
analyzing bounded reachability problems of linear [12] or non-linear [34] hybrid
automata. Furthermore, discretization of continuous dynamics based on grid-
ding or predicate abstraction has been extended and adopted for hybrid systems
[40,7,21,73,25].

To deal with more complicated systems, recently, a deductive method for
the verification of hybrid systems has been established and successfully applied
in practice [65,66]. This method can be seen as a generalization of the so-called
Floyd-Hoare-Naur inductive assertion method [32,43,62]. The inductive assertion

1 With hybrid systems being an interdisciplinary domain bridging control theory and
computer science, terminology often is subtle due to different roots of naming con-
ventions. A linear hybrid automaton is a system featuring (piecewise) constant dif-
ferential inclusions while a linear hybrid system features linear or often even affine
differential equations.

Formal Modelling, Analysis and Verification of Hybrid Systems 209

method is thought to be the dominant method for the verification of sequential
programs. To generalize the inductive method to hybrid systems, a modeling
language with compositionality for hybrid systems and a Hoare-style logic for the
language with the ability of dealing with continuous dynamics are prerequisites.
For example, a differential-algebraic dynamic logic for hybrid programs [64] was
invented by extending dynamic logic with continuous statements. Recently, we
[55] had another effort by extending Hoare logic to hybrid systems modeled by
HCSP [37,98] for the same purpose.

The concept of invariant is at the core of deductive methods. An invariant
of a hybrid system is a property φ that holds in all the reachable states of the
system. An inductive invariant of a hybrid system is an assertion φ that holds
at the initial states of the system, and preserved by all discrete and continuous
dynamics. In fact, any inductive invariant is also an invariant, but the inverse is
not true in general. The problem of (inductive) invariant generation has received
wide attention in the analysis and verification of programs [13,23,76,48] and
hybrid systems [75,69,65,81,55]. Many properties of hybrid systems like safety,
stability, liveness etc., can be characterized and inferred via invariants without
solving differential equations, while differential equations have to be exactly
solved or approximated in the methods based on directly computing reachable
sets.

The key issue in generating inductive invariants of a hybrid system is to deal
with continuous dynamics, i.e. to generate so-called continuous invariant (CI)
of the continuous dynamics at each mode of the system. A method based on
constraint solving was proposed in [75] for generating CIs containing a single
polynomial equation. This method was generalized in [74] to construct CIs con-
taining infinitely many polynomial equations, i.e. the so-called invariant ideal.
The basic idea of these methods is to reduce the CI generation problem to a
constraint solving problem using techniques from the theory of ideals over poly-
nomial rings. For the polynomial inequality case, it was considered in [69,67]
how to generate CIs containing one polynomial inequality. The basic idea of
their method is to utilize a certain function, called a barrier certificate, to en-
close the invariant. With some stronger constraints, generation of more general
CIs was considered in [65], wherein the CIs are Boolean combinations of polyno-
mial equations and inequalities. By restricting the invariant sets to have smooth
boundaries, a sound but incomplete method for constructing invariants involv-
ing non-strict polynomial inequalities was proposed in [81,80]. While in [56], we
presented a relatively complete method for generating semi-algebraic invariants
(SAIs) for polynomial continuous dynamical systems by employing higher-order
Lie derivatives and the theory of polynomial ideal.

As a complementation of verification, synthesis focuses on designing a
controller that controls the underlying subsystems so that the whole system
is guaranteed to satisfy the given requirement, that may be safety, liveness (e.g.
reachability to a given set of states), optimality criterion, or a desired combina-
tion of them. Numerous work have been done on controller synthesis for safety
and/or reachability requirements. For example, in [10,85], a general framework

210 N. Zhan, S. Wang, and H. Zhao

relying on backward reachable set computation and fixed point iteration was pro-
posed, for synthesizing controllers for hybrid automata to meet a given safety re-
quirement; while in [79], a symbolic approach based on templates and constraint
solving to the same problem was proposed, and in [82], the symbolic approach
is extended to meet both safety and reachability requirements. Compared with
controller synthesis for safety, the optimal controller synthesis problem is more
involved, also quite important in the design of hybrid systems. In the literature,
few work has been done on the problem. Larsen et al proposed an approach
based on energy automata and model-checking [18], while Jha, Seshia and Ti-
wari gave a solution to the problem using unconstrained numerical optimization
and machine learning [44]. In [94], we proposed a “hybrid” approach for synthe-
sizing optimal controllers of hybrid systems subject to safety requirements. The
basic idea is as follows. Firstly, we reduce optimal controller synthesis subject to
safety requirements to quantifier elimination (QE for short). Secondly, in order
to make our approach scalable, we discuss how to combine QE with numerical
computation, but at the same time, keep arising errors due to discretization
manageable and within bounds. A major advantage of our approach is not only
that it avoids errors due to numerical computation, but it also gives a better
optimal controller.

All the aforementioned verification or synthesis approaches aim at showing
or avoiding unreachability of undesirable states, i.e. total absence of undesirable
behavior. In realistic applications, this often is an overly ambitious goal, be-
ing economically unattainable or even technically impossible to achieve due to
uncontrollable environmental influences, unavoidable manufacturing tolerances,
component breakdown, etc. Therefore, the existing, qualitative safety analysis
methods for hybrid systems have to be complemented by quantitative meth-
ods, quantifying the likelihood of residual error or related performance figures
(MTBF, MTTF, etc.) in systems subject to uncertain, stochastic behavior (both
in the embedded system and its environment) as well as noise. It is therefore
necessary to address such stochastic issues in the model of embedded systems,
i.e. hybrid systems, by adding models of stochastic behavior to the modeling
language and corresponding analysis techniques to the verification. Some first
attempts on introducing probability and stochasticity in hybrid models have
been pursued, e.g. [45,46,34,33], yet expressiveness of the models and scalability
of the analysis tools remain pressing issues.

1.1 Synopsis

In Sec. 2, some basic notions, notations and mathematical foundations that will
be used later are provided.

In Sec. 3, we introduce our approach for generating semi-algebraic invariants
for polynomial continuous dynamical systems and its extension to hybrid sys-
tems. This is the first relatively complete approach for discovering polynomial
invariants for these systems in the literature. This section is mainly based on
our previous joint work with Liu reported in [56,54].

Formal Modelling, Analysis and Verification of Hybrid Systems 211

In Sec. 4, we first introduce how to synthesize switching controllers for hybrid
systems subject to safety requirement based on continuous invariant generation
reported in Sec. 3. To improve the efficiency, qualitative analysis [47] is adopted.
This part is based on our recent joint work with Kapur [49]. Then, we consider
optimal controller synthesis problems of hybrid systems by reducing to constraint
solving, which is based on a joint work with Kapur and Larsen [94].

In Sec. 5, we introduce Hybrid CSP due to He, Zhou et al [37,98], which is
an extension of CSP for hybrid systems. Here, we define a formal operational
semantics for HCSP, which has been implemented in the HHL prover introduced
later.

In Sec. 6, we introduce a specification logic for hybrid systems, called Hybrid
Hoare Logic, which is achieved by combining Hoare logic with Duration Calculus
(DC) [97,96]. The presentation is based on our previous work [55].

In Sec. 7, we introduce a proof assistant of HHL in Isabelle/HOL, which is
based on our recent joint work with Zou et al [99].

In Sec. 8, we present a case study from a real world on Chinese high-speed
train control system by using HCSP and HHL and the tool, based on the recent
joint work [99].

In Sec. 9, we discuss other issues related to hybrid systems, mainly focusing
on stability analysis of continuous dynamical systems based on a joint work with
Liu [57].

Finally, we conclude this tutorial by Sec. 10 with some discussions of future
work.

2 Preliminaries

In this section, we define the basic notions and notations that will be used in the
rest of this tutorial. We also give an elementary description of several relevant
mathematical theories fundamental to the understanding of this tutorial. For a
comprehensive introduction of these theories the readers may refer to the cited
literatures.

Throughout this tutorial, we use N,Q,R to denote the set of natural, ratio-
nal and real numbers respectively. Given a set A, the Cartesian product of its
n duplicates is denoted by An; for instance, Rn stands for the n-dimensional
Euclidean space. A vector element (a1, a2, . . . , an) ∈ An is usually abbreviated
by a boldface letter a when its dimension is clear from the context.

2.1 Continuous Dynamical Systems

We introduce some basic theories of continuous dynamical systems here. For
details please refer to [50,84].

Typically, a continuous dynamical systems (CDS for short) is modeled by
first-order autonomous ordinary differential equations

ẋ = f(x) , (1)

where x ∈ R
n and f : Rn → R

n is a vector function, called a vector field in R
n.

212 N. Zhan, S. Wang, and H. Zhao

If f in (1) satisfies the local Lipschitz condition, then given x0 ∈ R
n, there

exists a unique differentiable vector function x(x0; t) : (a, b) → R
n, where (a, b)

is an open interval containing 0, such that x(x0; 0) = x0 and the derivative of
x(x0; t) w.r.t. t satisfies

∀t ∈ (a, b).
dx(x0; t)

dt
= f(x(x0; t)) .

Such x(x0; t) is called the solution to (1) with initial value x0.
If for any x0 ∈ R

n, there is a solution x(x0; t) to (1) that exists for all time
t ∈ R, then the vector field f is called complete. A globally Lipschitz continuous
vector field f guarantees the existence, uniqueness and completeness of solutions
to (1).

If f is analytic at x0 ∈ R
n, i.e. f is given by a convergent power series in a

neighborhood of x0, then there exists a unique analytic solution x(x0; t) to (1)
defined in a neighborhood of 0.

According to the evolution direction w.r.t. time, the solutions to (1) induce
two sorts of geometrical curves as follows.

Definition 1. Suppose x(x0; t) is the solution to (1) with initial value x0. Then

– x(x0; t) with t ≥ 0 is called the trajectory of f starting from x0;
– x(x0;−t) with t ≥ 0 is called the inverse trajectory of f starting from x0,

where x(x0;−t) is obtained by substituting −t for t in x(x0; t).

When x0 is clear from the context, we write x(x0; t) and x(x0;−t) as x(t) and
x(−t) for brevity.

The notion of Lie derivative is important for the study of CDSs and plays a
central role in several subsequent sections of this tutorial. Let σ(x) : Rn → R be
a scalar function and f be a vector field in R

n. Suppose both σ and f are smooth
functions, i.e. differentiable in x at any order k ∈ N. Then we can inductively
define the Lie derivatives of σ along f , i.e. Lk

f σ : Rn → R for k ∈ N, as follows:

– L0
fσ(x) = σ(x),

– Lk
f σ(x) =

�
∇Lk−1

f σ(x), f(x)
�
, for k > 0,

where ∇ stands for the gradient operator, i.e. for any differentiable function
�(x) : Rn → R,

∇�(x)�= �
∂�(x)

∂x1
,
∂�(x)

∂x2
, . . . ,

∂�(x)

∂xn

�
,

and (·, ·) is the inner product of two vectors, i.e. (a,b) =
�n

i=1 aibi for a =
(a1, . . . , an) and b = (b1, . . . , bn).

2.2 Hybrid Systems

Hybrid systems are those systems that exhibit both continuous evolutions and
discrete transitions between different modes. A widely adopted model of hy-
brid systems is hybrid automata [5,63,39], the extension of finite automata with

Formal Modelling, Analysis and Verification of Hybrid Systems 213

continuous components. In this tutorial, the discussion of invariant generation
and controller synthesis of hybrid systems will be cast in the setting of hybrid
automata. A separate section (Sec. 5) of this tutorial will be devoted to a com-
positional language named HCSP, which is more suitable for modelling complex
hybrid systems. The formal definition of hybrid automata in the literature differs
slightly from each other. Here the presentation is based on [85] and [75].

Definition 2 (Hybrid Automaton). A hybrid automaton (HA) is a system
H�=(Q,X, f,D,E,G,R,Ξ), where

– Q = {q1, . . . , qm} is a finite set of discrete states (or modes);
– X = {x1, . . . , xn} is a finite set of continuous state variables, with x =

(x1, . . . , xn) ranging over R
n;

– f : Q→ (Rn → R
n) assigns to each mode q ∈ Q a locally Lipschitz continu-

ous vector field fq;
– D assigns to each mode q ∈ Q a mode domain Dq ⊆ R

n;
– E ⊆ Q×Q is a finite set of discrete transitions;
– G assigns to each transition e ∈ E a switching guard Ge ⊆ R

n;
– R assigns to each transition e ∈ E a reset function Re: R

n → R
n;

– Ξ assigns to each q ∈ Q a set of initial states Ξq ⊆ R
n.

The state space of H is H�=Q×R
n, the domain of H is DH�= �

q∈Q({q}×Dq),

and the set of all initial states is denoted by ΞH�= �
q∈Q({q}×Ξq). The semantics

of H can be characterized by the set of hybrid trajectories accepted by H or the
reachable set of H.

Definition 3 (Hybrid Time Set). A hybrid time set is a sequence of intervals
τ = {Ii}Ni=0 (N can be ∞) such that:

– Ii = [τi, τ
′
i] with τi ≤ τ ′i = τi+1 for all i < N ;

– if N < ∞, then IN = [τN , τ
′
N 〉 is a right-closed or right-open nonempty

interval (τ ′N may be ∞);
– τ0 = 0 .

Given a hybrid time set, let 〈τ〉 = N and ‖τ‖ =
�N

i=0(τ
′
i − τi) . Then τ is called

infinite if 〈τ〉 = ∞ or ‖τ‖ =∞, and zeno if 〈τ〉 = ∞ but ‖τ‖ <∞ .

Definition 4 (Hybrid Trajectory). A hybrid trajectory of H starting from
an initial point (q0,x0) ∈ ΞH is a triple ω = (τ, α, β), where τ = {Ii}Ni=0 is a
hybrid time set, and α = {αi : Ii → Q}Ni=0 and β = {βi : Ii → R

n}Ni=0 are two
sequences of functions satisfying:

1. Initial condition: α0[0] = q0 and β0[0] = x0;

2. Discrete transition: for all i < 〈τ〉, e =
�
αi(τ

′
i), αi+1(τi+1)

�
∈ E, βi(τ

′
i) ∈ Ge

and βi+1(τi+1) = Re(βi(τ
′
i));

3. Continuous evolution: for all i ≤ 〈τ〉 with τi < τ ′i , if q = αi(τi), then
(1) for all t ∈ Ii, αi(t) = q,
(2) βi(t) is the solution to the differential equation ẋ = fq(x) over Ii with

initial value βi(τi), and
(3) for all t ∈ [τi, τ

′
i), βi(t) ∈ Dq .

214 N. Zhan, S. Wang, and H. Zhao

The set of trajectories starting from an initial state (q0,x0) of H is denoted by
Tr(H)(q0,x0), and the set of all trajectories of H by Tr(H).

A hybrid trajectory ω = (τ, α, β) is called infinite or zeno, if τ is infinite or
zeno respectively. An HA H is called non-blocking if for any (q0,x0) ∈ ΞH there
exists an infinite trajectory in Tr(H)(q0,x0), and blocking otherwise; H is called
non-zeno if there exists no zeno trajectory in Tr(H), and zeno otherwise.

Another way to interpret hybrid automata is using reachability relation.

Definition 5 (Reachable Set). Given an HA H, the reachable set of H, de-
noted by RH, consists of those (q,x) for which there exists a finite sequence

(q0,x0), (q1,x1), . . . , (ql,xl)

such that (q0,x0) ∈ ΞH, (ql,xl) = (q,x), and for any 0 ≤ i ≤ l − 1, one of the
following two conditions holds:

– (Discrete Jump): e = (qi, qi+1) ∈ E, xi ∈ Ge and xi+1 = Re(xi); or
– (Continuous Evolution): qi = qi+1, and there exists a δ ≥ 0 s.t. the solution

x(xi; t) to ẋ = fqi satisfies
• x(xi; t) ∈ Dqi for all t ∈ [0, δ]; and
• x(xi; δ) = xi+1 .

Note that there is a subtle difference between Definition 4 and 5 in how to treat a
continuous state x which terminates a piece of continuous evolution and evokes a
discrete jump. Definition 4 is less restrictive because such x is not required to be
inside the mode domain before jump happens. Nevertheless, if all mode domains
are assumed to be closed sets, then the above two definitions are consistent with
each other, that is, RH is exactly the set of states that are covered by Tr(H).

One of the major concerned properties of hybrid systems is safety. Given an
HA H, a safety requirement S assigns to each mode q ∈ Q a safe region Sq ⊆ R

n,
i.e. S =

�
q∈Q({q}×Sq). We say that H satisfies S if x ∈ Sq for all (q,x) ∈ RH.

The prominent feature that distinguishes hybrid systems from traditional dis-
crete programs and makes them more difficult to study is continuous behavior.
To facilitate the investigation of continuous parts of hybrid systems, the following
definition is proposed.

Definition 6 (Constrained CDS). A constrained continuous dynamical sys-
tem (CCDS) is a pair (D, f), where D ⊆ R

n and f is a locally Lipschitz contin-
uous vector field in R

n.

Thus an HA can be regarded as a composition of a finite set of CCDSs, one for
each mode, together with discrete transitions among the CCDSs.

2.3 Polynomials and Polynomial Ideals

The tractability of the problems of analysis, verification and synthesis of hybrid
systems depends on the language used to specify the hybrid systems, as well as
the concerned properties. In this tutorial, we will focus on the class of polynomial

Formal Modelling, Analysis and Verification of Hybrid Systems 215

expressions, which have powerful modeling ability and are easy to manipulate.
We will give a brief overview of the theory of polynomials and polynomial ideals
here. For more details please refer to [24].

A monomial in n variables x1, x2, . . . , xn (or briefly x) is a product form
xα1
1 xα2

2 · · ·xαn
n , or briefly xααα, where ααα = (α1, α2, . . . , αn) ∈ N

n. The number�n
i=1 αi is called the degree of xααα.
Let K be a number field, which can be either Q or R in this tutorial. A

polynomial p(x) in x (or briefly p) with coefficients in K is of the form
�

ααα cαααx
ααα,

where all cααα ∈ K. The degree of p, denoted by deg(p), is the maximal degree of
its component monomials. It is easy to see that a polynomial in x1, x2, . . . , xn
with degree d has at most

�n+d
d

	
many coefficients. The set of all polynomials in

x1, x2, . . . , xn with coefficients in K form a polynomial ring, denoted by K[x].
A parametric polynomial is of the form

�
ααα uαααx

ααα, where uααα ∈ R are not
constants but undetermined parameters. It can also be regarded as a standard
polynomial p(u,x) in Q[u,x], where u = (u1, u2, . . . , uw) is the set of all param-
eters. It is easy to see that a parametric polynomial with degree d (in x) has at
most

�n+d
d

	
many indeterminates. In practice, one only keeps some of the uααα’s as

unknowns, by judiciously fixing the coefficients of specific monomials. For any
u0 ∈ R

w, we call pu0(x) ∈ R[x], obtained by substituting u0 for u in p(u,x), an
instantiation of p(u,x).

A vector field f is called a polynomial vector field (PVF) if each element of f
is a polynomial. Given a polynomial p ∈ K[x] and a PVS f ∈ K

n[x], according to
Section 2.1, the Lie derivatives Lk

f p(x) is defined for all k ∈ N and all polynomials
in K[x]. The Lie derivatives of a parametric polynomial p(u,x) ∈ K[u,x] can be
defined similarly by setting the gradient as

∇p(u,x)�= (
∂p

∂x1
,
∂p

∂x2
, · · · , ∂p

∂xn
) .

In this way all Lk
f p(u,x) are still polynomials in K[u,x].

We next recall the basic theory of polynomial ideals.

Definition 7 (Polynomial Ideal). A subset I ⊆ K[x] is called an ideal if the
following conditions are satisfied:

1. 0 ∈ I;
2. If p, g ∈ I, then p+ g ∈ I;
3. If p ∈ I and h ∈ K[x], then hp ∈ I.

Let g1, g2, . . . , gs ∈ K[x]. It is easy to check that the set

〈g1, g2, . . . , gs〉�=
 s�
i=1

higi : h1, h2, . . . , hs ∈ K[x]
�

is an ideal, called the ideal generated by g1, g2, . . . , gs. If I = 〈g1, g2, . . . , gs〉,
then {g1, g2, . . . , gs} is called a basis of I.

Theorem 1 (Hilbert Basis Theorem). Every ideal I ⊆ K[x] has a basis,
that is, I = 〈g1, g2, . . . , gs〉 for some g1, g2, . . . , gs ∈ K[x].

216 N. Zhan, S. Wang, and H. Zhao

In particular, every ideal I ⊆ K[x] has a Gröbner basis which possesses very nice
properties. To illustrate this, we need to fix an ordering of monomials. First,
suppose the list of variables x1, x2, . . . , xn are ordered by x1 x2 · · · xn.
Then induces a total ordering on the set of monomials xααα with ααα ∈ N

n. One
example is the lexicographic (lex for short) order, i.e. xααα xβββ if and only if
there exists 1 ≤ i ≤ n such that αi > βi, and αj = βj for all 1 ≤ j < i. It can be
shown that the lex order of monomials is a well-ordering, that is, every nonempty
set of monomials has a least element. Besides, the lex order is preserved under
multiplication, i.e. xααα xβββ implies xαααxγγγ xβββxγγγ for any γγγ ∈ N

n. Such an
ordering of monomials as the lex order is called a monomial ordering.

Given a monomial ordering and a polynomial g ∈ K[x], rearrange the
monomials in p in a descending order as

g = c1x
α1α1α1 + c2x

α2α2α2 + · · ·+ ckx
αkαkαk ,

where all ci’s are nonzero. Then c1x
ααα1 is called the leading term of g, denoted

by lt(g); c1 is called the leading coefficient of g, denoted by lc(g); and xα1α1α1 is
called the leading monomial of g, denoted by lm(g). For a polynomial p ∈ K[x],
if p has a nonzero term cβββx

βββ and xβββ is divisible by lm(g), i.e. xβββ = xγγγ lm(g) for
some γγγ ∈ N

n, then we say p is reducible modulo g, and call

p′ = p− cβββ
lc(g)

xγγγg

the one-step reduction of p modulo g.
Given a finite set of polynomials G � K[x] and a polynomial p ∈ K[x], we can

do a muli-step reduction on p using polynomials in G, until p is reduced to p∗

which is not further reducible modulo G. Such p∗ is called the normal form of
p w.r.t. G, denoted by nf(p,G). For general G, the above process of reduction is
guaranteed to terminate; however, the final result nf(p,G) may vary, depending
on the sequence of polynomials chosen from G during reduction. Fortunately, we
have

Proposition 1. Given a monomial ordering, then every ideal I ⊆ K[x] other
than {0} has a basis G = {g1, g2, . . . , gs}, such that for any p ∈ K[x], nf(p,G) is
unique. Such G is called a Gröbner basis of I.

Furthermore,

Proposition 2. Let G be a Gröbner basis of an ideal I ⊆ K[x]. Then for any
p ∈ K[x], p ∈ I if and only if nf(p,G) = 0.

Most importantly, for any ideal I = 〈h1, h2, . . . , hl〉 ⊆ K[x], the Gröbner basis
G of I can be computed from the hi’s using Buchberger’s Algorithm [24]. Then
by Proposition 2, we get that the ideal membership problem, that is to decide
whether a polynomial p ∈ K[x] lies in a given ideal 〈h1, h2, . . . , hl〉 ⊆ K[x], is
algorithmically solvable.

The following theorem, which can be deduced from Hilbert Basis Theorem, is
key to the proof of several main results in this tutorial.

Formal Modelling, Analysis and Verification of Hybrid Systems 217

Theorem 2 (Ascending Chain Condition). For any ascending chain of ide-
als

I1 ⊆ I2 ⊆ · · · ⊆ Il ⊆ · · ·
in K[x], there exists an N ∈ N such that Il = IN for any l ≥ N .

2.4 First-Order Theory of Reals

From a logical point of view, polynomials can be used to construct the first-
order theory T (R) of real numbers (actually of all real closed fields), which is
very useful in formulating problems arising in the study of hybrid systems. The
language of T (R) consists of

– variables: x, y, z, . . . , x1, x2, . . . , which are interpreted over R ;
– relational symbols: >,<,≥,≤,=, �= ;
– Boolean connectives: ∧,∨,¬,→,↔, . . . ; and
– quantifiers: ∀, ∃ .

A term of T (R) over a finite set of variables {x1, x2, . . . , xn} is a polynomial
p ∈ Q[x1, x2, . . . , xn]. An atomic formula of T (R) is of the form p� 0, where �

is any relational symbol. A quantifier-free formula (QFF) of T (R) is a Boolean
combination of atomic formulas. A generic formula of T (R) is built up from
atomic formulas using Boolean connectives as well as quantifiers.

A profound result about T (R) is that it admits quantifier elimination (QE)
[83]. That is, any formula ϕ in T (R) has a quantifier-free equivalent ϕQF involving
only free variables of ϕ, and ϕQF can be computed from ϕ using QE algorithms.
An immediate consequence of this result is the decidability of T (R): the truth
value of any formula in T (R) can be decided.

Formulas in T (R) define a special class of sets:

Definition 8 (Semi-algebraic Set). A subset A ⊆ R
n is called a semi-

algebraic set (SAS), if there exists a QFF φ in T (R) over variables x1, x2, . . . , xn,
or briefly x, such that

A = {x ∈ R
n | φ(x) is true} .

Let A(φ) denote the SAS defined by a QFF φ. Then from Definition 8 it is easy
to check that SASs are closed under common set operations:

– A(φ1) ∩ A(φ2) = A(ϕ1 ∧ ϕ2) ;
– A(φ1) ∪ A(φ2) = A(ϕ1 ∨ φ2) ;
– A(φ1)

c = A(¬φ1) ;
– A(φ1) \ A(φ2) = A(φ1) ∩ A(φ2)

c = A(φ1 ∧ ¬φ2) ,

where Ac and A \B stand for the complement and subtraction operation of sets
respectively. Moreover, checking of emptiness, inclusion and equality of SASs
can be done by the decidability of T (R).

For convenience, in the rest of this tutorial, we do not distinguish between
an SAS A(φ) and its defining formula φ. That is, we will use T (R)-formulas to

218 N. Zhan, S. Wang, and H. Zhao

represent SASs and use Boolean connectives as set operators. Besides, it is easy
to check that any SAS can be represented by a QFF in the form of

φ(x)�= K
k=1

Jk�
j=1

pkj(x) � 0 ,

where pkj(x) ∈ Q[x] and � ∈ {≥, >} . Therefore restricting SASs to formulas of
this shape will not lose any generality.

Definition 9 (Semi-algebraic Template). A semi-algebraic template with
degree d is of the form

φ(u,x)�= K
k=1

Jk�
j=1

pkj(ukj ,x) � 0 ,

where pkj ∈ Q[ukj ,x] are parametric polynomials with degree d (in x), u is the
collection of parameters appearing in each pkj (i.e. ukj), and � ∈ {≥, >}.

As mentioned in Section 2.3, we will focus on hybrid systems and properties
described by polynomial expressions.

Definition 10. A polynomial CDS (or CCDS, HA, safety property, etc), de-
noted by PCDS (or PCCDS, PHA, etc) for short, is a CDS (or CCDS, HA,
safety property etc, respectively) wherein the sets are SASs and the vector fields
are PVFs (with rational coefficients).

3 Computing Invariants for Hybrid Systems

3.1 Continuous and Global Invariant

An invariant of a hybrid system is a property that holds at every reachable state
of the system.

Definition 11 (Invariant). An invariant of an HA H maps to each q ∈ Q a
subset Iq ⊆ R

n, such that for all (q,x) ∈ RH, we have x ∈ Iq.

One effective way of finding invariants of hybrid systems is to generate so-called
inductive invariants, as inductiveness is usually checkable [75].

Definition 12 (Inductive Invariant). Given an HA H, an inductive invari-
ant maps to each q ∈ Q a subset Iq ⊆ R

n, such that the following conditions are
satisfied:

1. Ξq ⊆ Iq for all q ∈ Q;
2. for any e = (q, q′) ∈ E, if x ∈ Iq ∩Ge, then x′ = Re(x) ∈ Iq′ ;
3. for any q ∈ Q and any x0 ∈ Iq, if there exists a δ ≥ 0 s.t. the solution

x(x0; t) to ẋ = fq satisfies: (i) x(x0; δ) = x′; and (ii) x(x0; t) ∈ Dq for all
t ∈ [0, δ], then x′ ∈ Iq .

Formal Modelling, Analysis and Verification of Hybrid Systems 219

It is easy to check that any inductive invariant is also an invariant. We assume
in this section that all invariants mentioned are inductive.

In Definition 12, condition 1 and 2 are about initial states and discrete induc-
tiveness, which can be checked using the standard techniques for the verification
of discrete programs [92]. However, it is not so straightforward and requires spe-
cial efforts to check condition 3, for which the notion of continuous invariant2

[65,56] is quite useful.

Definition 13 (Continuous Invariant). A subset I ⊆ R
n is called a contin-

uous invariant (CI) of a CCDS (D, f) if for any x0 ∈ I and any T ≥ 0, we
have:

(∀t ∈ [0, T].x(x0; t) ∈ D) =⇒ (∀t ∈ [0, T].x(x0; t) ∈ I) ,

or equivalently,

(∀t ∈ [0, T].x(x0; t) ∈ D) =⇒ x(x0;T) ∈ I .

By Definition 13, it is not difficult to check that condition 3 in Definition 12 is
equivalent to

3’. for any q ∈ Q, Iq is a CI of (Dq, fq) .

To distinguish from CI, we refer to the inductive invariant in Definition 12 a
global invariant (GI). Simply, a GI of an HA H consists of a set of CIs, one
for each CCDS corresponding to a mode of the HA. Using GI, if Iq ⊆ Sq for
all q, then a safety property S can be verified without computing RH. In the
rest of this section, we will present an approach for automatically discovering
semi-algebraic CIs (SCI) and semi-algebraic GIs (SGI) for PCCDS and PHA
respectively.

3.2 Predicting Continuous Evolution via Lie Derivatives

Given a PVF f , we can make use of Lie derivatives to investigate the tendency
of f ’s trajectories in terms of a polynomial p. To capture this, look at Example
1 shown in I of Figure 1.

Example 1. Suppose f = (−x, y) and p(x, y) = x+ y2. Then

L0
f p(x, y) = x+ y2

L1
f p(x, y) = −x+ 2y2

L2
f p(x, y) = x+ 4y2

...

2 In some later sections of this tutorial when we talk about the Hybrid Hoare Logic
(HHL), the terminology differential invariant is used instead of continuous invariant,
with exactly the same meaning.

220 N. Zhan, S. Wang, and H. Zhao

Fig. 1. Lie Derivatives

In I of Figure 1, vector B denotes the corresponding evolution direction of the
vector field f = (−x, y) at point (−1, 1). We could imagine the points on the
parabola p(x, y) = x+y2 with zero energy, and the points in the white area have
positive energy, i.e. p(x, y) > 0. Vector A is the gradient ∇p|(−1,1) of p(x, y),
which infers that the trajectory starting at (−1, 1) will enter the white area im-
mediately if the angle, between ∇p|(−1,1) and the evolution direction at (−1, 1),
is less than π

2 , which means equivalently that the 1-order Lie derivative L1
f p|(−1,1)

is positive. Thus the 1-order Lie derivative L1
f p|(−1,1) = 3 predicts that there is

some positive ε > 0 such that the trajectory starting at (−1, 1) (curve C) has

the property p
�
x((−1, 1); t)

�
> 0 for all t ∈ (0, ε).

However, if the angle between the gradient and the evolution direction equals
π
2 or the gradient is zero-vector, then the 1-order Lie derivative is zero and it is
impossible to predict trajectory tendency by means of 1-order Lie derivative. In
this case, we resort to nonzero higher order Lie derivatives. For this purpose, we
introduce the pointwise rank of p with respect to f as the function γp,f : Rn →
N ∪ {∞} defined by

γp,f (x) = min{k ∈ N | Lk
f p(x) �= 0}

if such k exists, and γp,f (x) =∞ otherwise.

Example 2. Let f(x, y) = (−2y, x2) and h(x, y) = x+ y2. Then

L0
fh(x, y) = x+ y2

L1
fh(x, y) = −2y + 2x2y

L2
fh(x, y) = −8y2x− (2− 2x2)x2

...

Here, γh,f (0, 0) =∞, γh,f (−4, 2) = 1, etc.

Formal Modelling, Analysis and Verification of Hybrid Systems 221

Look at II of Figure 1. At point (−1, 1) on curve h(x, y) = 0, the gradient of
h is (1, 2) (vector A) and the evolution direction is (−2, 1) (vector B), so their
inner product is zero. Thus it is impossible to predict the tendency (in terms
of curve h(x, y) = 0) of the trajectory starting from (−1, 1) via the 1-order Lie
derivative. By a simple computation, the 2-order Lie derivative L2

fh(−1, 1) is 8.
Hence γh,f (−1, 1) = 2. In the sequel, we shall show how to use such high order
Lie derivatives to analyze the trajectory tendency.

For analyzing trajectory tendency by high order Lie derivatives, we need the
following fact.

Proposition 3. Given a PVF f and a polynomial p, then for any x0 ∈ R
n,

p(x0) = 0 if and only if γp,f (x0) �= 0. Let x(t)�=x(x0; t). Then it follows that

(a) if γp,f (x0) <∞ and L
γp,f (x0)
f p(x0) > 0, then

∃ε > 0, ∀t ∈ (0, ε). p(x(t)) > 0;

(b) if γp,f (x0) <∞ and L
γp,f (x0)
f p(x0) < 0, then

∃ε > 0, ∀t ∈ (0, ε). p(x(t)) < 0;

(c) if γp,f (x0) = ∞, then

∃ε > 0, ∀t ∈ (0, ε). p(x(t)) = 0.

Proof. By Section 2.1, p(x(t)) is the composition of two analytic functions, which
implies [52] that the Taylor expansion of p(x(t)) at t = 0

p(x(t)) = p(x0) +
dp

dt
· t+ d2p

dt2
· t

2

2!
+ · · ·

= L0
f p(x0) + L1

f p(x0) · t+ L2
f p(x0) ·

t2

2!
+ · · · (2)

converges in a neighborhood of zero. Then the conclusion of Proposition 3 follows

immediately from formula (2) by case analysis on the sign of L
γp,f (x0)
f p(x0). ��

Based on this proposition, we introduce the notion of transverse set to indicate
the tendency of the trajectories of a considered PVF in terms of the first nonzero
high order Lie derivative of an underlying polynomial as follows.

Definition 14 (Transverse Set). Given a polynomial p and a PVF f , the
transverse set of f over the domain P �= p(x) ≥ 0 is

Transf↑p�= {x ∈ R
n | γp,f (x) <∞ ∧ L

γp,f (x)
f p(x) < 0}.

Intuitively, if x ∈ Transf↑p, then either x is not in P , or x is on the boundary
of P (i.e. p(x) = 0) such that the trajectory x(t) starting from x will exit P
immediately.

222 N. Zhan, S. Wang, and H. Zhao

3.3 Computing Transverse Set

The set Transf↑p in Definition 14 plays a crucial role in developing the automatic
invariant generation method. First of all, we have

Theorem 3. Given a polynomial p ∈ Q[x] and a PVF f ∈ Q
n[x], the set

Transf↑p is an SAS, and its explicit representation is computable.

To prove this theorem, it suffices to show γp,f (x) is computable for each x ∈ R
n.

However, γp,f (x) may be infinite for some x. Thus, it seems that we have to
compute Lk

f p(x) infinitely many times for such x to determine if x ∈ Transf↑p.
Fortunately, we can find a uniform upper bound on γp,f (x) for all x with finite
pointwise rank. To see this, consider the polynomial ideals in ring Q[x] generated
by Lie derivatives L0

f p, L
1
f p, . . . , L

i
fp for all i ≥ 0, i.e.

Ji�= 〈L0
f p(x), L

1
f p(x), . . . , L

i
fp(x)〉 .

Note that

J0 ⊆ J1 ⊆ · · · ⊆ Jl ⊆ · · ·

forms an ascending chain of ideals in Q[x]. By Theorem 2, the number

Np,f �= min{i ∈ N | Ji = Ji+1}, (3)

or equivalently,

Np,f �= min{i ∈ N | Li+1
f p ∈ Ji}

is well-defined. Furthermore, Np,f can be computed by solving the ideal mem-
bership problem with the assistance of an algebraic tool like Maple [61].

Example 3. For f and h in Example 2, by simple computations we get L1
fh /∈

〈L0
fh〉, L2

fh /∈ 〈L0
fh, L

1
fh〉, L3

fh ∈ 〈L0
fh, L

1
fh, L

2
fh〉, so Nh,f = 2.

Actually, the integer Np,f is the upper bound mentioned above on pointwise rank
by the following two theorems.

Theorem 4 (Fixed Point Theorem). If Ji = Ji+1, then Ji = Jl for all l > i .

Proof. We prove this fact by induction on l. Base case: Ji = Ji+1. Assume
Ji = Jl for some l ≥ i + 1. Then there are gj ∈ Q[x] for 0 ≤ j ≤ i, such that

Ll
fp =

�i
j=0 gjL

j
fp. By the definition of Lie derivatives it follows that

Formal Modelling, Analysis and Verification of Hybrid Systems 223

Ll+1
f p = (∇Ll

fp, f)

= (∇
i�

j=0

gjL
j
fp, f)

= (
i�

j=0

Lj
fp∇gj +

i�
j=0

gj∇Lj
fp, f)

=
i�

j=0

(∇gj , f)Lj
fp+

i�
j=0

gjL
j+1
f p

=
i�

j=0

(∇gj , f)Lj
fp+

i�
j=1

gj−1L
j
fp+ giL

i+1
f p . (4)

By base case, Li+1
f p ∈ Ji. Then by (4) we get Ll+1

f p ∈ Ji, so Ji = Jl+1. By
induction, the fact follows immediately. ��

Theorem 5 (Rank Theorem). Given a polynomial p and a PVF f , for any
x ∈ R

n, if γp,f (x) <∞, then γp,f (x) ≤ Np,f , where Np,f is defined in (3).

Proof. If Np,f < γp,f (x) <∞, then
�Np,f

i=0 Li
fp(x) = 0. By (3) and Theorem 4 we

get Li
fp(x) = 0 for all i ∈ N. Thus γp,f (x) = ∞, which is a contradiction. ��

Now, applying the above two theorems we can prove Theorem 3.

Proof (of Theorem 3). First by Theorem 5, for any x,

x ∈ Transf↑p ⇐⇒ γp,f (x) ≤ Np,f ∧ L
γp,f (x)
f p(x) < 0 . (5)

Given p and f , let
π(0)(p, f ,x)�= p(x) < 0 ;

for 1 ≤ i ∈ N,

π(i)(p, f ,x) �= � �
0≤j<i

Lj
fp(x) = 0

�
∧ Li

fp(x) < 0 ,

and

π(p, f ,x) �=
0≤i≤Np,f

π(i)(p, f ,x) .

Then from (5) we have another equivalence

x ∈ Transf↑p ⇐⇒ π(p, f ,x) . (6)

Thus Transf↑p is actually an SAS which can be represented by π(p, f ,x). ��

224 N. Zhan, S. Wang, and H. Zhao

In automatic invariant generation, it actually makes use of parametric poly-
nomials p(u,x). The following theorem indicates Theorem 5 still holds after
substituting p(u,x) for p(x).

Theorem 6 (Parametric Rank Theorem). Given a parametric polynomial
p(u,x) and a PVF f , there is an integer Np,f ∈ N such that γpu0 ,f

(x) < ∞
implies γpu0 ,f

(x) ≤ Np,f for all x ∈ R
n and all u0 ∈ R

w.

The proof of this theorem is quite close to the one of Theorem 5. The difference
lies in the settings of polynomials. Here, all polynomials and ideals are consid-
ered in the polynomial ring Q[u,x], and the number Np,f is defined similarly
as in (3).

3.4 Computing SCI in Simple Case

Given a PCCDS (D, f), the task is to find SCIs for (D, f). First of all, we illustrate
how to compute an SCI of the simple form P �= p(x) ≥ 0 for a simple domain
D�=h(x) ≥ 0.

Notice that if x0 is in the interior of P ∩D, then the trajectory x(t) starting
at x0 will remain in the interior within adequately small t > 0. Therefore, the
condition of CI could be violated only at the points x on the boundary of P , i.e.
p(x) = 0. Thus by Definition 14 and Proposition 3, P is an invariant of (D, f) if
and only if for all x

p(x) = 0→ x /∈ (Transf↑p \ Transf↑h),

i.e.
p(x) = 0 → x ∈ (Transf↑p)c ∪ Transf↑h. (7)

By equivalence (6), the formula (7) is equivalent to

p(x) = 0 → (¬π(p, f ,x) ∨ π(h, f ,x)),

i.e. �
p(x) = 0 ∧ π(p, f ,x)

�
→ π(h, f ,x). (8)

Let θ(h, p, f ,x) denote the formula (8). Then we obtain the following sufficient
and necessary condition for P being an SCI of (D, f).

Theorem 7 (Criterion Theorem). Given a polynomial p, p(x) ≥ 0 is an SCI
of the PCCDS (h(x) ≥ 0, f) if and only if the formula θ(h, p, f ,x) defined as (8)
is true for all x ∈ R

n.

Based on Theorem 7, a constraint based method for generating SCIs in the
simple form can be presented as follows.

Formal Modelling, Analysis and Verification of Hybrid Systems 225

I. First, set a simple semi-algebraic template P �= p(u,x) ≥ 0 using a paramet-
ric polynomial p(u,x).

II. Then apply QE3 to the formula ∀x.θ(h, p, f ,x). In practice, QE may be
applied to a formula ∀x.(θ∧φ), where φ is a formula imposing some additional
constraint on the SCI P . If the output of QE is false, then there is no SCI
in the form of the predefined P ; otherwise, a constraint on u, denoted by
R(u), will be returned.

III. Now, use an SMT solver like [26] to pick a u0 ∈ R(u) and then pu0(x) ≥ 0
is an SCI of (h(x) ≥ 0, f) by Theorem 7.

Example 4. Again, we make use of Example 2 to demonstrate the above method.
Here, we take D�= h(x, y) ≥ 0 with h(x, y)�= − x− y2 as the domain.

Apply procedure (I-III), we have:

1. Set a template P �= p(u,x) ≥ 0 with p(u,x)�= ay(x − y), where u�=(a). By
a simple computation we get Np,f = 2.

2. Compute the corresponding formula

θ(h, p, f ,x) �= p = 0 ∧ (π
(0)
p,f ,x ∨ π

(1)
p,f ,x ∨ π

(2)
p,f ,x) −→

(π
(0)
h,f ,x ∨ π

(1)
h,f ,x ∨ π

(2)
h,f ,x)

where

π
(0)
h,f ,x �= −x− y2 < 0,

π
(1)
h,f ,x �= −x− y2 = 0 ∧ 2y − 2x2y < 0,

π
(2)
h,f ,x �= −x− y2 = 0 ∧ 2y − 2x2y = 0 ∧ 8xy2 + 2x2 − 2x4 < 0,

π
(0)
p,f ,x �= ay(x− y) < 0,

π
(1)
p,f ,x �= ay(x− y) = 0 ∧ −2ay2 + ax3 − 2yax2 < 0,

π
(2)
p,f ,x �= ay(x− y) = 0 ∧ −2ay2 + ax3 − 2yax2 = 0

∧ 40axy2 − 16ay3 + 32ax3y − 10ax4 < 0.

In addition, we require the two points {(−1, 0.5), (−0.5,−0.6)} to be con-
tained in P . Then apply QE to the formula

∀x∀y.
�
θ(h, p, f ,x) ∧ 0.5a(−1− 0.5) ≥ 0 ∧ −0.6a(−0.5 + 0.6) ≥ 0

�
.

The result is a ≤ 0.
3. Just pick a = −1, and then −xy+ y2 ≥ 0 is an SCI of (D, f). The grey part

of Picture III in Fig. 2 is the intersection of the invariant P and domain D.

3 QE has been implemented in many computer algebra tools such as QEPCAD [17],
Redlog [30], Mathematica [88], etc.

226 N. Zhan, S. Wang, and H. Zhao

Fig. 2. Semi-Algebraic Continuous Invariants

3.5 Computing SCI in General Case

Now, consider how to automatically discover SCIs of a PCCDS in general case.
Given a PCCDS (D, f) with

D�= M
m=1

Lm�
l=1

pml(x) � 0 with � ∈ {≥, >} , (9)

the procedure of automatically generating SCIs with a general template

P �= K
k=1

Jk�
j=1

pkj(ukj ,x) � 0 with � ∈ {≥, >}

for (D, f), is essentially the same as the steps (I-III) depicted in Section 3.4.
However, we must sophisticatedly handle the complex Boolean structures of the
formulas herein. In what follows, the main results on general SCI generation are
outlined without rigorous proofs. Please refer to [54] for details.

Necessary-Sufficient Condition for CI. First of all, we study a necessary
and sufficient condition like formula (7) for P being a CI of (D, f). To analyze
the evolution tendency of trajectories of f in terms of a subset A ⊆ R

n, the
following notions and notations are needed.

Inf (A)�= {x0 ∈ R
n | ∃ε > 0∀t ∈ (0, ε).x(x0; t) ∈ A},

IvInf (A)�= {x0 ∈ R
n | ∃ε > 0∀t ∈ (0, ε).x(x0;−t) ∈ A}.

Intuitively, x0 ∈ Inf (A) means that the trajectory starting from x0 enters A
immediately and keeps inside A for a certain amount of time; x0 ∈ IvInf (A)
means that the trajectory through x0 reaches x0 from inside A. By the notion
of CI, it can be proved that

Formal Modelling, Analysis and Verification of Hybrid Systems 227

Theorem 8. Given a CCDS (D, f), a subset P ⊆ R
n is a CI of (D, f) if and

only if

1. ∀x ∈ P ∩D ∩ Inf (D).x ∈ Inf (P); and

2. ∀x ∈ P c ∩D ∩ IvInf (D).x ∈
�
IvInf (P)

�c
.

Necessary-Sufficient Condition for SCI. Given a PCCDS (D, f) and a
semi-algebraic template P , to encode the conditions in Theorem 8 as polynomial
formulas, it is sufficient to show that Inf (D), Inf (P), IvInf (D) and IvInf (P) are
all SASs if D and P are SASs, for which we have the following lemmas4.

Lemma 1. For any polynomial p and PVF f ,

Inf (p > 0) = ψ+(p, f) and

Inf (p ≥ 0) = ψ+
0 (p, f) ,

where

ψ+(p, f)�=
0≤i≤Np,f

ψ(i)(p, f) with ψ(i)(p, f)�=� �
0≤j<i

Lj
fp = 0

�
∧ Li

fp > 0, and

ψ+
0 (p, f)�=ψ+(p, f) ∨

� �
0≤j≤Np,f

Lj
fp = 0

�
.

Lemma 2. For an SAS D defined by (9) and a PVF f , we have

Inf (D) =
M

m=1

Lm�
l=1

Inf (pml � 0).

Lemma 3. For any polynomial p and PVF f ,

IvInf (p > 0) = ϕ+(p, f) and

IvInf (p ≥ 0) = ϕ+
0 (p, f) ,

where

ϕ+(p, f) �=
0≤i≤Np,f

ϕ(i)(p, f) with ϕ(i)(p, f) �= � �
0≤j<i

Lj
fp = 0

�
∧ (−1)i · Li

fp > 0, and

ϕ+
0 (p, f) �=ϕ+(p, f) ∨ � �

0≤j≤Np,f

Lj
fp = 0

	
.

Lemma 4. For an SAS D defined by (9) and a PVF f , we have

IvInf (D) =
M

m=1

Lm�
l=1

IvInf (pml � 0).

4 In the presentation below, we adopt the convention that
�

i∈∅ ηi = false and�
i∈∅ ηi = true, where ηi is a logical formula.

228 N. Zhan, S. Wang, and H. Zhao

Now the main result on automatic SCI generation can be stated as follows.

Theorem 9 (Main Result). A semi-algebraic template P (u,x) defined by

K
k=1

�
jk�
j=1

pkj(ukj ,x) ≥ 0 ∧
Jk�

j=jk+1

pkj(ukj ,x) > 0

�

is a CI of the PCCDS
�
D, f) with

D�= M
m=1

�
lm�
l=1

pml(x) ≥ 0 ∧
Lm�

l=lm+1

pml(x) > 0

�
,

if and only if u satisfies

∀x.
��
P ∧D ∧ ΦD → ΦP

�
∧
�
¬P ∧D ∧ ΦIv

D → ¬ΦIv
P

��
,

where

ΦD �= M
m=1

�
lm�
l=1

ψ+
0 (pml, f) ∧

Lm�
l=lm+1

ψ+(pml, f)

�
,

ΦP �= K
k=1

�
jk�
j=1

ψ+
0 (pkj , f) ∧

Jk�
j=jk+1

ψ+(pkj , f)

�
,

ΦIv
D �= M

m=1

�
lm�
l=1

ϕ+
0 (pml, f) ∧

Lm�
l=lm+1

ϕ+(pml, f)

�
,

ΦIv
P �= K

k=1

�
jk�
j=1

ϕ+
0 (pkj , f) ∧

Jk�
j=jk+1

ϕ+(pkj , f)

�
,

with ψ+(p, f), ψ+
0 (p, f), ϕ

+(p, f), ϕ+
0 (p, f) defined in Lemma 1 and 3 respectively.

Please refer to [54] for the proofs of the above results.

Example 5. Let f(x, y) = (−2y, x2) and D�=R
2. Take a template: P (u,x)�= x−

a ≥ 0 ∨ y − b > 0 with u = (a, b). By Theorem 9, P is an SCI of (D, f) if and
only if a, b satisfy

∀x∀y.
�
(P → ζ) ∧ (¬P → ¬ξ)

�
, 5

5 Note that in Theorem 9 ϕD and ϕIv
D are trivially true when D equals Rn.

Formal Modelling, Analysis and Verification of Hybrid Systems 229

where

ζ�=(x− a > 0) ∨ (x− a = 0 ∧ −2y > 0)

∨ (x− a = 0 ∧ −2y = 0 ∧ −2x2 ≥ 0)

∨ (y − b > 0) ∨ (y − b = 0 ∧ x2 > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx = 0 ∧ 8y2 − 4x3 > 0)

ξ�=(x− a > 0) ∨ (x− a = 0 ∧ −2y < 0)

∨ (x− a = 0 ∧ −2y = 0 ∧ −2x2 ≥ 0)

∨ (y − b > 0) ∨ (y − b = 0 ∧ x2 < 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx > 0)

∨ (y − b = 0 ∧ x2 = 0 ∧ −4yx = 0 ∧ 8y2 − 4x3 < 0)

In addition, we require the set x+ y ≥ 0 to be contained in P . By applying QE,
we get a + b ≤ 0 ∧ b ≤ 0. Let a = −1 and b = −0.5, and we obtain an SCI
P �=x+ 1 ≥ 0 ∨ y + 0.5 > 0, which is shown in IV of Figure 2.

3.6 SGI Generation

Now the method for generating SGIs for a PHA H�=(Q,X, f,D,E,G,R,Ξ) can
be stated as the following steps.

I. Predefine a familiy of semi-algebraic templates Iq(u,x)
6 with degree bound

d for each q ∈ Q, as the SCI to be generated at mode q.
II. Translate conditions for the family of Iq(u,x) to be a GI of H, i.e.

– Ξq ⊆ Iq for all q ∈ Q;
– for any e = (q, q′) ∈ E, if x ∈ Iq ∩Ge, then x′ = Re(x) ∈ Iq′ ;
– for any q ∈ Q, Iq is a CI of (Dq, fq)

into a set of first-order real arithmetic formulas, i.e.

(1) ∀x.
�
Ξq → Iq(u,x)

�
for all q ∈ Q;

(2) ∀x,x′.
�
Iq(u,x) ∧ Ge ∧ x′ = Re(x) → Iq′(u,x

′)
�
for all q ∈ Q and all

e = (q, q′) ∈ E, where x′ is a vector of new variables with the same
dimension as x, and Iq′(u,x

′) is obtained by substituting x′ for x in
Iq′ (u,x);

(3) ∀x.
�
(Iq(u,x) ∧Dq ∧ ΦDq → ΦIq) ∧ (¬Iq(u,x) ∧Dq ∧ ΦIv

Dq
→ ¬ΦIv

Iq
)
�
for

each q ∈ Q, as defined in Theorem 9.

Regarding the verification of a safety property S, there may be a fourth set
of formulas:

(4) ∀x.(Iq(u,x) −→ Sq) for all q ∈ Q.

6 Templates at different modes have different sets of parameters. Here we simply collect
all the parameters together into a w-tuple u.

230 N. Zhan, S. Wang, and H. Zhao

III. Take the conjunction of all the formulas in Step 2 and apply QE to get a
QFF φ(u). Then choose a specific u0 from φ(u) with a tool like Z3 [26],
and the set of instantiations Iq,u0(x) form a GI of H.

The above method is relatively complete with respect to the predefined set of
templates, that is, if there exist SGIs in the form of the predefined templates
then we are able to find one.

Example 6. The Thermostat example taken from [6] can be described by the HA
in Fig. 3. The system has three modes: Cool (qcl), Heat (qht) and Check (qck); and
2 continuous variables: temperature T and timer clock c. All the domains, guards,
reset functions and continuous dynamics are included in Fig. 3. We want to verify
that under the initial condition ΞH�= {qht} ×X0 with X0�= c = 0 ∧ 5 ≤ T ≤ 10,
the safety property S�=T ≥ 4.5 is satisfied at all modes.

�
�

�
�

�
�

�
�

�
�

�
�

Cool Heat Check

Ṫ=2, ċ=1

T≤10, c≤3

Ṫ=−T, ċ=1

T≥5

Ṫ=−T
2
, ċ=1

c≤1

�
�

�
�

T≤6, c:=0

T≥9

c≥0.5, c:=0

c≥2, c:=0

Fig. 3. A hybrid automaton describing the Thermostat system

Using the above SGI generation method, the following set of templates are pre-
defined:

– Iqht �=T + a1c+ a0 ≥ 0 ∧ c ≥ 0;
– Iqcl �=T + a2 ≥ 0;
– Iqck �=T ≥ a3c

2 − 4.5c+ 9 ∧ c ≥ 0 ∧ c ≤ 1

with indeterminates a0, a1, a2 and a3. By deriving verification conditions and
applying QE we get the following constraint on a0, a1, a2, a3:

10a3 − 9 ≤ 0 ∧ 2a3 − 1 ≥ 0 ∧ a1 + 2 = 0 ∧ a0 + 2a1 + 9 = 0 ∧ a2 − a0 = 0 .

By choosing a0 = −5, a1 = −2, a2 = −5, a3 =
1
2 , the following SGI instantiation

is obtained

– Iqht �=T ≥ 2c+ 5 ∧ c ≥ 0;
– Iqcl �=T ≥ 5;
– Iqck �=2T ≥ c2 − 9c+ 18 ∧ c ≥ 0 ∧ c ≤ 1 ,

and the safety property is successfully verified.

Formal Modelling, Analysis and Verification of Hybrid Systems 231

4 Switching Controller Synthesis

4.1 Problem Description

In verification problems, a given hybrid system is proved to satisfy a desired
safety (or other) property. A synthesis problem is harder given that the focus
is on designing a hybrid system that will satisfy a safety requirement, reach a
given set of states, or meet an optimality criterion, or a desired combination of
these requirements.

In this section we talk about the synthesis of switching controllers for hybrid
systems with safety requirements. That is, given a hybrid system and a safety
requirement, we aim to identify a subset of continuous states from each original
transition guard, such that if only at these states is mode switching allowed,
then the system can run forever without violating the required safety property.

The formal definition of the switching controller synthesis problem w.r.t.
safety requirement can be given in the way of [10]. Note that the specification
of hybrid automata has been simplified by assuming that the initial condition is
identical with the domain, and all reset functions are identity mappings.

Problem 1 (Switching Controller Synthesis for Safety). Given a hybrid automa-
ton H = (Q,X, f,D,E,G) and a safety property S, find a hybrid automaton
H′ = (Q,X, f,D′, E,G′) such that

(r1) Refinement: for any q ∈ Q, D′
q ⊆ Dq, and for any e ∈ E, G′

e ⊆ Ge;
(r2) Safety: for any (q,x) ∈ RH′ , x ∈ Sq;
(r3) Non-blocking: H′ is non-blocking.

If suchH′ exists, then SC�= {G′
e ⊆ R

n | e ∈ E} is a switching controller satisfying
the safety requirement S, and DH′ �= �

q∈Q({q}×D′
q) is the controlled invariant

set rendered by SC.
In the following, the theory and techniques on continuous invariant generation

developed in Section 3 will be exploited to solve Problem 1.

4.2 A Synthesis Procedure Based on CI Generation

To solve Problem 1 amounts to refining the domains and guards ofH by removing
so-called bad states. A state (q,x) ∈ DH is bad if the hybrid trajectory starting
from (q,x) either blocksH or violates S; otherwise if the trajectory starting from
(q,x) can either be extended to infinite time or execute infinitely many discrete
transitions while maintaining S, then (q,x) is called a good state. By Definition
13, the set of good states of H can be approximated appropriately using CIs,
which results in the following solution to Problem 1.

Theorem 10. Let H and S be the same as in Problem 1. Suppose D′
q is a closed

subset of Rn for all q ∈ Q and
�

q∈QD
′
q is non-empty. If we have

(c1) for all q ∈ Q, D′
q ⊆ Dq ∩ Sq; and

232 N. Zhan, S. Wang, and H. Zhao

(c2) for all q ∈ Q, D′
q is a CI of (Hq, fq), where

Hq �= � �
e=(q,q′)∈E

G′
e

�c
with G′

e�=Ge ∩D′
q′ ,

then the HA H′ = (Q,X, f,D′, E,G′) is a solution to Problem 1.

Please refer to [49] for the proof of this theorem.
Intuitively, by (c1), D′

q is a refinement of Dq and is also contained in the safe
region Sq, thus guaranteeing (r1) and (r2) of Problem 1; by (c2), any trajectory
starting from D′

q will either stay in D′
q forever7, or finally intersect one of the

transition guards enabling jumps from q to a certain q′, thus guaranteeing (r3)
of Problem 1.

Based on Theorem 10, the following template-based method for synthesizing
switching controllers for PHA with semi-algebraic safety requirement is pro-
posed, by incorporating the automatic SCI generation method in Section 3.4
and 3.5.

(s1) Template Assignment: assign to each q ∈ Q a semi-algebraic template
specifying D′

q, which will be required (see step (s3)) to be a refinement of
Dq, as well as the CI to be generated at mode q ;

(s2) Guard Refinement: refine guard Ge for each e = (q, q′) ∈ E by setting
G′

e�=Ge ∩D′
q′ ;

(s3) Deriving Synthesis conditions: encode (c1) and (c2) in Theorem 10 into
first-order polynomial formulas; the encoding of condition (c1) is straight-
forward, while encoding of (c2) is based on Theorem 9;

(s4) Constraint Solving: apply QE to the fisrt-order formulas derived in (s3)
and a QFF will be returned specifying the set of all possible values for the
parameters appearing in templates;

(s5) Parameters Instantiation: a switching controller can be obtained by an
appropriate instantiation of D′

q and G′
e such that D′

q are closed sets for all
q ∈ Q, and D′

q is non-empty for at least one q ∈ Q; if such an instantiation
is not found, we choose a new set of templates and go back to (s1).

In the above procedure, the method for SCI generation based on a necessary
and sufficient criterion for SCIs is used as an integral component. As a result,
the above controller synthesis method is relatively complete with respect to a
given family of templates, thus having more possibility of discovering a switching
controller.

The shape of chosen templates in (s1) determines the likelihood of success of
the above procedure, as well as the complexity of QE in (s4). Next, heuristics for
choosing appropriate templates will be discussed using the qualitative analysis
proposed in [47].

7 Actually in Theorem 10, for any mode q ∈ Q, fq is required to be a complete vector
field, that is, for any x0 ∈ R

n, the solution x(x0; t) to ẋ = fq exists on [0,∞).

Formal Modelling, Analysis and Verification of Hybrid Systems 233

4.3 Heuristics for Predefining Templates

The key steps of the qualitative analysis used in [47] are as follows.

1. The evolution behavior (increasing or decreasing) of continuous state vari-
ables in each mode is inferred from the differential equations (using first or
second order derivatives);

2. control critical modes, at which the maximal (or minimal) value of a contin-
uous state variable is achieved, can be identified;

3. the safety requirement is imposed to obtain constraints on guards of transi-
tions leading to control critical modes, and

4. then this information on transition guards is propagated to other modes.

Next, we illustrate how such an analysis helps in predefining templates for a
nuclear reactor temperature control system discussed in [47].

Example 7. The nuclear reactor system consists of a reactor core and a cooling
rod which is immersed into and removed out of the core periodically to keep the
temperature of the core, denoted by x, in a certain range. Denote the fraction
of the rod immersed into the reactor by p. Then the initial specification of
this system can be represented using the hybrid automaton in Fig. 4. The goal
is to synthesize a switching controller for this system with the global safety
requirement that the temperature of the core lies between 510 and 550, i.e.
Si�=510 ≤ x ≤ 550 for i = 1, 2, 3, 4.

�
�

�
	

�
�

�
	

�
�

�
	

�
�

�
	

�

�

�

�

G12

θ=0

G34

θ=1

G41 θ=0 G23θ=1

q1: no rod q2: being immersed

q4: being removed q3: immersed

ẋ= x/10−6θ−50

θ̇=0
D1 =̂ θ=0

ẋ= x/10−6θ−50

θ̇=1
D2 =̂ 0≤θ≤1

ẋ= x/10−6θ−50

θ̇=0
D3 =̂ θ=1

ẋ= x/10−6θ−50

θ̇=−1

D4 =̂ 0≤θ≤1

Fig. 4. Nuclear reactor temperature control

1) Refine Domains. Using the safety requirement, domainsDi for i = 1, 2, 3, 4
are refined by Ds

i �=Di ∩ Si, e.g. D
s
1�= θ = 0 ∧ 510 ≤ x ≤ 550 .

234 N. Zhan, S. Wang, and H. Zhao

2) Infer Continuous Evolutions. Let l1�=x/10−6θ−50 = 0 be the zero-level
set of ẋ and check how x and θ evolve in each mode. For example, in Ds

2,
ẋ > 0 on the left of l1 and ẋ < 0 on the right; since θ increases from 0 to
1, x first increases then decreases and achieves maximal value when crossing
l1. (See Fig. 5.)

3) Identify Critical Control Modes. By 2), q2 and q4 are critical control
modes at which the evolution direction of x changes, and thus maximal (or
minimal) value of x is achieved.

4) Generate Control Points. By 3), we can get a control point E(5/6, 550)
at q2 by taking the intersection of l1 and the safety upper bound x = 550;
and F (1/6, 510) at q4 is obtained by taking the intersection of l1 and the
safety lower bound x = 510.

5) Propagate Control Points. E is backward propagated to A(0, a) using
the trajectory �AE through E defined by fq2 , and then to C(1, c) using the
trajectory �CA through A defined by fq4 ; similarly, by propagating F we get
D and B.

6) Construct Templates. For brevity, we only show how to construct D′
2. In-

tuitively, θ = 0, θ = 1,�AE and �BD form the boundaries of D′
2. In order to get

a semi-algebraic template, we need to fit�AE and �BD (which are generally not
polynomial curves) by polynomials using points A,E and B,D respectively.
By the inference of 2), �AE has only one extreme point (also the maximum
point) E in Ds

2, and is tangential to x = 550 at E. A simple algebraic curve
that can exhibit a shape similar to �AE is the parabola through A,E opening
downward with l2�= θ = 5

6 the axis of symmetry. Therefore to minimize the
degree of terms appearing in templates, we do not resort to polynomials with
degree greater than 2. This parabola can be computed using the coordinates
of A,E as: x − 550− 36

25 (a − 550)(θ − 5
6)

2 = 0 , with a the parameter to be
determined.

Fig. 5. Control points propagation

Formal Modelling, Analysis and Verification of Hybrid Systems 235

Through the above analysis, we generate the following templates:

• D′
1�= θ = 0 ∧ 510 ≤ x ≤ a ;

• D′
2�= 0 ≤ θ ≤ 1 ∧ x− b ≥ θ(d− b) ∧ x− 550− 36

25 (a− 550)(θ − 5
6)

2 ≤ 0 ;
• D′

3�= θ = 1 ∧ d ≤ x ≤ 550 ;
• D′

4�= 0 ≤ θ ≤ 1 ∧ x− a ≤ θ(c− a) ∧ x− 510− 36
25 (d− 510)(θ − 1

6)
2 ≥ 0 ,

in which a, b, c, d are parameters satisfying

510 ≤ b ≤ a ≤ 550 ∧ 510 ≤ d ≤ c ≤ 550 .

Note that without qualitative analysis, a single generic quadratic polynomial
over θ and x would require

�2+2
2

	
= 6 parameters.

Based on the synthesis procedure (s1)–(s5) presented in Section 4.2, we show
below how to synthesize a switching controller for the system in Example 7 step
by step.

(s1) The four templates are defined as the above D′
i for 1 ≤ i ≤ 4.

(s2) The four guards are refined by G′
ij �=Gij ∩D′

j and then simplified to:
• G′

12�= θ = 0 ∧ b ≤ x ≤ a ;
• G′

23�= θ = 1 ∧ d ≤ x ≤ 550 ;
• G′

34�= θ = 1 ∧ d ≤ x ≤ c ;
• G′

41�= θ = 0 ∧ 510 ≤ x ≤ a .
(s3) The derived synthesis condition, which is a first-order polynomial formula

in the form of φ�=∀x∀θ.ϕ(a, b, c, d, x, θ), is not included here due to its big
size.

(s4) By applying QE to φ we get the following sample solution to the parameters:

a =
6575

12
∧ b =

4135

8
∧ c =

4345

8
∧ d =

6145

12
. (10)

(s5) Instantiate D′
i and G′

ij by (10). It is obvious that all D′
i are nonempty

closed8 sets. According to Theorem 9, we get a switching controller guar-
anteeing safety property for the nuclear reactor system, i.e.
• G′

12�= θ = 0 ∧ 4135/8 ≤ x ≤ 6575/12 ;
• G′

23�= θ = 1 ∧ 6145/12 ≤ x ≤ 550 ;
• G′

34�= θ = 1 ∧ 6145/12 ≤ x ≤ 4345/8 ;
• G′

41�= θ = 0 ∧ 510 ≤ x ≤ 6575/12 .

In [47], an upper bound x = 547.97 for G12 and a lower bound x = 512.03 for G34

are obtained by solving the differential equations at mode q2 and q4 respectively.
By (10), the corresponding bounds generated here are x ≤ 6575

12 = 547.92 and
x ≥ 6145

12 = 512.08.
As should be evident from the above discussion, in contrast to [47], where

differential equations are solved to get closed-form solutions, here good approxi-
mate results are obtained without requiring closed-form solutions. This indicates
that the controller synthesis approach based on CI generation should work well
for hybrid automata where differential equations for modes need not have closed
form solutions.
8 Actually all D′

i become closed sets naturally by the construction of templates, in
which only ≥,≤,= relations appear conjunctively.

236 N. Zhan, S. Wang, and H. Zhao

4.4 Synthesis of Optimal Controllers

Most of the discussion so far on switching controller synthesis is based on meeting
the safety requirements. As a result, there is still considerable flexibility left
in designing controllers to meet other objectives. One important criterion for
further refinement of controllers is optimality, i.e. to optimize a reward/penalty
function that reflects the performance of the controlled system.

The optimal switching controller synthesis problem studied in this section can
be stated as follows.

Problem 2. Suppose H is a hybrid automaton whose transition guards are not
determined but specified by a vector of parameters u. Associated with H is an
objective function g in u. The task is to determine values of u, or a relation over
u, such that H can take discrete jumps at desired conditions, thus guaranteeing

1) a safety requirement S is satisfied; and
2) an optimization goal G, possibly

min
u
g(u), max

u2

min
u1

g(u) , or min
u3

max
u2

min
u1

g(u)9 is achieved.

The determined values of u or relations over u are called the optimal switching
controller.

If H is a PHA and S is a semi-algebraic safety property, then Problem 2 can be
solved by following the steps (s1)–(s4) in Section 4.2 and then solving an opti-
mization problem with objective G. In particular, if g is a polynomial function,
then the optimization problem can also be encoded into first-order polynomial
formulas and then solved by QE.

In detail, the approach for solving the optimal controller synthesis problem
can be described as the following steps.

Step 1. Derive constraint D(u) on u from the safety requirements of the system.
The reachable set RH (parameterized by u) is either computed exactly, or

approximated using SCIs (with u and possibly others as parameters). Then the
safety requirement S is imposed to derive constraint on u using QE.

Step 2. Encode the optimization problem G over constraint D(u) into a quan-
tified first-order polynomial formula Qu.ϕ(u, z), where z is a fresh variable.

The encoding is based on the following proposition, in which all the afore-
mentioned optimization objectives are discussed together.

Proposition 4. Suppose g1(u1), g2(u1,u2), g3(u1,u2,u3) are polynomials, and
D1(u1), D2(u1,u2), D3(u1,u2,u3) are nonempty compact (i.e. bounded closed)
SASs. Then there exist c1, c2, c3 ∈ R s.t.

9 The elements of u are divided into groups u1,u2,u3, . . . according to their roles in
G.

Formal Modelling, Analysis and Verification of Hybrid Systems 237

∃u1.(D1 ∧ g1 ≤ z) ⇐⇒ z ≥ c1 , (11)

∀u2.
�
∃u1.D2 −→ ∃u1.(D2 ∧ g2 ≤ z)

�
⇐⇒ z ≥ c2 , (12)

∃u3.
�
(∃u1u2.D3) ∧ ∀u2.

�
∃u1.D3 −→ ∃u1.(D3 ∧ g3 ≤ z)

��
⇐⇒ z � c3,(13)

where �∈ {>,≥}, and c1, c2, c3 satisfy

c1 = min
u1

g1(u1) overD1(u1) , (14)

c2 = supmin
u2 u1

g2(u1,u2) overD2(u1,u2) , (15)

c3 = inf supmin
u3 u2 u1

g3(u1,u2,u3) overD3(u1,u2,u3) . (16)

The proof of this proposition can be found in [95].

Step 3. Apply QE to Qu.ϕ(u, z) and from the result we can retrieve the optimal
value of G and the corresponding optimal controller u.

Using the above procedure, the issues of synthesis, verification and optimization
for hybrid systems are integrated into one elegant framework. Compared to nu-
merical approaches, using the QE-based method, the synthesized controllers are
guaranteed to be correct and better optimal optimal values can be obtained.

4.5 Oil Pump: A Case Study

We illustrate the above approach on an industrial oil pump example studied in
[18].

The whole system consists of a machine, an accumulator, a reservoir and a
pump. The machine consumes oil periodically out of the accumulator with a
period of 20s (second) for one consumption cycle. The profile of consumption
rate is shown in Fig. 6. The pump adds oil from the reservoir into the accumula-
tor with power 2.2l/s (liter/second). There is an additional physical constraint
requiring a latency of at least 2s between any two consecutive operations of the
pump.

Control objective for this system is to switch on/off the pump at appropriate
time points

0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ tk+1 ≤ · · · (17)

in order to

1) maintain the oil volume v(t) in the accumulator within a safe range
[Vmin, Vmax] at any time, where Vmin = 4.9l, Vmax = 25.1l ; and

2) minimize the average accumulated oil volume in one cycle, i.e. 1
T

� T
t=0 v(t).

238 N. Zhan, S. Wang, and H. Zhao

Fig. 6. Consumption rate in each cycle Fig. 7. Optimal switching con-
troller for the oil pump

The second objective is important because the average oil level reflects the energy
cost of the system.

Following [18], the time points to switch on/off the pump in one consumption
cycle is determined by measuring the oil volume v0 at the beginning of each
cycle. Besides, it is assumed that the pump is operated (turned on/off) at most
4 times in one cycle.

The system along with the safety and optimality requirements can all be
exactly modeled by first-order polynomial formulas. By applying various QE
heuristics, the following results are obtained:

– The optimal switching controller is

t1 =
10v0 − 25

13
∧ t2 =

10v0 + 1

13
∧ t3 =

10v0 + 153

22
∧ t4 =

157

11
, (18)

where t1, t2, t3, t4 are the 4 time points to operate the pump in one cycle, and
v0 ∈ [5.1, 7.5] is the measurement of the initial oil volume at the beginning
of each cycle. If v0 = 6.5, then by (18) the pump should be switched on at
t1 = 40/13, off at t2 = 66/13, then on at t3 = 109/11, and finally off at
t4 = 157/11 (dashed line in Fig. 7).

– The optimal average accumulated oil volume obtained using the strategy
given by (18) is Vopt = 215273

28600 = 7.53, which is a significant improvement
(over 5%) compared to the optimal value 7.95 reported in [18]. If the pump
is allowed to be turned on more times, then even better controllers can be
generated (Vopt = 7.35 if the pump is allowed to be turned on at most 3
times in one cycle).

More details about this case study can be found in [94,95].

Formal Modelling, Analysis and Verification of Hybrid Systems 239

5 Hybrid CSP

HCSP [37,98], which extends CSP by introducing differential equations for mod-
elling continuous evolutions and interrupts, is a formal language for describing
hybrid systems. In HCSP, exchange of data among processes is described solely
by communications; no shared variable is allowed between different processes in
parallel, so each process variable is local to the respective sequential component.
We denote by V ranged over x, y, s, . . . the set of variables, and by Σ ranged
over ch, ch1, . . . the set of channels. The syntax of HCSP is given as follows:

P ::= skip | x := e | wait d | ch?x | ch!e | P ;Q | B → P | P 	Q | �i∈I(chi∗ → Qi)
| P ∗ | 〈F(ṡ, s) = 0&B〉 | 〈F(ṡ, s) = 0&B〉�d Q
| 〈F(ṡ, s) = 0&B〉� �i∈I(chi∗ → Qi)

S ::= P | S‖S

Here ch, chi ∈ Σ, chi∗ stands for a communication event, i.e., either chi?x
or chi!e, x, s ∈ V , B and e are Boolean and arithmetic expressions, d is a
non-negative real constant, P,Q,Qi are sequential processes, and S stands for
a system, i.e., an HCSP process.

The intended meaning of the individual constructs is as follows:

– skip terminates immediately having no effect on variables.
– x := e assigns the value of expression e to x and then terminates.
– wait d will keep idle for d time units keeping variables unchanged.
– ch?x receives a value along channel ch and assigns it to x.
– ch!e sends the value of e along channel ch. A communication takes place

when both the sending and the receiving parties are ready, and may cause
one side to wait.

– The sequential composition P ;Q behaves as P first, and if it terminates, as
Q afterwards.

– The alternative B → P behaves as P if B is true; otherwise it terminates
immediately.

– P �Q denotes internal choice. It behaves as either P or Q, and the choice is
made by the process.

– �i∈I(chi∗ → Qi) denotes communication controlled external choice. I is sup-
posed to be finite. As soon as one of the communications chi∗ takes place,
the process continues as the respective guarded Qi.

– The repetition P ∗ executes P for some finite number of times.
– 〈F(ṡ, s) = 0&B〉 is the continuous evolution statement (hereafter shortly

continuous). It forces the vector s of real variables to obey the differential
equations F as long as the boolean expression B, which defines the domain
of s, holds, and terminates when B turns false.

– 〈F(ṡ, s) = 0&B〉 �d Q behaves like 〈F(ṡ, s) = 0&B〉, if that continuous
terminates before d time units. Otherwise, after d time units of evolution
according to F , it moves on to execute Q.

240 N. Zhan, S. Wang, and H. Zhao

– 〈F(ṡ, s) = 0&B〉 � �i∈I(chi∗ → Qi) behaves like 〈F(ṡ, s) = 0&B〉, except
that the continuous evolution is preempted as soon as one of the commu-
nications chi∗ takes place, which is followed by the respective Qi. Notice
that, if the continuous part terminates before a communication from among
{chi∗}I occurs, then the process terminates without communicating.

– S1‖S2 behaves as if S1 and S2 run independently except that all communi-
cations along the common channels connecting S1 and S2 are to be synchro-
nized. The processes S1 and S2 in parallel can neither share variables, nor
input or output channels.

Note that some primitives of CSP and timed CSP are derivable from the above

syntax, e.g. stop
def
= t := 0; 〈ṫ = 1&true〉. Specifically, some of the constructs

in the above syntax can be defined with other ones and thus are not primitive
either, for instance

wait d
def
= t := 0; 〈ṫ = 1&t < d〉,

�i∈I(chi∗ → Qi)
def
= stop� �i∈I(chi∗ → Qi),

〈F(ṡ, s) = 0&B〉�d Q
def
= t := 0; 〈F (ṡ, s) = 0 ∧ ṫ = 1&t < d ∧B〉; t ≥ d→ Q.

Example 8. Consider the classic plant-controller example: A plant is sensed by
a computer periodically (say every d time units), and receives a control (u)
from the digit controller soon after the sensing. Thus, it can be modelled by the
following HCSP process:

((〈F (u, s, ṡ) = 0&true〉� (cp2c!s→ skip)); cc2p?u)
∗ ‖ (wait d; cp2c?x; cc2p!e(x))

∗

where 〈F (u, s, ṡ) = 0&true〉 describes the behaviour of the plant. We refer this
HCSP process as PLC hereafter.

In the sequel, we use V(P) to stand for the set of local variables and Σ(P) for
the set of channels of a process P .

5.1 Notations

In order to define the real-time behavior of HCSP processes, we use non-negative
reals R

+ to model time, and introduce a global clock now as a system variable
to record the time in the execution of a process.

A timed communication is of the form 〈ch.c, b〉, where ch ∈ Σ , c ∈ R and
b ∈ R

+, representing that a communication along channel ch occurs at time b
with value c transmitted. The set Σ × R× R

+ of all timed communications is
denoted by TΣ. The set of all timed traces is

TΣ∗
≤ = {γ ∈ TΣ∗ | if 〈ch1.c1, b1〉 precedes 〈ch2.c2, b2〉 in γ, then b1 ≤ b2}.

If X ⊆ Σ , γ �X is the projection of γ onto X.
Given two timed traces γ1, γ2, and X ⊆ Σ , the alphabetized parallel of γ1

and γ2 over X , denoted by γ1 ‖
X

γ2, results in a set of timed traces, defined by:

Formal Modelling, Analysis and Verification of Hybrid Systems 241

〈〉 ‖
X

〈〉 def= 〈〉, 〈〉 ‖
X

γ
def
= γ ‖

X

〈〉

〈ch.a, b〉 · γ ‖
X

〈〉 def=
�
〈ch.a, b〉 · (γ ‖

X

〈〉) if ch �∈ X

∅ otherwise
〈ch1.a, t1〉 · γ′1 ‖

X

〈ch2.b, t2〉 · γ′2

def
=

�����������������

〈ch1.a, t1〉 · (γ′1 ‖
X

γ′2) if ch1 = ch2 ∈ X, a = b, t1 = t2

〈ch1.a, t1〉 · (γ′1 ‖
X

(〈ch2.b, t2〉 · γ′2)) ∪ 〈ch2.b, t2〉 · ((〈ch1.a, t1〉 · γ′1) ‖
X

γ′2)

otherwise if ch1, ch2 /∈ X, t1 = t2
〈ch1.a, t1〉 · (γ′1 ‖

X

(〈ch2.b, t2〉 · γ′2)) otherwise if ch1 /∈ X, t1 ≤ t2

〈ch2.b, t2〉 · ((〈ch1.a, t1〉 · γ′1) ‖
X

γ′2) otherwise if ch2 /∈ X , and t2 ≤ t1

∅ otherwise

To model synchronization of communication events, we need to describe their
readiness, and meanwhile, to record the timed trace of communications having
occurred till now. Each communication event has the form of γ.ch? or γ.ch!, to
represent that ch? (resp. ch!) is ready to occur, and before that the sequence of
communications γ have occurred. Therefore, we introduce two system variables,
rdy and tr, to represent the ready set of communication events and the timed
communication trace accumulated, at each time point during process execution.
In what follows, we use V+(P) to denote V(P) ∪ {rdy, tr, now}.

For a process P , a state σ of P is an assignment to associate a value from
the respective domain to each variable in V+(P). Given two states σ1 and σ2,
we say σ1 and σ2 are parallelable iff Dom(σ1)∩Dom(σ2) = {rdy, tr, now} and
σ1(now) = σ2(now). Paralleling them over X ⊆ Σ results in a set of new states,
denoted by σ1 � σ2, any of which σ is given by

σ(v)
def
=

���������
σ1(v) if v ∈ Dom(σ1) \Dom(σ2),
σ2(v) if v ∈ Dom(σ2) \Dom(σ1),
σ1(now) if v = now,
γ, where γ ∈ σ1(tr) ‖

X

σ2(tr) if v = tr,

σ1(rdy) ∪ σ2(rdy) if v = rdy.

It makes no sense to distinguish any two states in σ1�σ2, so hereafter we abuse
σ1 � σ2 to represent any of its elements.

5.2 Operational Semantics

As mentioned above, we use now to record the time during process execution.
A state, ranging over σ, σ1, assigns respective value to each variable in V+(P);
moreover, we introduce flow, ranging over H,H1, defined on a time interval,
assigns a state to each point in the interval.

Each transition relation has the form of (P, σ)
α−→ (P ′, σ′, H), where P is

a process, σ, σ′ are states, H is a flow. It records that starting from initial

242 N. Zhan, S. Wang, and H. Zhao

state σ, P evolves into P ′ and ends in state σ′ and flow H , while performing
event α. When the transition is discrete and thus produces a flow on an in-
terval that contains only one point, we will write (P, σ)

α−→ (P ′, σ′) instead of

(P, σ)
α−→ (P ′, σ′, {σ(now) �→ σ′}). The label α represents events, which can be

an internal event like skip, assignment, or a termination of a continuous etc,
uniformly denoted by τ , or an external communication event ch!c or ch?c, or an
internal communication ch.c, or a time delay d that is a positive real number.
We call the events but the time delay discrete events, and will use β to range
over them. We define the dual of ch?c (denoted by ch?c) as ch!c, and vice
versa, and define comm(ch!c, ch?c) or comm(ch?c, ch!c) as the communication
ch.c. To make our operational semantics more expressive, we will record both
the internal events and internal communications that have occurred till now in
tr.

The semantics of skip and x := e are defined as usual, except that for each,
an internal event occurs. Rule (Idle) says that a terminated configuration can
keep idle arbitrarily, and then evolves to itself. For input ch?x, the input event
has to be put in the ready set if it is enabled (In-1); then it may wait for its
environment for any time d during which it keeps ready (In-2), or it performs a
communication and terminates, with x being assigned and tr extended by the
communication, and the ready set being reduced one corresponding to the input
(In-3). The semantics of output ch!e is similarly defined by rules (Out-1), (Out-2)
and (Out-3). The continuous evolves for d time units if B always holds within
this period, during which the ready set is empty (Cont-1), and it terminates
at a point when B turns out false at the point or at a right open interval
(Cont-2). For communication interrupt, it evolves for d time units if none of
the communications ioi is ready (IntP-1), or continues as Qj if ioj occurs first
(IntP-2); or terminates immediately when the continuous terminates (IntP-3).
For P1‖P2, we always assume that the initial states σ1 and σ2 are parallelable.
There are four rules: both P1 and P2 evolve for d time units in case they
can delay d time units respectively; or P1 may progress separately on internal
events or external communication events (Par-2), and the symmetric case can
be defined similarly (omitted here); or they together perform a synchronized
communication (Par-3); or P1‖P2 terminates when both P1 and P2 terminate
(Par-4). At last, the semantics for conditional, sequential, internal choice, and
repetition is defined as usual.

(skip, σ)
τ−→ (ε, σ[tr + τ] (Skip)

(ε, σ)
d−→ (ε, σ[now �→ σ(now) + d]) (Idle)

(x := e, σ)
τ−→ (ε, σ[x �→ σ(e), tr �→ σ(tr) · 〈τ, σ(now)〉]) (Ass)

σ(tr).ch? �∈ σ(rdy)
(ch?x, σ)

τ−→ (ch?x, σ[rdy �→ σ(rdy) ∪ {σ(tr).ch?}])
(In-1)

σ(tr).ch? ∈ σ(rdy)
(ch?x, σ)

d−→ (ch?x, σ[now �→ σ(now) + d], Hd,i)
(In-2)

Formal Modelling, Analysis and Verification of Hybrid Systems 243

σ(tr).ch? ∈ σ(rdy)
(ch?x, σ)

ch?b−−−→ (ε, σ[x �→ b, tr + ch.b, rdy �→ σ(rdy)\{σ(tr).ch?}])
(In-3)

σ(tr).ch! �∈ σ(rdy)
(ch!e, σ)

τ−→ (ch!e, σ[rdy �→ σ(rdy) ∪ {σ(tr).ch!}])
(Out-1)

σ(tr).ch! ∈ σ(rdy)
(ch!e, σ)

d−→ (ch!e, σ[now �→ σ(now) + d], Hd,o)
(Out-2)

σ(tr).ch! ∈ σ(rdy)

(ch!e, σ)
ch!σ(e)−−−−→ (ε, σ[tr + ch.σ(e), rdy �→ σ(rdy)\{σ(tr).ch!}])

(Out-3)

S(t) is a trajectory of F(ṡ, s) = 0 s.t.(S(0) = σ(s)

∧∀t ∈ [0, d].(F(˙S(t), S(t)) = 0 ∧ σ(B[s �→ S(t)]) = true))

(〈F(ṡ, s) = 0&B〉, σ) d−→
� 〈F(ṡ, s) = 0&B〉,
σ[now �→ σ(now) + d, s �→ S(d)], Hd,s

� (Cont-1)

(σ(B) = false) or (S(t) is a trajectory of F(ṡ, s) = 0 s.t.
∃ε > 0.(S(0) = σ(s)

∧∀t ∈ (0, ε].(F(˙S(t), S(t)) = 0 ∧ σ(B[s �→ S(t)]) = false)))

(〈F(ṡ, s) = 0&B〉, σ) τ−→ (ε, σ[s �→ limt→0 S(t), tr �→ σ(tr) · 〈τ, σ(now)〉])
(Cont-2)

(chi∗;Qi, σ)
d−→ (chi∗;Qi, σ

′
i,Hi), ∀i ∈ I

(〈F(ṡ, s) = 0&B〉, σ) d−→ (〈F(ṡ, s) = 0&B〉, σ′,H)

(〈F(ṡ, s) = 0&B〉� �i∈I(chi∗ → Qi), σ)
d−→� 〈F(ṡ, s) = 0&B〉� �i∈I(chi∗ → Qi),

σ′[rdy �→ ∪i∈Iσ
′
i(rdy)],H [rdy �→ ∪i∈Iσ

′
i(rdy)]

� (IntP-1)

(chj∗;Qj , σ)
chj∗−−−→ (Qj , σ

′),∃j ∈ I

(〈F(ṡ, s) = 0&B〉� �i∈I(chi∗ → Qi), σ)
chj∗−−−→ (Qj , σ

′)
(IntP-2)

(〈F(ṡ, s) = 0&B〉, σ) τ−→ (ε, σ′))

(〈F(ṡ, s) = 0&B〉� �i∈I(chi∗ → Qi), σ)
τ−→ (ε, σ′)

(IntP-3)

(P1, σ1)
d−→ (P ′

1, σ
′
1,H1), (P2, σ2)

d−→ (P ′
2, σ

′
2, H2),

∀ch ∈ Σ(P1) ∩Σ(P2).¬((P1, σ1 � σ2)
ch∗−−→ ∧(P2, σ1 � σ2)

ch∗−−→)

(P1 ‖ P2, σ1 � σ2) d−→ (P ′
1 ‖ P ′

2, (σ
′
1 � σ′

2), H1 �H2)
(Par-1)

(P1, σ1)
β−→ (P ′

1, σ
′
1), Σ(β) �∈ Σ(P1) ∩Σ(P2)

(P1 ‖ P2, σ1 � σ2)
β−→ (P ′

1 ‖ P2, σ
′
1 � σ2)

(Par-2)

(P1, σ1)
ch∗−−→ (P ′

1, σ
′
1), (P2, σ2)

ch∗−−→ (P ′
2, σ

′
2),

(P1 ‖ P2, σ1 � σ2)
comm(ch∗,ch∗)−−−−−−−−−−→ (P ′

1 ‖ P ′
2, σ

′
1 � σ′

2)

(Par-3)

(ε ‖ ε, σ1 � σ2) τ−→ (ε, σ1 � σ2) (Par-4)

244 N. Zhan, S. Wang, and H. Zhao

σ(B) = true

(B → P, σ)
τ−→ (P, σ[tr + τ])

(Cond-1)
σ(B) = false

(B → P, σ)
τ−→ (ε, σ[tr + τ])

(Cond-2)

(P, σ)
α−→ (P ′, σ′, H) P ′ �= ε

(P ;Q, σ)
α−→ (P ′;Q, σ′, H)

(Seq-1)
(P, σ)

α−→ (ε, σ′, H)

(P ;Q, σ)
α−→ (Q, σ′, H)

(Seq-2)

(P �Q, σ) τ−→ (P, σ[tr + τ]) (IntC-1) (P �Q, σ) τ−→ (Q, σ[tr + τ])
(IntC-2)

(P, σ)
α−→ (P ′, σ′, H) P ′ �= ε

(P ∗, σ) α−→ (P ′;P ∗, σ′, H)
(Rep-1)

(P, σ)
α−→ (ε, σ′, H)

(P ∗, σ) α−→ (P ∗, σ′, H)
(Rep-2)

(P ∗, σ) τ−→ (ε, σ[tr + τ]) (Rep-3)

where for an internal or communication event β, σ[tr + β] stands for σ[tr �→
σ(tr) · 〈β, σ(now)〉], and the flow Hd,i (or Hd,o) is defined over time interval
[σ(now), σ(now) + d], such that for any t in the domain, Hd,i(t) = σ[now �→ t]
(or Hd,o(t) = σ[now �→ t]); and the flow Hd,s is defined over time interval
[σ(now), σ(now) + d] such that for any t ∈ [σ(now), σ(now) + d], Hd,s(t) =
σ[now �→ t, s �→ S(t − σ(now))], where S(·) is the trajectory as defined in the
rule. For any t in the domain, H1 �H2(t) = H1(t) �H2(t).

Given two flows H1 and H2 defined on [r1, r2] and [r2, r3] respectively, we

define the concatenation H�
1H2 as the flow defined on [r1, r3] such that H�

1H2(t)
is equal to H1(t) if t ∈ [r1, r2), and H2(t) if t ∈ [r2, r3). Given a process P and
an initial state σ0, if we have the following sequence of transitions:

(P, σ0)
α0−→ (P1, σ1, H1)

(P1, σ1)
α1−→ (P2, σ2, H2)

. . .

(Pn−1, σn−1)
αn−1−−−→ (Pn, σn, Hn)

then we define the sequence H�
1 . . .

�Hn as a flow from P1 to Pn starting from

σ0, and write (P, σ0)
α0···αn−1−−−−−−→ (Pn, σn, H

�
1 . . .

�Hn) as an abbreviation of the

above transition sequence; and meanwhile, define the sequence B�
1 . . .

�Bn as a
behavior from P1 to Pn starting from σ0, where Bi is Hi if Hi is not empty,
empty otherwise if Hi is empty but Hi+1 is not, σi otherwise. Thus, a flow
records for each time point the rightmost state, while a behavior records for
each time point all the discrete states that occur in execution. Especially, when
Pn is ε, we will call them complete flow and complete behavior of P with respect
to σ0 respectively.

Formal Modelling, Analysis and Verification of Hybrid Systems 245

6 Hybrid Hoare Logic

HHL was first proposed in [55], which is an extension of Hoare logic to hybrid
system, used to specify and reason about hybrid systems modelled by HCSP. The
assertion logic of HHL consists of two parts: the first-order logic and Duration
Calculus (DC) [97,96]. The former is used to specify discrete events, represented
by pre- and post-condition, while the latter is used to specify continuous evolu-
tion. In HHL, a hybrid system is modelled by an HCSP process. So, the proof
system of HHL consists of the following three parts: axioms and inference rules
for the first-order logic, axioms and inference rules for DC, and axioms and in-
ference rules for the constructs of HCSP. A theorem prover of the logic based on
Isabelle/HOL has been implemented, and applied to model and specify Chinese
High-Speed Train Control System at Level 3 (CTCS-3) [99].

However, the version of HHL given in [55] can only be used to deal with
closed systems, as it lacks compositionality and therefore cannot cope with open
systems. Recently, some attempts to define a compositional proof system are
undertaken [86,36,93].

Here, we present a revised version of HHL given in[55].

6.1 History Formulas

As indicated before, we will use a subset of DC formulas to record execution his-
tory of HCSP processes. The formulas in this subset are denoted as HF (history
formula) and given as follows.

HF ::= � < T | � = T | � > T | �S�0 | ¬HF | HF�
1HF2 | HF2 ∨ HF2

where � stands for interval length, T ∈ R
+ is a constant, and S is a state expres-

sion, which is a first order formula of V(P) interpreted as a Boolean function
over the time domain, defined by

S ::= 1 | 0 | R(e1, . . . , en) | ¬S | S1 ∨ S2

where R(e1, . . . , en) is a n-ary predicate over expressions e1, . . . , en, normally
of the form p(x1, . . . , xn) � 0 with � ∈ {≥, >,=, �=,≤, <} and p(x1, . . . , xn) a
polynomial in x1, . . . , xn.

Informally, the above formulas can be understood as follows:

– � < T (resp. � = T , � > T) means the length of the reference interval is less
than (resp. equal to, greater than) T ;

– �S�0 means that the state S is satisfied at the reference point interval, i.e.,
the considered time point;

– HF�
1HF2 says that the reference interval can be split into two parts such that

HF1 is satisfied on the first segment, while HF2 holds on the second;

– The logical connectives can be understood in the standard way.

246 N. Zhan, S. Wang, and H. Zhao

�S� is an abbreviation of ¬(true��¬S�0�� > 0), which means S holds everywhere
on a considered interval, except for its right endpoint. Obviously, we have

false ⇔ (� < 0) true ⇔ (� = 0) ∨ (� > 0) ⇔ ¬(� = 0) ∨ �S�
�S���S� ⇔ �S� �S��(� = 0) ⇔ �S� ⇔ (� = 0) ��S�

In addition, given a history formula HF, we use HF< to denote the internal of
HF, meaning that HF holds on the interval derived from the considered interval
by excluding its endpoint. HF< can be formally defined as follows:

(� < T)<
def
= (� < T)

(� = T)<
def
= (� = T)

(� > T)<
def
= � > T

(�S�0)< def
= � = 0

�S�< def
= �S�

(HF�
1HF2)

< def
= (HF1)

<�
(HF2)

<

(HF1 ∧ HF2)
< def

= (HF1)
< ∧ (HF2)

<

(HF1 ∨ HF2)
< def

= (HF1)
< ∨ (HF2)

<

Formally, given a state σ, a state expression S is interpreted as

σ(1) = 1

σ(0) = 0

σ(R(e1, . . . , en)) =

1, if R(σ(e1), . . . , σ(en));
0, otherwise

σ(¬S) = 1− σ(S)

σ(S1 ∨ S2) = max{σ(S1), σ(S2)}

Thus, given a flow H and a reference interval of the flow [a, b] with a, b ∈
Dom(H), and a ≤ b, we can formally define the meaning of a history formula
HF inductively as follows:

– H, [b, e] |= �� T iff e− b� T , where � ∈ {≤, >,=, �=,≤, <};
– H, [b, e] |= �S�0 iff b = e, and H(b)(S) = 1;
– H, [b, e] |= ¬HF iff H, [b, e] �|= HF;
– H, [b, e] |= HF1 ∧ HF2 iff H, [b, e] |= HF1 and H, [b, e] |= HF2;
– H, [b, e] |= HF1 ∨ HF2 iff H, [b, e] |= HF1 or H, [b, e] |= HF2;
– H, [b, e] |= HF�

1HF2 iff there is m ∈ [b, e] such that H, [b,m] |= HF1 and
H, [m, e] |= HF2.

6.2 Hoare Assertion

A Hoare assertion of HHL consists of four parts: precondition, process, postcon-
dition and history, written as

{Pre}P{Post;HF}

Formal Modelling, Analysis and Verification of Hybrid Systems 247

where Pre specifies values of V(P) before an execution of P , Post specifies values
of V(P) when P terminates, and HF is a formula of V(P) from the DC subset
to describe the execution history of P . HCSP has three kinds of interruptions:
boundary interruption like 〈F (ṡ, s) = 0∧B〉, timeout interruption like 〈F (ṡ, s) =
0∧B〉�dQ and communication interruption like 〈F (ṡ, s) = 0∧B〉� []i∈I(chi∗ →
Qi). For these three kinds of interruptions, HF has to join in reasoning.

Definition 15 (Validity). We say a Hoare assertion {Pre}P{Post;HF} is

valid, denoted by |= {Pre}P{Post;HF}, iff for any initial state σ1, if (P, σ1)
α∗
−−→

(ε, σ2, H) then σ1 |= Pre implies σ2 |= Post and H, [σ1(now), σ2(now)] |= HF .

For a parallel process, say P1 ‖ ... ‖ Pn, the assertion becomes

{Pre1, ...,Pren}P1 ‖ ... ‖ Pn{Post1, ...,Postn;HF1, ...,HFn}

where Prei,Posti,HFi are (first order or DC) formulas of V(Pi) (i = 1, ..., n)
separately. The validity can be defined similarly.

Another role of HF is to specify real-time (continuous) property of an HCSP
process, while Pre and Post can only describe its discrete behaviour. HF therefore
bridges up the gap between discrete and continuous behaviour of the process. For
instance, in Example 8, we may want the plant controller stable after T time
units, i.e. after T time units the distance between the trajectory of s and its
target starg must be small. This can be specified through the following assertion.

{s = s0 ∧ u = u0 ∧ Ctrl(u0, s0),Pre2} PLC
{Post1,Post2; (l = T)��| s− starg |≤ ε�,HF2}

where Ctrl(u, s) may express a controllable property, and the other formulas are
not elaborated here.

Note that we can essentially put Pre and Post as parts of history formula

HF like the form �Pre�0�HF��Post�0. But we did not adopt this way, because
separation of specifying and reasoning about discrete behavior and continuous
behavior can indeed improve readability and simplify our approach.

6.3 Proof System of HHL

We will omit the axioms and inference rules for the first-order logic and DC, and
just concentrate on the axioms and rules for the constructs of HCSP.

1. Monotonicity

If {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2},
and Pre′i ⇒ Prei,Posti ⇒ Post′i,HFi ⇒ HF′

i(i = 1, 2),

then {Pre′1,Pre′2}P1 ‖ P2{Post′1,Post′2;HF′
1,HF

′
2}

where we use first order logic to reason about Pre′i ⇒ Prei and Posti ⇒ Post′i,
but use DC to reason about HFi ⇒ HF′

i. From now on we will not repeatedly
mention this.

248 N. Zhan, S. Wang, and H. Zhao

2. Case Analysis

If {Pre1i,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2} (i = 1, 2),

then {Pre11 ∨ Pre12,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2}

Symmetrically,

If {Pre1,Pre2i}P1 ‖ P2{Post1,Post2;HF1,HF2} (i = 1, 2),

then {Pre1,Pre21 ∨ Pre22}P1 ‖ P2{Post1,Post2;HF1,HF2}
3. Parallel vs Sequential

These two rules show a simple relation between assertions of a parallel pro-
cess and its sequential components that can ease a proof.

If {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2}
then {Prei}Pi{Posti;HFi} (i = 1, 2)

and
If {Prei}Pi{Posti;HFi} (i = 1, 2),

and Pi (i = 1, 2) do not contain communication,

then {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2}
4. Skip

{Pre}skip{Pre; l = 0},
where by l = 0 we assume that, in comparison with physical device, compu-
tation takes no time (i.e. super dense computation [60])

5. Assignment
{Pre[e/x]}x := e{Pre, �x = e�0}

The precondition and postcondition are copied from Hoare Logic. Here we
use �x = e�0 as its history to indicate that x is assigned to e, which takes
place at this time point.

6. Communication
Since HCSP rejects sharing variables, a communication looks like the output
party (P1; ch!e) assigning to variable x of the input one (P2; ch?x) a value
e. Besides, in order to synchronize both parties, one may have to wait for
another. During the waiting of Pi, Posti must stay true (i = 1 or 2). We use
const(V(P)) to denote ∧x∈V(P)∃v.�x = v�, which means that all variables of
P keep unchanged except for at the endpoint.

If {Pre1,Pre2}P1 ‖ P2{Post1,Post2;HF1,HF2},
Post1 ⇒ G(e),HF1 ⇒ � = c1, and HF2 ⇒ � = c2

then {Pre1,Pre2}(P1; ch!e) ‖ (P2; ch?x)

{Post1, G(x) ∧ ∃x.Post2;HF1
�(�Post1� ∧ const(V(P1)) ∧ � = c− c1),

(HF2
�(�Post2� ∧ const(V(P2)) ∧ � = c− c2))

<��x = e�0}
where c = max{c1, c2}.

Formal Modelling, Analysis and Verification of Hybrid Systems 249

Note that for simplicity, in the above rule we just consider a simple case of
communication; a rule for the general case of communication

(P1; []i∈Ichi∗ → Q1i) ‖ (P2; []j∈Jchj∗ → Q2j),

where chi∗ = chj∗ for some i ∈ I, j ∈ J , can be defined similarly.

Example 9. If

{Pre1,Pre2}P1 ‖ P2

{y = 3, x = 1; (�y = 0� ∧ (l = 3))��y = 3�0, �x = 0� ∧ (l = 5)��x = e�0},

we want to deduce through this rule

{Pre1,Pre2}P1; ch!y ‖ P2; ch?x{Post3,Post4;HF3,HF4}.

Since (y = 3) ⇒ (3 = 3), �y = 0� ∧ (l = 3))��y = 3�0 ⇒ � = 3, and
(�x = 0� ∧ � = 5)��x = 1�0 ⇒ � = 5, we can conclude that Post3 is y = 3,

Post4 is x = 3, HF3 is ((�y = 0�∧(l = 3))��y = 3�0�(�y = 3�∧const(V(P1)∪
{y}) ∧ � = 2), and HF4 is (� = 5��x = 1�0)<��x = 3�0, which is equivalent
to (� = 5��x = 3�0 by the definition of HF<. ��

7. Continuous
This is about 〈F (ṡ, s) = 0 ∧ B〉, where s can be a vector and F be a group
of differential equations, such as

〈(ṡ1 = f1, ..., ṡn = fn) ∧B〉.

As indicated in Sec 3, in our framework, we only deal with polynomial dif-
ferential equations and semi-algebraic differential invariants. That is, fjs are
polynomials in si (i = 1, ..., n), B is a conjunction of polynomial equations
and inequalities of si (i = 1, ..., n), and differential invariants are also re-
stricted to polynomial equations and inequalities. So, given a polynomial
differential invariant Inv of 〈F (ṡ, s) = 0 ∧ B〉 with initial values satisfying
Init, the inference rule for continuous can be formulated as follows:

If Init ⇒ Inv,

then {Init ∧ Pre}〈F (ṡ, s) = 0 ∧B〉{Pre ∧Cl(Inv) ∧Cl(¬B);

�Inv ∧ Pre ∧B�}

where Pre does not contain s, Cl(G) stands for the closure of G10.
The second rule is about explicit time.

If {Pre}〈F (ṡ, s) = 0&B〉{Post;HF}
and {Pre ∧ t = 0}〈(F (ṡ, s) = 0, ṫ = 1)&B〉{t = t0 ∧Rg(t0),HF′},
then {Pre}〈F (ṡ, s) = 0&B〉{Post;HF ∧Rg(�)}

where t is a clock to count the execution time, and Rg(t) is a constraint on
the final value of t which is an arithmetic formula.

10 When G is constructed by polynomial inequalities through ∧ and ∨, Cl(G) can be
obtained from G by replacing < (and >) with ≤ (and ≥) in G.

250 N. Zhan, S. Wang, and H. Zhao

Example 10. According to the result given in Section 3, it is easy to see that
v ≤ vebi is an invariant of 〈(ṡ = v, v̇ = a)∧v < vebi〉. Thus, by the continuous
rule

{(v = v0 ≤ vebi)}〈(ṡ = v, v̇ = a) ∧ v < vebi〉
{(v ≤ vebi) ∧ (v ≥ vebi); �(v ≤ vebi) ∧ (v < vebi)�}

In addition, we can prove that, if the initial values are v = v0 and t = 0, and
we assume p ≥ a ≥ w, then

((v0 + wt) ≤ v ≤ (v0 + pt)) ∧ (v ≤ vebi)

is an invariant of 〈(ṡ = v, v̇ = a, ṫ = 1) ∧ v < vebi〉. So under the assumption
(p ≥ a ≥ w)

{(v = v0 ≤ vebi) ∧ (t = 0)}〈(ṡ = v, v̇ = a, ṫ = 1) ∧ v < vebi〉
{(v = vebi) ∧ ((v0 + wt) ≤ v ≤ (v0 + pt)) ∧ vebi−v0

w ≥ t ≥ vebi−v0
p ;

�(v < vebi) ∧ ((v0 + wt) ≤ v ≤ (v0 + pt))�}

Therefore, assuming (p ≥ a ≥ w) we can have

{(v = v0 ≤ vebi)}〈(ṡ = v, v̇ = a) ∧ v < vebi〉
{(v = vebi); �(v < vebi)� ∧ (vebi−v0

w ≥ l ≥ vebi−v0
p)}

��

8. Sequential. The rule for sequential composition is very standard, given as
follows:
If {Pre1}P1{Post1;HF1}, and {Post1}P2{Post2;HF2}
then {Pre1}P1;P2{Post2;HF<

1
�
HF2}.

9. Internal Choice. The rule for internal choice is standard, given as follows:
If {Pre}P1{Post1;HF1} and {Pre}P2{Post2;HF2},
then {Pre}P1 � P2{Post1 ∨ Post2;HF1 ∨ HF2}.

10. Communication Interruption
There are two rules for communication interruption, the first one says that
the continuous part terminates before a communication happens, while the
second one states that the continuous evolution is interrupted by a commu-
nication.
Rule1: If

(a) {Pre,PreR} 〈F (ṡ, s) = 0&B〉 ‖ R{Post,PostR;HF,HFR},
(b) for all i ∈ I, {Pre,PreR} chi∗ ‖ R{Posti,PostiR;HFi,HF

i
R},

(c) HF⇒ � = x, ∧i∈I(HFi ⇒ � = xi) ∧ x < xi,
then

{Pre,PreR} 〈F (ṡ, s) = 0&B〉� []i∈I(chi∗ → Qi) ‖ R
{Post,PostR;HF,HFR}

Rule 2: Assume j ∈ I. If
(a) {Pre,PreR} 〈F (ṡ, s)=0&B〉 ‖ R1; chj∗ → R2{Post,PostR;HF,HFR},
(b) for all i ∈ I, {Pre,PreR} chi∗ ‖ R1; chj∗ {Posti,PostiR;HFi,HF

i
R},

(c) HF⇒ � = x, ∧i∈IHFi ⇒ � = xi, and xj ≤ x ∧ ∧i�=jxj ≤ xi,

Formal Modelling, Analysis and Verification of Hybrid Systems 251

(d) HF⇒ (� = xj ∧ HFs)
��G(s0)�0,

(e) {Postj ∧G(s0),PostjR}Qj ‖ R2{Postf ,PostfR;HF
f ,HFf

R},
then

{Pre,PreR} 〈F (ṡ, s) = 0&B〉� []i∈I(chi∗ → Qi) ‖ R1; chj∗ → R2

{Postf ,PostfR; ((HFs
��G(s0)�0) ∧ HFj)

�HFf ,HFj
R

�
HFf

R}

Note that for simplicity, in Rule 2, we only consider 〈F (ṡ, s) = 0&B〉 �
[]i∈I(chi∗ → Qi) to be parallel with R1; chj∗;R2. For general case, the rule
can be given similarly, without any difficulty.

11. Repetition
We can pick up rules from the literature for the repetition. Here we only
show a rule which ends off an assertion reasoning.

If {Pre1,Pre2}P1 ‖ P2{Pre1,Pre2;HF1,HF2},
HFi ⇒ (Di ∧ (l = T)) (i = 1, 2, T > 0),

and D�
iDi ⇒ Di,

then {Pre1,Pre2}P ∗
1 ‖ P ∗

2 {Pre1,Pre2; � = 0 ∨D1, � = 0 ∨D2}

where T is the time consumed by both P1 and P2 that can guarantee the
synchronisation of the starting point of each repetition.

6.4 Soundness

We only present the case for sequential processes.

Definition 16 (Theorem). We say a Hoare triple {Pre}P{Post;HF} is a
theorem, denoted by {Pre}P{Post;HF}, iff it is derivable from the above
proof system.

The soundness of the proof system is guaranteed by the following theorem.

Theorem 11 (Soundness). If {Pre}P{Post;HF}, then |= {Pre}
P{Post;HF}, i.e. every theorem of the proof system is valid.

7 HHL Prover

In this section, we aim to provide the tool support for verifying whether an
HCSP process conforms to its specification written in HHL. Fig. 8 shows the
verification architecture of our approach: given an annotated HCSP process in
the form of HHL specification, by designing a verification condition generator
based on HHL proof system, the specification to be proved is reduced to a set
of verification conditions, each of which is either a first-order formula or a DC
formula, and the validity of these logical formulas is equivalent to that of the
original specification; these logical formulas can then be proved by interactive
theorem proving, furthermore, some of which falling in decidable subsets of first-
order logic or DC can be proved automatically by designing the corresponding
decision procedures.

252 N. Zhan, S. Wang, and H. Zhao

As shown in Fig. 8, a differential invariant generator is needed for specifying
and verifying differential equations. But currently we assume for each differential
equation, its invariant is annotated as given, as we have not implemented the
results reported in Sec. 3 yet. As one of future work, such an invariant generator
will be implemented and integrated.

Differential
Invariant
Generator

Annotated
HCSP Processes

A Verification
Condition Generator

Logical formulas

Interactive Provers
(Isabelle/HOL)

Automatic Provers
(SMT Solver)

Fig. 8. Verification Architecture of HCSP Processes

We have mechanized the main part of the verification architecture connected
by solid lines shown in Fig. 8 in proof assistant Isabelle/HOL, based on which
implemented an interactive theorem prover called HHL prover for verifying HHL
specifications. The mechanization mainly includes the embedding of HCSP, the
assertion languages, i.e., first-order logic (FOL) and DC, and upon them, the
embedding of the proof system of HHL in Isabelle/HOL. We adopt the deep
embedding approach [14,87] here, which represents the abstract syntax for both
HCSP and assertions by new datatypes, and then defines the semantic functions
that assign meanings to each construct of the datatypes. It allows us to quantify
over the syntactic structures of processes and assertions, and furthermore, make
full use of deductive systems for reasoning about assertions written in FOL and
DC.

The HHL prover can be downloaded at https://github.com/iscas/HHL_prover.

7.1 Expressions

We start from encoding the bottom construct, i.e. expressions, that are repre-
sented as a datatype exp:

datatype exp = RVar string | SVar string | BVar string | Real real
| String string | Bool bool | exp + exp | exp − exp | exp ∗ exp

Formal Modelling, Analysis and Verification of Hybrid Systems 253

An expression can be a variable, that can be of three types, RVar x for real vari-
able, SVar x and BVar x for string and boolean variables; a constant, that can
be also of the three types, e.g. Real 1.0, String ‘‘CO’’ and Bool True; an arith-
metic expression constructed from operators +,−, ∗. Based on expressions, we
can define the assertion languages and the process language HCSP respectively.

7.2 Assertion Language

As we introduced in Sec. 6, there are two assertion logics in HHL: FOL and DC,
where the former is used for specifying the pre-/post-conditions and the latter
for the execution history of a process respectively. The encodings for both logics
consist of two parts: syntax and deductive systems. We will encode the deduc-
tive systems in Gentzen’s sequent calculus style, which applies backward search
to conduct proofs and thus is more widely used in interactive and automated
reasoning. A sequent is written as Γ Δ, where both Γ and Δ are sequences of
logical formulas, meaning that when all the formulas in Γ are true, then at least
one formula in Δ will be true. We will implement a sequent as a truth propo-
sition. The sequent calculus deductive system of a logic is composed of a set of
sequent rules, each of which is a relation between a (possibly empty) sequence
of sequents and a single sequent. In what follows, we consider to encode FOL
and DC respectively.

First-Order Logic. The FOL formulas are constructed from expressions by using
relational operators from the very beginning, and can be represented by the
following datatype fform:

datatype fform = [True] | [False] | exp [=] exp | exp [<] exp

| [¬] fform | fform [∨] fform | [∀] string fform

The other logical connectives including [∧], [→], and [∃] can be derived as normal.
For quantified formula [∀]string fform, the name represented by a string corre-
sponds to a real variable occurring in fform. We only consider the quantification
over real variables here, but it can be extended to variables of other types (e.g.
string and bool) without any essential difficulty. Notice that we add brackets to
wrap up the logical constructors in order to avoid the name conflicts between
fform and the FOL system of Isabelle library. But in sequel, we will remove
brackets for readability when there is no confusion in context; and moreover,
in order to distinguish between FOL formulas and Isabelle meta-logic formulas,
we will use ⇒, & and | to represent implication, conjunction and disjunction in
Isabelle meta-logic.

Now we need to define the sequent calculus style deductive system for fform.
The Isabelle library includes an implementation of the sequent calculus of clas-
sical FOL with equation, based upon system LK that was originally introduced
by Gentzen. Our encoding of the sequent calculus for fform is built from it di-
rectly, but with an extension for dealing with the atomic arithmetic formulas
that are defined in fform. We define an equivalent relation between the validity
of formulas of fform and of bool , the built-in type of Isabelle logical formulas,
represented as follows:

254 N. Zhan, S. Wang, and H. Zhao

formT (f :: fform) ⇔ � f

where the function formT transforms a formula of type fform to a corresponding
formula of bool . This approach enables us to prove atomic formulas f of fform
by applying the built-in arithmetic solvers of Isabelle and proving formT (f)

instead.

Duration Calculus. Encoding DC into different proof assistants has been studied,
such as [78] in PVS, and [38,72] in Isabelle/HOL. DC can be considered as an
extension of Interval Temporal Logic (ITL) by introducing state durations (here
point formulas instead), while ITL an extension of FOL with the introducing of
temporal variables and chop modality by regarding intervals instead of points as
worlds. Therefore, both [38] and [72] apply an incremental approach to encode
ITL on top of an FOL sequent calculus system, and then DC on top of ITL. We
will follow a different approach here, to represent DC formulas as a datatype, as
a result, the proving of DC formulas can be done by inductive reasoning on the
structures of the formulas.

The datatype dform encodes the history formulas HF given in Sec. 6:

datatype dform = [[True]] | [[False]] | dexp[[=]]dexp | dexp[[<]]dexp

| [[¬]]dform | dform[[∨]]dform |[[∀]] string dform | pf fform | dform�dform

We will get rid of double brackets for readability if without confusion in context.
The datatype dexp defines expressions that are dependent on intervals. As seen
from HF , it includes the only temporal variable � for representing the length
of the interval, and real constants. Given a state formula S of type fform, pf S

encodes the point formula �S�0, and furthermore, the following high S encodes
formula �S�:
high :: fform ⇒ dform

high S ≡ ¬ (True �pf (¬S)�
 > Real 0)

The chop modality � can be encoded as well.
To establish the sequent calculus style deductive system for dform, we first

define the deductive system for the first-order logic constructors of dform, which
can be taken directly from the one built for fform above, and then define the
deductive system related to the new added modalities for DC, i.e. �, � and pf.

For � and �, we encode the deductive system of ITL from [96], which is pre-
sented in Hilbert style. Thus, we need to transform the deductive system to se-
quent calculus style, and it is not so natural to do. We borrow the idea from [72]
that for each modality, define both the left and right introducing rules, e.g., the
following implementation

LI : $H, P � $E ⇒ $H, P�(
 = Real 0) � $E

RI : $H � P, $E ⇒ $H � P�(
 = Real 0), $E

where $H, $E represent arbitrary sequences of logical formulas of type dform,
encodes the axiom of ITL: P ↔ P�(� = 0). In the same way, for point formula
pf, we encode the deductive system of DC defined in [96] in sequent calculus
style, e.g., the following implementation

Formal Modelling, Analysis and Verification of Hybrid Systems 255

PFRI : $H � (pf S1
�pf S2), $E ⇒ $H � pf (S1 ∧ S2), $E

encodes the axiom of DC: �S1�0��S2�0 → �S1 ∧ S2�0.

7.3 HCSP

We represent HCSP processes as a datatype proc, and each construct of HCSP
can be encoded as a construct in datatype proc correspondingly. Most of the
encoding is directly a syntactic translation, but with the following exceptions:

– As mentioned in previous sections, in the deductive verification of HCSP
process, the role of differential equation is reflected by an differential invari-
ant with respect to the property to be verified, which can be automatically
discovered in polynomial cases. So in proc, instead of differential equation,
we use differential invariant to describe the underlying continuous, and for
aiding verification, we also add execution time range of the continuous. Thus,
we encode continuous of form 〈F(ṡ, s) = 0&B〉 as <Inv&B> : Rg, where Inv

represents the differential invariant of the continuous, B the domain con-
straint, and Rg the range of execution time, of the continuous respectively;
and Inv, B are implemented as formulas of type fform, while Rg of type dform.

– For sequential composition, we encode P ;Q as P; mid; Q, where P and Q

represent the encodings of P andQ respectively, and mid is added to represent
the intermediate assertions between P and Q. This is requisite for reducing
proof of sequential composition to the ones of its components, and commonly
used in theorem proving.

– For parallel composition, we remove the syntax restriction that it can only
occur in the outmost scope, thus it is encoded with the same datatype proc

as other constructs.

7.4 Semantics

In this section, we encode the semantics of HCSP, FOL and DC in Isabelle/HOL.
This is done by implementing all the relevant semantic notations and functions
defined in Sec. 5 and Sec. 6.

There are two disjoint sets of variables considered in the semantics of HCSP:
local variables in V(P), and system variables {now, tr, rdy}. Notice that the
system variables do not occur in HHL; therefore, we will implement the semantic
functions for evaluating them separately. We define type state to represent states
and each element of it is a function that assigns respective values to (only)
process variables. Besides, we define types now, trace, ready to represent system
time (i.e. real), timed traces and ready sets of communication events. Based on
these definitions, we implement the behavior of a process by the following lbevr

and sbevr:

type synonym lbevr = now ⇒(state list)

sbevr = now ⇒ ((trace*ready) list)

256 N. Zhan, S. Wang, and H. Zhao

Each local behavior of type lbevr associates a sequence of states to each time
point, while each system behavior of type sbevr associates a sequence of traces
and ready sets to each time point. The combination of local behavior and system
behavior implements the overall behavior defined in Sec. 5. It should be pointed
out that the flow of a process is not implemented explicitly here, but it can always
be extracted from the behavior of the process by only keeping the rightmost state
in the state list for each time point11. Thus, in the following, we always use a
behavior whenever a flow is needed.

The expressions of HCSP are interpreted over states. Given a state s of type
state and an expression e of type exp, the function evalE(s, e) defines the value
of e under the state s. Based on the evaluation of expressions, the pre-/post-
conditions in the form of fform, can be interpreted over states. Given a state s

of type state and a formula p of type fform, the function evalF(s, p) evaluates
the truth value of p under the state s.

As defined in Sec. 6, the history formulas of DC are interpreted over flows and
timed intervals. Because the history formulas do not refer to system variables,
we interpret them over local behaviors instead of flows. First of all, given a
local behaviour f of type lbevr and a timed interval [c, d], ievalE(f,
, c, d)

returns the value of �, that is d-c, under the behavior f and the timed interval
[c, d]. Given a behavior f of type lbevr, a DC formula ip, and a timed interval
[c, d], ievalF(f, ip, c, d) evaluates the truth value of ip under the behavior
f and the timed interval [c, d]. In particular, the point formula and chop can
be defined as follows:

pf_eval: ievalF (f, pf (P), c, d) = (c=d & evalF (last(f(c)), P))

chop_eval: ievalF (f, P�Q, c, d) = ∃k. c<=k & k<=d & ievalF (f, P, c, k)

& ievalF (f, Q, k, d)

Thus, pf(P) holds, iff the interval is a point interval, and P holds at the last state
of the state list that is recorded at the time point.

Finally, we implement the operational semantics of HCSP processes. Given
a process P of type proc, a local behavior f of type lbevr, a system behavior
sf of type sbevr, an event α of type event, and a time point d, the function
evalP (P, f, sf, d,α) = (P’, f’, sf’, d’) represents that, starting to execute
from behaviors f and sf, and time d, P performs an event α and evolves to P’ at
time d’, and produces the new local and system behaviors f’ and g’ respectively.
It implements exactly the transition relation (P, σ)

α−→ (P ′, σ′, H) defined in
Sec. 5, in particular that the initial state σ can be extracted from f, sf, and d,
while final state σ′ from f’, sf’, and d’ respectively.

We explain the semantics of several HCSP constructors as an illustration here.
For instance, the transition rule (Ass) of assignment is implemented as follows
(only the case for real variables is considered):

11 Please note the difference between flow and behavior that a flow only records the
last state occurring at any time point, while the corresponding behavior records all
states occurring at the time point.

Formal Modelling, Analysis and Verification of Hybrid Systems 257

assignR : evalP (((RVar (x)) :=e), f, sf, d, Tau) =

(ε, updateVal(f, x, R, e, d), updateTr(sf, Tau, d), d)

where updateVal adds a new state corresponding to the discrete assignment to
the state list recorded at time d, and this new state is the same as the initial state
except that the value of variable RVar (x) is updated by e; and updateTr adds
a Tau event to the initial trace and then pushes the resulting trace to the trace
list recorded at time d. Notice that the termination time is still d, indicating
assignment does not take time. As another instance, the transition rule (In-3) of
input is implemented as follows:

in3 : inList((fst(last(sf(d))), (I ch)), snd(last(sf(d))))

⇒ evalP(ch??(RVar(x)), f, sf, d, (Inp ch e)) =

(ε, updateVal(f, x, R, e, d), removeRdy(

updateTr(sf, Com(ch, e), d), (fst(last(sf(d))), (I ch)), d), d)

where ch??(RVar(x)) of type proc represents an input to real variable. The pred-
icate inList(...) represents that the communication event corresponding to
input ch??(RVar(x)), represented by (fst(last(sf(d))), (I ch)) of type ready,
is in the initial ready set (represented by snd(last(sf(d)))); and it implements
exactly the premise in rule (In-3). It performs an input event Inp ch e, and re-
sults in the adding of a new state that assigns the value of e to RVar(x) to the
state list at time d, and the adding of a new trace increased by the communica-
tion Com(ch,e) to the trace list at time d, and the adding of a new ready set with
the removal of the communication event corresponding to input ch??(RVar(x))

at time d. At last, the transition rule (Par-3) for parallel composition is imple-
mented as follows:

par3: evalP(P, f, sf, d, (Inp ch e)) = (P’, f’, sf’, d) &

evalP(Q, f, sf, d, (Outp ch e)) = (Q’, f’’, sf’’, d) ≡
evalP((P || Q), f, sf, d, a) = ((P’ || Q’), f’, sf’, d)

P performs an input communication event, while Q performs an output communi-
cation event along the same channel, as a consequence, a synchronization occurs
for P || Q. Notice that the resulting behaviors of P || Q are exactly the same to
those of P.

7.5 Proof System of HHL

With the definitions of datatypes proc, fform and dform, it is now easy to en-
code HHL assertions. First of all, a Hoare assertion for sequential process P is
implemented as a truth proposition of the form {Pre} P {Post;HF}, where Pre

and Post are of type fform, and HF of type dform respectively. A Hoare assertion
for parallel process P||Q can be implemented in the similar way.

Verification Condition. Based on the inference rules of HHL, we implement the
verification condition generator for reasoning about HCSP specifications. The
inference rules encoded here are slightly different from those presented in Sec. 6,
in the sense that we remove the point formulas for specifying discrete changes

258 N. Zhan, S. Wang, and H. Zhao

in history formulas and use � = 0 instead. This will not affect the expressiveness
and soundness of HHL.

In deep embedding, the effects of assignments are expressed at the level of for-
mulas by substitution. We implement a map as a list of pairs (exp * exp) list,
and then given a map σ and a formula p of type fform, we define function
substF(σ, p) to substitute expressions occurring in p according to the map σ.
Based on this definition, we have the following axiom for assignment e:=f:

axioms Assignment :

� (p → substF ([(e, f)], q)) ∧ (
 = Real 0 →G) ⇒ {p} (e :=f) {q; G}

According to the rule of assignment, the weakest precondition of e := f with
respect to postcondition q is substF ([(e, f)], q), and on the other hand, the
strongest history formula for assignment is
= Real 0, indicating that as a dis-
crete action, assignment takes no time. Therefore, {p} (e :=f) {q;G} holds, if
p implies the weakest precondition, and moreover, G is implied by the strongest
history formula.

For continuous <Inv & B> : Rg, we assume that the precondition can be sep-
arated into two conjunctive parts: Init referring to initial state of continuous
variables, and p referring to other distinct variables that keep unchanged dur-
ing continuous evolution. With respect to precondition Init∧p, according to the
rule of continuous, when it terminates (i.e. B is violated), the precondition p

not relative to initial state, the closures of Inv and of ¬B hold in postcondition;
moreover, there are two cases for the history formula: the continuous terminates
immediately, represented by
= Real 0, or otherwise, throughout the continuous
evolution, p, Inv and B hold everywhere except for the endpoint, represented by
high (Inv∧p∧B), where both cases satisfy Rg.

axioms Continuous : �(Init →Inv) ∧ ((p ∧ close(Inv) ∧ close(¬B)) →q)

∧ ((((
 = Real 0) ∨ (high (Inv ∧ p ∧ B))) ∧ Rg) → G)

⇒ {Init ∧ p} <Inv & B> : Rg {q; G}

where function close returns closure of corresponding formulas. The above ax-
iom says that {Init∧p} <Inv & B> : Rg {q;G} holds, if the initial state satisfies
invariant Inv, and furthermore, both q and G are implied by the postcondition
and the history formula of the continuous with respect to Init∧p respectively.

For sequential composition, the intermediate assertions need to be annotated
(i.e., (m, H) below) to refer to the postcondition and the history formula of the
first component. Therefore, the specification {p} P;(m, H);Q {q; H�G} holds, if
both {p} P {m;H} and {m} Q {q;G} hold, as indicated by the following axiom.

axioms Sequence : {p} P {m; H}; {m} Q {q; G} ⇒{p} P; (m, H); Q {q; H�G}

The following axiom deals with communication P1; ch!e || P2;ch?x, where P1

and P2 stand for sequential processes. Let p1 and p2 be the preconditions for
the sequential components respectively, and (q1, H1), (q2, H2) the intermedi-
ate assertions specifying the postconditions and history formulas for P1 and P2

respectively. r1 and G1 represent the postcondition and history formula for the

Formal Modelling, Analysis and Verification of Hybrid Systems 259

left sequential component ended with ch!e, while r2 and G2 for the right com-
ponent ended with ch?x. Rg stands for the execution time range of the whole
parallel composition.
axioms Communication :

{p1, p2} P1 || P2 {q1, q2; H1, H2};

� (q1 → r1) ∧ (q2 →substF ([(x, e)], r2));

� (H1 � high (q1)) →G1) ∧ (H2 � high (q2)) →G2);

� (((H1 � high (q1)) ∧ H2) ∨ ((H2 � high (q2)) ∧ H1)) →Rg;

⇒ {p1, p2} ((P1; (q1, H1); ch !! e) || (P2; (q2, H2); ch ?? x))

{r1, r2; G1 ∧ Rg, G2 ∧ Rg}

As shown above, to prove the final specification, the following steps need to
be checked: first, the corresponding specification with intermediate assertions
as postconditions and history formulas holds for P1 || P2; second, after the
communication is done, for the sending party, q1 is preserved, while for the
receiving party, x is assigned to be e. Thus, r1 must be implied by q1, and q2

implies the weakest precondition of the communicating assignment with respect
to r2, i.e. substF ([(x, e)], r2); third, for the communication to take place,
one party may need to wait for the other party to be ready, in case that P1 and
P2 do not terminate simultaneously. The left sequential component will result in
history formula H1�high (q1), in which high (q1) indicates that during waiting
time, the postcondition of P1 is preserved, and similarly for the right component.
Thus, G1 and G2 must be implied by them respectively; and finally, for both cases
when one party is waiting for the other, the conjunction of their history formulas
must satisfy the execution time Rg.

For repetition, we have the following implementation:

axioms Repetition :

{p1, p2} P || Q {p1, p2; H1, H2}; �(H1 � H1 →H1) ∧ (H2 � H2 →H2)

⇒ {p1, p2} P∗ || Q∗ {p1, p2; H1 ∨ (
 = Real 0), H2 ∨ (
 = Real 0)}

The above axiom says that the final specification for P∗|| Q∗ holds, if the same
specification holds for one round of execution, i.e. P || Q, and moreover, H is
idempotent with respect to chop modality. The formula
= Real 0 indicates that
the repetition iterates zero time.

Soundness. To prove the soundness of HHL proof system, we need to have a
big step operational semantics for HCSP first, which can be derived directly
from the small step semantics given in Sec. 5. Besides, considering that the
interpretation of pre-/post-conditions and history formulas are irrelevant to the
system behavior and also the events, we will get rid of them in the big step
operational semantics, represented by function evalPB.

axioms
base: evalP (P, f, sf, d, α) = (ε, f’, sf’, d’) ⇔

evalPB (P, f, d) = (ε, f’, d’)

ind: evalP (P, f, sf, d, α) = (P’, f’, sf’, d’) & evalPB (P’, f’, d’) =

(ε, f’’, d’’) ⇔ evalPB (P, f, d) = (ε, f’’, d’’)

260 N. Zhan, S. Wang, and H. Zhao

The axioms base and ind define the cases when P terminates after one step
transition, and after more than one step transitions respectively.

We can then define the validity of a specification {p} P {q;H} with respect to
the big operational semantics, as follows:

definition Valid :: fform ⇒proc ⇒fform ⇒dform ⇒bool
where Valid (p, P, q, H) = ∀f d f’ d’. evalPB (P, f, d) = (ε, f’, d’) ⇒

evalF (f, p, d) ⇒(evalF (f’, q, d’) & ievalF (f’, H, d, d’))

which says that, given a process P, for any initial behavior f and initial time d,
if P terminates at behavior f’ and time d’, and if the precondition p holds under
the initial state, i.e. last(f(d)), the last state among the state list at initial time,
then the postcondition q will hold under the final state, i.e. last(f’(d’)), the
last state among the state list at termination time, and furthermore, the history
formula will hold under f’ between d and d’.

Based on the above definitions, we have proved the soundness of HHL proof
system in Isabelle/HOL, i.e. all the inference rules of the proof system are valid.

8 Case Study: Chinese Train Control System

In this section, we illustrate our approach by modelling and verifying a combined
operational scenario of Chinese Train Control System at Level 3 (CTCS-3) with
respect to its System Requirement Specification (SRS).

A train at CTCS-3 applies for movement authorities (MAs) from Radio Block
Center (RBC) via GSM-Railway (GSM-R) and is guaranteed to move safely in
high speed within its MA. CTCS-2 is a backup system of CTCS-3, under which
a train applies for MAs from Train Control Center (TCC) via train circuits and
balises instead. There are 9 main operating modes in CTCS-3, among which
the Full Supervision (FS) and Calling On (CO) modes will be involved in the
combined scenario studied in this section. During FS mode, a train needs to
know the complete information including its MA, line data, train data and so
on; while during CO mode, the on-board equipment of the train cannot confirm
explicit routes, thus a train is required to move under constant speed 40km/h.

The operating behavior of CTCS-3 is specified by 14 basic scenarios, all of
which cooperate with each other to constitute normal functionality of train con-
trol system. The combined scenario considered here integrates the Movement
Authority and Level Transition scenarios of CTCS-3, plus a special Mode Tran-
sition scenario.

For modeling a scenario, we model each component involved in it as an HCSP
process and then combine different parts by parallel composition to form the
model of the scenario. In particular, the train participates in each scenario, and
the HCSP model corresponding to the train under different scenarios has a very
unified structure. Let s be trajectory, v velocity, a acceleration, t clock time of
a train respectively. Then we have the following general model for the train:

Train �= � 〈ṡ = v, v̇ = a, ṫ = 1& B〉� �i∈I(ioi → Pcompi);
Qcomp

�∗

Formal Modelling, Analysis and Verification of Hybrid Systems 261

where Pcompi and Qcomp are discrete computation that takes no time to com-
plete. The train process proceeds as follows: at first the train moves continuously
at velocity v and acceleration a; as soon as domain B is violated, or a commu-
nication among {ioi}i∈I between the train and another component of CTCS-3
takes place, then the train movement is interrupted and shifted to Qcomp, or
Pcompi respectively; after the discrete computation is done, the train repeats the
above process, indicated by ∗ in the model. For each specific scenario, the domain
B, communications ioi, and computation Pcompi and Qcomp can be instantiated
correspondingly. We assume the acceleration a is always in the range [−b, A].

In the rest of this section, we will first model three basic scenarios separately,
and then construct a combined scenario from them.

8.1 Movement Authority Scenario

Among all the scenarios, MA is the most basic one and crucial to prohibit trains
from colliding with each other. Before moving, the train applies for MA from
RBC in CTCS-3 or TCC in CTCS-2, and if it succeeds, it gets the permission
to move but only within the MA it owns. An MA is composed of a sequence
of segments. Each segment is represented as a tuple (v1, v2, e,mode), where v1
and v2 represent the speed limits of emergency brake pattern and normal brake
pattern by which the train must implement emergency brake and normal brake
(thus v1 is always greater than v2), e the end point of the segment, and mode
the operating mode of the train in the segment. We introduce some operations
on MAs and segments. Given a non-empty MA α, we define hd(α) to return the
first segment of α, and tl(α) the rest sequence after removing the first segment;
and given a segment seg, we define seg.v1 to access the element v1 of seg, and
similarly to other elements.

�

�

s1 s2 s3

v1

v2

s

v

0

Fig. 9. Static and dynamic speed
profiles

� � � �

ST x1 z
MA

FS CO

RW RBC

level 2 level 3

Fig. 10. Level and mode transition

Given an MA, we can calculate its static speed profile and dynamic speed
profile respectively. As an illustration, Fig. 9 presents an MA with three seg-
ments, separated by points s1, s2, and s3. In the particular case, we assume s3
the end of the MA, thus the train is required to fully stop at s3 if the MA is not
extended. The static speed profile corresponds to two step functions formed by

262 N. Zhan, S. Wang, and H. Zhao

the two speed limits (i.e. v1 and v2) of each segment; and for any segment seg,
the dynamic speed profile is calculated down to the higher speed limit of next
segment taking into account the train’s maximum deceleration (i.e. constant b),
and corresponds to the curved function v2+2b s < next(seg).v21+2b seg.e, where
next(seg) represents the next segment following seg in the considered MA. The
train will never be allowed to run beyond the static and dynamic speed profiles.

By specializing the general model of train, we get its specific model in MA
scenario. Let B0 represent the general restriction that the train always moves
forward, i.e. v ≥ 0, or otherwise, the train has already stopped deceleration
(denoted by a ≥ 0). If B0 fails to hold, the acceleration a needs to be set by a
non-negative value in [0, A]. Let B1 denote the case when the speed is less than
the lower limit v2, or otherwise the train has already started to decelerate; and
B2 the case when the speed is less than the higher limit v1 and not exceeding the
dynamic speed profile, or otherwise the train has already started an emergency
brake, i.e., the acceleration a is set to be the maximum deceleration b. The above
procedure is defined by Q1comp below. For future use, we denote the formula for
specifying dynamic speed profile, i.e. ∀seg : MA . v2 + 2b s < next(seg).v21 +
2b seg.e, by DSP Form.

B0 �= (v ≥ 0 ∨ a ≥ 0 ∨ t < Temp+ Tdelay)
B1 �= (∀seg :MA. v < seg.v2) ∨ a < 0 ∨ t < Temp′ + Tdelay

B2 �= (∀seg :MA. v < seg.v1 ∧ v2 + 2b s < next(seg).v21 + 2b seg.e)∨ a = −b
Q1comp �= ¬B0 → (Temp := t;	{0<=c<=A}a := c);

¬B1 → (Temp′ := t;	{−b<=c<0}a := c);
¬B2 → a := −b;

Notice that we add Tdelay to clock t to guarantee that the interrupt B0 can
at most occur once every Tdelay time units, to avoid Zeno behavior. This is in
accordance with the real system to check the condition periodically. We adopt
this approach several times. In parallel with the train, the RBC or TCC will
send MA to the train periodically via communications, and as a consequence,
the train will update the MA it owns. We omit the formalization of this process
here as it is hardly related to the combined scenario.

8.2 Level Transition

Under CTCS-2, whenever a train passes some specific balises, it can apply for
upgrading to CTCS-3 when necessary. It is assumed balises to be equally dis-
tributed every δ meters along the track. Let B3 represent the negation of the
case when the train is at level 2 and passing a specific balise. When B3 is vi-
olated, then as specified in Q2comp, the following computation will take place:
first, the train sends a level upgrade application signal to RBC; as soon as RBC
receives the application, it sends back the package (b, x1, x2) to the train, where
b represents weather RBC approves the application, x1 the location for starting
level upgrade, and x2 the location for completing level upgrade; if RBC approves
the level upgrade (i.e. b is true), the train enters level 2.5 and meanwhile passes

Formal Modelling, Analysis and Verification of Hybrid Systems 263

the balise. Notice that level 2.5 does not actually exist, but is used only for
modelling the middle stage between level 2 and level 3, during which the train
will be supervised by both CTCS-2 and CTCS-3. Finally, as soon as the train at
level 2.5 reaches location x2 (the negation denoted by B4), the level will be set
to 3, specified in Q3comp. RBClu defines the behavior of RBC under the level
transition scenario.

B3 �= level �= 2 ∨ s �= n ∗ δ
B4 �= level �= 2.5 ∨ s ≤ LU.x2
Q2comp �= ¬B3 → (CHLUA!;CHLU?LU ;LU.b→ level = 2.5;n = n+ 1);
Q3comp �= ¬B4 → level := 3
RBClu �= CHLUA?;�bLU∈{true,false}CHLU !(b, x1, x2)

8.3 Mode Transition

When a train moves under CTCS-2, it will always check whether its operating
mode is equal to the mode of current segment, i.e. hd(MA).mode. We denote
this condition by B5, and as soon as it is violated, the train will update its mode
to be consistent with mode of the segment, specified in Q4comp.

B5 �= mode = hd(MA).mode
Q4comp �= ¬B5 → mode := hd(MA).mode

We consider the mode transition from Full Supervision (FS) to Calling On (CO)
under CTCS-3, which is a little complicated. In the MA application stage, RBC
can only grant the train the MAs before the CO segment. The train needs to
ask the permission of the driver before moving into a CO segment at level 3.
To reflect this specification in modelling, both the speed limits for CO seg-
ments are set to be 0. As a consequence, if the train fails to get the permission
from the driver, it must stop before the CO segment; but if the train gets the
driver’s permission, the speed limits of the CO segments will be reset to be
positive.

Let B6 denote the negation of the case when the train is at level 3, and it
moves to 300 meters far from the end of current segment, and the mode of
next segment is CO. As soon as B6 is violated, then as specified in Q5comp, the
following computation will take place: first, the train will report the status to
the driver and ask for permission to enter next CO segment via communications;
if the driver sends true, the speed limits of next CO segment will be reset to
be 40km/h and 50km/h respectively (abstracted away by function coma(MA)).
As a consequence, the train is able to enter next CO segment at a positive
speed successfully. Drivermc defines the process for the driver under the mode
transition scenario.

264 N. Zhan, S. Wang, and H. Zhao

B6 �= level �= 3 ∨ CO �= hd(tl(MA)).mode ∨ hd(MA).e − s > 300
∨t < Temp+ Tdelay

Q5comp �= CHwin!¬B6;¬B6 → Temp := t;CHDC?brConf; brConf → coma(MA)
Drivermc �= CHwin?bwin; bwin → �bsConf∈{true,false}CHDC !bsConf

8.4 Combined Scenario and Its Model

We combine the scenarios introduced above, but with the following assumptions
for the occurring context:

– The train moves inside an MA it owns, and in the combined scenario, it does
not need to apply for new MAs from RBC or TCC;

– There are two adjacent segments in the MA, divided by point z. The train
is supervised by CTCS-2 to the left of z and by CTCS-3 to the right, and
meanwhile, it is operated by mode FS to the left of z and by mode CO
to the right. Thus the locations for mode transition and for level transition
are coincident. At the starting point of a CO segment, i.e., location z, both
speed limits are initialized to 0 by RBC;

– The train has already got the permission for level transition from RBC which
sends (true, x1, z).

Please see Fig. 10 for an illustration. Based on these assumptions, the train will
not cooperate with RBC or TCC temporarily in this combined scenario. Thus,
only the train and the driver participate in the combined scenario.

The model of the combined scenario can then be constructed from the models
of all the basic scenarios contained in it. The construction takes the following
steps: firstly, decompose the process for each basic scenario to a set of sub-
processes corresponding to different system components that are involved in the
scenario (usually by removing parallel composition on top); secondly, as a com-
ponent may participate in different basic scenarios, re-construct the process for
it based on the sub-processes corresponding to it under these scenarios (usually
by conjunction of continuous domain constraints and sequential composition of
discrete computation actions); lastly, combine the new obtained processes for all
the components via parallel composition. According to this construction process,
we get the following HCSP model for the combined scenario:

System �= Train∗ ‖ Driver∗mc

Train �= 〈ṡ = v, v̇ = a, ṫ = 1& B0 ∧B1 ∧B2 ∧B4 ∧B5 ∧B6〉;Ptrain

Ptrain �= Q1comp;Q3comp;Q4comp;Q5comp

According to SRS of CTCS-3, we hope to prove that the combined scenario sat-
isfies a liveness property, i.e., the train can eventually pass through the location
for level transition and mode transition.

Formal Modelling, Analysis and Verification of Hybrid Systems 265

8.5 Proof of the Combined Scenario

Under the given assumptions in Section 8.4, we check whether the combined
scenario (i.e. model System) satisfies a liveness property, i.e., the train will
eventually move beyond location z for both level transition and mode transition.
In this section, instead of proving the liveness property directly, we provide a
machine-checked proof for negation of the livness, which says, after moving for
any arbitrary time, the train will always stay before location z. We start from
encoding the model System and the negation property first.

According to HCSP syntax implemented by proc, most encoding of model
System is a direct translation, except for continuous and sequential composi-
tion. Firstly, the continuous of System needs to be represented in the form of
differential invariants. According to the differential invariant generation method,
the differential invariant (a = −b)→ DSP Form is calculated for the continuous,
indicating that when the train brakes with maximum deceleration b, it will never
exceed the dynamic speed profile. Obviously it is a complement to the domain
constraint B2, saying that the train will never exceed the dynamic speed profile
except for the case of emergency brake. We adopt the conjunction of these two
formulas, that results in DSP Form, as the final invariant for the continuous.
Thus we represent the continuous as <Inv&B> : Rg, where Inv and B correspond
to encodings of DSP Form and the domain constraints respectively, and Rg is
True, specifying the executing time of the continuous; Secondly, the intermediate
formulas for all sequential composition are added. We finally get the encoding
of System, represented by System, with structure Train∗|| Driver∗.

Now it is turn to encode the negation property, specified by pre/post-conditions,
and history formula. The precondition is separated into two parts depending on
whether it is relative to initial values, shown by Init and Pre below:

definition Init :: fform where Init ≡(x2 - s > Real 300)

definition Pre :: fform where
Pre ≡ (level = Real 2.5) ∧ (fst (snd (snd (hd (MA)))) = x2)

∧ (snd (snd (snd (hd (MA)))) = String ‘‘FS’’)

∧ (snd (snd (snd (hd (tl (MA))))) = String ‘‘CO’’)

∧ (fst (hd (MA)) = Real 0) ∧ (fst (snd (hd (MA))) = Real 0)

The Init represents that the initial position of the train (i.e. s) is more than 300
meters away from x2. The Pre indicates the following aspects: the train moves
at level 2.5, i.e. in process of level transition from CTCS-2 to CTCS-3; the end
of current segment is x2; the mode of the train in current segment is ‘‘FS’’; the
mode of the train in next segment is ‘‘CO’’; and at the end of current segment,
both speed limits are initialized to be 0. Notice that for any segment seg, seg.v1
is implemented as fst (seg), and seg.v2 as fst (snd (seg)), and so on.

We then get a specification corresponding to the negation property, with the
postcondition and history formula for the train to indicate that the train will
never pass through location x2:
theorem System : {Init ∧ Pre, True} System {Pre ∧ s <= x2,

True; (
 = Real 0) ∨ (high (Pre ∧ s <= x2)), True}

266 N. Zhan, S. Wang, and H. Zhao

In Isabelle/HOL, we have proved this specification as a theorem. From this
fact, we know that the model System for level transition and mode transition
fails to conform to the liveness property. This reflects some design flaw for the
specifications of related scenarios in CTCS-3.

9 Other Issues: Stability Analysis

In the previous sections, we have discussed the issues of modeling, invariant
generation, deductive verification and controller synthesis of hybrid systems. The
focus has been on safety properties, that is, properties need to hold at all time.
Other important properties of hybrid systems include: reachability, which asks
whether a given set of target states will be reached in finite time; stability, which
reflects the influence of small perturbations of initial conditions on the system’s
trajectories; or asymptotic stability which, beyond stability, also cares about the
system’s convergence behavior when time approaches infinity; and so on. The
issues of verification and controller synthesis of hybrid systems for reachability
specifications have been investigated in works such as [51,68,29,82,35]. In this
section, we will exploit the same techniques developed for invariant generation
in Section 3, to automatically generate so-called relaxed Lyapunov functions for
asymptotic stability analysis of PCDSs. For stability analysis of hybrid systems
using tools like multiple Lyapunov functions, the readers are referred to such
works as [15,16], and the survey papers [27,77] and the citations therein.

9.1 Lyapunov Stability

The following are classic results of stability theory in the sense of Lyapunov. For
the details please refer to [50].

Definition 17. A point xe ∈ R
n is called an equilibrium point or critical point

of a CDS (1) if f(xe) = 0.

It is assumed that xe = 0 from now on without loss of generality.

Definition 18. Suppose 0 is an equilibrium point of (1). Then

– 0 is called Lyapunov stable if for any ε > 0, there exists a δ > 0 such that
if ‖x0‖ < δ,12 then the solution x(x0; t) of (1) can be extended to infinity,
and ‖x(x0; t)‖ < ε for all t ≥ 0.

– 0 is called asymptotically stable if it is Lyapunov stable and there exists
a δ > 0 such that for any ‖x0‖ < δ, the solution x(x0; t) of (1) satisfies
limt→∞ x(x0; t) = 0.

Lyapunov first provided a sufficient condition, using so-called Lyapunov func-
tions, for the Lyapunov stability as follows.

12 For x = (x1, x2, . . . , xn) ∈ R
n, ‖x‖ =

!�n

i=1
x2
i denotes the Euclidean norm of x.

Formal Modelling, Analysis and Verification of Hybrid Systems 267

Theorem 12 (Lyapunov Stability Theorem). Suppose 0 is an equilibrium
point of (1). If there is an open set U ⊂ R

n with 0 ∈ U , and a continuously
differentiable function V : U → R such that

(a) V (0) = 0,
(b) V (x) > 0 for all x ∈ U\{0} and
(c) L1

fV (x) ≤ 0 for all x ∈ U ,

then 0 is a stable equilibrium point. Moreover, if condition (c) is replaced by

(c∗) L1
fV (x) < 0 for all x ∈ U\{0},

then 0 is an asymptotically stable equilibrium point. Such V satisfying (a), (b)
and (c) (or (c*)) is called a Lyapunov function.

Basically, for asymptotic stability of an equilibrium point of a CDS, Theorem
12 requires a positive definite function V with negative definite first-order Lie
derivative L1

fV in a neighborhood of the equilibrium. If V has only negative
semi-definite L1

fV but no trajectories can stay identically in the zero level set of
L1
fV , then the asymptotic stability can also be guaranteed, which is known as

the Barbashin-Krasovskii-LaSalle (BKL) Principle.

Theorem 13 (BKL Principle). Let V be such a function as stated in The-
orem 12 with conditions (a), (b) and (c). If the set M�= {x ∈ U | L1

fV (x) = 0}
does not contain any trajectory of the system other than the trivial trajectory
x(t) ≡ 0, then 0 is asymptotically stable.

9.2 Relaxed Lyapunov Function

Intuitively, a Lyapunov function in Theorem 12 with conditions (a), (b), (c)
requires any trajectory starting from x0 ∈ U to stay in the region {x ∈ R

n |
V (x) ≤ V (x0)}. In the asymptotic stability case, the corresponding V forces any
trajectory starting from x0 ∈ U \{0} to transect the boundary {x ∈ R

n | V (x) =
V (x0)}, called a Lyapunov surface, towards the set {x ∈ R

n | V (x) < V (x0)}.
The left picture in Figure 11 illustrates how a Lyapunov function guarantees
asymptotic stability.

For any x0 ∈ U \ {0}, it is not difficult to see that L1
fV (x0) < 0 is only a

sufficient condition for x(x0; t) to move towards the set V (x) < V (x0). When
L1
fV (x0) = 0, the transection requirement may still be met if the first non-zero

higher order Lie derivative of V at x0 is negative. In this case, the trajectory may
be tangential to a Lyapunov surface at the cross point (see the right picture in
Fig. 11). To formalize the above idea, and motivated by the results on invariant
generation in Section 3, the following definitions are proposed.

Definition 19 (Pointwise Rank). Let N+ be the set of positive natural num-
bers. Given a smooth function σ and a smooth vector field f , the pointwise rank
of σ w.r.t. f is defined as the function νσ,f : R

n → N
+ ∪ {∞} given by

νσ,f (x) =

 ∞, if ∀k ∈ N
+. Lk

f σ(x) = 0,
min{k ∈ N

+ | Lk
f σ(x) �= 0}, otherwise.

268 N. Zhan, S. Wang, and H. Zhao

Fig. 11. Trajectories transecting Lyapunov surfaces

Example 11. For f = (−x, y) and p(x, y) = x + y2, by Example 1, we have
νp,f (0, 0) =∞, νp,f (1, 1) = 1, νp,f (2, 1) = 2.

Actually, νσ,f is almost the same as the pointwise rank function γp,f defined in
Section 3.2. The only difference is that for νσ,f , the zeroth order Lie derivative
is not considered.

Definition 20 (Transverse Set). Given a smooth function σ and a smooth
vector field f , the transverse set of σ w.r.t f is defined as

Transσ,f �= {x ∈ R
n | νσ,f (x) <∞∧ Lνσ,f (x)

f σ(x) < 0} .

Actually, Transσ,f is defined in the same manner as the transverse set Transf↑p
in Definition 14, using a different definition of pointwise rank function.

Using transverse set, condition (c∗) in Theorem 12 can be relaxed to give a
new criterion for asymptotic stability.

Theorem 14. Suppose 0 is an equilibrium point of (1) with smooth vector field
f . If there is an open set U ⊂ R

n with 0 ∈ U , and a smooth function V : U → R

such that

(a) V (0) = 0,
(b) V (x) > 0 for all x ∈ U\{0} and
(c) x ∈ TransV,f for all x ∈ U\{0},

then 0 is an asymptotically stable equilibrium.

Proof. First notice that condition (c) implies L1
fV (x) ≤ 0 for all x ∈ U\{0}.

Then according to Theorem 13, in order to show the asymptotic stability of 0,
it is sufficient to show that M�= {x ∈ U | L1

fV (x) = 0} contains no nontrivial
trajectory of (1).

If not, let x(t), t ≥ 0 be such a trajectory contained inM other than x(t) ≡ 0.
Then for all t ≥ 0, L1

fV (x(t)) = 0 and x(t) �= 0. By (c), x0�=x(0) ∈ TransV,f .
Then by Definition 20, we get the Taylor Formula of L1

fV (x(t)) at t = 0:

Formal Modelling, Analysis and Verification of Hybrid Systems 269

L1
fV (x(t)) = L1

fV (x0) + L2
fV (x0) · t+ · · ·

+L
νV,f (x0)
f V (x0) ·

tνV,f (x0)−1

(νV,f (x0)− 1)!
+ o(tνV,f (x0)−1)

= L
νV,f (x0)
f V (x0) ·

tνV,f (x0)−1

(νV,f (x0)− 1)!
+ o(tνV,f (x0)−1) . (19)

Since L
νV,f (x0)
f V (x0) < 0, the formula (19) shows that there exists an ε > 0 s.t.

∀t ∈ (0, ε). L1
fV (x(t)) < 0, which contradicts the fact ∀t ≥ 0. L1

fV (x(t)) = 0. ��

Definition 21 (Relaxed Lyapunov Function). We refer to the function V
in Theorem 14 as a relaxed Lyapunov function, denoted by RLF for short.

9.3 Automatically Discovering Polynomial RLFs for PCDSs

Given a PCDS, the process of automatically discovering polynomial RLFs is as
follows:

I. A parametric polynomial p(u,x) (also called a template) is predefined as
a candidate for RLF;

II. The conditions for p(u,x) to be an RLF, i.e. (a), (b) and (c) in Theorem
14, are encoded into a first-order polynomial formula ϕ;

III. Constraint φ on the parameters u is obtained by applying QE to ϕ, and
any instantiation of u from φ yields an RLF pu0(x).

Step II in the above process, i.e. encoding of the three conditions in Theorem
14, is crucial to automatic RLF generation. In particular, we have to show that
for any polynomial p(x) and PVF f , the transverse set Transp,f can be repre-
sented by first-order polynomial formulas. In fact, all the results established for
Transf↑p in Section 3.3 apply to Transp,f here.

Theorem 15 (Fixed Point Theorem). Given a polynomial p and a PVF f ,
if Li+1

f p ∈ 〈L1
f p, · · · , Li

fp〉, then for all m > i, Lm
f p ∈ 〈L1

f p, · · · , Li
fp〉.

Theorem 16 (Rank Theorem). Given a polynomial p and a PVF f , for any
x ∈ R

n, if νp,f (x) <∞ then νp,f (x) ≤ Np,f , where

Np,f �= min{i ∈ N
+ | Li+1

f p(x) ∈ 〈L1
f p(x), · · · , Li

fp(x)〉} .

Theorem 17 (Parametric Rank Theorem). Given a parametric polynomial
p�= p(u,x) and a PVF f , for all x ∈ R

n and all u0 ∈ R
w, νpu0 ,f

(x) <∞ implies
νpu0 ,f

(x) ≤ Np,f , where

Np,f �= min{i ∈ N
+ | Li+1

f p(u,x) ∈ 〈L1
f p(u,x), · · · , Li

fp(u,x)〉} . (20)

270 N. Zhan, S. Wang, and H. Zhao

Theorem 18. Given a parametric polynomial p�= p(u,x) and a PVF f , for any
u0 ∈ R

w and any x ∈ R
n, x ∈ Transpu0 ,f

if and only if u0 and x satisfy ϕp,f ,
where

ϕp,f �=
1≤i≤Np,f

ϕi
p,f with (21)

ϕi
p,f �= � �

1≤j≤i−1

Lj
fp(u,x) = 0

�
∧ Li

fp(u,x) < 0

and Np,f defined in (20).

All the proofs of the above theorems can be given in exactly the same way as in
Section 3.3. The details are omitted here and can be found in [57].

Now the main result on automatically generating polynomial RLFs for PCDSs
can be stated as the following theorem.

Theorem 19 (Main Result). Given a PCDS ẋ = f(x) with f(0) = 0, a
parametric polynomial p�= p(u,x), and u0 = (u10 , u20 , . . . , uw0) ∈ R

w, then pu0

is an RLF of the PCDS if and only if there exists r0 ∈ R, r0 > 0, such that
(u10 , u20 , . . . , uw0 , r0) satisfies φp,f �=φ1p,f ∧ φ2p,f ∧ φ3p,f , where

φ1p,f �= p(u,0) = 0 , (22)

φ2p,f �= ∀x.(‖x‖2 > 0 ∧ ‖x‖2 < r2 → p(u,x) > 0) , (23)

φ3p,f �= ∀x.(‖x‖2 > 0 ∧ ‖x‖2 < r2 → ϕp,f) (24)

with ϕp,f defined in (21).

Proof. First, in Theorem 14, the existence of an open set U is equivalent to the
existence of an open ball B(0, r0)�= {x ∈ R

n | ‖x‖ < r0}. Then according to
Theorem 18, it is easy to check that (22), (23) and (24) are direct translations
of conditions (a), (b) and (c) in Theorem 14. ��

According to Theorem 19, we can follow the three steps at the beginning of
Section 9.3 to discover polynomial RLFs for PCDSs. This method is relatively
complete because we can discover all possible polynomial RLFs in the form of a
predefined template, and thus can find all polynomial RLFs by enumerating all
polynomial templates for a given PCDS.

9.4 Simplification and Implementation

When constructing φp,f in Theorem 19, computation of Np,f is a time-consuming
work. Furthermore, whenNp,f is a large number the resulting φp,f could be a huge
formula, for which QE is infeasible in practice. Regarding this, in the following
the complexity of RLF generation is reduced in two aspects:

1) some of the QE problems arising in RLF generation can be reduced to so-
called real root classification (RRC for short) problems, which can be solved
in a more efficient way than standard QE problems;

Formal Modelling, Analysis and Verification of Hybrid Systems 271

2) RLF can be searched for in a stepwise manner: if an RLF can be obtained
by solving constraints involving only lower order Lie derivatives, there is no
need to resort to higher order ones.

The following three lemmas are needed to explain the first aspect.

Lemma 5. Suppose f is a smooth vector field, σ is a smooth function defined
on an open set U ⊆ R

n, and L1
fσ(x) ≤ 0 for all x ∈ U . Then for any x ∈ U ,

νσ,f (x) <∞ implies x ∈ Transσ,f .

Proof. Suppose there is an x0 ∈ U such that νσ,f (x0) <∞ and L
νσ,f (x0)
f σ(x0) >

0. Let x(t) be the trajectory of f starting from x0. Then from

L1
fσ(x(t)) = L1

fσ(x0) + L2
fσ(x0) · t+ · · ·

+ L
νσ,f (x0)
f σ(x0) ·

tνσ,f (x0)−1

(νσ,f (x0)− 1)!
+ o(tνσ,f (x0) − 1)

= L
νσ,f (x0)
f σ(x0) ·

tνσ,f (x0)−1

(νσ,f (x0)− 1)!
+ o(tνσ,f (x0) − 1) (25)

we can see that there exists an ε > 0 such that ∀t ∈ (0, ε). L1
fσ(x(t)) > 0, which

contradicts L1
fσ(x) ≤ 0 for all x ∈ U . ��

Lemma 6. Suppose f is a smooth vector field, σ is a smooth function defined
on an open set U ⊆ R

n, and L1
fσ(x) ≤ 0 for all x ∈ U . Then for any x ∈ U ,

νσ,f (x) <∞ implies νσ,f (x) = 2k + 1 for some k ∈ N .

Proof. If there is an x0 ∈ U such that νσ,f (x0) <∞ and νσ,f (x0) = 2k for some

k ∈ N
+, then by Lemma 5 we have L

νσ,f (x0)
f σ(x0) < 0. Then by (25) we can see

there exists an ε > 0 such that ∀t ∈ (−ε, 0). L1
fσ(x(t)) > 0, which contradicts

L1
fσ(x) ≤ 0 for all x ∈ U . ��

Lemma 7. Suppose f is a PVF and p(x) is a polynomial, and L1
f p(x) ≤ 0 for

all x in an open set U ⊆ R
n. Then for any x ∈ U , x ∈ Transp,f if and only if x

is not a common root of the sequence of polynomials

L1
f p(x), L

3
f p(x), . . . , L

(2K0+1)
f p(x) ,

where K0�=#Np,f−1
2 $13 and Np,f is defined in Theorem 16 .

Proof. (⇒) Actually K0 has been chosen is such a way that 2K0+1 is the largest
odd number less than or equal to Np,f , i.e. 2K0+1 = Np,f or 2K0+1 = Np,f −1.

Suppose x0 ∈ Transp,f and L
1
f p(x0) = L3

f p(x0) = · · · = L
(2K0+1)
f p(x0) = 0. From

Lemma 6 we know that νp,f (x0) is an odd number. Thus νp,f (x0) ≥ 2K0+1+2 >
Np,f , which contradicts Theorem 16 .

(⇐) If x0 is not a common root of L1
f p(x), L

3
f p(x), . . . , L

(2K0+1)
f p(x), then

νp,f (x0) <∞. By Lemma 5 we get x0 ∈ Transp,f . ��
13 For 0 ≤ r ∈ R, we have �r� ∈ N and r − 1 < �r� ≤ r.

272 N. Zhan, S. Wang, and H. Zhao

Now a simplified version of Theorem 19 can be given as follows.

Theorem 20. Given a PCDS ẋ = f(x) with f(0) = 0, a parametric polynomial
p�= p(u,x), and u0 = (u10 , u20 , . . . , uw0) ∈ R

w, then pu0 is an RLF of the PCDS
if and only if there exists r0 ∈ R, r0 > 0 such that (u10 , u20 , . . . , uw0 , r0) satisfies
ψp,f �=ψ1

p,f ∧ ψ2
p,f ∧ ψ3

p,f ∧ ψ4
p,f , where

ψ1
p,f �= p(u,0) = 0 , (26)

ψ2
p,f �= ∀x.(‖x‖2 > 0 ∧ ‖x‖2 < r2 → p(u,x) > 0) , (27)

ψ3
p,f �= ∀x.(‖x‖2 < r2 → L1

f p(u,x) ≤ 0) , (28)

ψ4
p,f �= ∀x.(0 < ‖x‖2 < r2 → L1

f p(x) �= 0 ∨ L3
f p(x) �= 0 ∨ · · · ∨ L(2K0+1)

f p(x) �= 0)

(29)

with K0 defined in Lemma 7 .

Proof. By combining Theorem 14 with Lemma 7 we can get the results imme-
diately. ��

In Theorem 20, constraints (26), (27) and (28) have relatively small sizes and
can be solved by QE tools, while (29) can be handled more efficiently as an RRC
problem of parametric semi-algebraic systems.

Definition 22. A parametric semi-algebraic system (PSAS for short) is a con-
junction of polynomial formulas of the following form:�����

p1(u,x) = 0, ..., pr(u,x) = 0,
g1(u,x) ≥ 0, ..., gk(u,x) ≥ 0,
gk+1(u,x) > 0, ..., gl(u,x) > 0,
h1(u,x) �= 0, ..., hm(u,x) �= 0,

(30)

where r ≥ 1, l ≥ k ≥ 0,m ≥ 0 and all pi’s, gi’s and hi’s are in Q[u,x] \Q.

For a PSAS, the interesting problem is so-called real root classification, that is, to
determine conditions on the parameters u such that the given PSAS has certain
prescribed number of distinct real solutions. Theories on real root classification of
PSASs were developed in [90,91]. A computer algebra tool named DISCOVERER

[89] was developed to implement these theories.
Given a PSAS P with n indeterminates and s polynomial equations, it was

argued in [19] that CAD-based QE on P has complexity doubly exponential in
n. In contrast, the RRC approach has complexity singly exponential in n and
doubly exponential in t, where t is the dimension of the ideal generated by the
s polynomials. Therefore RRC can dramatically reduce the complexity of RRC
problems especially when t is much less than n.

For RLF generation, to solve (29) we can define a PSAS

P �= "
L1
f p(u,x) = 0, L3

f p(u,x) = 0, . . . , L
(2K0+1)
f p(u,x) = 0

−‖x‖2 > −r2, ‖x‖2 > 0
.

Formal Modelling, Analysis and Verification of Hybrid Systems 273

Then the command RealRootClassification(P , 0) in DISCOVERER returns condi-
tions on u and r such that P has NO solutions. In practice, P can be constructed

in a stepwise manner. That is, L
(2i+1)
f p(u,x) = 0 for 0 ≤ i ≤ K0 can be added

to P one by one. Based on the above ideas, an RLF generation algorithm (Al-
gorithm 1) is proposed to implement Theorem 20 .

Algorithm 1. Relaxed Lyapunov Function Generation

1 Input: f ∈ Q
n[x1, . . . , xn] with f(0) = 0, p ∈ Q[u1, . . . , uw, x1, . . . , xn]

2 Output: Res ⊆ R
w+1

3 i := 1; Res := ∅; L1
f p := (∇p, f);

4 P := ‖x‖2 > 0 ∧ −‖x‖2 > −r2;
5 Res0 := QE(ψ1

p,f ∧ ψ2
p,f ∧ ψ3

p,f);
6 if Res0 = ∅ then
7 return ∅;
8 else
9 repeat

10 P := P ∧ Li
fp = 0;

11 Res := Res0 ∩RRC(P , 0);
12 if Res �= ∅ then
13 return Res;
14 else
15 Li+1

f p := (∇Li
fp, f);

16 Li+2
f p := (∇Li+1

f p, f);
17 i := i+ 2;

18 until Li
fp ∈ 〈L1

f p, L
2
f p, . . . , L

i−1
f p〉;

19 return ∅;

Remark 1. In Algorithm 1,

– ψ1
p,f ψ

2
p,f and ψ3

p,f in Line 5 are defined in (26), (27) and (28) respectively;
– QE in line 5 is done in a computer algebra tool like Redlog [30] or QEPCAD

[17];
– RRC in line 11 stands for the RealRootClassification command in DISCOV-

ERER;
– in Line 18 the loop test can be done by the IdealMembership command in

MapleTM [61] .

Termination of Algorithm 1 is guaranteed by Theorem 15 and Theorem 17;
correctness of Algorithm 1 is guaranteed by Theorem 20 .

9.5 Example

We illustrate the method for RLF generation using the following example.

274 N. Zhan, S. Wang, and H. Zhao

Example 12. Consider the PCDS�
ẋ
ẏ

�
=

�−x+ y2

−xy

�
(31)

with a unique equilibrium point O(0, 0). We want to establish the asymptotic
stability of O.

First, the linearization of (31) at O has the coefficient matrix

A =

�−1 0
0 0

�
with eigenvalues −1 and 0, so none of the principles of stability for linear systems
can be applied. Besides, a homogeneous quadratic Lyapunov function x2+axy+
by2 for verifying asymptotic stability of (31) does not exist in R

2, because

∀x∀y.
�
x2 + y2 > 0→

�
x2 + axy + by2 > 0

∧ 2xẋ+ ayẋ+ axẏ + 2byẏ < 0
� �

is false. However, if we try to find an RLF in R
2 for (31) using the simple

template p�=x2+ay2 with a the indeterminate, then Algorithm 1 returns a = 1.
This means (31) has an RLF x2 + y2, and O is asymptotically stable. See Fig.
12 for an illustration.

Fig. 12. Vector field and Lyapunov surfaces in Example 12

From this example, we can see that RLFs really extend the class of functions
that can be used for asymptotic stability analysis, and the method for automat-
ically discovering polynomial RLFs can save the effort in finding conventional
Lyapunov functions in some cases.

Formal Modelling, Analysis and Verification of Hybrid Systems 275

10 Conclusion

In this tutorial, we have developed a theoretical and practical foundation for
deductive verification of hybrid systems, which includes a selection of topics re-
lated to modeling, analysis, and logic of hybrid systems. We choose HCSP as the
formal modeling language for hybrid systems, due to its more compositionality
and scalability compared to automata-based approach. In order to guarantee
the correct functioning of hybrid systems, we have defined a specification logic,
called HHL, for specifying and reasoning about the behavior of HCSP, both dis-
crete and continuous, based on first-order logic and DC respectively. However,
the logic is not compositional, thus fails to manage more complex HCSP models.
The compositionality of the specification logic is one main topic we are working
on now.

The specification logic for HCSP uses differential invariants for proving cor-
rectness about differential equations instead of their solutions, because solutions
of differential equations may not even be expressible. To support this, we have
invented a relative complete method for generating polynomial invariants for
polynomial differential equations, based on higher-order Lie derivatives and the
theory of polynomial ideal.

As a complement of logic-based verification, synthesis provides another ap-
proach to ensuring hybrid systems meet given requirements. It focuses on de-
signing a controller for a system such that under the controller, the system is
guaranteed to satisfy the given requirement. Based on the differential invariant
generation method, we have solved the switching controller synthesis problem
with respect to a safety requirement in the context of hybrid automata; and on
the other hand, we have also studied the switching controller synthesis problem
with respect to an optimality requirement by reducing it to a constraint solving
problem.

For tool support, we have implemented a theorem prover for verifying HCSP
models in Isabelle/HOL, called HHL prover, which takes an annotated HCSP
model in the form of HHL specification as input, and by interactive theorem
proving, checks whether the model conforms to the annotated property. The
automated verification is not considered yet, and both verification techniques
and their implementation to support this will be one of our future work.

Finally, we have demonstrated that our logic-based verification techniques can
be used successfully for verifying safety and liveness properties in practical train
control systems. In particular, we considered a combined scenario originating
from the Chinese High-Speed Train Control System at Level 3 (CTCS-3), and
reached a verification result in HHL prover indicating a design error of the com-
bined scenario in CTCS-3. We will consider how to apply our approach to more
case studies, among which one direction will be on the safety checking of the
other scenarios of CTCS-3 and their all possible combinations.

Acknowledgements. First of all, we thank all the collaborators of the joint
work presented in this tutorial for their great contribution. The deductive ap-
proach to formal verification of hybrid systems based on Hybrid Hoare Logic

276 N. Zhan, S. Wang, and H. Zhao

(HHL) was pioneered by Prof. Chaochen Zhou, to whom the basic principles of
HHL should be mainly attributed; Prof. Dimitar P. Guelev contributes to the
joint work of developing improved versions of HHL; formal modelling and verifi-
cation of Chinese High-Speed Train Control System (CTCS-3), in particular the
scenario reported in Sec. 8, is the result of our long-term collaboration with a
research team led by Prof. Tao Tang in Beijing Jiaotong University; Dr. Jidong
Lv, Mr. Zhao Quan and Mr. Liang Zou are involved intensively in modelling
and verifying CTCS-3; Mr. Liang Zou also helps with the development of HHL
prover; Dr. Jiang Liu is one of the major contributors to the work on invariant
generation and stability analysis of hybrid systems; the part on (optimal) con-
troller synthesis of hybrid systems is joint work with Prof. Deepak Kapur and
Prof. Kim G. Larsen.

We also Thank Prof. Lu Yang, Prof. Bican Xia, Prof. Shaofa Yang, Dr. Ming
Xu, Dr. Jiaqi Zhu, Yang Gao, Danqing Guo and many other colleagues for their
valuable comments and helpful discussions on the topics of this tutorial.

The work in this tutorial has been supported mainly by projects NSFC-
91118007, NSFC-6110006, and National Science and Technology Major Project
of China (Grant No. 2012ZX01039-004).

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P.H., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3–34 (1995)

2. Alur, R., Dang, T., Esposito, J., Hur, Y., Ivančić, F., Kumar, V., Mishra, P.,
Pappas, G., Sokolsky, O.: Hierarchical modeling and analysis of embedded systems.
Proceedings of the IEEE 91(1), 11–28 (2003)

3. Alur, R., Henzinger, T., Ho, P.H.: Automatic symbolic verification of embedded
systems. IEEE Transactions on Software Engineering 22(3), 181–201 (1996)

4. Alur, R.: Formal verification of hybrid systems. In: EMSOFT 2011, pp. 273–278.
ACM, New York (2011)

5. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An al-
gorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991 and HS 1992.
LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)

6. Alur, R., Dang, T., Ivančić, F.: Counterexample-guided predicate abstraction of
hybrid systems. Theor. Comput. Sci. 354(2), 250–271 (2006)

7. Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of
hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006)

8. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

9. Alur, R., Henzinger, T.A.: Modularity for timed and hybrid systems. In:
Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243,
pp. 74–88. Springer, Heidelberg (1997)

10. Asarin, E., Bournez, O., Dang, T., Maler, O., Pnueli, A.: Effective synthesis of
switching controllers for linear systems. Proceedings of the IEEE 88(7), 1011–1025
(2000)

Formal Modelling, Analysis and Verification of Hybrid Systems 277

11. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analy-
sis of piecewise-linear dynamical systems. In: Lynch, N.A., Krogh, B.H. (eds.)
HSCC 2000. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000)

12. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying industrial
hybrid systems with MathSAT. Electronic Notes in Theoretical Computer Sci-
ence 119(2), 17–32 (2005)

13. Bensalem, S., Bozga, M., Fernández, J.-C., Ghirvu, L., Lakhnech, Y.: A trans-
formational approach for generating non-linear invariants. In: Palsberg, J. (ed.)
SAS 2000. LNCS, vol. 1824, pp. 58–72. Springer, Heidelberg (2000)

14. Boulton, R.J., Gordon, A., Gordon, M.J.C., Harrison, J., Herbert, J., Tassel, J.V.:
Experience with embedding hardware description languages in HOL. In: Proceed-
ings of the IFIP TC10/WG 10.2 International Conference on Theorem Provers
in Circuit Design: Theory, Practice and Experience, pp. 129–156. North-Holland
Publishing Co. (1992)

15. Branicky, M.: Stability of switched and hybrid systems. In: CDC 1994, vol. 4,
pp. 3498–3503 (1994)

16. Branicky, M.: Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems. IEEE Transactions on Automatic Control 43(4), 475–482
(1998)

17. Brown, C.W.: QEPCAD B: A program for computing with semi-algebraic sets
using CADs. SIGSAM Bull. 37, 97–108 (2003)

18. Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.-F., Reynier, P.-A.: Automatic
synthesis of robust and optimal controllers – an industrial case study. In: Majum-
dar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 90–104. Springer,
Heidelberg (2009)

19. Chen, Y., Xia, B., Yang, L., Zhan, N.: Generating polynomial invariants with
DISCOVERER and QEPCAD. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal
Methods and Hybrid Real-Time Systems. LNCS, vol. 4700, pp. 67–82. Springer,
Heidelberg (2007)

20. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata
using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen,
J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)

21. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verifi-
cation of hybrid systems based on counterexample-guided abstraction refinement.
In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 192–207.
Springer, Heidelberg (2003)

22. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs. LNCS,
vol. 131, pp. 52–71. Springer, Heidelberg (1982)

23. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

24. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to
Computational Algebraic Geometry and Commutative Algebra, 2nd edn. Springer
(1997)

25. Damm, W., Pinto, G., Ratschan, S.: Guaranteed termination in the verification of
LTL properties of non-linear robust discrete time hybrid systems. In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 99–113. Springer, Heidelberg
(2005)

278 N. Zhan, S. Wang, and H. Zhao

26. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

27. DeCarlo, R., Branicky, M., Pettersson, S., Lennartson, B.: Perspectives and re-
sults on the stability and stabilizability of hybrid systems. Proceedings of the
IEEE 88(7), 1069–1082 (2000)

28. Deshpande, A., Göllü, A., Varaiya, P.: SHIFT: A formalism and a programming
language for dynamic networks of hybrid automata. In: Antsaklis, P., Kohn, W.,
Nerode, A., Sastry, S. (eds.) HS 1996. LNCS, vol. 1273, pp. 113–133. Springer,
Heidelberg (1997)

29. Ding, J., Tomlin, C.: Robust reach-avoid controller synthesis for switched nonlinear
systems. In: CDC 2010, pp. 6481–6486 (2010)

30. Dolzmann, A., Seidl, A., Sturm, T.: Redlog User Manual, Edition 3.1, for Redlog
Version 3.06 (Reduce 3.8) edn. (2006)

31. Eker, J., Janneck, J., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Sachs, S., Xiong, Y.,
Neuendorffer, S.: Taming heterogeneity — the Ptolemy approach. Proceedings of
the IEEE 91(1), 127–144 (2003)

32. Floyd, R.W.: Assigning Meanings to Programs. In: Schwartz, J.T. (ed.) Proceedings
of a Symposium on Applied Mathematics, vol. 19, pp. 19–31 (1967)

33. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: HSCC 2011, pp. 43–52.
ACM, New York (2011)

34. Fränzle, M., Teige, T., Eggers, A.: Engineering constraint solvers for automatic
analysis of probabilistic hybrid automata. The Journal of Logic and Algebraic
Programming 79(7), 436–466 (2010)

35. Girard, A.: Controller synthesis for safety and reachability via approximate bisim-
ulation. CoRR abs/1010.4672 (2010), http://arxiv.org/abs/1010.4672

36. Guelev, D., Wang, S., Zhan, N.: Hoare reasoning about HCSP in the duration
calculus (submitted, 2013)

37. He, J.: From CSP to hybrid systems. In: A Classical Mind: Essays in Honour of
C. A. R. Hoare, pp. 171–189. Prentice Hall International (UK) Ltd., Hertfordshire
(1994)

38. Heilmann, S.T.: Proof Support for Duration Calculus. Ph.D. thesis, Technical
University of Denmark (1999)

39. Henzinger, T.: The theory of hybrid automata. In: LICS 1996, pp. 278–292 (July
1996)

40. Henzinger, T.A., Ho, P.H.: Algorithmic analysis of nonlinear hybrid systems. In:
Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 225–238. Springer, Heidelberg
(1995)

41. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: STOC 1995, pp. 373–382. ACM, New York (1995)

42. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer,
Heidelberg (2006)

43. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580 (1969)

44. Jha, S., Seshia, S.A., Tiwari, A.: Synthesis of optimal switching logic for hybrid
systems. In: EMSOFT 2011, pp. 107–116. ACM, New York (2011)

45. Julius, A., Girard, A., Pappas, G.: Approximate bisimulation for a class of stochas-
tic hybrid systems. In: American Control Conference 2006, pp. 4724–4729 (2006)

http://arxiv.org/abs/1010.4672

Formal Modelling, Analysis and Verification of Hybrid Systems 279

46. Julius, A., Pappas, G.: Probabilistic testing for stochastic hybrid systems. In:
CDC 2008, pp. 4030–4035 (2008)

47. Kapur, D., Shyamasundar, R.K.: Synthesizing controllers for hybrid systems. In:
Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 361–375. Springer, Heidelberg
(1997)

48. Kapur, D.: Automatically generating loop invariants using quantifier elimination.
In: Baader, F., Baumgartner, P., Nieuwenhuis, R., Voronkov, A. (eds.) Deduction
and Applications (2005)

49. Kapur, D., Zhan, N., Zhao, H.: Synthesizing switching controllers for hybrid sys-
tems by continuous invariant generation. CoRR abs/1304.0825 (2013),
http://arxiv.org/abs/1304.0825

50. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall (December 2001)
51. Koo, T.J., Pappas, G.J., Sastry, S.S.: Mode switching synthesis for reachability spec-

ifications. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001.
LNCS, vol. 2034, pp. 333–346. Springer, Heidelberg (2001)

52. Krantz, S., Parks, H.: A Primer of Real Analytic Functions, 2nd edn. Birkhäuser,
Boston (2002)

53. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for
families of linear vector fields. Journal of Symbolic Computation 32(3), 231–253
(2001)

54. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. ArXiv e-prints (Febraury 2011),
http://arxiv.org/abs/1102.0705

55. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for
hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer,
Heidelberg (2010)

56. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: EMSOFT 2011, pp. 97–106. ACM, New York (2011)

57. Liu, J., Zhan, N., Zhao, H.: Automatically discovering relaxed Lyapunov functions
for polynomial dynamical systems. Mathematics in Computer Science 6(4), 395–
408 (2012)

58. Lynch, N., Segala, R., Vaandrager, F., Weinberg, H.: Hybrid I/O automata. In:
Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp.
496–510. Springer, Heidelberg (1996)

59. Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: Huizing, C., de
Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600,
pp. 447–484. Springer, Heidelberg (1992)

60. Manna, Z., Pnueli, A.: Verifying hybrid systems. In: Grossman, R.L., Ravn, A.P.,
Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 4–35.
Springer, Heidelberg (1993)

61. Maplesoft: Maple 14 User Manual,
http://www.maplesoft.com/documentation_center/

62. Naur, P.: Proof of algorithms by general snapshots. BIT Numerical Mathemat-
ics 6(4), 310–316 (1966)

63. Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: An approach to the description and
analysis of hybrid systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode,
A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 149–178. Springer, Heidelberg
(1993)

64. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. and Comput. 20(1), 309–352 (2010)

http://arxiv.org/abs/1304.0825
http://arxiv.org/abs/1102.0705
http://www.maplesoft.com/documentation_center/

280 N. Zhan, S. Wang, and H. Zhao

65. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as
fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–189.
Springer, Heidelberg (2008)

66. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance
maneuvers: A case study. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 547–562. Springer, Heidelberg (2009)

67. Prajna, S., Jadbabaie, A., Pappas, G.: A framework for worst-case and stochas-
tic safety verification using barrier certificates. IEEE Transactions on Automatic
Control 52(8), 1415–1428 (2007)

68. Prajna, S.: Optimization-based methods for nonlinear and hybrid systems verifi-
cation. Ph.D. thesis, California Institute of Technology (January 2005)

69. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004)

70. Puri, A., Varaiya, P.: Decidability of hybrid systems with rectangular differential
inclusions. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 95–104. Springer,
Heidelberg (1994)

71. Queille, J., Sifakis, J.: Specification and verification of concurrent systems in CE-
SAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, pp. 337–351. Springer, Heidelberg (1982)

72. Rasmussen, T.M.: Interval Logic — Proof Theory and Theorem Proving. Ph.D.
thesis, Technical University of Denmark (2002)

73. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propa-
gation based abstraction refinement. In: Morari, M., Thiele, L. (eds.) HSCC 2005.
LNCS, vol. 3414, pp. 573–589. Springer, Heidelberg (2005)

74. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using
ideal fixed points. In: HSCC 2010, pp. 221–230. ACM, New York (2010)

75. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–554.
Springer, Heidelberg (2004)

76. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant genera-
tion using Gröbner bases. In: POPL 2004, pp. 318–329. ACM, New York (2004)

77. Shorten, R., Wirth, F., Mason, O., Wulff, K., King, C.: Stability criteria for
switched and hybrid systems. SIAM Rev. 49(4), 545–592 (2007)

78. Skakkebaek, J.U., Shankar, N.: Towards a duration calculus proof assistant in PVS.
In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS,
vol. 863, pp. 660–679. Springer, Heidelberg (1994)

79. Taly, A., Gulwani, S., Tiwari, A.: Synthesizing switching logic using constraint
solving. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403,
pp. 305–319. Springer, Heidelberg (2009)

80. Taly, A., Gulwani, S., Tiwari, A.: Synthesizing switching logic using constraint
solving. International Journal on Software Tools for Technology Transfer 13(6),
519–535 (2011)

81. Taly, A., Tiwari, A.: Deductive verification of continuous dynamical systems. In:
Kannan, R., Kumar, K.N. (eds.) FSTTCS 2009. LIPIcs, vol. 4, pp. 383–394 (2009)

82. Taly, A., Tiwari, A.: Switching logic synthesis for reachability. In: EMSOFT 2010,
pp. 19–28. ACM, New York (2010)

83. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University
of California Press, Berkeley (1951)

84. Tenenbaum, M., Pollard, H.: Ordinary Differential Equations. Dover Publications
(October 1985)

Formal Modelling, Analysis and Verification of Hybrid Systems 281

85. Tomlin, C., Lygeros, J., Sastry, S.: A game theoretic approach to controller design
for hybrid systems. Proceedings of the IEEE 88(7), 949–970 (2000)

86. Wang, S., Zhan, N., Guelev, D.: An assume/Guarantee based compositional cal-
culus for hybrid CSP. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012.
LNCS, vol. 7287, pp. 72–83. Springer, Heidelberg (2012)

87. Wildmoser, M., Nipkow, T.: Certifying machine code safety: Shallow versus deep
embedding. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004.
LNCS, vol. 3223, pp. 305–320. Springer, Heidelberg (2004)

88. Wolfram: Mathematica Documentation,
http://reference.wolfram.com/mathematica/guide/Mathematica.html

89. Xia, B.: DISCOVERER: a tool for solving semi-algebraic systems. ACM Commun.
Comput. Algebra 41(3), 102–103 (2007)

90. Yang, L.: Recent advances on determining the number of real roots of parametric
polynomials. J. Symb. Comput. 28(1-2), 225–242 (1999)

91. Yang, L., Xia, B.: Real solution classification for parametric semi-algebraic sys-
tems. In: Dolzmann, A., Seidl, A., Sturm, T. (eds.) Algorithmic Algebra and Logic,
pp. 281–289 (2005)

92. Yang, L., Zhou, C., Zhan, N., Xia, B.: Recent advances in program verification
through computer algebra. Frontiers of Computer Science in China 4, 1–16 (2010)

93. Zhan, N., Wang, S., Guelev, D.: Extending Hoare logic to hybrid systems. Tech.
Rep. ISCAS-SKLCS-13-02, State Key Lab. of Computer Science, Institute of Soft-
ware, Chinese Academy of Sciences (2013)

94. Zhao, H., Zhan, N., Kapur, D., Larsen, K.G.: A “hybrid” approach for synthesizing
optimal controllers of hybrid systems: A case study of the oil pump industrial
example. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,
pp. 471–485. Springer, Heidelberg (2012)

95. Zhao, H., Zhan, N., Kapur, D., Larsen, K.G.: A “hybrid” approach for synthesizing
optimal controllers of hybrid systems: A case study of the oil pump industrial
example. CoRR abs/1203.6025 (2012), http://arxiv.org/abs/1203.6025

96. Zhou, C., Hansen, M.: Duration Calculus — A Formal Approach to Real-Time Sys-
tems. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Heidelberg (2004)

97. Zhou, C., Hoare, C., Ravn, A.P.: A calculus of durations. Information Processing
Letters 40(5), 269–276 (1991)

98. Zhou, C., Wang, J., Ravn, A.P.: A formal description of hybrid systems. In: Alur,
R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530.
Springer, Heidelberg (1996)

99. Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y.: Verifying Chinese
train control system under a combined scenario by theorem proving. In: Shankar,
N. (ed.) VSTTE 2013. LNCS. Springer, Heidelberg (to appear, 2013)

http://reference.wolfram.com/mathematica/guide/Mathematica.html
http://arxiv.org/abs/1203.6025

	Formal Modelling, Analysisand Verification of Hybrid Systems
	1 Introduction
	1.1 Synopsis

	2 Preliminaries
	2.1 Continuous Dynamical Systems
	2.2 Hybrid Systems
	2.3 Polynomials and Polynomial Ideals
	2.4 First-Order Theory of Reals

	3 Computing Invariants for Hybrid Systems
	3.1 Continuous and Global Invariant
	3.2 Predicting Continuous Evolution via Lie Derivatives
	3.3 Computing Transverse Set
	3.4 Computing SCI in Simple Case
	3.5 Computing SCI in General Case
	3.6 SGI Generation

	4 Switching Controller Synthesis
	4.1 Problem Description
	4.2 A Synthesis Procedure Based on CI Generation
	4.3 Heuristics for Predefining Templates
	4.4 Synthesis of Optimal Controllers
	4.5 Oil Pump: A Case Study

	5 HybridCSP
	5.1 Notations
	5.2 Operational Semantics

	6 Hybrid Hoare Logic
	6.1 History Formulas
	6.2 Hoare Assertion
	6.3 Proof System of HHL
	6.4 Soundness

	7 HHL Prover
	7.1 Expressions
	7.2 Assertion Language
	7.3 HCSP
	7.4 Semantics
	7.5 Proof System of HHL

	8 Case Study: Chinese Train Control System
	8.1 Movement Authority Scenario
	8.2 Level Transition
	8.3 Mode Transition
	8.4 Combined Scenario and Its Model
	8.5 Proof of the Combined Scenario

	9 Other Issues: Stability Analysis
	9.1 Lyapunov Stability
	9.2 Relaxed Lyapunov Function
	9.3 Automatically Discovering Polynomial RLFs for PCDSs
	9.4 Simplification and Implementation

	10 Conclusion
	References

