
FORMULA 2.0:

A Language for Formal Specifications

Ethan K. Jackson and Wolfram Schulte

Microsoft Research, Redmond, WA
{ejackson,schulte}@microsoft.com

Abstract. FORMULA 2.0 is a novel formal specification language based
on open-world logic programs and behavioral types. Its goals are (1) suc-
cinct specifications of domain-specific abstractions and compilers, (2)
efficient reasoning and compilation of input programs, (3) diverse syn-
thesis and fast verification. We take a unique approach towards achieving
these goals: Specifications are written as strongly-typed open-world logic
programs. They are highly declarative and easily express rich synthe-
sis / verification problems. Automated reasoning is enabled by efficient
symbolic execution of logic programs into constraints. This tutorial in-
troduces the FORMULA 2.0 language and concepts through a series of
small examples.

1 Data and Types

1.1 Constants

formula specifications define, examine, translate and generate data. The sim-
plest kinds of data are constants, which have no internal structure. Every for-
mula specification has access to some predefined constants. Numeric constants
can be (arbitrarily) long integers:

-1098245634534545630234, 0, 1, 2, 3098098445645649034

Or, they can be pairs of integers separated by a ‘.’, i.e. decimal fractions:

-223423.23422342342, 0.0, 1.5, 10.87987230000000000000003

Or, they can be pairs of integers separated by a ‘/’, i.e. fractions:

-223423/23422342342, 4/8, 9873957/987395487987334

formula converts numerics into normalized fractions; no precision is lost. For
example, the following equalities are true:

2/3 = 6/9, 1/2 = 0.5, 1.0000 = 1
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The following disequalities are true:

2/3 != 0.66667, 0 != 0.0000000000000000000000000000001

Operations on numerics do not lose precision. Infinities are not explicitly part
of formula’s vocabulary. For example, the fraction ‘1/0’ causes a syntax error.

ASCII strings are also supported. One way to write a string is by enclosing it
in double-quotes. These strings must end on the same line where they began, so
we refer to them as single-line strings . Here are some examples:

"", "Hello World", "Foo\nBar"

Sometimes it is necessary to put special characters inside of a string. This can
be accomplished using the C-style escape character ‘\’. Table 1 gives the escape
sequences.

Some strings are unpleasant to escape, such as strings containing code or
filenames with backslashes. Multi-line strings capture all the text within a pair of
delimiters, including line breaks. A multi-line string starts with a single-double-
quote pair ' " and ends with a double-single-quote pair " ' . Below is an
example; note ‘\’ is not an escape character in multi-line strings:

'" "This\string has funny 'thi\ngs in it'" "'

The only sequence that needs to be escaped in a multi-line string is the sequence
terminating the string. For symmetry, the starting sequence also has an escape
code (see Table 2). For example, the following equality is true:

'" ''"" ""'' \"' = " '\" \"' \\"

The final kind of constant is the user-defined constant . Syntactically, user-defined
constants are identifiers. Here are some examples of user-defined constants:

TRUE, FALSE, RED, GREEN, NIL

Note that TRUE and FALSE are automatically defined on the user’s behalf, though
they are not keywords.

By convention, the names of user-defined constants should consist of all up-
percase characters and be at least two characters long. This convention helps to
distinguish constants from other identifiers. Two user-defined constants denote
the same value are if and only if they have the same. For example:

TRUE = TRUE, FALSE = FALSE, TRUE != FALSE, RED != BLUE
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1.2 Data Constructors

Complex data values are created by functions called data constructors (or con-
structors for short). An n-ary data constructor f takes n data values as argu-
ments and returns a new data value. Here are some examples:

Person("John", "Smith"),

Node(1, Node(2, NIL, NIL), Node(3, NIL, NIL))

The Person(, ) constructor creates Person values from two string arguments.
The Node(, , ) constructor builds binary trees of integer keys. The arguments to
Node are: (1) an integer key, (2) a left-subtree (or the constant NIL if none) and
(3) a right-subtree (or the constant NIL if none).

Data constructors are proper functions, i.e. they always produce the same
values from the same inputs. Contrast this with the following object-oriented
program:

1: class Node {
2: ...

3: Node (int Key, Node left, Node right)

4: { ... }
5: }
6:

7: Node x = new Node(1, null, null);

8: Node y = new Node(1, null, null);

9: if (x != y) {
10: print("Different");

11: }

Table 1. Table of single-line string escapes

Single-Line String Escapes#
Syntax Result#

\n Produces a line feed.
\r Produces a carriage return.
\t Produces a tab.
\x Produces x for x /∈ {n, r, t}, e.g. \\ or \" .

Table 2. Table of multi-line string escapes

Multi-Line String Escapes#
Syntax Result#

' ' " " Produces the sequence ' " .

" " ' ' Produces the sequence " ' .
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The program prints the string “Different” because x and y hold different nodes,
even though the nodes were constructed with the same values. In formula two
values are the same if and only if (1) they are the same constant, or (2) they were
constructed by the same constructor using the same arguments. For example:

NIL = NIL, NIL != FALSE,

Node(1, NIL, NIL) = Node(1, NIL, NIL),

Person("John", "Smith") != Node(2, NIL, NIL)

As this example shows, values can be compared using the equality ‘=’ and dise-
quality ‘!=’ relations. These relations are defined for arbitrary pairs of values.

1.3 Ordering of Values

Values are also ordered. The ordering relation on values is called a lexicographic
order , which generalizes the dictionary order of strings. First, we split all values
into four ordered families: numerics, strings, user constants, and complex values :

Definition 11 (Ordering of Families).

family(x)
def
=

⎧
⎪⎪⎨

⎪⎪⎩

0 if x is a numeric,
1 if x is a string,
2 if x is a user constant,
3 otherwise.

Families yield a precedence relation � on values:

x � y if family(x) < family(y).

Definition 12 (Ordering of Values). For values x and y, define x < y if x �= y
and any of the following are satisfied:

– x � y.
– Both values are numerics; x comes before y on the real number line.
– Both values are strings; x comes before y in dictionary order (assuming a

case-sensitive order using the ASCII encoding of characters).
– Both values are user constants; the name of x comes before the name of y

in dictionary order.
– Both values are complex, i.e. x = f(t1, . . . , tn) and y = g(s1, . . . , sm), and

any of the following are satisfied:
• The name of constructor f comes before the name of the constructor g
in dictionary order.

• Both constructors have the same name, and the first i where ti �= si then
ti < si.

Here are some examples:

0 < 1, 1 < "FALSE", "FALSE" < FALSE, FALSE < TRUE
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Table 3. Table of built-in data types

Built-in Data Types#
Name Meaning#

Real The set of all numeric values.
Integer The set of all integers.
Natural The set of all non-negative integers.
PosInteger The set of all positive integers.
NegInteger The set of all negative integers.
String The set of all string integers.
Boolean The set of constants TRUE and FALSE.

Node(1, Node(10, NIL, NIL), NIL) < Node(2, NIL, NIL),

Node(2, NIL, NIL) < Person("John", "Smith")

The predefined relations <, <=, >, and >= use this order. The predefined func-
tions min and max find the smallest and largest values according to <. Finally,
all predefined functions that must sort values, e.g. toList, also use this order.

1.4 Data Types and Subtyping

A data type (or just a type) is a expression standing for a set of values. Table 3
lists the built-in data types and their meanings. In addition, other types can be
defined. Suppose f(...) is an n-ary constructor, then the type f stands for the
range of the constructor f . Suppose c is a constant, then the type {c} stands for
the singleton set containing c. Suppose τ1 and τ2 are types, then τ1+τ2 stands for
the set-union of the two types. Finally, f(τ1, . . . , τn) stands for the set of all values
obtained by applying f to all possible values in τ1, . . . , τn. formula provides
some special syntax to make it easier to write types. A finite enumeration is a
set of constants:

{ RED, GREEN, FALSE, 1, 2, "Hello" }

An enumeration can also include integer ranges:

{ -1000..1000, 1001..1001, 1002 }

This type stands for the set of all strings, integers, and Boolean values:

Real + String + { TRUE, FALSE }

This type stands for the set of all integer-keyed binary trees with a non-empty
left child:

Node(Integer, Node, Node + { NIL })
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Also, this type stands for the set of all integer-keyed binary trees with a non-
empty right child:

Node(Integer, Node + { NIL }, Node)

Data types are related to each other by the subtyping relation. In object-oriented
languages subtyping is indicated by explicitly subclassing a base class, extending
an interface, or implementing an interface. In formula the subtyping relation-
ship is determined implicitly by the values a type represents. A type τ1 is a
subtype of τ2 if the values represented by τ1 are a subset of those represented by
τ2. We write τ1 <: τ2 if τ1 is a subtype of τ2. Here are some examples of types
satisfying the subtyping relationship:

{ 1, 2 } <: PosInteger <: Natural + String <: Real + String

Node(Integer, Node, Node)<: Node(Integer, Node, Node + {NIL})

Node(Integer, Node, Node + {NIL}) <: Node

The above examples show that types are fairly precise; they can represent very
specific sets of data. Also, types are behavioral ; formula only cares about the
set of values a type stands for, but not how the type is written. For example, all
of these types mean the same:

{ 0..10 } + Natural = Natural = {0} + PosInteger

Node(Integer, Node + {NIL}, Node + {NIL}) = Node

formula infers types for expressions, and these types over-approximate the
evaluation of expressions. We write e : τ if the expression e is assigned the type
τ . For instance, a C++ compiler might assign the int type to the expression 1 or
the float type to the expression 1.5. Because formula types are more precise,
the type of a value is just a singleton set containing that value, i.e. 1 : {1} and
1.5 : { 3

2}. Because subtyping is implicit by subset inclusion, the value 1 can be
used anywhere a Real is accepted without coercion. This is unlike C++, where
the integer value 1 would be coerced to the floating point value 1.0 because int
and float are different kinds of values.

Consider the more complicated C++ example:

1: enum E { Zero = 0, One = 1, Two = 2 };
2: bool Foo(E x, E y)

3: {
4: auto z = x + y;

5: return z > 10;

6: }
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The C++ compiler infers z : int, even though the expected values for x and y
are in the interval [0, 2]. Also, z is always less than 10 and z > 10 is always false.
Consider an analogous formula specification:

1: transform Foo(x: E, y: E) returns (b:: Bool)

2: {
3: E ::= { 0..2 }.
4: Return(TRUE) :- z = %x + %y, z > 10.

5: }

The transform takes two parameters x and y of type E (defined in line 3). The
rule in line 4 is triggered whenever z = x + y and z > 10. formula infers that
x, y : {0..2}, z : {0..4}, z > 10 : {FALSE}. Finally, it issues an error because the
condition z > 10 can never be satisfied. (We explain the structure of rules in the
next section.) Thus, type inference can be used to catch errors in specifications.

1.5 Type Declarations

Type declarations are used to: (1) define simple names for complicated type
expressions, (2) introduce new data constructors along with the types of their
arguments, (3) introduce new user-defined constants. Type declarations come in
two forms. The first form assigns a name to a type expression.

TypeName ::= TypeExpr.

The second form introduces a new data constructor.

ConstructorName ::= (Arg1 TypeExpr, ..., ArgN TypeExpr).

The expressions appearing in declarations are restricted; they cannot contain
constructor applications such as Node(Integer,NIL,NIL). However, it is legal to
use the type Node, which stands for the entire range of the Node(, , ) constructor.
This restriction allows for more efficient type inference and type manipulation.

Type declarations must be placed in modules, which are self-contained units.
The meaning of a type declaration is understood w.r.t. all the type declarations
within the same module. In the examples to follow we use domain modules to
hold type declarations. For now it is enough to understand that type declarations
are not visible outside of their modules. (We describe domains in detail in the
next section.) Below are two modules D and D′ that define the type Id in
different ways:

domain D { Id ::= Integer. } domain D' { Id ::= String. }

In domain D the type Id stands for integers and in D′ it stands for strings. The
formula compiler accepts these declarations because they occur in two distinct
modules. On the other hand these declarations are illegal.
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Error: Conflicting definitions of type Id

1: domain D

2: {
3: Id ::= Integer.

4: Id ::= String.

5: }
There are multiple conflicting declarations of the type Id in the same module.
formula accepts any set of type declarations as long as their meaning is con-
sistent across the module. For example, this module is legal because it defines
Id in two equivalent ways.

Legal: All definitions of type Id are equivalent

1: domain D

2: {
3: Id ::= Integer.

4: Id ::= NegInteger + {0} + PosInteger.

5: }

1.6 Declaring Constants

User-defined constants are implicitly declared by using them in some enumera-
tion in some type declaration. Every domain automatically contains the decla-
ration:

Boolean ::= { TRUE, FALSE }.

Introduces user-defined constants RED, GREEN, and BLUE.

1: domain Colors

2: {
3: NamedColor ::= { RED, GREEN, BLUE }.
4: Color ::= { RED, GREEN, BLUE, 0..16777215 }.
5: }

The NamedColor type contains the constants RED, GREEN and BLUE.
These constants are implicitly declared by using them in the type declaration.
The Color type also mentions these constants along with all integers in the 24-
bit RGB color spectrum. User-defined constants are only distinguished by name,
so every occurrence of RED stands for the same user-defined constant. Unlike
C++, a user-defined constant is not equivalent to an integer.

In C++ user-defined constants are actually integers; not possible in FORMULA.

1: enum Color { RED = 0xFF0000, GREEN = 0x00FF00, BLUE = 0x0000FF };
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Unlike C#, user-defined constants exist independently of the type declaration in
which they are introduced.

C# introduces constants NamedColors.RED, NamedColors.GREEN,

NamedColors.BLUE

1: enum NamedColor { RED, GREEN, BLUE }
C# introduces constants Colors.RED, Colors.BLUE, Colors.GREEN

2: enum Color { RED, GREEN, BLUE }

1.7 Declaring Data Constructors

Data constructors are declared by special syntax. The left-hand side of the dec-
laration is the name of the constructor and the right-hand side is a comma-
separated list of argument types with parenthesis. Every constructor must have
at least one argument, otherwise it would be constant. Here is another domain
providing constructors for colors:

1: domain Colors

2: {
3: NamedColor ::= (String).

4: RGBColor ::= (r: {0..255}, g: {0..255}, b: {0..255}).
5: RGBAColor ::= (a: {0..255}, r: {0..255}, g: {0..255}, b: {0..255}).
6: Color ::= NamedColor + RGBColor + RGBAColor.

7: }

NamedColor (line 3) defines a unary constructor taking a string. This construc-
tor can be used to create values such as:

NamedColor("RED"), NamedColor("GREEN"), NamedColor("BLUE")

It is illegal to apply the NamedColor color constructor to values other than
strings. Also the corresponding NamedColor type is automatically defined and
only contains those values that obey argument types. The RGBColor construc-
tor (line 4) takes three arguments for the red, green, and blue components. The
arguments have been given explicit names r, g, and b. Naming arguments is op-
tional but useful. Finally, the Color type is a union of the possible color values.
As before, there are no implicit conversions between values. For instance:

RGBColor(0, 0, 255) != 255 != RGBAColor(0, 0, 0, 255).

Every constructor creates distinct values.
Data constructors are similar to structs or records in C-like languages, but

more general. Consider the task of defining a node struct in C#. The following
code is illegal because the struct Node directly depends on Node values.
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Cannot define a struct that depends directly on itself.

1: struct Node

2: {
3: int key; Node left; Node right;

4: Node(int k, Node l, Node r)

5: { key = k; left = l; right = r; }
6: };

The problem is that Node must have a default value, and there is no way to
construct this default value. The definition becomes legal if struct is replaced
with class and then null is a valid default value for the left and right fields.
However, this comes with the price that node equality is significantly weakened,
i.e. n == m only if the variables n and m hold the same reference. In other
words, binary trees cannot be compared as if they were just values.

The declarations of formula constructors can cyclically depend on them-
selves. Here is the equivalent definition for a Node in formula.

1: domain Trees

2: {
3: Node ::= (key : Integer,

4: left : Node + {NIL},
5: right: Node + {NIL}).
6: }

The only requirement on constructors is that there must be some arguments
of finite size satisfying the type constraints of the constructor. For example, a
minimal node value can be constructed by:

Node(0, NIL, NIL)

Note that NIL is not a keyword; just a user-defined constant. This specification
has an error because there is no way to construct a node value using a finite
number of applications.

1: domain Trees

2: {
3: Node ::= (key : Integer,

4: left : Node,

5: right: Node + {NIL}).
6: }

The problem is the left field can only take a node value, but the only way
to construct a node value is to apply the node constructor. Therefore, only
an infinitely long sequence of node applications could construct such a value.
formula returns an error message like this:

(3, 4): The type Node is badly defined; it does not accept

any finite terms.
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The following domain defines nodes in two equivalent ways. It is accepted by the
compiler:

1: domain Trees

2: {
3: Node ::= (key : Integer,

4: left : Node + {NIL},
5: right: Node + {NIL}).
6:

7: Node ::= (key: Integer, left: Tree, right: Tree).

8: Tree ::= Node + {NIL}.
9: }

The type Tree is a super-type of the type Node, because in contains all node
values and the additional value NIL.

2 Domains and Models

The purpose of a domain is describe a “class of things”. The purpose of a model
is to describe a specific “thing”. Here are a few examples that we explore in this
tutorial:

1. DAG: The DAG domain describes the properties of directs acyclic graphs
(DAGs). A DAG model represents an individual DAG.

2. SAT: The SAT domain describes the set of satisfiable boolean expressions.
A SAT model describes a single expression and the variable assignments that
witness its satisfiability.

3. FUNC: The FUNC domain describes a small language of arithmetic func-
tions and the rules of their evaluation. A FUNC model represents a program
of the FUNC language.

The first step to define a “class of things” is to create a representation for
“things” using formula data types. Consider the classical definition of a di-
rected graph G:

G
def
= (V,E) where E ⊆ V × V. (1)

Classically, a directed graph is represented by a set of vertices V and set of edges
E; each e ∈ E is a pair of vertices. Furthermore, suppose vertices are represented
by integers, then the set of all finite integer-labeled graphs is:

G def
= {(V,E) | V ⊂ Z ∧ E ⊆ V × V } where every V is finite.

Here is an example of a specific graph:

Gex
def
= ({1, 2, 100}, {(1, 2), (100, 100)}).

formula does not directly support sets and relations, so we cannot express
vertices and edges as sets. Instead, integer-labeled graphs are represented using
two data constructors V and E as follows:
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Example 1 (Integer-labeled graphs).

1: domain IntGraphs

2: {
3: V ::= new (lbl: Integer).

4: E ::= new (src: V, dst: V).

5: }

Intuitively, vertices are values such as:

V(1), V(2), V(100)

and edges are values such as:

E(V(1), V(2)), E(V(100), V(100))

Though these constructors provide representations for the elements of a graph,
the domain does not define any specific graph elements. This is because the
domain is intended as a schema for all graphs; it is not intended to represent a
specific graph. A specific graph is represented by a model, as follows:

Example 2 (A small graph).

1: model Gex of IntGraphs

2: {
3: V(1).

4: V(2).

5: V(100).

6: E(V(1), V(2)).

7: E(V(100), V(100)).

8: }

A model has a name and indicates the domain to which it belongs (line 1).
The body of a model is a list of values separated by periods. These periods are
actually assertions about the model. Each expression f(. . .). is an assertion:

“The value f(. . .) is always provable in the model M .”

Thus, the model Gex contains a set of assertions, built with data constructors,
about some vertex and edge values. These assertions define the specific elements
of the graph Gex.

2.1 Querying Models

To understand how a model contains a set of assertions, create a file called
ex1.4ml and copy the code contained in Examples 1 and 2. A query operation
tests if a property is provable on a model. Follow these steps to test if a vertex
called V (1) exists in the model Gex:
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1: ...\Somewhere>Formula.exe
2:

3: []> load ex1.4ml

4: (Compiled) ex1.4ml

5: 0.82s.
6: []> query Gex V(1)

7: Started query task with Id 0.

8: 0.06s.
9: []> ls tasks
10:

11: All tasks

12: Id | Kind | Status | Result | Started | Duration

13: ----|-------|--------|--------|-------------------|----------
14: 0 | Query | Done | true | 5/17/2013 3:28 PM | 0.04s

15: 0.03s.

Line 3 loads and compiles the file ex1.4ml. Line 6 starts a query operation on
the model Gex and tests for the property V (1). If V (1) is provable in Gex then
this query operation returns true; otherwise it returns false. Starting a query
spawns a new background task that may take some time to complete. The Id
of the newly created task is reported (e.g. Id 0). Line 9 causes the status of all
tasks to be displayed. Line 14 shows that the query completed with the result
true.

On the other hand this query evaluates to false, because there is no vertex
named V (3):

[]> query Gex V(3)

This is very important: Any query that is not provable using the model (and its
domain declarations) is false. The query V (3) is false for the model Gex because
there are no assertions that can prove it. We can ask more interesting queries,
such as: Does there exist some vertex?

[]> query Gex V(x)

This query contains a variable called x. More generally, a query is true if there is
some substitution for the variables that is provable. This query is true because
replacing x with 1, 2, or 100 forms queries that are provable. Variables appearing
in a query are not declared and are local to the query expression.

More complicated patterns can be used in a query. This one tests if there is
an edge that loops back onto the same vertex.

[]> query Gex E(x, x)

It is true because if x = V (100) then E(V (100), V (100)) is provable. As with
any language, it is possible to mistype commands. The formula type system
will catch some of these mistakes. For example, the query

[]> query Gex E(V(x), x)
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is always false because x must simultaneously be an integer and a vertex, which
is never possible. In this case the query is ignored and warning messages are
returned:

1: []> qr Gex E(V(x), x)

2: commandline.4ml (2, 1): Argument 2 of function E is badly typed.

3: commandline.4ml (0, 0): The install operation failed

4: Failed to start query task.

5: 0.02s.
6: []>

Queries can be conjoined using the comma operator (‘,’). Such a query is true if
there is some substitution of variables making every conjunct true. This query
tests if there are two edges that can be placed end-to-end:

[]> query Gex E(x, y), E(y, z)

Notice that the variables x and z only appear once in the query. Variables that
only appear once can be written with an underscore (‘ ’); every occurrence of an
underscore creates a new variable with a different name from all other variables
in the expression. The previous query can be rewritten as:

[]> query Gex E( , y), E(y, )

Underscores are useful for visually emphasizing those variables that appear in
multiple places. Queries can also be formed from built-in relations and con-
straints.

[]> query Gex V(x), x > 20

Constructor labels can be used to write more readable queries. The query:

“Is there an edge whose source vertex has a label greater than 100?”

can be written as:

[]> query Gex e is E, e.src.lbl > 100

The constraint e is E requires e to be a provable value of type E.
The order in which conjuncts are written does not matter; the semantics of

a query is the same. However, queries can only check for properties that can be
answered using model assertions and a finite number of evaluations. For example,
this query is not allowed:

[]> query Gex x > 100

It asks if there exists a number greater than 100. While the answer is “yes”, it
cannot be proved using the assertions written in the model, nor can it be proved
by evaluating > for a finite number of values. In this case, the following message
is returned:
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1: []> query Gex x > 100

2: commandline.4ml (2, 3): Variable x cannot be oriented.

3: commandline.4ml (0, 0): The install operation failed

4: Failed to start query task.

5: 0.02s.
6: []>

The message ‘‘Variable x cannot be oriented’’means the compiler cannot
express x in such a way that the query can be evaluated. Note that formula can
reason about the properties of numbers, but the query operation is not the

mechanism to accomplish this. We shall discuss this more in Section ?? .
Finally, it is important to remember that even though f(. . . , t, . . .) might be

provable, this does not imply that t is itself provable. Consider the following
model:

1: model NoVertices of IntGraphs

2: {
3: E(V(1), V(2)).

4: }
This query is true:

[]> query NoVertices E( , )

But this query is false:

[]> query NoVertices V( )

There are no provable vertices, even though a vertex value does appear within a
provable edge. (This may surprise users familiar with term-rewriting systems.)

2.2 Model Conformance

A model M conforms to a domain D if the following properties are satisfied:

P1. Every assertion in M is constructed from new-kind constructors.
P2. Every constructor application in M obeys the type declarations in D.
P3. The operation query M D.conforms evaluates to true.

P1-P2 are checked whenever a model is compiled; any violation causes a compile-
time error; P3 is checked upon request. A new-kind constructor is a constructor
marked with the modifier new. Recall that both V and E constructors were
marked with this modifier.

1: V ::= new (lbl: Integer).

2: E ::= new (src: V, dst: V).

Constructors that are not marked with the new modifier are only used to perform
auxiliary computations; they can never appear in models. (We demonstrate this
in more detail in later sections.) P2 is familiar from earlier examples. It is always
illegal to use constructors with badly typed arguments, as in:
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1: model BadlyTyped of IntGraphs

2: {
3: E("Foo", "Bar").

4: }
P3 allows domains to place fine-grained constraints on the conformance re-

lationship. Unlike the first two properties, satisfying P3 can be difficult and
evaluating its satisfaction can be expensive. For these reasons, formula only
checks P3 upon request and failure of this property is not an error.

2.3 Relational Constraints

We began by trying to express the set of all integer-labeled finite graphs. The
intent was to define IntGraphs so its set of conforming models would be equiv-
alent to the set of integer-labeled finite graphs. Properties P1-P2 guarantee that
models contain only vertex and edge assertions, which encode graph elements
in an obvious way. However, there is the additional constraint that graph edges
should be pairs of graph vertices, i.e. E ⊆ V ×V . Did we capture this constraint
correctly? The answer is that it depends on how we choose to define the set of
vertices V present in a model M . There are two options: (1) Every occurrence
of a vertex value anywhere in the model is implicitly a member of V . (2) Only
those vertices that are provable are members of V . Consider this example:

1: model SomeVertices of IntGraphs

2: {
3: V(1).

4: E(V(1), V(2)).

5: }

Under the first definition, the vertex set for this model is {1, 2} and the edge
set is {(1, 2)}. This satisfies the constraint E ⊆ V ×V . Under the second defini-
tion the vertex set is only {1} and the edge set violates the constraint because
2 /∈ V . By default, formula uses the second and more restrictive definition:
E ⊆ V × V means every argument to E(, ) must be provable. Models violat-
ing this property do not conform to the domain. These kinds of constraints are
so common that formula automatically introduces them. To see this, add the
code for SomeVertices to ex1.4ml and run this query:

[]> query SomeVertices IntGraphs.conforms

The result of this query is false because V (2) is not derivable. Add V (2) to the
model, save it, and type:

[]> reload ex1.4ml

Evaluate the query again to observe that it evaluates to true.
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We call the previous kind of constraint a relational constraint. Relational
constraints are injected by the compiler when it appears that one constructor is
being used to encode a set S and another constructor is being used to encode a
relation R ⊆ . . .× S × . . ..

Definition 21 (Relational Constraint). The constructor R is relational on con-
structor S in position i if the constructor R is declared as:

R ::= new (..., arg i: T i, ...).

and S is a subtype of Ti. The relational constraint means that for every provable
value t containing R(. . . , ti, . . .) and ti = S(. . .) then ti must also be provable.

Some type declarations are not intended to encode finite relations, and the de-
fault behavior would produce strange results. Consider the following recursive
definition for binary trees:

Node ::= new (left: Node + {NIL}, right: Node + {NIL}).

This declaration fits the pattern for relational constraints and the generated
constraints are satisfiable. However, it assumes the user intended to encode a
relation with the following strange property:

Node ⊆ Node×Node.

The only finite relation satisfying this property is the empty set. There is clearly
a semantic mismatch between the binary relation Node and the binary data con-
structor Node. In order to bring attention to this mismatch formula produces
the following error:

1: ex.4ml (3, 4): The constructor Node cannot have relational

2: constraints on itself; see argument 1.

3: ex.4ml (3, 4): The constructor Node cannot have relational

4: constraints on itself; see argument 2.

When this error occurs at position i, the user must explicitly indicate that the
constructor is not intended to encode a relation at position i. Placing the any
modifier before the argument type indicates that any well-typed value is permit-
ted here, not just those values that are provable. The compiler does not generate
relational constraints for this argument and the error message does not occur.
Here is the proper declaration for the recursive binary tree constructor:

Node ::= new (left: any Node + {NIL}, right: any Node + {NIL}).

Of course, binary trees can also be encoded using finite relations, but the encod-
ing is a different one from the recursive constructor shown above.



FORMULA 2.0: A Language for Formal Specifications 173

2.4 Finite Functions

Finite functions are a special case of finite relations satisfying additional con-
straints. Consider the representation of a forest F of binary trees as follows:

F
def
= (V, parent) where parent : V → {	} ∪ ({L,R} × V ).

The set V contains the vertices of the forest and the function parent assigns to
each vertex v its parent: parent(v) = (L, u) if v is the left child of u; parent(v) =
(R, u) if v is the right child of u; parent(v) = 	 if v is a root. Additionally, the
parent function should not introduce a cycle, but we ignore this constraint for
now. The parent function can be treated as a finite relation by listing its input-
output pairs. Consider this forest where 1 is a root, 2 is its left child, and 3 is
its right child:

Fex
def
= ({1, 2, 3}, {(1,	), (2, (L, 1)), (3, (R, 1))}).

The parent relation encodes a total finite function if it is total on the domain:

∀v ∈ V. ∃x. (v, x) ∈ parent,

and every input is related to a unique output:

∀v ∈ V. ∀x, y. (v, x) ∈ parent ∧ (v, y) ∈ parent ⇒ x = y.

formula supports declarations of finite functions also. As before, these decla-
rations are really introducing data constructors plus additional constraints that
provable values must encode finite functions. Example 3 shows the syntax.

Example 3 (Relational Trees).

1: domain RelTrees

2: {
3: V ::= new (lbl: Integer).

4: Parent ::= fun (chld: V => cxt: any {ROOT} + Context).

5: Context ::= new (childPos: {LFT, RT}, prnt: V).

6: }
7:

8: model Fex of RelTrees

9: {
10: V(1). V(2). V(3).

11: Parent(V(1), ROOT).

12: Parent(V(2), Context(LFT, V(1))).

13: Parent(V(3), Context(RT, V(1))).

14: }
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Line 5 declares the Context constructor to represent {L,R} × V . Line 4 declares
the Parent constructor using the fun modifier. This modifier implies new. The
arguments on the left side of => correspond to the domain of the relation and the
arguments on the right side correspond to the codomain. The codomain contains
the valueROOT (i.e.	) and anyContext value. The funmodifier injects unique-
ness constraints, i.e. for all provable values Parent(v, x) and Parent(v, y) then
x = y. The totality arrow => injects totality constraints, i.e. for every provable
V (x) there is a provable Parent(V (x), y). Totality is affected by the any modifier.
If an argument is marked with any, then the finite function must be defined for
every well-typed value. For example, this declaration would cause an error:

Parent ::= fun (chld: any V => cxt: any {ROOT} + Context).

The any modifier applied to the first argument means there must be a provable
Parent(V (x), y) value for every well-typed value V (x). This implies an infinite

Table 4. Table of relation / function modifiers

Relation / Function Modifiers#
Syntax Meaning#

R ::= new (..., T i , ...). Relational constraint: If S is a constructor,
S <: T1, R(. . . , ti, . . .) occurs in a provable
value, and ti = S(. . .), then ti must be prov-
able.

R ::= new (..., any T i, ...). Occurrences of R are exempt from the rela-
tional constraint in position i.

R ::= fun (..., D m -> ..., C n). Partial function: Same as new. Additionally,
the set of provable R values must form a par-
tial function from D1 × . . . × Dm to C1 ×
. . .× Cn.

R ::= fun (..., D m => ..., C n). Total function: Same as partial function, but
must be total on D1 × . . . × Dm; totality is
modified by any.

R ::= inj (..., D m -> ..., C n). Partial injection: Same as partial function; ad-
ditionally if R(x, z) and R(y, z) are provable
then x = y.

R ::= inj (..., D m => ..., C n). Total injection: Constrained to be a total
function and partial injection.

R ::= sur (..., D m -> ..., C n). Partial surjection: Same as partial function;
additionally must be total on C1 × . . . × Cn

(totality is modified by any).

R ::= bij (..., D m -> ..., C n). Bijection: Constrained to be a total surjection
and partial injection; partiality arrow has no
effect.

R ::= bij (..., D m => ..., C n). Bijection: Constrained to be a total surjection
and partial injection.
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number of provable values, which is not permitted. formula returns the follow-
ing error message:

1: ex.4ml (4, 4): The function Parent requires totality on an

2: argument supported by an infinite number of

3: values; see argument 1.

Whenever the domain of a finite function is infinite that function cannot be total,
but it can be partial. The partial arrow −> indicates a partial function, which
need not be defined on every element of its domain. Suppose every vertex label
should also be given a “pretty name”. This could be expressed by extending the
signature of V as follows:

V ::= fun (lbl: Integer -> prettyName: String).

Every vertex must have a unique pretty name, but there does not need to be a
vertex defined for every integer. Table 4 shows the complete variety of relation
/ function modifiers.

2.5 Recursive Types, Aliases, and Symbolic Constants

Example 3 showed a partial specification of binary trees using a representation
inspired by finite relations. Another approach is to use the full power of recursive
data types. In this representation an entire tree is a single complex value. The
locations of values distinguishes vertices from each other. This is in contrast to
using of unique identifiers to distinguish vertices.

Example 4 (Algebraic Trees).

1: domain AlgTrees

2: {
3: Node ::= new (left: any Node + {NIL},
4: right: any Node + {NIL}).
5: Root ::= new (root: any Node).

6: }
7:

8: model Fex' of AlgTrees

9: {
10: Root(

11: Node(

12: Node(NIL, NIL),

13: Node(NIL, NIL))).

14: }

Example 4 shows an algebraic representation of trees using data constructors.
Notice that the entire tree is a single value (line 10). The Root() constructor is
used to mark some nodes as roots in the forest. The left and right children of the
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root are both nodes without children, represented by the value Node(NIL,NIL)
(lines 12, 13). In fact, both these nodes are exactly the same value. They are
distinguishable by where they occur in the construction of the parent. This
representation has several advantages: (1) Nodes do not need to be labeled. (2)
It is impossible to create an illegal tree. (3) Two trees are the same if and only
if they are the same value. Also, because the same value can represent many
nodes, it is possible to define the value once and reuse it in many places. Reuse
is accomplished by introducing an alias as follows:

leaf is Node(NIL, NIL).

The right-hand side of the is keyword requires a constructed assertion. The left-
hand side is an identifier that stands for the constructed value. Using aliases,
the previous model can be expressed as:

1: model Fex Shared of AlgTrees

2: {
3: leaf is Node(NIL, NIL).

4: Root(Node(leaf, leaf)).

5: }

Aliases can be used to represent models with exponentially less space. Consider
the following complete binary tree with 1,023 nodes:

1: model BiggerTree of AlgTrees

2: {
3: leaf is Node(NIL, NIL).
4:

5: subtree 3 is Node(leaf , leaf).

6: subtree 7 is Node(subtree 3 , subtree 3).

7: subtree 15 is Node(subtree 7 , subtree 7).

8: subtree 31 is Node(subtree 15 , subtree 15).

9: subtree 63 is Node(subtree 31 , subtree 31).

10: subtree 127 is Node(subtree 63 , subtree 63).

11: subtree 255 is Node(subtree 127, subtree 127).

12: subtree 511 is Node(subtree 255, subtree 255).

13: subtree 1023 is Node(subtree 511, subtree 511).
14:

15: Root(subtree 1023).

16: }

Aliases are visible to all assertions within their defining model. The order in
which aliases are defined is inconsequential. However, aliases definitions cannot
form as cycle as this would be equivalent to applying an infinite number of
constructors. This property is checked at compile time. Here is an example:
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1: model InfiniteTree of AlgTrees

2: {
3: infinite left is Node(infinite right, NIL).

4: infinite right is Node(NIL, infinite right).

5: Root(Node(infinite left, infinite right)).

6: }
The infinite left node has an infinitely deep subtree as its left node, and the
infinite right node has an infinitely deep subtree as its right node. This problem
is detected and the following error is reported.

1: inf.4ml (4, 4): Symbolic constant InfiniteTree.%infinite right is

2: defined using itself.

3: inf.4ml (3, 4): Symbolic constant InfiniteTree.%infinite left is

4: defined using itself.

2.6 Symbolic Constants

The previous error messages referred to symbolic constants. A symbolic constant
is a constant, i.e. it is a function that takes no arguments and returns a value.
However, the value it returns may not be known at compile time. This latter
property is unlike the constants we have encountered so far. For example, the
constant 1 always returns the constant 1 and the constant NIL always returns
the constant NIL. Each model alias a declared in model M defines a symbolic
constant called M.%a. It returns the value produced by expanding all aliases in
the model. Consider Example 2 rewritten with aliases:

1: model Gex' of IntGraphs

2: {
3: v1 is V(1).

4: v2 is V(2).

5: v100 is V(100).
6:

7: e 1 2 is E(v1, v2).

8: e 100 100 is E(v100, v100).

9: }
These aliases create symbolic constants with the following properties:

Gex′.%v1 = V (1)
Gex′.%v2 = V (2)
Gex′.%v100 = V (100)
Gex′.%e 1 2 = E(V (1), V (2))
Gex′.%e 100 100 = E(V (100), V (100))

Unlike variables, symbolic constants can be used to test the properties of specific
model elements. Whenever a symbolic constant occurs in a query, it matches the
corresponding assertion in the model where it was defined. For example:
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[]> query Gex' Gex'.%v1.lbl = 1

This query is satisfied if the value represented by Gex′.%v1 is provable and its
label is equal to 1. This query evaluates to true. Symbolic constants are prefixed
with the percent-sign (‘%’) to distinguish them from variables. Consider this
query:

[]> query Gex' E(%v1, v1)

Here %v1 is the same symbolic constant as before, but v1 is a variable. (Names
do not need to be fully qualified if they can be unambiguously resolved.) This
query is satisfied if there is some value for v1 that makes E(V (1), v1) provable.
The assignment v1 = V (2) is one such value and the query evaluates to true.
Finally, this query evaluates to false, because there is not an edge from V (1) to
V (1):

[]> query Gex' E(%v1, %v1)

2.7 Separate Compilation

A formula module can refer to modules in other files. The compiler will load
and compile all files required to completely compile a program. There are several
ways to refer to modules in another files. The first way is to qualify the module
name with a source file using the at operator. For example:

model M of D at "foo.4ml" { ... }

The compiler will look for a domain named D in the file foo.4ml. This method
does not affect the resolution of any other occurrence of D. For example, this
code loads two different domains, both called D, from different files:

1: model M1 of D at "..\\..\\version1.4ml" { ... }
2: model M2 of D at '"..\..\version2.4ml"' { ... }

(Relative paths are resolved w.r.t. to the path of file where they occur.) However,
it is illegal to define two modules with the same name in the same file.

1: model M of D at "version1.4ml" { ... }
2: model M of D at "version2.4ml" { ... }

This causes an error:

1: ex.4ml (2, 1): The module M has multiple definitions.

2: See ex.4ml (1, 1) and ex.4ml (2, 1)

The disadvantage of the at operator is that it must be used on every reference
to D. Another option is to register D using a configuration block. Configuration
blocks have access to various configuration objects, one of which is calledmodules
mapping names to files. To register D and D′ in the scope of the file write:



FORMULA 2.0: A Language for Formal Specifications 179

1: [
2: modules.D = "D at foo.4ml",

3: modules.D' = "D' at foo.4ml"
4: ]
5:

6: model M of D { ... }

Lines 1 - 4 form a configuration block. Now every occurrence of D will resolve
to D located in foo.4ml. If D is defined to be in several locations, then an error
occurs.

Causes an error because D is defined to be at two different places.

1: [
2: modules.D = "D at version1.4ml",

3: modules.D = "D at version2.4ml"
4: ]

Finally, each module has its own local configuration parameters. Modules in-
herit file level configurations, and can extend these with additional parameters.
Module-level configurations are isolated from each other, so occasionally it may
be useful to register domains at this level. Here is an example:

1: model M1 of D
2: [
3: modules.D = "D at version1.4ml"
4: ]

5: {
6: ...

7: }
8:

9: model M2 of D
10: [
11: modules.D = "D at version2.4ml"
12: ]

13: {
14: ...

15: }
The module-level configuration block must be placed after the module declara-
tion and before the opening curly brace. These configurations do not conflict,
because they are lexically scoped to the modules M1 and M2. Separate compi-
lation is available for all types of formula modules.

3 Rules and Domain Constraints

Domain constraints are essential for defining “classes of things”. So far we have
demonstrated type constraints and a few kinds of relation / function constraints
(that also appear in type declarations). However, these constraints are not gen-
eral enough to capture many properties. Recall the relational trees example
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(Example 3) where we neglected to constrain trees to be acyclic. There was no
way to write this constraint using the mechanisms presented thus far, and so
the specification is incomplete. Some models that are not trees conform to the
RelTrees domain.

The remaining aspects of the formula language deal with computing prop-
erties of models using conditional statements, which we call rules. These com-
puted properties can be used to write powerful domain constraints (among other
things). A basic rule has the following syntax:

head :- body.

The body part can contain anything a query can contain. The head part is a
sequence of constructor applications applied to constants and variables. A rule
means:

“Whenever the body is provable for some variable assignment, then the head is
also provable for that variable assignment.”

Thus, a rule is a logical statement, but it can also be executed (like a query) to
grow the set of provable values.

Consider the problem of computing the ancestors between vertices in a
RelTrees model. First, we introduce a helper constructor called anc(, ) into the
RelTrees domain to represent the ancestor relationship:

anc ::= (ancestor: V, descendant: V).

Notice that anc is not modified with new (or any other modifier that implies
new). This means an anc value can never be asserted by a model. The only legal
way to prove an anc value is by proving its existence with rules. We call anc a
derived-kind constructor. Here is a rule that can prove u is an ancestor of w if u
is the parent of w:

anc(u, w) :- Parent(w, Context( , u)).

Here is a rule that can prove u is an ancestor of w if u is an ancestor v and v is
an ancestor of w.

anc(u, w) :- anc(u, v), anc(v, w).

As with queries, the comma operator (‘,’) conjuncts constraints. Every conjunct
must be satisfied for the rule to be satisfied. If two rules have the same head,
then they can be syntactically combined using the semicolon operator (‘;’).

anc(u, w) :- Parent(w, Context( , u)); anc(u, v), anc(v, w).

Intuitively the semicolon operator behaves like disjunction, but remember that
each semicolon actually marks the body of an independent rule.
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Table 5. Table of matching constraints

Matching Constraints#
Syntax Meaning#

q true if the derived constant q is provable; false otherwise.
f(t1,...,tn) true for every assignment of variables where f(t1, . . . , tn)

is provable; false otherwise.
x is f(t1,...,tn) true for every assigment of variables where f(t1, . . . , tn) is

provable and x = f(t1, . . . , tn); false otherwise.
x is T true if x is a provable value and a member of the type

named T ; false otherwise.

Table 6. Table of interpreted predicates

Interpreted Predicates#
Syntax Meaning#

no {. . .} true if the set comprehension is empty; false otherwise.
t = t’ true if t and t′ are the same value; false otherwise.
t != t’ true if t and t′ are different values; false otherwise.
t < t’ true if t is less than t′ in the order of values; false otherwise.
t <= t’ true if t is less than equal to t′ in the order of values; false otherwise.
t > t’ true if t is greater than t′ in the order of values; false otherwise.
t >= t’ true if t is greater than or equal to t′ in the order of values; false

otherwise.
x : T true if x is a member of the type named T ; false otherwise.

3.1 Derived Constants

A tree-like graph is not a tree if it has a cycle in its ancestor relation. There
is a cycle if and only if some vertex is an ancestor of itself. The following rule
summarizes this property:

hasCycle :- anc(u, u).

The symbol hasCycle is a derived-kind constant (or just derived constant). A
derived constant is declared by using it, unqualified, on the left-hand side of some
rule. Rules can only prove derived constants or values built from constructors.
This rule causes an error:

1 :- V( ).

ex.4ml (1, 4): Syntax error - A rule cannot produce

the base constant 1
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The full name of a derived constant c declared in domain D is D.c. This allows
for (an optional) coding idiom where each derived constant is declared in exactly
one place.

Declares hasCycle, because appears unqualified on left-hand side of the rule.

(Does not affect the provable values.)

1: hasCycle :- RelTrees.hasCycle.

First use of hasCycle; not a declaration because used in qualified form.

2: RelTrees.hasCycle :- anc(u, u).

Second use of hasCycle; this rule is redundant.

3: RelTrees.hasCycle :- anc(u, w), anc(w, u).

3.2 Rule Bodies

The body of a rule is a conjunction of constraints. Constraints can be either
matching constraints or interpreted predicates. A matching constraint is satisfied
if there is some substitution of the variables where the resulting value is provable.
An interpreted predicate is satisfied if there is some substitution of the variables
where a special predicate evaluates to true. Tables 5 and 6 list the forms of
matching constraints and interpreted predicates. The order in which conjuncts
appear is irrelevant; as with queries, all variables must be orientable.

To demonstrate interpreted predicates, consider that our RelTrees domain
also allows a single node to have more than two left (or right) children.

1: model TwoLeftChildren of RelTrees

2: {
3: v1 is V(1). v2 is V(2). v3 is V(3).

4: Parent(v1, ROOT).

5: Parent(v2, Context(LFT, v1)).

6: Parent(v3, Context(LFT, v1)).

7: }
The following rule can be used to detect these anomalous graphs:

1: tooManyChildren :-

2: Parent(x, Context(pos, parent)),

3: Parent(y, Context(pos, parent)),

4: x != y.

The disequality predicate (‘!=’) is used to detect if more than one distinct node
has been assigned to the same position in the parent. Using the equality predicate
(‘=’) and the selector operator (‘.’), the above rule can be rewritten as:

1: tooManyChildren :-

2: px is Parent,

3: py is Parent,
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4: px.chld != py.chld,

5: px.cxt = py.cxt,

6: px.cxt != ROOT.

The choice of whether to use the first or second rule is a matter of style. (Other
equivalent rules can be written too.)

3.3 Interpreted Functions

formula also provides many interpreted functions, such as +, and(, ), toString(),
etc... An interpreted function can appear anywhere a t, t′ or ti appears in Tables
5 and 6. (See Section 5 for the full list of interpreted functions.) This constraint
finds all the vertices whose child labels sum to the label of the parent.

1: SumToParent(v) :-

2: Parent(x, Context( , v)),

3: Parent(y, Context( , v)),

4: x.lbl + y.lbl = v.lbl.

The interpreted function + represents ordinary arithmetic addition, which is
only defined for numeric values. Therefore x.lbl and y.lbl must be numeric values
for the operation to be meaningful. These extra requirements are automatically
added as side-constraints to the rule body. The complete rule constructed by
the formula compiler is:

1: SumToParent(v) :-

2: Parent(x, Context( , v)),

3: Parent(y, Context( , v)),

4: x.lbl + y.lbl = v.lbl,

5: xlbl = x.lbl, xlbl : Real,

6: ylbl = y.lbl, ylbl : Real.

These side-constraints have an important consequence: A rule will never evaluate
operations on badly-typed values. The side-constraints guarantee that the rule
is not triggered for values where the operators are undefined.

To demonstrate this, create a new file containing the code in Example 5:

Example 5 (Pretty labeled trees).

1: domain PrettyRelTrees

2: {
3: V ::= new (lbl: Integer + String).

4: Parent ::= fun (chld: V => cxt: any {ROOT} + Context).

5: Context ::= new (childPos: {LFT, RT}, prnt: V).
6:

7: SumToParent ::= (V).

8: SumToParent(v) :-

9: Parent(x, Context( , v)),
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10: Parent(y, Context( , v)),

11: x.lbl + y.lbl = v.lbl.

12: }
13:

14: model StringTree of PrettyRelTrees

15: {
16: vA is V("a").

17: vB is V("b").

18: vC is V("c").
19:

20: Parent(vB, ROOT).

21: Parent(vA, Context(LFT, vB)).

22: Parent(vC, Context(RT, vB)).

23: }
In this domain vertices can have either integer labels or “prettier” string labels.
The model StringTree contains a single tree with only string labels. Run the
query:

[]> query StringTree SumToParent( )

and notice that it evaluates to false. The query does not produce any errors
or exceptions. The side-constraints created by + simply prevents the rule from
being triggered by the string labeled vertices in StringTree.

3.4 Type Environments

In fact, formula uses type inference to inform you about the values that may
trigger a rule. Type:

[]> types PrettyRelTrees

and the following listing is returned:

1: + Type environment at (8, 4)

2: v: V(Integer)

3: ~dc0: Parent(V(Integer), Context({RT} + {LFT}, V(Integer)))

4: x: V(Integer)

5: ~dc1: {RT} + {LFT}
6: ~dc2: Parent(V(Integer), Context({RT} + {LFT}, V(Integer)))

7: y: V(Integer)

8: ~dc3: {RT} + {LFT}
9: ~sv0: Integer

10: ~sv1: Integer

11: ~sv2: Integer

12: + Type environment at (8, 22)

13: v: V(Integer)

14: ~dc0: Parent(V(Integer), Context({RT} + {LFT}, V(Integer)))
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15: x: V(Integer)

16: ~dc1: {RT} + {LFT}
17: ~dc2: Parent(V(Integer), Context({RT} + {LFT}, V(Integer)))

18: y: V(Integer)

19: ~dc3: {RT} + {LFT}
20: ~sv0: Integer

21: ~sv1: Integer

22: ~sv2: Integer

This listing shows the inferred types for variables. Type inference is displayed as
a sequence of nested type environments. The first type environment (line 1) lists
the inferred types for variables in the head of the rule. The second nested type
environment (line 12) lists the inferred types for the body of the rule. Had the
rule contained several bodies via the semicolon operator, then there would be a
distinct type environment for each body, and all of these environments would be
nested under the head. The type of the head would then be the union of all the
types in the bodies.

Line 2 shows that the variable v is guaranteed to be of type V (Integer); it can
never be a string labeled vertex. The variables named ˜dc0, ˜dc1, ˜dc2, ˜dc3 are
don’t care variables. They were generated by the compiler wherever we preferred
not to provide a variable name. This happened in four places in the body:

Parent(x, Context( , v)), Parent(y, Context( , v))

In the first matching constraint we did not provide a variable to bind the match-
ing constraint (using the is operator). The compiler generates one called ˜dc0
and its type is:

Parent(V(Integer), Context({RT} + {LFT}, V(Integer)))

This matching constraint is guaranteed to match only Parent values whose child
is an integer-labeled vertex in the context of an integer-labeled parent. The
variable ˜dc1 occurs because we used the underscore operator (‘ ’) in the first
argument of Context. The variables ˜dc2 and ˜dc3 were analogously created
for the second pattern. Finally, the variables ˜sv0, ˜sv1, and ˜sv2 are compiler-
generated selector variables. They stand for the selection of fields:

~sv0 = x.lbl, ~sv1 = y.lbl, ~sv2 = z.lbl

Examining the type environments is useful for understanding how constraints in
the body interact to restrict the triggering of rules. formula only generates an
error if it is impossible to trigger a rule. For instance, change the declaration of
V to:

V ::= new (lbl: String).

and reload the program. This will result in errors:

ex.4ml (8, 80): Argument 1 of function + is badly typed.

ex.4ml (8, 80): Argument 2 of function + is badly typed.
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3.5 Set Comprehensions

Sometimes it is necessary to aggregate all the provable values of a given type
into a single result. The rules we have shown so far cannot accomplish this
task. Consider again the IntGraphs example (Example 1) and imagine trying to
compute the in-degree of a vertex, i.e. the number of distinct edges coming into
a vertex. One might be tempted to write rules such as:

1: indeg atleast 2(v) :-

2: v is V,

3: e1 is E( , v), e2 is E( , v),

4: e1 != e2.
5:

6: indeg atleast 3(v) :-

7: v is V,

8: e1 is E( , v), e2 is E( , v), e3 is E( , v),

9: e1 != e2, e1 != e3, e2 != e3.

These rules can only determine lower bounds on the in-degree by testing for
vertices with at least k distinct incoming edges. Using this approach, we must
write a rule for every possible in-degree that could be encountered. (We could
never write all such rules.) Also, the rules would get larger; the rule computing
indeg atleast k would contain O(k2) constraints. Also, even with these two rules,
we still cannot write a rule that finds vertices whose in-degree is exactly two.
A vertex v has a degree of exactly two if indeg atleast 2(v) is provable and
indeg atleast 3(v) is not provable. But so far we cannot test if indeg atleast 3(v)
is not provable in the body of a rule.

Set comprehensions remedy this problem and fundamentally increase the ex-
pressive power of formula. A set comprehension has the following form:

{ t1, ..., tn | body }

The body part can be legal rule body (e.g. it can contain the semicolon operator
and nested comprehensions). The expressions t1, . . . , tn can be any legal combi-
nation of constants, constructors, variables, and selectors. A set comprehension
means:

“Form a set S of values as follows: For every assignment of variables satisfying the
body substitute these values in to each ti and add each ti to the set S.

Here is an example of using a set comprehension to compute the in-degree of an
arbitrary vertex.

indeg(v, k) :- v is V, k = count({ e | e is E( , v)}).

The count() operation is an interpreted function that takes a set comprehension
and returns its size. The comprehension forms a set of all the edges with v
in the destination position, and k is equal to the size of this set. Notice that
the comprehension sees the variables declared outside of it, and so each choice
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of value for the variable v instantiates v inside the comprehension. However,
variables introduced inside the comprehension do not escape. The variable e is
scoped to the comprehension and other comprehensions cannot see it. Consider
this rule:

q :- count({x | V(x), x > 0}) = count({x | V(x), x < 0}).

The first occurrence of x is lexically scoped to the first comprehension, and
second occurrence is scoped to the second comprehension. This rule tests if
the number of vertices with positive labels equals the number with negative
labels. This rules does not constrain x to be both positive and negative (which
is impossible).

Comprehensions can only be used in combination with certain interpreted
predicates / interpreted functions. Variables can only be assigned values, so it is
illegal to assign a set comprehension to a variable. The interpreted predicate no
is used to test if a comprehension is empty, it is equivalent to the constraint:

count({ ... }) = 0

This rule computes all the sources in a graph, i.e. all the vertices with zero
in-degree.

source(v) :- v is V, no { e | e is E( , v) }.

The body of this comprehension consists of a single matching constraint. For
the special case where no is applied to a comprehension with a single matching
constraint, then only the body of the comprehension needs to be written.

source(v) :- v is V, no e is E( , v).

Equivalently,

source(v) :- v is V, no E( , v).

3.6 General Rules and Rule Heads

A general rule has for the form:

head1, ..., headm :- body1; ...; bodyn.

It is equivalent to the set of rules:

head1, ..., headm :- body1.

...

head1, ..., headm :- bodyn.
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A general rules proves all heads head1, . . . , headm for every satisfying assign-
ment of the body. Each head must be formed from constants, constructors, and
variables. A rule head must satisfy the following properties:

– Under all circumstances, a rule head must evaluate to a derived constant or
a constructed value.

– Under all circumstances, a rule head must evaluate to a well-typed value.
– Every variable appearing in a rule head must appear at the top level of the

body. (The variable cannot be introduced by a comprehension.)

All of these properties are checked at compile time and generate errors if violated.
A rule violating the first property was demonstrated earlier (i.e. a rule that
proved the constant 1). The second property is the most interesting. It requires
the constraints in the body to prove that every possible assignment satisfying
the body yields a well-typed head value. Imagine adding the following code to
Example 5 where vertices can have integer or string labels:

1: IntLabel ::= (Integer).
2:

3: IntLabel(x) :- V(x).

4: isIntLabel :- IntLabel(x), V(x).

The rule in line 3 matches a vertex; the inferred type of x is String + Integer.
However, the head IntLabel(x) requires x to be an integer. If the rule were
triggered by a string-labeled vertex, then it would produce a badly-typed head
value. This danger is detected by the formula compiler:

ex.4ml (3, 4): Argument 1 of function IntLabel is unsafe.

Some values of type String are not allowed here.

Contrast this with the rule in line 4. Here the conjuncts IntLabel(x) and V (x)
constrain x to be an integer. This rule is accepted by the compiler. Remember
that the bodies must constrain variables enough so that the compiler can prove
the heads are always well-typed. This architecture is designed to detect mistakes
in rules at compile time.

There is one exception to the previous discussion. Selectors can be used in the
head of a rule, in which case they are treated as if they occurred the body. This
mean selectors appearing in the head will constrain the variables appearing in the
body. This rule computes if one vertex is a child of another in a relational tree:

isChild(p.chld, p.cxt.prnt) :- p is Parent.

The occurrence of p.cxt.prnt constrains p to have the type Parent(V,Context)
even though no such constraint appears directly in the body. The rule the com-
piler produces is actually:

1: isChild(p.chld, p.cxt.prnt) :-

2: p is Parent, = p.chld, = p.cxt.prnt.

Finally, every variable appearing in a rule head must also appear at the top level
of a rule body. This rule is illegal:
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isChild(p.chld, x) :- p is Parent.

because x does not appear in the body. This restriction prevents rules from
proving an infinite number of facts, thereby preserving executability of rules.
More subtly, this rule is also illegal:

isChild(x, y) :- no Parent(x, Context( , y)).

Intuitively, this rule succeeds if there is no Parent value matching the constraint,
so no assignments are available for the variables x and y in the head. A more
general way to understand the problem is to re-introduce the lexical scoping
braces:

isChild(x, y) :- no { p | p is Parent(x, Context( , y)) }.

The variables x and y are not visible outside of the set comprehension, so they
cannot be used in the head. Finally, a fact is a rule whose head contains no
variables and whose body is empty. It is treated as a rule whose heads are
always provable. A fact can be written as:

value1, ..., valuem.

3.7 Stratification and Termination

Rules are a form of executable logic. This means we can simultaneously treat
them as a set of logical statements or as a kind of program, but both points-of-
view should agree on what the rules mean. Obtaining this agreement becomes
complicated without additional requirements on the structure of rules. The first
major challenge arises because of set comprehensions. Consider these rules:

1: p :- no q.

2: q :- no p.

To execute these rules as program, formula (1) chooses a rule, (2) computes
all the new values it proves, and (3) repeats steps 1-2 until no new values are
proved. If the first rule is executed first then p is proved because q is not, but
then q cannot be proved. On the other hand, if the second rule is executed first
then q is proved because p is not, but then p cannot be proved. Consequently,
the answer to query M p depends on the order of execution.

There are two ways to reconcile this behavior. Either we can treat this
behavior as correct, in which case the logical interpretation of rules must be
generalized. Or, we can restrict the structure of rules to prevent this behavior
all together. We choose the second approach, and prevent rules that would ex-
hibit the behavior just described. One well-known restriction that eliminates this
problem is called stratification.

Definition 31 (Stratification). A formula program is stratified if there is no
set comprehension that examines values (indirectly) proved by the rule contain-
ing the comprehension.
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In the previous example the first rule contains a set comprehension no {q | q}.
And, q values are proved by the second rule, which examines p values (under a
set comprehension of its own). Therefore the first set comprehension examines
values that could be indirectly proved by the rule containing it. This is a sign
that the order of execution could yield different outcomes. formula produces
the following error message for the previous program:

1: ex.4ml (1, 9): A set comprehension depends on itself.

2: Listing dependency cycle 0...

3: ex.4ml (1, 9): A set comprehension depends on itself.

4: Dependency cycle 0

5: ex.4ml (1, 4): A set comprehension depends on itself.

6: Dependency cycle 0

7: ex.4ml (2, 9): A set comprehension depends on itself.

8: Dependency cycle 0

9: ex.4ml (2, 4): A set comprehension depends on itself.

10: Dependency cycle 0

The error messages list the locations of the rules and the set comprehensions
that form a dependency cycle. Stratification is fully checked at compile time and
unstratified programs are rejected.

Rules are executed so that all values are proved before a dependent set com-
prehension is executed. This strategy always computes a unique result, which
coincides with the logical interpretation of rules. Users may write rules in any
syntactic order, but they will always be executed to respect the dependencies of
set comprehensions. For example:

1: smallInDegree :- no { v | indeg(v, k), k > 3 }.
2: indeg(v, k) :- v is V, k = count({ e | e is E( , v)}).

A graph has a “small in-degree” if no in-degree is greater than three. The first
rule computes smallInDegree by comprehending over all the indeg values. Fur-
thermore, the second rule computes indeg values by comprehending over all the
edges. The order of execution will be: compute all the E values, and then com-
pute all the indeg values, and then compute the smallInDeg value. It does not
matter that smallInDeg appeared earlier in program text.

The second challenge with executable logic is termination.

Definition 32 (Termination). A domain is terminating if the set of provable
values is finite for every model of that domain.

A non-terminating domain may execute forever when evaluating a query.
Currently formula does not check for termination, so a user may write a non-
terminating program and later find that query execution never stops. Theo-
retically termination cannot be checked with certainty for arbitrary programs,
though many conservative analyses are possible and formula may use some of
them in the future. Here is a classic example of a non-terminating rule repre-
senting the successor function s().
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s(x) :- x = 0; x is s.

The value s(0) is provable, and so the value s(s(0)) is provable, and so the value
sn(0) is provable for every positive integer n. In fact, the successor function is
one way to represent the natural numbers. Users should not try to axiomatize
theories, such as the theory of natural numbers, using formula. Instead, they
should utilize the interpreted functions that already embed these theories into
the formula language.

3.8 Complex Conformance Constraints

We have shown how rules can compute properties of models. To create a con-
formance constraint use the following syntax.

conforms body.

Definition 33 (Model Conformance). A model conforms to its domain if:

– Every assertion in M is constructed from new-kind constructors.
– Every value in M is well-typed.
– The body of every conformance constraint is satisfied for some substitution

of the variables.

Internally, formula creates a special derived constant D.conforms for each do-
mainD. All conformance constraints must be provable forD.conforms to be prov-
able. Additionally, conformance constraints are introduced for the relation / func-
tion constraints appearing in type declarations.Table 7 lists the predefined derived
constants. Users maywrite rules referring to these constants, but it is illegal to add
a rule that proves them. Only the compiler can add rules proving these constants.
We now list the complete domains for directed acyclic graphs and relational trees.

Example 6 (Directed Acyclic Graphs).

1: domain DAGs

2: {
New-kind constructors.

3: V ::= new (lbl: Integer).

4: E ::= new (src: V, dst: V).

Derived-kind constructors.

5: path ::= (V, V).

Computation of transitive closure.

6: path(u, w) :- E(u, w); E(u, v), path(v, w).

Acyclicity constraint.

7: conforms no path(u,u).

8: }
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Table 7. Table of predefined derived constants

Predefined Derived Constants#
Name Meaning#

D.conforms Provable if all conformance constraints are satisfied.
D.notRelational Provable if a provable value contains f(. . . , ti, . . .), f is

relational on position i, ti = g(. . .), and g(. . .) is not prov-
able.

D.notFunctional Provable if a constructor is declared to be a (partial) func-
tion, but its provable values map an element from the do-
main of the function to several distinct elements in the
codomain.

D.notTotal Provable if a constructor is declared to be a total func-
tion, but some element of its domain is not mapped to an
element of its codomain.

D.notInjective Provable if a constructor is declared to be a (partial) injec-
tion, but several elements of its domain are mapped to the
same element in its codomain.

D.notInvTotal Provable if a constructor is declared to be a (partial) sur-
jection, but there is an element of its codomain for which
no element of the domain is mapped.

Example 7 (Relational Trees).

1: domain RelTrees Final

2: {
New-kind constructors.

3: V ::= new (lbl: Integer + String).

4: Parent ::= fun (chld: V => cxt: any {ROOT} + Context).

5: Context ::= new (childPos: {LFT, RT}, prnt: V).

Derived-kind constructors.

6: anc ::= (ancestor: V, descendant: V).

Computation of ancestors.

7: anc(u, w) :- Parent(w, Context( , u)); anc(u, v), anc(v, w).

Computation of too-many children.

8: tooManyChildren :-

9: Parent(x, Context(pos, parent)),

10: Parent(y, Context(pos, parent)),

11: x != y.

Conformance constraints

12: conforms no anc(u, u).

13: conforms no tooManyChildren.

14: }
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3.9 Extracting Proofs

Often times it is useful to know why a query evaluates to true. If a query evaluates
to true, then a proof tree can be obtained showing how the rules prove the query.
In a new file type the code from Example 6 along with the code below:

1: model LittleCycle of DAGs

2: {
3: v1 is V(1).

4: v2 is V(2).

5: E(v1, v2).

6: E(v2, v1).

7: }
Execute the query (and observe that it evaluates to true):

[]> query LittleCycle path(u, u)

Next type:

[]> proof 0

(0 is the id of the query task; type the particular id of your task.) The following
output is displayed:

1: Truth value: true
2:

3: Query 263ea486 4485 4bff bda4 c99ea8f94c27.requires :- (2, 1)

4: ~dc0 equals

5: Query 263ea486 4485 4bff bda4 c99ea8f94c27.~requires0 :- (2, 1)

6: ~dc0 equals

7: path(V(2), V(2)) :- (6, 4)

8: ~dc0 equals

9: E(V(2), V(1)) :- (14, 4)
10: .
11: ~dc1 equals

12: path(V(1), V(2)) :- (6, 4)

13: ~dc0 equals

14: E(V(1), V(2)) :- (13, 4)
15: .
16: .
17: .
18: .
19: .
20:

21: Press 0 to stop, or 1 to continue

Line 1 indicates that the query evaluated to true. The remaining lines show a
nested hierarchy of rules along with the values of the matching constraints that
triggered the rule. The rules in lines 3 and 5 where generated by the compiler
to hold the body of the query expression; they can be ignored. Line 7 shows
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Table 8. Table of domain symbol placement

Placement of Domain Symbols#
Kind of Declaration Symbols and Placement#

Type ::= ... The symbol Type and the type constant #Type are placed in
the root. If declaration is an n-ary constructor declaration then
type constants #Type[0], ..., #Type[n-1] are also placed in the
root.

{ ..., Cnst, ... } The new-kind user constant Cnst is placed in the root.

DerCnst :- ... The derived-kind user constant DerCnst is placed in the names-
pace D.

x A variable introduced in a rule is placed in the root namespace.
Variables can be introduced independently by many rules; this
does not cause a conflict.

D.Constant A predefined symbol defined to be the union of all new-kind con-
stants (including numerics and strings). Placed in the names-
pace D along with D.#Constant.

D.Data A predefined symbol defined to be the union of all new-kind con-
stants (including numerics and strings) and data constructors.
Placed in the namespace D along with D.#Data.

D.Any A predefined symbol defined to be the union of all types in the
domain. Placed in the namespace D along with D.#Any.

that a loop path(V (2), V (2)) was proved using the rule at line 6 column 4
in the domain definition (i.e. the transitive closure rule). This rule used the
proofs of E(V (2), V (1)) (line 9) and path(V (1), V (2)) (line 12). The proof of
E(V (2), V (1)) comes directly from the model assertion located at (14, 4). The
proof of path(V (1), V (2)) requires another invocation of the transitive closure
rule using the model assertion at (13, 4).

Press 1 key to obtain another proof of the query. Press the 1 key again and
formula exits the display loop because there are no more proofs to show. In
fact, this statement is not entirely true; there are infinitely many proof trees
that prove the loop, but most of them depend on a subproof of a loop and are
not interesting. For instance, once path(V (2), V (2)) is proved, the the transitive
closure rule can be applied again to obtain another proof for path(V (2), V (2)).
formula only shows minimal proof trees, and ignores (or cuts) proofs containing
a subproof of the property.

The proof command is a bit more general. It can take a value (without vari-
ables) and return a truth value and possibly a proof tree. Try:
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[]> proof 0 path(V(1), V(2))

Three results are possible:

– The truth value can be true and trees are displayed.
– The truth value can be false and no trees are displayed.
– The truth value can be unknown. This occurs if formula did not evaluate

enough rules to decide if the value is provable.

When a query operation is executed formula will decide which rules are relevant
to the query. It will report the truth value of unknown if the proof command is
called with a value whose proof might require unexecuted rules. (This can also
occur if the query execution was terminated prematurely.)

4 Domain and Model Composition

Domains and models can be combined to build up more complicated mod-
ules. Domain composition allows type declarations, rules, and conformance con-
straints to be combined. Model composition allows sets of assertions and aliases
to be combined.

4.1 Namespaces

To understand composition, we must first discuss how symbols are organized. Ev-
ery symbol s declared in a module is placed into a namespace n. The complete
name of a symbol is n.s. We hinted at the existence of namespaces when de-
scribing derived constants such as RelTrees.hasCycle or DAGs.conforms. They
also appeared in the symbolic constants Gex’.%v1 andGex’.%e 1 2. The root
namespace has no name at all. The complete name of a symbol s placed in the
root namespace is simply s. When modules are composed their namespaces are
merged. Composition fails if the combined modules declare a symbol with the
same full name but in semantically different ways.

Every domain D starts with two namespaces: the root namespace and a
namespace D, which is a child of the root. Whether a declaration places sym-
bols in the root or the D namespace depends on the kind of declaration. Table
8 describes the introduction and placement of domain symbols. Note that type
constants are used to support reflection, but we have not discussed them yet.

Load the file containing Example 7 (RelTrees Final) and type:

[]> det RelTrees Final

You will see the complete set of symbols and their placement into namespaces.
(Additional compiler generated symbols are listed as well.)
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1: Symbol table

2: Space | Name | Arity | Kind

3: ----------------|-----------------|-------|-------
4: | Boolean | 0 | unn

5: | Context | 2 | con

6: | FALSE | 0 | ncnst

7: | Integer | 0 | unn

8: | LFT | 0 | ncnst

9: | Natural | 0 | unn

10: | NegInteger | 0 | unn

11: | Parent | 2 | map

12: | PosInteger | 0 | unn

13: | ROOT | 0 | ncnst

14: | RT | 0 | ncnst

15: | Real | 0 | unn

16: | String | 0 | unn

17: | TRUE | 0 | ncnst

18: | V | 1 | con

19: | anc | 2 | con

20: RelTrees Final | Any | 0 | unn

21: RelTrees Final | Constant | 0 | unn

22: RelTrees Final | Data | 0 | unn

23: RelTrees Final | conforms | 0 | dcnst

24: RelTrees Final | notFunctional | 0 | dcnst

25: RelTrees Final | notInjective | 0 | dcnst

26: RelTrees Final | notInvTotal | 0 | dcnst

27: RelTrees Final | notRelational | 0 | dcnst

28: RelTrees Final | notTotal | 0 | dcnst

29: RelTrees Final | tooManyChildren | 0 | dcnst

30: RelTrees Final | ~conforms0 | 0 | dcnst

31: RelTrees Final | ~conforms1 | 0 | dcnst
32:

33: Type constants: #Boolean #Context #Context[0] #Context[1]

34: #Integer #Natural #NegInteger #Parent #Parent[0]

35: #Parent[1] #PosInteger #Real #String #V #V[0]

36: #anc #anc[0] #anc[1] RelTrees Final.#Any

37: RelTrees Final.#Constant RelTrees Final.#Data
38: Symbolic constants:

39: Rationals:
40: Strings:

41: Variables: parent pos u v w x y ~arg1 ~arg2 ~arg2'

A model M of domain D contains all the same definitions as D but adds an
additional namespace called M under the root. All aliases are placed here as
symbolic constants.
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[]> det LittleCycle

Listing omitted

1: Symbolic constants: LittleCycle.%v1 LittleCycle.%v2

Listing omitted

Altogether the LittleCycle model contains three namespaces: the root namespace
and two sub-namespaces called DAGs and LittleCycle.

4.2 Domain Composition

Domains are composed by writing:

domain D includes D1, ..., Dn { ... }

Composition imports all the declarations of D1, . . . , Dn into D. If a symbol is in
namespace n in Di, then it remains in namespace n in D. If this merging causes
a symbol to receive contradictory declarations, then an error is reported. As a
corollary, importing the same domain several times has no effect, because all
declarations trivially agree. Here is an example of a problematic composition:

1: domain D1 { q :- X = 0. }
2: domain D2 { T ::= { X }. }
3: domain D includes D1, D2 { }

In domain D1 the symbol X is a variable, but in domain D2 it is a user constant.
These declarations are incompatible and an error is returned:

ex.4ml (3, 23): The symbol X has multiple definitions.

Here is a more subtle example:

1: domain D1 { List ::= new (Integer, any List + {NIL}). }
2: domain D2 { List ::= new (Real, any List + {NIL}). }
3: domain D includes D1, D2 { }

Though both domains agree that List(, ) is a binary constructor; they disagree
on the type constraints. However, this composition is legal:

1: domain D1

2: { List ::= new (Integer, any List + {NIL}). }
3: domain D2

4: {
5: List ::= new (NegInteger + {0} + PosInteger, any List + {NIL}).
6: }
7: domain D includes D1, D2
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8: {
9: List ::= new (Integer, any ListOrNone).

10: ListOrNone ::= List + {NIL}.
11: }

Though List has a syntactically different definitions in each domain, all domains
semantically agree on the values accepted by the List(, ) constructor.

The includes keyword merges domain declarations. However, it does not force
the importing domain to satisfy all the domain constraints of the imported do-
mains. In the previous examples D contains rules for computing D.conforms,
D1.conforms, and D2.conforms. However, D.conforms need not reflect the con-
formance constraints of D1 and D2. (Relation / function constraints will be
respected, because they occur on type declarations.) A composite domain au-
tomatically inherits conformance constraints if the extends keyword is used in
place of includes :

domain D extends D1, ..., Dn { ... }

Consider that the set of all DAGs is a subset of the set of all directed graphs,
and the set of trees is a subset of the set of DAGs. This chain of restrictions can
be specified as follows:

Example 8 (Classes of graphs).

1: domain Digraphs

2: {
3: V ::= new (lbl: Integer).

4: E ::= new (src: V, dst: V).

5: }
6:

7: domain DAGs extends Digraphs

8: {
9: path ::= (V, V).

10: path(u, w) :- E(u, w); E(u, v), path(v, w).

11: conforms no path(u, u).

12: }
13:

14: domain Trees extends DAGs

15: {
16: conforms no { w | E(u, w), E(v, w), u != v }.
17: }

4.3 The Renaming Operator

Suppose we would like to build a domain representing two distinct graphs, i.e.
with two distinct edge and vertex sets. One construction would be the following:
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1: domain TwoDigraphs

2: {
3: V1 ::= new (lbl: Integer).

4: E1 ::= new (src: V1, dst: V1).
5:

6: V2 ::= new (lbl: Integer).

7: E2 ::= new (src: V2, dst: V2).

8: }
The constructors V1() and E1(, ) construct elements from the first graph and the
constructors V2() and E2(, ) construct elements from the second graph. A model
would contain vertices and edges that could always be classified as belonging to
either the first or second graph.

While this specification accomplishes the goal, it is not very satisfying.
TwoGraphs contains two deep copies of the Digraphs domain, but the construc-
tors have been renamed in an ad-hoc manner. formula provides a methodolog-
ical way to accomplish this same task: the renaming operator (‘::’).

rename::Module

The renaming operator creates a new module of the same kind with a namespace
called rename. It copies all definitions frommodule under the rename namespace,
and rewrites all copied declarations to reflect this renaming. The only symbols
immune to this operation are new-kind constants, which remain at the root of
the freshly created module. The renaming operator has many uses, though we
only demonstrate a few uses now. The following domain describes the set of all
pairs of isomorphic DAGs.

Example 9 (Isomorphic DAGs).

1: domain IsoDAGs extends Left::DAGs, Right::DAGs

2: {
3: Iso ::= bij (Left.V => Right.V).
4:

5: conforms no { e | e is Left.E(u, w),

6: Iso(u, u'), Iso(w, w'),

7: no Right.E(u', w') }.
8: conforms no { e | e is Right.E(u', w'),

9: Iso(u, u'), Iso(w, w'),

10: no Left.E(u, w) }.
11: }

This domain contains two copies of the DAGs domain under the renamings Left
and Right. It contains two vertex constructors called Left.V() and Right.V() as
well as two edge constructors called Left.E(,) and Right.E(,). Because IsoDAGs
extends the renamed domains, the left graph and the right graph must satisfy
Left.DAGs.conforms and Right.DAGs.conforms respectively. In other words, the
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constraints on the renamed structures are preserved. Line 3 introduces a new
bijection for witnessing the isomorphism between the left and the right vertices.
Notice that the types Left.V and Right.V are immediately available for use.
Finally, the two additional conformance constraints require the Iso bijection to
relate the vertices such that Iso is a proper isomorphism. Here is a model of the
domain:

1: model LittleIso of IsoDAGs

2: {
3: v1L is Left.V(1).

4: v2L is Left.V(2).

5: v1R is Right.V(1).

6: v2R is Right.V(2).
7:

8: Left.E(v1L, v2L).

9: Right.E(v2R, v1R).
10:

11: Iso(v1L, v2R).

12: Iso(v2L, v1R).

13: }
formula provides several shortcuts to avoid fully qualifying symbols. First, a
symbol only needs to be qualified until there is a unique shortest namespace
containing the symbol. Suppose there are symbols X.f() and X.Y.Z.f(). Then
f() will be resolved to X.f() because this is the shortest namespace containing
a symbol called f(). Also, Y.f() will be resolved to X.Y.Z.f() because this is
the shortest namespace containing a qualifier Y and the symbol f(). Second, the
resolved namespace of a constructor is applied to arguments of the constructor. If
this resolution fails, then resolution restarts from the root namespace. Consider
this example:

Left.E(V(1), V(2))

The outer constructor Left.E(, ) is resolved to be in the Left namespace. Next,
the inner constructor V () is encountered and name resolution looks for a unique
shortest qualifier under the Left namespace. This succeeds and resolves as
Left.V (). Thus, we have avoided writing the qualifier Left on the occurrences
of V (). Of course, it is acceptable to fully qualify the inner constructors.

Left.E(Left.V(1), Left.V(2))

In this case, the symbol Left.Left.V () does not exist and so name resolution
restarts from the root and resolves to Left.V ().
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5 Interpreted Functions

5.1 Arithmetic Functions and Identities

Table 9. Table of arithmetic functions (I)

Arithmetic Functions (I)
Syntax Side Constraints Result#

-x x : Real −x

x + y x : Real, y : Real x+ y

x - y x : Real, y : Real x− y

x * y x : Real, y : Real x · y

x / y x : Real, y : Real, y != 0. x
y

x % y x : Real, y : Real, y != 0. 0 ≤ r < |y|, such that
∃q ∈ Z. x = q · y + r.

count({. . .}) – The number of elements in {. . .}.

gcd(x, y) x : Integer, y : Integer
def
=

{ |x| if y = 0,
gcd(y, |x|%|y|).

gcdAll(x, {. . .}) – The gcd of all integer elements, or
x if there are no such elements.

lcm(x, y) x : Integer, y : Integer
def
=

{
0 if |x|+ |y| = 0,
|x · y|/gcd(x, y).

lcmAll(x, {. . .}) – The lcm of all integer elements, or
x if there are no such elements.

max(x, y) – x if x ≥ y; otherwise y.

maxAll(x, {. . .}) – The largest element of {. . .} in the
order of values; x if {. . .} is empty.
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Table 10. Table of arithmetic functions (II)

Arithmetic Functions (II)
Syntax Side Constraints Result#

min(x, y) – x if x ≤ y; otherwise y.

minAll(x, {. . .}) – The smallest element of {. . .} in
the order of values; x if {. . .} is
empty.

prod(x, {. . .}) –
def
=

⎧⎨
⎩

x if {. . .} ∩ R = ∅,∏
e∈{...}∩R

e.

qtnt(x, y) x : Real, y : Real, y != 0. q ∈ Z, such that
∃0 ≤ r < |y|. x = q · y + r.

sign(x) x : Real
def
=

⎧⎨
⎩

−1 if x < 0,
0 if x = 0,
1 if x > 0

sum(x, {. . .}) –
def
=

⎧⎨
⎩

x if {. . .} ∩ R = ∅,∑
e∈{...}∩R

e.

Table 11. Table of arithmetic identities (LHS-s are not built-in operations)

Arithmetic Identities
Left-Hand Side Right-Hand Side#

abs(x) = max(x,−x).

ceiling(x) = −qtnt(−x, 1).

floor(x) = qtnt(x, 1).
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5.2 Boolean Functions

Table 12. Table of Boolean functions

Boolean Functions
Syntax Side Constraints Result#

and(x, y) x : Boolean, y : Boolean x ∧ y.

andAll(x, {. . .}) –
def
=

⎧⎨
⎩

x if {. . .} ∩ B = ∅,∧
e∈{...}∩B

e.

impl(x, y) x : Boolean, y : Boolean ¬x ∨ y.

not(x) x : Boolean ¬x.

or(x, y) x : Boolean, y : Boolean x ∨ y.

orAll(x, {. . .}) –
def
=

⎧⎨
⎩

x if {. . .} ∩ B = ∅,∨
e∈{...}∩B

e.
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5.3 String Functions

In the table above, ε is the empty string and s[i] is the single-character string at
position i in s, for 0 ≤ i < strLength(s).

Table 13. Table of string functions

String Operations
Syntax Side Constraints Result#

isSubstring(x, y) x : String, y : String. TRUE if x is a substring of y;
FALSE otherwise. The empty string
is only a substring of itself.

strAfter(x, y) x : String, y : Natural. Returns the largest substring start-
ing at position y, or ε if y ≥
strLength(x).

strBefore(x, y) x : String, y : Natural. Returns the largest substring end-
ing before position y, or ε if y = 0.

strFind(x, y, z) x : String, y : String. Returns the index of the first oc-
currence of x in y; z if y never
appears.

strFindAll(x, y,

z, w)

x is a w-terminated natural-list
type constant #F. y : String,
z : String.

Returns a w-terminated F ′-list of
all the indices where y occurs in z;
w if it never occurs.

strGetAt(x, y) x : String, y : Natural.
def
=

{
x[y] if y < strLength(x),
ε otherwise.

.

strJoin(x, y) x : String, y : String.
def
=

⎧⎨
⎩

y if x = ε,

x if y = ε,

xy otherwise.
.

strLength(x) x : String. Returns the length of x.

strLower(x) x : String. Returns the all-lower-case version
of x.

strReverse(x) x : String. Returns the reverse of x.

strUpper(x) x : String. Returns the all-upper-case version
of x.
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5.4 List Functions

A list constructor is a constructor F ::= (T0, T1) such that F is a subtype of
T1. A T-list constructor is a list constructor such that T is a subtype of T0. A
list type constant #F is a type constant such that F is a list constructor. A list is
flat if it has n elements placed as follows:

F (t0, F (t1, . . . , F (tn−1, w) . . .))

The value w is called the terminator. In the table below all operations, except
for isSubTerm and lstFlatten, assume flat lists.

Table 14. Table of list functions

List Functions
Syntax Side Constraints Result#

isSubterm(x, y) – TRUE if x is a subterm of y;
FALSE otherwise. .

lstAfter(x, y, z, w) x is a w-terminated list
type constant #F, z :

Natural.

y if y 
= F (. . .); w if z ≥
lstLength(y); a w-terminated F -list
of all the elements at and after z.

lstBefore(x, y,

z, w)

x is a w-terminated list
type constant #F, z :

Natural.

y if y 
= F (. . .); w if z ≤ 0; a w-
terminated F -list of all the elements
before z.

lstFind(x, y, z, w) x is a list type constant #F. The first place where z occurs in the
F -list y; w if z never occurs.

lstFindAll(x, x’, y,

z, w)

x is a list type constant
#F, x′ is a w-terminated
natural-list type constant
#F’.

Returns a w-terminated F ′-list of all
the indices where z occurs in y; w if
it never occurs.

lstFlatten(x, y, w) x is a w-terminated list
type constant #F.

Converts y into w-terminated flat
form if y = F (. . .); y otherwise.

lstGetAt(x, y, z) z : Natural,
z < lstLength(x, y).

def
=

{
h if lstGetAt(x, F (h, t), 0),
lstGetAt(x, t, z − 1).

lstLength(x, y) x is a list type
constant #F.

def
=

{
0 if y 
= F (h, t),
1 + lstLength(t).

lstReverse(x, y) x is a list type
constant #F.

y if y 
= F (. . .); otherwise reverses
the list reusing the same terminator



206 E.K. Jackson and W. Schulte

5.5 Coercion Functions

In the table to follow, a list type constant #F is a type constant such that F ::=

(T1, T2) and F <: T2.

Table 15. Table of coercion functions

Coercion Functions
Syntax Side Constraints Result#

toList(x, y, {. . .}) x is a list type constant, y : T2. F (t1, . . . , F (tn, y) . . .) where
ti are the sorted elements of
{. . .} accepted by T1. Or y if no
element is accepted.

toNatural(x) – Returns a unique natural for the
value x.

toString(x) – Returns a unique string for the
value x.

toSymbol(x) – Returns x if x is a constant;
#F for x = F (. . .).

5.6 Reflection Functions

Table 16. Table of reflection functions

Reflection Functions
Syntax Side Constraints Result#

rflGetArgType(x, y) x is a type constant #F,
y : Natural,
y < rflGetArity(x).

Returns #F[y], where F ::=

(T0,. . .,Tn−1)

rflGetArity(x) x is a type constant #X. Returns n if X ::=

(T0,. . .,Tn−1); 0 otherwise.

rflIsMember(x, y) y is a type constant #Y. TRUE if x is a member of Y ;
FALSE otherwise.

rflIsSubtype(x, y) x is a type constant #X,
y is a type constant #Y.

TRUE if X is a subtype of Y ;
FALSE otherwise.
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