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Abstract. This is a tutorial introduction to the two most basic theories
in Hoare & He’s Unifying Theories of Programming and their mechanisa-
tion in the Isabelle interactive theorem prover. We describe the theories
of relations and of designs (pre-postcondition pairs), interspersed with
their formalisation in Isabelle and example mechanised proofs.
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1 Preliminaries

Unifying Theories of Programming, originally the work of Hoare & He [15], is a
long-term research agenda that can be summarised as follows. Researchers have
proposed many different programming theories and practitioners have proposed
many different pragmatic programming paradigms; how do we understand the
relationship between them?

UTP can trace its origins back to the work on predicative programming,
which was started by Hehner; see [12] for a summary. It gives three principal
ways to study such relationships: (i) by computational paradigm; (ii) by level of
abstraction; and (iii) by method of presentation.

In Section 2, we introduce the basic concepts of UTP: alphabets, signatures,
and healthiness conditions, and in Section 3 we outline the idea of theory mech-
anisation in Isabelle/HOL. In Section 4, we go on to describe the alphabetised
relational calculus, the formalism used to describe predicates in UTP theories. In
Section 5, we introduce a basic nondeterministic programming language and its
laws of programming. In Section 6, we complete the initial presentation of UTP
by describing the organisaiton of UTP theories into complete lattices. Sections 7
and 8 show how Hoare logic and the weakest precondition calculus can be de-
fined in UTP. Section 9 introduces the UTP theory of designs that capture the
notion of total correctness using assumptions and commitments. The paper ends
with a discussion of related work (Section 11) and some conclusions including
directions for future work (Section 12).
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Computational Paradigms. UTP groups programming languages according to a
classification by computational model; for example, structured, object-oriented,
functional, or logical. The technique is to identify common concepts and deal
separately with additions and variations. It uses two fundamental scientific prin-
ciples: (i) simplicity of presentation and (ii) separation of concerns.

Abstraction. Orthogonal to this organisation by computational paradigm, lan-
guages could be categorised by their level of abstraction within a particular
paradigm. For example, the lowest level of abstraction may be the platform-
specific technology of an implementation. At the other end of the spectrum,
there might be a very high-level description of overall requirements and how
they are captured and analysed. In between, there will be descriptions of com-
ponents and descriptions of how they will be organised into architectures. Each
of these levels will have interfaces specified by contracts of some kind. UTP gives
ways of mapping between these levels based on a formal notion of refinement
that provides guarantees of correctness all the way from requirements to code.

Presentation. The third classification is by the method chosen to present a
language definition. There are three widely used scientific methods:

1. Denotational, in which each syntactic phrase is given a single mathematical
meaning, a specification is just a set of denotations, and refinement is a
simple correctness criterion of inclusion: every program behaviour is also a
specification behaviour.

2. Algebraic, where no direct meaning is given to the language, but instead
equalities relate different programs with the same meaning.

3. Operational where programs are defined by how they execute on an ide-
alised abstract mathematical machine, giving a useful guide for compilation,
debugging, and testing.

As Hoare & He point out [15], a comprehensive account of a programming the-
ory needs all three kinds of presentation, and the UTP technique allows us to
study differences and mutual embeddings, and to derive each from the others by
mathematical definition, calculation, and proof.

The UTP research agenda has as its ultimate goal to cover all the interesting
paradigms of computing, including both declarative and procedural, hardware
and software. It presents a theoretical foundation for understanding software
and systems engineering, and has been already been exploited in areas such
as hardware ([23,39]), hardware/software co-design ([6]) and component-based
systems ([38]). But it also presents an opportunity when constructing new lan-
guages, especially ones with heterogeneous paradigms and techniques.

Having studied the variety of existing programming languages and identified
the major components of programming languages and theories, we can select
theories for new, perhaps special-purpose languages. The analogy here is of a
theory supermarket, where you shop for exactly those features you need while
being confident that the theories plug-and-play together nicely.
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A key concept in UTP is the design: the familiar precondition-postcondition
pair that describes the contract between a programmer and a client. Great use of
this construct is made in the semantics of the Circus family of languages [35,21],
where reactive processes are given a precondition-postcondition semantics that
is then useful in assertional reasoning about state-rich reactive behaviour. Parts
of this introduction are adapted from [36].

2 Introduction to UTP

The book by Hoare & He [15] sets out a research programme to find a com-
mon basis in which to explain a wide variety of programming paradigms: uni-
fying theories of programming (UTP). Their technique is to isolate important
language features, and give them a denotational semantics; algebraic and op-
erational semantics can then be proved sound against this model. This allows
different languages and paradigms to be compared.

The semantic model is an alphabetised version of Tarski’s relational calculus,
presented in a predicative style that is reminiscent of the schema calculus in
the Z [28,33] notation. Each programming construct is formalised as a relation
between an initial and an intermediate or final observation. The collection of
these relations forms a theory of the paradigm being studied, and it contains
three essential parts: an alphabet, a signature, and healthiness conditions.

The alphabet is a set of variable names that gives the vocabulary for the the-
ory being studied. Names are chosen for any relevant external observations of
behaviour. For instance, a program with variables x , y, and z would contain
these names in its alphabet. Theories for particular programming paradigms re-
quire the observation of extra information; some examples are: a flag that says
whether the program has started (ok); the current time (clock); the number of
available resources (res); a trace of the events in the life of the program (tr); a
set of refused events (ref ); or a flag that says whether the program is waiting
for interaction with its environment (wait).

The signature gives the rules for the syntax for denoting objects of the theory.

Healthiness conditions identify properties that characterise the predicates of
the theory. Each healthiness condition embodies an important fact about the
computational model for the programs being studied.

Example 1 (Healthiness conditions (Hoare & He)).

1. The variable clock gives us an observation of the current time, which moves
ever onwards. The predicate B specifies this.

C =̂ clock ≤ clock ′

If we add C to the description of some activity, then the variable clock
describes the time observed immediately before the activity starts, whereas
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clock ′ describes the time observed immediately after the activity ends. If we
suppose that P is a healthy program, then we must have that

P ⇒ C

2. The variable ok is used to record whether or not a program has started.
A sensible healthiness condition is that we should not observe a program’s
behaviour until it has started; such programs satisfy the following equation.

P = (ok ⇒ P)

If the program has not started, its behaviour is not described. �

Healthiness conditions can often be expressed in terms of a function φ that makes
a program healthy. There is no point in applying φ twice, since we cannot make
a healthy program even healthier. Therefore, φ must be idempotent: P = φ(P);
this equation characterises the healthiness condition.

For example, we can turn the first healthiness condition above into an equiv-
alent equation, P = P ∧ C , and then the following function on predicates
andC =̂ λX • P ∧ C is the required idempotent. �

Example 2 (Boyle’s Law).

Alphabet. Consider a simple theory to model the behaviour of a gas with regard
to varying temperature and pressure. The physical phenomenon of the behaviour
of the gas is subject to Boyle’s Law:

For a fixed amount of an ideal gas kept at a fixed temperature k , p
(pressure) and V (volume) are inversely proportional (while one doubles,
the other halves).

The alphabet of our theory contains the three mathematical variables described
in Boyle’s Law: k , p, and V . The model’s observations correspond to real-world
observations in what we might term the model-based agenda: the variables k , p,
and V are shared with the real world.

Signature. We now need to describe the syntax used to denote objects of the
theory. There is a requirement that temperature remains constant, so, to use
our model to simulate the effects of Boyle’s law, we need two just operations:
(i) change the pressure; and (ii) change the volume. This pair of operations form
the signature of our theory.

Healthiness Conditions. We know the observations we can make of our theory
and the two operations we can use to change these observations. We now need
to define some healthiness conditions as a way of determining membership of
the theory. We are interested only in gases that obey Boyle’s law, which states
that p ∗V = k must be invariant. Healthiness conditions determine the correct
states of the system, and here we need both static and dynamic invariants:
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– The equation p ∗V = k is a static invariant: it applies to a state.
– We also require k to be constant. If we start in the state (k , p,V ), where

p ∗V = k , then transit to the state (k ′, p′,V ′), where p′ ∗V ′ = k ′, then we
must have that k ′ = k . This is a dynamic invariant: it applies to a relation.

Some healthiness conditions can be defined using functions. Suppose α(φ) =
{p,V , k}; then define B(φ) = (∃ k • φ) ∧ (k = p ∗ V ). Now, regardless of
whether φ is healthy or not, B(φ) certainly is. For example:

φ = (p = 10) ∧ (V = 5) ∧ (k = 100)

B(φ)= (∃ k • φ) ∧ (k = p ∗V )
= (∃ k • (p = 10) ∧ (V = 5) ∧ (k = 100)) ∧ (k = p ∗V )
= (p = 10) ∧ (V = 5) ∧ (k = p ∗V )
= (p = 10) ∧ (V = 5) ∧ (k = 50)

Notice that B(B(φ)) = B(φ). This is known as idempotence: taking the medicine
twice leaves you healthy, no more and no less so than taking the medicine only
once. This give us a simple test for healthiness: φ is already healthy if applying
B leaves it unchanged. That is, if it satisfies the equation φ = B(φ). In this
sense, φ is a fixed point of the idempotent function B.

Consider another observation, that the pressure is between 10 and 20Pa:

ψ = (p ∈ 10 . . 20) ∧ (V = 5)

Notice the fact that φ⇒ ψ. Now, if we make both φ and ψ healthy, we discover
another fact: B(φ) ⇒ B(ψ).

B(φ) = (p = 10) ∧ (V = 5) ∧ (k = 50)

B(ψ) = (p ∈ 10 . . 20) ∧ (V = 5) ∧ (p ∗V = k)

(p = 10) ∧ (V = 5) ∧ (k = 50) ⇒ (p ∈ 10 . . 20) ∧ (V = 5) ∧ (p ∗V = k)

In fact, B is monotonic in the sense that

∀φ, ψ • (φ⇒ ψ) ⇒ (B(φ) ⇒ B(ψ))

The most useful healthiness conditions are monotonic idempotent functions,
which leads to some very important mathematical properties concerning com-
plete lattices and Galois connections. �

Relations are used as a semantic model for unified languages of specification and
programming. Specifications are distinguished from programs only by the fact
that the latter use a restricted signature. As a consequence of this restriction,
programs satisfy a richer set of healthiness conditions.

Unconstrained relations are too general to handle the issue of program ter-
mination; they need to be restricted by healthiness conditions. The result is
the theory of designs, which is the basis for the study of the other program-
ming paradigms in [15]. Here, we present the general relational setting, and the
transition to the theory of designs.
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In the next section, we present the most general theory of UTP: the alpha-
betised predicates. In the following section, we establish that this theory is a
complete lattice. Section 9 restricts the general theory to designs. Next, in Sec-
tion 10, we present an alternative characterisation of the theory of designs using
healthiness conditions. Finally, we conclude with a summary and a brief account
of related work.

3 Theory Mechanisation

We have mechanised UTP in the interactive theorem prover Isabelle/HOL [19].
This allows the laws of programming to be mechanically verified, and make them
available for use in mechnical program derivation, verification and refinement.

Interactive theorem provers (ITPs) have been built as an aid to programmers
who wish to prove properties of their programs, such as correctness or refinement.
Core to ITPs are proof goals or obligations: ostensible properties which must be
discharged by the user under a given set of assumptions. A proof of such a goal
consists of a sequence of calculations which transform the assumptions into the
goal. The commands used in this transformation are called proof tactics, which
help the programmer with varying degress of automation.

For instance we may wish to prove the simple property ∃ x .x > 6. In Isabelle
we can formalise such a property and proof in the following manner:

theorem greater-than-six : ∃ x ::nat . x > 6
apply (rule-tac x=7 in exI )
apply (simp)

done

There are two steps to this simple proof. We first invoke a rule called exI which
performs existential introduction: we explictly supply a value for x for which the
property holds, in this case 7. This leaves us with the proof goal 7 > 6, which
can be dispatched by simple arithmetic properties, so we use Isabelle’s built in
simplifier tactic simp to finish the proof. Isabelle then gives the message “No
subgoals!”, which means the proof is complete and we can type done. At this
point the property greater-than-six is entered into the property database for us
to use in future proofs.

Mechanised proofs greatly increase the confidence that a given property is
true. If we try to prove something which is not correct, Isabelle will not let us.
For instance we can try and prove that all numbers are greater than six:

theorem all-greater-than-six : ∀ x ::nat . x > 6
apply (rule-tac allI )
— no possible progress

We cannot make much progress with such a proof – there just isn’t a tactic
to perform this proof as it is incorrect. In fact Isabelle also contains a helpful
counterexample generator called nitpick [3] which can be used to see if a property
can be refuted.
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theorem all-greater-than-six : ∀ x ::nat . x > 6
nitpick

When we run this command Isabelle returns “Nitpick found a counterexample:
x = 6”, which clearly shows why this proof is impossible. We therefore terminate
our proof attempt by typing oops. So Isabelle acts as a theoretician’s conscience,
requiring that properties be comprehensively discharged. Isabelle proofs are also
correct-by-construction. All proofs in Isabelle are constructed with respect to a
small number of axioms in the Isabelle core, even those originating from auto-
mated proof tactics. This means that proofs are not predicated on the correctness
of the tools and tactics, but only on the correctness of the underlying axioms
which makes Isabelle proofs trustworthy.

Such proofs can, however, be tedious for a theortician to construct manually
and therefore Isabelle provides a number of automated proof tactics to aid in
proof. For instance the greater-than-six theorem can be proved in one step by
application of Isabelle’s main automated proof method auto. The auto tactic
performs introduction/elimination style classical deduction and simplification in
an effort to prove a goal. The user can also extend auto by adding additional
rules which it can make use of, increasing the scope of problems which it can
deal with.

Additionally, a more recent development is the addition of the sledgeham-
mer [4] tool. Sledgehammer makes use of external first-order automated theorem
provers. An automated theorem prover (ATP) is a system which can provide
solutions to a certain subclass of logical problems. Sledgehammer can make use
of a large number of ATPs, such as E [26], Vampire [24], SPASS [32], Wald-
meister [13] and Z3 [9]. During a proof the user can invoke sledgehammer which
causes the current goal, along with relevant assumptions, to be submitted to the
ATPs which attempt a proof. Upon success, a proof command is returned which
the user can insert to complete the proof.

For instance, let’s say we wish to prove that for any given number there
is an even number greater than it. We can prove such a property by calling
sledgehammer:

theorem greater-than-y-even: ∀ y ::nat . ∃ x > y . (x mod 2 = 0 )
sledgehammer

In this case, sledgehammer successfully returns with ostensible proofs from
four of the ATPs. We can select one of these proofs to see if it works:

theorem greater-than-y-even: ∀ y ::nat . ∃ x > y . (x mod 2 = 0 )
by (metis Suc-1 even-Suc even-nat-mod-two-eq-zero lessI less-SucI

numeral-1-eq-Suc-0 numeral-One)

The proof command is inserted and successfully discharges the goal, using
a total of 7 laws from Isabelle’s standard libary. In keeping with with proofs
being correct by construction, sledgehammer does not trust the external ATPs
to return sound results, but rather uses them as oracles whose proof output must
be reconstructed with respect to Isabelle’s axioms using the internally verified
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prover metis. So Isabelle is a highly principled theorem prover in which trust can
be placed, but also in which a high degree of proof automation can be obtained.

Sledgehammer works particularly well when used in concert with Isabelle’s
natural language proof script language Isar. Isar allows proof to be written in a
calculational style familiar to mathematicians. The majority of proofs in tutorial
are written Isar, as exemplified in Section 4.

4 The Alphabetised Relational Calculus

The alphabetised relational calculus is similar to Z’s schema calculus [28,33],
except that it is untyped and somewhat simpler. An alphabetised predicate (con-
ventionally written as P ,Q , . . . , true) is an alphabet-predicate pair, where the
predicate’s free variables are all members of the alphabet. Relations are predi-
cates in which the alphabet is composed of undecorated variables (x , y, z , . . . )
and dashed variables (x ′, a′, . . . ); the former represent initial observations, and
the latter, observations made at a later intermediate or final point. The alpha-
bet of an alphabetised predicate P is denoted αP , and may be divided into its
before-variables (inαP) and its after-variables (outαP). A homogeneous relation
has outαP = inαP ′, where inαP ′ is the set of variables obtained by dashing
all variables in the alphabet inαP . A condition (b, c, d , . . . , true) has an empty
output alphabet.

Standard predicate calculus operators can be used to combine alphabetised
predicates. Their definitions, however, have to specify the alphabet of the com-
bined predicate. For instance, the alphabet of a conjunction is the union of the
alphabets of its components: α(P ∧ Q) = αP ∪ αQ . Of course, if a variable is
mentioned in the alphabet of both P and Q , then they are both constraining
the same variable.

The alphabetised relational calculus has been mechanised in Isabelle/UTP. An
implementation of any calculus in computer science must make decisions about
how unspecified details are fleshed out. For Isabelle/UTP this includes concretis-
ing the notions of types and values within alphabetised predicates. Isabelle/UTP
predicates are parametrically polymorphic in the type of value which variables
possess, and the user can supply their own notion of value, with an associated
type system and function library. For instance, we are developing a value model
for the VDM and CML specification languages. These will allow users to con-
struct and verify VDM and CML specifications and programs. Indeed it is our
hope that any programming language with a well-specified notion of values and
types can be reasoned about within the UTP.

An Isabelle/UTP value model consists of four things:

1. A type to represent values (α).
2. A type to represent types (τ).
3. A typing relation ( : :: α⇒ τ ⇒ bool), specifies well-typed values.
4. A definedness predicate (D :: α⇒ bool), specifies well-defined values.
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Variables within Isabelle/UTP contain a type which specifies the sort of data the
variable should point to. The typing relation therefore allows us to realise predi-
cates which are well-typed. The definedness predicate is used to determine when
a value has no meaning. For instance it should follow that D(x/0) = false, whilst
D1 = true. A correct program should never yield undefined values, and this predi-
cate allows us to specify when this is and isn’t the case. We omit details of a specific
model since this has no effect on the mechanisation of the laws of UTP.

Isabelle/UTP predicates are modelled as sets of bindings, where a binding is
a mapping from variables to well-typed values. The bindings contained within
a predicate are those bindings which make the predicate true. For instance the
predicate x > 5 is represented by the binding set {(x 
→ 6), (x 
→ 7), (x 
→ 8) · · ·}.
Likewise the predicate true is simply the set of all possible bindings, and false
is the empty set ∅. We then define all the usual operators of predicate calculus
which are used in these notes, including ∨, ∧, ¬, ⇒, ∃ and ∀, most of which
map onto binding set operators. An Isabelle/UTP relation is simply a predicate
consisting only of dashed and undashed variables.

Isabelle/UTP provides a collection of tactics for aiding in automating proof.
The overall aim is to achieve a level of automation such that proof can be at
the same level as the standard pen-and-paper proofs contained herein, or even
entirely automated. The three main tactics we have developed are as follows:

– utp-pred-tac – predicate calculus reasoning
– utp-rel-tac – relational calculus reasoning
– utp-expr-tac – expression evaluation

These tactics perform proof by interpretation. Isabelle/HOL already has a mature
library of laws for reasoning about predicates and binary relations. Thus our
tactics are designed to make use of these laws by identifying suitable subcalculi
within the UTP for which well-known proof procedures exist. The tactics each
also have a version in which auto is called after interpretation, for instance utp-
pred-auto-tac is simply utp-pred-tac followed by auto. These tactics allow us to
easily establish the basic laws of the UTP predicate and relational calculi.

Example 3 (Selection of basic predicate and relational calculus laws).
theorem AndP-assoc: ‘P ∧ (Q ∧ R)‘ = ‘ (P ∧ Q) ∧ R‘
by (utp-pred-tac)

theorem AndP-comm: ‘P ∧ Q‘ = ‘Q ∧ P‘
by (utp-pred-auto-tac)

theorem AndP-OrP-distr : ‘ (P ∨ Q) ∧ R‘ = ‘ (P ∧ R) ∨ (Q ∧ R)‘
by (utp-pred-auto-tac)

theorem AndP-contra: ‘P ∧ ¬ P‘ = false
by (utp-pred-tac)

theorem ImpliesP-export : ‘P ⇒ Q‘ = ‘P ⇒ P ∧ Q‘
by (utp-pred-tac)
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theorem SubstP-IffP : ‘ (P ⇔ Q)[v/x ]‘ = ‘P [v/x ] ⇔ Q [v/x ]‘
by (utp-pred-tac)

theorem SemiR-assoc: P ; (Q ; R) = (P ; Q) ; R
by (utp-rel-auto-tac)

theorem SemiR-SkipR-right: P ; II = P
by (utp-rel-tac)

Using the tactics we have constructed a large library of algebraic laws for propo-
sitional logic and relation algebra. These laws are most easily applied by applica-
tion of sledgehammer, which will find the most appropriate rules to complete the
step of proof. Sledgehammer works particularly well when used in concert with
Isabelle’s natural language proof script language Isar. Isar allows proof to be
written in a calculational style familiar to mathematicians. We will cover these
in detail in the next section.

5 Laws of Programming

A distinguishing feature of UTP is its concern with program development, and
consequently program correctness. A significant achievement is that the notion
of program correctness is the same in every paradigm in [15]: in every state, the
behaviour of an implementation implies its specification.

If we suppose that αP = {a, b, a′, b′}, then the universal closure of P is
given simply as ∀ a, b, a′, b′ • P , which is more concisely denoted as [P ]. The
correctness of a program P with respect to a specification S is denoted by S �
P (S is refined by P), and is defined as follows.

S � P iff [P ⇒ S ]

Example 4 (Refinement). Suppose we have the specification x ′ > x ∧ y ′ = y,
and the implementation x ′ = x + 1 ∧ y ′ = y. The implementation’s correctness
is argued as follows.

x ′ > x ∧ y ′ = y � x ′ = x + 1 ∧ y ′ = y definition of �
= [ x ′ = x + 1 ∧ y ′ = y ⇒ x ′ > x ∧ y ′ = y ] universal one-point rule, twice
= [ x + 1 > x ∧ y = y ] arithmetic and reflection
= true

And so, the refinement is valid. �

In the following sections, we introduce the definitions of the constructs of a
nondeterministic sequential programming language, together with their laws of
programming. Each law can be proved correct as a theorem involving the de-
notational semantics given by its definition. The constructs are: (i) conditional
choice; (ii) sequential composition; (iii) assignment; (iv) nondeterminism; and
(v) variable blocks.
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5.1 Conditional

As a first example of the definition of a programming constructor, we consider
conditionals. Hoare & He use an infix syntax for the conditional operator, and
define it as follows.

P � b �Q =̂ (b ∧ P) ∨ (¬ b ∧ Q) if αb ⊆ αP = αQ

α(P � b �Q) =̂ αP

Informally, P � b �Q means P if b else Q .
The presentation of conditional as an infix operator allows the formulation of

many laws in a helpful way.

L1 P � b �P = P idempotence
L2 P � b �Q = Q �¬ b �P symmetry
L3 (P � b �Q)� c �R = P � b ∧ c�(Q � c �R) associativity
L4 P � b �(Q � c �R) = (P � b �Q)� c�(P � b �R) distributivity
L5 P � true �Q = P = Q � false �P unit
L6 P � b �(Q � b �R) = P � b �R unreachable branch
L7 P � b �(P � c�Q) = P � b ∨ c �Q disjunction
L8 (P �Q)� b �(R � S ) = (P � b �R)� (Q � b � S ) interchange
L9 ¬ (P � b �Q) = (¬ P � b �¬ Q) cond. neg.
L10 (P � b �Q) ∧ ¬ (R� b � S ) = (P ∧ ¬ R)� b �(Q ∧ ¬ S ) comp.
L11 (P ⇒ (Q � b �R)) = ((P ⇒ Q)� b �(P ⇒ R)) cond.-⇒-1
L12 ((P � b �Q) ⇒ R) = ((P ⇒ R)� b �(Q ⇒ R)) cond.-⇒-2
L13 (P � b �Q) ∧ R = (P ∧ R)� b �(Q ∧ R) cond.-conjunction
L14 (P � b �Q) ∨ R = (P ∨ R)� b �(Q ∨ R) cond.-disjunction
L15 b ∧ (P � b �Q) = (b ∧ P) cond.-left-simp
L16 ¬ b ∧ (P � b �Q) = (¬ b ∧ Q) cond.-right-simp
L17 (P � b �Q) = ((b ∧ P)� b �Q) cond.-left
L18 (P � b �Q) = (P � b �(¬ b ∧ Q)) cond.-right

In the Interchange Law (L8 ), the symbol � stands for any truth-functional
operator. For each operator, Hoare & He give a definition followed by a number
of algebraic laws as those above. These laws can be proved from the definition.
As an example, we present the proof of the Unreachable Branch Law (L6).

Example 5 (Proof of Unreachable Branch (L6)).

(P � b �(Q � b �R)) L2
= ((Q � b �R)�¬ b �P) L3
= (Q � b ∧ ¬ b �(R�¬ b �P)) propositional calculus
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= (Q � false �(R�¬ b �P)) L5
= (R�¬ b �P) L2
= (P � b �R) �

This proof can be mechanised in Isar using the same sequence:

Example 6 (Isar Proof of Unreachable Branch (L6)).

theorem CondR-unreachable-branch:
‘ (P � b � (Q � b � R))‘ = ‘P � b � R‘ (is ?lhs = ?rhs)

proof −
have ?lhs = ‘ ((Q � b � R) � ¬b � P)‘ by (metis CondR-sym)
also have ... = ‘ (Q � b ∧ ¬ b � (R � ¬ b � P))‘ by (metis CondR-assoc)
also have ... = ‘ (Q � false � (R � ¬ b � P))‘ by (utp-pred-tac)
also have ... = ‘ (R � ¬ b � P)‘ by (metis CondR-false)
also have ... = ?rhs by (metis CondR-sym)
finally show ?thesis .

qed

Isar provides an environment to perform proofs in a natural style, by proving
subgoals and the combining these to produce the final goal. The proof command
opens an Isar proof environment for a goal, and have is used to create a subgoal
to act as lemma for the overall goal, which must be followed by a proof, usually
added using the by command. In a calculational proof, we want to transitively
compose the previous subgoal with the next, which is done by prefixing the
subgoal with also. Furthermore Isar provides the . . . variable which contains the
right-hand side of the previous subgoal. Once all steps of the proof are complete
the finally command collects all the subgoals together, and show is used to
prove the overall goal. In the case that no further proof is needed the user can
simply type . to finish. A completed proof environment can then be terminate
with qed.

In this case, the proof proceeds by application of sledgehammer for each line
where an algebraic law is applied, and by utp-pred-tac when propositional calcu-
lus is needed.

Implication is, of course, still the basis for reasoning about the correctness of
conditionals. We can, however, prove refinement laws that support a composi-
tional reasoning technique.

Law 51 (Refinement to conditional)

P � (Q � b �R) = (P � b ∧ Q ) ∧ (P � ¬ b ∧ R ) �

This result allows us to prove the correctness of a conditional by a case analysis
on the correctness of each branch. Its proof is as follows.

Proof of Law 51

P � (Q � b �R) definition of �
= [ (Q � b �R) ⇒ P ] definition of conditional
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= [ b ∧ Q ∨ ¬ b ∧ R ⇒ P ] propositional calculus
= [ b ∧ Q ⇒ P ] ∧ [¬ b ∧ R ⇒ P ] definition of �, twice
= (P � b ∧ Q ) ∧ (P � ¬ b ∧ R ) �

The corresponding proof in Isar can also be given:

Example 7 (Isar Proof of Law 51).

theorem RefineP-to-CondR:
‘P � (Q � b � R)‘ = ‘ (P � b ∧ Q) ∧ (P � ¬ b ∧ R)‘

proof −
have ‘P � (Q � b � R)‘ = ‘ [(Q � b � R) ⇒ P ]‘ by (metis RefP-def )
also have ... = ‘ [(b ∧ Q) ∨ (¬ b ∧ R) ⇒ P ]‘ by (metis CondR-def )
also have ... = ‘ [b ∧ Q ⇒ P ] ∧ [¬ b ∧ R ⇒ P ]‘ by (utp-pred-auto-tac)
also have ... = ‘ (P � b ∧ Q) ∧ (P � ¬ b ∧ R)‘ by (metis RefP-def )
finally show ?thesis .

qed

A compositional argument is also available for conjunctions.

Law 52 (Separation of requirements)

((P ∧ Q) � R) = (P � R) ∧ (Q � R) �

We can prove that an implementation satisfies a conjunction of requirements by
considering each conjunct separately. The omitted proof is left as an exercise for
the interested reader.

5.2 Sequential Composition

Sequence is modelled as relational composition. Two relations may be composed,
providing that the output alphabet of the first is the same as the input alphabet
of the second, except only for the use of dashes.

P(v ′) ; Q(v) =̂ ∃ v0 • P(v0) ∧ Q(v0) if outαP = inαQ ′ = {v ′}
inα(P(v ′) ; Q(v)) =̂ inαP

outα(P(v ′) ; Q(v)) =̂ outαQ

Composition is associative and distributes backwards through the conditional.

L1 P ; (Q ; R) = (P ; Q) ; R associativity
L2 (P � b �Q) ; R = ((P ; R)� b �(Q ; R)) left distribution

The simple proofs of these laws, and those of a few others in the sequel, are
omitted for the sake of conciseness.
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5.3 Assignment

The definition of assignment is basically equality; we need, however, to be careful
about the alphabet. If A = {x , y, . . . , z} and αe ⊆ A, where αe is the set of free
variables of the expression e, the assignment x :=A e of expression e to variable
x changes only x ’s value.

x :=A e =̂ (x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z )

α(x :=A e) =̂ A ∪ A′

There is a degenerate form of assignment that changes no variable: it is called
“skip”, and has the following definition.

IIA =̂ (v ′ = v) if A = {v}
αIIA =̂ A ∪ A′

L1 (x := e) = (x , y := e, y) framing
L2 (x , y, z := e, f , g) = (y, x , z := f , e, g) permutation
L3 (x := e ; x := f (x )) = (x := f (e)) composition
L4 (x := e ; (P � b(x )�Q)) = ((x := e ; P)� b(e)�(x := e ; Q))

L5 P ; IIαP = P = IIαP ; P unit
L6 v ′ = e ; P = P [e/v ] where αP = {v , v ′} left-one-point
L7 P ; v = e = P [e/v ′] where αP = {v , v ′} right-one-point

5.4 Nondeterminism

In theories of programming, nondeterminism may arise in one of two ways: either
as the result of run-time factors, such as distributed processing; or as the under-
specification of implementation choices. Either way, nondeterminism is modelled
by choice; the semantics is simply disjunction.

P � Q =̂ P ∨ Q if αP = αQ

α(P � Q) =̂ αP

The alphabet must be the same for both arguments.

L1 P � Q = Q � P symmetry
L2 P � (Q � R) = (P � Q) � R associativity
L3 P � P = P idempotence
L4 P � (Q � R) = (P � Q) � (P � R) distrib.
L5 (P � b �(Q � R)) = (P � b �Q) � (P � b �R) distrib.
L6 (P � Q) ; R = (P ; R) � (Q ; R) distrib.
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L7 P ; (Q � R) = (P ; Q) � (P ; R) distrib.
L8 P � (Q � b �R) = ((P � Q)� b �(P � R)) distrib.

The following law gives an important property of refinement: if P is refined by
Q , then offering the choice between P and Q is immaterial; conversely, if the
choice between P and Q behaves exactly like P , so that the extra possibility of
choosing Q does not add any extra behaviour, then Q is a refinement of P .

Law 53 (Refinement and nondeterminism)

P � Q = (P � Q = P) �

Proof

P � Q = P antisymmetry
= (P � Q � P) ∧ (P � P � Q) definition of �, twice
= [P ⇒ P � Q ] ∧ [P � Q ⇒ P ] definition of �, twice
= [P ⇒ P ∨ Q ] ∧ [P ∨ Q ⇒ P ] propositional calculus
= true ∧ [P ∨ Q ⇒ P ] propositional calculus
= [Q ⇒ P ] definition of �
= P � Q �

Another fundamental result is that reducing nondeterminism leads to refinement.

Law 54 (Thin nondeterminism)

P � Q � P �

The proof is immediate from properties of the propositional calculus.

5.5 Alphabet Extension

Alphabet extension is a way adding new variables to the alphabet of a predicate,
for example, when new programming variables are declared, as we see in the next
section.

R+x =̂ R ∧ x ′ = x for x , x ′ /∈ αR

α(R+x ) =̂ αR ∪ {x , x ′}

5.6 Variable Blocks

Variable blocks are split into the commands var x , which declares and intro-
duces x in scope, and end x , which removes x from scope. Their definitions are
presented below, where A is an alphabet containing x and x ′.

var x =̂ (∃ x • IIA )

end x =̂ (∃ x ′ • IIA )

α( var x ) =̂ A \ {x}
α( end x ) =̂ A \ {x ′}

The relation var x is not homogeneous, since it does not include x in its alphabet,
but it does include x ′; similarly, end x includes x , but not x ′.
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The results below state that following a variable declaration by a program Q
makes x local in Q ; similarly, preceding a variable undeclaration by a program
Q makes x ′ local.

( var x ; Q ) = (∃ x • Q )

(Q ; end x ) = (∃ x ′ • Q )

More interestingly, we can use var x and end x to specify a variable block.

( var x ; Q ; end x ) = (∃ x , x ′ • Q )

In programs, we use var x and end x paired in this way, but the separation is
useful for reasoning.

The following laws are representative.

L6 ( var x ; end x ) = II

L8 ( x := e ; end x ) = ( end x )

Variable blocks introduce the possibility of writing programs and equations like
that below.

( var x ; x := 2 ∗ y ; w := 0 ; end x )
= ( var x ; x := 2 ∗ y ; end x ) ; w := 0

Clearly, the assignment to w may be moved out of the scope of the the declara-
tion of x , but what is the alphabet in each of the assignments to w? If the only
variables are w , x , and y, and suppose that A = {w , y,w ′, y ′}, then the assign-
ment on the right has the alphabet A; but the alphabet of the assignment on
the left must also contain x and x ′, since they are in scope. There is an explicit
operator for making alphabet modifications such as this: alphabet extension. If
the right-hand assignment is P =̂ w :=A 0, then the left-hand assignment is
denoted by P+x .

P+x =̂ P ∧ x ′ = x for x , x ′ /∈ αP

α(P+x ) =̂ αP ∪ {x , x ′}
If Q does not mention x , then the following laws hold.

L1 var x ; Q+x ; P ; end x = Q ; var x ; P ; end x

L2 var x ; P ; Q+x ; end x = var x ; P ; end x ; Q

Together with the laws for variable declaration and undeclaration, the laws of
alphabet extension allow for program transformations that introduce new vari-
ables and assignments to them.

6 The Complete Lattice

A lattice is a partially ordered set where all non-empty finite subsets have both a
least upper-bound (join) and a greatest lower-bound (meet). A complete lattice
additionally requires all subsets have both a join and a meet.
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Example 8 (Complete lattice: Powerset). The powerset of any set S , ordered by
inclusion, forms a complete lattice. The empty set is the least element and S itself
is the greatest element. Set union is the join operation and set intersection is the
meet. For example, the powerset of {0, 1, 2, 3} ordered by subset, is illustrated in
Figure 1. �

{0,1,2}

{0,1} {0,2} {1,2}

{0} {1} {2}

{}

Fig. 1. 0 . . 3 ordered by inclusion

Example 9 (Complete lattice: Divisible natural numbers). Natural numbers or-
dered by divisibility form a complete lattice. Natural number n is exactly divis-
ible by another natural number m, providing n is an exact multiple of m. This
gives us the following partial order:

m � n ⇔ (∃ k • k ×m = n )

In this ordering, 1 is the bottom element (it exactly divides every other number)
and 0 is the top element (it can be divided exactly by every other number). For
example, if we restrict our attention to the numbers between 0 and 1, we obtain
the lattice illustrated in Figure 2. �

0

1

2

3

45

6

7

8

Fig. 2. 0 . . 8 ordered by divisibility
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Isabelle/HOL contains a comprehensive mechanised theory of complete lattices
and fixed-points, which we directly make use of in Isabelle/UTP. We therefore
omit details of these proofs’ mechanisation; the reader can refer directly to the
HOL library.

6.1 Lattice Operators

The refinement ordering is a partial order: reflexive, anti-symmetric, and transi-
tive. Moreover, the set of alphabetised predicates with a particular alphabet A is
a complete lattice under the refinement ordering. Its bottom element is denoted
⊥A, and is the weakest predicate true; this is the program that aborts, and
behaves quite arbitrarily. The top element is denoted �A, and is the strongest
predicate false; this is the program that performs miracles and implements every
specification. These properties of abort and miracle are captured in the following
two laws, which hold for all P with alphabet A.

L1 ⊥A � P bottom element
L2 P � �A top element

The least upper bound is not defined in terms of the relational model, but by
the law L1 below. This law alone is enough to prove laws L1A and L1B, which
are actually more useful in proofs.

L1 P � (� S ) iff (P � X for all X in S ) unbounded nondeterminism
L1A (�S ) � X for all X in S lower bound
L1B if P � X for all X in S , then P � (�S ) greatest lower bound
L2 (

⊔

S ) � Q =
⊔{P � Q | P ∈ S }

L3 (�S ) �Q = �{P �Q | P ∈ S }
L4 (�S ) ; Q = �{P ; Q | P ∈ S }
L5 R ; (�S ) = �{R ; P | P ∈ S }

These laws characterise basic properties of least upper bounds.
As we saw above, a function F is monotonic if and only if P � Q ⇒ F (P) �

F (Q). Operators like conditional and sequence are monotonic; negation and
conjunction are not. There is a class of operators that are all monotonic.

Example 10 (Disjunctivity and monotonicity). Suppose that P � Q and that �
is disjunctive, or rather, R � (S � T ) = (R � S ) � (R � T ). From this, we can
conclude that P � R is monotonic in its first argument.
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P � R assumption (P � Q) and Law 53
= (P � Q)� R assumption (� disjunctive)
= (P � R) � (Q � R) thin nondeterminism
� Q � R

A symmetric argument shows that P�Q is also monotonic in its other argument.
In summary, disjunctive operators are always monotonic. The converse is not
true: monotonic operators are not always disjunctive. �

6.2 Recursion

Since alphabetised relations form a complete lattice, every construction defined
solely using monotonic operators has a fixed-point. Even more, a result by
Knaster and Tarski, described below, says that the set of fixed-points form a
complete lattice themselves. The extreme points in this lattice are often of in-
terest; for example, � is the strongest fixed-point of X = P ; X , and ⊥ is the
weakest.

Example 11 (Complete lattice of fixed points). Consider the function f (s) = s ∪
{0} restricted to the domain comprising the powerset of {0, 1, 2}. The complete
lattice of fixed points for f is illustrated in Fig 3. �

{0,1,2}

{0,1} {0,2} {1,2}

{0} {1} {2}

{}

{0,1,2}

{0,1} {0,2} {1,2}

{0} {1} {2}

{}

Fig. 3. Complete lattice of fixed points of the function f (s) = s ∪ {0} (right)

Let � be a partial order in a lattice X and let F : X → X be a function over X .
A pre-fixed-point of F is any x such that F (x ) � x , and a post-fixed-point of f is
any x such that x � F (x ). The Knaster-Tarski theorem states that a monotonic
function F on a complete lattice has three properties: (i) The function F has
at least one fixed point. (ii) The weakest fixed-point of F coincides with the
greatest lower-bound of the set of its post-fixed-points; similarly, the strongest
fixed-point coincides with the least upper-bound of the set of its pre-fixed-points.
(iii) The set of fixed points of F form a complete lattice.
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The weakest fixed-point of the function F is denoted by μF , and is defined
simply the greatest lower bound (the weakest) of all the pre-fixed-points of F .

μF =̂ �{X | F (X ) � X }

The strongest fixed-point νF is the dual of the weakest fixed-point.
Hoare & He use weakest fixed-points to define recursion, where they write a

recursive program as μX • C(X ), where C(X ) is a predicate that is constructed
using monotonic operators and the variable X . As opposed to the variables in the
alphabet, X stands for a predicate itself, called the recursive variable. Intuitively,
occurrences of X in C stand for recursive calls to C itself. The definition of
recursion is as follows.

μX • C(X ) =̂ μF where F =̂ λX • C(X )

The standard laws that characterise weakest fixed-points are valid.

L1 μF � Y if F (Y ) � Y weakest fixed-point
L2 F (μF ) = μF fixed-point

L1 establishes that μF is weaker than any fixed-point; L2 states that μF is
itself a fixed-point. From a programming point of view, L2 is just the copy rule.

Proof of L1

F (Y ) � Y set comprehension
= Y ∈ {X | F (X ) � X } lattice law L1A
⇒�{X | F (X ) � X } � Y definition of μF
= μF � Y �

Proof of L2

μF = F (μF ) mutual refinement
= μF � F (μF ) ∧ F (μF ) � μF fixed-point law L1
⇐ F (F (μF )) � F (μF ) ∧ F (μF ) � μF F monotonic
⇐ F (μF ) � μF definition
= F (μF ) � �{X | F (X ) � X } lattice law L1B
⇐ ∀X ∈ {X | F (X ) � X } • F (μ f ) � X comprehension
= ∀X • F (X ) � X ⇒ F (μF ) � X transitivity of �
⇐ ∀X • F (X ) � X ⇒ F (μF ) � F (X ) F monotonic
⇐ ∀X • F (X ) � X ⇒ μF � X fixed-point law L1
= true �
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6.3 Iteration

The while loop is written b ∗ P : while b is true, execute the program P . This
can be defined in terms of the weakest fixed-point of a conditional expression.

b ∗ P =̂ μX • ( (P ; X )� b � II )

Example 12 (Non-termination). If b always remains true, then obviously the
loop b ∗P never terminates, but what is the semantics for this non-termination?
The simplest example of such an iteration is true ∗ II , which has the semantics
μX • X .

μX • X definition of least fixed-point
=�{Y | (λX • X )(Y ) � Y } function application
=�{Y | Y � Y } reflexivity of �
=�{Y | true } property of �
= ⊥ �

�

A surprising, but simple, consequence of Example 12 is that a program can
recover from a non-terminating loop!

Example 13 (Aborting loop). Suppose that the sole state variable is x and that
c is a constant.

(b ∗ P); x := c Example 12
= ⊥; x := c definition of ⊥
= true; x := c definition of assignment
= true; x ′ = c definition of composition
= ∃ x0 • true ∧ x ′ = c predicate calculus
= x ′ = c definition of assignment
= x := c �

�

Example 13 is rather disconcerting: in ordinary programming, there is no recov-
ery from a non-terminating loop. It is the purpose of designs to overcome this
deficiency in the programming model; we return to this in Section 9.

7 Hoare Logic

The Hoare triple p {Q} r is a specification of the correctness of a program Q .
Here, p and r are assertions and Q is a command. This is partial correctness
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in the sense that the assertions do not require Q to terminate. Instead, the
correctness statement is that, if Q is started in a state satisfying p, then, if it
does terminate, it will finish in a state satisfying r . We define the meaning of
the Hoare triple as a universal implication:

p {Q} r =̂ [ p ∧ Q ⇒ r ′ ]

This is a correctness assertion that can be expressed as the refinement assertion
(p ⇒ r ′) � Q .

The laws that can be proved from this definition form the Axioms of Hoare
Logic:

L1 if p {Q} r and p {Q} s then p {Q} (r ∧ s)

L2 if p {Q} r and q {Q} r then (p ∨ q){Q} r
L3 if p {Q} r then (p ∧ q){Q} (r ∨ s)
L4 r(e) {x := e} r(x )
L5 if (p ∧ b){Q1} r and (p ∧ ¬ b){Q2} r then

p {Q1 � b �Q2 } r
L6 if p {Q1} s and s {Q2} r then p {Q1 ; Q2 } r
L7 if p {Q1} r and p {Q2} r then p {Q1 � Q2 } r
L8 if (b ∧ c){Q} c then c { νX • (Q ; X )� b � II } (¬ b ∧ c)

L9 false {Q} r and p {Q} true and p {false} false and p {II} p
Proof of L1 .

(p {Q} r) ∧ (p {Q} s)
= (Q ⇒ (p ⇒ r ′)) ∧ (Q ⇒ (p ⇒ s ′))
= (Q ⇒ (p ⇒ r ′) ∧ (p ⇒ s ′))
= (Q ⇒ (p ⇒ r ′ ∧ s ′))

= p {Q} (r ∧ s) [�]

Proof of L8 : Suppose that (b ∧ c){Q} c. Define Y =̂ c ⇒ ¬ b′ ∧ c′

c { νX • (Q ; X )� b � II } (¬ b ∧ c)

= Y � νX • (Q ; X )� b � II by definition
⇐ Y � (Q ; Y )� b � II by sfp L1
= (Y � (b ∧ Q) ; Y ) ∧ (Y � ¬ b ∧ II ) refinement to cond
= (Y � (b ∧ Q) ; Y ) ∧ [¬ b ∧ II ⇒ (c ⇒ ¬ b′ ∧ c′) ] by def
= (Y � (b ∧ Q) ; Y ) ∧ true predicate calculus

= c { b ∧ Q ; Y } (¬ b ∧ c) by definition

⇐ ( c { b ∧ Q } c ) ∧ ( c { c ⇒ ¬ b′ ∧ c′ }¬ b ∧ c ) by Hoare L6
= true by assumption and predicate calculus

�
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8 Weakest Preconditions

A Hoare triple involves three variables: a precondition, a postcondition, and a
command. If we fix two of these variables, then we can calculate an extreme
solution for the third. For example, if we fix the command and the precondition,
then we calculate the strongest postcondition. Alternatively, we could fix the
command and the postcondition and calculate the weakest precondition, and
that is what we do here. We start with some relational calculus to obtain an
implication with the precondition assertion as the antecedent of an implication
of the form: [ p ⇒ R ]. If we fix R, then there are perhaps many solutions for p
that satisfy this inequality. Of all the possibilities, the weakest must actually be
equal to R.

p(v){Q(v , v ′)} r(v)
= [Q(v , v ′) ⇒ ( p(v) ⇒ r(v ′) ) ]
= [ p(v) ⇒ (Q(v , v ′) ⇒ r(v ′) ) ]
= [ p(v) ⇒ (∀ v ′ • Q(v , v ′) ⇒ r(v ′) ) ]
= [ p(v) ⇒ ¬ (∃ v ′ • Q(v , v ′) ∧ ¬ r(v ′) ) ]
= [ p(v) ⇒ ¬ (∃ v0 • Q(v , v0) ∧ ¬ r(v0) ) ]

= [ p(v) ⇒ ¬ (Q(v , v ′) ; ¬ r(v) ) ]

So now, if we take W(v) = ¬ (Q(v , v ′) ; ¬ r(v) ), then the following Hoare triple
must be valid:

W(v){Q(v , v ′)} r(v)
Here, W is the weakest solution for the precondition for Q to be guaranteed to
achieve r .

We define the predicate transformer wp as a relation between Q and r as
follows:

Q wp r =̂ ¬ (Q ; ¬ r)

The laws for the weakest precondition operator are as follows:

L1 ((x := e)wp r(x )) = r(e)

L2 ((P ; Q)wp r) = (P wp(Q wp r))

L3 ((P � b �Q)wp r) = ((P wp r)� b �(Q wp r))
L4 ((P � Q)wp r) = (P wp r) ∧ (Q wp r)

L5 if [ r ⇒ s ] then [ (Q wp r) ⇒ (Q wp s) ]

L6 if [Q ⇒ S ] then [ (S wp r) ⇒ (Q wp r) ]
L7 (Q wp(

∧

R)) =
∧{ (Q wp r) | r ∈ R }

L8 (Q wp false) = false if Q ; true = true

A representative selection of Isabelle proofs for these rules is shown below. Most
of them can be proved automatically.
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theorem SemiR-wp: (P ; Q) wp R = P wp (Q wp R)
by (utp-rel-auto-tac)

theorem CondR-wp:
assumes
(P ∈ WF-RELATION ) (Q ∈ WF-RELATION )
(b ∈ WF-CONDITION ) (R ∈ WF-RELATION )

shows ‘ (P � b � Q) wp R‘ = ‘ (P wp R) � b � (Q wp R)‘
proof −
have ‘ (P � b � Q) wp R‘ = ‘¬ ((P � b � Q) ; (¬ R))‘
by (simp add : WeakPrecondP-def )

also from assms have ... = ‘¬ ((P ; (¬ R)) � b � (Q ; (¬ R)))‘
by (simp add :CondR-SemiR-distr closure)

also have ... = ‘ (P wp R) � b � (Q wp R)‘
by (utp-pred-auto-tac)

finally show ?thesis .
qed

theorem ChoiceP-wp:
(P � Q) wp R = ‘ (P wp R) ∧ (Q wp R)‘
by (utp-rel-auto-tac)

theorem ImpliesP-precond-wp:
‘ [R ⇒ S ]‘ =⇒ ‘ [(Q wp R) ⇒ (Q wp S)]‘
by (metis ConjP-wp RefP-AndP RefP-def less-eq-WF-PREDICATE-def )

theorem FalseP-wp:
Q ; true = true =⇒ Q wp false = false
by (simp add :WeakPrecondP-def )

9 Designs

The problem pointed out in Section 6—that the relational model does not cap-
ture the semantics of nonterminating programs—can be explained as the failure
of general alphabetised predicates P to satisfy the equation below.

true ; P = true

In particular, in Example 13 we presented a non-terminating loop which, when
followed by an assignment, behaves like the assignment. Operationally, it is as
though the non-terminating loop could be ignored.

The solution is to consider a subset of the alphabetised predicates in which a
particular observational variable, called ok , is used to record information about
the start and termination of programs. The above equation holds for predicates
P in this set. As an aside, we observe that false cannot possibly belong to this
set, since true ; false = false.

The predicates in this set are called designs. They can be split into precond-
ition-postcondition pairs, and are in the same spirit as specification statements
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used in refinement calculi. As such, they are a basis for unifying languages and
methods like B [1], VDM [16], Z [33], and refinement calculi [17,2,18].

In designs, ok records that the program has started, and ok ′ records that
it has terminated. These are auxiliary variables, in the sense that they appear
in a design’s alphabet, but they never appear in code or in preconditions and
postconditions.

In implementing a design, we are allowed to assume that the precondition
holds, but we have to fulfill the postcondition. In addition, we can rely on the
program being started, but we must ensure that the program terminates. If the
precondition does not hold, or the program does not start, we are not committed
to establish the postcondition nor even to make the program terminate.

A design with precondition P and postcondition Q , for predicates P and Q
not containing ok or ok ′, is written (P � Q ). It is defined as follows.

(P � Q ) =̂ ( ok ∧ P ⇒ ok ′ ∧ Q )

If the program starts in a state satisfying P , then it will terminate, and on
termination Q will be true.

Example 14 (Specifications). Suppose that we have two program variables, x
and y, and that we want to specify an operation on the state that reduces the
value of x but keeps y constant. Furthermore, suppose that x and y take on
values that are natural numbers. We could specify this operation in Z using an
operation schema[28,33]:

Dec
x , y, x ′, y ′ : N

x > 0
x ′ < x
y ′ = y

This specifies the decrement operation Dec involving the state before the op-
eration (x and y) and the state after the operation x ′ and y ′). The value of x
must be strictly positive, or else the invariant that x is always a natural number
cannot be satisfied. The after-value x ′ must be strictly less than the before-value
x and the value of y is left unchanged. This Z schema defines its operation as a
single relation, just like the alphabetised relations already introduced.

The refinement calculus [17] is similar to Z, except that the relation specifying
a program is slit into a precondition and a postcondition, with the meaning
described above: if the program is activated in a state satisfying the precondition,
then the program must terminate and when it does, the postcondition will be
true. Our operation is specified like this:

Dec =̂ x : [ x > 0, x < x0 ]

Here, the before-value of x in the postcondition is specified as x0 and the after-
value as simply x . The frame, written before the precondition-postcondition
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pair, specifies that only the variable x may be changed; y must remain constant.
Something similar happens in VDM [16]:

operation Dec()
ext wr x: Nat
pre x > 0
post x < x~

In UTP, the same operation is specified using a design; the frame is specified
by saying what must remain constant:

Dec =̂ ( x > 0 � x ′ < x )+y

�

9.1 Lattice Operators

Abort and miracle are defined as designs in the following examples. Abort has
precondition false and is never guaranteed to terminate. It is denoted by ⊥D.

Example 15 (Abort).

false � false definition of design
= ok ∧ false ⇒ ok ′ ∧ false false zero for conjunction
= false ⇒ ok ′ ∧ false vacuous implication
= true vacuous implication
= false ⇒ ok ′ ∧ true false zero for conjunction
= ok ∧ false ⇒ ok ′ ∧ true definition of design
= false � true �

�

Miracle has precondition true, and establishes the impossible: false. It is denoted
by �D .

Example 16 (Miracle).

true � false definition of design
= ok ∧ true ⇒ ok ′ ∧ false true unit for conjunction
= ok ⇒ false contradiction
= ¬ ok �

�

Like the set of general alphabetised predicates, designs form a complete lattice.
We have already presented the top and the bottom (miracle and abort).

�D =̂ ( true � false ) = ¬ ok

⊥D =̂ ( false � true ) = true

The least upper bound and the greatest lower bound are established in the
following theorem.
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Theorem 1. Meets and joins

�i(Pi � Qi ) = (
∧

i Pi ) � (
∨

i Qi )

�i(Pi � Qi ) = (
∨

i Pi ) � (
∧

i Pi ⇒ Qi )

As with the binary choice, the choice �i(Pi � Qi ) terminates when all the
designs do, and it establishes one of the possible postconditions. The least upper
bound models a form of choice that is conditioned by termination: only the
terminating designs can be chosen. The choice terminates if any of the designs
does, and the postcondition established is that of any of the terminating designs.

Example 17 (Not a design). Notice that designs are not closed under negation.

¬ (P � Q) design
= ¬ (ok ∧ p ⇒ ok ′ ∧ Q) propositional calculus
= ok ∧ p ∧ (ok ′ ⇒ ¬ Q)

Although the negation of a design is not itself a design, this derivation does give
a useful identity. �

9.2 Refinement of Designs

A reassuring result about a design is the fact that refinement amounts to either
weakening the precondition, or strengthening the postcondition in the presence
of the precondition. This is established by the result below.

Law 91 (Refinement of designs)

P1 � Q1 � P2 � Q2 = [P1 ∧ Q2 ⇒ Q1 ] ∧ [P1 ⇒ P2 ] �

Proof

P1 � Q1 � P2 � Q2 definition of �
= [ (P2 � Q2 ) ⇒ (P1 � Q1 ) ] definition of design, twice
= [ ( ok ∧ P2 ⇒ ok ′ ∧ Q2 ) ⇒ ( ok ∧ P1 ⇒ ok ′ ∧ Q1 ) ]

case analysis on ok

= [ (P2 ⇒ ok ′ ∧ Q2 ) ⇒ (P1 ⇒ ok ′ ∧ Q1 ) ] case analysis on ok ′

= [ ( (P2 ⇒ Q2 ) ⇒ (P1 ⇒ Q1 ) ) ∧ (¬ P2 ⇒ ¬ P1 ) ] propositional calculus
= [ ( (P2 ⇒ Q2 ) ⇒ (P1 ⇒ Q1 ) ) ∧ (P1 ⇒ P2 ) ] predicate calculus
= [P1 ∧ Q2 ⇒ Q1 ] ∧ [P1 ⇒ P2 ] �

9.3 Nontermination

The most important result, however, is that abort is a zero for sequence. This
was, after all, the whole point for the introduction of designs.
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L1 true ; (P � Q) = true left-zero

Proof

true ; (P � Q) property of sequential composition
= ∃ ok0 • true ; (P � Q)[ok0/ok ] case analysis
= ( true ; (P � Q)[true/ok ] ) ∨ ( true ; (P � Q)[false/ok ] ) property of design
= ( true ; (P � Q)[true/ok ] ) ∨ ( true ; true ) relational calculus
= ( true ; (P � Q)[true/ok ] ) ∨ true propositional calculus
= true �

9.4 Assignment

In this new setting, it is necessary to redefine assignment and skip, as those
introduced previously are not designs.

(x := e) =̂ ( true � x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z )

IID =̂ ( true � II )

Their existing laws hold, but it is necessary to prove them again, as their defi-
nitions changed.

L2 (v := e ; v := f (v)) = (v := f (e))

L3 (v := e ; (P � b(v)�Q)) = ((v := e ; P)� b(e)�(v := e ; Q))

L4 (IID ; (P � Q)) = (P � Q)

As as an example, we present the proof of L2 .

Proof of L2

v := e ; v := f (v) definition of assignment, twice
= ( true � v ′ = e ) ; ( true � v ′ = f (v) ) case analysis on ok0

= ( ( true � v ′ = e )[true/ok ′] ; ( true � v ′ = f (v) )[true/ok ] ) ∨
¬ ok ; true definition of design

= ( ( ok ⇒ v ′ = e ) ; ( ok ′ ∧ v ′ = f (v) ) ) ∨ ¬ ok relational calculus
= ok ⇒ ( v ′ = e ; ( ok ′ ∧ v ′ = f (v) ) ) assignment composition
= ok ⇒ ok ′ ∧ v ′ = f (e) definition of design
= ( true � v ′ = f (e) ) definition of assignment
= v := f (e) �
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9.5 Closure under the Program Combinators

If any of the program operators are applied to designs, then the result is also a
design. This follows from the laws below, for choice, conditional, sequence, and
recursion. The choice between two designs is guaranteed to terminate when they
both terminate; since either of them may be chosen, then either postcondition
may be established.

T1 ( (P1 � Q1) � (P2 � Q2) ) = (P1 ∧ P2 � Q1 ∨ Q2 )

If the choice between two designs depends on a condition b, then so do the
precondition and the postcondition of the resulting design.

T2 ( (P1 � Q1)� b �(P2 � Q2) )
= ((P1 � b �P2) � (Q1 � b �Q2) )

A sequence of designs (P1 � Q1) and (P2 � Q2) terminates when P1 holds, and
Q1 is guaranteed to establish P2. On termination, the sequence establishes the
composition of the postconditions.

T3 ( (P1 � Q1) ; (P2 � Q2) )
= ( (¬ (¬ P1 ; true) ∧ (Q1 wpP2)) � (Q1 ; Q2) )

where Q1 wpP2 is the weakest precondition under which execution of Q1 is
guaranteed to achieve the postcondition P2. It is defined in [15] as

Q wp P = ¬ (Q ; ¬ P)

The Isabelle proof of this fact is difficult, but rewarding:

Example 18 (Isar Proof of Design Composition).

theorem DesignD-composition:
assumes
(P1 ∈ WF-RELATION ) (P2 ∈ WF-RELATION )
(Q1 ∈ WF-RELATION ) (Q2 ∈ WF-RELATION )

shows ‘ (P1 � Q1 ); (P2 � Q2 )‘=‘ (¬(¬P1 ; true)) ∧ (Q1 wp P2 ) � (Q1 ; Q2 )‘
proof −
have ‘ (P1 � Q1 ) ; (P2 � Q2 )‘

= ‘∃ okay´´´ . ((P1 � Q1 )[$okay´´´/okay´] ; (P2 � Q2 )[$okay´´´/okay ])‘
by (smt DesignD-rel-closure MkPlain-UNDASHED SemiR-extract-variable assms)

also have ... = ‘ ((P1 � Q1 )[false/okay´] ; (P2 � Q2 )[false/okay ])
∨ ((P1 � Q1 )[true/okay´] ; (P2 � Q2 )[true/okay ])‘

by (simp add :ucases typing usubst defined closure unrest DesignD-def assms)

also have ... = ‘ ((ok ∧ P1 ⇒ Q1 ) ; (P2 ⇒ ok ′ ∧ Q2 )) ∨ ((¬ (ok ∧ P1 )) ; true)‘
by (simp add : typing usubst defined unrest DesignD-def OrP-comm assms)
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also have ... = ‘ ((¬ (ok ∧ P1 ) ; (P2 ⇒ ok ′ ∧ Q2 )) ∨ ¬ (ok ∧ P1 ) ; true)
∨ Q1 ; (P2 ⇒ ok ′ ∧ Q2 )‘

by (smt OrP-assoc OrP-comm SemiR-OrP-distr ImpliesP-def )

also have ... = ‘ (¬ (ok ∧ P1 ) ; true) ∨ Q1 ; (P2 ⇒ ok ′ ∧ Q2 )‘
by (smt SemiR-OrP-distl utp-pred-simps(9 ))

also have ... = ‘ (¬ok ; true) ∨ (¬P1 ; true) ∨ (Q1 ; ¬P2 ) ∨ (ok ′ ∧ (Q1 ; Q2 ))‘
proof −
from assms have ‘Q1 ; (P2 ⇒ ok ′ ∧ Q2 )‘ = ‘ (Q1 ; ¬P2 ) ∨ (ok ′ ∧ (Q1 ; Q2 ))‘
by (smt AndP-comm SemiR-AndP-right-postcond ImpliesP-def SemiR-OrP-distl)

thus ?thesis by (smt OrP-assoc SemiR-OrP-distr demorgan2 )
qed

also have ... = ‘ (¬ (¬ P1 ; true) ∧ ¬ (Q1 ; ¬ P2 )) � (Q1 ; Q2 )‘
proof −
have ‘ (¬ ok) ; true ∨ (¬ P1 ) ; true‘ = ‘¬ ok ∨ (¬ P1 ) ; true‘
by (simp add : SemiR-TrueP-precond closure)

thus ?thesis
by (smt DesignD-def ImpliesP-def OrP-assoc demorgan2 demorgan3 )

qed

finally show ?thesis by (simp add :WeakPrecondP-def )
qed

Preconditions can be relations, and this fact complicates the statement of Law
T3 ; if the P1 is a condition instead, then the law is simplified as follows.

T3′ ( (p1 � Q1) ; (P2 � Q2) ) = ( p1 ∧ (Q1 wpP2)) � (Q1 ; Q2) )

Example 19 (Simplifying condition-composition).

¬ (¬ p1 ; true) composition
= ¬ ∃ v0 • ¬ p1[v0/v

′] ∧ true[v0/v ] v not free in true
= ¬ ∃ v0 • ¬ p1[v0/v

′] ∧ true unit for conjunction
= ¬ ∃ v0 • ¬ p1[v0/v

′] v ′ not free in p1

= ¬ ∃ v0 • ¬ p1 v0 not free in p1

= ¬ ¬ p1 propositional calculus
= p1

�

A recursively defined design has as its body a function on designs; as such, it
can be seen as a function on precondition-postcondition pairs (X ,Y ). Moreover,
since the result of the function is itself a design, it can be written in terms of a
pair of functions F and G, one for the precondition and one for the postcondition.
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As the recursive design is executed, the precondition F is required to hold
over and over again. The strongest recursive precondition so obtained has to
be satisfied, if we are to guarantee that the recursion terminates. Similarly, the
postcondition is established over and over again, in the context of the precon-
dition. The weakest result that can possibly be obtained is that which can be
guaranteed by the recursion.

T4 (μX ,Y • (F (X ,Y ) � G(X ,Y ) ) ) = (P(Q) � Q )

where P(Y ) = ( νX • F (X ,Y ) ) and Q = (μY • P(Y ) ⇒ G(P(Y ),Y ) )

Further intuition comes from the realisation that we want the least refined fixed-
point of the pair of functions. That comes from taking the strongest precondition,
since the precondition of every refinement must be weaker, and the weakest
postcondition, since the postcondition of every refinement must be stronger.

10 Healthiness Conditions

Another way of characterising the set of designs is by imposing healthiness con-
ditions on the alphabetised predicates. Hoare & He [15] identify four healthiness
conditions that they consider of interest: H1 to H4 . We discuss each of them.

10.1 H1 : Unpredictability

A relation R is H1 healthy if and only if R = (ok ⇒ R). This means that
observations cannot be made before the program has started. This healthiness
condition is idempotent.

Law 101 (H1 idempotent)

H1 ◦ H1 = H1

Proof:

H1 ◦ H1(P) H1
= ok ⇒ (ok ⇒ P) propositional calculus
= ok ∧ ok ⇒ P propositional calculus
= ok ⇒ P H1
= H1(P) �
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Example 20 (Examples of H1 relations).

1. Abort, the bottom of the lattice, is healthy.

H1(true) = (ok ⇒ true) = true

2. Miracle, the top of the lattice, is healthy.

H1(¬ ok) = (ok ⇒ ¬ ok) = ¬ ok

3. The following relation is healthy: (ok ∧ x �= 0 ⇒ x ′ < x ).

H1(ok ∧ x �= 0 ⇒ x ′ < x )

= ok ⇒ (ok ∧ x �= 0 ⇒ x ′ < x )

= (ok ∧ x �= 0 ⇒ x ′ < x )

4. The following design is healthy: (x �= 0 � x ′ < x ).

H1(x �= 0 � x ′ < x ) = ok ⇒ (x �= 0 � x ′ < x ) = (x �= 0 � x ′ < x )

�

If R is H1 -healthy, then R also satisfies the left-zero and unit laws below.

true ; R = true and IID ; R = R

We now present a proof of these results. First, we prove that the algebraic unit
and zero properties guarantee H1 -healthiness.

Designs with Left-Units and Left-Zeros Are H1.

R assumption (IID is left-unit)
= IID ; R IID definition
= ( true � IID ) ; R design definition
= ( ok ⇒ ok ′ ∧ II ) ; R relational calculus
= (¬ ok ; R ) ∨ ( II ; R ) relational calculus
= (¬ ok ; true ; R ) ∨ ( II ; R ) assumption (true is left-zero)
= ¬ ok ∨ ( II ; R ) assumption (II is left-unit)
= ¬ ok ∨ R relational calculus
= ok ⇒ R �

The Isabelle proof has a few more steps, but follows a similar line of reasoning.
We require that P be a well-formed relation, consisting of only undashed and
dashed variables. We also prefer the use of the simplifier, executed by simp, to
discharge each of the steps.
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theorem H1-algebraic-intro:
assumes

R ∈ WF-RELATION
(true ; R = true)
(IID ; R = R)

shows R is H1
proof −
let ?vs = REL-VAR − {okay ,okay´}
have R = IID ; R by (simp add : assms)
also have ... = ‘ (true � II ?vs) ; R‘
by (simp add :SkipD-def )

also have ... = ‘ (ok ⇒ (ok ′ ∧ II ?vs)) ; R‘
by (simp add :DesignD-def )

also have ... = ‘ (ok ⇒ (ok ∧ ok ′ ∧ II ?vs)) ; R‘
by (smt ImpliesP-export)

also have ... = ‘ (ok ⇒ (ok ∧ $okay´ = $okay ∧ II ?vs)) ; R‘
by (simp add :VarP-EqualP-aux typing defined , utp-rel-auto-tac)

also have ... = ‘ (ok ⇒ II ) ; R‘
by (simp add :SkipRA-unfold [THEN sym]

SkipR-as-SkipRA ImpliesP-export[THEN sym])
also have ... = ‘ ((¬ ok) ; R ∨ R)‘
by (simp add :ImpliesP-def SemiR-OrP-distr)

also have ... = ‘ (((¬ ok) ; true) ; R ∨ R)‘
by (simp add :SemiR-TrueP-precond closure)

also have ... = ‘ ((¬ ok) ; true ∨ R)‘
by (simp add :SemiR-assoc[THEN sym] assms)

also have ... = ‘ok ⇒ R‘
by (simp add :SemiR-TrueP-precond closure ImpliesP-def )

finally show ?thesis by (simp add :is-healthy-def H1-def )
qed

Next, we prove the implication the other way around: that H1 -healthy predicates
have the unit and zero properties.

H1 Predicates Have a Left-Zero.

true ; R assumption (R is H1)
= true ; ( ok ⇒ R ) relational calculus
= ( true ; ¬ ok ) ∨ ( true ; R ) relational calculus
= true ∨ ( true ; R ) relational calculus
= true �

. . . and the same in Isabelle:
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theorem H1-left-zero:
assumes

P ∈ WF-RELATION
P is H1

shows true ; P = true
proof −
from assms have ‘true ; P‘ = ‘true ; (ok ⇒ P)‘
by (simp add :is-healthy-def H1-def )

also have ... = ‘true ; (¬ ok ∨ P)‘
by (simp add :ImpliesP-def )

also have ... = ‘ (true ; ¬ ok) ∨ (true ; P)‘
by (simp add :SemiR-OrP-distl)

also from assms have ... = ‘true ∨ (true ; P)‘
by (simp add :SemiR-precond-left-zero closure)

finally show ?thesis by simp
qed

H1 Predicates Have a Left-Unit.

IID ; R definition of IID

= ( true � IID ) ; R definition of design
= ( ok ⇒ ok ′ ∧ II ) ; R relational calculus
= (¬ ok ; R ) ∨ ( ok ∧ R ) relational calculus
= (¬ ok ; true ; R ) ∨ ( ok ∧ R ) true is left-zero
= (¬ ok ; true ) ∨ ( ok ∧ R ) relational calculus
= ¬ ok ∨ ( ok ∧ R ) relational calculus
= ok ⇒ R R is H1
= R �

. . . and the same in Isabelle:

theorem H1-left-unit :
assumes

P ∈ WF-RELATION
P is H1

shows IID ; P = P
proof −
let ?vs = REL-VAR − {okay ,okay´}
have IID ; P = ‘ (true � II ?vs) ; P‘ by (simp add :SkipD-def )
also have ... = ‘ (ok ⇒ ok ′ ∧ II ?vs) ; P‘
by (simp add :DesignD-def )

also have ... = ‘ (ok ⇒ ok ∧ ok ′ ∧ II ?vs) ; P‘
by (smt ImpliesP-export)

also have ... = ‘ (ok ⇒ ok ∧ $okay´ = $okay ∧ II ?vs) ; P‘
by (simp add :VarP-EqualP-aux , utp-rel-auto-tac)

also have ... = ‘ (ok ⇒ II ) ; P‘
by (simp add : SkipRA-unfold [of okay ] ImpliesP-export [THEN sym])

also have ... = ‘ ((¬ ok) ; P ∨ P)‘
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by (simp add :ImpliesP-def SemiR-OrP-distr)
also have ... = ‘ (((¬ ok) ; true) ; P ∨ P)‘
by (metis NotP-cond-closure SemiR-TrueP-precond VarP-cond-closure)

also have ... = ‘ ((¬ ok) ; (true ; P) ∨ P)‘
by (metis SemiR-assoc)

also from assms have ... = ‘ (ok ⇒ P)‘
by (simp add :H1-left-zero ImpliesP-def SemiR-TrueP-precond closure)

finally show ?thesis using assms
by (simp add :H1-def is-healthy-def )

qed

This means that we can use the left-zero and unit laws to exactly characterise
H1 healthiness. We can assert this equivalence property in Isabelle by combining
the three theorems:

theorem H1-algebraic:
assumes R ∈ WF-RELATION
shows R is H1 ←→ (true ; R = true) ∧ (IID ; R = R)
by (metis H1-algebraic-intro H1-left-unit H1-left-zero assms)

The design identity is the obvious lifting of the relational identity to a de-
sign; that is, it has precondition true and the postcondition is the relational
identity. There’s a simple relationship between them: H1 .

Law 102 (Relational and design identities)

IID = H1(II)

Proof:

IID IID

= (true � II) design
= (ok ⇒ ok ′ ∧ II) II, prop calculus
= (ok ⇒ II) H1
= H1(II) �

theorem H1-algebraic-intro:
assumes

R ∈ WF-RELATION
(true ; R = true)
(IID ; R = R)

shows R is H1
proof −
let ?vs = REL-VAR − {okay ,okay´}
have R = IID ; R by (simp add : assms)
also have ... = ‘ (true � II ?vs) ; R‘
by (simp add :SkipD-def )

also have ... = ‘ (ok ⇒ (ok ′ ∧ II ?vs)) ; R‘
by (simp add :DesignD-def )

also have ... = ‘ (ok ⇒ (ok ∧ ok ′ ∧ II ?vs)) ; R‘
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by (smt ImpliesP-export)
also have ... = ‘ (ok ⇒ (ok ∧ $okay´ = $okay ∧ II ?vs)) ; R‘
by (simp add :VarP-EqualP-aux typing defined , utp-rel-auto-tac)

also have ... = ‘ (ok ⇒ II ) ; R‘
by (simp add :SkipRA-unfold [THEN sym]

SkipR-as-SkipRA ImpliesP-export[THEN sym])
also have ... = ‘ ((¬ ok) ; R ∨ R)‘
by (simp add :ImpliesP-def SemiR-OrP-distr)

also have ... = ‘ (((¬ ok) ; true) ; R ∨ R)‘
by (simp add :SemiR-TrueP-precond closure)

also have ... = ‘ ((¬ ok) ; true ∨ R)‘
by (simp add :SemiR-assoc[THEN sym] assms)

also have ... = ‘ok ⇒ R‘
by (simp add :SemiR-TrueP-precond closure ImpliesP-def )

finally show ?thesis by (simp add :is-healthy-def H1-def )
qed

10.2 H2 : Possible Termination

The second healthiness condition is [R[false/ok ′] ⇒ R[true/ok ′] ]. This means
that if R is satisfied when ok ′ is false, it is also satisfied then ok ′ is true. In
other words, R cannot require nontermination, so that it is always possible to
terminate.

Example 21 (Example H2 predicates).

1. ⊥D

⊥f
D = truef = true = truet = ⊥t

D

2. �D

�f = (¬ ok)f = ¬ ok = (¬ ok)t = �t
D

3. (ok ′ ∧ (x ′ = 0))

(ok ′ ∧ (x ′ = 0))f = false ⇒ (x ′ = 0) = (ok ′ ∧ x ′ = 0)t

4. (x �= 0 � x ′ < x )

(x �= 0 � x ′ < x )f

= (ok ∧ x �= 0 ⇒ ok ′ ∧ x ′ < x )f

= (ok ∧ x �= 0 ⇒ false)
⇒ (ok ∧ x �= 0 ⇒ x ′ < x )

= (ok ∧ x �= 0 ⇒ ok ′ ∧ x ′ < x )t

= (x �= 0 � x ′ < x )t

�
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The healthiness condition H2 is not obviously characterised by a monotonic
idempotent function. We now define the idempotent J for alphabet {ok , ok ′, v , v ′},
and use this in an alternative definition of H2 .

J =̂ (ok ⇒ ok ′) ∧ v ′ = v

The most interesting property of J is the following algebraic law that allows a
relation to be split into two complementary parts, one that definitely aborts and
one that does not. Note the asymmetry between the two parts.

Law 103 (J -split) For all relations with ok and ok ′ in their alphabet,

P ; J = P f ∨ (P t ∧ ok ′)

Proof:

P ; J J
= P ; (ok ⇒ ok ′) ∧ v ′ = v propositional calculus
= P ; (ok ⇒ ok ∧ ok ′) ∧ v ′ = v propositional calculus
= P ; (¬ ok ∨ ok ∧ ok ′) ∧ v ′ = v relational calculus
= P ; ¬ ok ∧ v ′ = v

∨
(P ; ok ∧ v ′ = v) ∧ ok ′

right one-point, twice

= P f ∨ (P t ∧ ok ′) �

Likewise this proof can be mechanised in Isabelle, though a little more detailed
is required. In particular, we treat the equalities of each sides of the disjunction
separately in the final step.

theorem J-split :
assumes P ∈ WF-RELATION
shows ‘P ; J‘ = ‘P f ∨ (P t ∧ ok ′)‘

proof −
let ?vs = (REL-VAR − {okay ,okay´})

have ‘P ; J‘ = ‘P ; ((ok ⇒ ok ′) ∧ II ?vs)‘ by (simp add :J-pred-def )

also have ... = ‘P ; ((ok ⇒ ok ∧ ok ′) ∧ II ?vs)‘ by (smt ImpliesP-export)

also have ... = ‘P ; ((¬ ok ∨ (ok ∧ ok ′)) ∧ II ?vs)‘ by (utp-rel-auto-tac)

also have ... = ‘ (P ; (¬ ok ∧ II ?vs)) ∨ (P ; (ok ∧ (II ?vs ∧ ok ′)))‘
by (smt AndP-OrP-distr AndP-assoc AndP-comm SemiR-OrP-distl)

also have ... = ‘P f ∨ (P t ∧ ok ′)‘
proof −
from assms have ‘ (P ; (¬ ok ∧ II ?vs))‘ = ‘P f ‘
by (simp add : SemiR-left-one-point SkipRA-right-unit )
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moreover have ‘ (P ; (ok ∧ II ?vs ∧ ok ′))‘ = ‘ (P t ∧ ok ′)‘
proof −
from assms have ‘ (P ; (ok ∧ II ?vs ∧ ok ′))‘ = ‘ (P ; (ok ∧ II ?vs)) ∧ ok ′‘
by (utp-xrel-auto-tac)

moreover from assms have ‘ (P ; (ok ∧ II ?vs))‘ = ‘P t ‘
by (simp add : SemiR-left-one-point SkipRA-right-unit )

finally show ?thesis .
qed

ultimately show ?thesis by simp
qed

finally show ?thesis .
qed

The two characterisations of H2 are equivalent.

Law 104 (H2 equivalence)

(P = P ; J ) = [P f ⇒ P t ]

Proof:

(P = P ; J ) J -split

= (P = P f ∨ (P t ∧ ok ′)) ok ′ split

= (P = P f ∨ (P t ∧ ok ′))f ∧ (P = P f ∨ (P t ∧ ok ′))t subst.

= (P f = P f ∨ (P t ∧ false)) ∧ (P t = P f ∨ (P t ∧ true)) prop calc.

= (P f = P f ) ∧ (P t = P f ∨ P t ) reflection

= (P t = P f ∨ P t) predicate calculus

= [P f ⇒ P t ] �

. . . and in Isabelle:

theorem H2-equivalence:
assumes R ∈ WF-RELATION
shows R is H2 ←→ [Rf ⇒ Rt ]

proof −
from assms have ‘ [R ⇔ (R ; J )]‘ = ‘ [R ⇔ (Rf ∨ (Rt ∧ ok ′))]‘
by (simp add :J-split)

also have ... = ‘ [(R ⇔ Rf ∨ Rt ∧ ok ′)f ∧ (R ⇔ Rf ∨ Rt ∧ ok ′)t ]‘
by (simp add :ucases)

also have ... = ‘ [(Rf ⇔ Rf ) ∧ (Rt ⇔ Rf ∨ Rt)]‘
by (simp add :usubst closure typing defined)
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also have ... = ‘ [Rt ⇔ (Rf ∨ Rt)]‘
by (utp-pred-tac)

finally show ?thesis
by (utp-pred-auto-tac)

qed

J itself is H2 healthy.

Law 105 (J is H2)

J = H2(J )

Proof:

H2(J ) J -split

= J f ∨ (J t ∧ ok ′) J
= (¬ ok ∧ v ′ = v) ∨ (ok ′ ∧ v ′ = v) propositional calculus
= (¬ ok ∨ ok ′) ∧ v ′ = v propositional calculus
= (ok ⇒ ok ′) ∧ v ′ = v J
= J �

. . . and in Isabelle:

theorem J-is-H2 :
H2 (J ) = J

proof −
let ?vs = (REL-VAR − {okay ,okay´})
have H2 (J ) = ‘J f ∨ (J t ∧ ok ′)‘
by (metis H2-def J-closure J-split)

also have ... = ‘ ((¬ ok ∧ II ?vs) ∨ II ?vs ∧ ok ′)‘
by (simp add :J-pred-def usubst typing defined closure)

also have ... = ‘ (¬ ok ∨ ok ′) ∧ II ?vs‘
by (utp-pred-auto-tac)

also have ... = ‘ (ok ⇒ ok ′) ∧ II ?vs‘
by (utp-pred-tac)

finally show ?thesis
by (metis J-pred-def )

qed

J is idempotent.
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Law 106 (H2-idempotent)

H2 ◦ H2 = H2

Proof:

H2 ◦ H2(P) H2
= (P ; J ) ; J associativity
= P ; (J ; J ) H2
= P ; H2(J ) J H2 healthy
= P ; J H2
= P �

. . . and in Isabelle:

theorem H2-idempotent :
‘H2 (H2 R)‘ = ‘H2 R‘

proof −
have ‘H2 (H2 R)‘ = ‘ (R ; J ) ; J‘
by (metis H2-def )

also have ... = ‘R ; (J ; J )‘
by (metis SemiR-assoc)

also have ... = ‘R ; H2 J‘
by (metis H2-def )

also have ... = ‘R ; J‘
by (metis J-is-H2 )

also have ... = ‘H2 R‘
by (metis H2-def )

finally show ?thesis .
qed

Any predicate that insists on proper termination is healthy.

Example 22 (Example: H2-substitution).

ok ′ ∧ (x ′ = 0) is H2

Proof:

(ok ′ ∧ (x ′ = 0))f ⇒ (ok ′ ∧ (x ′ = 0))t

= (false ∧ (x ′ = 0) ⇒ true ∧ (x ′ = 0))

= (false ⇒ (x ′ = 0))

= true

�

The proof could equally well be done with the alternative characterisation of
H2 .
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Example 23. Example: H2 -J

ok ′ ∧ (x ′ = 0) is H2

Proof:

ok ′ ∧ (x ′ = 0) ; J J -splitting

= (ok ′ ∧ (x ′ = 0))f ∨ ((ok ′ ∧ (x ′ = 0))t ∧ ok ′) subst.
= (false ∧ (x ′ = 0)) ∨ (true ∧ (x ′ = 0) ∧ ok ′) prop. calculus
= false ∨ ((x ′ = 0) ∧ ok ′) propositional calculus
= ok ′ ∧ (x ′ = 0)

�

If a relation is both H1 and H2 healthy, then it is a design. We prove this by
showing that the relation can be expressed syntactically as a design.

Law 107 (H1-H2 relations are designs)

P assumption: P is H1
= ok ⇒ P assumption: P is H2
= ok ⇒ P ; J J -splitting

= ok ⇒ P f ∨ (P t ∧ ok ′) propositional calculus

= ok ∧ ¬ P f ⇒ ok ′ ∧ P t design

= ¬ P f � P t �

Likewise this proof can be formalised in Isabelle:

theorem H1-H2-is-DesignD :
assumes

P ∈ WF-RELATION
P is H1
P is H2

shows P = ‘ (¬ P f ) � P t ‘
proof −
have P = ‘ok ⇒ P‘
by (metis H1-def assms(2 ) is-healthy-def )

also have ... = ‘ok ⇒ (P ; J )‘
by (metis H2-def assms(3 ) is-healthy-def )

also have ... = ‘ok ⇒ (P f ∨ (P t ∧ ok ′))‘
by (metis J-split assms(1 ))

also have ... = ‘ok ∧ (¬ P f ) ⇒ ok ′ ∧ P t ‘
by (utp-pred-auto-tac)
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also have ... = ‘¬ P f � P t ‘
by (metis DesignD-def )

finally show ?thesis .
qed

Designs are obviously H1 ; we now show that they must also be H2 . These two
results complete the proof that H1 and H2 together exactly characterise designs.

Law 108 Designs are H2

(P � Q )f definition of design
= ( ok ∧ P ⇒ false ) propositional calculus
⇒ ( ok ∧ P ⇒ Q ) definition of design
= (P � Q )t �

Miracle, even though it does not mention ok ′, is H2 -healthy.

Example 24 (Miracle is H2).

¬ ok miracle
= true � false designs are H2
= H2(true � false) miracle
= H2(¬ ok)

�

The final thing to prove is that it does not matter in which order we apply H1
and H2 ; the key point is that a design requires both properties.

Law 109 (H1-H2 commute)

H1 ◦ H2(P) H1, H2
= ok ⇒ P ; J propositional calculus
= ¬ ok ∨ P ; J miracle is H2
= H2(¬ ok) ∨ P ; J H2
= ¬ ok ; J ∨ P ; J relational calculus
= (¬ ok ∨ P) ; J propositional calculus
= (ok ⇒ P) ; J H1, H2
= H2 ◦ H1(P) �

10.3 H3 : Dischargeable Assumptions

The healthiness condition H3 is specified as an algebraic law: R = R ; IID . A
design satisfies H3 exactly when its precondition is a condition. This is a very
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desirable property, since restrictions imposed on dashed variables in a precondi-
tion can never be discharged by previous or successive components. For example,
x ′ = 2 � true is a design that can either terminate and give an arbitrary value
to x , or it can give the value 2 to x , in which case it is not required to terminate.
This is a rather bizarre behaviour.

A Design Is H3 iff Its Assumption Is a Condition.

( (P � Q ) = ( (P � Q ) ; IID ) ) definition of design-skip
= ( (P � Q ) = ( (P � Q ) ; ( true � IID ) ) ) sequence of designs
= ( (P � Q ) = (¬ (¬ P ; true ) ∧ ¬ (Q ; ¬ true ) � Q ; IID ) ) skip unit
= ( (P � Q ) = (¬ (¬ P ; true ) � Q ) ) design equality
= (¬ P = ¬ P ; true ) propositional calculus
= (P = P ; true ) �

The final line of this proof states that P = ∃ v ′ • P , where v ′ is the output
alphabet of P . Thus, none of the after-variables’ values are relevant: P is a
condition only on the before-variables.

10.4 H4 : Feasibility

The final healthiness condition is also algebraic: R ; true = true. Using the
definition of sequence, we can establish that this is equivalent to ∃ v ′ • R, where
v ′ is the output alphabet of R. In words, this means that for every initial value
of the observational variables on the input alphabet, there exist final values for
the variables of the output alphabet: more concisely, establishing a final state is
feasible. The design �D is not H4 healthy, since miracles are not feasible.

11 Related Work

Our mechanisation of UTP theories of relations and of designs and our future
mechanisation of the theory of reactive processes form the basis for reasoning
about a family of modern multi-paradigm modelling languages. This family con-
tains both Circus [34,35] and CML [37]: Circus combines Z [28] and CSP [14],
whilst CML combines VDM [16] and CSP. Both languages are based firmly
on the notion of refinement [25] and have a variety of extensions with ad-
ditional computational paradigms, including real-time [27,31], object orienta-
tion [8], synchronicity [5], and process mobility [29,30]. Further information on
Circus may be found at www.cs.york.ac.uk/circus. CML is being developed
as part of the European Framework 7 COMPASS project on Comprehensive
Modelling for Advanced Systems of Systems (grant Agreement: 287829). See
www.compass-research.eu.

Our implementation of UTP in Isabelle is a natural extension of the work in
Oliveira’s PhD thesis [20], which is extended in [22], where UTP is embedded in

www.cs.york.ac.uk/circus
www.compass-research.eu
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ProofPowerZ, an extension of ProofPower/HOL supporting the Z notation, to
mechanise the definition of Circus.

Feliachi et al. [10] have developed a machine-checked, formal semantics based
on a shallow embedding of Circus in Isabelle/Circus, a semantic theory of UTP
also based on Isabelle/HOL. The definitions of Circus are based on those in [21],
which are in turn based on those in [35]. Feliachi et al. derive proof rules from
this semantics and implement tactic support for proofs of refinement for Circus
processes involving both data and behavioral aspects. This proof environment
supports a syntax for the semantic definitions that is close to textbook presen-
tations of Circus.

Our work differs from that of Feliachi et al. in three principle ways:

1. Alphabets. We have a unified type for predicates where alphabets are repre-
sented explicitly. Predicates with different alphabets can be composed with-
out the need for type-level coercions, and variables can be easily added and
removed.

2. Expressivity. Our encoding of predicates is highly flexible, providing sup-
port for many different operators and subtheories, of which binary relations
is only one. We also can support complex operators on variables, in partic-
ular we provide a unified notion of substitution. The user can also supply
their own type system for values, meaning we are not necessarily limited to
the type-system of HOL.

3. Meta-theoretic Proofs. We give a deeper semantics to operators such as
sequential composition and the quantifiers, rather than identifying them with
operators of HOL, and therefore support proofs about the operators of the
UTP operators. This meta-level reasoning allows us to perform soundness
proofs about the denotational semantics of our language.

12 Conclusion

We have mechanised UTP, including alphabetised predicates, relations, the op-
erators of imperative programming, and the theory of designs. All the proofs
contained in this paper have been mechanised within our library, including those
where the proofs have been omitted. Thus far, we have mechanised over 200 laws
about the basic operators and over 40 laws about the theory of designs. The UTP
library can therefore be used to perform basic static analysis of imperative pro-
grams. The proof automation level is high due to the inclusion of our proof
tactics and the power of sledgehammer combined with the algebraic laws of the
UTP.

There are several directions for future work:

– Mechanise additional theories, for instance CSP and Circus, which will give
the ability to reason about reactive programs with concurrency.

– Complete the VDM/CML model, which includes implementing all the stan-
dard VDM library functions, so we can support verification of VDM speci-
fications.
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– Implement proof obligations for UTP expressions, so that H4 healthiness of
a program can be verified.

– Implement Z-schema types, which allow the specification of complex data
structures.

– Implement the complete refinement calculus by mechanising refinement laws
in Isabelle/UTP. This will allow the derivation of programs from high-level
specifications, supported by mechanised proof.

All of this is leading towards proof support for CML, so that we can prove the
validity of complex specifications of systems of systems in the COMPASS tool.
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