
rCOS: Defining Meanings of Component-Based
Software Architectures

Ruzhen Dong1,2, Johannes Faber1, Wei Ke3, and Zhiming Liu1

1 United Nations University – International Institute for Software Technology, Macau
{ruzhen,jfaber,z.liu}@iist.unu.edu

2 Dipartmento di Informatica, Università di Pisa, Italy
3 Macao Polytechnic Institute, Macau

wke@ipm.edu.mo

Abstract. Model-Driven Software Development is nowadays taken as a
mainstream methodology. In the software engineering community, it is
a synonym of the OMG Model-Driven Architecture (MDA). However, in
the formal method community, model-driven development is broadly seen
as model-based techniques for software design and verification. Because
of the difference between the nature of research and practical model-
driven software engineering, there is a gap between formal techniques,
together with their tools, and their potential support to practical soft-
ware development. In order to bridge this gap, we define the meanings of
component-based software architectures in this chapter, and show how
software architectures are formally modeled in the formal model-driven
engineering method rCOS. With the semantics of software architecture
components, their compositions and refinements, we demonstrate how
appropriate formal techniques and their tools can be applied in an MDA
development process.

Keywords: Component-Based Architecture, Object-Oriented Design,
Model, Model Refinement, Model Transformation, Verification.

1 Introduction

Software engineering was born and has been growing up with the “software cri-
sis”. The root of the crisis is the inherent complexity of software development,
and the major cause of the complexity “is that the machines have become sev-
eral orders of magnitude more powerful” [18] within decades. Furthermore, ICT
systems with machines and smart devices that are communicating through het-
erogeneous Internet and communication networks, considering integrated health-
care information systems and environment monitoring and control systems, are
becoming more complex beyond the imagination of the computer scientists and
software engineers in the 1980’s.

1.1 Software Complexity

Software complexity was characterized before the middle of the 1990s in terms
of four fundamental attributes of software [5–7]:

Z. Liu, J. Woodcock, and H. Zhu (Eds.): Theories of Programming, LNCS 8050, pp. 1–66, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 R. Dong et al.

1. the complexity of the domain application,
2. the difficulty of managing the development process,
3. the flexibility possible through software,
4. and the problem of characterizing the behavior of software systems [5].

This characterization remains sound, but the extensions of the four attributes
are becoming much wider.

The first attribute focuses on the difficulty of understanding the application
domain (by the software designer in particular), capturing and handling the ever-
changing requirements. It is even more challenging when networked systems sup-
port collaborative workflows involving many different kinds of stakeholders and
end users across different domains. Typical cases are in healthcare applications,
such as telemedicine, where chronic conditions of patients on homecare plans
are monitored and tracked by different healthcare providers. In these systems,
requirements for safety, privacy assurances and security are profound too.

The second attribute concerns the difficulty to define and manage a develop-
ment process that has to deal with changing requirements for a software project
involving a large team comprising of software engineers and domain experts, pos-
sibly in different geographical places. There is a need of a defined development
process with tools that support collaboration of the team in working on shared
software artifacts.

The third is about the problem of making the right design decisions among a
wide range of possibilities that have conflicting features. This includes the design
or reuse of the software architecture, algorithms and communication networks
and protocols. The design decisions have to deal with changing requirements and
aiming to achieve the optimal performance to best support the requirements of
different users.

The final attribute of software complexity pinpoints the difficulty in under-
standing and modeling the semantic behavior of software, for analysis, validation
and verification for correctness, as well as reliability assurance. The semantic be-
havior of modern software-intensive systems [63], which we see in our everyday
life, such as in transportation, health, banking and enterprise applications, has a
great scale of complexity. These systems provide their users with a large variety
of services and features. They are becoming increasingly distributed, dynamic
and mobile. Their components are deployed over large networks of heterogeneous
platforms. In addition to the complexity of functional structures and behaviors,
modern software systems have complex aspects concerning organizational struc-
tures (i.e., system topology), adaptability, interactions, security, real-time and
fault-tolerance. Thus, the availability of models for system architecture compo-
nents, their interfaces, and compositions is crucially important.

Complex systems are open to total breakdowns [53], and consequences of
system breakdowns are sometimes catastrophic and very costly, e.g., the famous
Therac-25 Accident 1985-1987 [41], the Ariane-5 Explosion in 1996 [56], and the
Wenzhou High Speed Train Collision.1 Also the software complexity attributes
are the main source of unpredictability of software projects, software projects fail
1 http://en.wikipedia.org/wiki/Wenzhou_train_collision

http://en.wikipedia.org/wiki/Wenzhou_train_collision

rCOS: Defining Meanings of Component-Based Software Architectures 3

due to our failure to master the complexity [33]. Given that the global economy
as well as our everyday life depends on software systems, we cannot give up
advancing the theories and the engineering methods to master the increasing
complexity of software development.

1.2 Model-Driven Development

The model-driven architecture (MDA) [52,60, 63] approach proposes building of
system models in all stages of the system development as the key engineering
principle for mastering software complexity and improving dependability and
predictability. The notion of software architectures is emphasized in this ap-
proach, but it has not been precisely defined. In industrial project development,
the architecture of a system at a level of abstraction is often represented by
diagrams with “boxes” and “links” to show parts of the systems and their link-
ages, and sometimes these boxes are organized into a number of “layers” for a
“layered architecture”. There even used to be little informal semantic meaning
for the boxes and links. This situation has improved since the introduction of
the Unified Modeling Language (UML) in which boxes are defined as “objects”
or “components”, and links are defined as “associations” or “interfaces”. These
architectural models are defined as both platform independent models (PIM)
and platform specific models (PSM), and the mapping from a PIM to a PSM is
characterized as a deployment model.

MDA promotes in software engineering the principles of divide and conquer
by which an architectural component is hierarchical and can be divided into
subcomponents; separation of concerns that allows a component to be described
by models of different viewpoints, such as static component and class views,
interaction views and dynamic behavioral views; and information hiding by ab-
stractions so that software models at different stages of development only focus
on the details relevant to the problem being solved at that stage.

All the different architectural models and models of viewpoints are important
when defining and managing a development process [43]. However, the semantics
of these models is largely left to the user to understand, and the integration
and transformation of these models are mostly syntax-based. Hence, the tools
developed to support the integration and transformation cannot be integrated
with tools for verification of semantic correctness and correctness preserving
transformations [46].

For MDA to support a seamless development process of model decomposition,
integration, and refinement, there is a need of formal semantic relations between
models of different viewpoints of the architecture at a certain level, and the
refinement/abstraction relation between models at different levels of abstraction.
It is often the case that a software project in MDA only focuses on the grand
levels of abstraction — requirements, design, implementation and deployment,
without effectively supporting refinement of the requirements and design models,
except for some model transformations based on design patterns. This is actually
the reason why MDA has failed to demonstrate the potential advantages of
separation of concerns, divide and conquer and incremental development that it

4 R. Dong et al.

promises. This lack of semantic relations between models as well as the lack of
techniques and tools for semantics-preserving model transformations is also an
essential barrier for MDA to realize its full potential in improving safety and
predictability of software systems.

1.3 Formal Methods in Software Development

Ensuring semantic correctness of computer systems is the main purpose of us-
ing formal methods. A formal method consists of a body of techniques and
tools for the specification, development, and verification of programs of a certain
paradigm, such as sequential or object-oriented procedural programs, concurrent
and distributed programs and now web-services. Here, a specification can be a
description of an abstract model of the program or the specification of desirable
properties of the program in a formally defined notation. In the former case, the
specification notation is also often called a modeling language, though a modeling
language usually includes graphic features. Well-known modeling/specification
languages include CSP [28], CCS [50], the Z-Notation [58], the B-Method [1, 2],
VDM [34], UNITY [9], and TLA+ [38]. In the latter case, i.e., the specification
of program properties, these desirable properties are defined on a computational
model of the executions of the system, such as state machines or transition sys-
tems. Well-known models of this kind include the labeled transition systems and
the linear temporal logic (LTL) of Manna and Pnueli [49], which are also used
in verification tools like Spin [31] and, in an extended form, Uppaal.2

The techniques and tools of a formal method are developed based on a math-
ematical theory of the execution or the behavior of programs. Therefore, we
define a formal method to include a semantic theory as well as the techniques
and tool support underpinned by the theory for modeling, design, analysis, and
verification of programs of a defined programming paradigm. It is important to
note that the semantic theory of a formal method is developed based on the fun-
damental theories of denotational semantics [59], operational semantics [54], and
axiomatic semantics (including algebraic semantics) [17,27] of programming. As
they are all used to define and reason about behavior of programs, they are
closely related [51], and indeed, they can be “unified” [29].

In the past half a century or so, a rich body of formal theories and techniques
have been developed. They have made significant contribution to program behav-
ior characterization and understanding, and recently there has been a growing
effort in development of tool support for verification and reasoning. However,
these techniques and tools, of which each has its community of researchers, have
been mostly focusing on models of individual viewpoints. For examples, type
systems are used for data structures, Hoare Logic for local functionality, process
calculi (e.g., CSP and CSS) and I/O automata [48] for interaction and synchro-
nization protocols. While process calculi and I/O automata are similar from the
perspective of describing the interaction behavior of concurrent and distributed
components, the former is based on the observation of the global behavior of
2 http://www.uppaal.org

http://www.uppaal.org

rCOS: Defining Meanings of Component-Based Software Architectures 5

interaction sequences, and the latter on the observation of local state transitions
caused by interaction events. Processes calculi emphasize on support of alge-
braic reasoning, and automata are primarily used for algorithmic verification
techniques, i.e., model checking [15, 55].

All realistic software projects have design concerns on all viewpoints of data
structures, local sequential functionalities, and interactions. The experience,
e.g., in [32], and investigation reports on software failures, such as those of the
Therac-25 Accident in 1985–1987 [41] and the Ariane-5 Explosion in 1996 [56],
show that the cause of a simple bug that can lead to catastrophic consequences
and that ad hoc application of formal specification and verification to programs
or to models of programs will not be enough or feasible to detect and remove
these causes. Different formal techniques that deal with different concerns more
effectively have to be systematically and consistently used in all stages of a
development process, along with safety analysis that identifies risks, vulnerabil-
ities, and consequences of possible risk incidents. There are applications that
have extra concerns of design and verification, such as real-time and security
constraints. Studies show that models with these extra functionalities can be
mostly treated by model transformations into models for requirements without
these concerns [44].

1.4 The Aim and Theme of rCOS

The aim of the rCOS method is to bridge the gap sketched in the previous
sections by defining the unified meanings of component-based architectures at
different levels of abstraction in order to support seamless integration of formal
methods in modeling software development processes. It thus provides support
to MDA with formal techniques and tools for predictable development of reliable
software. Its scope covers theories, techniques, and tools for modeling, analysis,
design, verification and validation. A distinguishing feature of rCOS is the formal
model of system architecture that is essential for model compositions, transfor-
mations, and integrations in a development process. This is particularly the case
when dealing with safety critical systems (and so must be shown to satisfy cer-
tain properties before being commissioned), but beyond that, we promote with
rCOS the idea that formal methods are not only or even mainly for producing
software that is safety critical: they are just as much needed when producing a
software system that is too complex to be produced without tool assistance. As
it will be shown in this chapter, rCOS systematically addresses these complexity
problems by dealing with architecture at a large granularity, compositionality,
and separation of concerns.

1.5 Organization

Following this introduction section, we lay down the semantic foundation in
Sect. 2 by developing a general model of labeled transition systems that com-
bines the local computation (including structures and objects) in a transition

6 R. Dong et al.

and the dynamic behavior of interactions. We propose a failure-divergence se-
mantics and a failure-divergence refinement relation between transition systems
following the techniques of CSP [57]. Then in Sect. 3-5, we introduce the specifi-
cation of primitive closed components, primitive open components and processes
that are the basic architectural components in rCOS. Each of the different kinds
of components is defined by their corresponding label transition systems. Mod-
els at different levels of abstraction, including contracts and publications for
different purposes in a model-driven development process, are defined and their
relations are studied. Section 6 defines the architectural operators for composing
and adapting components. These operations on component specifications show
how internal autonomous transitions are introduced and how they cause non-
determinism that we characterized in the general labeled transition systems.
These operators extend and generalize the limited plugging, disjoint union and
gluing operators we defined in the original components. The model also unifies
the semantics and compositions of components and processes. A general compo-
nent can exhibit both passive behavior of receiving service requests and actively
invoke services from the environment. This is a major extension, but it preserves
the results that we have developed for the original rCOS model. However, this
extension still needs more detailed investigation in the future, including their
algebraic properties. Section 7 is about a piece of work on an interface model of
rCOS components. The aim is to propose an input-deterministic model of com-
ponent interfaces for better composability checking, and to give a more direct
description of provided and required protocols of components. There, we define
a partial order, called alternative refinement, among component interface mod-
els. The results are still preliminary, and interesting further research topics are
thus pointed out. Concluding remarks are given and future work is discussed in
Sect. 8.

2 Unified Semantics of Sequential Programming

The rCOS method supports programming software components that exhibit
interacting behavior with the environment as well as local data functionality
through the executions of operations triggered by interactions. The method sup-
ports interoperable compositions of components for that the local data function-
ality are implemented in different programming paradigms, including modular,
procedural and object-oriented programming. This requires a unified semantic
theory of models of programs. To this end, rCOS provides a theory of relational
semantics for object-oriented programming, in which the semantic theories of
modular and procedural programming are embedded as sub-theories. This sec-
tion first introduces a theory of sequential programs, which is then extended by
concepts for object-oriented and reactive systems.

To support model-driven development, models of components built at different
development stages are related so that properties established for a model at
a higher level of abstraction are preserved by its lower level refined models.
Refinement of components is also built on a refinement calculus of object-oriented
programs.

rCOS: Defining Meanings of Component-Based Software Architectures 7

2.1 Designs of Sequential Programs

We first introduce a unified theory of imperative sequential programming. In this
programming paradigm, a program P is defined by a set of program variables,
called the alphabet of P , denoted by αP , and a program command c written in
the following syntax, given as a BNF grammar,

c ::= x := e | c; c | c� b� c | c � c | b ∗ c (1)

where e is an expression and b a boolean expression; c1�b�c2 is the conditional
choice equivalent to “if b then c1 else c2” in other programming languages; c � c
is the non-deterministic choice that is used as an abstraction mechanism; b ∗ c
is iteration equivalent to “while b do c”.

A sequential program P is regarded as a closed program such that for given
initial values of its variables (that form an initial state), the execution of its
command c will change them into some possible final values, called the final
state of the program, if the execution terminates. We follow UTP [29] to define
the semantics of programs in the above simple syntax as relations between the
initial and final states.

States. We assume an infinite set of names X representing state variables with
an associated value space V . We define a state of X as a function s : X → V and
use Σ to denote the set of all states of X . This allows us to study all the programs
written in our language. For a subset X of X , we call ΣX the restrictions of Σ on
X the states of X ; an element of this set is called state over X . Note that state
variables include both variables used in programs and auxiliary variables needed
for defining semantics and specifying properties of programs. In particular, for
a program, we call ΣαP the states of program P .

For two sets X and Y of variables, a state s1 over X and a state s2 over Y ,
we define s1 ⊕ s2 as the state s for which s(x) = s1(x) for x ∈ X but x /∈ Y and
s(y) = s2(y) for y ∈ Y . Thus, s2 overwrites s1 in s1 ⊕ s2.

State Properties and State Relations. A state property is a subset of the
states Σ and can be specified by a predicate over X , called a state predicate. For
example, x > y+ 1 defines the set of states s for that s(x) > s(y) + 1 holds. We
say that a state s satisfies a predicate F , denoted by s |= F , if it is in the set
defined by F .

A state relation R is a relation over the states Σ, i.e., a subset of the Cartesian
product Σ × Σ, and can be specified by a predicate over the state variables
X and their primed version X ′ = {x′ | x ∈ X}, where X ′ and X are disjoint
sets of names. We say that a pair of states (s, s′) satisfies a relation predicate
R(x1, . . . , xk, y

′
1, . . . , y

′
n) if

R(s(x1)/x1, . . . , s(xk)/xk, s
′(y1)/y′1, . . . , s

′(yn)/y′n)

holds, denoted by (s, s′) |= R. Therefore, a relational predicate specifies a set of
possible state changes. For example, x′ = x+1 specifies the possible state changes

8 R. Dong et al.

from any initial state to a final state in which the value of x is the value of x in
the initial state plus 1. However, x′ ≥ x + 1 defines the possible changes from
an initial state to a state in which x has a value not less than the initial value
plus 1. A state predicate and a relational predicate only constrain the values of
variables that occur in the predicates, leaving the other variables to take values
freely. Thus, a state predicate F can also be interpreted as a relational predicate
such that F holds for (s, s′) if s satisfies F . In addition to the conventional
propositional connectors ∨, ∧ and ¬, we also define the sequential composition
of relational predicates as the composition of relations

R1;R2 =̂ ∃x0 • R1(x0/x
′) ∧R2(x0/x), (2)

where x0 is a vector of state variables; x and x′ represent the vectors of all
state variables and their primed versions in R1 and R2; and the substitutions
are element-wise substitutions. Therefore, a pair of states (s, s′) satisfies R1;R2

iff there exists a state s0 such that (s, s0) satisfies R1 and (s0, s
′) satisfies R2.

Designs. A semantic model of programs is defined based on the way we observe
the execution of programs. For a sequential program, we observe which possible
final states a program execution reaches from an initial state, i.e., the relation
between the starting states and the final states of the program execution.

Definition 1 (Design). Given a finite set α of program variables (as the alpha-
bet of a program in our interest), a state predicate p and a relational predicate R
over α, we use the pair (α, p � R) to represent a program design. The relational
predicate p � R is defined by p ⇒ R that specifies a program that starts from
an initial state s satisfying p and if its execution terminates, it terminates in a
state s′ such that (s, s′) |= R.

Such a design does not observe the termination of program executions and it is
a model for reasoning about partial correctness. When the alphabet is known,
we simply denote the design by p � R. We call p the precondition and R the
postcondition of the design.

To define the semantics of programs written in Syntax (1), we define the op-
erations on designs over the same alphabet. In the following inductive definition,
we use a simplified notation to assign design operations to program constructs.
Note that on the left side of the definition, we mean the program symbols while
the right side uses relational operations over the corresponding designs of a pro-
gram, i.e., we identify programs with a corresponding design.

x := e =̂ true � x′ = e ∧
∧

y∈α,y �≡x
y′ = y,

c1; c2 =̂ c1; c2

c1 � b� c2 =̂ b ∧ c1 ∨ ¬b ∧ c2,

c1 � c2 =̂ c1 ∨ c2,

b ∗ c =̂ (c; b ∗ c)� b� skip,

(3)

rCOS: Defining Meanings of Component-Based Software Architectures 9

where we have skip =̂ true �
∧

x∈α(x
′ = x). We also define chaos =̂ false �

true. In the rest of the paper, we also use farmed designs of the form X : p � R
to denote that only variables in X can be changed by the design p � R. So
x := e = {x} : true � x′ = e.

However, for the semantics definition to be sound, we need to show that the set
D of designs is closed under the operations defined in (3), i.e., the predicates on
the right-hand-side of the equations are equivalent to designs of the form p � R.
Notice that the iterative command is inductively defined. Closure requires the
establishment of a partial order that forms a complete partial order (CPO) for
the set of designs D.

Definition 2 (Refinement of designs). A design Dl = (α, pl � Rl) is a
refinement of a design Dh = (α, ph � Rh), if

∀x, x′ • (pl ⇒ Rl) ⇒ (ph ⇒ Rh)

is valid, where x and x′ represent all the state variables and their primed versions
in Dl and Dh.

We denote the refinement relation by Dh Dl. The refinement relation says that
any property satisfied by the “higher level” design Dh is preserved (or satisfied)
by the “lower level” design Dl. The refinement relation can be proved using the
following theorem.

Theorem 1. Dh Dl when

1. the pre-condition of the lower level is weaker: ph ⇒ pl, and
2. the post-condition of the lower level is stronger: pl ∧Rl ⇒ Rh.

The following theorem shows that is indeed a “refinement relation between
programs” and forms a CPO.

Theorem 2. The set D of designs and the refinement relation satisfy the
following properties:

1. D is closed under the sequential composition “;”, conditional choice “ � b� ”
and non-deterministic choice “�” defined in (3),

2. is a partial order on the domain of designs D,
3. is preserved by sequential composition, conditional choice and non-deter-

ministic choice, i.e., if Dh Dl then for any D

D;Dh D;Dl, Dh;D Dl;D,

Dh � b�D Dl � b�D, Dh �D Dl �D,

4. (D,) forms a CPO and the recursive equation X = (D;X)� b� skip has
a smallest fixed-point, denoted by b ∗ D, which may be calculated from the
bottom element chaos in (D,).

10 R. Dong et al.

For the proof of the theorems, we refer to the book on UTP [29]. D1 and D2 are
equivalent, denoted as D1 = D2 if they refine each other, e.g., D1�D2 = D2�D1,
D1 � b �D2 = D2 � ¬b �D1, and D1 � D2 = D1 iff D1 D2. Therefore, the
relation is fundamental for the development of the refinement calculus to
support correct by design in program development, as well as for defining the
semantics of programs.

When refining a higher level design to a lower level design, more program
variables are introduced, or types of program variables are changed, e.g., a set
variable implemented by a list. We may also compare designs given by different
programmers. Thus, we must relate programs with different alphabets.

Definition 3 (Data refinement). Let Dh = (αh, ph � Rh) and Dl = (αl, pl �
Rl) be two designs. Dh Dl if there is a design (αh ∪ αl, ρ(αl, α

′
h)) such that

ρ;Dh Dl; ρ. We call ρ a data refinement mapping.

Designs of Total Correctness. The designs defined above do not support
reasoning about termination of program execution. To observe execution initia-
tion and termination, we introduce a boolean state variable ok and its primed
counterpart ok ′, and lift a design p � R to L(p � R) defined below:

L(p � R) =̂ ok ∧ p ⇒ ok ′ ∧R.

This predicate describes the execution of a program in the following way: if the
execution starts successfully (ok = true) in a state s such that precondition p
holds, the execution will terminate (ok ′ = true) in a state s′ for which R(s, s′)
holds. A design D is called a complete correctness design if L(D) = D. Notice
that L is a healthy lifting function from the domain D of partially correct designs
to the domain of complete correct designs L(D) in that L(L(D)) = L(D). The
refinement relation can be lifted to the domain L(D), and Theorem 1 and 2 both
hold. For details of UTP, we refer to the book [29]. In the rest of the paper, we
assume the complete correctness semantic model, and omit the lifting function
L in the discussion.

Linking Theories. We can unify the theories of Hoare-logic [27] and the pred-
icate transformer semantics of Dijkstra [17]. The Hoare-triple {p}D{r} of a pro-
gram D, which can be represented as a design according to the semantics given
above, is defined to be p ∧ D ⇒ r′, where p and r are state predicates and r′

is obtained from r by replacing all the state variables in r with their primed
versions.

Given a state predicate r, the weakest precondition of the postcondition r for
a design D, wp(p � R, r), is defined to be p∧¬(R;¬r). Notice that this is a state
predicate.

This unification allows the use of the laws in both theories to reason about
program designs within UTP.

rCOS: Defining Meanings of Component-Based Software Architectures 11

2.2 Designs of Object-Oriented Programs

We emphasize the importance of a semantic theory for concept clarification,
development of techniques and tool support for correct by design and verification.
The semantic theory presented in the previous section needs to be extended to
define the concepts of classes, objects, methods, and OO program execution.
The execution of an OO program is more complex than that of a traditional
sequential program because the execution states have complex structures and
properties. The semantics of OO programs has to cohesively define and treat

– the concepts of object heaps, stacks and stores,
– the problems of aliasing,
– subtyping and polymorphism introduced through the class inheritance mech-

anism, and
– dynamic typing of expression evaluation and dynamic binding of method

invocation.

Without an appropriate definition of the execution state, the classic Hoare-logic
cannot be used to specify OO program executions. Consider two classes C1 and
C2 such that C1 is a subclass of C2 (denoted by C1 � C2), and variables C1 x1

and C2 x2 of the classes, respectively. Assume a is an attribute of C2 and thus
also an attribute of C1, the following Hoare-triple (confer previous section for
representing Hoare-triples as designs) holds when x1 and x2 do not refer to the
same object, i.e., they are not aliases of the same object, but does not necessarily
hold if they refer to the same object:

{x2.a = 4} x1.a := 3 {x2.a = 4}.

If inheritance allows attribute hiding in the sense that the attribute a of C2 can be
redeclared in its subclass C1, even the following Hoare-triple does not generally
hold:

{x1.a = 3} x2 := x1 {x2.a = 3}.

Therefore, the following fundamental backward substitution rule does not gener-
ally hold for OO programs:

{Q[e/le]} le := e {Q}.

In order to allow the use of OO design and programming for component-based
software development, rCOS extends the theory of designs in UTP to a theory
of OO designs. The theory includes an UTP-based denotational semantics [26,
66], a graph-based operational semantics of OO programs [36] and a refinement
calculus [66] of OO designs. We only give a summary of the main ideas and
we refer to the publications for technical details, which are of less interest for
general readers.

12 R. Dong et al.

OO Specification. The rCOS OO specification language is defined in [26]. Sim-
ilar to Java, an OO program P consists of a list ClassDecls of class declarations
and a main program body Main . Each class in ClassDecls is of the form:

class M [extends N]
private T11 a11 = d11, . . . , T1n1 a1n1 = d1n1 ;
protected T21 a21 = d21, . . . , T2n2 a2n2 = d2n2 ;
public T31 a31 = d31, . . . , T3n3 a3n3 = d3n3 ;
method m1 (T11 x1; T12 y1) { c1}

· · ·
m� (T�1 x� ; T�2 y�) { c�}

Therefore, a class can declare at most one direct superclass using extends, some
attributes with their types and initial values, and methods with their signatures
and body commands. Types include classes and a set of assumed primitive data
types such as integers, booleans, characters and strings. The scopes of visibility of
the attributes are defined by the private, protected and public keywords. We
could also have different scopes of visibility for the methods, but we assume all
methods are public for simplicity. A method can have a list of input parameters
and return parameters with their types. We use return parameters, instead of
return types of methods to a) avoid the use of method invocations in expressions
so that evaluation of expressions have no side effect, and b) give us the flexibility
in specifications that a method can have a number of return values.

The main program body Main declares a list vars of variables, called the
global variables with their types and initial values, and a command c. We can
thus denote the main program body as a pair (vars , c) in our discussion. One
can view the main program body as a class Main :

class Main { private vars ; method main(){c} }

A command in a method, including the main method, is written in the following
syntax:

expressions: e ::= x | null | this | e.a | (C)e | f(e)
assignable expressions: le ::= x | e.a
commands: c ::= skip | chaos | var T x = e; c; end x |

c; c | c� b� c | c � c | b ∗ c |
e.m(e∗; le) | le := e | C.new (le)

Here, x is a basic type or an object variable and e.a an attribute of e. For the sake
of clarity, a simplified presentation for method parameters and variable scope
is used; we generally allow lists of expressions as method parameters and lists
of variable declarations for the scope operator var. Notice that the creation of
a new object C.new(le) is a command not an expression. It returns in le the
object newly created and plays the same role as le = new C() in Java or C++.

rCOS: Defining Meanings of Component-Based Software Architectures 13

Objects, Types and States. An object has an identity, a state and a behavior.
We use a designated set REF to represent object identities. An object also has
a runtime type. Thus, we define an object by a triple o = (r, C, s) of its identity
r, runtime type C and state s. The state s is a typed function

s : A(C) → O ∪ V ,

where

– O is the set of all objects of all classes,
– V the value space of all the primitive data types,
– A(C) is the set of names of the attributes of C, including those inherited

from all its superclasses, and
– s maps an attribute a to an object or value of the type of a declared in C.

Therefore, an object o has a recursive structure, and can be represented by a
rooted-labeled-directed graph, called an object graph [36, 66], in which

– the root represents the object labeled by its runtime type,
– each outgoing edge is labeled by an attribute of the object and leads to a

node that is either an object or a value, and
– each object node is the root of a subgraph representing that object.

In an object graph, all value nodes are leaves. An object graph can also be
represented by a UML object diagram [66], but UML object diagrams do not have
the properties of the mathematical structure of rooted-labeled-directed graphs
needed for formal reasoning and analysis. Furthermore, the types in an object
graph together with the labels for attributes form a class graph that is called the
type graph of the object that the object graph represents [36, 66].

States of Programs. Given an OO program P = ClassDecls •Main , a global
state of P is defined as a mapping s : vars → O ∪ V that assigns each variable
x ∈ vars an object or a value depending on the type of x. Taking Main as a class,
a global state of P is thus an object of Main and can be represented as an object
graph, called a global state graph. During the execution of the main method, the
identity of the object representing the state will never be changed, but its state
will be modified in each step of the execution. All the global state graphs have
the same type graph. The type graph of the program can be statically defined
from the class declarations ClassDecls . Its UML counterpart is the UML class
diagram of the program in which classes have no methods. For example, Fig. 1
is a global state of the accompanied program outline, and its type graph (and
the corresponding UML class diagram) is given in Fig. 2.

Global states are enough for defining a UTP-based denotational semantics [26]
and a “big step semantics” of the program in which executions of intermediate
execution steps and the change of locally declared variables are hidden. To define
a small step operational semantics, we need to represent the stack of local variable
declarations to characterize the execution of var T x = x0, where T can either

14 R. Dong et al.

ε

(r2, Guest)
(r1,Room) (r3,Reservation)

(0810, int)(true, bool)
(r4,Account)

(1000, int) (r5,Transaction)

y1

y2

y3

resvstays

nostatus acc

bal trans

1 program Hotel {

2 class Person {

3 public Account acc = null;
4 method m1(){...}

5 }

6 class Guest extends Person {

7 public
8 Room stays = null,
9 Reservation resv = null;

10 method
11 makeReservation() {...}

12 checkOut() {...}

13 }

14 class Account {

15 public
16 int bal = 0;

17 Transaction trans = null;
18 method checkBalance() {...}

19 }

20 class Room {

21 public
22 int no = 0,

23 bool status = false;
24 method changeStatus() {...}

25 }

26 class Transaction {

27 ...

28 }

29 class Main {

30 private
31 Room y1,

32 Guest y2,

33 Reservation y3;

34 method main() {...}

35 }

36 } // end of program

Fig. 1. An example of object graph

be a class or a data type, and x0 is the declared initial value of x. For this, we
extend the notation of global state graphs by introducing edges labeled by a
designated symbol $. The execution of var T x = x0 from a state graph G adds
a new root node n′ to G that has an outgoing edge to the root n of G, labeled
by $, and another outgoing edge to x0, labeled by x. We can understand this as
pushing a new node on top of G with one outgoing edge labeled by $ to the root
of G and another labeled by x to its initial value. Such a state graph contains
a $-path of scope nodes, called the stack. Executing the command end x from
such a state graph pops out the root together with its outgoing edges. Figure 3
shows an example of a state graph that characterizes the local scopes below:

var C2 z = o2, C3 x = o3;var C2 x = o2;var int z = 3, C1 y = o1

where o1, o2 and o3 are objects of type C1, C2, and C3 referred to by the variables
y, z and x in their scopes, respectively.

rCOS: Defining Meanings of Component-Based Software Architectures 15

Person

Guest Account

Reservation Room int

bool

Transaction

� acc

resv stays bal trans

no

status

Person Account

Guest Transaction

RoomReservation

bal: int

no: int
status: bool

acc

trans

staysresv

Fig. 2. An example of class graph and diagram

Semantics. We explain the semantics informally. Both a denotational semantics
and an operational semantics can be defined by specifying which changes the
execution of a command makes on a given state graph. This can be understood
with our graph representation of states. Given an initial state graph G

– assignment: le.a := e first evaluates e on G as a node n′ of G and then swings
the a-edge of the target node of le in G to the node n′;

– object-creation: C.new(le.a) makes an object graph of C according to the
initial values of its attributes, such that the root n′ is not in G, and then
swings the a-edge of the target node of le in G to the node n′;

– method invocation: e.m(e1; le.a) first records e, e1 and le to this , the formal
value parameter of m() and y+, respectively, then executes the body of
m(), returns the value of the formal return parameter of m() to the actual
return parameter y+.a which is the initial le.a that might be changed by the
execution, roughly that is

var this = e, in = e1, y
+ = le, return;

c; y+.a := return;
end this , in, y+, return

where in and return are the formal parameters of m().

16 R. Dong et al.

(o1)

(3) (5)

(o2)

(o3) (null)

a b

imp

next

next

$

$

$

w
v

x
z

x

yz

Fig. 3. An example of state graph with local scopes

Then conditional choice, non-deterministic choice and iterative statements can
be defined inductively. For a denotational semantics, a partial order has to be
defined with that a unique fixed-point of the iterative statements and recursive
method invocations can be defined. The theory of denotational semantics is
presented in [26] and the graph-based operational semantics is given in [36].

OO Refinement. OO refinement is studied at three levels in rCOS: refinement
between whole programs, refinement between class declarations (called struc-
ture refinement), and refinement between commands. The refinement relation
between commands takes exactly the same view as in the previous section about
traditional sequential programs, where the execution of a program command is a
relation between states. A command cl is a refinement of a command ch, denoted
by ch cl, if for any given initial state graph G, any possible final state G′ of cl
is also a possible final state of ch. This definition takes care of non-determinism
and a refined command is not more non-deterministic than the original com-
mand. However, refinement between commands in OO programming only makes
sense under the context of a given list of class declarations ClassDecls . Under
such a given context, some variables and method invocations in a command c
might not be defined. In this case, we treat the command to be equivalent to
chaos, which can be refined by any command under the same context. To com-
pare two commands under different class contexts, we use the extended notation
of data refinement and relate the context of cl to that of ch by a class (graph)
transformation.

The combination of class graph transformations and command transforma-
tions is illustrated in Fig. 4. It shows that given a class graph transformation
ρ from CG to CG1, we can derive a transformation ρo from an instance object
graph OG of CG to an instance object graph OG1 of CG1, as well as a transfor-
mation ρc on commands. Then ρ is a class refinement if the diagram commutes
for all OG of CG and all commands c.

Definition 4 (OO program refinement). A program Pl = ClassDecls l •
Main l is a refinement of a program Ph = ClassDeclsh • Mainh, if there is a
class graph transformation from the class graph of Pl to that of Ph such that the
command of Main l is a refinement of the command of Mainh.

rCOS: Defining Meanings of Component-Based Software Architectures 17

CG OG OG ′

CG1 OG1 OG ′
1

i c

ρ

i ρc(c)

ρo ρo

Fig. 4. Class graph transformations and command transformations

In the paper [66], we give a systematic study of the combination of class re-
finement and command refinement, and develop a graph-based OO refinement
calculus. It gives a full formalization of OO program refactoring [23] by a group
of simple rules of class graph transformations, including adding classes, at-
tributes, methods, decomposition and composition of classes, promoting methods
from subclasses to super classes, from private to protected and then to public.
The combination of class graph transformations with command transformations
formalizes the design patterns for class responsibility assignments for object-
oriented design, including in particular the expert patterns, low coupling and
high cohesion patterns [39]. The use of these patterns is an essential practice in
OO program design [12].

An essential advantage of OO programming is that classes can be reused in
different applications that are implemented in different main methods. Classes
can also be extended for application evolution. The classes of an application
program are in fact the metamodel of the structure or organization of the appli-
cation domain in terms of concepts, objects, their relations, and behavior. On
the other hand, the main method of the program is the automation of the appli-
cation business processes, i.e., use cases, via the control of the objects’ behavior.
Of course, different structures provide different functionalities and thus differ-
ent use cases, the same use case can also be supported by different structures.
The structure refinement in rCOS characterizes this fundamental feature of OO
programming.

Definition 5 (OO structure refinement). A list ClassDecls l of class decla-
rations is a refinement of a list ClassDeclsh of class declarations if for any main
method Main , ClassDeclsh •Main ClassDecls l •Main.

This means that a refined list of class declarations has more capacity in providing
more and “better” services in the sense that the lower level class declarations may
provide additional functionality or may provide more defined functionality with
less non-determinism following the classical notion of refinement.

The refinement calculus is proved to be sound and relatively complete in the
sense that the rules allow us to transform the class graph of a program to a tree
of inheritance, and with the derived transformation rules on the main method,
the program can be refined to an equivalent program that only has the main
class. Thus each OO program can be transformed to an equivalent procedural
program [66].

18 R. Dong et al.

2.3 Reactive Systems and Reactive Designs

The programs that have been considered so far in this section are sequential and
object-oriented programs. For these programs, our semantic definition is only
concerned with the relation between the initial and final states and the termina-
tion of execution. In general, in a concurrent or reactive program, a number of
components (usually called processes) are running in parallel, each following its
own thread of control. However, these processes interact with each other and/or
with the environment (in the case of a reactive program) to exchange data and
to synchronize their behavior. The termination of the processes and the program
as whole is usually not a required property, though the enabling condition and
termination of execution of individual actions are essential for the progress of all
processes, i.e., they do not show livelock or deadlock behavior.

There are mainly two different paradigms of programming interaction and syn-
chronization, shared memory-based programming and message-passing program-
ming. However, there can be programs using both synchronization mechanisms,
in distributed systems in which processes on the same node interact through
shared variables, and processes on different nodes interact through message pass-
ing. We define a general model of labeled transition systems for describing the
behavior of reactive systems.

Reactive Designs. In general a reactive program can be considered as a set
of atomic actions programmed in a concurrent programming language. The ex-
ecution of such an atomic action carries out interactions with the environment
and changes of the state of the variables. We give a symbolic name for each
atomic action, which will be used to label the state transitions when defining
the execution of a reactive program.

The execution of an atomic action changes the current state of the program
to another state, just in the way a piece of sequential code does, thus it can be
specified as a design p � R. However, the execution requires resources that might
be occupied by another process or a synchronization condition. The execution
is then suspended in a waiting state. For allowing the observation of the waiting
state, we introduce the new boolean state variables wait and wait ′ and define
the following lifting function on designs

H(D) =̂ wait ′ � wait �D,

specifying that the execution cannot proceed in a waiting state. Note that wait
is not a program variable, and thus cannot be directly changed by a program
command. Instead, wait allows us to observe waiting states when talking about
the semantics of reactive programs. We call a design D a reactive design if
H(D) = D. Notice that H(H(D)) = H(D).

rCOS: Defining Meanings of Component-Based Software Architectures 19

Theorem 3 (Reactive design). The domain of reactive designs has the fol-
lowing closure properties:

H(D1 ∨D2) = H(D1) ∨H(D2),

H(D1;D2) = H(D1);H(D2),

H(D1 � b�D2) = H(D1)� b�H(D2).

Given a reactive design D and a state predicate g, we call g � D a guarded
design and its meaning is defined by

g � D =̂ D � g � (true � wait ′).

Theorem 4. If D is a reactive design, so is g � D.

For non-reactive designs p � R, we use the notation g � (p � R) to denote the
guarded design g � H(p � R), where it can be proved H(p � R) = (wait ∨ p) �
(wait ′ � wait � R). This guarded design specifies that if the guard condition g
holds, the execution of design proceeds from non-waiting state, otherwise the
execution is suspended. It is easy to prove that a guarded design is a reactive
design.

Theorem 5 (Guarded design). For guarded designs, we have

g1 � D1 � b� g2 � D2 = (g1 � b� g2) � (D1 � b�D2),

g1 � D1; g2 � D2 = g1 � (D1; g2 � D2),

g � D1 ∨ g � D2 = g � (D1 ∨D2),

g � D1;D2 = g � (D1;D2).

A concurrent program P is a set of atomic actions, and each action is a guarded
command in the following syntax:

c ::= x := e | c; c | c� b� c | c � c | g � c | b ∗ c (4)

Note that x := e is interpreted as command guarded by true. The semantics of
the commands is defined inductively by

x := e =̂ H(true � x′ = e
∧

y∈α,y �≡x y
′ = y)

g � c =̂ c� g � (true � wait ′)
g1 � c1 � · · · � gn � cn =̂ (g1 ∨ · · · ∨ gn) � (g1 ∧ c1 ∨ · · · ∨ gn ∧ cn)

and for all other cases as defined in equation (3) for the sequential case. The
semantics and reasoning of concurrent programs written in such a powerful lan-
guage are quite complicated. The semantics of an atomic action does not gener-
ally equal to a guarded design of the form g � p � R. This imposes difficulty to
separate the design of the synchronization conditions, i.e., the guards, from the
design of the data functionality. Therefore, most concurrent programming lan-
guages only allow guarded commands of the form g � c such that no guards are
in c anymore. A set of such atomic actions can also be represented as a Back’s
action system [3], a UNITY program [9] and a TLA specification [37].

20 R. Dong et al.

Labeled State Transition Systems. Labeled transition systems are often
used to describe the behavior of reactive systems, and we will use them in the
following sections when defining the semantics of components. Hence, the re-
maining part of this section deals with basic definitions and theorems about
labeled transition systems. Intuitively, states are defined by the values of a set
of variables including both data variables and variables for the flow of control,
which we do not distinguish here. Labels represent events of execution of ac-
tions that can be internal events or events observable by the environments, i.e.,
interaction events.

Definition 6 (Labeled transition system). A labeled transition system
is a tuple

S = 〈var , init , Ω, Λ〉,

where

– var is the set of typed variables (not including ok and wait), denoted S.var ,
we define Σvar to be the set of states over var ∪ {ok ,wait},

– init is the initial condition defining the allowable initial states, denoted by
S.init , and

– Ω and Λ are two disjoint sets of named atomic actions, called observable
and internal actions, respectively; actions are of the form a{c} consisting of
a name a and a guarded command c as defined in Syntax (4). Observable
actions are also called interface actions.

In an action a{c}, we call c the body of a. For Γ = Ω ∪ Λ and for two states s
and s′ in Σvar ,

– an action a ∈ Γ is said to be enabled at s if for the body c of a the
implication c[s(x)/x] ⇒ ¬wait ′ holds, and disabled otherwise.

– a state s is a divergence state if ok is false and a deadlock state if
wait = true.

– we define −→ ⊆ Σvar × {a|a{c} ∈ Γ} ×Σvar as the state transition relation
such that s a−→ s′ is a transition of S, if a is enabled at s and s′ is a post-state
of the body c of action a.

Notice that this is a general definition of labeled transition systems that includes
both finite and infinite transition systems, closed concurrent systems in which
processes share variables (when all actions are internal), and I/O automata.
Further, it models both data rich models in which a state contains values of data
variables, and symbolic state machines in which a state is a symbol represents
an abstract state of a class of programs. In later sections, we will see the symbols
for labeling the actions can also be interpreted as a combination of input events
triggering a set of possible sequences of output events.

Definition 7 (Execution, observable execution and stable state). Given
a labeled transition system S,

rCOS: Defining Meanings of Component-Based Software Architectures 21

1. an execution of S is a sequence of transitions s0
a1−→ s1

a2−→ · · · an−−→ sn of
S, where n ≥ 0 and si (0 ≤ i ≤ n) are states over var ∪{ok ,wait} such that
s0 is an initial state of S.

2. a state s is said to be unstable if there exists an internal action enabled in
s. A state that is not unstable is called a stable state.

3. an observable execution of S is a sequence of external transitions

s0
a1==⇒ s1

a2==⇒ · · · an==⇒ sn

where all ai ∈ Ω for i = 1, . . . , n, and s
a

==⇒ s′ if s and s′ there exist internal
actions τ1, . . . , τk+� as well as states tj for k, 	 ≥ 0 such that

s
τ1−→ · · · τk−→ tk

a−→ · · · τk+�−−−→ s′.

Notice that the executions (and observable executions) defined above include
chaotic executions in which divergence states may occur. Therefore, we give the
semantic definitions for transitions systems below following the ideas of failure-
divergence semantics of CSP.

Definition 8 (Execution semantics). Let S = 〈var , init , Ω, Λ〉 be a transi-
tion system. The execution semantics of S is defined by a pair (ED(S), EF(S))
of execution divergences and execution failures, where

1. A divergence execution in ED(S) is a finite observable execution sequence of
S

s0
a1==⇒ s1

a2==⇒ · · · an==⇒ sn

where there exists an divergence state sk, k ≤ n. Notice that if sk is a
divergence state, each sj with k ≤ j ≤ n is also a divergence state.

2. The set EF(S) contains all the pairs (σ,X) where σ is a finite observable
execution sequence of S and X ⊆ Ω such that one of the following conditions
hold
(a) σ is empty, denoted by ε, and there exists an allowable initial state s0

such that a is disabled at s0 for any a ∈ X or s0 is unstable and X can
be any set,

(b) σ ∈ ED(S) and X can be any subset of Ω, i.e., any interaction with the
environment can be refused,

(c) σ = s0
a1==⇒ · · · ak==⇒ sk and for any s in the sequence, s(ok) = true and

sk(wait) = false, and each a ∈ X is disabled at sk, or sk is unstable and
X can be any set.

The semantics takes both traces and data into account. The component X of
(σ,X) ∈ EF(S) is called a set of refusals after the execution sequence tr . We
call the subset ExTrace(S) = {σ | (σ, ∅) ∈ EF(S)} the normal execution traces,
or simply execution traces.

When interaction behavior and properties are the main interest, we can omit
the states from the sequences and define the interaction divergences ID(S) and
interaction failures IF(S) as

22 R. Dong et al.

ID(S) = {a1 . . . an | s0
a1==⇒ s1

a2==⇒ · · · an==⇒ sn ∈ ED(S)}
IF(S) = {(a1 . . . an, X) | (s0

a1==⇒ s1
a2==⇒ · · · an==⇒ sn, X) ∈ EF(S)}

We call the set T (S) = {σ | (tr , ∅) ∈ IF(S)} the normal interaction traces, or
simply traces. Also, when interaction is the sole interest, abstraction would be
applied to the states so as to generate transition systems with symbolic states for
the flow of control. Most existing modeling theories and verification techniques
work effectively on transition systems with finite number of states, i.e., finite
state systems.

Definition 9 (Refinement of reactive programs). Let

Sl = 〈var , init l, Ωl, Λl〉 and Sh = 〈var , inith, Ωh, Λh〉

be transition systems. Sl is a refinement of Sh, denoted by Sh Sl, if ED(Sl) ⊆
ED(Sh) and EF(Sl) ⊆ EF(Sh), meaning that Sl is not more likely to diverge or
deadlock when interacting with the environment through the interface actions Ω.

Notice that we, for simplicity, assume that Sl and Sh have the same set of
variables. When they have different variables, the refinement relation can be
defined through a state mapping (called refinement mapping in TLA [37]).

A labeled transition system is a general computational model for reactive pro-
grams developed in different technologies. Thus, the definition of refinement will
lead to a refinement calculus when a modeling notation of reactive programs is
defined that includes models of primitive components and their compositions. We
will discuss this later when the rCOS notation is introduced, but the discussion
will not be in great depth as we focus on defining the meaning of component-
based software architecture. On the other hand, the following theorem provides
a verification technique for checking refinement of transition systems that is sim-
ilar to the relation of simulation of transition systems, but extended with data
states.

Theorem 6 (Refinement by simulation). For two transition systems Sh and
Sl such that they have the same set of variables,

– let guardh(a) and guard l(a) be the enabling conditions, i.e., the guards g for
an action a with body g � c in Sh and Sl, respectively,

– nexth(a) and next l(a) are the designs, i.e., predicates in the form of p �
R, specifying the state transition relations defined by the body of an action
a{g � (p � R)} in Sh and Sl, respectively,

– g(Ωh), g(Λh), g(Ωl) and g(Λl) are the disjunctions of the guards of the in-
terface actions and invisible actions of the programs Sh and Sl, respectively,

– inext(Sh) =
∨

a∈Λh
guardh(a) ∧ nexth(a) the state transitions defined by the

invisible actions of Sh, and
– inext(Sl) analogously defined as inext(Sh) above.

rCOS: Defining Meanings of Component-Based Software Architectures 23

We have Sh Sl if the following conditions holds

1. Sl.init ⇒ Sh.init , i.e., the initial condition of Sh is preserved by Sl,
2. for each a ∈ Ωl, a ∈ Ωh and guard l(a) ⇐⇒ guardh(a),
3. for each a ∈ Ωl, a ∈ Ωh and nexth(a) next l(a), and
4. ¬g(Ωh) =⇒ (g(Λh) ⇐⇒ g(Λl)) ∧ (inext(Sl) =⇒ inext(Sh)), i.e.,

any possible internal action of Sl in an unstable state would be a transition
allowable by an internal action of Sh.

When inext(Sh) inext(Sl), the fourth condition can be weakened to

¬g(Ωh) =⇒ (g(Λh) ⇐⇒ g(Λl))

In summary, the first condition ensures the allowable initial states of Sl are
allowable for Sh; the second ensures Sl is not more likely to deadlock; the third
guarantees that Sl is not more non-deterministic, thus not more likely to diverge,
than Sh, and the fourth condition ensures any refining of the internal action in
Sl should not introduce more deadlock because of removing internal transitions
from unstable states. Notice that we cannot weaken the guards of the actions in
a refinement as otherwise some safety properties can be violated.

This semantics extends and unifies the theories of refinement of closed con-
current programs with shared variables in [3, 9, 37, 44] and failure-divergence
refinement of CSP [57]. However, the properties of this unified semantics still
have to be formally worked out in more detail.

Design and verification of reactive programs are challenging and the scalability
of the techniques and tools is fundamental. The key to scalability is composition-
ality and reuse of design, proofs and verification algorithms. Decomposition of a
concurrent program leads to the notion of reactive programs, that we model as
components in rCOS. The rCOS component model is presented in the following
sections.

3 Model of Primitive Closed Components

The aim of this chapter is to develop a unified model of architecture of com-
ponents, that are passive service components (simply called components) and
active coordinating components (simply referred to as processes). This is the first
decision that we make for separation of concerns. The reason is that components
and processes are different in nature, and they play different roles in composing
and coordinating services to form larger components. Components maintain and
manage data to provide services, whereas processes coordinate and orchestrate
services in business processes and workflows. Thus, they exhibit simpler semantic
behaviors than “hybrid” components that can have both passive and active be-
haviors when interacting with the environment. However, as a semantic theory,
we develop a unified semantic model for all kinds of architectural components -
the passive, active and the general hybrid components. We do this step by step,
starting with the passive components, then the active process and finally we will

24 R. Dong et al.

define compositions of components that produces general components with both
passive and active behavior. We start in this section with the simplest kind of
components - primitive closed components. They are passive.

A closed and passive component on one hand interacts with the environment
(users/actors) to provide services and on the other hand carries out data pro-
cessing and computation in response to those services. Thus, the model of a
component consists of the types of the data, i.e., the program variables, of the
component, the functionality of the operations on the data when providing ser-
vices, and the protocol of the interactions in which the component interacts with
the environment. The design of a component evolves from the techniques ap-
plied during the design process, i.e., decomposing, analyzing, and integrating
different viewpoints to form a correctly functioning whole component, providing
the services required by the environment. The model of a component is sepa-
rated into a number of related models of different viewpoints, including static
structure, static data functionality, interaction protocol, and dynamic control
behavior. This separation of design concerns of these viewpoints is crucial to
a) control the complexity of the models, and b) allow the appropriate use of
different techniques and tools for modeling, analysis, design, and verification.

It is important to note that the types of program data are not regarded as
a difficult design issue anymore. However, when object-oriented programming is
used in the design and implementation of a component-based software system,
the types, i.e., the classes of objects become complicated and their design is much
more tightly coupled with the design of the functionality of a component. The
rCOS method presents a combination of OO technology and component-based
technology in which local data functionality is modeled with the unified theory
of sequential programming, as discussed in the previous section.

3.1 Specification Notation for Primitive Closed Components

To develop tool support for a formal method, there is a need for a specification
notation. In rCOS, the specification notation is actually a graphical input nota-
tion implemented in a tool, called the rCOS modeler.3 However, in this chapter
the specification notation is introduced incrementally so as to show how archi-
tectural components, their operations and semantics can be defined and used
in examples. We first start with the simplest building blocks4 in component
software, which we call primitive closed components. Closed components provide
services to the environment but they do not require services from other compo-
nents to deliver the services. They are passive as they wait for the environment
to call their provided services, having no autonomous actions to interact with
the environment. Furthermore, being primitive components, they do not have in-
ternal autonomous actions that result from interaction among sub-components.
We use the notation illustrated in Fig. 5 to specify primitive closed components,
which is explained as follows.
3 http://rcos.iist.unu.edu
4 In the sense of concepts and properties rather than size of software, e.g., measured

by number of lines of code.

http://rcos.iist.unu.edu

rCOS: Defining Meanings of Component-Based Software Architectures 25

1 component K {
2 T x = c; // initial state of component
3 provided interface I { // provided methods
4 m1(parameters) { g1 � c1 /∗ functionality definition ∗/ };
5 m2(parameters) { g2 � c2 /∗ functionality definition ∗/ };
6 ...
7 m(parameters) { g � c /∗ functionality definition ∗/ };
8 };
9 internal interface { // locally defined methods

10 n1(parameters) { h1 � d1 /∗ functionality definition ∗/ };
11 n2(parameters) { h2 � d2 /∗ functionality definition ∗/ };
12 ...
13 n(parameters) { h � d /∗ functionality definition ∗/ };
14 }
15 class C1{...}; class C2{...}; ... // used in the above specification
16 }

Fig. 5. Format of rCOS closed components

Interfaces of Components. The provided interface declares a list of methods
or services that can be invoked or requested by clients. The interface also allows
declarations of state variables. A closed component only provides services, and
thus, it has only a provided interface and optionally an internal interface, which
declares private methods. Private methods can only be called by provided or
private methods of the same component.

Access Control and Data Functionality. The control to the access and the
data functionality of a method m, in a provided or internal interface, is defined
by a combination of a guard g and a command c in the form of a guarded
command g � c.

The components that we will discuss in the rest of this section are all primitive
closed components. This definition emphasizes on the interface of the provided
services. The interface supports input and output identifications, data variables,
and the functional description defined by the bodies of the interface methods.
On the other hand, the guards of the methods are used to ensure that services
are provided in the right order.

Based on the theory of guarded designs presented in Sect. 2, we assume that
in a closed component the access control and data functionality of each provided
interface method m is defined by a guarded design g � D. For a component
K, we use K.pIF to denote the provided interface of K, K.iIF the internal
interface of K, K.var the variables of K, K.init the set of initial states of K.
Furthermore, we use guard(m) and body(m) to denote the guard g and the body
D of m, respectively. For the sake of simplicity but without loosing theoretical
generality, we only consider methods with at most one input parameter and at
most one return parameter.

26 R. Dong et al.

We define the behavior of component K by the transition relation of K defined
in the next subsection.

3.2 Labeled Transition Systems of Primitive Closed Components

We now show that each primitive closed component specified using the rCOS
notation can be defined by a labeled transition system defined in Sect. 2.3. To
this end, for each method definition m(T1 x;T2 y){c}, we define the following
set of events

ω(m) = {m(u){c[u/x, v/y]} | u ∈ T1}.
We further define Ω(K) =

⋃

m∈K.pIF ω(m). Here, there is a quite subtle reason
why the return parameter is not included in the events. It is because that

– returning a value is an “output” event to the environment and the choice of a
return value is decided by the component itself, instead of the environment,

– we assume that the guards of provided methods do not depend on their
return values,

– we assume a run to complete semantics, thus the termination of a method
invocation does not depend on the output values of the methods, and

– most significantly, it is the data functionality design, i.e. design p � R, of a
method, that determines the range of non-deterministic choices of the return
values of an invocation for a given input parameter, thus refining the design
will reduce the range of non-determinism.

Definition 10 (Transition system of primitive closed component). For
a primitive closed component K, we define the transition system

K = 〈K.var ,K.init , Ω(K), ∅〉

A transition s
m(u)−−−→ s′ of K is an execution of the invocation m(u) if the fol-

lowing conditions hold,

1. the state space of K is the states over K.var , ΣK.var ,
2. the initial states of K are the same initial states of K,
3. s and s′ are states of K,
4. m(u) ∈ Ω(K) and it is an invocation of a provided method m with in input

value u,
5. s ⊕ u satisfies guard(m), i.e., m is enabled in state s for the input u (note

that we identify the value u with the corresponding state assigning values to
inputs u = u(in)), and there exists a state v of the output parameter y of m

6. (s⊕ u, s′ ⊕ v) ∈ body(m).

We omit the empty set of internal actions and denote the transition system of K
by = 〈K.var ,K.init , Ω(K)〉. A step of state transition is defined by the design
of the method body when the guard holds in the starting state s For transition

t = s
m(u)−−−→ s′, we use pre.t, post .t and event .t to denote the pre-state s, the

post-state s′ and the event m(u), respectively.

rCOS: Defining Meanings of Component-Based Software Architectures 27

Definition 11 (Failure-divergence semantics of components). The exe-
cution failure-divergence semantics 〈ED(K), EF(S)〉 (or the interaction
failure-divergence semantics 〈ID(K), IF(S)〉) of a component K is defined
by the semantics of the corresponding labeled transition system, i.e., by the exe-
cution failure-divergence semantics 〈ED(K), EF(K)〉 (or the interaction failure-
divergence semantics 〈ID(K), IF(K)〉).
The traces T (K) of K are also defined by the traces of the corresponding tran-
sition system: T (K) =̂ T (K).

Example 1. To illustrate a reactive component using guarded commands, we give
an example of a component model below describing the behavior of a memory
that a processor can interact with to write and read the value of the memory.
It provides two methods for writing a value to and reading the content out of
the memory cell of type Z, requiring that the first operation has to be a write
operation.

1 component M {
2 provided interface MIF {
3 Z d;
4 bool start = false;
5 W(Z v) { true � (d := v; start := true) }
6 R(; Z v) { start � (v := d) }
7 }
8 }

Relation to Traditional Theories of Programming. We would like to make
the following important notes on the expressiveness of this model by relating it
to traditional theories.

1. This model is very much similar to the model of Temporal Logic of Actions
(TLA) for concurrent programs [38]. However, “actions” in TLA are au-
tonomous and models interact through shared variables. Here, a component
is a passive entity and it interacts with the environment through method
invocations. Another significant difference between rCOS and TLA is that
rCOS combines state-based modeling of data changes and event-based de-
scription of interaction protocols or behavior.

2. In the same way as to TLA, the model of components in rCOS is related
to Back’s action systems [3] that extends Dijkstra’s guarded commands lan-
guage [17] to concurrent programming.

3. The model of components here is similar to I/O automata [48]. However,
the guards of methods in general may depend on input parameters, as well
as state variables of the component. This implies that a component may be
an I/O automata with infinite number of states. The I/O automata used
for verification, model checking in particular, are finite state automata and
the states are abstract symbolic states. The guards of transitions are also
encoded in the symbolic states such that in some states of an automaton,
transitions are enabled or disabled.

28 R. Dong et al.

4. Similar to the relation with I/O automata, the rCOS model of components
combines data state changes with event-based interaction behavior. The lat-
ter can be specified in CSP [28,57]. Indeed, failure-divergence semantics and
the traces of a component K are directly influenced by the concepts and
definitions in CSP. However, an event m(u) in rCOS is an abstraction of the
extended rendezvous for the synchronizations of receiving an invocation to
m and returning the completion of the execution of m. This assumes a run
to complete semantics for method invocations. For the relation between I/O
automata and process algebras, we refer to the paper by Vaandrager [61].

5. Other formalisms like, e.g. CSP-OZ [22, 30], also combine state and event-
based interaction models in a similar way. These approaches and also similar
combinations like Circus [64] share the idea of rCOS that different formal
techniques are necessary to cope with the complexity of most non-trivial ap-
plications. Contrary to rCOS, they promote the combination of fixed existing
formal languages, whereas the spirit of rCOS is to provide a general semantic
framework and leaving the choice of the concrete applied formalisms to the
engineers.

The above relations show that the rCOS model of components unifies the seman-
tics models of data, data functionality of each step of interaction, and event-based
interaction behavior. However, the purpose of the unification is not to “mix them
together” for the expressive power. Instead, the unification is for their consistent
integration and the separation of the treatments of the different concerns. There-
fore, rCOS promotes the ideas of Unifying Theories of Programming [8, 29] for
Separation of Concerns, instead of extending a notation to increase expressive
power.

3.3 Component Contracts and Publications

We continue with defining necessary constructs for component-based design, i.e.,
contracts, provided protocols, and publications.

Definition 12 (Contract). A component contract C is just like a primitive
component, but the body of each method m ∈ C.pIF is a guarded design gm �

(pm � Rm).

So each closed component K is semantically equivalent to a contract. Contracts
are thus an important notion for the requirement specification and verification of
the correct design and implementation through refinements. They can be easily
modeled by a state machine, which is the vehicle of model checking. The contract
of the component M of Example 1 on page 27 is given as follows.

rCOS: Defining Meanings of Component-Based Software Architectures 29

1 component M {
2 provided interface MIF {
3 Z d; bool start = false;
4 W(Z v) { true � ({d,start}:true � d’ = v ∧ start’ = true) }
5 R(; Z v) { start � ({v}: true � v’ = d) }
6 }
7 }

Notice that in both the component M of Example 1 and its contract, the state
variable start is a protocol control variable.

Clearly, for each component contract C, the labeled actions in the correspond-
ing transition system C are all of the form m(T1 x;T2 y){g � (p � R)}. Notice
that in general a method of the provided interface can be non-deterministic, es-
pecially at a high level abstraction. Some of the traces are non-deterministic in a
way that a client can still get blocked, even if it interacts with K following such
a trace from the provided interface. Therefore, T (K) cannot be used as a de-
scription of the provided protocol of the component, for third party composition,
because a protocol is commonly assumed to ensure non-blocking behavior.

Definition 13 (Input-deterministic trace and protocol). We call a trace
tr = a1 · · · an of a component transition system K input-deterministic or
non-blockable if for any of its prefixes pref = a1 · · · ak, there does not exist a
set X of provided events of K such that ak+1 ∈ X and (pref , X) ∈ IF(K). And
for a closed component K, we call the set of its input deterministic traces the
provided protocol of K, and we denote it by PP(K) (and also PP(K)).

The notion of contract is a rather “operational” model in the sense that the
behavior is defined through the enabledness of a method at a state and the
transition to the next possible state. This model has its advantage in support-
ing model checking verification techniques. However, for such an operational
model with its non-determinism it is not easy to support third party usage and
composition. A more denotational or global behavioral model would be more
appropriate. Hence, we define the notion of protocols of components and pub-
lications of components below. From the behavioral semantics of a contract C
defined by Definition 11, we obtain the following model interface behavior.

Definition 14 (Publication). A component publication B is similar to a
contract and consists of the following sections of declarations,

– its provided interface B.pIF ,
– variables B.var and initial states B.init ,
– the data functionality specification m(T1 x;T2 y){p � R}, and
– the provided protocol B.pProt that is a set of traces.

A contract C can be transformed into a component publication by embedding
the guards of methods into the protocol. That is, the component publication for
C is obtained by using the set of non-blockable traces of C as provided protocol
PP(C) and by removing the guards of interface methods. For the same reason,

30 R. Dong et al.

the state variables that are only used in the flow of interaction control, such as
start in the memory component M in Example 1, can also be abstracted away
from the publication. The protocol can be specified in a formal notation. This
includes formal languages, such as regular expressions or a restricted version of
process algebra such as CSP without hiding and internal choice. Publications
are declarative, while contracts are operational. Thus, publications are suitable
for specifying components in system synthesis.

Example 2. Both the methods W and R of the interface of M in Example 1 are
deterministic. Thus, M is input-deterministic and we have

PP(M) = T (M) =?W ({?W, ?R}∗)

Here we adopt the convention to use a question mark to prefix an input service
request event, i.e., a method invocation, in order to differentiate it from a calling
out event in the required interface of an open component, which we will define
later. Also, we have omitted the actual parameters in the method invocations,
and ?W for example represents all possible ?W (a) for a ∈ Z. Thus, the following
specification is a publication of the memory component M of Example 1.

1 component M {
2 provided interface MIF {
3 Z d;
4 W(Z v) { {d}: true � d’ = v }
5 R(; Z v) { {v}: true � v’ = d }
6 protocol { ?W({?W,?R})∗ }
7 }
8 }

In the example, we used a regular expression to describe the provided protocol.
However, regular expressions have limited expressive power and can only express
languages of finite state automata. Languages like CSP can be used for more
general protocols.

For the rest of the chapter, we use the programming notation defined in Sect. 2
in place of the designs that define its semantics. We use the notion “component”
also for a “contract” and a “publication”, as they are specifications of components
at different levels of abstractions and for different purposes.

3.4 Refinement between Closed Components

Refinement between two components Kh and Kl, denoted by Kh Kl, compares
the services that they provide to the clients. However, this relation is naturally
defined by the refinement relation Kh Kl of their labeled transitions systems.
Also, as a specialized form of Theorem 6, we have the following theorem for the
refinement relation between two primitive closed components.

Theorem 7. If Kh Kl, PP(Kh) ⊆ PP(Kl).

rCOS: Defining Meanings of Component-Based Software Architectures 31

Proof. The proof is given by induction on the length of traces. From an initial
state s0, e is non-blockable in Kh only if e is enabled in all the possible initial
states of Kh. Hence, if e is non-blockable in Kh, so is it in Kl. Assume the
theorem holds for all traces of length no longer than k ≥ 1. If a trace tr =
e1 . . . ekek+1 is not blockable in Kh, all its prefixes are non-blockable in Kh,
thus so are they in Kl. If tr is blockable in Kl, then there is an X such that
ek+1 ∈ X and (e1 . . . ek, X) ∈ IF(Kl). Because Kh Kl, IF(Kl) ⊆ IF(Kh),
thus (e1 . . . ek, X) ∈ IF(Kh). This is impossible because tr is not blockable in
Sh. Hence, we have tr ∈ PP(Kl).

Thus, a refined component provides more deterministic services to the envi-
ronment, because protocols represent executions for which there is no internal
non-determinism leading to deadlocks.

The result of Theorem 7 is noteworthy, because the subset relation is reversed
compared to the usual subset relation defining refinement; for instance, we have
IF(Kl) ⊆ IF(Kh) and T (Kl) ⊆ T (Kh), but PP(Kh) ⊆ PP(Kl). However, a
bit of thought reveals that this actually makes sense, because removal of failures
leads to potentially more protocols. For traces this is a bit more surprising, but
in failure-divergence semantics the traces are derived from failures, so they are
not independent. This also leads to the fact that the correctness of the theorem
actually depends on the divergences: the theorem cannot hold in the stable-
failures model and the traces model, because both have a top element regarding
the refinement order. For both of these top elements (the terminating process
for the trace model and the divergent process for the stable-failures model) the
set of protocols is empty. For this reason, we use an extended version of the
stable-failures semantics in Sect. 7.

The semantic definition of refinement of components (or contracts) by Defini-
tion 2 does not directly support to verify that one component Ml refines another
Mh. To solve this problem, we have the following theorem.

Theorem 8. Let Cl and Ch be two contracts such that Cl.pIF = Ch.pIF , (sim-
ply denoted as pIF). Mh Ml if there is a total mapping from the states over
Cl.var to the states over Ch.var , ρ : Cl.var �−→ Ch.var , that can be written as
a design with variables in Cl.var and Ch.var

′ such that the following conditions
hold.

1. Mapping ρ preserves initial states, i.e., ρ(Cl.init) ⊆ Ch.init .
2. No guards of the methods of Ch are weakened — undermines safety, or

strengthened — introduces likelihood of deadlock, i.e., ρ ⇒ (guard l(m) ⇔
guardh(m)′) for all m ∈ pIF , where guardh(m)′ is the predicate obtained
from guardh(m) with all its variables replaced by their primed versions,

3. The data functionality of each method in Cl refines the data functionality of
the corresponding method in Ch, i.e., for all m ∈ pIF ,

ρ; bodyh(m) body l(m); ρ.

The need for the mapping to be total is to ensure that any state in the refined
component Cl implements a state in the “abstract contract” Ch. With the upward

32 R. Dong et al.

refinement mapping ρ from the states of Cl at the lower level of abstraction to
the states of Ch at a higher level of abstraction, the refinement relation is also
called an upward simulation and it is denoted by Cl �up Ch. Similarly, we have
a theorem about downward simulations, which are denoted by Cl �down Ch.

Theorem 9. Let Cl and Ch be two contracts. Ch Cl if there is a total mapping
from the states over Ch.var to the states over Cl.var , ρ : Ch.var �−→ Cl.var ,
that can be written as a design with variables in Cl.var

′ and Ch.var such that
the following conditions hold.

1. Mapping ρ preserves initial states, i.e., Cl.init ⊆ ρ(Ch.init).
2. No guards of the methods of Ch are weakened — undermines safety, or

strengthened — introduces likelihood of deadlock, i.e., ρ ⇒ (guard l(m)′ ⇔
guardh(m)) for all m ∈ pIF , and

3. The data functionality of each method in Cl refines the data functionality of
the corresponding method in Ch, i.e., for all m ∈ pIF ,

bodyh(m); ρ ρ; body l(m).

The following theorem shows the completeness of the simulation techniques for
proving refinement between components.

Theorem 10. Ch Cl if and only if there exists a contract C such that

Cl �up C �down Ch.

The proofs and details of the discussion about the importance of the above
theorems can be found in [10].

3.5 Separation of Concerns

A component can be modeled in the specification notation defined in Fig. 5
at different levels of abstraction, and the relation between different levels of
abstraction is expressed by refinement. The semantics theory of guarded com-
mands leads to the model of contracts, and a failure-divergence semantic model
of components. Contracts serve as a requirement model of components that can
directly be represented as automata or labeled transition systems. Contracts are
also used for correct by construction of components with the refinement calculus.

From the model of contracts and their failure-divergence semantics, we derive
the model of publications. The publication of a component eases the usage of a
component, including the usage through the interface and the composition with
other components to form new software components. For this, a publication has
to be faithful with respect to the specification of the component by its contract.

Definition 15. Let B be a publication and C be a contract such that B.pIF =
C.pIF , B.var = C.var and B.init ⊆ C.init . B is faithful to C if B.pProt ⊆
PP(C) and bodyC(m) bodyB(m).

rCOS: Defining Meanings of Component-Based Software Architectures 33

The faithfulness of a publications states that each method provides the function-
ality as specified in the contract and all traces published are acceptable traces
of the component specified by the contract. Now we have the following theorem
of separation of concerns.

Theorem 11. We can separate the analysis, design and verification of the data
functionality and the interaction protocol of a component as follows.

1. If B1 = (pIF , X,X0, Ψ, pProt1) and B2 = (pIF , X,X0, Ψ, pProt2) are faithful
to C = (pIF , X,X0, Φ, Γ) then

B = (pIF , X,X0, Ψ, pProt1 ∪ pProt2) is also faithful to C.

2. If B1 = (pIF , X,X0, Ψ, pProt1) is faithful to C and pProt2 ⊆ pProt1, then

B2 = (pIF , X,X0, Ψ, pProt2) is also faithful to C.

3. If B1 = (pIF , X,X0, Ψ1, pProt) is faithful to C and Ψ1 Ψ2, then

B2 = (pIF , X,X0, Ψ2, pProt) is also faithful to C.

4. If a publication B is faithful to C1 and C1 C2, then B is faithful to C2.

Proof. The first three properties are easy to check, and the last property is a
direct corollary of Theorem 7.

For a contract (or a component) K = (pIF , X,X0, Ψ, Γ), the largest faithful pub-
lication of K with respect to the refinement relation is (pIF , X,X0, Ψ,PP(K)).

4 Primitive Open Components

The components defined in the previous section are self-contained and they
implement the functionality of the services, which they provide to the clients.
However, component-based software engineering is about to build new software
through reuse of exiting components that are adapted and connected together.
These adapters and connectors are typical open components. They provide meth-
ods to be called by clients on one hand, and on the other, they require methods
of other components.

4.1 Specification of Open Components

Open components extend closed components with required interfaces. The body
of a provided method may contain undefined methods that are to be provided
when composed with other components. We therefore extend the rCOS specifi-
cation notation for closed components with a declaration of a required interface
as given in Fig. 6.

Notice that the required interface declares method signatures that do not
occur in either the provided or the internal interfaces. It declares method signa-
tures without bodies, but for generality we allow a required interface to declare
its state variables too.

34 R. Dong et al.

1 component K {
2 T x = c; // state of component
3 provided interface I { // provided methods
4 m1(parameters) { g1 � c1 /∗ functionality definition ∗/ };
5 m2(parameters) { g2 � c2 /∗ functionality definition ∗/ };
6 ...
7 m(parameters) { g � c /∗ functionality definition ∗/ };
8 };
9 internal interface { // locally defined methods

10 n1(parameters) { h1 � d1 /∗ functionality definition ∗/ };
11 n2(parameters) { h2 � d2 /∗ functionality definition ∗/ };
12 ...
13 n(parameters) { h � d /∗ functionality definition ∗/ };
14 };
15 required interface J { // required services
16 T y = d;
17 n1(parameters), n2(parameters), n3(parameters)
18 };
19 class C1{...}; class C2{...}; ... // used in the above specification
20 }

Fig. 6. Format of rCOS primitive open components

Example 3. If we “plug” the provided interface of the memory component M
of Example 1 into the required interface of the following open component, we
obtain an one-place buffer.

1 component Buff {
2 provided interface BuffIF {
3 bool r = false, w = true;
4 put(Z v) { w � (W(v); r := true; w := false) }
5 get(; Z v) { r � (R(; v); r := false; w := true) }
6 }
7 required interface BuffrIF {
8 W(Z v), R(; Z v)
9 }

10 }

4.2 Semantics and Refinement of Open Components

With the specification of open components using guarded commands, the deno-
tational semantics of an open component K is defined as a functional as follows.

Definition 16 (Semantics of commands with calls to undefined meth-
ods). Let K be a specification of an open component with provided interface
K.pIF , state variables K.var , internal interface K.iIF and required interface
K.rIF , the semantics of K is the functional �K� : C(K.rIF) �−→ C(K.pIF) such

rCOS: Defining Meanings of Component-Based Software Architectures 35

that for each contract C in the set C(K.rIF) of all the possible contracts for the
interface K.rIF , �K� (C) is a contract in the set C(K.pIF) of all contracts for
the interface K.pIF defined by the specification of the closed component K(C)
in which

1. the provided interface K(C).pIF = K.pIF ,
2. the state variables K(C).var = K.var , and
3. the internal interface K(C).iIF = K.iIF ∪ K.rIF , where the bodies of the

methods in K.rIF are now defined to be their guarded designs given in C.

To illustrate the semantics definition, we give the following example.

Example 4. With the memory component in Example 1, Buff (M) for Buff in
Example 3 is equivalent to the contract of a one-place buffer whose publication
can be specified as

1 component B {
2 provided interface BuffIF {
3 Z d;
4 put(Z v) { d := v }
5 get(; Z v) { v := d }
6 }
7 provided protocol {
8 (?put ?get)∗+(?put ?get)∗?put // data parameters are omitted
9 }

10 }

Definition 17. Let K1 and K2 be specifications of open components with the
same provided and required interfaces, respectively. K2 is a refinement of K1,
K1 K2, if K1(C) K2(C) holds for any contract C of the required interface
of K1 and K2.

The following theorem is used to establish the refinement relation of instantiated
open components.

Theorem 12. Let K be a specification of open components. For two contracts
C1 and C2 of the required interface K.rIF , if C1 C2 then K(C1) K(C2).

To establish a refinement relation between two concretely given open components
C1 C2, a refinement calculus with algebraic laws of programs are useful, e.g.
c;n(a, y) = n(a, y); c for any command if a and y do not occur in command c.
However, the above denotational semantic semantics is in general difficult to use
for checking of one component refines another or for verification of properties.

We define the notion of contracts for open components by extending the se-
mantics of sequential programs and reactive programs to those programs in which
commands contain invocations to undefined methods declared in the required in-
terface of an open component.

36 R. Dong et al.

Definition 18 (Design with history of method invocations). We intro-
duce an auxiliary state variable sqr , which has the type of sequences of method
invocation symbols and define the design of a command that contains invocations
to undefined methods as follows,

– the definition of an assignment is the same as it is defined in Sect. 2: x :=
e = {x} : true � x′ = e, implying an assignment does not change sqr ,

– each method invocation to an undefined method n(T1 x;T2 y) is replaced by
a design

{sqr , y} : true � y′ ∈ T2 ∧ sqr ′ = sqr · {n(x)},

where · denotes concatenation of sequences, and
– the semantics for all sequential composition operations, i.e., sequencing, con-

ditional choice, non-deterministic choice, and recursion, are not changed.

A sequential design that has been enriched with the history variable sqr introduced
above can then be lifted to a reactive design using the lifting function of Sect. 2.3.

With the semantics of reactive commands, we can define the semantics of a
provided method m(){c} in an open component. Also, given a state s of the
component, the execution of an invocation to m() from s will result in a set of
sequences of possible (because of non-determinism) invocations to the required
methods, recorded as the value of sqr in the post-state, denoted by sqr(m(), s).

Definition 19 (Contract of open component). The contract K of an open
component K is defined analogously to that of a closed component except that
the semantics of the bodies of provided methods are enriched with sequence ob-
servables as defined in Definition 18.

For further understanding of this definition, let us give the weakest assumption
on behavior of the methods required by an open component. To this end, we
define the weakest terminating contract, which is a contract without side-effects,
thus leaving all input variables of a method unchanged, and setting its output to
an arbitrary value. The weakest terminating contract wtc(rIF) of the required
interface rIF is defined such that each method m(x; y) ∈ rIF is instantiated
with

m(x; y){true � (true � x′ = x)}.

Thus, wtc(rIF) accepts all invocations to its methods and the execution of a
method invocation always terminates. However, the data functionally is unspec-
ified.

Proposition 1. We have the following conjectures, but their proofs have not
been established yet.

1. Given two open components K1 and K2, K1 K2 if K1 K2.
2. K is equivalent to K(wtc(K.rIF)).

rCOS: Defining Meanings of Component-Based Software Architectures 37

1 publication K {
2 T x = c; // initial state of component
3 provided interface I { // provided methods
4 m1(parameters) { c1 /∗ unguarded design ∗/ };
5 m2(parameters) { c2 /∗ unguarded design ∗/ };
6 ...
7 m(parameters) { c /∗ unguarded design ∗/ };
8 };
9 internal interface {

10 n1(parameters) { d1 /∗ unguarded design ∗/ };
11 n2(parameters) { d2 /∗ unguarded design ∗/ };
12 ...
13 n(parameters) { d /∗ unguarded design ∗/ };
14 };
15 required interface J { // required services
16 T y = d;
17 n1(parameters), n2(parameters), n3(parameters)
18 };
19 provided protocol {
20 L1 // a regular language expression over provided method invocations
21 }
22 required protocol {
23 L2 // a regular language expression over required method invocations
24 }
25 class C1{...}; class C2{...}; ... // used in the above specification
26 }

Fig. 7. Format of rCOS open publication

4.3 Transition Systems and Publications of Open Components

Given an open component K, let

– pE (K) = {m(u) | m(T1 x;T2 y) ∈ K.pIF ∧ u ∈ T1}, and
– rE (K) = {n(u) | n(T1 x;T2 y) ∈ K.rIF ∧ u ∈ T1}

be the possible incoming method invocations and outgoing invocations to the
required methods, respectively. Further, let Ω(K) = pE (K) × 2rE(K)∗ . With
this preparation, we can define the transition systems of open components:

Definition 20 (Transition system of open component). Let K be an open
component, we define the labeled state transition system

K = 〈K.var ,K.init , Ω(K), ∅〉,

such that s
m(u)/E−−−−−→ s′ is a transition from state s to state s′ if

– (s, s′) |= c[u/x, v/y′], where c is the semantic body of the method m() in K,
and

38 R. Dong et al.

– E is the set of sequences of invocations to methods in K.rIF , recorded in sqr
in the execution from state s that leads to state s′. Here the states of K do
not record the value of sqr as it is recorded in the events of the transition.

Notice E in s
m(u)/E−−−−−→ s′ is only the set of possible traces of required method

invocations from s to s′, not from the initial state of the transition system K.
The definition takes non-determinism of the provided methods into account. It
shows that each state transition is triggered by an invocation of a method in the
provided interface. The execution of the method may require a set of possible
sequences of invocations to the methods in the required interface. Therefore, we
define the following notions for open component K.

– For each trace tr = a1/E1 . . . ak/Ek, we have a provided trace tr> = a1 . . . ak
and sets of required traces tr< = E1 · · ·Ek, where · is the concatenation
operation on set of sequences.

– For each provided trace pt , Q(pt) =
⋃

{tr< | tr ∈ T (K), tr> = pt} is the
set of all corresponding required traces of pt .

– A provided trace pt is a non-blocking provided trace if for any trace tr
such that tr> = pt , tr is a non-blocking trace of K.

– The provided protocol of K, denoted by PP(K) is the set of all non-blocking
provided traces.

– The required protocol of K is a union of the sets of required traces of non-
blocking provided traces RP(K) =

⋃

pt∈PP(K)Q(pt).

The model of an open component is a natural extension to that of a closed
component, and a closed component is a special case when the required interface
is empty. Consequently, the set of required traces of a closed component is empty.

As shown in Fig. 7, the specification of a publication of an open component
is similar to that of a closed component, except that the bodies of the methods
of the provided and internal interfaces are defined as commands without guards,
and the specification is extended with provided and required protocols.

Example 5. The publication of the open component Buff of Example 3 can be
specified as follows.

1 publication BuffP {
2 provided interface BuffIF {
3 put(Z v) { W(v) }
4 get(; Z v) { R(; v) }
5 };
6 required interface BuffrIF { W(Z v), R(; Z v) };
7 provided protocol { (?put ?get)∗+(?put ?get)∗?put };
8 required protocol { (!W !R)∗+(!W !R)∗!W }
9 }

Note, unlike in a contract of a component where each transition step is repre-
sented atomically, in a publication an action a/E is executed as an atomic step
of state transition, though E represents a set of traces of method invocations.

rCOS: Defining Meanings of Component-Based Software Architectures 39

However, the composability can be checked in the following way: If the provided
protocol K.pProt of a component K contains (accepts) all the invocation traces
of the required protocol RP(J) of an open component J , then K can be plugged
to provide the services that J requires.

5 Processes

All components that we have defined so far are passive in the sense that a
component starts to execute only when a provided method is invoked from the
environment (say, by a client). Once a provided method is invoked, the com-
ponent starts to execute the body of the method, provided it is enabled. The
execution of the method is atomic and follows the run to complete semantics.
However, it is often the case that active software entities are used to coordinate
the components when the components are being executed. For example, assume
we have two copies of component Buff in Example 3, say B1 and B2 whose pro-
vided interfaces are the same as Buff , except for put and get being renamed to
put i and get i for Bi, respectively, where i = 1, 2. We can then write a program
P that repeatedly calls get1(; a); put2(a) when both get1 and put2 are enabled.
Then, P glues B1 and B2 to form a two-place buffer. We call such an active
software entity a process.

5.1 Specification of Processes

In this section, we define a class of processes that do not provide services to
clients but only actively calls provided services of other components. In the
rCOS specification notation, such a process is specified in the format shown in
Fig. 8. In the body of an action (which does not contain parameters), there are
calls to methods in both the internal interface section and the required interface
section, but not to other methods.

5.2 Contracts of Processes

Notice that the actions, denoted by P.ifa , are autonomous in the sense that
when being enabled they can be non-deterministically selected to execute. The
execution of an action is atomic and may involve invocations to methods in
the required interface P.rIF , as well as program statements and invocations to
methods defined in the internal interface P.iIF . We will see later when we define
the composition of a component and a process that execution of an atomic action
a in P synchronizes all the executions of required methods contained in a, i.e.,
the execution of a locks all these methods until a terminates. For instance, in
the two place buffer example at the beginning of this section, get1(; a); put2(a) is
the only action of the process P . When this action is being executed, B1 cannot
execute another get until this action finishes.

The denotational semantics of a process P is similar to that of an open com-
ponent in the sense that it is a functional over the set C(P.rIF) of the contracts

40 R. Dong et al.

1 process P {
2 T x = c; // initial state of process
3 actions { // guarded commands
4 a1 { g1 � c1 };
5 ...
6 ak { gk � ck }
7 };
8 required interface J { // required services
9 T y = d;

10 n1(parameters), n2(parameters), n3(parameters)
11 };
12 internal interface { // locally defined methods
13 n1(parameters) { h1 � d1 /∗ functionality definition ∗/ };
14 n2(parameters) { h2 � d2 /∗ functionality definition ∗/ };
15 ...
16 n(parameters) { h � d /∗ functionality definition ∗/ };
17 };
18 class C1{...}; class C2{...}; ... // used in the above specification
19 }

Fig. 8. Format of rCOS process specifications

of interface P.rIF such that for each contract C in C(P.rIF), �P � (C) is a fully
defined process, called a self-contained process, containing the autonomous ac-
tions P.ifa . In this way, a failure-divergence semantics in terms of actions in P.ifa
and a refinement relation can be defined following the definitions of Sect. 2.

However, we apply the same trick as we did when defining the semantics
in Definition 18 for the body of a provided method in an open component,
which contains calls to undefined methods. Therefore, the execution of an atomic
action a in a process from a state s records the set sqr of possible sequences of
invocations to methods declared in the required interface.

Definition 21 (Contract of process). Given a specification of a process P in
the form shown in Fig. 8, its contract P is defined analogously to Definition 19
by enrichment with history variables, i.e., it is specified as shown in Fig. 9.

Example 6. Consider two instances of the Buff component, B1 and B2, obtained
from Buff by respectively renaming put to put1 and put2 as well as get to get1
and get2. We design a process that keeps getting an item from B1 and putting it
into B2 when get1 and put2 are enabled. The contract of the process is specified
as follows.

rCOS: Defining Meanings of Component-Based Software Architectures 41

1 process P {
2 T x = c; // initial state of process
3 actions { // reactive designs
4 a1 { /∗ g1 � c1 design enriched by history variables sqr ∗/ };
5 ...
6 ak { /∗ gk � ck design enriched by history variables sqr ∗/ }
7 };
8 required interface J { // required services
9 T y = d;

10 n1(parameters), n2(parameters), n3(parameters)
11 };
12 class C1{...}; class C2{...}; ... // used in the above specification
13 }

Fig. 9. Format of rCOS process contracts

1 process Shift {
2 T x = c; // state of process
3 actions { // reactive designs
4 move { {sqr}: (get1(; x); put2(x) };
5 // equals to true � sqr ′ = {get1(; a) · put2(a) | a ∈ Z}
6 }
7 required interface J { // required services
8 get1(; Z x), put2(Z x)
9 };

10 }

Notice that there is no guard for the process in the above example, it will be
enabled whenever its environment are ready to synchronize on the required meth-
ods, i.e., they are enabled in their own flows of execution. Now we are ready to
define the transition system for a process, and from that, the publication of a
process.

5.3 Transition Systems and Publications of Processes

Given a process P , we define the set ωP = 2P.rIF∗
to be the set of all sets of

invocations sequences to methods in the required interface of P . Following the
way in which we defined the transition system of an open component, we define
the transition system of a process.

Definition 22 (Transition system of processes). The transition system P
of a process P is the quadruple 〈P.var , P.init , ωP, ∅〉, where for E ∈ ωP , states
s, s′ of P , and an action a of P with body c,

s
a/E−−→ s′ if (s⊕ {sqr �→ ∅}, s′ ⊕ {sqr �→ E}) � c

holds.

42 R. Dong et al.

We can define the execution failure-divergence semantics (ED(P), EF(P)) and
interaction failure-divergence semantics (ID(P), IF(P)) for process P in terms
of the transition system P . The interaction traces and the failure-divergence
refinement of processes follow straightforward. However, a process can non-
deterministically invoke methods of components, and its whole trace set is taken
as the required protocol

RP(P) =
⋃

{E1 · · ·Ek | /E1 · · · /Ek ∈ T (P)}.

The definition of the protocol of a process allows us to define publications of
processes in the same way as we defined publications for open components.

6 Architectural Compositions and General Components

We have defined the models of primitive closed and open components as well as
processes. These models do not show any entities resulting from compositions,
but software components and processes that are about constructing components
by compositions of these primitive forms. In this section, we go beyond the prim-
itive component model and define architectural composition operations that al-
low us to build hierarchical software architectures. We will also define a general
model of components in this way and discuss the special classes of components
that are useful in building software components. For this, we reiterate the nota-
tions for the different sections in a component specification (or process) K, that
are K.var , K.init , K.pIF , K.rIF , K.iIF and K.Act . Component operations are
syntactically defined as operations on these sections, and then their semantics
definitions are derived. We provide examples to illustrate their meanings and
uses, too.

6.1 Coordination of Components by Processes

One way of building larger components from existing components is to coordinate
their behavior by active processes. We start with this composition as it introduces
internal autonomous actions to components, by which the primitive component
model defined in the previous section is extended.

Definition 23 (Coordination of components). Let K be a component and
P a process. The coordination of K by P , denoted by K ‖ P , is defined if K
and P do not have common variables. When K ‖ P is defined, it is the following
general component, denoted by J ,

J.var = K.var ∪ P.var , J.init = K.init × P.init ,

J.pIF = K.pIF , J.rIF = K.rIF ∪ P.rIF ,

J.iIF = K.iIF ∪ P.iIF .

Additionally, we extend the specification of components with the section

J.inva = P.Act

rCOS: Defining Meanings of Component-Based Software Architectures 43

containing the set of actions that have the triggering events invisible to the envi-
ronment and can be executed autonomously when enabled. A subset of P.Act con-
tains those which have no external required events or external triggering events.
These are the actions entirely internal in the component.

It is necessary to introduce the internal autonomous actions in the above defini-
tion, because internal actions emerge when a process is used to coordinate the
behavior of a component.

Definition 24 (Transition system of coordination). When J = K ‖ P is
defined, we define the general transition system J = 〈J.var , J.init , Ω, Λ〉 such
that

1. Ω = K.ifa, that is ω(K.pIF)× 2ω(K.rIF)∗ ,
2. Λ = P.Act ,

3. (s1, s2)
e/E−−→ (s′1, s′2) is a transition in J if

(component step) s2 = s′2, e ∈ ω(K.pIF) and s1
e/E−−→ s′1 is a transition of

K, or

(process step) e ∈ Λ and there exists s2
e/F−−→ s′2 in P such that for every

tr0 ·m1 · tr1 · · ·mk · trk ∈ F,

where mi ∈ ω(K.pIF) and tr j ∈ ω(J.rIF)∗, it holds

– there exist E1, . . . , Ek such that s1
m1/E1,...,mk/Ek
===========⇒ s′1,

– tr0 · E1 · · ·Ek · trk ⊆ E, and
– E is the smallest set that satisfies these two properties.

In rCOS, we specify a general component in the format shown in Fig. 10, that
extends the specification of an open component in Fig. 6 with a section of in-
visible actions. Thus, K is a primitive open component if K.inva is empty, a
closed component when K.rIF is empty, and a process when K.pIF is empty.
General components thus contain both active and passive behavior. From now
on, a process is also treated as a component.

As shown in the definition of K ‖ P , actions defined in J.inva may also require
methods given in the required interface J.rIF . When an invisible action does not
require any methods outside the component, it is then totally invisible.

6.2 Composition of Processes

Now we define the parallel composition of processes. Since processes only actively
call external methods, but do not provide methods to be called, two processes
do not communicate directly. Thus, the execution of the parallel composition of
two processes is simply the interleaving execution of the actions of the individual
processes.

44 R. Dong et al.

1 component K {
2 T x = c; // initial state of component
3 provided interface I { // provided methods
4 m1(parameters) { g1 � c1 /∗ functionality definition ∗/ };
5 m2(parameters) { g2 � c2 /∗ functionality definition ∗/ };
6 ...
7 m(parameters) { g � c /∗ functionality definition ∗/ };
8 };
9 internal interface { // locally defined methods

10 n1(parameters) { h1 � d1 /∗ functionality definition ∗/ };
11 n2(parameters) { h2 � d2 /∗ functionality definition ∗/ };
12 ...
13 n(parameters) { h � d /∗ functionality definition ∗/ };
14 };
15 actions { // invisible autonomous action
16 a1() { f1 � e1 }; // no parameters
17 a2() { f2 � e2 }; // no parameters
18 ...
19 a() { f � e }
20 };
21 required interface J { // required services
22 T y = d;
23 n1(parameters), n2(parameters), n3(parameters)
24 };
25 class C1{...}; class C2{...}; ... // used in the above specification
26 }

Fig. 10. Format of rCOS general components

Definition 25 (Parallel composition of processes). For two processes P1

and P2, the parallel composition P1 ‖ P2 is defined if they have neither common
variables nor common action names. When P1 ‖ P2 is defined, the composition,
denoted by P , is defined as follows,

P.var = P1.var ∪ P2.var , P.init = P1.init × P2.init ,

P.Act = P1.Act ∪ P2.Act , P.rIF = P1.rIF ∪ P2.rIF .

The following theorem ensures that the above syntactic definition is consistent
with the semantic definition.

Theorem 13 (Semantics of process parallel composition). If P = P1 ‖ P2

is defined, the transition system P of the composition P is the product of P1 and
P2, that is,

1. the states ΣP.var = ΣP1.var ×ΣP2.var ,
2. the initial states P.init = P1.init × P2.init ,
3. the transition labels Ω = 2ω(P1.rIF)∗ ∪ 2ω(P2.rIF)∗ , and
4. (s1, s2)

e/E−−→ (s′1, s
′
2) is a transition of P if either

rCOS: Defining Meanings of Component-Based Software Architectures 45

– s2 = s′2 and s1
e/E−−→ s′1 is a transition of P1, or

– s1 = s′1 and s2
e/E−−→ s′2 is a transition of P2.

It can be shown that a parallel composition of processes preserves the refinement
relation between processes.

6.3 Parallel Composition of Components

We continue with introducing composition operators to build larger components.

Definition 26 (Parallel composition of components). Given two compo-
nents K1 and K2, either closed or open, the parallel composition K1 ‖ K2 is
defined, provided the following conditions hold,

1. they do not have common variables, K1.var ∩K2.var = ∅,
2. they do not have common provided methods, K1.pIF ∩K2.pIF = ∅,
3. they do not have common autonomous actions, K1.Act ∩K2.Act = ∅, and
4. they do not have common internal methods, K1.iIF ∩K2.iIF = ∅.

When the composition is defined, the composed component, denoted by K, is
defined as

K.var = K1.var ∪K2.var , K.init = K1.init ×K2.init ,

K.iIF = K1.iIF ∪K2.iIF , K.pIF = K1.pIF ∪K2.pIF ,

K.rIF = (K1.rIF ∪K2.rIF) \ (K1.pIF ∪K2.pIF),
K.Act = K1.Act ∪K2.Act .

It is important to note that this syntactic definition is actually consistent with
the semantic definition by the transition systems.

Definition 27 (Parallel composition of component transition systems).
The labeled transition system K = 〈K.var ,K.init , Ω,K.Act〉 of the parallel com-
position K = K1 ‖ K2 is defined by

1. Ω is defined from the interface K as for a primitive component,

2. (s1, s2)
a/E−
−−−−→ (s′1, s

′
2) is a transition of K if one of the following conditions

holds.
(K1 step) When a ∈ ω(K1.pIF)

(a) there exists a transition s1
a/E−−→ s′1 of K1, with

tr0 ·m1 · tr1 · · ·mk · trk ∈ E,

where mi ∈ ω(K2.pIF) and tr i ∈ ω(K.rIF)∗ for 0 ≤ i ≤ k, then
(b) if k = 0, s′2 = s2

(c) for each s2
m1/E1,...,mk/Ek
===========⇒ s in K2 (i.e., k > 0)

– s′2 = error if (E1 ∪ · · · ∪ Ek) ∩ ω(K1.pIF) �= ∅, and

46 R. Dong et al.

– s′2 = s otherwise,
(d) tr0 · E1 · tr1 · · ·Ek · trk ⊆ E−, and
(e) E− is the smallest set that satisfies above conditions.

(K2 step) When a ∈ ω(K2.pIF), the transition is defined symmetrically.
(action step) When a ∈ K.Act, the transition is defined like the process

step in Definition 24 for the coordination of a component by a process.
Here, the autonomous actions K can be seen as a process step and the
rest can be seen as a component step.

The error state is a designated deadlock state used to explicitly mark failures
from cyclic method calls in compositions violating the run to complete semantics.
We define a composed state (s1, s2) an error state if either s1 or s2 is error.
We will discuss the nature of the error state in more detail in the next section.

Notice that the required interfaces of K1 and K2 do not have to be disjoint,
they may require common services. A special case for the parallel composition
is that when K1 and K2 are totally disjoint, i.e., there is no overlapping in the
required interfaces and no component provides methods that the other requires.
In this case, we call K1 ‖ K2 a disjoint union, and denote it by K1 ⊗K2. Even
more specifically, when K1 and K2 are closed components, K1 ‖ K2 is always a
disjoint union and K1 ⊗K2 is also a closed component.

For the refinement of components, we have that ‖ is monotonic.

Theorem 14 (Parallel composition preserves refinement). If K1 J1
and K2 J2, then K1 ‖ K2 J1 ‖ J2.

The parallel composition of components is commutative. Since methods from the
provided interface are never hidden from a composition, it is also associative.

Theorem 15. K1 ‖ K2 = K2 ‖ K1 and J ‖ (K1 ‖ K2) = (J ‖ K1) ‖ K2.

6.4 Renaming and Restriction

When we compose components (including processes), sometimes the provided
method names and required method names do not match. We often need to
rename some methods. A rename function for a component is a one-one function
on the set of methods.

Definition 28 (Renaming). Let K be a component and f a renaming func-
tion, we use K[f] to denote the component for which all the specifications are
the same as those of K, except for the provided and required interfaces, which
are defined by

1. K[f].pIF = {f(m) | m ∈ K.pIF},
2. K[f].rIF = {f(m) | m ∈ K.rIF}, and
3. any occurrence of m in K is replaced by f(m).

rCOS: Defining Meanings of Component-Based Software Architectures 47

Notice that we do not allow renaming internal interface methods, thus an implicit
assumption is that a provided or required interface method is not renamed to
an internal interface method. This is equivalent to require that f(m) = m for
all m ∈ K.iIF .

As a component only involves a finite number of methods, thus a renaming
function is only effective on these methods. Therefore, for any renaming functions
f and g, if f(m) = g(m) for any method name m of K, then K[f] = K[g]. In
particular, K[n/m] is the component obtained from K by renaming its method
m to n. This is extended to the case when a number of methods are renamed,
i.e., K[n1/m1, . . . , nk/mk], which is similar to the renaming function in process
algebras.

Example 7. For the memory component M in Example 1, M [put/W, get/R] is
the same as M except that any occurrence of the method name W is replaced
by put and any occurrence of the method name R is replaced by get .

It is often the case when using a component in a context that some provided
methods are restricted from being accessed by the environment. However, these
methods cannot be simply removed. Instead, they should be moved to the inter-
nal interface so that they can be still called by the other provided and internal
methods of the same component.

Definition 29 (Restriction). Let K be a component and β a subset of the
names of the provided methods of K, the component K \β is obtained from K by
moving the declarations of the methods in β from the provided interface section
to the internal interface section, that is,

(K \ β).pIF = K.pIF \ {m(u; v){c} | m ∈ β ∧m(u; v){c} ∈ K.pIF},
(K \ β).iIF = K.iIF ∪ {m(u; v){c} | m ∈ β ∧m(u; v){c} ∈ K.pIF}.

Example 8. Let M be the memory component given in Example 1, Buff the
open component in Example 3, and B = (M ‖ Buff) \ {W,R}. Thus, B is a
one-place buffer component. Further, let Bi = B[get i/get , put i/put], for i = 1, 2.
We now use process Shift to coordinate B1 ⊗B2 and define

Buff 1 = ((B1 ⊗B2) ‖ Shift) \ {get1, put2},

Buff 1 is a two-place buffer.

Notice that in the above example, the closed component M provides all the
methods required by the open component Buff . The restriction of {W,R} from
the composition M ‖ Buff makes W and R only accessible to Buff . We call such
a restricted composition plugging, and denote it by M � Buff . In general, we
have the following definition.

Definition 30 (Plugging). Let K1 and K2 be components such that K1 ‖ K2

is defined. If K2.rIF ⊆ K1.pIF , then we define the plugging of K1 with K2 by

K1 � K2 = (K1 ‖ K2) \K2.rIF .

48 R. Dong et al.

In the following example, we build the two-place buffer in a different way.

Example 9. We first define the following open component.

1 component Connector {
2 int z;
3 provided interface { shift() { get1(; z); put2(z) } };
4 required interface { get1(; int z); put2(int z) }
5 }
6 process P {
7 required interface { shift() }
8 }

Then, we can define the component

Buff 2 = ((B1 ⊗B2) � Connector ‖ P) \ {shift}.

This can be simply written as Buff 2 = ((B1⊗B2) � Connector) � P . One can
prove that Buff 2 is equivalent to the component Buff 1 in Example 8.

When a number of components are coordinated by a process, the components are
not aware of which other components they are working with or exchange data
with. Another important aspect is the separation of local data functionality
of a component from the control of its interaction protocols. We can design
components in which the provided methods are not guarded and thus have no
access control. Then, using connectors and coordinating processes the desired
interface protocols can be designed. In terms of practicability, most connectors
and coordinating processes in applications are data-less, thus having a purely
event-based interface behavior. This allows rCOS to enable the separation of
design concerns of data functionality from interaction protocols.

6.5 More Examples

The memory component M given in Example 1 models a perfect memory cell in
the sense that its content will not be corrupted. As in Liu’s and Joseph’s work
on fault-tolerance [44], a fault can be modeled as an internal autonomous action.
We model a faulty memory, where an occurrence of a fault corrupts the content
of the memory.

1 component fM { // faulty memory
2 provided interface MIF {
3 Z d; bool start = false;
4 W(Z v) { true � (d := v; start := true) }
5 R(; Z v) { start � v := d }
6 };
7 actions {
8 fault() { true � true � d’ �= d } // corrupting the memory
9 }

10 }

rCOS: Defining Meanings of Component-Based Software Architectures 49

Now we show how to use three faulty memories to implement a perfect memory.
First, for i = 1, 2, 3, let fM i = fM [Wi/W,Ri/R]. We define the following open
component.

1 component V { // majority voting
2 provided interface VIF {
3 W(Z v) { W1(v); W2(v); W3(v) }
4 R(; Z v) {
5 var Z v1, Z v2, Z v3;
6 R1(; v1); R2(; v2); R3(; v3);
7 vote(v1, v2, v3; v);
8 end v1, v2, v3
9 }

10 }
11 required protocol { // interleaving of all fM i’s provided protocols
12 ...
13 }
14 }

Then we have the composite component (fM 1 ‖ fM 2 ‖ fM 3) � V , that can be
proven to be equivalent to the memory component M in Example 1. The proof
requires an assumption that at any time at most one memory is faulty. This in-
volves the use of auxiliary variables to record the occurrence of the fault [44]. The
architecture of this fault-tolerant memory is shown in the component diagram
in Fig. 11, which is a screen-shot from the rCOS Modeler.

In this section, we have defined the general parallel composition for compo-
nents (including closed components, open components and processes). However,
it is important to develop a theory of compositions, techniques for checking com-
posabilities among components, and refinement calculi for the different models
with respect to parallel composition and restriction. These have been partly
studied in the rCOS literature [12, 19, 20, 25, 26, 45, 47, 62, 66]. However, the se-
mantic models defined in this chapter extend the models in those papers. Thus,
the theory and techniques of refinement and composability need a reinvestiga-
tion. In the following section, we present preliminary work on how an interface
model of components supports composability checking, focusing on the interac-
tion between components.

7 Interface Model of Components

In rCOS, the refinement of data functionality is dealt within the unified semantic
theory for sequential programming presented in Sect. 2. Interactions are handled
with the failure-divergence semantics of components. In this section, we first
present a model of components that abstracts the data states away, thus focus-
ing only on interactions. We call this model component automata. This model
still exhibits non-determinism caused by autonomous actions and encounters
difficulties in checking composability, for third party composition in particu-
lar. Therefore, we will define an interface model for components, called interface

50 R. Dong et al.

Fig. 11. Component-based design of a fault-tolerant component

publication automata. An interface publication automaton is input-deterministic,
that is, at each step the choice among provided method invocations is controlled
by the environment. Both models are simplified labeled transition systems, but
the states are only symbolic states for control of dynamic flows. We also focus
on finite state components.

7.1 Component Automata

First, some preliminary notations are defined that we are going to use in the
discussion in this section. For a pair 	 = (e1, e2) in a product of sets A1×A2, we
define the projection functions πi, for i = 1, 2, that is, π1() = e1 and π2() = e2.
The projection functions are naturally extended to sequences of pairs and sets
of sequences of pairs as follows. Given a sequence of pairs tr = 〈	1, . . . , 	k〉

rCOS: Defining Meanings of Component-Based Software Architectures 51

and a set T of sequences of pairs, we define πi(tr) = 〈πi(1), . . . , πi(k)〉, and
πi(T) = {πi(tr) | tr ∈ T }, for i = 1, 2.

Given Γ ⊆ Ω and a sequence tr ∈ Ω∗, tr�Λ is the restriction of tr to element
in Λ, returning the sequence obtained from tr by keeping only those elements
in Λ. We also extend the restriction function to sets of sequences and define
T �Γ = {tr�Γ | tr ∈ T }.

We now introduce a symbolic version of the labeled transition systems, called
component automata, by replacing the variables with a set of states and abstract
the data parameters from the interface methods. We only consider finite state
automata.

Definition 31 (Component automaton). A component automaton is a
tuple K = 〈Σ, s0, pIF , rIF ,Act , δ〉, where

– Σ is a finite set of states and s0 ∈ Σ is the initial state;
– pIF , rIF , and Act are disjoint finite sets of provided, required and in-

ternal events, respectively;
– δ ⊆ Σ × Ω(pIF , rIF ,Act) × Σ is the transition relation, where the set of

labels is defined as Ω(pIF , pIF ,Act) = (pIF ∪ Act)× (2rIF
∗ \ {∅}), simply

denoted by Ω when there is no confusion.

As before, we use e/E to denote a pair (e, E) in Ω and a transition (s, e/E, s′) ∈ δ

by s
e/E−−→ s′. This transition is called a step of provided transition if e ∈ pIF ,

otherwise an autonomous transition. We use s
e/−→ s′ for s

e/{ε}−−−→ s′. Notice that
e/∅ is not a label in an automaton, and a transition without required events
is a transition by a label of the form e/{ε}. The internal events are prefixed

with a semicolon, e.g., s
;e/E−−−→ s′, to differentiate them from a transition step

by a provided event. We use τ to represent an internal event when it causes no
confusion. For a state s, we define the set of events with outgoing transitions by

out(s) = {e ∈ pIF ∪ Act | ∃s′, E • s
e/E−−→ s′}.

Further, let out◦(s) = out(s)∩Act and out•(s) = out(s)∩pIF . We write s
e/−→ s′

for s
e/E−−→ s′, when E is not significant.

Notice that there are no guards for transitions. Instead, the guards of actions
from the general component transition systems are encoded in the states of
the automata. A composite event e/E in Ω is enabled in a state s if there

exists a transition s
e/E−−→ s′, and an action e ∈ pIF ∪ Act is enabled in a

state s ∈ Σ, if there is a set of sequences E ∈ 2rIF
∗

such that s
e/E−−→ s′ ∈ δ.

Then, the executions of an automaton C can be defined in the same way as for
a labeled transition system. However, the execution traces and the interaction
traces are of no significant difference. Formally, we have the following definitions
and notations,

– a sequence of transitions s
�1−→ s1· · ·

�k−→ s′ is called an execution sequence,
and 〈	1, . . . , 	k〉 is called a trace from s to s′,

52 R. Dong et al.

0

start

1

2

3

login/
;wifi/{unu1}

;wifi/{unu2}

read/{cserv}

print/{cprint · senddoc}

read/{cserv}

Fig. 12. Automaton of internet connection component Cic

– we write s
�1,...,�k
=====⇒ s′ if there exists an execution sequence s

�1−→ s1· · ·
�k−→ s′,

– for a trace tr over Ω and a state s, target(tr , s) = {s′ | s
tr
==⇒ s′}, and

target(tr) = target(tr , s0),
– for a sequence sq over pIF ∪Act , we write s

sq
==⇒ s′ if there is a trace tr such

that s
tr
==⇒ s′ and π1(tr) = sq ,

– T (s) = {〈	1, . . . , 	k〉 | ∃s′ • s
�1,...,�k
=====⇒ s′}, and it is called the traces of s,

– T (s0) is the set of traces of the component automaton C, it is also denoted
by T (C),

– for a state s, the provided traces for s are given by

PT (s) = {π1(tr)�pIF | tr ∈ T (s)},

– the set PT (s0) is called the set of provided traces of C, and it is also written
as PT (C).

Example 10. Consider the internet-connection component presented in Fig. 12.
It provides the services login , print , and read to the environment and there is an
internal service ;wifi . The services model the login into the system, invocation
of printing a document, an email service, and automatically connecting the wifi,
respectively. The component calls the services unu1, unu2, cserv , cprint and
senddoc. The first three of them model the searching for a wifi router nearby,
connecting to either the unu1 or unu2 wireless network, and then to an ap-
plication server, respectively. The services cprint and senddoc connect to the
printer, send the document to print and start the printing job. The print service
is only available for the wifi network unu1, while read can be accessed from both
networks.

The component automaton in Fig. 12 can perform, for example, the following
execution,

〈0, (login/{ε}), 1, (;wifi/{unu1}), 2, (print/{cprint · senddoc}), 2〉.

rCOS: Defining Meanings of Component-Based Software Architectures 53

0start 1 2

3

45

τ/T1

a/T2

c/T5

a/T3

b/T4

(i)

0start 1

2 3

τ/T1
a/T2

τ/T3

b/T4

(ii)

Fig. 13. Examples of enabled actions

Now pt = 〈login , print〉 is a provided trace of the execution and the set of
required traces of pt is {〈unu1 · cprint · senddoc〉}.

7.2 Non-blockable Provided Events and Traces

The model of component automata describes how a component interacts with
the environment by providing and requiring services. However, some provided
transitions or executions may be blocked due to the non-determinism caused
by autonomous actions. In this section, we will discuss about the non-refusal of
provided events and traces.

Figure 13 shows what kinds of provided events can be refused (or blocked). The
states 0 and 1 in either automaton are indistinguishable, because every internal
autonomous transition (a τ transition) will be taken eventually. Therefore, a
state, at which an internal autonomous transition may happen, like state 0,
is called an unstable state. In general, a state s of a component automaton C
is stable if out◦(s) = ∅, that is, no internal actions are enabled, otherwise s is
unstable. A state s is a deadlock state if there is no action enabled at all. A
deadlock state is always a stable state.

Now consider state 1 in the automaton in Fig. 13(i), it is a stable state.
The automaton will eventually leave the initial state 0, because if a or c are
never tried, the autonomous τ transition will be eventually performed. Thus
the provided action b cannot be refused (blocked) in state 0 or 1, because it is
enabled in state 1. We call a state s′ internally reachable from state s, denoted
by autoR(s, s′), if there is a sequence (possibly empty and in that case s′ = s)
s

τ1,...,τk
=====⇒ s′ of internal transitions from s to s′. We can see that in the automaton

in Fig. 13(i) state 1 is internally reachable from state 0 and all internal executions
(only one in this case) reach state 1. For this reason, we say provided action b
cannot be refused from state 0. Notice that in the automaton in Fig. 13(ii), there
is no internally reachable stable state from 0.

We define autoR(s) = {s′ | autoR(s, s′)} to be the set of internally reachable
states from s, and autoR•(s) the set of internally reachable stable states, i.e.,
{s′ | s′ ∈ autoR(s) and s′ is stable}. Notice that autoR(s, s′) is a transitive re-
lation and autoR(s) is closed under this relation. Thus, autoR•(s) = ∅ if there
exists a livelock state in autoR(s), i.e., an infinite sequence of internal transitions
is possible.

54 R. Dong et al.

0start

1 2

3 4

a/T1

a/T2

b/T3

c/T4

Fig. 14. An example of a refusal trace

With the above discussion, we are ready to define the refusal provided events
of a component automaton. Informally, a provided event in pIF is a refusal of
state s if it is not enabled at one of the internally reachable stable states s′ of s.

Definition 32 (Refusal events). Let s be a state of a component automaton
C, the set of local refusal events at s is

R(s) = {e | e ∈ pIF ∧ ∃s′ ∈ autoR•(s) • e is disabled at s′}.

We use R(s) to denote the set of local non-refusal (non-blockable) events at
s.

The important concept we are developing in this subsection is the notion of
non-refusal traces, that is going to be used for the publication of a component.

Consider the component automaton shown in Fig. 14. The provided event a is
enabled at state 0, however, after the invocation of a, the component determines
internally whether to move to state 1 or 3. So, both of b and c may be refused
after a.

Definition 33 (Non-blockable provided trace). Let 〈a1, · · · , ak〉, k ≥ 0, be
a sequence of provided events of a component automaton C. It is called a non-
blockable provided trace at state s if for 0 ≤ i ≤ k − 1 and any state s′

such that s tr
==⇒ s′ and π1(tr)�pIF = 〈a1, . . . , ai〉, ai+1 is not a refusal at s′, i.e.,

ai+1 ∈ R(s′).

A trace tr of a component automaton C is non-blockable at a state s, if the pro-
vided trace π1(tr)�pIF is non-blockable at s. We use PP(s) and UT (s) to denote
the set of all non-blockable provided traces (also denoted as provided protocols
like in the previous sections) and non-blockable traces at state s, respectively.
When s is the initial state of C, we also write PP(s) and UT (s) as PP(C) and
UT (C), respectively.

7.3 Interface Publication Automata

We now define a model of input-deterministic component automata that have
non-blockable traces only. We use this model for publications of components as
they give better composability checking. The main result of this subsection is
the design of an algorithm that transforms a general component automaton to
such an interface publication automaton.

rCOS: Defining Meanings of Component-Based Software Architectures 55

Definition 34 (Input-determinism). A component automaton

C = 〈S, s0, P,R,A, δ〉

is input-deterministic if for any s0
tr1==⇒ s1 and s0

tr2==⇒ s2 such that

π1(tr1)�pIF = π1(tr2)�pIF ,

the sets of non-blockable events are identical, i.e., R(s1) = R(s2).

The definition says that any provided event e is either a refusal or a non-refusal at
both of any two states s1 and s2 that are reachable from the initial state through
the same provided trace. Therefore, any provided trace of an input-deterministic
component automaton is not blocked, provided the required events are accept-
able by the environment. Thus, we call an input-deterministic automaton an
interface publication automaton.

The following theorem states that all the traces of an input-deterministic
component automaton are non-blockable.

Theorem 16. A component automaton C is input-deterministic iff PT (C) =
PP(C).

Proof. PT (C) = PP(C) means every provided trace of C is non-blockable ac-
tually.

First, we prove the direction from left to right. From the input-determinism
of C follows that for each provided trace pt = (a0, . . . , ak) and each state s with
s0

tr
==⇒ s and π1(tr) = 〈a0, . . . , ai〉 for 0 ≤ i ≤ k − 1, the set R(s) is the same.

Since pt is a provided trace (i.e., there exists at least one such s, where ai+1 is
enabled), so ai+1 ∈ R(s) for all such s. This shows that all the provided traces
are non-blockable, so all the traces are non-blockable too.

Second, we prove the direction from right to left by contraposition. We assume
that C is not input-deterministic, so there exist two traces tr1 and tr2 with
π1(tr1)�P = π1(tr2)�P and s0

tr1==⇒ s1, s0
tr2==⇒ s2 such that R(s1) �= R(s2).

Without loss of generality, we assume that there is a provided event a such
that a ∈ R(s1) and a /∈ R(s2). Now π1(tr1) · 〈a〉 is a provided trace of C that is
blockable, which contradicts the assumption. ��

We now present a procedure in Algorithm 1 that, given a component automaton
C, constructs the interface publication automaton I(C). Each state of I(C) is
a pair (Q, r) of a subset Q of states and a single state r of C. A pair (Q, r) is a
state of I(C) if for some provided trace pt of C

– s0
pt
==⇒ r, and

– Q = {s | s0
pt
==⇒ s}.

Thus, in a tuple (Q, r), r ∈ Q and the first element represents the set of all
potentially reachable states for a given provided trace, whereas the second ele-
ment is a specific reachable state for this trace. Notice that for the same r but

56 R. Dong et al.

Algorithm 1. Construction of interface automaton I(C)

Require: C = (S, s0, P, R,A, δ)
Ensure: I(C) = (SI , ({s0}, s0), P,R,A, δI), where SI ⊆ 2S × S
initialization1

SI := {({s0}, s0)}; δI := ∅; todo := {({s0}, s0)}; done := ∅2
end initialization3
while todo �= ∅ do4

choose (Q, r) ∈ todo; todo := todo \ {(Q, r)}; done := done ∪ {(Q, r)}5

foreach a ∈ ⋂

s∈Q

R(s) do
6

Q′ :=
⋃

s∈Q

{s′ | s a
==⇒ s′}

7

foreach (r
e/E−−→ r′) ∈ δ do8

δI := δI ∪ {(Q, r)
e/E−−→ (Q′, r′)}9

if (Q′, r′) /∈ (todo ∪ done) then10
todo := todo ∪ {(Q′, r′)}11
SI := SI ∪ {(Q′, r′)}12

foreach r
τ−→ r′ with r′ ∈ Q do13

δI := δI ∪ {(Q, r)
τ−→ (Q, r′)}14

a provided trace pt1 different from pt such that s0
pt1==⇒ r, there may be a dif-

ferent state (Q′, r) for I(C). Then, the transition relation of I(C) is defined as

(Q, r)
e/E−−→ (Q′, r′) in I(C) if

– e is not a refusal at any state in Q, that is, e ∈
⋂

s∈Q R(s),

– r
e/E−−→ r′, and

– Q′ = {s′ | ∃s ∈ Q • s
e

==⇒ s′}.

From this it becomes clear that the first element Q of a compound state (Q, r) is
necessary to compute if a transition step for an event e is possible at all, which
is not the case if e can be refused in any state reachable by the same provided
trace. The second element r is needed to identify the full transition step enabled
in the state r; note that the required traces E in a compound event e/E can
differ for all states in the set Q.

Algorithm 1 computes the pairs (Q, r) defined above and the transition rela-
tion to simulate the non-blockable executions of C. In the algorithm, the first
elements of these state pairs, i.e., the sets {Q | ∃r • (Q, r) is a state of I(C)},
result from a power-set construction similar to the construction of a determin-
istic automaton from a non-deterministic automaton. The variables todo and
done are used to collect new reachable states that still have to be processed and
states that have already been processed, respectively.

Example 11. In the internet connection component automaton given in Fig. 12,
the provided trace 〈login , read〉 is non-blockable. However, 〈login , print〉 may

rCOS: Defining Meanings of Component-Based Software Architectures 57

{0},0

start

{1,2,3},1

{1,2,3},2

{1,2,3},3

{2,3},2

{2,3},3

login/{ε}

;wifi/{unu1}

;wifi/{unu2}

read/{cserv}

read/{cserv}

read/{cserv}

read/{cserv}

Fig. 15. Interface publication automaton of the internet connection component

be blocked during execution, because after login is called, the component may
transit to state 3 at which print is not available. We use Algorithm 1 to generate
the interface publication automaton in Fig. 15.

Three key correctness properties of the algorithm are stated in the following
theorem.

Theorem 17 (Correctness of Algorithm 1). The following properties hold
for Algorithm 1.

1. For any given component automaton, the algorithm always terminates.
2. For any component C, I(C) is an input-deterministic automaton.
3. PP(C) = PP(I(C)) and UT (C) = UT (I(C)).

The termination of the algorithm is obtained, because todo will eventually be
empty: the set done increases for each iteration of the loop in the algorithm, and
the union of done and todo is bounded. The proofs of the other two properties
are given in [20].

It is interesting to study the states of I(C). Each of them is a pair (Q, r) of a
set of a states of C and a state r. The state r and all states s ∈ Q are target states
of the same provided trace pt in C. Each transition from (Q, r) in I(C) adds
a non-blockable event e to pt . Therefore, in the automaton I(C), R((Q, r)) =
⋂

s∈Q R(s), where R(s) are non-blockable events of s in C. We simply write
R(Q, r). This means that each (Q, r) in I(C) actually encodes non-blockable
events in an execution (called global non-blockable events) up to the state r in
the execution of C. We also define the set of events that are enabled locally at a
state s but globally refused (or blocked) as B(s) = R(s)\

⋃

(Q,s)∈SI
R(Q, s). This

will be used in the definition of alternative simulation in the following subsection.

58 R. Dong et al.

7.4 Composition and Refinement

The composition operations for component automata are derived from those for
the component labeled transitions systems defined in Sect. 6. Further, component
automata are special labeled transition systems and there is no data function-
ality (pre- and post-condition for the actions), and we do not have recursively
defined component automata. Thus, we do not have to deal with divergent be-
havior caused by recursion. However, there are still possible livelock states in the
dynamic behavior, but this can be characterized by interaction failures (similar
to the CSP stable failure semantics [57]) with explicit consideration of live-
locks. Another kind of execution failure is caused by cyclic method invocations
of two interacting components. As discussed in Sect. 6, we use one dedicated
state error. A transition that encounters cyclic method invocations will take
the composite component to this state. In fact, error is a deadlock state in
which no actions, including internal autonomous events are enabled. However,
the difference of an error state from a normal deadlock state or a termination
state is that the event e that leads from a state s to the error state, s e−→ error,
is disabled in state s too, and it should be eliminated from the traces of the
system. Similarly, in a composition K1 ‖ K2, if a provided action in K1 invokes
a method provided by K2 that is disabled, the transition also enters the error
state. An automaton with the error state is depicted in Fig. 16. A general com-
ponent automaton may also have the designated error state; an automaton with
the error state that is not reachable from the initial state is equivalent to one
without the error state.

More precisely, for an event e ∈ Ω and a state s of a component automaton
C, if s

e−→ error, e is disabled in state s. Thus, for a general automaton with
error state, the definition of the refusal events R(s) should take such an e into
account. Then, Algorithm 1 also removes the transitions to error.

We now define two notions of failure sets for a component automaton.

Definition 35 (Failures sets of component automata). Let C be a com-
ponent automaton with the error state. A failure of C is a pair (tr , X) of a
trace and a set of the events of Ω of C such that for every e ∈ X there exists
s ∈ target(tr) such that e ∈ R(s), i.e., e is blocked in s, or s is a livelock state
(i.e., an infinite sequence of internal steps is possible) and X ⊆ Ω. We use F(C)
to denote the set of failures of C.

It can be shown that the set of traces T (C) and the set of provided traces PT (C)
are given by

T (C) = {tr | ∃X • (tr , X) ∈ F(C)}
PT (C) = {π1(tr) | tr ∈ T (C)}

Analogously to the traces of open components defined in Sect. 4, for each pro-
vided trace pt , there is an associated set of sequences of required events,

RP(pt) =
⋃

{E1 · · ·Ek | ∃tr ∈ T (C) • π1(tr) = pt ∧ π2(tr) = E1 · · ·Ek}.

rCOS: Defining Meanings of Component-Based Software Architectures 59

0start 1

2 3

error

4 5

τ/

a/

b/

a/

τ/

a/

a/

Fig. 16. An automaton with error state

The set of required traces for the non-blockable provided traces is given by
RP(C) =

⋃

{RP(pt) | pt ∈ PP(C)}. Now we formally define the refinement
relation between component automata as the following partial order on their
failures.

Definition 36 (Failure refinement of component automata). A compo-
nent automaton C2 is a refinement of a component automaton C1, denoted as
C1 f C2, if F(C2) ⊆ F(C1).

The properties of refinement between component automata, e.g., reflexivity and
transitivity, are preserved by composition operations. However, we are interested
in a “refinement relation” defined in terms of non-blocking provided and required
traces.

Definition 37 (Alternative simulation). A binary relation R over the set of
states of a component automaton C is an alternative simulation if whenever
s1 R s2,

– for any transition s1
e/E−−→ s′1 with e ∈ Act ∪ R(s1) \ B(s1) and error /∈

autoR(s1), there exist s′2 and E′ such that s2
e/E′
−−−→ s′2, where E′ ⊆ E and

s′1 R s′2;

– for any transition s2
e/E′
−−−→ s′2 with e ∈ Act ∪ R(s1) \ B(s1) and error /∈

autoR(s2), there exist s′1 and E such that s1
e/E−−→ s′1, where E′ ⊆ E and

s′1 R s′2;
– B(s2) ⊆ B(s1);
– if s2

e/−→ error with e ∈ Act ∪ pIF , then s1
e/−→ error.

We say that s2 alternative simulates s1, written as s1 � s2, if there is an
alternative simulation relation R such that (s1, s2) ∈ R. C2 is an alternative
refinement of C1, denoted by C1 alt C2, C1.init � C2.init , C1.pIF ⊆ C2.pIF
and C2.rIF ⊆ C1.rIF .

60 R. Dong et al.

The above definition is similar to the alternating simulation given in [16] and that
is why we use the same term. But they are actually different. The main differences
are (1) we only require a pair of states to keep the simulation relation with respect
to the provided services that could not result in a deadlock; (2) we also require
that a refinement should have smaller refusal sets at each location, which is
similar to the stable failures model of CSP. Also notice that our refinement is not
comparable with the failure refinement nor the failure-divergence refinement of
CSP, because of the different requirements on the simulation of provided methods
and required methods. However, if we do not suppose required methods, our
definition is stronger than the failure refinement as well as the failure-divergence
refinement.

The following theorem indicates that the component publication automaton
constructed by Algorithm 1 is a refinement of the considered component au-
tomaton with respect to the above definition, which justifies that we can safely
use the resulting component interface instead of the component at the interface
level.

Theorem 18. For any component automaton C, the refinement relation C alt

I(C) holds. If C1 alt C2, then I(C1) alt I(C2).

Proof. Let R = {(s, (Q, s)) | s ∈ S, (Q, s) ∈ SI}. We show that R is a simulation
relation.

For any s R (Q, s),

– s
a/E−−→ s′ with a ∈ R(s) and a /∈ B(s). Then a ∈ B(Q, s) and (Q, s)

a/E−−→
(Q′, s′).

– If s
;e/E−−−→ s′ with ; e ∈ Act , then (Q, s)

;e/E−−−→ (Q, s′).

– For any (Q, s)
e/E−−→ (Q′, s′) with e ∈ Act ∪R(s)\B(Q, s), then s

e/E−−→ s′ and
s′ R (Q′, s′).

– B(Q, s) ⊆ B(s).

Hence, R is a simulation relation.
Now we prove the second part of the theorem. Let R0 be a simulation for

C1 alt C2, then we show

R′
0 =

⎧

⎪

⎨

⎪

⎩

((Q1, s1), (Q2, s2))

∣

∣

∣

∣

∣

∣

∣

(s1, s2) ∈ R0,

∀r1 ∈ Q1∃r2 ∈ Q2 • (r1, r2) ∈ R0

∀r2 ∈ Q2∃r1 ∈ Q1 • (r1, r2) ∈ R0

⎫

⎪

⎬

⎪

⎭

.

For any (Q1, s1) R
′
0 (Q2, s2), R(Q1) ⊆ R(Q2) and B(Q1, s1) = B(Q2, s2) = ∅.

Then we can show that this is an alternative simulation between the initial states
of I(C1) and I(C2). ��

Theorem 19. Given two component publication automata C1 and C2, if C1 alt

C2, then PP(C1) ⊆ PP(C2), and for any non-blockable provided trace pt ∈
PT (C1), RP(pt) ⊆ RP(pt), where RP on the left is the set of required traces
for pt in C2 and RP on the right is that defined for C1.

rCOS: Defining Meanings of Component-Based Software Architectures 61

This theorem can be proved by induction on the length of pt . The following
theorem states that the refinement relation is preserved by the composition op-
erator over component automata. We refer the reader to the paper [20] for its
proof.

Theorem 20. Given a component automaton C and two interface publication
automata C1 and C2 such that C1 alt C2, then C1 ⊗ C alt C2 ⊗ C.

Corollary 1. Given two component interface automata C1 and C2, if C1 alt

C2, then C1 ‖ C alt C2 ‖ C.

The work on interface model in this section is a new development in rCOS. The
results are still preliminary. There are still many open problems such as the
relation between the failure refinement relation and the alternative refinement
between component automata. A thorough study on the relation between CSP
failure semantics theory and the automata simulation theory would deserve a
Ph.D. thesis.

8 Conclusions

A major research objective of the rCOS method is to improve the scalability
of semantic correctness preserving refinement between models in model-driven
software engineering. The rCOS method promotes the idea that component-
based software design is driven by model transformations in the front end, and
verification and analysis techniques are integrated through the model transfor-
mations. It attacks the challenges of consistent integration of models for different
viewpoints of a software system, for that different theories, techniques and tools
can be applied effectively. The final goal of the integration is to support the
separation of design concerns, those of the data functionality, interaction pro-
tocols and class structures in particular. rCOS provides a seamless combination
of OO design and component-based design. As the semantic foundation pre-
sented in Sect. 2 and the models of components show, rCOS enables integration
of classical specification and verification techniques, Hoare Logic and Predicate
Transformers for data functionality, process algebras, finite state automata and
temporal logics for reactive behavior. Refinement calculi for data functionality
and reactive behavior are integrated as well.

In this chapter, we presented a model of component-based architecture, which
is a generalization of the original rCOS components model presented in our early
publications [10,13,25,35]. The semantics of the component architecture is based
on unified labeled transition systems with a failure-divergence semantics and
refinement for sequential, object-oriented, and reactive designs. Our semantics
particularly integrates a data-based as well as an interaction-based view. This
allowed us to introduce a general and unified model of components, which are the
building blocks of a model-driven software architecture: primitive closed compo-
nents, open components, as well as active and passive generalized components.
The presented composition operators for parallel composition and operators for

62 R. Dong et al.

renaming, hiding, and plugging are used for the construction of complex systems
out of predefined and refined components. Using refinement of components, this
model is particularly suited for model transformations in model-driven software
engineering [24,35,47]. Finally, a specific focus of this work was to study the inter-
face behavior of components in order to being able to precisely specify contracts
and publications for components, which enable the component’s reusability in
different contexts. This particularly included the computation of a component’s
provided protocol, which we identified as necessary to allow correct usage of a
component in all desired situations.

Construction of models and model refinements are supported by the rCOS
Modeler tool. The method has been tested on enterprise systems [11,12], remote
medical systems [65] and service oriented systems [42].

Similar to JML [40], the rCOS method intends to convey the message that the
design of a formal modeling notation can and should consider advanced features
of architectural constructs in modern programming languages like Java. This
will make it easier to use and understand for practical software engineers, who
have difficulties to comprehend heavy mathematical constructs and operators.

The link of the rCOS models to classical semantic models is presented in this
paper. We have not spent much space on related work as this has been discussed
in previous papers, to which we have referred. However, we would like to em-
phasize the work on CSP and its failure-divergence theory [57] that motivated
the input-deterministic interface model. Closely related models are Reo [14] and
Circus [64]. The former model is related to the process model in rCOS, and Cir-
cus also deals with integration of data state into interaction behavior. In future
work, we are interested in dealing with timing issues of components as another
dimension of modeling. Also, with the separation of data functionality and flow
of interaction control, we would like to investigate how the modeling method can
be applied to workflow management, health care workflows in particular [4, 21].

Acknowledgments. In this special occasion of a celebration of He Jifeng’s
70th birthday, we would like to express our thanks for his contribution to the
development of the semantic foundation of rCOS. Many of our former and cur-
rent colleagues have made contributions to the development of the rCOS method
and its tool support. Xiaoshan Li is another main contributor to the development
of the rCOS theory, techniques and tool support. Jing Liu and her group have
made significant contributions to the link of rCOS to UML and service oriented
architecture; Xin Chen, Zhenbang Chen and Naijun Zhan to the component-
based modeling and refinement; Charles Morisset, Xiaojian Liu, Shuling Wang,
and Liang Zhao to the object-oriented semantics, refinement calculus and veri-
fication; Anders P. Ravn to the design of the tool and the CoCoME case study;
Dan Li, Xiaoliang Wang, and Ling Yin to the tool development; Bin Lei and Cris-
tiano Bertolini to testing techniques; and Martin Schäf to the automata-based
model of interface behavior. The rCOS methods have been taught in many UNU-
IIST training schools, inside and outside Macau, and we are grateful to the very
helpful feedback and comments that we have received from the participants.

rCOS: Defining Meanings of Component-Based Software Architectures 63

The work is supported by the projects GAVES, SAFEHR and PEARL funded
by the Macau Science and Technology Development Fund, and the Chinese Nat-
ural Science Foundation grants NSFC-61103013, 91118007 and 60970031.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

3. Back, R.J.R., von Wright, J.: Trace refinement of action systems. In: Jonsson,
B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer,
Heidelberg (1994)

4. Bertolini, C., Liu, Z., Schäf, M., Stolz, V.: Towards a formal integrated model of
collaborative healthcare workflows. Tech. Rep. 450, IIST, United Nations Univer-
sity, Macao (2011), In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. LNCS, vol. 7151,
pp. 57–74. Springer, Heidelberg (2012)

5. Booch, G.: Object-Oriented Analysis and Design with Applications. Addison-
Wesley, Boston (1994)

6. Brooks, F.P.: No silver bullet: Essence and accidents of software engineering. IEEE
Computer 20(4), 10–19 (1987)

7. Brooks, F.P.: The mythical man-month: After 20 years. IEEE Software 12(5),
57–60 (1995)

8. Burstall, R., Goguen, J.: Putting theories together to make specifications. In:
Reddy, R. (ed.) Proc. 5th Intl. Joint Conf. on Artificial Intelligence. Department
of Computer Science, pp. 1045–1058. Carnegie-Mellon University, USA (1977)

9. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley,
Reading (1988)

10. Chen, X., He, J., Liu, Z., Zhan, N.: A model of component-based programming. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 191–206. Springer,
Heidelberg (2007), http://www.iist.unu.edu/www/docs/techreports/reports/
report350.pdf

11. Chen, Z., et al.: Modelling with relational calculus of object and component sys-
tems - rCOS. In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The
Common Component Modeling Example. LNCS, vol. 5153, pp. 116–145. Springer,
Heidelberg (2008), http://www.iist.unu.edu/www/docs/techreports/reports/
report382.pdf

12. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verifica-
tion in component-based model driven design. Science of Computer Program-
ming 74(4), 168–196 (2009), http://www.sciencedirect.com/science/article/
B6V17-4T9VP33-1/2/c4b7a123e06d33c2cef504862a5e54d5

13. Chen, Z., Liu, Z., Stolz, V., Yang, L., Ravn, A.P.: A refinement driven component-
based design. In: 12th Intl. Conf. on Engineering of Complex Computer Systems
(ICECCS 2007), pp. 277–289. IEEE Computer Society (July 2007)

14. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Channel-based coordination via
constraint satisfaction. Sci. Comput. Program. 76(8), 681–710 (2011)

15. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

http://www.iist.unu.edu/www/docs/techreports/reports/report350.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report350.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report382.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report382.pdf
http://www.sciencedirect.com/science/article/B6V17-4T9VP33-1/2/c4b7a123e06d33c2cef504862a5e54d5
http://www.sciencedirect.com/science/article/B6V17-4T9VP33-1/2/c4b7a123e06d33c2cef504862a5e54d5

64 R. Dong et al.

16. De Alfaro, L., Henzinger, T.: Interface automata. ACM SIGSOFT Software Engi-
neering Notes 26(5), 109–120 (2001)

17. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, New York (1990)

18. Dijkstra, E.W.: The humble programmer. Communications of the ACM 15(10),
859–866 (1972), an ACM Turing Award lecture

19. Dong, R., Faber, J., Liu, Z., Srba, J., Zhan, N., Zhu, J.: Unblockable compositions
of software components. In: Grassi, V., Mirandola, R., Medvidovic, N., Larsson,
M. (eds.) CBSE, pp. 103–108. ACM (2012)

20. Dong, R., Zhan, N., Zhao, L.: An interface model of software components. In: Zhu,
H. (ed.) ICTAC 2013. LNCS, vol. 8049, pp. 157–174. Springer, Heidelberg (2013)

21. Faber, J.: A timed model for healthcare workflows based on csp. In: Breu, R.,
Hatcliff, J. (eds.) SEHC 2012, pp. 1–7. IEEE (2012) ISBN 978-1-4673-1843-3

22. Fischer, C.: Combination and Implementation of Processes and Data: from CSP-
OZ to Java. Ph.D. thesis, University of Oldenburg (2000)

23. Fowler, M.: Refactoring – Improving the Design of Existing Code. Addison-Wesley,
Menlo Park (1999)

24. He, J., Li, X., Liu, Z.: Component-based software engineering. In: Van Hung, D.,
Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 70–95. Springer, Heidelberg
(2005), http://www.iist.unu.edu/www/docs/techreports/reports/report330.
pdf, uNU-IIST TR 330

25. He, J., Li, X., Liu, Z.: A theory of reactive components. Electr. Notes Theor.
Comput. Sci. 160, 173–195 (2006)

26. He, J., Liu, Z., Li, X.: rCOS: A refinement calculus of object systems. Theo-
retical computer science 365(1-2), 109–142 (2006), http://rcos.iist.unu.edu/
publications/TCSpreprint.pdf

27. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

28. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

29. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Upper
Saddle River (1998)

30. Hoenicke, J., Olderog, E.R.: Combining specification techniques for processes, data
and time. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002. LNCS, vol. 2335,
pp. 245–266. Springer, Heidelberg (2002), http://link.springer.de/link/
service/series/0558/bibs/2335/23350245.htm

31. Holzmann, G.J.: The SPIN Model Checker: Primer and reference manual. Addison-
Wesley (2004)

32. Holzmann, G.J.: Conquering complexity. IEEE Computer 40(12) (2007)
33. Johnson, J.: My Life Is Failure: 100 Things You Should Know to Be a Better

Project Leader. Standish Group International, West Yarmouth (2006)
34. Jones, C.B.: Systematic Software Development using VDM. Prentice Hall, Upper

Saddle River (1990)
35. Ke, W., Li, X., Liu, Z., Stolz, V.: rCOS: a formal model-driven engineering method

for component-based software. Frontiers of Computer Science in China 6(1), 17–39
(2012)

36. Ke, W., Liu, Z., Wang, S., Zhao, L.: A graph-based operational semantics of OO
programs. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,
pp. 347–366. Springer, Heidelberg (2009)

37. Lamport, L.: The temporal logic of actions. ACM Transactions on Programming
Languages and Systems 16(3), 872–923 (1994)

http://www.iist.unu.edu/www/docs/techreports/reports/report330.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report330.pdf
http://rcos.iist.unu.edu/publications/TCSpreprint.pdf
http://rcos.iist.unu.edu/publications/TCSpreprint.pdf
http://link.springer.de/link/service/series/0558/bibs/2335/23350245.htm
http://link.springer.de/link/service/series/0558/bibs/2335/23350245.htm

rCOS: Defining Meanings of Component-Based Software Architectures 65

38. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

39. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process, 3rd edn. Prentice-Hall (2005)

40. Leavens, G.T.: JML’s rich, inherited specifications for behavioral subtypes. In:
Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 2–34. Springer,
Heidelberg (2006)

41. Leveson, N.G., Turner, C.S.: An investigation of the Therac-25 accidents. IEEE
Computer 26(7), 18–41 (1993)

42. Liu, J., He, J.: Reactive component based service-oriented design – a case study.
In: Proceedings of 11th IEEE International Conference on Engineering of Complex
Computer Systems, pp. 27–36. IEEE Computer Society (2006)

43. Liu, Z.: Software development with UML. Tech. Rep. 259, IIST, United Nations
University, P.O. Box 3058, Macao (2002)

44. Liu, Z., Joseph, M.: Specification and verification of fault-tolerance, timing, and
scheduling. ACM Transactions on Programming Languages and Systems 21(1),
46–89 (1999)

45. Liu, Z., Kang, E., Zhan, N.: Composition and refinement of components. In:
Butterfield, A. (ed.) Post Event Proceedings of UTP 2008. Lecture Notes in Com-
puter Science vol. 5713. Springer, Berlin (2009)

46. Liu, Z., Mencl, V., Ravn, A.P., Yang, L.: Harnessing theories for tool support.
In: Proc. of the Second Intl. Symp. on Leveraging Applications of Formal Meth-
ods, Verification and Validation (ISoLA 2006), pp. 371–382. IEEE Computer Soci-
ety (August 2006), http://www.iist.unu.edu/www/docs/techreports/reports/
report343.pdf; full version as UNU-IIST Technical Report 343

47. Liu, Z., Morisset, C., Stolz, V.: rCOS: Theory and tool for component-based
model driven development. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS,
vol. 5961, pp. 62–80. Springer, Heidelberg (2010), http://www.iist.unu.edu/www/
docs/techreports/reports/report406.pdf, keynote, UNU-IIST TR 406

48. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quar-
terly 2(3), 219–246 (1989)

49. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent sys-
tems:specification. Springer (1992)

50. Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River (1989)

51. Nielson, H., Nielson, F.: Semantics with Applications. A formal Introduction. Wiley
(1993)

52. Object Managment Group: Model driven architecture - a technical perspective
(2001), document number ORMSC 2001-07-01

53. Peter, L.: The Peter Pyramid. William Morrow, New York (1986)
54. Plotkin, G.D.: The origins of structural operational semantics. Journal of Logic

and Algebraic Programming 60(61), 3–15 (2004)
55. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CE-

SAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, pp. 337–351. Springer, Heidelberg (1982)

56. Robinson, K.: Ariane 5: Flight 501 failure—a case study (2011), http://www.cse.
unsw.edu.au/~se4921/PDF/ariane5-article.pdf

57. Roscoe, A.W.: Theory and Practice of Concurrency. Prentice-Hall, Upper Saddle
River (1997)

58. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall, Upper
Saddle River (1992)

http://www.iist.unu.edu/www/docs/techreports/reports/report343.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report343.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report406.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report406.pdf
http://www.cse.unsw.edu.au/~se4921/PDF/ariane5-article.pdf
http://www.cse.unsw.edu.au/~se4921/PDF/ariane5-article.pdf

66 R. Dong et al.

59. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming
Language Semantics. MIT Press, Cambridge (1977)

60. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd
edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

61. Vaandrager, F.W.: On the relationship between process algebra and input/output
automata. In: LICS, pp. 387–398. IEEE Computer Society (1991)

62. Wang, Z., Wang, H., Zhan, N.: Refinement of models of software components. In:
Shin, S.Y., Ossowski, S., Schumacher, M., Palakal, M.J., Hung, C.C. (eds.) SAC,
pp. 2311–2318. ACM (2010)

63. Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.): Soft-Ware Intensive
Systems. LNCS, vol. 5380. Springer, Heidelberg (2008)

64. Woodcock, J., Cavalcanti, A.: The semantics of circus. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 184–203.
Springer, Heidelberg (2002)

65. Xiong, X., Liu, J., Ding, Z.: Design and verification of a trustable medical system.
In: Johnsen, E.B., Stolz, V. (eds.) Proceedings of 3rd International Workshop on
Harnessing Theories for Tool Support in Software. Electronic Notes in Theoretical
Computer Science, vol. 266, pp. 77–92. Elsevier (2010)

66. Zhao, L., Liu, X., Liu, Z., Qiu, Z.: Graph transformations for object-oriented re-
finement. Formal Aspects of Computing 21(1-2), 103–131 (2009)

	rCOS: Defining Meanings of Component-BasedSoftware Architectures
	1 Introduction
	1.1 Software Complexity
	1.2 Model-Driven Development
	1.3 Formal Methods in Software Development
	1.4 The Aim and Theme of rCOS
	1.5 Organization

	2 Unified Semantics of Sequential Programming
	2.1 Designs of Sequential Programs
	2.2 Designs of Object-Oriented Programs
	2.3 Reactive Systems and Reactive Designs

	3 Model of Primitive Closed Components
	3.1 Specification Notation for Primitive Closed Components
	3.2 Labeled Transition Systems of Primitive Closed Components
	3.3 Component Contracts and Publications
	3.4 Refinement between Closed Components
	3.5 Separation of Concerns

	4 Primitive Open Components
	4.1 Specification of Open Components
	4.2 Semantics and Refinement of Open Components
	4.3 Transition Systems and Publications of Open Components

	5 Processes
	5.1 Specification of Processes
	5.2 Contracts of Processes
	5.3 Transition Systems and Publications of Processes

	6 Architectural Compositions and General Components
	6.1 Coordination of Components by Processes
	6.2 Composition of Processes
	6.3 Parallel Composition of Components
	6.4 Renaming and Restriction
	6.5 More Examples

	7 Interface Model of Components
	7.1 Component Automata
	7.2 Non-blockable Provided Events and Traces
	7.3 Interface Publication Automata
	7.4 Composition and Refinement

	8 Conclusions
	References

