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Abstract. The HOL-TESTGEN environment is conceived as a system
for modeling and semi-automated test generation with an emphasis on
expressive power and generality. However, its underlying technical frame-
work Isabelle/HOL supports the customization as well as the development
of highly automated add-ons working in specific application domains.
In this paper, we present HOL-TESTGEN/FW, an add-on for the test
framework HOL-TESTGEN, that allows for testing the conformance of
firewall implementations to high-level security policies. Based on generic
theories specifying a security-policy language, we developed specific the-
ories for network data and firewall policies. On top of these firewall spe-
cific theories, we provide mechanisms for policy transformations based
on derived rules and adapted code-generators producing test drivers. Our
empirical evaluations shows that HOL-TESTGEN/FW is a competitive en-
vironment for testing firewalls or high-level policies of local networks.

Keywords: symbolic test case generations, black box testing, theorem
proving, network security, firewall testing, conformance testing.

1 Introduction

HOL-TESTGEN |6, 7] (http://www.brucker.ch/projects/hol-testgen/) is
a generic model-based testing environment. Built as an extension of the Is-
abelle framework [15], HOL-TESTGEN inherits, among other things, the front-
end PIDE, the Isar language for HOL specifications and proofs, and code- and
documentation generators from the Isabelle framework. HOL-TESTGEN extends
the framework by an infrastructure to develop formal test plans, i.e., descrip-
tions of test goals, their decomposition into abstract test partitions, and their
transformation to concrete tests with the help of constraint solvers like Z3 |12].
Finally, customized code-generators produce code of concrete test drivers which
can be run against real implementations following a black-box testing approach.
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HOL-TESTGEN as such is conceived as an interactive, flexible environment that
draws from the abundant expressive power and generality of HOL; test plans are
therefore typically mixtures of very powerful automated partitioning and selec-
tion tactics, their configurations, and intermediate small-step tactics that help
to turn the results into a suitable form for the next step. HOL-TESTGEN was
used successfully in large case studies from various domains, see [7] for details.

In this paper, we present the novel HOL-TESTGEN/FW environment, which
is an add-on of HOL-TESTGEN for a specific problem domain: the specification-
based conformance test of network components. Such components can be state-
less packet filters, stateful firewalls, routers, devices performing network address
translation (NAT), etc. In the sequel we just refer to them as firewalls. We
describe the underlying generic theories for modeling network data and fire-
wall policies using a generic security-policy language called the Unified Policy
Framework (UPF) |3, 8], mechanisms for policy transformations (for which for-
mal proofs of correctness have been established |2]) and adapted code-generators
producing test drivers. We present application scenarios as well as experimental
evaluations which show HOL-TESTGEN/FW as a competitive environment for
testing firewalls or high-level policies of networks!}

2 The HOL-TESTGEN/FW Workflow

HOL-TESTGEN/FW is an environment for the specification-based conformance
testing of firewalls.

FW Policy Specification Network Specification

Test Specification

Verification
@ HOL-TestGen/FW
Test Data

Test Driver Observer

\

Firewall under Test

(Implementation)

Fig.1. The HOL-TESTGEN/FW Architecture

! HOL-TESTGEN/FW (including case studies) is, since version 1.7.1, part of the
HOL-TESTGEN distribution. HOL-TESTGEN is available from:
http://www.brucker.ch/projects/hol-testgen/.
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illustrates the standard workflow, respectively the main components
of HOL-TESTGEN/FW:

1. Firewall policy specification, network specification, and test specification:
HOL-TESTGEN/FW provides an instantiation of the Unified Policy Frame-
work (UPF) |3, 18] that allows to specify networks and security policies for
those networks in a user-friendly way. The test specification, i.e., the prop-
erties that should be tested, also need to be specified here.

2. Test case and test data gemeration: In this phase, the abstract test cases
as well as the concrete test data are generated. The test cases still contain
constraints: a test case actually represents a section of the test space. By
choosing ground instances for these constraints, we obtain test data that
can be executed on an actual firewall implementation.

3. Test execution and test result validation: Finally, the test data is injected
(using the test driver) into a real network and the behavior of the firewall
under test is observed (using an observer or monitor) and compared to the
test specification.

In its essence, this resembles the standard model-based testing workflow applied
to firewalls (or any other network components controlling network traffic). In
addition, HOL-TESTGEN/FW also supports:

— Verification of (security) properties: Both the specification of the security
policy as well as the network specification can be analyzed and properties
can be verified formally using the full reasoning power of Isabelle/HOL.

— Verified transformations for testability: As we will see later, different syntac-
tical representations can, while being semantically equivalent, result in test
efforts that differ by several orders of magnitude. Thus, using
HOL-TESTGEN/FW, the testability can be improved by applying policy trans-
formations. The correctness of these transformations, in the sense that apply-
ing the transformation does not change the semantics of a policy, is formally
proven using Isabelle/HOL.

With the exception of the test execution and test result validation, the standard
interface of Isabelle, called PIDE [13], is used by HOL-TESTGEN/FW.
illustrates a typical use of HOL-TESTGEN/FW: In the upper left, we see the
specification of the firewall under test and in the lower left we see the gener-
ated abstract test cases. The test cases still contain variables that need to be
instantiated before they can be executed on a real firewall implementation.

In the rest of this section, we discuss the steps of the HOL-TESTGEN/FW
workflow in more detail.

2.1 System and Test Specification

The Language: UPF with Firewall-Policy-Combinators. HOL is a typed
A-calculus and its foundational type are total functions oo = «’. Using the pro-
vided infrastructure, the usual data-types like « option or « list can be defined.
Partial functions (o« — o) are introduced as synonym to « = (o’ option). They
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Fig. 2. A HOL-TESTGEN/FW Session using the PIDE/jEdit User Interface

are used to model the fundamental concept of UPF: policies as partial decision
functions:

(a, B) policy = a — (B decision)

The decision datatype is defined as a decision = allow « | deny a.. Thus, policies
are three-valued: allow, deny, or L (i.e., “don’t know”). They can map input
data to output data, refer to state, or be a policy-transforming policy.

Several combinators are defined in the UPF library providing definitions for
families of override (_ @ ), sequential composition (_ o ), and parallel com-
position (_ ® ) of policies. These operators enjoy a wealth of algebraic proper-
ties like associativity, quasi-commutativity, or distributivity. We provide formal
proofs, using Isabelle/HOL, for these properties.

The UPF is instantiated within HOL-TESTGEN/FW by concrete formats for
TCP/IP packets, standard policies such as allow all or deny all, as well as
combinators such as allow port.

Network and Policy Models. Stateless firewall policies are modeled similar
to common firewall configuration tools (see Brucker et al. [4] for details). Af-
ter definitions of the relevant sub-networks (subsets of IP addresses modeling,
e.g., the demilitarized zone dmz), it is for example straightforward to build a
composition of elementary rules to be executed from left to right using the UPF
override combinator. For example, we define a firewall policy P allowing only
traffic by tcp from the internet to the dmz on port 25 or on port 80 formally:

P = allow _port internet dmz tcp 25 @ allow port internet dmz tcp 80
@ deny all
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Firewalls often perform not just stateless packet filtering, but also packet transla-
tion called network address translation (NAT), or a stateful handling of
protocols—both is supported by HOL-TESTGEN/FW as well. An example of the
latter is the file transfer protocol (FTP), where specific ports are opened and
closed during protocol execution. Our policy modeling framework also provides
support for modeling these concepts directly. Furthermore, the code-generators
of HOL-TESTGEN/FW is able to generate firewall reference implementations in
various programming languages directly.

Test Specification. For a policy P, a typical test specification looks as follows:
[Cy;...;Ch] = FUT =Px

where FUT is a placeholder for the firewall under test, which should behave like
the policy P for all network packets x and C1, . .., C, are constraints that restrict
the test case generation to specific packets. For example, often it is desirable to
exclude test cases that do not send packets across different sub-networks, or we
might want to restrict testing to specific protocols.

2.2 Test Case and Test Data Generation

HOL-TESTGEN/FW can generate abstract test cases as well as concrete test
data. This involves both normal form computations (resulting in test cases), and
constraint solving (resulting in instantiations of the test cases, i.e., the concrete
test data). While generic tactics for any models are available, the policy tactic
library allows for a more efficient processing by using domain-specific knowledge.
As a result of this phase, we obtain descriptions of network packets together with
the desired decision, possibly extended by transformed packets. For our example
policy P shown above, we state the test specification:

FUT »r=Pzx

From this test specification, 24 test cases are generated automatically. Among
them:

1. FUT(12,(?X100, tcp, 6), (?X101, tcp, 80), content) = deny (),
2. FUT(8,(?7X102,tcp, 12), (?X103, tcp, 25), content) = accept (),

The variables starting with a question mark (e.g., 7X100) are meta-variables
representing a network address. In a separate step, we infer the actual test data
from the test cases by finding ground instances that fulfill the constraints. For
our two exemplary test cases, we might obtain the following test data:

1. FUT(12,((154,23,43,2),tcp, 6), ((172,0,5, 3), tcp, 80), content) =  deny (),
2. FUT(8,((154,23,43,2),tcp, 12),((172,0, 5, 3), tcp, 25), content) = accept (),

We see that in our model, the description of a network packet is a tuple consisting
of an identifier, a source address, a destination address and a content. Both the
source and destination address consist of an IP address, a protocol, and a port
number.
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2.3 Test Execution and Test Result Validation

Next, the test data is injected into a network containing the firewall (or multiple
firewalls) to be tested. The packet injection, the probing of the behavior, and the
validation of the results are supported by the HOL-TESTGEN/FW test execution
environment (see [Figure 3). In more detail, the test execution environment con-
sists of a test execution manager, a result analysis module, a set of endpoints,
and a set of probes.

a
Test Test Data Test Test Result
Specification Generation Execution Validation

Firewall under Test (FUT)

Fig. 3. A Framework for testing firewalls or routers

Internally, the HOL-TESTGEN/FW execution environment uses an adapted
version of fwtest (http://user.cs.tu-berlin.de/"seb/fwtest/) for injecting
and observing network packets. Thus, the test data generated by HOL-TESTGEN
is converted automatically to the input format of fwtest. As an example:

12:154.23.43.2: 6:172.0.5.3:80:S:TCP:10
8:154.23.43.2:12:172.0.5.3:25:8:TCP:10

Here, the meaning of the individual parts (separated by a colon) is as follows:
packet id, source IP, source port, destination IP, destination port, TCP flags, and
the time to live. The test execution as well as the transformation of the input
data is automated. Just some further information about the network topology
that is not part of the model used to generate the test cases (e.g., IP addresses
of the devices where the probes should be installed) has to be provided by the
test engineer.

2.4 Verified Policy Transformations

The naive approach presented so far does not scale very well in many cases and
application domains; in many practical scenarios, the method takes too long
and generates far too many tests resulting in a very long time for test execution.
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There is an obvious need for speeding up both the test data generation as well
as the test execution.

Our environment offers a solution to this problem called verified policy trans-
formations, where a firewall policy is transformed into one that is easier to test
but semantically equivalent, for example by eliminating redundant rules. As an
example, consider the policy

allow all dmz internet @ deny port dmz internet 21 @ deny_all

which, as the rule deny port dmz internet 21 is overridden by the first rule,
allows all traffic from the dmz to the internet. Thus, this policy is semantically
equivalent to the policy:

allow all dmz internet @ deny_all

The second policy is much more efficient to test: it requires less time to generate
test cases and test data and is, due to the smaller number of test cases, more
efficient during the test execution phase.

Motivated by this and similar examples, we developed a rich theory of pol-
icy transformations that improve the testability of firewall policies (see Brucker
et al. [2] for detail). A specific set of these transformations applied in sequence
constitute a default normalization of firewall policies. All of these transforma-
tions are formally verified (using Isabelle/HOL) to be semantically correct and,
as we will see in the next section, the normalization can increase the performance
by several orders of magnitude.

3 Case Studies and Evaluations

We used HOL-TESTGEN/FW in a large number of case studies. Those also in-
cluded “real policies,” for example some drawn from the network of ETH Zurich
as well as some coming from collaborations with partners from industry. These
large and complex policies revealed immediately the need for optimizations of
the naive approach and motivated us to develop the verified policy transforma-
tion approach presented above. Using the policy transformation, we were able
to apply HOL-TESTGEN/FW in all our case studies successfully.

We analyzed the scalability issues as well as the impact of the policy trans-
formation by applying HOL-TESTGEN/FW to randomly generated policies. This
allowed us to estimate the correlation between the size of a policy and the gener-
ation time of tests, and to study the influence of various parameters of this cor-
relation (e. g., different representations of network packets, number of networks)
and, of course, the impact of our optimization. We discussed our generated poli-
cies as well as the generated test data before and after the optimization with
experts from industry to ensure that our evaluation fulfills their needs.

In more detail, we applied HOL-TESTGEN/FW in the following scenarios that
cover both industrial case studies as well as randomly generated policies to study
for example the effect of different modeling variants.
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— Packet Filter with Varying Number of Rules and Networks. We tested “per-

number of test cases

sonal firewalls” of various sizes and network complexity. While for rules with

low complexity, the naive approaches works quite well (Figure 4a)), it fails
even for small policies with complex rules (Figure 4D). This observation mo-

tivated the development of our verified policy transformation approach.
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Fig. 4. Policy Complexity

Effect of Address Representation. Our firewall models support different for-
malizations of network addresses. To study the effect of a more complex
representation, we carried out the personal firewall scenarios with different
address representations. From this experiment, we concluded that represent-
ing addresses as integers is the most efficient approach [7].

Packet Filter and NAT. Motivated by needs from industry, we implemented
support for network address translation (NAT). Technically, this is modeled
as a parallel composition of a filtering and a translating policy. In prac-
tice, this does only add moderate overhead to test case generation as the
translating policies are usually rather small.

Policy Transformation. To address the scalability problem, we implemented
a policy transformation approach which increases the efficiency of the naive
approach by several orders of magnitude (see [Figure 5)). In more detail, the
transformation reduces the time required for generating the test cases and
the test data (Figure 5D)), as well as their number (Figure 5a)). The latter
also reduces the time required for test execution and validation.

Stateful Firewalls. Several protocols, such as the file transfer protocol (FTP),
Voice over IP (VoIP), or protocols for streaming multimedia data have an
internal state; thus they are stateful. Such protocols require an (application-
level) stateful firewall. HOL-TESTGEN/FW tests stateful firewalls by generat-
ing sequences of input network packets. Overall, this works quite efficiently;
see Brucker and Wolff [5] for details.
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Fig. 5. Effect of the policy transformation
4 Related Work and Conclusion

Widely used tools for “testing” firewalls and other network components fall,
broadly, into three categories:

1. Policy management and analysis tools, e. g., for optimizing polices or deploy-
ing the same policy to firewalls of different vendors. An example of this cat-
egory is the Firewall Analyzer from AlgoSec (http://www.algosec.com/).

2. Tools that help to manage and analyze logs of firewalls, e. g., for detecting or
analyzing security breaches. The Network Intelligence Engine from Network
Intelligence (http://www.network-intelligence.com/) is an example for
this category.

3. Tools that test for common misconfigurations (e. g., forwarding NetBIOS re-
quests) or well-known vulnerabilities (e. g., exploitable buffer overflows of a
specific firewall system). Examples for this categories are nmap
(http://www.nmap.org) or OpenVAS (http://www.openvas.org).

These tools test for generic and well-known misconfigurations and security prob-
lems. In contrast to our approach, they do not base their test on the actual
firewall policy. Thus, these tools complement HOL-TESTGEN/FW.

HOL-TESTGEN/FW supports the model-based conformance testing of fire-
walls. These conformance tests ensure both the correctness of the firewall im-
plementation as well as the actual configuration of the firewall. The underlying
foundations of the system as well as a more detailed report on the case studies
is provided elsewhere [4].

Close to our work are tools that test for a firewall’s conformance to a given
policy. For example, [9,[10] present a policy segmentation technique to create the
test cases. [11] also proposes a specification-based testing of firewalls, however
the policies are restricted to stateless packet filters. Finally, |1, [14] present a
framework for testing firewalls at the implementation level.
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