
From Distributions

to Probabilistic Reactive Programs

Riccardo Bresciani and Andrew Butterfield⋆

Foundations and Methods Group,
Trinity College Dublin,

Dublin, Ireland
{bresciar,butrfeld}@scss.tcd.ie

Abstract. We have introduced probability in the UTP framework by
using functions from the state space to real numbers, which we term
distributions, that are embedded in the predicates describing the differ-
ent program constructs. This has allowed us to derive a probabilistic
theory of designs starting from a probabilistic version of the relational
theory, and continuing further down this road we can get to a theory
of probabilistic reactive programs. This paper presents the route that
connects these steps, and discusses the challenges lying ahead in view of
a probabilistic CSP based on distributions.

1 Introduction

The Unifying Theories of Programming (UTP) aims at a semantic framework
where programs and specifications can be modelled as alphabetised relational
predicates, capturing the semantic models normally used for their formal de-
scription [HH98, DS06, But10, Qin10]: the advantage of this common framework
is that of enabling formal reasoning on the integration of the different languages
through untyped predicate calculus.

So far several theories have been given aUTP semantics,where programsare ex-
pressed by means of logical predicates (programs are predicates! [Heh84, Hoa85]).

In the last years the focus of our research has been how to integrate prob-
ability into the UTP framework: our approach is based on distributions over
the state space. We use distributions to associate a probability with each state:
a program can therefore be expressed by means of logical predicates involv-
ing a homogeneous relation between distributions, to account for the modifi-
cations transforming before-distributions into corresponding after-distributions.
This approach gives us a framework where probabilistic choice co-exists with
non-deterministic choice, so being consistent with the approach advocated in
[MM04].

After having given a probabilistic UTP semantics to pGCL [BB11, BB12b]
and having presented a probabilistic theory of designs [BB12a], we have started

⋆ This work was supported, in part, by Science Foundation Ireland grant 10/CE/I1855
to Lero — the Irish Software Engineering Research Centre.

Z. Liu, J. Woodcock, and H. Zhu (Eds.): ICTAC 2013, LNCS 8049, pp. 94–111, 2013.
© Springer-Verlag Berlin Heidelberg 2013

From Distributions to Probabilistic Reactive Programs 95

to look into the possibility of using our framework to have a probabilistic version
of CSP : as the UTP theory of CSP is built on that of designs, we aim at building
a theory of pCSP starting from that of probabilistic designs. The task turned
out to be not so straightforward, posing interesting challenges which we find
worthy of discussion in the present paper.

This paper is structured as follows: we describe the background to UTP, with
particular focus on the standard theory of designs in that framework, and to
pCSP (§2); introduce our probabilistic framework based on distributions over the
state space (§3.1), with a brief presentation of the probabilistic theory of designs
from [BB12a] (§3.2); we then discuss how to progress from this probabilistic
theory of designs to a theory of reactive programs (§4); and conclude (§5).

2 Background

2.1 UTP

UTP uses second-order predicates to represent programs: they are used to ex-
press relations among a set of observable variables which constitute their alpha-
bet. Observable variables usually occur as both undecorated and decorated with
a dash ′: the former refer to states before the program starts (before-states),
whereas the latter refer to the final states reached after the program has run
(after-states). For example, a program using two variables x and y might be
characterised by having the set {x,x′, y, y′} as an alphabet, and the meaning of
the assignment x ∶= y + 3 would be described, in a simple relational theory, by
the predicate

x′ = y + 3 ∧ y′ = y.

In effect UTP uses predicate calculus in a disciplined way to build up a relational
calculus for reasoning about programs.

In addition to observations of the values of program variables, often we need
to introduce observations of other aspects of program execution via so-called
auxiliary variables. For example the theory of reactive programs explained below
uses four auxiliary variables — namely ok ,wait , tr , ref — to keep track of
information concerning the current program run, such as termination, reach of
a stable state, refusals, . . .

A key notion in UTP is that of healthiness conditions : they are usually charac-
terised as monotonic idempotent predicate transformers whose fixpoints charac-
terise sensible (healthy) predicates. In other words they outlaw some predicates
that are nonsense, e.g., ¬ok ⇒ ok′, which describes a “program” that must ter-
minate even though not started.

This notion is closely related to that of refinement, defined as the universal
closure1 of reverse implication:

S ⊑ P ≙ [P ⇒ S]

1 Square brackets denote universal closure, i.e. [P] asserts that P is true for all values
of its free variables.

96 R. Bresciani and A. Butterfield

Healthy predicates form a lattice under the ordering induced by the refinement
relation. The refinement calculus enables the derivation of an implementation
P from a specification S: such derivation can be proven correct if P is a valid
refinement of S.

Some lines of research, including ours, are moving in the direction of introduc-
ing a probabilistic choice operator, which does not replace Dijkstra’s demonic
choice [Dij76] — as for example Kozen did [Koz81, Koz85] — , but rather co-
exists with it, as described and motivated in [MM04]. In [HS06] the authors
present an approach to unification of probabilistic choice with standard con-
structs, and present an axiomatic semantics to capture pGCL in UTP : the laws
were justified via a Galois connection to an expectation-based semantic model.
The approach presented in [CS09] is that of decomposing non-deterministic
choice into a combination of pure probabilistic choice and a unary operator
that accounted for its non-deterministic behaviour. It is worth underlining a
comment of theirs, on how UTP theories are still unsatisfactory with respect
to the issue of having co-existing probabilistic and demonic choice. The UTP
model described in [He10], which is used to give a UTP -style semantics to a
probabilistic BPEL-like language, relates an initial state to a final probability
distribution over states.

Our approach is a UTP -style semantics based on predicates over probabil-
ity before- and after-distributions: we see programs as distribution-transformers
(more details in §3.1). We have previously used this to encode the semantics
of pGCL in the UTP framework [BB11, BB12b]; moreover we have proposed
a probabilistic theory of designs [BB12a], which we will briefly present in §3.2
after having presented the standard one.

The Standard Theory of Designs. Now that we have given a general overview
of the UTP framework, we are going to focus on the theory of designs and present
its UTP semantics.

The theory of designs extends the simple (relational) theory, which is only
adequate for partial correctness results, into a theory of total correctness. The
motivation for and details of this extension are discussed in [HH98, Chapter
3]. This extension adopts an additional “auxiliary variable” ok (along with its

dashed version ok ′) to record start (and termination) of a program. So now,
instead of just observing variable values, we can now tell when a programs has
been started, or has finished.

A design (specification) consists of a precondition Pre that has to be met when
the program starts, and if so the program terminates and establishes Post , which
can be stated as:

ok ∧Pre ⇒ ok ′ ∧Post
for which we use the following shorthand:

Pre ⊢ Post

Note that, in general, the “pre-condition” Pre can mention after-values of vari-
ables and the “post-condition” Post can mention before-values. The usual usage

From Distributions to Probabilistic Reactive Programs 97

H1 ∶ P = (ok ⇒ P) (unpredictability)
H2 ∶ P{false/ok ′} ⇒ P{true/ok ′} (possible termination)

H3 ∶ P;Skip = P (dischargeable assumptions)

H4 ∶ ∃ok ′,v ′ ● P (feasibility)

Fig. 1. Design Healthiness Conditions

of designs is however to restrict the pre-conditions to only refer to the before-
values of variables. The semantics of the assignment x ∶= y + 3 in this theory is
the following:

true ⊢ x′ = y + 3 ∧ y′ = y

(if started, it will terminate, and the final value of x will equal the initial value
of y plus three, with y unchanged).

Designs form a lattice w.r.t. the refinement ordering, whose bottom and top
elements are respectively Abort and Miracle:

Abort ≙ false ⊢ P ≡ true, for any predicate P

Miracle ≙ true ⊢ false ≡ ¬ok

It should be noted that Miracle is a (infeasible) program that cannot be started.
There are four healthiness condition associated with designs, called H1 through

H4 (see Fig. 1). The first two characterise predicates that are designs (i.e., pred-
icates that can be written in the form P ⊢ Q), whilst the third restricts designs
to those whose pre-condition does not mention after-observations (it is defined
using Skip which is described later). The first three, either individually or com-

bined, define sublattices with Abort and Miracle as extremal values. The fourth
healthiness condition rules out infeasible predicates, such as Miracle, but breaks
the lattice structure (it removes the top element, at least). Some of these condi-
tions can be characterised by algebraic laws (H3 is defined that way):

H1 true;P = true and Skip;P = P

H4 P;true = true

In §3.2 we present a probabilistic version of this theory based on our framework.

CSP in the UTP Framework. Reactive programs differ from ordinary se-
quential programs because observing them in just the initial and final states is
no longer sufficient, as there are some observable intermediate steps that charac-
terise their behaviour, i.e., their interactions with the environment. In addition

to observations ok and ok ′, which now correspond to a process being divergence-
free, we add three more observations:

wait ,wait ′ ∶ B — waiting to perform an event
tr , tr ′ ∶ Event-seq — history of events being performed (trace)

ref , ref ′ ∶ Event-set — events currently not allowed (refusals)

98 R. Bresciani and A. Butterfield

R1 ∶ P = P ∧ (tr ≤ tr ′) (no time travel)
R2 ∶ P = ∃s ●P [s, s ⌢ (tr ′ − tr)/tr , tr ′] (no direct event memory)
R3 ∶ P = II ◁ wait ▷ P (say nothing until started)

∶ II ≙ (¬ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref)
R ∶ ⋀i∈1,2,3 Ri

Fig. 2. Reactive Healthiness Conditions

Stop = R(true ⊢ ok ′ ∧wait ′ ∧ tr ′ = tr)

Skip = R(true ⊢ ok ′ ∧ ¬wait ′ ∧ tr ′ = tr)

a→ Skip = R(true ⊢ (ok ′ ∧ (a ∉ ref ′◁ wait ′▷ tr ′ = tr ⌢ ⟨a⟩)))

Fig. 3. Reactive Design semantics of CSP primitives

There are a number of associated healthiness conditions (Fig. 2). The first (R1)
outlaws time travel by insisting that after-traces tr ′ are extensions of before-
traces tr , whilst the second (R2) outlaws a process from having a direct memory
of past events (any history-dependent behaviour requires some explicit state to
remember some abstraction of past events). The third condition (R3) captures the
fact that when not started, because some prior process is waiting (wait = true),
we simply reflect the current behaviour of the prior process. This is captured by
predicate II which requires us to propagate observations faithfully if the previous
process is stable (ok = true). If the prior process has diverged (ok = false), then
all we can guarantee is R1.

Originally, the theory of communicating sequential processes (CSP) was de-
fined by adding in CSP-specific healthiness conditions CSP1–CSP2 [HH98, Chap-
ter 8]. However a key unification result allows us to characterise CSP-healthy
processes as Reactive Designs [OCW09]:

R(Pre ⊢ Post)

In other words, any CSP process can be written in the form of a design, that is
“made” reactively healthy.

The semantics of some CSP constructs in this style are shown in Fig. 3.

2.2 pCSP

In §4 we are going to discuss how to create a UTP -friendly probabilistic variant
of CSP. Here we look at two pieces of work regarding probabilistic CSP, that
discuss some issues which are addressed by our theory.

In [MMSS96] we can find one of the possible definitions of pCSP, where prob-
ability is defined in such a way that it distributes through all operators. This
leads to the surprising result that the demonic choice operator is not idempotent.

From Distributions to Probabilistic Reactive Programs 99

A refinement operator is defined, and the ideas of an associated probabilistic re-
finement calculus are discussed, where an implementation satisfies a specification
with null probability. In effect we can no longer show whether an implementa-
tion satisfies a specification, but rather have to give bounds on the probability
that an implementation may fail. This probability should ideally be very low,
but would be expected to rise over time. In effect we have an implementation
whose correctness has a life-time with some expectation value.

A different presentation is given in [Mor04], where pCSP is built on top of
probabilistic action systems written in pGCL and is linked back to the relational
semantics of pGCL. This view of the subject highlights how compositionality of
probabilistic CSP is not straight-forward, because of the introduction of prob-
ability. Introducing probability splits a deterministic case into several possible
different scenarios, and one has to take this into account when composing prob-
abilistic programs.

They explain this using the metaphor of the colour of a child’s eye: knowing
the colour of the parents’ eyes is not sufficient to predict that of the child.
Instead we need hidden information about the alleles present and their relative
dominance. In a similar fashion, in order to get accurate probabilities associated
with pCSP, we have to track hidden information about choices that occurred in
the past history.

3 Probabilistic Designs

3.1 The Distributional Framework

We are going to introduce briefly the key elements and constructs that charac-
terise our distributional framework, in order to provide the reader with a working
knowledge of it: a formal and rigorous definition can be found in [BB11], along
with some soundness proofs.

Our framework relies on the concept of distributions over the state space,
real-valued functions χ ∶ S → R that assign a weight xi (a real number) to each
state σi in the state space S . We note the set of distributions as D .

A state σ ∶ V → W is a finite map from variables (V) to values (W). Each
distribution has a weight, defined as:

∥χ∥ ≙ ∑
σ∈domχ

χ(σ)

Among all distributions we distinguish weighting distributions π, such that 0 ≤
π(σ) ≤ 1 for any state, and probability (sub-)distributions δ, such that ∥δ∥ ≤ 1.

Generally speaking, it is possible to operate on distributions by lifting point-
wise operators such as addition, multiplication and multiplication by a scalar2.
Analogously we can lift pointwise all traditional relations and functions on real
numbers.

2 Distributions form a vector space, which we have explored elsewhere[BB11]. We omit
discussion of this aspect of our theory for clarity and brevity.

100 R. Bresciani and A. Butterfield

In the case of pointwise multiplication, it is interesting to see it as a way of
“re-weighting” a distribution. We have a particular interest in the case when one
of the operands is a weighting distribution π, as we will use this operation to
give semantics to choice constructs. We opt for a postfix notation to write this
operation, as this is an effective way of marking when pointwise multiplication
happens in the operational flow: for example if we multiply the probability distri-
bution δ by the weighting distribution π, we write this as δπ�. We use notation
ε and ι to denote the everywhere zero and unit distributions, respectively:

ε(σ) = 0 ∧ ι(σ) = 1, for all σ

Given a condition (predicate on state) c, we can define the weighting distribution
that maps every state where c evaluates to true to 1, and every other state to
0: we overload the above notation and note this distribution as ιc�. In general
whenever we have the multiplication of a distribution by ιc�, we can use the
postfix operator c� for short, instead of using ιc��. It is worth pointing out
that if we multiply a probability distribution δ by ιc�, we obtain a distribution
whose weight ∥δc�∥ is exactly the probability of being in a state satisfying c.

Assignment. Given a simultaneous assignment v ∶= e, where underlining in-
dicates that we have lists of variables and expressions of the same length, we
denote its effect on an initial probability distribution δ by δ{∣e/v ∣}. The postfix
operator {∣e/v ∣} reflects the modifications introduced by the assignment — the
intuition behind this, roughly speaking, is that all states σ where the expres-
sion e evaluates to the same value w = evalσ(e) are replaced by a single state
σ′ = (v ↦ w) that maps to a probability that is the sum of the probabilities of
the states it replaces.

(δ{∣e/v ∣})(σ′) ≙ (∑ δ(σ) ∣ σ′ = σ † {v ↦ evalσ(e))

Here we treat the state as a map, where † denotes map override; this operator
essentially implements the concept of “push-forward” used in measure theory,
and is therefore a linear operator. An example is given in Figure 4.

Assignment preserves the overall weight of a probability distribution if e can
be evaluated in every state, and if not the assignment returns a sub-distribution,
where the “missing” weight accounts for the assignment failing on some states
(this failure prevents a program from proceeding and causes non-termination).

Programming Constructs. The semantic definitions of various programming
constructs are based on a homogeneous relation between distributions and are
listed in Figure 5; we will now proceed to discuss each one.

The failing program Abort is represented by the predicate ∥δ′∥ ≤ ∥δ∥, which
captures the fact that it is maximally unpredictable. However it is still guaran-
teed that the distribution weight cannot be increased, because that describes a
program whose probability of termination is higher than that of it starting, and
this is clearly impossible.

From Distributions to Probabilistic Reactive Programs 101

σ00

σ01

σ10

σ11

1/4

1/4

1/4

1/4

{∣y/x∣}

δ′ = δ{∣y/x∣}δ

σ00

σ01

σ10

σ11

1/2

0

0

1/2

Fig. 4. The assignment x ∶= y from an initial uniform distribution on the state space
S = {0,1} × {0,1}

Abort ≙ ∥δ′∥ ≤ ∥δ∥

Miracle ≙ (δ = ε) ∧ (δ′ = ε)

Skip ≙ δ′ = δ
v ∶= e ≙ δ′ = δ{∣e/v ∣}
A;B ≙ ∃δm ●A(δ, δm) ∧B(δm, δ′)

choice(A,B,X) ≙ ∃π, δA, δB ● π ∈ X ∧A(δ�π�, δA) ∧B(δ�π̄�, δB) ∧ δ′ = δA + δB
c ∗A ≙ lfpX ● choice((A;X),Skip,{ι�c�})

Fig. 5. UTP semantics for different programming constructs

The miraculous program Miracle is defined as (δ = ε) ∧ (δ′ = ε): this is a
different from the standard UTP theory, where it is simply false. This definition
coincides with the standard one for most pairs of before- and after-distributions,
with the exception of (ε, ε): this makes sure that Miracle is a unit for nondeter-
ministic choice.

Program Skip makes no changes and immediately terminates.
Assignment remaps the distribution as already discussed.
Sequential composition is characterised by the existence of a “mid-point”

distribution that is the outcome of the first program, which is then fed into the
second. It should be noted at this juncture that we are quantifying over function
quantities, such as δ or π — this makes our logic at least second-order, even if
the state spaces are finite (the range [0,1] is not).

The choice operator takes a weighting distribution π, uses it with its com-
plementary distribution π̄ = ι − π) to weight the distributions resulting from the
left- and right-hand side respectively, and existentially quantifies it over the set
of distributions X ⊆ Dw, where Dw ⊂ D is the set of all weighting distributions

102 R. Bresciani and A. Butterfield

over the program state under consideration. We have termed this operator as
the generic choice as it generalises the standard choice constructs:

– for X = {ιc�} we have conditional choice:

A◁ c▷B = choice(A,B,{ιc�})
= ∃δA, δB ●A(δc�, δA) ∧B(δ¬c�, δB) ∧ δ′ = δA + δB

– for X = {p ⋅ ι} we have probabilistic choice:

A p⊕B = choice(A,B,{p ⋅ ι})

= ∃δA, δB ●A(p ⋅ δ, δA) ∧B((1 − p) ⋅ δ, δB) ∧ δ′ = δA + δB

– for X = Dw we have non-deterministic choice:

A ⊓B = choice(A,B,Dw)
= ∃π, δA, δB ●A(δπ�, δA) ∧B(δπ̄�, δB) ∧ δ′ = δA + δB

The usual notations for conditional, probabilistic and non-deterministic choice
will be used as syntactic sugar in the remainder of this document.

Program Abort is a zero for non-deterministic choice, whereas the program
Miracle is a unit.

Using the customary notation for conditional choice enlightens the definition
of while-loops, which can be rewritten in a more familiar fashion as:

c ∗A ≙ lfpX ● (A;X)◁ c▷ Skip

They are characterized as fixpoints of the appropriate functional, with respect
to the ordering defined by the refinement relation, details of which can be found
in [MM04, BB11] and are beyond the scope of this paper.

Healthiness Conditions. The distributional framework is characterised by
the following healthiness conditions:

Dist1: the feasibility condition assures that the probability of termination cannot
be greater than that of having started:

∥δ′∥ ≤ ∥δ∥

Dist2: the monotonicity condition states that increasing δ implies that the re-
sulting δ′ increases as well:

P (δ1, δ′1) ∧P (δ2, δ′2) ∧ δ2 > δ1 ⇒ δ′2 ≥ δ′1

Dist3: the scaling condition is about multiplication by a (not too large and non-
negative3) constant, which distributes through commands:

∀a ∈ R+ ∧ ∥a ⋅ δ∥ ≤ 1 ●P (δ, δ′) ⇔ P (a ⋅ δ, a ⋅ δ′)
3 Mathematically the relation holds also if this is not met, but in that case the distri-
bution a ⋅ δ may not be a probability distribution.

From Distributions to Probabilistic Reactive Programs 103

Dist4: the convexity condition poses restrictions on the space of possible program
images4, which is strictly a subset of ℘D , the powerset of D :

(P1 ⊓P2)(δ, δ
′) ⇒ δ′ ≥min(P1(δ) ∪P2(δ))

Here Pi(δ) denotes the set of all δ′ that satisfy Pi(δ, δ
′).

We refer to this set as to the program image of Pi — we will use this concept to
show the program lattice in the case of designs in Figure 6.

3.2 A Probabilistic Theory of Designs

We have used the framework above to give semantics to a probabilistic theory
of designs [BB12a].

A big difference from the standard theory is that we did not need to use the

auxiliary variables ok and ok ′: in fact the variable δ records implicitly if the pro-
gram has started, as for each state it gives a precise probability that the program
is in that initial state, while the variable δ′ records implicitly if the program has
finished, as for each state it gives a precise probability that the program is in that
final state.

We can therefore relate the fact that a program has started with probability
1 with the fact that δ is a full distribution (i.e. ∥δ∥ = 1): in other words the
statement ok = true can be translated to the statement ∥δ∥ = 1.

Conversely a program for which δ = ε is a program that has not started.
Obviously there are all situations in between, where the fact of δ being a sub-
distribution accounts for the program having started with probability ∥δ∥ < 1.

Similarly if δ′ is a full distribution, then the program terminates with proba-

bility 1: coherently we can translate the statement ok ′ = true to the statement
∥δ′∥ = 1. In general the weight of δ′ is the probability of termination: if the
program reaches an after-distribution whose weight is strictly less than 1, then
termination is not guaranteed (and in particular if δ′ = ε it is certain that it will
not terminate).

With these considerations in mind, it is straightforward, given a standard
design Pre ⊢ Post , to derive the corresponding probabilistic design:

Pre ⊢ Post ≡ ∥δPre�∥ = 1⇒ ∥δ′Post �∥ = 1

This expression tells us that we have a valid design if whenever the before-
distribution δ is a full distribution which is null everywhere Pre is not satisfied
(and therefore δ = δPre�), then the resulting after-distribution δ′ is a full distri-
bution which is null everywhere Post is not satisfied (and therefore δ′ = δ′Post �).

In other words both δ and δ′ belong to the set Dp ∩ B(ε,1), which we note
as ∂Dp (with a bit of notation abuse), where Dp ⊂ D is the set of all probabil-
ity distributions and B(ε,1) is the closed unitary ball5 centered on the empty
distribution ε.
4 This is a consequence of the purely random non-deterministic model adopted in the
distributional framework, yielding a result analogous to the set HS from [MM04].

5 The norm of δ is ∥δ∥, and the distance function of the space is d(δ1, δ2) ≙ ∥δ2 − δ1∥.

104 R. Bresciani and A. Butterfield

In a similar way we can find a probabilistic version of other standard designs:

– assignment requires the right-hand expression to be defined everywhere in
the state space, otherwise it reduces to false:

v ∶= e ≙ ∥δ∥ = 1⇒ ∥δ′∥ = 1 ∧ δ′ = δ{∣e/v ∣}

– the Skip construct preserves the before-distribution unchanged:

Skip ≙ ∥δ∥ = 1⇒ δ′ = δ

– probabilistic designs form a lattice as well (with respect to the ordering
induced by the ⇒ relation). The bottom of the lattice is Abort , which is
again true as in the standard theory:

Abort ≙ true
– Chaos is a program that guarantees termination, but in an unspecified state6:

Chaos ≙ ∥δ∥ = 1⇒ ∥δ′∥ = 1

– the top of the lattice is Miracle:
Miracle ≙ ∥δ∥ < 1

These new definitions preserve the validity of the healthiness conditions H1–H4,
as on the other hand do all the constructs from the distributional framework
[BB12a]: for this reason we can think of a variation and relax the constraints on
the weights of the before- and after-distributions — so we use the programming
constructs in Figure 5 exactly with the semantics presented there. By doing so we
can fully exploit the potential of the distributional framework towards modelling
situations where the probability of having started is less than 1: with a small
modification we can recast the notion of total correctness by restricting Dist1 to
a variant Dist1-TC (which implies Dist1), stating that:

∥δ∥ = ∥δ′∥

This requires a program to terminate with the same probability p with which it
has started:

∥δ∥ = p ∧Pre ⇒ ∥δ′∥ = p ∧Post
The role of preconditions and postconditions is that of restricting the range
of acceptable before- and after-distributions (and therefore act as restrictions
to be applied to δ and δ′ respectively) — this allows us to express desirable
characteristics of a program in great detail.

Through our distributional framework we therefore obtain a richer theory
where corresponding healthiness conditions hold, even without the introduction

of the auxiliary variables ok ,ok ′ — the link with the standard model is dis-
cussed in [BB12a]. Moreover the use of distributions enables us to evaluate the
probability both of termination and of meeting a set of arbitrary postconditions
as a function of the initial distribution (which determines the probability of
meeting any required precondition).

6 In other words Chaos ≡ true ⊢ AbortR, where the subscript R indicates that we are
talking of the relational version of Abort , from Figure 5.

From Distributions to Probabilistic Reactive Programs 105

∅

{δ′A} {δ′B} . . .

{δ′A, δ
′

B}

.

∂Dp

Dp

Miracle

A B . . .

A ⊓B

.

Chaos

Abort

Fig. 6. Program image lattice (⊆ relation) and program lattice (⇒ relation) for prob-
abilistic designs

4 Probabilistic CSP, UTP-Style

We have seen that the UTP theory of CSP is built on that of designs, with the
introduction of three other pairs of auxiliary variables, notably wait , tr , ref and
their dashed counterparts.

We recall their roles in the theory:

– wait ,wait ′ are boolean variables recording if the program is waiting for
interaction with the environment;

– tr , tr ′ record the list of events happened during the program run;

– ref , ref ′ are sets containing the event refused by the program.

They are in addition to ok ,ok ′, already added when going from the relational
theory towards the concept of designs: the distributional framework spared us
from having to add these variables when creating the concept of probabilistic
designs, as we do not need to use them — we have in fact argued that this
information is contained implicitly in the distributions δ, δ′, as their weight cor-
responds exactly to the probability that a particular program step has started
or finished, respectively.

106 R. Bresciani and A. Butterfield

Information about divergent states remains implicit in the distributions: the
probability of being in such a situation is precisely (1 − ∥δ′∥).

In some sense the “ok” part of a distribution is mapped to the support of δ′,
whereas the “not-ok” part gets disregarded.

We can therefore build on the theory of probabilistic designs presented in §3.2
to get to a probabilistic theory of CSP only by adding the remaining three pairs
of auxiliary variables.

Their meaning will be the same as in the standard theory. The question is:
what is the best way to embed them in the probabilistic theory of designs?
We may be tempted to introduce them as auxiliary variables alongside with
the program distribution, but the same reasons that were brought up to decide
in favour of an approach that lumps all of the variables together into a single
composite observation variable, require us to work on states with the following
shape:

σ ∶ (v ,wait , tr , ref) → W × B ×Event-seq ×Event-set ,

where W is the set of possible values for the program variables.
This allows us to embed all of the remaining auxiliary variables in the state

domain, and therefore this simplifies the definitions of the different program-
ming constructs and healthiness conditions, compared to the traditional reac-
tive definitions that use ok ,wait , tr , ref as auxiliary variables — this is a novel
approach.

4.1 R1

For example let us take the traditional R1, which states:

P = P ∧ (tr ≤ tr ′)

In a probabilistic world this must hold pointwise for each couple of states (σ,σ′)
from the before- and after-distributions that are related by the program.

If we write this in the case of a single state σ (i.e. we take a point distribution
ησ as the before-distribution), the trace in the before-state σ must be a prefix of
the trace in all of the possible after-states σ′ from the support7 of the resulting
after-distribution δ′.

This must hold true for all states in the state space, so the formulation of the
probabilistic R1 is:

P (δ, δ′) = P (δ, δ′) ∧ (∀σ ● P (ησ, δ
′) '⇒ (∀σ′ ∈ supp(δ′) ● σ(tr) ≤ σ′(tr)))

where we have used the functional notation σ(tr) to stand for the evaluation of
tr on σ.

From this formulation we can clearly see that divergent states do not take
part in the verification of the condition R1; in addition, it is worth pointing out
that, according to this definition, a totally divergent program (which yields δ′ = ε
for any initial δ) is R1-healthy.

7 The support of a function is the subset of its domain where the function is non-null.

From Distributions to Probabilistic Reactive Programs 107

4.2 R2

Healthiness condition R2 states that the initial value of tr cannot have any
influence on the evolution of the program, which determines only the tail (tr ′ −
tr):

P (tr , tr ′) = ∃s ● P (s, s ⌢ (tr ′ − tr))

As we did above we first look at the case of point distributions, where a possible
formulation is the following:

P (ησ, δ
′) = ∃s ● P (ησ{∣s/tr ∣}, δ

′{∣s⌢(tr−σ(tr))/tr ∣})

Here we have used the remap operator to “change” the value of the trace in the
spirit of R2 over all states.

This gives a sort of “substitution rule” that allows us to replace a state σ with
another state ζ that differs only for the value of tr in the before-distribution,
whereas in the after-distribution a part δ′σ (accounting for the contribution of
σ) is replaced by a new part δ′ζ (accounting for the contribution of ζ):

P (δ, δ′) = ∀σ∃s ● (ζ = σ{s/tr}) ∧P ((δ − δσ + δζ), (δ
′ − δ′σ + δ′ζ))

where δσ and δζ are point distributions scaled down by the probability of σ, i.e.
δσ = δ(σ) ⋅ ησ and δζ = δ(σ) ⋅ ηζ .

4.3 R3

Before getting to R3 we have to define the probabilistic version of the reactive
Skip, denoted II .

According to the standard theory of reactive designs [HH98], II is defined as:

II ≙ (¬ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref)

This definition has to distinguish the case of divergence (when it does not enforce
anything other than trace elongation) from the case of non-divergence (when it
states that all variables are left unchanged), and as a result it is much more
complicated than the pure relational skip which is simply:

v ′ = v

The choice of embedding the auxiliary variables in the state function σ (and
having left all information about divergence implicit in δ, δ′) starts to pay out
here, as it enables us to keep such an easy definition as well:

II ≙ δ′ = δ

In other words all non-divergent states are preserved as they are, whereas now
there is no statement on divergent states — other than the implicit one that the
overall probability of divergence must be left unchanged.

108 R. Bresciani and A. Butterfield

R3 does not mention tr , tr ′:

P = II ◁wait ▷P

As a result this is pretty straightforward to express in a probabilistic setting, as
we can use directly the semantics of the conditional construct presented in §3.1:

II ◁wait ▷ P

≡ definition of conditional

∃δA, δB ● II (δwait �, δA) ∧ P (δ¬wait �, δB) ∧ δ′ = δA + δB

≡ definition of II
∃δA, δB ● II (δwait �, δA) ∧ δA = δwait � ∧ P (δ¬wait �, δB) ∧ δ′ = δA + δB

≡ one-point rule on δA

∃δB ● II (δwait �, δwait �) ∧ P (δ¬wait �, δB) ∧ δB = δ′ − δwait �
≡ one-point rule on δB

II (δwait �, δwait �) ∧ P (δ¬wait �, δ′ − δwait �)

And therefore.

P (δ, δ′) = II (δwait �, δwait �) ∧ P (δ¬wait �, δ′ − δwait �)

We split the before-distribution into two parts, one where wait is true and that
equals the corresponding after-distribution, and one where it is not and that has
evolved into the difference of the total after-distribution δ′ and the part δwait �
that did not evolve.

This can be simplified down to:

P (δ, δ′) = P (δ¬wait �, δ′ − δwait �) .

4.4 CSP1 and CSP2

At this stage the readers with prior knowledge of CSP in the UTP framework
may be surprised that the end of this paper is approaching and yet we have not
mentioned two other healthiness conditions, namely CSP1 and CSP2.

The reason for our omission is that another advantage of the distributional
framework is that compliance with these healthiness conditions is subsumed by
other conditions, as we are now going to show.

In standard CSP, CSP1 states that:

P = P ∨ (¬ok ∧ tr ≤ tr ′)

As all information about divergent states is kept implicit in distributions, we
can argue that this healthiness condition is stripped down to the identity P = P .

From Distributions to Probabilistic Reactive Programs 109

In some sense, all states which are “ok” evolve from the support of the before-
distribution towards a state in the support of the after-distribution, which is
“ok′”, or diverge to a state, which is “not-ok′” and is not part of the support of
the after-distribution, effectively getting out of the game; on the other hand all
states which are “not-ok” are not part of the support of the before-distribution
and have no means to get back in the game.

Probabilistic reactive programs are therefore CSP1-healthy by design, as
P (δ, δ′) already states that either a state evolves according to what is described
by δ, δ′ or diverges.

Our formalism does not allow us to express the trace-elongation property for
divergent states, but after all it is not crucial information — they diverge, that’s
already bad enough!

The other healthiness condition, CSP2, states that:

P;J = P

where

J ≙ v ′ = v ∧ (ok ⇒ ok ′) ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref

In the probabilistic world based on distribution this reduces to:

P;II = P

which is nothing but H3. In fact:

J ≙ (v ′ = v ∧ (ok ⇒ ok ′) ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref)

≡ (v ′ = v ∧ ok ′ ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref)∨

∨ (v ′ = v ∧ ¬ok ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref)

≡ II ∨ (v ′ = v ∧ ¬ok ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref)

And again the part with ¬ok gets disregarded, thus the reactive program J
in the probabilistic world coincides with II — and there we have that CSP2

collapses to H3.

5 Conclusion

We have built a framework using the notion of distributions on the state space:
through distributions we are able to associate a probability with each state.

If we use predicates stating relations among distributions we can build a UTP
theory of programs that naturally embeds probability, so that probabilistic choice
and non-deterministic choice can co-exist in the same framework.

We have extended this theory first to generalise the standard UTP theory of
designs, and then we have built on that a theory of reactive programs.

The peculiarity of this approach is that divergent states are implicitly ac-
counted for by sub-distributions, where the weight is strictly less than one: a

110 R. Bresciani and A. Butterfield

divergent state does not belong to the domain of a distribution (in some sense
all states which are “not-ok” are disregarded), and the overall probability of be-
ing in a divergent state is equal to the difference between 1 and the distribution
weight.

Probabilistic versions of healthiness conditions R1, R2 and R3 hold in the prob-
abilistic theory, whereas healthiness conditions CSP1 and CSP2 are subsumed by
the framework.

References

[BB11] Bresciani, R., Butterfield, A.: Towards a UTP-style framework to deal with
probabilities. Technical Report TCD-CS-2011-09, FMG, Trinity College
Dublin, Ireland (August 2011)

[BB12a] Bresciani, R., Butterfield, A.: A probabilistic theory of designs based on
distributions. In: Wolff, B., Gaudel, M.-C., Feliachi, A. (eds.) UTP 2012.
LNCS, vol. 7681, pp. 105–123. Springer, Heidelberg (2013)

[BB12b] Bresciani, R., Butterfield, A.: A UTP semantics of pGCL as a homogeneous
relation. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012.
LNCS, vol. 7321, pp. 191–205. Springer, Heidelberg (2012)

[But10] Butterfield, A. (ed.): UTP 2008. LNCS, vol. 5713. Springer, Heidelberg
(2010)

[CS09] Chen, Y., Sanders, J.W.: Unifying probability with nondeterminism. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 467–482.
Springer, Heidelberg (2009)

[Dij76] Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
[DS06] Dunne, S., Stoddart, B. (eds.): UTP 2006. LNCS, vol. 4010. Springer, Hei-

delberg (2006)
[He10] He, J.: A probabilistic BPEL-like language. In: Qin [Qin 2010], pp. 74–100

(2010)
[Heh84] Hehner, E.C.R.: Predicative programming — Part I& II. Commun.

ACM 27(2), 134–151 (1984)
[HH98] Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall

International Series in Computer Science (1998)
[Hoa85] Hoare, C.A.R.: Programs are predicates. In: Proceedings of a discussion

meeting of the Royal Society of London on Mathematical Logic and Pro-
gramming Languages, Upper Saddle River, NJ, USA, pp. 141–155. Prentice-
Hall (1985)

[HS06] He, J., Sanders, J.W.: Unifying probability. In: Dunne and Stoddart [DSO
2006], pp. 173–199 (2006)

[Koz81] Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3),
328–350 (1981)

[Koz85] Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985)
[Mis00] Mislove, M.W.: Nondeterminism and probabilistic choice: Obeying the laws.

In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 350–365.
Springer, Heidelberg (2000)

[MM04] McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilis-
tic Systems. Monographs in Computer Science. Springer (2004)

From Distributions to Probabilistic Reactive Programs 111

[MMSS96] Morgan, C., McIver, A., Seidel, K., Sanders, J.W.: Refinement-oriented
probability for CSP. Formal Asp. Comput. 8(6), 617–647 (1996)

[Mor04] Morgan, C.: Of probabilistic Wp and CSP—and compositionality. In: Ab-
dallah, A.E., Jones, C.B., Sanders, J.W. (eds.) CSP 2004. LNCS, vol. 3525,
pp. 220–241. Springer, Heidelberg (2005)

[OCW09] Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus.
Formal Asp. Comput 21(1-2), 3–32 (2009)

[Qin10] Qin, S. (ed.): UTP 2010. LNCS, vol. 6445. Springer, Heidelberg (2010)

	From Distributionsto Probabilistic Reactive Programs
	1 Introduction
	2 Background
	2.1 UTP
	2.2 pCSP

	3 Probabilistic Designs
	3.1 The Distributional Framework
	3.2 A Probabilistic Theory of Designs

	4 Probabilistic CSP, UTP-Style
	4.1 R1
	4.2 R2
	4.3 R3
	4.4 CSP1 and CSP2

	5 Conclusion
	References

