
Cruise Control in Hybrid Event-B

Richard Banach1 and Michael Butler2

1 School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, U.K.

banach@cs.man.ac.uk
2 School of Electronics and Computer Science, University of Southampton,

Highfield, Southampton, SO17 1BJ, U.K.
mjb@ecs.soton.ac.uk

Abstract. A case study on automotive cruise control originally done in (con-
ventional, discrete) Event-B is reexamined in Hybrid Event-B (an extension of
Event-B that includes provision for continuously varying behaviour as well as
the usual discrete changes of state). A significant case study such as this has var-
ious benefits. It can confirm that the Hybrid Event-B design allows appropriately
fluent application level modelling (as is needed for serious industrial use). It also
permits a critical comparison to be made between purely discrete and genuinely
hybrid modelling. The latter enables application requirements to be covered in a
more natural way. It also enables some inconvenient modelling metaphors to be
eliminated.

1 Introduction

With the ever decreasing size and cost of computing devices today, there is a strong
incentive to embed digital processors in all sorts of devices and systems, in order to im-
prove design flexibility, performance and production cost. This has two readily discern-
able consequences. Firstly, since many of these systems interact directly with humans,
such designs rapidly acquire a safety-critical dimension that most computing systems
in the past did not have. Secondly, the profusion of such systems, their interactions with
the environment and with each other, dramatically increases design complexity beyond
the bounds where traditional development techniques can reliably deliver the needed
level of dependability.

It is by now well accepted that formal techniques, appropriately deployed, can of-
fer significant help with both of these issues. However, in the main, these techniques
are strongly focused on purely discrete reasoning, and deal poorly with the continuous
behaviours, that of necessity, are forced into the blend by the intimate coupling of com-
puting devices to real world systems. The hybrid and cyberphysical systems we speak
of (see, e.g. [20,23,2,22,6]) are poorly served by conventional formal techniques. Al-
though they do have approaches of their own (see, e.g. [8]), most of these techniques
are either limited in their expressivity, or lack rigour by comparison with most discrete
techniques. An exception is KeYmaera (see [1,16]), a system that combines formal
proof (of a quality commensurate with contemporary formal techniques) with continu-
ous behaviour (as needed in the description of genuine physical systems).

Z. Liu, J. Woodcock, and H. Zhu (Eds.): ICTAC 2013, LNCS 8049, pp. 76–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Cruise Control in Hybrid Event-B 77

The need for similar capabilities in systems to which the discrete Event-B method-
ology [3] has been applied in recent years, prompted the development of an extension,
Hybrid Event-B [5], that treats discrete and continuous behaviours equally. In this pa-
per, we apply this formalism to a case study previously done in discrete Event-B: the
modelling of a cruise control system, first investigated as a component of the DEPLOY
Project [9]. The motivation for doing this is: firstly, to judge the expressivity and flu-
ency of the Hybrid Event-B formalism regarding the description of scenarios such as
this (especially with a view to practical engineering use); and secondly, to readdress
some of the methodological deficiencies that the original case study identified as caused
by purely discrete modelling. In contrast to KeYmaera, there is at present no dedicated
tool support for Hybrid Event-B. In light of this, a further benefit of the present study
is to confirm that Hybrid Event-B contains the right collection of ingredients for indus-
trial scale modelling, before more serious investment in extending the RODIN Tool for
discrete Event-B [17] is made.

The rest of this paper is as follows. Section 2 overviews the cruise control system.
Section 3 discusses the methodological issues raised by the previous discrete case study,
and how Hybrid Event-B can address them. Section 4 overviews Hybrid Event-B itself.
Sections 5, 6, 7 then take the cruise control system from a pure mode based model,
through a model where continuous properties are constrained but not defined explicitly,
to a model where both modes and continuous behaviour are fully defined. These models
are related to one another using a sequence of refinements. Section 8 concludes.

2 Cruise Control System Overview

A cruise control system (CCS) is a software system which automatically controls the
speed of a car. The CCS is part of the engine control software which controls actuators
of the engine, based on the values of specific sensors. Since the CCS automatically
controls the speed of the car there are some safety aspects to be considered and it needs
to fulfil a number of safety properties. For example, the cruise control system must be
deactivated upon request of the driver (or in case of a system fault).

The part of the CCS focused on in the DEPLOY Project, which we follow here, was
the signal evaluation subsystem. For economy of space we simplify a bit from the full
case study tackled in DEPLOY [12], but we take care to retain all the elements where
we can demonstrate the methodological improvements discussed in Section 3 and show
the advantages of our approach.

We broadly follow the description in [25,24]. In Fig. 1 we see the state transition
diagram for a simplified CCS at an intermediate level of description. The CCS starts in
the OFF state, from where it can be SwitchedOn to put it into the ON state.

In the ON state several things can happen. One option for the driver is to SwitchOff
the CCS. Alternatively, the driver can SettheSpeed for the CCS, which will set the target
speed for the car, to be maintained by the engine control system under the guidance of
the CCS. While the speed is under the control of the CCS, the speed can be TippedUp
by the driver to increase it a little, or TippedDown to decrease it a little. If the driver
chooses to DepressBrakeorClutch while the CCS is on, then the CCS is designed to
switch off since it is assumed that a hazardous condition may have been encountered.

78 R. Banach and M. Butler

ON

OFF

SUSPENDSwOn SwOff, DepBrCl

DepAcc

DepBrCl

RelAcc

SetSpeed, TipUp, TipDown

Fig. 1. The state transition diagram for a simplified cruise control system

However, if the driver chooses to DepressAccelerator while the CCS is on, then it is
assumed that conditions are safe, and the CCS is merely put into the SUSPEND state.
In this state the driver controls the speed via the accelerator pedal. If in this state the
driver subsequently ReleasesAccelerator, the previous CCS state is resumed. However,
use of the brake or clutch in this state switches the CCS off, in line with the assumptions
mentioned earlier.

Below, we will develop a series of Hybrid Event-B machines to capture this design.
Before that though, we recap some methodological issues that arose in the context of
the earlier, purely discrete development, in order to focus the reader’s attention on how
these are handled differently in the fully hybrid formalism later.

3 Methodological Considerations

In the original discrete Event-B development of the CCS [12] the formal techniques
contemplated were based round existing design practices. These produce, for any pro-
posed application: firstly, a set of functional requirements generated by a requirements
engineering process; secondly, a set of safety requirements generated by a hazard anayl-
sis. In relation to Event-B, the former are transformed into events, and the latter are
transformed into invariants of the eventual Event-B model(s).

Typical systems in the automotive industry are embedded real time applications
which contain a closed loop controller as an essential part. Closed loop controller
development is done by control engineers, while their verification requires reasoning
about continuous behaviour. Discrete Event-B does not support continuous behaviour,
so the application of discrete Event-B to the CCS case study in [12] had to avoid its
direct inclusion. Since the presence of continuous behaviour cannot be avoided in CCS,
whenever such behaviour was needed in an Event-B model of [12], the modelling in-
corporated a function that interfaced between the continuous behaviour and the rest of
the model. The function itself though, was not (and because Event-B is discrete, could
not be) specified within Event-B.

The extension of discrete Event-B to Hybrid Event-B permits this deficiency to be
addressed. Most closed loop controller design takes place within the frequency domain
[15,10,11,4]. This is seemingly a long way away from the state based approach of tech-
niques like Event-B, but the state based formulation of control theory (increasingly

Cruise Control in Hybrid Event-B 79

popular today, especially when supported by tools such as SIMULINK [13]), enables a
direct connection with the conceptual framework of Hybrid Event-B to be made.

In our reworking of the CCS case study, we are able to incorporate the modelling
of a closed loop controller as an essential element. This inclusion of the closed loop
controller constitutes the first major point of departure from the earlier account.

Another issue concerns the communication of values between subsytems at different
levels of a system hierarchy, especially when real time aspects are paramount. Exam-
ples include the transmission of values registered by system sensors, handled by an
Event-B sensor machine, which need to be communicated to the core machine that con-
sumes them and decides future behaviour. A corresponding situation concerns values
determined by the core machine that need to be communicated to an actuator machine.

Events in the machines concerned update relevant variables with the required values.
However, the fact that enabledness of events in discrete Event-B merely permits them
to execute but does not force them to do so, means that when such values need to be
transmitted in a timely manner, the semantics does not guarantee that this will happen.
To address this, flags are introduced to prevent later events from executing before earlier
events that they depend on have completed. Such techniques, essentially handshake
mechanisms, are discussed in [7,12,25,24].

Handshake mechanisms are eloquent in modelling communication protocols at a
high level of abstraction (see e.g. the examples in [3]). However, when the abstract
level communication is continuous, such as in the coupling of a continuous controller
to its plant, the low level mechanics do rather obscure the essentials of what is going on.
In Hybrid Event-B, continuous behaviour is intrinsic, so the instantaneous communica-
tion of continuously changing values can be modelled directly. The capacity to directly
model the communication of continuously varying values constitutes the second major
point of departure from the earlier account.

4 Hybrid Event-B, A Sketch

In Fig. 2 we see a bare bones Hybrid Event-B machine, HyEvBMch. It starts with dec-
larations of time and of a clock. In Hybrid Event-B time is a first class citizen in that
all variables are functions of time, whether explicitly or implicitly. However time is
special, being read-only, never being assigned, since time cannot be controlled by any
human-designed engineering process. Clocks allow a bit more flexibility, since they are
assumed to increase their value at the same rate that time does, but may be set during
mode events (see below). Variables are of two kinds. There are mode variables (like u,
declared as usual) which take their values in discrete sets and change their values via
discontinuous assignment in mode events. There are also pliant variables (such as x, y),
declared in the PLIANT clause, which take their values in topologically dense sets (nor-
mally R) and which are allowed to change continuously, such change being specified
via pliant events (see below).

Next are the invariants. These resemble invariants in discrete Event-B, in that the
types of the variables are asserted to be the sets from which the variables’ values at any
given moment of time are drawn. More complex invariants are similarly predicates that
are required to hold at all moments of time during a run.

80 R. Banach and M. Butler

MACHINE HyEvBMch
TIME t
CLOCK clk
PLIANT x, y
VARIABLES u
INVARIANTS

x ∈ R

y ∈ R

u ∈ N

EVENTS
INITIALISATION

STATUS ordinary
WHEN

t = 0
THEN

clk := 1
x := x0
y := y0
u := u0

END
.

.
MoEv

STATUS ordinary
ANY i?, l, o!
WHERE grd(x, y, u, i?, l, t, clk)
THEN

x, y, u, clk, o! :| BApred(x, y, u,
i?, l, o!, t, clk, x′, y′, u′, clk′)

END
PliEv

STATUS pliant
INIT iv(x, y, t, clk)
WHERE grd(u)
ANY i?, l, o!
COMPLY

BDApred(x, y, u, i?, l, o!, t, clk)
SOLVE
D x = φ(x, y, u, i?, l, o!, t, clk)
y, o! := E(x, u, i?, l, t, clk)

END
END

Fig. 2. A schematic Hybrid Event-B machine

Then we get to the events. The INITIALISATION has a guard that synchronises time
with the start of any run, while all other variables are assigned their initial values in
the usual way. As hinted above, in Hybrid Event-B, there are two kinds of event: mode
events and pliant events.

Mode events are direct analogues of events in discrete Event-B. They can assign all
machine variables (except time itself). In the schematic MoEv of Fig. 2, we see three
parameters i?, l, o!, (an input, a local parameter, and an output respectively), and a guard
grd which can depend on all the machine variables. We also see the generic after-value
assignment specified by the before-after predicate BApred, which can specify how the
after-values of all variables (except time, inputs and locals) are to be determined.

Pliant events are new. They specify the continuous evolution of the pliant variables
over an interval of time. The schematic pliant event PliEv of Fig. 2 shows the struc-
ture. There are two guards: there is iv, for specifying enabling conditions on the pliant
variables, clocks, and time; and there is grd, for specifying enabling conditions on the
mode variables. The separation between the two is motivated by considerations con-
nected with refinement.

The body of a pliant event contains three parameters i?, l, o!, (once more an input, a
local parameter, and an output respectively) which are functions of time, defined over
the duration of the pliant event. The behviour of the event is defined by the COMPLY
and SOLVE clauses. The SOLVE clause specifies behaviour fairly directly. For exam-
ple the behaviour of pliant variable y and output o! is given by a direct assignment to
the (time dependent) value of the expression E(. . .). Alternatively, the behaviour of pli-
ant variable x is given by the solution of the first order ordinary differential equation

Cruise Control in Hybrid Event-B 81

(ODE) D x = φ(. . .), where D indicates differentiation with respect to time. (In fact
the sematics of the y, o! = E case is given in terms of the ODE D y,D o! = DE, so that
x, y and o! satisfy the same regularity properties.) The COMPLY clause can be used to
express any additional constraints that are required to hold during the pliant event via
its before-during-and-after predicate BDApred. Typically, constraints on the permitted
range of values for the pliant variables, and similar restrictions, can be placed here.

The COMPLY clause has another purpose. When specifying at an abstract level, we
do not necessarily want to be concerned with all the details of the dynamics — it is
often sufficient to require some global constraints to hold which express the needed
safety properties of the system. The COMPLY clauses of the machine’s pliant events
can house such constraints directly, leaving it to lower level refinements to add the
necessary details of the dynamics.

Briefly, the semantics of a Hybrid Event-B machine is as follows. It consists of a set
of system traces, each of which is a collection of functions of time, expressing the value
of each machine variable over the duration of a system run. (In the case of HyEvBMch,
in a given system trace, there would be functions for clk, x, y, u, each defined over the
duration of the run.)

Time is modeled as an interval T of the reals. A run starts at some initial mo-
ment of time, t0 say, and lasts either for a finite time, or indefinitely. The duration
of the run T , breaks up into a succession of left-closed right-open subintervals: T =
[t0 . . . t1), [t1 . . . t2), [t2 . . . t3), The idea is that mode events (with their discontinu-
ous updates) take place at the isolated times corresponding to the common endpoints
of these subintervals ti, and in between, the mode variables are constant and the pliant
events stipulate continuous change in the pliant variables.

Although pliant variables change continuously (except perhaps at the ti), continu-
ity alone still allows for a wide range of mathematically pathological behaviours. To
eliminate these, we make the following restrictions which apply individually to every
subinterval [ti . . . ti+1):

I Zeno: there is a constant δZeno, such that for all i needed, ti+1 − ti ≥ δZeno.

II Limits: for every variable x, and for every time t ∈ T , the left limit limδ→0 x(t− δ)

written
−→
x(t) and right limit limδ→0 x(t + δ), written

←−
x(t) (with δ > 0) exist, and for

every t, x(t) =
←−
x(t). [N. B. At the endpoint(s) of T , any missing limit is defined to

equal its counterpart.]

III Differentiability: The behaviour of every pliant variable x in the interval [ti . . . ti+1)
is given by the solution of a well posed initial value problem D xs = φ(xs . . .)
(where xs is a relevant tuple of pliant variables and D is the time derivative). “Well
posed” means that φ(xs . . .) has Lipschitz constants which are uniformly bounded
over [ti . . . ti+1) bounding its variation with respect to xs, and that φ(xs . . .) is mea-
surable in t.

Regarding the above, the Zeno condition is certainly a sensible restriction to demand of
any acceptable system, but in general, its truth or falsehood can depend on the system’s
full reachability relation, and is thus very frequently undecidable.

The stipulation on limits, with the left limit value at a time ti being not necessarily
the same as the right limit at ti, makes for an easy interpretation of mode events that

82 R. Banach and M. Butler

happen at ti. For such mode events, the before-values are interpreted as the left limit
values, and the after-values are interpreted as the right limit values.

The differentiability condition guarantees that from a specific starting point, ti say,
there is a maximal right open interval, specified by tMAX say, such that a solution to the
ODE system exists in [ti . . . tMAX). Within this interval, we seek the earliest time ti+1

at which a mode event becomes enabled, and this time becomes the preemption point
beyond which the solution to the ODE system is abandoned, and the next solution is
sought after the completion of the mode event.

In this manner, assuming that the INITIALISATION event has achieved a suitable
intial assignment to variables, a system run is well formed, and thus belongs to the
semantics of the machine, provided that at runtime:

• Every enabled mode event is feasible, i.e. has an after-state, and on its com-
pletion enables a pliant event (but does not enable any mode event).1

(1)

• Every enabled pliant event is feasible, i.e. has a time-indexed family of after-
states, and EITHER:

(i) During the run of the pliant event a mode event becomes enabled. It pre-
empts the pliant event, defining its end. ORELSE

(ii) During the run of the pliant event it becomes infeasible: finite termination.
ORELSE

(iii) The pliant event continues indefinitely: nontermination.

(2)

Thus in a well formed run mode events alternate with pliant events. The last event
(if there is one) is a pliant event (whose duration may be finite or infinite). In reality,
there are a number of semantic issues that we have glossed over in the framework just
sketched. We refer to [5] for a more detailed presentation.

We note that this framework is quite close to the modern formulation of hybrid sys-
tems. (See eg. [21,16] for representative formulations, or the large literature in the Hy-
brid Systems: Computation and Control series of international conferences, and the
further literature cited therein.)

5 Cruise Control — Top Level Mode Oriented Model

In this section we begin the development of the cruise control system by introducing
the top level, mode oriented model of the CCS, CruiseControl 0. At this level, we just
model the state transition diagram given in Fig. 1, i.e. we just focus on the high level
user view modes of operation of the system. Regarding a more realistic engineering
development, such a model would probably be agreed on first, before the details of the
various submodel behaviours were determined.

Regarding the CCS model itself, we see that we model the structure of Fig. 1 using
two mode variables: mode and sm (submode). The former models whether the CCS
is ON, OFF or SUSPended, while the latter models whether the speed has been SET,
otherwise it is NIL. It is not hard to check that Fig. 3 gives a translation of Fig. 1 into

1 If a mode event has an input, the semantics assumes that its value only arrives at a time strictly
later than the previous mode event, ensuring part of (1) automatically. This used in Fig. 3.

Cruise Control in Hybrid Event-B 83

MACHINE CruiseControl 0
VARIABLES mode, sm
INVARIANTS

mode ∈ {OFF,ON, SUSP}
sm ∈ {NIL, SET}
sm = SET ⇒ mode ∈ {ON, SUSP}

EVENTS
INITIALISATION

STATUS ordinary
BEGIN

mode := OFF
sm := NIL

END
SwOn

STATUS ordinary
ANY in?
WHERE in? = swOn ∧ mode = OFF
THEN mode := ON

sm := NIL
END

SwOff
STATUS ordinary
ANY in?
WHERE in? = swOff ∧ mode = ON
THEN mode := OFF

sm := NIL
END

SetSpeed
STATUS ordinary
ANY in?
WHERE in? = setSpeed ∧

mode = ON ∧ sm = NIL
THEN sm := SET
END

TipUp
STATUS ordinary
ANY in?
WHERE in? = tipUp ∧

mode = ON ∧ sm = SET
THEN skip
END

.

.
TipDown

STATUS ordinary
ANY in?
WHERE in? = tipDown ∧

mode = ON ∧ sm = SET
THEN skip
END

DepAcc
STATUS ordinary
ANY in?
WHERE in? = depAcc ∧

mode = ON ∧ sm = SET
THEN mode := SUSP
END

RelAcc
STATUS ordinary
ANY in?
WHERE in? = relAcc ∧

mode = SUSP ∧ sm = SET
THEN mode := ON
END

DepBrCl
STATUS ordinary
ANY in?
WHERE in? = depBrCl ∧

mode ∈ {ON, SUSP}
THEN mode := OFF

sm := NIL
END

PliTrue
STATUS pliant
COMPLY INVARIANTS
END

END

Fig. 3. Mode level description of cruise control operation

84 R. Banach and M. Butler

the framework of Hybrid Event-B. Aside from typing invariants, we have an invariant
that only allows the sm to be SET when the CCS is active (i.e. either ON or SUSP).

One aspect of both Fig. 1 and Fig. 3 that we should comment on, is that in the real
world, the pressing of any of the pedals, or of the CCS control buttons, is not restricted
to when the CCS deems it permissible to do so. The car driver has these user interface
elements at his disposal at all times, and can operate them whenever he wishes. Thus,
we have clearly designed Fig. 1 and Fig. 3 aggressively, assuming events take place
only when their guards are true. This implies that there is a defensive layer above it,
deflecting inappropriately commanded events away from the core CCS functionality.

Aside from a few details, Fig. 3 is almost identical to comparable models written
in discrete Event-B as described in [12] or [25,24]. The main difference between the
earlier treatments and ours, is that these other treatments developed their mode level
descriptions incrementally, adding a feature or two at a time via refinement, to ease
automated verification. By contrast, we have presented our mode level model mono-
lithically, so as to save space (and the reader’s attention span) for the richer modelling
of the continuous system behaviour between mode changes that is the main contribution
of this paper.

Regarding the technical structure of Fig. 3, it differs from a discrete Event-B ma-
chine in only a couple of details. First is that each of the mode events (indicated by
the ‘STATUS ordinary’ designation) has an input parameter whose value is (almost)
the name of the event. Considering the actions of these various mode events, such pa-
rameters would be unnecessary in discrete Event-B. In Hybrid Event-B though, time is
an essential feature of the modelling framework, so the timing of occurrences of mode
events is an issue. The semantics of Hybrid Event-B stipulates that mode events with
input parameters only become enabled when the input values become available from
the environment, and it is assumed that they only become available at times that do not
clash with other mode events. Thus the appearance of the inputs from the environment
acts to schedule mode event occurrences in a way compatible with the usual interpre-
tation of their occurrence in discrete Event-B. The only other difference from discrete
Event-B that is visible in Fig. 3, is the pliant event PliTrue. This has a vacuous guard,
and (essentially) vacuous semantics that merely insist that the INVARIANTS are main-
tained. Its job is simply to formally allow time to pass (according to the semantics of
Hybrid Event-B) until the next mode event occurrence takes place, prompted by the
appearance of the relevant parameter from the environment.

From the above, it is easy to see that a standard discrete Event-B machine, giving
a mode level description of the behaviour of some desired system, could be mechani-
cally and routinely translated to a machine of the form of Fig. 3, allowing an original
discrete Event-B machine to be refined ultimately by a Hybrid Event-B machine. Al-
ternatively, the formal semantics of UML-B [18,14,19] would enable the same job to
be done starting from a more diagrammatic representation. This would enable a devel-
opment process that started by focusing on just a conventional discrete Event-B mode
level behaviour of the system, to be enriched with real time properties further along the
development, within an integrated development activity.

Cruise Control in Hybrid Event-B 85

6 Cruise Control — Abstract Continuous Behaviour

In this section we enhance the pure mode oriented model of Section 5 with a specifi-
cation of the desired continuous behaviour in the periods between occurrences of the
mode events.

The requirements that are intended to be addressed by this behaviour are relatively
easy to formulate at a user level. Thus, once the CCS is in control of the car, we require
that the actual speed of the car differs from the target speed that has been set by the
driver by at worst a margin that is determined by the CCS design.

The car’s actual behaviour may drift away from it’s target value for many reasons.
The target speed is set when the driver engages the CCS, and is translated into com-
mands for the car to maintain it, but the actual behaviour is affected by many additional
environmental factors. These include factors such as road slope, wind resistance, road
surface characteristics, total car weight, fuel energy output, and so on. These add con-
siderable uncertainty and complexity to the real world situation.

Control engineers cope with the vast range of environmental uncertainty by using
feedback. The deviation between the actual and desired behaviour is monitored, and the
difference is used to impel the controlled system towards the desired behaviour.

The low level design of a real CCS deals with the many factors that affect the car’s
performance, as indicated. In this paper we will restrict our attention to a simple control
design addressing the user level requirements stated earlier. This illustrates how a con-
trol system design may be integrated with the modelling capabilities of Hybrid Event-B.
More realistic designs will follow the same general principles as our example, and will
merely exhibit increased complexity.

Our enhanced treatment of the CC system is to be found in Fig. 4, completed in
Fig. 5. After the machine and refinement declarations, there is a declaration of a pliant
variable v, representing the velocity of the car. In our simple approach to CCS, this
single pliant variable will be sufficient.

Next come the (mode) variables. Of these, mode and sm are familiar from Fig. 3. Of
the remainder, setv is the target velocity set by the driver of the car, while the new vari-
able rn records whether a ramp up/down episode is needed after use of the accelerator
prior to resuming cruising velocity. All other identifiers, occurring but not declared in
Figs. 4 or 5, are constants of the system, as if they were in a Hybrid Event-B CONTEXT
not included in the paper. We return to them at the end of this section.

Next come the invariants. For the real valued variables, discernable as such because
of the invariants that restrict them to a real valued closed interval, e.g. v ∈ [0 . . .Vmax],
the restriction to the interval is mostly the only property they have to satisfy. Aside from
v, these real valued variables are mode variables, so are piecewise constant during pliant
transitions, despite being real valued.

The remaining invariant is CONTINUOUS(v), featuring the ‘CONTINUOUS’ pli-
ant modality. Now, the semantics of Hybrid Event-B guarantees that in between mode
transitions, the behaviour of all pliant variables must be absolutely continuous. Never-
theless, pliant variables may suffer discontinuities during mode transitions. The CON-
TINUOUS modality stipulates that this must not happen to v, and a simple static check
on the mode events is enough to guarantee this. The global continuity of v is of course
intended to contribute to the ‘comfortable behaviour’ requirement.

86 R. Banach and M. Butler

MACHINE CruiseControl 1
REFINES CruiseControl 0
PLIANT v
VARIABLES mode, sm, setv, rn
INVARIANTS

v ∈ [0 . . . Vmax]
CONTINUOUS(v)
mode ∈ {OFF,ON, SUSP}
sm ∈ {NIL, SET}
sm = SET ⇒ mode ∈ {ON, SUSP}
setv ∈ [VCCmin . . .VCCmax]
rn ∈ BOOL

EVENTS
INITIALISATION

STATUS ordinary
REFINES INITIALISATION
BEGIN

v :∈ [0 . . .Vmax]
setv :∈ [VCCmin . . .VCCmax]
mode := OFF
sm := NIL
rn := FALSE

END
PliDefault

STATUS pliant
REFINES PliTrue
WHEN mode ∈ {OFF, SUSP} ∨
(mode = ON ∧ sm = NIL)

COMPLY INVARIANTS
END

SwOn
STATUS ordinary
REFINES SwOn
ANY in?
WHERE in? = swOn ∧ mode = OFF
THEN mode := ON

sm := NIL
END

SwOff
STATUS ordinary
REFINES SwOff
ANY in?
WHERE in? = swOff ∧ mode = ON
THEN mode := OFF

sm := NIL
END

.

.
SetSpeed

STATUS ordinary
REFINES SetSpeed
ANY in?
WHERE in? = setSpeed ∧

v ∈ [VCCmin . . .VCCmax] ∧
mode = ON ∧ sm = NIL

THEN sm := SET
setv := v

END
Cruise

STATUS pliant
REFINES PliTrue
INIT |v − setv |≤ ΔCruise

WHERE mode = ON ∧ sm = SET
COMPLY |v − setv | ≤ ΔCruise ∧
|Dv | ≤ ΔMCA

END
RampUp

STATUS pliant
REFINES PliTrue
INIT v − setv < −ΔCruise

WHERE mode = ON ∧ sm = SET
COMPLY |Dv − RUA |≤ ΔRUD

END
RampDown

STATUS pliant
REFINES PliTrue
INIT v − setv > ΔCruise

WHERE mode = ON ∧ sm = SET
COMPLY |Dv + RDA | ≤ ΔRUD

END
ResumeCruise

STATUS convergent
WHEN |v − setv | ≤ ΔCruise ∧

mode = ON ∧ sm = SET ∧ rn
THEN rn := FALSE
END

VARIANT rn
.

Fig. 4. Cruise control operation with abstract continuous behaviour, first part

Cruise Control in Hybrid Event-B 87

.
TipUp

STATUS ordinary
REFINES TipUp
ANY in?
WHERE in? = tipUp ∧

mode = ON ∧ sm = SET
THEN

setv := min{setv + TUD,VCCmax}
END

TipDown
STATUS ordinary
REFINES TipDown
ANY in?
WHERE in? = tipDown ∧

mode = ON ∧ sm = SET
setv − TUD ≥ VCCmin

THEN
setv := max{setv − TUD,VCCmin}

END
DepAcc

STATUS ordinary
REFINES DepAcc
ANY in?
WHERE in? = depAcc ∧

mode = ON ∧ sm = SET
THEN mode := SUSP
END

.

.
RelAccCruise

STATUS ordinary
REFINES RelAcc
ANY in?
WHERE in? = relAcc ∧

mode = SUSP ∧ sm = SET ∧
|v − setv | ≤ ΔCruise

THEN mode := ON
rn := FALSE

END
RelAccRamp

STATUS ordinary
REFINES RelAcc
ANY in?
WHERE in? = relAcc ∧

mode = SUSP ∧ sm = SET ∧
|v − setv |> ΔCruise

THEN mode := ON
rn := TRUE

END
DepBrCl

STATUS ordinary
REFINES DepBrCl
ANY in?
WHERE in? = depBrCl ∧

mode ∈ {ON, SUSP}
THEN mode := OFF

sm := NIL
END

END

Fig. 5. Cruise control operation with abstract continuous behaviour, second part

The heart of the model consists of the events, the first of which is INITIALISATION.
This intialises mode and sm as before, and sets all the real valued variables to arbitrary
values in their permitted range. We examine the remaining events one by one.

PliDefault is a pliant event that refines PliTrue of Fig. 3. It allows the variables to
vary arbitrarily via the ‘COMPLY INVARIANTS’ clause, although the invariants must
be maintained. Note that the guard of PliDefault is stronger than that of PliTrue — the
unconstrained behaviour is only permitted under conditions where the CCS would not
be expected to be in control.

The events SwOn and SwOff are identical to their Fig. 3 precursors.
Event SetSpeed acquires new functionality, in that it now also sets the value of the

demanded speed setv to be the car’s current speed v.
The continuous control itself is handled by the next three pliant events, Cruise,

RampUp, RampDown. We start with Cruise. On entry to Cruise, if the car’s actual

88 R. Banach and M. Butler

speed v is within a suitable margin (given by the constant ΔCruise) of the desired speed
setv, then the event is enabled, as defined by the INIT clause | v − setv | ≤ ΔCruise.
In this case, at the present level of abstraction, the behaviour is not precisely defined,
but the Cruise event demands that the speed remains within a suitable margin of setv,
bounded by ΔCruise again. A further requirement is once more related to ‘comfort’, in
that the rate of change of v should not exceed a MaximumCruiseAcceleration, ΔMCA.
These stipulations are housed in the COMPLY | v − setv | ≤ ΔCruise ∧ |Dv | ≤ ΔMCA

clause. Note that this represents a genuine specification, in that the COMPLY clause
gives no indication of how a behaviour with the required properties is to be achieved.
It also represents behaviour that trivially refines PliTrue, in that the latter accepts all
behaviours obeying the invariants.

Similar considerations apply to RampUp and RampDown. Taking RampUp, it caters
for the cases when, following use of the accelerator to casue some temporary vari-
ation in the car’s speed, the car’s actual speed v is less than the desired speed setv
by an amount greater than ΔCruise.2 In such a case, it is deemed that a(n approxi-
mately) constant acceleration towards the desired speed setv is an appropriate han-
dling of the ‘comfort’ requirement. So we have a clause COMPLY | Dv − RUA | ≤
ΔRUD. This demands that the acceleration Dv does not differ from the constant RUA,
i.e. RampUpAcceleration, by more than the deviation ΔRUD. Again this is specification,
pure and simple. No indication is given about how to achieve the behaviour described.

Event RampDown is very similar to RampUp. It fires when, following use of the ac-
celerator, the car’s actual speed is greater than setv by an amount exceeding the constant
ΔCruise. Now the car is required to decelerate at the (approximately) constant accelera-
tion −RDA (with the same margin as before). Again, the COMPLY clause amounts to
pure specification. No indication is given about how to achieve the behaviour described.

A number of additional remarks are in order regarding Cruise, RampUp, RampDown.
Firstly, the constants occurring in the events’ INIT guards must be chosen so that the
disjunction of the INIT guards can cover all permissible car speeds in the car’s permitted
range [0 . . .Vmax]. Otherwise, when mode = ON ∧ sm = SET, the relative deadlock
freedom property of refinement will fail since all three events refine the unconstrained
behaviour of PliTrue. It is clear that Cruise, RampUp, RampDown, as defined, meet this
constraint.

Secondly, if say RampUp runs, then if left to continue in an unhindered manner,
it will eventually cause the v ∈ [0 . . .Vmax] invariant to fail, since a constant positive
acceleration will eventually cause any upper speed limit to be exceeded. To prevent
this, we have introduced a new mode event ResumeCruise, which runs when the car’s
velocity, previously differing from the set speed by more than ΔCruise, eventually gets
within ΔCruise of the set speed. The main job of this mode event is to cause a reschedule,
so that RampUp is preempted, and Cruise is able to run.

We only want ResumeCruise to only run once per resumption-of-cruise-control. In
order that ResumeCruise disables itself upon completion, we use the new rn variable
in its guard, and falsify it in the action of ResumeCruise. This causes ResumeCruise to

2 The initially puzzling possibility that the car might need to speed up following use of the
accelerator is explained by considering driving up a steep hill.

Cruise Control in Hybrid Event-B 89

decrease the VARIANT rn (with which we interrupt the presentation of events, in order
to show it at the most opportune place).

The remainder of the CruiseControl 1 machine is in Fig. 5. Now, since setv is a
new feature of the CruiseControl 1 machine, and since TipUp and TipDown are in-
tended to manipulate it, these events must be refined nontrivially in order to achieve
this. The refinements therefore add or subtract the constant TUD from setv, although
they must do it in a way that prevents the range of permissible cruise control speeds
[VCCmin . . .VCCmax] from being overstepped.

Among the remaining events of CruiseControl 1 (all mode events), DepAcc is as
previously. Event RelAcc has been split in two though, depending on whether the car’s
speed is within the margin ΔCruise when the accelerator pedal is released. If | v− setv |
≤ ΔCruise holds, i.e. the car is near enough its cruise speed, then Cruise can be entered
directly, ResumeCruise will not be needed, and so RelAccCruise sets nr to FALSE. If
| v − setv | ≤ ΔCruise is false though, then a ramp up or down episode is needed, so
RelAccRamp sets nr to TRUE so that ResumeCruise will eventually be enabled.

Finally, DepBrCl is as in CruiseControl 0.
Having covered the whole system model, we are in a position to reconsider the con-

stants, as promised earlier. While it is natural in high level modelling to introduce, at
will, constants that constrain system behaviour in desirable ways, these constants will
not normally be independent, and will need to satisfy a number of properties to ensure
soundness. The safest way to ensure that all needed constraints have been considered, is
to attempt mechanical verification — a mechanical prover will remorselessly uncover
any missing constraints, which will show up by generating unprovable subgoals.

Despite lack of dedicated tool support for Hybrid Event-B at present, the simplicity
of our model here, means that a large portion of this work can be done using discrete
Event-B and the existing RODIN tool. The fact that, aside from properties involving
continuity and differentiability, we only have uninstantiated constants, and only use
properties of reals that are also true of the integers, means that unprovability in the
integers is a strong indication of falsity in the reals. Thus, regarding the details of our
models, we would obviously need 0 < VCCmin < VCCmax < Vmax. Beyond that,
the mode events can be treated directly, as noted earlier. This leaves the pliant events,
Cruise, RampUp, RampDown.

For our purposes, we can treat Cruise as a mode event that skips, for the follow-
ing collection of reasons: it maintains its guard; 0 < ΔCruise is a constant that is
just used to partition the set of velocities; Dv is a variable independent of v at any
given time (and which is never tested in any guard); and 0 < ΔMCA is a constant
that occurs nowhere else. For RampUp and RampDown, aside from the obvious 0 <
min{RUA,RDA, ΔRUD}, all of RUA, RDA, ΔRUD are again constants that occur nowhere
else, that only concern Dv, and thus are not further constrained. Beyond that, the be-
haviour of RampUp, RampDown is intended to achieve |v− setv | ≤ ΔCruise, so for our
purposes, we can replace them by mode events with action v :| |v′ − setv | ≤ ΔCruise. In
this manner, with the help of some admittedly informal reasoning regarding continuity
and differentiability, we can go quite a long way towards replicating the reachability re-
lation of the CruiseControl 1 machine (expressed in terms of sequences of event names
that are executed and the before-/after-values of the events’ variables), using a discrete

90 R. Banach and M. Butler

Event-B machine with the same constants obeying the same constraints. (In fact, the
authors used this approach on an earlier version of the models, and uncovered a typo
concerning inconsistent assumptions about the sign of RDA. RDA can be a negative
constant, or alternatively, a positive constant that is negated when necessary at the point
of use; but you must be consistent.)

7 Cruise Control — Continuous Behaviour Defined

In the previous section we specified the continuous behaviour of the CCS in terms of
some safety properties captured in the invariants and COMPLY clauses. A real CCS
though, would have to realise these properties in a specific design. In this section, we
enhance CruiseControl 1 with such a design.

Fig. 6 contains the enhancement, machine CruiseControl 2. This is a refinement of
CruiseControl 1 in which the vast majority of CruiseControl 1 remains unchanged.
The variable declarations show that we only introduce more refined behaviour in this
machine, and even then, only in events Cruise, RampUp, RampDown.

We start with Cruise. Assuming INIT is satisfied, on entry to Cruise, the actual
speed v may differ from setv by some margin since Cruise may have been preceded
by RampUp or RampDown. And while CruiseControl 1 tolerated a bounded deviation
between these indefinitely, in CruiseControl 2 we replace this by a more specific con-
trol law. Since setv is the desired speed, we drive the actual speed towards setv using
negative feedback. The earlier CruiseControl 1 behaviour is refined to a control law
described in the SOLVE clause of the CruiseControl 2 event. The control law sets the
acceleration Dv to be proportional to minus the excess of v over setv. Thus, if v− setv is
positive, the acceleration is negative, tending to diminish v towards setv, and if v− setv
is negative, the acceleration is positive, tending to increase v towards setv.

The preceding constitutes an extremely simple example of closed loop negative feed-
back linear control, expressed in the state space picture. The control law in the SOLVE
clause, Dv = −C(v− setv), is a simple linear ODE, and can be solved exactly, yielding
v(t) = setv+(v(�L)− setv) e−C(t−�L), where �L is the symbol used in Hybrid Event-B
to refer generically to the start time of any time interval during which a pliant event
runs. It is trivial to verify that with a suitable C, this refines the behaviour permitted
by the CruiseControl 1 model, since the maximum values of both | v(t) − setv | and of
|Dv | occur precisely at t = �L, and henceforth reduce.

In more realistic control scenarios, the overall objectives, namely to design a dy-
namics that behaves in an acceptable way in the face of the requirements, remains the
same, but the technical details get considerably more complicated. To a large extent,
frequency-based techniques using Laplace and Fourier transforms cast the reasoning
into the algebraic domain, and the picture is further complicated by the use of varying
criteria (often based on the properties of these frequency-based techniques) to evaluate
design quality. Often, use of these techniques does not blend well with the reasoning
found in state machine based formalisms like Event-B and its relatives. For this reason,
resticting to state space control design techniques is recommended to achieve the opti-
mal integration between approaches.

Cruise Control in Hybrid Event-B 91

MACHINE CruiseControl 2
REFINES CruiseControl 1
PLIANT v
VARIABLES mode, sm, setv, rn
INVARIANTS

.
EVENTS

INITIALISATION
PliDefault
SwOn
SwOff
SetSpeed
ResumeCruise
TipUp
TipDown
DepAcc
RelAccCruise
RelAccRamp
DepBrCl

.

.
Cruise

STATUS pliant
REFINES Cruise
INIT |v − setv |≤ ΔCruise

WHERE mode = ON ∧ sm = SET
SOLVE Dv = −C(v − setv)
END

RampUp
STATUS pliant
REFINES RampUp
INIT v − setv < −ΔCruise

WHERE mode = ON ∧ sm = SET
SOLVE Dv = RUA
END

RampDown
STATUS pliant
REFINES RampDown
INIT v − setv > ΔCruise

WHERE mode = ON ∧ sm = SET
SOLVE Dv = −RDA
END

END

Fig. 6. Cruise control operation with continuous control

We turn to RampUp and RampDown. Here, the approximately linear and nondeter-
ministic variation in speed of machine CruiseControl 1 is replaced by a precise, deter-
ministic linear law for the velocity, specified by a constant acceleration in the SOLVE
clauses: Dv = RUA for RampUp and Dv = −RDA for RampDown.

In writing these deterministic dynamical laws, it is presumed that acceleration is
something that can be commanded accurately by the engine management system, based
on the properties of the engine, the fuel, the environmental conditions, etc., as discussed
in Section 6. In truth, this is something of an exageration. In reality, there is too much
uncertainty in all these environmental elements to enable the acceleration to be pre-
dicted (and therefore commanded) with complete precision. Aside form anything else,
the car’s sensors are severely limited regarding the type of information about the envi-
ronment that they can obtain. So there will be some deviation between the acceleration
that the engine management system predicts, and that which is actually achieved. On
this basis we would expected to see some difference between our treatments of Cruise,
and of RampUp and RampDown.

In the case of Cruise, a misjudgement of the precise acceleration that will be achieved
is compensated for by the presence of negative feedback. If the car’s velocity does
not reduce quite as rapidly as anticipated by the engine management system, then the
negative feedback will work that much harder to bring the velocity into line. The pre-
cise details of the control law can be adjusted to make allowance for such potential

92 R. Banach and M. Butler

imprecision, without disturbing the overall structure of the behaviour. In this sense, the
negative feedback makes the Cruise design robust against a margin of imprecision.

In the case of RampUp and RampDown, there is no feedback included in the control
law. For these two events, it is the acceleration that might be awry, and that would need
to be brought into line. There are a number of reasons why we did not include this in our
models. Firstly, it would need the introduction of at least one other pliant variable into
the models (to distinguish measured acceleration from commanded acceleration). Sec-
ondly, the resulting feedback law would make the control system higher order, adding
unnecessary complexity. Thirdly we would lose the opportunity to illustrate the contrast
between closed loop control (as in Cruise) and open loop control (as here, for RampUp
and RampDown) in the context of Hybrid Event-B. Fourthly, if our earlier design is ap-
propriate, then any deviation from cruise speed caused by use of the accelerator pedal
will be temporary, and thus RampUp and RampDown describe transients of the system.
The small imprecisions that may affect their behaviour will not significantly affect the
quality of the CCS at the relatively simple level that we model it in this paper.

8 Conclusions

In the preceding sections, we overviewed the cruise control model examined within the
DEPLOY project, and we commented on the deficiencies when formal modelling and
verification are based purely on discrete Event-B, as was employed in DEPLOY. We
then commented on the anticipated improvements expected when the more expressive
Hybrid Event-B formalism is used instead. We continued by outlining the essential
elements of Hybrid Event-B, sufficient to cater for the modelling to be done later.

We then developed a simple version of the CCS in Hybrid Event-B, through a num-
ber of relatively large scale refinements, using these refinements to illustrate the major
modelling steps. Thus, we started with a pure mode oriented model, very similar to
what DEPLOY achieved for CCS. The hybrid aspects of Hybrid Event-B were almost
completely disregarded here by allowing the continuous behaviour to be arbitrary.

The first refinement then introduced additional structure and restrictions on the con-
tinuous behaviour. These, though nondeterministic, were deemed sufficient to express
the system requirements. The next refinement then introduced specific control laws that
modelled in a simple way how a real CCS might implement the continuous control.

Of course, a real system would be much more complicated than what we presented,
but it would consist of a larger collection of ingredients of a similar nature to those in our
design. For expository purposes then, we can claim that our presentation met the goals
described in Section 3. Specifically, we showed that we could incorporate provision for
closed loop controller designs unproblematically (including a brief discussion of open
loop control too). Additionally, the smoothness with which our development proceeded,
bore eloquent testimony to the fluency of the Hybrid Event-B formalism in tackling
developments of this kind. This gives strong encouragement for the development of
mechanical support for the Hybrid Event-B framework in the future.

Acknowledgement. Michael Butler is partly funded by the FP7 ADVANCE Project
(http://www.advance-ict.eu).

Cruise Control in Hybrid Event-B 93

References

1. KeYmaera, http://symbolaris.com
2. Report: Cyber-Physical Systems (2008),

http://iccps2012.cse.wustl.edu/_doc/CPS_Summit_Report.pdf
3. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University

Press (2010)
4. Antsaklis, P., Michel, A.: Linear Systems. Birkhauser (2006)
5. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core Hybrid Event-B: Adding Continu-

ous Behaviour to Event-B (2012) (submitted)
6. Barolli, L., Takizawa, M., Hussain, F.: Special Issue on Emerging Trends in Cyber-Physical

Systems. J. Amb. Intel. Hum. Comp. 2, 249–250 (2011)
7. Butler, M.: Towards a Cookbook for Modelling and Refinement of Control Problems (2009),

http://deploy-eprints.ecs.soton.ac.uk/108/1/cookbook.pdf
8. Carloni, L., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.: Languages and Tools for

Hybrid Systems Design. Foundations and Trends in Electronic Design Automation 1, 1–193
(2006)

9. DEPLOY: European Project DEPLOY IST-511599,
http://www.deploy-project.eu/

10. Dorf, R., Bishop, R.: Modern Control Systems. Pearson (2010)
11. Dutton, K., Thompson, S., Barraclough, B.: The Art of Control Engineering. Addison-

Wesley (1997)
12. Loesch, F., Gmehlich, R., Grau, K., Mazzara, M., Jones, C.: Project DEPLOY, Deliverable

D19: Pilot Deployment in the Automotive Sector (2010),
http://www.deploy-project.eu/pdf/
D19-pilot-deployment-in-the-automotive-sector.pdf

13. MATLAB and SIMULINK, http://www.mathworks.com
14. Mermet, J.: UML-B: Specification for Proven Embedded Systems Design. Springer (2004)
15. Ogata, K.: Modern Control Engineering. Pearson (2008)
16. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

Springer (2010)
17. RODIN: European Project RODIN (Rigorous Open Development for Complex Systems)

IST-511599, http://rodin.cs.ncl.ac.uk/
18. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. TOSEM 15,

92–122 (2006)
19. Snook, C., Oliver, I., Butler, M.: The UML-B Profile for Formal Systems Modelling in UML.

UML-B Specification for Proven Embedded Systems Design (2004)
20. Sztipanovits, J.: Model Integration and Cyber Physical Systems: A Semantics Perspective. In:

Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, p. 1. Springer, Heidelberg (2011),
http://sites.lero.ie/download.aspx?f=Sztipanovits-Keynote.pdf

21. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer
(2009)

22. White, J., Clarke, S., Groba, C., Dougherty, B., Thompson, C., Schmidt, D.: R&D Challenges
and Solutions for Mobile Cyber-Physical Applications and Supporting Internet Services. J.
Internet Serv. Appl. 1, 45–56 (2010)

23. Willems, J.: Open Dynamical Systems: Their Aims and their Origins. Ruberti Lecture, Rome
(2007), http://homes.esat.kuleuven.be/jwillems/Lectures/
2007/Rubertilecture.pdf

24. Yeganefard, S., Butler, M.: Control Systems: Phenomena and Structuring Functional Re-
quirement Documents. In: Proc. ICECCS-2012, pp. 39–48. IEEE (2012)

25. Yeganefard, S., Butler, M., Rezazadeh, A.: Evaluation of a Guideline by Formal Mod-
elling of Cruise Control System in Event-B. In: Proc. 2nd NFM, NASA/CP-2010-216215,
pp. 182–191. NASA (2010)

http://symbolaris.com
http://iccps2012.cse.wustl.edu/_doc/CPS_Summit_Report.pdf
http://deploy-eprints.ecs.soton.ac.uk/108/1/cookbook.pdf
http://www.deploy-project.eu/
http://www.deploy-project.eu/pdf/D19-pilot-deployment-in-the-automotive-sector.pdf
http://www.deploy-project.eu/pdf/D19-pilot-deployment-in-the-automotive-sector.pdf
http://www.mathworks.com
http://rodin.cs.ncl.ac.uk/
http://sites.lero.ie/download.aspx?f=Sztipanovits-Keynote.pdf
http://homes.esat.kuleuven.be/jwillems/Lectures/2007/Rubertilecture.pdf
http://homes.esat.kuleuven.be/jwillems/Lectures/2007/Rubertilecture.pdf

	Cruise Control in Hybrid Event-B
	1 Introduction
	2 Cruise Control System Overview
	3 Methodological Considerations
	4 Hybrid Event-B, A Sketch
	5 Cruise Control —Top Level Mode Oriented Model
	6 Cruise Control —Abstract Continuous Behaviour
	7 Cruise Control —Continuous Behaviour Defined
	8 Conclusions
	References

