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Abstract. The concept of interrupts is important in system specifica-
tions across both software and hardware. However, behaviours of inter-
rupts are difficult to capture particularly in a timed environment because
of its complexity. In this paper, the catastrophic interrupt adopted by
the standard CSP models, the generic interrupt presented by Hoare in
his original CSP book and the timed interrupt (time-driven) given in
Timed CSP are considered in Circus Time. The contribution of the paper
is a development of the reactive design semantics of these three interrupt
operators in the UTP, a collection of verified laws, and a comprehensive
discussion on the subtle difference between catastrophic and generic in-
terrupts in applications.
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1 Introduction

Interrupt behaviours are important in system modelling of both hardware and
software. For instance, pressing the reset button can restart a system to its
original state, or a piece of hardware may have a special input line to output
a value even if it has not been ready. In developing software, interrupts can
naturally describe a variety of behaviours such as exception handlers in object-
oriented programs which may stop the current task to indicate an error situation,
and a scheduling algorithm that can always execute a task with a highest priority
by suspending the current tasks. However, formally specifying the behaviour of
interrupts [7,24] is notoriously difficult particularly under a timed environment
because of its complexity.

Over three decades, CSP presented by Hoare in [5] has become a successful
formal language for specifying and reasoning about concurrency and communi-
cation in a system, with important technical results as those presented in [13,14],
and many powerful tools, e.g., FDR [1] and ProB [9]. The interrupt operators
and its applications in CSP have been discussed by Hoare in his original work [5],
in P � Q 1 the execution of P is interrupted on occurrence of the first (external)

1 Hoare’s original work [5] uses P̂Q to express the generic interrupt operator, and

P ̂�Q to present the catastrophic interrupt operator where � is a unique event. In
later work, however, Hoare uses different symbols to express the interrupt operators.
Here, we adopt � from [14] and �c from [13] to present the generic and catastrophic
interrupt operators, respectively.
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event of Q . Here, Q is called the interrupting process and P is the interruptible
process. In the standard (untimed) models of CSP [13], the interruptible process
is always interrupted by a catastrophic interrupt event, and thereafter the pro-
cess behaves like Q . This kind of interruptions is called a catastrophe, P �c Q ,
in which c is a unique event that does not appear in P . This simpler interrupt can
avoid the complication that arises from allowing Q to be an arbitrary process.
Alternatively, Timed CSP [14] uses the original interrupt operator in Hoare’s
work [5], namely the generic interrupt operator, since the catastrophic interrupt
operator is insufficient for specifying certain timing behaviours in a timed sys-
tem. For example, the behaviour of P � (Wait d ; c → Skip) cannot be captured
by using a catastrophic interrupt operator. Moreover, Timed CSP [14] provides
a timed interrupt operator, P �d Q , to allow P to execute for d time units
at most before Q takes the control. The characteristic of this timed interrupt
operator, compared with the generic interrupt operator, is that the occurrence
of an interruption is time-driven; that is, the interruption is out of control of the
environment, but only depends on the time.

Circus [3,21,22] is a comprehensive combination of Z [20], CSP [5,13] and
Morgan’s refinement calculus [11], so that it can define both data and behavioural
aspects of a system. Circus Time [15,19] is an extension of a subset of Circus with
some time operators added to the notion of actions in Circus. The semantics
of Circus Time is defined using the UTP [6] by introducing timed observation
variables. The Circus Timemodel is a discrete time model, and time operators are
very similar to that in Timed CSP. In the Circus Time theory, besides some new
time operators, each action is expressed as a reactive design for a more concise,
readable and uniform UTP semantics. The importance of this semantics is that it
exposes the pre-postcondition semantics. In this paper, we develop the reactive
design semantics of the catastrophic interrupt, the generic interrupt and the
timed interrupt operators in Circus Time.

The work in [10] firstly explores the UTP semantics of the catastrophic inter-
rupt operators and related laws in (untimed) CSP. This approach considers an
interruption as a kind of sequential composition, because that the interrupting
process, in fact, has not happened until the occurrence of the catastrophic event.
Therefore, it imitates the idea of the interrupt step law to make the interrupt
event able to happen at any intermediate waiting state of P . The UTP seman-
tics of the catastrophic interrupt operator in a timed environment can be found
in a hybrid CSP system [8]. Unfortunately, these approaches that consider in-
terruptions as sequential composition cannot contribute to the UTP semantics
of the generic interrupt operator, since interrupt events might be a part of an
interrupting process as both P and Q evolve together. From this point of view,
we ponder the generic interrupt operator as a parallel composition.

The main contribution of this paper is to define the reactive designs of the
catastrophic interrupt operator that follows the same idea in the work [10], of
the generic interrupt operator that is inspired by Timed CSP [14] to treat an
interruption as a parallel composition, and of the timed interrupt operator that is
intuitively defined by considering its precondition and postcondition respectively.
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Remarkably, the reactive design semantics indicates that the catastrophic in-
terrupt operator is not equal to the generic interrupt operator with an explicitly
interrupting event, because their reactive designs use different approaches so that
the generic interrupt operator is able to capture more behaviours. In addition,
these reactive designs are underpinned by showing that they still enjoy a number
of existing algebraic laws.

This paper is structured as follows. Section 2 presents an overview of related
UTP theories and Circus Time. The detailed reactive designs of the catastrophic,
generic and timed interrupt operators are given in Section 3 with a number of
relevant laws. Finally, we conclude and discuss future work in Section 4.

2 UTP Theories

The UTP uses the alphabetised relational calculus to supports refinement-based
reasoning in the context of a variety of programming paradigms. In the UTP, a
relation P is a predicate with an alphabet αP , composed of undashed variables
(a, b, ...) and dashed variables (a′, x ′, ...). The former, denoted as inαP , stands
for initial observations, and the latter, outαP , for intermediate or final obser-
vations. A relation is called homogeneous if outαP = inαP ′, where inαP ′ is
obtained by dashing all the variables of inαP . A condition has an empty output
alphabet.

A theory in the UTP is a collection of relations (or alphabetised predicates),
which contains three essential parts: an alphabet, a signature, and healthiness
conditions: the alphabet is a set of variable names for observation, the signature
gives a set of operators and atomic components of the programming theory, and
the healthiness conditions identify properties that characterise the theory.

The program constructors in the theory of relations include sequential com-
position (P ;Q), conditional (P � b �Q), assignment (x := e), nondeterminism
(P � Q) and recursion (μX • C (X )). The correctness of a program P with
respect to a specification S is denoted by S � P (P refines S ), and is defined as
[P ⇒ S ]. Here, the square bracket is universal quantification over all variables
in the alphabet. In other words, the correctness of P is proved by establishing
that every observation that satisfies P must also satisfy S . Moreover, the set
of relations with a particular alphabet is a complete lattice under the refine-
ment ordering. Its bottom element is the weakest relation true, which models
the program that behaves arbitrarily (true � P), and the top element is the
strongest relation false, which behaves miraculously and satisfies any specifica-
tion (P � false).

2.1 Designs

A design in the UTP is a relation that can be expressed as a pre-postcondition
pair in combination with boolean variables, called ok and ok ′. In designs, ok
records that the program has started, and ok ′ records that it has terminated. If
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P and Q are predicates not containing ok and ok ′, a design with the precondition
P and the postcondition Q , written as P � Q , is defined as

P � Q =̂ ok ∧ P ⇒ ok ′ ∧ Q

which means that if a program starts in a state satisfying P , then it must ter-
minate, and whenever it terminates, it must satisfy Q .

Healthiness conditions of a theory in the UTP are a collection of some funda-
mental laws that must be satisfied by relations belonging to the theory. These
laws are expressed in terms of monotonic idempotent functions. There are four
healthiness conditions identified by Hoare and He [6] in the theory of designs
and here we introduce only two of them.

H1(P) = ok ⇒ P H2(P) = [P [false/ok ′] ⇒ P [true/ok ′]]

The first healthiness condition means that observations of a predicate P can
only be made after the program has started. H2 states that a design cannot
require non-termination, since if P is satisfied when ok ′ is false, it must also be
satisfied when ok ′ is true. A predicate is H1 and H2 if, and only if, it is a design;
the proof is in [6]. The theory of designs (H1 and H2-healthy relations) has an
important role in models for process algebras for refinement like CSP and Circus.
For a tutorial introduction to designs, the reader is referred to [6,23].

2.2 Reactive Processes

A reactive process is a program whose behaviour may depend on interactions
with its environment. To represent intermediate waiting states, a boolean vari-
able wait is introduced to the alphabet of a reactive process. We are able to
represent some states of a process by combining the values of ok and wait . If ok ′

is false, the process diverges. If ok ′ is true, the state of the process depends on
the value of wait ′. If wait ′ is true, the process is in an intermediate state; other-
wise it has successfully terminated. Similarly, the values of undashed variables
represent the states of a process’s predecessor.

Apart from ok , ok ′, wait and wait ′, another two pairs of observational vari-
ables, tr and ref , and their dashed counterparts, are introduced. The variable
tr records the events that have occurred until the last observation, and tr ′ con-
tains all the events including those since last observation. Similarly, ref records
the set of events that could be refused in the last observation, and ref ′ records
the set of events that may be refused currently. The reactive identity, IIrea , is
defined as IIrea =̂ (¬ ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref )
which states that if its predecessor diverges (¬ ok), the extension of traces is the
only guaranteed observation; otherwise (ok ′), other variables keep unchanged. A
reactive process must satisfy the following healthiness conditions:

R1(P)=P ∧ tr≤ tr ′ R2(P(tr , tr ′))=P(〈〉, tr ′−tr) R3(P)=IIrea�wait�P

If a relation P describes a reactive process, R1 states that it never changes
history. The second, R2, states that the history of the trace tr has no influence
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on the behaviour of the process. The final, R3, requires that a process should
leave the state unchanged (IIrea) if it is waiting the termination of its predecessor
(wait = true). A reactive process is a relation whose alphabet includes ok , wait ,
tr and ref , and their dashed counterparts, and that satisfies the composition
R where R =̂ R1 ◦R2 ◦R3. In other words, a process P is a reactive process
if, and only if, it is a fixed point of R. For a more detailed introduction to the
theory of reactive designs, the reader is referred to the tutorial [2].

2.3 CSP Processes

In the UTP, the theory of CSP is built by applying extra healthiness conditions
to reactive processes. For example, a reactive process is also a CSP process if
and only if, it satisfies the following healthiness conditions:

CSP1 P = P ∨ (¬ ok ∧ tr ≤ tr ′) CSP2 P = P ; J

where J = (ok ⇒ ok ′) ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref . The first
healthiness condition requires that, in whatever situation, the trace can only be
increased. The second one means that P cannot require non-termination, so that
it is always possible to terminate. The CSP theory introduced in the UTP book
is different from any standard models of CSP [5,13] which have more restrictions
or satisfy more healthiness conditions.

A CSP process can also be obtained by applying the healthiness condition R
to a design. This follows from the theorem in [6], that, for every CSP process

P , P = R(¬ P f
f � P t

f ), where Pa
b is an abbreviation of P [a, b/ok ′,wait ], and it

is often used in this paper. This theorem gives a new style of specification for
CSP processes in which a design describes the behaviour when its predecessor
has terminated and not diverged, and the other situations of its behaviour are
left to R. For example, P t

f describes the behaviour when P is stable, and P f
f

captures the behaviour before a divergent state. The importance of this reactive
design semantics is that it exposes the pre-postcondition semantics so as to not
only support contract-based reasoning about models, but also simplify proof of
Circus Time laws.

2.4 Circus Time

We give a brief introduction to Circus Time because the reactive design semantics
of interrupts is developed within this timed model. In Circus Time, a CSP action
is described as an alphabetised predicate whose observational variables include
ok , wait , tr , ref , state and their dashed counterparts. Here, ok , ok ′, wait and
wait ′ are the same variables used in the theory of reactive processes. The traces,
tr and tr ′, are defined to be non-empty sequences (seq1(seq Event)), and each
element in the trace represents a sequence of events that have occurred over one
time unit. Also, ref and ref ′ are non-empty sequences (seq1(PEvent)) where each
element is a refusal at the end of a time unit. Thus, time is actually hidden in the
length of traces. In addition, state and state ′ (N �→ Value) records a set of local
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variables and their values. N is the set of valid names of these variables. Circus
Time presents traces and refusals individually rather than using the concept of
failures. However, for their consistency we have to ensure the equality of the
lengths of tr and ref , and tr ′ and ref ′. This is achieved by imposing an extra
constraint on the healthiness conditions.

We explain the details of the notation at the points where they are firstly

used. For sequences, we use head , tail , front , last , #(length), �(concatenation)

and �/(flattening). An expanding relation between traces is defined as

tr � tr ′ =̂ front(tr) ≤ tr ′ ∧ last(tr) ≤ tr ′(#tr)

which, for example, states that 〈〈a〉, 〈b〉〉 is expanding 〈〈a〉, 〈b, c〉〉.
An action in Circus Time must satisfy the healthiness conditions, R1ct-R3ct

and CSP1ct-CSP5ct. These healthiness conditions have similar meanings to
those in the CSP theory, but are changed to accommodate discrete time. For the
sake of a simpler proof, we focus on the healthiness conditions, R1ct and R3ct,
since the properties including other healthiness conditions are usually straight-
forward to be proven. A detailed introduction to other healthiness conditions
can be found in [19].

R1ct(X ) =̂ X ∧ RT R3ct(X ) =̂ IIct � wait � X

where the predicate RT , the difference of two traces (diff ), the relational identity
(II ) and the timed reactive identity IIct are given as

RT =̂ tr � tr ′ ∧ front(ref ) ≤ ref ′ ∧ #tr = #ref ∧ #tr ′ = #ref ′

II =̂
(

ok ′ = ok ∧ tr ′ = tr ∧ ref ′ = ref ∧ wait ′ = wait ∧ state ′ = state
)

IIct =̂ (¬ ok ∧ RT ) ∨ (ok ′ ∧ II )

Note that we impose a restriction, #tr = #ref ∧ #tr ′ = #ref ′, to ensure that
the lengths of ref and ref ′ are always the same as those of tr and tr ′ respectively.
This is a consequence of splitting traces and refusals as already explained. Rather
than recording the refusals only at the end of traces in CSP, Circus Time records
the refusals at the end of each time unit in order to retain enough information
for refinement. In other words, we need to keep the history of refusals. However,
we are usually not interested in the refusals of the last time unit after an action
terminates. Therefore, we use front(ref ) ≤ ref ′ in these healthiness conditions,
instead of ref ≤ ref ′. In addition, we have proved in [19] that for every action

P in Circus Time, it can also be expressed as Rct(¬ P f
f � P t

f ).
The full syntax, definitions and detailed explanations of Circus Time can be

found in [19]. Here, we briefly introduce some operators that are used in the
following sections. The action Skip terminates immediately without changing
anything. Stop represents a deadlock, but allows time to elapse. Chaos is the
worst action (the bottom element in the refinement ordering) whose behaviour
is arbitrary, but satisfies Rt. Miracle is the top element that expresses an un-
started process. This primitive operator is not included in the standard failures-
divergences model of CSP. Wait d does nothing except that it requires d time
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units to elapse before it terminates. The sequential composition P ; Q behaves
like P until P terminates, and then behaves as Q . The prefix action c.e → P
is usually constructed by a composition of a simple prefix and P itself, written
as (c.e → Skip) ; P . The external choice, P � Q , may behave either like the
conjunction of P and Q if no external event has been observed yet, or like their
disjunction if the decision has been made. The hiding action P \ CS will behave
like P , but the events within the set CS become invisible.

Here, we use the definitions of simple prefix and normal prefix, which are
used in Section 3.1 and 3.2, to demonstrate how the reactive design semantics
captures behaviours of processes.

Theorem 1. (Simple prefix)

c.e → Skip = Rct(true � wait com(c) ∨ terminating com(c.e)) (1)

wait com(c) =̂ (wait ′ ∧ possible(ref , ref ′, c) ∧ �/tr ′ = �/tr) (2)

possible(ref , ref ′, c) =̂ ∀ i : #ref ..#ref ′ • c /∈ ref ′(i) (3)

term com(c.e) =̂

( ¬ wait ′∧ front(ref ′)= front(ref )∧
diff (tr ′, tr)=〈〈c.e〉〉∧ state ′=state

)

(4)

terminating com(c.e)=̂

(

term com(c.e) ∨
((wait com(c)∧ state ′=state) ; term com(c.e)

)

(5)

The precondition of the above definition is true, which means that a simple
prefix never diverges. The postcondition states that, if it starts successfully, a
simple prefix can behave in three different ways: first, the clause wait com(c)
expresses that it can wait for interaction from its environment and meanwhile
communications over the channel c are not refused (possible(ref , ref ′, c)); second,
the clause term com(c.e) simply denotes that the event is executed immediately;
third, the composition of wait com(c) and term com(c.e) means that it may
wait for a while and then terminate with an event c.e. The difference of two
traces is defined as diff (tr ′, tr) =̂ 〈tr ′(#tr) − last(tr)〉 � tail(tr ′ − front(tr)).
The reactive design of prefix is calculated by means of the simple prefix and
sequential composition as follows.

Theorem 2. (Prefix)

c.e → P =

Rct

⎛

⎝

¬ (terminating com(c.e) ; R1ct(¬ wait ∧ R2ct(P
f
f )))

�
(wait com(c)∨ terminating com(c.e)) ; R1ct(II�wait�R2ct(P

t
f ))

⎞

⎠

This theorem states that, from its precondition, c.e → P diverges if P does;
otherwise, from its postcondition, it can wait for the interaction from its en-
vironment, execute c.e right now or wait for a while to execute c.e, and then
behave like P t

f .
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3 Reactive Designs of Interrupts

Hoare’s CSP book [5] gives a generic interrupt operator, P � Q , which allows P
to execute, but it may be interrupted by the first external event from Q and the
program control is simultaneously passed to Q . Thereafter, the standard models
of CSP adopt a catastrophic interrupt, which is expressed as P �c Q . Here,
the catastrophic event c is unique, and its occurrence can interrupt P . However,
this simpler interrupt might not be convenient for specifying real-time systems.
For example, a seminar room is booked for an hour. Therefore one hour later
after the punctual start, the seminar has to be interrupted if the next session has
been booked by someone else. But the speaker may continue his talk if no one
turns up to use this room. This example may be described as follows in Timed
CSP [14] that adopts the generic interrupt operator to satisfy time requirements.

SEMINAR � (Wait 1 ; close → Skip)

Note that the above process does not mean that the interrupt must occur after
one hour because the occurrence of close depends on the environment. If we say
that the seminar must finish after one hour no matter whether this room will
be used then, the generic interrupt operator is not enough. Accordingly, a timed
interrupt operator is introduced in Timed CSP to describe this scenario.

SEMINAR �1 Skip

which means the interruption must happen one hour later. That is to say, the
timed interrupt operator is time-driven and out of control of its environment.

The UTP semantics of the catastrophe in CSP has been discussed in [10], and
in Section 3.1 we will use the same idea to calculate its reactive design within
the Circus Time model. The approach in [10] cannot be used for defining the
generic interrupt operator. Therefore, in Section 3.2 we follow the idea in Timed
CSP to deal with the generic interrupt operator to consider it a special kind of
parallel composition. For the timed interrupt operator, it can still be treated as
a sequential composition because Q happens exactly d time units later if P has
not terminates.

3.1 Catastrophe

We use the same approach in [10] but with changes to accommodate time be-
haviours to generate a UTP definition for a catastrophic interrupt operator,
which is then calculated to produce a reactive design. The general idea in [10]
is to use a new healthiness condition I3, whose name simply reflects its relation
to R3ct, to bring the catastrophic event forward to any waiting state of the in-
terruptible process while this event is not refused by an alphabet extension. An
I3 healthy process can only execute while its predecessor is in an intermediate
state, or can behave like a Circus Time identity if its predecessor terminates.

Definition 1. I3(P) = P � wait � IIct
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Here we can clearly see I3’s relation to R3ct by the law R3ct(I3(P)) = IIct
which states that an I3 healthy process will behave as the identity if it is required
to be R3ct healthy. In addition, to make sure the interrupt event is not refused
during the execution of the interruptible process, an alphabet extension operator
is defined as

Definition 2

P+c =̂(P ∧possible(ref , ref ′, c)); (II �wait�(II−ref ∧ front(ref ′)= front(ref )))

The predicate II−ref is the relational identity without the variables ref and ref ′.
We use front(ref ′) = front(ref ) to free the last element of refusals in P , since
we usually request that the last refusal is arbitrary if a process terminates.

Furthermore, we develop a new predicate, interrupt(c,Q), to describe that an
event is forced to occur despite an apparent situation opposite to an ordinary
action in Circus Time.

Definition 3. try(c,Q) =̂ (II � wait ′ � term com(c)); Q

The behaviour in try(c,Q) is similar to the prefix operator in Circus Time. Com-
pared with the simple prefix (Theorem 1), it simplifies the behaviour by termi-
nating only with the immediate execution of c (term com(c)), or just behaving
like the identity. Here, the usual non-refusal of c is achieved by the alphabet
extension when sequentially composed with the interruptible action.

Definition 4. force(c,Q) =̂ I3(try(c,Q))

The definition of force(c,Q) in Definition 4 is an I3-healthy try(c,Q) that states
that it behaves as the identity (IIct) when its predecessor terminates, and oth-
erwise behaves like try(c,Q). Thus, the predicate interrupt(c,Q) is defined as a
CSP1ct-healthy force, which considers divergences of its predecessor and Q .

Definition 5. interrupt(c,Q) =̂ CSP1ct(force(c,Q))

The definition for catastrophe is given as a sequential composition between the
interruptible action P with an alphabet extension by augmenting the interrupt
event c, and the newly-defined predicate interrupt(c,Q).

Definition 6. P �c Q =̂ R3ct ◦CSP2ct(P
+c ; interrupt(c,Q))

Here, R3ct restricts the bound of I3, and CSP2ct requires that a divergence
within this interrupt may also contain termination.

To calculate the reactive design of catastrophe, we adopt the theorem that
any action P in Circus Time can be expressed as Rct(¬ P f

f � P t
f ). For the reason

of limited space, we show the calculation of its postcondition only (Lemma 3),
and the full proof can be found in [19]. We give Lemma 1 and Lemma 2 that
have no intuitive meaning but avoid verbose proofs. The reader who is interested
in their proofs is referred to [19].

Lemma 1. (P+c ; (¬ ok ∧ RT ))f = (P f
f ∧ possible(ref , ref ′, c)); R1ct(true)
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Lemma 2. P+c ; (ok ∧ try(c,Q) ∧ wait) =
(

((P ∧possible(ref , ref ′, c) ∧ ok ′ ∧ wait ′) ∨
((P ∧possible(ref , ref ′, c)); (ok ∧ wait ∧ term com(c)); (¬ wait ∧ Qf )

)

Lemma 3. (P �c Q)tf =
⎛

⎜

⎜

⎝

((P f
f ∧ possible(ref , ref ′, c)); R1ct(true))∨

(P t
f ∧ (possible(ref , ref ′, c); front(ref ′) = front(ref ))∧¬ wait ′)∨

(P t
f ∧ possible(ref , ref ′, c) ∧ wait ′) ∨

((P t
f ∧possible(ref , ref ′, c)); (wait ∧ term com(c)); (¬ wait ∧Q t

f ))

⎞

⎟

⎟

⎠

Proof.

(P �c Q)tf [Def-6]

= (R3ct ◦CSP2ct(P
+c ; interrupt(c,Q)))tf [R3ct and substitution]

= (CSP2ct(P
+c ; interrupt(c,Q)))tf [CSP2ct]

= ((P+c ; interrupt(c,Q)) ; J )tf [J-split]

= ((P+c ; interrupt(c,Q))f ∨ (ok ′ ∧ (P+c ; interrupt(c,Q))t))tf [subs.]

= (P+c ; interrupt(c,Q))tf [Def-5]

= (P+c ; CSP1ct(force(c,Q)))tf [CSP1ct]

= (P+c ; ((¬ ok ∧ RT ) ∨ (ok ∧ force(c,Q))))tf [relational calculus]

= (P+c ; (¬ ok ∧ RT ))tf ∨ (P+c ; (ok ∧ force(c,Q)))tf [Lemma 1]

= ((P f
f ∧possible(ref ,ref ′,c)); R1ct(true))∨ (P+c ; (ok ∧ force(c,Q)))tf

[Def-1,4]

=

(

((P f
f ∧ possible(ref , ref ′, c)); R1ct(true)) ∨

(P+c ; (ok ∧ (try(c,Q) � wait � IIct)))
t
f

)

[relational calculus]

= ((P f
f ∧ possible(ref , ref ′, c)); R1ct(true)) ∨ (P+c ; (ok ∧ ¬ wait ∧ IIct))

t
f

∨ (P+c ; (ok ∧ try(c,Q) ∧ wait))tf [IIct and propositional calculus]

= ((P f
f ∧ possible(ref , ref ′, c)); R1ct(true)) ∨ (P+c ; (ok ∧ ¬ wait ∧ II ))tf

∨ (P+c ; (ok ∧ try(c,Q) ∧ wait))tf [Lemma 2]

=

⎛

⎝

((P f
f ∧ possible(ref , ref ′, c)); R1ct(true)) ∨ (P+c ; (ok ∧ ¬ wait ∧ II ))tf ∨

(P ∧ possible(ref , ref ′, c) ∧ ok ′ ∧ wait ′)tf ∨
((P ∧possible(ref , ref ′, c)); (ok ∧wait ∧ term com(c)); (¬ wait ∧Qf ))

t
f

⎞

⎠

[Def-2 and relational calculus]

=

⎛

⎜

⎜

⎝

((P f
f ∧ possible(ref , ref ′, c)); R1ct(true)) ∨

((P ∧ (possible(ref , ref ′, c); front(ref ′) = front(ref ))); (ok ∧¬wait ∧II ))tf ∨
(P ∧ possible(ref , ref ′, c) ∧ ok ′ ∧ wait ′)tf ∨
((P ∧possible(ref , ref ′, c)); (ok ∧wait ∧ term com(c)); (¬ wait ∧Qf ))

t
f

⎞

⎟

⎟

⎠

[relational calculus]



Reactive Designs of Interrupts in Circus Time 383

=

⎛

⎜

⎜

⎝

((P f
f ∧possible(ref ,ref ′,c)); R1ct(true))∨

(P ∧ (possible(ref , ref ′, c); front(ref ′) = front(ref ))∧¬ wait ′)tf ∨
(P ∧ possible(ref , ref ′, c) ∧ ok ′ ∧ wait ′)tf ∨
((P ∧possible(ref , ref ′, c)); (ok ∧wait ∧ term com(c)); (¬ wait ∧Qf ))

t
f

⎞

⎟

⎟

⎠

[substitution and relational calculus]

=

⎛

⎜

⎜

⎝

((P f
f ∧ possible(ref , ref ′, c)); R1ct(true))∨

(P t
f ∧ (possible(ref , ref ′, c); front(ref ′) = front(ref ))∧¬ wait ′)∨

(P t
f ∧ possible(ref , ref ′, c) ∧ wait ′) ∨

((P t
f ∧possible(ref , ref ′, c)); (wait ∧ term com(c)); (¬ wait ∧Q t

f ))

⎞

⎟

⎟

⎠

In the postcondition of the catastrophic interrupt operator, the first clause cap-
tures the divergent behaviour of P that will be absorbed by the precondition of
catastrophe; the second clause states that P terminates without an interrupt, in
which front(ref ′) = front(ref ) makes the last element of ref ′ arbitrary; the third
clause expresses that P has not terminated before c; and the last one states that
P is interrupted by c and it sequentially behaves like Q .

Before we calculate the final reactive design for (P �c Q), we make a change
to the fourth clause in Lemma 3 by adding state ′ = state into its first component
of the sequential composition. Introduction of state and state ′ is one of the
differences of the Circus Time model with the standard CSP models and Timed
CSP. To retain some important refinement laws of CSP in Circus Time, such as
the unit law for external choice P � Stop = P , we do not constrain state ′ at any
waiting state or deadlock. However, we, here, have to impose state ′ = state to
enable Q to gain the initial value of state when P is interrupted. This change is
reflected in Theorem 3.

Thus, we use the similar approach to calculate (P�cQ)ff , and finally get the
following reactive design for the catastrophic interrupt operator.

Theorem 3

(P �c Q) =

Rct

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

¬ ((P f
f ∧ possible(ref , ref ′, c)); R1ct(true)) ∧

¬ ((P t
f ∧possible(ref ,ref ′,c)); (wait ∧ term com(c)); (¬wait ∧Q f

f ))

�
(P t

f ∧(possible(ref , ref ′, c); front(ref ′) = front(ref ))∧¬ wait ′)∨
(P t

f ∧ possible(ref , ref ′, c) ∧ wait ′) ∨
(

P t
f ∧possible(ref , ref ′, c)

∧ state ′ = state

)

; (wait ∧ term com(c)); (¬ wait ∧Q t
f )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The precondition from the above definition states that either P diverges while
the interrupt event c has not occurred, or P is interrupted by c, sequentially
composed with the divergence of Q .

This reactive design is derived from rigorous calculation of Definition 6, which
is fully based on the work in [10]. The validation of this definition is also similar
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to that in [10] by proving that it respects a number of laws. For example, the
step law (Law 1) for the catastrophic interrupt operator given in [5,13] is still
valid, and its proof is fully based on the distributive and eliminative laws, and
the approach adopted in [10].

Law 1. (a → P) �c Q = (a → (P �c Q)) � (c → Q)

3.2 Generic Interrupt

In the generic interrupt, P � Q , Q is executed concurrently with P until ei-
ther P terminates the execution, or Q performs an interrupt event. However,
the approach that we used in Section 3.1 cannot be applied here because some
interruptions by a generic interrupt operator cannot be easily expressed by se-
quential composition, such as the example we give in Section 1. Alternatively,
we use the idea in Timed CSP to consider it parallel composition.

The basic idea of the semantics for parallel composition in the UTP is parallel-
by-merge. That is, by labelling the variables of P and Q , we make them become
disjoint (αP ∩ αQ = ∅), and then merge these different variables by synchroni-
sation to generate the final observation. As usual, we label the dashed variables
of P with 0 and Q with 1 as

(P ;U 0(outαP) ∧ (Q ;U 1(outαQ))+{tr ,ref }

The labelling process Ul(m) simply passes dashed variables of its predecessor
to labelled variables and also removes these dashed variables from its alphabet.
Through the labelling process, the output alphabet of Ul(m) consists of l .m only.
However, under some circumstances we do need the initial values of P or Q . For
this reason, we expand the alphabet after the labelling process. For example,
P+{n} denotes P ∧ n ′ = n. Here, we are only interested in tr and ref that will
be used in the merge operation.

First of all, we consider the merge function of timed traces and the sequences
of refusals of P and Q .

ISync(〈〉, S2, ref1, ref2) = (〈〉, ref1) (6)

ISync(S1, 〈〉, ref1, ref2) = (S1, ref1) (7)

ISync(〈t1〉� S1, 〈t2〉� S2, 〈r1〉� ref1, 〈r1〉� ref2) (8)

= (〈t1〉, 〈r1 ∩ r2〉)� ISync(S1, S2, ref1, ref2) iff t2 = 〈〉
ISync(〈t1〉� S1, 〈t2〉� S2, ref1, ref2) = (〈t2〉� S2, ref2) iff t2 �= 〈〉 (9)

where � is a new operator to concatenate a sequence of pairs, defined as

(S1, ref1)� (S2, ref2) = (S1
� S2, ref1 � ref2) (10)

In Circus Time, we split a failure into a trace and a refusal for the convenience of
expression or even simpler mechanisation. Unfortunately, here we have to reunite
them again as a pair because they are manipulated together. Note that ISync
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does not support commutativity. The rule (6) states that P has no further trace
to interact with Q . That is, P may terminate or diverge in practice. The rule
(7) just describes a similar situation for Q . The rule (8) presents the behaviour
that no interrupt happens within the current time unit. The rule (9) underlines
that Q interrupts P .

We also consider the values of ok ′ and wait ′ that are determined by whether
the interrupt has occurred or not. For example, their values are those of Q if
interrupted. Otherwise, we take those of P . Hence, we define two predicates to
show whether one trace can interrupt another.

enable(tr , 0.tr , 1.tr) =̂ ∃ tr0 •
(

tr0≤diff (1.tr , tr)∧�/front(tr0)=〈〉∧
last(tr0) �=〈〉∧#tr0≤#diff (0.tr , tr)

)

disable(tr , 0.tr , 1.tr) =̂

⎛

⎝

(�/1.tr = �/tr ∧ #1.tr ≤ 0.tr) ∨
∃ tr0 •

(

tr0 ≤ diff (1.tr , tr) ∧
�/tr0 = 〈〉 ∧ #diff (0.tr , tr) ≤ tr0

)

⎞

⎠

The predicate enable states that if there exists a subsequence of diff (1.tr , tr),

which has not executed any event (�/front(tr0) = 〈〉) except for the last element
(last(tr0) �= 〈〉), and meanwhile 0.tr has not terminated (#tr0 ≤ #diff (0.tr , tr)),
we conclude that 1.tr can interrupt 0.tr and the merge of them must finish with
the rule (9). The predicate disable states that 1.tr cannot interrupt 0.tr if, either
that the length of 1.tr is shorter or equal to the length of 0.tr and has not
executed any external events, or that there exists a subsequence of diff (1.tr , tr),

which contains empty traces (�/tr = 〈〉) only and whose length is longer or
equal to #diff (0.tr , tr).

We consider the merge predicate of the postcondition first, which describes
non-divergent behaviours. If P does not diverge and Q cannot interrupt P , no
matter Q can diverge or not, the behaviour will not become divergent. In the
meantime the values of ok ′ and wait ′ depend on those of P .

IM 1 =̂

(

IMTR(tr ,tr ′,0.ref ,1.ref ,ref ,ref ′,0.ref ,1.ref )∧disable(tr ,0.tr ,1.tr)
∧ ok ′ = 0.ok ∧ state ′ = 0.state ∧ wait ′ = 0.wait

)

IMTR(tr , tr ′, 0.tr , 1.tr , ref , ref ′, 0.ref , 1.ref ) =̂
((

diff (tr ′, tr),
ref ′ − front(ref )

)

=ISync

(

diff (0.tr , tr), diff (1.tr , tr),
0.ref − front(ref ), 1.ref − front(ref )

))

Similarly, if Q does not diverge but does interrupt P , the behaviour is still stable
regardless of the state of P .

IM 2 =̂

(

IMTR(tr ,tr ′,0.ref ,1.ref ,ref ,ref ′,0.ref ,1.ref )∧enable(tr ,0.tr ,1.tr)
∧ ok ′ = 1.ok ∧ state ′ = 1.state ∧ wait ′ = 1.wait

)

For the precondition of the reactive design, we are only interested in the diver-
gence of P if the interruption has not happened, and the one of Q if it has done.
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As a result, the divergent behaviour can be captured as follows.

∃
(

0.tr , 0.ref ,
1.tr , 1.ref

)

•
⎛

⎝

P f
f [0.tr , 0.ref /tr

′, ref ′]∧Qf [1.tr , 1.ref /tr
′, ref ′]

∧ disable(tr , 0.tr , 1.tr) ∧
IMTR(tr , tr ′, 0.tr , 1.tr , ref , ref ′, 0.ref , 1.ref )

⎞

⎠;R1ct(true)

∃
(

0.tr , 0.ref ,
1.tr , 1.ref

)

•
⎛

⎝

Pf [0.tr , 0.ref /tr
′, ref ′]∧Q f

f [1.tr , 1.ref /tr
′, ref ′]

∧ enable(tr , 0.tr , 1.tr) ∧
IMTR(tr , tr ′, 0.tr , 1.tr , ref , ref ′, 0.ref , 1.ref )

⎞

⎠;R1ct(true)

Thus, the integrated definition of the interrupt operator is a combination of the
above cases, including an extra predicate to tackle the immediate divergence of
P or Q . That is, the divergent cases are given in the precondition, and the other
are given in the postcondition.

Definition 7

P � Q =̂
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

¬ (((P f
f ∨ Q f

f ) ∧ tr ′ = tr) ; R1ct(true)) ∧

¬ ∃
(

0.tr , 0.ref ,
1.tr , 1.ref

)

•

⎛

⎜

⎜

⎜

⎜

⎝

P f
f [0.tr , 0.ref /tr

′, ref ′]∧
Q t

f [1.tr , 1.ref /tr
′, ref ′] ∧

disable(tr , 0.tr , 1.tr) ∧
IMTR

(

tr , tr ′, 0.tr , 1.tr ,
ref , ref ′, 0.ref , 1.ref

)

⎞

⎟

⎟

⎟

⎟

⎠

;R1ct(true) ∧

¬ ∃
(

0.tr , 0.ref ,
1.tr , 1.ref

)

•

⎛

⎜

⎜

⎜

⎜

⎝

P t
f [0.tr , 0.ref /tr

′, ref ′]∧
Q f

f [1.tr , 1.ref /tr
′, ref ′] ∧

enable(tr , 0.tr , 1.tr) ∧
IMTR

(

tr , tr ′, 0.tr , 1.tr ,
ref , ref ′, 0.ref , 1.ref

)

⎞

⎟

⎟

⎟

⎟

⎠

;R1ct(true)

�
((P t

f ; U 0(outαP)) ∧ (Q t
f ; U 1(outαQ)))+{tr ,ref } ; (IM 1 ∨ IM 2)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Here, we use the CSP2ct-converge law that is proved in [19], P t = P t ∨ P f if
P is CSP2ct healthy, to replace Pf and Qf with P t

f and Q t
f respectively.

The generic interrupt operator is unexpectedly different from the catastrophic
interrupt operator even if we make the interrupting action as c → Q . In fact,
their refinement can be expressed as

P � (c → Q) � P �c Q (11)

since P � (c → Q) contains more behaviours. The proof of this refinement can
be found in [19]. The idea adopted in this paper to calculate the definition of
catastrophe is to consider Q sequentially composed with P but lifted forward
to happen whenever P is waiting for the interaction. However, in Circus Time,
P may execute an event immediately only so that it cannot be interrupted by
means of the definition in Theorem 3. For example, the interruptible action in
Lemma 4 is not interruptible, and its proof can also be found in [19].
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Lemma 4. ((a → Skip) � Miracle) �c Q = ((a → Skip) � Miracle)

Here, Miracle can force the event a to occur immediately and then terminate.
More discussion about the interaction between Miracle with other operators can
be found in [19]. The behaviour in Lemma 4 can be captured only by the first
clause in the postcondition in Theorem 3. However, Lemma 4 does not hold for
the generic interrupt operator, because the event c is able to interrupt as long
as it occurs immediately too, via the rule 9 in ISync.

The generic interrupt in Circus Time can satisfy a number of algebraic laws
in CSP. For example, it respects a step law, which is also proved by a similar
approach as Law 1.

Law 2. (a → P) � (c → Q) = (a → (P � c → Q)) � (c → Q)

Since Stop offers no external event, it can never interrupt any action. Similarly,
if Stop is interruptible, only interrupt can occur.

Law 3. (P � Stop) = P = (Stop � P)

If Skip is the interrupting action, similar to Stop, the interrupt always behaves
just like the interruptible action.

Law 4. P � Skip = P

However, in Circus Time, Skip can be interrupted because we can allow events
to happen without any delay, which can even occur prior to the start of Skip.

Law 5. Skip � P � Skip

In addition, the divergent action cannot be cured by interrupting it, or it is not
safe to specify a divergent action after the interrupt.

Law 6. (P � Chaos) = Chaos = (Chaos � P)

The proofs of Law 2–Law 6 rely on the unfolding of the reactive designs of the
generic interrupt operator and related operators. The hand-written proofs of
these laws can be found in [19].

3.3 Timed Interrupt

A timed interrupt, P �d Q , allows P to run for no more than a particular length
of time, and then performs an interrupt to pass the control of the process to Q .
Compared with the event-driven interrupt where the environment of the process
can prevent the interrupt event from happening, this time-driven interrupt can-
not be avoided (if P does not terminate before time d) since its environment is
not involved. The timed interrupt operator can be defined via the event-driven
interrupt and hiding as follow

Definition 8. P �d Q =̂ (P � Wait d ; (e → Q)) \ {e} e /∈ α(P) ∪ α(Q)

where the special event e becomes urgent to interrupt P immediately after d
time units.

However, to avoid the complex semantics introduced by hiding, we directly
give its definition to describe the behaviour of the timed interrupt, rather than
calculating its reactive design from Definition 8.
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Definition 9

P �d Q =̂

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

¬ ((P f
f ∧ #tr ′ −#tr ≤ d) ; R1ct(true)) ∧

¬ ((P t
f ∧ #tr ′ −#tr = d) ; (wait ∧ II−wait ∧ ¬ wait ′) ; Q f

f )

�
(P t

f ∧ #tr ′ −#tr ≤ d) ∨
((

P t
f ∧ #tr ′ −#tr = d

∧ state ′ = state

)

; (wait ∧ II−wait ∧ ¬ wait ′) ; Q t
f

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The precondition of the above reactive design states that if P does not diverge
within d time units, and if Q does not diverge after an interruption, and the
postcondition guarantees the observation of P within d , or the sequential com-
position of the observation of P before the interruption (during d time units)
and the behaviour of Q . In fact, the timed interrupt is quite like a kind of se-
quential composition because the interrupting action has no influence on the
interruptible action.

The validation of this reactive design semantics for the timed interrupt opera-
tor is retained by proving a number of algebraic laws. There are some interesting
laws for timed interrupts and delays. Law 7 states that a delay can be lifted for-
ward from the interruptible action if its duration is no longer than the allowed
waiting time units. Law 8 states that �d can be eliminated if a delay has still
not terminated when an interruption occurs. Law 9 states that a timed interrupt
can be sequentialised if the interruptible action is Stop.

Law 7. (Wait d ; P) �d+d′ Q = Wait d ; (P �d′ Q)

Law 8. (Wait (d + d ′) ; P) �d Q = Wait d ; Q

Law 9. Stop �d P = Wait d ; P

In addition, we have three zero laws for �d . Law 10 states that a divergence
cannot be recovered, Law 11 states that termination can eliminate�d if an inter-
ruption has not occurred, and Law 12 states that �d cannot make an unstarted
action start.

Law 10. Chaos �d P = Chaos

Law 11. Skip �d P = Skip if d > 0

Law 12. Miracle �d P = Miracle

The proofs of Law 7–Law 12 and more detailed discussions about these laws can
be found in [19].

4 Conclusion

The reactive designs of the three interrupt operators developed in this paper
carry on our previous work [16,17,18] to enhance the expressiveness of the Cir-
cus Time model. The well-established semantics of these interrupt operators is
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significant in proving refinement laws in Circus Time. In line with the strong
capability to deal with data in Circus Time, each action has two observational
variables, state and state ′, in its alphabet to record values of local variables.
The two observational variables are carefully constrained in order to respect
some important refinement laws. For example, we allow state ′ to be arbitrary
at any waiting state or deadlock to retain the unit law, P � Stop = P . That is
to say, we can observe the value of state ′ only when a program terminates. This
claim, here, affects the mechanism for handling local variables within the inter-
rupt operators. For example, a program in Circus Time may have the following
behaviour involving updates of a program variable in an interruption.

x := 0; ((x := x + 1; Stop) � (c → x := x + 1))

The value of x when the program terminates is 1 if c occurs. From the reactive
designs of the three kinds of interrupt operators, the interrupting action always
obtains state from the beginning of an interrupt operator, no matter whether
the interruptible action has changed the values of local variables. In other words,
the interrupt operators in Circus Time cannot capture interruptions, such as a
recovered program from a deadlock can proceed with the latest values of local
variables before falling into the deadlock.

We demonstrate that these reactive designs of the interrupt operators preserve
all related properties in [5,13,14], and also discuss their relations. Different from
the approach used in the work [10], we adopt the parallel-by-merge to define
the generic interrupt operator. However, establishing the proof of parallelism
is always complicated. For simpler cases, the catastrophic interrupt operator is
recommended if enough. A number of algebraic laws of the three operators have
been proved by hand. As such hand-proofs are well-knowingly error prone, the
mechanised proofs in a theorem prover is of course our future work in a short
term. The work of mechanising Circus in ProofPower [12] and Isabelle [4] can
help us to embed this semantics.
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