
Finitary Fairness in Action Systems

Emil Sekerinski and Tian Zhang

McMaster University, Hamilton, ON, Canada
{emil,zhangt26}@mcmaster.ca

Abstract. In basic action systems, the choice among actions is not restricted.
Fairness can be imposed to restrict this nondeterminism. Finitary fairness has
been proposed as a further restriction of fairness: it models implementations
closer, and allows problems to be solved for which standard fairness is not suffi-
cient. We propose a method for expressing finitary fairness in action systems. We
give two general transformations from a system in which some actions are marked
as fair, into an equivalent system without fair actions. A theoretical justification
is given, and the transformations are illustrated with two examples: alternating
bit protocol and distributed consensus. The examples are developed by stepwise
refinement in Event-B and are mechanically checked.

Keywords: Finitary Fairness, Modelling, Termination, Event-B, Stepwise
Refinement.

1 Introduction

The theory of action systems formalizes development of parallel and reactive programs
by stepwise refinement [1]. An action system consists of global variables, local vari-
ables, an initialization statement and a set of actions (or atomic guarded commands).
Because of existing tool support, we use the Event-B [2] notation for illustration, and
we borrow the Event-B term events as an alias for actions. A schedule is a sequence of
event names that can occur in a computation (which is going to be made precise). A
schedule can be finite or infinite.

Consider the event system in Fig. 1, which is taken from [3]. Both events L and R
have no guard and are thus always enabled. In this example all possible schedules are

invariants
x ∈ BOOL
y ∈ N

initialisation
x,y := TRUE,0

event L
x := NOT x

event R
y := y+1

Fig. 1. A simple event system with two events

Z. Liu, J. Woodcock, and H. Zhu (Eds.): ICTAC 2013, LNCS 8049, pp. 319–336, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

320 E. Sekerinski and T. Zhang

infinite. In basic event systems the choice among events is not restricted. Such nonde-
terministic choice only guarantees minimal progress: any enabled event can be taken
and an enabled event must be taken only if no other is enabled. With the default as-
sumption of minimal progress, a schedule can contain an infinite sequence of an event,
e.g. a schedule that repeatedly executes L after executing L and R twice:

LRLRLLLLLL . . .

In the design of concurrent systems, fairness restricts the nondeterminism leading to
minimal progress. It also allows to abstract from scheduling policies in multi-process
systems and from processor speeds in multi-processor systems. Weak fairness requires
that no event can be continuously enabled forever without being taken. This is a useful
assumption for multi-process and multi-processor systems: if two continuously enabled
events belong to different processes, fairness implies that the scheduler must give each
process a chance, without specifying the scheduling policy; if two continuously enabled
events are to be executed on different processors, fairness expresses that each processor
is working, without quantifying the relative speed.

If both events in the above example are specified to be weakly fair, then fairness of
L implies that a schedule cannot contain an infinite sequence of R’s, and vice versa. For
example, the above schedule would be excluded, but the following schedule, in which
the number of consecutive R’s continues to increase, is allowed:

LRLRRLRRRLRRRRL . . .

A schedule is weakly k-bounded if for some natural number k, no fair event is neglected
more than k times while being consecutively enabled. Finitary fairness of an event
system means that all schedules are k-bounded for some k ∈N [3]. The above schedule
is not k-bounded for any k ∈N; thus the schedule is allowed when L and R are restricted
by standard fairness but not when restricted by finitary fairness.

Suppose the events belong to different processes. A scheduler is an automaton with
event names as the alphabet. For the above schedule to be generated by an automaton,
the automaton needs to count the number of R’s, so it has an unboundedly large number
of states. Conversely, if the schedule is bounded, only a finite number of states are
needed. Thus, the bounded schedules are exactly the languages of finite state schedulers.
Since any practical scheduler uses a fixed amount of memory, finitary fairness is not
only an adequate, but also a more precise abstraction from scheduling policies than
standard fairness.

Suppose that the events are executed on different processors; the speeds of the pro-
cessors may differ and may vary. Finitary fairness implies that the speeds of the pro-
cessors may not drift apart unboundedly. Alur and Henzinger formalize this claim in
terms of timed transition systems [3]. Again, finitary fairness allows a more precise
abstraction of multiprocessor systems.

The interleaving model of concurrency represents the concurrent execution of two
independent events by a sequential execution in any order. Thus, reasoning about a
concurrent system is reduced to reasoning about a nondeterministic sequential system.
Since finitary fairness is more restrictive than standard fairness, one can expect more
properties to hold under finitary fairness. For example, the event system of Fig. 1 will

Finitary Fairness in Action Systems 321

eventually reach a state in which x = TRUE ∧¬powerOf 2(y) holds: if this property
would always be false, then L must be scheduled only when powerOf 2(y) holds, for
increasing values of y, but that is impossible in a bounded schedule.

Finitary fairness allows some problems to be solved for which standard fairness is
not sufficient. Furthermore, termination proofs are simpler with finitary fairness com-
pared to standard fairness, as variants need to be over natural numbers only rather than
well-founded sets as with standard fairness.

In this paper we propose a method for the stepwise development of action systems
with finitary fairness. Finitary fairness is particularly suited for Event-B as in Event-B
variants are only over natural numbers. The core contribution of this paper is a trans-
formation of an event system with finitary weak fairness to an equivalent one without
fairness. A similar transformation was proposed in [3], but that transformation does not
result in an equivalent system, only in one in which all computations terminate if and
only if all finitary weakly fair computations of the original system do (which was the
intention). The transformed system does not have any restriction on the counters, so it
may enter a state in which two counters reach the upper limit at the same time and then
forced to terminate prematurely. Consequently, it does not have the same computations
as the original system. The theoretical finitary restriction, as proposed in [3], can be
applied to both weak fairness and strong fairness, which differs from weak fairness by
requiring that an event must be taken if it is enabled repeatedly, but not necessarily con-
tinuously. In this work, we restrict our transformation to weak fairness as in [3], as for
the example at hand, distributed consensus, weak fairness is sufficient.

Section 2 summarizes related work. Section 3 formally defines transition systems
with fair events, computations, and finitary fairness. Section 4 presents two methods for
transforming an event system with fair and regular events to one that has only regular
events but produces the same computations. In Sect. 5 one of the two transformations
is illustrated in the stepwise refinement of the alternating bit protocol, an example that
has been studied repeatedly in literature; fairness is needed as the assumption that a
message in transmission will not always be lost and has a fair chance of reaching the
destination. In Sect. 6 the other transformation is illustrated in the stepwise refinement of
a distributed consensus algorithm, an example in which finitary fairness can guarantee
termination, but standard fairness cannot. The final section gives an outlook.1

2 Related Work

Programming theories with fairness are well worked out, e.g. [5,6,7]. Extensions of
action systems to fairness have been proposed [8,9,10]. In [9] refinement rules that
preserve temporal (leads-to) and fixpoint (termination) properties are studied for fair
transitions systems (action systems). Here we restrict ourselves to terminating action
systems but consider local variables, allowing a more general notion of refinement.

The approach of [10] is to augment action systems by explicitly specifying and pro-
hibiting unfair non-terminating computations, rather than assuming a fair choice among

1 The models in this paper are developed in Event-B using the Rodin platform [4], an Eclipse-
based IDE for Event-B. All proof obligations have been successfully proved. The Rodin
project files are available at http://www.cas.mcmaster.ca/~zhangt26/ICTAC/

http://www.cas.mcmaster.ca/~zhangt26/ICTAC/

322 E. Sekerinski and T. Zhang

invariants
x ∈ N

initialisation
x :∈ N

event L
when

x > 0
then

skip
end

fair event R
when

x > 0
then

x := x−1
end

invariants
x ∈ N

C ∈ N

initialisation
x :∈ N

C :∈ N1
event L

when
x > 0
C > 1

then
C := C−1

end
event R

when
x > 0

then
x := x−1
C :∈ N1

end

invariants
x ∈ N

C ∈ 1 ..B
initialisation

x :∈ N

C := B
event L

when
x > 0
C > 1

then
C := C−1

end
event R

when
x > 0

then
x := x−1
C := B

end

(a) (b) (c)

Fig. 2. (a) Event system with fair event R. (b) The counter C is used to ensure standard fairness
of R. (c) The counter C is used to ensure finitary fairness of R.

actions, and to study refinement of such augmented action systems; this allows a wider
range of fairness constraints to be expressed compared to the (weak) fairness considered
here, although in a different style.

The proof rule for the termination of an event system is more involved in the presence
of fairness: events either must decrease the variant or keep fair events which decrease
the variant enabled, as by fairness these will eventually be taken. The proof rule re-
quires that an invariant is specified for each event, e.g. as in [8] for the refinement of
action systems, rather than one invariant for the whole system as in Event-B. This would
require the proof rules of Event-B to be significantly expanded.

The alternative that we follow is to transform an event system by replacing fair events
with regular events and introducing an explicit scheduler [11,1]. The standard proof
rules of Event-B can then be applied. Figure 2 illustrates this. The event system of (a)
will eventually terminate as x is set initially to some natural number, and fair event R
always decreases x. In both transformed event systems (b) and (c) fairness is achieved
by introducing a (down-) counter C that is decreased each time the (regular) event L is
taken. This eventually forces R to be taken as L becomes disabled when C reaches 1.
When R is taken, C is reset. In (b) the (down-) counter C does not have an upper bound,
but still event R will eventually be taken; this ensures standard fairness. In (c), C is at
most B, so B− 1 is the upper bound of how many times event R can be consecutively
ignored before it must be taken, hence the schedules are (B−1)-bounded and the model
ensures finitary fairness.

Finitary Fairness in Action Systems 323

A further reason for preferring finitary fairness is that it can simplify proofs of ter-
mination. For a set of events to terminate, there must exist a variant, which is a function
from the states to a well-founded domain, and all events have to decrease the variant.
For proving the termination of the event system in Fig. 2 (c), the following variant with
natural numbers as the well-founded domain is sufficient:

variant
x∗B+C

Event L decreases the variant by decreasing C. Event R decreases the variant by decreas-
ing x (C ∈ 1..B so the variant is still decreased even when C is reset to B). A similar
variant cannot be given for the event system in (b): natural numbers as the well-founded
domain are not sufficient with standard fairness.

The finitary restriction can be used for modelling unknown delays of timed systems.
In the problem of distributed consensus, processes have to agree on a common output
value, but processes with different preferences may try to set the output at the same
time. Besides, each process may fail and not deliver a value. This can be solved using
finitary fairness, as shown in [3], but cannot be solved using standard fairness only [12].

3 Fair Event Systems

When considering finitary fairness, we are interested only in k-bounded computations.
Following definition of fair event systems generalizes that of transitions systems in [3]
by indexing the transitions with the events and by allowing only some events to be fair.

Definition 1. A fair event system P is a structure (Q, I,F,E,T) where

– Q is the set of states,
– I is the set of initial states, I ⊆ Q,
– F is the number of fair events,
– E is the set of all events, with cardinality N ≥ F (we assume that ei is a fair event

for i ∈ 1 ..F and a regular event for i ∈ F+ 1 ..N),
– T is the set of transitions, relations over Q×Q indexed by E.

We write T(e) for the transition relation of event e. A computation comp of P is a finite
or infinite maximal sequence of states and events alternating, written

comp = σ0
τ0−→ σ1

τ1−→ σ2
τ2−→ ·· ·

such that σ0 ∈ I and ∀i · i ∈ N ⇒ τi ∈ E ∧ σi
→ σi+1 ∈ T(τi). That is, states σi and
σi+1 must be in relation T(τi). A computation is a finite sequence, or is terminating,
if it ends with a state σn, for some n ∈ N, that is not in the domain of any transition
relation, i.e. ∀e · e ∈ E ⇒ σn �∈ dom(T(e)). Otherwise it is an infinite sequence, or is
nonterminating. The schedule of a computation comp is the projection of the sequence
comp to the events; the trace of comp is the projection of comp to the states:

schedule(comp) = τ0τ1τ2 . . . trace(comp) = σ0σ1σ2 . . .

324 E. Sekerinski and T. Zhang

We write schedulei(comp) for τi, the i-th event of computation comp, and tracei(comp)
for σi, the i-th state of computation comp. The guard of an event is the domain of its
relation, grd(e) = dom(T(e)); an event is enabled in a state if the state is in its guard,
otherwise disabled. A computation comp is bounded if it is finite or if for some k ∈ N,
any fair event ef , for some f ∈ 1 ..F, cannot be enabled for more than k consecutive
states without being taken, formally:

∀i, f · i ∈ N∧ f ∈ 1 ..F ⇒
∃j · j ∈ i .. i+ k∧ (schedulej(comp) = ef ∨ tracej(comp) �∈ grd(ef))

An Event-B model defines the set of states through the variables and invariants, the
transition relations through guards and generalized substitutions, and the initial states
through the initialization event. Thus, fair event systems are abstract representations of
Event-B models, in which we additionally allow some events to be specified as fair.

4 The Finitary Weakly Fair Transformation

Let P = (Q, I,F,E,T) be a fair event system. Now we give the definition of the finitary
weakly fair transformation, the application of which to P written as fwf (P). It expresses
finitary fairness by introducing (down-) counter variables C1, . . . ,CF , one for each fair
event. The counter Ci, for i∈ 1 ..F, of event ei indicates that ei must be taken or disabled
at least once in the next Ci transitions. Once the counter of an event reaches 1, that event
must be tested: if it is enabled, it must be taken, otherwise it may be skipped.

Care is needed to avoid that several counters reach 1 simultaneously, as the cor-
responding events cannot be taken in one transition. A naive approach would be to
initialize them to distinct values between 1 and B and keep them distinct by decreasing
all by 1 simultaneously and cyclically reset them to B: that would enforce round-robin
scheduling, but that is too restrictive as we do not want to preclude any fair schedule.
To obtain an appropriate translation, in fwf (P) we add a permutation p of 1 ..F, on the
basis of fin(P) in [3]. The permutation p satisfies ∀j · j ∈ 1 ..F ⇒ Cp(j) ≥ j in every state,
to guarantee that only one counter can be 1. On every transition, the guards of all fair
events must be tested: if a fair event is enabled but not taken, its counter must be de-
creased, otherwise its counter is reset to B. The counters are all initialized to have the
value B; they do not have to be distinct. Using p keeps the system in safe states, while
the set of possible schedules remains the same.

Definition 2. For fair event system P, the finitary weak fair transformation fwf (P) =
(Q′, I′,0,E,T ′) is given by:

– Q′ = Q× [F,+∞)× [1,B]F

– For every event ei ∈ E, (σ,B,C1, . . . ,CF)
→ (σ′,B′,C′
1, . . . ,C

′
F) ∈ T ′(ei) if:

1. B = B′ ∧σ
→ σ′ ∈ T(ei)∧ (i ∈ 1..F ⇒ C′
i = B)

2. ∀j · j ∈ 1 ..F\{i}⇒
((σ ∈ grd(ej)∧C′

j ≥ 1∧C′
j = Cj − 1)∨ (σ �∈ grd(ej)∧C′

j = B))
3. A permutation p of 1 ..F, exists, such that ∀j · j ∈ 1 ..F ⇒ C′

p(j) ≥ j

– I′ is such that (σ,B,C1, . . . ,CF) ∈ I′ if

Finitary Fairness in Action Systems 325

1. σ ∈ I ∧B ≥ F
2. ∀j · j ∈ 1 ..F ⇒ Cj = B

All counters of the finitary fair transformation are between 1 and B, and the permutation
p always exists. That is, for all computations comp of fwf (P), for all natural numbers i
with 0 ≤ i < |trace(comp)|, and writing �� for the type of bijective functions:

tracei(comp) = (σ,B,C1, . . . ,CF)⇒
∃p ·p ∈ 1 ..F��1 ..F∧ (∀j · j ∈ 1 ..F ⇒ Cj ∈ 1 ..B∧Cp(j) ≥ j)

(1)

This property follows by induction over i: with fwf (P) = (Q′, I′,0,E,T ′) the initial states
in I′ satisfy (1) and transitions in T ′ preserve (1).

Compared to fin(P) in [3], the resulting system prevents premature termination, be-
cause it guarantees that as long as one event is enabled in some state σi (i ∈N) in some
computation comp of P, then at least one event is enabled in the corresponding state σ′

i
in comp of fwf (P). If all fair events are disabled, then the additional guards of regular
events are always satisfied, i.e. then the additional guards will not prevent any enabled
regular event from being taken.

The introductory example results from this transformation. In practice, this trans-
formation has the drawback that a term for stating the existence of a permutation will
increase exponentially with the number of fair events. In the following alternative trans-
formation, dist(P), all counters are kept distinct. A term stating the distinctness of F
counters would have (F ∗ (F + 1)/2) clauses, which with large number of fair events
results in significantly more compact descriptions.

Definition 3. For fair event system P, the finitary weak fair transformation dist(P) =
(Q′, I′,0,E,T ′) is given by:

– Q′ = Q× [F,+∞)× [1,B]F

– For every event ei ∈ E, (σ,B,C1, . . . ,CF)
→ (σ′,B′,C′
1, . . . ,C

′
F) ∈ T ′(ei) if:

1. B = B′ ∧σ
→ σ′ ∈ T(ei)∧ (i ∈ 1..F ⇒ C′
i ∈ 1 ..B)

2. ∀j · j ∈ 1 ..F\{i}⇒ C′
j ∈ 1 ..B∧ (σ ∈ grd(ej)⇒ C′

j = Cj − 1)
3. distinct(C′

1, . . . ,C
′
F)

– I′ is such that (σ,B,C1, . . . ,CF) ∈ I′ if
1. σ ∈ I ∧B ≥ F
2. ∀j · j ∈ 1 ..F ⇒ Cj ∈ 1 ..B
3. distinct(C1, . . . ,CF)

All counters of dist(P) are between 1 and B and are distinct, i.e. for all computations
comp of fwf (P) and for all natural numbers i with 1 ≤ i < |trace(comp)|:

tracei(comp) = (σ,B,C1, . . . ,CF)⇒
(∀j · j ∈ 1 ..F ⇒ Cj ∈ 1 ..B)∧distinct(C1, . . . ,CF)

(2)

This property follows by induction over i: with dist(P) = (Q′, I′,0,E,T ′) the initial
states in I′ satisfy (2) and transitions in T ′ preserve (2).

Theorem 1. For any fair event system P, the schedules of fwf (P) and of dist(P) are
exactly the finitary weak fair schedules of P.

326 E. Sekerinski and T. Zhang

Proof. Let P be (Q, I,F,E,T). We give the proof only for fwf (P); the one for dist(P)
has the same structure. The proof proceeds by mutual inclusion. For showing that the
schedules of fwf (P) are bounded schedules of P, we note that the schedules of fwf (P)
are also schedules of P, so it remains to be shown that they are bounded. We reformulate
the definition of a bounded computation. A computation comp is bounded if it is finite
or for some k ∈ N, for all e ∈ F, for all i ∈N:

(∀j · j ∈ i .. i+ k ⇒ tracej(comp) ∈ grd(e))⇒∃j · j ∈ i .. i+ k∧ schedulej(comp) = e

Let comp be a computation of fwf (P). It is obvious that if schedule(comp) is finite, it is
bounded with k =B−1 by definition. When it is infinite, let ef be a fair event (f ∈ 1 ..F),
let i be a natural number, and assume that ∀j · j ∈ i .. i+k ⇒ tracej(comp)∈ grd(ef). We
have to show that schedulej(comp)= ef for some j∈ i .. i+k. We prove this by contradic-
tion. If such an index j does not exist, then since ef is consecutively enabled, according
to the properties of transitions in fwf (P), in every step Cf is decremented by 1. After
B steps, Cf is decreased by B. In state tracei, Cf ∈ 1 ..B, so in state tracei+k+1(comp),
Cf ∈ 1−B ..0, which contradicts the constraint Cf ∈ 1 ..B. Hence after at most B tran-
sitions, event ef must have been taken.

Now let comp be a bounded computation of P. We have to show that a computation
comp′ of fwf (P) exists such that schedule(comp′) equals schedule(comp). During ini-
tialization, if B is picked such that B ≥ k+F, then all the counters are always greater
or equal to F in comp (since comp is k-bounded, then every counter in fwf (P) is reset
at least once in every k+ 1 steps, either due to being disabled or executed), so such a
permutation p always exists throughout the schedule (simply id on 1 ..F), and no event
will be disabled by the additional guards; thus a computation comp′ which yields the
same schedule does exist in fwf (P) . This completes the proof.

5 The Alternating Bit Protocol

The alternating bit protocol (ABP) [13], a protocol for reliable communication over
unreliable channels, has repeatedly been formalized. Our treatment is inspired by that
of [5,14]. Channels are modelled as simple variables, as in [15,16], rather than as se-
quences. The first refinement step is similar to the file transfer example of [2]. The
refinement process is illustrated in Fig. 3. It uses the dist(P) transformation.

Specification. In its most abstract form, a transmission copies sequence a to sequence z.
We let SIZE be a positive natural number and DATA a set.

MACHINE ABP0
SEES Context
VARIABLES
z target file
e mark of termination

INVARIANTS
inv1 : z ∈ 1 .. SIZE
→DATA
inv2 : e ∈ 0 .. 1
inv3 : e = 0⇒ z = a

EVENTS
Initialisation

begin
act1 : z :=∅

act2 : e := 1
end

Event TransferAll =̂
Status convergent

when
grd1 : e = 1

then
act1 : z := a
act2 : e := 0

end
VARIANT
e

END

Finitary Fairness in Action Systems 327

Sender

a

Receiver

z

TransferAll

a

(a) ABP0

Sender

a
TransferDone

z, b, y, e

Receiver

TransferOne

a(y)

(b) ABP1

Sender

a, x
TransferDone

Receiver

z, b, y, e
Channel

s

SendOne ReceiveOne

a(x) s

(c) ABP2

Sender

a, c, x
TransferDone

Receiver

z, b, d, p, y, e

Data Channel

f, s, t

LoseData

Ack Channel

g, u

LoseAck

a(x) s

SendData

SendAck

TransmitData

DuplData

TransmitAck

DuplAck

(d) ABPDIST

Entities V ariables/Constants Events
Dataflow

Fig. 3. Refinement process of ABP

Copying Data Items Successively. In the first refinement step, the data items are copied
one by one by a new convergent event.

MACHINE ABP1
REFINES ABP0
SEES Context
VARIABLES
z target file
b received part
y index
e mark of termination

INVARIANTS
inv1 : b ∈ 1 ..SIZE
→DATA
inv2 : y ∈ 1 .. SIZE +1
inv3 : b = 1 .. y−1�a

EVENTS
Initialisation

begin
act1 : z :=∅

act2 : b :=∅

act3 : y := 1
act4 : e := 1

end

Event TransferOne =̂
Status convergent

when
grd1 : y ≤ SIZE

then
act1 : b := b ∪ {y
→ a(y)}
act2 : y := y+1

end
Event TransferDone =̂
refines TransferAll

when
grd1 : y = SIZE +1
grd2 : e = 1

then
act1 : z := b
act2 : e := 0

end
VARIANT
SIZE+1−y

END

Introducing Data Channel. A variable s is introduced into which the sender writes
the next data item and the receiver reads from. Sender and receiver maintain their own
count of the number of items sent and received in the variables x and y. Sending and
reading proceeds in a ping-pong fashion, controlled by y− x.

MACHINE ABP2
REFINES ABP1
SEES Context
VARIABLES
z target file
b received part
s the unit of info sent
x sender index
y receiver index

e mark of termination
INVARIANTS
inv1 : s ∈ DATA
inv2 : x ∈ 1 .. SIZE +1
inv3 : x = y∨ x = y+1
inv4 : x = y+1⇒ s = a(y)

EVENTS
Initialisation

begin

328 E. Sekerinski and T. Zhang

act1 : z :=∅

act2 : b :=∅

act3 : s :∈ DATA
act4 : x,y := 1,1
act5 : e := 1

end
Event SendOne =̂
Status convergent

when
grd1 : x = y∧ x ≤ SIZE

then
act1 : s := a(x)
act2 : x := x+1

end
Event ReceiveOne =̂
refines TransferOne

when

grd1 : x = y+1
then
act1 : b := b ∪ {y
→ s}
act2 : y := y+1

end
Event ReceiverDone =̂
refines TransferDone

when
grd1 : y = SIZE +1
grd2 : e = 1

then
act1 : z := b
act2 : e := 0

end
VARIANT
y+1−x

END

Introducing Faulty Channels. The sender places the data to be transmitted in the vari-
able s and sets the flag for transmitting, t to 1. The sender also flips its alternating bit, c.
Event TransmitData represents successful transmission in which c and s are copied to
f and p, then disables itself by resetting t to 0; the event DuplicateData copies the data
but does not disable itself; the event LoseData does not even copy the data. Successful
data transmission is only possible if TransmitData is fair. On receiving a new value of
f , the receiver appends p to the data received so far and flips its alternating bit g. The
acknowledgement channel works analogously to the data channel. Using a hypothetical
extension of Event-B with fair events, this is expressed as:

MACHINE ABPFAIR
REFINES ABP2
SEES Context
VARIABLES
z target file
b received part
c sender private bit
d receiver private bit
f data channel signal bit
g ack channel signal bit
p data of data channel
s data of sender
t data transmitting signal
u ack transmitting signal
x sender index
y receiver index
e mark of task finished

INVARIANTS
inv1 : c ∈ 0 .. 1
inv2 : d ∈ 0 .. 1
inv3 : f ∈ 0 .. 1
inv4 : g ∈ 0 .. 1
inv5 : p ∈ DATA
inv6 : t ∈ 0 .. 1
inv7 : u ∈ 0 .. 1
inv8 : c = g∨ c �= f ∨d = f ∨d = g

four states: ready to send data; data sent and to be trans-
mitted; ready to receive data; data received and ack to
be transmitted;

inv9 : c = g⇒ c �= d ∧ c = f ∧ x = y
ready to send data

inv10 : c �= f ⇒ c = d ∧ c �= g∧ x = y+1∧ s = a(y)
data sent and to be transmitted

inv11 : d = f ⇒c= d∧c �= g∧x= y+1∧s = a(y)∧ p=
s
ready to receive data

inv12 : d = g⇒ c �= d ∧ c = f ∧ x = y
data received and Ack to be transmitted

EVENTS
Initialisation

begin
act1 : z :=∅

act2 : b :=∅

act3 : c := 1
act4 : d := 0
act5 : f := 1
act6 : g := 1
act7 : p :∈ DATA
act8 : s :∈ DATA
act9 : t,u,x,y,e := 0,0,1,1,1

end
Event SendData =̂
refines SendOne

when
grd1 : c = g∧ x ≤ SIZE

then
act1 : c,s, t,x,u := 1− c,a(x),1,x+1,0

end
FAIR Event TransmitData =̂
Status convergent

when
grd1 : t = 1

then
act1 : f , p, t := c,s,0

end
Event DuplData =̂
Status convergent

when
grd1 : t = 1

then
act1 : f , p := c,s

end
Event LoseData =̂
Status convergent

when
grd1 : t = 1

then
skip
end

Finitary Fairness in Action Systems 329

Event SendAck =̂
refines ReceiveOne

when
grd1 : d = f

then
act1 : b,d,u,y, t := b ∪ {y
→ p},1−d,1,y+1,0

end
FAIR Event TransmitAck =̂
Status convergent

when
grd1 : u = 1

then
act1 : g,u := 1−d,0

end
Event DuplAck =̂
Status convergent

when
grd1 : u = 1

then

act1 : g := 1−d
end

Event LoseAck =̂
Status convergent

when
grd1 : u = 1

then
skip

end
Event AllReceived =̂
refines ReceiverDone

when
grd1 : y = SIZE +1
grd2 : e = 1

then
act1 : z := b
act2 : e := 0

end
END

Now we apply dist to ABPFAIR. For expressing the result in Event-B we use following
scheme. Suppose L is a regular event and R1,R2 are fair events. Three variables, B, C1
and C2, are introduced and F = 2 is the number of fair events:

event L
when

g
then

S
end

fair event R1
when

h1
then

T1
end

fair event R2
when

h2
then

T2
end

invariant
C1 ∈ 1 ..B
C2 ∈ 1 ..B
C1 �= C2

initialisation
B,C1,C2 : |B′ ≥ F∧C1′ ∈ 1 ..B′ ∧C2′ ∈ 1 ..B′ ∧C1′ �= C2′

event L
when

g
min({C1,C2})> 1∨ (C1 = 1∧¬h1)∨ (C2 = 1∧¬h2)

then
S
C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧C1′ �= C2′ ∧
(h1⇒C1′ = C1−1)∧ (h2⇒C2′ = C2−1)

end
event R1

when
h1
h2⇒C2−1 ≥ 1

then
T1
C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧C1′ �= C2′ ∧ (h2⇒C2′ = C2−1)

end
. . .

It is easy to see that this scheme satisfies the conditions of dist. If no fair event is
enabled, the additional guard of regular events is satisfied, formally:

(¬h1∧¬h2)⇒ (min({C1,C2})> 1∨ (C1 = 1∧¬h1)∨ (C2 = 1∧¬h2))

This prevents the premature termination of fin(P) in [3]. In the application of this
scheme to ABPFAIR, we additionally introduce a counter step as a “ghost variable” for
proving termination. As a note, the development provides a lower bound of the number
of steps for termination (inv20 below).

MACHINE ABPDIST
REFINES ABP2
SEES Context
VARIABLES
z target file

b received part

c sender private bit
d receiver private bit
f data channel signal bit
g ack channel signal bit
p data of data channel
s data of sender

330 E. Sekerinski and T. Zhang

t data transmitting signal
u ack transmitting signal
x sender index
y receiver index
e mark of task finished
B bound
C1 down-counter of fair event TransmitData
C2 down-counter of fair event TransmitAck
step step counter

INVARIANTS
inv1 : c ∈ 0 .. 1
inv2 : d ∈ 0 .. 1
inv3 : f ∈ 0 .. 1
inv4 : g ∈ 0 .. 1
inv5 : p ∈ DATA
inv6 : t ∈ 0 .. 1
inv7 : u ∈ 0 .. 1
inv8 : c = g∨ c �= f ∨d = f ∨d = g

four states: ready to send data; data sent and to be trans-
mitted; ready to receive data; data received and ack to
be transmitted;

inv9 : c = g⇒ c �= d ∧ c = f ∧ x = y
ready to send data

inv10 : c �= f ⇒ c = d ∧ c �= g∧ x = y+1∧ s = a(y)
data sent and to be transmitted

inv11 : d = f ⇒c= d∧c �= g∧x= y+1∧s = a(y)∧ p=
s
ready to receive data

inv12 : d = g⇒ c �= d ∧ c = f ∧ x = y
data received and Ack to be transmitted

inv13 : B ≥ F
inv14 : C1 ∈ 1 ..B
inv15 : C2 ∈ 1 ..B
inv16 : C1 �=C2

always distinct
inv17 : step ∈ N

inv18 : step ≤ (x+ y− 2) ∗ (B+ 1)− t ∗C1− u ∗C2+
1− e
the strict upper bound for proving that the variant is
non-negative

inv19 : step ≥ 2 ∗ (x+ y)− (d + g− 1) ∗ (d + g− 1)−
(c− f)∗ (c− f)− e−3
the strict lower bound of step, for proving inv20

inv20 : e = 0⇒ step ≥ 4∗SIZE
the strict lower bound of step when the system termi-
nates (exactly 4∗SIZE when there is no duplication, no
loss, and the last event is AllReceived, right after event
SendAck)

EVENTS
Initialisation

begin
act1 : z :=∅

act2 : b :=∅

act3 : c := 1
act4 : d := 0
act5 : f := 1
act6 : g := 1
act7 : p :∈ DATA
act8 : s :∈ DATA
act9 : t,u,x,y,e := 0,0,1,1,1
act10 : B,C1,C2 : |B′ ≥ F ∧

C1′ ∈ 1 ..B′ ∧C2′ ∈ 1 ..B′ ∧C1′ �=C2′
act11 : step := 0

end
Event SendData =̂
refines SendOne

when
grd1 : c = g∧ x ≤ SIZE
grd2 : min({C1,C2})> 1∨

(C1= 1∧ t = 0)∨
(C2= 1∧u = 0)

then
act1 : c,s, t,x,u := 1− c,a(x),1,x+1,0
act2 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)∧
(u = 1⇒C2′ =C2−1)

act3 : step := step+1
end

Event TransmitData =̂
Status convergent

when
grd1 : t = 1
grd2 : u = 1⇒C2−1≥ 1

then
act1 : f , p, t := c,s,0
act2 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (u = 1⇒C2′ =C2−1)
act3 : step := step+1

end
Event DuplData =̂
Status convergent

when
grd1 : t = 1
grd2 : min({C1,C2})> 1∨

(C1= 1∧ t = 0)∨
(C2= 1∧u = 0)

then
act1 : f , p := c,s
act2 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)∧
(u = 1⇒C2′ =C2−1)

act3 : step := step+1
end

Event LoseData =̂
Status convergent

when
grd1 : t = 1
grd2 : min({C1,C2})> 1∨

(C1= 1∧ t = 0)∨
(C2= 1∧u = 0)

then
act1 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)∧
(u = 1⇒C2′ =C2−1)

act2 : step := step+1
end

Event SendAck =̂
refines ReceiveOne

when
grd1 : d = f
grd2 : min({C1,C2})> 1∨

(C1= 1∧ t = 0)∨
(C2= 1∧u = 0)

then
act1 : b,d,u,y, t := b ∪ {y
→ p},1−d,1,y+1,0
act2 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)∧
(u = 1⇒C2′ =C2−1)

act3 : step := step+1
end

Event TransmitAck =̂
Status convergent

when
grd1 : u = 1
grd2 : t = 1⇒C1−1≥ 1

then
act1 : g,u := 1−d,0
act2 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)
act3 : step := step+1

end
Event DuplAck =̂
Status convergent

when
grd1 : u = 1

Finitary Fairness in Action Systems 331

grd2 : min({C1,C2})> 1∨
(C1= 1∧ t = 0)∨
(C2= 1∧u = 0)

then
act1 : g := 1−d
act2 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)∧
(u = 1⇒C2′ =C2−1)

act3 : step := step+1
end

Event LoseAck =̂
Status convergent

when
grd1 : u = 1
grd2 : min({C1,C2})> 1∨

(C1= 1∧ t = 0)∨
(C2= 1∧u = 0)

then
act1 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)∧
(u = 1⇒C2′ =C2−1)

act2 : step := step+1
end

Event AllReceived =̂
refines ReceiverDone

when
grd1 : y = SIZE +1
grd2 : e = 1
grd3 : min({C1,C2})> 1∨

(C1= 1∧ t = 0)∨
(C2= 1∧u = 0)

then
act1 : z := b
act2 : e := 0
act3 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)∧
(u = 1⇒C2′ =C2−1)

act4 : step := step+1
end

VARIANT
2∗SIZE∗ (B+1)+1−step

END

6 Distributed Consensus

Given a group of initial values (in the simplest case, 0 and 1), distributed consensus is
to let a group of processes decide by themselves and finally agree on a value. In this
section, we model the algorithm in [3] and prove its termination in Event-B. It is an
example in case, because its termination can be guaranteed with finitary fairness but
not with standard fairness [3]. The refinement process is illustrated in Fig. 5.

The original algorithm is in Fig. 4. The algorithm proceeds in rounds, using a two-
dimensional bit array x[∗,2] and an infinite array y[∗] over values ⊥, 0, or 1. When the
processes agree on a value, the decision, it is written to the shared bit out, the initial
value of which is ⊥. Each process Pi has a local register vi of its current preference and
a local register ri of its current round number. The ith process has an initial input ini. If
in the rth round, all processes have the same preference v, then they decide on the value
v in round r. Only when two processes with different preferences both find y[r] = ⊥
(line 3), and one of them proceeds and chooses its preference for the next round (line 7)
before the other one finishes the assignment to y[r], there is a conflict, and the processes
continue trying to resolve it in the next round.

In line 5, the empty loop runs for ri times before copying its preference of next round
from y[i], trying to give other processes time to write their preferences into y[i] first.

Shared registers : initiallyout =⊥,y[1..] =⊥,x[1..,0..1] = 0;
Local registers : initiallyri = 1,vi = ini;
1.whileout =⊥do
2. x[ri,vi] := 1;
3. if y[ri] =⊥then y[ri] := vi fi;
4. if x[ri,¬vi] = 0thenout := vi
5. else for j = 1to ri doskipod;
6. vi := y[ri];
7. ri := ri +1
8. fi
9. od;
10. decide(out).

Fig. 4. The original distributed consensus algorithm in [3]

332 E. Sekerinski and T. Zhang

Process(i)

a(i), toset(i), d(i)

PTerminates

out

SetOut

Decide

out

in(i′)
out

(a) DC0

Process(i)

a(i), d(i), s(i)
r(i), v(i), j(i)

S5 S7

PTerminates

xy

out

S1

S4N

S6S2NS2Y

S3

S4Y

x(r(i),¬v(i))

x(r(i),¬v(i))

y(r(i))

v(i)

v(i)
out

(b) DCFWF

Entities V ariables/Constants Events
Dataflow

Fig. 5. Refinement process of distributed consensus (read operations in guards included)

Standard fairness is not enough to guarantee consensus in any round since theoretically
the scheduler might pick this process and continue executing it until the end of the loop,
which leaves the conflict unresolved. However, with finitary fairness, when ri reaches
a certain value, the fairness restriction would ensure that every other process gets its
chance to finish writing to y[i], thus guarantees that a consensus will be reached in that
round.

We translate the algorithm into an event system by breaking down every atomic
operation into one event, and adding a state variable si for the ith process to record
which atomic operation it is to execute next.

Specification. In its most abstract form, read, write and “read&write” on shared regis-
ters are all atomic. We let N be the number of processes. The activenesses of processes
are represented by the variable a, which also serves as the guard of process actions.
The failures of processes are modelled by event PTerminates, to show that the model is
fault-tolerant (as long as some processes survive, they will finally reach a consensus).

MACHINE DC0
SEES Context
VARIABLES
a activeness of processes
out the output
toset signs of whether a process has not assigned a

value to out yet
d decisions of processes

INVARIANTS
inv1 : a ∈ 1 ..N →0 .. 1

1 means active and 0 means inactive
inv2 : out ∈−1 .. 1

all -1s stand for undefined in this model
inv3 : toset ∈ 1 ..N →0 .. 1

1 means has not assigned to out yet and 0 means has
inv4 : d ∈ 1 ..N →−1 .. 1
inv5 : ∀n·n ∈ 1 ..N ⇒d(n) ∈ {−1,out}

agreement: all decisions made by processes must be the
same (as out)

inv6 : out =−1∨ (∃n·n ∈ 1 ..N ∧out = in(n))
validity: the decision must equal to one of the inputs

EVENTS
Initialisation

begin
act1 : a := 1 ..N ×{1}

all active

act2 : out := −1
out undefined

act3 : toset := 1 ..N ×{1}
no process has assigned a value to out yet

act4 : d := 1 ..N ×{−1}
decisions all undefined

end
Event SetOut =̂
Status convergent

any
n the number of the process to be executed

where
grd1 : n ∈ 1 ..N ∧a(n) = 1∧ toset(n) = 1

the process is active and has not assigned a value to
out yet

then
act1 : out : |(out �=−1∧out ′ = out)∨

(out = −1 ∧ (∃nn·nn ∈ 1 .. N ∧ out ′ =
in(nn)))
the assigned value equals in(nn) of some nn, but nn
is not necessarily n

act2 : toset(n) := 0
set its sign to 0

end
Event Decide =̂
Status convergent

Finitary Fairness in Action Systems 333

any
n the number of the process to be executed

where
grd1 : n ∈ 1 ..N ∧a(n) = 1∧out ∈ 0 .. 1

the process is active and out has already been set
then
act1 : d(n) := out

set the decision to be out
act2 : a(n) := 0

no longer active
end

Event PTerminates =̂
Status convergent

any
n the number of the process to be terminated

where
grd1 : n ∈ 1 ..N ∧a(n) = 1

the process is active
then
act1 : a(n) := 0

no longer active
end

VARIANT
card({n1·n1 ∈ 1 ..N∧toset(n1) = 1|n1})+

card({n2·n2 ∈ 1 ..N∧a(n2) = 1|n2})
END

Adding restrictions.2 Now only operations read and write on shared registers are atomic.
The assignments y[ri] := vi and vi := y[ri] both have local variable vi on one side, so both
of them can be treated as atomic operations. Here we use this example to demonstrate
the transformation fwf (P). The additional guard of each event guarantees the existence
of legal counter values and a new permutation p after its execution.

Again, termination is shown by counter step; its non-negativeness is guaranteed by
proving the round counter r of each process is no more than B+ 1, therefore the step
counter of each process is no more than 6 ∗B+(B ∗ (B+ 1))/2+ 5, and the total step
counter is no more than B times of this upper limit.

MACHINE DCFWF
Modelling distributed consensus, assuming that only op-
erations read and write on shared registers are atomic

REFINES DC0
SEES Context
VARIABLES
a activeness of processes
out the output
d decisions of processes
y the preference of rounds
x the local preference coverage history of rounds
s state of processes
r local round numbers of processes
v local preferences of processes
j local loop variables of processes
B upper bound of times to delay any consecutively

enabled event
C down-counters of processes
stepsums step counter-summations, stepsums(n)−

stepsums(n− 1) is the step counter of the n-th process,
and stepsums(N) is the counter of total steps
the steps of event PTerminates are not counted, and the
event does not affect the counters neither

s0 the number of total steps when the first time any
process enters state 5 in the B-th round

INVARIANTS
inv1 : y ∈N1→−1 .. 1

y(i) is the preference of the i-th round
inv2 : x ∈ (N1×0 .. 1)→0 .. 1

x(i,b) = 1 means that at least one process n has entered
state 2 in the i-th round, with local proference v(n) = b

inv3 : s ∈ 1 ..N →1 .. 7
7 possible states for each process

inv4 : r ∈ 1 ..N →N1

inv5 : v ∈ 1 ..N →0 .. 1
inv6 : j ∈ 1 ..N →N1

inv7 : ∀n·n ∈ 1 ..N ⇒
((s(n)= 1∧toset(n)= 1∧r(n)>1⇒x((r(n)−

1)
→ v(n)) = 1)∧
(s(n)∈ 2 .. 7⇒ x(r(n)
→ v(n)) = 1)∧
(s(n)∈ 4 .. 6⇒ y(r(n))∈ 0 .. 1))

some properties of x and y in different states;
used for proving validity

inv8 : ∀n·n ∈ 1..N⇒(∃n1·n1∈ 1..N∧v(n)= in(n1))
used for proving validity

inv9 : ∀i·i ∈ N1 ∧ y(i) ∈ 0 .. 1⇒ (x(i
→ y(i)) = 1 ∧
(∃n·n ∈ 1 ..N ∧ y(i) = in(n)))
relation between x and y, as well as and validity of y(i)
(preference of every round)

inv10 : ∀i,b· i∈N1∧b ∈ 0..1∧x(i
→ b) = 1⇒(∀ii·ii∈
1 .. (i−1)⇒ x(ii
→ b) = 1)
if x(i
→ b) = 1 then b has left trace in x for all past
rounds too

inv11 : out ∈ 0 .. 1⇒ (∃n·n ∈ 1 ..N ∧
out = v(n)∧ s(n) = 1∧ x(r(n)
→ out) = 1∧

x(r(n)
→ (1−out)) = 0)
if out has been set then some process has left two key
traces in x

inv12 : ∀n·n ∈ 1 ..N ∧ (out =−1∨ (out = v(n)∧ s(n)∈
2 .. 4))⇒

toset(n) = 1
the relation among the states and the disappeared vari-
able toset;
used for proving the guard refinement relationship of
event S4Y

inv13 : ∀n·n ∈ 1..N∧s(n)= 4∧x(r(n)
→ (1−v(n)))=
0⇒ (out =−1∨out = v(n))
when S4Y is executed, either out =−1 or out = v(n);
used for proving several POs of event S4Y

inv14 : B ∈N1 ∧B ≥ N
B is no less than N

2 Here is the transformed version in Event-B; a version of distributed consensus that uses “fair”
events can be found in
http://www.cas.mcmaster.ca/~zhangt26/ICTAC/appendix.pdf

http://www.cas.mcmaster.ca/~zhangt26/ICTAC/appendix.pdf

334 E. Sekerinski and T. Zhang

inv15 : C ∈ 1 ..N →1 ..B
inv16 : stepsums ∈ 0 ..N →N

inv17 : ∃p·p ∈ 1 .. N �� 1 .. N ∧ (∀n·n ∈ 1 .. N ⇒
C(p(n))≥ n)
such p, a permutation of 1 .. N, always exists, that
C(p(n))≥ n for n ∈ 1 ..N

inv18 : ∃n0·n0 ∈ 1 ..N ∧ a(n0) = 1⇒ (∃n·n ∈ 1 ..N ∧
a(n) = 1∧

(∃CC ·CC = (1 ..N ×{B})�− (λnn·nn ∈ 1 ..
N \{n}∧a(nn) = 1|C(nn)−1)∧

CC ∈ 1 ..N →1 ..B∧
(∃p·p ∈ 1 .. N �� 1 .. N ∧ (∀nnn·nnn ∈ 1 ..

N ⇒CC(p(nnn))≥ nnn))))
such a p prevents unexpected termination caused by re-
striction on counters, i.e., the additional guards are al-
ways satisfiable as long as the original guards are satis-
fiable;
when ∃n0·n0 ∈ 1 .. N ∧ a(n0) = 1, suppose mn =
min({n|n ∈ 1..N ∧ a(p(n)) = 1}), then with n = p(mn)
and p = ((λn·n ∈ 1 .. N − mn|p(n + mn)) ∪ (λn·n ∈
N + 1 −mn .. N|p(n +mn −N)), CC statisfies the in-
variant in the next state

inv19 : ∀n·n ∈ 1 ..N ∧ a(n) = 1⇒ stepsums(N)≤ B ∗
(stepsums(n)− stepsums(n−1)+1)−C(n)
the number of total steps are no more than B times of
the step counter of any active process

inv20 : stepsums(0) = 0∧ (∀n·n ∈ 1 ..N ⇒
((s(n) = 1 ∧ out = −1 ⇒ stepsums(n) −

stepsums(n−1)≤
6 ∗ (r(n)− 1) + (r(n) ∗ (r(n)− 1))/2+ 2−

a(n))∧
(s(n) = 1 ∧ out �= −1 ⇒ stepsums(n) −

stepsums(n−1)≤
6 ∗ (r(n)− 1) + (r(n) ∗ (r(n)− 1))/2+ 6−

a(n))∧
(s(n) ∈ 2 .. 4⇒ stepsums(n)− stepsums(n−

1)≤
6∗(r(n)−1)+(r(n)∗(r(n)−1))/2+s(n))∧
(s(n) = 5 ⇒ stepsums(n) − stepsums(n −

1)≤
6 ∗ (r(n)− 1) + (r(n) ∗ (r(n)− 1))/2+ 4+

j(n))∧
(s(n) = 6 ⇒ stepsums(n) − stepsums(n −

1)≤
6∗ (r(n)−1)+(r(n)∗ (r(n)+1))/2+5)∧
(s(n) = 7 ⇒ stepsums(n) − stepsums(n −

1)≤
6∗ (r(n)−1)+(r(n)∗ (r(n)+1))/2+6)))

the upper bound on step counter of each process at each
state

inv21 : s0 ∈N

inv22 : s0 = 0⇒ (∀n·n ∈ 1 .. N ⇒ r(n) < B∨ (r(n) =
B∧ s(n)≤ 4))
s0 is 0 until some process enters state 5 in the B-th round

inv23 : s0 > 0⇒ (y(B)∈ 0 .. 1∧ stepsums(N)≥ s0∧
(∀n·n ∈ 1 .. N ⇒ ((a(n) = 1 ∧ r(n) = B ∧

s(n) = 3⇒
C(n)≤ B− stepsums(N)+ s0)∧
(stepsums(N)< s0+B⇒
((r(n)< B∨ (r(n) = B∧ s(n)≤ 5))∧
(a(n) = 1∧ r(n) = B∧ s(n) = 5⇒
j(n)≤ stepsums(N)− s0+1))))))

some properties when s0 > 0, and when s0 > 0 ∧
stepsums(N)< s0+B;
used for proving that when any process is in state 6 of
the B-th round, stepsums(N)≥ s0+B and at that time,
no process is in state 3 of the B-th round (and no process
can enter anymore)

inv24 : ∀n·n ∈ 1 ..N ∧ ((r(n) = B∧ s(n) = 7)∨
(r(n)= B+1∧s(n)∈ 1..4))⇒v(n)= y(B)

once a process reaches state 7 in the B-th round, its lo-
cal preference will equal y(B) until it terminates, and
y(B) will not vary due to inv23, because stepsums(N)≥
s0+B; thus no process is in state 3 nor can any process
enter state 3 to set y(B);
used for proving inv25

inv25 : ((s0= 0∨ (s0> 0∧ stepsums(N)< s0+B))⇒
(x(B+1
→ 0) = 0∧ x(B+1
→ 1) = 0))∧
(s0> 0∧stepsums(N)≥ s0+B⇒x(B+1
→

1− y(B)) = 0)
x(B+1
→ 1− y(B)) = 0 when s0 > 0;
used for proving inv26

inv26 : ∀n·n ∈ 1 .. N ⇒ (r(n) ≤ B ∨ (r(n) = B + 1 ∧
s(n)∈ 1 .. 4))
no process can enter state 5 in the (B+1)-th round;
this puts an upper bound on the step counter of single
processes and thus on total steps, which is then used to
prove termination (non-negativeness of the variant)

EVENTS
Initialisation

begin
act1 : a := 1 ..N ×{1}
act2 : out := −1
act3 : d := 1 ..N ×{−1}
act4 : y := N1×{−1}
act5 : x := (N1×0 .. 1)×{0}
act6 : s := 1 ..N ×{1}
act7 : r := 1 ..N ×{1}
act8 : v := in
act9 : j := 1 ..N ×{1}
act10 : B,C : |B′ ∈N1 ∧B′ ≥ N ∧C′ = 1 ..N ×{B′}
act11 : stepsums := 0 ..N ×{0}
act12 : s0 := 0

end
Event S1 =̂

enter the r(n)-th round and leave a record of local prefer-
ence in x

Status convergent
any

n the number of the process to be executed (the same
meaning in all following events except PTerminates)

CC the value of C after execution (the same meaning
in all following events except PTerminates)

where
grd1 : n ∈ 1 ..N ∧a(n) = 1∧ s(n) = 1

the process is active and in state 1
grd2 : out =−1

out has not been set
grd3 : CC = (1 ..N×{B})�−(λnn·nn ∈ 1 ..N \{n}∧

a(nn) = 1|C(nn)−1)∧
CC ∈ 1 ..N →1 ..B∧
(∃p·p ∈ 1 .. N �� 1 .. N ∧ (∀nnn·nnn ∈ 1 ..

N ⇒CC(p(nnn))≥ nnn))
CC sets the counters of n and inactive processes to
be B, decreases the counters of other processes by 1,
and a new permutation exists (the same meaning in
all following events except PTerminates)

then
act1 : x(r(n)
→ v(n)) := 1
act2 : s(n) := 2

set the state to be 2
act3 : C :=CC

update the counters (the same meaning in all follow-
ing events except PTerminates)

act4 : stepsums := stepsums �− (λnn·nn ∈ n ..
N|stepsums(nn)+1)
update the counter-summations (the same meaning
in all following events except PTerminates)

Finitary Fairness in Action Systems 335

end
Event S2Y =̂

if the preference of the r(n)-th round has not been set, try
to set it to be local preference

Status convergent
any

n
CC

where
grd1 : n ∈ 1..N∧a(n) = 1∧s(n) = 2∧y(r(n))=−1

the process is active and in state 2, the preference of
the r(n)-th round has not been set

grd2 : CC = (1 ..N×{B})�−(λnn·nn ∈ 1 ..N \{n}∧
a(nn) = 1|C(nn)−1)∧

CC ∈ 1 ..N →1 ..B∧
(∃p·p ∈ 1 .. N �� 1 .. N ∧ (∀nnn·nnn ∈ 1 ..

N ⇒CC(p(nnn))≥ nnn))
then
act1 : s(n) := 3

set the state to be 2
act2 : C :=CC
act3 : stepsums := stepsums �− (λnn·nn ∈ n ..

N|stepsums(nn)+1)
end

Event S2N =̂
. . .

.

.

.

Event S7 =̂
. . . 3

Event Decide =̂
refines Decide

any
n

CC
where
grd1 : n ∈ 1 ..N ∧a(n) = 1∧ s(n) = 1

the process is active and in state 1
grd2 : out ∈ 0 .. 1

out has already been set
grd3 : CC = (1 ..N×{B})�−(λnn·nn ∈ 1 ..N \{n}∧

a(nn) = 1|C(nn)−1)∧
CC ∈ 1 ..N →1 ..B∧
(∃p·p ∈ 1 .. N �� 1 .. N ∧ (∀nnn·nnn ∈ 1 ..

N ⇒CC(p(nnn))≥ nnn))
then
act1 : d(n) := out

set the decision to be out
act2 : a(n) := 0

no longer active
act3 : C :=CC
act4 : stepsums := stepsums �− (λnn·nn ∈ n ..

N|stepsums(nn)+1)
end

Event PTerminates =̂
refines PTerminates

any
n number of the process to be terminated

where
grd1 : n ∈ 1 ..N ∧a(n) = 1

the process is active
then
act1 : a(n) := 0

no longer active
end

VARIANT
B∗ (6∗B+(B∗ (B+1))/2+5)−stepsums(N)

END

7 Conclusions

This work started with the goal of expressing action systems with fairness in formalisms
like Event-B. The core is the observation that a modification of the transformation fin(P)
of [3] from standard transition systems to a finitary weakly fair one is suitable. It was
shown that that all finitary weakly fair computations of P terminate, if and only if all
computations of fin(P) terminate. However, the schedules of fin(P) are not exactly the
finitary weakly fair ones of P, because the termination in some computations may be
caused by improper scheduling: fin(P) may reach a state q′, such that in its correspond-
ing state q of P, some transitions are enabled, but transitions of fin(P) are disabled by
the additional guards that restrict the counters. This inequality does not affect the cor-
rectness of the proof mentioned above, but this type of termination makes it unsuitable
to model practical transition systems, because the system after transformation will be
at risk of terminating unexpectedly. Certain temporal logic properties cannot be proved,
due to the difficulty of distinguishing terminations caused by original guards or by a
counter of value 0. The transformation fwf (P) and dist(P) suggested here guarantee
that the schedules remain equivalent. Thus, lower bound of steps can be easily proved,
and all temporal logic properties are preserved. We have demonstrated the application
of dist(P) with the development of the alternating bit protocol and the application of

3 Events S2N to S7 are omitted here since they are all similarly translated atomic opera-
tions, refer to http://www.cas.mcmaster.ca/~zhangt26/ICTAC/appendix.pdf for the
complete code.

http://www.cas.mcmaster.ca/~zhangt26/ICTAC/appendix.pdf

336 E. Sekerinski and T. Zhang

fwf (P) with the development of distributed consensus. We believe that this is the first
mechanically checked development of this distributed consensus algorithm.

In this paper, we have considered only weak fairness. A similar transformation for
finitary strong fairness waits to be worked out. While the examples of the paper have
been processed with Rodin [4], the transformation was done by hand, and the proof was
semi-automatic. Verifying the distributed consensus model with finitary fairness is more
time-consuming than verifying the ABP model, because modelling an arbitrary number
of counters requires additional functions to express the restrictions. It would be useful
to automate this transformation, as well as the verification of the proof obligations that
only involve the bound and counters, which is irrelevant to the original model.

Acknowledgement. We thank the reviewers for their helpful comments.

References

1. Back, R.J.R.: Refinement calculus, part II: Parallel and reactive programs. In: de Bakker,
J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 67–93. Springer,
Heidelberg (1990)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press (2010)

3. Alur, R., Henzinger, T.A.: Finitary fairness. ACM Trans. Program. Lang. Syst. 20(6),
1171–1194 (1998)

4. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool environment for
event-B. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605.
Springer, Heidelberg (2006)

5. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley (1988)
6. Francez, N.: Fairness. Texts and Monographs in Computer Science. Springer (1986)
7. Lamport, L.: The temporal logic of actions. ACM Transactions on Programming Languages

and Systems 16(3), 872–923 (1994)
8. Back, R., Xu, Q.: Refinement of fair action systems. Acta Informatica 35(2), 131–165 (1998)
9. Singh, A.K.: Program refinement in fair transition systems. Acta Informatica 30, 503–535

(1993)
10. Wabenhorst, A.: Stepwise development of fair distributed systems. Acta Informatica 39,

233–271 (2003)
11. Apt, K.R., Olderog, E.R.: Proof rules and transformations dealing with fairness. Sci. Comput.

Program. 3(1), 65–100 (1983)
12. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with one faulty

process. Journal of the ACM 32, 374–382 (1985)
13. Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A note on reliable full-duplex transmission

over half-duplex links. Communications of the ACM 12(5), 260–261 (1969)
14. Wabenhorst, A.: A stepwise development of the alternating bit protocol. Technical Report

PRG-TR-12-97, Oxford University Computing Laboratory (March 1997)
15. Feijen, W.H.J., van Gasteren, A.J.M.: On a Method of Multiprogramming. Springer (1999)
16. Sekerinski, E.: An algebraic approach to refinement with fair choice. Electronic Notes in

Theoretical Computer Science 214, 51–79 (2008)

	Finitary Fairness in Action Systems
	1 Introduction
	2 Related Work
	3 Fair Event Systems
	4 The Finitary Weakly Fair Transformation
	5 The Alternating Bit Protocol
	6 Distributed Consensus
	7 Conclusions
	References

