
A High-Level Semantics for Program Execution
under Total Store Order Memory

Brijesh Dongol1,�, Oleg Travkin2, John Derrick1,∗, and Heike Wehrheim2

1 Department of Computer Science
The University of Sheffield, S1 4DP, UK

2 Fakultät für Elektrotechnik, Informatik und Mathematik
The University of Paderborn, Germany

B.Dongol@sheffield.ac.uk, oleg82@zitmail.uni-paderborn.de,
J.Derrick@dcs.shef.ac.uk, wehrheim@mail.uni-paderborn.de

Abstract. Processor cores within modern multicore systems often communi-
cate via shared memory and use (local) store buffers to improve performance.
A penalty for this improvement is the loss of Sequential Consistency to weaker
memory guarantees that increase the number of possible program behaviours, and
hence, require a greater amount of programming effort. This paper formalises the
effect of Total Store Order (TSO) memory — a weak memory model that allows
a write followed by a read in the program order to be reordered during execution.
Although the precise effects of TSO are well-known, a high-level formalisation of
programs that execute under TSO has not been developed. We present an interval-
based semantics for programs that execute under TSO memory and include meth-
ods for fine-grained expression evaluation, capturing the non-determinism of both
concurrency and TSO-related reorderings.

1 Introduction

Approaches to reasoning about concurrency usually assume Sequentially Consistent
(SC) memory models, where program instructions are executed by the hardware in the
order specified by the program [19], i.e., under SC memory, execution of the sequential
composition S1 ; S2 of statements S1 and S2 must execute S2 after S1. Fig. 1 shows a
multicore architecture idealised by the SC memory model, where processor cores inter-
act directly with shared memory. In such an architecture, contention for shared memory
becomes a bottleneck to efficiency, and hence, modern processors often utilise addi-
tional local buffers within which data may be stored (e.g., the processor cores in Fig. 2
use local write buffers). Furthermore, modern processors implement weaker memory
models than sequential consistency and allow the order in which instructions are exe-
cuted to differ from the program order in a restricted manner [1], e.g., Write → Read,
Write → Write, Read → Write, Read → Read. Here Write → Read means that a
Write instruction to an address a followed by a Read instruction to an address b in the
program order are allowed to be reordered if a �= b. As a result, a programmer must per-
form additional reasoning to ensure that the actual (executed) behaviour of a program
is consistent with the expected behaviour.

� This research is supported by EPSRC Grant EP/J003727/1.

Z. Liu, J. Woodcock, and H. Zhu (Eds.): ICTAC 2013, LNCS 8049, pp. 177–194, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

178 B. Dongol et al.

...

Core n
.

Core 1

Shared memory...

Fig. 1. Idealised multicore architecture

Core 1
.

...Shared memory...

B
uffer

n
Core n

B
uffer

1

Fig. 2. Multicore architecture with write buffers

In this paper, we study the high-level behaviour of the common x86 multicore pro-
cessor architecture. Each core uses a write buffer (as shown in Fig. 2), which is a FIFO
queue that stores pending writes. A processor core performing a write may enqueue the
write in the buffer and continue computation without waiting for the write to be com-
mitted to memory. Pending writes do not become visible to other cores until the buffer
is flushed, which commits (some or all) pending writes. Thus, x86 architectures al-
low Write → Read reordering. Furthermore, using a technique known as Intra-Process
Forwarding (IPF) [16] a processor core may read pending writes from its own (local)
write buffer, i.e., without accessing shared memory. The combination of Write → Read
reordering and IPF forms the Total Store Order (TSO) memory model [1, 24].

Existing approaches to memory-model-aware reasoning, e.g. Alglave et al [2], for-
malise several different orders that are imposed by a specific memory model. Applying
these orders to a program yields all possible behaviour that can be observed with respect
to the applied memory model. Executable memory models like the x86-TSO [23, 24]
have been defined to observe the impact of a memory model on a program’s execution.
Such models can be used for state space exploration, but this quickly becomes infeasi-
ble due to the exponential explosion in the complexity of the state space. Burckhardt et
al use an approach [6] in which the memory model is defined axiomatically and com-
bined with a set of axioms modelling a program written in a low-level language. The
combination of both is used to feed a SAT-solver to check for program properties like
linearisability [15]. Each of the approaches [2, 6, 23, 24] is focused on the use of a low-
level language instead of the high-level language in which programs are often written.
Hence, to perform a verification, programs need to be observed and understood in their
low-level representation, which is a complex task because at this level of abstraction,
programs are verbose in their representation and use additional variables to implement
high-level language instructions.

Although there are many approaches dealing with the influence of memory models
for low-level languages [2–4, 23, 24], we are not aware of any approach that tries to
lift such memory model effects to a higher level of abstraction. Our work here is hence
unique in this sense. The basic idea is to think of high-level statements as being executed
over an interval of time or an execution window. Such execution windows can overlap,
if programs are executed concurrently. Under TSO memory, the execution windows
can even overlap within a single process. Overlapping windows correspond to program
instructions that can be executed in any order, representing the effect of concurrent
executions and reorderings due to TSO. Furthermore, overlapping execution windows
may also interfere with each other and fixing the outcome of an execution within a
window can influence the outcome within another.

A High-Level Semantics for Program Execution under TSO 179

Initially: x = 0 ∧ y = 0 ∧ z �= 0

Process p
p1: x := 1;
p2: if y = 0 ∧ z = 0
p3: then statement1
p4: else statement2

Process q
q1: y := 1;
q2: z := x

Fig. 3. SC does not allow execution of
statement1, TSO does

Initially: x = 0 ∧ y = 0 ∧ z �= 0

Process p
p1: write(x, 1);
p2.1:
p2.2:

�
read(y, r1p);
read(z, r2p)

�
�

p2.3:
p2.4:

�
read(z, r2p);
read(y, r1p)

�
;

p2.5: if r1p = 0 ∧ r2p = 0 . . .

Process q
q1: write(y, 1);
q2.1: read(x, rq);
q2.2: write(z, rq);

Fig. 4. Low-level representation of program in Fig. 3

Section 2 introduces the TSO memory model and its influence on a program’s be-
haviour. Section 3 presents our interval-based framework for reasoning about different
memory models, an abstract programming language, and a parameterised semantics for
the language. In Section 4, we formalise instantaneous and actual states evaluation un-
der SC memory, a restricted form of TSO that allows Write → Read reordering without
allowing IPF, and Write → Read with IPF to fully cover TSO behaviour.

2 Effect of Total Store Order on Program Behaviour

On top of the non-determinism inherent within concurrent programs, TSO memory al-
lows additional relaxations that enable further reordering of program instructions within
a process via Write → Read reordering and IPF, complicating their analysis [4]. We de-
scribe these concepts and their effects on program behaviour using the examples in
Sections 2.1 and 2.2. Note that Write → Read reordering is not implemented without
IPF by any current processor, but we find it useful to consider its effects separately.

2.1 Write → Read Reordering

Fig. 3 shows a program with two concurrent processes p and q that use shared variables
x, y and z. A low-level representation of Fig. 3 is given in Fig. 4, which uses additional
local registers r1p, r2p and rq.1 Evaluation of the guard at p2 is split into a number of
atomic steps, where the order in which y and z are read is chosen non-deterministically.
That is, after execution of p1, either p2.1; p2.2 or p2.3; p2.4 is executed. For both choices,
under SC memory, process p will never execute statement1 because whenever control
of process p is at p2.5, either r1p or r2p is non-zero, and hence, the guard at p2.5 always
evaluates to false. In particular, for SC memory, if r1p = 0 holds, then either p2.1 or p2.4

must have been executed before q1 (otherwise r1p would equal 1), and hence, by the
program order (which is preserved by the execution order), p1 must have been executed
before q1. Thus, if r1p = 0 holds, then r2p �= 0 must hold, and hence, the guard at

1 Note that implementation of the if statement in process p uses additional local variables and
goto/jump instructions, whose details have been elided.

180 B. Dongol et al.

p2.5 must evaluate to false. Furthermore, if r2p = 0 holds at p2.5, then q2.2 must have
been executed before p1 (otherwise z with value 1 would be loaded as the value of r2).
Therefore, due to the program order, q1 must also have been executed before p1, and
hence, before both p2.1 and p2.4. However, this means r1p = 1 must hold at p2.5.

Now consider a restricted TSO (RTSO) memory model that allows Write → Read
reordering but without IPF. For example, RTSO allows p2.1 in Fig. 4 to be executed
before p1 even though p1 occurs before p2.1 in the program order. All other program
orders are preserved, including a write to a variable followed by a read to the same
variable. Execution of the program in Fig. 4 under RTSO allows execution of statement1
if process p chooses branch p2.1 ; p2.2 (i.e., p reads y then z) to evaluate the guard at p2.
This occurs if both:
1. p1 ; p2.1 ; p2.2 ; p2.5 is reordered to p2.1 ; p1 ; p2.2 ; p2.5, which can happen if the

write to x (i.e., instruction p1) is stored in p’s write buffer, but committed to memory
before execution of p2.2, and

2. q1 ; q2.1 ; q2.2 is reordered to q2.1 ; q1 ; q2.2, which can happen if the write to y (i.e.,
q1) is stored in q’s write buffer.

After the reordering, the concurrent execution of p and q may execute p2.1 (setting
r1p = 0), then q2.1 ; q1 ; q2.2 (setting z = 0), and then p2.2 (setting r2p = 0).

Note that it is also possible for none of the instructions to be re-ordered, in which case
execution under RTSO would be identical to execution under SC memory. Furthermore,
if process p chooses branch p2.3 ; p2.4, statement1 cannot be executed despite any
reorderings within p and q. Finally, RTSO does not allow re-orderings such as p2.2 ; p2.1

because they are both read instructions (i.e., Read → Read ordering is preserved),
q2.2 ; q1 because both q2.2 and q1 are write instructions (i.e., Write → Write ordering is
preserved), and q2.2 ; q2.1 because q2.1 is a read and q2.2 is a write (i.e., Read → Write
ordering is preserved). A write to a variable that is followed by a read to the same
variable in the program order must not be reordered (e.g., in Fig. 6, reordering p2.1 ; p1

is disallowed).

2.2 Total Store Order

TSO extends RTSO by including IPF, allowing a process to read pending writes from
its own buffer, and hence, obtaining values that are not yet globally visible to other pro-
cesses. To observe the effect of IPF, consider the program in Fig. 5 and its corresponding
low-level representation in Fig. 6. Process p can never execute statement1 under RTSO
memory because the read at p2.1 cannot be reordered with the write at p1 due to the
variable dependency. Furthermore, because Read → Read ordering is preserved, p2.1

prevents reads to y at p3.1 and p3.4 from being executed before the write instruction at
p1 even though both reorderings p3.1 ; p2.2 and p3.3 ; p3.4 ; p2.2 are possible. Similarly,
q2.1 prevents q3.1 from being executed before q1 even though q2.2 may be reordered
with q3.1. Because SC memory is a special case of RTSO in which no reorderings are
possible, it is also not possible for p to reach statement1 under SC memory.

In contrast, TSO allows execution of statement1 because IPF enables reads to occur
from the write buffer. For the program in Fig. 6, the value written by write(x, 1) at p1

could still be in p’s write buffer, which could be used by p2.1 before the write at p1

is committed to memory. Then write(u, r0p) at p2.2 may become a pending write, and

A High-Level Semantics for Program Execution under TSO 181

Initially: x = 0 ∧ y = 0 ∧ z �= 0

Process p
p1: x := 1;
p2: u := x;
p3: if y = 0 ∧ z = 0
p4: then statement1;
p5: else statement2

Process q
q1: y := 1;
q2: v := y;
q3: z := x

Fig. 5. Neither SC nor RTSO cause ex-
ecution of statement1, TSO does

Initially: x = 0 ∧ y = 0 ∧ z �= 0

Process p
p1: write(x, 1);
p2.1: read(x, r0p);
p2.2: write(u, r0p);
p3.1:
p3.2:

�
read(y, r1p);
read(z, r2p)

�
�

p3.3:
p3.4:

�
read(z, r2p);
read(y, r1p)

�
;

p3.5: if r1p = 0 ∧ r2p = 0 . . .

Process q
q1: write(y, 1);
q2.1: read(y, r0q);
q2.2: write(v, r0q);
q3.1: read(x, r1q);
q3.2: write(z, r1q)

Fig. 6. Low-level representation of program in Fig. 5

then read(y, r1p) and read(z, r2p) (at p3.1 and p3.2, respectively) may be executed. By
fetching values from memory before the pending write(x, 1) at p1 has been committed,
the reads at p3.1 and p3.2, can appear as if they were executed before p2.1. The same
arguments apply to process q where read(y, r0q) at q2.1 can read the value of y from q’s
write buffer, and hence, execution of q2.1 and q3.1 appear to be reordered. A concurrent
execution after reordering that allows control to reach p4 is:

p3.1 ; q3.1 ; q1 ; q2.1 ; q2.2 ; q3.2 ; p1 ; p2.1 ; p2.2 ; p3.2

This example shows that TSO allows Read → Read reordering in a restricted manner
and in fact that the IPF relaxation can be viewed as such [3].

3 Interval-Based Reasoning

The programs in Figs. 4 and 6 have helped explain TSO concepts, however, reason-
ing about interleavings at such a low level of abstraction quickly becomes infeasible.
Instead, we use a framework that considers the intervals in which a program execute
[9], which enables both non-deterministic evaluation [13] and compositional reasoning
[17]. We present interval predicates in Section 3.1, fractional permissions (to model
conflicting accesses) in Section 3.2, and a programming language as well as its gener-
alised interval-based semantics in Section 3.3.

3.1 Interval Predicates

We use interval predicates to formalise the interval-based semantics due to the general-
ity they provide over frameworks that consider programs as relations between pre/post
states. An interval is a contiguous set of integers (denoted Z), and hence the set of all
intervals is Intv �= {Δ ⊆ Z | ∀t1, t2:Δ • ∀t:Z • t1 ≤ t ≤ t2 ⇒ t ∈ Δ}. Using ‘.’ for
function application (i.e., f .x denotes f (x)), we let lub.Δ and glb.Δ denote the least up-
per and greatest lower bounds of an interval Δ, respectively. We define lub.∅ �= −∞,
glb.∅ �= ∞, inf.Δ �= (lub.Δ = ∞), fin.Δ �= ¬inf.Δ, and empty.Δ �= (Δ = ∅).

182 B. Dongol et al.

One must often reason about two adjoining intervals, i.e., intervals that immediately
precede or follow a given interval. For Δ1, Δ2 ∈ Intv, we say Δ1 adjoins Δ2 iff Δ1 ∝
Δ2 holds, where Δ1 ∝ Δ2 �= (Δ1 ∪ Δ2 ∈ Intv) ∧ (∀t1:Δ1, t2:Δ2 • t1 < t2). Thus,
Δ1 ∝ Δ2 holds iff Δ2 immediately follows Δ1. Note that adjoining intervals Δ1 and
Δ2 must be both contiguous and disjoint, and that both Δ∝∅ and ∅∝Δ trivially hold.

Given that variable names are taken from the set Var, a state space over a set of
variables V ⊆ Var is given by StateV �= V → Val and a state is a member of StateV , i.e.,
a state is a total function mapping variables in V to values in Val. A stream of behaviours
over V is given by the total function StreamV �= Z → StateV , which maps each time in
Z to a state over V . A predicate over type T is a total function PT �= T → B mapping
each member of T to a Boolean. For example PStateV and PStreamV denote state and
stream predicates, respectively. To facilitate reasoning about specific parts of a stream,
we use interval predicates, which have type IntvPredV �= Intv → PStreamV . A stream
predicate defines the behaviour of a system over all time, and an interval predicate
defines the behaviour of a system with respect to a given interval [9, 10]. We assume
pointwise lifting of operators on stream and interval predicates in the normal manner,
e.g., if g1 and g2 are interval predicates, Δ is an interval and s is a stream, we have
(g1 ∧ g2).Δ.s = (g1.Δ.s ∧ g2.Δ.s).

We define two operators on interval predicates: chop (to model sequential composi-
tion), and k- and ω-iteration (to model loops), i.e.,

(g1 ; g2).Δ.s �= �∃Δ1, Δ2: Intv • (Δ = Δ1 ∪Δ2) ∧
(Δ1 ∝Δ2) ∧ g1.Δ1.s ∧ g2.Δ2.s

�
∨ (inf.Δ ∧ g1.Δ.s)

g0 �= empty gk+1 �= gk ; g gω �= νz • (g ; z) ∨ empty

The chop operator ‘;’ is a basic operator on two interval predicates [21, 10], where
(g1 ; g2).Δ.s holds iff either interval Δ may be split into two adjoining parts Δ1 and
Δ2 so that g1 holds for Δ1 and g2 holds for Δ2 in s, or the least upper bound of Δ is ∞
and g1 holds for Δ in s. Inclusion of the second disjunct inf.Δ ∧ g1.Δ.s enables g1 to
model an infinite (divergent or non-terminating) program. Iteration gk defines the k-fold
iteration of g and gω is the greatest fixed point of λ z • (g ; z) ∨ empty, which allows
both finite and infinite iterations of g [12]. We use

(�g).Δ.s �= ∃Ω: Intv • Ω ∝Δ ∧ g.Ω.s

to denote that g holds in some interval Ω that immediately precedes Δ.
We define the following operators to formalise properties over an interval using a

state predicate c over an interval Δ in stream s.

(�c).Δ.s �= ∀t:Δ • c.(s.t) (�c).Δ.s �= ∃t:Δ • c.(s.t)
−→c .Δ.s �= (lub.Δ ∈ Δ) ∧ c.(s.(lub.Δ))

That is (�c).Δ.s holds iff c holds for each state s.t where t ∈ Δ, (�c).Δ.s holds
iff c holds in some state s.t where t ∈ Δ, and −→c .Δ.s holds iff c holds in the state
corresponding to the end of Δ. Note that �c trivially holds for an empty interval, but

�c and −→c do not. A variable v is stable over interval Δ in stream s iff stable.v.Δ.s
holds, where stable.v.Δ.s �= ∃k:Val • �(

−−−→
v = k) ∧ �(v = k).

A High-Level Semantics for Program Execution under TSO 183

3.2 Fractional Permissions

The behaviour of a process executing a command is formalised by an interval predicate,
and the behaviour of a parallel execution over an interval is given by the conjunction of
these behaviours over the same interval. Because the state-spaces of the two processes
often overlap, there is a possibility that a process writing to a variable conflicts with a
read or write to the same variable by another process. To ensure that such conflicts do
not take place, we follow Boyland’s idea of mapping variables to a fractional permission
[5], which is rational number between 0 and 1. A process has write-only access to a
variable v if its permission to access v is 1, has read-only access to v if its permission to
access v is above 0 but below 1, and has no access to v if its permission to access v is 0.
Note that a process may not have both read and write permission to a variable. Because
a permission is a rational number, read access to a variable may be split arbitrarily
(including infinitely) among the processes of the system. However, at most one process
may have write permission to a variable in any given state.

We assume that every state contains a permission variable Π whose value in state
σ ∈ StateV is a function of type V → Proc → {n:Q | 0 ≤ n ≤ 1}, where Proc denotes
the type of a process identifier. Note that it is possible for permissions to be distributed
differently within states σ1, σ2 even if the values of the normal variables in σ1 and σ2

are identical. Process p ∈ Proc has write-permission to variable v in state σ iff Wp.v.σ �=
(σ.Π.v.p = 1), has read-permission to v in σ iff Rp.v.σ �= (0 < σ.Π.v.p < 1), and
has no-permission to access v in σ iff Dp.v.σ �= (σ.Π.v.p = 0) holds. In the context
of a stream s, for any time t ∈ Z, process p may only write to and read from v in the
transition step from s.(t − 1) to s.t if Wp.v.(s.t) and Rp.v.(s.t) hold, respectively. Thus,
Wp.v.(s.t) does not grant process p permission to write to v in the transition from s.t
to s.(t + 1) (and similarly Rp.v.(s.t)). We introduce two assumptions on streams using
fractional permissions that formalise our assumptions on the underlying hardware.

HC1. If no process has write access to v within an interval, then the value of v does not
change within the interval, i.e., for any interval Δ and stream s,
(�(∀p:Proc • ¬Wp.v) ⇒ stable.v) .Δ.s

HC2. The sum of the permissions of the processes on any variable v is at most 1, i.e.,
for any interval Δ and stream s, (�((Σp∈ProcΠ.v.p) ≤ 1)).Δ.s

For the rest of this paper, we assume that the streams and intervals under consideration
satisfy both HC1 and HC2. Further restrictions may explicitly be introduced to the
programs if required. In essence, both HC1 and HC2 are implicit rely conditions of the
programs that we develop [9, 17].

3.3 A Programming Language

To formalise common programming constructs, we present a language inspired by the
refinement calculus [20], extended to enable reasoning about concurrency. The syntax
closely matches program code, which simplifies translation from an implementation to
the model. For a state predicate b, variable v, expression e and set of processes P ⊆
Proc, the abstract syntax of commands is given by Cmd below, where BC ∈ BasicCmd
and C,C1,C2,Cp ∈ Cmd.

184 B. Dongol et al.

BasicCmd ::= Idle | [b] | v := e
Cmd ::= BC | Empty | Magic | Chaos | fin Idle | inf Idle |

C1 ; C2 | C1 � C2 | Cω | ‖p:P Cp | INIT b • C

Thus, a basic command may either be Idle, a guard [b] or an assignment v := e. A
command may either be a basic command, Empty (representing the empty program),
Magic (an infeasible command that has no behaviours), Chaos (a chaotic command
that allows any behaviour), fin Idle (a finite idle), inf Idle (an infinite idle), sequen-
tial composition (C1 ; C2), non-deterministic choice C1 � C2, iteration Cω , parallel
composition ‖p:P Cp, or a command with an initialisation INIT b • C.

Using this syntax, the programs in Fig. 3 and Fig. 5 are modelled by the commands in
Fig. 7 and Fig. 8, respectively, where the labels in Figs. 3 and 5 have been omitted. For
Fig. 3, the initialisation is modelled using the INIT construct, and the main command
consists of the parallel composition between Cp and Cq, which model processes p and
q, respectively. Command Cp is the sequential composition of the assignment followed
by a non deterministic choice between Ctp and Cfp, which respectively model the true
and false evaluations of the guard at p2 in Fig. 3.

We define an interval-based semantics for this language, which is used to formalise
program execution in RTSO (R) and TSO (T) memory models. Like [9], we split SC
executions into instantaneous (I) and apparent states (S) evaluation, where the apparent
states stem from non-atomic expression evaluation, i.e., by observing different variables
of an expression at different times [9, 13].

To simplify comparison of the different memory models on program execution, we
present a generalised semantics where the behaviour function is parameterised by the
memory model under consideration. In particular, the generalised semantics for com-
mands in a memory model M ∈ {I,S,R, T } is given by function � · �MP in Fig. 9,
which for a given command returns an interval predicate that formalises the behaviour
of the command with respect to P ⊆ Proc. A basic command BC is assumed to be ex-
ecuted by a single process p and its behaviour over an interval with respect to memory
model M is defined by � BC �

M
p , which requires that we instantiate interval predicates

idleM
p , evalMp and updateM

p . Note that the behaviour of an assignment consists of two
portions, an evaluation portion, where the expression e is evaluated to some value k,
followed by an interval in which the variable v is updated to a new value k.

Note that the behaviours of each of the commands except for basic commands and
parallel composition decompose for each of the memory models in the same way. The
behaviour of Empty, Magic and Chaos are always empty, false and true, respectively,
sequential composition is defined by the chop operator, and non-deterministic choice is
defined by disjunction. The behaviour of command iteration Cω is defined as iteration of

Ctp �= [y = 0 ∧ z = 0] ; statement1
Cfp �= [y �= 0 ∨ z �= 0] ; statement2
Cp �= x := 1 ; (Ctp � Cfp)
Cq �= y := 1 ; z := x
C �= INIT x = 0 ∧ y = 0 ∧ z �= 0 • Cp‖Cq

Fig. 7. Formalisation of program in Fig. 3

Dtp �= [y = 0 ∧ z = 0] ; statement1
Dfp �= [y �= 0 ∨ z �= 0] ; statement2
Dp �= x := 1 ; u := x ; (Dtp � Dfp)
Dq �= y := 1 ; v := y ; z := x
D �= INIT x = 0 ∧ y = 0 ∧ z �= 0 • Dp ‖Dq

Fig. 8. Formalisation of program in Fig. 5

A High-Level Semantics for Program Execution under TSO 185

� Idle �Mp �= idleM
p .Var � [b] �Mp �= evalMp .b � v := e �Mp �= ∃k:Val • evalMp .(e = k) ;

updateM
p (v, k)

� BC �N{p} �= � BC �Np
� Empty �MP �= empty

� Magic �MP �= false
� Chaos �MP �= true

� C1 ; C2 �MP �= � C1 �MP ; � C2 �MP
� C1 � C2 �MP �= � C1 �MP ∨ � C2 �MP

� Cω �MP �= (� C �MP)ω

� fin Idle �MP �= fin ∧ �
p:P

� Idle �Mp � inf Idle �MP �= inf ∧ �
p:P

� Idle �Mp
� INIT b • C �MP �= �

−→
b ⇒ � C �MP

term.S.T �= S ∈ {fin Idle, inf Idle} ∧ T ∈ {fin Idle, inf Idle} ∧
(S = inf Idle ⇒ T �= inf Idle)

� ‖p:P Cp �NP �= if P = ∅ then true elseif P = {p} then � Cp �M{p}
else ∃Q,R, S, T • (Q ∪ R = P) ∧ (Q ∩ R = ∅) ∧ Q �= ∅ ∧ R �= ∅ ∧

term.S.T ∧ � (‖p:Q Cp) ; S �MQ ∧ � (‖p:R Cp) ; T �MR

Fig. 9. General semantics for interval-based reasoning

the behaviour of C, and the behaviour of the INIT b • C is the behaviour of C assuming
that b holds at the end of some immediately preceding interval.

Assuming N �= M\{T }, the behaviour of a basic command � BC �
N
{p} is defined as

the basic behaviour � BC �
N
{p}. Behaviour � ‖p:P Cp �

N
P is true if the set P is empty and

discards the parallel composition operator if P is a singleton set. If P contains at least
two elements, � ‖p:P Cp �

N
P holds if P can be split into two non-empty disjoint subsets Q

and R such that both � ‖p:Q Cp ; S �
N
Q and � ‖p:R Cp ; T �

N
R hold, where S and T denote

possible idling. This idling is necessary because ‖p:Q Cp and ‖p:R Cp may terminate at
different times [9] and idling may sometimes be infinite because a component may not
terminate. Within a parallel composition, fractional permissions together with assump-
tions HC1 and HC2, restrict access to shared variables, and hence, how processes may
affect each other [9]. The behaviours of both � BC �

T
{p} and � ‖p:P Cp �

T
P (i.e., for TSO

memory) are defined in Section 4.4.

4 Program Semantics under Different Memory Models

We present a semantics for instantaneous evaluation (where an entire expression is eval-
uated in a single atomic step) in Section 4.1 and apparent states evaluation (where vari-
ables are assumed to be read one at a time) is given in Section 4.2. This work has
appeared in [9], but we present it here once again for completeness and to simplify
comparisons with RTSO (Section 4.3) and TSO memory (Section 4.4).

4.1 Sequentially Consistent Instantaneous Evaluation Semantics

The simplest execution model we consider is I (instantaneous evaluation), where ex-
pressions are evaluated under SC in one of the actual states that occur in an interval of
evaluation [13]. Given that an expression e is evaluated in an interval Δ of stream s and
that S is the set of states of s that occur within Δ, this form of expression evaluation
returns a value of e for some state of S. To formalise this, we define interval predicate

186 B. Dongol et al.

idlep.V �= ∀v:V • �¬Wp.v

i.e., p does not write to any variable of V . To complete the instantaneous evaluation
semantics for our language, we instantiate interval predicates idleI

p , evalIp and updateI
p

as follows, where c is a state predicate, v is a variable and k is a value. We let vars.c
denote the set of free variables of c.

idleI
p �= idlep evalIp .c �= �(c ∧ (∀v: vars.c • Rp.v)) ∧ idlep.Var

updateI
p (v, k) �= �((v = k) ∧ Wp.v) ∧ ¬empty ∧ idlep.(Var\{v})

The semantics of idleI
p is straightforward. Evaluation of c in a stream s within interval

Δ is given by evalIp .c.Δ.s, which holds iff (a) there is a time t ∈ Δ such that c.(s.t)
holds and p has permission to read the variables of c in s.t, and (b) p does not write to
any variable within Δ. Updating the value of v to k (in shared memory) within interval
Δ of stream s is modelled by updateI

p (v, k).Δ.s, which holds iff (a) throughout Δ, v
has value k and p has write permission to v, (b) Δ is non-empty and (c) p does not write
to any other variable. We must ensure that ¬empty holds because �c is trivially true
for an empty interval.

4.2 Sequentially Consistent Apparent States Evaluation Semantics

Instantaneous evaluation is not problematic for expressions in which at most one vari-
able of the expression is unstable [9, 13]. For more complex expressions (e.g., the guard
of p2 in Fig. 3), instantaneous evaluation will be unimplementable because hardware
will seldom be able to guarantee that all variables of an expression can be read in a
single atomic step. That is, instantaneous evaluation does not reflect the fact that im-
plementations can read at most one variable atomically. Hence, we consider a second
method of evaluation that returns a value in the states apparent to a process.

For each expression evaluation, we assume that each variable is read at most once,
and that the same value is used for each occurrence of the variable in an expression2. We
assume that a compiler non-deterministically chooses an ordering of read instructions
when evaluating an expression. For example, in the low-level program in Fig. 4, the
order of reads of the variables of p2 in Fig. 3 is non-deterministically chosen.

The apparentSp,W function generates a set of states that may not exist in the stream, but
can be observed by a process that reads variables one at a time. For example, eliding
details of the permission variable, if over an interval Δ, a stream s has actual states
{x �→ 0, y �→ 0}, {x �→ 1, y �→ 0}, {x �→ 1, y �→ 1}, a possible observable state within
Δ in s is {x �→ 0, y �→ 1}. To generate the set of states apparent to process p, one must
ensure that p has the appropriate read permissions. Using the apparentSp,W function, we
define the possibly operator S

p, which evaluates state predicates over a set of apparent
states with respect to a given interval and stream.

apparentSp,W.Δ.s �= {σ: StateW | ∀ v:W • ∃t:Δ • (σ.v = s.t.v) ∧ Rp.v.(s.t)}
(S

pc).Δ.s �= ∃σ: apparentSp,vars.c.Δ.s • c.σ

2 It is possible to define evaluators that, for example, (re)read a variable for each occurrence of
the variable, and hence, potentially returns false for v = v if the value of v changes during the
observation interval [18, 13].

A High-Level Semantics for Program Execution under TSO 187

To complete the program semantics for sequentially consistent apparent states evalua-
tion, we must instantiate predicates idleS

p , evalSp and updateS
p for a process p.

idleS
p �= idlep evalSp .c �= (S

pc) ∧ idleI
p .Var updateS

p (v, k) �= updateI
p (v, k)

Except for evalSp .c, these interval predicates are identical to memory model I. Interval

predicate evalSp .c uses S evaluation, which models the fact that the variables of c are
read one at a time and at most once in the interval of evaluation, capturing the non-
determinism due to fine-grained concurrency, e.g., Fig. 4. We ask the reader to consult
[9, 13] for further details on instantaneous and apparent states evaluation under SC
memory.

4.3 Restricted TSO

As described in Section 2.1, RTSO weakens SC memory by relaxing Write → Read
ordering, but a read from a variable with a pending write must wait for the pending
write to be committed to memory. RTSO is not implemented by any hardware, however,
we use it as a stepping stone to formalisation of the more complicated TSO model in
Section 4.4, which is implemented by several mainstream processors [7, 16, 22].

As with apparent states evaluation in Section 4.2, the semantics of a program under
RTSO is defined by instantiating interval predicates idleR

p , evalRp and updateR
p for a

process p, which requires that we formalise expression evaluation with respect to the re-
orderings RTSO memory may cause. Like SC apparent states evaluation (Section 4.2),
we assume that the variables of an expression may be read in any order, but that each
variable is read at most once per evaluation. We define an apparent states evaluator
apparentRp,W.Δ.s, where Δ is the interval of execution in the program order in stream s.
Because SC is not guaranteed, the interval in which an expression is evaluated (i.e., the
execution order) extends beyond Δ (see Fig. 10). We use write/read barrier variables
WBp �∈ Var and RBp �∈ Var for each process p, which describe how far the interval
of evaluation may extend. By selecting placement of the barriers, one can control the
reorderings allowed by RTSO. We assume that a write barrier for each variable is placed
at initialisation, and hence, a variable’s value prior to initialisation cannot be read.

Like permission variable Π , we implicitly assume that each state of the program
includes barrier variables WBp and RBp for each process p. A write barrier for variable
v in process p prevents reorderings of reads to variable v within p, and hence, its value
is a function of type Var → B. Process p places a write barrier to a variable v whenever
the value of v is updated, i.e., committed to memory (see definition of updateR

p below).
This prevents future reads to v in process p from being reordered with the write to v.

Read barriers must allow variables that are part of the same expression to be read in
any order, but must disallow reorderings from expressions that are evaluated later in the
program order. Hence, one is required to uniquely identify each expression occurrence.
The value of a read RBp variable is hence of type Z → Var → B, where the integer
component is used to identify the corresponding expression evaluation. In particular,
we identify an evaluation using the least upper bound of the interval of evaluation.
Hence, whenever a process p reads a variable v in an interval Δ as part of an expression
evaluation, p places a read barrier for v with identifier lub.Δ at the time at which v is

188 B. Dongol et al.

WBp.u

Program order
evalRp .(w < 42) updateR

p (u, k) evalRp .(u + v = w)

t0 t1 t2 t3

RBp.t1.w RBp.t3.u

Execution order
Ωw Ωu Δu

Δv

Δw

RBp.t3.v

RBp.t3.w

Fig. 10. Extending apparent states evaluation

read. This prevents any reads that are part of future expression evaluations from being
reordered with the read to v in Δ, and hence, from reading outdated values. We define
apparent states evaluation for RTSO as follows, where id ∈ Z, v ∈ Var, p ∈ Proc,
s ∈ Stream, W ⊆ Var and Δ ∈ Intv.

extendedIntv.id.v.p.s �=�
Ω: Intv

(lub.Ω = id) ∧
�(¬WBp.v ∧ (∀t:Z, u:Var • RBp.t.u ⇒ t ≥ id)).Ω.s

�

apparentRp,W.Δ.s �=�
σ: State

∀ v:W • ∃Ω: extendedIntv.(lub.Δ).v.p.s • ∃t:Ω •

(σ.v = s.t.v) ∧ Rp.v.(s.t) ∧ RBp.(lub.Δ).v.(s.t)

�

Hence, extendedIntv.id.v.p.s returns a set of extended intervals within which p may
read v with respect to stream s as part of the expression identified by id. Each interval
within extendedIntv.id.v.p.s must not contain a write barrier to v or a read barrier to
any variable with identifier t such that t < id. An example of such extended intervals
is given in Fig. 10, where intervals Δv and Δw (corresponding to the evaluation of
u + v = w) are disallowed from extending beyond the read barrier RBp.t1.w, which
marks the point at which w was read in Ωw. Interval Δu is disallowed from extending
beyond time t2, due to the write barrier for u (WB.u) within Ωu that is placed by the
update to u. The write barrier WB.u in Ωu does not affect Δv and Δw because u �= v and
u �= w, and hence, allows v and w to be evaluated before u is updated. The read barriers
in Δu, Δv and Δw do not affect each other, because they each have the same identifier
t3, i.e., are part of the same expression evaluation. However, note that any evaluations
that occur after t3 in the program order would be disallowed from extending beyond the
latest read barrier identified by t3, which in the example above is RBp.t3.w within Δw.

The apparent states for RTSO are defined by apparentRp,W , where extended intervals
are used for evaluation of each variable. To generate a state σ apparent to process p, for
each variable v ∈ W, we pick an extended interval Ω corresponding to v, then pick a
time t from Ω such that p has permission to read v at t, and set the value of v in σ to
(s.t).v. Process p places a read barrier to v with identifier lub.Δ at t to prevent future
reads to any variable in the program order from being reordered with the read to v at
time t in the execution order.

A High-Level Semantics for Program Execution under TSO 189

Using the set of apparent states, we define (R
pc).Δ.s which holds iff state predicate

c holds in some state apparent to process p in interval Δ and stream s with respect to
RTSO memory.

(R
pc).Δ.s �= ∃σ: apparentRp,vars.c.Δ.s • c.σ

In addition to the effect of each command on the read/write permissions, we must also
specify the effect of each command on the read/write barriers. We define the following
interval predicates for a process p, set of variables V , interval Δ and stream s.

wBarp.V.Δ.s �= ∀v:V • �¬WBp.v.Δ.s
rBarp.V.Δ.s �= ∀v:V • �¬RBp.(lub.Δ).v.Δ.s

Hence, wBarp.V.Δ.s states that p does not place any write barriers to any of the vari-
ables of V within Δ and rBarp.V.Δ.s states that p does not place any read barrier to any
of the variables of V with identifier lub.Δ within Δ.

This now allows one to complete the semantics of programs that execute under RTSO
memory, which is achieved by the following instantiations:

idleR
p .V �= (idlep ∧ rBarp ∧ wBarp).V

evalRp .c �= R
pc ∧ (idlep ∧ wBarp).Var ∧ rBarp.(Var\vars.c)

updateR
p (v, k) �= updateI

p (v, k) ∧ −−−→
WBp.v ∧ wBarp.(Var\{v}) ∧ rBarp.Var

Hence, idleR
p .Δ.s holds iff p does not write to any variable and does not introduce any

read/write barriers. Interval predicate evalRp .c.Δ.s holds iff c holds in some apparent
state generated by apparentRp,vars.c.Δ.s, process p does not write to any variable, and
introduces no barriers except for the read barriers for variables used in c. Finally, a
variable update to v behaves in the same manner as updateI

p (v, k) and additionally
places a write barrier to v at the end of execution. An update does not introduce any
other barriers except for the one to v.

Example. We apply our RTSO semantics to our running example program from Fig. 3
using the encoding from Fig. 7. Instead of unrolling the full details of our definitions,
we consider Fig. 11, which shows a possible interval of execution of processes Cp ‖Cq

that leads to execution of statement1. Note that details regarding disjointness at the
boundary between adjoining intervals have been elided from the diagram. The top of
Fig. 11 shows process p and its corresponding basic commands, obtained by unfolding
the language definitions in Fig. 9. Below this, we present the actual intervals of execu-
tion allowed by the weak memory model; corresponding intervals of the program and
execution orders are connected by dotted lines. Representation of process q is vertically
inverted. The time line shows the times at which the actual reads/writes of each ba-
sic command occur in terms of the low-level instructions from Fig. 4. The intervals in
which the updates occur in both p and q are preserved by the execution order. However,
the intervals in which evalTp (y = 0 ∧ z = 0) and evalTq (kx = x) (which is part of the
behaviour of z := x) execute extend beyond their respective intervals in the program
order. As a result of the extension, process p may read y = 0, process q may write
z = 0, which allows process p to read z = 0. Note that the intervals in which the reads
occur also contain a fuzzy portion depicting an interval in which read permission is
not available due to a write in the other process. Furthermore, our framework allows

190 B. Dongol et al.

}

}

� x := 1 �
R
p

Execution order
for process p

Program order
for process p

Program order
for process q

Execution order
for process q

� z := x �
R
q� y := 1 �

R
q

write(x, 1)

read(kx, 0)x
=

0
∧

y
=

0
∧

z
�=

0

write(z, 0)

Time

read(y, 0)

read(z, 0)

write(y, 1)

evalRp (k = 1) updateR
p (x, k)

evalRq (ky = 1) updateR
q (y, ky) evalRq (kx = x) updateR

q (z, kx) idleR
q

� Idle �
R
q

evalRp (y = 0 ∧ z = 0)

� [y = 0 ∧ z = 0] �Rp

Fig. 11. A possible RTSO execution of Cp ‖Cq from Fig. 7

truly concurrent non-conflicting reads and writes to take place. Conflicts are avoided by
fractional permissions together with assumptions HC1 and HC2.

4.4 Total Store Order Semantics

The TSO memory model extends RTSO by allowing a process to read values from
its own write buffer early without waiting for the pending writes to be committed to
memory. Hence, in the TSO memory model, a read to a variable v returns the pending
value of v in the write buffer (if a pending write exists) and the value of v from memory
(if there are no pending writes to v). It is possible for a buffer to contain multiple pending
writes to v, i.e. the same variable occurs more than once in a write buffer; in this case,
a read must return the most recent pending write.

We let seq.T denote sequences of type T, assume sequences are indexed from 0

onward, let 〈a0, . . . , an−1〉 denote a sequence with n elements and use ‘�’ to denote
sequence concatenation. To formalise the semantics of a program under TSO, we fur-
ther extend the state and explicitly include a variable Bufferp whose value is of type
seq.(Var × Val) and models the write buffer of process p. Each Bufferp is a sequence
containing pending writes with its new value. Hence, we define two state predicates for
a variable v, process p, value k, and state σ. We assume dom.f and ran.f return the
domain and range of function f , respectively.

inBuffer.v.p.σ �= ∃k • (v, k) ∈ ran.(σ.Bufferp)
bufferVal.v.k.p.σ �= ∃i • σ.Bufferp.i = (v, k) ∧

∀j: dom.(σ.Bufferp), l:Val • j > i ⇒ σ.Bufferp.j �= (v, l)

Hence, inBuffer.v.p.σ holds iff there is a pending write to v in the write buffer of p in
state σ, and bufferVal.v.k.p.σ holds iff the latest value of v in Bufferp of state σ is k.

We define the set of states apparent to a process p under TSO memory with respect
to set of variables W as follows, assuming that the evaluation takes place in stream s
within interval Δ in the program order.

A High-Level Semantics for Program Execution under TSO 191

apparentTp,W.Δ.s �=
�	

σ: State

∀ v:W • if inBuffer.v.p.(s.(glb.Δ))
then bufferVal.v.(σ.v).p.(s.(glb.Δ))
else ∃γ: apparentRp,W.Δ.s • σ.v = γ.v

��

As with the other memory models, we generate an apparent state by mapping each
variable in W to a possible value over the evaluation interval. If v ∈ W is in p’s write
buffer, the value of v is taken from the most recent write to v within the write buffer.
Otherwise, we return a possible value with respect to RTSO evaluation.

Using apparentTp,vars.c, we define an operator that formalises whether a state predicate
holds in some apparent state with respect to an interval Δ and stream s as follows.

(T
pc).Δ.s �= ∃σ: apparentTp,vars.c.Δ.s • c.σ

To complete the program semantics, we instantiate functions idleT
p , evalTp and updateT

p
for a process p as follows.

idleT
p .V �= idleR

p .V ∧ stable.Bufferp

evalTp .c �= T
pc ∧ (idlep ∧ wBarp).Var ∧ rBarp.(Var\vars.c) ∧ stable.Bufferp

updateT
p (v, k) �= �∃buf • �(

−−−−−−−−−→
buf = Bufferp) ∧ �(Bufferp = buf � 〈(v, k)〉)

�
∧

idleR
p .Var ∧ ¬empty

Command idleT
p behaves as idleR

p .V and in addition ensures that Bufferp is not mod-

ified. Interval predicate evalTp .c holds iff c holds in some apparent state using TSO
evaluation, and in addition, does not modify any variable (including Bufferp), place a
write barrier to any variable, or place a read barrier to any variable outside of vars.c.
Finally, updateT

p (v, k) adds the pair (v, k) to the end of Bufferp, which is obtained from

the state at the end of an immediately preceding interval, and behaves as idleR
p .Var, i.e.,

does not modify the value or barrier of any variable. Interval predicate updateT
p (v, k)

also ensures that the interval under consideration is non-empty to guarantee that the
buffer is actually updated.

Unlike I,S and R, local writes in a process p are not visible to other concurrent pro-
cesses as long as the writes are stored in the buffer of p. To make these local writes glob-
ally visible, p must commit any pending writes to shared memory, which is achieved
via a flush command. Buffers must be flushed in a FIFO order. Note that a flush does
not necessarily commit the contents of the entire buffer, and may also not commit any
elements from the buffer. Hence, we define an interval predicate commitp, which com-
mits the first pending write from Bufferp to memory, then extend the language with a
basic command Flush, which for a process p, commits the first k elements of Bufferp,
where the value of k is chosen non-deterministically.

commitp �= ∃buf , v, k • �(
−−−−−−−−−−−−−−−−−−−−−→
buf = Bufferp ∧ (v, k) = buf .0) ∧

� fin Idle �
T
p ; (updateR

p (v, k) ∧ �(Bufferp = tail.buf))
� Flush �

T
p �= ∃k: dom.Bufferp ∪ {−1} • commitk+1

Hence, commitTp instantiates buf to be the value of Bufferp at the end of the previous
interval and sets the pair (v, k) to be the first element of buf . It then performs some finite
idling, then the value of p is updated in the same manner as for RTSO and the value of
the Bufferp is set to be tail.buf , which is the remaining write buffer excluding the first

192 B. Dongol et al.

element of buf . Using updateR
p (v, k) in order to commit elements to memory ensures

that the required write barriers to v are placed appropriately. Note that empty implies
finite idling, and hence, elements from the buffer may also be committed immediately.
The behaviour of � Flush �

T
p commits 0 or more pending writes (upto the number of

elements in the buffer). If the buffer is empty, the only possible behaviour of Flush is
commit0 ≡ empty.

Processes under TSO may non-deterministically choose to commit contents from
their write buffer to memory, therefore, the semantics of a basic command BC allows
an arbitrary number of Flush commands after the execution of BC.

� BC �
T
p �= � BC �

T
p ; � Flush �

T
p

Note that � BC1 �
T
p ; � BC2 �

T
p is a possible behaviour of � BC1 ; BC2 �

T
p , where BC1

and BC2 are both basic commands because � Flush �
T
p may be instantiated to commit0,

which is equivalent to empty and (g1 ; empty ; g2) ≡ (g1 ; g2) for any interval
predicates g1 and g2. That is, a buffer flush may not occur in between two consecutive
commands. TSO guarantees that the buffer is eventually flushed. This is incorporated
into our semantics by modifying the behaviour of parallel composition so that the entire
buffer is flushed when the processes terminate.

� FlushAll �TP �= �p:P commit#dom.Bufferp

� ‖p:P Cp �
T
P �= if P = ∅ then true elseif P = {p} then � Cp �

T
{p}

else ∃Q,R, S, T • (Q ∪ R = P) ∧ (Q ∩ R = ∅) ∧ Q �= ∅ ∧ R �= ∅ ∧
term.S.T ∧ � (‖p:Q Cp) ; FlushAll ; S �

T
Q ∧

� (‖p:R Cp) ; FlushAll ; T �
T
R

Example. An example execution under TSO is given in Fig. 12, where the Ep and
Up abbreviate evalTp and updateT

p , respectively, FA denotes execution of a FlushAll
command, and pend(v, k) denotes an enqueuing of a pending write to the buffer of the
corresponding process. Like Fig. 11, execution intervals are shown below the program
order of process p (above q, respectively). In the depicted execution, each U adds a
pending write to the local buffer, and hence, the new value cannot be observed by the
other process. Because pending values are read first, execution of Ep(ku = x) reads
the value of x from the buffer. The effects of Up(x, k), Ep(ku = x) and Up(u, ku) are
local, and hence, do not place any read barriers. This allows the interval of execution of
[y = 0 ∧ z = 0] to be extended as depicted. Following a similar behaviour in process
q, variables y and x can be read early in processes p and q, enabling [y = 0 ∧ z = 0] in
process p to evaluate to true. One can also see that [y = 0 ∧ z = 0] can never evaluate
to true under RTSO memory because the intervals of evaluation cannot be extended
beyond preceding evaluation intervals.

Note that the pending writes are eventually are committed to memory, which is only
shown in Fig. 12 for process q, but is omitted for process p due to lack of space. The
example also shows how memory efficiency has been improved by avoiding a read of
x in process p and a read of y in process q. Furthermore, by storing pending writes in
a buffer, the processes are able to wait until contention for shared memory has reduced
before committing their writes.

A High-Level Semantics for Program Execution under TSO 193

}
}

Up(x, k)

Execution order
for process p

Execution order
for process q

Uq(y, k1)

� [y = 0 ∧ z = 0] �Tp� u := x �
T
p� x := 1 �

T
p

� y := 1 �
T
q � v := y �

T
q � z := x �

T
q

read(y, 1) pend(v, 1)

read(x, 0)

read(y, 0)

Time

Ep(k = 1) Ep(ku = x) Up(u, ku) Ep(y = 0 ∧ z = 0)

pend(x, 1) pend(u, 1)read(x, 1)

for process p
Program order

for process q
Program order

pend(y, 1) pend(z, 0)

x
=

0
∧

y
=

0
∧

z
�=

0 read(z, 0)

� Idle �
T
q

Eq(k1 = 1) Eq(ky = y) Uq(v, ky) Eq(kx = x) Uq(z, kx) FA idleT
q

write(yvz, 110)

Fig. 12. A possible TSO execution of Dp ‖Dq from Fig. 8

5 Conclusions and Future Work

This paper presents a high-level formalisation of a program’s behaviour under Total
Store Order memory using an interval-based semantics. We enable reasoning about
the fine-grained atomicity of expression evaluation that not only captures the inherent
non-determinism due to concurrency, but also due to the memory read/write policy
of the underlying hardware. Our formalisation is presented at a level of abstraction
that avoids compilation to low-level language. Hence, tedious transformations steps
(e.g. encoding of additional control-flow due to reorderings) are not necessary, and
therefore, compares favourably to the existing low-level formalisations in the literature.
The presented semantics is modular in the sense that the underlying memory model
is a parameter to the behaviour function. The separation of program specification and
language semantics that our framework achieves is beneficial in the sense that it reduces
the specification effort.

We aim to use the semantics from this paper to reason about concurrent programs
using interval-based rely/guarantee reasoning [8, 9]. In particular, to show that a pro-
gram modelled by C executed by a set of processes P under memory model M satisfies
a property g (expressed as an interval predicate), one would need to prove a formula of
the form � C �

M
P ⇒ g. If C is a parallel composition ‖p:P Cp, one can decompose proofs

of � ‖p:P Cp �
M
P ⇒ g into proofs � ‖p:Q Cp �

M
Q ⇒ r and � ‖p:R Cp �

M
R ∧ r ⇒ g where Q

and R are disjoint sets such that Q∪R = P and r is an interval predicate that represents
a rely condition [9, 11, 17].

Using our formalisation it is possible to prove relationships between different mem-
ory models, e.g., that SC is a special case of RTSO, which in turn is a special case of
TSO, but we leave these proofs as future work. Other future work includes mechanisa-
tion of the language semantics in a theorem prover, and the development of high-level
semantics for other weak memory models such as PSO [7] and transactional memory
[14], together with proofs that relate the various semantics.

194 B. Dongol et al.

References

1. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial. IEEE Com-
puter 29(12), 66–76 (1996)

2. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak memory
via program transformation. CoRR, abs/1207.7264 (2012)

3. Arvind, A., Maessen, J.-W.: Memory model = instruction reordering + store atomicity.
SIGARCH Comput. Archit. News 34(2), 29–40 (2006)

4. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification problem for
weak memory models. In: POPL, pp. 7–18. ACM, New York (2010)

5. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.) SAS
2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

6. Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence: Checking consistency of concurrent
data types on relaxed memory models. In: PLDI, pp. 12–21 (2007)

7. Inc. CORPORATE SPARC International. The SPARC architecture manual: version 8.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1992)

8. Dongol, B., Derrick, J.: Proving linearisability via coarse-grained abstraction. CoRR,
abs/1212.5116 (2012)

9. Dongol, B., Derrick, J., Hayes, I.J.: Fractional permissions and non-deterministic evaluators
in interval temporal logic. ECEASST 53 (2012)

10. Dongol, B., Hayes, I.J.: Deriving real-time action systems controllers from multiscale system
specifications. In: Gibbons, J., Nogueira, P. (eds.) MPC 2012. LNCS, vol. 7342, pp. 102–131.
Springer, Heidelberg (2012)

11. Dongol, B., Hayes, I.J.: Rely/guarantee reasoning for teleo-reactive programs over multiple
time bands. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS,
vol. 7321, pp. 39–53. Springer, Heidelberg (2012)

12. Dongol, B., Hayes, I.J., Meinicke, L., Solin, K.: Towards an algebra for real-time programs.
In: Kahl, W., Griffin, T.G. (eds.) RAMICS 2012. LNCS, vol. 7560, pp. 50–65. Springer,
Heidelberg (2012)

13. Hayes, I.J., Burns, A., Dongol, B., Jones, C.: Comparing degrees of non-determinism in
expression evaluation. The Computer Journal (2013) (accepted January 04, 2013)

14. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data
structures. In: Jay Smith, A. (ed.) ISCA, pp. 289–300. ACM (1993)

15. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

16. Intel, Santa Clara, CA, USA. Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 3A: System Programming Guide, Part 1 (May 2012)

17. Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM
Trans. Prog. Lang. and Syst. 5(4), 596–619 (1983)

18. Jones, C.B., Pierce, K.: Elucidating concurrent algorithms via layers of abstraction and reifi-
cation. Formal Aspects of Computing 23, 289–306 (2011)

19. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Computers 28(9), 690–691 (1979)

20. Morgan, C.: Programming from Specifications. Prentice-Hall (1990)
21. Moszkowski, B.C.: A complete axiomatization of Interval Temporal Logic with infinite time.

In: LICS, pp. 241–252 (2000)
22. AMD64 Architecture Programmer’s Manual Volume 2: System Programming (2012),
http://support.amd.com/us/Processor_TechDocs/24593_APM_v2.pdf

23. Park, S., Dill, D.L.: An executable specification, analyzer and verifier for RMO (relaxed
memory order). In: SPAA, pp. 34–41 (1995)

24. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: A rigorous and
usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7), 89–97 (2010)

http://support.amd.com/us/Processor_TechDocs/24593_APM_v2.pdf

	A High-Level Semantics for Program Executionunder Total Store Order Memory
	1 Introduction
	2 Effect of Total Store Order on Program Behaviour
	2.1 Write → Read Reordering
	2.2 Total Store Order

	3 Interval-Based Reasoning
	3.1 Interval Predicates
	3.2 Fractional Permissions
	3.3 A Programming Language

	4 Program Semantics under Different Memory Models
	4.1 Sequentially Consistent Instantaneous Evaluation Semantics
	4.2 Sequentially Consistent Apparent States Evaluation Semantics
	4.3 Restricted TSO
	4.4 Total Store Order Semantics

	5 Conclusions and Future Work
	References

