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Preface

This volume contains the papers presented at ICTAC 2013: The 10th Interna-
tional Colloquium on Theoretical Aspects of Computing held during September
4–6, 2013, in Shanghai. There were 64 submissions and each was reviewed by at
least three Program Committee members; the committee decided to accept 22
papers after thorough online discussions. The program also included three in-
vited talks by Luca Cardelli, He Jifeng, and Marta Kwiatkowska. The conference
was managed using the online system EasyChair.

The International Colloquia on Theoretical Aspects of Computing (ICTAC)
is a series of annual events funded in 2003 by the United Nations University Inter-
national Institute for Software Technology (UNU-IIST). Its purpose is to bring
together practitioners and researchers from academia, industry, and government
to present research results and exchange experience and ideas. Beyond these
scholarly goals, another main purpose is, as a mandate of the United Nations
University, to promote cooperation in research and education between partici-
pants and their institutions from developing and industrial regions.

This year’s ICTAC was specially dedicated to He Jifeng as part of the cele-
brations of his 70th birthday. It was also associated with two other events.

• The ICTAC Software Engineering School on Unifying Theories and Formal
Engineering Methods, held in Shanghai during August 26–30, 2013. LNCS
volume 8050, Springer 2013.

• The Festschrift Symposium held in Shanghai during September 1–3, 2013.
Essays in Honor of He Jifeng on the Occasion of his 70th Birthday. LNCS
volume 8051, Springer 2013.

The colloquium was supported and organized by East China Normal University,
UNU-IIST and University of York. We are happy to thank these organizations
and the colleagues there who contributed to the organization. We are grateful to
the invited speakers for their talks. We would like to acknowledge the authors
for submitting their work to the conference, and the PC members and their sub-
reviewers for their hard and professional work in the review and selection process.
Last, but not least, we thank Springer for their cooperation in publishing the
proceedings of ICTAC 2013.

June 2013 Zhiming Liu
Jim Woodcock
Huibiao Zhu
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Stochastic Pi-calculus Revisited

Luca Cardelli1 and Radu Mardare2,�

1 Microsoft Research, Cambridge, UK
2 Aalborg University, Denmark

Abstract. We develop a version of stochastic Pi-calculus with a seman-
tics based on measure theory. We define the behaviour of a process in a
rate environment using measures over the measurable space of processes
induced by structural congruence. We extend the stochastic bisimulation
to include the concept of rate environment and prove that this equiva-
lence is a congruence which extends the structural congruence.

1 Introduction

The problem of specifying and analyzing nondeterministic concurrent systems
has found a successful solution in the class of Process Algebras (PAs) [2]. The
compositionality of the processes is reflected by the construction principles of
PAs, while their behaviours are transition systems. As a result, one obtains a
class of processes with an elegant algebraic-coalgebraic structure, supported by
appealing theories and easy to adapt to various modelling requirements.

The same approach has been taken for probabilistic and stochastic concurrent
systems. Probabilistic process algebras [2], interactive Markov chain algebra [16,4]
and stochastic process algebras (SPA) such as TIPP [13], PEPA [14,15], EMPA
[3] and stochastic Pi-calculus [22] are extensions of classic PAs. The nondeter-
minism is replaced by a race policy and this requires important modifications
in the semantic format. Stressed to mimic the pointwise structural operational
semantics (SOS) of nondeterministic PAs, SPAs find ad hoc solutions to the
problems introduced by stochasticity, such as the multi-transition system ap-
proach of PEPA or the proved SOS approach of stochastic Pi-calculus. These
result in complex constructs that are difficult to extend to a general format for
well-behaved stochastic specifications and problematic when recursion or fresh
name quantification are considered. As emphasized by Klin and sassone in [17],
for stochastic Pi-calculus of Priami [22] the parallel composition fails to be as-
sociative up to bisimulation, while for PEPA, if arbitrary relations between the
rates of processes and subprocesses are allowed, stochastic bisimulation ceases
to be a congruence. An explanation for these situations is given in [17]: the in-
formation carried by the aforementioned SOS frameworks is excessive, while a
well-behaved framework should only carry the exact amount of data required for
the derivation of the intended semantics.

� Research supported by the VKR Center of Excellence MT- LAB and by the Sino-
Danish Basic Research Center IDEA4CPS.

Z. Liu, J. Woodcock, and H. Zhu (Eds.): ICTAC 2013, LNCS 8049, pp. 1–21, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 L. Cardelli and R. Mardare

These problems motivate our research, initiated with [7], that aims to re-
consider the semantics of SPAs from a perspective faithful to the algebraic-
coalgebraic structure of stochastic processes. The key observation is that struc-
tural congruence induces a σ-algebra on processes and organizes a measurable
space of stochastic processes. We propose a semantics that assign to each process
a set of measures indexed by observable actions. Thus, difficult instance-counting
problems that otherwise require complicated versions of SOS can be solved by
exploiting the properties of measures (e.g. additivity). Our previous work showed
that along this line one obtains an elegant semantics that resembles the one of
nondeterministic PAs and provides a well-behaved notion of bisimulation. In
previous work [7] we proved this concept for a fragment of stochastic CCS. In
this paper we extend the work to stochastic Pi-calculus with channel-based com-
munication, mobility, fresh name quantification and replication. This calculus is
designed to satisfy the specific requirements of Systems Biology.

There are several novel ideas in our approach. The processes are interpreted in
stochastic environments that associate basic rates to channels. In a rate environ-
ment E, a process P has associated a class of measures μ, written E � P → μ.
For each action α, μ(α) is a measure over the space of processes; μ(α)(S) ∈ �+ is
the rate of an exponentially distributed random variable that characterizes the
α-transitions from P to (elements of) a measurable set S. Only the structural
congruence-closed sets are measurable. This is essential for modelling in systems
biology, where such sets represent chemical soups1. This choice provides simple
solutions to the problems of replications and bound outputs which otherwise,
as with Milner’s Abstraction-Concretion method [20], require complicated high-
order reasoning. Also novel is our stochastic bisimulation that extends other
similar ones [19,17,7,21,8] by making explicit the role of the rate environments.
We show that bisimulation is a congruence that extends structural congruence.

Related Works. The idea of transitions from states to measures has been ad-
vocated in the context of probabilistic automata [18,24] and Markov processes
[21]. The transition-systems-as-coalgebras paradigm [10,23] exploits it providing
a uniform characterisation of transition systems that covers the sequence non-
deterministic, probabilistic and stochastic systems. A general SOS format for
SPAs without new name operators or recursion is proposed in [17]. In [8,9] these
ideas are applied to particular SPAs with pointwise semantics. With respect to
these works, in our paper we consider a different measurable space that not only
answers to practical modelling requirements, but also simplifies the semantics
and gives us smooth solutions for the fresh name quantification and replication
without requiring additional constructs. Formally, while the other frameworks
focus on the monads freely generated by the algebraic signature of the calculus,
we have considered the equational monad defined by the structural congruence.
The use of name environments has been considered in [11,12] where it involves
the machinery of nominal sets. We have tried to avoid this together with any
coalgebraic description of the lifting from processes to measures, as our intention

1 Structural congruence has been introduced in [1] as a chemical analogy.



Stochastic Pi-calculus Revisited 3

is to make these ideas accessible also for the readers less familiar with the jargon
of Category Theory.

Relation to Nondeterministic Pi-calculus. There is no trivial relation be-
tween nondeterministic Pi-calculus and our stochastic Pi-calculus, in the sense
that one cannot simply recover the semantics of the other by simple mathemati-
cal transformations. This is because the measure-based semantics of stochastic-Pi
calculus require important modification of the SOS rules. One example regards
the replication: while in classic Pi-calculus !a(b) ≡ a(b)|!a(b), in stochastic Pi
this is illegal since the rate of the input on channel a in the process a(b)|!a(b) is
strictly bigger than the rate of the same input in the process !a(b). For this rea-
son in stochastic Pi there exist no structural congruence rules of type !P ≡ P |!P
or !!P ≡!P since such rules would generate processes with infinite rates; instead,
there are dedicated SOS rules that establish the correct behaviours.

2 Preliminaries

In this section we introduce the terminology and the notations used in the paper.
For the sets A and B, 2A denotes the powerset of A and BA the class of

functions from A to B. For an equivalence relation ∼ on A, A∼ is the set of
equivalence classes and a∼ the equivalence class of a ∈ A.

Given a set M , Σ ⊆ 2M that contains the element M and is closed under
complement and countable union is a σ-algebra over M ; (M,Σ) is a measurable
space and the elements of Σ are measurable sets.

A measure on (M,Σ) is a countably additive set function μ : Σ → �+ such
that μ(∅) = 0. The null measure � is such that �(M) = 0. For N ∈ Σ, the
N -Dirac measure DN is defined by DN (N ′) = 1, if N ⊆ N ′ and DN(N ′) = 0
otherwise. Δ(M,Σ) denotes the set of measures on (M,Σ).

If R ⊆ M × M , N ⊆ M is R-closed iff {m ∈ M | ∃n ∈ N, (n,m) ∈ R} ⊆ N.
If (M,Σ) is a measurable space, Σ(R) is the set of measurable R-closed sets.

3 Stochastic Pi-calculus

In this section we introduce a version of stochastic Pi-calculus equipped with
an early semantics [2] expressed in terms of measure theory. Being developed
mainly for applications in Systems Biology, this calculus is designed to respect
the chemical kinetics (the Chemical Master Equation) [5] which provides the
mathematical principles for calculating the rates of the channel-based commu-
nications. The class � of processes is endowed with structural congruence which
generates a σ-algebra Π on �. In addition, rate environments assign base rates
to channel names. The behaviour of a process P in a rate environment E is
defined by an indexed set of measures μ : �+ → Δ(�, Π), where �+ is the set of
actions.
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3.1 Syntax

Definition 1 (Processes). Let N be a countable set. The stochastic processes
are defined, on top of 0, for arbitrary r ∈ �+ and a, b, c ∈ N , as follows.

P := 0
... x.P

... (a@r)P
... P |P

... P + P
... !P, x := a(b)

... a[b].

Let � be the set of stochastic processes. 0 stands for the inactive process. An
input “a(b)” is the capability of the process a(b).P to receive a name on channel
a that replaces b in all its occurrences inside P . An output prefix “a[b]” represents
the action of sending a name b on channel a. “(a@r)” is the fresh name operator
that, unlike in nondeterministic PAs, also specifies the rate r of the fresh name.
As usual in Pi-calculus, we have the parallel composition “|”, the choice operator
“+” and the replication operator “!”.

For arbitrary P ∈ �, we define the set fn(P ) of the free names of P inductively
by fn(0) = ∅, fn(a(b).P ) = (fn(P ) \ {b}) ∪ {a}, fn(a[b].P ) = fn(P ) ∪ {a, b},
fn(P |Q) = fn(P +Q) = fn(P )∪ fn(Q), fn((a@r)P ) = fn(P ) \ {a} and fn(!P ) =
fn(P ). As usual in process algebras, for arbitrary a, b ∈ N , we write P{a/b} for
the process term obtained from P by substituting all the free occurrences of b
with a, renaming as necessary to avoid capture.

Definition 2 (Structural congruence). Structural congruence is the smallest
equivalence relation ≡⊆ �× � satisfying the following conditions.
I.(�, |, 0) is a commutative monoid for ≡, i.e.,
1. P |Q ≡ Q|P ; 2. (P |Q)|R ≡ P |(Q|R); 3. P |0 ≡ P .

II. (�,+, 0) is a commutative monoid for ≡, i.e.,
1. P +Q ≡ Q+ P ; 2. (P +Q) +R ≡ P + (Q+R); 3. P + 0 ≡ P .

III. ≡ is a congruence for the algebraic structure of �, i.e., if P ≡ Q, then
1. P |R ≡ Q|R; 2. P +R ≡ Q+R; 3. !P ≡!Q;
4. a[b].P ≡ a[b].Q 5. (a@r)P ≡ (a@r)Q; 6. a(b).P ≡ a(b).Q.

IV. the fresh name quantifiers satisfy the following conditions
1. if a �= b, then (a@r)(b@s)P ≡ (b@s)(a@r)P ; 2. (a@r)0 ≡ 0;
3. if a �∈ fn(P ), then (a@r)(P |Q) ≡ P |(a@r)Q and (a@r)(P +Q) ≡ P+(a@r)Q.

V. the replication satisfies the following conditions
1. !0 ≡ 0; 2. !(P |Q) ≡!P |!Q.

VI. ≡ satisfies the alpha-conversion rules
1. (a@r)P ≡ (b@r)P{b/a}; 2. a(b)P ≡ a(c)P{c/b}.

If Q is obtained from P by alpha-conversion (VI) 1-2, we write P ≡∗ Q. Let Π
be the set of the ≡-closed subsets of �. Note that �≡ is a countable partition of
� and Π is the σ-algebra generated by �≡.

Notice that, unlike in the nondeterministic case, we do not have !!P ≡!P nor
!P ≡ P |!P . These are not sound due to the rate competition which else will
generate processes with infinite rates.

Theorem 1 (Measurable space). (�, Π) is a measurable space of processes.
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The measurable sets of � are the unions of ≡-equivalence classes on �. In what
follows P ,R,Q range over Π . We lift some functions and algebraic operations
from processes to measurable sets, for arbitrary a, b ∈ N and r ∈ �+, as follows.

fn(P) =
⋃
P∈P

fn(P ), P{a/b} =
⋃
P∈P

P{a/b}, P|Q =

Q∈Q⋃
P∈P

(P |Q)≡,

PQ =

Q∈Q⋃
R|Q∈P

R≡, (a@r)P =
⋃
P∈P

(a@r)P≡.

It is not difficult to see that these operations are internal operations on Π .

3.2 Rate Environments

Now we introduce rate environments used to interpret stochastic processes. They
are partial functions on N assigning rates to channels. We chose to introduce
them in the “process algebra style” instead of defining a type systems for envi-
ronment correctness, which would complicate the semantics.

Definition 3 (Rate Environment). The rate environments associated to N
are defined, on top of a constant ε, for arbitrary a ∈ N and r ∈ �+, by

E := ε
... E, a@r.

Let � be the set of rate environments. A suffix a@r is called rate declaration.
If a@r appears in E, we write a@r ∈ E. ε stands for the empty environment.
We treat “,” as concatenation symbol for rate environments and use “E,E′” to
denote the concatenation of E and E′; ε is the empty symbol for concatenation.

For E = E1, ..., En ∈ � and {1, .., n} = {i1, .., ik}∪{j1, .., jn−k} with i1 < .. <
ik, j1 < ... < jn−k, if E

′ = Ei1 , .., Eik and E′′ = Ej1 , .., Ejn−k
, we write E′ ⊂ E

and E′′ = E \ E′. Notice that ε ⊂ E, E ⊂ E, E = E \ ε and ε = E \ E.
The domain of a rate environment is the partial function on � defined as follows.

1. dom(ε) = ∅;
2. if dom(E) is defined and a �∈ dom(E), then dom(E, a@r) = dom(E)∪ {a};
3. undefined otherwise.

In what follows, whenever we use dom(E) we implicitly assume that dom is
defined in E. Observe that, if a ∈ dom(E), then there exists a rate declaration
a@r ∈ E and for no s �= r, a@s ∈ E; for this reason we also write r = E(a).
When dom(E) is defined, let dom(E)∗ = {a ∈ dom(E) s.t. E(a) �= 0}.

3.3 The Class of Indexed Measures

The semantics will involve terms of type E � P → μ, where E is a rate environ-
ment, P is a process and μ : �+ → Δ(�, Π) is a mapping that defines a set of
labeled measures. The labels are the observable actions collected in the set �+

defined below.
� = {a[b], a[@r], ab, for a, b ∈ N , r ∈ �+} and �+ = � ∪ {τ}.

We denote by M the set Δ(�, Π)�
+

of labeled measures.
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The observable actions consist of four classes: (i) free outputs of type a[b]
denoting the action of sending a free name b over the channel a, (ii) bound
outputs of type a[@r] denoting the action of sending a fresh unspecified name,
with base-rate r, on channel a, (iii) input actions of type ab representing the
fact that channel a has received a name b (as the result of an output action
on a), (iv) internal action τ – communications. In what follows we use α, αi to
represent arbitrary elements of �+.

Notice the relation between the syntactic prefixes of the calculus and the
observable actions. The output prefixes, as in Pi-calculus, represent observable
output actions. The input prefix of the calculus, such as a(b) in the process
a(b).P , does not represent an authentic action, but the capability of P to receive
a name on channel a; consequently we adopt an early semantics [2]: if a name
c is sent on a, the input action is ac and it labels the transitions to P{c/b}. In
this way, to a single prefix a(b) correspond as many input actions ac as names
c can be sent on a in the given rate-environment. Unlike the nondeterministic
case, for stochastic Pi-calculus we cannot define a late semantics [2] because only
the input actions of type ac correspond to a measure on the space of processes,
while a(b) represents a set of measures, one for each name received. Because our
semantics aims to associate a measure to each process and action label, we need
to refuse the inputs of type a(b) in the set of labels and chose an early semantics.

The bound output a[@r] in the form that ignores the argument of communi-
cation is novel. It labels a bound output of type (b@r)a[b].P . The example below

explains its action; anticipating the semantics, E � P
α,r−→ Q≡ means that in the

environment E, P can do an α-transition with rate r to the elements of Q≡.

Example 1. The processes Q = (b@r)a[b].P and R = (c@r)a[c].P{c/b} are struc-
tural congruent and we want them bisimilar in our semantics. If we consider that
the (only) observable transition in which Q can be involved is a[b@r], as it is

done in other PAs, then the transition is E � (b@r)a[b].P
a[b@r],E(a)−→ (b@r)P≡,

while for R the transition is E � (c@r)a[c].P{c/b}
a[c@r],E(a)−→ (c@r)P≡{c/b}. Obvi-

ously, (b@r)P≡ = (c@r)P≡{c/b}, but if b �= c, then a[b@r] �= a[c@r] and in effect,
Q and R are not bisimilar in this interpretation.

For obtaining the expected bisimulations, for any b, c ∈ N , a[b@r] = a[c@r];
and this is equivalent with accepting that an external observer can only see that
a private name with the base rate r has been sent on channel a without seeing
the name. Hence, the real observable action has to be a[@r].

Our solution is similar to the Abstraction-Concretion method proposed in [20]
for nondeterministic Pi-calculus. a[@r] does the job of Abstraction, as our mea-
surable sets of processes are Milner’s abstracted processes. Only that in our
case, because the transitions are not between processes but from processes to
structural-congruence classes, we need no Concretions. So, the main advantage
of our approach is that it solves the problem of bound outputs without using
higher order syntax as in the classic Pi-calculus.

Before proceeding with the operational semantics, we need to define a set of
operations onM that lift the process constructors of stochastic Pi-calculus to the
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level of the labeled distributions over the space of processes. These operations
reflect the complexity of the normal forms of the τ -reductions for stochastic Pi
and for this reason the reader is invited to study Definition 4 in the context of
the operational semantics presented in the next section. The SOS rules clarify
and prove the correctness of these operations.

Let �@ denote the set {a[@r], for a ∈ N , r ∈ �+} of bound output actions
and �a denotes the set {a[b], ab, a[@r], for b ∈ N , r ∈ �+} of actions on channel
a. A labeled measure μ ∈ M has finite support if the set of output actions α ∈ �+

with μ(α) �= � is finite or empty. Recall that � denotes the null measure and
DP≡ the P≡-Dirac measure.

Definition 4. Consider the following operations on M defined for arbitrary
μ, η ∈ M, E ∈ �, α ∈ �+, a, b, c ∈ N , P ∈ � and P ,Q,R ∈ Π.
1. Operations of arity 0.
(i) Let � ∈ M defined by �(α) = � for any α ∈ �+;

(ii) Let E
a[b]
P≡ , E

a(b)
P≡ ∈ M defined whenever fn(P ) ⊆ dom(E), by

E
a[b]
P≡ (a[b]) = E(a)DP≡ and E

a[b]
P≡ (α) = �, for α �= a[b];

E
a(b)
P≡ (ac) = E(a)DP≡

{c/b} and E
a(b)
P≡ (α) = �, for α �= ac.

2. Operations of arity 1.
(i) Let μP ∈ M defined by μP(α)(R) = μ(α)(RP ).
(ii) Let (a@r)μ ∈ M defined by

(a@r)μ(α)(R) =

⎧⎨⎩
μ(α)(P), if α �∈ �a ∪ �@,R = (a@r)P
μ(b[a])(P) + μ(b[@r])(P), if α = b[@r],R = (a@r)P
0, otherwise.

3. Operations of arity 2.
(i) Let μ⊕ η ∈ M, defined by (μ⊕ η)(α) = μ(α) + η(α).
(ii) For μ, η ∈ M with finite support, let μ P⊗E

Q η ∈ M defined by

– for α ∈ �, (μ P⊗E
Q η)(α)(R) = μQ(α)(R) + ηP (α)(R);

– for τ , (μ P⊗E
Q η)(τ)(R) = μQ(τ)(R) + ηP (τ)(R)+

a∈dom(E)∗
b∈N∑

P1|P2⊆R

μ(a[b])(P1) · η(ab)(P2) + η(a[b])(P1) · μ(ab)(P2)

E(a)
+

((x@r)y[x].P ′|P ′′)+P ′′′≡⊆P
(y(z).Q′ |Q′′)+Q′′′≡⊆Q∑

(x@r)(P ′|Q′
{x/z})|P ′′|Q′′≡⊆R

μ(y[@r])((x@r)P ′|P ′′≡) · η(yx)(Q′{x/z}|Q′′≡)
E(a)

+

(y(z).P ′|P ′′)+P ′′′≡⊆P
((x@r)y[x].Q′ |Q′′)+Q′′′≡⊆Q∑

(x@r)(P ′
{x/z}|Q′)|P ′′|Q′′≡⊆R

μ(yx)(P ′{x/z}|P ′′≡) · η(y[@r])((x@r)Q′|Q′′≡)
E(a)
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Observe that because we work with functions with finite support and because
dom(E) is defined and finite, the sums involved in the definition of μ P⊗E

Q η have
finite numbers of non-zero summands. These operations are the building blocks
for the lifting of the algebraic structure of processes to the level of functions:
operations of arity 0 encode process 0 and prefixing, operations of arity 1 encode
the quotient and fresh name quantification and operations of arity 2 correspond
to choice and parallel composition. For understanding their role, the reader is
referred to the semantic rules introduce in the next section.

Lemma 1. 1. For μ, η, ρ ∈ M it holds that μ⊕ η ∈ M and
(a). μ⊕ η = η ⊕ μ, (b). (μ⊕ η)⊕ ρ = μ⊕ (η ⊕ ρ), (c). μ = μ⊕ �.
2. For μ, η, ρ ∈ M with finite support, μ P⊗E

Q η ∈ M and
(a). μ P⊗E

Q η = η Q⊗E
P μ, (b). (μ P⊗E

Q η) P|Q⊗E
R ρ = μ P⊗E

Q|R (η Q⊗E
R ρ),

(c). μ P⊗E
0≡ � = μ.

3.4 Semantics

The stochastic transition relation is the smallest relation T ⊆ �×�×M satisfying
the semantics rules listed below, where E � P → μ denotes (E,P, μ) ∈ T; it
states that the behaviour of P in the environment E is defined by the mapping
μ ∈ M. For each ≡-closed set of processes P ∈ Π and each α ∈ �+, μ(α)(P) ∈
�+ represents the total rate of the α-reductions of P to the elements of P . The
rules involve also predicates of type E � ok that encode the correctness of E,
i.e. that the environment associates base rates to a finite number of channels
only, and that no channel appears in more than one rate declaration in that
environment. Recall that ≡∗ denotes alpha-conversion.

(Envε). ε � ok (Env@).
E � ok a �∈ dom(E)

E, a@r � ok

(Null).
E � ok

E � 0→ �
(Out).

E � ok fn(a[b].P ) ⊆ dom(E)

E � a[b].P → E
a[b]
P≡

(Sum).
E � P → μ E � Q→ η

E � P +Q→ μ⊕ η
(Imp).

E � ok fn(a(b).P ) ⊆ dom(E)

E � a(b).P → E
a(b)
P≡

(New).
E, a@r � P → μ

E � (a@r)P → (a@r)μ
(Par).

E � P → μ E � Q→ η

E � P |Q→ μ P≡⊗E
Q≡ η

(Alpha).
E � P → μ P ≡∗ Q

E � Q→ μ
(Rep).

E � P → μ

E �!P → μ!P≡

(Null) guarantees that in any correct environment the behaviour of process 0 is
described by �, which associates the rate 0 to any transition.
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(Out) and (Imp) have similar actions. They associates to any prefixed process
x.P , where x ∈ {a(b), a[b] | a, b ∈ N}, the mapping Ex

P≡ which, as described
in Definition 4, associates the base-rate of the channel of x to the x-transitions
from x.P to P≡ and rate 0 to the other transitions.

(Sum) computes the rate of the α-transitions from P + Q to R ∈ Π , as the
sum of the rates of the α-transitions from P and Q to R respectively.

(Par) describes the possible interactions between the processes. If ρ = μ P≡⊗E
Q≡

η, the rate ρ(α)(R) of the α-transitions from P |Q toR for α �= τ , is the sum of the
rates μ(α)(RQ≡ ) and η(α)(RP≡ ) of the α-transitions from P to RQ and from Q
to RP respectively; the rate of the τ -transitions from P |Q to R is the sum of the
rates of the τ -transitions thatP orQ can do independently plus the rate of all com-
munications between P and Q (bound represented by the first sum in Definition
4 3.(ii) and unbound represented by the last two sums). Because we use the base
rate of the channel a when we calculate the rates of both inputs and outputs on a,
the sums in Definition 4 3.(ii) are normalised by E(a).

(New) establishes that the rate of the transitions from (a@r)P to (a@r)R ∈ Π
in the environment E is the rate of the corresponding transitions from P to R in
the environment E, a@r. The only thing one needs to take care of (see Definition
4) is when an output becomes bound while (New) is used. Consider, for instance,
the process Q = b[a].P + (c@r)b[c].P{c/a}.

E, a@r � Q
b[a],E(b)−→ P≡ and E, a@r � Q

b[@r],E(b)−→ (c@r)P≡{c/a}.

Now, if we consider (a@r)Q ≡ (a@r)b[a].P+(c@r)b[c].P{c/a}, because (a@r)P ≡
(c@r)P{c/a}, the rates of the transitions in the environment E should be

E � (a@r)Q
b[a],0−→ (a@r)P≡ and E � (a@r)Q

b[@r],2E(b)−→ (a@r)P≡.
Notice that the rate of b[a]-transition of Q contributes to the rate of b[@r]-
transition of (a@r)Q and this is how Definition 4 introduces (a@r)μ.

(Rep) encodes the intuition that in the case of stochastic systems, if

E � P
α,r−→ Q≡, then E � !P

α,r−→ !P |Q≡.
(Alpha) proves properties by alpha-conversion: it guarantees that the be-

haviour of a process does not change if the bound variables are renamed. The
standard presentations of PAs with unlabeled reduction mix structural congru-
ence with reductions by rules of type (Struct). Because our reductions are labeled
(the labels are hidden into the mappings), alpha conversion needs to be sepa-
rately incorporated both in the algebra and coalgebra.

The next example illustrates some transitions in our framework.

Example 2. E � (b@r)(a[b].P )|a(c).Q τ,E(a)−→ (b@r)(P |Q{b/c})≡.
From (Out) or (Imp) we derive E, b@r � a[b].P

a[b],E(a)−→ P≡. (New) gives us

further that E � (b@r)a[b].P
a[@r],E(a)−→ (b@r)P≡ and this is the only transition

with non-zero rate. Observe that the definition of E
a(c)
Q≡ implies E � a(c).Q

ab,E(a)−→
Q≡{b/c}.
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Applying the definition of (b@r)(a[b].P )≡⊗E
a(c).Q≡ , we obtain

E � (b@r)(a[b].P )|a(c).Q τ,s−→ (b@r)(P |Q{b/c})≡ for s = E(a) if E(a) �= 0 and
s = 0 if E(a) = 0.

A consequence of this result is the well known case of communication of a
private name used for a private communication.

E � (b@r)(a[b].b(e).P )|a(c).c[d].0 τ,E(a)−→ (b@r)(b(e).P |b[d].0)≡ τ,r−→ (b@r)P≡{d/e}.

The first transition is a particular case of the example. For the second transition
we apply the case 3 (ii) of Definition 4.

Remark 1. In stochastic Pi calculus it is not possible to define a binary opera-
tor on M that reflects, for a fixed environment E, the parallel composition of
processes. Assume that there exists an operator ⊗E such that if E � P → μ
and E � Q → η, then E � P |Q → μ ⊗E η. The processes P = a[b].0|c[d].0 and
Q = a[b].c[d].0 + c[d].a[b].0 have associated, in any correct environment E, the
same mapping μ ∈ M. Suppose that E � R → η, where R = e[f ].0. If, indeed,
the operator ⊗E is well defined, then E � P |R → μ⊗E η and E � Q|R → μ⊗E η,
i.e. P |R and Q|R have associated the same mapping. But this is not the case,
because P≡ �= Q≡ and

E � P |R e[f ],E(e)−→ P≡ and E � P |R e[f ],0−→ Q≡, while

E � Q|R e[f ],0−→ P≡ and E � Q|R e[f ],E(e)−→ Q≡.
This explains why we need to index ⊗E with P≡ and Q≡ and why the algebraic
signature is changed when the structure of processes is lifted to indexed measures.

The next theorem states that T is well defined and characterizes the correctness
of an environment.

Theorem 2. (i) If E � ok and fn(P ) ⊆ dom(E), then there exists a unique
μ ∈ M such that E � P → μ.
(ii) If E � P → μ, then E � ok. Moreover, E � ok iff E � 0 → �.

Unlike in other process algebras, our semantics does not contain a (Struct) rule
stating that structural congruent processes behave identicaly. However, such a
result can be proved.

Theorem 3. If E � P ′ → μ and P ′ ≡ P ′′, then E � P ′′ → μ.

The next lemma describes how the environments can vary without influencing
the mapping associated to a process.

Lemma 2. 1. If for any a ∈ N and r ∈ �, [a@r ∈ E iff a@r ∈ E′], then
E � P → μ iff E′ � P → μ.
2. If E′ � ok, E ⊂ E′ and E � P → μ, then E′ � P → μ.
3. If E ⊂ E′, E � P → μ and dom(E′ \ E) ∩ fn(P ) = ∅, then E′ � P → μ.
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4 Stochastic Bisimulation

In this section we focus on stochastic bisimulation that reproduces, at the stochas-
tic level, Larsen-Skou probabilistic bisimulation [19]. We have introduced a sim-
ilar concept in [7] for the case of stochastic CCS. The novelty with the present
definition consists in the role of the rate environments: two processes are stochas-
tic bisimilar if they have similar stochastic behaviours in any rate environment.

Definition 5 (Stochastic Bisimulation). A rate-bisimulation on � is an
equivalence relation R ⊆ �× � such that (P,Q) ∈ R iff for any E ∈ �,
– if E � P → μ, then there exists η ∈ M such that E � Q → η and for any
C ∈ Π(R) and α ∈ �+, μ(α)(C) = η(α)(C).
– if E � Q → η, then there exists μ ∈ M such that E � P → μ and for any
C ∈ Π(R) and α ∈ �+, η(α)(C) = μ(α)(C).

Two processes P,Q ∈ � are stochastic bisimilar, denoted P ∼ Q, if there
exists a rate-bisimulation connecting them.

Observe that stochastic bisimulation is the largest rate-bisimulation on �.

Example 3. If a, b, x, y ∈ N , a �= b and x �∈ fn(b[y].Q), then
a(x).P |b[y].Q ∼ a(x).(P |b[y].Q) + b[y].(a(x).P |Q).

Indeed, for any compatible rate environment E,

E � a(x).P |b[y].Q → E
a(x)
P

E
a(x).P⊗b[y].Q E

b[y]
Q ,

E � a(x).(P |b[y].Q) + b[y].(a(x).P |Q) → E
a(x)
P |b[y].Q ⊕ E

b[y]
a(x).P |Q

and for arbitrary C ∈ Π(∼),

E
a(x)
P

E
a(x).P⊗b[y].Q E

b[y]
Q (α)(C) = E

a(x)
P |b.Q ⊕ E

b[y]
a(x).P |Q(α)(C) =

The previous example shows bisimilar processes which are not structurally con-
gruent. The reverse affirmation is not true.

Theorem 4. If P ≡ Q, then P ∼ Q.

The next theorem, stating that stochastic bisimulation is a congruence, proves
that we have identified a well-behaved semantics.

Theorem 5 (Congruence). If P ∼ Q, then
1. for any a, b ∈ N , a(b).P ∼ a(b).Q and a[b].P ∼ a[b].Q;
2. for any R ∈ �, P +R ∼ Q+R,
3. for any a ∈ N and r ∈ �+, (a@r)P ∼ (a@r)Q;
4. for any R ∈ �, P |R ∼ Q|R.
5. !P ∼!Q.

5 Conclusions and Future Work

In this paper we have proposed a way of introducing stochastic process algebras
that is faithful to the algebraic-coalgebraic structures of the concurrent Marko-
vian processes. The semantics is given in terms of measure theory and describes
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the lifting of the algebraic structure of processes to the level of measures on
the measurable space of processes. The paper treats the case of the complete
stochastic Pi-calculus. Instead of the discrete measurable space of processes, we
consider the measurable space induced by structural congruence and this idea
has important advantages. Firstly, it matches practical modelling requirements:
the identity of a system is not given by the stochastic process used to model
it, but by its structural-congruence class (for systems biology this represents a
chemical soup). Secondly, by working with measures on this space, we get im-
portant advantages on the level of the underlying theory such as a simple and
elegant semantics, simple solutions for the problems related to bound output and
replication (that otherwise require complicate transition labeling and higher or-
der reasoning) and a well-behaved notion of stochastic bisimulation including
associativity. Other advantages derive from the use of the rate environments
that guarantees a certain robustness in modelling: a model cab be easily refined
by modifying its rate environment.

Our approach opens some future research directions. One is the study of
the GSOS format where the main challenges are to understand the underlying
category and the equational monad induced by structural congruence. Another
is the definition of a pseudometric, similar with the one we introduce in [7],
to measure the distance between processes in terms of similar behaviours. Our
semantics is particularly appropriate for introducing such metrics via the metrics
on measures such as the Kantorovich metrics on distributions used, for instance,
in [21]. This SPA is also particularly appropriate for logical analysis using an
equational-coequational logic as the one we propose in [6], which will allow a
canonic characterization of the measurable space of processes.
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Appendix

In this appendix we have collected some of the proofs of the main results pre-
sented in the paper.

Proof (Theorem 2). (i) Firstly, we prove the existential part by induction on the
structure of P .

For P = 0, P = a[b].Q and P = a(b).Q, (Null), (Out) and (Imp) respectively
guarantee the existence of μ.

For P = Q+R: the inductive hypothesis proves that there exist two functions
η, ρ such that E � Q → η and E � R → ρ. From (Sum) we obtain that there
exists μ = η ⊕ ρ such that E � P → μ.

For P = Q|R: the inductive hypothesis guarantees that there exist two func-
tions η, ρ such that E � Q → η and E � R → ρ. From (Par) we obtain that
exists μ = η〈Q≡ER≡〉ρ such that E � P → μ.
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For P = (a@r)Q: if a �∈ dom(E), then E, a@r � ok and the inductive hypoth-
esis guarantees the existence of η such that E, a@r � Q → η. Further, applying
(New), we get E � P → (a@r)η. If a ∈ dom(E), let b ∈ N \ dom(E). Then
E, b@r � ok and the inductive hypothesis guarantees the existence of η such
that E, b@r � Q{b/a} → η. Further, applying (New), we get E � (b@r)Q{b/a} →
(b@r)η and (Alpha) gives E � (a@r)Q → (b@r)η.

For P =!Q: the inductive hypothesis guarantees the existence of a unique η
such that E � Q → η, and using (Rep), E � P → η!Q.

The uniqueness part is done by induction on derivations.
The rules (Envε) and (Env@) are only proving the correctness of environments

and consequently will not interfere with our proof.
Observe that all the derivations involving only the rules (Sum), (Par), (New)

and (Rep), called in what follows basic proofs, demonstrate properties about
processes with a more complex syntax than the processes involved in the hy-
potheses. Consequently, taking (Null), (Out) and (Imp) as basic cases, an in-
duction on the structures of the processes involved in the derivations shows the
uniqueness of μ for the situation of the basic proofs. Notice, however, that due
to (New) a basic proof proves properties of type E � P → μ only for cases when
new(P ) ∩ dom(E) = ∅, where new(P ) is the set of names of P bound by fresh
name quantifiers. To conclude the proof we need to show that if Q = P{a/b} with
a, b �∈ fn(P ) and if E � P → μ and E � Q → η can be proved with basic proofs,
then μ = η.We do this by induction on P .
If P = 0, then Q = 0 and η = μ = �.

If P = c[d].R, then Q = c[d].R{a/b} and a, b �∈ fn(R). Moreover, μ = E
c[d]
R≡ and

η = E
c[d]
R≡

{a/b}
. But because a, b �∈ fn(R), R ≡ R{a/b} implying further μ = η.

If P = c(d).R, then if d �= b the proof goes as in the previous case. If P = c(b).R,

then Q = c(a).R{a/b}, μ = E
c(b)
R and η = E

c(a)
R{a/b} and μ = η.

If P = S + T , then Q = S{a/b} + T{a/b}. Let E � S → ρ and E � T → ν, then
E � S{a/b} → ρ and E � T{a/b} → ν. Hence, μ = η = ρ⊕ ν.
If P = S|T the proof goes as in the previous case.
If P =!R, Q =!R{a/b}. Suppose that E � R → ρ. From the inductive hypothesis
we also obtain that E � R{a/b} → ρ. Because a, b �∈ fn(R), !R ≡!R{a/b}.
If P = (c@r)R with c �= b, then Q = (c@r)R{a/b}. Because we are in the case
of a basic proof, c �∈ dom(E). Suppose that E, c@r � R → ρ. This is the unique
hypothesis that proves E � P → μ. Then, μ = (c@r)ρ and the inductive hy-
pothesis implies that E, c@r � R{a/b} → ρ is the unique hypothesis that proves
E � Q → η. Further, E � (c@r)R{a/b} → (c@r)ρ and μ = η.
If P = (b@r)R, then Q = (a@r)R{a/b}. Because we work with basic proofs,
we have a, b �∈ dom(E). A simple induction proves that if E, b@r � R →
ρ, then E, a@r � R{a/b} → ρ′, where for any α ∈ �+ and any R ∈ Π ,
ρ(α)(R) = ρ′(α{a/b})(R{a/b}). From here we get (b@r)ρ = (a@r)ρ′. Observe
that E, b@r � R → ρ is the unique hypothesis that can be used in a basic proof
to derive E � (b@r)R → μ and μ = (b@r)ρ. Similarly, E, a@r � R{a/b} → ρ′ is
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the unique hypothesis to prove E � (a@r)R{a/b} → η and η = (a@r)ρ′. Hence,
also in this case, μ = η.

In this way we have proved that any couple of alpha-converted processes have
associated the same mapping by basic proofs. In addition, (Alpha) guarantees
that any kind of proof associates to alpha-converted processes the same mapping
and this concludes our proof.

(ii) We prove the first part by induction on derivations. The second part is a
consequence of the first part and (Null).
If E � P → μ is proved by (Null), (Out) or (Imp), E � ok is required.
If E � P → μ is proved by (Sum), P = Q + R, μ = η ⊕ ρ and E � Q → η and
E � R → ρ are the hypothesis and we can use the inductive hypothesis.
If E � P → μ is proved by (Par), the argument goes as in the previous case.
If E � P → μ is proved by (New), then P = (a@r)Q and the hypothesis is of
type E, a@r � Q → η. The inductive hypothesis gives E, a@r � ok and this can
only be proved by (Env@) from E � ok.
If E � P → μ is proved by (Rep), then P =!Q and E � Q is the hypothesis and
we can apply the inductive step.
If E � P → μ is proved by (Alpha), we can use the inductive hypothesis again.

Proof (Lemma 2). 1. A simple induction on derivations that involve only (Envε)
and (Env@) proves that E � ok iff E′ � ok. For proving our lemma we will
proceed with an induction on the derivation of E � P → μ.

If E � P → μ is proved by (Null), we have that P = 0 and due to Theorem
2, μ = �. Applying (Null) we obtain E′ � P → μ.

If E � P → μ is proved by (Out) or (Imp), we have that P = x.Q and μ = Ex
Q.

Because Ex
Q = E′xQ and dom(E) = dom(E′), we obtain E′ � P → μ.

If E � P → μ is proved by (Sum), we have that P = Q + R, μ = η ⊕ ρ and
the hypothesis are E � Q → η and E � R → ρ. From the inductive hypothesis
we obtain E′ � Q → η and E′ � R → ρ. Applying (Sum), E′ � P → μ.

If E � P → μ is proved by (Par) we have that P = Q|R, μ = η E
Q⊗E

R ρ and
the hypothesis are E � Q → η and E � R → ρ. From the inductive hypothesis
we obtain E′ � Q → η and E′ � R → ρ. Further, applying (Par) we get
E′ � P → η E

Q⊗E′
R ρ. But η E

Q⊗E
R ρ = η E

Q⊗E′
R ρ.

If E � P → μ is proved by (Rep), we have that P =!Q, μ = η!Q and the
hypothesis is E � Q → η. Applying the inductive step we get E′ � Q → η and
(Rep) guarantees that E′ � P → μ.

If E � P → μ is proved by (New), we have that P = (a@r)Q, μ = (a@r)η
and the hypothesis is E, a@r � Q → η. Hence, a �∈ dom(E) = dom(E′) and we
can apply the inductive hypothesis because b@s ∈ E, a@r iff b@s ∈ E′, a@r and
obtain E′, a@r � Q → η where from we get E′ � P → μ.

If E � P → μ is proved by (Alpha), we have that P = Q{a/b} with a, b �∈
fn(P ) = fn(Q) and the hypothesis is E � Q → μ. The inductive hypothesis gives
E′ � Q → μ and because a, b �∈ fn(Q), (Alpha) proves E′ � P → μ.

2. Induction on the derivation of E � P → μ.
If E � P → μ is proved by (Null), we have that P = 0 and due to Theorem

2, μ = �. Applying (Null) we obtain E′ � P → μ.
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If E � P → μ is proved by (Out) or (Imp), we have that P = x.Q and due to
Theorem 2, μ = Ex

Q. Because fn(P ) ⊆ dom(E) ⊆ dom(E′) and Ex
Q = E′xQ , we

obtain E′ � P → μ.
If E � P → μ is proved by (Sum), we have that P = Q + R, μ = η ⊕ ρ and

the hypothesis are E � Q → η and E � R → ρ. From the inductive hypothesis
we obtain E′ � Q → η and E′ � R → ρ. Further, applying (Sum) we get
E′ � P → μ.

If E � P → μ is proved by (Par) we have that P = Q|R, μ = η E
Q⊗E

R ρ and
the hypothesis are E � Q → η and E � R → ρ. From the inductive hypothesis
we obtain E′ � Q → η and E′ � R → ρ. Further, applying (Par) we get
E′ � P → η E

Q⊗E′
R ρ. But η E

Q⊗E
R ρ = η E

Q⊗E′
R ρ.

If E � P → μ is proved by (Rep), we have that P =!Q, μ = η!Q and the
hypothesis is E � Q → η. Applying the inductive step we get E′ � Q → η and
(Rep) guarantees that E′ � P → μ.

If E � P → μ is proved by (Alpha), we have that P = Q{a/b} with a, b �∈
fn(P ) = fn(Q) and the hypothesis is E � Q → μ. As before, the inductive
hypothesis guarantees that E′ � Q → μ and because a, b �∈ fn(Q), (Alpha)
proves that E′ � P → μ.

If E � P → μ is proved by (New), we have that P = (a@r)Q, μ = (a@r)η
and the hypothesis is E, a@r � Q → η. Hence, a �∈ dom(E). If a �∈ dom(E′),
the inductive hypothesis guarantees that E′, a@r � Q → η where from we get
E′ � P → μ. If a ∈ dom(E′), let b �∈ dom(E′)∪ fn(P ). Because E, a@r � Q → η
is provable, also E, b@r � Q{b/a} → η{b/a} is provable, where η{b/a} is the
mapping obtained from η replacing all the occurrences of a in the definition of
η (in processes and labels) with b. Moreover, to each proof of E, a@r � Q → η
corresponds a proof of E, b@r � Q{b/a} → η{b/a} that is, from the point of view of
our induction, at the same level with the proof of E, a@r � Q → η. Consequently,
we can apply the inductive hypothesis to E, b@r � Q{b/a} → η{b/a} and obtain
E′, b@r � Q{b/a} → η{b/a}. (New) implies E′ � (b@r)Q{b/a} → (b@r)η{b/a} and
(Alpha) E′ � (a@r)Q → (b@r)η{b/a}. To conclude, it is sufficient to verify that
(a@r)η = (b@r)η{b/a}.

3. The proof goes similarly with the proof of the previous case. We use an
induction on the derivation of E � P → μ.

If E � P → μ is proved by (Null), we have that P = 0 and μ = �. Applying
(Null) we obtain E′ � P → μ.

If E � P → μ is proved by (Out) or (Imp), we have that P = x.Q and
μ = G′xQ . Because fn(P ) ⊆ dom(E), fn(P )∩ dom(E \E′) = ∅ and Ex

Q = E′xQ , we
obtain E′ � P → μ.

If E � P → μ is proved by (Sum), we have that P = Q + R, μ = η ⊕ ρ and
the hypothesis are E � Q → η and E � R → ρ. From the inductive hypothesis
we obtain E′ � Q → η and E′ � R → ρ. Further, applying (Sum) we get
E′ � P → μ.

If E � P → μ is proved by (Par) we have that P = Q|R, μ = η E
Q⊗E

R ρ and
the hypothesis are E � Q → η and E � R → ρ. From the inductive hypothesis
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we obtain E′ � Q → η and E′ � R → ρ. Further, applying (Par) we get
E′ � P → η E

Q⊗E′
R ρ. But η E

Q⊗E
R ρ = η E

Q⊗E′
R ρ.

If E � P → μ is proved by (Rep), we have that P =!Q, μ = η!Q and the
hypothesis is E � Q → η. Applying the inductive step we get E′ � Q → η and
(Rep) guarantees that E′ � P → μ.

If E � P → μ is proved by (Alpha), we have that P = Q{a/b} with a, b �∈
fn(P ) = fn(Q) and the hypothesis is E � Q → μ. As before, the inductive
hypothesis guarantees that E′ � Q → μ and because a, b �∈ fn(Q), (Alpha)
proves that E′ � P → μ.

If E � P → μ is proved by (New), we have that P = (a@r)Q, μ = (a@r)η
and the hypothesis is E, a@r � Q → η. Hence, a �∈ dom(E) and because
dom(E′) ⊆ dom(E), we obtain that a �∈ dom(E′). Because E, a@r ⊂ E′, a@r
and dom((E′, a@r) \ (E, a@r)) = dom(E′ \ E), we can apply the inductive hy-
pothesis and from E, a@r � Q → η we obtain E′, a@r � Q → η where from we
get E′ � P → μ.

Proof (Theorem 5). From P ′ ≡ P ′′ we obtain that fn(P ′) = fn(P ′′) and Theorem
2 ensures that E � P ′ → μ implies that there exists a unique μ′ such that
E � P ′′ → μ′.

We prove now that E � P ′ → μ implies E � P ′′ → μ. The proof is an
induction following the rules of structural congruence presented in Definition 2.

Rule I.1: if P ′ = P |Q and P ′′ = Q|P . Suppose that E � P → η and E � Q → ρ.
Then μ = η E

P ⊗E
Q ρ and Lemma 1 guarantees that E � P ′′ → μ.

Similarly we can treat all the rules of group I.

Rules of group II: As previously, the results derive from the properties of ⊕
stated in Lemma 1.

Rules of group III: If (P ′ = P |R and P ′′ = Q|R), or (P ′ = P + R and
P ′′ = Q + R), or (P ′ = x.P and P ′′ = x.Q), or (P ′ =!P and P ′′ =!Q) for
P ≡ Q, we can apply the inductive hypothesis that guarantees that E � P → η
iff E � Q → η. Further, if E � R → ρ, we obtain the desired results because
η E

P ⊗E
R ρ = η E

Q⊗E
R ρ, η ⊕ ρ = η ⊕ ρ, Ex

P = Ex
Q and μ!P = μ!Q.

If P ′ = (a@r)P and P ′′ = (a@r)Q, we have two subcases.

Subcase 1: a �∈ dom(E). Suppose that E, a@r � P → η. From the inductive
hypothesis we obtain that E, a@r � Q → η. Further, rule (New) proves that
μ = (a@r)η and E � (a@r)Q → μ.

Subcase 2: a ∈ dom(E). Let b ∈ N \ dom(E). Suppose that E, b@r � P{b/a} →
η. Then, (New) implies E � (b@r)P{b/a} → (b@r)η and (Alpha) proves E �
(a@r)P → (b@r)η. Hence, μ = (b@r)η. On the other hand, the inductive hy-
pothesis implies E, b@r � Q{b/a} → η, (New) proves E � (b@r)Q{b/a} → (b@r)η
and (Alpha) implies E � (a@r)Q → (b@r)η.

Rule IV.1: If P ′ = (a@r)(b@s)P and P ′′ = (b@s)(a@r)P . Let c, d ∈ N \
dom(E). Suppose that E; c@r; d@s � P{c/a,d/b} → η. Applying twice (New)
we obtain E � (c@r)(d@s)P{c/a,d/b} → (c@r)(d@s)η and applying twice (Al-
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pha) we get E � (a@r)(b@s)P → (c@r)(d@s)η. Hence, μ = (c@r)(d@s)η. On
the other hand, Lemma 2.1 guarantees that E; c@r; d@s � P{c/a,d/b} → η im-
plies E; d@s; c@r � P{c/a,d/b} → η and, as before, we eventually obtain E �
(b@s)(a@r)P → (d@s)(c@r)η. Now it is suficient to verify that (d@s)(c@r)η =
(c@r)(d@s)η.

Rule IV.2: If P ′ = (a@r)0 and P ′′ = 0. In this case it is sufficient to notice
that (a@r)� = �.

Rule IV.3: If P ′ = (a@r)(P |Q) and P ′′ = P |(a@r)Q, where a �∈ fn(P ). Let b ∈
N \ (dom(E)∪ fn(P )). Suppose that E, b@r � P → η and E, b@r � Q{b/a} → ρ.
Observe that because a �∈ fn(P ), we also have E, b@r � P{b/a} → η. Further we
obtain

E, b@r � (P |Q){b/a} → η E
P{b/a}⊗

E,b@r
Q{b/a} ρ and

E � (b@r)((P |Q){b/a}) → (b@r)(η E
P{b/a}⊗

E,b@r
Q{b/a} ρ).

Now we apply (Alpha) and obtain

E � (a@r)(P |Q) → (b@r)(η E
P ⊗E,b@r

Q{b/a} ρ).

On the other hand, because b �∈ fn(P ), from E, b@r � P → η Lemma 2.2
proves E � P → η and from E, b@r � Q{b/a} → ρ we obtain, applying (New),
E � (b@r)Q{b/a} → (b@r)ρ. And further,

E � P |(b@r)Q{b/a} → η E
P ⊗E

(b@r)Q{b/a} (b@r)ρ.

Applying (alpha) we obtain

E � P |(a@r)Q → η E
P ⊗E

(b@r)Q{b/a} (b@r)ρ.

A simple verification based on the observation that (if for all R ∈ R, b �∈ fn(R),
then (b@r)R = R) proves that

(b@r)(η E
P ⊗E,b@r

Q{b/a} ρ) = η E
P ⊗E

(b@r)Q{b/a} (b@r)ρ.

Similarly can be proved that case P ′ = (a@r)(P + Q) and P ′′ = P + (a@r)Q,
where a �∈ fn(P ).

Rules of group V: By a simple verification one can prove that �!0 = �. For
the second rule, observe that if E � P → η and E � Q → ρ, then E �!(P |Q) →
(η E

P⊗E
Q ρ)!(P |Q) and E �!P |!Q → η E

!Q|P⊗E
!P |Q ρ. And a simple verification proves

that

(η E
P ⊗E

Q ρ)!(P |Q) = η E
!Q|P ⊗E

!P |Q ρ.

Rules of group VI: These rules are a direct consequence of (Alpha).
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Proof (Theorem 5). 1. Prefix: For any C ∈ Π(∼), P ∈ C iff Q ∈ C. This
entails that for any E ∈ � with fn(x.P ) ∪ fn(x.Q) ⊆ dom(E) and any α ∈ �+,
Ex

P (α)(C) = Ex
Q(α)(C).

2. Choice: We can suppose, without loosing generality, that E � P → μ,
E � Q → η and E � R → ρ (the other cases are trivially true). Then, E �
P + R → μ ⊕ ρ and E � Q + R → η ⊕ ρ. Let C ∈ Π(∼) and α ∈ �+. Because
P ∼ Q, μ(α)(C) = η(α)(C) implying μ(α)(C) + ρ(α)(C) = η(α)(C) + ρ(α)(C).
This means that (μ⊕ ρ)(α)(C) = (η ⊕ ρ)(α)(C).

3. Fresh name quantification: Let E ∈ � and b �∈ dom(E)∪ fn(P )∪ fn(Q).
Observe that from P ∼ Q, following an observation that we used also in the proof
of Lemma 2 concerning the relation between a mapping η its correspondent
η{b/a}, we derive P{b/a} ∼ Q{b/a}. Suppose that E, b@r � P{b/a} → μ and
E, b@r � Q{b/a} → η. Applying (New) we obtain E � (b@r)P{b/a} → (b@r)μ
and E � (b@r)Q{b/a} → (b@r)η. (Alpha) implies E � (a@r)P → (b@r)μ and
E � (a@r)Q → (b@r)η. From P{b/a} ∼ Q{b/a} we obtain that for any α ∈ �+

and any C ∈ Π(∼), μ(α)(C) = η(α)(C). to conclude the proof it is sufficient to
verify that (b@r)μ(α)(C) = (b@r)η(α)(C).

4. Parallel composition: For the beginning we consider the processes that,
to all syntactic levels, contain no subprocess form the class 0≡ in a parallel
composition. Let’s call them processes with non-trivial forms. We will first prove
the lemma for processes with non-trivial forms.

For arbitrary n ∈ �, let �n be the set of process terms with non-trivial forms
and no more than n occurrences of the operator “|”. Let ∼n⊆ �n × �n be the
largest rate-bisimulation defined on �n. We define ≈n∈ �n × �n by

≈n=∼n−1 ∪

{(P1|...|Pk, Q1|...|Qk), (P1 + ...Pk, Q1 + ...Qk) for Pi ∼n−1 Qi, i = 1..k, k ≤ n}.

We show, by induction on n, that ≈n is a rate-bisimulation, i.e. that ≈n⊆∼n.
Suppose that P ≈n Q. We need to prove that if E � P → μ and E � Q → η,

then for any α ∈ �+ and any C ∈ Π(≈n), μ(α)(C) = η(α)(C).
Observe that, from the way we construct ≈n, there are three possibilities:

either P ∼n−1 Q, or P = P1 + ...Pk and Q = Q1 + ...Qk, or P = P1|...|Pk and
Q = Q1|...|Qk, for k ≤ n, with Pi ∼n−1 Qi for each i = 1..k. In the first two
cases, using also the case of choice operator that we have already proved, it is
trivial to verify that μ(α)(C) = η(α)(C).

To prove the last case observe for the beginning that because ∼n−1⊆∼n, the
inductive hypothesis guarantees that for each i = 1..k,
P1|...|Pi−1|Pi+1|...|Pk ≈n−1 Q1|...|Qi−1|Qi+1|...|Qk and consequently that
P1|...|Pi−1|Pi+1|...|Pk ∼n−1 Q1|...|Qi−1|Qi+1|...|Qk.

Suppose that E � Pi → μi and E � Qi → ηi for all i = 1..k. Then,

μ = μ1
E
P1

⊗E
P2|...|Pk

(μ2
E
P2
⊗E

P3|...|Pk
(...(μk−1

E
Pk−1

⊗E
Pk

μk)...),

η = η1
E
Q1

⊗E
Q2|...|Qk

(η2
E
Q2

⊗E
Q3|...|Qk

(...(ηk−1
E
Qk−1

⊗E
Qk

ηk)...),
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Consider an arbitrary α ∈ �. Then,

μ(α)(C) =
∑

i=1..k

μi(α)(CP1 |...|Pi−1|Pi+1|...|Pk
),

η(α)(C) =
∑

i=1..k

ηi(α)(CQ1|...|Qi−1|Qi+1|...|Qk
).

Because C ∈ Π(≈n), CP1|...|Pi−1|Pi+1|...|Pk
and CQ1|...|Qi−1|Qi+1|...|Qk

contain only
processes with at most n− 1 occurrences of |, for any i. And because
P1|...|Pi−1|Pi+1|...|Pk ∼n−1 Q1|...|Qi−1|Qi+1|...|Qk, we obtain

CP1|...|Pi−1|Pi+1|...|Pk
= CQ1|...|Qi−1|Qi+1|...|Qk

∈ Π(∼n−1).

Further, using the fact that ∼n−1 is a rate bisimulation, we obtain

μ(α)(CP1|...|Pi−1|Pi+1|...|Pk
) = η(α)(CQ1 |...|Qi−1|Qi+1|...|Qk

)

that implies μ(α)(C) = η(α)(C).
A similar argument proves the case α = τ . Consequently, ≈n is a rate-

bisimulation.
Returning to our lemma, suppose that P and Q are two processes with non-

trivial forms such that P ∼ Q. Then, there exists n ∈ � such that P ∼n Q.
Suppose that R ∈ �m for some m ∈ �. Then P ∼m+n−1 Q and R ∼m+n−1 R
implying P |R ≈m+n Q|R. Because ≈m+n is a rate-bisimulation, we obtain that
P |R ∼ Q|R.

If P , Q or R (or some of them) have “trivial forms”, then there exist P ′ ≡ P ,
Q′ ≡ Q and R′ ≡ R with non-trivial forms. And because the bisimulation is an
equivalence that extends the structural congruence, we obtain the desired result
also for the general case.

5. Replication: We use the same proof strategy as for the parallel com-
position. We say that a process is in canonic form if it contains no parallel
composition of replicated subprocesses and no replicated process from the class
0≡. In other words, !(P |Q) is in canonic form while !P |!Q and !(P |Q)|!!0 are
not; using the structural congruence rules, we can associate to each process P a
structural congruent process with a canonic form called a canonic representative
for P . Notice also that all the canonic representatives of a given process have
the same number of occurrences of the operator “!”. Let �∗ be the set of process
terms with canonic form. Observe that because structural congruence is a subset
of bisimulation, it is sufficient to prove our lemma only for processes in �∗.

As before, let �n
∗ be the set of processes (in canonic form) with no more than

n occurrences of the operator “!”. Let ∼n be the stochastic bisimulation on �n
∗

and ≈n⊆ �n
∗ × �n

∗ defined by

≈n=∼n−1 ∪{(!P, !Q) | P ∼n−1 Q}.

We firstly show, inductively on n, that ≈n is a rate-bisimulation. Consider two
arbitrary processes P and Q such that P ≈n Q. We prove that if E � P → μ
and E � Q → η, then for arbitrary α ∈ �+ and C ∈ Π(≈n), μ(α)(C) = η(α)(C).
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Observe that if P ≈n Q, then either P ∼n−1 Q, or P ≡!R and Q ≡!S with
R ∼n−1 S. In the first case the equality is trivially true. In the other case,
suppose that E � R → μ′ and E � S → η′. Then, μ = μ′!R and η = η′!S . We have

μ(α)(C) = μ′(α)(C!R), η(α)(C) = η′(α)(C!S).

We prove that C!R = C!S . Let U ∈ C!R. Then, U |!R ∈ C and from the con-
struction of C ∈ Π(≈n), we obtain that there exists T ∈ �n−1

∗ such that U =!T .
Because !R|!T ∈ C, !(R|T ) ∈ C. Now, from R ∼n−1 S we obtain R ∼ S and
because T ∼ T , the case of parallel operator that we have proved guarantees that
R|T ∼ S|T . But the canonic representatives V,W of R|T and S|T respectively
are in �n−1

∗ meaning that V ∼n−1 W . The construction of ≈n guarantees further
that !V ≈n!W and because W ≡ S|T we obtain !(S|T ) ∈ C and U ≡!T ∈ C!S .

Because C!R = C!S and μ′(α)(C!R) = η′(α)(C!S) (this is implied by R ∼n−1

S), then μ(α)(C) = η(α)(C).
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Abstract. Hybrid systems are composed by continuous physical com-
ponent and discrete control component where the system state evolves
over time according to interacting law of discrete and continuous dy-
namics. Combinations of computation and control can lead to very com-
plicated system designs. Rather than address the formal verification of
hybrid systems, this paper forcuses on general modelers, aimed at mod-
elling hybrid dynamics in such a way one can extract the specification
of the control component from the specification of the total system and
the desire behaviour of the physical component. We treat more explicit
hybrid models by providing a mathematical framework based on clock
and synchronous signal. This paper presents an abstract concept of clock
with two suitable metric spaces for description of temporal order and
time latency, and links clocks with synchronous events by showing how
to represent the occurrences of an event by a clock. We tackle discrete
variables by giving them a clock-based representation, and show how to
capture dynamical behaviours of continuous components by recording
the time instants when a specific type of changes take place. This paper
introduces a clock-based hybrid language for description and reasoning
of both discrete and continuous dynamics, and applies it to a family of
physical devices, and demonstrates how to specify a water tanker and
construct and verify its controller based on clocks.

1 Introduction

Hybrid systems is an emergent area of growing importance, emphasising a sys-
tematic understanding of dynamic systems that combine digital and physical
effects. Combinations of computation and control can lead to very complicated
system designs. They occur frequently in automotive industries, aviation, factory
automation and mixed analog-digital chip design.

Hybrid systems are composed by continuous physical component and discrete
control component where the system state evolves over time according to in-
teracting law of discrete and continuous dynamics. For discrete dynamics, the
hybrid system changes state instantaneously and discontinuously. During con-
tinuous transitions, the system state is a continuous function of continuous time
and varies according to a differential equation. Hybrid system modelers mix dis-
crete time reactive systems with continuous time ones. Systems like Simulink
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treat explicit models made of Ordinary Differential Equations, while others, like
Modelica provide more general implicit models defined by Differential Algebraic
Equations. For hybrid systems a variety of models have been developed, among
them , hybrid automata [2,13,29], phase transition system [19], declarative con-
trol [16], extended state-transition system [30], and hybrid action systems [25].
We refer the reader to [8] for an overview of languages and tools related to hybrid
systems modeling and analysis.

Hybrid systems are notoriously hard to analyse and verify. As a standard ver-
ification technique, model checking [9,24] has been used successfully for verifying
temporal logic properties of finite-state abstraction of automata transition sys-
tems by exhaustive state space exploration. Because the continuous state space of
hybrid systems does not admit equivalent finite-state abstraction, model checkers
for hybrid automata use various approximations. However, the standard model
checking approaches cannot be used to treat nonlinear dynamics in the discrete
transitions and the approximations in the continuous dynamics. An alternative
is to use a combination of decision procedures for real arithmetic and interac-
tive theorem proving. [21] proposes a logic called Differential Dynamic Logic for
specifying properties of hybrid systems, and develops a powerful verification tool
for reasoning about complex hybrid systems.

Rather than address the formal verification of hybrid systems, this paper
forcuses on general modelers, aimed at modelling hybrid dynamics in such a way
one can extract the specification of the control component from the specification
of the total system and the desire behaviour of the physical component. We treat
more explicit hybrid models by providing a mathematical framework based on
clock and synchronous signal [6], and organise this paper in the following way:

– In Section 2, we present an abstract concept of clock with two suitable metric
spaces for description of temporal order and time latency, and link clocks
with synchronous events by showing how to represent the occurrences of an
event by a clock.

– Section 3 provides a set of operations on clocks used for description of discrete
dynamics, and explores their algebraic properties.

– Section 4 discusses the notion of location, and treat a local clock as the
combination of a clock with its residence. It also introduces temporal order
and time latency, based on the metrics defined on clocks, to local clocks
residing in different locations, and illustrates how to specify time delay in
the distributed systems using local clocks. We close Section 4 by formalising
global clock as the equivalent class of local clocks.

– In Section 5, we tackle discrete variables by giving them a clock-based rep-
resentation, and show how to capture dynamical behaviours of continuous
components by recording the time instants when a specific type of changes
take place.

– Section 6 introduces a clock-based hybrid language for description and rea-
soning of both discrete and continuous dynamics.

– Section 7 applies the specification mechanism introduced in Section 6 to a
family of physical devices, and demonstrates how to specify a water tanker
and construct and verify its controller based on clocks.
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2 Clock

A clock c is an increasing sequence of non-negative reals. We use the notation
Set(c) to denote the set of all elements of c, and its low and high rates �(c) and
∇(c) by

�(c) =df inf{(c[i+ 1]− c[i]) | i ∈ Nat}

∇(c) =df sup{(c[i+ 1]− c[i]) | i ∈ Nat}

c is called a periodic clock when �(c) = ∇(c).

Definition 2.1 (Healthy clock)

c is a healthy clock if it does not speed up infinitely, i.e.,

�(c) > 0

Lemma 2.2 If c is infinite and healthy then limi←∞c[i] = ∞.

Definition 2.3 (Partial order on clocks)

Clock c is finer than clock d if d is a sub-sequence of c

Set(d) ⊆ Set(c)

We record this fact by c � d.

Lemma 2.4
� is a partial order on clocks.

Definition 2.5 (Least upper bounds)

Let c and d be clocks. We define c ‖ d as the least bound of c and d with respect
the partial order �.

Lemma 2.6 Set(c ‖ d) = Set(c) ∪ Set(d)

Definition 2.7

c runs faster than d if for all i ∈ Nat

c[i] ≤ d[i]

We denote this by c � d.

Lemma 2.8 � is a partial order on clocks.

Definition 2.9 (Metric Space of Clocks)

Let c and d be clocks. Define

ρ(c, d) =df sup {‖c[i]− d[i]‖ | i ∈ Nat}

ρ is a metric on the set of clocks.
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Theorem 2.10

(1) ρ(c, d) ≥ 0
(2) ρ(c, d) = 0 iff c = d
(3) ρ(c, d) = ρ(d, c)
(4) ρ(c, e) ≤ ρ(c, d) + ρ(d, e)

Example 2.11 (Time properties of a buffer)

Let c and d be clocks recording time instants when the input and output of a
buffer occur respectively. Because the output is always preceded by the corre-
sponding input, the buffer is subject to the following law.

c � d

Furthermore, its transmission latency can be specified by ρ(c, d).

Example 2.12 (Event vs Clock)

Let e be an event. We will use the notation clock(e) to denote the clock that
records the time instants when the event e occurs.

Let c be a clock. We will use the notation event(c) to denote the event whose oc-
currence are recorded by clock c, where we neglect the name of the corresponding
event for convenience. Clearly we have

clock(event(c)) = c

3 Clock Operations

Definition 3.1 (Projection)

Let c be a clock, and P (i) a predicate with the integer variable i. The notation
P  c denotes the clock defined by

Set(P  c) =df {c[i] | i ∈ Nat ∧ P (i)}

Example 3.2

(1) Hour = dividable(i, 60)  Minute

where dividable(i, 60) =df ∃n : Nat • (i = 60× n)

and Minute =df Nat.

(2) Clock c′ =< c[1], .., c[n], .. > can be rewritten as (i > 0)  c

Lemma 3.3 The projection operator preserves the clock healthiness property.

Proof. Direct from �(c) ≤ �(P  c).

The projection operator satisfies the following properties
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Theorem 3.4

(1) true  c = c

(2) (P ∨Q)  c = (P  c ‖ Q  c)

(3) c � d implies P  c � P � d

(4) P  c � (P ∨Q)  c

Definition 3.5 (Filter)

Let c be a clock, and R(x) a predicate where variable x ranges over non-negative
reals. The notation c � R denotes the clock, defined by

Set(c � R) =df {c[i] | i ∈ Nat ∧R(c[i])}

From the above definition it follows that the filter operator can be redefined by
the projection operator:

Theorem 3.6 (Filer vs Projection)

(c � R) = (R ◦ c)  c

Lemma 3.7. The filter operator preserves the clock healthiness property.

Proof. From Lemma 3.3 and Theorem 3.6.

The filter operator � satisfies the following properties.

Theorem 3.8

(1) c � true = c

(2) (c � R) � S = c � (R ∧ S)

(3) c → (R ∨ S) = (c → R) ‖ (c � S)

(4) (c ‖ d) � R = (c � R) ‖ (d � R)

(5) c � d implies (c � R) � (d � R)

(6) c � R � c � (R ∨ S)

Definition 3.9 (Shift)

Let c be a clock and r a non-negative real number. The notation r >> c repre-
sents the clock defined by

Set(r >> c) =df {c[i] + r | i ∈ Nat}

Lemma 3.10. The shift operator preserves the clock healthiness property.

Proof. From the fact that �(r >> c) = �(c)

The shift operator satisfies the following properties

Theorem 3.11

(1) 0 >> c = c

(2) r1 >> (r2 >> c) = (r1 + r2) >> c

(3) r >> (c ‖ d) = (r >> c) ‖ (r >> d)
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(4) P  (r >> c) = r >> (P  c)

(5) (r >> c) � R(x)) = r >> (c � R(x+ r))

(6) c � d implies r >> c � r >> d

(7) c � d implies r >> c � r >> d

Definition 3.12 (Intersect)

Let c and d be clocks, and P (i) a predicate on integer variable i. The notation

c
P←↩ d denotes the clock defined by

c
P←↩ d =df ((i < k)  c) ‖ (c[k − 1] >> d)

where k =df Min{i | i ∈ Nat ∧ ¬P (i)}, and c[−1] =df 0.

Lemma 3.13

If both c and d are healthy, then c
P←↩ d is also healthy.

Proof. From the fact that �(c
P←↩ d ≥ min(�(c), �(d))

Theorem 3.14

(1) c
true←↩ d = c

(2) c
false←↩ d = d

(3) c
i≤n←↩ d = ({i ≤ n}  c) · (c[n] >> d)

(4) c
P←↩ (d ‖ e) = (c

P←↩ d) ‖ (c
P←↩ e)

(5) r >> (c
P←↩ d) = (r >> c)

P←↩ d

Definition 3.15 (Interrupt)

Let c and d be clocks, and R(x) a predicate on real-value variable x. The notation

c
R
↪→ d represents the clock defined by

c
R
↪→ d =df (i < k)  c ‖ (c[k − 1] >> d)

where k =df Min{i | i ∈ Nat ∧ ¬R(c[i])}.
Theorem 3.16 (Link between Intersect and Interrupt)

c
R
↪→ d = c

R(c[i])
←↩ d

Lemma 3.17. If both c and d are healthy, then c
R
↪→ d is also healthy.

The interrupt operator satisfies the following properties

Theorem 3.18

(1) c
true
↪→ d = c

(2) c
false
↪→ d = d

(3) c
x≤c[n]
↪→ d = c � {x ≤ c[n]} · (c[n+ 1] >> d)
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(4) c
R
↪→ (d ‖ e) = (c

R
↪→ d) ‖ (c

R
↪→ e)

(5) r >> (c
R
↪→ d) = (r >> c)

R
↪→ d

4 Local Clock and Global Clock

Definition 4.1 (Local Clock)

Let l be a label denoting a location, and c a clock. The notation

l : c

represents the clock c that locates at location l.
We are going to extend the definitions of �, � and ρ to local clocks at the

same location as follows:

l : c � l : d =df (c � d)

l : c � l : d =df (c � d)

ρ(l : c, l : d) =df ρ(c, d)

Definition 4.2 (Time Lag)

For locations l1 and l2, we use
δt(l1, l2)

to denote the time lag between l1 and l2, which is solely captured by the following
law:

Law δt(l1, l3) = δt(l1, l2) + δt(l2, l3)

Corollary 4.3 (1) δt(l, l) = 0

(2) δt(l1, l2) = −δt(l2, l1)

Proof. By setting l1 = l2 = l3 = l we obtain (1) from the above law. The
conclusion (2) follows from the fact

δt(l1, l2) + δt(l2, l1) = δt(l1, l1) = 0

Definition 4.4 (Counterpart)

Let l : c be a clock, and l̂ a location. The notation l̂ : (l : c) stands for the

counterpart of the local clock l : c at the location l̂:

l̂ : (l : c) =df l̂ : (δt(l, l̂) >> c)
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Theorem 4.5

(1) l : (l : c) = l : c

(2) l1 : (l2 : (l3 : c)) = l1 : (l3 : c)

Proof (1) comes from Theorem 3.11(1) and Corollary 4.3. (2) follows from Law
of the time lag function.

Definition 4.6 (Metric Space of Local Clocks)

Define ρ(l1 : c1, l2 : c2) =df ρ(l2 : (l1 : c1), l2 : c2). We are going to show that
ρ is a metric function on local clocks.

Theorem 4.7

(1) ρ(l1 : c1, l2 : c2) = ρ(l2 : c2, l1 : c1)

(2) ρ(l1 : c1, l3 : c3) ≤ ρ(l1 : c1, l2 : c2) + ρ(l2 : c2, l3 : c3)

(3) ρ(l : c, l̂ : (l : c)) = 0

Proof of (1) LHS {Def 4.6}
= ρ(l2 : (δt(l1, l2) >> c1), l2 : c2) {Def 4.1}
= ρ(δt(l1, l2) >> c1, c2) {Def of 2.9}
= ρ(c1, − δt(l1, l2) >> c2) {Theorem 2.10(3)}
= ρ(−δt(l1, l2) >> c2, c1) {Corollary 4.3(1)}
= ρ(δt(l2, l1) >> c2, c1) {Def 4.6}
= RHS

Proof of (2) LHS {Def 4.6}
= ρ(δt(l1, l3) >> c1, c3) {Law of Def 4.2}
= ρ((δt(l1, l2) + δt(l2, l3)) >> c1, c3) {Def 2.9}
= ρ(δt(l1, l2) >> c1, − δt(l2, l3) >> c3) {Theorem 2.10(4)}
≤ ρ(δt(l1, l2) >> c1, c2) + ρ(c2, − δt(l2, l3) >> c3) {Def 3.9}
= ρ(δt(l1, l2) >> c1, c2) + ρ(δt(l2, l3) >> c2, c3) {Def 4.6}
= RHS

Proof of (3) LHS {Def 4.4}
= ρ(l : c, l̂ : (δt(l, l̂) >> c)) {Def 4.6}
= ρ(l̂ : (l : c), l̂ : (δt(l, l̂) >> c)) {Def 4.4}
= ρ(l̂ : (δt(l, l̂) >> c), l̂ : (δt(l, l̂) >> c)) {Def 4.1}
= ρ((δt(l, l̂) >> c), (δt(l, l̂) >> c)) {Theorem 2.10(2)}
= RHS

Definition 4.8 (Partial order on local clocks)

Define

l1 : c1 � l2 : c2 =df l2 : (l1 : c1) � l2 : c2

l1 : c1 � l2 : c2 =df l2 : (l1 : c1) � l2 : c2
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Theorem 4.9

(1) l2 : (l1 : c1) � l2 : c2 iff l1 : c1 � l1 : (l2 : c2)

(2) l2 : (l1 : c1) � l2 : c2 iff l1 : c1 � l1 : (l2 : c2)

Proof of (1) LHS {Def 4.8}
≡ l2 : (l1 : c1) � l2 : c2 {Def 4.4}
≡ l2 : (δ(l1, l2) >> c1) � l2 : c2 {Def 4.1}
≡ δ(l1, l2) >> c1 � c2 {Def 2.7}
≡ c1 � −δ(l1, l2) >> c2 {Corollary 4.3(1)}
≡ c1 � δ(l2, l1) >> c2 {Def 4.1}
≡ l1 : c1 � l1 : (δ(l2, l1) >> c2) {Def 4.4}
≡ RHS

Example 4.10

Assume that ch is a channel used to link locations l1 and l2. Suppose that l1 : c1
and l2 : c2 are local clocks that record the input events at location l1 and the
corresponding output events at location l2. Clearly

(l1 : c1) � (l2 : c2)

The latency of the channel ch is defined by

ρ(l1 : c1, l2 : c2)

Definition 4.11 (Equivalence)

We introduce the binary relation ∼ between local clocks as follows:

(l1 : c1) ∼ (l2 : c2) =df ρ(l1 : c1, l2 : c2) = 0

Lemma 4.12
l1 : c1 ∼ l2 : c2 iff c2 = δt(l1, l2) >> c1

Proof. From Definition 4.4 and 4.6.

Theorem 4.13

∼ is an equivalent relation on local clocks.

Proof

l1 : c1 ∼ l2 : c2 {Lemma 4.12}
≡ c2 = δt(l1, l2) >> c1 {Corollary 4.3(1)}
≡ c2 = −δt(l2, l1) >> c1 {Def 3.9}
≡ c1 = δ(l2, l1) >> c2 {Lemma 4.12}
≡ l2 : c2 ∼ l1 : c1
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(l1 : c1 ∼ l2 : c2) ∧ (l2 : c2 ∼ l3 : c3) {Lemma 4.12}
≡ c2 = δt(l1, l2) >> c1 ∧ c3 = δt(l2, l3) >> c2 {Theorem 3.11(2)}
⇒ c3 = (δt(l1, l2) + δt(l2, l3)) >> c1 {Law of Def 4.2}
≡ c3 = δt(l1, l3) >> c1 {Lemma 4.12}
≡ l1 : c1 ∼ l3 : c3

Theorem 4.14

(1) ∼ ; � = � = � ; ∼
(2) ∼ ; � = � = � ; ∼
Definition 4.15 (Global Clock)

A global clock [l : c] is defined as an equivalent class of local clocks:

[l : c] =df {l̂ : d | (l : c) ∼ (l̂ : d)}

Define

[l1 : c1] � [l2 : c2] =df l1 : c1 � l2 : c2

[l1 : c1] � [l2 : c2] =df l1 : c1 � l2 : c2

From Theorem 3.14 it follows that both � and � are well-defined.

Definition 4.16 (Metric space of global clocks)

We define
ρ([l1 : c1], [l2 : c2]) =df ρ(l1 : c1, l2 : c2)

Lemma 4.17 ρ is well-defined.

Proof. Assume that l1 : c1 ∼ l̂ : d.

ρ([l̂ : d], [l2 : c2]) {Def 4.16}
= ρ(l̂ : d, l2 : c2) {Theorem 4.7(2)}
≤ ρ(l̂ : d, l1 : c1) + ρ(l1 : c1, l2 : c2) {Def 4.11}
= ρ(l1 : c1, l2 : c2) {Def 4.16}
= ρ([l1 : c1], [l2 : c2]

From the symmetry of ∼ we can show

ρ([l1 : c1], [l2 : c2]) ≤ ρ([l̂ : d], [l2 : c2])

as required.

Theorem 4.18

ρ is a metric function on global clocks.

Proof. From Definition 4.16 and Theorem 4.7.



32 J. He

5 Discrete Variable

Definition 5.1 (Discrete Variable)

x is a discrete variable if there exists a healthy clock c with c[0] = 0 such that x
keeps constant over every interval [c[i], c[i+ 1]].

We introduce the clock change(x) to record the time instants when the value
of x changes

change(x) = {t | t = 0 ∨ (x(t− 0) �= x(t))}

where x(t− 0) is defined as the left limit of x at the time instant t

x(t− 0) =df limδ→0x(t− δ)

Example 5.2

Let b be a Boolean expression. We introduce two clocks to describe its rising
edge and falling edge respectively

rising(b) =df {t | ¬b(t− 0) ∧ b(t)}

falling(b) =df rising(¬b)

For simplicity we set b(0− 0) =df ¬b(0).
Clock rising and falling can be used to describe the dynamic feature of contin-
uous functions.

Example 5.3

Consider a continuous function f and set

climb(f, r) =df rising(f ≥ r)

drop(f, r) =df falling(f ≤ r)

cross(f, r) =df (climb(f, r) ‖ drop(f, r))

Definition 5.4 (Specification of Discrete Variables)

Let c be a clock, and s a sequence of reals with the same length as c. The pair
(c, s) defines a discrete variable x where for all n ∈ Nat

x(t) = s[n] whenever t ∈ [c[n], c[n+ 1])

Specially, (c, s) is a canonical form if s[n] �= s[n+ 1] for all n ∈ Nat.

Example 5.5 (Deriving canonical specification)

Let x be a discrete variable, and set

cx =df change(x)

sx =df x ◦ cx
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Clearly (cx, sx) is a canonical specification of x.
A specification (c, s) can be converted to a canonical form in the following

way. Set
P (i) =df i = 0 ∨ (s[i− 1] �= s[i])

and define

c′ =df P  c

s′ =df P  s

It is easy to show that (c′, s′) is a canonical form. We use the notation cano(c, s)
to represent the above canonical specification (c′, s′).

Example 5.6 (Sampling a continuous function)

Let c be a clock with c[0] = 0 and f a continuous function. The notation f(c)
represents the discrete variable specification (c, f ◦ c).

Example 5.7 (Time shifting)

Let x be a discrete variable, and r a non-negative real. The notation r >> x
represents the discrete variable that has the behaviour as x except that its clock
is the shift of cx:

(r >> x) =df (< 0 > ·(r >> cx), sx)

Example 5.8 (Lift of operators of reals)

Let op be a binary operator of reals. Define its lift on discrete variables x and y
by

x op y =df cano(c, s)

where c =df cx‖cy, and

s[n] =df

⎧⎪⎪⎨⎪⎪⎩
sx[i] op sy[j] if c[n] = cx[i]∧

cy[j] ≤ c[n] < cy[j + 1]
sx[j] op sy[i] if c[n] = cy[i]∧

cx[j] ≤ c[n] < cx[j + 1]

6 Modeling Mechanism

Definition 6.1 (Assign Discrete Expressions to Discrete Variables)

Let x be a discrete variable, and e a discrete expression. The equation

x = e

generates the canonical specification (ce, se) for x.
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Example 6.2

Let x be a discrete variable, and u a continuous variable. Assume that c is a
clock with c[0] = 0. The equation

x = u(c)

samples the value of u at every time instant of clock c, and generates the following
canonical specification for x

cano(c, u ◦ c)

Definition 6.3 (Ordinary Differential Equations)

Let u be a continuous variable, and f a continuous function. The equation

·
u= f inita

specifies the following relation between u and f

∀t • ( ·u= f) ∧ (u(0) = a)

Definition 6.4 (Update the Boundary Values)

Let y be a discrete variable. The equation

·
u = f reset y

enables us to modify the boundary value of continuous variable u by assigning
sy[n] to u at the time instant cy[n]. The equation specifies the following relation
between u and y: ∧

n

(
·
u=In f) ∧ u(cy) = sy

where In =df [cy[n], cy[n+ 1]) and

(u =I v) =df ∀t ∈ I • (u(t) = v(t))

7 Examples

7.1 Buffer

Let in and out represent the input and output events of a buffer. A timing
specification of the buffer is

clock(in) � clock(out)

We can add the following constraint to specify the transmission latency

ρ(clock(in), clock(out)) ≤ l

Another specification is deterministic which treats in and out as discrete vari-
ables, and uses the following assignment to link out with in:

out = (l >> in)
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7.2 Sensor

An active sensor reads the state of its environment periodically. Its behaviour
can be specified by the assignment

out = r >> u(c) where

1. out a discrete variable denoting the output of the sensor
2. u a continuous variable representing the environment
3. c a prior fixed periodical clock specifying the sampling rate of the sensor
4. r a positive real denoting the sampling delay.

A passive sensor is used to monitor the change of its environment, where we
assume that the state of the environment can be modelled by a discrete variable.
In this case, the sensor is ignited only when the discrete variable changes its
value.

out = r >> in

where in is a discrete variable representing its environment.
Another type of passive sensors can be specified by the following assignment

out = r >> in(c)

where in is a continuous variable representing the environment, and c is a clock
describing some dynamic feature of in such as climb(in, 40) and falling(in, −10).

7.3 Actuator

An actuator with in and out as its ports can be specified by

out = r >> f(in)

where

1. both in and out are discrete variables, and
2. r represents the transmission delay satisfying

r < �(cin)

3. f is a function which maps input received from the port in to output deliv-
ered to the port out

If we model in and out as events, then the specification of an actuator can be

clock(in) � clock(out) � clock(in)′ ∧
ρ(clock(in), clock(out)) ≤ r∧

message(out) = f(message(in))
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7.4 Water Tank Controller

The system is used to control the water level h in a tank by switching a control
valve. The goal is to keep the water level between L and H units.

(Req1) L ≤ h ≤ H

Suppose that the valve is open initially, and the water level is hinit unit, and
rising at constant speed a. Once the valve is closed, the water level will drop at
speed b until the valve is reopened. In this case, the status of the control valve
can simply be captured by the Boolean expression valve = open because it only
takes either open or closed as its value. Define

clock(on) =df rising(valve = open)

clock(off) =df falling(valve = open)

Clearly clock(on) and clock(off) are required to meet the following conditions:

(Req2) clock(on) � clock(off) � clock(on)′

(Req3) clock(off) ∩ clock(on) = ∅
We introduce a discrete variable x to model the current speed at which the water
level changes, which has a as its initial value, and then changes its value from a
to −b once the valve is closed, and switches back to a when the valve is reopened:

x =df (clock(on)‖clock(off), (< a >< −b >)∗)

The behaviour of the water tank is described by the following equation

(Eq1)
·
h= x inithinit

Now we are asked to design clock(on) and clock(off) to meet three require-
ments listed before.

Design 1

Let ε < min(H − hinit, hinit − L).

Lemma 7.1. H − ε > hinit > L+ ε

Proof. From the assumption ε < min(H − hinit, hinit − L)

We choose clock(on) and clock(off) to satisfy the following conditions:

(1) climb(h, H − ε) � clock(off)

(2) clock(off) � (ε/a >> climb(h, H − ε))

(3) drop(h, L+ ε) � clock(on)′

(4) clock(on)′ � (ε/b >> drop(h, L+ ε))

where the first two conditions ensure that the valve will be closed soon after the
water level is higher than H − ε, while the final two conditions indicate that the
valve will be reopen if the water level is lower than L+ ε.
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We are going to verify that the above design satisfies the requirements Req1,
Req2 and Req3.

Lemma 7.2. Over the interval I =df (clock(on)[0], clock(off)[0]),
·
h=I a,

and
(H − ε) ≤ h(clock(off)[0]) ≤ H

Proof. Let l = climb(h, H−ε)[0] and r = clock(off)[0]. From the conditions
(1) and (2) of clock(off) it follows that

l ≤ r ≤ l + (ε/a) (∗)

We have

H − ε {Def of climb}
= h(l) {h is increasing on[l, r]}
≤ h(r) {Calculation}
= h(c+ (d− c)) {Equation (Eq1)}

= h(l) +
∫ r

l

·
h dt {Def of x}

= (H − ε) + a× (r − l) {Conclusion (∗)}
≤ H

Lemma 7.3.
·
u=In −b over every interval In =df (clock(off)[n], clock(on)[n+

1]), and
(L + ε) ≥ h(clock(on)[n+ 1]) ≥ L

Proof. Let l = drop(h, H − ε)[n] and r = clock(on)[n+ 1]. We have

l ≤ r ≤ l + (ε/b) (∗)

from the conditions (3) and (4) of clock(on), and

L+ ε {Def of drop}
= h(l) {h is decreasing on [l, r]}
≥ h(r) {Calculation}
= h(c+ (d− c)) {Equation (Eq1)}

= h(l) +
∫ r

l

·
h dt {Def of x}

= (L + ε) + −b× (r − l) {Conclusion (ast)}
≥ L

Lemma 7.4. Over every interval Jn =df (clock(on)[n], clock(off)[n]),
·
h=J

a, and
(H − ε) ≤ h(clock(off)[n]) ≤ H

Proof. Similar to Lemma 7.3.

Lemma 7.5. Clock clock(off)‖clock(on) is healthy.
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Proof. From the conditions (1)-(4) of Design 1 and Lemma 7.2–7.4 it follows
that for all n ≥ 1

(clock(on)[n]− clock(off)[n− 1]) {Condition (1)− (4)}
≥ (drop(h, L+ ε)[n− 1]− climb(h, H)[n]) {Lemma 7.3}
≥ (H − L− ε)/b

and

(clock(off)[n]− clock(on)[n]) {Condition (1)− (4)}
≥ (climb(h, H − ε)[n]− drop(h, L)[n] {Lemma 7.4}
≥ (H − L− ε)/a

Theorem 7.6 ∀t • (L ≤ h(t) ≤ H

Proof. From Lemma 7.2 we conclude that over [clock[0], clock(off)[0])

L ≤ h(t) ≤ M

holds. Lemma 7.3 implies that

H ≥ u(clock(off)[n]) ≥ h(t) ≥ h(clock(on)[n+ 1]) ≥ L

holds over every interval (clock(off)[n], clock(on)[n+ 1]).
From Lemma Lemma 7.4 we conclude that

L ≤ u(clock(on)[n]) ≤ h(t) ≤ h(clock(off)[n]) ≤ H

holds over every interval (clock(on)[n], clock(off)[n]).

The conclusion follows from Lemma 7.1 and Lemma 2.2.

Design 2

We decide to divide the controller into a control unit with a sensor where the
latter monitors the water level and sends the events high and low to the former.

We require that the sensor satisfies

climb(u, H − ε) � clock(high)∧
clock(high) � ε/(2a) >> climb(u, H − ε)∧

drop(u, L+ ε) � clock(low)∧
clock(low) � ε/(2b) >> drop(u, L+ ε)

The control unit sends the control command to the valve at the receipt of high
and low from the sensor. It is required to satisfy

clock(high) � clock(off)∧
clock(off)) � (ε/2a) >> clock(high)∧

clock(low) � clock(on)∧
clock(on) � (ε/2b) >> clock(low)
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Theorem 7.7

If l1, r1 ≤ ε/2a and l2, r2 ≤ ε/2b, then

clock(high) = r1 >> climb(u, H − ε)
clock(low) = r2 >> drop(u, L+ ε)

and

clock(off) = l1 >> clock(high)
clock(on) = l2 >> clock(low)

are correct designs of the sensor and the control unit.

8 Discussion

Hybrid systems is an emerging area of growing importance, where the system
state evolves over time according to interacting laws of discrete and continuous
dynamics. Combinations of computation and control can lead to very compli-
cated system design. This paper proposes a clock-based framework in support
of specification and design of hybrid systems:

– The behaviour of our system is described in terms of system state and in-
teraction.

– The discrete variables of our system can be identified with a clock which
records the time instants when the discrete jump takes place.

– The continuous transitions can be captured by differential equations where
some of continuous dynamics are identified with a clock.

– Interacting events can also be specified by clock. As a result, clock variables
become the first-class ingredients in our specification stage.

– The timing features of our system such as time latency and scheduling policy
can also be described by the temporal orders introduced in our mechanism.

In summary, first order logic annotated with clock can easily be used for verifying
the safety properties of hybrid system models. It handles actual operational
models of hybrid systems such as discrete interactions and continuous transitions.
Its strength also lies in tackling various timing feature of hybrid systems.

In future, we will deliver a hybrid parallel programming language with clock as
a uniform compositional models for hybrid systems, and establish its link with
the existing modelling languages [11,18,26,28].
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Abstract. Ubiquitous computing, where computers ‘disappear’ and in-
stead sensor-enabled and software-controlled devices assist us in every-
day tasks, has become an established trend. To ensure the safety and
reliability of software embedded in these devices, rigorous model-based
design methodologies are called for. Quantitative verification, a powerful
technique for analysing system models against quantitative properties
such as “the probability of a data packet being delivered within 1ms to a
nearby Bluetooth device is at least 0.98”, has proved useful by detecting
and correcting flaws in a number of ubiquitous computing applications.
In this paper, we focus on three key aspects of ubiquitous computing: au-
tonomous behaviour, constrained resources and adaptiveness. We sum-
marise recent advances of quantitative verification in relation to these
aspects, illustrating each with a case study analysed using the proba-
bilistic model checker PRISM. The paper concludes with an outline of
future challenges that remain in this area.

1 Introduction

Ubiquitous computing, also known as pervasive computing, was envisaged by
Mark Weiser in [49], where he predicted that computers will “weave themselves
into the fabric of everyday life until they are indistinguishable from it”. To-
day, powered by advances in microelectronics, mobile phone technology and
cloud computing, we are witnessing a tremendous growth in device technologies
for software-controlled ‘smart’ devices that support our daily activities and au-
tonomously make decisions on our behalf. They can sense what is around them,
remember the context and adapt to new situations. They can communicate wire-
lessly with other devices and humans, and are Internet-enabled. Applications
are endless, from environmental and health monitoring, through home appliance
networks, to self-driving cars. A related vision is the ‘Internet of Things’, where
everyday objects (called ‘everyware’ by Adam Greenfield) are enhanced with
information processing capabilities.

The growing dependence of society on ubiquitous computing calls for rigorous
device design methodologies, which is particularly important for their embed-
ded software that controls the device actions and whose failure can lead to costly
recalls. Model-based design methodologies have the potential to improve the re-
liability of devices and reduce the development effort through code generation
and software reuse via product lines. In particular, automated verification via

Z. Liu, J. Woodcock, and H. Zhu (Eds.): ICTAC 2013, LNCS 8049, pp. 42–58, 2013.
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model checking provides the means to systematically verify software against
correctness requirements such as “the smartphone will never reveal private data
to unauthorised contacts”. These techniques have been successfully applied to
TinyOS sensor network software [5] with respect to safety assertions. However,
when modelling ubiquitous computing devices we often need to include quanti-
tative aspects such as probability, time delays and resource usage in the models.
Probability is needed because of inherent unreliability of wireless communica-
tion technologies such as Bluetooth and ZigBee, which use randomised back off
schemes to minimise collisions; also, embedded devices are frequently powered by
battery and components may be prone to failure. Quantitative verification [33]
techniques are well suited to this case, where systems are modelled as variants
of Markov chains, annotated with real-time and quantitative costs/rewards. The
aim is to automatically establish quantitative properties, such as “the probability
of a monitoring device failing to issue alarm when a dangerous rise in pollutant
level is detected”, “the worst-case expected time for a Bluetooth device to dis-
cover another device in vicinity”, or “the minimum expected power consumption
of the smartphone while looking up directions with GPS”. Quantitative, prob-
abilistic verification has been implemented in the probabilistic model checker
PRISM [36], which has been applied to a wide range of case studies from the
ubiquitous computing domain, resulting in automatic detection and diagnosis of
software flaws and unexpected trends.

In this paper, we provide a brief overview of quantitative verification tech-
niques, including typical features of the models and property specification nota-
tions. We then describe a selection of recent advances, highlighting the following
three key aspects of ubiquitous computing devices:

1. autonomous behaviour : increasingly, we are relying on ubiquitous computing
devices to act autonomously on our behalf, including safety-critical applica-
tions such as self-driving cars, or robotic search and rescue missions;

2. constrained resources : the embedded processors have limited memory and
CPU speed, are often battery powered, and employ unreliable communica-
tion technologies, and yet they are expected to reliably and timely perform
critical functions such as financial transactions;

3. adaptiveness : ubiquitous computing devices are typically enabled and man-
aged by cloud services, which dynamically adapt behaviours to changing
requirements and environmental context, necessitating continuous monitor-
ing and runtime verification to provide dependability assurance.

We illustrate each of the above with a typical case study drawn from the ubiq-
uitous computing domain, describing the modelling approach taken and lessons
learnt. The case studies involve PRISM and pertain to sensor-enabled mobile
devices such as autonomous robots and smartphones. The requirements that we
wish to ensure include:“the robot will successfully arrive at the exit with proba-
bility greater than 0.99, without hitting any obstacles” (autonomous behaviour);
“the email protocol will ensure that the total energy cost of sending a message
does not exceed a specified bound, even if the bit error rate is high (constrained
resources); and “the device will maintain 0.97 minimum probability of delivering
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sensor readings to the beacon within 5ms, even if the bandwidth drops from time
to time” (adaptiveness). We conclude by outlining future research challenges in
quantitative verification for ubiquitous computing.

The paper is organised as follows. In Section 2 we give an overview of quan-
titative verification techniques, focusing on Markov chain and Markov decision
process models, and the corresponding temporal logics, PCTL and CSL. Sec-
tion 3 demonstrates recent advances of quantitative verification by highlight-
ing a number of case studies from ubiquitous computing, all analysed with the
PRISM model checker [36]. Section 4 concludes the paper by summarising future
research challenges.

2 Quantitative Verification Basics

We give a brief overview of a selection of probabilistic models and specification
formalisms used in automated quantitative verification. The models have been
chosen according to case studies presented in the next section. We note that all
models and specification notations discussed here are supported by PRISM [36].

2.1 Markov Decision Processes

In ubiquitous computing devices probabilistic behaviour typically coexists with
nondeterminism. Probability is the result of a random event, for example an
electronic coin toss, sensor failure or stochastic delay, and nondeterminism is used
to model concurrent execution or action-based control. Both nondeterminism
and (discrete) probability are present in the classical model of Markov decision
processes (MDPs).

Let S be a finite set; we denote the set of probability distributions over S by
Dist(S).

Definition 1 (MDP). A Markov decision process (MDP) is a tuple M =
(S, s̄,Act ,P,AP , L), where

– S is a finite set of states and s̄ ∈ S is the initial state;
– Act is a finite set of actions;
– P : S × Act × S ∈ [0, 1] is a transition probability matrix where

∑
s′∈S P

(s, a, s′) ∈ {0, 1} for any s ∈ S and a ∈ Act;
– AP is a set of atomic propositions;
– L : S → 2AP is a labelling of states with atomic propositions.

We let δ(s) ⊆ Act denote the set of actions enabled in s, i.e. a ∈ δ(s) if∑
s′∈S P(s, a, s′) = 1. The MDP executes as follows: in each state s the suc-

cessor state is chosen by, first, nondeterministically selecting an enabled action
a ∈ δ(s), and, second, choosing the successor according to the probability distri-
bution P(s, a). A path of M is of the form π = s0a0s1a1s2 · · · where ai ∈ δ(si)
and P(si, ai, si+1) > 0 for each i ≥ 0.
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To reason formally about the behaviour of MDPs, we use the notion of strate-
gies (also called adversaries or policies), which resolve all the nondeterministic
choices in a model. Formally, a strategy is a function σ that maps a finite path
ending in s to an action in δ(s) based on the history of choices made so far. Un-
der a particular strategy, the behaviour of an MDP is fully probabilistic and we
can define a probability space over the possible paths through the model using
standard construction [31].

A discrete-time Markov chain (DTMC ) is an MDP D = (S, s̄,Act ,P,AP , L)
with |Act | = 1, where

∑
s′∈S P(s, a, s′) = 1 for all s ∈ S. Thus, a DTMC can be

viewed as a single transition probability matrix P : S × S ∈ [0, 1], with all rows
summing up to 1. We omit Act from the tuple when referring to DTMCs.

MDP properties are typically expressed in temporal logics. The logic PCTL
(Probabilistic Computation Tree Logic) [30], a probabilistic extension of the
temporal logic CTL is defined below.

Definition 2. The syntax of PCTL is given by:

Φ ::= true
∣∣ a ∣∣ ¬Φ ∣∣ Φ ∧ Φ

∣∣ Φ ∨ Φ
∣∣ P∼p[ψ ]

ψ ::= XΦ
∣∣ ΦU≤k Φ

∣∣ ΦUΦ

where a is an atomic proposition, ∼∈{<,≤,≥, >}, p ∈ [0, 1] and k ∈ IN.

PCTL formulae Φ are interpreted over the states of an MDP. As path formulae
we allow XΦ (“Φ is satisfied in the next step”), Φ1 U

≤k Φ2 (“Φ2 is satisfied
within k steps and Φ1 is true until that point”) and Φ1 UΦ2 (“Φ2 is eventually
satisfied and Φ1 is true until then”). The usual derived variants FΦ, GΦ are also
permitted. We say that a state s ∈ S satisfies a PCTL formula Φ, denoted s |= Φ,
if the probability of a path formula ψ being true in s satisfies the bound ∼ p
for all strategies. We can also use PCTL in quantitative form, e.g. Pmin=? [ ψ ],
which returns the minimum/maximum probability of satisfying ψ. Examples of
PCTL properties are:

– Pmax=? [ F lost ] - “the maximum probability, over all possible strategies, of
the protocol losing a message”;

– Pmin=? [ F
≤10 deliver ] - “the minimum probability, over all possible strate-

gies, of the protocol delivering a message within 10 time steps”;
– P≥1 [ near supplies U exit ] - “under all possible strategies, with probability

1, the robot always remains near supplies until exiting”.

Model checking PCTL over MDPs requires a combination of graph-based al-
gorithms and numerical solution techniques. Typically, we are interested in the
best- or worst-case behaviour and compute the minimum or maximum probabil-
ity that some event occurs, quantifying over all possible strategies. The minimum
and maximum probabilities can be computed by solving linear optimisation prob-
lems, which can be implemented using dynamic programming or LP solvers.We
can also synthesise the strategy that achieves the minimum/maximum proba-
bility. For the case of DTMCs, it suffices to solve linear equation systems. More
expressive logics such as LTL or PCTL* can also be defined, albeit their model
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checking becomes more expensive. The usual approach is to convert the LTL
formula to a deterministic Rabin automaton and perform verification on the
product of this automaton and the original MDP; see e.g. [2,23].

2.2 Continuous-Time Markov Chains

In MDPs, the progress of time is modelled by discrete time steps, one for each
transition of the model. For many applications, it is preferable to use a continuous
model of time, where the delays between transitions can be arbitrary real values.
A natural extension of MDPs with real-time (not discussed here) is probabilistic
timed automata [39]. We focus on the simpler, classical model of continuous-time
Markov chains (CTMCs), which have no nondeterminism, and extend DTMCs
with real-time by modelling transition delays with exponential distributions.

Definition 3. A continuous-time Markov chain (CTMC) is C =
(S, s̄,P, E,AP , L) where:

– (S, s̄,P,AP , L) is a DTMC;
– E : S → IR≥0 is the exit rate.

In a CTMC C, the residence time of a state s ∈ S is a random variable governed
by an exponential distribution with parameter E(s). Therefore, the probability

to exit state s in t time units is given by
∫ t

0 E(s)·e−E(s)τdτ . To take the transition

from s to another state s′ in t time units, the probability equals P(s, s′)·
∫ t

0 E(s)·
e−E(s)τdτ .

Intuitively, the CTMC executes as follows: in each state s, it stays in this
state for time t, drawn from exponential distribution with parameter E(s), and
then moves to state s′ with probability P(s, s′). A timed path of C is a finite or
infinite sequence s0t0s1t1s2 · · · tn−1sn . . ., where ti ∈ IR>0 for each i ≥ 0. As for
DTMCs, a probability space over the paths through a CTMC can be defined [3],
where events correspond to certain sets of paths.

To specify quantitative properties of CTMCs, the logic CSL [3] has been
proposed, which is syntactically similar to PCTL, except that it now includes
continuous versions of the step-bounded path operators.

Definition 4. The syntax of CSL is given by:

Φ ::= true
∣∣ a ∣∣ ¬Φ ∣∣ Φ ∧ Φ

∣∣ Φ ∨ Φ
∣∣ P∼p[ψ ]

∣∣ S∼p[Φ ]

ψ ::= XΦ
∣∣ ΦU[t,t′] Φ

∣∣ ΦUΦ

where a is an atomic proposition, ∼∈{<,≤,≥, >}, p ∈ [0, 1] and t, t′ ∈ IR≥0.

The path formula Φ1 U
[t,t′] Φ2, where t, t

′ ∈ IR≥0 is true for a path if Φ1 is satisfied
at all time points until Φ2 becomes true at a time point belonging to the interval
[t, t′]. The usual unbounded until Φ1 UΦ2 corresponds to the interval [0,∞).
As for PCTL, we can define the derived variants, e.g. F Φ. The probabilistic
operator formula P∼p[ψ ] is true in state s if the probability of paths from s
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that satisfy ψ meets the probability bound ∼ p. The formula S∼p[Φ ] denotes
steady-state, and is true in state s if the long-run probability residing in state
satisfying Φ meets the probability bound ∼ p. Examples of CSL properties are:

– P=? [ F
[5,5] ¬empty ] - “the probability of the robot’s battery not being de-

pleted at time 5 mins”;
– P=? [ near supplies U[0,5.5] exit ] - “the probability of the robot remaining

near supplies before exiting safely within 5.5 mins”;
– S≥0.99 [¬fail ] - “the long-run probability of the robot being operational is

at least 0.99”.

Model checking for CSL over CTMCs proceeds by discretisation into a DTMC.
The steady-state operator is computed by solving a linear equation system,
whereas the probabilistic operator reduces to transient probability calculation,
and is typically implemented using uniformisation, an efficient iterative numer-
ical method. For more information see e.g. [34]. More expressive, durational
properties for CTMCs can also be defined and automatically verified [15].

2.3 Adding Costs and Rewards

The above probabilistic models can be augmented with reward information (also
referred to as cost), which enables the computation of expected reward values.
For simplicity, we only show the extension for DTMCs. For D = (S, s̄,P,AP , L),
we define a reward structure (ρ, ι), where: ρ : S → IR≥0 assigns rewards to states,
and ι : S × S → IR≥0 assigns rewards to transitions. The state reward vector
ρ(s) is the reward acquired in state s per time step, and the transition reward
ι(s, s′) is acquired each time a transition between states s and s′ occurs.

Reward structures can be used to represent a variety of different aspects of a
system model, for example “number of sensors that have reached consensus” or
“the expected energy consumed in the start-up phase”. To express reward-based
properties for DTMCs, the logic PCTL can be extended [34] with additional
operators:

R∼r[ C
≤k ]

∣∣ R∼r[ I=k ]
∣∣ R∼r[ FΦ ]

where ∼∈{<,≤,≥, >}, r ∈ IR≥0, k ∈ IN and Φ is a PCTL formula. The formula
R∼r[ψ ] is satisfied in a state s if, from s, the expected value of reward ψ meets the
bound ∼r. The formula ψ can take the form: C≤k, which refers to the reward
cumulated over k time steps; I=k, the state reward after exactly k time steps
(instantaneous); and FΦ, the reward cumulated before a state satisfying Φ is
reached. Similarly to the P operator, we also use the quantitative form R=?[ψ ],
meaning the value of the expected reward. The following are examples of reward
properties assuming appropriate reward structures have been defined:

– R=?[C
≤10] - “the expected power consumption within the first 10 time steps

of operation”;
– R=?[I

=100] - “the expected number of regions visited by the robot after 100
time steps have passed”;
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– R≥5[F exit ] - “the expected number of regions visited by the robot until
exiting is at least 5”.

Model checking for the reward operators for DTMCs reduces to a combination
of graph algorithms and solution of linear equations; see e.g. [34] for more infor-
mation. An extension of CSL with the reward operator was formulated in [34].
Cumulative and instantaneous reward operators can also be added to PCTL for
MDPs [23], where minimum/maximum expected rewards, denoted by Rmax=?[·]
in quantitative form, are computed over all strategies. Steady-state rewards,
respectively long-run average in the case of MDPs, can also be defined [34,23].

2.4 Quantitative Verification with PRISM

Quantitative verification techniques have been implemented within PRISM [36,1],
a probabilisticmodel checker developed at theUniversities of BirminghamandOx-
ford. PRISM provides direct support for DTMCs, MDPs and CTMCs, as well as
two additional models not discussed here, probabilistic timed automata (PTAs)
and stochastic multi-player games (SMGs), the latter via the tool PRISM-games
[11]. The models are specified using a high-level modelling language based on
guarded command notation. Quantitative properties can be specified in the tem-
poral logics PCTL, LTL, PCTL* and CSL, which include both probabilistic and
reward operators.

PRISM is primarily a symbolic model checker based on variants of Binary Deci-
sion Diagrams (BDDs), but it also makes extensive use of explicit storage schemes
such as sparse matrices and arrays, and implements multiple engines for efficiency
and scalability. The verification algorithms can provide either exact, numerical so-
lutions to the induced linear equation systems or linear programming problems,
typically computed iteratively, or approximate the probability/expectation by
sampling executions using Monte Carlo techniques and performing statistical in-
ference to estimate the probability of satisfying the property (also known as statis-
tical model checking). Parametricmodels are now supported [16]. It is also possible
to simulate the model and synthesise the strategy that minimises/maximises the
probability or reward [1].

PRISM’s graphical user interface, shown in Figure 1, provides a model editor,
a simulator for model debugging and strategy exploration, and graph-plotting
functionality. Models and properties can be specified using parameters, and ex-
periments facilitate the search for flaws or unusual trends, by plotting the values
of quantitative queries as the parameters in the model or property are varied.

PRISM is free and open-source (released under the GPL license), runs on
most major operating systems, and has been applied to several application do-
mains, including distributed algorithms, security protocols, dependability, plan-
ning, workflows, and biology; see [1] for more information.
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(a) Model and strategy exploration (b) Experiments and graph plotting

Fig. 1. Screenshots of the PRISM graphical user interface

3 Quantitative Verification for Ubiquitous Computing

Quantitative verification is a powerful and widely applicable method, which has
been successfully applied in the context of ubiquitous computing. We mention,
for example, the modelling and analysis of performance and energy consumption
of the Bluetooth device discovery protocol [17], which established for the first
time that the worst-case time to hear one message is unusually long, about 2.5s.
Similar analyses have been performed for the IEEE 802.11WiFi [40] and 802.15.4
ZigBee sensor network protocols [27]. Further studies concerning mobile devices
include performability of several dynamic power management schemes [45].

The ultimate challenge is to apply these techniques to real-world ubiquitous
computing scenarios, which are expanding rapidly. In this paper, we survey some
of the recent advances by focusing on three key aspects of ubiquitous comput-
ing devices: autonomous behaviour, constrained resources and adaptivity. Each
aspect will be illustrated by means of case studies that use PRISM.

3.1 Autonomous Behaviour

A growing number of ubiquitous computing applications involves designing au-
tonomous robotic missions, such as those used in planetary exploration, for ex-
ample Mars Rover, or disaster search and rescue. A key challenge for the design-
ers is to construct a mission so that it satisfies some high-level goals, and executes
in a timely manner and without fault. In addition, technological progress towards
self-parking and self-driving cars calls for software tools to support the design
of safe autonomous vehicle control.

In this section, we highlight the research aimed at automated generation
of control strategies for robotic vehicles in dynamic environments as reported
in [43]. The approach is based on the observation that temporal logic such as
CTL can be used to specify the mission goals, for example, “the robot will re-
main in safe regions until exiting successfully”. Under the assumption that the
environment is static and can be partitioned into a finite-state transition sys-
tem, conventional model checking tools can be applied to analyse and generate
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strategies in this case. However, one has to consider noise on sensors induced
from measurement errors; similarly, control actions can exhibit uncertainty due
to actuator error, in the sense that the robot can move to an adjacent region
or remain in the current region, and this choice is probabilistic, with proba-
bilities that can be estimated. Natural models for such scenarios are therefore
Markov decision processes (as overviewed in Section 2.1), which are partitioned
into finitely many regions. If RFID tags are placed in regions, the robot can
uniquely determine the region it is in; we can thus assume full observability,
thus avoiding the need to consider partially-observable MDPs. Consequently, we
can now employ temporal PCTL to specify mission goals, and the above goal
now becomes: “what is the probability that the robot will remain in safe regions
until exiting successfully?”.

The problem can be stated as follows. Consider a robot moving in a partitioned
environment with static obstacles modelled as a Markov decision process M.
Given a PCTL formula Φ that specifies the mission goal, determine a control
strategy that optimises the probability of satisfying Φ. Clearly, this problem
can be solved by applying quantitative verification as described in Section 2.1,
namely, computing the minimum/maximum probability or expectation, and then
synthesising the optimal strategy.

In previous work, the authors considered safe vehicle control in city environ-
ments, and developed a tool for synthesising control strategies from PCTL based
on PRISM. Later, they extended the synthesis algorithms to include expected
reward specifications to incorporate aspects such as time and energy cost, as
well as Boolean combinations of PCTL formulae [43]. They also validated their
approach using an experimental testbed that employs iRobot Create1, the pop-
ular programmable robot. The following are examples of actual mission goal
specifications from [43]:

– Pmax=?[ (S ∨ (R ∧ M1))UD1 ] - “reach Destination 1 by driving through
either only Safe regions or through Relatively Safe regions only if Medical
Supply 1 is available at such regions”;

– Pmax=?[( P≤0.5[XR] ∧ ¬U)UD1 ] - “reach Destination 1 by going through
the regions from which the probability of converging to a Relatively safe
region is less than 0.5 and always avoiding Unsafe regions”.

The results reported are encouraging, with the tool able to synthesise control
strategies for MDPs with 1000 states, though the construction of the MDP using
Monte Carlo simulation can be expensive.

Strategy synthesis from LTL specifications has been formulated, e.g., in [32,50].
Probabilistic verification of coordinated foraging-and-reacting multi-robotic mis-
sions is considered in [8], where compositionality is employed to improve scala-
bility. We remark that more complex mission goals may require multi-objective
specifications, where the simultaneous satisfaction of more than one property,
e.g. maximise the probability of reaching target and minimise expected trav-
elling time, is needed. Automated verification and synthesis for multi-objective

1 http://verifiablerobotics.com/CreateMATLABsimulator/createsimulator.html

http://verifiablerobotics.com/CreateMATLABsimulator/createsimulator.html
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specifications for MDPs have been developed [25], allowing for the exploration of
trade-offs between the component properties, and applied to synthesis of strate-
gies for the team formation protocol. In recent work, we have developed synthesis
algorithms for autonomous driving for conjunctive multi-objective specifications
for stochastic game models, based on actual map data [13].

3.2 Constrained Resources

Ubiquitous computing devices are frequently wearable, for example, low-cost
RFID tags and wireless body sensors, and consequently have limited memory
and computational capacity. At the same time, they may need to execute com-
putationally intensive tasks, such as authentication and communication in un-
reliable wireless media. Typically battery-powered, where it is either difficult or
inconvenient to access energy renewal sources, the need for high-quality resource
management protocols for such devices is paramount. Quantitative verification
has previously been applied to analyse dynamic power management schemes for
mobile devices [45] and energy harvesters [48]. Here, we highlight a recent case
study that applied quantitative verification with PRISM to analyse the compu-
tational and transmission cost of an electronic email protocol [4], with the view
to provide tool-assisted systematic analysis of the protocol for a variety of mobile
environments.

The Certified E-mail Message Delivery (CEMD) protocol studied in [4] is
used on mobile devices such as smartphones and PDAs, including low-cost hard-
ware, frequently operating in noisy environments with high bit error rate. The
CEMD protocol provides a number of security features, such as fairness (neither
sender nor recipient should gain advantage upon interruption), timeliness (all
participants should be able to exit the protocol in a given finite time), and con-
fidentiality (only the intended participant should learn the contents of an email
message, implemented using RSA encryption). In view of the computational cost
of RSA operations, it is important for the designers to understand the impact of
executing the email service on CPU performance and energy consumption. To
this end, a CTMC model of the protocol is developed in PRISM, and parame-
terised based on the popular Texas Instruments TMS320C55x processor which
performs at the low frequency end of 200MHz, hence maintaning the ability to
provide services in low power modes. Then a detailed analysis is performed using
the derived parameters, also taking into account the number of parallel sessions
and realistic bit error rates of typical mobile communication technologies, both
of which affect the performance.

The quantitative analysis is focused on computational and transmission costs
of the CEMD protocol, respectively defined as a function of the CPU cycles
needed to perform RSA operations, and a function of the negative acknowledge-
ment rate and bit error rate of the wireless medium. The properties are expressed
as CSL formulae, and analysed for different values of the parameters, assuming
suitable reward structures:

– P=?[F
[0,T ] finish] - “the probability of completing all protocol’s sessions in

finite time T ”;
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– R=?[C
≤T ] - “the expected computational cost of completing all protocol’s

sessions in finite time T ”.

The analysis has revealed that the CEMD protocol is highly dependent on the
specific characteristics of the environment that it runs on, with widely different
behaviour, and may lead to instabilities. The derived model of the protocol
provides a sound foundation for a methodology to analyse further quantitative
aspects of the protocol, for example energy consumption.

Resource efficiency, particularly in relation to energy, is a major design is-
sue for ubiquitous computing devices. Quantitative analysis of low-cost RFID
authentication protocol was performed in [47]. The effect of mobility and trans-
mission range on energy consumption was considered for mobile process cal-
culi frameworks in [28]. The quantitative analysis of a smartgrid protocol using
PRISM-games [10,11] revealed a flaw, which was fixed by introducing incentives
to prevent selfishness.

3.3 Adaptiveness

Many ubiquitous computing applications continuously monitor the environment
by means of sensors and must adapt to new scenarios. Ubiquitous computing
systems such as home networks are enabled by service-based systems, typi-
cally based on cloud computing [18], which dynamically adapt behaviours to
the changing requirements and contexts. It has been argued [6] that the need
to continuously provide reliability, dependability and performance guarantees
for adaptive systems calls for quantitative runtime verification. This is different
from offline quantitative verification performed at the design stage, as described
in Section 2, where a model is developed and analysed pre-deployment in order
to improve the design. Runtime verification, in contrast, is invoked as the system
is being executed, intercepting and steering its execution to ensure that given
requirements are continuously satisfied in spite of adaptation.

In [7], we have developed an extensive framework called QoSMOS which can
be used to dynamically manage and optimise the performance of service-based
systems. The framework has been demonstrated on a typical ubiquitous com-
puting healthcare scenario, called TeleAssistance, where patients are remotely
monitored, with data being sent to a medical lab for analysis, and there is a
requirement to guarantee a certain QoS level of delivering a specific service, for
example to change the dosage of a drug. The system is built as a workflow of web
services, and may suffer from component failures. The framework proceeds auto-
nomically, repeatedly invoking the monitoring, analysis, planning and execution
stages (so called MAPE loop) as follows:

– monitor the reliability, workload and response time of services, to derive an
operational model;

– analyse performance and QoS requirements, utilising the values of parame-
ters obtained from the monitoring phase;
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– plan adaptation of the system based on the results of analysis, which may
involve changing the resource allocation or selection of optimal service;

– execute the adaptation of the system.

The models used for the TeleAssistance application are DTMCs and CTMCs,
and the following are example requirements:

– P≤0.13[ F failedAlarm ] - “the probability that at an alarm failure ever occurs
during the lifetime of the system is less than 0.13” (PCTL property);

– R≤0.05[ F
[0,86400] dropped ] - “the probability of a changeDrug request being

dropped due to the request queue being full during a day of operation is less
than 0.05” (CSL property).

The QoSMOS framework implements the analysis stage using quantitative ver-
ification with PRISM. This involves executing PRISM verification tasks at run-
time, which works well when the number of services is small, but may become
impractical when the size of the model or the number of tasks increases. To
improve efficiency, one can employ parametric approaches, e.g. [22], and specif-
ically parameter synthesis [29]. We consider parametric probabilistic models,
where probabilities are specified in terms of expressions over parameters, rather
than concrete values. Then, the parameter synthesis problem aims to determine
the valuations for parameters which guarantee the satisfaction of a given prop-
erty, and can be solved by means of constraint solving. In recent work, we have
applied sampling-based and swarm intelligence techniques to heuristically search
for a good valuation of parameters for parametric models [16] (parametric MDPs
and DTMCs/CTMCs). We note that this approach only finds one such valua-
tion, rather than all the valuations for parameters. However, it may result in
performance improvement by orders of magnitude, and is therefore particularly
well suited to runtime verification scenarios.

The parameter synthesis methods, both those based on constraint solving as
well as heuristic search, have recently been implemented within PRISM [16].
Alternative approaches to improve efficiency of quantitative runtime verification
include incremental model construction and incremental verification [26], which
avoid the need to rerun a verification task by reusing results from previous
verifications.

3.4 Further Advances

We briefly summarise further developments in quantitative verification that have
shown promise.

Compositional Probabilistic Verification. The complexity of ubiquitous
computing scenarios demands improvements in the capacity of quantitative ver-
ification tools. Compositional assume-guarantee techniques have the potential
to improve the scalability of model checking by subdividing the verification into
separate tasks for each component of the system being analysed. For example,
to verify property G on a two-component system M1‖M2 we (i) check that, un-
der the assumption that some property A holds, M2 is guaranteed to satisfy G;
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and (ii) check that M1 always satisfies the assumption A under any context. In
recent work [37,24], compositional assume-guarantee techniques have been de-
veloped for MDPs, for both quantitative safety and liveness properties. Several
proof rules have been developed to support compositional probabilistic model
checking of MDPs, and implementation in terms of multi-objective probabilistic
model checking [19] has been provided as an extension of PRISM, which yields
substantial improvement over monolithic methods. The process can be fully au-
tomated for safety properties by applying automata learning techniques [20,21]
to generate assumptions.

Cooperative and Competitive Behaviour. Ubiquitous computing involves
communities of self-interested agents, who may need to cooperate to achieve cer-
tain goals. Traditionally, cooperative behaviour has been analysed using game
theory. Building upon this, we develop quantitative verification methods for
multi-player stochastic games, which model communities of agents that can ex-
hibit probabilistic behaviour, for example as a result of random choices. Property
specifications are stated in terms of a probabilistic and reward extension of the
well-known logic ATL, called rPATL [10], which can express properties such as:
“does the coalition have a strategy to ensure that consensus is reached with
probability at least 0.8, irrespective of the strategies of the other players?”. The
framework has been applied to the analysis of a smartgrid protocol, collective
decision making for sensor networks and user-centric networks, where we discov-
ered and corrected flaws in existing protocols [10,41]. The techniques have been
implemented as an extension of PRISM [11], and include both verification, as
well as strategy synthesis. Recently, an extension with multi-objective properties
was formulated [12].

Probabilistic Real-Time Protocols. Many ubiquitous computing applica-
tions require consideration of probability and continuous real-time, in conjunc-
tion with nondeterminism that is used to model distributed computation. The
model of probabilistic timed automata (PTAs) [39] can be viewed as a Markov
decision process extended with real-valued clocks or, alternatively, an exten-
sion of the well-known timed automata formalism with discrete probabilistic
choice. PTAs naturally model distributed randomised algorithms with timing,
for example the ZeroConf protocol, as well as the medium access protocols for
wireless networks, including WiFi, Bluetooth and ZigBee; all have been analysed
with PRISM [1]. A number of techniques have been developed for quantitative
verification of PTAs, including the digital clocks [38] approach; forwards [39]
and backwards reachability [40] based on zones ; and game-based quantitative
abstraction-refinement [35]. Strategy synthesis is also possible [46]. PRISM pro-
vides native support for PTAs, via the techniques of [35] and [38].

Medical Devices. Embedded software is increasingly often used in medical de-
vices, which monitor and control physical processes such as electrical signal in
the heart or dosage of insulin. For example, an implantable cardiac pacemaker
device reads electrical signals from sensors placed on the heart muscle, moni-
tors the timing between heart beats, and, if any are missed, generates signals to
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stimulate the heart, maintaining the rate of 60-100 beats per minute. Quantita-
tive verification can provide automated means to verify safety properties of the
pacemaker, but the models must incorporate continuous dynamics, necessary to
model the electrical signal in the heart, in addition to timing and probabilities. A
further difficulty is the need to verify the properties against realistic heart mod-
els. Recently, we developed two physiologically relevant heart models, one based
on ECG signals [9] and the other on a network of cardiac cells [14]. We have
composed the heart models with timed automata models of pacemaker software,
and subjected the composed system to quantitative verification. We are able to
verify basic safety properties, for example whether the pacemaker corrects the
slow beat of the heart, as well as more complex properties, such as providing a
detailed analysis of energy consumption.

A specific challenge of medical devices is that they need to interface to bio-
logical systems. Quantitative modelling and verification technology has already
been applied to DNA computing devices [44], where it was able to automatically
discover and diagnose a design error. These methods are applicable to molecular
sensing devices at the nanoscale.

4 Challenges and Future Directions

Ubiquitous computing was conceived over 20 years ago by Marc Weiser [49] and
has been unstoppable since. Mobile devices have far outstripped the sales of
desktop PCs. Enhanced with a multitude of sensors, smartphones and tablets
are being used for a variety of tasks, from email, through looking up restaurants
nearby, to monitoring of the heart rate and air pollution.

The emergence of ubiquitous computing has posed new challenges for software
and device designers. Ubiquitous computing was recognised in the UK as a Grand
Challenge [42], subdivided into: the engineering of ubiquitous computing devices,
their scientific understanding, and human interaction mechanisms. The research
on quantitative verification reported in this paper contributes to the scientific
understanding of ubiquitous computing led by Robin Milner, and is related to
the Verified Software initiative of Tony Hoare. Quantitative verification research
is very much inspired by their vision. It naturally complements the core activities
of the two initiatives, focusing on practical, algorithmic solutions, that have the
potential to drive the development of industrially-relevant methodologies and
software tools to support the design of ubiquitous computing devices.

Much progress has been made in quantitative verification for ubiquitous com-
puting, as reported here and elsewhere, and supported by effective software tools.
Successes include synthesising safe strategies for autonomous vehicles; analysing
quantitative trends of low-level network protocols; finding and correcting flaws
in smartgrid energy distribution protocols; development of methodologies for the
verification of medical devices; and adaptive service-based frameworks which can
continuously guarantee the satisfaction of given QoS properties. Key limitations
of current techniques are poor scalability of quantitative verification; lack of
effective methods for integrating discrete, continuous and stochastic dynamics;
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and poor efficiency of quantitative runtime verification. The scale and complex-
ity of the ubiquitous computing scenarios are so great that the challenges that
remain seem prohibitive. We anticipate that following topics will be particu-
larly difficult: scalability of quantitative verification; compositional quantitative
frameworks; effective runtime steering; quality assurance for embedded software;
efficiency of strategy synthesis for autonomous control in dynamic scenarios; and
quantitative verification for stochastic hybrid systems.
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Abstract. Mobile membranes represent a variant of membrane systems
in which the main operations are inspired by the biological operations of
endocytosis and exocytosis. We study the computational power of mo-
bile membranes, proving an optimal computability result: three mem-
branes are enough to have the same computational power as a Turing
machine. Regarding the computational complexity, we present a semi-
uniform polynomial solution for a strong NP-complete problem (SAT
problem) by using only endocytosis, exocytosis and elementary division.

1 Introduction

Systems of mobile membranes are part of a larger approach defined by membrane
computing. Basic membrane systems (also called P systems) together with sev-
eral variants are presented in the monograph [15] and in the handbook [16]. Mem-
brane systems were introduced as distributed, parallel and non-deterministic
computing models inspired by the compartments of eukaryotic cells and their
biochemical reactions. The structure of the cell is represented by a set of hier-
archically embedded regions, each delimited by a surrounding boundary (called
membrane), and all contained inside a skin membrane. A membrane without any
other membrane inside is said to be elementary, while a membrane with other
membranes inside is said to be composite. Multisets of objects are distributed in-
side these regions, and they can be modified or communicated between adjacent
compartments.

Objects represent the formal counterpart of molecular species (ions, proteins,
etc.) floating inside cellular compartments, and they are described by means of
strings over a given alphabet. Evolution rules represent the formal counterpart of
chemical reactions, and are given in the form of rewriting rules which operate on
the objects, as well as on the structure by endocytosis, exocytosis and elementary
division.

A membrane system can perform computations in the following way. Starting
from an initial configuration which is defined by the multiset of objects initially
placed inside the compartmentalized structure and by the sets of evolution rules,
the system evolves by applying the evolution rules in a non-deterministic and
maximally parallel manner (every rule that is applicable inside a region has
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to be applied in that region). A rule is applicable when all the objects that
appear on its left-hand side are available in the region where the rule is placed
(the objects are not used by other rules applied in the same step). Due to the
competition for available objects, some rules are applied non-deterministically.
A halting configuration is reached when no rule can be applied anymore; the
result is then given by the number of objects (in a specified region).

The first definition of mobile membranes is given in [12] where mobile mem-
branes are presented as a variant of P systems with active membranes [15].
The new feature of mobile membranes is naturally inspired by the movement
of cells, namely a membrane that is outside a neighboring membrane moves, is
moved or moves by agreement inside the neighboring membrane (endocytosis,
forced endocytosis or mutual endocytosis), or a membrane moves, is moved or
moves by agreement outside the membrane where it is placed (exocytosis, forced
exocytosis or mutual exocytosis).

A first approach regarding the computational power of a simple variant of
mobile membrane systems is treated in [12]. Turing completeness is obtained by
using nine membranes and the operations of endocytosis, exocytosis and elemen-
tary division (an elementary membrane is divided into two identical membranes).
By using additional contextual evolution rules it is proved in [13] that four mo-
bile membranes are enough to get the power of a Turing machine, while in [3]
the number of mobile membranes is decreased to three.

The computational power of mobile membranes using endocytosis (endo),
exocytosis (exo), forced endocytosis (fendo) and forced exocytosis (fexo) was
studied in [9] where it is proved that twelve membranes can provide computa-
tional universality, while in [2] the result is improved by reducing the number
of membranes to nine. It is worth to note that unlike the previous results, the
context-free evolution of objects is not used in any of the results (proofs). Re-
garding E0L and ET 0L systems [18], other results presented in [9] claim that
eight membranes are enough to get the power of the ET0L systems and seven
membranes for E0L systems.

Following a standard approach in membrane computing to look for mem-
brane systems that are powerful enough to achieve the full power of Turing
machines [15] with a minimal set of ingredients, in this paper we deal with the
computability power of mobile membrane systems in which mobility is given by
two more powerful operations: mutual endocytosis and mutual exocytosis. It is
proved that it is enough to consider these biologically inspired operations and
three membranes to get the full computational power of a Turing machine. Three
membranes represents the minimum number of membranes in order to properly
discuss movement by endocytosis and exocytosis: we work with two membranes
inside a skin membrane. These theoretical results support the idea that systems
of mobile membranes can represent the hardware part for a biological computer
capable to compute all computable functions.

Many formal machine models (e.g., Turing machines) have an infinite num-
ber of memory locations, while membrane systems are computing devices of
finite size having a finite description with a fixed amount of initial resources
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(membranes and objects). However, the biological operations allow an initial
membrane system to evolve to a possibly infinite family of membrane systems
obtained by division in order to solve a (decision) problem. We use notions
from classical computational complexity theory adapted to membrane comput-
ing. The purpose of computational complexity theory is to provide bounds on the
amount of resources necessary for any procedure (algorithm) solving a problem.
Since mobile membranes are inspired by the biological endocytosis and exocy-
tosis processes, the bounds of resources represent the quantitative requirements
for solving a problem. The complexity notions related to membrane systems are
presented in [17], where the authors use P systems with active membranes having
associated electrical charges, membrane division and membrane creation.

According to [10], NP-complete problems are divided into weak (e.g., Parti-
tion, Subset Sum, Knapsack) and strong (e.g., SAT, Clique, Bin Packing) de-
pending on the size of the input. In this paper we study the efficiency of mobile
membranes, and present a semi-uniform polynomial solution for the best known
strong NP-complete problem (SAT) by using systems that can perform only mu-
tual endocytosis, mutual exocytosis and elementary division rules. In a previous
paper [4], we also proposed a solution of a weak NP-complete problem: the Par-
tition Problem. In order to find such a solution, mobile membranes are treated
as deciding devices that respect the following conditions: (1) all computations
halt, (2) two additional objects yes and no are used, and (3) exactly one of the
objects yes (successful computation) and no (unsuccessful computation) appears
in the halting configuration.

According to [17], a decision problem X is a pair (IX , θX) such that IX is a
language over a finite alphabet (whose elements are called instances), and θX is
a predicate over IX . Its solvability is defined through the recognition of the lan-
guage associatedwith it. LetM be a Turingmachine with the working alphabet Γ ,
L a language over Γ , and the result of any halting computation is yes or no. IfM is
a deterministic device, it recognizes or decides Lwhenever, for any string u over Γ ,
if u ∈ L, then eitherM accepts u (the result on input u is yes), orM rejects u (the
result on input u is no). IfM is a non-deterministic device, it recognizes or decides
Lwhenever, if for any string u over Γ , also u ∈ L only if there exists a computation
of M with input u such that the answer is yes.

2 Mobile Membrane Systems

Endocytosis and exocytosis are used in systemsofmobilemembranes [12], aswell as
in brane calculi [8]. In this paper we consider systems in which a movement is per-
formed only if the involved membranes agree on the movement. This agreement
is described by means of objects a and co-objects a present in the corresponding
membranes involved in such a movement, with a = a. The duality relation is natu-
rally extended over a multiset, namely u = a1 . . . an for u = a1 . . . an. An object a
marks the active part of themovement, and an objectamarks the passivepart. The
motivation for introducing a mutual agreement in the rules of mobile membranes
comes both from biology (e.g., receptor-mediated endocytosis), and from process
calculi [8].
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For an alphabet V = {a1, . . . , an}, we denote by V ∗ the set of all the strings
over V ; λ denotes the empty string and V + = V ∗\{λ}. A multiset over V is
represented by a string over V (together with all its permutations), and each
string precisely identifies a multiset.

Definition 1. A system of mobile membranes with elementary division is a
construct Π = (V,H, μ, w1, . . . , wn, R), where:

1. n ≥ 1 is the number of membranes in the initial configuration; (n ≤ |H |)
2. V is an alphabet (its elements are called objects);
3. H is a finite set of labels for membranes;
4. μ ⊂ H × H is the initial membrane structure, such that (i, j) ∈ μ denotes

that the membrane labelled by j is contained in the membrane labelled by i;
the hierarchical structure denoted by μ is described by brackets in our linear
notation (e.g., μ = {(m,h)} is [ [ ]h]m).

5. w1, . . . , wn ∈ V ∗ are multisets of objects placed in the n regions of μ;
6. R is a finite set of developmental rules of the following forms, with h,m ∈ H,

a, a ∈ V , v, v′, w, w′ ∈ V ∗, |v| ≤ 1, |v′| ≤ 1, M1 and M2 denote (possibly
empty) multisets of objects, elementary and composite membranes, while M3

denotes a (possibly empty) multiset of objects.
(a) [av]h[av

′]m → [ [w]hw
′]m mutual endocytosis (mendo)

av

M3
h

av′ M1

m

M2
w′
M1

m

M2
w

M3
h

An elementary membrane labelled h enters the adjacent membrane la-
belled m under the control of the multisets of objects av and av′. The
labels h and m remain unchanged, and the multisets of objects av and av′

are replaced by the multisets of objects w and w′, respectively.
(b) [av′[av]h]m → [w]h[w

′]m mutual exocytosis (mexo)

w

M3
h

w′ M1

m

M2
av′
M1

m

M2
av

M3
h

An elementary membrane labelled h exits a membrane labelled m, under
the control of the multisets of objects av and av′. The labels of the two
membranes remain unchanged, and the multisets of objects av and av′

are replaced by the multisets of objects w and w′, respectively.
(c) [a]h → [w]h[w

′]h elementary division (ediv)

M1

h

a M3 M1

h

w M3

h

w′ M3

An elementary membrane labelled h, containing an object a, is divided
into two membranes labelled h. A copy of each object from membrane h
is placed inside the new created membranes, except for object a which is
replaced by the multisets of objects w and w′.
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A configuration of a system with mobile membranes is a finite tree with nodes
labelled by the elements of H , each node being assigned a finite multiset of
objects. The rules are applied according to the following principles:

1. All the rules are applied in parallel by non-deterministically choosing the
rules, the membranes and the objects in such a way that the parallelism is
maximal; this means that in each step a set of rules is applied such that no
further rule can be added to the set.

2. The membrane m from the rules of type (a) − (c) is said to be passive
(identified by the use of an object a), while the membrane h is said to be
active (identified by the use of an object a). In any step of a computation,
any object and any active membrane can be involved in at most one rule,
while passive membranes are not considered to be involved in the use of the
rules (hence they can be used by several rules at the same time as passive
membranes).

3. When a membrane is moved across another membrane by endocytosis or
exocytosis, all objects contained in it are moved.

4. All the objects and membranes which do not evolve at a given step are passed
unchanged to the next configuration of the system.

Transitions among the configurations of the system are obtained by using the
rules described above. A computation is a sequence of transitions starting from
the initial configuration (the initial membrane structure and the initial distribu-
tion of objects within regions). A computation is successful if it halts (it reaches
a configuration where no rule can be applied). The multiplicity vector of the
multiset of objects from a special membrane called the output membrane is con-
sidered as a result of the computation. Thus, the result of a halting computation
consists of all the vectors describing the multiplicity of objects from the output
membrane; a non-halting computation provides no output. The set of vectors of
natural numbers produced in this way by a system Π is denoted by Ps(Π).

3 Computational Power of Mobile Membranes

Several notions and notations from the field of formal languages that are used
here can be found in [19]. For a string x ∈ V ∗, |x|a denotes the number of
occurrences of symbol a in x. For an alphabet V , the Parikh vector is ψV :
V ∗ → Nn with ψV (x) = (|x|a1 , . . . , |x|an), for all x ∈ V ∗. For a language L, the
Parikh vector is ψV (L) = {ψV (x) | x ∈ L}, while for a family FL of languages,
it is PsFL = {ψV (L) | L ∈ FL}.

Minsky introduced the concept of register machines by showing that the power
of Turing machines can be achieved by such abstract machines using a finite
number of registers for storing arbitrarily large non-negative integers [14]. A
register machine runs a program consisting of labelled instructions which encode
simple operations for updating the content of the register.
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Definition 2. An n-register machine is a construct M = (n,B, l0, lh, I), where:

• n is the number of registers; B is a set of labels; l0 and lh are the labels of
the initial and halting instructions; I is a set of labelled instructions of the
form li : (op(r), lj , lk), where op(r) is an operation on register r of M , and
li, lj, lk are labels from the set B.

• the machine is capable of the following instructions:
1. li : (INC(r), lj , lk): Add one to the content of register r and proceed, in a

non-deterministic way, to instruction with label lj or to instruction with
label lk; in the deterministic variant, lj = lk and then the instruction is
written in the form li : (INC(r), lj).

2. li : (DEC(r), lj , lk): If register r is not empty, then subtract one from
its contents and go to instruction with label lj, otherwise proceed to in-
struction with label lk.

3. lh : halt: This instruction stops the machine and can only be assigned to
the final label lh.

Considering the number of objects and reduction to a register machine, we prove
that the family NRE of all the sets of natural numbers generated by arbitrary
grammars is the same as the familyNMMpr

3 (mendo,mexo) of all the sets of nat-
ural numbers generated by systems with three mobile membranes using mendo
and mexo rules, and also a priority relation between rules (it is used when
checking if some objects are present inside a membrane). The biologically mo-
tivated priority relation corresponds to the fact that certain reactions/reactants
are more active than others, and can be interpreted as a competition for reac-
tants/objects. This is calculated by looking at the cardinality of the objects in
a specified output membrane of the mobile membrane systems at the end of a
halting computation. The proof is based on the observation that each set from
NRE is the range of a partial recursive function.

Theorem 1 ([20]). A 3-register machine can compute any partial recursive
function of one variable. It starts with the arguments in a counter, and (if it
halts) leaves the answer in another counter.

We investigate here new computability results using movement based on mutual
agreements. For systems of mobile membranes using mutual endocytosis and
mutual exocytosis, we get the same computation power; the next result shows
that it is possible to get similar results as for register machines.

Theorem 2. NMMpr
3 (mendo,mexo) = NRE.

Proof. We prove only the assertion NRE ⊆ NMMpr
3 (mendo,mexo); the other

inclusion is based on the fact that Turing machines or type-0 grammars are able
to simulate systems of mobile membranes with elementary division rules. We
prove that for each partial recursive function f : N → N, there is a mobile
membrane system Π with three membranes satisfying the following condition:
for any arbitrary x ∈ N, the system “generates” a multiset of the form ox1 and
halts if and only if f(x) is defined; if so, the result is f(x).
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In order to prove the assertion using similar arguments as in [11], we assume
that the output register is never decremented during the computation. This
happens without loss of generality. Consider a program P , which computes f ,
consisting of h instructions P1, . . . , Ph. Let Ph correspond to the instruction
HALT, and P1 be the first instruction. The input value x is expected to be in
register 1, and the output value in register 3 (we use 3 registers). We construct a
mobile membrane Π = (V,H, μ, w0, wI , wop, R) with output membrane I, where:

V = {s} ∪ {or | 1 ≤ r ≤ 3} ∪ {Pk, P
′
k | 1 ≤ k ≤ h} ∪ {β, β, γ, γ}

∪{βr | 1 ≤ r ≤ 3}
H = {0, I, op} μ = {(0, I), (0, op)} wI = sβγ w0 = ∅ wop = β γ

(i) Generation of the initial contents x of register 1:

1. [sβ]I [β]op → [[sβ]Iβ]op (mendo)
[[sβ]Iβ]op → [so1β]I [β]op (mexo)

2. [[sβ]Iβ]op → [P1β]I [β]op (mexo)

The rules from 1 can be used any number of times, generating a number
x (ox1) as the initial content of register 1. Rule 2 replaces s with the initial
instruction P1, and we are ready for the simulation of the register machine.

(ii) Simulation of an add rule Pi = (INC(r), j), 1 ≤ r ≤ 3, 1 ≤ i < h, 1 ≤ j ≤ h

3. [Piβ]I [β]op → [[Piβ]Iβ]op (mendo)
4. [[Piβ]Iβ]op → [Pjorβ]I [β]op (mexo)

Membrane I enters membrane op using rule 3, and then exits it by replac-
ing Pi with Pjor (rule 4), thus simulating an addition.

(iii) Simulation of a subtract rule Pi = (DEC(r), j, k), 1 ≤ r ≤ 3, 1 ≤ i < h,
1 ≤ j, k ≤ h

5. [[Piβ]Iβ]op → [P ′jβrβ]I [β]op (mexo)

6. [orβrβ]I [β]op → [[β]Iβ]op (mendo)
[P ′jβrβ]I [β]op → [[P ′kβ]Iβ]op (mendo)

7. [[P ′jβ]Iβ]op → [Pjβ]I [β]op (mexo)

[[P ′kβ]Iβ]op → [Pkβ]I [β]op (mexo)

To simulate a subtract instruction, we start with rule 3 having membrane I
entering membrane op. Then rule 5 is used; Pi is replaced by P ′jβr, and
membrane I exits membrane op. The newly created object βr denotes the
register which has to be decreased. In order to check if there is an object or
present in membrane I, we impose a priority relation between the two
rules at item 6: the first one is applied whenever possible; only in case the
first rule cannot be applied, the second one is used. If there is an or in
membrane I, then by rule 6 the object or is removed together with βr, and
membrane I enters membrane op. This is followed by rule 7, where P ′j is
replaced by Pj , and membrane I is back inside the skin membrane. If there
are no or in membrane I, then by applying rule 6, P ′j together with βr is
replaced by P ′k. This is followed by rule 7, where P ′k is replaced by Pk and
membrane I is inside the skin membrane, thus simulating a subtraction.

(iv) Halting:
8. [γ]op[Phγ]I → [[γ]opγ]I (mendo)
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To halt the computation, the halt instruction Ph must be simulated. Once
we obtain Ph in output membrane I, membrane op enters membrane I
and the computation stops (rule 8). When the system halts, the output
membrane I contains o3’s, namely the content of register 3.

!"

The family of all sets Ps(Π) generated by systems of n mobile membranes using
the mutual endocytosis mendo and the mutual exocytosis mexo is denoted by
PsMMn(mendo,mexo). We denote by PsRE the family of Turing computable
sets of vectors generated by arbitrary grammars.

In Theorem 2 we have shown that systems with three mobile membranes
using mendo and mexo rules generate all the sets of natural numbers. Another
related result is presented in [3], namely these systems generate the recursive
enumerable sets of vectors of natural numbers.

Theorem 3 ([3]). PsMM3(mendo,mexo) = PsRE.

According to [18], an E0L system is a construct G = (V, T, ω,R) where V is the
alphabet, T ⊆ V is the terminal alphabet, ω ∈ V ∗ is the axiom, and R is a finite
set of rules of the form a → v with a ∈ V and v ∈ V ∗ such that for each a ∈ V
there is at least one rule a → v in R. For w1, w2 ∈ V ∗, we say that w1 ⇒ w2

if w1 = a1 . . . an, w2 = v1 . . . vn for ai → vi ∈ R, 1 ≤ i ≤ n. The generated
language is L(G) = {x ∈ T ∗ | ω ⇒∗ x}. E0L denotes the family of languages
generated by extended 0L grammars.

An ET0L systems is a construct G = (V, T, ω,R1, . . . Rn) such that each
(V, T, ω,Ri) is an E0L system; each Ri is called a table, 1 ≤ i ≤ n. The generated
language is defined as L(G) = {x ∈ T ∗ | ω ⇒Rj1

· · · ⇒Rjm
wm = x}, where

m ≥ 0, 1 ≤ ji ≤ n, 1 ≤ i ≤ m. ET 0L denotes the family of languages generated
by extended tabled 0L grammars.

If the length of the left hand side of the rules is considered, it can be shown
that Proposition 1 operates with rules less complex than those occurring before.

Proposition 1. PsET 0L ⊆ PsMM3(mendo,mexo).

Proof. In what follows, we use the following normal form: each language L ∈
ET 0L can be generated by G = (V, T, ω,R1, R2). Moreover, from [18], any
derivation starts by several steps of R1, then R2 is used exactly once, and the
process is iterated; the derivation ends by using R2.

Let G = (V, T, ω,R1, R2) be an ET0L system in the normal form. We con-
struct the mobile membrane system Π = (V ′, H, μ, w0, w1, w2, R) with output
membrane 0, where:

V ′ = {†, α, α, β, β}∪{βi, βi | i = 1, 2}∪V ∪Vi, with Vi = {ai |a ∈ V }, i = 1, 2,
H = {0, 1, 2} μ = {(2, 0), (2, 1)} w0 = ωαβ1β w1 = αββi

Simulation of table Ri, i = 1, 2

1. [βi]0[βi]1 → [[βi]0βi]1 (mendo)
2. [[aβi]0βi]1 → [wiβi]0[βi]1, if a → w ∈ Ri (mexo)
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3. [β]1[aβ]0 → [[β]1†β]0 (mendo)
4. [[aiβi]0βi]1 → [aβi]0[βi]1 (mexo)
5. [β]1[aiβ]0 → [[β]1†β]0 (mendo)
6. [[β1α]0α]1 → [βiα]0[α]1 (mexo)

[[β2α]0α]1 → [β1α]0[α]1 (mexo)
[[β2α]0α]1 → [α]0[α]1 (mexo)

7. [[β]1†β]0 → [β]1[†β]0 (mexo)
[β]1[†β]0 → [[β]1†β]0 (mendo)

In the initial configuration the string β1ω is in membrane 0, where ω is the axiom
and β1 indicates that table 1 should be simulated first. The simulation begins
with rule 1: membrane 0 enters membrane 1. In membrane 1, the only applicable
rule is 2, by which the symbols a ∈ V are replaced by w1 corresponding to the
rule a → w ∈ R1. Rules 1 and 2 can be repeated until all the symbols a ∈ V
have been replaced according to a rule in R1, thus obtaining only objects from
the alphabet V1. In order to keep track of which table Ri of rules is simulated,
each rule of the form a → w ∈ Ri is rewritten as a → wi.

If any symbol a ∈ V is still present in membrane 0, i.e., if some symbol a ∈ V
has been left out from the simulation, membrane 1 enters membrane 0, replacing
it with the trap symbol † (rule 3), and this triggers a never ending computation
(rule 7). Otherwise, rules 1 and 4 are applied as long as required until all the
symbols of V1 are replaced by the corresponding symbols of V . Next, if any
symbol a1 ∈ V1 has not been replaced, membrane 1 enters membrane 0 and
the computation stops, replacing it with the trap symbol † (rule 5), and this
triggers a never ending computation (rule 7). Otherwise, we have three possible
evolutions (rule 6):

(i) if β1 is in membrane 0, then it is replaced by βi, and the computation
continues with the simulation of table i;

(ii) if β2 is in membrane 0, then it is replaced by β1, and the computation
continues with the simulation of table 1;

(iii) if β2 is in membrane 0, then is deleted, and the computation stops.

Thus, all the vectors of Ps(L(G)) are contained in Ps(Π); this means that
PsET 0L ⊆ PsMM3(mendo,mexo). !"

Corollary 1. PsE0L ⊆ PsMM3(mendo,mexo).

4 Solving SAT Polynomially by Using MobileMembranes

As stated in the introduction, we use mobile membranes as confluent deciding
devices, in which all computations starting from the initial configuration agree
on the result. A family Π, a collection of mobile membrane systems Π , solves
a decision problem if for each instance of the problem there is a member of the
family able to decide on the instance. In order to define the notion of semi-
uniformity, some notations are necessary:
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• for a suitable alphabet Σ, each instance of the decision problem is encoded
as a string w over Σ;

• Π(w) - the member of Π which solves the instance w.

Inspired from [17], for mobile membrane systems we have:

Definition 3. Let X=(IX ,θX) be a decision problem, and Π={Π(w)|w∈IX}
be a family of mobile membrane systems.

• Π said to be is polynomially uniform by Turing machines if there exists a
deterministic Turing machine working in polynomial time which constructs
the system Π(w) from the instance w ∈ IX .

• Π said to be sound with respect to X if the following holds: for each instance
of the problem w ∈ IX , if there exists an accepting computation of Π(w),
then θX(w) = 1.

• Π said to be complete with respect to X if the following holds: for each
instance of the problem w ∈ IX , if θX(w) = 1, then every computation
of Π(w) is an accepting computation.

Definition 4. A decision problem X is solvable in polynomial time by a family
of mobile membrane systems Π = {Π(w) | w ∈ IX}, if:

• The family Π is polynomially uniform by Turing machines.
• The family Π is polynomially bounded; that is, there exists a natural number

k ∈ N such that for each instance w ∈ IX , every computation of Π(w)
performs at most |w|k steps.

• The family Π is sound and complete with respect to X.

The family Π is said to provide a semi-uniform solution to the problem X.

4.1 Solving the SAT Problem

The SAT problem refers to the satisfiability of a propositional logic formula in
conjunctive normal form (CNF). Let {x1, x2, . . . , xn} be a set of propositional
variables. A formula in CNF is of the form ϕ = C1∧C2∧· · ·∧Cm where each Ci,
1 ≤ i ≤ m is a disjunction of the form Ci = y1 ∨ y2 ∨ · · · ∨ yr (r ≤ n), where
each yj is either a variable xk or its negation ¬xk. In this section, we propose
a semi-uniform linear time solution to the SAT problem using the operations of
mendo, mexo and elementary division. The maximal parallelism and movement
based on mutual agreement are essential in order to obtain such a solution. The
first one is used in order to check, after the generation stage, in only one step if
all possible assignments of variables satisfy a certain clause Ci. The second one
is also used in the checking stages in order to avoid overlapping of solutions, and
also in the generation of the answer.

For any instance of SAT we construct a system of mobile membranes which
solves it. Consider the formulaϕ= C1∧C2∧. . . Cm over the variables {x1, . . . , xn}.
Consider a system of mobile membranes having the initial configuration
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[[c0 β]J [β]K [c d]L[g
n−1g0]1[a1]0]2

and working over the alphabet:

V = {c, c, d, d, g, g0, β, β, yes, no} ∪ {ai, ti, fi | 1≤i≤n}
∪{βi, βi | 1 ≤ i ≤ m} ∪ {ci | 0 ≤ i ≤ n+ 2m+ 1}

We use elementary division rules to generate all the possible assignments over
the variables {x1, . . . , xn}. The system of mobile membranes solving the SAT
problem uses the rules:

(i) [ai]0 → [ti ai+1]0[fi ai+1]0, for 1 ≤ i ≤ n− 1 (div)
[an]0 → [tn β1]0[fn β1]0 (div)
[g]1 → [ ]1[ ]1 (div)
[g0]1 → [β1]1[β1]1 (div)
The first two rules create 2n membranes labelled by 0 containing all the
possible assignments over variables {x1, . . . , xn}. In each membrane labelled
by 0 is placed also a symbol β1 . The next two rules create 2n membranes
labelled by 1 containing each an object β1. The symbols β1 and β1 are used
to determine in two steps which assignments are true for C1.

(ii) [tj βi]0[βi]1 → [[tj βi]0βi]1 (mendo)
[[tj βi]0βi]1 → [tj βi+1]0[βi+1]1, 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n (mexo)
(if clause Ci contains the literal xj)
[fj βi]0[βi]1 → [[fj βi]0βi]1 (mendo)
[[fj βi]0βi]1 → [fj βi+1]0[βi+1]1, 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n (mexo)
(if clause Ci contains the literal ¬xj)
[tj βm]0[βm]1 → [[tj βm]0βm]1 (mendo)
[[tj βm]0βm]1 → [tj c]0[βm]1, 1 ≤ j ≤ n (mexo)
(if clause Cm contains the literal xj)
[fj βm]0[βm]1 → [[fj βm]0βm]1 (mendo)
[[fj βm]0βm]1 → [fj c]0[βm]1, 1 ≤ j ≤ n (mexo)
(if clause Cm contains the literal ¬xj)
If some assignments satisfy the clause Ci, 1 ≤ i < m, then the objects βi

from the corresponding membranes 0 are replaced by βi+1. The assignments
from the membranes containing βi+1 satisfy the clauses C1, . . . , Ci, the
object βi+1 marking the fact that in the next step the clause Ci+1 is checked.
If there exists assignments which satisfy all the clauses, then the membranes
containing these assignments contain an object c after n+ 2m steps.

(iii) [ci β]J [β]K → [[ci+1 β]Jβ]K (mendo)
[[ci β]Jβ]K → [ci+1 β]J [β]K , 0 ≤ i ≤ n+ 2m (mexo)
[[cn+2m+1 β]Jβ]K → [d β]J [β]K (mexo)
[cn+2m+1 β]J [β]K → [[cn+2m+1 β]Jβ]K (mendo)
These rules determine the number of steps performed. If this number is
greater than n + 2m + 1, then an object d is created, which will sub-
sequently create an object no. The number n + 2m + 1 corresponds to
the following steps: generating space (n steps), verifying assignments (2m
steps), creating a yes object (1 step). An additional step can be performed,
such that membrane J containing the object cn+2m+1 becomes sibling with
membrane K, thus increasing the number of steps needed to create d to
n+ 2m+ 2.
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(iv) [c]0[c]L → [[yes]L]0 (mendo)

[d]J [d]L → [[no]J ]L (mendo)

A yes object is created whenever membrane L enters some membrane 0 in
the (2m+n+1)-th step. If no membrane 0 contains an object c, then a no
object is created, in step (2m + n + 2) or (2m + n + 3), whenever or not
membrane J enters membrane L. By applying one of these two rules, the
other one cannot by applied any more, so at the end of the computation
the system contains either an object yes or an object no.

The number of membranes in the initial configuration is 6, and the number of
objects is n+ 6. The size of the working alphabet is 4n+ 4m+ 13. The number
of rules in the above system: n + 2 rules of type (i), 4nm rules of type (ii),
n + 2m + 3 rules of type (iii), and 2 rules of type (iv). Hence, the size of the
constructed system of mobile membranes is O(mn).

The fact that the computation ends in n + 2m + 3 is given by the fact that
n + 2m is an odd number, and thus we had to perform an extra step before
generating d from cn+2m+1. If n+2m is an even number, then d is created after
n+ 2m+ 2 steps.

Proposition 2. Using mobile membrane systems, SAT can be solved in a poly-
nomial number of steps.

Example 1. We consider 3-CNF SAT problem with φ = C1 ∧ C2 ∧ C3 and X =
{x1, x2, x3}, C1 = x1 ∨ ¬x3, C2 = ¬x1 ∨ ¬x2 and C3 = x2. In this case, n = 3,
m = 3 and

[[c0 β]J [β]K [c d]L[g
2g0]1[a1]0]2

Graphically, this is illustrated as:

J

c0β

K

β

L
cd

1

g2g0
0

a1

2

The evolution of the system is described by the following steps. The working
space is created in n = 3 steps leading from the initial configuration 1 to config-
uration 4:

1. [[c0 β]J [β]K [c d]L[g
2g0]1[a1]0]2]

2. [[[c1 β]Jβ]K [c d]L[g
2β1]

2
1[t1 a2]0[f1 a2]0]2]

3. [[c2 β]J [β]K [c d]L[gβ1]
4
1[t1 t2 a3]0

[t1 f2 a3]0[f1 t2 a3]0[f1 f2 a3]0]2]

4. [[[c3 β]Jβ]K [c d]L[β1]
8
1[t1 t2 t3 β1]0[t1 t2 f3 β1]0

[t1 f2 t3 β1]0[t1 f2 f3 β1]0[f1 t2 t3 β1]0
[f1 t2 f3 β1]0[f1 f2 t3 β1]0[f1 f2 f3 β1]0]2]

Graphically, the working space is described by the following picture:
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K
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1
β1

1
β1

1
β1

1
β1

1
β1
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β1

1
β1

0
t1t2t3
β1

0
t1t2f3
β1

0
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β1

0
t1f2f3
β1

0
f1t2t3
β1

0
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β1

0
f1f2t3
β1

0
f1f2f3
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2

The next two steps mark the solutions of C1 by replacing β1 by β2:
5. [[c4 β]J [β]K [c d]L[β1]

2
1[β1[t1 t2 t3 β1]0]1

[β1[t1 t2 f3 β1]0]1[β1[t1 f2 t3 β1]0]1
[β1[t1 f2 f3 β1]0]1[β1[f1 t2 f3 β1]0]1
[β1[f1 f2 f3 β1]0]1[f1 t2 t3 β1]0[f1 f2 t3 β1]0]2]

6. [[[c5 β]Jβ]K [c d]L[β1]
2
1[β2]

6
1[t1 t2 t3 β2]0

[t1 t2 f3 β2]0[t1 f2 t3 β2]0[t1 f2 f3 β2]0
[f1 t2 f3 β2]0[f1 f2 f3 β2]0[f1 t2 t3 β1]0[f1 f2 t3 β1]0]2]
The new configuration is represented graphically by:
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L
cd
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1
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β2

1
β2

1
β2

1
β2

1
β2

0
t1t2t3
β2

0
t1t2f3
β2

0
t1f2t3
β2

0
t1f2f3
β2

0
f1t2t3
β1

0
f1t2f3
β2

0
f1f2t3
β1

0
f1f2f3
β2

2

The next two steps mark the solutions of C2 by replacing β2 by β3:
7. [[c6 β]J [β]K [c d]L[β1]

2
1[β2]

2
1[β2[t1 f2 t3 β2]0]1

[β2[t1 f2 f3 β2]0]1[β2[f1 t2 f3 β2]0]1[β2[f1 f2 f3 β2]0]1
[t1 t2 t3 β2]0[t1 t2 f3 β2]0[f1 t2 t3 β1]0[f1 f2 t3 β1]0]2]

8. [[[c7 β]Jβ]K [c d]L[β1]
2
1[β2]

2
1[β3]

4
1[t1 f2 t3 β3]0

[t1 f2 f3 β3]0[f1 t2 f3 β3]0[f1 f2 f3 β3]0[t1 t2 t3 β2]0
[t1 t2 f3 β2]0[f1 t2 t3 β1]0[f1 f2 t3 β1]0]2]
The new configuration is represented graphically by:
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K
β

J
c7β

L
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β3
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β3

1
β3
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0
t1t2f3
β2

0
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β3
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β3

0
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β1

0
f1t2f3
β3

0
f1f2t3
β1

0
f1f2f3
β3

2

The next two steps mark the solutions of C3 by replacing β3 by c:
9. [[c8 β]J [β]K [c d]L[β1]

2
1[β2]

2
1[β3]

3
1[β3[f1 t2 f3 β3]0]1

[t1 f2 t3 β2]0[t1 f2 f3 β2]0[f1 f2 f3 β2]0[t1 t2 t3 β2]0
[t1 t2 f3 β2]0[f1 t2 t3 β1]0[f1 f2 t3 β1]0]2]

10. [[[c9 β]Jβ]K [c d]L[β1]
2
1[β2]

2
1[β3]

4
1[f1 t2 f3 c]0

[t1 f2 t3 β3]0[t1 f2 f3 β3]0[f1 f2 f3 β3]0[t1 t2 t3 β2]0
[t1 t2 f3 β2]0[f1 t2 t3 β1]0[f1 f2 t3 β1]0]2]
The new configuration is illustrated graphically below, where we have placed
the membrane labelled by L near the membrane labelled by 0 containing the
symbol c to emphasize that an interaction is possible:
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0
f1f2t3
β1

0
f1f2f3
β3

2

In the next step, an object yes is created and placed in membrane L, marking
the fact that there exists an assignment such that the formula (C1∧C2∧C3)
holds. The number of steps needed to create an object yes is n+ 2m+ 1 =
3 + 6 + 1 = 10.

11. [[c10 β]J [β]K [β1]
2
1[β2]

2
1[β3]

4
1[f1 t2 f3 [yes d]L]0

[t1 f2 t3 β3]0[t1 f2 f3 β3]0[f1 f2 f3 β3]0[t1 t2 t3 β2]0
[t1 t2 f3 β2]0[f1 t2 t3 β1]0[f1 f2 t3 β1]0]2]
The new configuration is illustrated graphically as below:



Mobile Membranes: Computability and Complexity 73

J

c10β
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L
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d
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β1

1
β1

1
β2

1
β2

1
β3

1
β3

1
β3

1
β3

0
t1t2t3
β2

0
t1t2f3
β2

0
t1f2t3
β3

0
t1f2f3
β3

0
f1t2t3
β1

0
f1t2f3

0
f1f2t3
β1

0
f1f2f3
β3

2

An object d used to create an object no is created after performing the steps:
12. [[[c10 β]Jβ]K [β1]

2
1[β2]

2
1[β3]

4
1[f1 t2 f3 [yes d]L]0

[t1 f2 t3 β3]0[t1 f2 f3 β3]0[f1 f2 f3 β3]0[t1 t2 t3 β2]0
[t1 t2 f3 β2]0[f1 t2 t3 β1]0[f1 f2 t3 β1]0]2]

13. [[d β]J [β]K [β1]
2
1[β2]

2
1[β3]

4
1[f1 t2 f3 [yes d]L]0

[t1 f2 t3 β3]0[t1 f2 f3 β3]0[f1 f2 f3 β3]0[t1 t2 t3 β2]0
[t1 t2 f3 β2]0[f1 t2 t3 β1]0[f1 f2 t3 β1]0]2]
The new configuration is illustrated graphically below, where we place the
membrane labelled by J near the membrane 0 containing membrane L to
emphasize that an interaction between membranes J and L is not possible,
and so the computation stops after n+ 2m+ 3 = 12 steps.
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2

5 Conclusion

In this paper, the operations governing the mobility of mobile membrane sys-
tems are endocytosis and exocytosis. Systems of three mobile membranes have
been shown to have the same computational power as a Turing machine, and
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two different results using different proof techniques are presented. In all these
results, mutual agreement leads to a minimal number of membranes in terms
of mobility: we have a skin membrane and two inner membranes able to move
according to the mutual endocytosis and mutual exocytosis rules.

We showed that mobile membranes can solve computationally hard problems
in polynomial time. To this aim we traded space for time as we needed to generate
an exponential workspace in polynomial (if possible, linear) time, and the usual
way to do it is by considering elementary division. In particular, we have taken
a well-known NP-complete problem, and shown that it can be solved in linear
time by systems of mobile membranes that evolve by using mutual endocytosis,
mutual exocytosis and elementary division rules. The given solution is uniform in
the sense that all the instances of the problem having the same size are processed
by the same system of mobile membranes with an appropriate input a1 . . . an
that depends on the specific instance.

Similar questions were addressed for mobile ambients [7], a formalism in which
the key feature is given by the movement of compartments. The computational
power of mobility in mobile ambients was studied in [6], while complexity aspects
were tackled for the first time in [5]. The connection between mobile ambients
and mobile membranes was presented in [1].
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Abstract. A case study on automotive cruise control originally done in (con-
ventional, discrete) Event-B is reexamined in Hybrid Event-B (an extension of
Event-B that includes provision for continuously varying behaviour as well as
the usual discrete changes of state). A significant case study such as this has var-
ious benefits. It can confirm that the Hybrid Event-B design allows appropriately
fluent application level modelling (as is needed for serious industrial use). It also
permits a critical comparison to be made between purely discrete and genuinely
hybrid modelling. The latter enables application requirements to be covered in a
more natural way. It also enables some inconvenient modelling metaphors to be
eliminated.

1 Introduction

With the ever decreasing size and cost of computing devices today, there is a strong
incentive to embed digital processors in all sorts of devices and systems, in order to im-
prove design flexibility, performance and production cost. This has two readily discern-
able consequences. Firstly, since many of these systems interact directly with humans,
such designs rapidly acquire a safety-critical dimension that most computing systems
in the past did not have. Secondly, the profusion of such systems, their interactions with
the environment and with each other, dramatically increases design complexity beyond
the bounds where traditional development techniques can reliably deliver the needed
level of dependability.

It is by now well accepted that formal techniques, appropriately deployed, can of-
fer significant help with both of these issues. However, in the main, these techniques
are strongly focused on purely discrete reasoning, and deal poorly with the continuous
behaviours, that of necessity, are forced into the blend by the intimate coupling of com-
puting devices to real world systems. The hybrid and cyberphysical systems we speak
of (see, e.g. [20,23,2,22,6]) are poorly served by conventional formal techniques. Al-
though they do have approaches of their own (see, e.g. [8]), most of these techniques
are either limited in their expressivity, or lack rigour by comparison with most discrete
techniques. An exception is KeYmaera (see [1,16]), a system that combines formal
proof (of a quality commensurate with contemporary formal techniques) with continu-
ous behaviour (as needed in the description of genuine physical systems).

Z. Liu, J. Woodcock, and H. Zhu (Eds.): ICTAC 2013, LNCS 8049, pp. 76–93, 2013.
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The need for similar capabilities in systems to which the discrete Event-B method-
ology [3] has been applied in recent years, prompted the development of an extension,
Hybrid Event-B [5], that treats discrete and continuous behaviours equally. In this pa-
per, we apply this formalism to a case study previously done in discrete Event-B: the
modelling of a cruise control system, first investigated as a component of the DEPLOY
Project [9]. The motivation for doing this is: firstly, to judge the expressivity and flu-
ency of the Hybrid Event-B formalism regarding the description of scenarios such as
this (especially with a view to practical engineering use); and secondly, to readdress
some of the methodological deficiencies that the original case study identified as caused
by purely discrete modelling. In contrast to KeYmaera, there is at present no dedicated
tool support for Hybrid Event-B. In light of this, a further benefit of the present study
is to confirm that Hybrid Event-B contains the right collection of ingredients for indus-
trial scale modelling, before more serious investment in extending the RODIN Tool for
discrete Event-B [17] is made.

The rest of this paper is as follows. Section 2 overviews the cruise control system.
Section 3 discusses the methodological issues raised by the previous discrete case study,
and how Hybrid Event-B can address them. Section 4 overviews Hybrid Event-B itself.
Sections 5, 6, 7 then take the cruise control system from a pure mode based model,
through a model where continuous properties are constrained but not defined explicitly,
to a model where both modes and continuous behaviour are fully defined. These models
are related to one another using a sequence of refinements. Section 8 concludes.

2 Cruise Control System Overview

A cruise control system (CCS) is a software system which automatically controls the
speed of a car. The CCS is part of the engine control software which controls actuators
of the engine, based on the values of specific sensors. Since the CCS automatically
controls the speed of the car there are some safety aspects to be considered and it needs
to fulfil a number of safety properties. For example, the cruise control system must be
deactivated upon request of the driver (or in case of a system fault).

The part of the CCS focused on in the DEPLOY Project, which we follow here, was
the signal evaluation subsystem. For economy of space we simplify a bit from the full
case study tackled in DEPLOY [12], but we take care to retain all the elements where
we can demonstrate the methodological improvements discussed in Section 3 and show
the advantages of our approach.

We broadly follow the description in [25,24]. In Fig. 1 we see the state transition
diagram for a simplified CCS at an intermediate level of description. The CCS starts in
the OFF state, from where it can be SwitchedOn to put it into the ON state.

In the ON state several things can happen. One option for the driver is to SwitchOff
the CCS. Alternatively, the driver can SettheSpeed for the CCS, which will set the target
speed for the car, to be maintained by the engine control system under the guidance of
the CCS. While the speed is under the control of the CCS, the speed can be TippedUp
by the driver to increase it a little, or TippedDown to decrease it a little. If the driver
chooses to DepressBrakeorClutch while the CCS is on, then the CCS is designed to
switch off since it is assumed that a hazardous condition may have been encountered.
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ON

OFF

SUSPENDSwOn SwOff, DepBrCl

DepAcc

DepBrCl

RelAcc

SetSpeed, TipUp, TipDown

Fig. 1. The state transition diagram for a simplified cruise control system

However, if the driver chooses to DepressAccelerator while the CCS is on, then it is
assumed that conditions are safe, and the CCS is merely put into the SUSPEND state.
In this state the driver controls the speed via the accelerator pedal. If in this state the
driver subsequently ReleasesAccelerator, the previous CCS state is resumed. However,
use of the brake or clutch in this state switches the CCS off, in line with the assumptions
mentioned earlier.

Below, we will develop a series of Hybrid Event-B machines to capture this design.
Before that though, we recap some methodological issues that arose in the context of
the earlier, purely discrete development, in order to focus the reader’s attention on how
these are handled differently in the fully hybrid formalism later.

3 Methodological Considerations

In the original discrete Event-B development of the CCS [12] the formal techniques
contemplated were based round existing design practices. These produce, for any pro-
posed application: firstly, a set of functional requirements generated by a requirements
engineering process; secondly, a set of safety requirements generated by a hazard anayl-
sis. In relation to Event-B, the former are transformed into events, and the latter are
transformed into invariants of the eventual Event-B model(s).

Typical systems in the automotive industry are embedded real time applications
which contain a closed loop controller as an essential part. Closed loop controller
development is done by control engineers, while their verification requires reasoning
about continuous behaviour. Discrete Event-B does not support continuous behaviour,
so the application of discrete Event-B to the CCS case study in [12] had to avoid its
direct inclusion. Since the presence of continuous behaviour cannot be avoided in CCS,
whenever such behaviour was needed in an Event-B model of [12], the modelling in-
corporated a function that interfaced between the continuous behaviour and the rest of
the model. The function itself though, was not (and because Event-B is discrete, could
not be) specified within Event-B.

The extension of discrete Event-B to Hybrid Event-B permits this deficiency to be
addressed. Most closed loop controller design takes place within the frequency domain
[15,10,11,4]. This is seemingly a long way away from the state based approach of tech-
niques like Event-B, but the state based formulation of control theory (increasingly
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popular today, especially when supported by tools such as SIMULINK [13]), enables a
direct connection with the conceptual framework of Hybrid Event-B to be made.

In our reworking of the CCS case study, we are able to incorporate the modelling
of a closed loop controller as an essential element. This inclusion of the closed loop
controller constitutes the first major point of departure from the earlier account.

Another issue concerns the communication of values between subsytems at different
levels of a system hierarchy, especially when real time aspects are paramount. Exam-
ples include the transmission of values registered by system sensors, handled by an
Event-B sensor machine, which need to be communicated to the core machine that con-
sumes them and decides future behaviour. A corresponding situation concerns values
determined by the core machine that need to be communicated to an actuator machine.

Events in the machines concerned update relevant variables with the required values.
However, the fact that enabledness of events in discrete Event-B merely permits them
to execute but does not force them to do so, means that when such values need to be
transmitted in a timely manner, the semantics does not guarantee that this will happen.
To address this, flags are introduced to prevent later events from executing before earlier
events that they depend on have completed. Such techniques, essentially handshake
mechanisms, are discussed in [7,12,25,24].

Handshake mechanisms are eloquent in modelling communication protocols at a
high level of abstraction (see e.g. the examples in [3]). However, when the abstract
level communication is continuous, such as in the coupling of a continuous controller
to its plant, the low level mechanics do rather obscure the essentials of what is going on.
In Hybrid Event-B, continuous behaviour is intrinsic, so the instantaneous communica-
tion of continuously changing values can be modelled directly. The capacity to directly
model the communication of continuously varying values constitutes the second major
point of departure from the earlier account.

4 Hybrid Event-B, A Sketch

In Fig. 2 we see a bare bones Hybrid Event-B machine, HyEvBMch. It starts with dec-
larations of time and of a clock. In Hybrid Event-B time is a first class citizen in that
all variables are functions of time, whether explicitly or implicitly. However time is
special, being read-only, never being assigned, since time cannot be controlled by any
human-designed engineering process. Clocks allow a bit more flexibility, since they are
assumed to increase their value at the same rate that time does, but may be set during
mode events (see below). Variables are of two kinds. There are mode variables (like u,
declared as usual) which take their values in discrete sets and change their values via
discontinuous assignment in mode events. There are also pliant variables (such as x, y),
declared in the PLIANT clause, which take their values in topologically dense sets (nor-
mally R) and which are allowed to change continuously, such change being specified
via pliant events (see below).

Next are the invariants. These resemble invariants in discrete Event-B, in that the
types of the variables are asserted to be the sets from which the variables’ values at any
given moment of time are drawn. More complex invariants are similarly predicates that
are required to hold at all moments of time during a run.
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MACHINE HyEvBMch
TIME t
CLOCK clk
PLIANT x, y
VARIABLES u
INVARIANTS

x ∈ R
y ∈ R
u ∈ N

EVENTS
INITIALISATION

STATUS ordinary
WHEN

t = 0
THEN

clk := 1
x := x0
y := y0
u := u0

END
. . . . . .

. . . . . .
MoEv

STATUS ordinary
ANY i?, l, o!
WHERE grd(x, y, u, i?, l, t, clk)
THEN

x, y, u, clk, o! :| BApred(x, y, u,
i?, l, o!, t, clk, x′, y′, u′, clk′)

END
PliEv

STATUS pliant
INIT iv(x, y, t, clk)
WHERE grd(u)
ANY i?, l, o!
COMPLY

BDApred(x, y, u, i?, l, o!, t, clk)
SOLVE
D x = φ(x, y, u, i?, l, o!, t, clk)
y, o! := E(x, u, i?, l, t, clk)

END
END

Fig. 2. A schematic Hybrid Event-B machine

Then we get to the events. The INITIALISATION has a guard that synchronises time
with the start of any run, while all other variables are assigned their initial values in
the usual way. As hinted above, in Hybrid Event-B, there are two kinds of event: mode
events and pliant events.

Mode events are direct analogues of events in discrete Event-B. They can assign all
machine variables (except time itself). In the schematic MoEv of Fig. 2, we see three
parameters i?, l, o!, (an input, a local parameter, and an output respectively), and a guard
grd which can depend on all the machine variables. We also see the generic after-value
assignment specified by the before-after predicate BApred, which can specify how the
after-values of all variables (except time, inputs and locals) are to be determined.

Pliant events are new. They specify the continuous evolution of the pliant variables
over an interval of time. The schematic pliant event PliEv of Fig. 2 shows the struc-
ture. There are two guards: there is iv, for specifying enabling conditions on the pliant
variables, clocks, and time; and there is grd, for specifying enabling conditions on the
mode variables. The separation between the two is motivated by considerations con-
nected with refinement.

The body of a pliant event contains three parameters i?, l, o!, (once more an input, a
local parameter, and an output respectively) which are functions of time, defined over
the duration of the pliant event. The behviour of the event is defined by the COMPLY
and SOLVE clauses. The SOLVE clause specifies behaviour fairly directly. For exam-
ple the behaviour of pliant variable y and output o! is given by a direct assignment to
the (time dependent) value of the expression E(. . .). Alternatively, the behaviour of pli-
ant variable x is given by the solution of the first order ordinary differential equation
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(ODE) D x = φ(. . .), where D indicates differentiation with respect to time. (In fact
the sematics of the y, o! = E case is given in terms of the ODE D y,D o! = DE, so that
x, y and o! satisfy the same regularity properties.) The COMPLY clause can be used to
express any additional constraints that are required to hold during the pliant event via
its before-during-and-after predicate BDApred. Typically, constraints on the permitted
range of values for the pliant variables, and similar restrictions, can be placed here.

The COMPLY clause has another purpose. When specifying at an abstract level, we
do not necessarily want to be concerned with all the details of the dynamics — it is
often sufficient to require some global constraints to hold which express the needed
safety properties of the system. The COMPLY clauses of the machine’s pliant events
can house such constraints directly, leaving it to lower level refinements to add the
necessary details of the dynamics.

Briefly, the semantics of a Hybrid Event-B machine is as follows. It consists of a set
of system traces, each of which is a collection of functions of time, expressing the value
of each machine variable over the duration of a system run. (In the case of HyEvBMch,
in a given system trace, there would be functions for clk, x, y, u, each defined over the
duration of the run.)

Time is modeled as an interval T of the reals. A run starts at some initial mo-
ment of time, t0 say, and lasts either for a finite time, or indefinitely. The duration
of the run T , breaks up into a succession of left-closed right-open subintervals: T =
[t0 . . . t1), [t1 . . . t2), [t2 . . . t3), . . .. The idea is that mode events (with their discontinu-
ous updates) take place at the isolated times corresponding to the common endpoints
of these subintervals ti, and in between, the mode variables are constant and the pliant
events stipulate continuous change in the pliant variables.

Although pliant variables change continuously (except perhaps at the ti), continu-
ity alone still allows for a wide range of mathematically pathological behaviours. To
eliminate these, we make the following restrictions which apply individually to every
subinterval [ti . . . ti+1):

I Zeno: there is a constant δZeno, such that for all i needed, ti+1 − ti ≥ δZeno.

II Limits: for every variable x, and for every time t ∈ T , the left limit limδ→0 x(t− δ)

written
−→
x(t) and right limit limδ→0 x(t + δ), written

←−
x(t) (with δ > 0) exist, and for

every t, x(t) =
←−
x(t). [N. B. At the endpoint(s) of T , any missing limit is defined to

equal its counterpart.]

III Differentiability: The behaviour of every pliant variable x in the interval [ti . . . ti+1)
is given by the solution of a well posed initial value problem D xs = φ(xs . . .)
(where xs is a relevant tuple of pliant variables and D is the time derivative). “Well
posed” means that φ(xs . . .) has Lipschitz constants which are uniformly bounded
over [ti . . . ti+1) bounding its variation with respect to xs, and that φ(xs . . .) is mea-
surable in t.

Regarding the above, the Zeno condition is certainly a sensible restriction to demand of
any acceptable system, but in general, its truth or falsehood can depend on the system’s
full reachability relation, and is thus very frequently undecidable.

The stipulation on limits, with the left limit value at a time ti being not necessarily
the same as the right limit at ti, makes for an easy interpretation of mode events that
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happen at ti. For such mode events, the before-values are interpreted as the left limit
values, and the after-values are interpreted as the right limit values.

The differentiability condition guarantees that from a specific starting point, ti say,
there is a maximal right open interval, specified by tMAX say, such that a solution to the
ODE system exists in [ti . . . tMAX). Within this interval, we seek the earliest time ti+1

at which a mode event becomes enabled, and this time becomes the preemption point
beyond which the solution to the ODE system is abandoned, and the next solution is
sought after the completion of the mode event.

In this manner, assuming that the INITIALISATION event has achieved a suitable
intial assignment to variables, a system run is well formed, and thus belongs to the
semantics of the machine, provided that at runtime:

• Every enabled mode event is feasible, i.e. has an after-state, and on its com-
pletion enables a pliant event (but does not enable any mode event).1

(1)

• Every enabled pliant event is feasible, i.e. has a time-indexed family of after-
states, and EITHER:

(i) During the run of the pliant event a mode event becomes enabled. It pre-
empts the pliant event, defining its end. ORELSE

(ii) During the run of the pliant event it becomes infeasible: finite termination.
ORELSE

(iii) The pliant event continues indefinitely: nontermination.

(2)

Thus in a well formed run mode events alternate with pliant events. The last event
(if there is one) is a pliant event (whose duration may be finite or infinite). In reality,
there are a number of semantic issues that we have glossed over in the framework just
sketched. We refer to [5] for a more detailed presentation.

We note that this framework is quite close to the modern formulation of hybrid sys-
tems. (See eg. [21,16] for representative formulations, or the large literature in the Hy-
brid Systems: Computation and Control series of international conferences, and the
further literature cited therein.)

5 Cruise Control — Top Level Mode Oriented Model

In this section we begin the development of the cruise control system by introducing
the top level, mode oriented model of the CCS, CruiseControl 0. At this level, we just
model the state transition diagram given in Fig. 1, i.e. we just focus on the high level
user view modes of operation of the system. Regarding a more realistic engineering
development, such a model would probably be agreed on first, before the details of the
various submodel behaviours were determined.

Regarding the CCS model itself, we see that we model the structure of Fig. 1 using
two mode variables: mode and sm (submode). The former models whether the CCS
is ON, OFF or SUSPended, while the latter models whether the speed has been SET,
otherwise it is NIL. It is not hard to check that Fig. 3 gives a translation of Fig. 1 into

1 If a mode event has an input, the semantics assumes that its value only arrives at a time strictly
later than the previous mode event, ensuring part of (1) automatically. This used in Fig. 3.
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MACHINE CruiseControl 0
VARIABLES mode, sm
INVARIANTS

mode ∈ {OFF,ON, SUSP}
sm ∈ {NIL, SET}
sm = SET ⇒ mode ∈ {ON, SUSP}

EVENTS
INITIALISATION

STATUS ordinary
BEGIN

mode := OFF
sm := NIL

END
SwOn

STATUS ordinary
ANY in?
WHERE in? = swOn ∧ mode = OFF
THEN mode := ON

sm := NIL
END

SwOff
STATUS ordinary
ANY in?
WHERE in? = swOff ∧ mode = ON
THEN mode := OFF

sm := NIL
END

SetSpeed
STATUS ordinary
ANY in?
WHERE in? = setSpeed ∧

mode = ON ∧ sm = NIL
THEN sm := SET
END

TipUp
STATUS ordinary
ANY in?
WHERE in? = tipUp ∧

mode = ON ∧ sm = SET
THEN skip
END

. . . . . .

. . . . . .
TipDown

STATUS ordinary
ANY in?
WHERE in? = tipDown ∧

mode = ON ∧ sm = SET
THEN skip
END

DepAcc
STATUS ordinary
ANY in?
WHERE in? = depAcc ∧

mode = ON ∧ sm = SET
THEN mode := SUSP
END

RelAcc
STATUS ordinary
ANY in?
WHERE in? = relAcc ∧

mode = SUSP ∧ sm = SET
THEN mode := ON
END

DepBrCl
STATUS ordinary
ANY in?
WHERE in? = depBrCl ∧

mode ∈ {ON, SUSP}
THEN mode := OFF

sm := NIL
END

PliTrue
STATUS pliant
COMPLY INVARIANTS
END

END

Fig. 3. Mode level description of cruise control operation
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the framework of Hybrid Event-B. Aside from typing invariants, we have an invariant
that only allows the sm to be SET when the CCS is active (i.e. either ON or SUSP).

One aspect of both Fig. 1 and Fig. 3 that we should comment on, is that in the real
world, the pressing of any of the pedals, or of the CCS control buttons, is not restricted
to when the CCS deems it permissible to do so. The car driver has these user interface
elements at his disposal at all times, and can operate them whenever he wishes. Thus,
we have clearly designed Fig. 1 and Fig. 3 aggressively, assuming events take place
only when their guards are true. This implies that there is a defensive layer above it,
deflecting inappropriately commanded events away from the core CCS functionality.

Aside from a few details, Fig. 3 is almost identical to comparable models written
in discrete Event-B as described in [12] or [25,24]. The main difference between the
earlier treatments and ours, is that these other treatments developed their mode level
descriptions incrementally, adding a feature or two at a time via refinement, to ease
automated verification. By contrast, we have presented our mode level model mono-
lithically, so as to save space (and the reader’s attention span) for the richer modelling
of the continuous system behaviour between mode changes that is the main contribution
of this paper.

Regarding the technical structure of Fig. 3, it differs from a discrete Event-B ma-
chine in only a couple of details. First is that each of the mode events (indicated by
the ‘STATUS ordinary’ designation) has an input parameter whose value is (almost)
the name of the event. Considering the actions of these various mode events, such pa-
rameters would be unnecessary in discrete Event-B. In Hybrid Event-B though, time is
an essential feature of the modelling framework, so the timing of occurrences of mode
events is an issue. The semantics of Hybrid Event-B stipulates that mode events with
input parameters only become enabled when the input values become available from
the environment, and it is assumed that they only become available at times that do not
clash with other mode events. Thus the appearance of the inputs from the environment
acts to schedule mode event occurrences in a way compatible with the usual interpre-
tation of their occurrence in discrete Event-B. The only other difference from discrete
Event-B that is visible in Fig. 3, is the pliant event PliTrue. This has a vacuous guard,
and (essentially) vacuous semantics that merely insist that the INVARIANTS are main-
tained. Its job is simply to formally allow time to pass (according to the semantics of
Hybrid Event-B) until the next mode event occurrence takes place, prompted by the
appearance of the relevant parameter from the environment.

From the above, it is easy to see that a standard discrete Event-B machine, giving
a mode level description of the behaviour of some desired system, could be mechani-
cally and routinely translated to a machine of the form of Fig. 3, allowing an original
discrete Event-B machine to be refined ultimately by a Hybrid Event-B machine. Al-
ternatively, the formal semantics of UML-B [18,14,19] would enable the same job to
be done starting from a more diagrammatic representation. This would enable a devel-
opment process that started by focusing on just a conventional discrete Event-B mode
level behaviour of the system, to be enriched with real time properties further along the
development, within an integrated development activity.
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6 Cruise Control — Abstract Continuous Behaviour

In this section we enhance the pure mode oriented model of Section 5 with a specifi-
cation of the desired continuous behaviour in the periods between occurrences of the
mode events.

The requirements that are intended to be addressed by this behaviour are relatively
easy to formulate at a user level. Thus, once the CCS is in control of the car, we require
that the actual speed of the car differs from the target speed that has been set by the
driver by at worst a margin that is determined by the CCS design.

The car’s actual behaviour may drift away from it’s target value for many reasons.
The target speed is set when the driver engages the CCS, and is translated into com-
mands for the car to maintain it, but the actual behaviour is affected by many additional
environmental factors. These include factors such as road slope, wind resistance, road
surface characteristics, total car weight, fuel energy output, and so on. These add con-
siderable uncertainty and complexity to the real world situation.

Control engineers cope with the vast range of environmental uncertainty by using
feedback. The deviation between the actual and desired behaviour is monitored, and the
difference is used to impel the controlled system towards the desired behaviour.

The low level design of a real CCS deals with the many factors that affect the car’s
performance, as indicated. In this paper we will restrict our attention to a simple control
design addressing the user level requirements stated earlier. This illustrates how a con-
trol system design may be integrated with the modelling capabilities of Hybrid Event-B.
More realistic designs will follow the same general principles as our example, and will
merely exhibit increased complexity.

Our enhanced treatment of the CC system is to be found in Fig. 4, completed in
Fig. 5. After the machine and refinement declarations, there is a declaration of a pliant
variable v, representing the velocity of the car. In our simple approach to CCS, this
single pliant variable will be sufficient.

Next come the (mode) variables. Of these, mode and sm are familiar from Fig. 3. Of
the remainder, setv is the target velocity set by the driver of the car, while the new vari-
able rn records whether a ramp up/down episode is needed after use of the accelerator
prior to resuming cruising velocity. All other identifiers, occurring but not declared in
Figs. 4 or 5, are constants of the system, as if they were in a Hybrid Event-B CONTEXT
not included in the paper. We return to them at the end of this section.

Next come the invariants. For the real valued variables, discernable as such because
of the invariants that restrict them to a real valued closed interval, e.g. v ∈ [0 . . .Vmax],
the restriction to the interval is mostly the only property they have to satisfy. Aside from
v, these real valued variables are mode variables, so are piecewise constant during pliant
transitions, despite being real valued.

The remaining invariant is CONTINUOUS(v), featuring the ‘CONTINUOUS’ pli-
ant modality. Now, the semantics of Hybrid Event-B guarantees that in between mode
transitions, the behaviour of all pliant variables must be absolutely continuous. Never-
theless, pliant variables may suffer discontinuities during mode transitions. The CON-
TINUOUS modality stipulates that this must not happen to v, and a simple static check
on the mode events is enough to guarantee this. The global continuity of v is of course
intended to contribute to the ‘comfortable behaviour’ requirement.
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MACHINE CruiseControl 1
REFINES CruiseControl 0
PLIANT v
VARIABLES mode, sm, setv, rn
INVARIANTS

v ∈ [0 . . . Vmax]
CONTINUOUS(v)
mode ∈ {OFF,ON, SUSP}
sm ∈ {NIL, SET}
sm = SET ⇒ mode ∈ {ON, SUSP}
setv ∈ [VCCmin . . .VCCmax]
rn ∈ BOOL

EVENTS
INITIALISATION

STATUS ordinary
REFINES INITIALISATION
BEGIN

v :∈ [0 . . .Vmax]
setv :∈ [VCCmin . . .VCCmax]
mode := OFF
sm := NIL
rn := FALSE

END
PliDefault

STATUS pliant
REFINES PliTrue
WHEN mode ∈ {OFF, SUSP} ∨
(mode = ON ∧ sm = NIL)

COMPLY INVARIANTS
END

SwOn
STATUS ordinary
REFINES SwOn
ANY in?
WHERE in? = swOn ∧ mode = OFF
THEN mode := ON

sm := NIL
END

SwOff
STATUS ordinary
REFINES SwOff
ANY in?
WHERE in? = swOff ∧ mode = ON
THEN mode := OFF

sm := NIL
END

. . . . . .

. . . . . .
SetSpeed

STATUS ordinary
REFINES SetSpeed
ANY in?
WHERE in? = setSpeed ∧

v ∈ [VCCmin . . .VCCmax] ∧
mode = ON ∧ sm = NIL

THEN sm := SET
setv := v

END
Cruise

STATUS pliant
REFINES PliTrue
INIT |v− setv |≤ ΔCruise

WHERE mode = ON ∧ sm = SET
COMPLY |v− setv | ≤ ΔCruise ∧
|Dv | ≤ ΔMCA

END
RampUp

STATUS pliant
REFINES PliTrue
INIT v− setv < −ΔCruise

WHERE mode = ON ∧ sm = SET
COMPLY |Dv− RUA |≤ ΔRUD

END
RampDown

STATUS pliant
REFINES PliTrue
INIT v− setv > ΔCruise

WHERE mode = ON ∧ sm = SET
COMPLY |Dv + RDA | ≤ ΔRUD

END
ResumeCruise

STATUS convergent
WHEN |v− setv | ≤ ΔCruise ∧

mode = ON ∧ sm = SET ∧ rn
THEN rn := FALSE
END

VARIANT rn
. . . . . .

Fig. 4. Cruise control operation with abstract continuous behaviour, first part
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. . . . . .
TipUp

STATUS ordinary
REFINES TipUp
ANY in?
WHERE in? = tipUp ∧

mode = ON ∧ sm = SET
THEN

setv := min{setv + TUD,VCCmax}
END

TipDown
STATUS ordinary
REFINES TipDown
ANY in?
WHERE in? = tipDown ∧

mode = ON ∧ sm = SET
setv− TUD ≥ VCCmin

THEN
setv := max{setv− TUD,VCCmin}

END
DepAcc

STATUS ordinary
REFINES DepAcc
ANY in?
WHERE in? = depAcc ∧

mode = ON ∧ sm = SET
THEN mode := SUSP
END

. . . . . .

. . . . . .
RelAccCruise

STATUS ordinary
REFINES RelAcc
ANY in?
WHERE in? = relAcc ∧

mode = SUSP ∧ sm = SET ∧
|v− setv | ≤ ΔCruise

THEN mode := ON
rn := FALSE

END
RelAccRamp

STATUS ordinary
REFINES RelAcc
ANY in?
WHERE in? = relAcc ∧

mode = SUSP ∧ sm = SET ∧
|v− setv |> ΔCruise

THEN mode := ON
rn := TRUE

END
DepBrCl

STATUS ordinary
REFINES DepBrCl
ANY in?
WHERE in? = depBrCl ∧

mode ∈ {ON, SUSP}
THEN mode := OFF

sm := NIL
END

END

Fig. 5. Cruise control operation with abstract continuous behaviour, second part

The heart of the model consists of the events, the first of which is INITIALISATION.
This intialises mode and sm as before, and sets all the real valued variables to arbitrary
values in their permitted range. We examine the remaining events one by one.

PliDefault is a pliant event that refines PliTrue of Fig. 3. It allows the variables to
vary arbitrarily via the ‘COMPLY INVARIANTS’ clause, although the invariants must
be maintained. Note that the guard of PliDefault is stronger than that of PliTrue — the
unconstrained behaviour is only permitted under conditions where the CCS would not
be expected to be in control.

The events SwOn and SwOff are identical to their Fig. 3 precursors.
Event SetSpeed acquires new functionality, in that it now also sets the value of the

demanded speed setv to be the car’s current speed v.
The continuous control itself is handled by the next three pliant events, Cruise,

RampUp, RampDown. We start with Cruise. On entry to Cruise, if the car’s actual
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speed v is within a suitable margin (given by the constant ΔCruise) of the desired speed
setv, then the event is enabled, as defined by the INIT clause | v − setv | ≤ ΔCruise.
In this case, at the present level of abstraction, the behaviour is not precisely defined,
but the Cruise event demands that the speed remains within a suitable margin of setv,
bounded by ΔCruise again. A further requirement is once more related to ‘comfort’, in
that the rate of change of v should not exceed a MaximumCruiseAcceleration, ΔMCA.
These stipulations are housed in the COMPLY | v − setv | ≤ ΔCruise ∧ |Dv | ≤ ΔMCA

clause. Note that this represents a genuine specification, in that the COMPLY clause
gives no indication of how a behaviour with the required properties is to be achieved.
It also represents behaviour that trivially refines PliTrue, in that the latter accepts all
behaviours obeying the invariants.

Similar considerations apply to RampUp and RampDown. Taking RampUp, it caters
for the cases when, following use of the accelerator to casue some temporary vari-
ation in the car’s speed, the car’s actual speed v is less than the desired speed setv
by an amount greater than ΔCruise.2 In such a case, it is deemed that a(n approxi-
mately) constant acceleration towards the desired speed setv is an appropriate han-
dling of the ‘comfort’ requirement. So we have a clause COMPLY | Dv − RUA | ≤
ΔRUD. This demands that the acceleration Dv does not differ from the constant RUA,
i.e. RampUpAcceleration, by more than the deviation ΔRUD. Again this is specification,
pure and simple. No indication is given about how to achieve the behaviour described.

Event RampDown is very similar to RampUp. It fires when, following use of the ac-
celerator, the car’s actual speed is greater than setv by an amount exceeding the constant
ΔCruise. Now the car is required to decelerate at the (approximately) constant accelera-
tion −RDA (with the same margin as before). Again, the COMPLY clause amounts to
pure specification. No indication is given about how to achieve the behaviour described.

A number of additional remarks are in order regarding Cruise, RampUp, RampDown.
Firstly, the constants occurring in the events’ INIT guards must be chosen so that the
disjunction of the INIT guards can cover all permissible car speeds in the car’s permitted
range [0 . . .Vmax]. Otherwise, when mode = ON ∧ sm = SET, the relative deadlock
freedom property of refinement will fail since all three events refine the unconstrained
behaviour of PliTrue. It is clear that Cruise, RampUp, RampDown, as defined, meet this
constraint.

Secondly, if say RampUp runs, then if left to continue in an unhindered manner,
it will eventually cause the v ∈ [0 . . .Vmax] invariant to fail, since a constant positive
acceleration will eventually cause any upper speed limit to be exceeded. To prevent
this, we have introduced a new mode event ResumeCruise, which runs when the car’s
velocity, previously differing from the set speed by more than ΔCruise, eventually gets
within ΔCruise of the set speed. The main job of this mode event is to cause a reschedule,
so that RampUp is preempted, and Cruise is able to run.

We only want ResumeCruise to only run once per resumption-of-cruise-control. In
order that ResumeCruise disables itself upon completion, we use the new rn variable
in its guard, and falsify it in the action of ResumeCruise. This causes ResumeCruise to

2 The initially puzzling possibility that the car might need to speed up following use of the
accelerator is explained by considering driving up a steep hill.
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decrease the VARIANT rn (with which we interrupt the presentation of events, in order
to show it at the most opportune place).

The remainder of the CruiseControl 1 machine is in Fig. 5. Now, since setv is a
new feature of the CruiseControl 1 machine, and since TipUp and TipDown are in-
tended to manipulate it, these events must be refined nontrivially in order to achieve
this. The refinements therefore add or subtract the constant TUD from setv, although
they must do it in a way that prevents the range of permissible cruise control speeds
[VCCmin . . .VCCmax] from being overstepped.

Among the remaining events of CruiseControl 1 (all mode events), DepAcc is as
previously. Event RelAcc has been split in two though, depending on whether the car’s
speed is within the margin ΔCruise when the accelerator pedal is released. If | v − setv |
≤ ΔCruise holds, i.e. the car is near enough its cruise speed, then Cruise can be entered
directly, ResumeCruise will not be needed, and so RelAccCruise sets nr to FALSE. If
| v − setv | ≤ ΔCruise is false though, then a ramp up or down episode is needed, so
RelAccRamp sets nr to TRUE so that ResumeCruise will eventually be enabled.

Finally, DepBrCl is as in CruiseControl 0.
Having covered the whole system model, we are in a position to reconsider the con-

stants, as promised earlier. While it is natural in high level modelling to introduce, at
will, constants that constrain system behaviour in desirable ways, these constants will
not normally be independent, and will need to satisfy a number of properties to ensure
soundness. The safest way to ensure that all needed constraints have been considered, is
to attempt mechanical verification — a mechanical prover will remorselessly uncover
any missing constraints, which will show up by generating unprovable subgoals.

Despite lack of dedicated tool support for Hybrid Event-B at present, the simplicity
of our model here, means that a large portion of this work can be done using discrete
Event-B and the existing RODIN tool. The fact that, aside from properties involving
continuity and differentiability, we only have uninstantiated constants, and only use
properties of reals that are also true of the integers, means that unprovability in the
integers is a strong indication of falsity in the reals. Thus, regarding the details of our
models, we would obviously need 0 < VCCmin < VCCmax < Vmax. Beyond that,
the mode events can be treated directly, as noted earlier. This leaves the pliant events,
Cruise, RampUp, RampDown.

For our purposes, we can treat Cruise as a mode event that skips, for the follow-
ing collection of reasons: it maintains its guard; 0 < ΔCruise is a constant that is
just used to partition the set of velocities; Dv is a variable independent of v at any
given time (and which is never tested in any guard); and 0 < ΔMCA is a constant
that occurs nowhere else. For RampUp and RampDown, aside from the obvious 0 <
min{RUA,RDA, ΔRUD}, all of RUA, RDA, ΔRUD are again constants that occur nowhere
else, that only concern Dv, and thus are not further constrained. Beyond that, the be-
haviour of RampUp, RampDown is intended to achieve |v − setv | ≤ ΔCruise, so for our
purposes, we can replace them by mode events with action v :| |v′ − setv | ≤ ΔCruise. In
this manner, with the help of some admittedly informal reasoning regarding continuity
and differentiability, we can go quite a long way towards replicating the reachability re-
lation of the CruiseControl 1 machine (expressed in terms of sequences of event names
that are executed and the before-/after-values of the events’ variables), using a discrete
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Event-B machine with the same constants obeying the same constraints. (In fact, the
authors used this approach on an earlier version of the models, and uncovered a typo
concerning inconsistent assumptions about the sign of RDA. RDA can be a negative
constant, or alternatively, a positive constant that is negated when necessary at the point
of use; but you must be consistent.)

7 Cruise Control — Continuous Behaviour Defined

In the previous section we specified the continuous behaviour of the CCS in terms of
some safety properties captured in the invariants and COMPLY clauses. A real CCS
though, would have to realise these properties in a specific design. In this section, we
enhance CruiseControl 1 with such a design.

Fig. 6 contains the enhancement, machine CruiseControl 2. This is a refinement of
CruiseControl 1 in which the vast majority of CruiseControl 1 remains unchanged.
The variable declarations show that we only introduce more refined behaviour in this
machine, and even then, only in events Cruise, RampUp, RampDown.

We start with Cruise. Assuming INIT is satisfied, on entry to Cruise, the actual
speed v may differ from setv by some margin since Cruise may have been preceded
by RampUp or RampDown. And while CruiseControl 1 tolerated a bounded deviation
between these indefinitely, in CruiseControl 2 we replace this by a more specific con-
trol law. Since setv is the desired speed, we drive the actual speed towards setv using
negative feedback. The earlier CruiseControl 1 behaviour is refined to a control law
described in the SOLVE clause of the CruiseControl 2 event. The control law sets the
acceleration Dv to be proportional to minus the excess of v over setv. Thus, if v− setv is
positive, the acceleration is negative, tending to diminish v towards setv, and if v − setv
is negative, the acceleration is positive, tending to increase v towards setv.

The preceding constitutes an extremely simple example of closed loop negative feed-
back linear control, expressed in the state space picture. The control law in the SOLVE
clause, Dv = −C(v− setv), is a simple linear ODE, and can be solved exactly, yielding
v(t) = setv+(v(�L)− setv) e−C(t−�L), where �L is the symbol used in Hybrid Event-B
to refer generically to the start time of any time interval during which a pliant event
runs. It is trivial to verify that with a suitable C, this refines the behaviour permitted
by the CruiseControl 1 model, since the maximum values of both | v(t) − setv | and of
|Dv | occur precisely at t = �L, and henceforth reduce.

In more realistic control scenarios, the overall objectives, namely to design a dy-
namics that behaves in an acceptable way in the face of the requirements, remains the
same, but the technical details get considerably more complicated. To a large extent,
frequency-based techniques using Laplace and Fourier transforms cast the reasoning
into the algebraic domain, and the picture is further complicated by the use of varying
criteria (often based on the properties of these frequency-based techniques) to evaluate
design quality. Often, use of these techniques does not blend well with the reasoning
found in state machine based formalisms like Event-B and its relatives. For this reason,
resticting to state space control design techniques is recommended to achieve the opti-
mal integration between approaches.
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MACHINE CruiseControl 2
REFINES CruiseControl 1
PLIANT v
VARIABLES mode, sm, setv, rn
INVARIANTS

. . . . . .
EVENTS

INITIALISATION . . . . . .
PliDefault . . . . . .
SwOn . . . . . .
SwOff . . . . . .
SetSpeed . . . . . .
ResumeCruise . . . . . .
TipUp . . . . . .
TipDown . . . . . .
DepAcc . . . . . .
RelAccCruise . . . . . .
RelAccRamp . . . . . .
DepBrCl . . . . . .

. . . . . .

. . . . . .
Cruise

STATUS pliant
REFINES Cruise
INIT |v− setv |≤ ΔCruise

WHERE mode = ON ∧ sm = SET
SOLVE Dv = −C(v− setv)
END

RampUp
STATUS pliant
REFINES RampUp
INIT v− setv < −ΔCruise

WHERE mode = ON ∧ sm = SET
SOLVE Dv = RUA
END

RampDown
STATUS pliant
REFINES RampDown
INIT v− setv > ΔCruise

WHERE mode = ON ∧ sm = SET
SOLVE Dv = −RDA
END

END

Fig. 6. Cruise control operation with continuous control

We turn to RampUp and RampDown. Here, the approximately linear and nondeter-
ministic variation in speed of machine CruiseControl 1 is replaced by a precise, deter-
ministic linear law for the velocity, specified by a constant acceleration in the SOLVE
clauses: Dv = RUA for RampUp and Dv = −RDA for RampDown.

In writing these deterministic dynamical laws, it is presumed that acceleration is
something that can be commanded accurately by the engine management system, based
on the properties of the engine, the fuel, the environmental conditions, etc., as discussed
in Section 6. In truth, this is something of an exageration. In reality, there is too much
uncertainty in all these environmental elements to enable the acceleration to be pre-
dicted (and therefore commanded) with complete precision. Aside form anything else,
the car’s sensors are severely limited regarding the type of information about the envi-
ronment that they can obtain. So there will be some deviation between the acceleration
that the engine management system predicts, and that which is actually achieved. On
this basis we would expected to see some difference between our treatments of Cruise,
and of RampUp and RampDown.

In the case of Cruise, a misjudgement of the precise acceleration that will be achieved
is compensated for by the presence of negative feedback. If the car’s velocity does
not reduce quite as rapidly as anticipated by the engine management system, then the
negative feedback will work that much harder to bring the velocity into line. The pre-
cise details of the control law can be adjusted to make allowance for such potential
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imprecision, without disturbing the overall structure of the behaviour. In this sense, the
negative feedback makes the Cruise design robust against a margin of imprecision.

In the case of RampUp and RampDown, there is no feedback included in the control
law. For these two events, it is the acceleration that might be awry, and that would need
to be brought into line. There are a number of reasons why we did not include this in our
models. Firstly, it would need the introduction of at least one other pliant variable into
the models (to distinguish measured acceleration from commanded acceleration). Sec-
ondly, the resulting feedback law would make the control system higher order, adding
unnecessary complexity. Thirdly we would lose the opportunity to illustrate the contrast
between closed loop control (as in Cruise) and open loop control (as here, for RampUp
and RampDown) in the context of Hybrid Event-B. Fourthly, if our earlier design is ap-
propriate, then any deviation from cruise speed caused by use of the accelerator pedal
will be temporary, and thus RampUp and RampDown describe transients of the system.
The small imprecisions that may affect their behaviour will not significantly affect the
quality of the CCS at the relatively simple level that we model it in this paper.

8 Conclusions

In the preceding sections, we overviewed the cruise control model examined within the
DEPLOY project, and we commented on the deficiencies when formal modelling and
verification are based purely on discrete Event-B, as was employed in DEPLOY. We
then commented on the anticipated improvements expected when the more expressive
Hybrid Event-B formalism is used instead. We continued by outlining the essential
elements of Hybrid Event-B, sufficient to cater for the modelling to be done later.

We then developed a simple version of the CCS in Hybrid Event-B, through a num-
ber of relatively large scale refinements, using these refinements to illustrate the major
modelling steps. Thus, we started with a pure mode oriented model, very similar to
what DEPLOY achieved for CCS. The hybrid aspects of Hybrid Event-B were almost
completely disregarded here by allowing the continuous behaviour to be arbitrary.

The first refinement then introduced additional structure and restrictions on the con-
tinuous behaviour. These, though nondeterministic, were deemed sufficient to express
the system requirements. The next refinement then introduced specific control laws that
modelled in a simple way how a real CCS might implement the continuous control.

Of course, a real system would be much more complicated than what we presented,
but it would consist of a larger collection of ingredients of a similar nature to those in our
design. For expository purposes then, we can claim that our presentation met the goals
described in Section 3. Specifically, we showed that we could incorporate provision for
closed loop controller designs unproblematically (including a brief discussion of open
loop control too). Additionally, the smoothness with which our development proceeded,
bore eloquent testimony to the fluency of the Hybrid Event-B formalism in tackling
developments of this kind. This gives strong encouragement for the development of
mechanical support for the Hybrid Event-B framework in the future.

Acknowledgement. Michael Butler is partly funded by the FP7 ADVANCE Project
(http://www.advance-ict.eu).



Cruise Control in Hybrid Event-B 93

References

1. KeYmaera, http://symbolaris.com
2. Report: Cyber-Physical Systems (2008),

http://iccps2012.cse.wustl.edu/_doc/CPS_Summit_Report.pdf
3. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University

Press (2010)
4. Antsaklis, P., Michel, A.: Linear Systems. Birkhauser (2006)
5. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core Hybrid Event-B: Adding Continu-

ous Behaviour to Event-B (2012) (submitted)
6. Barolli, L., Takizawa, M., Hussain, F.: Special Issue on Emerging Trends in Cyber-Physical

Systems. J. Amb. Intel. Hum. Comp. 2, 249–250 (2011)
7. Butler, M.: Towards a Cookbook for Modelling and Refinement of Control Problems (2009),

http://deploy-eprints.ecs.soton.ac.uk/108/1/cookbook.pdf
8. Carloni, L., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.: Languages and Tools for

Hybrid Systems Design. Foundations and Trends in Electronic Design Automation 1, 1–193
(2006)

9. DEPLOY: European Project DEPLOY IST-511599,
http://www.deploy-project.eu/

10. Dorf, R., Bishop, R.: Modern Control Systems. Pearson (2010)
11. Dutton, K., Thompson, S., Barraclough, B.: The Art of Control Engineering. Addison-

Wesley (1997)
12. Loesch, F., Gmehlich, R., Grau, K., Mazzara, M., Jones, C.: Project DEPLOY, Deliverable

D19: Pilot Deployment in the Automotive Sector (2010),
http://www.deploy-project.eu/pdf/
D19-pilot-deployment-in-the-automotive-sector.pdf

13. MATLAB and SIMULINK, http://www.mathworks.com
14. Mermet, J.: UML-B: Specification for Proven Embedded Systems Design. Springer (2004)
15. Ogata, K.: Modern Control Engineering. Pearson (2008)
16. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

Springer (2010)
17. RODIN: European Project RODIN (Rigorous Open Development for Complex Systems)

IST-511599, http://rodin.cs.ncl.ac.uk/
18. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. TOSEM 15,

92–122 (2006)
19. Snook, C., Oliver, I., Butler, M.: The UML-B Profile for Formal Systems Modelling in UML.

UML-B Specification for Proven Embedded Systems Design (2004)
20. Sztipanovits, J.: Model Integration and Cyber Physical Systems: A Semantics Perspective. In:

Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, p. 1. Springer, Heidelberg (2011),
http://sites.lero.ie/download.aspx?f=Sztipanovits-Keynote.pdf

21. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer
(2009)

22. White, J., Clarke, S., Groba, C., Dougherty, B., Thompson, C., Schmidt, D.: R&D Challenges
and Solutions for Mobile Cyber-Physical Applications and Supporting Internet Services. J.
Internet Serv. Appl. 1, 45–56 (2010)

23. Willems, J.: Open Dynamical Systems: Their Aims and their Origins. Ruberti Lecture, Rome
(2007), http://homes.esat.kuleuven.be/jwillems/Lectures/
2007/Rubertilecture.pdf

24. Yeganefard, S., Butler, M.: Control Systems: Phenomena and Structuring Functional Re-
quirement Documents. In: Proc. ICECCS-2012, pp. 39–48. IEEE (2012)

25. Yeganefard, S., Butler, M., Rezazadeh, A.: Evaluation of a Guideline by Formal Mod-
elling of Cruise Control System in Event-B. In: Proc. 2nd NFM, NASA/CP-2010-216215,
pp. 182–191. NASA (2010)

http://symbolaris.com
http://iccps2012.cse.wustl.edu/_doc/CPS_Summit_Report.pdf
http://deploy-eprints.ecs.soton.ac.uk/108/1/cookbook.pdf
http://www.deploy-project.eu/
http://www.deploy-project.eu/pdf/D19-pilot-deployment-in-the-automotive-sector.pdf
http://www.deploy-project.eu/pdf/D19-pilot-deployment-in-the-automotive-sector.pdf
http://www.mathworks.com
http://rodin.cs.ncl.ac.uk/
http://sites.lero.ie/download.aspx?f=Sztipanovits-Keynote.pdf
http://homes.esat.kuleuven.be/jwillems/Lectures/2007/Rubertilecture.pdf
http://homes.esat.kuleuven.be/jwillems/Lectures/2007/Rubertilecture.pdf


From Distributions

to Probabilistic Reactive Programs

Riccardo Bresciani and Andrew Butterfield⋆

Foundations and Methods Group,
Trinity College Dublin,

Dublin, Ireland
{bresciar,butrfeld}@scss.tcd.ie

Abstract. We have introduced probability in the UTP framework by
using functions from the state space to real numbers, which we term
distributions, that are embedded in the predicates describing the differ-
ent program constructs. This has allowed us to derive a probabilistic
theory of designs starting from a probabilistic version of the relational
theory, and continuing further down this road we can get to a theory
of probabilistic reactive programs. This paper presents the route that
connects these steps, and discusses the challenges lying ahead in view of
a probabilistic CSP based on distributions.

1 Introduction

The Unifying Theories of Programming (UTP) aims at a semantic framework
where programs and specifications can be modelled as alphabetised relational
predicates, capturing the semantic models normally used for their formal de-
scription [HH98, DS06, But10, Qin10]: the advantage of this common framework
is that of enabling formal reasoning on the integration of the different languages
through untyped predicate calculus.

So far several theories have been given aUTP semantics,where programsare ex-
pressed by means of logical predicates (programs are predicates! [Heh84, Hoa85]).

In the last years the focus of our research has been how to integrate prob-
ability into the UTP framework: our approach is based on distributions over
the state space. We use distributions to associate a probability with each state:
a program can therefore be expressed by means of logical predicates involv-
ing a homogeneous relation between distributions, to account for the modifi-
cations transforming before-distributions into corresponding after-distributions.
This approach gives us a framework where probabilistic choice co-exists with
non-deterministic choice, so being consistent with the approach advocated in
[MM04].

After having given a probabilistic UTP semantics to pGCL [BB11, BB12b]
and having presented a probabilistic theory of designs [BB12a], we have started
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to look into the possibility of using our framework to have a probabilistic version
of CSP : as the UTP theory of CSP is built on that of designs, we aim at building
a theory of pCSP starting from that of probabilistic designs. The task turned
out to be not so straightforward, posing interesting challenges which we find
worthy of discussion in the present paper.

This paper is structured as follows: we describe the background to UTP, with
particular focus on the standard theory of designs in that framework, and to
pCSP (§2); introduce our probabilistic framework based on distributions over the
state space (§3.1), with a brief presentation of the probabilistic theory of designs
from [BB12a] (§3.2); we then discuss how to progress from this probabilistic
theory of designs to a theory of reactive programs (§4); and conclude (§5).

2 Background

2.1 UTP

UTP uses second-order predicates to represent programs: they are used to ex-
press relations among a set of observable variables which constitute their alpha-
bet. Observable variables usually occur as both undecorated and decorated with
a dash ′: the former refer to states before the program starts (before-states),
whereas the latter refer to the final states reached after the program has run
(after-states). For example, a program using two variables x and y might be
characterised by having the set {x,x′, y, y′} as an alphabet, and the meaning of
the assignment x ∶= y + 3 would be described, in a simple relational theory, by
the predicate

x′ = y + 3 ∧ y′ = y.

In effect UTP uses predicate calculus in a disciplined way to build up a relational
calculus for reasoning about programs.

In addition to observations of the values of program variables, often we need
to introduce observations of other aspects of program execution via so-called
auxiliary variables. For example the theory of reactive programs explained below
uses four auxiliary variables — namely ok ,wait , tr , ref — to keep track of
information concerning the current program run, such as termination, reach of
a stable state, refusals, . . .

A key notion in UTP is that of healthiness conditions : they are usually charac-
terised as monotonic idempotent predicate transformers whose fixpoints charac-
terise sensible (healthy) predicates. In other words they outlaw some predicates
that are nonsense, e.g., ¬ok ⇒ ok′, which describes a “program” that must ter-
minate even though not started.

This notion is closely related to that of refinement, defined as the universal
closure1 of reverse implication:

S ⊑ P ≙ [P ⇒ S]

1 Square brackets denote universal closure, i.e. [P ] asserts that P is true for all values
of its free variables.
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Healthy predicates form a lattice under the ordering induced by the refinement
relation. The refinement calculus enables the derivation of an implementation
P from a specification S: such derivation can be proven correct if P is a valid
refinement of S.

Some lines of research, including ours, are moving in the direction of introduc-
ing a probabilistic choice operator, which does not replace Dijkstra’s demonic
choice [Dij76] — as for example Kozen did [Koz81, Koz85] — , but rather co-
exists with it, as described and motivated in [MM04]. In [HS06] the authors
present an approach to unification of probabilistic choice with standard con-
structs, and present an axiomatic semantics to capture pGCL in UTP : the laws
were justified via a Galois connection to an expectation-based semantic model.
The approach presented in [CS09] is that of decomposing non-deterministic
choice into a combination of pure probabilistic choice and a unary operator
that accounted for its non-deterministic behaviour. It is worth underlining a
comment of theirs, on how UTP theories are still unsatisfactory with respect
to the issue of having co-existing probabilistic and demonic choice. The UTP
model described in [He10], which is used to give a UTP -style semantics to a
probabilistic BPEL-like language, relates an initial state to a final probability
distribution over states.

Our approach is a UTP -style semantics based on predicates over probabil-
ity before- and after-distributions: we see programs as distribution-transformers
(more details in §3.1). We have previously used this to encode the semantics
of pGCL in the UTP framework [BB11, BB12b]; moreover we have proposed
a probabilistic theory of designs [BB12a], which we will briefly present in §3.2
after having presented the standard one.

The Standard Theory of Designs. Now that we have given a general overview
of the UTP framework, we are going to focus on the theory of designs and present
its UTP semantics.

The theory of designs extends the simple (relational) theory, which is only
adequate for partial correctness results, into a theory of total correctness. The
motivation for and details of this extension are discussed in [HH98, Chapter
3]. This extension adopts an additional “auxiliary variable” ok (along with its

dashed version ok ′) to record start (and termination) of a program. So now,
instead of just observing variable values, we can now tell when a programs has
been started, or has finished.

A design (specification) consists of a precondition Pre that has to be met when
the program starts, and if so the program terminates and establishes Post , which
can be stated as:

ok ∧Pre ⇒ ok ′ ∧Post
for which we use the following shorthand:

Pre ⊢ Post

Note that, in general, the “pre-condition” Pre can mention after-values of vari-
ables and the “post-condition” Post can mention before-values. The usual usage
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H1 ∶ P = (ok ⇒ P ) (unpredictability)
H2 ∶ P{false/ok ′} ⇒ P{true/ok ′} (possible termination)

H3 ∶ P;Skip = P (dischargeable assumptions)

H4 ∶ ∃ok ′,v ′ ● P (feasibility)

Fig. 1. Design Healthiness Conditions

of designs is however to restrict the pre-conditions to only refer to the before-
values of variables. The semantics of the assignment x ∶= y + 3 in this theory is
the following:

true ⊢ x′ = y + 3 ∧ y′ = y

(if started, it will terminate, and the final value of x will equal the initial value
of y plus three, with y unchanged).

Designs form a lattice w.r.t. the refinement ordering, whose bottom and top
elements are respectively Abort and Miracle:

Abort ≙ false ⊢ P ≡ true, for any predicate P

Miracle ≙ true ⊢ false ≡ ¬ok

It should be noted that Miracle is a (infeasible) program that cannot be started.
There are four healthiness condition associated with designs, called H1 through

H4 (see Fig. 1). The first two characterise predicates that are designs (i.e., pred-
icates that can be written in the form P ⊢ Q), whilst the third restricts designs
to those whose pre-condition does not mention after-observations (it is defined
using Skip which is described later). The first three, either individually or com-

bined, define sublattices with Abort and Miracle as extremal values. The fourth
healthiness condition rules out infeasible predicates, such as Miracle, but breaks
the lattice structure (it removes the top element, at least). Some of these condi-
tions can be characterised by algebraic laws (H3 is defined that way):

H1 true;P = true and Skip;P = P

H4 P;true = true

In §3.2 we present a probabilistic version of this theory based on our framework.

CSP in the UTP Framework. Reactive programs differ from ordinary se-
quential programs because observing them in just the initial and final states is
no longer sufficient, as there are some observable intermediate steps that charac-
terise their behaviour, i.e., their interactions with the environment. In addition

to observations ok and ok ′, which now correspond to a process being divergence-
free, we add three more observations:

wait ,wait ′ ∶ B — waiting to perform an event
tr , tr ′ ∶ Event-seq — history of events being performed (trace)

ref , ref ′ ∶ Event-set — events currently not allowed (refusals)
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R1 ∶ P = P ∧ (tr ≤ tr ′) (no time travel)
R2 ∶ P = ∃s ●P [s, s ⌢ (tr ′ − tr )/tr , tr ′] (no direct event memory)
R3 ∶ P = II ◁ wait ▷ P (say nothing until started)

∶ II ≙ (¬ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref )
R ∶ ⋀i∈1,2,3 Ri

Fig. 2. Reactive Healthiness Conditions

Stop = R(true ⊢ ok ′ ∧wait ′ ∧ tr ′ = tr )

Skip = R(true ⊢ ok ′ ∧ ¬wait ′ ∧ tr ′ = tr )

a→ Skip = R(true ⊢ (ok ′ ∧ (a ∉ ref ′◁ wait ′▷ tr ′ = tr ⌢ ⟨a⟩)))

Fig. 3. Reactive Design semantics of CSP primitives

There are a number of associated healthiness conditions (Fig. 2). The first (R1)
outlaws time travel by insisting that after-traces tr ′ are extensions of before-
traces tr , whilst the second (R2) outlaws a process from having a direct memory
of past events (any history-dependent behaviour requires some explicit state to
remember some abstraction of past events). The third condition (R3) captures the
fact that when not started, because some prior process is waiting (wait = true),
we simply reflect the current behaviour of the prior process. This is captured by
predicate II which requires us to propagate observations faithfully if the previous
process is stable (ok = true). If the prior process has diverged (ok = false), then
all we can guarantee is R1.

Originally, the theory of communicating sequential processes (CSP) was de-
fined by adding in CSP-specific healthiness conditions CSP1–CSP2 [HH98, Chap-
ter 8]. However a key unification result allows us to characterise CSP-healthy
processes as Reactive Designs [OCW09]:

R(Pre ⊢ Post)

In other words, any CSP process can be written in the form of a design, that is
“made” reactively healthy.

The semantics of some CSP constructs in this style are shown in Fig. 3.

2.2 pCSP

In §4 we are going to discuss how to create a UTP -friendly probabilistic variant
of CSP. Here we look at two pieces of work regarding probabilistic CSP, that
discuss some issues which are addressed by our theory.

In [MMSS96] we can find one of the possible definitions of pCSP, where prob-
ability is defined in such a way that it distributes through all operators. This
leads to the surprising result that the demonic choice operator is not idempotent.
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A refinement operator is defined, and the ideas of an associated probabilistic re-
finement calculus are discussed, where an implementation satisfies a specification
with null probability. In effect we can no longer show whether an implementa-
tion satisfies a specification, but rather have to give bounds on the probability
that an implementation may fail. This probability should ideally be very low,
but would be expected to rise over time. In effect we have an implementation
whose correctness has a life-time with some expectation value.

A different presentation is given in [Mor04], where pCSP is built on top of
probabilistic action systems written in pGCL and is linked back to the relational
semantics of pGCL. This view of the subject highlights how compositionality of
probabilistic CSP is not straight-forward, because of the introduction of prob-
ability. Introducing probability splits a deterministic case into several possible
different scenarios, and one has to take this into account when composing prob-
abilistic programs.

They explain this using the metaphor of the colour of a child’s eye: knowing
the colour of the parents’ eyes is not sufficient to predict that of the child.
Instead we need hidden information about the alleles present and their relative
dominance. In a similar fashion, in order to get accurate probabilities associated
with pCSP, we have to track hidden information about choices that occurred in
the past history.

3 Probabilistic Designs

3.1 The Distributional Framework

We are going to introduce briefly the key elements and constructs that charac-
terise our distributional framework, in order to provide the reader with a working
knowledge of it: a formal and rigorous definition can be found in [BB11], along
with some soundness proofs.

Our framework relies on the concept of distributions over the state space,
real-valued functions χ ∶ S → R that assign a weight xi (a real number) to each
state σi in the state space S . We note the set of distributions as D .

A state σ ∶ V → W is a finite map from variables (V ) to values (W ). Each
distribution has a weight, defined as:

∥χ∥ ≙ ∑
σ∈domχ

χ(σ)

Among all distributions we distinguish weighting distributions π, such that 0 ≤
π(σ) ≤ 1 for any state, and probability (sub-)distributions δ, such that ∥δ∥ ≤ 1.

Generally speaking, it is possible to operate on distributions by lifting point-
wise operators such as addition, multiplication and multiplication by a scalar2.
Analogously we can lift pointwise all traditional relations and functions on real
numbers.

2 Distributions form a vector space, which we have explored elsewhere[BB11]. We omit
discussion of this aspect of our theory for clarity and brevity.
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In the case of pointwise multiplication, it is interesting to see it as a way of
“re-weighting” a distribution. We have a particular interest in the case when one
of the operands is a weighting distribution π, as we will use this operation to
give semantics to choice constructs. We opt for a postfix notation to write this
operation, as this is an effective way of marking when pointwise multiplication
happens in the operational flow: for example if we multiply the probability distri-
bution δ by the weighting distribution π, we write this as δπ�. We use notation
ε and ι to denote the everywhere zero and unit distributions, respectively:

ε(σ) = 0 ∧ ι(σ) = 1, for all σ

Given a condition (predicate on state) c, we can define the weighting distribution
that maps every state where c evaluates to true to 1, and every other state to
0: we overload the above notation and note this distribution as ιc�. In general
whenever we have the multiplication of a distribution by ιc�, we can use the
postfix operator c� for short, instead of using ιc��. It is worth pointing out
that if we multiply a probability distribution δ by ιc�, we obtain a distribution
whose weight ∥δc�∥ is exactly the probability of being in a state satisfying c.

Assignment. Given a simultaneous assignment v ∶= e, where underlining in-
dicates that we have lists of variables and expressions of the same length, we
denote its effect on an initial probability distribution δ by δ{∣e/v ∣}. The postfix
operator {∣e/v ∣} reflects the modifications introduced by the assignment — the
intuition behind this, roughly speaking, is that all states σ where the expres-
sion e evaluates to the same value w = evalσ(e) are replaced by a single state
σ′ = (v ↦ w) that maps to a probability that is the sum of the probabilities of
the states it replaces.

(δ{∣e/v ∣})(σ′) ≙ (∑ δ(σ) ∣ σ′ = σ † {v ↦ evalσ(e))

Here we treat the state as a map, where † denotes map override; this operator
essentially implements the concept of “push-forward” used in measure theory,
and is therefore a linear operator. An example is given in Figure 4.

Assignment preserves the overall weight of a probability distribution if e can
be evaluated in every state, and if not the assignment returns a sub-distribution,
where the “missing” weight accounts for the assignment failing on some states
(this failure prevents a program from proceeding and causes non-termination).

Programming Constructs. The semantic definitions of various programming
constructs are based on a homogeneous relation between distributions and are
listed in Figure 5; we will now proceed to discuss each one.

The failing program Abort is represented by the predicate ∥δ′∥ ≤ ∥δ∥, which
captures the fact that it is maximally unpredictable. However it is still guaran-
teed that the distribution weight cannot be increased, because that describes a
program whose probability of termination is higher than that of it starting, and
this is clearly impossible.



From Distributions to Probabilistic Reactive Programs 101

σ00

σ01

σ10

σ11

1/4

1/4

1/4

1/4

{∣y/x∣}

δ′ = δ{∣y/x∣}δ

σ00

σ01

σ10

σ11

1/2

0

0

1/2

Fig. 4. The assignment x ∶= y from an initial uniform distribution on the state space
S = {0,1} × {0,1}

Abort ≙ ∥δ′∥ ≤ ∥δ∥

Miracle ≙ (δ = ε) ∧ (δ′ = ε)

Skip ≙ δ′ = δ
v ∶= e ≙ δ′ = δ{∣e/v ∣}
A;B ≙ ∃δm ●A(δ, δm) ∧B(δm, δ′)

choice(A,B,X ) ≙ ∃π, δA, δB ● π ∈ X ∧A(δ�π�, δA) ∧B(δ�π̄�, δB) ∧ δ′ = δA + δB
c ∗A ≙ lfpX ● choice((A;X),Skip,{ι�c�})

Fig. 5. UTP semantics for different programming constructs

The miraculous program Miracle is defined as (δ = ε) ∧ (δ′ = ε): this is a
different from the standard UTP theory, where it is simply false. This definition
coincides with the standard one for most pairs of before- and after-distributions,
with the exception of (ε, ε): this makes sure that Miracle is a unit for nondeter-
ministic choice.

Program Skip makes no changes and immediately terminates.
Assignment remaps the distribution as already discussed.
Sequential composition is characterised by the existence of a “mid-point”

distribution that is the outcome of the first program, which is then fed into the
second. It should be noted at this juncture that we are quantifying over function
quantities, such as δ or π — this makes our logic at least second-order, even if
the state spaces are finite (the range [0,1] is not).

The choice operator takes a weighting distribution π, uses it with its com-
plementary distribution π̄ = ι − π) to weight the distributions resulting from the
left- and right-hand side respectively, and existentially quantifies it over the set
of distributions X ⊆ Dw, where Dw ⊂ D is the set of all weighting distributions
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over the program state under consideration. We have termed this operator as
the generic choice as it generalises the standard choice constructs:

– for X = {ιc�} we have conditional choice:

A◁ c▷B = choice(A,B,{ιc�})
= ∃δA, δB ●A(δc�, δA) ∧B(δ¬c�, δB) ∧ δ′ = δA + δB

– for X = {p ⋅ ι} we have probabilistic choice:

A p⊕B = choice(A,B,{p ⋅ ι})

= ∃δA, δB ●A(p ⋅ δ, δA) ∧B((1 − p) ⋅ δ, δB) ∧ δ′ = δA + δB

– for X = Dw we have non-deterministic choice:

A ⊓B = choice(A,B,Dw)
= ∃π, δA, δB ●A(δπ�, δA) ∧B(δπ̄�, δB) ∧ δ′ = δA + δB

The usual notations for conditional, probabilistic and non-deterministic choice
will be used as syntactic sugar in the remainder of this document.

Program Abort is a zero for non-deterministic choice, whereas the program
Miracle is a unit.

Using the customary notation for conditional choice enlightens the definition
of while-loops, which can be rewritten in a more familiar fashion as:

c ∗A ≙ lfpX ● (A;X)◁ c▷ Skip

They are characterized as fixpoints of the appropriate functional, with respect
to the ordering defined by the refinement relation, details of which can be found
in [MM04, BB11] and are beyond the scope of this paper.

Healthiness Conditions. The distributional framework is characterised by
the following healthiness conditions:

Dist1: the feasibility condition assures that the probability of termination cannot
be greater than that of having started:

∥δ′∥ ≤ ∥δ∥

Dist2: the monotonicity condition states that increasing δ implies that the re-
sulting δ′ increases as well:

P (δ1, δ′1) ∧P (δ2, δ′2) ∧ δ2 > δ1 ⇒ δ′2 ≥ δ′1

Dist3: the scaling condition is about multiplication by a (not too large and non-
negative3) constant, which distributes through commands:

∀a ∈ R+ ∧ ∥a ⋅ δ∥ ≤ 1 ●P (δ, δ′) ⇔ P (a ⋅ δ, a ⋅ δ′)
3 Mathematically the relation holds also if this is not met, but in that case the distri-
bution a ⋅ δ may not be a probability distribution.
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Dist4: the convexity condition poses restrictions on the space of possible program
images4, which is strictly a subset of ℘D , the powerset of D :

(P1 ⊓P2)(δ, δ
′) ⇒ δ′ ≥min(P1(δ) ∪P2(δ))

Here Pi(δ) denotes the set of all δ′ that satisfy Pi(δ, δ
′).

We refer to this set as to the program image of Pi — we will use this concept to
show the program lattice in the case of designs in Figure 6.

3.2 A Probabilistic Theory of Designs

We have used the framework above to give semantics to a probabilistic theory
of designs [BB12a].

A big difference from the standard theory is that we did not need to use the

auxiliary variables ok and ok ′: in fact the variable δ records implicitly if the pro-
gram has started, as for each state it gives a precise probability that the program
is in that initial state, while the variable δ′ records implicitly if the program has
finished, as for each state it gives a precise probability that the program is in that
final state.

We can therefore relate the fact that a program has started with probability
1 with the fact that δ is a full distribution (i.e. ∥δ∥ = 1): in other words the
statement ok = true can be translated to the statement ∥δ∥ = 1.

Conversely a program for which δ = ε is a program that has not started.
Obviously there are all situations in between, where the fact of δ being a sub-
distribution accounts for the program having started with probability ∥δ∥ < 1.

Similarly if δ′ is a full distribution, then the program terminates with proba-

bility 1: coherently we can translate the statement ok ′ = true to the statement
∥δ′∥ = 1. In general the weight of δ′ is the probability of termination: if the
program reaches an after-distribution whose weight is strictly less than 1, then
termination is not guaranteed (and in particular if δ′ = ε it is certain that it will
not terminate).

With these considerations in mind, it is straightforward, given a standard
design Pre ⊢ Post , to derive the corresponding probabilistic design:

Pre ⊢ Post ≡ ∥δPre�∥ = 1⇒ ∥δ′Post �∥ = 1

This expression tells us that we have a valid design if whenever the before-
distribution δ is a full distribution which is null everywhere Pre is not satisfied
(and therefore δ = δPre�), then the resulting after-distribution δ′ is a full distri-
bution which is null everywhere Post is not satisfied (and therefore δ′ = δ′Post �).

In other words both δ and δ′ belong to the set Dp ∩ B(ε,1), which we note
as ∂Dp (with a bit of notation abuse), where Dp ⊂ D is the set of all probabil-
ity distributions and B(ε,1) is the closed unitary ball5 centered on the empty
distribution ε.
4 This is a consequence of the purely random non-deterministic model adopted in the
distributional framework, yielding a result analogous to the set HS from [MM04].

5 The norm of δ is ∥δ∥, and the distance function of the space is d(δ1, δ2) ≙ ∥δ2 − δ1∥.
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In a similar way we can find a probabilistic version of other standard designs:

– assignment requires the right-hand expression to be defined everywhere in
the state space, otherwise it reduces to false:

v ∶= e ≙ ∥δ∥ = 1⇒ ∥δ′∥ = 1 ∧ δ′ = δ{∣e/v ∣}

– the Skip construct preserves the before-distribution unchanged:

Skip ≙ ∥δ∥ = 1⇒ δ′ = δ

– probabilistic designs form a lattice as well (with respect to the ordering
induced by the ⇒ relation). The bottom of the lattice is Abort , which is
again true as in the standard theory:

Abort ≙ true
– Chaos is a program that guarantees termination, but in an unspecified state6:

Chaos ≙ ∥δ∥ = 1⇒ ∥δ′∥ = 1

– the top of the lattice is Miracle:
Miracle ≙ ∥δ∥ < 1

These new definitions preserve the validity of the healthiness conditions H1–H4,
as on the other hand do all the constructs from the distributional framework
[BB12a]: for this reason we can think of a variation and relax the constraints on
the weights of the before- and after-distributions — so we use the programming
constructs in Figure 5 exactly with the semantics presented there. By doing so we
can fully exploit the potential of the distributional framework towards modelling
situations where the probability of having started is less than 1: with a small
modification we can recast the notion of total correctness by restricting Dist1 to
a variant Dist1-TC (which implies Dist1), stating that:

∥δ∥ = ∥δ′∥

This requires a program to terminate with the same probability p with which it
has started:

∥δ∥ = p ∧Pre ⇒ ∥δ′∥ = p ∧Post
The role of preconditions and postconditions is that of restricting the range
of acceptable before- and after-distributions (and therefore act as restrictions
to be applied to δ and δ′ respectively) — this allows us to express desirable
characteristics of a program in great detail.

Through our distributional framework we therefore obtain a richer theory
where corresponding healthiness conditions hold, even without the introduction

of the auxiliary variables ok ,ok ′ — the link with the standard model is dis-
cussed in [BB12a]. Moreover the use of distributions enables us to evaluate the
probability both of termination and of meeting a set of arbitrary postconditions
as a function of the initial distribution (which determines the probability of
meeting any required precondition).

6 In other words Chaos ≡ true ⊢ AbortR, where the subscript R indicates that we are
talking of the relational version of Abort , from Figure 5.
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. . . . . . . . .

Chaos

Abort

Fig. 6. Program image lattice (⊆ relation) and program lattice (⇒ relation) for prob-
abilistic designs

4 Probabilistic CSP, UTP-Style

We have seen that the UTP theory of CSP is built on that of designs, with the
introduction of three other pairs of auxiliary variables, notably wait , tr , ref and
their dashed counterparts.

We recall their roles in the theory:

– wait ,wait ′ are boolean variables recording if the program is waiting for
interaction with the environment;

– tr , tr ′ record the list of events happened during the program run;

– ref , ref ′ are sets containing the event refused by the program.

They are in addition to ok ,ok ′, already added when going from the relational
theory towards the concept of designs: the distributional framework spared us
from having to add these variables when creating the concept of probabilistic
designs, as we do not need to use them — we have in fact argued that this
information is contained implicitly in the distributions δ, δ′, as their weight cor-
responds exactly to the probability that a particular program step has started
or finished, respectively.
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Information about divergent states remains implicit in the distributions: the
probability of being in such a situation is precisely (1 − ∥δ′∥).

In some sense the “ok” part of a distribution is mapped to the support of δ′,
whereas the “not-ok” part gets disregarded.

We can therefore build on the theory of probabilistic designs presented in §3.2
to get to a probabilistic theory of CSP only by adding the remaining three pairs
of auxiliary variables.

Their meaning will be the same as in the standard theory. The question is:
what is the best way to embed them in the probabilistic theory of designs?
We may be tempted to introduce them as auxiliary variables alongside with
the program distribution, but the same reasons that were brought up to decide
in favour of an approach that lumps all of the variables together into a single
composite observation variable, require us to work on states with the following
shape:

σ ∶ (v ,wait , tr , ref ) → W × B ×Event-seq ×Event-set ,

where W is the set of possible values for the program variables.
This allows us to embed all of the remaining auxiliary variables in the state

domain, and therefore this simplifies the definitions of the different program-
ming constructs and healthiness conditions, compared to the traditional reac-
tive definitions that use ok ,wait , tr , ref as auxiliary variables — this is a novel
approach.

4.1 R1

For example let us take the traditional R1, which states:

P = P ∧ (tr ≤ tr ′)

In a probabilistic world this must hold pointwise for each couple of states (σ,σ′)
from the before- and after-distributions that are related by the program.

If we write this in the case of a single state σ (i.e. we take a point distribution
ησ as the before-distribution), the trace in the before-state σ must be a prefix of
the trace in all of the possible after-states σ′ from the support7 of the resulting
after-distribution δ′.

This must hold true for all states in the state space, so the formulation of the
probabilistic R1 is:

P (δ, δ′) = P (δ, δ′) ∧ (∀σ ● P (ησ, δ
′) '⇒ (∀σ′ ∈ supp(δ′) ● σ(tr ) ≤ σ′(tr )))

where we have used the functional notation σ(tr ) to stand for the evaluation of
tr on σ.

From this formulation we can clearly see that divergent states do not take
part in the verification of the condition R1; in addition, it is worth pointing out
that, according to this definition, a totally divergent program (which yields δ′ = ε
for any initial δ) is R1-healthy.

7 The support of a function is the subset of its domain where the function is non-null.
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4.2 R2

Healthiness condition R2 states that the initial value of tr cannot have any
influence on the evolution of the program, which determines only the tail (tr ′ −
tr ):

P (tr , tr ′) = ∃s ● P (s, s ⌢ (tr ′ − tr ))

As we did above we first look at the case of point distributions, where a possible
formulation is the following:

P (ησ, δ
′) = ∃s ● P (ησ{∣s/tr ∣}, δ

′{∣s⌢(tr−σ(tr ))/tr ∣})

Here we have used the remap operator to “change” the value of the trace in the
spirit of R2 over all states.

This gives a sort of “substitution rule” that allows us to replace a state σ with
another state ζ that differs only for the value of tr in the before-distribution,
whereas in the after-distribution a part δ′σ (accounting for the contribution of
σ) is replaced by a new part δ′ζ (accounting for the contribution of ζ):

P (δ, δ′) = ∀σ∃s ● (ζ = σ{s/tr}) ∧P ((δ − δσ + δζ), (δ
′ − δ′σ + δ′ζ))

where δσ and δζ are point distributions scaled down by the probability of σ, i.e.
δσ = δ(σ) ⋅ ησ and δζ = δ(σ) ⋅ ηζ .

4.3 R3

Before getting to R3 we have to define the probabilistic version of the reactive
Skip, denoted II .

According to the standard theory of reactive designs [HH98], II is defined as:

II ≙ (¬ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref )

This definition has to distinguish the case of divergence (when it does not enforce
anything other than trace elongation) from the case of non-divergence (when it
states that all variables are left unchanged), and as a result it is much more
complicated than the pure relational skip which is simply:

v ′ = v

The choice of embedding the auxiliary variables in the state function σ (and
having left all information about divergence implicit in δ, δ′) starts to pay out
here, as it enables us to keep such an easy definition as well:

II ≙ δ′ = δ

In other words all non-divergent states are preserved as they are, whereas now
there is no statement on divergent states — other than the implicit one that the
overall probability of divergence must be left unchanged.
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R3 does not mention tr , tr ′:

P = II ◁wait ▷P

As a result this is pretty straightforward to express in a probabilistic setting, as
we can use directly the semantics of the conditional construct presented in §3.1:

II ◁wait ▷ P

≡ definition of conditional

∃δA, δB ● II (δwait �, δA) ∧ P (δ¬wait �, δB) ∧ δ′ = δA + δB

≡ definition of II
∃δA, δB ● II (δwait �, δA) ∧ δA = δwait � ∧ P (δ¬wait �, δB) ∧ δ′ = δA + δB

≡ one-point rule on δA

∃δB ● II (δwait �, δwait �) ∧ P (δ¬wait �, δB) ∧ δB = δ′ − δwait �
≡ one-point rule on δB

II (δwait �, δwait �) ∧ P (δ¬wait �, δ′ − δwait �)

And therefore.

P (δ, δ′) = II (δwait �, δwait �) ∧ P (δ¬wait �, δ′ − δwait �)

We split the before-distribution into two parts, one where wait is true and that
equals the corresponding after-distribution, and one where it is not and that has
evolved into the difference of the total after-distribution δ′ and the part δwait �
that did not evolve.

This can be simplified down to:

P (δ, δ′) = P (δ¬wait �, δ′ − δwait �) .

4.4 CSP1 and CSP2

At this stage the readers with prior knowledge of CSP in the UTP framework
may be surprised that the end of this paper is approaching and yet we have not
mentioned two other healthiness conditions, namely CSP1 and CSP2.

The reason for our omission is that another advantage of the distributional
framework is that compliance with these healthiness conditions is subsumed by
other conditions, as we are now going to show.

In standard CSP, CSP1 states that:

P = P ∨ (¬ok ∧ tr ≤ tr ′)

As all information about divergent states is kept implicit in distributions, we
can argue that this healthiness condition is stripped down to the identity P = P .
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In some sense, all states which are “ok” evolve from the support of the before-
distribution towards a state in the support of the after-distribution, which is
“ok′”, or diverge to a state, which is “not-ok′” and is not part of the support of
the after-distribution, effectively getting out of the game; on the other hand all
states which are “not-ok” are not part of the support of the before-distribution
and have no means to get back in the game.

Probabilistic reactive programs are therefore CSP1-healthy by design, as
P (δ, δ′) already states that either a state evolves according to what is described
by δ, δ′ or diverges.

Our formalism does not allow us to express the trace-elongation property for
divergent states, but after all it is not crucial information — they diverge, that’s
already bad enough!

The other healthiness condition, CSP2, states that:

P;J = P

where

J ≙ v ′ = v ∧ (ok ⇒ ok ′) ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref

In the probabilistic world based on distribution this reduces to:

P;II = P

which is nothing but H3. In fact:

J ≙ (v ′ = v ∧ (ok ⇒ ok ′) ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref )

≡ (v ′ = v ∧ ok ′ ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref )∨

∨ (v ′ = v ∧ ¬ok ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref )

≡ II ∨ (v ′ = v ∧ ¬ok ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref )

And again the part with ¬ok gets disregarded, thus the reactive program J
in the probabilistic world coincides with II — and there we have that CSP2

collapses to H3.

5 Conclusion

We have built a framework using the notion of distributions on the state space:
through distributions we are able to associate a probability with each state.

If we use predicates stating relations among distributions we can build a UTP
theory of programs that naturally embeds probability, so that probabilistic choice
and non-deterministic choice can co-exist in the same framework.

We have extended this theory first to generalise the standard UTP theory of
designs, and then we have built on that a theory of reactive programs.

The peculiarity of this approach is that divergent states are implicitly ac-
counted for by sub-distributions, where the weight is strictly less than one: a
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divergent state does not belong to the domain of a distribution (in some sense
all states which are “not-ok” are disregarded), and the overall probability of be-
ing in a divergent state is equal to the difference between 1 and the distribution
weight.

Probabilistic versions of healthiness conditions R1, R2 and R3 hold in the prob-
abilistic theory, whereas healthiness conditions CSP1 and CSP2 are subsumed by
the framework.
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Abstract. The HOL-TestGen environment is conceived as a system
for modeling and semi-automated test generation with an emphasis on
expressive power and generality. However, its underlying technical frame-
work Isabelle/HOL supports the customization as well as the development
of highly automated add-ons working in specific application domains.

In this paper, we present HOL-TestGen/fw, an add-on for the test
framework HOL-TestGen, that allows for testing the conformance of
firewall implementations to high-level security policies. Based on generic
theories specifying a security-policy language, we developed specific the-
ories for network data and firewall policies. On top of these firewall spe-
cific theories, we provide mechanisms for policy transformations based
on derived rules and adapted code-generators producing test drivers. Our
empirical evaluations shows that HOL-TestGen/fw is a competitive en-
vironment for testing firewalls or high-level policies of local networks.

Keywords: symbolic test case generations, black box testing, theorem
proving, network security, firewall testing, conformance testing.

1 Introduction

HOL-TestGen [6, 7] (http://www.brucker.ch/projects/hol-testgen/) is
a generic model-based testing environment. Built as an extension of the Is-
abelle framework [15], HOL-TestGen inherits, among other things, the front-
end PIDE, the Isar language for HOL specifications and proofs, and code- and
documentation generators from the Isabelle framework. HOL-TestGen extends
the framework by an infrastructure to develop formal test plans, i. e., descrip-
tions of test goals, their decomposition into abstract test partitions, and their
transformation to concrete tests with the help of constraint solvers like Z3 [12].
Finally, customized code-generators produce code of concrete test drivers which
can be run against real implementations following a black-box testing approach.
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HOL-TestGen as such is conceived as an interactive, flexible environment that
draws from the abundant expressive power and generality of HOL; test plans are
therefore typically mixtures of very powerful automated partitioning and selec-
tion tactics, their configurations, and intermediate small-step tactics that help
to turn the results into a suitable form for the next step. HOL-TestGen was
used successfully in large case studies from various domains, see [7] for details.

In this paper, we present the novel HOL-TestGen/fw environment, which
is an add-on of HOL-TestGen for a specific problem domain: the specification-
based conformance test of network components. Such components can be state-
less packet filters, stateful firewalls, routers, devices performing network address
translation (NAT), etc. In the sequel we just refer to them as firewalls. We
describe the underlying generic theories for modeling network data and fire-
wall policies using a generic security-policy language called the Unified Policy
Framework (UPF) [3, 8], mechanisms for policy transformations (for which for-
mal proofs of correctness have been established [2]) and adapted code-generators
producing test drivers. We present application scenarios as well as experimental
evaluations which show HOL-TestGen/fw as a competitive environment for
testing firewalls or high-level policies of networks.1

2 The HOL-TestGen/fw Workflow

HOL-TestGen/fw is an environment for the specification-based conformance
testing of firewalls.

Verification

Transformation

Test Specification

FW Policy Specification Network Specification

Test Cases

Test Data

(Implementation)
Firewall under Test

Test Result

ObserverTest Driver

HOL-TestGen/FW

Fig. 1. The HOL-TestGen/fw Architecture

1 HOL-TestGen/fw (including case studies) is, since version 1.7.1, part of the
HOL-TestGen distribution. HOL-TestGen is available from:
http://www.brucker.ch/projects/hol-testgen/.

http://www.brucker.ch/projects/hol-testgen/
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Figure 1 illustrates the standard workflow, respectively the main components
of HOL-TestGen/fw:

1. Firewall policy specification, network specification, and test specification:
HOL-TestGen/fw provides an instantiation of the Unified Policy Frame-
work (UPF) [3, 8] that allows to specify networks and security policies for
those networks in a user-friendly way. The test specification, i. e., the prop-
erties that should be tested, also need to be specified here.

2. Test case and test data generation: In this phase, the abstract test cases
as well as the concrete test data are generated. The test cases still contain
constraints: a test case actually represents a section of the test space. By
choosing ground instances for these constraints, we obtain test data that
can be executed on an actual firewall implementation.

3. Test execution and test result validation: Finally, the test data is injected
(using the test driver) into a real network and the behavior of the firewall
under test is observed (using an observer or monitor) and compared to the
test specification.

In its essence, this resembles the standard model-based testing workflow applied
to firewalls (or any other network components controlling network traffic). In
addition, HOL-TestGen/fw also supports:

– Verification of (security) properties: Both the specification of the security
policy as well as the network specification can be analyzed and properties
can be verified formally using the full reasoning power of Isabelle/HOL.

– Verified transformations for testability: As we will see later, different syntac-
tical representations can, while being semantically equivalent, result in test
efforts that differ by several orders of magnitude. Thus, using
HOL-TestGen/fw, the testability can be improved by applying policy trans-
formations. The correctness of these transformations, in the sense that apply-
ing the transformation does not change the semantics of a policy, is formally
proven using Isabelle/HOL.

With the exception of the test execution and test result validation, the standard
interface of Isabelle, called PIDE [13], is used by HOL-TestGen/fw. Figure 2
illustrates a typical use of HOL-TestGen/fw: In the upper left, we see the
specification of the firewall under test and in the lower left we see the gener-
ated abstract test cases. The test cases still contain variables that need to be
instantiated before they can be executed on a real firewall implementation.

In the rest of this section, we discuss the steps of the HOL-TestGen/fw
workflow in more detail.

2.1 System and Test Specification

The Language: UPF with Firewall-Policy-Combinators. HOL is a typed
λ-calculus and its foundational type are total functions α ⇒ α′. Using the pro-
vided infrastructure, the usual data-types like α option or α list can be defined.
Partial functions (α ⇀ α′) are introduced as synonym to α ⇒ (α′ option). They
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Fig. 2. A HOL-TestGen/fw Session using the PIDE/jEdit User Interface

are used to model the fundamental concept of UPF: policies as partial decision
functions:

(α, β) policy = α ⇀ (β decision)

The decision datatype is defined as α decision = allow α | deny α. Thus, policies
are three-valued: allow, deny, or ⊥ (i. e., “don’t know”). They can map input
data to output data, refer to state, or be a policy-transforming policy.

Several combinators are defined in the UPF library providing definitions for
families of override (_ ⊕ _), sequential composition (_ ◦ _), and parallel com-
position (_⊗_) of policies. These operators enjoy a wealth of algebraic proper-
ties like associativity, quasi-commutativity, or distributivity. We provide formal
proofs, using Isabelle/HOL, for these properties.

The UPF is instantiated within HOL-TestGen/fw by concrete formats for
TCP/IP packets, standard policies such as allow_all or deny_all, as well as
combinators such as allow_port.

Network and Policy Models. Stateless firewall policies are modeled similar
to common firewall configuration tools (see Brucker et al. [4] for details). Af-
ter definitions of the relevant sub-networks (subsets of IP addresses modeling,
e. g., the demilitarized zone dmz), it is for example straightforward to build a
composition of elementary rules to be executed from left to right using the UPF
override combinator. For example, we define a firewall policy P allowing only
traffic by tcp from the internet to the dmz on port 25 or on port 80 formally:

P = allow_port internet dmz tcp 25 ⊕ allow_port internet dmz tcp 80

⊕ deny_all
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Firewalls often perform not just stateless packet filtering, but also packet transla-
tion called network address translation (NAT), or a stateful handling of
protocols—both is supported by HOL-TestGen/fw as well. An example of the
latter is the file transfer protocol (FTP), where specific ports are opened and
closed during protocol execution. Our policy modeling framework also provides
support for modeling these concepts directly. Furthermore, the code-generators
of HOL-TestGen/fw is able to generate firewall reference implementations in
various programming languages directly.

Test Specification. For a policy P , a typical test specification looks as follows:

�C1; . . . ;Cn� =⇒ FUT x = P x

where FUT is a placeholder for the firewall under test, which should behave like
the policy P for all network packets x and C1, . . . , Cn are constraints that restrict
the test case generation to specific packets. For example, often it is desirable to
exclude test cases that do not send packets across different sub-networks, or we
might want to restrict testing to specific protocols.

2.2 Test Case and Test Data Generation

HOL-TestGen/fw can generate abstract test cases as well as concrete test
data. This involves both normal form computations (resulting in test cases), and
constraint solving (resulting in instantiations of the test cases, i. e., the concrete
test data). While generic tactics for any models are available, the policy tactic
library allows for a more efficient processing by using domain-specific knowledge.
As a result of this phase, we obtain descriptions of network packets together with
the desired decision, possibly extended by transformed packets. For our example
policy P shown above, we state the test specification:

FUT x = P x

From this test specification, 24 test cases are generated automatically. Among
them:

1. FUT (12, (?X100, tcp, 6), (?X101, tcp, 80), content) = �deny ()�
2. FUT (8, (?X102, tcp, 12), (?X103, tcp, 25), content) = �accept ()�

The variables starting with a question mark (e. g., ?X100) are meta-variables
representing a network address. In a separate step, we infer the actual test data
from the test cases by finding ground instances that fulfill the constraints. For
our two exemplary test cases, we might obtain the following test data:

1. FUT (12, ((154, 23, 43, 2), tcp, 6), ((172, 0, 5, 3), tcp, 80), content) = �deny ()�
2. FUT (8, ((154, 23, 43, 2), tcp, 12), ((172, 0, 5, 3), tcp, 25), content) = �accept()�

We see that in our model, the description of a network packet is a tuple consisting
of an identifier, a source address, a destination address and a content. Both the
source and destination address consist of an IP address, a protocol, and a port
number.
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2.3 Test Execution and Test Result Validation

Next, the test data is injected into a network containing the firewall (or multiple
firewalls) to be tested. The packet injection, the probing of the behavior, and the
validation of the results are supported by the HOL-TestGen/fw test execution
environment (see Figure 3). In more detail, the test execution environment con-
sists of a test execution manager, a result analysis module, a set of endpoints,
and a set of probes.

Test

Firewall under Test (FUT)

Probe Probe Probe Probe Probe Probe Probe Probe Probe

Specification
Test Data
Generation

Test
Execution

Test Result
Validation

Fig. 3. A Framework for testing firewalls or routers

Internally, the HOL-TestGen/fw execution environment uses an adapted
version of fwtest (http://user.cs.tu-berlin.de/~seb/fwtest/) for injecting
and observing network packets. Thus, the test data generated by HOL-TestGen
is converted automatically to the input format of fwtest. As an example:

12:154.23.43.2: 6:172.0.5.3:80:S:TCP:10
8:154.23.43.2:12:172.0.5.3:25:S:TCP:10

Here, the meaning of the individual parts (separated by a colon) is as follows:
packet id, source IP, source port, destination IP, destination port, TCP flags, and
the time to live. The test execution as well as the transformation of the input
data is automated. Just some further information about the network topology
that is not part of the model used to generate the test cases (e. g., IP addresses
of the devices where the probes should be installed) has to be provided by the
test engineer.

2.4 Verified Policy Transformations

The naïve approach presented so far does not scale very well in many cases and
application domains; in many practical scenarios, the method takes too long
and generates far too many tests resulting in a very long time for test execution.

http://user.cs.tu-berlin.de/~seb/fwtest/
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There is an obvious need for speeding up both the test data generation as well
as the test execution.

Our environment offers a solution to this problem called verified policy trans-
formations, where a firewall policy is transformed into one that is easier to test
but semantically equivalent, for example by eliminating redundant rules. As an
example, consider the policy

allow_all dmz internet ⊕ deny_port dmz internet 21 ⊕ deny_all

which, as the rule deny_port dmz internet 21 is overridden by the first rule,
allows all traffic from the dmz to the internet. Thus, this policy is semantically
equivalent to the policy:

allow_all dmz internet ⊕ deny_all

The second policy is much more efficient to test: it requires less time to generate
test cases and test data and is, due to the smaller number of test cases, more
efficient during the test execution phase.

Motivated by this and similar examples, we developed a rich theory of pol-
icy transformations that improve the testability of firewall policies (see Brucker
et al. [2] for detail). A specific set of these transformations applied in sequence
constitute a default normalization of firewall policies. All of these transforma-
tions are formally verified (using Isabelle/HOL) to be semantically correct and,
as we will see in the next section, the normalization can increase the performance
by several orders of magnitude.

3 Case Studies and Evaluations

We used HOL-TestGen/fw in a large number of case studies. Those also in-
cluded “real policies,” for example some drawn from the network of ETH Zurich
as well as some coming from collaborations with partners from industry. These
large and complex policies revealed immediately the need for optimizations of
the naïve approach and motivated us to develop the verified policy transforma-
tion approach presented above. Using the policy transformation, we were able
to apply HOL-TestGen/fw in all our case studies successfully.

We analyzed the scalability issues as well as the impact of the policy trans-
formation by applying HOL-TestGen/fw to randomly generated policies. This
allowed us to estimate the correlation between the size of a policy and the gener-
ation time of tests, and to study the influence of various parameters of this cor-
relation (e. g., different representations of network packets, number of networks)
and, of course, the impact of our optimization. We discussed our generated poli-
cies as well as the generated test data before and after the optimization with
experts from industry to ensure that our evaluation fulfills their needs.

In more detail, we applied HOL-TestGen/fw in the following scenarios that
cover both industrial case studies as well as randomly generated policies to study
for example the effect of different modeling variants.
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– Packet Filter with Varying Number of Rules and Networks. We tested “per-
sonal firewalls” of various sizes and network complexity. While for rules with
low complexity, the naïve approaches works quite well (Figure 4a), it fails
even for small policies with complex rules (Figure 4b). This observation mo-
tivated the development of our verified policy transformation approach.
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(a) Rules with low complexity.
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(b) Rules of larger internal complexity

Fig. 4. Policy Complexity

– Effect of Address Representation. Our firewall models support different for-
malizations of network addresses. To study the effect of a more complex
representation, we carried out the personal firewall scenarios with different
address representations. From this experiment, we concluded that represent-
ing addresses as integers is the most efficient approach [7].

– Packet Filter and NAT. Motivated by needs from industry, we implemented
support for network address translation (NAT). Technically, this is modeled
as a parallel composition of a filtering and a translating policy. In prac-
tice, this does only add moderate overhead to test case generation as the
translating policies are usually rather small.

– Policy Transformation. To address the scalability problem, we implemented
a policy transformation approach which increases the efficiency of the naïve
approach by several orders of magnitude (see Figure 5). In more detail, the
transformation reduces the time required for generating the test cases and
the test data (Figure 5b), as well as their number (Figure 5a). The latter
also reduces the time required for test execution and validation.

– Stateful Firewalls. Several protocols, such as the file transfer protocol (FTP),
Voice over IP (VoIP), or protocols for streaming multimedia data have an
internal state; thus they are stateful. Such protocols require an (application-
level) stateful firewall. HOL-TestGen/fw tests stateful firewalls by generat-
ing sequences of input network packets. Overall, this works quite efficiently;
see Brucker and Wolff [5] for details.
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Fig. 5. Effect of the policy transformation

4 Related Work and Conclusion

Widely used tools for “testing” firewalls and other network components fall,
broadly, into three categories:

1. Policy management and analysis tools, e. g., for optimizing polices or deploy-
ing the same policy to firewalls of different vendors. An example of this cat-
egory is the Firewall Analyzer from AlgoSec (http://www.algosec.com/).

2. Tools that help to manage and analyze logs of firewalls, e. g., for detecting or
analyzing security breaches. The Network Intelligence Engine from Network
Intelligence (http://www.network-intelligence.com/) is an example for
this category.

3. Tools that test for common misconfigurations (e. g., forwarding NetBIOS re-
quests) or well-known vulnerabilities (e. g., exploitable buffer overflows of a
specific firewall system). Examples for this categories are nmap
(http://www.nmap.org) or OpenVAS (http://www.openvas.org).

These tools test for generic and well-known misconfigurations and security prob-
lems. In contrast to our approach, they do not base their test on the actual
firewall policy. Thus, these tools complement HOL-TestGen/fw.

HOL-TestGen/fw supports the model-based conformance testing of fire-
walls. These conformance tests ensure both the correctness of the firewall im-
plementation as well as the actual configuration of the firewall. The underlying
foundations of the system as well as a more detailed report on the case studies
is provided elsewhere [4].

Close to our work are tools that test for a firewall’s conformance to a given
policy. For example, [9, 10] present a policy segmentation technique to create the
test cases. [11] also proposes a specification-based testing of firewalls, however
the policies are restricted to stateless packet filters. Finally, [1, 14] present a
framework for testing firewalls at the implementation level.

http://www.algosec.com/
http://www.network-intelligence.com/
http://www.nmap.org
http://www.openvas.org
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Abstract. Reingold has shown that L=SL, that s-t connectivity in a poly-mixing 
digraph is complete for promise-RL, and that s-t connectivity for a poly-mixing 
out-regular digraph with known stationary distribution is in L. However, little 
work has been done on identifying structural properties of digraphs that effect 
cover times. We examine the complexity of random walks on a basic paramete-
rized family of unbalanced digraphs called Strong Chains (which model weakly 
symmetric computation), and a special family of Strong Chains called Harps. 
We show that the worst case hitting times of Strong Chain families vary 
smoothly with the number of asymmetric vertices and identify the necessary 
condition for non-polynomial cover time. This analysis also yields bounds on 
the cover times of general digraphs. Our goal is to use these structural proper-
ties to develop space efficient digraph modification for randomized search and 
to develop derandomized search strategies for digraph families. 

Keywords: complexity, space bounded complexity classes, random walks,  
digraph search, reachability, strong connectivity, symmetric computation, L, 
RL, NL, BPL. 

1 Introduction  

The complexity of random walks on digraphs has important implications for log space 
bounded complexity classes and efficient derandomization. Recall that L (respectively 
NL) is the class of languages accepted by deterministic (respectively nondeterminis-
tic) log space bounded Turing machines (space bounded by O(log n)). Recall also that 
RL is the class of languages accepted by probabilistic log space bounded Turing ma-
chines with one-sided error. It is well known that STCON, the problem of determin-
ing if there exists a path between two specified vertices, s and t, in a given directed 
graph is complete for NL. Symmetric Logspace (SL) was first introduced by Lewis 
and Papadimitriou in 1982 [LP]. They defined SL as the class of all languages ac-
cepted by a log space bounded symmetric Turing machine. USTCON is the restriction 
of STCON to undirected graphs. They showed that USTCON is complete for SL, and 
thus proved that L ⊆ SL ⊆ NL, since it was not at the time how to search an undi-
rected graph in deterministic log space. Aleliunas et. al. [AKLLR] introduced a ran-
domized log-space algorithm for undirected graph reachability and thus showed that 
USTCON ∈ RL. The well-known Savitch’s Theorem [Savitch] can be used to show 
that NL ⊆ L2. (deterministic O(log2n) space). Nisan, Szemeredi, and Wigderson 
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[NSW] showed that USTCON is in L3/2, thus showing SL ⊆ L3/2. Saks and Zhou [SZ] 
showed the stronger result that any randomized space S machine can be simulated by 
a deterministic space S3/2 machine, implying that BPL ⊆ L3/2, where BPL is the class 
of languages accepted by probabilistic log space machines with bounded two-sided 
error (i.e. Monte Carlo algorithms). In 1997, Armoni, et. al. [ATWZ] improved this 
deterministic simulation to give a O(log4/3n)-space algorithm for USTCON. The rela-
tion between SL and L had remained open until 2005, when Reingold showed the 
surprising result that any undirected graph can be searched deterministically in log 
space, thereby establishing that SL = L.  Other interesting recent results concern 
unambiguous log space machines with only a polynomial number of computation 
paths, e.g., ReachFewL = ReachUL [GSTV]. Summarizing the above facts we now 
know that: 

L = SL ⊆ RL ⊆ NL = Co-NL ⊆ L2 
and  
RL ⊆ BPL ⊆ L3/2 

Reingold showed how to transform any graph (using log space) into an expander with 
constant degree. Rozenman and Vadhan [RV] showed how to accomplish this trans-
formation, without increasing the size of the graph, by the use of what they call pseu-
do-randomized graph squaring. Research on extending Reingold’s original algorithm 
to the directed case has been undertaken by Chung, Reingold and Vadhan [CRV], in 
an attempt to prove RL = L. Recall that the mixing time of a random walk on a graph 
is the number of steps needed to converge sufficiently close to the stationary distribu-
tion of the associated Markov chain. They call a digraph poly-mixing if s and t have 
non-negligible probability (the reciprocal of a polynomial in the number of vertices) 
and a random walk from s has polynomial mixing time. Their best result shows that 
STCON on a poly-mixing digraph with a known stationary distribution is in L. They 
also show that STCON on a poly-mixing digraph is complete for Promise-RL [RTV]. 
The complexity of searching such a digraph, without knowing the stationary distribu-
tion, remains open. This, and similar recent work, has primarily focused on analyzing 
the search problem for either general digraphs or digraphs with a restricted structure 
so that they “look like” undirected graphs. Moreover, the promise of a polynomial 
mixing time together with a high probability of reaching t is precisely that; no exami-
nation of the structure that leads to this behavior is made. 

If NL is not equal to L, and if RL = L, as is generally believed, then there is a large 
gap between RL and NL. We begin by examining the complexity of random walks on 
some simple families of digraphs, with the goal of elucidating the structural properties 
and identifying the boundary between polynomial and non-polynomial cover times. It 
is known that STCONN on topologically ordered digraphs [HIM], and STCONN on 
3-page digraphs are both complete for NL [PRV]. As we observe below, solving 
STCONN on a single strongly connected digraph component with bounded degree 
and a pseudo-topological order on the vertices, is sufficient to capture NL. We remark 
that lazy random walks from s on these digraphs can be shown to have polynomial 
mixing time (using Lemma A.1 of [RTV]), but the target vertex t may, in general, 
have an exponentially small probability of being reached from s. 
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We define a parameterized family of digraphs, called Strong Chains, which will 
represent some simple nondeterministic computations. We investigate random walks 
on these digraphs. We analyze the structure of the family of digraphs by introducing 
several notions of degree of symmetry. Related work by Li and Zhang [LZ] has ap-
plied a notion of asymmetry to digraphs, by relating it to the probability assigned to 
the edges of an essentially regular digraph. In contrast, our definitions are related to 
the actual digraph structure. We then define another parameterized family of special 
Strong Chains called Harps, which are in a sense “complete” for Strong Chains. For 
given parameters, the hitting time of a random walk on the family of Harps will  
dominate the corresponding family of Strong Chains. The Harps have a very simple 
structure that embodies the asymmetry of families of Strong Chains. We use the 
Harps to identify the most relevant symmetry parameter, the number of asymmetric 
vertices, and to identify the values of this parameter that provide a necessary  
condition for non-polynomial cover time. We use this analysis to construct a three 
level stratification of strongly connected digraphs. It is our hope in initiating  
this study of digraph structure that it will also help in identifying opportunities for 
derandomization.  

2 Weakly Symmetric Classes 

We now motivate our decision to consider only strongly connected digraphs with the 
following discussion. We note that there is a simple construction that reduces RL (or 
NL) to a search on a single strongly connected digraph component (see [CRV]), but 
we wish to retain the property that each node of G has bounded degree. We call an 
order on the vertices of a digraph pseudo-topological if the removal of the edges to 
the least vertex makes it a topological order. We observe that every NL computation 
can be simulated by a “weakly symmetric” machine M, in the following manner. We 
may assume w.l.o.g. that all computation paths lead to terminal configurations and 
that there is a unique accepting configuration. From each non-accepting terminal con-
figuration of the original machine, the simulating machine M erases the work tapes, 
rewinds the input tape and returns to the start configuration S. Given an upper bound 
b on the number of distinct configurations of M on input x, we can construct a strong-
ly connected computation graph for M with a pseudo-topological order. The nodes 
will consist of the pair (0, S), where S is the start configuration and the pair T=(b, A), 
where A is the accepting configuration, together with all pairs (t,C), where 0 < t ≤ b is 
an integer time step and C≠S is a configuration. There is an edge from a node (t, Ci) to 
(t+1, Cj) iff there is a valid transition of M from configuration Ci to Cj or Ci = Cj = A, 
and an edge from (t, Ci) to (0, S) iff there is a transition from Ci to S. Since we may 
assume a bound on the number of nondeterministic choices machines can make (typi-
cally two) the resulting computation graph has out-degree bounded by 2, and the sub-
graph consisting of the nodes reachable from (0, S) has in-degree bounded by a con-
stant, depending on the machine and the alphabet size. The natural order on these 
pairs becomes a topological order on the nodes if the edges to (0, S) are removed, and 
thus it is pseudo-topological. 



 Random Walks on Some Basic Classes of Digraphs 125 

2.1 Strong Chains 

Any successful computation path can be represented as a directed path in a graph. For 
this initial study of computation graphs we will focus on these paths. Following all 
computation paths of a weakly symmetric machine will yield a single Strong Chain, 
but one with exponential size and redundancy. The actual computation graph, without 
this redundancy, will be a union of Strong Chains, and have polynomial size. The 
study of Strong Chains provides a good tool for the analysis of strongly connected 
digraphs, and we are able to transfer some of our analysis to general digraphs. 

The vertex v(0) is the initial state, and the vertex v(n) is the successful terminal 
state. 

Definition: A Strong Chain is a simple strongly connected directed graph which con-
tains a directed Hamiltonian path as a subgraph. 

A random walk is a stochastic (Markov) process that starts from a given vertex, 
and then selects one of its out-neighbors, uniformly at random, to visit next. Our first 
goal is to estimate the hitting time from v(0) to v(n) for a given digraph. For this pur-
pose we define some terminology for Strong Chains. 

 

Fig. 1.  

Definition:  Strong Chain(V, F, B) 

1. A set V of vertices, labeled from 0 to n. 
2. The directed Hamiltonian path of length n, called base, consists of directed edges 

from v(i) to v(i+1) for 0 ≤ i < n.  
3. The edge distance of an edge from v(i) to v(j) is |i – j|. 
4. A forward edge is an edge from v(i) to v(j) where i < j. 
5. The set F of directed forward edges (e.g. edges a and b in Figure 1) satisfies |F| ≥ 

n. The forward edges of distance 1 are called “to next” (edge a). 
6. F0 is the base, the set of the edges of “to next”, and |F0| = n. 
7. A back edge is an edge from v(i) to v(j) where i > j. 
8. A set B of directed back edges (edges c and d). The back edges of distance 1 are 

called “back to previous” (edge c). 
9. A back edge from v(i) to v(0) (edge d) is called “back to root”. 

10. Hit(i, j) is the expected number of steps taken by a random walk on a Strong 
Chain starting from v(i) and reaching v(j). 
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11. The hitting time of digraph G, Hit(G), is the maximum of Hit(v, w) over all pairs 
of vertices of G. For a Strong Chain C, Hit(0, n) ≤ Hit(C). 

12. The cover time of digraph G, Cover(G), is the maximum over all vertices v of G, 
of the expected time for  a random walk started from v to visit all vertices. 

2.2 Strong Chain Symmetry 

Definition: for a directed graph G(V, E) 

1. A directed edge is symmetric if its inverse edge also belongs to G. That is, edge(u, 
v) and edge(v, u) ∈ E.  

2. A vertex is symmetric if all of its edges are symmetric. 
3. A vertex is balanced if its out-degree is equal to its in-degree. 
4. G is symmetric if all of its edges are symmetric. A directed symmetric graph is 

equivalent to the corresponding undirected graph. 
5. G is balanced if all of its vertices are balanced, and is called a pseudo-symmetric 

digraph. A connected balanced digraph is called an Eulerian Circuit digraph, and it 
contains a directed Eulerian circuit. 

6. G is regular if the in-degree and out-degree of all vertices are equal. A regular di-
graph has symmetry (but is not a symmetric digraph in the sense defined above). 

We note that using these definitions for connected digraphs, symmetric implies ba-
lanced, balanced implies Eulerian Circuit, and regular implies balanced and Eule-
rian Circuit. 

2.3 Symmetric and Asymmetric Graphs 

We begin our analysis of Strong Chains by noting the effect of adding back edges to 
the base.  This analysis will be important in demonstrating the domination property 
of Harps in the next section, and in illustrating the reason for our choice of symmetry 
property.  We then perform a similar analysis for the Line digraph, defined below. 
We then transfer this analysis to Strong Chains. 

 

Fig. 2. Harp Strings Digraph 

The following simple Lemma will be useful. 

Lemma 1:  For a given Strong Chain C, 0,  ∑ , 1 . 
Equality is only satisfied when the forward edges satisfy F = F0. 
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The digraph in Figure 2 we will call the Harp Strings digraph, in anticipation of our 
definition of the Harp digraph in the next section. In addition to the base, each vertex 
v(i), i > 0, has a “back to root” edge. 

Lemma 2: For the Harp Strings digraph G, 0,  2 . 

Proof: The probabilities of advancing from v(i) to v(i+1) or returning to the start are 
both ½. 0,  is thus the expected time of a run of n successes in a Bernoulli 
process, which by solving the well-known recurrence is 2 .                       

 

Fig. 3. Line Digraph 

The Line graph consists of a single simple path from s to t and has diameter n-1. 
The Line digraph, Figure 3, is obtained from the Line graph by replacing each undi-
rected edge with two directed edges, and thus also has diameter n-1.  

Lemma 3: For the Line digraph G, 0,  . 

Proof: This is also a well-known simple recurrence.  Hit 0, 1 1   Hit i, i 1 1 1 1, , 1 ,  1    Hit i, i  1   2  Hit i –  1, i   2i  1  
From Lemma 1, we have Hit 0, n  ∑ , 1  where F = F0 then  Hit 0, n  ∑ 2i 1                                                     

It is not necessary to have all back edges back to root, or a badly unbalanced digraph 
to have exponential hitting time. A connected directed graph has an Eulerian path if 
and only if at most one vertex has out-degree − in-degree = 1, at most one vertex has 
in-degree − out-degree = 1 and every other vertex is balanced. If we modify the Line 
digraph by changing each back edge to be distance 2 (see Figure 4) then we obtain a 
Strong Chain CE, which is an Eulerian path digraph with bad behavior. 

 

Fig. 4. Eulerian Path Digraph 

Lemma 4: For CE , 0,  Θ φ , where φ is the golden ratio. 

Proof: Hit 0, 1   Hit 1, 2   1 Hit i, i 1   1 1 Hit i– 2, i– 1 Hit i– 1, i Hit i, i 1 , for 2
  Hit i, i 1 2 Hit i– 2, i– 1 Hit i– 1, i   
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From Lemma 1, we have Hit 0,  ∑ , 1  where F = F0. , 1  
grows in proportion to the well known Fibonacci sequence, so that 0,  grows 
as the sum of the first n Fibonacci numbers, yielding: Hit 0, Θ φ   Θ φ .                                                                              

Notice that although CE has only two unbalanced vertices, half of the back edges are 
not included in any maximal balanced subgraph. This observation is the basis of our 
symmetry measure. CE also illustrates that some badly behaved digraphs can be easily 
balanced in a way that removes the bad behavior. If we add a single long forward 
edge of length n-2 on the two unbalanced vertices to CE we obtain an Eulerian Circuit 
digraph CE′ with polynomial hitting and cover time.  

Lemma 5: For CE′ the hitting and cover time is polynomial in n. 

Proof: A bound on the cover time follows directly from a result of [Chung], which 
states that a strongly connected Eulerian directed graph G with m edges has a lazy 
random walk with the rate of convergence no more than log . The hitting time is 
thus also bounded by a polynomial.                                                                              

 

Fig. 5. 2-regular digraph 

In Figure 5 we see an example of a 2-regular digraph. We mention that Chung has 
demonstrated that the rate of convergence for a k-regular strongly connected digraph 
is no more than log . 

Next we compare several ways of adding the same number of asymmetric directed 
edges to the Line digraph. If we add a “back to root” edge to each vertex, except for 
v(0), v(1), and v(n), we obtain a graph L1 (see Figure 6) with exponential hitting time. 
The analysis is similar to Harp Strings digraph. We remark that the hitting time of any 
Strong Chain (and any digraph in general) with maximal out degree d will be bounded 
by O . This is because the waiting time for n consecutive successes in a Bernoulli 
experiment, with the probability of success 1/ , is Θ  [CS]. We remark that if 
we add to each vertex of the base both a “back to root” edge and an edge to v(1), we 
will achieve this worst case behavior of Θ 3 , for out-degree 3. If we add all possi-
ble back edges to the base we get Θ !  hitting time. 

We summarize this discussion with the following lemmas. 
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Lemma 6:  For any n+1 vertex Strong Chain C, with vertices v(0),…,v(n) and with 
the out-degree of v(i) denoted by di, O ∏ )). If, for all i, d i ≤ D, 
then we have that O , since d0 =1. If the bound D is constant then 
in the worst case Ω ∏ . 

 

Fig. 6. Line digraph modification L1 

Proof: The proof of the upper bound is by induction on n, one less than the number of 
vertices in the Strong Chain. The worst case hitting time will be obtained when each 
forward edge is to next. The probability of advancing from v(i) to v(i+1) is 1/di . For 
the worst case the dn-1 back edges from v(n) go to v(0),…,v(di-2). Since F = F0, by 
Lemma 1 we have that for all 0 < i < n, , 0, . For this upper bound 
proof, we shall use this fact by replacing the term contributed by the dn-1 back edges 
from v(n) in the recurrence by (dn-1) 0, . 

Let Gi be a Strong Chain with i+1 vertices v(0),…,v(i). and let  denote the hit-
ting time of Gi. 

For the base case 1. 
The inductive hypothesis: Hit G n ∏ d   
Inductive Step: 

We add vertex v(n+1) to Gn, which adds a to next edge to v(n). Hit 0, n Hit G . 
  Hit G Hit 0, n   Hit n, n 1  from Lemma 1                      Hit n, n 1 1 – 1 Hit 0, n Hit n, n 1   

                             d d – 1 Hit 0, n .                      Hit 0, n 1 Hit 0, n Hit n, n 1   
                             Hit G d d Hit G     
                             Hit G d d Hit G    
                             d Hit G d   
                             d n ∏ d d   (by the inductive hypothesis) 

                              n ∏ d d    

                             n ∏ d ∏ d      

                             n 1  ∏ d  
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The proof of the lower bound when D is constant is also by induction on n. 
The base case 1. 
The inductive hypothesis: Hit G ∏ d n  
Inductive Step: 

In case d 1                      Hit n, n 1 1 Hit G   
                             1 ∏ d n  
                             ∏ d n 1  
Else d 2 

                  Hit n, n 1 1  ∑ Hit j, n  Hit  n, n 1   

                             d ∑ Hit j, n   
                             d d  –  1 Hit 0, n ∑ Hit 0, j   
            Hit 0, n 1 Hit 0, n Hit n, n 1   
                             Hit G d d 1 Hit G ∑ Hit G   
                     d Hit G d ∑ Hit G   
                             d ∏ d n d ∑ Hit G     

                             d ∏ d n d – DD   

                             ∏ d d n– DD  
                             ∏ d 2n DD  (since dn ≥ 2) 
                             ∏ d n 1 (since D is constant so that DD-1 < n-1) 

                                                                                      

In the following let G0 be the Line digraph. 

Lemma 7: Let G1 be obtained by adding a single back edge from v(i) to G0, then in 
the worst case Θ  . For i = 
n/2, this is Θ  . 

Proof: For the worst case we add a back to root edge from v(i). We observe that add-
ing a “back to root” edge from v(i) will leave 0,  unchanged.  Hit i, i 1   

    1 Hit 0, i Hit i, i 1 1  Hit i 1, i  Hit i, i 1    Hit i, i 1 1 Hit 0, i 1 Hit i 1, i 1  Hit j, j 1 1 Hit 0, i 2 Hit j 1, j , for i j n 1  
     Hit 0, n Hit 0, i Hit i, n Hit 0, n n i 1 Hit 0, i   

It is easy to see that this recurrence grows most rapidly when i = n/c, for constant c 
> 1. 

Let i = n/2, then Hit 0, n n  n i 1 i n 1    Θ n   

 



 Random Walks on Some Basic Classes of Digraphs 131 

Thus from Lemma 3, Hit 0, n Θ n Hit G Θ n                                                

Lemma 8: Let G be a graph obtained by adding a single back edge from each of k 
distinct vertices of G0, the Line digraph. Then in the worst case, we have for 1 ≤ k < 
n/2, Hit G O Hit G Hit G O  and Hit G Ω . 

Proof: We obtain the worst case by adding “back to root” edges to G0. For a given k 
we add “back to root” edges from each of the vertices v(i1), …, v(ik) of G0 and let Gk 
be the induced subgraph consisting of the vertices v(j), j=0,…,ik. To simplify the 
analysis we will assume, w.l.o.g., that n is a multiple of k + 1. We first show by  
induction on k that  Hit G O Hit G ∏ 2 i i  Hit G ), where we assume that i0=0.  

Base Case:   
   Hit G  Hit 0, i  i Hit G Hit G 2 i 0 Hit G . 

For the inductive hypothesis we assume 
   Hit G Hit G ∏ 2 i  i Hit G   

Inductive Step:   Hit i , i 1 1 Hit 0, i 1 Hit i – 1, i   

                    2 2Hit G      since Hit i – 1, i Hit G    
       Hit’ j, j 1 2 Hit j 1, j  for j i 1 to i                   Hit G Hit G Hit i , i   

                    Hit G 2 i – i  Hit G i – i   

                     ∏ 2 i i  Hit G Hit G    

Maximizing the solution to this recurrence is equivalent to maximizing the product of 
the distances between the added back edges, subject to the constraint that the total 
distance is at most n. This is just the problem of finding the hyperbox of maximum 
volume, subject to a bound on the total side lengths, and the well known solution is 
the hypercube [Kazarinoff]. Thus the solution is asymptotically maximal when the 
distances are the same length. So to prevent adding asymmetric edges to v(0) or v(n) 

we choose im = . This yields Hit G O Hit G O Hit G   O , since the hitting time of the Line digraph G0 is n2. One can also prove 

by induction that Hit G Ω  by replacing the base case by Hit G  ≥ 1 

and the inductive hypothesis by Hit G ∏ i  i  .                         
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Fig. 7. Line digraph modification L2 

It is easy to see that when k is constant, the constant of proportionality in the hit-
ting time is maximized if all asymmetric edges are equally spaced in the last half of 
the Line digraph. However, when k is large, the effect of  becomes negligi-
ble. Next we consider the effect of adding d back edges from the single vertex v(i) of 
G0 to obtain the digraph L2. 

Lemma 9:  In the worst case, L2 has 0, Θ   Θ .  

Proof:  We analyze the worst case by adding long edges. We add back edges from 
v(i) to each of the vertices v(0), …, v(d -1). 

    Hit i, i 1 ∑ 1 Hit j, i hit i, i 1   

                 d ∑ Hit j, i  

                 d ∑ Hit 0, i Hit 0, j   
   Hit j, j  1   2  Hit j  1, j , for all j  i  
       Hit 0, n   Hit 0, i   Hit i , n   
                 i n– i d ∑ Hit 0, i Hit 0, j ) 
Let d = n–2, so that i = n–1 
      Hit 0, n n– 1 n 2 ∑ Hit 0, n 1 Hit 0, j   

                n– 1 n 2 n 2 n 1 – ∑ j  

                n– 1 n 2 n 2 n 1  –  1/6 n– 3 n– 2 2n– 5  
                 Θ n   
Let d = n/2 - 1, and i = n/2 

       Hit 0, n     1 ∑ Hit 0, Hit 0, j   

                1  1  n– 4 n– 3 n– 2   

                Θ nd n   
                Θ n                                                               

We can also add d back edges from each of k vertices, in the same manner, to yield L3. 

Lemma 10: For natural d ≥ 1, and for k < n/2, L3 has worst case hitting time Hit 0, n O   Hit G O   n . 
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Proof: The proof is by induction on k, and it is a straightforward combination of the 
analysis in the proofs of Lemma 8 and Lemma 9.                                                        

We remark that the upper bound in this theorem is not tight for non-constant k, 
however, if we allow k = Ω(n) in Lemma 8 and Lemma 10, the lower bounds for the 
worst case will be at least Ω(3O(k)) and Ω((d+2)O(k)), respectively. In the following we 
will assume w.l.o.g. that n is divisible by 2k. 

Definition: Let G be a balanced Strong Chain with out-degree bounded by D, con-
structed as follows:  Let vertices v(0),…,v(n/2-1) be a D-regular Strong Chain (called 
the frame) and v(n/2),…,v(n) be a Line digraph (called the handle). We form G by 
uniting the frame and the handle by adding the two directed edges between v(n/2-1) to 
v(n/2). We call G the Mirror Frame digraph because it is reminiscent of a mirror 
with a handle. 

Property 11:  Let G be a Mirror Frame digraph with out-degree bounded by D. 
1. G has Dn/2 + 2(n/2 + 1) directed edges. 
2. G has diameter = Ω(n). 
3.   Θ  [Chung].  

 

Fig. 8. Mirror Frame digraph 

The Mirror Frame digraph is similar to the undirected lollipop graph [Feige], and it 
achieves the asymptotic upper bound on the hitting time for balanced digraphs. The 
handle part of the digraph guarantees that the diameter is Ω(n). The best case is ob-
tained when the frame is a d-expander, for constant d. The worst case is when the 
frame is a complete digraph, so that G is just the digraph version of the lollipop. If D 
is bounded by some constant, then we can get a result similar to Lemmas 7, 8, 9 and 
10, since the Line digraph is basically a Mirror Frame digraph (where D = 2) with a 
“broken” frame.  

Theorem 12: Let G be a Mirror Frame digraph with out-degree bounded by constant 
D,   Θ .  

Let v(f) be the frame vertex of greatest distance from v(n) (see Figure 9), so that the 
shortest path between v(n) and v(f), achieves the diameter of G. The following new 
digraphs are obtained by adding asymmetric back edges from the k handle vertices 

v(n/2),…,v
 – 

 to vertices in the set (v(f - d/2), …, v(f + d/2)).  
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1. Let G1 be obtained by adding a single back edge to G. Hit G O n Hit G  . 
2. Let G2 be obtained by adding a single back edge from each of k distinct vertices of 

the handle of G. Hit G Hit G O Hit G Hit G . 

3. Let G3 be obtained by adding d back edges from a single vertex of G, where d < D-
1. Hit G Θ n d Hit G . 

4. Let G4 be obtained from G by adding d back edges to each of k handle vertices, 

where d = D-2. Hit G O Hit G .  

Proof: We can apply the analysis of the Line digraph directly to the Mirror Frame 
digraph. To see this, we first transform the first half of the Line digraph G0 into a 
cycle by adding both directed edges between v(n/2 - 1) and v(0), to form the frame. 
The handle is then the Line digraph from vertex v(n/2) to v(n). The hitting times for 
the Line digraph (the handle) and the cycle (the frame) are the same. The hitting time 
for any frame formed by adding up to (the constant) D-2 edges to each vertex of this 
2-regular cycle is still O(n2) (the same as the Line digraph), by Property 11. Back 
edges from the handle to the frame will be the longest back edges (edge distance 
Ω(n)) and thus produce the greatest increase in hitting time. Adding these edges in-
creases the hitting time by an amount proportional to the increase when adding the 
long back edges to the Line digraph (to v(0)). We conclude that we may apply the 
results of Lemmas 7 through 10 directly, by replacing Hit G  with Hit G .          

 

Fig. 9.  

Theorem 13: Let G be a balanced strongly connected digraph with out-degree 
bounded by constant D. Let G have diameter = Ω(n). Let G have Ω(Dn) edges and   Θ . 

1. Let G1 be obtained by adding a single back edge from a vertex v, where degree(v) 
< D.  Hit G O n Hit G .  2. Let G2 be obtained by adding a single back edge from each of k distinct vertices 

of G. Hit G   O Hit G Hit G . 
3. Let G3 be obtained by adding d back edges from a single vertex v of G, where d ≤ 

D – degree(v). Hit G Θ n d Hit G . 
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4. Let G4 be obtained from G by adding di back edges from each of k distinct vertic-
es v(i) of G, for i = 1 to k, where di < D – degree(v(i)).   Hit G O D  Hit G .  

Proof: The proofs of statements 1-4 are by induction, and they follow the proofs of 
Lemmas 7 to 9, with Hit G  replaced by Hit G . We begin by labeling the vertices 
of G as v(0) through v(n), in the following manner: We select v(0) and v(n) so that the 
shortest path from v(0) to v(n) (the distance) is maximal (is equal to the diameter of 
G). We iteratively label the vertices from v(n-1) to v(1). In step k, we have labeled k-1 
vertices as v(n) through v(n-k-1),  and from the unlabeled vertices we select a vertex 
v of maximal distance from v(0) and label it as v(n-k).  

We may now proceed with the proofs by induction by using this labeling of G in 
the same manner as the (natural) labeling of the Strong Chains. By our construction of 
the labeling of G, and by the assumption that the diameter of G is Ω(n), distances 
between corresponding pairs of vertices of G0 and G will be proportional, that is, the 
distance between v(i) and v(j) in G will be at least c1|i-j| and at most c2|i-j|, for some 
constants c1 and c2 . In the inductive step of each of these proofs, we have use the fact 
that adding a back edge to the Line digraph increases the hitting time at most (or at 
least) by an amount that is a multiplicative function of the distance between the  
incident vertices. Substituting the corresponding distances for G will yield the stated 
results.                                                                               

We remark that if out-degree of G is bounded by some constant, the hitting time is 
affected only by the number of vertices that are made unbalanced by the addition of 
the new edges. (i.e., the size of k in Theorem 13). We will use a similar measure of 
how “far” a digraph is from being balanced in the next section.  

3 Categorizing Strong Chains 

3.1 Harp Directed Graphs 

A Harp is a directed graph whose vertices can be divided into two parts: a balanced 
part and an asymmetric part. The balanced part is called the head or body and the 
asymmetric part is called the tail or string.  

Definition:  Harp(k, ℓ): 
The Harp is a Strong Chain with a balanced part (body) containing k vertices and 

an asymmetric part (tail) containing ℓ vertices, where ℓ + k = n+1, the number of 
vertices in the Strong Chain. The vertices of body are labeled b(0) to b(k-1) and the 
vertices of the strings are labeled s(0) to s(ℓ -1). Each vertex of the strings is incident 
on two directed edges: a “to next” edge and a “back to root” edge. There is no  
directed edge from any vertex of body to the vertices of strings.  

If the body consists of the first k vertices v(0)…v(k-1) then the Harp is called  
simple. 
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Fig. 10. An example of a simple Harp 

Lemma 14: Hitting Time of the simple Harp(k, ℓ) = Θ 2ℓ , for some constant c ≥ 1. 

Proof: From the results of [Feige] and [Chung] we know that the hitting time of the 
body part is Θ(poly k) (we can force it to be at least linear, for example the cycle). 
Replacing the edge from v(0) to v(1) in the Harp Strings digraph of Lemma 2 by the 
body of Harp(k, ℓ ), yields a simple recurrence, with a solution that establishes Hit , ℓ   Θ 2ℓ .                                                        

In this paper we will consider only simple Harps. In the following definitions the 
parameters k, ℓ, and τ are assumed to be functions of n = k + ℓ, the number of vertic-
es in the Harp. 

Definition: Simple Harp Families - Harp(k, ℓ, τ) 
These are the families of simple Harps with hitting times that are bounded from 

above by τ. Using Lemma 14 we have: 

Theorem 15: The following bounds on ℓ hold: 

1. For Harp(k, ℓ, poly(n)), ℓ is O(log n). 
2. For Harp(k, ℓ, nlog n), ℓ is O(log2n). 

3. For Harp(k, ℓ, 2n), ℓ = ω(log2n) , that is, for all c > 0,  lim ∞→n
ℓ  ∞ . 

3.2 Parameterized Complexity of Strong Chains 

Definition:  
1. Let G and G′ be Strong Chains. We say that G′ dominates G if Hit G’Ω Hit G . A family of Strong Chains is a collection F = S , for all n > 0, where 

each S  is a set of n-vertex Strong Chains. We say that a family F′ = S  domi-
nates family F if for all n, there exists an m = poly(n), so that for all G ∈ S , every 
G′ ∈ S  dominates G.  
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2. Maximal Balanced Subgraphs: Let G = (V, E) be a digraph. Let G′ = (V, E′) ⊆ G be 
balanced. If for all balanced G″ = (V, E″) ⊆ G, |E′| ≥ |E″| then G′ is a maximal ba-
lanced subgraph of G. Let G be a Strong Chain, and G′ = (V, E′) ⊆ G be balanced 
with F0 ⊆ E′. We say that G′  is a maximal balanced subgraph with base if F0 ⊆ E′ 
and for all balanced G″ = (V, E″) ⊆ G such that F0 ⊆ E″,  we have that |E′| ≥ |E″|. 

3. Asymmetric Vertices: Let G′ be a maximal balanced subgraph of G. If vertex v has 
more out edges in G than in G′, then we call v an asymmetric vertex relative to G′.  

The reason for this definition is that the edges that are not in G′ and the number of 
vertices that they are incident upon as out edges, determines the worst case complexi-
ty of G. Note that a balanced vertex may become asymmetric relative to a choice of 
maximal balanced subgraph. The number of asymmetric vertices, however, is inde-
pendent of the choice of maximal balanced subgraph.  

Theorem 16: For any Strong Chain C, |Vc| = n + 1, |Ec| = m. Let di be the out-degree 
of v(i) in C. There is a simple Harp H(k, ℓ) that dominates C, where k = n + 1, and ℓ 
= ∑ log  < m. 

Proof:  We assume, without loss of generality, that C contains a back edge from v(n) 
to v(0), as this edge will clearly have no effect on the hitting time. This edge will now 
insure that the base is part of a balanced subgraph of C. 

Let Cb be a maximal balanced subgraph of C with base. Let H be the simple Harp 
obtained by adding ℓ = ∑ log   string vertices to Cb. From Lemma 6 we have ∏ n2∑  n2ℓ .  By Lemma 14, Hit HΘ 2ℓHit C . Thus we conclude that Hit H Ω 2ℓHit C Ω 2ℓnΩ Hit C .                                                                           

The construction of Theorem 16 is somewhat pessimistic, since we only needed to 
show the existence of a dominating Harp. The number of string vertices required to 
dominate a Strong Chain is a function of the number of asymmetric vertices. A tech-
nical issue is that a maximal balanced subgraph of C will not, in general, be strongly 
connected. However, this is easily remedied by adding just enough edges.  

Theorem 17: Let C = (VC, EC) be a Strong Chain with out-degree bounded by some 
constant D. There is a simple Harp H(k, ℓ) that dominates C, where k = |VC|, and ℓ |VA| log D 1 |VC| |VA| , where VA is a set of asymmetric vertices of C.  

Proof: Let Bal be a maximal balanced subgraph of C. If Bal is a strongly connected 
digraph, then let G equal Bal. Otherwise, let G be a balanced connected digraph  
obtained as follows: 

Let EF be a minimal subset of F0 in C, such that Bal  EF is a connected digraph. 
Let Eb be a minimal set of back edges such that G = Bal  EF  Eb is a balanced 

strongly connected digraph. Note that |EF | ≤ |VC| - 1 and |Eb| ≤ |EF|. 
Let C′ = C  Eb. Clearly Hit C Hit C’ . Let VA be the set of asymmetric  

vertices of C′ relative to G. Let H be the simple Harp obtained by adding ℓ string 

vertices to G, where ℓ |VA| log D 1 |VC| |VA| .  
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Let j = |VA| and n = |VC| - 1, then ℓ j log D 1  . From Theorem 13 we 

have  ’       

          2  D
 

          2ℓ . 
By Lemma 14, Hit H Θ 2ℓHit G . Thus we conclude that   Hit H Ω 2ℓHit G Ω Hit C’ Ω Hit C .                                  

The number of asymmetric vertices also provides a lower bound for more general 
digraphs. 

Theorem 18: The family of n-vertex strongly connected digraphs with maximum in-
degree and out-degree d+1 and ℓ asymmetric vertices has worst case cover time Ω  ℓ  ℓ . This gives: 

1. If ℓ = O(log n)  the worst case cover time is Ω(nO(log d)), which is Ω(poly(n))  for 
constant d. 

2. If ℓ = ω (log n) the worst case cover time is super-polynomial. 
3. If ℓ = Θ(log2n)  the worst case cover time is Ω(nO(log d log n)), which is Ω(nO(log n)) 

for constant d. 
4. If ℓ = ω(log2n) the worst case cover time is Ω(dpoly(n)). 

Proof: We will modify the simple (out-degree 1) ordered cycle. We add d back edges 
to each of the last ℓ vertices of the cycle, with the destinations distributed evenly 
among first ℓ vertices of the cycle. The resulting digraph will have in-degree and out-
degree bounded by d+1. The lower bound now follows directly from the previously 
mentioned Bernoulli bound [CS], and the fact that the hitting time is less than or equal 
to the cover time.                                                                                                         

Since the hitting time and cover time for simple Harps are equal we divide digraphs 
into classes based on their cover times using the Harps:  

Definition: Consider all digraphs that are strongly connected, have bounded de-
gree, and have a pseudo-topological order. We divide them into the following three 
families : 

1. WS[1] (Weakly Symmetric[1]) – those dominated by Harp(k, ℓ, poly(n)). 
2. WS[2] (Weakly Symmetric[2]) – those  dominated by Harp(k, ℓ, nlog n). 
3. WS[3] (Weakly Symmetric[3]) – those dominated by Harp(k, ℓ, 2poly(n)). 

WS[1] is contained in RL (?=L), and WS[3] is contained in NL (⊆ L2).  We conjec-
ture that WS[2] is an intermediate class, between RL and PL. We could, of course, 
refine this hierarchy, but we are primarily interested in polynomial versus non-
polynomial hitting times. 
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4 Conclusion and Future Work 

We have begun the study of the structure of unbalanced digraphs and we have identi-
fied a simple class of digraphs called Strong Chains, which facilitate this analysis. We 
have identified an asymmetry parameter, VA, the number of asymmetric vertices. We 
show matching upper and lower bounds on the worst case hitting time of Strong 
Chains as a function of VA. We have identified the threshold that is a necessary condi-
tion for non-polynomial cover time. We have shown that VA provides lower bounds 
on the worst case cover time for families of general strongly connected digraphs. 

In the next phase of our work we will study the polynomial sized union of Strong 
Chains, the digraph families that more closely model the more general pseudo-
topologically ordered NL computation graphs. Moreover, we will work on the combi-
nation of simple Harps (complex Harp families) which can dominate the union of 
Strong Chains. For example, Reingold discusses digraphs with good stationary distri-
butions, having only a few “bad” vertices. This seems to us, in general, to be some-
what unrealistic, as there will be more of a smooth transition between “good” and 
“bad” vertices. The vertices can be grouped by stationary distribution. The stationary 
distribution is more strongly related to the number of groups than the diameter, which 
gives only a rather loose bound (Max π(v) ≤ kD Min π(v), where k = out-degree and D 
= diameter  [Chung]). 

We are currently working on applying the nice properties of the Eulerian circuit to 
unbalanced digraphs which are close to being balanced, by combining cycles in a 
union of Strong Chains. Another approach is to choose a bound b for a digraph, and 
develop an algorithm to determine if a vertex is b-reachable, that is, Hit(s,v) ≤ b. We 
are attempting to use this algorithm to construct universal traversal sequences for the 
subgraph consisting of all b-reachable vertices. The goal is an RL algorithm that ter-
minates on digraphs that are not poly-mixing, but succeeds on poly-mixing digraphs. 
Another line of attack is to add edges to attempt to “balance” a digraph, which can 
create false paths. Bounding the probability of following a false path may lead to a 
BPL algorithm for classes of non poly-mixing digraphs. Finally, we are especially 
interested in the relation between RL and ReachUL. 
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Abstract. In this paper we present pTiMo, a process algebra in which
migrations and interactions depend upon timers and have probabilities.
The semantics of the calculus is given in terms of labeled, discrete-time
Markov chains. The existing quantitative tools do not explicitly support
properties which make use of local clocks, multisets of transitions (gen-
erated by the maximal progress policy in pTiMo) and transition prove-
nance (the location at which a transition originates, and the processes
that participate in the transition). In order to study such properties,
we introduce a probabilistic temporal logic PLTM for pTiMo, and pro-
vide an algorithm for verifying PLTM properties. These properties can
be checked over states and/or transitions, and encompass both transient
and steady-state behaviors. We also provide a verification algorithm for
PLTM properties, and analyze its time complexity.

In some previous articles, we have introduced a formalism called TiMo with
processes able to migrate between different explicit locations of a distributed
environment defined by a number of spatially distinct locations. Timing con-
straints are used to control migration and communication; we use local clocks
and local maximal parallelism of actions. Two processes may communicate if
they are present at the same location. We are not aware of any approach com-
bining all the features of TiMo. However, TiMo is related to a large body of
literature describing process algebras. TiMo is derived as a simpler version of
tDpi [6]. The distributed π-calculus [10] has an explicit notion of location, and
deals with static resources access by using a type system. The paper [2] studies a
π-calculus extension with a timer construct, and then enriches it with locations.
Some prototype languages have been designed and experimental implementa-
tions derived from process calculi like Klaim [7] and Acute [14]; these prototype
languages did not become a real practical programming language.

This paper is devoted to a quantitative extension for TiMo. In fact we use the
same syntax, and give the semantics in terms of labeled, discrete-time Markov
chains. Quantitative tools (e.g., the PRISM model checker [13]) do not support
properties which make use of local clocks, and of multisets of transitions gen-
erated by the maximal progress policy in pTiMo. These properties could be
described by a probabilistic temporal logic PLTM given for pTiMo. We de-
scribe pTiMo and PLTM, focusing on their new features. Moreover, we provide
a model-checking algorithm to verify PLTM properties of pTiMo processes.
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1 Probabilistic Timed Mobility

Process calculi are used to model distributed systems. Various features were in-
troduced to obtain such formalisms, including explicit locations in distributed π-
calculus [10], and explicit migration and timers in timed distributed π-calculus [6].
Papers considering time assume the existence of a global clock; however, there
are several applications and distributed systems for which considering a global
clock would be inappropriate. As a solution, the process algebra TiMo [1] is
a formalism for mobile systems in which it is possible to add timers to control
process mobility and interaction. A local clock is assigned to each location [4];
each local clock determines the timing of actions executed at the corresponding
location. Inspired by TiMo, a flexible software platform supporting the specifi-
cation of agents and allowing a timed migration in a distributed environment is
presented in [3]. Timing constraints for migration allow one to specify a tempo-
ral interval after which a mobile process must move to another location. A timer
denoted by Δ3 associated to a migration action goΔ3work indicates that the
process moves to location work after 3 time units. It is also possible to constrain
the waiting period for a communication on a channel; if a communication action
does not happen before a deadline, the process gives up and switches its opera-
tion to an alternative. E.g., a timer Δ5 associated to an output action aΔ5!〈10〉
makes the channel available for communication only for a period of 5 time units.
We assume suitable data sets including a set Loc of locations and a set Chan of
communication channels. We use a set Id of process identifiers, and each id ∈ Id
has the arity mid. In what follows, we use x to denote a finite tuple of elements
(x1, . . . , xk) whenever it does not lead to confusion.

Table 1. TiMo Syntax

Processes P ::= aΔlt !〈v〉 then P else P ′ � (output)

aΔlt?(u:X) then P else P ′ � (input)

goΔlt l then P � (move)

P | P ′ � (parallel)

0 � (termination)

id(v) (definition)

�P (stalling)

Located processes L ::= l[[P ]]

Networks N ::= L � L | N

The syntax of TiMo is given in Table 1, where P are processes, L, located
processes, and N , networks [4]. For each id ∈ Id there is a unique definition of the
form id(u1, . . . , umid

: X id
1 , . . . , X id

mid
) = Pid , where Pid is a process expression,

the ui’s are distinct variables playing the role of parameters, and the X id
i ’s are

data types. In the syntax, a ∈ Chan is a channel; lt ∈ N ∪ {∞} is a deadline,
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where lt stands for local time; each vi in v is an expression built from data values
and variables; each ui in u is a variable, and each Xi in X is a data type; l is
a location or a location variable; and � is a special symbol used to state that a
process is temporarily ‘stalled’ and will be re-activated after a time progress.

The only variable binding constructor is aΔlt?(u:X) then P else P ′, which
binds the variables u within P (but not within P ′). We use fv(P ) to denote the
free variables of a process P (and similarly for networks). For a process definition,
we assume that fv(Pid) ⊆ {u1, . . . , umid

}, and so the free variables of Pid are
parameter bound. Processes are defined up to α-conversion, and {v/u, . . .}P
is obtained from P by replacing all free occurrences of a variable u by v, etc,
possible after α-converting P in order to avoid clashes. Moreover, if v and u are
tuples of the same length then {v/u}P denotes {v1/u1, v2/u2, . . . , vk/uk}P .

Intuitively, a process aΔlt !〈v〉 then P else P ′ attempts to send a tuple of val-
ues v over channel a for lt time units. If successful, it continues as process P ;
otherwise, it continues as process P ′. Similarly, aΔlt?(u:X) then P else P ′ is
a process that attempts for lt time units to input a tuple of values of type X
and substitute them for the variables u. Mobility is implemented by a process
goΔlt l then P which moves from the current location to the location l after ex-
actly lt time units. Note that since l can be a variable, and so its value is assigned
dynamically through the communication with other processes, migration actions
support a flexible scheme for the movement of processes from one location to
another. By delaying the migration to another location, we can model in a sim-
ple way the movement time of processes within the network which is, in general,
outside the control of a system designer. Processes are further constructed from
the (terminated) process 0 and parallel composition P |P ′. A located process
l[[P ]] specifies a process P running at location l, and networks are composed of
located processes. A network N is well-formed if there are no free variables in
N , there are no occurrences of the special symbol � in N , and assuming that
id is as in the recursive definition of a process, for every id(v) occurring in N
or on the right hand side of any recursive equation, the expression vi is of type
corresponding to X id

i . The set of processes is denoted by P , the set of located
processes by L, and the set of networks by N .

Using the commutativity and the associativity of parallel composition in
TiMo, one can always transform a given network N into a finite parallel compo-
sition of located processes of the form l1[[P1]] | . . . | ln[[Pn]] such that no process
Pi has the parallel composition operator at its topmost level, and then apply the
action rules given in Table 2. Each located process li[[Pi]] is called a component
of N , and the parallel composition is called a component decomposition of the
network N . Note that these notions are well defined since component decom-
position is unique up to the permutation of the components. This follows from
the rule (Call) which treats recursive definitions as function calls that take a
unit of time. Another consequence of such a treatment is that it is impossible to
execute an infinite sequence of action steps without executing any time actions.

Table 2 presents two kinds of rules: N
λ−→ N ′ and N

√
l−−→ N ′. The former is an

execution of an action λ; the latter is a time step at location l.
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Table 2. TiMo Operational Semantics

(Move) l[[goΔlt l′ then P ]]
l′@l−−→ l′[[�P ]]

(Com)
v1 ∈ X1 . . . vk ∈ Xk

l[[aΔlt !〈v〉 then P else Q | aΔlt′?(u:X) then P ′ else Q′]]
a〈v〉@l−−−−→ l[[�P | �{v/u}P ′]]

(Call) l[[id(v)]]
id@l−−−→ l[[�{v/u}Pid]]

(Par)
N

λ−→ N ′

N | N ′′ λ−→ N ′ | N ′′

(Time)
N �−→l

N
√

l−−→ φl(N)

In the rule (Time), N �→l means that the rules (Call) and (Com) as well as
(Move) with Δlt = Δ0 cannot be applied to N for location l. Moreover, φl(N)
is obtained by taking the component decomposition of N and simultaneously
replacing all components:

l[[aΔltω then P else Q]] by

{
l[[aΔlt−1ω then P else Q]] if lt > 0

l[[Q]] if lt = 0

l[[goΔlt l′ then P ]] by l[[goΔlt−1l′ then P ]]

where ω stands for !〈v〉 or ?(u:X). After that, all the occurrences of the symbol
� in N are erased since processes that were unfolded or interacted with other
processes or migrated need to be activated (note that the number of the symbols
� to be erased cannot exceed the number of the components of the network).

The rules of Table 2 express executions of individual actions. A complete

computational step is captured by a derivation of the form N
Λ@l
===⇒ N ′, where

Λ = {λ1, . . . , λm} (m ≥ 0) is a finite multiset of actions for some location l (i.e.,
actions λi of the form l′@l or a〈v〉@l or id@l) such that

N
λ1−→ N1 . . .Nm−1

λm−−→ Nm

√
l−−→ N ′.

That means that a derivation represents a sequence of individual actions followed
by a clock tick, all happening at the same location. Intuitively, this captures the
cumulative effect of the concurrent execution of the multiset of actions Λ at
location l, and so we write N

Λ@l
===⇒ N ′.

pTiMo Semantics. The new process calculus pTiMo is a quantitative, prob-
abilistic extension of TiMo, and it has the same syntax as TiMo. However,
unlike in TiMo, we decided that it would be more realistic to give networks a
large degree of freedom in deciding when a process is allowed to move from the
current active location. We achieve this by assuming that any pTiMo process
goΔlt l then P can move to location l after at most lt time units (and not neces-
sarily after exactly lt time units). In order to define the semantics for pTiMo,



A Probabilistic Logic for pTiMo 145

we note that the behavior of a well-formed network N consists of an alter-
nating sequence of derivations (i.e., complete computational steps, in which a
maximally parallel multiset of actions is performed at a certain location) and
location selections (i.e., choosing the location at which the next complete compu-
tational step takes place). As a means of simplifying the description of pTiMo,
we have decided to combine derivations, followed by location selections, into uni-
tary computational steps, referred to as complete transitions (i.e., as opposed to
individual actions and location selections, which are referred to as elementary
transitions). Within a complete transition, both derivations and location selec-
tions can be seen as forms of nondeterministic choice. In the case of derivations,
the nondeterminism originates in the fact that moving processes can ”choose”
either to stay at the current location or to move to a new location. Further-
more, there are multiple possible outcomes when more than one sender and one
receiver have the possibility of communicating over a certain channel, at the
same time. For location selections, the nondeterminism is caused by the fact
that the semantics of TiMo does not include any rule regarding the selection.
Therefore, we can obtain a probabilistic version of TiMo just by turning all the
aforementioned nondeterministic choices into corresponding probabilistic, inde-
pendent choices. More specifically, when switching from TiMo to pTiMo we
find it useful to treat each source of nondeterminism separately. We impose this
condition of independence because we assume that the movements performed by
certain processes should not affect the communications between other processes,
that communication channels are isolated from one another, and that process
behavior at a certain location does not influence the choice of the next active
location. Whenever necessary, alternative semantics for pTiMo can be obtained,
for instance, by dropping this condition and by assigning the probability of each
complete transition in a holistic manner.

When describing the semantics of pTiMo, we will employ the notation N@l
to indicate that the next complete transition for the network N will take place
at location l. Moreover, if the network N , which is active at location l, can

make a complete computational step N
trc==⇒ N ′, after which N ′ becomes active

at location l′, we will denote this unified transition by N@l
trc,l

′
===⇒ N ′@l′. Let

Tv refer to the set of all valid complete transitions, starting from a valid state,
and let T (N@l) denote the set of complete transitions immediately available

at N@l, meaning that T (N@l) = {(trc, l′, N ′@l′) | N@l
trc,l

′
===⇒ N ′@l′ ∈ Tv}.

Additionally, let us denote by S and T the sets containing the states and the
complete transitions of N , respectively.

In order to assign probabilities to complete transitions in a meaningful man-
ner, we will first introduce a number of additional notations, as to separate
movements from communications. Let Distfin(X) denote the set of all the fi-
nite, discrete probability distributions over the set X . Also, let [M ]N@l and
[C, a]N@l refer to the network N , active at location l, restricted exactly to
those (located) processes which, as their next action, can perform a movement,
or a communication over channel a, respectively. Furthermore, we define the
following two sets:
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[M ]TR(N@l) = {(tr1c , l′1, N ′1@l′1) | [M ]N@l
tr1c ,l

′
1====⇒ N ′1@l′1 ∈ Tv}

[C, a]TR(N@l) = {(tr2c , l′2, N ′2@l′2) | [C, a]N@l
tr2c ,l

′
2====⇒ N ′2@l′2 ∈ Tv}

By employing the sets [M ]N@l, [C, a]N@l, [M ]TR(N@l), and [C, a]TR(N@l),
we can easily solve the nondeterminism created by movements and communica-
tions. In the case of movements, the set [M ]TR(N@l) captures all the possible
combinations of movements that originate in [M ]N@l (and, implicitly, in N@l).
Similarly, the set [C, a]TR(N@l) describes all the possible communications that
can be generated by [C, a]N@l (and, implicitly, by N@l). Now, we can trans-
form nondeterministic choices into probabilistic choices simply by associating
probabilities to the elements of [M ]TR(N@l) and [C, a]TR(N@l), through the
use of finite, discrete probability distributions. More specifically, we can choose
two distributions DistMfin(N@l) ∈ DistMfin([M ]TR(N@l)) and DistC,a

fin(N@l) ∈
Distfin([C, a]TR(N@l)), such that DistMfin(N@l) and DistC,a

fin(N@l) quantify
the probability of each complete transition arising from [M ]N@l and [C, a]N@l,

respectively. Let DistMfin(S) =
⋃

N@l∈S
Distfin([M ]TR(N@l)) and

DistC,a
fin(S) =

⋃
N@l∈S

Distfin([C, a]TR(N@l)),

for any a ∈ Chan . In the general case, for solving all forms on nondeterminism
(including the nondeterminism involved in selecting the next active location) we
employ the functions schM ∈ SCHM , scha

C ∈ SCHa
C and schL ∈ SCHL, where

SCHM = {f : S → DistMfin(S) | ∀N@l ∈ S, f(N@l) ∈ Distfin([M ]TR(N@l))},

SCHa
C = {g : S → DistC,a

fin(S) | ∀N@l ∈ S, g(N@l) ∈ Distfin([C, a]TR(N@l))},
and SCHL = {h : S → Distfin(Loc)}.

Definition 1. Starting from the previously defined functions, the probability

P (trc, l
′) of any complete transition N@l

trc,l
′

===⇒ N ′@l′ can be computed as
P (trc, l

′) = PM (trc) · PC(trc) · (schL(N@l))(l′), where:

PM (trc) = (schM (N@L))(trc, l
′, N ′@l′)

PC(trc) =
∏

a∈Chan

(scha
C(N@L))(trc, l

′, N ′@l′)

Once probabilities have been assigned to all the complete transitions in a TiMo
network, the resulting structure is a pTiMo network.

Definition 2. In the general case, a pTiMo network is a quadruple

Np =

(
N@l, schM ,

{ ⋃
a∈Chan

scha
C

}
, schL

)
where N@l is a TiMo network that is active at location l, corresponding to the
initial state of Np, and, as mentioned earlier, schM ∈ SCHM , scha

C ∈ SCHa
C ,

for any a ∈ Chan, and schL ∈ SCHL.
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After eliminating all the nondeterminism found in a TiMo model, as shown in
Definition 1, the resulting structure is a (labeled) discrete-time Markov chain.
The syntax of pTiMo is the same as that of TiMo. As mentioned before, any
state of a pTiMo network includes the currently active location for that par-
ticular state (or network), and derivations are replaced by complete transitions,
which consist of a complete computational step and a new active location. The
actual difference between the two formalisms is in terms of semantics, namely
in the fact that complete transitions are associated with probabilities, and that
processes have a greater freedom of movement.

Travel Agency Example in pTiMo. In order to illustrate the syntax and
the semantics of pTiMo networks, we provide a running example involving an
understaffed travel agency. We assume that the agency has a central office and six
local offices. However, due to massive layoffs, the staff of the agency consists only
of three travel agents, whose jobs are to recommend specific travel destinations
to potential customers, and two executives, in charge of assigning the travel
agents to the local offices of the agency. Also, there are two potential customers,
who are interested in the recommendations made by the agency. We assume that
the behaviors of the agency staff and of the potential customers are cyclic and
can be described as follows, in the form of pTiMo processes.

The first agent (i.e., process A1) leaves home (i.e., location homeA1) and goes
to the central office of the agency (i.e., location office); there, he/she is assigned
a certain local office for the day (i.e., location newloc); the agent then moves to
the given location and advertises (over channel a) the first destination on the
agency’s list (i.e., location dest1), in the form of a holiday pack for 100 mone-
tary units; finally, the agent returns home. The second and the third agent (i.e.,
processes A2 and A3) are similar to the first, but they different home (i.e., loca-
tions homeA2 and homeA3), and advertise different destinations (i.e., locations
dest2 and dest3), in the form of holiday packs for 200 and 300 monetary units,
respectively. Formally, we have:

AX(homeAX : Loc) = goΔ0 office then AX(office : Loc)
AX(office : Loc) = bΔ0?(newloc : Loc) then (goΔ1 newloc then AX(newloc :
Loc)) else AX(office : Loc)
AX(officei : Loc)=aΔ1!〈destX , 100·X〉 then goΔ0 homeAX then AX(homeAX :
Loc), for 1 ≤ i ≤ 6

where X ∈ {1, 2, 3} refers to the number of the agent.
The two executives (i.e., processes E1 and E2) reside at the central office

(i.e., location office), and each chooses a local office (i.e., in a cyclic manner,
from the locations office1, office3, for process E1, and the locations office2,
office4, for process E2) that will be assigned to the next agent that comes to
the central office (over channel b). Formally, we have:

E1(office1 : Loc)=bΔ0!〈office1〉 thenE1(office3 : Loc) elseE1(office1 : Loc)
E1(office3 : Loc)=bΔ0!〈office3〉 thenE1(office5 : Loc) elseE1(office3 : Loc)
E1(office5 : Loc)=bΔ0!〈office5〉 thenE1(office1 : Loc) elseE1(office5 : Loc)
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E2(office2 : Loc)=bΔ0!〈office2〉 thenE2(office4 : Loc) elseE2(office2 : Loc)
E2(office4 : Loc)=bΔ0!〈office4〉 thenE2(office6 : Loc) elseE2(office4 : Loc)
E2(office6 : Loc)=bΔ0!〈office6〉 thenE2(office2 : Loc) elseE2(office6 : Loc)

The first customer (i.e., process C1) leaves home (i.e., location homeC1) and
visits the three local offices of the agency that are closest to his/her home (i.e.,
locations office1, office2, and office3), in order, receives travel offers from the
agents, and chooses a travel destination; then, he/she goes to the desired desti-
nation, spends a certain amount of time there, after which he/she returns home.
The second customer (i.e., process C2) resembles the first, except that he/she
initially has a different home (i.e., location homeC2), and the offices closest to
his/her home are locations office4, office5, and office6. Formally, we have:

C1(homeC1 : Loc) = goΔ1 office1 then C1(office1 : Loc)
C1(office1 : Loc) = aΔ1?(dest : Loc, cost : N) then (goΔ0 dest then C1(dest :
Loc)) else (goΔ0 office2 then C1(office2 : Loc))
C1(office2 : Loc) = aΔ1?(dest : Loc, cost : N) then (goΔ0 dest then C1(dest :
Loc)) else (goΔ0 office3 then C1(office3 : Loc))
C1(office3 : Loc) = aΔ1?(dest : Loc, cost : N) then (goΔ0 dest then C1(dest :
Loc)) else (goΔ0 homeC1 then C1(homeC1 : Loc))
C1(desti : Loc) = goΔi homeC1 then C1(homeC1 : Loc), for 1 ≤ i ≤ 3

C2(homeC2 : Loc) = goΔ1 office4 then C2(office4 : Loc)
C2(office4 : Loc) = aΔ1?(dest : Loc, cost : N) then (goΔ0 dest then C2(dest :
Loc)) else (goΔ0 office5 then C2(office5 : Loc))
C2(office5 : Loc) = aΔ1?(dest : Loc, cost : N) then (goΔ0 dest then C2(dest :
Loc)) else (goΔ0 office6 then C2(office6 : Loc))
C2(office6 : Loc) = aΔ1?(dest : Loc, cost : N) then (goΔ0 dest then C2(dest :
Loc)) else (goΔ0 homeC2 then C2(homeC2 : Loc))
C2(desti : Loc) = goΔi homeC2 then C2(homeC2 : Loc), for 1 ≤ i ≤ 3

The initial state of the corresponding pTiMo network is:

N = homeA1[[A1(homeA1)]] | homeA2[[A2(homeA2)]] | homeA3[[A3(homeA3)]] |
| office[[E1(office1)]] | office[[E2(office2)]] |
| homeC1[[C1(homeC1)]] | homeC2[[C2(homeC2)]]

Also, the initial active location for the N is l = homeA1.
While the description presented so far is sufficient in order to construct the

underlying TiMo network, we still have to solve the inherent non-determinism
of the network, before we can obtain a proper pTiMo specification. In the case
of the movement of the agents from the central office to the local offices, and of
the movement of the customers from their homes to the local offices, each agent
or customer will move at either Δ1 or Δ0, with equal probability (i.e., p = 0.5).
When it comes to the movement of the customers from their travel destinations
to their homes, we assume that the holiday packs have different (maximum)
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durations, such that any customer can stay at location desti for a number of at
most i steps. The first customer is rather moody, which means that he/she can
leave at any time before Δi, with equal probability (i.e., p = 1/(i+1)). However,
the second customer is always satisfied, which means that he/she will leave only
at Δ0. Next, in the case of the communication between the agents and the
executives, all the possible combinations of senders and receivers have the same
probability. For the communication between the customers and the agents, the
first customer has a preference for expensive holiday packs, which means that
the probability of choosing a certain offer is directly proportional to the cost
of that offer, while the second customer typically opts for cheaper packs, which
means that the probability of choosing a certain offer is inversely proportional to
the cost of that offer. Finally, we assume that the next active location is always
chosen deterministically, in the following cyclic order: homeA1, homeA2, homeA3,
office, homeC1, homeC2, office1, office2, office3, office4, office5, office6,
dest1, dest2, dest3. Due to reasons of space, we do not include here the values of
all the probabilities resulting from the previous, informal description of system
behavior. For the interested reader, the complete version of this example can be
found in [5]1. However, we illustrate some of these probabilities by taking the
case of the communication between client C2 and the agents A1, A2, and A3. To
simplify the description of the aforementioned probabilities, we use the following
process identifiers:

AXb0?(office) = bΔ0?(newloc : Loc) then (goΔ1 newloc then AX(newloc : Loc))
else AX(office : Loc)

AXg1(newloc) = goΔ1 newloc then AX(newloc : Loc)
AXg0(newloc) = goΔ0 newloc then AX(newloc : Loc)

AXa1!(officei) = aΔ1!〈destX , 100 ·X〉 then goΔ0 homeAX then AX(homeAX : Loc)
for 1 ≤ i ≤ 6

AXa0!(officei) = aΔ0!〈destX , 100 ·X〉 then goΔ0 homeAX then AX(homeAX : Loc)
for 1 ≤ i ≤ 6

C2ah?(office4) = aΔh?(dest : Loc, cost : N) then (goΔ0 dest then C2(dest : Loc))
else (goΔ0 office5 then C2(office5 : Loc))

C2ah?(office5) = aΔh?(dest : Loc, cost : N) then (goΔ0 dest then C2(dest : Loc))
else (goΔ0 office6 then C2(office6 : Loc))

C2ah?(office6) = aΔh?(dest : Loc, cost : N) then (goΔ0 dest then C2(dest : Loc))
else (goΔ0 homeC2 then C2(homeC2 : Loc))

where X ∈ {1, 2, 3} and h ∈ {0, 1}.
Let SEND1, SEND2, and SEND3 denote the ordered sets

SEND1 = {Aiah1!(officeq)}, SEND2 = {Aiah1!(officeq), Ajah2!(officeq)},
and SEND3 = {Aiah1!(officeq), Ajah2!(officeq), Akah3!(officeq)}, where
1 ≤ q ≤ 6, h1, h2, h3 ∈ {0, 1}, and 1 ≤ i ≤ 3, 1 ≤ i < j ≤ 3, 1 ≤ i < j < k ≤ 3,

1 The semantics given in the current paper is a streamlined version of that defined in
[5] and used in the example. However, although the two semantics involve different
notations and levels of detail, they are identical from a practical point of view.
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respectively. For any communication between the second customer and the
travel agents, we have the following probabilities:

P ({(Ai,C2)} |SEND1, C2ah?(officeq)) = 1

P ({(Ai,C2)} |SEND2, C2ah?(officeq)) = j/(i+ j)
P ({(Aj,C2)} |SEND2, C2ah?(officeq)) = i/(i+ j)

P ({(Ai,C2)} |SEND3, C2ah?(officeq)) = jk/(ij + jk + ki)
P ({(Aj,C2)} |SEND3, C2ah?(officeq)) = ki/(ij + jk + ki)
P ({(Ak,C2)} |SEND3, C2ah?(officeq)) = ij/(ij + jk + ki).

2 A Probabilistic Logic for Timed Mobility

The main reason for creating a probabilistic extension of TiMo is to gain
the ability to verify quantitative properties of pTiMo networks, such as the
probability that a certain transient or steady-state behavior occurs. Therefore,
it is natural to have a probabilistic temporal logic for expressing such properties
over networks of located processes. Unfortunately, we have not been able to find
a quantitative logic (such as PCTL [9] or aPCTL [12]) which is immediately
compatible with all or most of the distinguishing features of pTiMo, such
as explicit locations, local clocks, and the maximally parallel execution of
processes at a given location. As a result, starting from the PCTL family
of quantitative logics, we define a novel logic for pTiMo networks, namely
PLTM (Probabilistic Logic for Timed Mobility), which includes features such as:

• properties for transient and steady-state behavior,
• explicit references to locations and (named) processes,
• temporal constraints over local clocks, both finite and infinite,
• complex action guards over multisets of actions (i.e., structured transitions).

By using PLTM, one can express properties such as ”with probability greater
than 0.5, the process P1 will communicate at location l1, on channels a1 or a3,
before 3 time steps have elapsed at location l1, and 4 time steps have elapsed
at location l2”, and ”the long-run probability that no movement occurs during
a complete transition is less than 0.3”. For the travel agency, we can have prop-
erties such as ”with probability greater than 0.5, the customers C1 and C2 will
meet at location dest3, before 6 time steps have elapsed at each location”, or
”the long-run probability that agents A1 and A3 are at home is less than 0.4”. If
we employ rewards, we can query whether ”the average amount of money that
customer C2 spends on vacations, before 30 time steps have elapsed at location
homeC2, is equal to 400 monetary units”, or whether ”the average number of
times that agent A2 has to visit the local office office1, before he/she will find
customer C1 waiting there, is greater than 5”.

In order to introduce the formal syntax and semantics of PLTM, we first de-
scribe the notions of guards and temporal constraints. A guard is a logical expres-
sion over a set of quantitative properties, which refer to the multiplicity of the
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elementary transitions that belong to a complete transition. For instance, a guard
can be specified as g = ¬(#(a1〈v1〉) = 1)∨ ((#(MOVE at l1) < 5)∧ (#(a2〈MSG〉) ≥
#(a3〈MSG〉))). For the travel agency, one such guard could be g = (#(b〈dest1〉
< dest1 >) = 1)∧(#(MOVE at office) > 0). In the first case, a complete transition
(trc, l

′) satisfies the guard g iff trc either does not involve exactly one COM tran-
sition rule with the message v1 (i.e., ¬(#(a1〈v1〉) = 1)), or it includes strictly less
than 5 MOVE transition rules at location l1 (i.e., #(MOV E at l1) < 5) and the
total number ofCOM transition rules over the channel a2 is greater than or equal
to the number of COM transition rules over the channel a3 (i.e., #(a2〈MSG〉) ≥
#(a3〈MSG〉))). The complete syntax for guards is given in Table 3.

The (fully specified) elementary matchers l′ and a〈v〉 are compatible with a
movement to location l′, and a communication of the message v over the channel a,
respectively. Additionally, the (partially specified) elementary matchers MOVE,
a〈MSG〉, COM〈v〉 and COM〈MSG〉 are compatible with a generic movement, a com-
munication over the channel a (regardless of message content), a communication
involving the message v (regardless of channel), and a generic communication, re-
spectively. A further level of detail is added by the enhanced matchers tran at l,
tran by P and tran by P at l, which denote an elementary transition tran that is
performed at a specific location l or by a specific process P . The arithmetic opera-
tors are used to generate arithmetic expressions, involving real constants (i.e., cst)
and the total number of elementary (enhanced) transitions tran (trane) that are
performed during a complete transition, as indicated by the correspondingmatch-
ers. Next, comparison expressions allow the numerical values returned by arith-
metic expressions to be compared either between themselves, or with respect to
given real constants. Finally, guards are specified as logical expressions, created
by applying logical operators to comparison expressions.

Table 3. Action Guard Syntax

Elementary matchers tran ::= l′ | a〈v〉 | MOVE | a〈MSG〉 | COM〈v〉 | COM〈MSG〉
Enhanced matchers trane ::= tran at l | tran by P | tran by P at l

Arithmetic operators φarit ::= + | − | ∗
Comparison operators φcmp ::= < | > | = | ≤ | ≥
Logical operators φlog ::= ¬ | ∧ | ∨

Arithmetic expressions arit ::= cst | #(tran) | #(trane) | arit1 φarit arit2

Comparison expressions cmp ::= arit φcmp const | arit1 φcmp arit2

Logical expressions (guards) log ::= true | cmp | log1 φlog log2

Moving on to temporal constraints, let us note that the passage of discrete
time in pTiMo is localized, i.e., while a complete transition is performed at a
given location, taking one time step, the processes at all the other locations are
inactive. Assuming that we start with a network N0@l0 and have a finite path

σf = N0@l0
trc1,l1
====⇒ N1@l1 . . .Nm−1@lm−1

trcm,lm
=====⇒ Nm@lm, we can define the

local time ti@li after the completion of σf simply as the number of time steps
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that were performed at location li (i.e., the number of complete transitions that
originated in li). More generally, for each stateNi@li, with i between 0 and m, we
can define the network time as the set consisting of the local time for each l ∈ Loc,

which is written as a vector t(Ni@li) = (t1@l1, . . . , tn@ln), with
n∑

j=1

tj@lj = i. It

is now straightforward to define a partial order for the set of network times, such
that t(Na@la) ≤ t(Nb@lb) iff tlocj (Na@la) ≤ tlocj (Nb@lb), for any j between 1
and n. This partial order offers the possibility of specifying temporal constraints
on the expressions under verification. For example, given an initial network N
consisting of two locations, namely loc1 and loc2, and a logical formula φP , we
can ask whether φP becomes true with a probability of at least p, before three
time steps have passed at loc1 and four time steps have elapsed at loc2, by
employing the formula φ = [trueUφP ]

≤3@loc1,4@loc2
≥p . For the travel agency, we

could ask whether agent A3 reaches location office4, before 8 time steps have
elapsed at location office, with probability greater than 0.75. However, in order
to facilitate the formulation of temporal constraints, it is not necessary to set an
upper bound for each and every local time: one can indicate temporal restrictions
only for a number of relevant locations (e.g., all the locations are considered to be
relevant in our previous example), which means that no conditions are imposed
on the remaining locations (i.e., formally, the upper bounds for these locations
are set to ∞). Thus, given a set of locations L = {l1, . . . , ln}, a temporal bound
(i.e., a set of temporal constraints B1, . . . , Bn) can be expressed simply as an
element of the set T = {(B1@l1, . . . , Bn@ln) | B1, . . . , Bn ∈ N ∪∞}, where Bi

indicates the maximum local time allowed at li, for i between 1 and n. Also,
for ease of reference, given any t ∈ T with t = (b1@l1, . . . , bn@ln), let t@li = bi
denote the temporal bound at location li.

Definition 3. Using guards and temporal constraints, we can now define the
syntax of the probabilistic temporal logic PLTM as follows:

φP ::= true | prop | ¬φP | φP1 ∧ φP2 | [φP1UφAφP2]
≤t
≥p | [φP1UφAφP2]

≤t
>p

φS ::= [SφP ]≥p | [SφP ]>p | [SφA]≥p | [SφA]>p

where prop ∈ AP is an atomic proposition (i.e., a Boolean property that can be
defined over each of the states in S), p is a probability in the interval [0, 1], φA is
a guard over complete transitions, t is a set of temporal constraints over localized
complete transitions, φcmp is a comparison operator as described in Table 3. The
connectives ¬ (negation) and ∧ (conjunction) have their usual, classical logic

interpretation. The term [φP1UφAφP2]
≤t
>p (≥p) expresses that, with probability

greater than (or equal to) p, both φP2 becomes true before t complete transitions
have been performed, and φP1 holds until φP2 becomes true, with the additional
constraint that each transition up to φ2 becoming true has to satisfy φA. The
term [SφP ]>p (≥p) denotes that, according to the steady-state behavior of the
system, the probability of being in a state which satisfies φP is greater than (or
equal to) p. Similarly, [SφA]>p (≥p) expresses that, with probability greater than
(or equal to) p, the system performs a complete transition for which φA is true.
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Before presenting the formal semantics of PLTM, we introduce a number of
useful concepts, adapted from the description of PCTL [9]. Given an initial net-

work N0@l0, a path σ is an infinite sequence σ = N0@l0
trc1,l1
====⇒ N1@l1

trc2,l2
====⇒

N2@l2
trc3,l3
====⇒ . . . of states and transitions, starting from N0@l0. Furthermore, a

finite path σf is a finite sequence of states and transitions, originating in N0@l0,
and ending either in a state or in a transition. The n-th state and the n-th tran-
sition in a path are denoted as σ[n] and τ [n], respectively. Also, let σ ↑s n and
σ ↑t n represent the finite paths starting in N0@l0, and ending in σ[n] and τ [n],
respectively. Moving to probabilities, let pathsNN0@l0

denote the set of paths in

N whose first state is N0@l0, and μN
N0@l0

the probability measure over the sets

from pathsNN0@l0
induced by the probabilities of the complete transitions2.

We can now define the semantics of PLTM. We start with action guards φA,
since they are some of the basic elements of our logic. For the purpose of facilitat-
ing the description of their semantics, we represent any complete computational

step N@l
trc,l

′
===⇒ N ′@l′ as a multiset of triplets TR = TRMOV E ∪ TRCOM .

The multisets TRMOV E and TRCOM are defined as follows:

• TRMOVE = {〈P, l, lnew〉 | P ∈ Proc, l, lnew ∈ Loc, lnew@l ∈ trc, such that

N ≡ l[[P ]]|N∗ and l[[P ]]
lnew@l−−−−→ lnew[[�P ′]]}, and

• TRCOM = {〈{P1, P2}, l, a〈v〉 | P1, P2 ∈ Proc, l ∈ Loc, a〈v〉〉@l ∈ trc, such

that N ≡ l[[P1]]|l[[P2]]|N∗ and l[[P1]]|l[[P2]]
a〈v〉@l−−−−→ l[[�P ′1]]|l[[�P ′2]]}.

Basically, each triple 〈P, l, act〉 corresponds to an elementary transition from trc,
for which source data has been added (i.e., the location at which the transition
is performed, and the processes that generate the transition).

Definition 4 (Action Guards). By using the multisets TRMOVE and
TRCOM , the semantics of the guards φA can now be defined inductively. The
resulting semantics is described in Table 4. Formally, a complete transition TR
satisfies an action guard φA, denoted by TR � φA, iff φA(TR) = true.

As expected, guards are Boolean functions which operate over complete tran-
sitions. Since PLTM is a quantitative logic, the basic element of a guard is
the total number of elementary transitions that satisfy a certain arithmetic ex-
pression over elementary matchers or enhanced matchers. Thus, guards verify
quantitative relations over certain sets of elementary transitions (i.e., comparison
expressions over arithmetic terms, or, at the highest level, logical formulas.

Once the guards have been properly defined, we can now present the se-
mantics for probability queries φP . In doing so, we rely on the auxiliary formula
[φP1UφAφP2]

≤t, which is a path formula (unlike all the other formulas in PLTM,
which operate over states or complete transitions).

Definition 5 (Path Properties). In order to formalize the notion that a state
Nx@lx (reached by the network N = N0@l0) satisfies the path query φP , denoted

2 This probability measure is discussed in more detail on page 20 of [5].
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Table 4. Satisfiability of Action Guards

Elementary matchers:

l′(TR) = {〈Pr, loc, act〉 ∈ TRMOVE | act = l′}
MOV E(TR) = TRMOVE

a〈v〉(TR) = {〈Pr, loc, act〉 ∈ TRCOM | act = a〈v〉}
a〈MSG〉(TR) = {〈Pr, loc, act〉 ∈ TRCOM | channel(act) = a}
COM〈v〉(TR) = {〈Pr, loc, act〉 ∈ TRCOM | message(act) = v}
COM〈MSG〉(TR) = TRCOM

Enhanced matchers:

(tran at l)(TR) = {〈Pr, loc, act〉 ∈ tran(TR) | loc = l}
(tran by P )(TR) = {〈Pr, loc, act〉 ∈ tran(TR) | Pr = P or P ∈ Pr}
(tran by P at l)(TR) = {〈Pr, loc, act〉 ∈ tran(TR) | (Pr = P or P ∈ Pr) and

loc = l}
Arithmetic expressions:

const(TR) = const

(#(tran))(TR) = |tran(TR)|
(#(trane))(TR) = |trane(TR)|
(arit1 φarit arit2)(TR) = arit1(TR) φarit arit2(TR)

Comparison expressions:

(arit φcmp const)(TR) = arit(TR) φcmp const(TR)

(arit1 φcmp arit2)(TR) = arit1(TR) φcmp arit2(TR)

Logical expressions:

true(TR) = true

(log1 φlog log2)(TR) = log1(TR) φlog log2(TR)

by Nx@lx �N φP , we use induction on φP and define two satisfaction relations,
namely �N and �N , in Table 5.

We employ the notation P (N,Nx@lx, [φP1UφAφP2]
≤t) to refer to the term

μN
Nx@lx

(σ | σ[0] = Nx@lx and σ �N [φP1UφAφP2]
≤t), where σ is a path and t is a

network time. Based on the semantics for φA and φP , we can define the semantics
for the steady-state queries φS , by extending the satisfaction relation �N .

Definition 6 (Steady-State Properties). The steady-state probability of a
network N being in state Ny@ly, after having started in the state Nx@lx, can be
computed as

SSNx@lx(Ny@ly) = lim
n→∞

μN
Nx@lx(σ | σ[n] = Ny@ly and σ[0] = Nx@lx)

3.

3 We restrict our definition of steady-state measures to pTiMo networks which gen-
erate finite, ergodic discrete-time Markov chains, for which the limiting behavior of
the networks is guaranteed to exist and can be computed easily [8]. Like in the case
of other process algebras (e.g., PEPA [11]), it is the task of the modeler to make
sure that a network has the required properties.
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Table 5. Satisfiability of Probability Properties

Nx@lx �N prop iff prop ∈ labels(Nx@lx)

Nx@lx �N ¬φP iff not Nx@lx �N φP

Nx@lx �N φP1 ∧ φP2 iff Nx@lx �N φP1 and Nx@lx �N φP2

σ �N [φP1UφAφP2]
≤t iff there exists i ∈ N such that

t(σ[i]) ≤ t and

σ[i] �N φP2 and

σ[j] �N φP1, for all j between 0 and i− 1, and

τ [k] � φA, for all k between 1 and i

Nx@lx �N [φP1UφAφP2]
≤t
≥p iff μN

Nx@lx(σ |σ[0] = Nx@lx, σ �N [φP1UφAφP2]
≤t) ≥ p

Nx@lx �N [φP1UφAφP2]
≤t
>p iff μN

Nx@lx(σ |σ[0] = Nx@lx, σ �N [φP1UφAφP2]
≤t) > p

The steady-state probability of the network N performing a complete transition
(trc, l

′), after having started in the state Nx@lx, can be derived as

SSNx@lx(trc, l
′) = lim

n→∞
μN
Nx@lx(σ | τ [n] = (trc, l

′) and σ[0] = Nx@lx) =

=
∑

Ny@ly,N ′@l′
SSNx@lx(Ny@ly) · P (Ny@ly

trc,l
′

===⇒ N ′@l′).

The satisfaction relation �N for φS is defined inductively, in Table 6.

Table 6. Satisfiability of Steady-State Properties

Nx@lx �N [SφP ]≥p (>p) iff
∑

Ny@ly�NφP

SSNx@lx(Ny@ly) ≥ p (> p)

Nx@lx �N [SφA]≥p (>p) iff
∑

(trc,l′)�φA

SSNx@lx(trc, l
′) ≥ p (> p)

A simple model checking algorithm for PLTM can be obtained by adapting the
standard algorithm for verifying PCTL; our algorithm is based on the approach
described in [13]. We do not include a proof of soundness and completeness for our
algorithm, for reasons of brevity and due to the fact that it can be easily derived
from the corresponding proof for PCTL. The algorithm takes as inputs a pTiMo
network N , in the form of a discrete-time Markov chain D = (S, N0@l0, T ), a
labeling function L, and a PLTM formula φ, where φ = φP or φ = φA. The output
produced by the algorithm is the set Sat(φ) = {Nx@lx ∈ S | Nx@lx �N φ},
which means that Nx@lx �N φ iff Nx@lx ∈ Sat(φ) for any state Nx@lx ∈ S.
The algorithm first involves generating the parse tree for the property φ, in which
every subtree is labeled with a subproperty of φ, the root node is labeled with
the complete property φ, and the leaves are labeled with atomic propositions and
true. Starting from the leaves of the tree, the algorithm recursively determines
all the states that satisfy each subproperty of φ, until it reaches the root node and
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Table 7. Conditions for Property Satisfaction

Sat(true) = S
Sat(prop) = {Nx@lx ∈ S | prop ∈ L(Nx@lx)}
Sat(¬φP ) = S \ Sat(φP )

Sat(φP1 ∧ φP2) = Sat(φP1) ∩ Sat(φP2)

Sat([φP1UφAφP2]
≤t
≥p (>p)

) = {Nx@lx ∈ S |P (N,Nx@lx, [φP1UφAφP2]
≤t) ≥ p (> p)}

Sat([SφP ]≥p (>p)) = {Nx@lx ∈ S |
∑

Ny@ly∈Sat(φP )

SSNx@lx(Ny@ly) ≥ p (> p)}

Sat([SφA]≥p (>p)) = {Nx@lx ∈ S |
∑

(trc,l′)∈T [φA]

SSNx@lx(trc, l
′) ≥ p (> p)}

produces the set Sat(φ). Considering T [φA] = {(trc, l′) ∈ T | (trc, l′) � φA}, the
set Sat(φ) can be constructed according to Table 7.

Properties of the form true, prop, ¬φP and φP1 ∧ φP2 can be checked easily,
through elementary set operations. In order to verify properties of the form
[φP1UφAφP2]

≤t
≥p or [φP1UφAφP2]

≤t
>p, it is enough to determine the probabil-

ity P (N,Nx@lx, [φP1UφAφP2]
≤t), which is used in defining these two types of

queries. To simplify the notation, let t & lx denote the temporal bound such
that (t & lx)@lx = t@lx − 1, and (t & lx)@ly = t@ly, for any location ly �= lx.
Furthermore, in keeping with the meaning of the bound, we assume that if
t@lx = ∞, then (t & lx)@lx = ∞, and also, that (t & lx)@lx is undefined
if t@lx = 0. The standard approach (employed, for example, in PRISM [13])
is to compute the probabilities P (N,Nx@lx, [φP1UφAφP2]

≤t) for all the states
Nx@lx ∈ S, by solving a certain set of linear equations. More precisely, the value
of P (N,Nx@lx, [φP1UφAφP2]

≤t) is expressed recursively in terms of the values
for P (N,Ny@ly, [φP1UφAφP2]

≤t�lx), where Ny@ly is a state that can be reached
from Nx@lx by performing a complete transition. This procedure is based on the
following property of the satisfaction relation �N :

Proposition 1. For any path σ and t ∈ T, we have σ �N [φP1UφAφP2]
≤t iff:

• t@lx = 0 and σ[0] �N φP2, or
• t@lx > 0 and σ[0] �N φP1 and τ [1] ∈ T [φA] and σ′ �N [φP1UφAφP2]

≤t�lx ,
where σ′[i] = σ[i+1], for i ≥ 0 , τ ′[j] = τ [j+1], for j ≥ 1, and σ[0] = Nx@lx

The proof follows immediately from the conditions for σ �N [φP1UφAφP2]
≤t. By

using this property and the probability measures defined earlier, the computation
of P (N,Nx@lx, [φP1UφAφP2]

≤t) is equivalent to finding the unique solution of
the following set of equations:

P (N,Nx@lx, [φP1UφAφP2]
≤t′) =

• 1, if Nx@lx ∈ Sat(φP2), else
• 0, if Nx@lx ∈ Sat(¬φP1 ∧ ¬φP2), or t′@lx = 0, or T [φA] = ∅, else
•

∑
tr∈T [φA]

P (tr)P (dest(tr), [φP1UφAφP2]
≤t′�lx), otherwise.
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for any Nx@lx ∈ S and t′ ≤ t, where dest(tr) denotes the state entered by the
network after performing the complete transition tr.

Finally, checking properties of the form [SφP ]≥p, [SφP ]>p, [SφA]≥p and
[SφA]>p is straightforward, once the equilibrium (i.e., steady-state) distribu-
tion for D and the sets Sat(φP ) and T [φA] have been computed. Finding the
set T [φA] involves recursively applying the definitions given in Table 4, for each
complete transition from T .

To estimate the computational complexity of the model checking algorithm, we
first define the auxiliary functions fs : T → N and steps : (N ∪ ∞) → N, such

that fs(t) =

|Loc|∏
i=1

steps(t@loci), where steps(n) = n + 1 for any n ∈ N, and

steps(∞) = 1. Moreover, let length(φ) denote the length of the property φ, as
defined in [9], which is equal to the total number of logical and temporal opera-
tors from φ plus the sum of the sizes of all the temporal operators from φ (i.e.,

size([φP1UφAφP2]
≤t
≥p = size([φP1UφAφP2]

≤t
>p) = fs(t)). In the case of probabil-

ity properties (i.e., if φ = φP ), the most computationally expensive stages of the
algorithm are those which involve solving the sets of linear equations generated
by properties of the form [φP1UφAφP2]

≤t
≥p or [φP1UφAφP2]

≤t
>p. Each such stage re-

quires at most O(fs(t) · |S| · |T |) elementary operations to complete, given that
the associated system contains fs(t) · |S| linear equations, involving |T | elemen-
tary operations each. Therefore, the overall time complexity for checking φ is at
mostO(length(φ) · sizemax · |S| · |T |), where sizemax denotes the maximum value
for fs(t), over all the temporal bounds t which appear in φ. However, in the case
of steady-state properties (i.e., if φ = φA), the most time-consuming operation
is deriving the equilibrium distribution for D, which involves solving a set of S
linear equations with at most S variables, requiring at most O(|S|3) elementary
operations to complete.

Proposition 2. The overall time complexity for verifying φ is at most O(|S|3+
length(φ) · sizemax · |S| · |T |), where length(φ) is the length of the property φ.

3 Conclusion

This paper presents a probabilistic extension for the process calculus TiMo. The
new formalism, namely pTiMo, assigns probabilities to the complete transitions
that describe the behavior of TiMo networks, by solving the nondeterminism in-
volved in the movement and in the communication of processes, as well as in the
selection of active locations. Also, process movements are redefined such that they
can now occur anytime before a deadline (i.e., not only at deadline expiration).

The main contribution of the paper is the introduction of the probabilistic
temporal logic PLTM, which is inspired by the existing logic PCTL [9], but in-
cludes a number of features not commonly found in other logics, such as the
ability to check properties which make explicit reference to specific locations
and/or processes, to impose temporal constraints over local clocks (i.e., finite or
infinite upper bounds, for each location independently), and to define complex
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action guards over multisets of actions. Given that PLTM operates at the level
of discrete-time Markov chains, it can also be adapted for and applied to other
process algebras which involve locations, timers, process movements and com-
munications, as well as non-atomic, structured transitions. Finally, we sketch a
verification algorithm for PLTM, and determine its time complexity.

As further work, we intend to study the properties of certain behavioral equiv-
alences defined over pTiMo networks, as well as to develop a software tool for
PLTM, in order to demonstrate the practical utility of this logic.

Acknowledgements. The work was supported by a grant of the Romanian
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Abstract. We present an automata-based model for describing the
behaviors of software components. This extends our previous work by
allowing internal behaviors. In order to improve the techniques for check-
ing if two component can be composed without causing deadlocks, we
develop an interface model, called input deterministic automata, that
define all the non-blockable traces of invocation to services provided by
a component. We also present an algorithm that, for any given compo-
nent automaton, generates the interface model that has the same input
deterministic behaviors as the original automaton. Properties of the algo-
rithm with respect to component refinement and composition are studied
as preliminary results towards a theory of software component interfaces.

1 Introduction
In component-based software engineering [25,10], large software systems are com-
posed/decomposed from/into components with clearly stated interfaces in order
to facilitate a sound development process across different teams of developers ex-
ploiting existing software components. An interface theory [1,12,4] should then
define the basic principles for composing several software components based on
their interfaces, as the concrete implementation of the components is invisible
to its environment. On the other hand, an interface theory should also define
a refinement relation that if component C′ refines component C then C′ can
substitute C in any context. This means that components can be treated as
black-boxes, and the theory allows for independent implementation, substitu-
tion, and deployment [2,24,17].

In our previous work [7], we studied the interface model of components that
comprise provided and required interface that describes which services the
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component offers to its environment and specifies what services the component
needs to call in order to provide the services on its provided interface, respec-
tively. Run-to-completeness is assumed in our model, which means that an invo-
cation of a provided service either is not executed at all, or has to be completed,
cannot be interrupted by its environment during the execution.

In this paper, component models we considered in [7] are extended with in-
ternal actions which are invisible to the environment. Components are adapted
with some provided services internalized to restrict these services from being
called by the environment for safety or privacy reasons. The interface model
should still guarantee provided services non-blockable whenever these provided
services are called. So, we show that the interface model is input-deterministic,
meaning that any invocation to the provided service according to the interface
model is guaranteed to be non-blockable.

In order to construct an interface model for any given execution model with in-
ternal behaviors, we first study what kinds of provided services are nonrefusal at a
given state, that is, the provided services are never blocked by the component when
the environment calls at the state. Then we study whether sequence of provided
services with possible internal behaviors interleaved is blocked or not. A provided
service m is nonrefusal at state s if m is available at all the internally reachable
stable states at which there are no internal behaviors available. Based on these, we
revise the algorithm in [7] to get an algorithm that generates an interface model,
whose non-blockable behavior is same as the considered component.

Two components are composed by service invocation, which is event synchro-
nization in the automata-based model. Service invocation fails if the service
declared in the provided interface is not available when it is called by the envi-
ronment or the component also needs services from the environment to provide
the service called by the environment.

We define a refinement relation based on state simulation [21,5], and show
that a component can be substituted by any its refinement as far as nonrefusal
provided services at each state are concerned. The intuitive idea of refinement
is that a refined component can provide more services while requiring less.

Related Work. The work is based on the rCOS unified model of compo-
nents [12,3,17,4] that define components in terms of their provided and required
interface interaction behaviors, data model and local data functionality (includ-
ing those models in OO programming [11]). This paper focuses on the interface
interaction behaviors and aims to develop an interface theory based on I/O
automata.

There are two main well known approaches to interface theories, the In-
put/Output(I/O) Automata [19,18] and the Interface Automata [5,1,6]. And
there are also some works extending these with modalities [16,22,23,20].

As argued in [7], our approach is positioned in between these existing ap-
proaches. I/O automata are defined by Lynch and Tuttle to model concurrent
and distributed discrete event systems. The main features of the I/O automata
are input-enabledness and pessimistic compatibility. The input-enabledness re-
quires that all the input actions should be available at any state. The pessimism
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is that two components are compatible if there is no deadlock in the composition
for any environment. On the contrary, our interface model does not require that
all inputs are always enabled, because there are guards for provided services in
software components, while the interface model is input-deterministic to guar-
antee that all the sequences of provided services with possible internal behaviors
interleaved can never be blocked when the environment calls.

Alfaro and Henzinger introduce interface automata to model reactive compo-
nents that have an assume-guarantee relation with the environment. Two compo-
nents are compatible in an optimistic way in the sense that two components are
compatible if there exists one environment that can make the composition avoid
deadlock. This compatibility condition may be too relaxed since the usability of
the provided service of a component depends not only on the components to be
composed with and also the environment for the composition. To this end, Gian-
nalopoulou et al [8,9] develop assume-guarantee rules and tools to reason about
compatibility and weakest assumptions for any given interface automaton, while
Larson et al [15] present interface models for any given I/O automaton by split-
ting assumptions from guarantees. In contrast to these approaches, we present an
interface model that directly specifies the non-blockable sequences of provided
services independent of the environment and develop an algorithm to generate
such interface model based on the execution model of any given component.

Summary of Contributions. The contributions of this paper are (1) a new
interface model ensuring non-blockable provided services of software components
with internal behaviors under any environment. (2) a revised algorithm to gen-
erate the interface model of a component based on its execution model with
internal behaviors. (3) composition operators. (4) a refinement relation, which
provides a criterion for substitution of components.

Outline of the Paper. The rest of the paper is organized as follows. In Sect. 2,
we introduce component automata and related concepts. In Section 3, we show
non-blockable sequences of provided events and the algorithm to generate the
interface model from the execution model. In Section 4, we present the com-
position operators. In Section 5, we define a refinement relation based on state
simulation and prove compositional results. In Section 6, we conclude the paper
and discuss future work.

2 Component Automata

We start with a general execution model of components. This model is used by
the component designers who needs to know how the and from what (composite)
component is composed. They need to use the model to verify the safety and
livelock of the component. Thus it contains the full information about the deter-
minisms and non-determinism of the component. Before we define this model.
we first introduce some notations that will be used.
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2.1 Preliminary Definitions

For any w1, w2 ∈ L∗, the sequence concatenation of w1 and w2 is denoted as
w1 ◦ w2 and extended to sets of sequences, that is, A ◦ B is {w1 ◦ w2 | w1 ∈
A, w2 ∈ B} where A, B ⊆ L∗ are two sets of sequences of elements from L.
Given a ∈ L, we use w1 ◦ a as w1 ◦ 〈a〉. Given a sequence of sets of sequences
〈A1, . . . , Ak〉 with k ≥ 0, we denote A1 ◦ · · · Ak as conc(〈A1, . . . , Ak〉). We use ε
as notion of empty sequence, that is, ε ◦ w = w ◦ ε = w. Given a sequence w, we
use last(w) to denote the last element of w.

Let � be a pair (x, y), we denote π1(�) = x and π2(�) = y. Given any sequence
of pairs tr = 〈�1, . . . , �k〉 and a set of sequences of pairs T , it is naturally extended
that πi(tr) = 〈πi(�1), . . . , πi(�k)〉, πi(T ) = {πi(tr) | tr ∈ T } where i ∈ {1, 2}.

Let tr ∈ A and Σ ⊆ L, tr�Σ is a sequence obtained by removing all the
elements that are not in Σ from tr . And we extend this to a set of sequences
T �Σ = {tr�Σ | tr ∈ T }.

Given a sequence of pairs tr , tr�1
P is a sequence obtained by removing the ele-

ments whose first entry is not in P . For a sequence of elements α = 〈a1, · · · , ak〉,
pair(α) = 〈(a1, {a1}), · · · , (ak, {ak})〉.

2.2 Execution Model of a Component

In this part, we introduce our formal model describing interaction behaviors
of components. Provided and required services are modeled as provided and
required events, respectively. Internal actions are modeled as internal events.
The invocation of a provided service or an internal action will trigger invoking
services provided by other components, so the label on a transition step in the
formal model consists a provided or internal event and a set of sequences of
required events.
Definition 1. A tuple C = (S, s0, f, P, R, A, δ) is called a component automa-
ton where

– S is a finite set of states, and s0 ∈ S is the initial state, f ∈ S is the error
state;

– P , R, and A are disjoint and finite sets of provided, required, and internal
events, respectively;

– δ ⊆ (S \ {f}) × Σ(P, R, A) × (S ∪ {f}) is the transition relation, where the
set of labels is defined as Σ(P, R, A) = (P ∪ A) × (2R∗ \ ∅).

Whenever there is (s, �, s′) ∈ δ with � = (w, T ), we simply write it as s
w/T−−−→ s′

and call it a provided transition step if w ∈ P , otherwise internal transition
step. We call s

a/T−−→ f a failure transition, which will be discussed in detail in
Section 4. We write s

w/−−→ s′ for s
w/{ε}−−−−→ s′. The internal events are prefixed

with ; to differentiate them from the provided events. We use τ to represent any
internal event when it causes no confusion. For a state s we use out(s) denote
{w ∈ P ∪ A | ∃s′, w, T.s

w/T−−−→ s′} and out•(s) = out(s) ∩ P and out◦(s) =
out(s) ∩ A. We write s

w/•−−→ s′ for s
w/T−−−→ s′, when T is not essential.
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An alternating sequence of states and labels of the form

e = 〈s1, �1, . . . , sk, �k, sk+1〉

is denoted as s1
�1,··· ,�k=====⇒ sk+1 with k > 0 and si

�i−→ si+1 for all i with 0 < i ≤ k.
It is called an execution of the component automaton C, if s1 is the initial

state s0. The set {〈�1, . . . , �k〉 | s
�1,...,�k=====⇒ s′ is an execution} is denoted as T (s).

An element in T (s0) is called a trace of component automaton C and T (s0) is
also written as T (C).

{π1(tr)�P | tr ∈ T (s)} is denoted as Tp(s) and pt ∈ Tp(s0) is called a provided
trace of component automaton C, so Tp(s0) is also written as Tp(C). Given a
provided trace pt, we write s

pt==⇒ s′, if there exists tr ∈ T (s) that s
tr==⇒ s′ with

π1(tr)�P .
For a provided trace pt of C, the set Tr(pt) of required traces for pt is defined

as Tr(pt) = {conc(π2(tr)) | π1(tr)�P = pt, and last(π1(tr)) ∈ P }.
Next, we will use the example shown in [7] with wifi hidden as an internal be-

havior, which means that the component automatically connects wifi internally.

Example 1. As a demonstrating example, we consider a simple internet-
connection component presented in Fig. 1. It provides the services login, print,
and read available to the environment and there is an internal service ; wifi. The
services model the logging into the system, invocation of printing a document,
an email service, and automatically connecting the wifi, respectively. The com-
ponent calls the services unu1 , unu2 , cserv, cprint, and senddoc. The first three
of them model the searching for a wifi router nearby, connecting to the unu1
or unu2 wireless network, and connecting to an application server, respectively.
The cprint and senddoc are services that connect to the printer, sends the doc-
ument to print and start the printing job. The print service is only available for
the wifi network unu1 and read can be accessed at both networks.

In the component model of Fig. 1 we can perform e.g.

e = 〈0, (login/{ε}), 1, (; wifi/{unu1}), 2, (print/{cprint · senddoc}), 2〉 .

Now pt = 〈login, print〉 is a provided trace of the execution e and the set of
required traces of pt is Tr(pt) = {unu1 · cprint · senddoc}. This example will be
used throughout this paper to show the features of our model.

3 Interface Model

The execution model of a component describes how the component interacts with
the environment by providing and requiring services. However, some provided
transition or execution may fail due to non-determinism or transitions to the
error state. In this section, we will discuss about non-blockableness of provided
events and traces.
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Fig. 1. Execution model of internet connection component Cic
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Fig. 2.

We call a state s divergent if there exists a sequence of internal transitions
to s from s or s can transit to such kinds of states via a sequence of internal
transitions.

Definition 2 (divergent state). A state s is divergent, if there exists tr with
π1(tr) ∈ A+ such that s

tr==⇒ s or there exists s′,tr1 ∈ A+ and tr2 ∈ A+ such
that s

tr1==⇒ s′ and s′ tr2==⇒ s′.

A state s is stable, if out(s) ⊆ P , that is, there is no internal transition from
state s. Internally reachable states of state s is {s′ | s

tr==⇒ s′ with π1(tr) ∈ A∗},
written as intR◦(s). We use intR•(s) to denote the set of internally reachable
stable states, which is empty if there exists a divergent state s′ with s′ ∈ intR◦(s),
otherwise intR•(s) = {s′ is stable | s′ ∈ intR◦(s)}.

Definition 3 (nonrefusal provided event). Given a component automaton
C = (S, s0, f, P, R, A, δ), for any s ∈ S, the set of nonrefusal provided events of
s is N (s) =

⋂

r∈intR•(s)
out•(r) \ {a | s

a==⇒ f}.

Intuitively, a provided event a being nonrefusal at state s means that any invo-
cation to it is not possible to be blocked when the component automaton is at
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state s. For example, consider state 0 of the component automaton shown on the
left of Fig. 2. From the viewpoint of the environment, the component automaton
may be at 0 or 1, because there is an internal transition from 0 to 1. We assume
that after some time, the component will eventually move to state 1, because
0 is not a stable state. So we can see that event c ∈ out•(0), c is not nonre-
fusal at state 0, because c /∈ out•(1). However, if the environment requires b, the
component can react to this invocation successfully, that is, b is nonrefusal at
state 0. The nonrefusal provided events are determined by internally reachable
stable states. In the component automaton shown on the right part of Fig. 2,
there are no internally reachable stable states from state 0, therefore the set of
its nonrefusal provided events is empty. We also make events from a given state,
if it may lead the component automaton to the error state f .

The nonrefusal provided events assure non-blockableness of a single provided
event at a given state. Next, we will introduce non-blockable provided traces
which can never be blocked by the component when the environment calls such
provided traces.

0start
1 2

3 4

a/T1

a/T2

b/T3

c/T4

Fig. 3.

Let’s consider the component automaton shown in Fig. 3. We can see that a
is nonrefusal at state 0, but, after the invocation of a, the component determines
whether to move to state 1 or 3. So both of b and c may be blocked after a.

A sequence of provided events 〈a1, · · · , ak〉 with k ≥ 0 is non-blockable at
state s, if ai ∈ N (s′) for any 1 ≤ i ≤ k and s′ such that s

tr==⇒ s′ with π1(tr)�P =
〈a1, · · · , ai−1〉. A sequence of pairs tr is non-blockable at s, if π1(tr)�P is non-
blockable at s. We use Tup(s) and Tu(s) to denote the set of all non-blockable
provided traces and non-blockable traces at state s, respectively. Tup(s) and
Tu(s) are also written as Tup(C) and Tu(C), respectively, when s is the initial
state.

3.1 Component Interface Automata

In this part, we will introduce input-deterministic component automaton of
which all traces are non-blockable and the error state is not reachable from
the initial state. We present an algorithm that constructs an input-deterministic
component automaton I(C) for any given component automaton C, such that
I(C) and C have the same non-blockable traces, in particular, I(C) is a refine-
ment w.r.t. the refinement relation defined in Section 5.
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Definition 4 (input-determinism).
A component automaton C = (S, s0, f, P, R, A, δ) is input-deterministic if f is
not reachable from s0 and for any s0

tr1==⇒ s1 and s0
tr2==⇒ s2 with π1(tr1)�P =

π1(tr2)�P , implies N (s1) = N (s2).
The following theorem states that all the traces of an input-deterministic com-
ponent automaton are non-blockable.
Theorem 1. A component automaton C is input-deterministic iff Tp(C) =
Tup(C).

Proof. Tp(C) = Tup(C) means every provided trace of C is non-blockable actu-
ally.

First, we prove the direction from left to right. From the input-determinism
of C follows that for each provided trace pt = (a0, . . . , ak) and for each state s

with s0
tr==⇒ s and π1(tr) = 〈a0, . . . , ai〉 for 0 ≤ i ≤ k − 1, the set N (s) is the

same. Since pt is a provided trace, so ai+1 ∈ N (s). This shows that all provided
traces are non-blockable, and so all traces are non-blockable too.

Second, we prove the direction from right to left by contraposition. We as-
sume that C is not input-deterministic, so there exist traces tr1 and tr2 with
π1(tr1)�P = π1(tr2)�P and s0

tr1==⇒ s1, s0
tr2==⇒ s2 such that N (s1) �= N (s2).

Without loss of generality, we assume that there is a provided event a such
that a ∈ N (s1) and a /∈ N (s2). Now π1(tr1) ◦ 〈a〉 is a provided trace of C that
is blockable. ��
Hereafter, we simply call component interface automaton(or interface automa-
ton) if it is input-deterministic.

In the following, we present an algorithm (see given in Algorithm 1) that,
given component automaton C, constructs an interface automaton I(C) which
share the same non-blockable trace with C, and refines C in the sense of the
refinement relation defined in Section 5.

The basic idea of Algorithm 1 is quite similar to the one given in [7]. If the
error state f can be reached from the initial state s0, then the algorithm exits
with an empty component automaton. Each state of I(C) is of the form (Q, r),
where Q is a subset of states of C and r is a state of C with r ∈ Q and the initial
state is (Q0, s0) with Q0 = {s′ | s′ ∈ intR◦(s0)}. Q records all reachable states
from each state s′ ∈ Q′, (suppose (Q′, r′) has been added as a state of I(C)), by
executing a provided event a, where a ∈

⋂

s′∈Q′
N (s′). By inductive way, we can

see that all traces of I(C) are non-blockable. On the other hand, all the states
that can be reached from states in Q′ via each provided event b ∈

⋂

s′∈Q′
N (s′)

with possible internal events before/after b will consist a Q such that (Q, r) is
one state of I(C). So all non-blockable traces of C are also contained in I(C)
by inductive way. Correctness of Algorithm 1 is given formally in the following
theorem.

Theorem 2 (correctness of Algorithm 1). The following properties holds
for Algorithm 1, for any component automaton C:
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1. The algorithm always terminates and the error state f is not reachable from
the initial state,

2. I(C) is an input deterministic automaton,
3. Tu(C) = Tu(I(C)).

Proof. 1. The termination of the algorithm can be obtained because todo will
be eventually empty, the set done increases for each iteration of the loop in
the algorithm, and the union of done and todo is bounded.

By the definition of N (s) for any given state s, we clearly see that f is
not reachable from s0.

2. We show that for each provided trace pt of I(C), if (Q0, s0) pt==⇒ (Q, r), then
Q = {s′ | s0

pt==⇒ s′}. This can be proved by induction on the length of pt.
The base case follows that Q0 = s′ | s′ ∈ intR◦(s0). Consider (Q0, s0) pt◦a===⇒
(Q, r), then (Q0, s0) pt==⇒ (Q′, r′) and (Q′, r′) a==⇒ (Q, r). From Line 5-19 of
Algorithm 1, Q = {s′ | s ∈ Q′.s a==⇒ s′}. By induction hypothesis, Q′ = {s′ |
s0

pt==⇒ s′}, so Q = {s′ | (Q0, s0) pt◦a===⇒ (Q, r)}. From Line 5 of Algorithm 1,
for any r ∈ Q, N (Q, r) =

⋂

s∈Q

N (s). From above, we see that I(C) is input

deterministic.
3. First, we show Tu(C) ⊆ Tu(I(C)) by proving that for each non-blockable

provided trace pt of C, if s0
tr==⇒ r with π1(tr)�P = pt, then there exists

(Q0, s0) tr==⇒ (Q, r) where Q = {s′ | s0
pt==⇒ s′} by induction on the length

of pt. The base case follows directly by Line 15-19 of Algorithm 1. Consider
s0

tr1◦tr2=====⇒ r where tr1 ◦ tr2 is non-blockable and π1(tr2)�P = a. Then
s0

tr1==⇒ r′ and r′ tr2==⇒ r. By induction hypothesis, (Q0, r0) tr1==⇒ (Q′, r′)
where Q′ = {s′ | s0

π1(tr1)�P======⇒ s′}. Because tr1 ◦ tr2 is non-blockable, so
a ∈

⋂

s∈Q′
N (s). By Line 5 of Algorithm 1, Q = s′ | s ∈ Q′.s a==⇒ s′. Then

(Q′, r′) tr2==⇒ (Q, r). So (Q0, s0) tr1◦tr2=====⇒ (Q, r).
Second, we show Tu(I(C)) ⊆ Tu(C). During the proof of Item 1, we have

for each pt ∈ Tp(I(C)) there exists Q = {s′ | s0
pt==⇒ s′}. We prove that pt

is non-blockable in C by induction on length of pt. The base case follows
directly. Consider pt ′ is non-blockable in C, then pt ′ ◦a is also non-blockable,
since a ∈

⋂
s′∈Q′ N (s′) where Q′ = {s′ | s0

pt′
==⇒ s′} by induction hypothesis.

So pt′ ◦ a is non-blockable in C, which implies Tp(I(C)) ⊆ Tp(C). It is
clear to see that T (I(C)) ⊆ T (C). And T (I(C)) = Tu(I(C)) by Item 1, so
Tu(I(C)) ⊆ Tu(C).

From above, we see that Tu(I(C)) = Tu(C).

Example 2. In the internet connection component automaton 1, the provided
trace 〈login, read〉 are non-blockable but 〈login, print〉 may be blocked during
execution, because after login is called, the component may transit to state 3 at
which print is not available. We use Algorithm 1 to generate the interface model
of Cic, shown in Fig. 4.
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Algorithm 1. Construction of Interface Automaton I(C)
Input: C = (S, s0, f, P, R, A, δ)
Output: I(C) = (SI , (Q0, s0), f, P, R, A, δI), where SI ⊆ 2S × S
1: if f ∈ intR◦(s0) then
2: exit with δI = ∅
3: end if
4: Initialization: SI := {(Q0, s0)} with Q0 = {s′ | s′ ∈ intR◦(s0)}; δI := ∅;

todo := {(Q0, s0)}; done := ∅
5: while todo �= ∅ do
6: choose (Q, r) ∈ todo; todo := todo \ {(Q, r)}; done := done ∪ {(Q, r)}
7: for each a ∈ ⋂

s∈Q

N (s) do

8: Q′ :=
⋃

s∈Q

{s′ | s
tr==⇒ s′, π1(tr)�P = 〈a〉}

9: for each (r a/T−−→ r′) ∈ δ do
10: if (Q′, r′) /∈ (todo ∪ done) then
11: todo := todo ∪ {(Q′, r′)}
12: SI := SI ∪ {(Q′, r′)}
13: end if
14: δI := δI ∪ {(Q, r) a/T−−→ (Q′, r′)}
15: end for
16: end for
17: for each r

w/T−−−→ r′ with r′ ∈ Q and w ∈ A do
18: δI := δI ∪ {(Q, r) w/T−−−→ (Q, r′)}
19: end for
20: end while

Given a component automaton C, for each state s of C, there may be several
sets Q such that (Q, r) is a state of I(C). Then, we call N (s) \

⋃

(Q,s)∈SI

N (Q, s)

the refusal set at s, denoted by F(s). Intuitively, any execution of a method in
F(s) may result in deadlock, which is quite similar to the notion of refusal set
in CSP1.

Obviously, for a non-blockable component automaton, the refusal set at each
of its states is empty.

4 Composition Operators

In this section, we will present how two components are composed. Components
interact with each other by service invocation, that is, component automata
synchronize on the events that are provided by one and required by the other.
1 In our setting, a deadlock of a provided action at a state may be caused by the

execution of some provided methods at one of its predecessor, therefore, such action
should not be in the refusal set in CSP, but it is indeed in the refusal set according
to our definition.
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Fig. 4. Interface model of internet connection component Cic

To this end, we firstly define the synchronization rules between a component
automaton and a finite state machine which represents the set of required traces.

In a component automaton C1 = (S, s0, f, P, R, A, δ), for any transition
s1

a/T−−→ s2, there is a minimal deterministic finite state machine recognizing
T [14], denoted by M(T ). M(T ) is of the form (Q, Σ, σ, q0, F ), where Q is the
finite set of states, Σ is the input alphabet, σ : Q × Σ �→ Q is the next-state
function, q0 is the initial state, and F is the set of final states.

Suppose a component automaton C1 with a transition s1
a/T−−→ s2, which

means C1 requires all the traces in T in order to provide a, and another compo-
nent automaton C2 that can provide these required services in T . When com-
posing C1 and C2 together, all methods appearing in T should be synchronized.
To this end, we define internal product between M(T ) and C2 to implement the
synchronization of C1 and C2 on T .

Given a set of sequences of elements T or a sequence of elements α, we use
events(T ) and events(α) to denote all the elements appearing in T , respectively.
If the component automaton C can synchronize with M under E successfully,
we denote C |=E M .

Definition 5 (internal product)
Given a component automaton C = (S, s0, f, P, R, A, δ) and a finite state ma-
chine M = (Q, Σ, σ, q0, F ), the composition of C and M under E, denoted by
C �E M , is defined as (Q′, Σ′, σ′, q0, F ′), where

– Q′ = S × Q, q′
0 = (s0, q0);

– Σ′ = 2R ∪ 2Σ∗;
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– σ′ is the smallest set given by the following rules: Suppose (r1, t1) ∈ Q′ with
t1 /∈ F and r1 /∈ {r | out(r) = ∅}, and r1

a/T−−→ r2 with a ∈ E∪A and t1
b−→ t2.

C |=E M as default. Then,
• if events(T ) ∩ E �= ∅ or b ∈ E ∧ b /∈ N (r1), then C �|=E M ;
• otherwise if a ∈ A, (r1, t1) T−→ (r2, t1) ∈ σ′;
• otherwise if b /∈ E, (r1, t1) {b}−−→ (r1, t2) ∈ σ′;
• otherwise if a == b, (r1, t1) T−→ (r2, t2) ∈ σ′;

– F ′ = {(r, t) | r ∈ S, t ∈ F}.

where E is a set of shared events of C and M .
Intuitively, the first clause expresses that if the current states of M and C

are q and s, respectively and there exists transition q
a−→ q′ with a ∈ E of finite

state machine M , then C should provide a. However, if a /∈ N (s), this causes
the request of a fail. If a ∈ N (s), but there exists transition s

a/T−−→ s′ that T
also requires services of E, the invocation of a also fails, because this is deadlock
caused by cyclic invocation.

The above definition can be extended to a sequence of transitions t
α==⇒ t′ and

r
tr==⇒ r′, where π1(tr)�P = α�P and events(π2(tr)) ∩ E = ∅, then (r, t) π2(tr′)====⇒

(r′, t′), where tr ′�1
R\E = pair(α�R\E), tr ′�1

P ∪A = tr�1
P ∪A, last(π1(tr ′) ∈ R).

Next, We present the conditions of C |=E M .

Lemma 1. C |=E M iff T �P ⊆ Tup(C) where T is L(M) and events(α)∩E = ∅
where ∀α ∈ Tr(pt) with ∀pt ∈ T �P .

Proof. First, we prove the direction ” =⇒ ” by contraposition. There exists β

and π1(tr)�P = β that s0
tr==⇒ s and t0

β==⇒ t. If (s, t) is reachable and a /∈ N (s)
and t

a−→ t′, so C �|=E M . If s
a/T−−→ s′ with events(T ) ∩ E �= ∅, so C �|=E M .

Next we show ” ⇐= ” by contraposition too. If C �|=E M , there exists reach-
able state (r, t) that r

a/T−−→ r′ where events(T ) E �= ∅, then there exists pt ∈ T �P

and α ∈ Tr(pt) that events(α) ∩ E �= ∅. Or t
b−→ t′ with b ∈ E, but b /∈ N (r),

then there exists β ∈ T �P but β /∈ Tup(C). ��

Given a component automaton C = (S, s0, f, P, R, A, δ), we use C(s) with s ∈ S
to denote the component automaton (S, s, f, P, R, A, δ) with s as the initial state.

C1 = (S1, s1
0, f, P1, R1, A1, δ1) and C2 = (S2, s2

0, f, P2, R2, A2, δ2) are compos-
able, if (P1 ∪ R1) ∩ A2 = (P2 ∪ R2) ∩ A1 = ∅ and P1 ∩ P2 = R1 ∩ R2 = ∅.

Definition 6 (product)
For two composable component automata C1 = (S1, s1

0, f, P1, R1, A1, δ1) and
C2 = (S2, s2

0, f, P2, R2, A2, δ2), let E = (P1 ∩ R2) ∪ (P2 ∩ R1), then the prod-
uct C1 ⊗ C2 = (S, s0, f, P, R, A, δ) is defined as:

– S = S1 × S2, s0 = (s1
0, s2

0), f is the error state;
– P = (P1 ∪ P2);
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– R = (R1 ∪ R2) \ (P1 ∪ P2);
– A = A1 ∪ A2;
– δ is defined as follows:

• For any reachable state (s1, s2) ∈ S and s1
w/T−−−→ s′

1 ∈ δ1 where f /∈
intR◦(s′

1)
we write (Q, R, σ, q0, F ) as the internal product C2(s2) �E M(T ).

∗ if C �|=E M(T ), then (s1, s2) w/−−→ f ∈ δ;
∗ otherwise {(s1, s2) w/T ′

−−−→ (s′
1, s′

2) | s′
2 ∈ S2, T ′ = {conc(�) | q0

�==⇒
(s′

2, t) with (s′
2, t) ∈ F}} ⊆ δ.

• Symmetrically, for any reachable state (s1, s2) ∈ S and s2
w/T−−−→ s′

2 ∈ δ2,
we add some transitions to δ similarly to the above.

Next, we show how two components are composed by traces, or we can also say
how T ′ is obtained directly by traces without internal product. This is inspired
by how traces of interleaving and parallel composition operators are defined in
CSP [13].

Lemma 2. If C2(s2) |=shared M(T ) in the product, T ′ can also be defined as
T ′ = {π2(tr ′) | α ∈ T, s2

tr==⇒ s′
2, with π1(tr)�P2 == α�P2 , tr ′�1

R = pair(α�R),
tr ′�1

P2∪A2 = tr1�P2∪A2 , last(π1(tr ′) ∈ R1)}.

Composition of Component Interface Automata. From [7], the product of
two component interface automata may contain blockable traces. This means the
product operator is not closed in the domain of component interface automata.
So we introduce a composition operator of component interface automata based
on operator product and Algorithm 1.

Definition 7 (composition). Given two component interface automata I1 and
I2, the composition, written as I1 ‖ I2, is I(I1 ⊗ I2)).

Hiding. In the following, we introduce the hiding operator, which is used to
internalize certain provided services.

Definition 8 (hiding). Given a component automaton C = (S, s0, f, P, R, A, δ)
and a set of provided events E ⊆ P , hiding E from C, written as C\E is
(S, s0, f, P \ E, R, A ∪ E, δ).

5 Refinement

In this section, we study refinement relation between component automata. Re-
finement is one of the key issues in component based development. It is mainly
for substitution at interface level. We define a refinement relation by state sim-
ulation technique [21]. The intuitive idea is a state s′ simulates s, if at state s′

more provided events are nonrefusal, less required traces are required and the



172 R. Dong, N. Zhan, and L. Zhao

next states following the transitions keep the simulation relation, which is similar
to alternating simulation in [5].

Let C be a component automaton, some nonrefusal provided events at a given
state s may also be refused. For example, provided event c at state 3 may be
refused shown in Fig. 3, which is caused by non-determinism after provided event
a is called. Therefore, the refusal set at s, i.e., F(s), defined in Section 3, is
a subset of N (s). Therefore, the refusal set by our definition is a little different
from the one in CSP.

Definition 9 (simulation). A binary relation R over the set of states of a
component automaton is a simulation iff whenever s1Rs2:

– if s1
w/T−−−→ s′

1 with w ∈ A ∪ N (s1) \ F(s1) and f /∈ intR◦(s′
1), there exists s′

2

and T ′ such that s2
w/T ′
−−−→ s′

2 where T ′ ⊆ T and s′
1Rs′

2;
– for any transitions s2

w/T ′
−−−→ s′

2 with w ∈ A∪N (s1)\F(s1) and f /∈ intR◦(s′
2),

then there exists s′
1 and T such that s1

w/T−−−→ s′
1 where T ′ ⊆ T and s′

1Rs′
2;

– F(s2) ⊆ F(s1);
– if s2

w/−−→ f with w ∈ A ∪ P1, then s1
w/−−→ f .

We say that s2 simulates s1, written s1 � s2, if (s1, s2) ∈ R. C2 refines C1, if
there exists a simulation relation R such that s0

1Rs0
2 and P1 ⊆ P2 and R2 ⊆ R1.

Remark 1. The above definition is quite similar to the alternating simulation
given in [5]. But they are different, and main differences include: first of all,
in our definition, we only require a pair of states keep the simulation relation
w.r.t. the provided services that could not result in deadlock; in addition, we
also require a refinement should have smaller refusal sets at each location, which
is similar to the stable failures model of CSP. Also notice that our refinement is
not comparable with the failure refinement nor the failure-divergence refinement
of CSP, because of the different requirements on the simulation of provided
methods and required methods. However, if we suppose no required methods,
our definition is stronger than the failure refinement as well as failure-divergence
refinement as we explained above.

The following theorem indicates the component interface automaton constructed
by Algorithm 1 is a refinement of the considered component automaton w.r.t. the
above definition, which justifies that we can safely use the resulted component
interface instead of the component at the interface level.
Theorem 3. Given any component automaton C, C � I(C). And consider two
component automata C1 and C2, if C1 � C2, then I(C1) � I(C2).

Proof. Let R = {(s, (Q, s)) | s ∈ S, (Q, s) ∈ SI}. We show R is a simulation
relation.

For any sR(Q, s),

– s
a/T−−→ s′ with a ∈ N (s) and a /∈ F(s). Then a ∈ N (Q, s) and (Q, s) a/T−−→

(Q′, s′). s
;w/T−−−→ s′ with ; w ∈ A, then (Q, s) ;w/T−−−→ (Q, s′).
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– for any (Q, s) e/T−−→ (Q′, s′) with e ∈ A ∪ N (s) \ F(Q, s). Then s
e/T−−→ s′ and

s′R(Q′, s′).
– F(Q, s) ⊆ F(s).

From above, we see R is a simulation relation. So C � I(C), because
s0R({s0}, s0).

Now we prove the second part of the theorem. Let R0 be a simulation for
C1 � C2, then we show R′

0 = {((Q1, s1), (Q2, s2)) | (s1, s2) ∈ R0 , ∀r1 ∈
Q1∃r2 ∈ Q2.(r1, r2) ∈ R0 , ∀r2 ∈ Q2∃r1 ∈ Q1.(r1, r2) ∈ R0 } ∩ (S1

I × S2
I ). For

any (Q1, s1)R′
0 (Q2, s2), then N (Q1) ⊆ N (Q2) and F(Q1, s1) = F(Q2, s2) = ∅.

Consider (Q1, s1) w/T−−−→ (Q′
1, s′

1) with w ∈ A1 ∪ N (Q1, s1) \ F(Q1, s1), then
s1

w/T−−−→ s′
1. By simulation relation R0 , there exists s2

w/T ′
−−−→ s′

2 with T ′ ⊆ T .
For all (Q2, s2) w/T ′

−−−→ (Q′
2, s′

2) with w ∈ A1 ∪ N (Q1, s1) \ F(Q1, s1), there
exists s2

w/T ′
−−−→ s′

2, then there exists s′
1 and T such that s1

w/T−−−→ s′
1 with T ′ ⊆ T

by simulation R0 . Then (Q1, s1) w/T−−−→ (Q′
1, s′

1) and (Q′
1, s′

1)R′
0 (Q′

2, s′
2) by the

definition of R′
0 . From above we see that R′

0 is a simulation relation and it is
clear that ({s1

0}, s1
0)R′

0 ({s2
0}, s2

0). So I(C1) � I(C2). ��

The next theorem shows that the trace inclusion properties.

Theorem 4. Given two component interface automata C1 and C2, if C1 � C2,
then Tup(C1) ⊆ Tup(C2), and for any non-blockable provided trace pt ∈ Tp(C1),
T 2

r (pt) ⊆ T 1
r (pt).

Proof. This can be proved by induction on the length of pt. ��

The following theorem states that the refinement relation is preserved by the
composition operator over component automata.

Theorem 5. Given a component automaton C and two non-blockable compo-
nent automata C1 and C2 such that C1 � C2, then C1 ⊗ C � C2 ⊗ C.

Proof. Assume the simulation relation of C1 � C2 is R. We prove the relation
R′ = {((s1, s), (s2, s)) | (s1, s2) ∈ R and s ∈ S} be a simulation relation. Let
(s1, r)R′(s2, r). By Lemma 1, (s2, r) leads to the error state implies (s1, r) leads
to the error states. We prove by considering the following two cases.

First, C1 and C2 requires services from C. If (s1, r) w/T ′
1−−−→ (s′

1, r′), we assume
that s1

w/T1−−−→ s′
1 and r

tr==⇒ r′. C1 and C2 are non-blockable component au-
tomata, so w ∈ A∪N (s1) and w /∈ F(s1). By simulation, there exists s2

w/T2−−−→ s′
2

that T ′
2 ⊆ T ′

1. Then (s2, r) w/T ′
2−−−→ (s′

2, r) that T ′
2 ⊆ T ′

1, by Lemma 2.

For any (s2, r) w/T ′
2−−−→ (s′

2, r′) with w ∈ A∪N (s2) and w /∈ F(s1, r), then there
exists s2

w/T2−−−→ s′
2, r

tr==⇒ r′. Then w ∈ A ∪ N (s1) and w /∈ F(s1). By simulation

relation, there exists s1
w/T1−−−→ s′

1 with T2 ⊆ T1. Then (s1, r) (w/T ′
1)−−−−→ (s′

1, r′)
where T ′

2 ⊆ T ′
1 by Lemma 2.



174 R. Dong, N. Zhan, and L. Zhao

Second, C require services from C1 and C2, respectively. If (s1, r) w/T ′
1−−−→

(s′
1, r′), we assume that s1

tr1==⇒ s′
1 and r

w/T===⇒ r′. Because C1 and C2 are
two non-blockable component automata, there exists s2

tr2==⇒ s′
2 that π2(tr2) ⊆

π2(tr1) and π1(tr2)�P2 = π1(tr1)�P1 by simulation. Then (s2, r) w/T ′
2−−−→ (s′

2, r′)
that T ′

2 ⊆ T ′
1, by Lemma 2.

For any (s2, r) w/T ′
2−−−→ (s′

2, r′), then there exists s2
tr2==⇒ s′

2 and r
w/T−−−→ r′.

Because C1 and C2 are non-blockable component automata, there exists s1
tr1==⇒

s′
1 that π2(tr2) ⊆ π2(tr1) and π1(tr2)�P2 = π1(tr1)�P1 by simulation. Then

(s1, r)
(w/T ′

1)−−−−→ (s′
1, r′) where T ′

2 ⊆ T ′
1 by Lemma 2.

F(s2) ⊆ F(s1), then F(s2, r) ⊆ F(s1, r).
For both cases, s′

1Rs′
2, so (s′

1, r′)R′(s′
2, r′), this implies that R′ is an simulation

relation.
��

The following corollary is immediate.
Corollary 1. Given two component interface automata C1 and C2, if C1 � C2,
then C1 ‖ C � C2 ‖ C.

6 Conclusion and Future Work
We presented an execution model of components, which extends our previous
work by allowing internal behaviors of components. Then we considered how to
constructed its interface model, which share the same non-blockable behavior,
so that all operations on the component can be done over the obtained interface
model instead. Thus, the usage of the component according to the interface
model is guaranteed to be safe, that is, no deadlock whenever it is used in any
environment.

Furthermore, in order to discuss the substitutivity of components at the in-
terface level, which is very important in component-based methods, we define a
revised alternating simulation, which provides a criterion how to substitute one
component for another one at the interface level freely. In particular, we proved
the derived interface model indeed is a refinement of the original component
according to the revised alternating simulation.

Future Work. There are several open problems left for future work. Firstly, the
components discussed in this paper provide services in a passive way, that is, the
components only triggers invocation of services when provided services are called
by the environment or when some internal behaviors are available. The kind of
components used for actively coordinating the behaviors of multi-components is
needed. Secondly, algebraic properties of composition such as associative, com-
mutative, distributive of coordination over composition are also important. The
third research direction is development of execution and interface models for
components with timing characteristics, which support timing, deadlock, and
scheduling analysis of applications in the presence of timed requirement.
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Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. Part I. LNCS, vol. 4362,
pp. 819–831. Springer, Heidelberg (2007)

4. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification in
component-based model-driven design. Science of Computer Programming 74(4),
168–196 (2009),http://www.sciencedirect.com/science/article/pii/
S0167642308000890, special Issue on the Grand Challenge

5. De Alfaro, L., Henzinger, T.: Interface automata. ACM SIGSOFT Software Engi-
neering Notes 26(5), 109–120 (2001)

6. De Alfaro, L., Henzinger, T.: Interface-based design. Engineering Theories of
Software-intensive Systems 195, 83–104 (2005)

7. Dong, R., Faber, J., Liu, Z., Srba, J., Zhan, N., Zhu, J.: Unblockable compositions
of software components. In: Proceedings of the 15th ACM SIGSOFT Symposium
on Component Based Software Engineering, CBSE 2012, pp. 103–108. ACM, New
York (2012), http://doi.acm.org/10.1145/2304736.2304754
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Abstract. Processor cores within modern multicore systems often communi-
cate via shared memory and use (local) store buffers to improve performance.
A penalty for this improvement is the loss of Sequential Consistency to weaker
memory guarantees that increase the number of possible program behaviours, and
hence, require a greater amount of programming effort. This paper formalises the
effect of Total Store Order (TSO) memory — a weak memory model that allows
a write followed by a read in the program order to be reordered during execution.
Although the precise effects of TSO are well-known, a high-level formalisation of
programs that execute under TSO has not been developed. We present an interval-
based semantics for programs that execute under TSO memory and include meth-
ods for fine-grained expression evaluation, capturing the non-determinism of both
concurrency and TSO-related reorderings.

1 Introduction

Approaches to reasoning about concurrency usually assume Sequentially Consistent
(SC) memory models, where program instructions are executed by the hardware in the
order specified by the program [19], i.e., under SC memory, execution of the sequential
composition S1 ; S2 of statements S1 and S2 must execute S2 after S1. Fig. 1 shows a
multicore architecture idealised by the SC memory model, where processor cores inter-
act directly with shared memory. In such an architecture, contention for shared memory
becomes a bottleneck to efficiency, and hence, modern processors often utilise addi-
tional local buffers within which data may be stored (e.g., the processor cores in Fig. 2
use local write buffers). Furthermore, modern processors implement weaker memory
models than sequential consistency and allow the order in which instructions are exe-
cuted to differ from the program order in a restricted manner [1], e.g., Write → Read,
Write → Write, Read → Write, Read → Read. Here Write → Read means that a
Write instruction to an address a followed by a Read instruction to an address b in the
program order are allowed to be reordered if a �= b. As a result, a programmer must per-
form additional reasoning to ensure that the actual (executed) behaviour of a program
is consistent with the expected behaviour.
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Fig. 1. Idealised multicore architecture
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Fig. 2. Multicore architecture with write buffers

In this paper, we study the high-level behaviour of the common x86 multicore pro-
cessor architecture. Each core uses a write buffer (as shown in Fig. 2), which is a FIFO
queue that stores pending writes. A processor core performing a write may enqueue the
write in the buffer and continue computation without waiting for the write to be com-
mitted to memory. Pending writes do not become visible to other cores until the buffer
is flushed, which commits (some or all) pending writes. Thus, x86 architectures al-
low Write → Read reordering. Furthermore, using a technique known as Intra-Process
Forwarding (IPF) [16] a processor core may read pending writes from its own (local)
write buffer, i.e., without accessing shared memory. The combination of Write → Read
reordering and IPF forms the Total Store Order (TSO) memory model [1, 24].

Existing approaches to memory-model-aware reasoning, e.g. Alglave et al [2], for-
malise several different orders that are imposed by a specific memory model. Applying
these orders to a program yields all possible behaviour that can be observed with respect
to the applied memory model. Executable memory models like the x86-TSO [23, 24]
have been defined to observe the impact of a memory model on a program’s execution.
Such models can be used for state space exploration, but this quickly becomes infeasi-
ble due to the exponential explosion in the complexity of the state space. Burckhardt et
al use an approach [6] in which the memory model is defined axiomatically and com-
bined with a set of axioms modelling a program written in a low-level language. The
combination of both is used to feed a SAT-solver to check for program properties like
linearisability [15]. Each of the approaches [2, 6, 23, 24] is focused on the use of a low-
level language instead of the high-level language in which programs are often written.
Hence, to perform a verification, programs need to be observed and understood in their
low-level representation, which is a complex task because at this level of abstraction,
programs are verbose in their representation and use additional variables to implement
high-level language instructions.

Although there are many approaches dealing with the influence of memory models
for low-level languages [2–4, 23, 24], we are not aware of any approach that tries to
lift such memory model effects to a higher level of abstraction. Our work here is hence
unique in this sense. The basic idea is to think of high-level statements as being executed
over an interval of time or an execution window. Such execution windows can overlap,
if programs are executed concurrently. Under TSO memory, the execution windows
can even overlap within a single process. Overlapping windows correspond to program
instructions that can be executed in any order, representing the effect of concurrent
executions and reorderings due to TSO. Furthermore, overlapping execution windows
may also interfere with each other and fixing the outcome of an execution within a
window can influence the outcome within another.
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Initially: x = 0 ∧ y = 0 ∧ z �= 0

Process p
p1: x := 1;
p2: if y = 0 ∧ z = 0
p3: then statement1
p4: else statement2

Process q
q1: y := 1;
q2: z := x

Fig. 3. SC does not allow execution of
statement1, TSO does

Initially: x = 0 ∧ y = 0 ∧ z �= 0

Process p
p1: write(x, 1);
p2.1:
p2.2:

�
read(y, r1p);
read(z, r2p)

�
�

p2.3:
p2.4:

�
read(z, r2p);
read(y, r1p)

�
;

p2.5: if r1p = 0 ∧ r2p = 0 . . .

Process q
q1: write(y, 1);
q2.1: read(x, rq);
q2.2: write(z, rq);

Fig. 4. Low-level representation of program in Fig. 3

Section 2 introduces the TSO memory model and its influence on a program’s be-
haviour. Section 3 presents our interval-based framework for reasoning about different
memory models, an abstract programming language, and a parameterised semantics for
the language. In Section 4, we formalise instantaneous and actual states evaluation un-
der SC memory, a restricted form of TSO that allows Write → Read reordering without
allowing IPF, and Write → Read with IPF to fully cover TSO behaviour.

2 Effect of Total Store Order on Program Behaviour

On top of the non-determinism inherent within concurrent programs, TSO memory al-
lows additional relaxations that enable further reordering of program instructions within
a process via Write → Read reordering and IPF, complicating their analysis [4]. We de-
scribe these concepts and their effects on program behaviour using the examples in
Sections 2.1 and 2.2. Note that Write → Read reordering is not implemented without
IPF by any current processor, but we find it useful to consider its effects separately.

2.1 Write → Read Reordering

Fig. 3 shows a program with two concurrent processes p and q that use shared variables
x, y and z. A low-level representation of Fig. 3 is given in Fig. 4, which uses additional
local registers r1p, r2p and rq.1 Evaluation of the guard at p2 is split into a number of
atomic steps, where the order in which y and z are read is chosen non-deterministically.
That is, after execution of p1, either p2.1; p2.2 or p2.3; p2.4 is executed. For both choices,
under SC memory, process p will never execute statement1 because whenever control
of process p is at p2.5, either r1p or r2p is non-zero, and hence, the guard at p2.5 always
evaluates to false. In particular, for SC memory, if r1p = 0 holds, then either p2.1 or p2.4

must have been executed before q1 (otherwise r1p would equal 1), and hence, by the
program order (which is preserved by the execution order), p1 must have been executed
before q1. Thus, if r1p = 0 holds, then r2p �= 0 must hold, and hence, the guard at

1 Note that implementation of the if statement in process p uses additional local variables and
goto/jump instructions, whose details have been elided.
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p2.5 must evaluate to false. Furthermore, if r2p = 0 holds at p2.5, then q2.2 must have
been executed before p1 (otherwise z with value 1 would be loaded as the value of r2).
Therefore, due to the program order, q1 must also have been executed before p1, and
hence, before both p2.1 and p2.4. However, this means r1p = 1 must hold at p2.5.

Now consider a restricted TSO (RTSO) memory model that allows Write → Read
reordering but without IPF. For example, RTSO allows p2.1 in Fig. 4 to be executed
before p1 even though p1 occurs before p2.1 in the program order. All other program
orders are preserved, including a write to a variable followed by a read to the same
variable. Execution of the program in Fig. 4 under RTSO allows execution of statement1
if process p chooses branch p2.1 ; p2.2 (i.e., p reads y then z) to evaluate the guard at p2.
This occurs if both:
1. p1 ; p2.1 ; p2.2 ; p2.5 is reordered to p2.1 ; p1 ; p2.2 ; p2.5, which can happen if the

write to x (i.e., instruction p1) is stored in p’s write buffer, but committed to memory
before execution of p2.2, and

2. q1 ; q2.1 ; q2.2 is reordered to q2.1 ; q1 ; q2.2, which can happen if the write to y (i.e.,
q1) is stored in q’s write buffer.

After the reordering, the concurrent execution of p and q may execute p2.1 (setting
r1p = 0), then q2.1 ; q1 ; q2.2 (setting z = 0), and then p2.2 (setting r2p = 0).

Note that it is also possible for none of the instructions to be re-ordered, in which case
execution under RTSO would be identical to execution under SC memory. Furthermore,
if process p chooses branch p2.3 ; p2.4, statement1 cannot be executed despite any
reorderings within p and q. Finally, RTSO does not allow re-orderings such as p2.2 ; p2.1

because they are both read instructions (i.e., Read → Read ordering is preserved),
q2.2 ; q1 because both q2.2 and q1 are write instructions (i.e., Write → Write ordering is
preserved), and q2.2 ; q2.1 because q2.1 is a read and q2.2 is a write (i.e., Read → Write
ordering is preserved). A write to a variable that is followed by a read to the same
variable in the program order must not be reordered (e.g., in Fig. 6, reordering p2.1 ; p1

is disallowed).

2.2 Total Store Order

TSO extends RTSO by including IPF, allowing a process to read pending writes from
its own buffer, and hence, obtaining values that are not yet globally visible to other pro-
cesses. To observe the effect of IPF, consider the program in Fig. 5 and its corresponding
low-level representation in Fig. 6. Process p can never execute statement1 under RTSO
memory because the read at p2.1 cannot be reordered with the write at p1 due to the
variable dependency. Furthermore, because Read → Read ordering is preserved, p2.1

prevents reads to y at p3.1 and p3.4 from being executed before the write instruction at
p1 even though both reorderings p3.1 ; p2.2 and p3.3 ; p3.4 ; p2.2 are possible. Similarly,
q2.1 prevents q3.1 from being executed before q1 even though q2.2 may be reordered
with q3.1. Because SC memory is a special case of RTSO in which no reorderings are
possible, it is also not possible for p to reach statement1 under SC memory.

In contrast, TSO allows execution of statement1 because IPF enables reads to occur
from the write buffer. For the program in Fig. 6, the value written by write(x, 1) at p1

could still be in p’s write buffer, which could be used by p2.1 before the write at p1

is committed to memory. Then write(u, r0p) at p2.2 may become a pending write, and
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Initially: x = 0 ∧ y = 0 ∧ z �= 0

Process p
p1: x := 1;
p2: u := x;
p3: if y = 0 ∧ z = 0
p4: then statement1;
p5: else statement2

Process q
q1: y := 1;
q2: v := y;
q3: z := x

Fig. 5. Neither SC nor RTSO cause ex-
ecution of statement1, TSO does

Initially: x = 0 ∧ y = 0 ∧ z �= 0

Process p
p1: write(x, 1);
p2.1: read(x, r0p);
p2.2: write(u, r0p);
p3.1:
p3.2:

�
read(y, r1p);
read(z, r2p)

�
�

p3.3:
p3.4:

�
read(z, r2p);
read(y, r1p)

�
;

p3.5: if r1p = 0 ∧ r2p = 0 . . .

Process q
q1: write(y, 1);
q2.1: read(y, r0q);
q2.2: write(v, r0q);
q3.1: read(x, r1q);
q3.2: write(z, r1q)

Fig. 6. Low-level representation of program in Fig. 5

then read(y, r1p) and read(z, r2p) (at p3.1 and p3.2, respectively) may be executed. By
fetching values from memory before the pending write(x, 1) at p1 has been committed,
the reads at p3.1 and p3.2, can appear as if they were executed before p2.1. The same
arguments apply to process q where read(y, r0q) at q2.1 can read the value of y from q’s
write buffer, and hence, execution of q2.1 and q3.1 appear to be reordered. A concurrent
execution after reordering that allows control to reach p4 is:

p3.1 ; q3.1 ; q1 ; q2.1 ; q2.2 ; q3.2 ; p1 ; p2.1 ; p2.2 ; p3.2

This example shows that TSO allows Read → Read reordering in a restricted manner
and in fact that the IPF relaxation can be viewed as such [3].

3 Interval-Based Reasoning

The programs in Figs. 4 and 6 have helped explain TSO concepts, however, reason-
ing about interleavings at such a low level of abstraction quickly becomes infeasible.
Instead, we use a framework that considers the intervals in which a program execute
[9], which enables both non-deterministic evaluation [13] and compositional reasoning
[17]. We present interval predicates in Section 3.1, fractional permissions (to model
conflicting accesses) in Section 3.2, and a programming language as well as its gener-
alised interval-based semantics in Section 3.3.

3.1 Interval Predicates

We use interval predicates to formalise the interval-based semantics due to the general-
ity they provide over frameworks that consider programs as relations between pre/post
states. An interval is a contiguous set of integers (denoted Z), and hence the set of all
intervals is Intv �= {Δ ⊆ Z | ∀t1, t2:Δ • ∀t:Z • t1 ≤ t ≤ t2 ⇒ t ∈ Δ}. Using ‘.’ for
function application (i.e., f .x denotes f (x)), we let lub.Δ and glb.Δ denote the least up-
per and greatest lower bounds of an interval Δ, respectively. We define lub.∅ �= −∞,
glb.∅ �= ∞, inf.Δ �= (lub.Δ = ∞), fin.Δ �= ¬inf.Δ, and empty.Δ �= (Δ = ∅).
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One must often reason about two adjoining intervals, i.e., intervals that immediately
precede or follow a given interval. For Δ1, Δ2 ∈ Intv, we say Δ1 adjoins Δ2 iff Δ1 ∝
Δ2 holds, where Δ1 ∝ Δ2 �= (Δ1 ∪ Δ2 ∈ Intv) ∧ (∀t1:Δ1, t2:Δ2 • t1 < t2). Thus,
Δ1 ∝ Δ2 holds iff Δ2 immediately follows Δ1. Note that adjoining intervals Δ1 and
Δ2 must be both contiguous and disjoint, and that both Δ∝∅ and ∅∝Δ trivially hold.

Given that variable names are taken from the set Var, a state space over a set of
variables V ⊆ Var is given by StateV �= V → Val and a state is a member of StateV , i.e.,
a state is a total function mapping variables in V to values in Val. A stream of behaviours
over V is given by the total function StreamV �= Z → StateV , which maps each time in
Z to a state over V . A predicate over type T is a total function PT �= T → B mapping
each member of T to a Boolean. For example PStateV and PStreamV denote state and
stream predicates, respectively. To facilitate reasoning about specific parts of a stream,
we use interval predicates, which have type IntvPredV �= Intv → PStreamV . A stream
predicate defines the behaviour of a system over all time, and an interval predicate
defines the behaviour of a system with respect to a given interval [9, 10]. We assume
pointwise lifting of operators on stream and interval predicates in the normal manner,
e.g., if g1 and g2 are interval predicates, Δ is an interval and s is a stream, we have
(g1 ∧ g2).Δ.s = (g1.Δ.s ∧ g2.Δ.s).

We define two operators on interval predicates: chop (to model sequential composi-
tion), and k- and ω-iteration (to model loops), i.e.,

(g1 ; g2).Δ.s �= �∃Δ1, Δ2: Intv • (Δ = Δ1 ∪Δ2) ∧
(Δ1 ∝Δ2) ∧ g1.Δ1.s ∧ g2.Δ2.s

�
∨ (inf.Δ ∧ g1.Δ.s)

g0 �= empty gk+1 �= gk ; g gω �= νz • (g ; z) ∨ empty

The chop operator ‘;’ is a basic operator on two interval predicates [21, 10], where
(g1 ; g2).Δ.s holds iff either interval Δ may be split into two adjoining parts Δ1 and
Δ2 so that g1 holds for Δ1 and g2 holds for Δ2 in s, or the least upper bound of Δ is ∞
and g1 holds for Δ in s. Inclusion of the second disjunct inf.Δ ∧ g1.Δ.s enables g1 to
model an infinite (divergent or non-terminating) program. Iteration gk defines the k-fold
iteration of g and gω is the greatest fixed point of λ z • (g ; z) ∨ empty, which allows
both finite and infinite iterations of g [12]. We use

(�g).Δ.s �= ∃Ω: Intv • Ω ∝Δ ∧ g.Ω.s

to denote that g holds in some interval Ω that immediately precedes Δ.
We define the following operators to formalise properties over an interval using a

state predicate c over an interval Δ in stream s.

(�c).Δ.s �= ∀t:Δ • c.(s.t) ( �c).Δ.s �= ∃t:Δ • c.(s.t)
−→c .Δ.s �= (lub.Δ ∈ Δ) ∧ c.(s.(lub.Δ))

That is (�c).Δ.s holds iff c holds for each state s.t where t ∈ Δ, ( �c).Δ.s holds
iff c holds in some state s.t where t ∈ Δ, and −→c .Δ.s holds iff c holds in the state
corresponding to the end of Δ. Note that �c trivially holds for an empty interval, but

�c and −→c do not. A variable v is stable over interval Δ in stream s iff stable.v.Δ.s
holds, where stable.v.Δ.s �= ∃k:Val • �(

−−−→
v = k) ∧ �(v = k).
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3.2 Fractional Permissions

The behaviour of a process executing a command is formalised by an interval predicate,
and the behaviour of a parallel execution over an interval is given by the conjunction of
these behaviours over the same interval. Because the state-spaces of the two processes
often overlap, there is a possibility that a process writing to a variable conflicts with a
read or write to the same variable by another process. To ensure that such conflicts do
not take place, we follow Boyland’s idea of mapping variables to a fractional permission
[5], which is rational number between 0 and 1. A process has write-only access to a
variable v if its permission to access v is 1, has read-only access to v if its permission to
access v is above 0 but below 1, and has no access to v if its permission to access v is 0.
Note that a process may not have both read and write permission to a variable. Because
a permission is a rational number, read access to a variable may be split arbitrarily
(including infinitely) among the processes of the system. However, at most one process
may have write permission to a variable in any given state.

We assume that every state contains a permission variable Π whose value in state
σ ∈ StateV is a function of type V → Proc → {n:Q | 0 ≤ n ≤ 1}, where Proc denotes
the type of a process identifier. Note that it is possible for permissions to be distributed
differently within states σ1, σ2 even if the values of the normal variables in σ1 and σ2

are identical. Process p ∈ Proc has write-permission to variable v in state σ iff Wp.v.σ �=
(σ.Π.v.p = 1), has read-permission to v in σ iff Rp.v.σ �= (0 < σ.Π.v.p < 1), and
has no-permission to access v in σ iff Dp.v.σ �= (σ.Π.v.p = 0) holds. In the context
of a stream s, for any time t ∈ Z, process p may only write to and read from v in the
transition step from s.(t − 1) to s.t if Wp.v.(s.t) and Rp.v.(s.t) hold, respectively. Thus,
Wp.v.(s.t) does not grant process p permission to write to v in the transition from s.t
to s.(t + 1) (and similarly Rp.v.(s.t)). We introduce two assumptions on streams using
fractional permissions that formalise our assumptions on the underlying hardware.

HC1. If no process has write access to v within an interval, then the value of v does not
change within the interval, i.e., for any interval Δ and stream s,
(�(∀p:Proc • ¬Wp.v) ⇒ stable.v) .Δ.s

HC2. The sum of the permissions of the processes on any variable v is at most 1, i.e.,
for any interval Δ and stream s, (�((Σp∈ProcΠ.v.p) ≤ 1)).Δ.s

For the rest of this paper, we assume that the streams and intervals under consideration
satisfy both HC1 and HC2. Further restrictions may explicitly be introduced to the
programs if required. In essence, both HC1 and HC2 are implicit rely conditions of the
programs that we develop [9, 17].

3.3 A Programming Language

To formalise common programming constructs, we present a language inspired by the
refinement calculus [20], extended to enable reasoning about concurrency. The syntax
closely matches program code, which simplifies translation from an implementation to
the model. For a state predicate b, variable v, expression e and set of processes P ⊆
Proc, the abstract syntax of commands is given by Cmd below, where BC ∈ BasicCmd
and C,C1,C2,Cp ∈ Cmd.
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BasicCmd ::= Idle | [b] | v := e
Cmd ::= BC | Empty | Magic | Chaos | fin Idle | inf Idle |

C1 ; C2 | C1 ! C2 | Cω | ‖p:P Cp | INIT b • C

Thus, a basic command may either be Idle, a guard [b] or an assignment v := e. A
command may either be a basic command, Empty (representing the empty program),
Magic (an infeasible command that has no behaviours), Chaos (a chaotic command
that allows any behaviour), fin Idle (a finite idle), inf Idle (an infinite idle), sequen-
tial composition (C1 ; C2), non-deterministic choice C1 ! C2, iteration Cω , parallel
composition ‖p:P Cp, or a command with an initialisation INIT b • C.

Using this syntax, the programs in Fig. 3 and Fig. 5 are modelled by the commands in
Fig. 7 and Fig. 8, respectively, where the labels in Figs. 3 and 5 have been omitted. For
Fig. 3, the initialisation is modelled using the INIT construct, and the main command
consists of the parallel composition between Cp and Cq, which model processes p and
q, respectively. Command Cp is the sequential composition of the assignment followed
by a non deterministic choice between Ctp and Cfp, which respectively model the true
and false evaluations of the guard at p2 in Fig. 3.

We define an interval-based semantics for this language, which is used to formalise
program execution in RTSO (R) and TSO (T ) memory models. Like [9], we split SC
executions into instantaneous (I) and apparent states (S) evaluation, where the apparent
states stem from non-atomic expression evaluation, i.e., by observing different variables
of an expression at different times [9, 13].

To simplify comparison of the different memory models on program execution, we
present a generalised semantics where the behaviour function is parameterised by the
memory model under consideration. In particular, the generalised semantics for com-
mands in a memory model M ∈ {I,S,R, T } is given by function � · �MP in Fig. 9,
which for a given command returns an interval predicate that formalises the behaviour
of the command with respect to P ⊆ Proc. A basic command BC is assumed to be ex-
ecuted by a single process p and its behaviour over an interval with respect to memory
model M is defined by � BC �Mp , which requires that we instantiate interval predicates

idleMp , evalMp and updateMp . Note that the behaviour of an assignment consists of two
portions, an evaluation portion, where the expression e is evaluated to some value k,
followed by an interval in which the variable v is updated to a new value k.

Note that the behaviours of each of the commands except for basic commands and
parallel composition decompose for each of the memory models in the same way. The
behaviour of Empty, Magic and Chaos are always empty, false and true, respectively,
sequential composition is defined by the chop operator, and non-deterministic choice is
defined by disjunction. The behaviour of command iteration Cω is defined as iteration of

Ctp �= [y = 0 ∧ z = 0] ; statement1
Cfp �= [y �= 0 ∨ z �= 0] ; statement2
Cp �= x := 1 ; (Ctp � Cfp)
Cq �= y := 1 ; z := x
C �= INIT x = 0 ∧ y = 0 ∧ z �= 0 • Cp‖Cq

Fig. 7. Formalisation of program in Fig. 3

Dtp �= [y = 0 ∧ z = 0] ; statement1
Dfp �= [y �= 0 ∨ z �= 0] ; statement2
Dp �= x := 1 ; u := x ; (Dtp � Dfp)
Dq �= y := 1 ; v := y ; z := x
D �= INIT x = 0 ∧ y = 0 ∧ z �= 0 • Dp ‖Dq

Fig. 8. Formalisation of program in Fig. 5
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� Idle �Mp �= idleM
p .Var � [b] �Mp �= evalMp .b � v := e �Mp �= ∃k:Val • evalMp .(e = k) ;

updateM
p (v, k)

� BC �N{p} �= � BC �Np
� Empty �MP �= empty

� Magic �MP �= false
� Chaos �MP �= true

� C1 ; C2 �MP �= � C1 �MP ; � C2 �MP
� C1 � C2 �MP �= � C1 �MP ∨ � C2 �MP

� Cω �MP �= (� C �MP )ω

� fin Idle �MP �= fin ∧
�

p:P
� Idle �Mp � inf Idle �MP �= inf ∧

�
p:P

� Idle �Mp

� INIT b • C �MP �= �
−→
b ⇒ � C �MP

term.S.T �= S ∈ {fin Idle, inf Idle} ∧ T ∈ {fin Idle, inf Idle} ∧
(S = inf Idle ⇒ T �= inf Idle)

� ‖p:P Cp �NP �= if P = ∅ then true elseif P = {p} then � Cp �M{p}
else ∃Q,R, S, T • (Q ∪ R = P) ∧ (Q ∩ R = ∅) ∧ Q �= ∅ ∧ R �= ∅ ∧

term.S.T ∧ � (‖p:Q Cp) ; S �MQ ∧ � (‖p:R Cp) ; T �MR

Fig. 9. General semantics for interval-based reasoning

the behaviour of C, and the behaviour of the INIT b • C is the behaviour of C assuming
that b holds at the end of some immediately preceding interval.

Assuming N �= M\{T }, the behaviour of a basic command � BC �N{p} is defined as

the basic behaviour � BC �N{p}. Behaviour � ‖p:P Cp �NP is true if the set P is empty and
discards the parallel composition operator if P is a singleton set. If P contains at least
two elements, � ‖p:P Cp �NP holds if P can be split into two non-empty disjoint subsets Q

and R such that both � ‖p:Q Cp ; S �NQ and � ‖p:R Cp ; T �NR hold, where S and T denote
possible idling. This idling is necessary because ‖p:Q Cp and ‖p:R Cp may terminate at
different times [9] and idling may sometimes be infinite because a component may not
terminate. Within a parallel composition, fractional permissions together with assump-
tions HC1 and HC2, restrict access to shared variables, and hence, how processes may
affect each other [9]. The behaviours of both � BC �T{p} and � ‖p:P Cp �TP (i.e., for TSO
memory) are defined in Section 4.4.

4 Program Semantics under Different Memory Models

We present a semantics for instantaneous evaluation (where an entire expression is eval-
uated in a single atomic step) in Section 4.1 and apparent states evaluation (where vari-
ables are assumed to be read one at a time) is given in Section 4.2. This work has
appeared in [9], but we present it here once again for completeness and to simplify
comparisons with RTSO (Section 4.3) and TSO memory (Section 4.4).

4.1 Sequentially Consistent Instantaneous Evaluation Semantics

The simplest execution model we consider is I (instantaneous evaluation), where ex-
pressions are evaluated under SC in one of the actual states that occur in an interval of
evaluation [13]. Given that an expression e is evaluated in an interval Δ of stream s and
that S is the set of states of s that occur within Δ, this form of expression evaluation
returns a value of e for some state of S. To formalise this, we define interval predicate
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idlep.V �= ∀v:V • �¬Wp.v

i.e., p does not write to any variable of V . To complete the instantaneous evaluation
semantics for our language, we instantiate interval predicates idleIp , evalIp and updateIp
as follows, where c is a state predicate, v is a variable and k is a value. We let vars.c
denote the set of free variables of c.

idleIp �= idlep evalIp .c �= �(c ∧ (∀v: vars.c • Rp.v)) ∧ idlep.Var
updateIp (v, k) �= �((v = k) ∧ Wp.v) ∧ ¬empty ∧ idlep.(Var\{v})

The semantics of idleIp is straightforward. Evaluation of c in a stream s within interval

Δ is given by evalIp .c.Δ.s, which holds iff (a) there is a time t ∈ Δ such that c.(s.t)
holds and p has permission to read the variables of c in s.t, and (b) p does not write to
any variable within Δ. Updating the value of v to k (in shared memory) within interval
Δ of stream s is modelled by updateIp (v, k).Δ.s, which holds iff (a) throughout Δ, v
has value k and p has write permission to v, (b) Δ is non-empty and (c) p does not write
to any other variable. We must ensure that ¬empty holds because �c is trivially true
for an empty interval.

4.2 Sequentially Consistent Apparent States Evaluation Semantics

Instantaneous evaluation is not problematic for expressions in which at most one vari-
able of the expression is unstable [9, 13]. For more complex expressions (e.g., the guard
of p2 in Fig. 3), instantaneous evaluation will be unimplementable because hardware
will seldom be able to guarantee that all variables of an expression can be read in a
single atomic step. That is, instantaneous evaluation does not reflect the fact that im-
plementations can read at most one variable atomically. Hence, we consider a second
method of evaluation that returns a value in the states apparent to a process.

For each expression evaluation, we assume that each variable is read at most once,
and that the same value is used for each occurrence of the variable in an expression2. We
assume that a compiler non-deterministically chooses an ordering of read instructions
when evaluating an expression. For example, in the low-level program in Fig. 4, the
order of reads of the variables of p2 in Fig. 3 is non-deterministically chosen.

The apparentSp,W function generates a set of states that may not exist in the stream, but
can be observed by a process that reads variables one at a time. For example, eliding
details of the permission variable, if over an interval Δ, a stream s has actual states
{x '→ 0, y '→ 0}, {x '→ 1, y '→ 0}, {x '→ 1, y '→ 1}, a possible observable state within
Δ in s is {x '→ 0, y '→ 1}. To generate the set of states apparent to process p, one must
ensure that p has the appropriate read permissions. Using the apparentSp,W function, we
define the possibly operator S

p, which evaluates state predicates over a set of apparent
states with respect to a given interval and stream.

apparentSp,W.Δ.s �= {σ: StateW | ∀ v:W • ∃t:Δ • (σ.v = s.t.v) ∧ Rp.v.(s.t)}
( S

pc).Δ.s �= ∃σ: apparentSp,vars.c.Δ.s • c.σ

2 It is possible to define evaluators that, for example, (re)read a variable for each occurrence of
the variable, and hence, potentially returns false for v = v if the value of v changes during the
observation interval [18, 13].
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To complete the program semantics for sequentially consistent apparent states evalua-
tion, we must instantiate predicates idleSp , evalSp and updateSp for a process p.

idleSp �= idlep evalSp .c �= ( S
pc) ∧ idleIp .Var updateSp (v, k) �= updateIp (v, k)

Except for evalSp .c, these interval predicates are identical to memory model I. Interval

predicate evalSp .c uses S evaluation, which models the fact that the variables of c are
read one at a time and at most once in the interval of evaluation, capturing the non-
determinism due to fine-grained concurrency, e.g., Fig. 4. We ask the reader to consult
[9, 13] for further details on instantaneous and apparent states evaluation under SC
memory.

4.3 Restricted TSO

As described in Section 2.1, RTSO weakens SC memory by relaxing Write → Read
ordering, but a read from a variable with a pending write must wait for the pending
write to be committed to memory. RTSO is not implemented by any hardware, however,
we use it as a stepping stone to formalisation of the more complicated TSO model in
Section 4.4, which is implemented by several mainstream processors [7, 16, 22].

As with apparent states evaluation in Section 4.2, the semantics of a program under
RTSO is defined by instantiating interval predicates idleRp , evalRp and updateRp for a
process p, which requires that we formalise expression evaluation with respect to the re-
orderings RTSO memory may cause. Like SC apparent states evaluation (Section 4.2),
we assume that the variables of an expression may be read in any order, but that each
variable is read at most once per evaluation. We define an apparent states evaluator
apparentRp,W.Δ.s, where Δ is the interval of execution in the program order in stream s.
Because SC is not guaranteed, the interval in which an expression is evaluated (i.e., the
execution order) extends beyond Δ (see Fig. 10). We use write/read barrier variables
WBp �∈ Var and RBp �∈ Var for each process p, which describe how far the interval
of evaluation may extend. By selecting placement of the barriers, one can control the
reorderings allowed by RTSO. We assume that a write barrier for each variable is placed
at initialisation, and hence, a variable’s value prior to initialisation cannot be read.

Like permission variable Π , we implicitly assume that each state of the program
includes barrier variables WBp and RBp for each process p. A write barrier for variable
v in process p prevents reorderings of reads to variable v within p, and hence, its value
is a function of type Var → B. Process p places a write barrier to a variable v whenever
the value of v is updated, i.e., committed to memory (see definition of updateRp below).
This prevents future reads to v in process p from being reordered with the write to v.

Read barriers must allow variables that are part of the same expression to be read in
any order, but must disallow reorderings from expressions that are evaluated later in the
program order. Hence, one is required to uniquely identify each expression occurrence.
The value of a read RBp variable is hence of type Z → Var → B, where the integer
component is used to identify the corresponding expression evaluation. In particular,
we identify an evaluation using the least upper bound of the interval of evaluation.
Hence, whenever a process p reads a variable v in an interval Δ as part of an expression
evaluation, p places a read barrier for v with identifier lub.Δ at the time at which v is
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WBp.u

Program order
evalRp .(w < 42) updateR

p (u, k) evalRp .(u + v = w)

t0 t1 t2 t3

RBp.t1.w RBp.t3.u

Execution order
Ωw Ωu Δu

Δv

Δw

RBp.t3.v

RBp.t3.w

Fig. 10. Extending apparent states evaluation

read. This prevents any reads that are part of future expression evaluations from being
reordered with the read to v in Δ, and hence, from reading outdated values. We define
apparent states evaluation for RTSO as follows, where id ∈ Z, v ∈ Var, p ∈ Proc,
s ∈ Stream, W ⊆ Var and Δ ∈ Intv.

extendedIntv.id.v.p.s �=�
Ω: Intv

(lub.Ω = id) ∧
�(¬WBp.v ∧ (∀t:Z, u:Var • RBp.t.u ⇒ t ≥ id)).Ω.s

�

apparentRp,W.Δ.s �=�
σ: State

∀ v:W • ∃Ω: extendedIntv.(lub.Δ).v.p.s • ∃t:Ω •

(σ.v = s.t.v) ∧ Rp.v.(s.t) ∧ RBp.(lub.Δ).v.(s.t)

�

Hence, extendedIntv.id.v.p.s returns a set of extended intervals within which p may
read v with respect to stream s as part of the expression identified by id. Each interval
within extendedIntv.id.v.p.s must not contain a write barrier to v or a read barrier to
any variable with identifier t such that t < id. An example of such extended intervals
is given in Fig. 10, where intervals Δv and Δw (corresponding to the evaluation of
u + v = w) are disallowed from extending beyond the read barrier RBp.t1.w, which
marks the point at which w was read in Ωw. Interval Δu is disallowed from extending
beyond time t2, due to the write barrier for u (WB.u) within Ωu that is placed by the
update to u. The write barrier WB.u in Ωu does not affect Δv and Δw because u �= v and
u �= w, and hence, allows v and w to be evaluated before u is updated. The read barriers
in Δu, Δv and Δw do not affect each other, because they each have the same identifier
t3, i.e., are part of the same expression evaluation. However, note that any evaluations
that occur after t3 in the program order would be disallowed from extending beyond the
latest read barrier identified by t3, which in the example above is RBp.t3.w within Δw.

The apparent states for RTSO are defined by apparentRp,W , where extended intervals
are used for evaluation of each variable. To generate a state σ apparent to process p, for
each variable v ∈ W, we pick an extended interval Ω corresponding to v, then pick a
time t from Ω such that p has permission to read v at t, and set the value of v in σ to
(s.t).v. Process p places a read barrier to v with identifier lub.Δ at t to prevent future
reads to any variable in the program order from being reordered with the read to v at
time t in the execution order.
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Using the set of apparent states, we define ( R
pc).Δ.s which holds iff state predicate

c holds in some state apparent to process p in interval Δ and stream s with respect to
RTSO memory.

( R
pc).Δ.s �= ∃σ: apparentRp,vars.c.Δ.s • c.σ

In addition to the effect of each command on the read/write permissions, we must also
specify the effect of each command on the read/write barriers. We define the following
interval predicates for a process p, set of variables V , interval Δ and stream s.

wBarp.V.Δ.s �= ∀v:V • �¬WBp.v.Δ.s
rBarp.V.Δ.s �= ∀v:V • �¬RBp.(lub.Δ).v.Δ.s

Hence, wBarp.V.Δ.s states that p does not place any write barriers to any of the vari-
ables of V within Δ and rBarp.V.Δ.s states that p does not place any read barrier to any
of the variables of V with identifier lub.Δ within Δ.

This now allows one to complete the semantics of programs that execute under RTSO
memory, which is achieved by the following instantiations:

idleRp .V �= (idlep ∧ rBarp ∧ wBarp).V
evalRp .c �= R

pc ∧ (idlep ∧ wBarp).Var ∧ rBarp.(Var\vars.c)

updateRp (v, k) �= updateIp (v, k) ∧ −−−→
WBp.v ∧ wBarp.(Var\{v}) ∧ rBarp.Var

Hence, idleRp .Δ.s holds iff p does not write to any variable and does not introduce any

read/write barriers. Interval predicate evalRp .c.Δ.s holds iff c holds in some apparent
state generated by apparentRp,vars.c.Δ.s, process p does not write to any variable, and
introduces no barriers except for the read barriers for variables used in c. Finally, a
variable update to v behaves in the same manner as updateIp (v, k) and additionally
places a write barrier to v at the end of execution. An update does not introduce any
other barriers except for the one to v.

Example. We apply our RTSO semantics to our running example program from Fig. 3
using the encoding from Fig. 7. Instead of unrolling the full details of our definitions,
we consider Fig. 11, which shows a possible interval of execution of processes Cp ‖Cq

that leads to execution of statement1. Note that details regarding disjointness at the
boundary between adjoining intervals have been elided from the diagram. The top of
Fig. 11 shows process p and its corresponding basic commands, obtained by unfolding
the language definitions in Fig. 9. Below this, we present the actual intervals of execu-
tion allowed by the weak memory model; corresponding intervals of the program and
execution orders are connected by dotted lines. Representation of process q is vertically
inverted. The time line shows the times at which the actual reads/writes of each ba-
sic command occur in terms of the low-level instructions from Fig. 4. The intervals in
which the updates occur in both p and q are preserved by the execution order. However,
the intervals in which evalTp (y = 0 ∧ z = 0) and evalTq (kx = x) (which is part of the
behaviour of z := x) execute extend beyond their respective intervals in the program
order. As a result of the extension, process p may read y = 0, process q may write
z = 0, which allows process p to read z = 0. Note that the intervals in which the reads
occur also contain a fuzzy portion depicting an interval in which read permission is
not available due to a write in the other process. Furthermore, our framework allows
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}

}

� x := 1 �Rp

Execution order
for process p

Program order
for process p

Program order
for process q

Execution order
for process q

� z := x �Rq� y := 1 �Rq

write(x, 1)

read(kx, 0)x
=

0
∧

y
=

0
∧

z
�=

0

write(z, 0)

Time

read(y, 0)

read(z, 0)

write(y, 1)

evalRp (k = 1) updateR
p (x, k)

evalRq (ky = 1) updateR
q (y, ky) evalRq (kx = x) updateR

q (z, kx) idleR
q

� Idle �Rq

evalRp (y = 0 ∧ z = 0)

� [y = 0 ∧ z = 0] �Rp

Fig. 11. A possible RTSO execution of Cp ‖Cq from Fig. 7

truly concurrent non-conflicting reads and writes to take place. Conflicts are avoided by
fractional permissions together with assumptions HC1 and HC2.

4.4 Total Store Order Semantics

The TSO memory model extends RTSO by allowing a process to read values from
its own write buffer early without waiting for the pending writes to be committed to
memory. Hence, in the TSO memory model, a read to a variable v returns the pending
value of v in the write buffer (if a pending write exists) and the value of v from memory
(if there are no pending writes to v). It is possible for a buffer to contain multiple pending
writes to v, i.e. the same variable occurs more than once in a write buffer; in this case,
a read must return the most recent pending write.

We let seq.T denote sequences of type T, assume sequences are indexed from 0

onward, let 〈a0, . . . , an−1〉 denote a sequence with n elements and use ‘
’ to denote
sequence concatenation. To formalise the semantics of a program under TSO, we fur-
ther extend the state and explicitly include a variable Bufferp whose value is of type
seq.(Var × Val) and models the write buffer of process p. Each Bufferp is a sequence
containing pending writes with its new value. Hence, we define two state predicates for
a variable v, process p, value k, and state σ. We assume dom.f and ran.f return the
domain and range of function f , respectively.

inBuffer.v.p.σ �= ∃k • (v, k) ∈ ran.(σ.Bufferp)
bufferVal.v.k.p.σ �= ∃i • σ.Bufferp.i = (v, k) ∧

∀j: dom.(σ.Bufferp), l:Val • j > i ⇒ σ.Bufferp.j �= (v, l)

Hence, inBuffer.v.p.σ holds iff there is a pending write to v in the write buffer of p in
state σ, and bufferVal.v.k.p.σ holds iff the latest value of v in Bufferp of state σ is k.

We define the set of states apparent to a process p under TSO memory with respect
to set of variables W as follows, assuming that the evaluation takes place in stream s
within interval Δ in the program order.
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apparentTp,W.Δ.s �=
�	

σ: State

∀ v:W • if inBuffer.v.p.(s.(glb.Δ))
then bufferVal.v.(σ.v).p.(s.(glb.Δ))
else ∃γ: apparentRp,W.Δ.s • σ.v = γ.v

��


As with the other memory models, we generate an apparent state by mapping each
variable in W to a possible value over the evaluation interval. If v ∈ W is in p’s write
buffer, the value of v is taken from the most recent write to v within the write buffer.
Otherwise, we return a possible value with respect to RTSO evaluation.

Using apparentTp,vars.c, we define an operator that formalises whether a state predicate
holds in some apparent state with respect to an interval Δ and stream s as follows.

( T
pc).Δ.s �= ∃σ: apparentTp,vars.c.Δ.s • c.σ

To complete the program semantics, we instantiate functions idleTp , evalTp and updateTp
for a process p as follows.

idleTp .V �= idleRp .V ∧ stable.Bufferp

evalTp .c �= T
pc ∧ (idlep ∧ wBarp).Var ∧ rBarp.(Var\vars.c) ∧ stable.Bufferp

updateTp (v, k) �= �∃buf • �(
−−−−−−−−−→
buf = Bufferp) ∧ �(Bufferp = buf 
 〈(v, k)〉)

�
∧

idleRp .Var ∧ ¬empty

Command idleTp behaves as idleRp .V and in addition ensures that Bufferp is not mod-

ified. Interval predicate evalTp .c holds iff c holds in some apparent state using TSO
evaluation, and in addition, does not modify any variable (including Bufferp), place a
write barrier to any variable, or place a read barrier to any variable outside of vars.c.
Finally, updateTp (v, k) adds the pair (v, k) to the end of Bufferp, which is obtained from

the state at the end of an immediately preceding interval, and behaves as idleRp .Var, i.e.,

does not modify the value or barrier of any variable. Interval predicate updateTp (v, k)
also ensures that the interval under consideration is non-empty to guarantee that the
buffer is actually updated.

Unlike I,S and R, local writes in a process p are not visible to other concurrent pro-
cesses as long as the writes are stored in the buffer of p. To make these local writes glob-
ally visible, p must commit any pending writes to shared memory, which is achieved
via a flush command. Buffers must be flushed in a FIFO order. Note that a flush does
not necessarily commit the contents of the entire buffer, and may also not commit any
elements from the buffer. Hence, we define an interval predicate commitp, which com-
mits the first pending write from Bufferp to memory, then extend the language with a
basic command Flush, which for a process p, commits the first k elements of Bufferp,
where the value of k is chosen non-deterministically.

commitp �= ∃buf , v, k • �(
−−−−−−−−−−−−−−−−−−−−−→
buf = Bufferp ∧ (v, k) = buf .0) ∧

� fin Idle �Tp ; (updateRp (v, k) ∧ �(Bufferp = tail.buf ))
� Flush �Tp �= ∃k: dom.Bufferp ∪ {−1} • commitk+1

Hence, commitTp instantiates buf to be the value of Bufferp at the end of the previous
interval and sets the pair (v, k) to be the first element of buf . It then performs some finite
idling, then the value of p is updated in the same manner as for RTSO and the value of
the Bufferp is set to be tail.buf , which is the remaining write buffer excluding the first
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element of buf . Using updateRp (v, k) in order to commit elements to memory ensures
that the required write barriers to v are placed appropriately. Note that empty implies
finite idling, and hence, elements from the buffer may also be committed immediately.
The behaviour of � Flush �Tp commits 0 or more pending writes (upto the number of
elements in the buffer). If the buffer is empty, the only possible behaviour of Flush is
commit0 ≡ empty.

Processes under TSO may non-deterministically choose to commit contents from
their write buffer to memory, therefore, the semantics of a basic command BC allows
an arbitrary number of Flush commands after the execution of BC.

� BC �Tp �= � BC �Tp ; � Flush �Tp

Note that � BC1 �Tp ; � BC2 �Tp is a possible behaviour of � BC1 ; BC2 �Tp , where BC1

and BC2 are both basic commands because � Flush �Tp may be instantiated to commit0,
which is equivalent to empty and (g1 ; empty ; g2) ≡ (g1 ; g2) for any interval
predicates g1 and g2. That is, a buffer flush may not occur in between two consecutive
commands. TSO guarantees that the buffer is eventually flushed. This is incorporated
into our semantics by modifying the behaviour of parallel composition so that the entire
buffer is flushed when the processes terminate.

� FlushAll �TP �= �p:P commit#dom.Bufferp

� ‖p:P Cp �TP �= if P = ∅ then true elseif P = {p} then � Cp �T{p}
else ∃Q,R, S, T • (Q ∪ R = P) ∧ (Q ∩ R = ∅) ∧ Q �= ∅ ∧ R �= ∅ ∧

term.S.T ∧ � (‖p:Q Cp) ; FlushAll ; S �TQ ∧
� (‖p:R Cp) ; FlushAll ; T �TR

Example. An example execution under TSO is given in Fig. 12, where the Ep and
Up abbreviate evalTp and updateTp , respectively, FA denotes execution of a FlushAll
command, and pend(v, k) denotes an enqueuing of a pending write to the buffer of the
corresponding process. Like Fig. 11, execution intervals are shown below the program
order of process p (above q, respectively). In the depicted execution, each U adds a
pending write to the local buffer, and hence, the new value cannot be observed by the
other process. Because pending values are read first, execution of Ep(ku = x) reads
the value of x from the buffer. The effects of Up(x, k), Ep(ku = x) and Up(u, ku) are
local, and hence, do not place any read barriers. This allows the interval of execution of
[y = 0 ∧ z = 0] to be extended as depicted. Following a similar behaviour in process
q, variables y and x can be read early in processes p and q, enabling [y = 0 ∧ z = 0] in
process p to evaluate to true. One can also see that [y = 0 ∧ z = 0] can never evaluate
to true under RTSO memory because the intervals of evaluation cannot be extended
beyond preceding evaluation intervals.

Note that the pending writes are eventually are committed to memory, which is only
shown in Fig. 12 for process q, but is omitted for process p due to lack of space. The
example also shows how memory efficiency has been improved by avoiding a read of
x in process p and a read of y in process q. Furthermore, by storing pending writes in
a buffer, the processes are able to wait until contention for shared memory has reduced
before committing their writes.
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}
}

Up(x, k)

Execution order
for process p

Execution order
for process q

Uq(y, k1)

� [y = 0 ∧ z = 0] �Tp� u := x �Tp� x := 1 �Tp

� y := 1 �Tq � v := y �Tq � z := x �Tq

read(y, 1) pend(v, 1)

read(x, 0)

read(y, 0)

Time

Ep(k = 1) Ep(ku = x) Up(u, ku) Ep(y = 0 ∧ z = 0)

pend(x, 1) pend(u, 1)read(x, 1)

for process p
Program order

for process q
Program order

pend(y, 1) pend(z, 0)

x
=

0
∧

y
=

0
∧

z
�=

0 read(z, 0)

� Idle �Tq

Eq(k1 = 1) Eq(ky = y) Uq(v, ky) Eq(kx = x) Uq(z, kx) FA idleT
q

write(yvz, 110)

Fig. 12. A possible TSO execution of Dp ‖Dq from Fig. 8

5 Conclusions and Future Work

This paper presents a high-level formalisation of a program’s behaviour under Total
Store Order memory using an interval-based semantics. We enable reasoning about
the fine-grained atomicity of expression evaluation that not only captures the inherent
non-determinism due to concurrency, but also due to the memory read/write policy
of the underlying hardware. Our formalisation is presented at a level of abstraction
that avoids compilation to low-level language. Hence, tedious transformations steps
(e.g. encoding of additional control-flow due to reorderings) are not necessary, and
therefore, compares favourably to the existing low-level formalisations in the literature.
The presented semantics is modular in the sense that the underlying memory model
is a parameter to the behaviour function. The separation of program specification and
language semantics that our framework achieves is beneficial in the sense that it reduces
the specification effort.

We aim to use the semantics from this paper to reason about concurrent programs
using interval-based rely/guarantee reasoning [8, 9]. In particular, to show that a pro-
gram modelled by C executed by a set of processes P under memory model M satisfies
a property g (expressed as an interval predicate), one would need to prove a formula of
the form � C �MP ⇒ g. If C is a parallel composition ‖p:P Cp, one can decompose proofs
of � ‖p:P Cp �MP ⇒ g into proofs � ‖p:Q Cp �MQ ⇒ r and � ‖p:R Cp �MR ∧ r ⇒ g where Q
and R are disjoint sets such that Q∪R = P and r is an interval predicate that represents
a rely condition [9, 11, 17].

Using our formalisation it is possible to prove relationships between different mem-
ory models, e.g., that SC is a special case of RTSO, which in turn is a special case of
TSO, but we leave these proofs as future work. Other future work includes mechanisa-
tion of the language semantics in a theorem prover, and the development of high-level
semantics for other weak memory models such as PSO [7] and transactional memory
[14], together with proofs that relate the various semantics.
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Abstract. We describe a type system that identifies potential type errors in dy-
namically typed languages like Python. The system uses a flow-sensitive static
analysis on bytecodes to compute, for every variable and program point, over-
approximations of the variable’s present and future use types. If the future use
types are not subsumed by the present types, the further program execution may
raise a type error, and a narrowing assertion is inserted; if future use and present
types are disjoint, it will raise a type error, and a type error assertion is inserted.
We prove that the assertions are inserted in optimal locations and thus preempt
type errors earlier than dynamic, soft, and gradual typing. We describe the details
of our type inference and assertion insertion, and demonstrate the results of an
implementation of the system with a number of examples.

1 Introduction

Dynamically typed languages such as Python are among the most widely used lan-
guages [25]. In these languages, the principle type of any variable in a program is de-
termined through runtime computations and can change throughout the execution and
between different runs. Type checking is typically carried out as the program is exe-
cuting and type errors manifest themselves as runtime errors or exceptions rather than
being detected before execution. However, type errors are an indication that the code
has latent computation errors and is therefore potentially dangerous. For example, the
Mars climate orbiter crashed into the atmosphere due to metric mixup [1]. The earlier
type errors are detected, the earlier the code can be fixed.

Fig. 1 shows a small example program with type errors. In a dynamically typed lan-
guage, the program will fail at either line 15 or line 17, depending on whether arguments
are passed to the program. Using the standard Python interpreter we can get for example
the following trace:

$ python foo.py
enter initial value: 45
Traceback (most recent call last):

File "foo.py", line 21, in <module>
File "foo.py", line 15, in main

TypeError: bad operand type for abs(): ’str’
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1 from sys import argv
2
3 def compute(x1=None,x2=None,x3=None):
4 global initial
5 if initial%5==0:
6 fin=int(input(’enter final value: ’))
7 return x1+x2+x3+fin
8 else:
9 initial-=1

10 return compute(x2,x3,initial)
11
12 def main():
13 global initial
14 if len(argv)<2:
15 initial=abs(input(’enter initial value: ’))
16 else:
17 initial=abs(argv[1])
18 print(’outcome:’,compute())
19
20 if __name__==’__main__’:
21 main()

Fig. 1. Dynamically typed program with type errors in lines 15 and 17

We can see that the program only raises a type error when it executes line 15, after the
user input has already been taken. We cannot see from the error trace, however, that
the program actually contains another type error, i.e., at line 17, which in cases when
the modulus of the entered number with 5 is less than 3. To discover this error, we are
reliant on sufficient testing.

Our goal here is the development of a preemptive type checking system that statically
analyses the program, and inserts type checking assertions that preempt (i.e., force the
termination of) the program execution as soon as a type error becomes inevitable. In
contrast, under the existing dynamic, gradual [18,19] or soft [7] typing systems, these
errors are only caught at the point that a value of an incorrect type is used. In the
example, preemptive type checking finds both errors and presents the same error traces
as shown above. Moreover, it inserts a type error assertion at the beginning of the main
function that prevents the program from executing at all, since all program executions
will lead to a type error:

def main():
raise TypeError(’Type mismatch at lines 15, 17: expected Number, found str’)
...

Now we assume that the user “fixes” this bug and manually inserts explicit type casts
into the main function:

def main():
global initial
if len(argv)<2:

initial=abs(int(input(’enter initial value: ’)))
else:

initial=abs(int(argv[1]))
print(’outcome:’,compute())

However, when this program is run without preemptive type checking, the program will,
depending on the input, either raise a type error or work as expected, for example:
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$ python foo.py
enter initial value: 3
enter final value: 3
outcome: 6

$ python foo.py
enter initial value: 2
enter final value: 3
...
TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’

As we can see, the manual debugging process is time consuming, and relies on the
right combination of inputs to find the type errors. With preemptive type checking we
can minimise this effort and find and correct type errors much quicker. Our analysis
statically infers that x1 and x2 are either of type NoneType or integers, depending
on the control flow taken by the program. It also concludes that x1 and x2 need to be
integers for the program not to raise type errors:

Failure 1 - partial Traceback:
File "foo.py", line 18, in main
File "foo.py", line 6, in compute

Variable x1 expected Number but found NoneType

Failure 2 - partial Traceback:
File "foo.py", line 18, in main
File "foo.py", line 10, in compute
File "foo.py", line 6, in compute

Variable x1 expected Number but found NoneType

Failure 3 - partial Traceback:
File "foo.py", line 18, in main
File "foo.py", line 10, in compute
File "foo.py", line 10, in compute
File "foo.py", line 6, in compute

Variable x1 expected Number but found NoneType

Note that it is difficult and expensive to determine the possible types of x1 and x2. For
example, using data flow analysis techniques, the fact that x1 can be an integer is only
discovered on a path that inlines function compute three times. We thus introduce an
effective technique that uses trails to perform a flow sensitive type inference.

Preemptive type checking also transforms the compute function so that the type
errors are preempted (see Fig. 2). The inserted assertions contain all details to identify
the source of the type error, in particular the variable causing the type error, the location
where the type error would be raised and the present type there. Hence, the user can
correct the program with minimal debugging. Note that the assertions cannot be inserted
any earlier (i.e., before the if-statement) because there are possible control flow paths
that do not raise type errors.

Preemptive type checking identifies potential type errors in advance through a flow-
sensitive static analysis. It computes, for every variable and every program point, an
over-approximation of the types of the values that have last been assigned to a variable
(its “present types”) as well as the types with which it is next used in any reachable
program point (its “future use types”). If the future use types are not subsumed by the
present types, the further program execution may raise a type error, and a correspond-
ing narrowing assertion is inserted; if future use types and present types are disjoint, the
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def compute(x1=None,x2=None,x3=None):
global initial
if initial%5==0:

if not isinstance(x1, Number): # start inserted type check
raise TypeError(...)

if not isinstance(x2, Number):
raise TypeError(...) # end inserted type check

fin=int(input(’enter final value: ’))
return x1+x2+x3+fin

else:
initial-=1
return compute(x2,x3,initial)

Fig. 2. Transformed version of the compute function

further program execution will raise a type error, and a corresponding type error asser-
tion is inserted. We prove that the assertions are inserted in optimal locations and thus
preempt type errors earlier than dynamic typing, gradual typing [18,19], and soft typing
[7]. We further show that these assertions do not change the semantics of programs that
do not raise type errors. We proceed by formalising the type system and corresponding
bytecode level type inference. Although the theory is presented for μPython, a dynam-
ically typed Python-like core language, the techniques presented are applicable for any
similar dynamically typed language such as Ruby or JavaScript, or indeed larger subsets
of Python as in our implementation. Finally, we describe an implementation of preemp-
tive type checking, including assertion insertion, for a subset of Python bytecodes, and
evaluate it on a some benchmarks.

2 The μPython Language

In this section we define μPython as a dynamically typed core language modelled on
Python. It is a bytecode based language with dynamically typed variables and dynam-
ically bound functions. Although small, the language is still sufficiently expressive to
require a rich static type analysis.

High-Level Syntax. We present the high-level syntax of μPython in Fig. 3 for illus-
trative purposes only, as our type analysis is exclusively performed at the bytecode
level. The base types of the language are standard except perhaps for the types Un of
uninitialised variables and Fn of functions. μPython supports function definitions, con-
ditional statements, assignments, and while loops. In μPython, expressions are either
function calls, constants, or variables. Valid expressions are also valid statements. There
are three built-in functions. isInst is a reflection operator to check the dynamic type of an
expression, and always returns a boolean. intOp and strOp represent prime integer and
string operations, which implicitly raise a type error if their argument is of the wrong
type. Note that conditional statements and function calls will also implicitly raise a type
error when their guard or function expressions do not evaluate to boolean or function
types respectively. This contrasts with the raise operation that will immediately raise an
explicit exception error to terminate execution.
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Statements: Expressions:
s ::= def f(x) : s (function definition) e ::= x (variable)

| return e (function return) | c (constant)
| e (expression) | e(e) (function application)
| pass (empty statement) | intOp(e) (prime integer function)
| raise (exception) | strOp(e) (prime string function)
| x = e (assignment) | isInst(e, τ ) (instance check)
| if e : s else : s (conditional)
| while e : s (loop) Types: τ ::= Int | Str | Bool | Un | Fn
| s; s (sequence) Constants: c ::= n | str | true | false

Fig. 3. Syntax of the μPython language

We have a single namespace V that comprises both variable and function names and
use the metavariables x, y (respectively f , g) to denote names that are intended to rep-
resent variables (respectively functions). In μPython, all variables have global scope.
Function definitions are semantically just assignments of anonymous, single argument
functions to variable names. Functions can be redefined at any point and within any con-
trol flow structure or scope. μPython supports higher order functions, where functions
are first class citizens.

Bytecode. Our type analysis is defined on the μPython bytecode. This is based on a
simplified machine model consisting of a store (for mapping variables to constants), an
integer-valued program counter and a single accumulator acc. The full Python VM is a
stack based machine and for presentation purposes we replace the evaluation stack with
an accumulator acc. Our implementation of preemptive type checking supports full
evaluation stacks. We use the metavariables u, v to range over names including acc.
Similar to the high-level syntax, we choose a subset of actual Python bytecodes, albeit
with minor modifications, sufficient to represent the challenges involved with static type
analysis in a dynamically typed language. We reuse the namespace V for variable and
function names but, in order to model functions, we extend the set of constants to now
include constants of type Fn made of finite sequences of bytecode instructions. For
technical convenience we also add a constant U of type Un.

instr ::= LC c (load constant) | JP n (unconditional jump) | intOp
| LG x (load global) | JIF n (jump if false) | strOp
| SG x (store global) | CF f (call function) | isInst τ

| RET (return from call) | raise

Fig. 4. The μPython bytecodes

The actual bytecodes we use are given in Fig. 4. Loading places constant values in
the accumulator, storing moves a constant to store from the accumulator. We assume
well-formed bytecode where jumps only refer to actual program locations and every
program has a RET-instruction at its final location. Note that JIF consumes the ac-
cumulator value as part of its test. The instructions intOp, strOp and raise echo the



200 N. Grech, J. Rathke, and B. Fischer

〈Σ, ε〉 → 〈ΣI , 〈M, 0〉 ::ε〉
〈Σ, 〈P, pc〉 ::S〉 → End if Ppc = RET, S = ε
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ,S〉 if Ppc = RET, S �= ε
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ c), 〈P, pc + 1〉 ::S〉 if Ppc = LC c
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ Σ(x)), 〈P, pc + 1〉 ::S〉 if Ppc = LG x
〈Σ, 〈P, pc〉 ::S〉 → if Ppc = SG x

〈Σ ⊕ (x �→ Σ(acc))⊕ (acc �→ U), 〈P, pc + 1〉 ::S〉
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ, 〈P, pc′〉 ::S〉 if Ppc = JP pc′

〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ U), 〈P, n〉 ::S〉 if Ppc = JIF n,Σ(acc) = false
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ U), 〈P, pc + 1〉 ::S〉 if Ppc = JIF n,Σ(acc) = true
〈Σ, 〈P, pc〉 ::S〉 → TypeError if Ppc = JIF n,¬Σ(acc) : Bool
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ, 〈P ′, 0〉 ::〈P, pc + 1〉 ::S〉 if Ppc = CF f,Σ(f) = P ′

〈Σ, 〈P, pc〉 ::S〉 → TypeError if Ppc = CF f,¬Σ(f) : Fn
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ U), 〈P, pc + 1〉 ::S〉 if Ppc = intOp, Σ(acc) : Int
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ U), 〈P, pc + 1〉 ::S〉 if Ppc = strOp, Σ(acc) : Str
〈Σ, 〈P, pc〉 ::S〉 → TypeError if Ppc = intOp,¬Σ(acc) : Int
〈Σ, 〈P, pc〉 ::S〉 → TypeError if Ppc = strOp,¬Σ(acc) : Str
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ true), 〈P, pc + 1〉 ::S〉 if Ppc = isInst τ,Σ(acc) : τ
〈Σ, 〈P, pc〉 ::S〉 → 〈Σ ⊕ (acc �→ false), 〈P, pc + 1〉 ::S〉 if Ppc = isInst τ,¬Σ(acc) : τ
〈Σ, 〈P, pc〉 ::S〉 → Exn if Ppc = raise

Fig. 5. Semantics of the μPython Bytecode

corresponding high-level expressions of the same names and isInst writes a boolean
into the accumulator depending on whether it contains a value of the given type. The
CF f instruction is of interest: to execute this the machine finds the sequence of instruc-
tions P ′ mapped from f in the store and pushes this program on to the call stack with
program counter 0.

Reduction Semantics. We formalise this semantics by the rules for single execution
steps of the abstract machine shown in Fig. 5. The states of the machine, State→, are
of the form 〈Σ,S〉 (where the environment Σ is a mapping from names, including acc,
to constants and S is a call stack of 〈program, program counter〉 pairs) or one of the
termination states TypeError, Exn, or End. We assume that the machine begins in state
〈Σ, ε〉. The step applicable at this point loads 〈M, 0〉 :: ε onto the call stack, where M
is the initial, or main, program. This step also sets the store to ΣI , an initial store that
contains mappings for built-ins and that maps all other names to U. We write Pn to refer
to the bytecode instruction at location n in program P . We write Σ(u) to denote lookup
in Σ and Σ ⊕ (u '→ c) to denote the environment Σ updated with the mapping u '→ c.
We also write Σ(u) : τ whenever Σ maps u to a constant of principal type τ .

3 Type Inference for μPython

A key characteristic of our dynamically typed core language is that the types of vari-
ables may change during execution. Therefore, to determine whether a type error may
occur we need to establish, for any given point of execution, two pieces of information:
the type a variable actually has and the type a variable may be used as in the future.
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We call these the present and future use types. To establish the former we perform a
traditional forwards analysis over the execution points of the program; the present type
of a variable depends on the instructions that have previously been executed. Obviously
the precise present runtime type of a variable cannot be statically determined so our
analysis uses an over-approximation of this. In order to represent the different type pos-
sibilities for a given variable, we make use of the familiar concept of union types. These
come equipped with a natural subtyping order. We extend the grammar of types to be

τ ::= Int | Str | Bool | Un | Fn | ⊥ | ( | τ " τ

and define the subtyping order <: inductively

τ <: τ

τ <: τ ′ τ ′ <: τ ′′

τ <: τ ′′ ⊥ <: τ τ <: (
τ <: τ ′

τ <: τ ′ " τ ′′
τ <: τ ′′

τ <: τ ′ " τ ′′
τ <: τ ′′ τ ′ <: τ ′′

τ " τ ′ <: τ ′′

Dual to the analysis of present types we establish the future use type using a backwards
analysis so that the future use type depends on the next instructions that will be exe-
cuted. At any given program execution point we will check that the present and future
use types are compatible, by which we simply mean that the present type is a subtype
of the future use type.

3.1 Execution Points and Trails

A naive idea of a program execution point might be a simple code location but because
variables can change type during execution, the entire call stack is important in deter-
mining their current types. In principle, program execution points must therefore be
full call stacks. The control flow graph (CFG) of a μPython program is then a relation
S → S′ between call stacks. This is unfortunate because, even for finite programs, the
CFG of all possible program execution points could then be infinite. This has drastic
consequences for a static analysis.

We address this issue by over-approximating the CFG via the simple means of trun-
cating call stacks. Specifically, given a call stack S, and an integer N ≥ 1, we write
)S*N to mean the equivalence class of all call stacks whose prefix of length N is the
same as that of the stack S. We typically omit N as this is fixed throughout. We refer
to these equivalence classes as truncated execution points and it is clear that, for each
program, they form a finite, truncated CFG as follows:

)S* → )S′* if and only if S0 → S′0 for some S0 ∈ )S*, S′0 ∈ )S′*

We will use a shorthand notation in the remainder by writing s to mean )S*, similarly
for s′ for )S′*. We will also make extensive use of the following two functions: given
a truncated execution point s we write prev(s) for the set of nodes from which s can
be reached in the truncated CFG of the program. Similarly, next(s) denotes the set of
nodes which can be reached from s.
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At the heart of our analysis is the forwards/backwards traversal of the truncated
CFG using the prev(s) and next(s) functions in order to find the present and future
use types of variables. Of course, these CFGs may contain cycles so we must take
care to terminate our analysis in cases where we have reached a point that we have
previously visited. This motivates the following: the type inferencer is expressed using
two independent inductively defined relations written

〈s, T 〉 �p u : τ and 〈s, T 〉 �f u : τ

where s is a truncated execution point and T is a trail. A trail is a set of pairs 〈s, u〉
of truncated execution points and variables. They represent the previously visited exe-
cution points (together with the variables that triggered the visit) and are used to en-
sure termination of the inferencer, as explained in the next section. The judgement
〈s, T∅〉 �p u : τ (where T∅ is the empty trail) denotes that u will have type τ after
the current instruction has been executed. The judgement 〈s, T∅〉 �f u : τ denotes that
the variable u is required to have type τ in order to execute the instructions from the
current instruction onwards without raising a TypeError.

3.2 Type Inference Rules

The type inferencer is expressed as inference rules, given in Fig. 6 and Fig. 7. The
leaf rules in Fig. 6 for inferring �p account for situations in which the present type
is fully determined by the current instruction. For example, after loading a constant
(Rule pLC) the accumulator is known to have the type of the constant that has just been
loaded. The non-leaf rules all follow a shared pattern: the types of relevant variables
in each previous state are calculated and the present type of a specific variable is the
union across the types from each previous state. The relevant variables are instruction
dependent. For example, in Rule pSG1 for the instruction SG x the type of x depends
on the type of acc in the previous states.

Again, for the rules for �f in Fig. 7 we have leaf rules and non-leaf rules. Many of the
leaf rules assign an f -type of ( to a variable. This follows in cases where that variable
is just about to be overwritten (Rules fSET/SG1). Otherwise, the immediate uses are
recorded in the type (Rules fJIF/STR/INT). Two interesting rules are fLG1 and fCF1.
In these a variable is used but its contents remain intact so there may be future uses
also. We define a meet operation on types, written as!· , in the following rules (applied
in top-down order):

τ!· (τ1 " τ2) = (τ !· τ1) " (τ !· τ2)
(τ1 " τ2)!· τ = (τ1!· τ) " (τ2!· τ)

τ !· ( = τ (!· τ = τ
τ !· τ = τ τ1!· τ2 = ⊥

It is worth noting that the trail sets T are finitely bounded. This is due to the fact that
call stacks are truncated to a fixed depth and that, for a given program, there are finitely
many code locations and finitely many variables. For a given program, we write TU
to denote the maximum trail containing all truncated execution point/variable pairs.
In fact, by virtue of the fact that trail sizes strictly decrease in non-leaf rules, that all
rules have finitely many hypotheses, and by König’s Lemma, it is guaranteed that the
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Leaf rules:

ΣI(u) : τ

〈ε, T 〉 �p u : τ
pINIT

〈s, u〉 ∈ T
〈s, T 〉 �p u : ⊥pTRAIL

〈s, u〉 �∈ T Ppc = raise

〈s, T 〉 �p u : ⊥ pRAISE

〈s, acc〉 �∈ T Ppc = LC c c : τ

〈s, T 〉 �p acc : τ
pLC

〈s, acc〉 �∈ T Ppc = isInst τ

〈s, T 〉 �p acc : Bool
pINST

〈s, acc〉 �∈ T Ppc ∈ {SG x,JIF n, strOp, intOp}
〈s, T 〉 �p acc : Un

pUSE

Non-leaf rules:

〈s, x〉 �∈ T Ppc = SG x
〈si, T ∪ {〈s, x〉}〉 �p acc : τi

〈s,T 〉 �p x :
⊔

τi
pSG1

〈s,acc〉 �∈ T Ppc = LG x
〈si, T ∪ {〈s, acc〉}〉 �p x : τi

〈s, T 〉 �p acc :
⊔

τi
pLG1

〈s, y〉 �∈ T Ppc = SG x x �= y
〈si, T ∪ {〈s, y〉}〉 �p y : τi

〈s, T 〉 �p y :
⊔

τi
pSG2

〈s, y〉 �∈ T Ppc = LG x
〈si, T ∪ {〈s, y〉}〉 �p y : τi

〈s, T 〉 �p y :
⊔

τi
pLG2

〈s, u〉 �∈ T
Ppc ∈ {RET, JP pc′,CF f}
〈si, T ∪ {〈s, u〉}〉 �p u : τi

〈s,T 〉 �p u :
⊔

τi
pRET/JP/CF

〈s, x〉 �∈ T
Ppc ∈ {LC c, JIF pc′, strOp, intOp, isInst τ}

〈si, T ∪ {〈s, x〉}〉 �p x : τi
〈s, T 〉 �p x :

⊔
τi

p*

Fig. 6. Inference rules for the �p judgement. Unless stated otherwise, s is assumed to be of the
form 〈P, pc〉 :: . . . and si ranges over prev(s).

application of the type inference rules terminates and thus, for any s, u, the judgements
〈s, T∅〉 �p u : τ and 〈s, T∅〉 �f u : τ ′ hold for some τ, τ ′.

4 Correctness

We now show that the type inference rules are correct. We give proof sketches for the
main results. Full proofs can be found in [11]. The notion of soundness for p-types
should be clear. Given a derivation 〈s, T∅〉 �p u : τ we expect that the actual runtime
type of the constant stored at u in the Σ store after the current instruction in s has been
executed to be a subtype of τ . This is formally expressed in the next theorem.

Theorem 1 (Soundness of p-types). Suppose

〈Σ, ε〉 →∗ 〈Σ,S〉 → 〈Σ′, S′〉 and 〈)S*, T∅〉 �p x : τp

and suppose τr is such that Σ′(x) : τr. Then τr <: τp.

Proof. (Sketch) The proof proceeds by induction on the number of reduction steps
taken to reach 〈Σ,S〉. For the base case we know that 〈Σ,S〉 is of the form 〈Σ, ε〉
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Leaf rules:

〈ε, T 〉 �f u : � fINIT
Ppc = RET

〈〈P, pc〉 ::ε,T 〉 �f u : � fEND
Ppc = SG x 〈s, x〉 �∈ T

〈s,T 〉 �f x : � fSG1

〈s, x〉 ∈ T
〈s, T 〉 �f u : ⊥ fTRAIL

Ppc = raise 〈s, u〉 �∈ T
〈s,T 〉 �f u : � fRAISE

Ppc ∈ {LC c, LG x, isInst τ}
〈s,acc〉 �∈ T

〈s, T 〉 �f acc : � fSET

Ppc = JIF pc′

〈s, acc〉 �∈ T
〈s, T 〉 �f acc : Bool

fJIF

Ppc = strOp
〈s, acc〉 �∈ T

〈s, T 〉 �f acc : Str
fSTR

Ppc = intOp
〈s,acc〉 �∈ T

〈s, T 〉 �f acc : Int
fINT

Non-leaf rules:

〈s, x〉 �∈ T Ppc = LG x
〈si, T ∪ {〈s, x〉}〉 �f acc : υi

〈si, T ∪ {〈s, x〉}〉 �f x : νi

〈s, T 〉 �f x :
⊔
(υi�· νi)

fLG1

s = 〈P, pc〉 ::〈P ′, n〉 :: ... 〈s, u〉 �∈ T
Ppc = RET 〈si, T ∪ {〈s, u〉}〉 �f u : τi

〈s, T 〉 �f u :
⊔

τi
fRET

〈s, acc〉 �∈ T Ppc = SG x
〈si, T ∪ {〈s, acc〉}〉 �f x : τi

〈s, T 〉 �f acc :
⊔

τi
fSG2

〈s, y〉 �∈ T Ppc ∈ {LG x,SG x}
x �= y 〈si, T ∪ {〈s, y〉}〉 �f y : τi

〈s, T 〉 �f y :
⊔

τi
fLG2/SG3

〈s, f〉 �∈ T Ppc = CF f
〈si, T ∪ {〈s, f〉}〉 �f f : τi
〈s, T 〉 �f f :

⊔
(τi�· Fn)

fCF1

〈s, u〉 �∈ T Ppc = CF f u �= f
〈si, T ∪ {〈s, u〉}〉 �f u : τi

〈s,T 〉 �f u :
⊔

τi
fCF2

〈s, u〉 �∈ T Ppc = JP n
〈si, T ∪ {〈s, u〉}〉 �f u : τi

〈s, T 〉 �f u :
⊔

τi
fJP

Ppc ∈ {LC c, JIF n, intOp, strOp, isInst τ}
〈s, x〉 �∈ T 〈si, T ∪ {〈s, x〉}〉 �f x : τi

〈s,T 〉 �f x :
⊔

τi
f*

Fig. 7. Inference rules for the �f judgement. Unless stated otherwise, s is assumed to be of the
form 〈P, pc〉 :: . . . and si ranges over prev(s).

and that there is a unique reduction step from this state whose target has store ΣI

(cf. Fig. 5). The type rule pINIT then guarantees the desired result. The inductive case
requires a case analysis on the last type rule used to derive type τp. The leaf rules all
follow from the definition of reduction but the non-leaf rules require use of the induc-
tive hypothesis along with the following lemma that relates the types of variables as the
trail sets are increased. !"

Lemma 1 (Bounding). For all u, v, s, s′ and all T ′ ⊆ T such that 〈s, T ′〉 �p u : τ ′

and 〈s′, T ∪ {〈s, u〉}〉 �p v : τ ′′ then τ <: τ ′ " τ ′′ whenever 〈s′, T 〉 �p v : τ .

Intuitively, the lemma states that the most type information that can be gained for u
in the absence of the trail assumption 〈s, v〉 is what can be established for u, with the
assumption in place, along with any possible contribution to the type from v itself.
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The correctness criteria for f -types are more subtle. The f -types describe constraints
on future uses of a variable and we will use these constraints to report type errors pre-
emptively by raising type error exceptions. So correctness in this case must mean that,
supposing we execute the program in a preemptive type checked semantics, if we raise
a type error exception then the same program running in the non-preemptive semantics
would continue executing to reach an actual type error. In addition, we must also al-
low for the possibility that the program in the non-preemptive semantics could diverge
before reaching the detected future error.

In order to formalise the above, we will need to define the preemptive type checked
semantics and a predicate on states that holds whenever a future divergence or type
error is guaranteed. We begin by defining the diverge-error predicate coinductively:

Definition 1. A relation R⇑ on State→ is called a diverge-error relation if whenever
〈Σ,S〉 ∈ R⇑ then

〈Σ,S〉 → 〈Σ′, S′〉 ∧ 〈Σ′, S′〉 ∈ R⇑ or 〈Σ,S〉 → TypeError.

Let ⇑ be the largest diverge-error relation.

It follows that a state in a diverge-error relation cannot reach the state End or Exn.

Definition 2. The state compatibility predicate SC holds at 〈Σ,S〉 if for all variables
u such that 〈s, T∅〉 �f u : τf and Σ(u) : τr then τr <: τf , where s = )S*.

The next proposition demonstrates that this simple predicate would already by sufficient
for preemptive type checking. However, we will see in the next section that SC may be
refined to make better use of static type information.

Proposition 1 (Soundness of f -types). If 〈Σ,S〉 �∈ SC then 〈Σ,S〉 ∈ ⇑.

Proof. (Sketch) We use coinduction here by proving that the complement of SC is itself
a diverge-error relation. To do this we suppose that 〈Σ,S〉 �∈ SC to see that there is
some u for which Σ(u) : τr, and 〈s, T∅〉 �f u : τf and τr �<: τf . We perform a case
analysis on the last rule used to derive the type τf and see that, for all applicable leaf
rules, then state 〈Σ,S〉 reduces to TypeError. For all non-leaf rules, a lemma analogous
to Lemma 1 is used to show that where 〈Σ,S〉 reduces to some 〈Σ′, S′〉 then 〈Σ′, S′〉 �∈
SC as required. !"

4.1 Checked μPython Semantics

The naive runtime type check SC above simply checks whether the current runtime
type of a variable is a subtype of the statically inferred f -type. However, we have also
statically calculated the p-types as a sound approximation of the runtime types and we
can leverage this to obtain a type check that can be partially evaluated statically. This
predicate is defined on edges in the truncated CFG.

Definition 3. The edge compatibility predicate EC holds at 〈s, s′, Σ′〉 if for all vari-
ables u, such that

〈s, T∅〉 �f u : τf 〈s′, T∅〉 �f u : τ ′f 〈s, T∅〉 �p u : τp Σ′(u) : τ ′r
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then
τf = τ ′f or τp <: τ ′f or τ ′r <: τp!· τ ′f

Essentially this says that, if the program moves from a state s to a state s′ then the f -
types report no error if there is no change in the future use constraints, if the statically
approximated runtime type is a subtype of future uses, or if the actual new runtime type
of a variable is within the future use set (modulated by the present type). Clearly only the
latter of these requires the inspection of the runtime types and even then, where the meet
τp!· τ ′f is ⊥, we know statically that the predicate must fail as there are no constants of
type ⊥. The predicate EC is used extensively in our checked μPython semantics, as is
the following predicate that allows type incompatibilities to be propagated backwards
through the CFG.

Definition 4. The fail edge predicate FE holds at 〈s, s′〉 if s ∈ prev(s′) and either
∀Σ′ · 〈s, s′, Σ′〉 �∈ EC ′ or {〈s′, s′′〉 | s′′ ∈ next(s′)} ⊆ FE .

Definition 5. The checked semantics is defined as a binary relation � on the set of
states, State� comprised of 〈Σ,S〉 states, End, and Exn such that:

〈Σ,S〉 � End if〈Σ,S〉 → End
〈Σ,S〉 � Exn if〈Σ,S〉 → Exn
〈Σ,S〉 � Exn if〈Σ,S〉 → 〈Σ′, S′〉 ∧ 〈s, s′, Σ′〉 �∈ EC
〈Σ,S〉 � Exn if〈Σ,S〉 → 〈Σ′, S′〉 ∧ 〈s, s′〉 ∈ FE
〈Σ,S〉 � 〈Σ′, S′〉 if〈Σ,S〉 → 〈Σ′, S′〉 otherwise

Definition 6. A relation R≤ on State→ × State�, which relates only identical non-
terminating states (i.e., if 〈Σ,S〉R≤〈Σ1, S1〉 then Σ = Σ1 and S = S1) is called an
error-preserving simulation if the following holds:

· 〈Σ,S〉 �→ TypeError
· If 〈Σ,S〉 → End then 〈Σ,S〉 � End.
· If 〈Σ,S〉 → Exn then 〈Σ,S〉 � Exn.
· If 〈Σ,S〉 → 〈Σ′, S′〉 then either

· 〈Σ,S〉 � 〈Σ′, S′〉 ∧ 〈Σ′, S′〉 ∈ R≤ or
· 〈Σ,S〉 � Exn ∧ 〈Σ′, S′〉 ∈ ⇑

Let � be the largest error-preserving simulation.

Theorem 2. Let RSC be defined as

{〈Σ,S〉, 〈Σ,S〉 | 〈ΣI , 〈M, 0〉 ::ε〉 →∗ 〈Σ,S〉 ∧ 〈Σ,S〉 ∈ SC}

Then RSC is an error-preserving simulation and hence RSC ⊆�.

Proof. (Sketch) It is easy to see that states 〈Σ,S〉 in RSC preserve termination steps.
To show that 〈Σ,S〉 �→ TypeError we use proof by contradiction by assuming a type
error and analyse all possible reduction steps that could cause this. In each case the
inferred types must contradict the hypothesis that 〈Σ,S〉 ∈ SC . To show that transi-
tions are preserved by matching checked transitions or exceptions that guarantee future
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divergence we consider the possible derivations of the checked semantics. In case that
〈s, s′, Σ′〉 �∈ EC we note τ ′r �<: τp!· τ ′f and thus, using Theorem 1 and Proposition 1,
we have 〈Σ′, S′〉 ∈ ⇑. In case 〈s, s′, Σ′〉 ∈ EC we analyse each type rule to show that
〈Σ′, S′〉 ∈ SC . !"

Corollary 1. Suppose 〈ΣI , 〈M, 0〉 ::ε〉 �∗N ��. Then N is either End or Exn.

Proof. We note immediately that 〈Σ, ε〉 ∈ SC holds by virtue of rule fINIT of Fig. 7.
Therefore we have 〈Σ, ε〉RSC 〈Σ, ε〉 and hence by the above theorem we have 〈Σ, ε〉 �
〈Σ, ε〉. Now, suppose for contradiction that N is neither End or Exn. Then we must
have N being some 〈Σ,S〉 such that 〈Σ,S〉 � 〈Σ,S〉. This tells us that 〈Σ,S〉 �→
TypeError and, by the definition of → we must have 〈Σ,S〉 → 〈Σ′, S′〉 for some
〈Σ′, S′〉. This means that N � N ′ for some N ′ also, contradicting maximality. !"

4.2 Optimality

Now that we have shown the correctness of our type inferencer, we would like to estab-
lish that our type inference system is optimal in the sense that the checked semantics
report an Exn as soon as the control flow reaches a point where all possible further
execution steps in the unchecked semantics lead to state TypeError. Since our analysis
considers variables individually, we can only prove that our inference system satisfies a
milder form of optimality in general, along execution sequences in which there are no
branches of control flow.

Definition 7. A reduction step 〈Σ,S〉 → 〈Σ′, S′〉 is called linear if next(s) = {s′}. A
sequence 〈Σ,S〉 →∗ 〈Σ′, S′〉 is called linear if each step in the sequence is linear.

Theorem 3 (Linear optimality). Suppose 〈Σ, ε〉 �∗〈Σ,S〉 such that there is a linear
reduction sequence 〈Σ,S〉 →∗TypeError. Then 〈Σ,S〉 � Exn.

Proof. (Sketch) This is proved by assuming for contradiction that 〈Σ,S〉 � 〈Σ′, S′〉
and 〈Σ′, S′〉 � Exn. We consider the cases that derive the latter step and can quickly
rule out 〈Σ′, S′〉 being the source of a fail edge because the assumption of linearity
guarantees that 〈s, s′, Σ′〉 ∈ FE in this case, which contradicts our assumption. There-
fore we must have 〈s′, s′′, Σ′′〉 �∈ EC . We then consider the type rules used to derive
the f -type in state 〈Σ′, S′〉 and use these to derive a contradiction. !"

Linear optimality is not as restrictive as it might seem: the fail edge predicate FE prop-
agates guaranteed type errors backwards even over control flow splits.

4.3 Type Checks Insertion

We now describe an algorithm that transforms bytecode programs by inserting type
checks and explicit errors in such a way that the transformed program implements the
checked semantics. An important point to note, however, is that the checked semantics
is defined in terms of edges of the truncated CFG and that nodes in this graph do not
correspond uniquely to program locations. That is, each program location may occur
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P ′ ←− ε
for pc ←− 0.. size(P )− 1:

s←− �〈P, pc〉 ::s�N
for s′ ∈ next(s):

if Ppc = JIF pc′ ∧ s′ = 〈P, pc′〉 :: ...∧ 〈s, s′〉 ∈ FE: extend(P ′, failIfFalse)
if Ppc = JIF pc′ ∧ s′ = 〈P, pc + 1〉 :: ...∧ 〈s, s′〉 ∈ FE: extend(P ′, failIfTrue)
if 〈ε, s〉 ∈ FE: extend(P ′, raise)
if Ppc �∈ {JIF pc′,CF f, JP pc′}: extend(P ′, Ppc)
for x ∈ V:

let 〈s, T∅〉 �p x : τp 〈s, T∅〉 �f x : τf 〈s′, T∅〉 �f x : τ ′
f

if ¬(τf = τ ′
f ∨ τp <: τ ′

f ):

if Ppc = JIF pc′ ∧ s′ = 〈P, pc′〉 :: ...: extend(P ′, checkIfFalse(x, τp�· τ ′
f ))

if Ppc = JIF pc′ ∧ s′ = 〈P, pc + 1〉 :: ...: extend(P ′, checkIfTrue(x, τp�· τ ′
f ))

if Ppc �= JIF pc′: extend(P ′, check(x, τp�· τ ′
f ))

if Ppc = CF f:
〈Q, 0〉 :: ...←− s′

extend(P ′, call(specialise(Q, s)))

if Ppc = JIF pc′ ∨ Ppc = JP pc′: extend(P ′, Ppc)

Fig. 8. Algorithm for inserting type checks in μPython programs, expressed as a function
specialise(P, s) that returns an updated program P ′

many times as the currently executing instruction in different nodes of the graph. For
this reason, the bytecode transformation takes as a parameter the particular truncated
call stack against which we are inserting checks. Where the same program is reached
with a different call stack, a specialised copy of the program bytecode is created with
the relevant assertions for that different call stack inserted. Of course, call sites must be
updated to call these specialised programs also.

The algorithm (see Fig. 8) iterates over every instruction of the program, extending
the call stack with this instruction as the current one. It then considers edges in the
truncated CFG from this point in order to implement the FE and EC predicates. The
algorithm uses bytecode macros that are underlined in the algorithm and implemented
as a sequence of μPython bytecode instructions. Procedure extend takes a program and
a list of instructions and appends the instructions to the end of the given program.

5 Implementation

We have implemented the system as a Python library for a subset of Python 3.3. We
suppport both local and global variables, which helps make the system scalable as most
variables in typical programs are local. Our implementation handles 40 bytecodes in to-
tal. In particular, we support extra bytecodes for arithmetic, more control structures such
as while-loops, local variables, some built-in data structures and polyadic functions.

Architecture. In Python the load path for individual modules can sometimes only be
resolved at runtime, and the bytecode for a module that requires type checking may
not be available statically. We therefore postpone our analysis until the program has
stabilised. Hence, during initialisation, the full power of Python can be used, including
metaclasses, eval and dynamic code loading. The entry point to the type checking
mechanism is the analysis in the class Analyser. This takes a callable object
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such as the main function, and an integer truncation level N . By starting the analysis
once the environment has stabilised, we obtain a more accurate type analysis.

Analysis. As our system is built upon a static control flow analysis, we need an im-
plementation for this. Our type inference and its correctness are independent of the
particular choice, as long as the analysis returns an over-approximation of the actual
control flow at runtime. Similarly, our implementation is parametric in the implementa-
tion of the control flow analysis. As a proof of concept, we use a simplified version of
next(.) and prev(.) in which we assume that all function definitions are declared once.

The Analyser first constructs the truncated CFG and then iterates over all nodes in
order to calculate the p and f -types for the accumulator. This triggers recursive compu-
tations for other variables. All runtime type errors arise due to an ill-typed accumulator
value and therefore, to just identify the type errors, the type of the accumulator is suffi-
cient. However, in order to preempt type errors, the types of all other variables that feed
into the computation are necessary as well. All type calculations are cached during the
iteration across the CFG so that p and f types for all necessary variables in all states
are established. An implementation of specialise as in Fig. 8 is then used to transform
the program so that it implements preemptive type checking. This is carried out on the
given callable object, such as main, and all other functions it may call. Then, calling
the specialised main activates the preemption to catch any runtime type errors.

The Analyser class can also statically issue messages explaining the potential type
failures in the given function. This includes partial stack traces with the expected type
errors. Along with the expected and actual types. This information is derived from our
internal representation of execution points and types.

Full Evaluation Stacks. The Python virtual machine is a stack based machine. The
evaluation stack serves as working memory and is read and manipulated by a large por-
tion of bytecode instructions. For example, load operations push a single element on
to the stack while store operations pop a single element from it. In general, bytecode
instructions may displace stack elements by a number of positions, which can be deter-
mined statically. Although the theory outlined above uses a single element evaluation
stack (i.e. the accumulator), the implementation already supports the full stack model.
We adjust the inference rules above to cater for a full stack machine simply by statically
calculating how much the stack is shifted for every instruction and factoring that in to
identify the particular variables that we need to analyse in the type inference rules.

6 Evaluation

We tested our implementation on a number of Python benchmarks and examples from
the Computer Language Benchmarks Game [2]. In order to run the benchmarks we
had to manually provide type information for external functions such as cout. Some
benchmarks in this suite have been ported from original code in statically typed lan-
guages and therefore type errors should be rare. One of the benchmarks that we anal-
ysed is mandelbrot, which plots the Mandelbrot set on a bitmap. This raises a type
error when this is run with certain parameters due to a tuple of bytes being used instead
of a byte string by function cout. With our tool, failure assertions are inserted at two
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different points, which preempt the type error. Warnings are also statically displayed,
which indicate the type errors.

The largest benchmark that we tested is meteor-contest, where the C++ ver-
sion of this is 500 lines of code. A number of type checks were inserted, especially
since some type information is lost, such as when heterogenous objects are placed into
lists and subsequently retrieved. When running this benchmark no type errors were en-
countered, with or witout preemptive type checking. A possible failure was however
statically inferred by our analyser in function findFreeCell:
45 def findFreeCell(board):
46 for y in range(height):
47 for x in range(width):
48 if board & (1 << (x + width*y)) == 0:
49 return x,y

We can see that if no free cells are found in a board, this function will not return any-
thing, so by default this would return None. In this case, a type error would occur as
None cannot be unpacked, like a tuple. The programmer is therefore assuming an in-
variant that asserts that a “free cell” will always be found in the “board”. The invariant
that the loop will never terminate without returning is explicitly inserted by our tool. If
this program is run using preemptive type checking, a preemptive type checking error
is raised as soon as the loop at line 47 exits.

Preemptive type checking can be successfully scaled to medium sized programs. For
example, the benchmark meteor-contest with a maximum execution point depth
of 4 yields a control flow graph with over 30k nodes. In this case, it took under half an
hour to analyse the program and 15 seconds to transform it on a standard workstation.
The same program however takes under ten seconds to analyse and transform when the
maximum execution point depth is set to 1. Optimality is still guaranteed in both cases,
however more error information can be presented to the user with a larger execution
point depth.

Preemptive type checking can be also particularly helpful for less experienced pro-
grammers and so we also tested our implementation on code in a question posed by a
Python beginner on stackoverflow.com.1 Our implementation statically produces warn-
ings that corroborate the answer given to this question by Python developers.

7 Related Work

Combinations of static and dynamic typing have been proposed, which enable stati-
cally typed code to interact with dynamically typed code. The initial work focused on
increasing the degree of dynamic typing in statically typed languages. Abadi et al. [3]
introduced the type Dyn to model finite disjoint unions or subclassing in object-oriented
languages. The use of dynamic types is constrained (values of type Dyn can only be
used in a typecase-construct) and therefore casting is made explicit. In Gradual typing
[18], type consistency � (a reflective, symmetric but non-transitive relation) is used to
relate Dyn with static types, and Dyn is statically consistent with any type. Gradual typ-
ing can support type inferance [19,24] and can be applied to object oriented languages

1 http://stackoverflow.com/questions/320827/
python-type-error-issue

http://stackoverflow.com/questions/320827/python-type-error-issue
http://stackoverflow.com/questions/320827/python-type-error-issue


Preemptive Type Checking in Dynamically Typed Languages 211

[24]. Intermediaries between Dyn and static types are introduced by Flanagan [9] (Hy-
brid types) and by Wrigstad [23] (like types). The type systems discussed here do not
perform any type error preemption.

As in preemptive type checking, soft typing [7] uses union types to approximate
static types in an untyped language and inserts type narrowers to prevent implicit type
error exceptions. However, the original work [7] did not handle assignments, so there
is no notion of preemption. Soft typing was extended to support Scheme [22] and to
handle assignments, but all occurrences of the assigned variable have to have the same
type, which makes it impossible to successfully typecheck even the simple example
from Fig. 1. Soft typing has also been applied to Python [15] and Erlang [13]. In the
latter, the author also bases the type system on a data flow analysis, but does not distin-
guish between p and f types. Bracha introduces the notion of pluggable type systems
[5]. Since preemptive type checking does not affect the semantics of μPython in runtime
executions that terminate without raising type errors (Section 4) and no type annotations
are required, our type system meets this definition.

We now look at static type inference mechanisms, which turn dynamically typed
languages into statically typed subsets. Strongtalk [6] is a subset of Smalltalk with
features such as polymorphic signatures, protocol based inheritance, generics and para-
metric polymorphism. This language also supports the typecase construct. This work
however does not define a formal type system or describe how omitted type annotations
are treated. Felleisen and Tobin-Hochstadt [21] propose the notion of occurrence typ-
ing for implementing a statically typed version of Scheme. A translation of the simple
example in Fig. 1 is statically rejected by this system. Similarly, statically typed subsets
of Python [4] and Ruby [10] have been proposed. These however do not catch all type
errors statically, and limit the expressiveness of the language by flagging false positives.
Recency types [20] deal with object initialisation patterns in JavaScript, where mem-
bers are assigned dynamically. The concept of a recency type is similar to the present
types in our work. Present types are however more sophisticated as these can change
throughout intraprocedural paths of control flow rather than blocks.

Lastly, we look at control flow analysis for dynamically typed languages. k-CFA [16]
is an algorithm to perform inter-procedural control flow analysis on Scheme by abstract
interpretation. Unfortunately, some variants of k-CFA are intractable [17].

8 Conclusions and Future Work

In this paper, we introduce a new method for type checking dynamically typed programs
that combines elements of both static and dynamic type checking. It is described as
preemptive type checking since the type checking happens much earlier than in dynamic
typing. Preemptive type checking tries to detect type errors as early as possible and
guarantees that any program that can run to completion under dynamic typing without
raising a type error will also work with preemptive type checking. We also evaluate an
implementation for a subset of Python.

In the future, we plan to add features such as classes and objects, possibly using
structural types [14]. This can be complemented with a control flow analysis algorithm
such as k-CFA [16]. We also intend to investigate how preemptive type checking can
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be applied to other popular dynamically typed languages such as JavaScript. Finally,
we intend to support metaprogramming by going back and forth between type checking
and runtime whenever a new part of the running program is generated.
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Abstract. We consider the extensions of modal transition systems
(MTS), namely Boolean MTS and parametric MTS and we investigate
the refinement problems over both classes. Firstly, we reduce the problem
of modal refinement over both classes to a problem solvable by a QBF
solver and provide experimental results showing our technique scales
well. Secondly, we extend the algorithm for thorough refinement of MTS
providing better complexity than via reductions to previously studied
problems. Finally, we investigate the relationship between modal and
thorough refinement on the two classes and show how the thorough re-
finement can be approximated by the modal refinement.

1 Introduction

Due to the ever increasing complexity of software systems and their re-use,
component-based design and verification have become crucial. Therefore, having
a specification formalism that supports component-based development and step-
wise refinement is very useful. In such a framework, one can start from an initial
specification, proceed with a series of small and successive refinements until even-
tually a specification is reached from which an implementation can be extracted
directly. In each refinement step, we can replace a single component of the cur-
rent specification with a more concrete/implementable one. The correctness of
such a step should follow from the correctness of the refinement of the replaced
component, so that the methodology supports compositional verification.

Modal transition systems (MTS) were introduced by Larsen and Thomsen
[LT88] in order to obtain an operational, yet expressive and manageable specifi-
cation formalism meeting the above properties. Their success resides in natural
combination of two features. Firstly, the simplicity of labelled transition sys-
tems, which have proved appropriate for behavioural description of systems as
well as their compositions; MTS as their extension inherit this appropriateness.
Secondly, as opposed to e.g. temporal logic specifications, MTS can be easily
gradually refined into implementations while preserving the desired behavioural
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properties. In this work, we focus on checking the refinement between MTS and
also their recent extensions.

The formalism of MTS has proven to be useful in practice. Industrial appli-
cations are as old as [Bru97] where MTS have found use for an air-traffic system
at Heathrow airport. Besides, MTS are advocated as an appropriate base for in-
terface theories in [RBB+09] and for product line theories in [Nym08]. Further,
MTS based software engineering methodology for design via merging partial
descriptions of behaviour has been established in [UC04]. Moreover, the tool
support is quite extensive, e.g. [BLS95, DFFU07, BML11, BČK11].

MTS consist of a set of states and two transition relations. The must tran-
sitions prescribe which behaviour has to be present in every refinement of the
system; the may transitions describe the behaviour that is allowed, but need not
be realized in the refinements. This allows for underspecification of non-critical
behaviour in the early stage of design, focusing on the main properties, verifying
them and sorting out the details of the yet unimplemented non-critical behaviour
later.

Over the years, many extensions of MTS have been proposed. While MTS
can only specify whether or not a particular transition is required, some ex-
tensions equip MTS with more general abilities to describe what combinations
of transitions are possible. Disjunctive MTS (DMTS) [LX90] can specify that
at least one of a given set of transitions is present. One selecting MTS [FS08]
allow to choose exactly one of them. Boolean MTS (BMTS) [BKL+11] cover
all Boolean combinations of transitions. The same holds for acceptance au-
tomata [Rac07] and Boolean formulae with states [BDF+], which both express
the requirement by listing all possible sets instead of a Boolean formula. Para-
metric MTS (PMTS) [BKL+11] add parameters on top of it, so that we can also
express persistent choices of transitions and relate possible choices in different
parts of a system. This way, one can model hardware dependencies of transitions
and systems with prices [BKL+12].

Our Contribution. In this paper, we investigate extensions of MTS with re-
spect to two notions of refinement. The modal refinement is a syntactically de-
fined notion extending on the one hand bisimulation and on the other hand
simulation. Similarly to bisimulation having a counterpart in trace equivalence,
here the counterpart of modal refinement is the thorough refinement. It is the
corresponding semantically defined notion relating (by inclusion) the sets of im-
plementations of the specifications.

We focus both on theoretical and practical complexity of the refinement prob-
lems. While modal refinement on MTS and disjunctive MTS can be decided in
polynomial time, on BMTS and PMTS it is higher in the polynomial hierarchy
(Π2 and Π4, respectively). The huge success of SAT and also QBF solvers in-
spired us to reduce these refinement problems to problems solvable by a QBF
solver. We have also performed experiments showing that this solution scales
well in the size of the system as well as in the number of parameters, while a
direct naive solution is infeasible.
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Furthermore, we extend the decision algorithm for thorough refinement check-
ing over MTS [BKLS12] and DMTS [BČK10] to the setting of BMTS and PMTS.
We show how PMTS can be translated to BMTS and BMTS can then be trans-
formed to DMTS. As we can decide the problem on DMTS in EXPTIME, this
shows decidability for BMTS and PMTS, but each of the translations is in-
evitably exponential. However, we show better upper bounds than doubly and
triply exponential. To this end, we give also a direct algorithm for showing the
problem is in NEXPTIME for BMTS and 2-EXPTIME for PMTS.

Since the thorough refinement is EXPTIME-hard for alreadyMTS, it is harder
than the modal refinement, which is in P for DMTS and in Π4 for PMTS. There-
fore, we also investigate how the thorough refinement can be approximated by
the modal refinement. While underapproximation is easy, as modal refinement
implies thorough refinement, overapproximation is more difficult. Here we ex-
tend our method of the deterministic hull for MTS [BKLS09] to both BMTS
and PMTS. We prove that for BMTS modal and thorough refinements coincide
if the refined system is deterministic, which then yields an overapproximation
via the deterministic hull. Finally, in the case with PMTS, we need to overap-
proximate the behaviour dependent on the parameters, because the coincidence
of the refinements on deterministic systems fails for PMTS.

Our contribution can be summarized as follows:

– We reduce the problem of modal refinement over BMTS and PMTS to a
problem solvable by a QBF solver. We provide promising experimental re-
sults showing this solution scales well.

– We extend the algorithm for thorough refinement on MTS and DMTS to
BMTS and PMTS providing better complexity then via translation of these
formalisms to DMTS. This also shows (together with results on modal re-
finement) that we can make use of the more compact representation used in
the formalisms of BMTS and PMTS.

– We investigate the relationship between modal and thorough refinement on
BMTS and PMTS. We introduce approximation methods for the thorough
refinement on BMTS and PMTS through the modal refinement.

RelatedWork. There are various other approaches to deal with component re-
finements. They range fromsubtyping [LW94] over Javamodelling language [JP01]
to interface theories close to MTS such as interface automata [dAH01]. Similarly
to MTS, interface automata are behavioural interfaces for components. However,
their composition works very differently. Furthermore, its notion of refinement is
based on alternating simulation [AHKV98], which has been proved strictly less ex-
pressive than MTS refinement—actually coinciding on a subclass of MTS—in the
paper [LNW07], which combines MTS and interface automata based on I/O au-
tomata [Lyn88]. The compositionality of this combination is further investigated
in [RBB+11].

Further, alternatively to the design of correct software where an abstract
verified MTS is transformed into a concrete implementation, one can consider
checking correctness of software through abstracting a concrete implementation
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into a coarser system. The use of MTS as abstractions has been advocated
e.g. in [GHJ01]. While usually overapproximations (or underapproximations) of
systems are constructed and thus only purely universal (or existential) properties
can be checked, [GHJ01] shows that using MTS one can check mixed formulae
(arbitrarily combining universal and existential properties) and, moreover, at
the same cost as checking universal properties using traditional conservative
abstractions. This advantage has been investigated also in the context of systems
equivalent or closely related to MTS [HJS01, DGG97, Nam03, DN04, CGLT09,
GNRT10].

MTS can also be viewed as a fragment of mu-calculus that is “graphically
representable” [BL90, BDF+]. The graphical representability of a variant of al-
ternating simulation called covariant-contravariant simulation has been recently
studied in [AFdFE+11].

Outline of the Paper. In Section 2, we recall the formalism of MTS and the
extensions discussed and in Section 3 the modal refinement problem is restated.
We then reduce it to a QBF problem in Section 4. In Section 5, we give a solution
to the thorough refinement problems. Section 6 investigates the relationship of
the two refinements and how modal refinement can approximate the thorough
refinement. We conclude in Section 7.

2 Modal Transition Systems and Boolean and Parametric
Extensions

In this section, we introduce the studied formalisms of modal transition sys-
tems and their Boolean and parametric extensions. We first recall the standard
definition of MTS:

Definition 2.1. A modal transition system (MTS) over an action alphabet Σ
is a triple (S, ��,−→), where S is a set of states and −→ ⊆ �� ⊆ S ×Σ × S
are must and may transition relations, respectively.

The MTS are often drawn as follows. Unbroken arrows denote the must (and
underlying may) transitions while dashed arrows denote may transitions where
there is no must transition.

Example 2.2. The MTS on the right is adapted from [BKL+11] and models
traffic lights of types used e.g. in Europe and North America. In state green on

go

readygo

ready sto
p

the left there is a must transition under ready to state
yellow from which there is must transition to red . Here
transitions to yellowRed and back to green are may
transition. Intuitively, this means that any final im-
plementation may have either one, both or none of
the transitions. In contrast, the must transitions are
present in all implementations.

Note that using MTS, we cannot express the set of
implementations with exactly one of the transitions in
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red . For that, we can use Boolean MTS [BKL+11] instead, which can express not
only arbitrary conjunctions and disjunctions, but also negations and thus also
exclusive-or. However, in Boolean MTS it may still happen that an implemen-
tation alternates transitions to green and yellowRed between two traffic lights
cycles. To make sure the choice will remain the same in the whole implementa-
tion, parametric MTS have been introduced [BKL+11] extending the Boolean
MTS.

Before we define the most general class - the parametric MTS - and derive
other classes as special cases, we first recall the standard propositional logic.
A Boolean formula over a set X of atomic propositions is given by the following
abstract syntax

ϕ ::= tt | x | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ

where x ranges over X . The set of all Boolean formulae over the set X is denoted
by B(X). Let ν ⊆ X be a valuation, i.e. a set of variables with value true, then
the satisfaction relation ν |= ϕ is given by ν |= tt, ν |= x iff x ∈ ν, and
the satisfaction of the remaining Boolean connectives is defined in the standard
way. We also use the standard derived operators like exclusive-or ϕ ⊕ ψ :=
(ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ), implication ϕ ⇒ ψ := ¬ϕ ∨ ψ and equivalence ϕ ⇔ ψ :=
(¬ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ).

We can now proceed with the definition of parametric MTS. In essence, it is
a labelled transition system, in which we can specify which transitions can be
present depending on values of some fixed parameters.

Definition 2.3. A parametric modal transition system (PMTS) over an action
alphabet Σ is a tuple (S, T, P, Φ) where

– S is a set of states,
– T ⊆ S ×Σ × S is a transition relation,
– P is a finite set of parameters, and
– Φ : S → B((Σ × S) ∪ P ) is an obligation function over the outgoing tran-

sitions and parameters. We assume that whenever (a, t) occurs in Φ(s) then
(s, a, t) ∈ T .

A Boolean modal transition system (BMTS) is a PMTS with the set of parame-
ters P being empty. A disjunctive MTS (DMTS) is a BMTS with the obligation
function in conjunctive normal form and using no negation. An implementation
(or labelled transition system) is a BMTS with Φ(s) =

∧
(s,a,t)∈T (a, t) for each

s ∈ S.

An MTS is then a BMTS with Φ(s) being a conjunction of positive literals (some
of the outgoing transitions), for each s ∈ S. More precisely, �� is the same as
T , and (s, a, t) ∈ −→ if and only if (a, t) is one of the conjuncts of Φ(s).

Example 2.4. A PMTS which captures the traffic lights used in Europe for cars
and pedestrians is depicted below. Depending on the valuation of parameter
reqYellow , we either always use the yellow light between the red and green lights,
or we never do. The transition relation is depicted using unbroken arrows.
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go

stop

readygo

ready sto
p

Parameters: P = {reqYellow}

Obligation function:
Φ(green) = ((stop, red)⊕ (ready , yellow))

∧(reqYellow ⇔ (ready, yellow))
Φ(yellow) = (stop, red)
Φ(red) = ((go, green)⊕ (ready, yellowRed))

∧(reqYellow ⇔ (ready, yellowRed))
Φ(yellowRed) = (go, green)

3 Modal Refinement

A fundamental advantage of MTS-based formalisms is the presence of modal
refinement that allows for a step-wise system design (see e.g. [AHL+08]). We
start with the standard definition of modal refinement for MTS and then discuss
extensions to BMTS and PMTS.

Definition 3.1 (MTS Modal Refinement). For states s0 and t0 of MTS
(S1,−→1, ��1) and (S2,−→2, ��2), respectively, we say that s0 modally refines
t0, written s0 ≤m t0, if (s0, t0) is contained in a relation R ⊆ S1 × S2 satisfying
for every (s, t) ∈ R and every a ∈ Σ:

1. if s
a��1 s′ then there is a transition t

a��2 t′ with (s′, t′) ∈ R, and

2. if t
a−→2 t′ then there is a transition s

a−→1 s′ with (s′, t′) ∈ R.

Intuitively, s ≤m t iff whatever s can do is allowed by t and whatever t requires
can be done by s. Thus s is a refinement of t, or t is an abstraction of s. Fur-
thermore, an implementation of s is a state i of an implementation (labelled
transition system) with i ≤m s.

In [BKL+11], the modal refinement has been extended to PMTS (and thus
BMTS) so that it coincides with the standard definition in the MTS case. We
first recall the definition for BMTS. To this end, we set the following notation.
Let (S, T, P, Φ) be a PMTS and ν ⊆ P be a valuation. For s ∈ S, we write
T (s) = {(a, t) | (s, a, t) ∈ T } and denote by

Tranν(s) = {E ⊆ T (s) | E ∪ ν |= Φ(s)}

the set of all admissible sets of transitions from s under the fixed truth values
of the parameters. In the case of BMTS, we often write Tran instead of Tran∅.

Definition 3.2 (BMTS Modal Refinement). For states s0 and t0 of BMTS
(S1, T1, ∅, Φ1) and (S2, T2, ∅, Φ2), respectively, we say that s0 modally refines t0,
written s0 ≤m t0, if (s0, t0) is contained in a relation R ⊆ S1 × S2 satisfying for
every (s, t) ∈ R:

∀M ∈ Tran(s) : ∃N ∈ Tran(t) : ∀(a, s′) ∈ M : ∃(a, t′) ∈ N : (s′, t′) ∈ R ∧
∀(a, t′) ∈ N : ∃(a, s′) ∈ M : (s′, t′) ∈ R .
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For PMTS, we propose here a slightly altered definition, which corresponds
more to the intuition, is closer to the semantically defined notion of thorough
refinement, but still keeps the same complexity as established in [BKL+11]. We
use the following notation. For a PMTS M = (S, T, P, Φ), a valuation ν ⊆ P
of parameters induces a BMTS Mν = (S, T, ∅, Φ′) where each occurrence of
p ∈ ν in Φ is replaced by tt and of p /∈ ν by ¬tt, i.e. Φ′(s) = Φ(s)[tt/p for p ∈
ν,ff/p for p /∈ ν] for each s ∈ S. We extend the notation to states and let sν

denote the state of Mν corresponding to the state s of M.

Definition 3.3 (PMTS Modal Refinement). For states s0 and t0 of PMTS
(S1, T1, P1, Φ1) and (S2, T2, P2, Φ2), we say that s0 modally refines t0, written
s0 ≤m t0, if for every μ ⊆ P1 there exists ν ⊆ P2 such that sμ0 ≤m tν0 .

Before we comment on the difference to the original definition, we illustrate the
refinement on an example of [BKL+11] where both definitions coincide.

Example 3.4. Consider the rightmost PMTS below. It has two parameters,
namely reqYfromG and reqYfromR whose values can be set independently and it
can be refined by the system in the middle of the figure having only one param-
eter reqYellow . This single parameter simply binds the two original parameters
to the same value. The PMTS in the middle can be further refined into the
implementations where either yellow is always used in both cases, or never at all
as discussed in the previous example. Up to bisimilarity, the green state of this
system only has the two implementations on the left.

go

stop

readygo

ready sto
p

Parameters: P = {reqYfromR, reqYfromG}

Obligation function:

Φ(yellowRed) = (go, green)

Φ(green) = ((stop, red)⊕ (ready , yellow))
∧(reqYfromG ⇔ (ready , yellow))

Φ(yellow) = (stop, red)
Φ(red) = ((go, green)⊕ (ready, yellowRed))

∧(reqYfromR ⇔ (ready, yellowRed))

go

stop

readygo

ready sto
p

Parameters: P = {reqYellow}

Obligation function:

Φ(yellowRed) = (go, green)

Φ(green) = ((stop, red)⊕ (ready , yellow))
∧(reqYellow ⇔ (ready, yellow))

Φ(yellow) = (stop, red)
Φ(red) = ((go, green)⊕ (ready, yellowRed))

∧(reqYellow ⇔ (ready, yellowRed))

go

stop

readygo

ready sto
p

≤m

≤
m

≤m

The original version of [BKL+11] requires for s0 ≤m t0 to hold that there be
a fixed R ⊆ S1 × S2 such that for every μ ⊆ P1 there exists ν ⊆ P2 satisfying
for each (s, t) ∈ R

∀M ∈ Tranμ(s) : ∃N ∈ Tranν(t) : ∀(a, s′) ∈ M : ∃(a, t′) ∈ N : (s′, t′) ∈ R ∧
∀(a, t′) ∈ N : ∃(a, s′) ∈ M : (s′, t′) ∈ R .
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Clearly, the original definition is stronger: For any two PMTS states, if s0 ≤m t0
holds according to [BKL+11] it also holds according to Definition 3.3. Indeed,
the relation for any sets of parameters can be chosen to be the fixed relation R.
On the other hand, the opposite does not hold.

Example 3.5. Consider the PMTS on the left with parameter set {p} and obli-
gation Φ(s0) = (a, s1), Φ(s1) = (b, s2) ⇔ p, Φ(s2) = tt and the PMTS on the
right with parameter set {q} and obligation Φ(t0) =

(
(a, t1) ⇔ q

)
∧
(
(a, t′1) ⇔

¬q
)
, Φ(t1) = (a, t2), Φ(t2) = Φ(t′1) = tt. On the one hand, according to our

definition s0 ≤m t0, we intuitively agree this should be the case (and note they
also have the same set of implementations). On the other hand, the original
definition does not allow to conclude modal refinement between s0 and t0. The
reason is that depending on the value of p, s1 is put in the relation either with t1
(for p being true and thus choosing q true, too) or with t′1 (for p being false and
thus choosing q false, too). In contrast to the original definition, our definition
allows us to pick different relations for different parameter valuations.

s0 s1 s2
a a

t0

t1 t2

t′1

a
a

a

We propose our modification of the definition since it is more intuitive and for
all considered fragments of PMTS has the same complexity as the original one.
Note that both definitions coincide on BMTS. Further, on MTS they coincide
with Definition 3.1 and on labelled transition systems with bisimulation.

4 Modal Refinement Checking

In this section, we show how to solve the modal refinement problem on BMTS
and PMTS using QBF solvers. Although modal refinement is Π2-complete (the
second level of the polynomial hierarchy) on BMTS and Π4-complete on PMTS
(see [BKL+11]), this way we obtain a solution method that is practically fast. We
have implemented the approach and document its scalability with experimental
results.

As mentioned, in order to decide whether modal refinement holds between
two states, a reduction to a quantified boolean formula will be used. First, we
recall the QBF decision problems.

Definition 4.1 (QBFQ
n ). Let Ap be a set of atomic propositions, which is parti-

tioned into n sets with Ap =
⋃n

i=0 Xi, and φ ∈ B(Ap) a boolean formula over this
set of atomic propositions. Let Q ∈ {∀, ∃} be a quantifier and : {∀ '→ ∃, ∃ '→ ∀}
a function. Then a formula

QX1QX2QX3 . . . Q̃Xnφ with Q̃ =

{
Q if n is odd

Q if n is even

is an instance of QBFQ
n if it is satisfiable.
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Satisfiability means that if e.g. Q = ∃ there is some partial valuation for the
atomic propositions in X1, such that for all partial valuations for the elements
of X2, there is another partial valuation for the propositions of X3 and so on up
to Xn, such that φ is satisfied by the union of all partial valuations. It is well
known that these problems are complete for the polynomial hierarchy: For each
i ≥ 1, QBF ∃i is Σi-complete and QBF ∀i is Πi-complete.

4.1 Construction for BMTS

Due to the completeness of QBF problems and the results of [BKL+11], it is
possible to polynomially reduce modal refinement on BMTS to QBF ∀2 . How-
ever, we would then have to perform a fixpoint computation to compute the
refinement relation causing numerous invocations of the external QBF solver.
Additionally this approach is not applicable in the PMTS case, hence we reduce
modal refinement to QBF ∃3 .

Let s ∈ S1 and t ∈ S2 be processes of two arbitraryBMTSsM1 = (S1, T1, ∅, Φ1)
andM2 = (S2, T2, ∅, Φ2). Furthermore let

Ap = (S1 × S2)︸ ︷︷ ︸
XR

- T1︸︷︷︸
XT1

- (S1 × T2)︸ ︷︷ ︸
XT2

be a set of atomic propositions. The intended meaning is that (u, v) ∈ XR is
assigned tt if and only if it is also contained in the modal refinement relation R.
Further, XT1 and XT2 are used to talk about the transitions. The prefix S1 is
attached to the set T2 because N ∈ Tran(t) with t ∈ S2 must be chosen indepen-
dently for different states of S1. This enables us to move the ∃ quantification.

We now construct a formula Ψs,t ∈ B(Ap) satisfying

s ≤m t iff ∃XR∀XT1∃XT2Ψs,t ∈ QBF ∃3 (1)

To this end, we shall use a macro ψu,v capturing the condition which has to be
satisfied by any element (u, v) ∈ R. Furthermore, we ensure that (s, t) is assigned
tt by every satisfying assignment for the formula by placing it directly in the
conjunction:

Ψs,t = (s, t) ∧
∧

(u,v)∈XR

(
(u, v) ⇒ ψu,v

)
(2)

It remains to define the macro ψu,v. We start with the modal refinement condi-
tion as a blueprint:

∀M ∈ Tran(u) : ∃N ∈ Tran(v) : ∀(a, u′) ∈ M : ∃(a, v′) ∈ N : (u′, v′) ∈ R ∧
∀(a, v′) ∈ N : ∃(a, u′) ∈ M : (u′, v′) ∈ R .

As M and N are subsets of T1(u) and T2(v), respectively, and are finite, the inner
quantifiers can be expanded causing only a polynomial growth of the formula size
(see [KS13]). Further, Tran sets are replaced by the original definition and the
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outer quantifiers are moved in front of Ψs,t. As the state obligations are defined
over a different set of atomic propositions (Φ(v) ∈ B((Σ × S) ∪ P ) �⊆ B(Ap)), a
family of mapping functions πp is introduced.

πp : B(Σ × S) → B(Ap)

tt '→ tt

(a, x) '→ (p, a, x) with a ∈ Σ, x ∈ S

¬ϕ '→ ¬ πp(ϕ)

ϕ1 ∧ ϕ2 '→ πp(ϕ1) ∧ πp(ϕ2)

ϕ1 ∨ ϕ2 '→ πp(ϕ1) ∨ πp(ϕ2)

(3)

Applying these steps to the blueprint yields the following result:

ψu,v = πu (Φ1 (u)) ⇒ πu,v (Φ2 (v)) ∧ ϕu,v (4)

ϕu,v =
∧

u∗∈XT1

u∗=(u,a,u′)

(
u∗ ⇒

∨
v∗∈XT2

v∗=(u,v,a,v′)

(v∗ ∧ (u′, v′))
)

∧
∧

v∗∈XT2

v∗=(u,v,a,v′)

(
v∗ ⇒

∨
u∗∈XT1

u∗=(u,a,u′)

(u∗ ∧ (u′, v′))
) (5)

Theorem 4.2. For states s, t of a BMTS, we have

s ≤m t iff ∃XR∀XT1∃XT2Ψs,t ∈ QBF ∃3

Due to space constraints, the technical proof can be found in [KS13].

4.2 Construction for PMTS

We now reduce the modal refinement on PMTS to QBF ∀4 , which now corre-
sponds directly to the complexity established in [BKL+11]. Nevertheless, due
to the first existential quantification in ∀∃∀∃ alternation sequence, we can still
guess the refinement relation using the QBF solver rather than compute the
lengthy fixpoint computation.

In the PMTS case, we have to find for all parameter valuations for the system
of s a valuation for the system of t, such that there exists a modal refinement
relation containing (s, t). We simply choose universally a valuation for the param-
eters of the left system (the underlying system of s) and then existentially for the
right system (the underlying system of t). Prior to checking modal refinement,
the valuations are fixed, so the PMTS becomes a BMTS. This is accomplished
by extending Ap with P1 and P2 and adding the necessary quantifiers to the
formula. Thus we obtain the following:

Theorem 4.3. For states s, t of a PMTS, we have

s ≤m t iff ∀P1∃P2∃XR∀XT1∃XT2Ψs,t ∈ QBF ∀4
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4.3 Experimental Results

We now show how our method performs in practice. We implemented the reduc-
tion and linked it to the QBF solver Quantor. In order to evaluate whether our
solution scales, we generate random samples of MTS, disjunctive MTS, Boolean
MTS and parametric MTS with different numbers of parameters (as displayed
in tables below in parenthesis). For each type of system and the number of
reachable states (25 to 200 as displayed in columns), we generate several pairs
of systems and compute the average time to check modal refinement between
them. While the systems in Table 1 are generated independently, the refining
systems in Table 2 are refinements of the abstract systems.

We show several sets of experiments. In Table 1, we consider (1) systems
with alphabet of size 2 and all states with branching degree 2, and (2) systems
with alphabet of size 10 and all states with branching degree 10. Further, in
Table 2, we consider systems with alphabet of size 2 and all states with branching
degree 5. Here we first consider the systems as above, i.e. with edges generated
randomly so that they create a tree and with some additional “noise” edges thus
making the branching degree constant. Second, we consider systems where we
have different “clusters”, each of which is interconnected with many edges. Each
of these clusters has a couple of “interface” states, which are used to connect to
other clusters. We use this class of systems to model system descriptions with
more organic structure.

The entries in the tables are average running times in seconds. The standard
deviation in our experiments was around 30-60%. The experiments were run on
an Intel Core 2 Duo CPU P9600 2.66GHz with 3.8 GB RAM using Java 1.7.
For more details, see [KS13].

Table 1. Experimental results: systems over alphabet of size 2 with branching degree
2 in the upper part, and systems over alphabet of size 10 with branching degree 10 in
the lower part

25 50 75 100 125 150 175 200

MTS 0.03 0.15 0.29 0.86 0.87 0.96 1.88 2.48
DMTS 0.04 0.22 0.39 0.91 1.13 1.34 2.61 3.19
BMTS 0.03 0.15 0.30 0.62 0.83 0.87 1.61 2.17
PMTS(1) 0.03 0.20 0.37 0.84 0.97 1.23 2.44 3.15
PMTS(5) 0.04 0.22 0.42 0.91 1.26 1.59 2.83 3.66

MTS 0.18 0.84 2.12 3.88 5.63 7.64 10.30 14.18
DMTS 0.44 2.23 5.31 8.59 10.13 14.14 13.96 66.92
BMTS 0.21 1.08 2.65 4.58 6.70 9.63 12.44 17.06
PMTS(1) 0.26 1.12 2.74 4.57 7.58 10.31 11.26 16.41
PMTS(5) 0.25 1.17 2.94 6.36 7.80 10.01 11.90 36.51

On the one hand, observe that the number of parameters does not play any
major role in the running time. The running times on PMTS with 5 parame-
ters are very close to BMTS, i.e. PMTS with zero parameters, as can be seen
in the graph. Therefore, the greatest theoretical complexity threat—the num-
ber of parameters allowing in general only for searching all exponentially many
combinations—is in practice eliminated by the use of QBF solvers.
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Table 2. Experimental results: systems over alphabet of size 2 with branching degree 5;
systems with random structure in the upper part, and systems with organic structure
in the lower part; the refining system is identical to the abstract system, besides a
stronger obligation

25 50 75 100 125 150 175 200

BMTS 0.32 1.57 3.46 7.18 10.24 15.18 20.6 27.05
PMTS(1) 0.34 1.57 3.21 8.25 12.46 19.88 24.53 31.01
PMTS(5) 0.33 1.65 4.48 8.21 13.14 21.5 20.55 25.82

BMTS 0.01 0.03 0.18 0.22 0.3 0.48 0.73 1.02
PMTS(1) 0.01 0.07 0.14 0.22 0.43 0.43 0.72 0.83
PMTS(5) 0.01 0.05 0.1 0.17 0.31 0.43 0.88 1.39

On the other hand, observe that the running time is more affected by the level
of non-determinism. For branching degree 10 over a 10-letter alphabet, there are
more likely to be more outgoing transitions under the same letter than in the case
with branching degree 2 over a 2-letter alphabet, but still less than for branching
degree 5 over a 2-letter alphabet. However, the level of non-determinism is often
quite low [BKLS09], hence this dependency does not pose a serious problem
in practice. Further, even this most difficult setting with a high level of non-
determinism allows for fast analysis if systems with natural organic structure
are considered, cf. upper and lower part of Table 2.

A more serious problem stems from our use of Java. With sizes around 200,
the running times often get considerably longer, as the automatic memory man-
agement takes its toll. However, this problem should diminish in a garbage-
collection-free setting.

5 Thorough Refinement Checking

While modal refinement has been defined syntactically, there is also a corre-
sponding notion defined semantically. The semantics of a state s of a PMTS is
the set of its implementations �s� := {i | i is an implementation and i ≤m s}.

Definition 5.1 (Thorough Refinement). For states s0 and t0 of PMTS, we
say that s0 thoroughly refines t0, written s0 ≤t t0, if �s0� ⊆ �t0�.

5.1 Transforming PMTS to BMTS and DMTS

The thorough refinement problem is EXPTIME-complete for MTS [BKLS12]
and also for DMTS [BČK11] (for proof, see [BČK10]). First, we show how to
transform PMTS to BMTS and DMTS and thus reduce our problems to the
already solved one.

For a PMTS, we define a system where we can use any valuation of the
parameters:
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Definition 5.2. For a PMTS M = (S, T, P, Φ) with initial state s0, we define
a BMTS called de-parameterization MB = ({sB0 }∪S× 2P , T ′, ∅, Φ′) with initial
state sB0 and

– T ′ = {(sB0 , a, (s, ν)) | (s0, a, s) ∈ T, ν ⊆ P} ∪ {((s, ν), a, (s′, ν) | (s, a, s′) ∈
T },

– Φ′(sB0 ) =
⊕
ν⊆P

Φ(s0)[tt/p for p ∈ ν,ff/p for p /∈ ν, (s, ν)/s],

– Φ′
(
(s, ν)

)
= Φ(s)[tt/p for p ∈ ν,ff/p for p /∈ ν, (s, ν)/s].

The de-parameterization is a BMTS having exactly all the implementations of
the PMTS and only one (trivial) valuation.

Proposition 5.3. Let s0 be a PMTS state. Then �s0� = �sB0 � and s0 ≤m sB0 .

Proof. For any parameter valuation ν we match it with ∅ and the modal refine-
ment is achieved in the copy with ν fixed in the second component. Clearly, any
implementation of sB0 corresponds to a particular parameter valuation and thus
also to an implementation of s0. !"

Remark 5.4. The price we have to pay is a blowup exponential in |P |. This is,
however, inevitable. Indeed, consider a PMTS ({s0, s1, s2}, {(s0, p, s1), (s1, p, s2) |
p ∈ P}, P, {s0, s1 '→

∧
p∈P (p, s) ⇔ p, s2 '→ tt}). Then in every equivalent BMTS

we need to remember the transitions of the first step so that we can repeat ex-
actly these in the following step. Since there are exponentially many possibilities,
the result follows.

Further, similarly to Boolean formulae with states in [BDF+], we can transform
every BMTS to a DMTS.

Definition 5.5. For a BMTS M = (S, T, ∅, Φ) with initial state s0, we define
a DMTS called de-negation MD = (S′, T ′, ∅, Φ′)

– S′ = {M ∈ Tran(s) | s ∈ S},
– Φ′(M) =

∧
(a,s′)∈M

∨
M ′∈Tran(s′)(a,M

′),

and T ′ minimal such that for each M ∈ S′ and each occurrence of (a,M ′) in
Φ(M), we have (M,a,M ′) ∈ T ′.

However, this DMTS needs to have more initial states in order to be equivalent
to the original BMTS:

Lemma 5.6. For a state s0 of a BMTS, �s0� =
⋃

M∈Tran(s0)�M� (where M are

taken as states of the de-negation).

Note that both transformations are exponential. The first one in |P | and the
second one in the branching degree. Therefore, their composition is still only
singly exponential, yielding a state space where each state has two components:
a valuation of original parameters and Tran of the original state under this
valuation.
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Theorem 5.7. Thorough refinement on PMTS is in 2-EXPTIME.

Proof. Recall that thorough refinement on DMTS is in EXPTIME. Further, note
that we have reduced the PMTS and BMTS thorough refinement problems to the
one on DMTS with more initial states. However, this does not pose a problem.
Indeed, let s0 and t0 be states of a BMTS. We want to check whether s0 ≤t t0.
According to [BČK10] where DMTS only have one initial state, we only need to
check whether for each M ∈ Tran(s0) we have (M,Tran(t0)) /∈ Avoid (defined
in [BČK10]), which can clearly still be done in exponential time. !"

5.2 Direct Algorithm

We now extend the approach for MTS and DMTS to the BMTS case. Before
proceeding, one needs to prune all inconsistent states, i.e. those with unsatisfiable
obligation. This is standard and the details can be found in [KS13].

We define a set Avoid, which contains pairs consisting of one process and one
set of processes. A pair is contained in the relation if there exists an implemen-
tation refining the single process, but none of the other processes. This approach
is very similar to [BKLS12], but the rules for generating Avoid are much more
complex.

Definition 5.8. (Avoid) Let (S, T, ∅, Φ) be a globally consistent BMTS over the
action alphabet Σ. The set of avoiding states of the form (s, T ), where s ∈ S and
T ⊆ S, is the smallest set Avoid such that (s, T ) ∈ Avoid whenever T = ∅ or
there exists an admissible set of transitions M ∈ Tran(s) and sets latera,u,f ⊆ S
for every a ∈ Σ, u ∈ S, f ∈

⋃
t∈T Tran(t) such that

∀t ∈ T : ∀Nt ∈ Tran(t) : ∃a ∈ Σ :

∃ta ∈ Nt(a) : ∀sa ∈ M(a) : ∀f ∈
⋃
t∈T

Tran(t) : ta ∈ latera,sa,f

∨ ∃sa ∈ M(a) : ∀ta ∈ Nt(a) : ta ∈ latera,sa,Nt

and
∀f ∈

⋃
t∈T

Tran(t) : ∀(a, sa) ∈ M : (sa, latera,sa,f) ∈ Avoid

hold.

Lemma 5.9. Given processes s, t1, t2 . . . tn of some finite, global-consistent
BMTS, there exists an implementation I such that I ≤m s and I �≤m ti for
all i ∈ [1, n] if (s, {t1, t2 . . . tn}) ∈ Avoid.

Theorem 5.10. Thorough refinement checking on BMTS is in NEXPTIME.

Proof. For deciding s ≤t t the Avoid relation has to be computed, whose size
grows exponentially with the size of the underlying system. Moreover, in each
step of adding a new element is added to Avoid, the sets latera,s,f need to be
guessed. !"
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6 Thorough vs. Modal Refinement

In this section, we discuss the relationship of the two refinements. This missing
proofs can be found in [KS13]. Firstly, the modal refinement is a sound approx-
imation to the thorough refinement.

Proposition 6.1. Let s0 and t0 be states of PMTS. If s0 ≤m t0 then s0 ≤t t0.

Proof. For any i ∈ �s0�, we have i ≤m s0 and due to transitivity of ≤m, i ≤m

s0 ≤m t0 implies i ≤m t0, hence i ∈ �t0�. !"
The converse does not hold even for MTS as shown in the following classical

example ([BKLS09]) where s0 ≤t t0, but s0 �≤m t0.

s0 s1 s2
a a

t0

t1 t2

t′1

a
a

a

However, provided the refined MTS is deterministic, the approximation is also
complete [BKLS09]. This holds also for BMTS and is very useful as deterministic
system often appear in practice [BKLS09] and checking modal refinement is com-
putationally easier than the thorough refinement. Formally, a PMTS (S, T, P, Φ)
is called deterministic if for every (s, a, t), (s, a, t′) ∈ T we have t = t′.

Proposition 6.2. Let s0 be a PMTS state and t0 a deterministic BMTS state.
If s0 ≤t t0 then s0 ≤m t0.

However, the completeness fails if the refined system is deterministic but with
parameters:

Example 6.3. Consider a BMTS ({s0, s1}, {s0, a, s1}, ∅, {s0 '→ tt, s1 '→ tt}) and
a deterministic PMTS ({t0, t1}, {(t0, a, t1)}, {p}, {t0 '→ a ⇔ p, t '→ tt}) below.
Obviously �s0� = �t0� contains the implementations with no transitions or one
step a-transitions. Although s0 ≤t t0, we do not have s0 ≤m t0 as we cannot
match with any valuation of p.

s0 s1
a

t0 t1
a

Φ(t0) = a ⇔ p

Corollary 6.4. There is a state s0 of a PMTS and a state t0 of a deterministic
PMTS such that s0 ≤t t0 but s0 �≤m t0.

In the previous example, we lacked the option to match a system with different
parameter valuations at once. However, the de-parameterization introduced ear-
lier is non-deterministic even if the original system was deterministic. Hence the
modal refinement is not guaranteed to coincide with the thorough refinement.
In [BKLS09], we defined the notion of deterministic hull, the best deterministic
overapproximation of a system. The construction on may transitions was the
standard powerset construction and a must transition was created if all states
of a macrostate had one. Here we extend this notion to PMTS, which allows to
over- and under-approximate the thorough refinement by the modal refinement.
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Definition 6.5. For a PMTS M = (S, T, P, Φ) with initial state s0, we define
a PMTS called deterministic hull D(M) = (2S \ ∅, T ′, P, Φ′) with initial state
D(s0) := {s0} and

– T ′ = {(X, a,Xa)} where Xa denotes all a-successors of elements of X, i.e.
Xa = {s′ | ∃s ∈ X : (s, a, s′) ∈ T )},

– Φ′(X) is such that Tran(X) =
⋃

s∈X Tran(s)[(a,Xa)/(a, s) for every a, s].

Proposition 6.6. For a PMTS state s0,D(s0) is deterministic and s0 ≤m D(s0).

We now show the minimality of the deterministic hull.

Proposition 6.7. Let s0 be a PMTS state. Then

– for every deterministic PMTS state t0, if s0 ≤m t0 then D(s0) ≤m t0;
– for every deterministic BMTS state t0, if s0 ≤t t0 then D(s0) ≤m t0.

The next transformation allows for removing the parameters without introducing
non-determinism.

Definition 6.8. For a PMTS M = (S, T, P, Φ) with initial state s0, we define a
BMTS called parameter-free hull P(M) = (S, T, ∅, Φ′) with initial state P(s0) :=
s0 and

Φ′(s) =
∨
ν⊆P

Φ(s)[tt/p for p ∈ ν,ff/p for p /∈ ν]

Lemma 6.9. For a PMTS state s0, s0 ≤m sB0 ≤m P(s0).

The parameter-free deterministic hull now plays the rôle of the deterministic
hull for MTS.

Corollary 6.10. For PMTS states s0 and t0, if s0 ≤t t0 then s0 ≤m P(D(t0)).

Proof. Since s0 ≤t t0, we also have s0 ≤t D(t0) by Propositions 6.6 and 6.1.
Therefore, s0 ≤t P(D(t0)) by Proposition 6.9 and thus s0 ≤m P(D(t0)) by
Proposition 6.2. !"

7 Conclusions

We have investigated both modal and thorough refinement on boolean and para-
metric extension of modal transition systems. Apart from results summarized in
the table below, we have shown a practical way to compute modal refinement
and use it for approximating thorough refinement. Closing the complexity gap
for thorough refinement, i.e. obtaining matching lower bounds or improving our
algorithm remains as an open question.

MTS BMTS PMTS

≤t ∈ EXPTIME NEXPTIME 2-EXPTIME
s ≤t t, t deterministic ≤m = ≤t ≤m = ≤t ≤m �= ≤t
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Hennessy-milner logic with maximal fixed points as a specification theory
(to appear in CONCUR 2013)

[BKL+11] Beneš, N., Křet́ınský, J., Guldstrand Larsen, K., Møller, M.H., Srba, J.:
Parametric modal transition systems. In: Bultan, T., Hsiung, P.-A. (eds.)
ATVA 2011. LNCS, vol. 6996, pp. 275–289. Springer, Heidelberg (2011)
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Abstract. We extend the Multi-lane Spatial Logic MLSL, introduced
in previous work for proving the safety (collision freedom) of traffic ma-
neuvers on a multi-lane highway, by length measurement and dynamic
modalities. We investigate the proof theory of this extension, called
EMLSL. To this end, we prove the undecidability of EMLSL but never-
theless present a sound proof system which allows for reasoning about
the safety of traffic situations. We illustrate the latter by giving a formal
proof for a lemma we could only prove informally before.

Keywords: Spatial logic, undecidability, labelled natural deduction.

1 Introduction

In our previous work [1] we proposed a multi-dimensional spatial logic MLSL
inspired by Moszkowski’s interval temporal logic (ITL) [2], Zhou, Hoare and
Ravn’s Duration Calculus (DC) [3] and Schäfer’s Shape Calculus [4] for formu-
lating the purely spatial aspects of safety of traffic maneuvers on highways. In
MLSL we modeled the highway as one continuous dimension, i.e., in the direction
along the lanes and one discrete dimension, the different lanes. We illustrated
MLSL’s usefulness by proving safety of two variants of lane change maneuvers
on highways. The safety proof establishes that the braking distances of no two
cars intersecting is an inductive invariant of a transition system capturing the
dynamics of cars and controllers.

In this paper we introduce EMLSL which extends MLSL by length measure-
ment and dynamic modalities. In comparison to MLSL, where we are only able
to reason about qualitative spatial properties, i.e., topological relations between
cars, EMLSL also allows for quantitative reasoning, e.g., on braking distances.
To further the practicality of EMLSL, we define a proof system based on ideas
of Basin et al. [5], who presented systems of labelled natural deduction for a vast
class of typical modal logics. Rasmussen [6] refined their work to interval logics
with binary chopping modalities. Since EMLSL incorporates both unary as well
as chopping modalities, our proof system is strongly related to both approaches.

Besides providing a higher expressiveness, extending MLSL enables us to for-
mulate and prove the invariance of the spatial safety property inside EMLSL
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and its deductive proof system. We demonstrate this by conducting a formal
proof of the so called reservation lemma [1], which informally states that no car
changes lanes without having set the turn signal beforehand.

Further on, we show undecidability of a subset of EMLSL. We adapt the
proof of Zhou et al. [7] for DC and reduce the halting problem of two counter
machines to satisfiability of EMLSL formulas. Due to the restricted set of pred-
icates EMLSL provides, this is non-trivial.

The contributions of this paper are as follows:

– we extendMLSL with lengths measurements and dynamic modalities (Sec. 2);
– we show the spatial fragment of EMLSL to be undecidable (Sec. 3);
– we present a suited proof system and derive the reservation lemma (Sec. 4).

2 Extended MLSL Syntax and Semantics

The purpose of EMLSL is to reason about highway situations. To this end,
we first present the formal model of a traffic snapshot capturing the position
and speed of every car on the highway at a given point in time. In addition a
traffic snapshot comprises the lane a given car is driving on, which we call a
reservation. Every car usually holds one reservation, i.e., drives on one lane, but
may, during lane change maneuvers, hold up to two reservations on adjacent
lanes. Furthermore, we capture the indication that a given car wants to change
to a adjacent lane by the notion of a claim which is an abstraction of setting the
turn signal. Every car may only hold claims while not engaged in a lane change.

To formally define a traffic snapshot, we assume a countably infinite set of
globally unique car identifiers I and an arbitrary but fixed set of lanes L =
{0, . . . , N}, for some N ≥ 1. Throughout this paper we will furthermore make
use of the notation P(X) for the powerset of X , and the override notation⊕ from
Z for function updates [8], i.e., f ⊕ {x '→ y}(z) = y if x = z and f(z) otherwise.

Definition 1 (Traffic snapshot). A traffic snapshot T S is a structure T S =
(res, clm, pos , spd , acc), where res, clm, pos , spd , acc are functions

– res : I → P(L) such that res(C) is the set of lanes the car C reserves,
– clm : I → P(L) such that clm(C) is the set of lanes the car C claims,
– pos : I → R such that pos(C) is the position of the car C along the lanes,
– spd : I → R such that spd(C) is the current speed of the car C,
– acc : I → R such that acc(C) is the current acceleration of the car C.

Furthermore, we require the following sanity conditions to hold for all C ∈ I.

1. res(C) ∩ clm(C) = ∅
2. 1 ≤ |res(C)| ≤ 2
3. 0 ≤ |clm(C)| ≤ 1
4. 1 ≤ |res(C)| + |clm(C)| ≤ 2
5. clm(C) �= ∅ implies ∃n ∈ L • res(C) ∪ clm(C) = {n, n+ 1}
6. |res(C)| = 2 or |clm(C)| = 1 holds only for finitely many C ∈ I.

We denote the set of all traffic snapshots by TS.
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The kinds of transitions are twofold. First, we have discrete transitions defining
the possibilities to create, mutate and remove claims and reservations. The other
type of transitions handles abstractions of the dynamics of cars, i.e., they allow
for instantaneous changes of accelerations and for the passing of time, during
which the cars move according to a simple model of motion. For the results
presented subsequently, we only require the changes of positions to be continuous.

Definition 2 (Transitions). The following transitions describe the changes
that may occur at a traffic snapshot T S = (res, clm, pos , spd , acc).

T S c(C,n)−−−−→T S ′ ⇔ T S ′ = (res, clm′, pos , spd , acc)

∧ |clm(C)| = 0 ∧ |res(C)| = 1

∧ res(C) ∩ {n+ 1, n− 1} �= ∅
∧ clm′ = clm⊕ {C '→ {n}} (1)

T S wd c(C)−−−−−→T S ′ ⇔ T S ′ = (res, clm′, pos , spd , acc)

∧ clm′ = clm⊕ {C '→ ∅} (2)

T S r(C)−−−→T S ′ ⇔ T S ′ = (res′, clm′, pos , spd , acc)

∧ clm′ = clm⊕ {C '→ ∅}
∧ res′ = res⊕ {C '→ res(C) ∪ clm(C)} (3)

T S wd r(C,n)−−−−−−→T S ′ ⇔ T S ′ = (res′, clm, pos , spd , acc)

∧ res′ = res⊕ {C '→ {n}}
∧n ∈ res(C) ∧ |res(C)| = 2 (4)

T S t−→T S ′ ⇔ T S ′ = (res, clm, pos ′, spd ′, acc)

∧∀C ∈ I : pos ′(C) = pos(C) + spd(C) · t+ 1
2acc(C) · t2

∧∀C ∈ I : spd ′(C) = spd(C) + acc(C) · t (5)

T S acc(C,a)−−−−−→T S ′ ⇔ T S ′ = (res, clm, pos , spd , acc′)

∧ acc′ = acc ⊕ {C '→ a} (6)

We also combine passing of time and changes of accelerations to evolutions.

T S t
=⇒T S ′ ⇔ T S=T S0

t0−→T S1
acc(C0,a0)−−−−−−→ . . .

tn−→T S2n−1
acc(Cn,an)−−−−−−−→T S2n = T S ′,

where t =
∑n

i=0 ti, ai ∈ R and Ci ∈ I for all 0 ≤ i ≤ n.
The transitions preserve the sanity conditions in Def. 1.

Lemma 1 (Preservation of Sanity). Let T S be a snapshot satisfying the
constraints given in Def. 1. Then, each structure T S ′ reachable by a transition
is again a traffic snapshot satisfying Def. 1.

EMLSL restricts the parts of the motorway perceived by each car to so called
views. Each view comprises a set of lanes and a real-valued interval, its length.
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Definition 3 (View). For a given traffic snapshot T S with a set of lanes L, a
view V is defined as a structure V = (L,X,E), where

– L = [l, n] ⊆ L is an interval of lanes that are visible in the view,
– X = [r, t] ⊆ R is the extension that is visible in the view,
– E ∈ I is the identifier of the car under consideration.

A subview of V is obtained by restricting the lanes and extension we observe.
For this we use sub- and superscript notation: V L′

= (L′, X,E) and VX′ =
(L,X ′, E), where L′ and X ′ are subintervals of L and X, respectively.

Sensor Function. Subsequently we will use a car dependent sensor function
ΩE : I× TS → R+ which, given a car identifier and a traffic snapshot, provides
the length of the corresponding car, as perceived by E.

Abbreviations. For a given view V = (L,X,E) and a traffic snapshot T S =
(res, clm, pos , spd , acc) we use the following abbreviations:

resV : I → P(L) with C '→ res(C) ∩ L (7)

clmV : I → P(L) with C '→ clm(C) ∩ L (8)

lenV : I → P(X) with C '→ [pos(C), pos(C) +ΩE(C, T S)] ∩X (9)

The functions (7) and (8) are restrictions of their counterparts in T S to the sets
of lanes considered in this view. The function (9) gives us the part of the view
occupied by a car C.1

Definition 4 formalizes the partitioning of discrete intervals. We need this
slightly intricate notion to have a clearly defined chopping operation, even on
the empty set of lanes.

Definition 4 (Chopping discrete intervals). Let ID be a discrete interval,
i.e., ID = [l, n] for some l, n ∈ L or ID = ∅. Then ID = I1D & I2D if and only if
I1D ∪ I2D = ID, I1D ∩ I2D = ∅, and both I1D and I2D are discrete convex intervals,
which implies max(I1D) + 1 = min(I2D) or I1D = ∅ or I2D = ∅.

We define the following relations on views to have a consistent description of
vertical and horizontal chopping operations.

Definition 5 (Relations of Views). Let V1, V2 and V be views of a snapshot
T S. Then V = V1 & V2 if and only if V = (L,X,E), L = L1 & L2, V1 = V L1

and V2 = V L2 . Furthermore, V = V1 � V2 if and only if V = (L, [r, t], E) and
there is an s ∈ [r, t] such that V1 = V[r,s] and V2 = V[s,t].

1 This presentation differs slightly from our previous work in two ways. First, we do not
restrict the set of identifiers anymore to the cars “visible” to E. Since the functions
for the reservations, claims or length return the empty set for cars outside of V , such
cars cannot satisfy the corresponding atomic formulas. The definition of resV and
clmV was altered due to a technical mistake in the previous form.
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To abstract from the borders of intervals during the definition of the seman-
tics, we define the following norm giving the length of an interval. This notion
coincides with the length measurement of DC [3].

Definition 6 (Measure of a real-valued interval). Let IR = [r, t] be a real-
valued interval, i.e. r, t ∈ R. The measure of IR is the norm ‖IR‖ = t− r.

We employ three sorts of variables. The set of variables ranging over car identi-
fiers is denoted by CVar, with typical elements c and d. For referring to lengths
and quantities of lanes, we use the sorts RVar and LVar ranging over real num-
bers and elements of the set of lanes L, respectively. The set of all variables is
denoted by Var. To refer to the car owning the current view, we use the special
constant ego. Furthermore we use the syntax % for the length of a view, i.e.,
the length of the extension of the view and ω for the width, i.e., the number of
lanes. For simplicity, we only allow for addition between correctly sorted terms.
However, it is straightforward to augment the definition with further arithmetic
operations.

Definition 7 (Syntax). We use the following definition of terms.

θ ::= n | r | ego | u | % | ω | θ1 + θ2,

where n ∈ L, r ∈ R and u ∈ Var and θi are both of the same sort, and not
elements of CVar∪{ego}. We denote the set of terms with Θ. The syntax of the
extended multi-lane spatial logic EMLSL is given as follows.

φ ::= ⊥ | θ1 = θ2 | re(c) | cl(c) | φ1 → φ2 | ∀z • φ1 | φ1 
φ2 | φ2

φ1
| Mφ

where M ∈ {�r(c),�c(c),�wd c(c),�wd r(c),�τ}, c ∈ CVar ∪ {ego}, z ∈ Var, and
θ1, θ2 ∈ Θ are of the same sort. We denote the set of all EMLSL formulas by Φ.

Definition 8 (Valuation and Modification). A valuation is a function
ν : Var∪{ego} → I∪R∪L. We silently assume valuations and their modifications
to respect the sorts of variables. For a view V = (L,X,E), we lift ν to a function
νV evaluating terms, where variables and ego are interpreted as in ν, and νV (%) =
‖X‖ and νV (ω) = |L|. The function + is interpreted as addition.

Definition 9 (Semantics). In the following, let θi be terms of the same sort,
c ∈ CVar ∪ {ego} and z ∈ Var. The satisfaction of formulas with respect to a
traffic snapshot T S, a view V = (L,X,E) and a valuation ν with ν(ego) = E is
defined inductively as follows:

T S, V, ν �|= ⊥ for all T S, V, ν

T S, V, ν |= θ1 = θ2 ⇔ νV (θ1) = νV (θ2)

T S, V, ν |= re(c) ⇔ |L| = 1 and ‖X‖ > 0 and

resV (ν(c)) = L and X = lenV (ν(c))

T S, V, ν |= cl(c) ⇔ |L| = 1 and ‖X‖ > 0 and
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clmV (ν(c)) = L and X = lenV (ν(c))

T S, V, ν |= φ1 → φ2 ⇔ T S, V, ν |= φ1 implies T S, V, ν |= φ2

T S, V, ν |= ∀z • φ ⇔ ∀α ∈ I ∪ R ∪ L • T S, V, ν ⊕ {z '→ α} |= φ

T S, V, ν |= φ1 
φ2 ⇔ ∃V1, V2 • V = V1 � V2 and

T S, V1, ν |= φ1 and T S, V2, ν |= φ2

T S, V, ν |= φ2

φ1
⇔ ∃V1, V2 • V = V1 & V2 and

T S, V1, ν |= φ1 and T S, V2, ν |= φ2

T S, V, ν |= �r(c)φ ⇔ ∀T S ′ • T S r(ν(c))−−−−→T S ′ implies T S ′, V, ν |= φ

T S, V, ν |= �c(c)φ ⇔ ∀T S ′, n • T S c(ν(c),n)−−−−−→T S ′ implies T S ′, V, ν |= φ

T S, V, ν |= �wd c(c)φ ⇔ ∀T S ′ • T S wd c(ν(c))−−−−−−→T S ′ implies T S ′, V, ν |= φ

T S, V, ν |= �wd r(c)φ ⇔ ∀T S ′, n • T S wd r(ν(c),n)−−−−−−−−→T S ′ implies T S ′, V, ν |= φ

T S, V, ν |= �τφ ⇔ ∀T S ′, t • T S t
=⇒ T S ′ implies T S ′, V, ν |= φ

In addition to the standard abbreviations of the remaining Boolean operators
and the existential quantifier, we use ( ≡ ¬⊥. An important derived modality
of our previous work [1] is the somewhere modality

〈φ〉 ≡ (


⎛⎝(
φ
(

⎞⎠ 
(.

Further, we use its dual operator everywhere. We abbreviate the modality some-
where along the extension of the view with the operator ♦�, similar to the on
some subinterval modality of DC.

[φ] ≡ ¬〈¬φ〉 ♦�φ ≡ (
φ
( ��φ ≡ ¬♦�¬φ

Likewise, abbreviations can be defined to express the modality on some lane.
Furthermore, we define the diamond modalities for the transitions as usual, i.e.,
♦∗φ ≡ ¬�∗¬φ, where ∗ ∈ {r(c), c(c),wd r(c),wd c(c), τ}.

In the first definition of MLSL, we included the atom free to denote free space
on the road, i.e., space which is neither occupied by a reservation nor by a claim.
It was not possible to derive this atom from the others, since we were unable to
express the existence of exactly one lane and a non-zero extension in the view.
However, in the current presentation, free can be defined within EMLSL. Observe
that a view of non-zero extension can be characterized by % > 0 ≡ ¬(% = 0).

free ≡ % > 0 ∧ ω = 1 ∧ ∀c •��(¬cl (c) ∧ ¬re(c))

Furthermore, we can define % < r ≡ ¬(% = r
() and use the superscript ϕr to
abbreviate the schema ϕ ∧ % = r. For reasons of clarity, we will not always use
this abbreviation and write out the formula instead, to emphasize the restriction.
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As an example, the following formula defines the behavior of a safe distance
controller, i.e., as long as the car starts in a situation with free space in front of
it, the formula demands that after an arbitrary time, there is still free space left.

∀x, y • ♦�

⎛⎝ ω = x
re(ego)
 free

ω = y

⎞⎠→ �τ

⎛⎝♦�

⎛⎝ ω = x
re(ego)
 free

ω = y

⎞⎠⎞⎠
We have to relate the lane in both the antecedent and the conclusion by the
atoms ω = x and ω = y respectively. If we simply used 〈re(ego)
 free〉, it would
be possible for the reservations to be on different lanes, and hence, we would not
ensure that free space is in front of each of ego’s reservations at every point in
time. However, the formula does not constrain how the situations may change,
whenever reservations or claims are created or withdrawn.

Observe that it is crucial to combine acceleration and time transitions into
a single modality �τ . Let ego drive on lane m with a velocity of v. If we only
allowed for the passing of time, this formula would require all cars on m in front
of ego to have a velocity vf ≥ v, while all cars behind ego had to drive with
vb ≤ v. Hence the evolutions allow for more complex behavior in the underlying
model.

Like for ITL [2] or DC [3], we call a formula flexible whenever its satisfaction
is dependent on the current traffic snapshot and view. Otherwise the formula
is rigid. However, since the spatial dimensions of EMLSL are not directly in-
terrelated, we also distinguish horizontally rigid and vertically rigid formulas.
The satisfaction of the former is independent of the extension of views, while for
the latter, the amount of lanes in a view is of no influence. If a formula is only
independent of the current traffic snapshot, we call it dynamically rigid.

Definition 10 (Types of Rigidity). Let φ be a formula of EMLSL. We call φ
dynamically rigid, if it does not contain any spatial atom, i.e., re(c) or cl(c) as
a subformula. Furthermore, we call φ horizontally rigid, if it is dynamically rigid
and in addition does not contain % as a term. Similarly, φ is vertically rigid, if
it is dynamically rigid and does not contain ω as a term. If φ is both vertically
and horizontally rigid, it is simply rigid.

Lemma 2. Let φ by dynamically rigid and φH (φV ) be horizontally (vertically)
rigid. Then for all traffic snapshots T S, T S ′, views V , V1, V2 and valuations ν,

1. T S, V, ν |= φ iff T S ′, V, ν |= φ
2. Let V = V1 � V2. Then T S, V, ν |= φH iff T S, Vi, ν |= φH (for i ∈ {1, 2}).
3. Let V = V1 & V2. Then T S, V, ν |= φV iff T S, Vi, ν |= φV (for i ∈ {1, 2}).

Proof. By induction on the structure of EMLSL formulas.

3 Undecidability of Pure MLSL

In this section we give an undecidability result for the spatial fragment of
EMLSL, i.e., we do not need the modalities for the discrete state changes of the
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model or the evolutions. We will call this fragment spatial MLSL, subsequently.
We reduce the halting problem of two-counter machines, which is known to be
undecidable [9], to satisfaction of spatial MLSL formulas.

Intuitively, a two counter machine executes a branching program which ma-
nipulates a (control) state and increments and decrements two different coun-
ters c1 and c2. Formally, two counter machines consist of a set of states Q =
{q0, . . . , qm}, distinguished initial and final states q0, qfin ∈ Q and a set of in-
structions I of the form shown in Tab. 1 (the instructions for the counter c2 are
analogous). The instructions mutate configurations of the form s = (qi, c1, c2),
where qi ∈ Q and c1, c2 ∈ N into new configurations:

Table 1. Instructions for counter c1 of a two-counter machine

s Instruction s′

(q, c1, c2) q
c+1−−→qj (qj , c1 + 1, c2)

(q, 0, c2) q
c
−
1−−→qj , qn (qj , 0, c2)

(q, c+ 1, c2) q
c−1−−→qj , qn (qn, c, c2)

An run from the initial configuration of a two-counter machine (Q, q0, qfin , I)

is a sequence of configurations (q0, 0, 0)
i0−→ . . .

ip−→(qp+1, cp+1, c
′
p+1), where each

ij is an instance of an instruction within I. If qp+1 = qfin , the run is halting.
We follow the approach of Zhou et al. [7] for DC. They encode the configu-

rations in recurring patterns of length 4k, where the first part constitutes the
current state, followed by the contents of the first counter. The third part is filled
with a marker to distinguish the counters, and is finally followed by the contents
of the second counter. Each of these parts is exactly of length k.

Zhou et al. could use distinct observables for the state of the machine, counters
and separating delimiters, since DC allows for the definition of arbitrary many
observable variables. We have to modify this encoding since within spatial MLSL
we are restricted to two predicates for reservations and claims, and the derived
predicate for free space, respectively. Furthermore, due to the constraints on
EMLSL models in Def. 1, we cannot use multiple occurrences of reservations
of a unique car to stand, e.g., for the values of one counter. Hence we have to
existentially quantify all mentions of reservations and claims. We will never reach
an upper limit of existing cars, since we assume I to be countably infinite.

The current state of the machine qi is encoded by the number of lanes below
the current configuration, the states of the counters is described by a sequence
of reservations, separated by a single claim. To safely refer to the start of a
configuration, we also use an additional marker consisting of a claim, an adjacent
reservation and again a claim. Each part of the configurations is assumed to have
length k. Free space separates the reservations within one counter from each other
and from the delimiters. Intuitively, a configuration is encoded as follows:
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. . . . . .

. . . . . .

5k

0

...
...

...

i

marker free, re cl free, re cl

To enhance the readability of our encoding, we use the abbreviation marker ≡
∃c • cl(c)
 ∃c • re(c)
∃c • cl(c) to denote the start of a configuration.

Like Zhou et al., we ensure that reservations and claims are mutually exclusive.
We do not have to consider free, since it is already defined as the absence of both
reservations and claims. Observe that we use the square brackets to denote the
everywhere modality (cf. Section 2).

mutex = ∀c, d • [cl(c) → ¬re(d)) ∧ (re(c) → ¬cl (d)] .

The initial marking (q0, 0, 0) is then defined by the following formula.

init =

⎛⎝ [¬∃c • cl(c)]
markerk 
 freek 
 (∃c • cl(c))k 
 freek 
 (∃c • cl(c))k

ω = 0

⎞⎠ 
(

We have to ensure that the configurations occur periodically after every 5k spa-
tial units. Therefore, we use the following schema Per (D). Observe that we only
require that the lanes surrounding the formula D do not contain claims. This
ensures on the one hand that no configuration lies in parallel with the formula
D, since well-defined configurations have to include claims. On the other hand,
it allows for satisfiability of the formula, since we do not forbid the occurrence
of reservations, which are needed for the claims within the configurations.

Per(D) =

⎡⎣⎛⎝ [¬∃c • cl(c)]
D

[¬∃c • cl(c)]

 % = 5k

⎞⎠→

⎛⎝% = 5k

[¬∃c • cl(c)]

D
[¬∃c • cl(c)]

⎞⎠⎤⎦
Note that we did not constrain on which lane the periodic behavior occurs. This
will be defined by the encoding of the operations.

Now we may define the periodicity of the delimiters and the counters. Here
we also have to slightly deviate from Zhou et al.: we are not able to express the
statement “almost everywhere free or re(c) holds,” directly. We have to encode
it by ensuring that on every subinterval with a length greater than zero, we can
find another subinterval which satisfies free or re(c). This expresses in particular,
that no claim may occur, due to the mutual exclusion property.

periodic = Per((��(% > 0 → (
 (free ∨ ∃c • re(c))
() ∧ ω = 1)k)

∧ Per ((∃c • cl(c))k) ∧ Per(markerk)

We turn to the encoding of the operation qi
c+1−−→ qj , i.e., the machine goes from

qi to qj and increments the first counter by one. Similar to Zhou et al., we use
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encodings of the form ¬(D1 
¬D2), meaning “whenever the beginning of the
view satisfies D1, the next part satisfies D2.”

The formula F1 copies the reservations of counter one of state qi to the cor-
responding places in counter one in state qj .

F1 = ¬

⎛⎝⎛⎝ (
markerk 
 % < k
∃c • re(c)
 ((∃c • re(c)
() ∧ % = 5k)

ω = i

⎞⎠ 


¬

⎛⎝ (
% = 0 ∨ (∃c • re(c)
()

ω = j

⎞⎠⎞⎠
We use a similar formula Ffree to copy the free space before the reservations.

The formulas F2 and F3 handle the addition of another reservation to the
counter. We have to distinguish between an empty counter and one already
containing reservations.

F2 =

⎛⎝ (
markerk 
 freek 
 % = 5k

ω = i

⎞⎠→

⎛⎝ (
(
 (free 
 ∃c • re(c)
 free)k

ω = j

⎞⎠

F3 =

⎛⎝ (
markerkc
 % < k
∃c • re(c)
 (free 
∃c • cl(c)
() ∧ % = 6k

ω = i

⎞⎠→

⎛⎝ (
(
 (free 
 ∃c • re(c)
 free 
 ∃c • cl(c))k

ω = j

⎞⎠
In addition, we need formulas which copy of contents of the second counter to
the new configuration, similar to F1.

Let IC be the set of the machine’s instructions and F (i) be the conjunction
of the formulas encoding operation i and qfin its final state. Then

halt(C) = init ∧ periodic ∧mutex ∧
∧
i∈IC

��F (i) ∧ ♦�

⎛⎝ (
∃c • cl(c)
ω = fin

⎞⎠ .

If and only if halt(C) is satisfiable, the machine contains a halting run. This holds
since only configurations may contain claims (as defined in the formalization of
periodicity), and whenever the machine reaches its final state, it halts. Hence
the halting problem of two counter machines with empty initial configuration
reduces to satisfiability of spatial MLSL formulas.

Proposition 1. Let C be a two counter machine. Then C has a halting run if
and only if halt(C) is satisfiable.

The main theorem of this section is a corollary of Prop. 1.
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Theorem 1. The satisfiability problem of spatial MLSL is undecidable.

Even though we used the full power of spatial MLSL in the proof, i.e., we used
both % and ω, the proof would be possible without using the latter. For that,
we would not be able to encode the state of the configuration in the lanes,
but by a similar way to the markers in the formulas. For example, the formula
(∃c • cl(c)
 ∃c • re(c)
 ∃c • cl(c))k would denote the state q0, and with another
iteration of re(c), it would denote q1 and so on. If we remove the references to
more than one lane in each of the formulas above, the reservations and claims
would already imply that only one lane exists, and hence, the use of ω within
the abbreviation free could be omitted. This shows that spatial MLSL is already
undecidable even if we only use %.

4 Labelled Natural Deduction for EMLSL

Despite the negative decidability result of the previous section, we define a sys-
tem of labelled natural deduction [10,5,11] for the full logic EMLSL. That is,
the rules of the deduction system do not operate on formulas φ, but on labelled
formulas w : φ, where w is a term of a labelling algebra and φ is a formula of
EMLSL. They may connect the derivations of formulas and relations between
the terms w to allow for a tighter relationship between both. The labelling alge-
bra is more involved than for standard modal logics, since EMLSL is in essence a
multi-dimensional logic, where the modalities are not interdefinable. Obviously,
the spatial modalities can not be defined by the dynamic modalities and vice
versa. Furthermore, neither can the dynamic modalities be defined by each other
in general. Consider, e.g., the modalities �r(c) and �c(c). Both of these modal-
ities rely on different transitions between the models, which are only indirectly
related.

The labels of the algebra consist of tuples T S, V , where similar to the se-
mantics, T S is the name of a traffic snapshot and V a view. The algebra is
then twofold. The relations of the form V = V1 � V2 and V = V1 & V2 define
ternary reachability relations between views for the spatial modalities. Relations

between snapshots, e.g., T S r(C)−−−→T S ′ describe the behavior of transitions. The
relations within the labelling algebra for traffic snapshots directly correspond

to the dynamic modalities. For example, we have T S c(C)−−−→T S ′, whenever there
exists an n ∈ N such that T S c(C,n)−−−−→T S ′.

We do not give a deduction system for the transitions between snapshots,
since the conditions needed to hold between them are of a very complex na-
ture, i.e., they are definable only with the power of full first-order logic with
functions, identity and arithmetic. Hence we would not achieve a system with a
nice distinction between the relational deductions and the deductions of labelled
formulas [5,11]. Instead we simply assume the existence of the relations between
snapshots whenever needed. That is, we will often have, e.g., the existence of a
transition in our set of assumptions. However, we give simple rules defining that
chopping of a view into two subviews is always possible.
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Definition 11 (Labelled Formulas and Relational Formulas). Let T S be
a name for a traffic snapshot, V a name for a view and φ a formula according
to Definition 7. Then T S, V : φ is a labelled formula of EMLSL. Furthermore,
we call T S ∗−→T S ′, V = V1 � V2 and V = V1 & V2 relational formulas, where

∗−→
is a relation of the labelling algebra.

To have a meaningful soundness result of the calculus, we give the relation of
the semantics of labelled formulas and normal formulas. Observe that we do not
define a completely independent notion of models, but only use a valuation for
this purpose. This is due to the semantic information which is still comprised
within the views and traffic snapshots.

Definition 12 (Satisfaction of Labelled Formulas). We say that a valua-
tion ν satisfies a labelled formula T S, V : φ, written ν |= T S, V : φ if and only if
T S, V, ν |= φ. Furthermore,

ν |= T S1
r(c)−−→T S2 ⇔ T S1

r(ν(c))−−−−→T S2,

ν |= T S1
wd r(c)−−−−→T S2 ⇔ ∃n • T S1

wd r(ν(c),n)−−−−−−−−→T S2,

ν |= T S1
c(c)−−→T S2 ⇔ ∃n • T S1

c(ν(c),n)−−−−−→T S2

ν |= T S1
wd c(c)−−−−→T S2 ⇔ T S1

wd c(ν(c))−−−−−−→T S2

ν |= T S1
τ−→T S2 ⇔ ∃t • T S1

t
=⇒ T S2

The relational formulas V = V1 � V2 and V = V1 & V2 are independent of
the valuation at hand, and hence are satisfied whenever V1 and V2 combined
according to Definition 5 result in V .

Definition 13 (Derivation). A derivation of a labelled formula T S, V : φ from
a set of labelled formulas Γ and a set of relational formulas Δ is a tree, where
the root is T S, V : φ, each leaf is an element of Γ or Δ and each node within
the tree is a result of an application of one of the rules defined subsequently. We
denote the existence of such a derivation by Γ,Δ � T S, V : φ.

Following Rasmussen [6], we define predicates for chop-freeness of formulas and
rigidity of terms and formulas. To increase the deducible theorems, we differenti-
ate between vertical and horizontal chop-freeness and rigidity. These properties
are especially important for the correct instantiation of terms, i.e., for the elim-
ination of universal quantifiers.

Example 1. Consider the formula

∀x •
(

% = x
% = x

→ % = x

)
,

which is a theorem of MLSL, since the length of a view is not changed by chopping
vertically. If we use classical universal quantifier instantiation and substitute the
vertically flexible term ω for x, then we would get
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% = ω
% = ω

→ % = ω. (10)

Now let V be a view satisfying the antecedent of (10). Then V can be vertically
chopped such that its length equals its width on both subviews. Now let % = c.
Then also ω = c for both subviews. Since V consists of both these subviews, V
satisfies ω = 2c. But the conclusion of (10) states that V should satisfy ω = % = c.
However, we could of course substitute x by the vertically rigid term %.

We denote vertical (horizontal) chop-freeness by the predicate vcf (hcf) and
vertical (horizontal) rigidity by vri (hri). The rules for the definition of all four
predicates are straightforward, since both rigidity and chop-freeness are syntactic
properties. All atomic formulas are vertically and horizontally chop-free. For .
being a Boolean operator or the horizontal chop 
 , the following rules give
vertical chop-freeness.

vcf(φ) vcf(ψ)
vcf . I

vcf(φ. ψ)

vcf(φ. ψ)
vcf . E

vcf(φ)

vcf(φ . ψ)
vcf . E

vcf(ψ)

The rules for quantifiers and the horizontal rules are defined similarly.
For terms, % is vertically rigid and ω is horizontally rigid. The spatial atoms

re(c), cl(c) and free are neither horizontally nor vertically rigid, since they require
the view to possess an extension greater than zero and exactly one lane. Equality
is both vertically and horizontally rigid, as long as both compared terms are rigid.
Below, we show some exemplary rules, where ⊗ is an arbitrary binary operator.

hri(φ) hri(ψ)
hri⊗ I

hri(φ⊗ ψ)

hri(φ⊗ ψ)
hri⊗ E

hri(φ)

hri(φ ⊗ ψ)
hri⊗ E

hri(ψ)

VDec
EV ′, V ′′(V = V ′ & V ′′)

EV ′, V ′′(V = V ′ & V ′′)

[V = V2 & V2]

...
T S, V3 : φ

EET S, V3 : φ

We have only two simple rules for
the relations between views. First, we
state that each view V is decompos-
able into two subviews. This is true,
since we allow for the empty view,
i.e., the view without lanes or with
a point-like extension. We use E to
denote existential quantification over
views. To use the relations between
views, we have to be able to instan-

tiate views, i.e., we have to introduce a rule for elimination of existential quan-
tifiers over views. As a side condition for this elimination rule, we require that
T S, V3 : φ is not dependent on any assumption including V1 or V2 as a label,
except for V = V1 & V2. The rule itself is a straightforward adaptation of the
classical rule. Again, we only show the case for the vertical relations.

The intuition of rigidity is formalized in the following rules. Whenever a for-
mula is horizontally rigid, the formula holds on all views horizontally reachable
from the current view. Observe that the traffic snapshot may change arbitrar-
ily, since horizontally rigid formulas are also dynamically rigid. The rules for
vertically rigidity are similar.
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T S, V : φ hri(φ) V = V1 � V2
RHT S ′, V1 : φ

T S, V : φ hri(φ) V = V1 � V2
RHT S ′, V2 : φ

T S, V1 : φ hri(φ) V = V1 � V2
RHT S ′, V : φ

T S, V2 : φ hri(φ) V = V1 � V2
RHT S ′, V : φ

For the first-order operators, we use the typical definitions of labelled natu-
ral deduction rules [5]. The only difference lies in the rules for quantification.
We may instantiate an universally quantified variable with a horizontally (ver-
tically) rigid, if the formula is vertically (horizontally) chop-free. If the formula
is completely chop-free, we may instantiate the variable with an arbitrary term.
Similarly, rigid terms may instantiate x in arbitrary formulas. In all cases, a side
condition for the instantiation is that s respects the sort of x.

T S, V : ∀x • φ hcf(φ) vri(s)
∀ET S, V : φ[x '→ s]

T S, V : ∀x • φ vcf(φ) hri(s)
∀ET S, V : φ[x '→ s]

T S, V : ∀x • φ hcf(φ) vcf(φ)
∀ET S, V : φ[x '→ s]

T S, V : ∀x • φ hri(s) vri(s)
∀ET S, V : φ[x '→ s]

T S, V1 : φ T S, V2 : ψ V = V1 � V2 
 IT S, V : φ
ψ

T S, V : φ
ψ

[T S, V1 : φ]

[T S, V2 : ψ]

[V = V1 � V2]

...

T S ′, V ′ : χ 
E
T S ′, V ′ : χ

The elimination and introduction
rules for the chop modalities are
adopted from Rasmussen [6], and
resemble the rules for existen-
tial quantification. We only show
the case for the horizontal chop,
the rules for vertical chopping are
obtained straightforwardly, by re-
placing horizontal modalities and
relations by the vertical ones.

The chopping of intervals is not
ambiguous, i.e., there is a unique view of a certain length at the beginning of a
view. This is the single decomposition property [12] of interval logics and captured
in the following rules. Hence when there are two vertical chops of a view, and
the upper parts are of equal width, we can derive that the same formulas hold
on the lower parts. Even though we only show the vertical set of rules, similar
rules hold for the horizontal chopping of views.

T S, V1 : φ T S, V2 : ω = s T S, V ′2 : ω = s vri(s) V = V1 & V2 V = V ′1 & V ′2
V DT S, V ′1 : φ

T S, V2 : φ T S, V1 : ω = s T S, V ′1 : ω = s vri(s) V = V1 & V2 V = V ′1 & V ′2
V DT S, V ′2 : φ

The additivity of length and width can be formalized by the following rules.
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T S, V1 : ω = s T S, V2 : ω = t vri(s) vri(t) V = V1 & V2
V + IT S, V : ω = s+ t

T S, V : ω = s+ t vri(s) vri(t)

[T S, V1 : ω = s]

[T S, V2 : ω = t]

[V = V1 & V2]

...

T S ′, V ′ : φ
V + E

T S ′, V ′ : φ

T S ∗−→T S ′ T S, V : �∗φ �∗ET S ′, V : φ

[T S ∗−→T S ′]
...

T S ′, V : φ �∗IT S, V : �∗φ

The dynamic modalities are defined along the
lines of Basin et al. [5]. If a transition from the
current snapshot is possible, the box modalities
may be eliminated and if we can prove that un-
der the assumption of a transition ∗, φ holds on
the now reachable snapshot, �∗φ holds.

Finally, we have to define how the spatial
atoms behave with respect to occurring tran-
sitions. There are two types of rules in general,
stability rules and activity rules. Stability rules

define which atoms stay true after a snapshot changes according to a certain
transition. The truth of all reservation and claims of cars not involved in the
transition are unchanged. Only one stability rule for creating reservations in-
cludes the car which is the source of the transition. We will show this rule and
one example for typical stability. The activity rules state how the reservations
and claims of cars will change according to the transitions.

The following stability rules show that whenever a car creates a new claim, the
reservations and claims of other cars are unchanged. We have similar stability
rules for the other types of transitions.

T S, V : cl(c) T S c(d)−−→T S ′ T S, V : c �= d
c(c)−−→ST S ′, V : cl(c)

T S, V : re(c) T S c(d)−−→T S ′ T S, V : c �= d
c(c)−−→ST S ′, V : re(c)

The activity rule for c(c) implies two properties. First, a claim may only be cre-
ated when only one reservation exists. Second, the newly created claim resides on
one side of the existing reservation. Observe that the negations in the antecedent
would allow for empty views on both sides of the reservation, but this case is
prohibited by the antecedent that the view V is two lanes wide.

T S, V :
¬(re(c) ∨ cl(c))

re(c)
¬(re(c) ∨ cl(c))

T S c(d)−−→T S ′ T S, V : c = d T S, V : ω = 2

c(c)−−→A
T S ′, V :

re(c)
cl(c)

∨ cl(c)
re(c)

Rules for the creation of reservations in between traffic snapshots are:
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T S, V : cl(c) T S r(d)−−→T S ′ T S, V : c = d
r(c)−−→AT S ′, V : re(c)

T S, V : re(c) T S r(d)−−→T S ′ T S, V : c = d
r(c)−−→ST S ′, V : re(c)

The following activity rules define the withdrawal of reservations and claims.

T S, V :
re(c)
re(c)

T S wd r(d)−−−−→T S ′ T S, V : c = d
wd r(c)−−−−→A

T S ′, V :
re(c)
¬re(c) ∨

¬re(c)
re(c)

T S, V : cl(c) T S wd c(d)−−−−−→T S ′ T S, V : c = d
wd c(c)−−−−→AT S ′, V : ¬cl (c)

We also have rules for “backwards” reasoning, i.e., if our current snapshot is
reachable from another, we may draw conclusions about the originating snapshot.
Again, we differentiate between activity and stability rules (omitted here).

T S ′, V : re(c) T S r(d)−−→T S ′ T S, V : c = d
r←−AT S, V : re(c) ∨ cl(c)

T S ′, V : cl(c) T S c(d)−−→T S ′ T S, V : c = d
c←−AT S, V : ¬cl(c)

Observe that we can not reason backwards along withdrawal transitions, since
these may be taken without changing any reservations and claims (cf. Def. 2).

Theorem 2. The calculus of labelled natural deduction for EMLSL is sound.

As an example, we derive a variant of the reservation lemma, which we proved
informally in our previous work [1].

Lemma 3 (Reservation). A reservation of a car c observed directly after c
created it, was either already present or is due to a previously existing claim.

I.e., assuming T S r(c)−−→T S ′, the formula (re(c)∨cl(c)) ↔ �r(c)re(c) holds. Hence

{T S r(c)−−→T S ′} � T S, V : (re(c) ∨ cl(c)) ↔ �r(c)re(c).

Proof. The existence of the transition is of major importance for the elimination
of the box modality in the proof using the backwards reasoning rule. For reasons
of simplicity, we use a variant of the stability rules and activity rules, where d
in the transition has been replaced by c, and hence we do not need the extra
assumption of T S, V : c = d. We use two auxiliary derivations, which allow us
to infer the existence of a reservation on the snapshot after taking a transition.

ΠS:
[T S, V : re(c)]1 [T S r(c)−−→T S ′]2

T S ′, V : re(c)
ΠA:

[T S, V : cl(c)]1 [T S r(c)−−→T S ′]2
T S ′, V : re(c)
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Derivation of � T S, V : (re(c) ∨ cl(c)) → �r(c)re(c).

ΠS

T S ′, V : re(c)

ΠA

T S ′, V : re(c) [T S, V : re(c) ∨ cl(c)]3∨E1 T S ′, V : re(c) �r(c)I2T S, V : �r(c)re(c) → I3T S, V : (re(c) ∨ cl(c)) → �r(c)re(c)

Derivation of {T S r(c)−−→T S ′} � T S, V : �r(c)re(c) → (re(c) ∨ cl(c)).

[T S, V : �r(c)re(c)]1 T S r(c)−−→T S ′
�r(c)ET S ′, V : re(c) T S r(c)−−→T S ′

r(c)←−−T S, V : re(c) ∨ cl(c)
→ I1T S, V : �r(c)re(c) → (re(c) ∨ cl(c))

!"
Since models of EMLSL are based on the real numbers, we cannot hope for a
complete deduction system.

5 Related and Future Work

Most related work on spatial logics is focused on purely qualitative spatial reason-
ing [13], e.g., the expressible properties concern topological relations [14]. Logics
expressing quantitative spatial properties are rare, an example is Schäfer’s Shape
Calculus (SC) [4], which is a very general extension of DC. Contrasting SC, the
focus of EMLSL lies on a restricted field of application, i.e., highway traffic.
EMLSL is an instance of a multi-dimensional and multi-modal logic [15], since it
consists of various different modal operators, which are not interdefinable. It is
also a combination of binary modalities, i.e., the chopping operations, and unary
box-like modalities, i.e., the dynamic modal operators. Labelled natural deduc-
tion for (multi-)modal logics has been studied intensely recently. E.g., when the
rules for relational formulas can be defined with horn clauses as antecedents, nice
meta-theoretical properties like normalization of proofs can be established [5,11].
In intuitionistic modal logic, similar results are obtained, when the relational the-
ory is defined using only geometric sequents [16]. Unfortunately, even with our
restricted set of rules for view relations, these results do not carry over to our
setting, since we made use of existential quantification on views. Still we would
like to explore how rules for the manipulation of traffic snapshots could blend
in. However, due to the complex internal structure of traffic snapshots, we do
not expect such rules to be definable by horn clauses. Rasga et al. investigated
the fibring [17] of labelled deductive systems [18]. We assume that the deduction
system of Sec. 4 is an instance of such a fibring, where the Boolean operators
are shared between all deduction systems involved. A further classification of
EMLSL (or a suitable subset) and its proof system within the framework of
fibring and multi-dimensional logics would be of interest in order to use preser-
vation results concerning, e.g., decidability. Finally, an implementation within a
general theorem prover like Isabelle [19] similar to implementations for modal or
interval logics [5,11,6] would increase the usefulness of the proof system.
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tems. Journal of Logic and Computation 12, 443–473 (2002)

19. Paulson, L.: Isabelle: A Generic Theorem Prover. Springer (1994)



Counterexample-Preserving Reduction

for Symbolic Model Checking�

Wanwei Liu��, Rui Wang, Xianjin Fu, Ji Wang,
Wei Dong, and Xiaoguang Mao

School of Computer Science,
National University of Defense Technology,

Changsha, P.R. China, 410073
wwliu@nudt.edu.cn

Abstract. The cost of LTL model checking is highly sensitive to the
length of the formula under verification. We observe that, under some
specific conditions, the input LTL formula can be reduced to an easier-to-
handle one before model checking. In our reduction, these two formulae
need not to be logically equivalent, but they share the same counterex-
ample set w.r.t the model. In the case that the model is symbolically
represented, the condition enabling such reduction can be detected with
a lightweight effort (e.g., with SAT-solving). In this paper, we tentatively
name such technique “Counterexample-Preserving Reduction” (CePRe,
for short), and the proposed technique is experimentally evaluated by
adapting NuSMV.

1 Introduction

LTL [12] is one of the most frequently used specification languages in model check-
ing (cf. [15]). It designates properties over a linear structure, which can be viewed
as an execution of the program. The task of LTL model checking is to search the
state space (explicitly or implicitly), with the goal of detecting the existence of fea-
sible traces violating the specification. If such traces exist, the model checker will
report one of them as a “counterexample”; otherwise, the model checker will give
an affirmative report.

It can be shown that the complexity of LTL model checking for M |= ϕ is in
O(|M |× 2|ϕ|), meanwhile, the nesting depth of temporal operators might be the
major factor affecting the cost in compiling LTL formulae.

Hence, it is reasonable to simplify the specification before conducting model
checking. For example, in [13], Somenzi and Bloem provided a set of rewriting
schemas for simplifying LTL specifications, and these rewriting schemas preserve
logical equivalence.
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One may argue that “a majority of LTL formulae used in real applications
are simple, succinct rather than complicated”, but, we might want to notice the
following facts:

– Some LTL formula, for example F(pUq), is usually considered to be a “sim-
ple” one. Nevertheless, it can be further simplified to Fq, and this fact tends
to be ignored.1

– Indeed, people do use complicate specifications in the real industrial field,
as well in some standard benchmark (cf. [2]).

– Last but not least, not all specifications are designated manually. Actually,
some formulae are generatedby specification-generaton-tools (e.g.,ProSpec).
Indeed, onemay find that lots of thesemachine-generated specifications can be
simplified.

Symbolic model checking [11] is one of the most significant breakthrough in
model checking, and two major fashions of symbolic model checking are widely
used: one is the BDD-based manner [6], and the other is SAT-based manner,
such as BMC [1].

Instead of using an explicit representation, the symbolic approach represents
state space with a series of Boolean formulae. This enables implicit manipulation
of the verification process and it usually leads to an efficient implementation [3].
Meanwhile, the symbolic encoding of transitions and invariants of the model
provides heuristic information to simplify the specification. For example:

– The formulae pUq and (rUp)Uq can be respectively reduced as q and (rUp)∨
q, if we know that p → q holds everywhere in the model.

– Each occurrence of Gθ in the specification can be replaced with ( (i.e.,
logically true), if we can inductively infer that the Boolean formula θ holds
at each reachable state in the model.

Actually, we can make certain of these conditions with the following efforts.

– To ensure that “p → q holds everywhere in the model”, one possible way is
to make sure that p → q is an invariant in the model — i.e., just to examine
if ρ∧¬(p → q) is unsatisfiable (we in the later denote it as ρ � p → q), where
ρ is the Boolean encoding of the model’s transition relation.

– Likely, to justify that θ holds at each reachable state2, it suffices to ensure
that θ0 � θ and ρ � θ → θ′, where θ0 is the initial condition of the model.

We could do this because the component ρ should be satisfied at each transition
step. Hence, it encloses both “local invariants” and “transitional invariants”. For
example, if ρ = p∧(q → q′), then we may consider p as a local invariant, whereas
q → q′ as a transitional invariant.

1 On one hand, pUq implies Fq, and hence F(pUq) implies FFq (i.e., Fq); on the
other hand, q implies pUq, and hence Fq implies F(pUq).

2 Note that a “dead-end” has no infinite path starting from it, hence we may safely
omit dead-ends in the model when doing this.
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Hence, this provides an opportunity to replace the specification with a simpler
one, accompanied with some lightweight extra task of condition detection. Even
if such detection fails, the overhead is usually negligible. More importantly, such
reductions can be performed before starting model checking.

In this paper, we systematically investigate the above idea, and tentatively
name this technique CounterExample-Preserving REduction (CePRe , for short).
To justify it, we have extended NuSMV and implemented CePRe as an up-front
option for LTL model checking. Subsequently, we conduct experiments over both
industrial benchmarks and randomly generated cases. Experimental results show
that CePRe can improve the efficiency significantly.

This paper is organized as follows: Section 2 revisits some basic notions. Sec-
tion 3 introduces the CePRe technique and gives the performance analysis. In
Section 4, the experimental results over industrial benchmarks and over random
generated cases are given. We summarize the whole paper with Section 5.

2 Preliminaries

We presuppose a countable set P of atomic propositions, ranging over p, q, etc,
and for each proposition p ∈ P , we create a primed version p′ (not belonging
to P) for it. For each set V ⊆ P , we define V ′ � {p′ | p ∈ V}. We use B(V) to
denote the set of Boolean formulae over V . Similarly, we denote by B(V ∪V ′) the
set of Boolean formulae built up from V ∪ V ′. The scope of the prime operator
can be naturally lifted to Boolean formulae over B(V), by defining

(′ = ( ⊥′ = ⊥ (¬θ)′ � ¬θ′ (θ1 → θ2)
′ � θ′1 → θ′2

An assignment is a subset V of P . Intuitively, it assigns 1 (or, true) to the
propositions belonging to V , and assigns 0 (or, false) to the other propositions.
For each V ⊆ U ⊆ P and θ ∈ B(U), we denote by V � θ if θ is evaluated to 1
under the assignment V .

A united assignment is a pair (V1,V2), where both V1 and V2 are subsets of
P . It assigns 1 to the propositions belonging to V1 ∪ V ′2, and assigns 0 to the
other propositions. Suppose that V1,V2 ⊆ U ⊆ P and θ ∈ B(U ∪ U ′), we also
write (V1,V2) � θ if θ is evaluated to 1 under the united assignment (V1,V2).

LTL formulae can be inductively defined as follows.

– ⊥ and ( are LTL formulae.
– Each proposition p ∈ P is an LTL formula.
– If both ϕ1 and ϕ2 are LTL formulae, so does ϕ1 → ϕ2.
– If ϕ is an LTL formula, then Xϕ and Yϕ are LTL formulae.
– If ϕ1 and ϕ2 are LTL formulae, then both ϕ1Uϕ2 and ϕ1Sϕ2 are LTL

formulae.

Semantics of an LTL formula is defined w.r.t. a linear structure π ∈ (2P)ω (i.e.,
π is an infinite word over the alphabet 2P) and a position i ≺ ω. Inductively:
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– π, i |= ( and π, i �|= ⊥;
– π, i |= p iff π(i) � p (where π(i) is the i-th letter of π, which can be viewed

as an assignment);
– π, i |= ϕ1 → ϕ2 iff either π, i �|= ϕ1 or π, i |= ϕ2;
– π, i |= Xϕ iff π, i+ 1 |= ϕ;
– π, i |= Yϕ iff i > 0 and π, i − 1 |= ϕ;
– π, i |= ϕ1Uϕ2 iff there is some j ≥ i, s.t. π, j |= ϕ2 and π, k |= ϕ1 for each

i ≤ k < j;
– π, i |= ϕ1Sϕ2 iff there is some j ≤ i, s.t. π, j |= ϕ2 and π, k |= ϕ1 for each

i ≥ k > j.

For the sake of convenience, we may directly write π, 0 |= ϕ as π |= ϕ.
As usual, we employ some derived Boolean connectives such as

¬ϕ � ϕ → ⊥ ϕ ∨ ψ � ¬ϕ → ψ ϕ ∧ ψ � ¬(¬ϕ ∨ ¬ψ)

and derived temporal operators such as

Fϕ � (Uϕ Zϕ � ¬Y¬ϕ Oϕ � (Sϕ

Gϕ � ¬F¬ϕ Hϕ � ¬O¬ϕ
ϕRψ � ¬(¬ϕU¬ψ) ϕTψ � ¬(¬ϕS¬ψ)

We say that ‘( and ⊥’, ‘∧ and ∨’, ‘F and G’, ‘O and H’, ‘Y and Z’, ‘X and
X itself’, ‘U and R’, ‘T and S’ are pairwise the dual operators.

Temporal operators like X, U, F, G, R are called future operators, whereas
Y, Z, S, O, H and T are called past operators. An LTL formula is said to be
pure future (resp. pure past) if it involves no past (resp. future) operators.

Theorem 1 ([8]). Each LTL formula has an equivalent pure future expression.

Theorem 1 tells the fact that past operators do not add any expressive power
to LTL formulae. Nevertheless, with these, we can give a much more succinct
description in defining specifications.

Given an LTL formula ϕ, we denote by sub(ϕ) the set constituted with subfor-
mulae of ϕ. Particularly, we respectively denote by subU(ϕ) and subS(ϕ) the set
consisting of “U-subformulae” and “S-subfomulae” of ϕ, where an U-formula
(resp. S-formula) is a formula rooted at U (resp. S). 3

A model is a tuple M = 〈V , ρ, θ0,F〉, where:

– V ⊆ P , is a finite set of atomic propositions.
– ρ ∈ B(V ∪ V ′), is the transition relation.
– θ0 ∈ B(V), is the initial condition.
– F ⊆ B(V), is a set of fairness constraints.

3 Note that Fϕ is also an U-formula whereas Gϕ is not.
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A derived linear structure of M is an infinite word π ∈ (2V)ω, such that

1. π(0) � θ0;
2. (π(i), π(i + 1)) � ρ for each i ≺ ω;
3. for each ϕ ∈ F , there are infinitely many i’s having π(i) � ϕ.

We denote by L(M) the set of derived linear strctures of M , call it the language
of M .

For a model M and an LTL formula ϕ, we denote as M |= ϕ if π |= ϕ for
each π ∈ L(M). Meanwhile, we define

CE(ϕ,M) � {π ∈ L(M) | π �|= ϕ}

and call it the counterexample set of ϕ w.r.t. M .

3 Counterexample-Preserving Reduction

We describe the CePRe technique in this section, but first of all, let us fix the
components of the model, and just let M be 〈V , ρ, θ0,F〉 in the following.

For M , we are particularly concerned about formulae having the same coun-
terexample set — we say that ϕ and ψ are inter-reduce-able w.r.t. M if and only
if CE(ϕ,M) = CE(ψ,M), denoted as ϕ ≈M ψ. Hence, ϕ ≈M ψ implies that
M |= ϕ ⇔ M |= ψ.

The central part of CePRe is a series of reduction rules being of the form

Cond � ϕ ≈M ψ (name)

where “Cond” is called the additional condition.
Though the relation ≈M is, actually symmetric, we always write the reduced

formula on the righthand of the “≈” sign in a reduction rule. Since the model
M is fixed, in this section, we omit it from the subscript. In addition, if the
additional condition trivially holds, we will discard this part and directly write
the rule as ϕ ≈ ψ, and in this case we say that this rule is “model-independent”;
otherwise, we say that the underlying reduction rule is “model-dependent”.

3.1 The Reduction Rules

First of all, we have some elementary reduction rules as depicted in Figure 1. For
the rules (Init), (Ind) and (Trans), the notation “�” occurring in the condition
part stands for the “inferring” relation in propositional logic (ρ � θ iff ρ∧ ¬θ is
unsatisfiable), and we here require that θ, θ1, θ2 ∈ B(V).

Subsequently, let us define a partial order “1” over unary temporal operators
(and their combinations) as follows:

F 1 GF 1 FG 1 G
F 1 Xi 1 G (i ≺ ω)
O 1 HO 1 OH 1 H

where X0ϕ � ϕ and Xi+1ϕ � X(Xiϕ).
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θ0 � θ � θ ≈ � (Init) ρ � θ � Gθ ≈ � (Trans)

θ ∈ F � GFθ ≈ � (Fair) θ0 � θ; ρ � θ → θ′ � Gθ ≈ � (Ind)

Fig. 1. Elementary reduction rules

Assume that Pw,Ps ∈ {F,FG,GF,G,O,HO,OH,H} ∪ {Xi | i ≺ ω} and
Pw 1 Ps, then we have two model-indenpendent rules, as depicted in Figure 2.
Though these rules seem to be trivial, they are useful in doing combinational
reductions (see the example given in Section 3.2).

(Pwϕ ∧Psϕ) ≈ Psϕ (Conj) (Pwϕ ∨Psϕ) ≈ Pwϕ (Disj)

Fig. 2. Reduction rules of (Conj) and (Disj)

Figure 3 provides some reduction rules that can be used to simplify nested
temporal operators. Moreover, we may immediately get such a rule’s “past ver-
sion” by switching U and S, R and T, etc. For example, we may obtain the rule
(OS) (i.e., O(ϕSψ) ≈ Oψ) from (FU) .

F(ϕUψ) ≈ Fψ (FU) ϕU(Fψ) ≈ Fψ (UF)

FFϕ ≈ Fϕ (FF) GFGϕ ≈ FGϕ (GFG)

Fig. 3. Reduction rules for formulae involving nested pure future operators

Meanwhile, we also have the Duality Principle for model-independent rules:
“by switching each operator with its dual operator, then we may get a new
reduction rule”. For the rules listed in Figure 3, we may obtain the corresponding
rules such as (GR), (RG), (GG) and (FGF). As an example, the rule (GG) is
just GGϕ ≈ Gϕ.

Yϕ ≈ ⊥ (Y) Oϕ ≈ ϕ (O) ϕSψ ≈ ϕ (S)

Fig. 4. Reduction rules for formulae involving (outermost) past operators
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Since we always stand at the starting point when doing model checking (i.e.,
the goal is to check if π, 0 |= ϕ for each π ∈ L(M)), we can sometimes “erase”
the outermost past operators, as depicted in Figure 4. Note that we can also
acquire the rules (Z), (H) and (T) by applying the Duality Principle.

XYϕ ≈ ϕ (XY) FHϕ ≈ Hϕ (FH)

FOϕ ≈ Fϕ ∨Oϕ (FO) F(ϕSψ) ≈ Fψ ∨ ϕSψ (FS)

Fig. 5. Reduction rules for formulae involving adjacent past and future operators

Figure 5 introduces a series of rules handing formulae involving adjacent past
and future temporal operators. Remind that the rules (XZ), (GO), (GH) and
(GT) are also immediately available.

ρ � θ1 ∨ θ2 � θ1Uθ2 ≈ Fθ2 (U)

ρ � θ2 → θ1 ∨ θ′2 � θ1Rθ2 ≈ θ2 (R)

Fig. 6. Reduction rules of (U) and (R)

From now on, we let θ1, θ2, . . . range over B(V), and let ϕ1, ϕ2, . . . be arbitrary
LTL formulae. We have some model-dependent rules. The first group of such
rules is listed in Figure 6.

Figure 7 provides another set of model-dependent reduction rules, and these
rules are mainly concerned with LTL formulae involving adjacent U-operators.
Note that when applying the Duality Principle to this group of rules, besides
switching the operators, we also need to exchange the antecedent and subsequent
in the righthand of � in the condition part. As an example, we may obtain the
reduction rule

ρ � θ3 → θ2 � (ϕ1Rθ2)Rθ3 ≈ θ3 ∧ (ϕ1Rθ2) (RR[3 → 2])

by applying the Duality Principle to (UU[2 → 3]).
Lastly, Figure 8 provides some reduction rules that can be used to simplify

formulae with mixed usage of U and R. Similarly, by switching dual operators
and inverting the corresponding part in the additional condition, one may obtain
the reduction rules for formulae in which R appears (adjacently) out of U.
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ρ � θ1 → θ2 � θ1Uθ2 ≈ θ2 (U[1→ 2])

ρ � θ1 → θ3 � (θ1Uϕ2)Uθ3 ≈ ϕ2Uθ3 (UU[1→ 3])

ρ � θ2 → θ3 � (ϕ1Uθ2)Uθ3 ≈ θ3 ∨ (ϕ1Uθ2) (UU[2→ 3])

ρ � θ3 → θ2 � (ϕ1Uθ2)Uθ3 ≈ (ϕ1 ∨ θ2)Uθ3 (UU[3→ 2])

ρ � θ2 → θ′3 � (ϕ1Uθ2)Uθ3 ≈ (ϕ1 ∨ θ2)Uθ3 (UU[2→ 3′])

ρ � ¬θ2 → θ3 � (ϕ1Uθ2)Uθ3 ≈ Fθ3 (UU[¬2→ 3])

ρ � θ1 → θ2 � θ1U(θ2Uϕ3) ≈ θ2Uϕ3 (UU[1→ 2])

ρ � θ1 → θ3 � θ1U(ϕ2Uθ3) ≈ ϕ2Uθ3 (UU[1→ 3])

ρ � θ2 → θ1 � θ1U(θ2Uϕ3) ≈ θ1Uϕ3 (UU[2→ 1])

Fig. 7. Reduction rules for formulae involving adjacent U operators

ρ � θ1 → θ3 � (θ1Rϕ2)Uθ3 ≈ ((θ1Rϕ2) ∨ θ3) ∧ Fθ3 (UR[1→ 3])

ρ � ¬θ1 → θ3 � (θ1Rϕ2)Uθ3 ≈ ϕ2Uθ3 (UR[¬1→ 3])

ρ � θ1 → θ3 � θ1U(ϕ2Rθ3) ≈ ϕ2Rθ3 (UR[1→ 3])

Fig. 8. Reduction rules for formulae involving adjacent U and R operators

3.2 Reduction Strategy

We show the usage of CePRe reduction rules by illustrating the reduction
process of M |= (θ1Uθ2)Uθ3:

1. We may first try with the rule (UU[1 → 3]) by inquiring the SAT-solver if
ρ � θ1 → θ3 holds.

2. If the SAT-solver returns “unsatisfiable” with the input ρ ∧ θ1 ∧ ¬θ3, then
it implies that the additional condition is stated, and we may replace the
specification with θ2Uθ3.

3. Otherwise, we will try with another reduction rule, such as (UU[2 → 3]).

In fact, these rules can also be “locally applied” to subformulae. For example, to
make a local reduction of (FU), we may replace each occurrence of F(ϕUψ) in
the specification with Fψ. The only exception is for the group of rules listed in
Figure 4: observe that we haveYϕ ≈ ⊥ according to (Y), yet this does not imply
that FYϕ ≈ F⊥ holds. Hence, these rules have an “implicit condition” when
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doing local application: the subformula to be reduced must occur “temporally
outermost” in the specification — i.e., the target subformula does not occur in
the scope of any temporal operators in the specification.

Input: The original specification ϕ.
Output: The reduced specification.

1 let Γ := ∅; /∗ Γ memorizes the sub-formulae with infeasible condition ∗/
2 let Δ := {ψ ∈ (sub(ϕ) \ Γ ) such that ψ matches some reduction rule(s)};
3 foreach ψ1, ψ2 ∈ Δ s.t. ψ1 �= ψ2 do
4 if ψ1 ∈ sub(ψ2) then
5 Δ := Δ \ {ψ1}; /∗ i.e., we only proceed “max” subformulae ∗/
6 end

7 end
8 if Δ = ∅ then
9 return ϕ;

10 end
11 foreach ψ ∈ Δ do
12 let Θ := the set of rules that can be applied to ψ;
13 /∗ note that we have |Θ| ≤ 5 for each ψ ∗/
14 while Θ �= ∅ do
15 choose R := (Cond� ψ ≈ η) in Θ ;
16 if Cond is stated then

17 ϕ := ϕψ
η ; /∗ ϕψ

η is obtained from ϕ by replacing ψ with η ∗/
18 break;

19 end
20 Θ := Θ \ {R};
21 end
22 Δ := Δ \ {ψ};
23 if Θ = ∅ then
24 Γ := Γ ∪ {ψ} ; /∗ ψ would be excluded in the next iteration ∗/
25 end

26 end
27 goto 2;

Algorithm 1. The “max-match” rule-selection strategy

Compositional use of reduction rules may lead to a more aggressive reduction.
For example:

1. For the task of model checking M |= FOp, we may firstly change the goal
as M |= Fp ∨Op, according to the rule (FO).

2. Now, the subformula Op is a temporally outermost one, hence we may make
a local application of (O), and then the goal becomes M |= Fp ∨ p.

3. Finally, we may change the model checking problem into M |= Fp via the
rule (Disj).

In the real implementation, we perform a “max-match” rule-selection strategy, as
depicted in Algorithm 1. In Line 15, for a rule “Cond � ψ ≈ η”, the simplerCond
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is, and the shorter η is, the higher priority to be chosen it has. Hence, a model-
independent rule always has a higher priority than a model-dependent one. We
can see that the reduction can be accomplished within O(|ϕ|) iterations.

3.3 Performance Analysis of the Reduction

We now try to answer the question “why we can gain a better performance
during verification if CePRe is conducted first”. To give a rigorous explanation,
we briefly revisit the implementation of symbolic model checking algorithms.

The core procedure of BDD-based LTL symbolic model checking algorithm is
to construct a tableau for the (negated) property. In the following, we refer the
tableau of ¬ϕ as T¬ϕ, and we would give an analysis on its major components
affecting the cost of model checking.

State Space: The state space of T¬ϕ consists of subsets of el(ϕ), and the set
el(ϕ) can be inductively computed as follows.

– el(() = el(⊥) = ∅.
– el(p) = {p} if p ∈ P .
– el(ϕ1 → ϕ2) = el(ϕ1) ∪ el(ϕ2).
– el(Xψ) = {Xψ} ∪ el(ψ), and el(Yψ) = {Yψ} ∪ el(ψ).
– el(ϕ1Uϕ2) = el(ϕ1)∪el(ϕ2)∪{X(ϕ1Uϕ2)} and el(ϕ1Sϕ2) = el(ϕ1)∪el(ϕ2)∪

{Y(ϕ1Sϕ2)}.

We can see from the definition that el(ϕ) = el(¬ϕ) holds. With symbolic repre-
sentation, each formula ψ ∈ el(ϕ) corresponds to a proposition in building the
tableau. Moreover, if ψ ∈ P , then no new proposition need to be introduced
(since it has already been introduced in building the symbolic representation
of M), otherwise, a fresh proposition pψ is required. Hence the total number
of newly introduced propositions equals to |el(ϕ) \ P|. From an induction over
formula’s structure, we have the following claim.

Proposition 1. |el(ϕ) \ P| equals to the number of temporal operators in ϕ.

Transitions: The transition relation of T¬ϕ is a conjunction of a set of con-
straints, and each constraint is either of the form pXψ ↔ (σ(ψ))′ or p′Yη ↔ σ(η),
where Xψ,Yη ∈ el(ϕ), and the function σ can inductively defined as follows.

– σ(⊥) = ⊥ and σ(() = (.
– σ(p) = p for each p ∈ P .
– σ(ψ1 → ψ2) = σ(ψ1) → σ(ψ2).
– σ(Xψ1) = pXψ1 and σ(Yψ2) = pYψ2 .
– σ(ψ1Uψ2) = σ(ψ2) ∨ σ(ψ1) ∧ pX(ψ1Uψ2) and σ(ψ1Sψ2) = σ(ψ2) ∨ σ(ψ1) ∧

pY(ψ1Uψ2).

According to the definition of el, we can see that each ψ ∈ sub(ϕ) rooted at a
future (reps. past) temporal operator exactly produces one formula Xη (resp.
Yη) in el(ϕ), and hence a new proposition pXη (resp. pYη) would be introduced.
Subsequently, each such pXη (reps. pYη) adds exactly one constraint to the
transition relation. Hence, we have the following claim.
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Proposition 2. The number of constraints in the transition relation of T¬ϕ
equals to the number of temporal operators occurring in ϕ (alternatively, |el(ϕ)\
P|).

Fairness Constraints: According to the tableau construction, each ψ ∈ subU
(¬ϕ) would impose a fairness constraint to T¬ϕ. Hence, the number of fairness
constraints equals to |subU(¬ϕ)|.

With a case-by-case checking, we can show the following theorem.

Theorem 2. Let “Cond � ϕ ≈ ψ” be a reduction rule, then we have |el(ψ)\P| ≤
|el(ϕ) \ P| and |subU(ψ)| ≤ |subU(¬ϕ)|.

In contrast, the cost of BMC is quite sensitive to the encoding approach. In a
broad sense, we can categorize the encoding approaches into two fashions.

Syntactic encodings: Such kind of encodings are inductively produced w.r.t.
the formula’s structure. The very original one is presented in [1], and this is
improved in [4] by observing some properties of that encoding. In [9,10], a
linear incremental syntactic encoding is suggested. And see [16] for a recent
translation for ECTL*.

Semantic encodings: In [5], an alternative BMC technique is provided: it
mimics the tableau-based model checking process, but it expresses the fair-
path detection upon the product model with Boolean formula.4

For the semantic encodings, the reason that we can benefit from CePRe is
exactly the same as that for BDD-based approach. Because, the encoding is a
conjunction of a k-step unrolling of M and a k-step unrolling of T¬ϕ (an unrolling
is either a partial derived linear structure, or a one ending with a lasso). The
former is usually in a fixed pattern, and for the latter, we need k×|el(ϕ)\P| new
propositions, and the sizes of Boolean formulae w.r.t the transition and fairness
constraints5 are respectively O(k × |el(ϕ) \ P|) and O(k2 × |subU(¬ϕ)|).

For a syntactic BMC encoding, one need to generate a Boolean formula of
the form Ek

M ∧ Ek
¬ϕ, where Ek

M is the unrolling of M with k steps, and Ek
¬ϕ

describes that such k-step unrolling would cause a violation of ϕ. In general,
Ek

M is almost the same in all kinds of syntactic encodings, and the key factor
affecting the cost lies in Ek

¬ϕ.

Given a subformula ψ of ϕ, if we use ||Ek
ψ || to denote the max length of the

Boolean formula describing that ψ is initially satisfied upon a k-step unrolling,
then it can be inductively computed as follows.

– ||Ek
⊥|| = ||Ek

�|| = 0. 6

– ||Ek
p || = 1 for each p ∈ P .

4 In [7], a “fixpoint”-based encoding is proposed, and it can also be subsumed to
semantic encodings.

5 Note that the part w.r.t. fairness constraints can be linearized.
6 This is just for the case when ⊥ or � appears as a subformula in the specification,
and hence can be optimized; otherwise, we have ||Ek

⊥|| = ||Ek
�|| = 1.
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– ||Ek
ϕ1→ϕ2

|| = ||Ek
ϕ1
||+ ||Ek

ϕ2
||+ 1.

– ||Ek
Xψ || = ||Ek

Yψ|| = ||Ek
ψ ||.

– ||Ek
ϕ1Uϕ2

|| = ||Ek
ϕ1Sϕ2

|| = L(k)× ||Ek
ϕ1
||+ k × ||Ek

ϕ2
||. 7

Here, L(k) is some polynomial about k, related to the encoding approach. For
example, with the technique proposed in [1,4], we have L(k) ∈ O(k2), whereas
L(k) ∈ O(k) in [9,10]. This partly explains the reason that we tend to change
temporal nestifications with Boolean combinations, as done in (UU[3 → 2]) etc.

Another feature affecting the cost is the scale of propositions required for the
encoding. If we denote by vark(ϕ) the set of additional propositions which only
takes part in the encoding of Ek

¬ϕ, then we have the following conclusions.

– For the techniques proposed in [1] and [4], we have vark(ϕ) = 0. i.o.w., all
propositions required in encoding Ek

¬ϕ can be shared with those for Ek
M .

– In term of the encoding presented in [10], we need to add O(k) new propo-
sitions to vark(ϕ) for each U-subformula and for each S-subformula.

Theorem 3. Let “Cond � ϕ ≈ ψ” be a reduction rule, then we have ||Ek
ψ || ≤

||Ek
ϕ|| and |vark(ψ)| ≤ |vark(ϕ)| in syntactic encodings.

4 Experimental Results

We have implemented CePRe as an upfront option in NuSMV8, and we have
also conducted experiments upon both industrial benchmarks and randomly
generated cases in terms of both BDD-based and bounded model checking. The
BMC encoding approach here we adapt is that proposed in [4], which is the
current BMC implementation of NuSMV.

We conduct the experiments under such platform: CPU - Intel Core Duo2
E4500 2.2GHz, Mem - 2G Bytes, OS - Ubuntu 10.04 Linux, Cudd -v2.4.1.1,
Zchaff -v2007.3.12.

4.1 Experiments upon Industrial Benchmarks

The benchmarks we choose in this paper are suggested in [2], and most of them
come from real hardware verification.

Table 1 provides the experimental results for BDD-based LTL symbolic model
checking. The field #Time is the executing time totally elapsed, and the field
#R.S. refers to the number of reachable states. For the experiments “with
CePRe ”, both the overheads of time and space are the summations of pre-
processing and model checking. For Table 1, we have the following remarks:

7 Note that this case does not imply that further blow-up would be caused with deeper
nesting of temporal operators. For example, in [10], by introducing fresh propositions
and reusing, it still leads to a linear encoding for the whole formula.

8 The tool is available in http://sourceforge.net/projects/nusmvwithcepre, and
all SMVmanuscripts for experiments can be found in the folder of /files/benchmark
and /files/random from that site.
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Table 1. Comparative results of BDD-based MC with/without CePRe

Without CePRe With CePRe
Model Spec. #BDD- #R.S. #Time #BDD- #R.S. #Time

-Nodes (sec.) -Nodes (sec.)

srg5 Ptimo.ltl 7946 720 0.024 2751 720 0.016

Pti.gnv.ltl 29704 11460 0.058 5712 2880 0.012

Pti.g.ltl 64749 130048 0.048 8119 32768 0.016

abp4 P2false.ltl 99577 559104 0.200 99625 559104 0.202

P2true.ltl 61209 904384 0.066 56494 419296 0.064
Pold.ltl 52301 353536 0.060 52349 353536 0.064
Ptimo.ltl 78098 219616 0.080 78146 219616 0.088
Pti.g.ltl 8385 200704 0.060 8433 200704 0.062

dme3 P0.ltl 889773 35964 5.756 527983 26316 5.096
P1.ltl 455148 8775 0.460 409432 5505 0.374

dme5 Mdl.ltl 793942 8.64316e+06 167.346 814494 3.2097e+06 114.599

Wat.ltl 412867 1.79217e+07 302.005 967033 1.12567e+07 286.850
Ptimo.neg 508036 1.26202e+06 3.260 508081 1.26202e+06 3.280

msi w- Sched.ltl 2275558 7.31055e+07 6.612 2275655 7.31055e+07 6.632
trans Safety.ltl 1213308 3.6528e+07 7.568 1213460 3.6528e+07 7.644

Seq.ltl 1921973 3.5946e+07 93.570 1702585 1.7973e+07 94.085

1. 8 out of 16 specifications could be reduced with CePRe (and these specifi-
cations have been highlighted).

2. For the specifications that can be reduced, considerable improvements are
made during verification. For example, for the specification Pit.g.ltl, with
CePRe, the number of BDD nodes are decreased to 12.5% of that without
using CePRe.

3. When a specification cannot be reduced with CePRe, it spends a very low
extra overheads for doing preprocessings.

4. Something noteworthy we do not provide here is that: in the case that a
violated LTL specification can be reduced, the newly generated counterex-
ample is usually shorter than that of before. Among 8 specifications that can
be reduced, counterexample-lengths of Pti.nuv.ltl, Pit.g.ltl, P0.ltl and Seq.ltl
are respectively shortened to 15, 10 and 194, opposing to the original val-
ues 16, 12 and 217. Meanwhile, counterexample-lengths of others are kept
unchanged.

Table 2 gives the experimental results for BMC-based model checking, and we
here give some comments on that.

1. With NuSMV, we need to preset a max-bound when doing bounded model
checking. The column #Max-bound gives such values — a “star mark”
means that this bound does not reach the completeness threshold. The field
#N.O.C. designates the number of clauses generated during model checking.
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Table 2. Experimental results of BMC-based MC with/without CePRe

Without CePRe With CePRe #Max-
Model Spec. #N.O.C. #Time #N.O.C. #Time bound

(sec.) (sec.)

srg5 Ptimo.ltl 272567 67.391 1371 0.143 20

Pti.gnv.ltl 2101 0.116 299 0.024 6

Pti.g.ltl 21 0.016 21 0.016 1

abp4 P2false.ltl 7532 3.972 7532 3.972 17

P2true.ltl 12639 8.145 9369 7.753 20�

Pold.ltl 7499 9.087 7499 9.488 20�

Ptimo.ltl 6332 2.500 6332 2.512 16
Pti.g.ltl 11952 0.841 11952 0.976 20�

dme3 P0.ltl − − 35102 524.207 62
P1.ltl 216 0.036 167 0.048 1

dme5 Mdl.ltl 90 0.044 90 0.048 0

Wat.ltl 367 0.048 274 0.052 1
Ptimo.neg 367 0.050 277 0.058 1

msi w- Sched.ltl 14235 1.076 14235 1.078 20�

trans Safety.ltl 12439 8.441 12439 8.448 20�

Seq.ltl 1907 0.064 81 0.052 3

2. From Table 2, we can see that without CePRe the specification Pti.gnv.ltl
generates 2101 clauses when the verification stops, in contrast, it only pro-
duces 299 clauses if CePRe is switched on.

3. Another comparison is for P0.ltl upon dme3: If we don’t do any reduction,
the SAT-solver reports a SEGMENTATION FAULT at Step 35. In contrast,
using CePRe, a counterexample could be found at Step 62.

4. Since the encoding approach we adapt is taken from [4], propositions used
in the encoding are only determined by the model and the bound, thus
the number of required propositions does not change. For this reason, the
corresponding experimental results on proposition numbers are not provided.

Note that both model-independent and model-dependent rules contribute to
the reductions. For example, for the model srg5 and the specification Pti.g.ltl,
the rules (FS) and (S) are applied; meanwhile, for the model msi wtrans and the
specification Seq.ltl, the application of (UU[¬2 → 3]) is invoked.

4.2 Experiments w.r.t. Random Models and Specifications

We have also performed experiments upon randomly generated models and spec-
ifications with the tool Lbtt [14] and with the methodology suggested in [10].

For each 3 ≤ % ≤ 7, we randomly generate 40 specifications having length %.
Subsequently, for each specification, we generate two models respectively for the
BDD-based model checking and for BMC. Hence, we totally have 200 specifica-
tions and 400 models.
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For the BDD-based model checking, we give the comparative results on 1) the
scale of BDD-nodes, 2) the number of reachable states, 3) the time consumed,
and the experimental results are respectively shown in Figure 9 – Figure 11.
For bounded model checking, we have set the max-bound to 20 and we have
compared: 1) the number of clauses, and 2) the executing time, the results are
respectively shown in Figure 12 and Figure 13. Each value here we provide is
the average of the 40 executions.
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For the BDD-based model checking, there are 123 (out of 200) specifications
can be reduced, wheras for bounded model checking, the number of specifica-
tions that can be reduced is 118. Note that in this experiment, when CePRe is
switched on, extra overheads (such as time) have also been taken into account.

5 Concluding Remarks

In this paper, we present a new technique to reduce LTL specifications’ com-
plexity towards symbolic model checking, namely, CePRe. The novelty in this
technique is that the reduced formula needs not to be logically equivalent with
the original one, but just preserves the counterexample set. Moreover, the con-
dition enabling such a reduction can be usually detected with lightweight ap-
proaches, such as SAT-solving. Hence, this technique could leverage the power
of SAT-solvers.

The central part of CePRe is a set of reduction rules, and soundness of
these reduction rules are fairly easy to check. For the model dependent rules,
additional conditions mainly concern about the invariants and transitions, and
we do not make a sufficient use of other features, such as fairness. In this paper,
the rules are given by enumerating all possible combinations of (at most two)
temporal operators. Indeed, there might be some other reduction schemas we
are not aware.

From the experimental results, we can see that, in a statistical perspective, a
better performance and lower overhead can be achieved with CePRe.
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Abstract. A structural transformation from p-π processes to MSVL programs is
proposed in this paper. To this end, channel and communication primitives are
firstly defined in MSVL. Further, based on these definitions, a mapping func-
tion Υ which transforms p-π processes into MSVL programs is formalized. As
a result, p-π can provide a mechanism to model, simulate and verify concurrent
systems by means of the techniques of MSVL. Finally, a case study is given to
illustrate how the transformation is used in practice.

Keywords: process algebra, temporal logic, π-calculus, MSVL, verification.

1 Introduction

Following CCS [1], CSP [2] and ACP [3], lots of variations of process algebras were
proposed for different purposes. For example, with the development of new network
computing technologies, e.g. SaaS [4], SOA [5] and Cloud Computing [6], π-calculus
is such a variation widely used in practice to ensure the correctness of systems with dy-
namic properties. However, with π-calculus [7–11], the time duration of an action and
the residence time of a system at a state are not taken into account. Thus, π-calculus
is not convenient for modeling time-dependent systems. p-π[23] is an extension of π-
calculus for specifying time-dependent mobile systems, which augments the action pre-
fixes of π-calculus by adding interval action prefixes. Although p-π provides plenty of
algebraic ways to specify concurrent time-dependent systems, it is difficult to verify
systems by model checking or theorem proving.

On the other hand, Projection Temporal Logic (PTL) [12–14] offers abundant mech-
anisms such as model checking, equivalence reasoning and theorem proving for mod-
eling and reasoning about concurrent time-dependent systems. MSVL[15, 18, 19], an
executable subset of PTL, is a modeling, simulation and verification language. Further,
an interpreter for MSVL has been developed and it can work in three modes: modeling,
simulation and verification.

In this paper, we are motivated to investigate the relationship between p-π and MSVL
so that we can take advantage of techniques of MSVL to verify properties of time-
dependent systems modeled by p-π. Precisely, we present a structural transformation Υ
which can translate a given p-π process into an MSVL program.
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For iteration and more complex (non-regular) patterns of recursion processes, they
can be expressed in two manners in original π-calculus. One is by !P and the other is
by A〈a1, .., an〉. In [8], A〈a1, .., an〉 is employed and in [7], both A〈a1, .., an〉 and !P
are used. !P means an unlimited number of copies of P is able to run concurrently and
P is dynamically created by the law “!P ≡ P |!P ”. However, the use of !P is only for
the succinctness of the syntax, but not for the practice of the modeling. As a result,
many examples in [7] are expressed by A〈a1, .., an〉. Especially, in section “9.5” of the
book, how to express recursive definitions by both A〈a1, .., an〉 and !P is presented. For
our calculus p-π, we employ A〈a1, .., an〉. The main consideration is for the practice in
the modeling. Since A〈a1, .., an〉 can express iteration/recursion, p-π is not restrictive.
However, recursive definitions in p-π would make reachability/safety verification of p-
π undecidable. For decidability of the verification of p-π, we restrict the form of p-π
processes. For the transformation, we just take into account the processes which are
decidable. Precisely, to transform process instances, we consider only process instances
without recursive calls in their definitions and process instances with recursive calls in
the definitions which can be in a specific form. For these process instances, their least
fixed points exist. To transform each of them, we employ a recursion procedure to get
the fixed point. Moreover, for process instances with recursive calls in the definitions
which cannot be in the given form, their behavior may not be convergent so that we
cannot directly transform them into MSVL.

In the literature, Zhou et al present a language, called HCSP, to describe hybrid
systems [16]. The semantics of the language is given in terms of Extended Duration
Calculus [17]. Our translation is defined in a way much as how the semantics is given.
Comparing with their work, we focus on only discrete processes rather than both dis-
crete and continuous processes. Further, the messages passed by channels in HCSP are
discrete or continuous variables while in p-π the messages can be channels.

However, the communication mechanisms used in MSVL and p-π are different. In
fact, MSVL involves shared variables whereas p-π uses communication channels (or
names). Therefore, to transform p-π, the channel and communication primitives need
to be defined in MSVL. The contribution of this paper is two-fold: (1) A structural
transformation Υ is provided to transform p-π processes into MSVL programs. (2) The
channel and communication primitives are defined in MSVL to smooth the transforma-
tion.

The rest of the paper is organized as follows. The syntax and semantics of p-π are
briefly introduced in section 2. In section 3, firstly the syntax and semantics of MSVL
are shortly presented; further, the channel and communication primitives are formally
defined. Section 4 is devoted to demonstrating the structural transformation from p-π
processes to MSVL programs. Moreover, a case study is given in section 5. Finally,
conclusions are drawn in Section 6.

2 Extended π-Calculus: p-π

p-π [23] is an extension of π-calculus and has two types of action prefixes: instanta-
neous and interval ones. The instantaneous action prefixes are executed without time-
consuming whereas the execution of interval action prefixes takes one time unit.
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2.1 Syntax of p-π

Let N be an infinite countable set of names, PR a countable set of propositions, and N
the set of non-negative integers. The syntax of p-π processes is given as follows:

π ::= x(y) | x〈y〉 | τ | Ip | skip | ε
P ::= 0 | π.P | P1 + P2 | P1|P2 | [a1 = a2]P | νa P | A〈a1, ..., an〉

where x, y, a, and ai (i is an integer from 1 to n ∈ N) are names ranging over N .
The action prefix π falls into two categories: instantaneous action prefix and interval

action prefix. An instantaneous action prefix represents either sending (denoted byx〈y〉)
or receiving (denoted by x(y)) a message, or executing a silent τ or empty transition ε.
An interval action prefix represents either Ip={p1 ∧ skip, ..., pk ∧ skip} or skip. Here
pi ∈ PR (i is an integer from 1 to k ∈ N), and skip is a special proposition indicating a
time unit. For convenience, we use p̃i to represent pi ∧ skip and x (or x) to denote x〈〉
(or x()). Note that x() (or x()) means an action prefix without message.

A process (or process expression) can be an empty process 0, an action prefix guarded
process π.P , summation of two processes P1 + P2, parallel composition of two pro-
cesses P1|P2, a match structure [a1=a2]P , a restriction structure νa P , or a process
instance A〈a1, ..., an〉. P1 + P2 means a nondeterministic choice. [a1=a2]P indicates
that P is executed if a1=a2. νa P behaves as P except that the communication on the
bound name a is forbidden.A in A〈a1, ..., an〉 is a process identifier defined by an equa-

tion A(x1, ..., xn)
def
= PA and A〈a1, ..., an〉={(a/(x}PA where (a and (x are the vectors of

a1, ..., an and x1, ..., xn, respectively. For succinctness, .0 can be omitted. For instance,
we write a(b) instead of a(b).0. Also we often write ν a ν b P as ν a, b P . Usually,
prefixed operations (π., ν a and [a=b]) have priority over summation and composition
operations. For example, ν a a(b).P |Q means (ν a a(b).P )|Q, but not ν a (a(b).P |Q).

The abbreviations about skip and await are defined as follows.

Skip 0 skip0
def
= ε

Skip n skipn
def
= skip.skipn−1(n ≥ 1)

Await d await(P )
def
= ε.P + skip.P + ...+ skipn.P (n ≥ 0)

where n ∈ N is a finite integer. P in await(P ) is a sending (or receiving) prefix guarded
process.

The set of names in a process n(P ) consists of bound names bn(P ) and free names
fn(P ). That is n(P )=bn(P ) ∪ fn(P ). Names, say a, appearing in (a) or νa P are
bound names while others are free names.

2.2 Semantics of p-π

Definition 1. Let ∼= be an equivalence relation over the set of p-π processes P . ∼= is
called a process congruence, iff
if P ∼= Q, then

π.P ∼= π.Q, P +R ∼= Q+R,
R+ P ∼= R+Q, P |R ∼= Q|R,
R|P ∼= R|Q, [a1 = a2]P ∼= [a1 = a2]Q,
νaP ∼= νaQ.
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Definition 2. Let ≡ be an equivalence relation over P defined by the sixteen equations
below. ≡ is called a structural congruence iff ≡ is a process congruence.

S1 : νx P ≡ νy {y/x}P if y /∈ fn(P ) S2 : P +Q ≡ Q+ P
S3 : x(y).P ≡ x(z).{z/y}P if z /∈ fn((y)P ) S4 : P |0 ≡ P
S5 : P |Q ≡ Q|P S6 : (P |Q)|R ≡ P |(Q|R)
S7 : νx (P |Q) ≡ P |νx Q, if x /∈ fn(P ) S8 : νx 0 ≡ 0
S9: [x = y]P ≡ 0, if x �= y S10 : νxy P ≡ νyx P

S11: A〈a1, ..., an〉 ≡ {(a/(x}PA if A(x1, ..., xn)
def
= PA S12: ε.P ≡ P

S13: skip.P + skip.Q ≡ skip.(P +Q) S14: P + 0 ≡ P
S15: P + (Q +R) ≡ (P +Q) +R S16: νx x〈y〉.P ≡ 0

It has been proved that ≡ is a process congruence. That is ≡ is a structural congruence
over the set of p-π processes P . Two process expressions P,Q ∈ P are structurally
congruent, written as P ≡ Q, if one can be transformed into the other by using the
equations in Definition 2 in either direction.

Operational Rules. To define the operational rules of p-π, we firstly specify the ob-
servable actions as follows:

πo ::= x̄〈y〉 | x(z) | x̄(z) | τ | Ip | skip
πc ::= x̄〈y〉 | x(z) | x̄(z) | τ
πt ::= Ip | skip

where x and y are free names in fn(πo) or fn(πc). z is a bound name in bn(πo) or
bn(πc). Here, x(z) is defined by νz x〈z〉.

In Fig.1, late operational semantics of p-π is defined. A transition in the form of
P

πo−→ Q in p-π means that P can evolve into Q after performing action πo.

Definition 3. Weakly-guarded [8]: A process identifier is weakly-guardedly defined if
each occurrence of the process instance of this process identifier within its definition is
action prefix guarded.

The definition is used to guarantee that the behavior of a process instance will be un-
folded uniquely [8]. It is a prerequisite for us to transform p-π processes into MSVL
programs.

3 Modeling, Simulation and Verification Language

In this section, the syntax and semantics of a Modeling, Simulation and Verification
Language MSVL are briefly introduced. Further, the channel and communication prim-
itives are defined.

3.1 Syntax and Semantics

MSVL consists of expressions and statements. Let N0 be a set of non-negative integers.
D denotes all data including integers, lists, sets, etc. Expressions can be regarded as
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Tau:
τ.P

τ−→ P
In:

x(z).P
x(w)−−−→ {w/z}P

(w /∈ fn((z)P ))

Out:
x̄〈y〉.P x̄〈y〉−−−→ P

Par:
P1

πc−→ P ′
1

P1|P2
πc−→ P ′

1|P2

(bn(πc) ∩ fn(P2) = ∅)

Sum:
P1

πc−→ P ′
1

P1+P2
πc−→ P ′

1

Close:
P1

x̄(y)−−−→ P ′
1 P2

x(y)−−−→ P ′
2

P1|P2
τ−→ νy (P ′

1|P ′
2)

Com:
P1

x̄〈y〉−−−→ P ′
1 P2

x(z)−−−→ P ′
2

P1|P2
τ−→ P ′

1|{y/z}P ′
2

Mat:
P

πo−→ P ′

[a1 = a2]P
πo−→ P ′

(a1 = a2)

Open:
P

x̄〈y〉−−−→ P ′

νy P
x̄(z)−−−→ {z/y}P ′

(x �= y, z /∈ fn(νyP ′))

Res:
P

πo−→ P ′

νxP
πo−→ νxP ′

(x /∈ n(πo)) Ide:
{�a/�x}PA

πo−→ P ′

A〈�a〉 πo−→ P ′
(A(�x)

def
= PA)

Actt:
πt.P

πt−→ P
Sumt1 :

P1
skip−−−→ P ′

1 P2
skip−−−→ P ′

2

P1+P2
skip−−−→ P ′

1+P ′
2

Actε:
P

πc−→ P ′

ε.P
πc−→ P ′

Await:
ε.P+skip.await(P )

πo−→ P ′

await(P )
πo−→ P ′

Comidle:
P1

πt−→ P ′
1 P2 ≡ 0

P1|P2
πt−→ P ′

1

Sumt2 :
P1

πt−→ P ′
1

P1+P2
πt−→ P ′

1

(P1+P2 �
skip−−−→)

Comt:
P1

πt1−−→ P ′
1 P2

πt2−−→ P ′
2

P1|P2

πt1∪πt2−−−−−→ P ′
1|P ′

2

(πt1 ∩ πt2–skip = ∅, P1|P2 � τ−→)

Fig. 1. Operational semantics of p-π

PTL terms and statements as PTL formulas. The arithmetic expression e and boolean
expression b of MSVL are inductively defined as follows:

e ::= c | x | &x | ∗ x | © x | -©x | e0 op e1 (op ::= + | − | ∗ | /)
b ::= true | false | ¬b | b0 ∧ b1 | e0=e1 | e0 < e1

where c∈D is a constant, x a variable. A dynamic variable x is said to be framed in
program prog if frame(x) or lbf(x) is contained in prog.

A framed program in MSVL can be formalized by the sixteen elementary statements
in Figure 2. As usual, x denotes a variable, e stands for an arbitrary arithmetic expression,
b represents a boolean expression, and p1, . . . , pm, p and q are general framed programs.

ε is the termination statement, which simply states that the current state is the final
state of the interval over which a program is executed. The next statement ©p means
that p holds at the immediate successor state. �p implies that p holds in all the states
from now on. The sequential statement p ; q signifies that p holds from the current
state until some point in the future at which it terminates and q will start executing from
that point.
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Termination : ε Basic Assignment : x = e
Pointer Assignment : ∗x = e State Frame : lbf(x)
Interval Frame : frame(x) Conjuction : p ∧ q
Selection : p ∨ q Next Statement : ©p
Always Statement : �p Conditional Statement: if b then p else q
Existential Quantification : ∃x : p(x) Sequential Statement : p ; q
Parallel : p ‖ q While Statement : while b do p
Synchronized Communication : await(b) Projection : (p1, . . . , pm) prj q

Fig. 2. MSVL statements

x = e is the assignment statement meaning that the value of variable x is equal to
the value of expression e. If e is evaluated a constant c and x has not been specified
before (or it was specified to have the same value as e), then we say c is assigned to
x. In this case, the equality x = e is satisfied otherwise it is false. In other words, x is
unified with e. Similarly, ∗x = e is the assignment associated with the pointer. Unlike
variable assignment, the evaluation for pointer assignment involves both interpretation
of the pointer and the expression [22]. The unit assignment x := e is defined as x :=

e
def
= skip ∧©x = e.
lbf(x) means that, when a variable is framed at a state, its value remains unchanged

if no assignment is encountered at that state while frame(x) implies that a variable is
framed over an interval if it is framed at every state over the interval.

The conditional statement if b then p else q first evaluates the boolean expression;
if b is true, then the process p is executed, otherwise q is executed.

The iteration while b do p allows process p to be repeatedly executed a finite (or
infinite) number of times over a finite (resp. infinite) interval as long as the condition
b is satisfied at the beginning of each execution. If b becomes false, then the while

statement terminates.
The selection statement p ∨ q represents that p or q will be executed.
The conjunction statements p ∧ q declares that the processes p and q are executed

concurrently sharing all the states and variables during the mutual execution.
The parallel construction p ‖ q, shows another concurrent computation manner. The

difference between p ‖ q and p ∧ q is that the former allows both p and q to be able
to specify their own intervals while the latter does not. E.g., len(2) ‖ len(3) holds but
len(2) ∧ len(3) is obviously false.

The statement await(b) is used to synchronize communication between parallel pro-
cesses in a concurrent program with the shared variable mode. It does not change any
variables, but waits until the condition b becomes true, at which point it terminates.

Projection can be regarded as a special parallel computation which is executed
on different time scales. (p1, . . . , pm) prj q claims that q is executed in parallel with
p1, . . . , pm over an interval obtained by taking the endpoints of the intervals over which
p′is(1 ≤ i ≤ m) are executed. The construct permits the processes p1, . . . , pm, q to be
autonomous, each process having the right to specify the interval over which it is exe-
cuted. In particular, the sequence of p′is and q may terminate at different time points.
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The existential quantification statement ∃x : p(x) intends to hide the variable x
within the process p. We use a renaming method to reduce this kind of programs. Con-
sider a formula ∃x : p(x) with a bound name x. The existential quantification (∃x) is
removed from ∃x : p(x) to obtain an equivalent formula p(y) with a free variable y by
renaming x as y. To do so, we require that: (1) y do not occur (free or bound) in the
whole program such as (q ∧ ∃x : p(x)); (2) y and x both are either dynamic or static;
(3) y substitutes for x only within the bound scope of x in ∃x : p(x). In this case, we
call p(y) a renamed formula of ∃x : p(x).

3.2 Channel and Communication Primitives

There are two significant kinds of communication modes between concurrent processes:
by shared variables and by channels. In MSVL, such a communication is based on
shared variables, whereas, in π-calculus, it is by channels. For smoothness of transfor-
mation, the channel and communication primitives are defined in MSVL. Actually, in
π-calculus, the identification of many apparently different things, such as labels, chan-
nels, pointers, variables etc, is simply as one thing: names (or channels) [7]. Therefore,
mobility can be treated by passing names (or channels) between concurrent processes.
To model mobility, a channel should be capable of being passed as a message. Further,
to implement the name-substituting of p-π, an auxiliary channel will be used as the sub-
stituted channel. Here, the key nodus is how to guarantee the substituted channel and
the substituting channel point to the same channel instance. To this end, the channel is
formalized as a pointer referring to a tripe in definition 4 and communication primitives
are specified in Definition 5.

Definition 4
Cx

def
= &X

X
def
= (w, r, v)

where w and r are boolean variables declaring whether or not channel Cx is waiting
for sending a message or receiving a message. v is a channel variable representing the
message (the message is a channel) to be sent by Cx . Notice that, X is a triple connected
with channel Cx as its channel instance and cannot be used for other purposes.

Definition 5

write(Cx)
def
= Π1(∗Cx) = true

read(Cx)
def
= Π2(∗Cx) = true

send(Cx, Cy)
def
= write(Cx) ∧Π3(∗Cx) = Cy ∧ ε

receive(Cx, Cy)
def
= read(Cx) ∧ Cy = Π3(∗Cx) ∧ ε

wait send(Cx, Cy)
def
= write(Cx) ∧ await(read(Cx)); (Π3(∗Cx) = Cy ∧ ε)

wait receive(Cx, Cy)
def
= read(Cx) ∧ await(write(Cx)); (Cy = Π3(∗Cx) ∧ ε)

Here, projection function Πi(1 ≤ i ≤ 3) is used as usual to obtain the components of a

multi-component. For instance, to get the first component from X
def
= (w, r, v), we have
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Π1(X) = Π1(w, r, v) = w. write(Cx) denotes a sending action occurring via chan-
nel Cx and read(Cx) a receiving action occurring via channel Cx. The communication
can be synchronous or asynchronous. send(Cx, Cy) represents asynchronous sending,
receive(Cx, Cy) asynchronous receiving, wait send(Cx, Cy) synchronous sending and
wait receive(Cx, Cy) synchronous receiving. Asynchronous sending and receiving will
execute writing or reading instantaneously while synchronous sending and receiving
will wait for some actions from its partner. For wait send(Cx, Cy), since write(Cx) ∧
await(read(Cx)) ≡ (write(Cx)∧ read(Cx)∧ε)∨ (write(Cx)∧¬read(Cx)∧©await(
read(Cx)), its behavior is nondeterministic. In other words, it will communicate with
its partner instantaneously, i.e., write(Cx) ∧ read(Cx) ∧ ε;Π3(∗Cx) = Cy ∧ ε ≡
write(Cx) ∧ read(Cx) ∧Π3(∗Cx) = Cy ∧ ε or waits for some actions from its partner,
i.e., write(Cx)∧¬read(Cx)∧©await(read(Cx)); (Cu = Π3(∗Cx)∧ε)). The behavior
of wait receive(Cx, Cy) is analogous to that of wait send(Cx, Cy) but assigns Cy to the
message which is sent by the channel Cx.

4 Transformation from p-π to MSVL

Although p-π and MSVL describe concurrent systems fundamentally in different ways,
we can show that each weakly-guardedly defined p-π process can be transformed into
an MSVL program by the mapping function Υ : {p-π process} → {MSVL program},
which is defined as follows. Υ (P ) transforms P by the induction on its structures.

4.1 Transformation of Names and Propositions

For easy of discussion, in the following, according to the set of names n(P ) and propo-
sitions PRP appearing in a p-π process P , the set of channels CHΥ (P ) and propositional
(or boolean) variables VΥ (P ) of a corresponding MSVL program are obtained. For in-
stance, if n(P )={a, b, c} and PRP ={p1, p2, p3}, we have that,

CHΥ (P ) = {Ca, Cb, Cc},
VΥ (P ) = {xp1 , xp2 , xp3}.

4.2 Transformation of Processes

Empty Process

Υ (0)
def
= ε

Empty process 0 means doing nothing, so it can naturally be mapped to ε in MSVL.

Output Action Prefix

Υ (x̄〈y〉.P )
def
= send(Cx, Cy);Υ (P )

Output action prefix guarded process x̄〈y〉.P means it sends y through x and then be-
haves as P . Since x̄〈y〉 is an instantaneous action prefix without waiting for its partner,
the process can be mapped to send(Cx, Cy);Υ (P ) where send(Cx, Cy) is an asyn-
chronous sending. Cx and Cy are the corresponding MSVL channels of x and y.
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Input Action Prefix

Υ (x(y).P )
def
= ∃Cy : (frame(Cy) ∧ (receive(Cx, Cy);Υ (P )))

Input action prefix guarded process x(y).P indicates it will accept z from x and then be-
haves as {z/y}P . It should be mapped to ∃Cy : (frame(Cy)∧(receive(Cx, Cy);Υ (P ))).
Here, since y is a bound name and will be substituted later, it should consequently be
translated to a local channel. Therefore, the existing quantifier ∃ is brought in. Further,
frame(Cy) guarantees that the channel Cy always keeps its old value (or refers to the
old channel instance) over an interval if no assignment to Cy is encountered. What accu-
rately happens is that Cy will be assigned the message sent by channel Cx. We assume
the message is Cz so that Cy will refer to the same channel instance as Cz . Analogous
to x̄〈y〉, x(y) is translated into an asynchronous receiving.

Await

Υ (await(x̄〈y〉.P ))
def
= wait send(Cx, Cy);Υ (P )

Υ (await(x(y).P ))
def
= ∃Cy : (frame(Cy) ∧ (wait receive(Cx, Cy);Υ (P )))

For derived process await(P ) where P is a sending (or receiving) prefix guarded pro-
cess, since the communication is synchronous, its transformation involves synchronous
sending wait send(Cx, Cy) and receiving wait receive(Cx, Cy). Except for the differ-
ent communication modes, the transformations of await (x̄〈y〉.P ) and await(x(y).P )
are similar to those of x̄〈y〉.P and x(y).P respectively.

Internal Action Prefix
Υ (τ.P )

def
= pI ∧ ε;Υ (P )

Internal action prefix guarded process τ.P performs an internal action τ and then be-
haves as P . It can be mapped to pI ∧ ε;Υ (P ) in which pI is a special proposition used
to indicate whether or not an internal action takes place.

Property Action Prefix

Υ (Ip.P )
def
= xp1 = true ∧ ... ∧ xpn = true ∧ skip;Υ (P )

where Ip = {p̃1, ..., p̃n}. The property action prefix guarded process Ip.P satisfies
pi(1 ≤ i ≤ n) in the first time unit and then behaves as P . Intuitively, it can be mapped
to xp1=true∧ ...∧xpn =true∧skip;Υ (P ). Here, xp1 , ..., and xpn are the corresponding
boolean variables of p1, ..., and pn, respectively.

Time Unit Action Prefix

Υ (skip.P )
def
= skip;Υ (P )

Time unit action prefix guarded process skip.P declares that it will idle in the first time
unit and then behave as P . Its transformation is straightforward and it can be mapped
to skip;Υ (P ).
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Empty Action Prefix

Υ (ε.P )
def
= ε;Υ (P )

For empty action prefix guarded process ε.P , it will execute an empty transition and
then behave as P . Similar to skip.P , it is directly translated into ε;Υ (P ).

Nondeterministic Choice

Υ (P1 + P2)
def
= Υ (P1) ∨ Υ (P2)

Structure P1 + P2 shows that P1 and P2 will proceed nondeterminately, so that it can
naturally be expressed by a disjunction statement.

Parallel
Υ (P1 | P2)

def
= Υ (P1) || Υ (P2)

Parallel composition structure P1 | P2 manifests that P1 and P2 execute concurrently
and will directly be transformed into a parallel statement.

Match
Υ ([a1 = a2]P )

def
= if Ca1 = Ca2 then Υ (P ) else ε

Matching structure [a1 = a2]P tells us that if a1 and a2 are the same name, the process
will behave as P , otherwise 0. Its transformation is defined based on the conditional
statement and Ca1 and Ca2 are the corresponding transformed channels of a1 and a2,
respectively.

Restriction
Υ (νa P )

def
= ∃Ca : (frame(Ca) ∧ Υ (P ))

Restriction structure νa P means that the process will behave as P except that the
communication by bound name a is forbidden. The bound name will be mapped to local
channel Ca so that restriction structure νa P can be defined by ∃Ca : (frame(Ca) ∧
Υ (P )), where frame is used as in the transformation of the input action prefix guarded
structure .

Process Instance
For process instance A〈a1, ..., an〉, we assume that A(x1, ..., xn) is defined by PA,
so that A〈a1, ..., an〉 = {(a/(x}PA. To transform process instance, we firstly claim a
theorem below.

Theorem 1. Let process A(x1, ..., xn)
def
= PA and A〈a1, ..., an〉 = {(a/(x}PA. If A is

recursively called in PA and each A is in the form of πs
1+ ...+πs

i +π
′s
1 .A〈x1, ..., xn〉+

....+π
′s
m.A〈x1, ..., xn〉, where, πs

j (1 ≤ j ≤ i) and π
′s
k (1 ≤ k ≤ m) denote πj1 .....πjnj ,

πk1 .....πknk
, respectively, then, there exists the least fixed point Lfix〈a1, ..., an〉 of A〈a1,

..., an〉 such that A〈a1, ..., an〉=Lfix〈a1, ..., an〉.

In particular, for a simple definition A(x1, ..., xn)=πs
1 + πs.A 〈x1, ..., xn〉, the least

fixed point of A〈a1, ..., an〉 is {(a/(x}πs∗.πs
1. However, in practise, the iterative num-

ber of times is deterministic. Therefore, to transform A〈a1, ..., an〉 into MSVL, we can
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specify an arbitrary integer N as number of iteration times to control the recursion. For
A(x1, ..., xn)=πs

1 + ...+πs
i +π

′s
1 .A〈x1, ..., xn〉 +....+π

′s
m.A〈x1, ..., xn〉, the transfor-

mation is similar.
Since a process instance can be defined with recursive calls in p-π, its transformation

will be divided into three cases:

1. Without recursive calls in the definition of A:

Υ (A〈a1, ..., an〉) def
= {−→Ca/

−→
Cx}Υ (PA)

For this kind of process instance, it will be directly translated by substitution.
−→
Ca

and
−→
Cx are the corresponding MSVL channel vectors of (a and (x. Here, we use

a substituting method {−→Ca/
−→
Cx} to substitute

−→
Ca for

−→
Cx so that each Cxi will be

substituted by Cai within the bound scope of Cxi(1 ≤ i ≤ n) in Υ (PA).
2. With recursive calls in the definition of A and A(x1, ..., xn)=πs

1+πs.A〈x1, ..., xn〉:

Υ (A〈a1, ..., an〉) def
= j := 0;

Υ (A−1〈a1, ..., an〉) := ε;

Υ (A0〈a1, ..., an〉) := {−→Ca/
−→
Cx}Υ (πs

1);
while (j < N)
do (j := j + 1;
Υ (Aj〈a1, ..., an〉) :=
{−→Ca/

−→
Cx}Υ (πs

1) ∨ ({−→Ca/
−→
Cx}Υ (πs);Υ (Aj−1〈a1, ..., an〉)))

Where N is a constant integer. For this kind process instance, by Theorem 1, a
least fixed point can be obtained. In practise, we employ a recursion procedure to
get an arbitrary given times iteration result of A〈a1, ..., an〉. For process instances
with recursive calls in the definition of A and A(x1, ..., xn) = πs

1 + ... + πs
i +

π
′s
1 .A〈x1, ..., xn〉 + .... + π

′s
m.A〈x1, ..., xn〉, the corresponding MSVL programs

can be obtained in the same way.
3. With recursive calls in the definition of A but A is not in the form stated in Theorem

1: For this kind process identifier, its behavior may not be convergent so that we
cannot directly transform them into MSVL. Further, the following theorem can be
proved.

Theorem 2. The transformation is sound.

5 Case Study

In this section, we employ a simple time-dependent mobile system modeled by p-π. By
the transformation Υ , it will be mapped to an MSVL program and hence verified by
techniques of MSVL.
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5.1 System Specification

The system consists of a server process S, a client C (the system can be scaled up by
increasing the number of clients) and two data service processes D1 and D2. The server
can communicate with the client and the two data services by sc, sd1 and sd2 respec-
tively (in the process identifier definitions, sc′, sd′1 and sd′2 are parameters and will be
replaced by sc, sd1 and sd2). The client utilizes a local channel r to get access to the
objective data service (D1 or D2) nondeterministically. Each data service process has a
local channel di(i=1,2) representing the relevant data source. This kind of examples are
usually used to explain the mobility of π-calculus. But the existing versions does not
consider the time-dependent aspects. Here, we incorporate Ip and skip to model these
aspects. Let PR= {p, w} be the set of propositions where p represents occupying the
printer and w the writer.

The system needs to satisfy several time-dependent constraints: (1) A process will
be idle if it does nothing (or occupies nothing) for a time unit (denoted by skip in p-
π); (2) the usage of the printer and the writer which are shared resources will occupy
an interval with one time unit; (3) the usage of the same resource is exclusive, which
means a printer (or writer) cannot be occupied by two processes at the same time; (4)
the usage of different resources is compatible. For instance, a printer and a writer are
able to be used by two processes at the same time.

The system is modeled in p-π as follows.

ν sc, sd1, sd2 (S〈sc, sd1, sd2〉 | C〈sc〉 | D1〈sd1〉 | D2〈sd2〉)
S(sc′, sd′1, sd

′
2)

def
= await(sc′(rx).(await(sd′1〈rx〉.{p̃}.skip.S〈sc′, sd′1, sd′2〉)))+

await(sc′(rx).(await(sd′2〈sx〉.{p̃}.skip.S〈sc′, sd′1, sd′2〉))) + τ

C(sc′)
def
= ν r (await(sc′〈r〉.await(r(d).{w̃}.skip.C〈sc′〉))) + τ

Di(sd
′
i)

def
= ν di (await(sd′i(ry).await(ry〈di〉.skip.skip.Di〈sd′i〉))) + τ

(i=1, 2)

In the system, the client sends a service request to the server and the server chooses
one data service to link to the client by an abstract channel rx which will be replaced
by channel r. In this way the client can communicate with the objective data service
through channel r. Subsequently, the server will occupy the printer for an interval with
one time unit({p̃}) and the client will occupy the writer for an interval with one time unit
({w̃}). Afterwards, the system will idle for a time unit. And then, the system repeatedly
execute the procedure or perform an internal action to stop.

5.2 Transformation

By the transformation rules given in section 4, the system will be translated as follows.
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Υ (ν sc, sd1, sd2 S〈sc, sd1, sd2〉 | C〈sc〉 | D1〈sd1〉 | D2〈sd2〉)
≡ prog1 ∧ Υ (S〈sc, sd1, sd2〉 | C〈sc〉 | D1〈sd1〉 | D2〈sd2〉)
≡ prog1 ∧ (Υ (S〈sc, sd1, sd2〉) || Υ (C〈sc〉) || Υ (D1〈sd1〉) || Υ (D2〈sd2〉))
≡ prog1 ∧ (

j1 : =0;
Υ (S−1〈sc, sd1, sd2〉) : =ε;
Υ (S0〈sc, sd1, sd2〉) : =(pI ∧ ε);
while (j1 < N1)
do (j1 : =j1 + 1;
Υ (Sj1〈sc, sd1, sd2〉) : =
(pI ∧ ε) ∨ (frame(Crx) ∧ (wait receive(Csc, Crx); (wait send(Csd1 , Crx);xp=
true ∧ skip; skip));Υ (Sj1−1〈sc, sd1, sd2〉)) ∨ (frame(Crx) ∧ (wait receive(Csc,
Crx); (wait send(Csd2 , Crx);xp=true ∧ skip; skip));Υ (Sj1−1〈sc, sd1, sd2〉)))

||j2 : =0;
Υ (C−1〈sc〉) : =ε;
Υ (C0〈sc〉) : =(pI ∧ ε);
while (j2 < N2)
do (j2 : =j2 + 1;
Υ (Cj2〈sc〉) : =
(pI ∧ ε) ∨ (∃Cr : (frame(Cr) ∧ (wait send(Csc, Cr); ∃Cd : (frame(Cd) ∧ (
wait receive(Cr , Cd);xw=true ∧ skip; skip))));Υ (Cj2−1〈sc〉)))

||j3 : =0;
Υ (D1−1〈sd1〉) : =ε;
Υ (D11〈sd1〉) : =(pI ∧ ε);
while (j3 < N3)
do (j3 : =j3 + 1;
Υ (D1j3〈sd1〉) : =
(pI ∧ ε) ∨ (∃Cd1 : (frame(Cd1) ∧ (∃Cry : (frame(Cry ) ∧ (wait receive(Csd1 ,
Cry );wait send(Cry , Cd1); skip; skip))));Υ (D1j3−1〈sd1〉)))

||j4 : =0;
Υ (D2−1〈sd2〉) : =ε;
Υ (D21〈sd2〉) : =(pI ∧ ε);
while (j4 < N4)
do (j4 : =j4 + 1;
Υ (D2j4〈sd2〉) : =
(pI ∧ ε) ∨ (∃Cd2 : (frame(Cd2) ∧ (∃Cry : (frame(Cry ) ∧ (wait receive(Csd2 ,
Cry );wait send(Cry , Cd2); skip; skip))));Υ (D2j4−1〈sd2〉))))
(where prog1 denotes ∃Csc, Csd1 , Csd2 : frame(Csc, Csd1 , Csd2)))

Where Ni(1 ≤ i ≤ 4) is a constant integer. According to the obtained MSVL programs,
we can verify properties of time–dependent systems modeled in p-π by the modeling,
simulation and verification tool based on MSVL. The tool can work in three modes: (1)
in the modeling mode, given the MSVL program p of a system, the state space of the
system can explicitly be given as an NFG (Normal Form Graph) of p [20]; (2) with the
simulation mode, an execution path of the NFG of the system is presented as the output
with respect to operational semantics of MSVL [19]; (3) under the verification mode,
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given a system model described by an MSVL program p, and a property specified by
a PPTL (Propositional PTL) formula φ, it can automatically check whether the system
satisfies the property or not [21]. Limited to the length of the paper, the details of the
verification is omitted here.

6 Conclusion

In this paper, we proposed a transformation Υ from p-π processes to MSVL programs.
This enables us to make use of the theories and techniques of MSVL to analyze p-π
processes. More precisely, p-π is able to model, simulate and verify its processes by
means of MSVL. In the future, we will further investigate the possibility for transform-
ing MSVL programs into p-π processes so that a tight relationship between MSVL
and p-π could be established. Moreover, several case studies with more practical ex-
amples are also required. In addition, supporting tools for transformation between p-π
processes and MSVL programs are needed.
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Abstract. This paper studies program slicing in the presence of input
statements. If unnecessary input statements are sliced away, the remain-
ing input statements are assumed to read the same data as within the
entire program. For specifying the relation of one program being a slice
of another under this assumption, one needs a formalism for treating
“stages of computation”. This paper presents an approach where stages
of computation, called run points, are encoded by rational numbers. Run
points of the slice and the corresponding run points of the whole program
are encoded by equal numbers. We adapt a program analysis used by a
classic slicing algorithm to our setting, in order to prove correctness of
the slicing algorithm.

1 Introduction

Program slicing is a program transformation technique for cutting out all code
lines that do not contribute to the computation of some special values of interest.
These values are specified by a slicing criterion which is formally a set of variables
coupled together with the program points at which their values are interesting.
The result of slicing a program is called a slice.

For a standard example, the program in the right is a slice of the program in
the left w.r.t. the variable sum at the final program point:

sum := 0 ;
prod := 1 ;
i := 0 ;
while i < n do (
i := i + 1 ;
sum := sum + i ;
prod := prod * i

)

−→

sum := 0 ;

i := 0 ;
while i < n do (
i := i + 1 ;
sum := sum + i

)

Namely, all lines that do not contribute to the computation of sum are omitted.
Program slicing is widely used in different branches of software engineering,

e.g. debugging. Overviews of program slicing and its numerous applications can
be found in Tip [16] or Binkley and Gallagher [2].
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1.1 Motivation

A slice of a program may be defined as a selection of given lines of code such
that, whenever both the given program and the subset are executed under equal
circumstances, the sequences of observations (or updates) of the important vari-
ables at the important program points are equal. For example, if the two pro-
grams above are both executed in the same initial state then both runs give rise
to the same 1-element sequence of values of sum at the final program point.

We are interested in slicing of programs that consume input during their run,
e.g. from keyboard, random number generators, etc. In this case, one must reckon
with run-time input when specifying “equal execution circumstances”.

Observe that treating the inputs as non-deterministic choices and applying
the bisimulation approach, widely used in the works on multi-threaded program
slicing (first time in [7]; used also for single-threaded programs, see [17,18]), is
not suitable here. In that approach, the updates of important variables during
any execution of the original program are required to occur in the same order
during at least one possible execution of the slice starting from the same initial
state, and vice versa. However, suppose that we slice a program with an input
statement as follows, w.r.t. variable out at the final point:

in := input() ;
in := in + 1 ;
out := in

−→
in := input() ;

out := in

This “slicing” is clearly flawed as it changes the functional dependence of the
important variable out on the input. Yet it turns out to be correct in the bisim-
ulation approach, since each value obtained by the variable out by the end of
executing the first program can also occur as the final value of that variable in
the second program (for an input larger by 1) and, similarly, vice versa.

Sivagurunathan et al. [15] treat the whole input stream as an extension of the
initial state of program execution. On the other hand, classic algorithms enable
the following transformation as slicing w.r.t. variable out at the final point:

x := input() ;
y := input() ;
out := y

−→ y := input() ;
out := y

Since x is not used for computing out, the line defining x is omitted. However,
if the programs are executed with equal input streams as the approach in [15]
assumes, the variable y in the slice takes the value that would be spent on x by
the original program. The programs end up with different values of out, whence
the second program fails to meet the condition of being a slice of the first one.

The truth is that this transformation may be correct or not, depending on
the intended meaning of variable y. It is correct if the meaning of y does not
rely on the previous input of x. In this case, the classic approach is preferred to
that of [15] as it removes more lines. The approach of [15] applies if y is meant
to be, say, the second line of the input stream.
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In this paper, we assume the first possibility, i.e. that different inputs have
independent meaning. Firstly, this case seems to occur quite often in practice.
Secondly, this meets the needs that appear in our work on program slicing in
the context of transfinite semantics. In transfinite semantics [8,6,12], program
execution traces continue after infinite loops from some limit states, and if there
is no natural way of determining the value of a variable in a limit state, we
specify the value as a random input.

Our idea is to interpret “equal execution circumstances” in the definition of
slice as the conjunction of two conditions: (1) the initial states coincide, and (2)
the consumed inputs are equal at each “computation stage”, or “run points” as
we prefer to say, passed through by both runs. The notion of run point is to
be defined in a way that makes evident the correspondence of run points of a
program and that of its subset programs.

There seems to be a lack of good formalisms for treating computation stages.
“Relative points” in Collard [3] capture the idea of computation stage by dis-
tinguishing visits of program points during different iterations, but their labels
involve program elements, which means that expressing the correspondence of
these points in different programs is not easy. Our work makes two contributions:

– Developing a simple mathematical view of run points that identifies the
corresponding run points in a program and its subset programs;

– Proving in this setting that a classic slicing method (based on data and
control flow analysis, similar to that given by Weiser [19]) is correct.

In the paper, proof details are omitted due to space constraints.
Transfinite semantics is used to ensure the above notion of slice being in

accordance with the classic algorithms that can slice away infinite loops [6,9]. In
standard semantics, a program that results from removing an infinite loop could
visit important program points more times than the original program and the
condition of slice would not be satisfied. (For the same reason, other approaches
require the sequence of observations of important values during the run of the
original program be a prefix of, rather than equal to, the sequence of observations
arising from the corresponding run of the slice, so weakening the notion.)

Since standard semantics traces are obtained by truncating the corresponding
execution traces in transfinite semantics after the first ω steps, classic correctness
of slicing (w.r.t. standard semantics, assuming the classic definition of slice) is a
direct consequence of correctness w.r.t. transfinite semantics.

1.2 A Brief Overview of Our Approach

We will denote run points by rational numbers from the interval [0; 1]. In our
opinion, rational numbers are excellently serving the ambition for a simple cor-
respondence between run points of different programs, and they are easier to
manipulate than, for example, labels in [3]. In program execution traces, the
states will be explicitly indexed by run points. For a toy example, the exe-
cution trace of program z := x ; (x := y ; y := z) at the initial state
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⎧⎨
⎩
x �→ 1
y �→ 2
z �→ 0

⎫⎬
⎭ consists of associations

0 '→

⎧⎨
⎩
x �→ 1
y �→ 2
z �→ 0

⎫⎬
⎭,

1
2
'→

⎧⎨
⎩
x �→ 1
y �→ 2
z �→ 1

⎫⎬
⎭,

3
4
'→

⎧⎨
⎩
x �→ 2
y �→ 2
z �→ 1

⎫⎬
⎭, 1 '→

⎧⎨
⎩
x �→ 2
y �→ 1
z �→ 1

⎫⎬
⎭,

where 0,
1
2
,

3
4

and 1 are the run points.
Semantics of this kind are called fractional in our previous work [10,12]. When-

ever a trace is composed of two pieces, the first and second piece are uniformly
compressed to the line segments [0; 1

2 ] and [ 1
2 ; 1], respectively. This way, the

natural ordering of numbers coincides with the execution order.
Observe that the ordered set of run points of any program with loops is transfi-

nite, even if all run points appear in finite executions. For example, the program
while x < 0 do x := x + 1 never runs infinitely, but its run points are

0,
1
2
,

3
4
,

7
8
, etc. (the largest fraction in use depends on the initial value of x),

together with 1. This set corresponds to the transfinite ordinal number ω + 1.
In transfinite semantics, the run points beyond a loop are engaged even if the

loop runs infinitely. For instance, the consituents of the trace of the program
(while true do skip) ; x := x - 1 at the initial state

{
x �→ 1

}
are

1
2
− 1

2i+1 '→
{
x �→ 1

}
for every i = 0, 1, 2, . . . together with

1
2
'→

{
x �→ 1

}
and

1 '→
{
x �→ 0

}
. Building up standard semantics in a fractional form causes com-

plications, while defining transfinite fractional semantics is essentially straight-
forward. This is one more reason for using transfinite semantics in our approach.

Program points can be defined as suitable equivalence classes of run points.
Hence a run point uniquely determines a program point but not vice versa.
Unlike program points, run points are never visited twice during one run.

2 Syntax

We call our working language IWhile (While with input expressions). The
terms “statement” and “program” will be used as synonyms.

The abstract syntax of IWhile is given in Fig. 1. There are two categories
of expressions, Expr and IExpr. The former entails the usual pure expressions
but the latter consists of expressions whose value is obtained from input. We do
not dig into the exact structure of expressions. For simplicity, we assume that
expressions in Expr never contain subexpressions from IExpr (and have no side
effects whatsoever). This does not lose generality as more complex expressions
can be simplified via assignments of subexpressions to intermediate variables.
With the purpose of reinitialization of variable values in limit states in transfinite
semantics, IExpr contains a special expression randomX() for every variable X .

A statement use X , where X is a set of variables, declares all variables in
X important at the current point but performs no action (like skip). These
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Syntactic categories:

Var — the set of all variables
Expr — the set of all usual expressions
IExpr — the set of all input expressions
Stmt — the set of all statements

Grammar:

Stmt → skip

| use {Var , . . . ,Var}
| Var := Expr
| Var := IExpr

| Stmt ; Stmt
| if Expr then Stmt
| while Expr do Stmt

Fig. 1. Abstract syntax of IWhile

skip � S use X � use X X := E � X := E X := R � X := R

S1 � T1 S2 � T2

S1 ; S2 � T1 ; T2

S � T

if E then S � if E then T

S � T

while E do S � while E do T

Fig. 2. The subset program relation

statements are introduced for representing slicing criteria as parts of code and
thereby avoiding the need for keeping track of slicing criteria separately. Note
that, again for simplicity, our conditional statements have no else branch.

Being a slice first of all means being a subset program. Instead of removing
code lines to obtain a subset, we replace them with skip (as do other theoretical
works on program slicing). This simplifies the formal treatment as the original
program structure is maintained. The precise meaning of the subset relation 1
in this setting is specified by the inductive derivation rules in Fig. 2. There and
later on, E and R denote usual and input expressions, respectively.

For example, statements (while x < 0 do skip) ; x := x - 1 and
skip ; x := x - 1, as well as skip alone, are subset programs of the state-
ment (while x < 0 do x := x + 1) ; x := x - 1.

Proposition 1. The relation 1 is a partial order on Stmt .

3 Run Points and Program Points

As briefly described in Sect. 1, we encode run points by rational numbers from
the line interval [0; 1] and program points by certain equivalence classes of run
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RP (skip) = {0, 1}
RP (use X ) = {0, 1}
RP (X := E) = {0, 1}
RP (X := R) = {0, 1}
RP (T1 ; T2) =

{
[0; 1] �⇒ [0; 1

2 ]
}� (RPT1) ∪

{
[0; 1] �⇒ [ 1

2 ; 1]
}� (RPT2)

RP (if E then T ) = {0} ∪
{

[0; 1] �⇒ [ 1
2 ; 1]

}� (RPT )

RP (while E do T ) = {0, 1} ∪
⋃

i∈N+

{
[0; 1] �⇒ [1− 1

22i−1 ; 1− 1
22i ]

}� (RPT )

Fig. 3. Run points of statements

points. As a tentative yet rather imprecise intuition, one may interpret a run
point as the percentage of the execution that is over at this point. The truth in
this intuition is that run points always grow as computation goes on.

Denote N = {0, 1, 2, . . .} and N+ = N \ {0}. The set of all subsets of a set A
is denoted by ℘(A). Whenever α is a function or partial function from A to B,
denote by α� the complete union-homomorphic extension of α that works from
℘(A) to ℘(B). In other words, α�(U ) denotes the image of set U under mapping α.

The set RPS of run points of statement S is defined inductively on the
structure of S as shown in Fig. 3. Run point sets of compound programs are
constructed by compressing the run point sets of the constituent programs uni-
formly via linear mappings to fit the sets to some disjoint smaller intervals
that altogether cover the whole [0; 1]. We denote the unique linear function
that transforms the interval [r; q] to the interval [a; b] by {[r; q] 	⇒ [a; b]}, i.e.,
{[r; q] 	⇒ [a; b]} = �x. a + b−a

q−r · (x − r). For instance,
{

[0; 1] 	⇒ [0; 1
2 ]
}

= �x. 1
2x

and
{

[0; 1] 	⇒ [ 1
2 ; 1]
}

= �x. 1
2x + 1

2 .
The composition case and the loop case in Fig. 3 are explained by the examples

in Subsect. 1.2. In the conditional case, 0 represents the test point (whether the
branch should be taken or not) and the points in [ 1

2 ; 1] represent the branch (1
represents the point where both paths through the program join together).

Proposition 2. Every run point of every statement is a rational number in the
line interval [0; 1] representable as a proper fraction whose denominator is a
power of 2. Both 0 and 1 are run points of any statement.

Program points as equivalence classes of run points are specified by choosing a
representative from each desired class. This is implemented by the definition in
Fig. 4. For each S ∈ Stmt , the function pp(S) ∈ RP S → RPS finds the least
run point representing the same program point in S as the given run point.

The functions are defined inductively on the structure of S, and by pattern
match on the cases of the definition of RP. In the four base cases of program
structure, each run point represents itself as a program point. In the composition
case, run points of both immediate constituents maintain their representatives
(relative to the corresponding linear transformations). In the conditional case,
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pp (skip) (a) = a

pp (use X ) (a) = a

pp (X := E) (a) = a

pp (X := R) (a) = a

pp (T1 ; T2) (
{

[0; 1] �⇒ [0; 1
2 ]
}

(r)) =
{

[0; 1] �⇒ [0; 1
2 ]
}

(pp(T1)(r))

pp (T1 ; T2) (
{

[0; 1] �⇒ [ 1
2 ; 1]

}
(q)) =

{
[0; 1] �⇒ [ 1

2 ; 1]
}

(pp(T2)(q))

pp (if E then T ) (0) = 0

pp (if E then T ) (
{

[0; 1] �⇒ [ 1
2 ; 1]

}
(q)) =

{
[0; 1] �⇒ [ 1

2 ; 1]
}

(pp(T )(q))

pp (while E do T ) (1) = 1

pp (while E do T ) (1− 1
22i ) = 0

pp (while E do T ) (
{

[0; 1] �⇒ [1− 1
22i−1 ; 1− 1

22i ]
}

(q)) =
{

[0; 1] �⇒ [ 1
2 ; 3

4 ]
}

(pp(T )(q))

Fig. 4. The canonical representatives of program points

0 represents itself and all other run points maintain their representatives (rela-
tive to the linear transformation). In the loop case, 1 represents itself. All run

points of the form 1 − 1
22i (standing for the loop predicate test point) are rep-

resented by 0. The run points of any iteration of the loop body are mapped to
the representative of the corresponding run point in the first iteration.

Proposition 3. Let S ∈ Stmt .
(i) For every r ∈ RP S, pp(S)(pp(S)(r)) = pp(S)(r).
(ii) For every r ∈ RP S, pp(S)(r) ≤ r.

The way of defining subset program relation was chosen with the aim of main-
taining the program structure and, in particular, the formal denotations of the
corresponding run points. Proposition 4 states the desired properties: a subset
program inherits all its run points from the whole program and they split into
program point classes along the same lines as in the whole program.

Proposition 4. Let S, T be statements such that S 1 T .
(i) Then RP S ⊆ RPT .
(ii) Let a1, a2 ∈ RPS. Then pp(S)(a1) = pp(S)(a2) iff pp(T )(a1) = pp(T )(a2).

Proof. By induction on the derivation of S 1 T using the rules in Fig. 2. !"

4 Semantics

In this section, we present the transfinite fractional semantics that will be used
in Sect. 6 for formalization of our results about program slicing. The semantics
is similar to fractional semantics in our earlier papers [10,12] but some details
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are different. Most notably, the fractional semantics in this paper involves “input
contexts” associated with run points.

We denote the set of all functions and partial functions from A to B by A → B
and A �� B, respectively. The domain of a partial function f (i.e. the set of
arguments on which the function is defined) is denoted by dom f .

Variable states are functions in Var → Val where Val is the set of all values.
Input contexts are functions in IExpr → Val . The input context associated with
a run point determines the results of input operations at that run point. Configu-
rations that fractional traces consist of are functions in ConfFS = Var ∪ IExpr →
Val . So a configuration is a variable state joined together with an input context.

All fractional traces come from a set BaseFS defined later in Fig. 5. We do
not encode the dependence on input contexts as a direct parametricity. Instead,
the semantics of a program is the set of all traces of configurations that can be
observed during a run of the program, with input context changing freely at each
computation step. (Likewise, a deterministic standard semantics of a program
can be expressed as a set of execution traces that exhausts all initial states rather
than as a function mapping each initial state to the corresponding single trace.)
Therefore, the meanings of programs come from the powerset ℘(BaseFS).

Defining the set BaseFS of all admissible fractional traces requires special at-
tention. Essentially, fractional traces are partial functions from [0; 1] to ConfFS,
whereby the domain must be included in the set of run points of the program
whose execution trace it is and contain at least 0 (the initial configuration) and 1
(the final configuration). As our previous work [9,12] suggested, whenever a loop
body is executed an infinite number of times, the configuration that immediately
follows the loop must keep all values of variables that are the same at all but
finitely many visits of the condition test point of this loop. Any other variable
X can obtain a random value after the loop, which means in our approach that
the value obtained must coincide with the value of the function randomX() in
the input context. We call traces that follow this restriction transfinitely sound.

The run points of a loop corresponding to its predicate test are 1 − 1
22i with

i ∈ N. This gives rise to Definition 5 (as testing does not change the variable

state, we may also include the immediately following run points 1 − 1
22i+1 ):

Definition 5.
(i) Let v0, v1, . . . be a stream of values such that, for some w ∈ Val and n ∈ N,

vi = w whenever i � n. Then denote lim
i

vi = w; otherwise, lim
i

vi is undefined.

(ii) Let � ∈ [0; 1] �� ConfFS such that dom � ⊇ {0, 1}. Call � transfinitely

sound if, provided that dom � 4 1− 1
2i

for every i ∈ N, it satisfies both following
conditions for all X ∈ Var:

1. if lim
i

(
�

(
1 − 1

2i

)
(X)
)

is defined then �(1)(X) = lim
i

(
�

(
1 − 1

2i

)
(X)
)

;

2. if lim
i

(
�

(
1 − 1

2i

)
(X)
)

is undefined then �(1)(X) = �(1)(randomX()).
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In particular, if dom � �4 1 − 1
2i

for some i ∈ N then � is transfinitely sound.
The details of the semantics of expressions, denoted by � , are not important

in this work and they are left unspecified. The definition of fractional semantics
of statements, denoted by �FS, is given in Fig. 5. We assume everywhere that
expressions and statements are syntactically correct. If X ⊆ dom f , denote by
f |X the restriction of f to X (i.e., a function with domain X that works like f).

In the composition case and in the definition of the function �FS in the loop
case, new fractional traces are composed by compressing and joining existing
traces together. A trace � ∈ BaseFS compressed to some interval [a; b] is ex-
pressed as function composition {[a; b] 	⇒ [0; 1]} ; � (in composition denoted
by semicolon, the function in the left is applied first). For example, the union
(
{

[0; 1
2 ] 	⇒ [0; 1]

}
; �) ∪ (

{
[ 1

2 ; 1] 	⇒ [0; 1]
}

; � ) in the composition case projects
the traces � and � side-by-side into the interval [0; 1].

Note that the big unions in the last three cases join singleton sets (this nota-
tion is preferred to set comprehension for making the formulae shorter).

As the set SemFS forms a complete lattice w.r.t. ⊆ and the function �FS is
monotone, basic domain theory implies that the greatest fixpoint gfp �FS is well
defined. It turns out that �FS is even cocontinuous w.r.t. ⊆ (i.e., �FS preserves
greatest lower bounds of non-empty chains). By Kleene’s theorem, the loop se-
mantics can be expressed as the limit of a stream of iterations. Cocontinuity can
be proven in the lines of our previous work [12]1.

The set BaseFS also includes fake traces with domains
{

0, 1
3 , 1
}
,
{

0, 1
4 ,

3
4 , 1
}

etc.. These do not harm the semantics as the recurrent definition assures the
repeated binary division of the initial segment [0; 1] illustrated in Subsect. 1.2.
Transfinite soundness does not follow from the structure of the definition, whence
this restriction had to be imposed explicitly. Without it, the greatest fixpoint
would embrace traces with the right structure but wrong limit configurations.

Coinduction in the following form is a well-known tool for proving equality
of finite or infinite (but not transfinite) lists: If there is a binary relation on
lists such that each two related lists have a common non-empty initial segment
whereby the remaining parts are related again, then being related implies being
equal. A similar principle, based on dividing execution traces into two parts at

run point
3
4
, is established for fractional semantics in the form of Proposition 6.

Proposition 6. Let ∼ be a binary relation on BaseFS such that � ∼ � always
implies either � = � or all the following three assertions:

1 This refers to Theorem 13 of [12]. That theorem was stated universally for many
semantics, but is actually incorrect in the case of ordinal transfinite semantics (not
considered here). The error lies in Proposition 7 of [12] (injectivity of trace com-
position) that the later proofs in [12] rely on. The error does not have serious con-
sequences since the ordinal transfinite semantics in the form of greatest fixpoint is
anyway inappropriate for practical use (as already explained in [12]). For fractional
semantics, the injectivity statement and hence also the cocontinuity result holds.
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Val the set of all values, including integers and truth values
State = Var → Val the set of variable evaluations (states)
ICxt = IExpr → Val the set of input expression evaluations (input contexts)

Conf FS = Var ∪ IExpr → Val
BaseFS = {� ∈ [0; 1] �� Conf FS : dom � ⊇ {0, 1} ∧ � is transfinitely sound}
SemFS = ℘(BaseFS)

� ∈ Expr → (State → Val ) semantics of expressions
�FS ∈ Stmt → SemFS fractional semantics of statements

�FS (skip) = {{0 �→ s, 1 �→ t} : t|Var = s|Var}
�FS (use X ) = {{0 �→ s, 1 �→ t} : t|Var = s|Var}
�FS (X := E) =

{
{0 �→ s, 1 �→ t} : t|Var\{X} = s|Var\{X} ∧ t(X)=�(E)(s|Var)

}
�FS (X := R) =

{
{0 �→ s, 1 �→ t} : t|Var\{X} = s|Var\{X} ∧ t(X)= t(R)

}
�FS (T1 ; T2) =

⋃
�∈�FS (T1)
�∈�FS (T2)
�(1)=�(0)

{
(
{

[0; 1
2 ] �⇒ [0; 1]

}
; �) ∪ (

{
[ 1

2 ; 1] �⇒ [0; 1]
}

; � )
}

�FS (if E then T ) = {{0 �→ s, 1 �→ t} : t|Var = s|Var ∧ �(E)(s|Var ) = ff}∪⋃
�∈�FS (T )

s|Var =� (0)|Var
�(E)(s|Var )=tt

{
{0 �→ s} ∪ (

{
[ 1

2 ; 1] �⇒ [0; 1]
}

; � )
}

�FS (while E do T ) = gfp �FS where gfp is defined w.r.t. ⊆ and
�FS(� ) = {{0 �→ s, 1 �→ t} : t|Var = s|Var ∧ �(E)(s|Var ) = ff}∪⋃

�∈�FS (T ),�∈�

s|Var =�(0)|Var
�(1)=� (0)

�(E)(s|Var )=tt

{
{0 �→ s} ∪ (

{
[ 1

2 ; 3
4 ] �⇒ [0; 1]

}
; � ) ∪ (

{
[ 3

4 ; 1] �⇒ [0; 1]
}

; � )
}

Fig. 5. Transfinite fractional semantics

1.
3
4
∈ dom� ∩ dom � ;

2. �(r) = � (r) for all r ∈ dom� ∩ dom � such that r <
3
4
;

3.
{

[0; 1] 	⇒ [ 3
4 ; 1]
}

; � ∼
{

[0; 1] 	⇒ [ 3
4 ; 1]
}

; � .

Then � ∼ � always implies �(r) = � (r) for all r ∈ dom� ∩ dom � such that

r < 1. If either of
{
i ∈ N : 1 − 1

22i ∈ dom�

}
and

{
i ∈ N : 1 − 1

22i ∈ dom �

}
is finite, or they are both infinite and �(1)|IExpr = � (1)|IExpr, then the conclusion
holds also for r = 1. If clause 2 can be sharpened with r ∈ dom� ⇐⇒ r ∈ dom �

for all r <
3
4

then, in addition, � ∼ � implies dom� = dom � .
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Proof. The claims for the case r < 1 are expressed as the conjunction of claims

for r such that 1 − 1
22i � r < 1 − 1

22(i+1) , i ∈ N, and proven by induction on i.
The case r = 1, if the loop is infinite, follows from transfinite soundness. !"

The fractional semantics can be called deterministic if, besides the initial state,
the entire input context at all run points is considered the input of the program.
The semantics can be rewritten in a form that makes the functional dependence
of the trace on the initial state and the input context explicit, but we have
preferred the set form here for simplicity.

The details of this determinism are established by Proposition 7. The first
part states that the semantics of any program contains a fractional trace with
given initial state and input contexts, and the other part states uniqueness of
this trace. Describing the precise assumptions of the uniqueness property needs
care since the sets of run points used by different fractional traces of the same
program need not be the same.

Proposition 7. Let S ∈ Stmt .
(i) Let s ∈ State and � ∈ RP S → ICxt . Then there exists � ∈ �FS(S) such that

�(0)|Var = s and �(r)|IExpr = �(r) for every r ∈ dom� .
(ii) Let �1,�2 ∈ �FS(S) such that �1(0)|Var = �2(0)|Var and, for every r ∈

dom�1 ∩ dom �2, the equality �1(r)|IExpr = �2(r)|IExpr holds. Then �1 = �2.

Proof. By induction on the structure of S. !"

5 Relevant Sets

The Relevant Sets (RS) analysis is the main component of a classic approach to
automated program slicing [2]. It aims to calculate, at every program point, the
set of all variables influencing the values specified by the slicing criterion. This
backward static analysis is non-standard since the underlying graph must include
control dependence edges [16,2] in addition to the usual control flow edges. If the
control flow is fully structured, control dependence edges point from the head of
a conditional or loop statement to all statements immediately embraced by it.
Whenever a code line inside a conditional or loop statement is kept, the variables
that the control predicate of the statement refers to must be considered relevant.

Usually, representations of program analyses assume a control flow graph as
the underlying structure. In order to avoid complicating the picture with alter-
native structures, we present the RS analysis as a non-standard compositional
semantics �RS. The RS semantics of a program consists of traces that associate
with each run point the set of variables relevant at that point. The necessary
specifications are given in Fig. 6.

We use a fictive variable incl as a flag for marking run points that start
a statement that must occur in the slice. For example, as all use statements
are always included, any relevant set observed at a run point that starts a use
statement must contain incl.
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Like SemFS, the set SemRS also consists of sets of traces, but not all subsets of
BaseRS are included and the lattice operations are different. The sets in SemRS

encode monotone functions that map final configurations to whole RS traces,
and the lattice order ⊆̈ is given pointwise according to this interpretation. So
� ⊆̈	 means that, for every � ∈ � and � ∈ 	 , if �(1) = � (1) then � ⊆̇� , where
the latter order ⊆̇ is again pointwise (on [0; 1]). Definition 8 provides the precise
conditions for sets being included in SemRS.

Definition 8. A set � ∈ ℘(BaseRS) is feasible if both following conditions hold:

1. (Soundness) For all t ∈ ConfRS, there exists a � ∈ � such that �(1) = t;
2. (Monotonicity) For all �1,�2 ∈ � , if �1(1) ⊆ �2(1) then �1 ⊆̇�2, where ⊆̇ is

the pointwise ordering of partial functions from [0; 1] to the powerset ConfRS
with the usual inclusion order (undefinedness being even less than ∅).

In particular, monotonicity implies that the final configuration always determines
the whole trace. Indeed, if �1(1) = �2(1) then we have both �1(1) ⊆ �2(1) and
�2(1) ⊆ �1(1), implying both �1 ⊆̇ �2 and �2 ⊆̇ �1, i.e., �1 = �2. In other words,
the relevant set one associates with the final point determines the result of the
analysis. We call this property backward determinacy.

Monotonicity also implies chain completeness in the following form: if traces
�i ∈ � , i ∈ I, form a non-empty chain then

⋃̇
i∈I

�i ∈ � (where
⋃̇

is the join

operation corresponding to the order ⊆̇). This claim holds since, by finiteness of
Var, the set {� i(1) : i ∈ I} is always finite and thus, by backward determinacy,
also the set {� i : i ∈ I} is finite, whence it contains its least upper bound.

The construction of the semantics assures that dom� = RP(S) for arbitrary
S ∈ Stmt and � ∈ �RS(S). The cases of the definition of �RS reflect the informa-
tion flow through the edges in the RS analysis. A skip does not change the set
of relevant variables; as this statement can be omitted from the program, the rel-
evant set does not contain incl. Similarly, use X maintains the variables in the
relevant set, but adds all variables in X as relevant. In the case of an ordinary
assignment X := E, if X is relevant after the statement then variables referred
to by E (the set of all such is denoted by refE) are added as relevant while X
is deleted. Also incl is added to indicate that this assignment must stay. If X is
not relevant after the assignment then the relevant variables do not change and
incl is excluded. The action corresponding to input assignments is similar but
no new variables are added as input expressions do not depend on variables.

The equality s = cd(E, � ), required in the conditional and loop cases, encodes
the information flow along control dependence edges. If at least one statement is
kept in the part of the program that control depends on the predicate E, i.e. if
∃r ∈ dom � \ {1} (incl ∈ � (r)) is true, then s includes refE ∪ {incl} in addition
to the initial state of the trace � of the body. Note that RS is a least fixpoint
semantics since static analyses cannot reckon with infinite calculations.
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ConfRS = ℘(Var ∪ {incl})
BaseRS = {� ∈ [0; 1] �� ConfRS : dom � ⊇ {0, 1}}
SemRS = {	 ∈ ℘(BaseRS) : 	 is feasible in the sense of Definition 8}

�RS ∈ Stmt → SemRS

�RS (skip) = {{0 �→ s, 1 �→ t} : s = t}
�RS (use X ) = {{0 �→ s, 1 �→ t} : s = t ∪X ∪ {incl}}

�RS (X := E) =
{
{0 �→ s, 1 �→ t} : s =

{
(t \ {X}) ∪ refE ∪ {incl} if X ∈ t
t \ {incl} otherwise

}}
�RS (X := R) =

{
{0 �→ s, 1 �→ t} : s =

{
(t \ {X}) ∪ {incl} if X ∈ t
t \ {incl} otherwise

}}

�RS (T1 ; T2) =
⋃

�∈�RS(T1)
�∈�RS (T2)
�(1)=�(0)

{
(
{

[0; 1
2 ] �⇒ [0; 1]

}
; � ) ∪ (

{
[ 1

2 ; 1] �⇒ [0; 1]
}

; � )
}

�RS (if E then T ) = {{0 �→ s, 1 �→ t} : s = t \ {incl}} ∪̈⋃
�∈�RS(T )
s=cd(E,�)

{
{0 �→ s} ∪ (

{
[ 1

2 ; 1] �⇒ [0; 1]
}

; � )
}

�RS (while E do T ) = lfp �RS where lfp is defined w.r.t. ⊆̈ and
�RS(� ) = {{0 �→ s, 1 �→ t} : s = t \ {incl}} ∪̈⋃

�∈�RS(T )
�∈�

s=cd(E,�)
� (1)=�(0)

{
{0 �→ s} ∪ (

{
[ 1

2 ; 3
4 ] �⇒ [0; 1]

}
; � ) ∪ (

{
[ 3

4 ; 1] �⇒ [0; 1]
}

; � )
}

where cd(E, � ) =
{
� (0) ∪ refE ∪ {incl} if ∃r ∈ dom � \ {1} (incl ∈ � (r))
� (0) otherwise

}

Fig. 6. Relevant Sets semantics

Example 9. If

S = if n > 0 then ((in := input() ; out := in) ; use {out}),

then the trace � ∈ �RS(S) where �(1) = ∅ consists of

0 '→ {n, incl} ,
1
2
'→ {incl} ,

5
8
'→ {in, incl} ,

3
4
'→ {out, incl} , 1 '→ ∅.

Additionally, there is exactly one � ∈ �RS(S) with � (1) = {out} and likewise for
� (1) = {in}, � (1) = {out,in}, � (1) = {n}, etc. !"
The specification of RS in Fig. 6 could be relaxed by allowing the first configura-
tion of all transitions in the traces to be any larger set (i.e., replacing equalities
in the base cases and in s = cd(E, � ) with inclusions). This would correspond
to constraint systems, that are often used for specifying program analyses, and
could lead to more general results, but this is out of the scope of this paper.

The correctness of the definition of RS semantics follows from Proposition 10
by classic domain theory. The proof is straightforward.



On Slicing of Programs with Input Statements 295

S � skip = RP(S) \ {1}
use X � use X = ∅

X := E � X := E = ∅

X := R � X := R = ∅

T1 ; T2 � T ′
1 ; T ′

2 =
{

[0; 1] �⇒ [0; 1
2 ]
}� (T1 � T ′

1 ) ∪{
[0; 1] �⇒ [ 1

2 ; 1]
}� (T2 � T ′

2 )

if E then T � if E then T ′ =
{

[0; 1] �⇒ [ 1
2 ; 1]

}� (T � T ′)

while E do T � while E do T ′ =
⋃

i∈N+

{
[0; 1] �⇒ [1− 1

22i−1 ; 1− 1
22i ]

}� (T � T ′)

Fig. 7. The run point regions corresponding to removed subsets

Proposition 10.
(i) The set SemRS is a complete lattice w.r.t. the ordering ⊆̈. Thereby, the least

element is given by {{0 '→ ∅, 1 '→ t} : t ∈ ConfRS}.
(ii) The function �RS is monotone w.r.t. ⊆̈.

The RS semantics associates relevant sets with run points instead of program
points as an analysis would do. Proposition 11 shows that this discrepancy is
purely formal: the RS trace elements actually depend on program points only.

Proposition 11. Let S ∈ Stmt and � ∈ �RS(S). Let r, q ∈ RP(S) such that
pp(S)(r) = pp(S)(q). Then �(r) = �(q).

Proof. By induction on the structure of S. !"

6 Correctness of Slicing

The information about code statements that must not be removed is provided by
the incl flags in the sets associated with run points in the RS semantics. In order
to state the main result about slicing, namely that slices maintain the desired
part of program behaviour, we therefore specify the removed part of code also
in terms of run points.

Definition 12. For all S, S′ ∈ Stmt such that S′ 1 S, the run point region
removed in S′ w.r.t. S is the set of run points denoted by S � S′ and defined
recursively on the derivation of S′ 1 S by equations in Fig. 7.

The classic RS based method of slicing can now be described in our setting as
follows:

1. Encode every pair (X , p) in the slicing criterion in the form of a statement
use X immediately before the program point p in the input program —
let the transformed program be S;
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2. Find � ∈ �RS(S) such that �(1) = ∅;
3. Output the least program S′ such that S′ 1 S and ∀r ∈ S � S′ (incl /∈ �(r)).

By construction, RP(S) \ RP(S′) ⊆ S � S′ ⊆ RP(S). Note that calculating with
plain differences RP(S) \ RP(S′) would be wrong since, for example,

RP(X := E ; skip) \ RP(skip) =
{

1
2

}
but the desired set must also in-

clude 0 (the location of the potential incl flag corresponding to the removed
statement X := E).

Before reaching the main theorem that implies correctness of the method, we
state three lemmata that constitute important parts of the proof of the theorem.

Firstly, Lemma 13 states that incl-free intervals of the RS semantics traces
involve no changes of the set of relevant variables:

Lemma 13. Let S ∈ Stmt and � ∈ �RS(S). Then ∀r ∈ RP(S) \ {1} (incl /∈ �(r))
implies ∀r ∈ RP(S) \ {1} (�(r) = �(1) \ {incl}).

Proof. By induction on the structure of S. !"

Similarly, Lemma 14 establishes that if an RS semantics trace does not involve
incl then the values of variables important at the beginning of that program
never change in the fractional semantics of the same program:

Lemma 14. Let S ∈ Stmt and � ∈ �RS(S), and choose also � ∈ �FS(S). Then
∀r ∈ RP(S) \ {1} (incl /∈ �(r)) implies ∀r ∈ dom�

(
�(r)|Var∩�(1) = �(0)|Var∩� (1)

)
.

Proof. By induction on the structure of S. !"

Lemma 15 relates the relevant variables in a program and its slice. Intuitively,
it states that, if the removed code region does not involve incl, then the relevant
sets at the remained run points are the same, irrespective of whether the original
program or the subset is considered. This implies that slicing can be performed
in several stages: the lines that could be removed immediately may be kept and
removed later by slicing the resulting program w.r.t. the same criterion. The
assertion of Lemma 15 is therefore interesting on its own.

Lemma 15. Let S, S′ ∈ Stmt with S′ 1 S. Let � ∈ �RS(S) and � ′ ∈ �RS(S′) such
that �(1) = � ′(1). Then ∀r ∈ S � S′ (incl /∈ �(r)) implies ∀r ∈ RP(S′)

(
� ′(r) = �(r)

)
.

Proof. By induction on the derivation of S′ 1 S. !"

Finally, we reach the main Theorem 16. It claims that, at certain assumptions
that encode equal execution circumstances, the subset program where only state-
ments at run points unmarked with incl are omitted computes the same values
for all relevant variables at each run point visited by both programs. Further-
more, all visits of run points marked by incl are the same in both executions.

Concerning the assumptions, � ′(0)|Var∩�(0) = �(0)|Var∩�(0) tells that both pro-
grams are executed in an initial state where relevant variables have equal values,
and the condition ∀r ∈ dom� ∩ dom� ′

(
� ′(r)|IExpr = �(r)|IExpr

)
assures that the

programs always consume equal inputs at corresponding run points.
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Theorem 16. Let S, S′ ∈ Stmt such that S′ 1 S. Let � ∈ �RS(S) such that
∀r ∈ S � S′ (incl /∈ �(r)). Let � ∈ �FS(S), � ′ ∈ �FS(S′) such that � ′(0)|Var∩�(0) =
�(0)|Var∩�(0) and ∀r ∈ dom� ∩ dom � ′

(
� ′(r)|IExpr = �(r)|IExpr

)
. Then

∀r ∈ dom � ∩ dom� ′
(
� ′(r)|Var∩� (r) = �(r)|Var∩�(r)

)
,

whereby r ∈ dom� ⇐⇒ r ∈ dom� ′ for every r ∈ RP S such that incl ∈ �(r).

Proof. By induction on the derivation of S′ 1 S, using Lemmas 13–15. !"

Let S, S′ ∈ Stmt and � ∈ �RS(S) be like in the description of the slicing method
after Definition 12. Now if � , � ′ are execution traces of S, S′ in equal execution
circumstances, the assumptions of Theorem 16 are fulfilled for the programs
S, S′, the RS trace � and the fractional traces � , � ′. As all use statements
are marked by incl and all variables in use statements are marked relevant in � ,
Theorem 16 implies that the sequences of visits of the program points mentioned
by the slicing criterion are the same in both executions and the values of variables
there are equal.

Consequently, Theorem 16 shows that the method produces correct slices.

7 Related Work

Program slicing was first studied by Weiser [19] who also described the slicing
method based on relevant sets. Correctness of classic slicing methods w.r.t. stan-
dard semantics and relaxed notion of slice (discussed briefly in Subsect. 1.1) was
established by Reps and Yang [14].

Sivagurunathan et al. [15] study program slicing in the presence of input
statements but they address it differently from us. Motivated by an example
similar to our second one in Subsect. 1.1, their work aims to find a specification
of program slicing such that executing a program and its slice with the same
input stream would produce the same sequences of interesting values. Our work
argues that talking about preservation of the effects of a program by its slice
may naturally assume equal inputs at equal run points instead of equal input
streams, and searches for appropriate ways to formalize this.

Non-standard semantics that would avoid the infamous anomaly arising from
slicing away non-terminating loops (discussed in Subsect. 1.2) have been previ-
ously a topic of Reps and Turnidge [13], Giacobazzi and Mastroeni [6], Danicic
et al. [5,1], and us [9,11,10,12]. Among them, [6] advocated transfinite semantics
similarly to us. The idea of using transfinite semantics in program slicing dates
back to Cousot [4].

The approach of this paper is a further development of our earlier works
where fractional semantics were introduced for defining transfinite semantics for
recursive programs [10] and expressing transfinite semantics in a greatest fixpoint
form [12]. These papers contained no treatment of run points on their own, nor
did they thoroughly investigate applications to slicing (no program analysis was
incorporated). The most notable differences between the fractional semantics in
this paper and that in [12] are the following:
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– Procedure semantics was studied in [12] but omitted here.
– The transfinite soundness restriction was not taken into account in [12].
– Input contexts were not involved in the semantics in [12].
– The fractional semantics in this paper, unlike its precursors, is explicitly

compositional.

The fractional semantics in [10] differed even more (for example, by taking errors
into account).

8 Conclusion

In this paper, we investigated program slicing in the presence of input operations
whose results are assumed to depend on the current run point, i.e., the stage of
computation. The underlying formalism developed for this was based on frac-
tional semantics [10] that expresses all run points as finite binary fractions from
the interval [0; 1]. We found out that a classic slicing method similar to that
described by Weiser [19] is correct w.r.t. this semantics.

There are many applications of fractional semantics revealed by now:

– Defining transfinite semantics for recursive programs [10,12];
– Expressing transfinite semantics in the form of greatest fixpoint [12] (and

this paper);
– Providing simple means for handling the correspondence of run points of a

program and a transformed program (this paper);
– Providing simple means for keeping track of program points in execution

traces (this paper).

This work also provides new evidence that using transfinite semantics can be a
natural choice in theoretical treatments of program slicing. Barraclough et al. [1]
argued that transfinite semantics were not appropriate for three reasons: (1) they
were not substitutive; (2) they introduced special non-standard values of vari-
ables after infinite computations, which may cause trouble; (3) they are counter-
intuitive. In this work, the semantics is defined compositionally, whence it is
also substitutive, and we use random inputs of normal values rather than non-
standard values for undefined limits. The counter-intuitivity argument seems
weak since non-standard semantics are ubiquitous in this area of research.

Transfinite semantics is certainly not suitable if the terminating status of
programs must be maintained by slices. (This is the case in some applications of
slicing. Then the classic slicing algorithms based on data and control dependence
do not qualify anyway, whence these cases are not of interest in the present work.)
In debugging, slicing away infinite loops does no harm since all errors that occur
during a run of a program do it after a finite number of steps.

A natural question is whether program transformations other than slicing
could similarly benefit from transfinite semantics. To our knowledge, transfinite
semantics has not been applied to other transformations. Like program slicing,
dead code elimination can introduce termination by removing infinite loops, but
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there, switching to transfinite semantics changes the transformation (a part of
code dead in standard semantics might be alive in transfinite semantics and thus
become impossible to remove), whence the benefits are questionable.

Finally, note that if input() is assumed to produce a value according to a
probability distribution, our examples in Subsect. 1.1 also motivate investiga-
tions of probabilistic semantics, the corresponding notions of slice and slicing
algorithms in that context. The first example transformation should be consid-
ered incorrect as it changes the probability distribution of the possible values
of out, and the second one is justifiably correct as the practical meaning of a
dice roll does not depend on previous dice rolls. We hope that the results of this
paper can be applied in this potential future work.
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Abstract. The class of Unambiguous Star-Free Regular Languages (UL) has
been widely studied and variously characterized by logics such as TL[Xa,Ya],
UITL, TL[F,P], FO2[<], the variety DA and partially-ordered two-way DFA.
However, explicit reductions from logics to automata are missing. In this paper,
we introduce the concept of Deterministic Logics for UL. The formulas of deter-
ministic logics uniquely parse a word in order to evaluate satisfaction. We con-
sider three such deterministic logics with varied modalities, namely TL[Xa,Ya],
TL[Ũ, S̃] and UITL±. Using effective reductions between them and to po2dfa, we
show that they all characterize UL, and have NP-complete satisfiability. The re-
ductions rely on features of deterministic logic such as unique parsability and
ranker-directionality.

1 Introduction

Unambiguous star-free regular languages (UL) was a language class first studied by
Schützenberger [Sch76]. He gave an algebraic characterization for UL using the monoid
variety DA. Since then, several diverse and unexpected characterizations have emerged
for this language class: Δ2[<] in the quantifier-alternation hierarchy of first-order de-
finable languages [EPW97], the two variable fragment FO2[<] [TW98] (without any
restriction on quantifier alternation), and Unary Temporal Logic TL[F,P] [EVW02] are
some of the logical characterizations that are well known. Investigating the automata for
UL, Schwentik, Therien and Volmer [STV01] defined Partially Ordered 2-Way Deter-
ministic Automata (po2dfa) and showed that these exactly recognize the language class
UL. Recently, there have been additional characterizations of UL using deterministic
logics UITL [LPS08] as well as TL[Xa,Ya] [DK07]. A survey paper [DGK08] describes
this language class and its characterizations.

A monomial over an alphabet Σ is a regular expression of the form A∗
0a1 · · ·an−1A∗

n,
where Ai ⊆ Σ and ai ∈ Σ. By definition, UL is the subclass of star-free regular lan-
guages which may be expressed as a finite disjoint union of unambiguous monomials:
every word that belongs to the language, may be unambiguously parsed so as to match
a monomial. The uniqueness with which these monomials parse any word is the char-
acteristic property of this language class. We explore a similar phenomenon in logics
by introducing the notion of Deterministic Temporal Logics for UL.

Given a modality M of a temporal logic that is interpreted over a word model, the
accessibility relation of M is a relation which maps every position in the word with the
set of positions that are accessible by M . In case of interval temporal logics, the relation
is over intervals instead of positions in the word model. The modality is deterministic if
its accessibility relation is a (partial) function. A logic is said to be deterministic if all its

Z. Liu, J. Woodcock, and H. Zhu (Eds.): ICTAC 2013, LNCS 8049, pp. 301–318, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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modalities are deterministic. Hence, deterministic logics over words have the property
of Unique Parsability.

Definition 1 (Unique Parsability). In the evaluation of a temporal logic formula over
a given word, every subformula has a unique position (or interval) in the word at which
it must be evaluated. This position is determined by the context of the subformula.

In this paper we relate three deterministic temporal logics and investigate their proper-
ties. We give constructive reductions between them (as depicted in Figure 1) and also
to the po2dfa automata. Hence, we are able to infer their expressive equivalence with
the language class UL. Moreover, the automaton connection allows us to establish their
NP-complete satisfiability.

(i) Deterministic Until-Since Logic- TL[Ũ, S̃]:
Let A be any subset of the alphabet and b be any letter from the alphabet. The ”de-
terministic half until” modality AŨbφ holds if at the first occurrence of b in (strict)
future φ holds and all intermediate letters are in A. The past operator AS̃bφ is sym-
metric. Since the modalities are deterministic, the formulas posses the property of
unique parsability. This logic admits a straightforward encoding of po2dfa.

(ii) Unambiguous Interval Temporal Logic with Expanding Modalities - UITL±:
This is an interval temporal logic with deterministic chop modalities Fa and La

which chop an interval into two at the first or last occurrence of letter a. These
modalities were introduced in [LPS08] as logic UITL. Here, we enrich UITL with
the expanding F+

a and L−
a chop modalities that extend an interval beyond the in-

terval boundaries in the forward and the backward directions to the next or the
previous occurrence of a. We call this logic UITL±. It is a deterministic logic.

(iii) Deterministic Temporal Logic of Rankers -TL[Xa,Ya]:
Modality Xaφ (or Yaφ) accesses the position of the next (or the last) occurrence
of letter a where φ must hold. The temporal logic with these modalities was in-
vestigated in [DK07]. The authors showed that the deterministic temporal logic
TL[Xa,Ya] which closes the rankers of [WI07, STV01] under boolean operations,
characterizes UL (their work was in the setting of infinite words). We identify
TL[Xa,Ya] as a deterministic logic and use its property of unique parsability to
give an efficient reduction from formulas to po2dfa.

po2dfa

TL[Ũ, S̃]

UITL±

TL[Xa,Ya]

Fig. 1. Deterministic Logics and po2dfa with reductions as presented in this paper
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It is easy to see that the modalities of UITL± are the most comprehensive: logic TL[Xa,Ya]

is a syntactic subset of TL[Ũ, S̃] and every formula of TL[Ũ, S̃] can be easily transformed
to a language equivalent UITL± formula with only linear blowup in size. Thus, expres-
sively, TL[Xa,Ya]⊆ TL[Ũ, S̃]⊆ UITL±. We relate these logics further as follows:

– As our first result, we show that every po2dfa can be effectively modelled as a
TL[Ũ, S̃] formula with the same language. Moreover, the DAG representation of the
formula is linear in the size of the automata.

– As our second main result, we give a polynomial time reduction from a TL[Xa,Ya]
to a po2dfa recognizing the same language. The automaton construction essentially
relies upon the unique parsability of TL[Xa,Ya] and the ability of po2dfa to suc-
cinctly characterize the unique position of each subformula. The main techniques
used here were introduced earlier [LPS08] for logic UITL. The two-way nature of
automata naturally corresponds with the future and the past modalities.

– Finally, closing the cycle, we show that UITL± can be effectively reduced in poly-
nomial time to a language equivalent TL[Xa,Ya] formula. The reduction relies upon
the pioneering ”ranker directionality” technique originally introduced by [DKL10].

These reductions show that all the three temporal logics have the same expressive power
as po2dfa (and hence language class UL) and their satisfiability is NP-complete. The
decision complexity follows from NP-complete non-emptiness checking of po2dfa.
Thus, we demonstrate that the language class UL is robustly characterized by several
deterministic temporal logics all of which have low decision complexity.

The paper is organized as follows. Section 2 defines po2dfa and gives their proper-
ties. In Section 3, we introduce the logic TL[Ũ, S̃] and prove its expressive completeness
with respect to po2dfa. Section 4 presents the syntax, semantics and unique parsing
properties of UITL± and the reduction from TL[Ũ, S̃] to UITL±. In Section 5 we revisit
the logic TL[Xa,Ya] and give its reduction to po2dfa. Section 6 gives the the property
of ranker directionality using which we give a reduction from UITL± to TL[Xa,Ya]. We
end the paper with a discussion of the results and their significance.

2 po2dfa: An Automaton Characterization for UL

Partially ordered two-way DFA were introduced by Schwentick, Thérien and Vollmer
[STV01] where they showed that it is characterized by DA. As the name suggests,
po2dfa are two-way automata, so that the head of the automaton may move in ei-
ther direction (one step to the left or right) in every transition. Also, the only loops
in the transition graph of the automaton are self-loops on states. This naturally defines
a partial-order on the set of states. Lastly, the automaton is deterministic- so that there
is exactly one possible transition from any configuration of the automaton.

Consider a finite alphabet Σ. Given w∈ Σ∗, the two way automaton actually scans the
string w′ = �w with end-markers � and  placed at positions 0 and #w+1 respectively.
Let Σ′ = Σ∪{�,} include the two endmarkers.
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Definition 2 (po2dfa). A po2dfa over Σ is a tuple M = (Q,≤,δ,s, t,r) where (Q,≤) is
a poset of states such that r, t are the only minimal elements. s is the initial state, t is
the accept state and r is the rejecting state. The set Q\{t,r} is partitioned into QL and
QR (the states reached from the left and the right respectively). δ : ((QL ∪QR)×Σ) →
Q)∪ ((QL ×{})→ Q\QR)∪ ((QR ×{�})→ Q\QL) is a progress-transition function
satisfying δ(q,a) < q. Hence it defines the progress transitions of the automaton. In
order to make the automaton “complete”, every state q in Q \ {t,r} has a default else
(self-loop) transition which is taken on all letters b for which no progress transition
δ(q,b) is defined. Hence, the transition function δ specifies all the progress transitions
of the automaton, and a default self-loop (else) transition is takes place otherwise. Note
that there are no progress or else transitions for the terminal states (r and t).

Direction of Head Movement on a Transition
The direction in which the head moves at the end of a transition, depends on whether
the target state of the transition is a QL state, or a QR state. QL is the set of states that
are “entered from the left” and QR are the states that are “entered from the right”; i.e.
if the automaton is in a state q, reading a symbol a, it enters a state q′ = δ(q,a), then it
moves its head to the right if q′ ∈ QL, left if q′ ∈ QR, and stays in the same position if
q′ ∈ {t,r}. The same rule applies to the self loop else transitions also: on else transitions
of QL states, the head moves to the right, and on else transitions of QR states, the head
moves to the left.

It must be noted that the partition of the set of states based on the direction of the
head movement is for convenience of presentation and translation to logics. In general,
every partially-ordered two- way DFA for which the direction of head movement is
specified by the transition, may be converted (with a linear blow-up in the size of the
automaton) to a po2dfa in which the set of states is partitioned based on the direction of
head movement of the incoming transitions (which matches the definition above).

Transitions on End-markers
The transition function is designed to ensure that the automaton does not ”fall off” either
end of the input. Hence, for all q ∈ Q\ {t,r}, there are transitions δ(q,�) ∈ QL ∪{t,r}
and δ(q,)∈ QR∪{t,r}, so that for every transition of the form δ(q,�), the head moves
to the right, and on a transition of the form δ(q,), the head moves to the left, or reaches
a terminal state.

Run of a po2dfa
A po2dfa M running over word w is said to be in a configuration (q, p) if it is in a state
q and head reading the position p in word. Let De f (q) ⊆ Σ be the subset of letters on
which no progress transition from q is defined. Hence, the automaton takes the default
else transition on exactly the letters from De f (q). The run of a po2dfa M on an input
word w starting with input head position p0 is a sequence (q0, p0),(q1, p1), ...(q f , p f )
of configurations such that:

– q0 = s and q f ∈ {t,r},
– For all i(1 ≤ i < f ), if w(pi) ∈ De f (qi) then

• qi+1 = qi and
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• pi+1 = pi + 1 if qi ∈ QL and pi+1 = pi − 1 if qi ∈ QR.
Otherwise, if δ(qi,w(pi)) = (q′) then
• qi+1 = q′ and
• pi+1 = pi + 1 if qi+1 ∈ QL,

pi+1 = pi − 1 if qi+1 ∈ QR and
pi+1 = pi if qi+1 ∈ {t,r}.

In general, we abbreviate the run of an automaton M starting from a position p0 in
a word w by writing M(w, p0) = (q f , p f ). The run is accepting if q f = t; rejecting if
q f = r. The automaton M is said to be start-free if for any w, and ∀p1, p2 ∈ dom(w),
M(w, p1) = (q f , p f ) if and only if M(w, p2) = (q f , p f ).

The language L(M) of a po2dfa M is the set of all words w such that M(w,1) = (t, i)
(for some i ∈ dom(w′)).

Remark 1. We shall represent po2dfa using their transition graphs. The direction of the
arrow drawn within a state represents the direction in which the head of the automaton
moves, on transitions which target into that state. Hence, all q ∈ QL are marked with a
“→” and all q ∈ QR are marked with a “←”.

Example 1. The po2dfa A is given in figure 2. A accepts all such words over {a,b,c,d}∗,
which has its last a at some position (say i), and some position (say j > i) has the first d
after i and all intermediate positions between i and j do not have a b. Observe that the
automaton rejects iff:

– There is no a in the word
– There is no d after the last a in the word
– There is a b between the last a and the subsequent d after it.

The language accepted by A , may be given by the regular expression Σ∗ac∗d{b,c,d}∗.

−→s ← → t

r

 a

� b,

d

Fig. 2. Example po2dfaA

2.1 Constructions on PO2DFA

For the description of po2dfa we shall use Extended Turtle Expressions ( [LPS08]),
which are extensions of the turtle programs introduced by Schwentick, Thérien and
Vollmer [STV01]. The syntax of ETE follows and we explain its semantics below. Let
A,B range over subsets of Σ′.

E ::= Acc | Re j | 1
A→ | 1

A← | A
B→ | A

B← | E1?E2,E3
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Automaton Acc accepts immediately without moving the head. Similarly, Re j rejects

immediately. A
B→ accepts at the next occurrence of a letter from B strictly to the right,

maintaining the constraint that the intervening letters are from A \ B. If no such oc-
currence exists the automaton rejects at the right end-marker or if a letter outside A

intervenes, the automaton rejects at its position. Automaton 1
A→ accepts one position

to the right if the current letter is from A, else rejects at the current position. A
B← and

1
A← are symmetric in the leftward direction. The conditional construct E1?E2,E3 first

executes E1 on w. On its accepting w at position j it continues with execution of E2

from j. On E1 rejecting w at position j it continues with E3 from position j.
Here are some abbreviations which illustrate the power of the notation: E1;E2 =

E1?E2,Re j, ¬E1 =E1?Re j,Acc. Moreover, if E2 is start-free then E1∨E2 =E1?Acc,E2

and E1 ∧E2 = E1?E2,Re j. Notice that automata for these expressions are start-free if

E1 is start-free. We will use A
a→ for A

{a}→,
a→ for (Σ′ a→) and

1→ for (1
Σ′
→). Similarly

define
a← and

1←.

Proposition 1. – Given an ETE E we can construct a po2dfa accepting the same
language with number of states linear in |E|.

– Given a po2dfa A we may construct a language-equivalentETE whose size is linear
in the size of A .

2.2 Properties of po2dfa

The following properties of po2dfa are useful. See [LPS08] for details.

– Boolean Closure: Boolean operations on po2dfa may be achieved with linear
blow-up in the size of the automata.

– Small Model: Given a po2dfa M with n number of states, if L(M) �= /0, then there
exists a word w ∈ L(M) such that length of w is linear in n.

– Membership Checking: Given a po2dfa M with n number of states and a word w of
length l, the membership of w in L(M) may be checked in time O(nl).

– Language Non-Emptiness: The non-emptiness of the language of a po2dfa may be
decided with NP-complete complexity.

– Language Inclusion: The language inclusion problem of po2dfa is CONP-complete.

3 Deterministic Until-Since Logic TL[Ũ, S̃]

We shall introduce the deterministic logic TL[Ũ, S̃]. It has the deterministic half until
and since modalities whose eventuality constraint is deterministic and is given by the
next / previous occurrence of a letter, while the invariance constraint is given by a subset
of the alphabet. The syntax and semantics of this logic is as follows. Let A ⊆ Σ, a,b ∈ Σ
and φ range over TL[Ũ, S̃] formulas. A TL[Ũ, S̃]formula may be given by the following
syntax.

( | a | AŨbφ | AS̃bφ | φ∨φ | ¬φ

Given a word w ∈ Σ∗, and i ∈ dom(w), TL[Ũ, S̃] formulas may be interpreted using the
following rules.
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w, i |= a iff w(i) = a
w, i |= AŨbφ iff ∃ j > i . w( j) = b∧∀i < k < j . w(k) ∈ A\ b ∧ w, j |= φ
w, i |= AS̃bφ iff ∃ j < i . w( j) = b∧∀ j < k < i . w(k) ∈ A\ b ∧ w, j |= φ

The boolean operators have their usual meaning. The language defined by a TL[Ũ, S̃]
formula φ is given by L(φ) = {w ∈ Σ∗ | w,1 |= φ} (if the outermost operator of φ is a
Ũ operator) and L(φ) = {w ∈ Σ∗ | w,#w |= φ} (if the outermost operator of φ is a S̃
operator). TL[Ũ, S̃] formulas may be represented as a DAG, in the usual way, with the
modal/boolean operators at the intermediate nodes.

Example 2. The language described in Example 1 which is given by Σ∗ac∗d{b,c,d}∗
may be expressed using the TL[Ũ, S̃] formula ΣS̃a (Σ\ {b} Ũd().

TL[Ũ, S̃] and Unique Parsability. The Ũ and S̃ modalities of TL[Ũ, S̃] are deterministic,
in the sense that they uniquely define the position at which its subformula must be
evaluated. Hence, for every subformula ψ of a TL[Ũ, S̃] formula φ, and any word w,
there exists a unique position denoted as Posw(ψ), where ψ is to be evaluated. Moreover,
Posw(ψ) is determined by the context of ψ in φ. For example, consider the subformula
ψ = AŨb(ψ′), such that Posw(ψ) = i. Then Posw(ψ′) = j such that j > i, w( j) = b and
∀i < k < j . w(k) ∈ A\ {b}.

3.1 From po2dfa to TL[Ũ, S̃]

The deterministic until and since operators of TL[Ũ, S̃] naturally model the constraints
on the run of a po2dfa: the looping of the po2dfa in a given state and on a subset
of letters until an outward transition is enabled is straightforwardly captured by the
invariance condition of the Ũ and S̃ modalities. We shall now give a translation from
po2dfa automata to language-equivalent TL[Ũ, S̃] formulas.

−→q

q1

qn

b1

bn

Fig. 3. From po2dfa to TL[Ũ, S̃]

We shall construct a TL[Ũ, S̃] formula Form(q) for each state of A , such that the
following lemma is satisfied.

Lemma 1. Given a po2dfa A and any non-initial state q of A , we may construct a
TL[Ũ, S̃] formula Form(q) such that for every w ∈ Σ+, if q is entered on reading a posi-
tion x ∈ dom(w), then w,x |= Form(q) if and only if the run terminates in the accepting
state.
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Proof. We shall prove this lemma by constructing the formula Form(q) for every non-
initial state q in A . From the syntax of po2dfa it is straightforward to infer that Form(t)=
( and Form(r) =⊥. Now, consider a non-initial state q of a po2dfa as shown in Figure
3, such that q �∈ {t,r} and Aq = Σ\{b1 · · ·bn} is the set of letters on which q loops. Let us
assume that Form(q1), · · ·Form(qn) are appropriately constructed. If q ∈ QL (i.e. q is a
state entered from the left, and the head of the automaton moves right on all transitions
whose target state is q), then the automaton “scans” rightwards from x, looping in q
on letters from Aq, until a progress transition from one of the letters from {b1, · · ·bn}
is enabled. Hence, a progress transition bi is enabled from q if and only if there exists
y > x such that w(y) = bi and for all x < k < y, w(k) ∈ Aq. Further, this run is accepting
if and only if w,y |= Form(qi).

From the above argument, we may construct Form(q) as follows.

– If q ∈ QL, then
Form(q) =

∨
i∈{1,···n}

[AqŨbiForm(qi)]

– If q ∈ QR, then
Form(q) =

∨
i∈{1,···n}

[AqS̃biForm(qi)]

!"

Theorem 1. Given a po2dfa A , we may construct a TL[Ũ, S̃] formula Trans(A) such
that L(A) = L(Trans(A)), whose DAG representation is linear in the size of A .

Proof. Consider the start state of the po2dfa A which loops on the letters in As until a
progress transition on one of the letters in {c1, · · ·cl} is enabled, such that the transition
on ci is targeted into a state qi, for each i ∈ {1 · · · l}. From an argument similar to the
one in Lemma 1, we may infer that

Trans(A) =
∨

i∈{1···l}
[ci ∧Form(qi)] ∨

∨
i∈{1···l}

[
∨

b∈As

b∧AsŨci Form(qi)]

In the above formula, the two sets of disjunctions correspond to the cases when the
progress transition from s to the target state is taken on the first position in the word, or
any other position, respectively.

In the DAG representation of the formula Trans(A) as per the above construction,
note that the number of nodes in the DAG is linear in the number of states in A . This
is because Form(q) may be constructed exactly once for each state q of A . Hence the
theorem. !"

4 Interval Temporal Logic UITL±

The interval logic UITL ( [LPS08]) has the unambiguous chop modalities which deter-
ministically chop at the first and last occurrence of a letter a within the interval. We
enrich this logic with unambiguous modalities which chop beyond the interval bound-
aries in either direction. We call this logic UITL±. In this section, we introduce the
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logic UITL± and show that it is no more expressive than UITL, by giving an effective
conversion from UITL± formulas to their corresponding language-equivalent TL[Xa,Ya]
formula. The conversion is similar to the conversion from UITL to TL[Xa,Ya], as given
in [DKL10].

4.1 UITL±: Syntax and Semantics

The syntax and semantics of UITL± are as follows:

( | a | pt | unit | BPφ | EPφ | D1FaD2 | D1LaD2 | D1F+
a D2 | D1L−

a D2 |
⊕D1 | &D1 | ⊕D1 | &D1 | D1 ∨D2 | ¬D

Let w be a nonempty finite word over Σ and let dom(w) = {1, . . . ,#w} be the set of po-
sitions. Let INTV (w) = {[i, j] | i, j ∈ dom(w), i ≤ j} ∪ {⊥} be the set of intervals over
w, where ⊥ is a special symbol to denote an undefined interval. For an interval I, let l(I)
and r(I) denote the left and right endpoints of I. Further, if I =⊥, then l(I) = r(I) =⊥.
The satisfaction of a formula D is defined over intervals of a word model w as follows.

w, [i, j] |=( iff [i, j] ∈ INTV (w) and [i, j] �=⊥
w, [i, j] |= pt iff i = j
w, [i, j] |= unit iff j = i+ 1
w, [i, j] |= BPφ iff w, [i, i] |= φ
w, [i, j] |= EPφ iff w, [ j, j] |= φ

w, [i, j] |= D1FaD2 iff for some k : i ≤ k ≤ j. w[k] = a and
(for all m : i ≤ m < k. w[m] �= a) and
w, [i,k] |= D1 and w, [k, j] |= D2

w, [i, j] |= D1LaD2 iff for some k : i ≤ k ≤ j. w[k] = a and
(for all m : k < m ≤ j. w[m] �= a) and
w, [i,k] |= D1 and w, [k, j] |= D2

w, [i, j] |= D1F+
a D2 iff for some k : k ≥ j. w[k] = a and

(for all m : i ≤ m < k. w[m] �= a) and
w, [i,k] |= D1 and w, [ j,k] |= D2

w, [i, j] |= D1L−
a D2 iff for some k : k ≤ i. w[k] = a and

(for all m : k < m ≤ j. w[m] �= a) and
w, [k, i] |= D1 and w, [k, j] |= D2

w, [i, j] |=⊕D1 iff i < j and w, [i+ 1, j] |= D1

w, [i, j] |=&D1 iff i < j and w, [i, j− 1] |= D1

w, [i, j] |=⊕D1 iff j < #w and w, [i, j+ 1] |= D1

w, [i, j] |=&D1 iff i > 1 and w, [i− 1, j] |= D1

The language L(φ) of a UITL formula φ iff is given by L(φ) = {w | w, [1,#w] |= φ}.
We may derive “ceiling” operators which assert the invariance as follows.

– 7A8 ≡ pt ∨ unit ∨ ¬ ∨
b �∈A

(⊕& ((Fb())

Hence, w, [i, j] |= 7A8 if and only if ∀i < k < j . w(k) ∈ A.
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– 7A88 ≡ pt ∨ ¬ ∨
b �∈A

(⊕((Fb())

Hence, w, [i, j] |= 7A88 if and only if ∀i < k ≤ j . w(k) ∈ A.
– 77A8 ≡ pt ∨ ¬ ∨

b �∈A
(&((Fb())

Hence, w, [i, j] |= 77A8 if and only if ∀i ≤ k < j . w(k) ∈ A.
– 77A88 ≡ ¬ ∨

b �∈A
((Fb()

Hence, w, [i, j] |= 77A88 if and only if ∀i ≤ k ≤ j . w(k) ∈ A.

Example 3. The language given in Example 1 may be given by the UITL± formula
(La (7Σ\ {b}8 Fd().

UITL± and Unique Parsing UITL± is a deterministic logic and the property of Unique
Parsing holds for its subformulas. Hence, for every UITL± subformula ψ, and any word
w, there is a unique interval Intvw(ψ) within which it is evaluated. Further, for any
“chop” operator (Fa,La,F+

a ,L−
a ,⊕,&,⊕,&), there is a unique chop position cPosw(ψ).

If such an interval or chop position does not exist in the word, then they are equal to
⊥. The Intvw(ψ) and cPosw(ψ) for any subformula ψ depend on its context and may be
inductively defined. (See [LPS08] for similar such definition for the sublogic UITL).

4.2 From TL[Ũ, S̃] to UITL±

Given a TL[Ũ, S̃] formula φ, we shall construct a UITL± formulas BTrans(φ) and
ETrans(φ) having the following property.

Lemma 2. Given a TL[Ũ, S̃] formula φ, we may construct UITL± formulas BTrans(φ)
and ETrans(φ) such that for any word w ∈ Σ+ and any interval [i, j] in w

– w, [i, j] |= BTrans(φ) iff w, i |= φ
– w, [i, j] |= ETrans(φ) iff w, j |= φ

The translation takes polynomial time.

Proof. The formulas BTrans and ETrans may be constructed by bottom-up induction
using the following rules.

– BTrans(a) = BP (ptFa()
– BTrans(φ1 ∨φ2) = BTrans(φ1)∨BTrans(φ2)
– BTrans(¬φ) = ¬BTrans(φ)
– BTrans(AŨbφ) = BP⊕⊕ [ (77A8) F+

b ETrans(φ)]
– BTrans(AS̃bφ) = BP&& [ (7A88) L−

b BTrans(φ)]
– ETrans(a) = EP ((Lapt)
– ETrans(φ1 ∨φ2) = ETrans(φ1)∨ETrans(φ2)
– ETrans(¬φ) = ¬ETrans(φ)
– ETrans(AŨbφ) = EP⊕⊕ [ (77A8) F+

b ETrans(φ)]
– ETrans(AS̃bφ) = EP&& [ (7A88) L−

b BTrans(φ)]
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The correctness of the above construction may be inferred from the semantics of the
logics. For example, consider the formula BTrans(AŨbφ). Let us assume ETrans(φ)
has been appropriately constructed so as to satisfy the lemma. Then for any word w∈Σ+

and any interval [i, j] of w,
w, [i, j] |= BTrans(AŨbφ)
iff w, [i, j] |= BP⊕⊕ [ (77A8) F+

b ETrans(φ)]
iff w, [i, i] |= ⊕⊕ [ (77A8) F+

b ETrans(φ)]
iff w, [i+ 1, i+ 1] |= [ (77A8) F+

b ETrans(φ)]
iff ∃k ≥ (i+ 1) . w(k) = b∧ ∀(i+ 1)≤ m < k .w(m) ∈ A\ {b} ∧

w, [i+ 1,k] |= ETrans(φ)
iff w, i |= AŨbφ !"

From the above construction, we infer that for every TL[Ũ, S̃] formula, we may construct
a language-equivalent UITL± formula whose size is linear in the size of the TL[Ũ, S̃]
formula. Clearly, the time time taken for the construction is also polynomial.

5 Deterministic Temporal Logic - TL[Xa,Ya]

In [DK07] the authors showed that the deterministic temporal logic TL[Xa,Ya] which
closes the rankers of [WI07] under boolean operations, also characterizes UL. In a sub-
sequent paper [DKL10], they gave an important property of rankers called ranker direc-
tionality. We revisit this logic of rankers, giving a mild generalization of the same. We
shall give a direct reductions between TL[Xa,Ya] formulas and po2dfa and analyse the
complexity of translations. This also gives us an NP-complete satisfiability algorithm
for TL[Xa,Ya] formulas.

5.1 TL[Xa,Ya]: Syntax and Semantics

TL[Xa,Ya] is a unary deterministic temporal logic with the deterministic modalities Xa

(next-a) and Ya (previous-a) which uniquely mark the next and the previous occurrences
(respectively) of a letter a from a given position. We also include their corresponding
weak modalities (X̃a and Ỹa), and unit modalities (X1,Y1) which access the next and
previous positions respectively. SP (Starting Position) and EP (Ending Position) are
additional modalities which uniquely determine the first and last positions of the word
respectively.

Remark 2. It can be shown that the weak modalities and unit modalities, as well as the
SP and EP modalities do not add expressive power to the logic (see [Sha12]). They may
be derived using the Xa and Ya modalities alone. However we include them in the syntax
of the logic and define rankers which include all these modalities. We show that rankers
when defined in such a manner, continue to possess their key properties. We shall see
later in the paper that these generalized rankers play a crucial role in our formulations
of reductions between logics for UL.

Let φ,φ1 and φ2 range over TL[Xa,Ya] formulas and a range over letters from a finite
alphabet Σ. The syntax of TL[Xa,Ya] is given by:

φ := a | ( | SPφ1 | EPφ1 | Xaφ1 | Yaφ1 | X̃aφ1 | Ỹaφ1 | X1φ1 | Y1φ1 | φ1∨φ2 | ¬φ1
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Let Ga = ¬Xa( and Ha = ¬Ya( be derived atomic formulas. Semantics of TL[Xa,Ya]
formulas is as given below. Let w ∈ Σ+ be a non-empty finite word and let i ∈ dom(w)
be a position within the word.

w, i |= a iff w(i) = a
w, i |= SPφ iff w,1 |= φ
w, i |= EPφ iff w,#w |= φ
w, i |= Xaφ iff ∃ j > i . w( j) = a and ∀i < k < j.w(k) �= a and w, j |= φ.
w, i |= Yaφ iff ∃ j < i . w( j) = a and ∀ j < k < i.w(k) �= a and w, j |= φ.
w, i |= X̃aφ iff ∃ j ≥ i . w( j) = a and ∀i ≤ k < j.w(k) �= a and w, j |= φ.
w, i |= Ỹaφ iff ∃ j ≤ i . w( j) = a and ∀ j < k ≤ i.w(k) �= a and w, j |= φ.

w, i |= X1φ1 iff ∃ j = i+ 1 . w, j |= φ1

w, i |= Y1φ1 iff ∃ j = i− 1 . w, j |= φ1

w, i |= φ1 ∨φ2 iff w, i |= φ1 or w, i |= φ2

w, i |= ¬φ1 iff w, i �|= φ1

The language accepted by a TL[Xa,Ya] formula φ is given by L(φ) = {w | w,1 |= φ}.

Example 4. The language given in Example 1 is given by the TL[Xa,Ya] formula
EPYaXd¬(Yb¬Xa().

Remark 3. A TL[Xa,Ya] formula (with the native Xa and Ya modalities alone), may be
trivially expressed as a TL[Ũ, S̃] formula using the following transformation function:

Trans(Xaφ) ≡ ΣŨaTrans(φ) Trans(Yaφ) ≡ ΣS̃aTrans(φ)

5.2 TL[Xa,Ya]: Unique Parsing

TL[Xa,Ya] is a Deterministic Logic: Given any word w ∈ Σ+ and TL[Xa,Ya] formula
φ, for any subformula η of φ, there exists a unique position in dom(w) where η must
be evaluated in order to find the truth of φ. This position is denoted by Posw(η) and
is uniquely determined by the context of η. If such a position does not exist, then
Posw(η) = ⊥. It can be defined by induction on the depth of occurrence of η. We omit
this obvious definition.

5.3 TL[Xa,Ya] to po2dfa

Theorem 2. Given any TL[Xa,Ya] formula φ we may construct in polynomial time an
equivalent po2dfa A(φ) such that L(φ) = L(A(φ)).

Construction
The efficient reduction from TL[Xa,Ya] to po2dfa relies on the property of unique pars-
ing of TL[Xa,Ya]formulas. We use the ETE representation of po2dfa from Section 2.1
to illustrate the construction of the po2dfa. Fix a TL[Xa,Ya] formula Φ. For any subfor-
mula φ of Φ and any given word w, Posw(φ) depends on the context of φ and may be
evaluated in a top-down manner. We construct an ETE POS(φ) such that the following
proposition holds.

Proposition 2. For any subformula φ of Φ and any word w ∈ Σ∗, we have
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– POS(φ)(w,1) = (t, i) iff Posw(φ) = i
– POS(φ)(w,1) = ( f , i) iff Posw(φ) =⊥

Proof. The ETE for POS(φ) may be constructed by induction on the depth of occur-
rence the subformula φ as follows.

– POS(Φ) = �
Σ′
←;(1

�→)

– If φ = Xaφ1 then POS(φ1) = POS(φ);1
Σ′
→;a

Σ′
→

– If φ = Yaφ1 then POS(φ1) = POS(φ);1
Σ′
←;a

Σ′
←

– If φ = X̃aφ1 then POS(φ1) = POS(φ);a
Σ′
→

– If φ = Ỹaφ1 then POS(φ1) = POS(φ);a
Σ′
←

– If φ = X1φ1 then POS(φ1) = POS(φ) ; [(1
Σ→;1

←) ? Re j : 1
Σ→]

– If φ = Y1φ1 then POS(φ1) = POS(φ) ; [(1
Σ←;1

�→) ? Re j : 1
Σ←]

– If φ = SPφ1 then POS(φ1) = �
Σ′
← ; (1

�→)

– If φ = EPφ1 then POS(φ1) = 
Σ′
→ ; (1

←)
– If φ = φ1 ∨φ2 then POS(φ1) = POS(φ2) = POS(φ)
– If φ = ¬φ1 then POS(φ1) = POS(φ)

The correctness of the above construction may be deduced from the definition of Posw(φ)
for TL[Xa,Ya] formulas by induction on the depth of occurrence of the subformula φ.
Note that the ETE for POS(φ1) when φ = X1φ1 is constructed as follows. It first checks

if POS(φ) is at the last position in the word (by using 1
Σ→;1

←). If so, it rejects (i.e.
evaluates to f ), in which case Posw(φ1) =⊥. Otherwise, it accepts at the next position
after POS(φ). The case of φ = Y1φ1 is symmetric to this. Other cases are similar. !"

Now, for every subformula φ of Φ, we construct ETE EVAL(φ) which evaluates the
formula at is unique position, as follows. From this proposition it immediately follows
that EVAL(Φ) is the language-equivalent ETE for Φ.

Proposition 3. For any subformula φ of Φ we may construct EVAL(φ) such that for
any word w ∈ Σ∗ we have EVAL(w,1) = (t, i) iff Posw(φ) �=⊥ and w,Posw(φ) |= φ.

Proof. – If φ =( then EVAL(φ) = POS(φ);Acc
– If φ = Xaφ1,Yaφ1, X̃aφ1,Ỹaφ1,SPφ1,EPφ1,X1φ1 or Y1φ1 then

EVAL(φ) = POS(φ1);EVAL(φ1)
– If φ = φ1 ∨φ2 then [POS(φ);EVAL(φ1)] ? [Acc] : [POS(φ);EVAL(φ2)]
– If φ = ¬φ1 then EVAL(φ1) ? Re j : Acc

We may verify by induction on the height of φ that that for any subformula φ and
any word w, EVAL(w,1) = (t, i) iff Posw(φ) �= ⊥ and w,Posw(φ) |= φ. The proof uses
Proposition 2. !"

Complexity: Consider a TL[Xa,Ya] formula Φ of length l. For every subformula φ of
Φ, observe that POS(φ) is linear in l. Further, EVAL(φ) is polynomial in l. Therefore,
we can conclude that the size of the ETE(and hence the po2dfa) which is language-
equivalent to Φ is polynomial in the size of Φ. Its construction can be carried out in
polynomial time. Hence Theorem 2 holds true.
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6 From UITL± to TL[Xa,Ya] Using Ranker Directionality

The notion of rankers [WI07] has played an important role in characterizing unambigu-
ous languages UL. They were originally introduced as turtle programs by Schwentick
et al [STV01]. Basically a ranker r is a finite sequence of instructions of the form Xa

(denoting “go to the next a in the word”) or Ya (denoting “go to the previous a in the
word”). Given a word w and a starting position i, the execution of a ranker r succeeds
and ends at a final position j if all the instructions find their required letter. This is
denoted by w, i |= r.

Here we generalize rankers and call them Ranker Formulas. These are essentially
TL[Xa,Ya] formulas without any boolean operators, but including both the strict and
the non-strict deterministic modalities (Xa,Ya, X̃a,Ỹa), the unit-step modalities (X1,Y1),
as well as the end postion modalities (SP,EP). This generalization maintains the key
deterministic nature of rankers.
The abstract syntax of Ranker Formulas is as follows1 :

φ :=( | SPφ | EPφ | Xaφ | Yaφ | X̃aφ | Ỹaφ | X1φ | Y1φ

Given a Ranker Formula ψ, let Leaf (ψ) denote the unique atomic formula(. For a given
word w, the position of unique leaf formula is denoted as %Posw(ψ) = Posw(Leaf (ψ)).
This is position where the Ranker Formula ψ accepts word w.

Sequential composition of Rankers: Through the rest of this chapter, we shall alterna-
tively use the terms “ranker” and “Ranker Formula”. We say that a ranker φ accepts at a
position i in a word w if %Posw(φ) = i. Given a ranker φ1 and any TL[Xa,Ya] formula φ2,
denote by φ1;φ2 the TL[Xa,Ya] formula φ1[φ2/(] obtained by replacing the unique leaf
atomic formula ( of φ1 by φ2. Hence, for any word w, it is easy to see that w,1 |= φ1;φ2

iff w, i |= φ2, where i = %Posw(φ1). Note that if φ1 and φ2 are Ranker Formulas then
φ1;φ2 is also a Ranker Formula.

Ranker Directionality
Consider a Ranker Formula ψ. We can construct TL[Xa,Ya] formulas P<(ψ), P≤(ψ),
P>(ψ), P≥(ψ) such that they satisfy the following Lemma 3. These formulas are called
ranker directionality formulas and they allow us to analyse the relative positioning of
the current position, with respect to the l pos of the ranker. These formulas were given
by [DKL10] for rankers. We generalize them for Ranker Formulas.

Let φ( be a Ranker Formula where φ is the ancestor (context) of the leaf atomic
formula (. The ranker directionality formulas are given by Table 1, by induction on

the depth of the ranker. In this table, define formulas Atfirst
def
= ¬(∨a∈Σ(Ya()) and

Atlast
def
= ¬(∨a∈Σ(Xa()) which hold exactly at the first and last positions in any

word. Since every Ranker Formula formula is evaluated starting from the beginning of
the word, we shall assume that at the top level the ranker begins with the SP modality.
Observe that the size of the ranker directionality formula is linear in the size of the
Ranker Formula.

1 While a (for every a ∈ Σ) is an atomic formula in the case of TL[Xa,Ya] formulas,
Ranker Formulas do not have a as an atomic formula. The only atomic formula is (.



Deterministic Logics for UL 315

Table 1. Ranker Directionality Formulas

ψ P<(ψ) P≤(ψ) P>(ψ) P≥(ψ)
φ(SP() ⊥ Atfirst ¬Atfirst (
φ(EP() ¬Atlast ( ⊥ Atlast
φ(X̃a() Xa(P≤(ψ)) Ha ∨ (YaP<(φ()) YaP≥(φ() Ga ∨XaP>(ψ)
φ(Xa() Xa(P≤(ψ)) Ha ∨ (YaP≤(φ()) YaP>(φ() Ga ∨XaP>(ψ)
φ(Ỹa() XaP≤(φ() Ha ∨ (YaP<(ψ)) YaP≥(ψ) Ga ∨XaP>(φ()

φ(Ya() XaP<(φ() Ha ∨ (YaP<(ψ)) YaP≥(ψ) Ga ∨XaP≥(φ()

φ(X1() P≤(φ() Atfirst ∨ Y1P≤(φ() Y1P>(φ() P>(φ()

φ(Y1() X1P<(φ() P<(φ() P≥(φ() Atlast ∨ X1P≥(φ()

Lemma 3 (Ranker Directionality [DKL10]). Let ψ be a Ranker Formula. Then ∀w ∈
Σ+ and ∀i ∈ dom(w), if %Posw(ψ) �=⊥, then

– w, i |= P<(ψ) iff i < %Posw(ψ)
– w, i |= P≤(ψ) iff i ≤ %Posw(ψ)
– w, i |= P>(ψ) iff i > %Posw(ψ)
– w, i |= P≥(ψ) iff i ≥ %Posw(ψ)

The correctness of the construction of the ranker directionality formulas is a direct con-
sequence of the semantics of TL[Xa,Ya]. A formal proof is given in [Sha12]. The fol-
lowing proposition states that every TL[Xa,Ya] formula may be expressed as a boolean
combination of rankers.

Proposition 4. For any TL[Xa,Ya] formula φ, there is a boolean combination B(ψi)
of formulas ψi, such that L(φ) = L(B(ψi)). Each ψi is either an atomic formula or
Ranker Formula. Moreover each ψi is linear in the size of φ.

The above proposition gives a method of translating each TL[Xa,Ya] formula into po2dfa:
each ranker can be trivially translated to a po2dfa and the automata are boolean closed.
However, it can be observed that in general size of B(ψi) may be exponential in the size
of φ. In the next section, we give a much more efficient polynomial sized (and polynomial
timed) translation.

6.1 UITL± to TL[Xa,Ya]

Theorem 3. Given any UITL± formula φ of size n, we can construct in polynomial
time a language-equivalent TL[Xa,Ya] formula Trans(φ), whose size is O(n2). Hence,
satisfiability of UITL± is NP-complete.

The construction of Trans(φ) requires some auxiliary definitions. For every UITL± sub-
formula ψ of φ, we define Ranker Formulas LIntv(ψ) and RIntv(ψ), such that Lemma
4 holds. LIntv(ψ) and RIntv(ψ) are Ranker Formulas which accept at the left and right
ends of the unique interval Intvw(ψ) respectively.

Lemma 4. Given a UITL± subformula ψ of a formula φ, and any w ∈ Σ+ such that
Intvw(ψ),cPosw(ψ) �=⊥,
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– %Posw(LIntv(ψ)) = l(Intvw(ψ))
– %Posw(RIntv(ψ)) = r(Intvw(ψ))

The required formulas LIntv(ψ),RIntv(ψ) may be constructed by induction on the depth
of occurrence of the subformula ψ as below. The correctness of these formulas is
apparent from the semantics of UITL± formulas, and we omit the detailed proof.

– If ψ = φ, then LIntv(ψ) = SP(, Rintv(ψ) = EP(
– If ψ = BP D1 then

LIntv(D1) = RIntv(D1) = LIntv(ψ)
– If ψ = EP D1 then

LIntv(D1) = RIntv(D1) = RIntv(ψ)
– If ψ = D1FaD2 then

LIntv(D1) = LIntv(ψ), Rintv(D1) = LIntv(ψ) ; X̃a(,
LIntv(D2) = LIntv(ψ) ; X̃a(, Rintv(D2) = RIntv(ψ)

– If ψ = D1F+
a D2 then

LIntv(D1) = LIntv(ψ), Rintv(D1) = RIntv(ψ) ; X̃a(,
LIntv(D2) = RIntv(ψ), Rintv(D2) = RIntv(ψ) ; X̃a(

– If ψ = D1LaD2 then
LIntv(D1) = LIntv(ψ), Rintv(D1) = RIntv(ψ) ; Ỹa(,
LIntv(D2) = RIntv(ψ) ; Ỹa(, Rintv(D2) = RIntv(ψ)

– If ψ = D1L−
a D2 then

LIntv(D1) = LIntv(ψ) ; Ỹa(, Rintv(D1) = LIntv(ψ),
LIntv(D2) = LIntv(ψ) ; Ỹa(, Rintv(D2) = RIntv(ψ)

– If ψ =⊕D1 then
LIntv(D1) = LIntv(ψ) ; X1(, RIntv(D1) = RIntv(ψ)

– If ψ =⊕D1 then
LIntv(D1) = LIntv(ψ), RIntv(D1) = RIntv(ψ) ; X1(

– If ψ =&D1 then
LIntv(D1) = LIntv(ψ), RIntv(D1) = RIntv(ψ) ; Y1(

– If ψ =&D1 then
LIntv(D1) = LIntv(ψ) ; Y1(, RIntv(D1) = RIntv(ψ)

We can now construct, for any subformula ψ of φ, a corresponding TL[Xa,Ya] formula
Trans(ψ). The conversion uses the following inductive rules. Then, it is easy to see that
Trans(ψ) is language equivalent to φ (see [Sha12] for proof).

– If ψ = BP D1 or EP D1 then Trans(ψ) = Trans(D1)
– If ψ=D1FaD2, then Trans(ψ) = [( LIntv(ψ); X̃a( ) ; P≤(RIntv(ψ))]∧Trans(D1)∧

Trans(D2)
– If ψ=D1LaD2, then Trans(ψ) = [( RIntv(ψ);Ỹa( ) ; P≥(LIntv(ψ))]∧Trans(D1)∧

Trans(D2)
– If ψ=D1F+

a D2, then Trans(ψ)= [(LIntv(ψ); X̃a( ) ; P≥(RIntv(ψ))]∧Trans(D1)∧
Trans(D2)

– If ψ=D1L−
a D2, then Trans(ψ)= [( RIntv(ψ);Ỹa( ) ; P≤(LIntv(ψ))]∧Trans(D1)∧

Trans(D2)
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– If ψ =⊕D1, then Trans(ψ) = [(LIntv(ψ);X1() ; P≤(RIntv(ψ))] ∧ Trans(D1)
– If ψ =&D1, then Trans(ψ) = [(RIntv(ψ);Y1() ; P≥(LIntv(ψ))] ∧ Trans(D1)
– If ψ =⊕D1, then Trans(ψ) = [(RIntv(ψ);X1()] ∧ Trans(D1)
– If ψ =&D1, then Trans(ψ) = [(LIntv(ψ);Y1()] ∧ Trans(D1)
– Trans(D1 ∨D2) = Trans(D1)∨Trans(D2)
– Trans(¬D1) = ¬Trans(D1)

7 Discussion

A large portion of the work on the language class UL in past has been via the algebraic
characterization, namely the variety DA. While several logics and po2dfa were shown
to be expressively equivalent to UL, constructive reductions between these diverse for-
malisms and their complexities are less known. Hence, their relative succinctness has
not been explored. In this paper, we show how the notion of deterministic temporal
logics is relevant to the language class UL, and we give instances of the tight cou-
pling between such logics and the po2dfa automata. The benefit is that we can establish
NP-Complete satisfiability of these logics.

Our study is mainly motivated by the following question: How far can we go, while
still remaining in UL? We give two important instances of the same, namely TL[Ũ, S̃]
and UITL±. Thus, the language class UL appears to be robustly characterized by several
deterministic temporal logics with diverse modalities. We believe that the intuition of
identifying the language class UL with deterministic constructs was inherent in the
original definitions of Schützenberger [Sch76] of unambiguous polynomials and his
choice of term “unambiguous” for UL is suggestive of this. We have demonstrated that
such determinism leads to efficient decision procedures.

This study of deterministic logics and po2dfa has also been extended to real time.
In [PS10], we have investigated extensions of the logics TL[Xa,Ya], TL[Ũ, S̃] and UITL±

and the automaton (po2DTA) to real-time. The concept of deterministic logics has
proved useful in obtaining timed logics with low decision complexities.

In literature. the prominent logical characterizations of UL have primarily been non-
deterministic; e.g. the fragments Δ2[<] and FO2[<] of first-order definable languages
and the Unary Temporal Logic TL[F,P]. While these logics are expressively equivalent
to Partially ordered 2-Way DFAs (po2dfa), no explicit reductions from these logics to
po2dfa are known . Neither the complexities of the formula automaton construction nor
the bounds on the size of equivalent automata have been worked out. Thus, there seems
to be a gap in moving from non-deterministic logics for UL to the deterministic logics
for UL. Our recent work (in progress) addresses these questions.
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Abstract. In basic action systems, the choice among actions is not restricted.
Fairness can be imposed to restrict this nondeterminism. Finitary fairness has
been proposed as a further restriction of fairness: it models implementations
closer, and allows problems to be solved for which standard fairness is not suffi-
cient. We propose a method for expressing finitary fairness in action systems. We
give two general transformations from a system in which some actions are marked
as fair, into an equivalent system without fair actions. A theoretical justification
is given, and the transformations are illustrated with two examples: alternating
bit protocol and distributed consensus. The examples are developed by stepwise
refinement in Event-B and are mechanically checked.

Keywords: Finitary Fairness, Modelling, Termination, Event-B, Stepwise
Refinement.

1 Introduction

The theory of action systems formalizes development of parallel and reactive programs
by stepwise refinement [1]. An action system consists of global variables, local vari-
ables, an initialization statement and a set of actions (or atomic guarded commands).
Because of existing tool support, we use the Event-B [2] notation for illustration, and
we borrow the Event-B term events as an alias for actions. A schedule is a sequence of
event names that can occur in a computation (which is going to be made precise). A
schedule can be finite or infinite.

Consider the event system in Fig. 1, which is taken from [3]. Both events L and R
have no guard and are thus always enabled. In this example all possible schedules are

invariants
x ∈ BOOL
y ∈ N

initialisation
x,y := TRUE,0

event L
x := NOT x

event R
y := y+1

Fig. 1. A simple event system with two events

Z. Liu, J. Woodcock, and H. Zhu (Eds.): ICTAC 2013, LNCS 8049, pp. 319–336, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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infinite. In basic event systems the choice among events is not restricted. Such nonde-
terministic choice only guarantees minimal progress: any enabled event can be taken
and an enabled event must be taken only if no other is enabled. With the default as-
sumption of minimal progress, a schedule can contain an infinite sequence of an event,
e.g. a schedule that repeatedly executes L after executing L and R twice:

LRLRLLLLLL . . .

In the design of concurrent systems, fairness restricts the nondeterminism leading to
minimal progress. It also allows to abstract from scheduling policies in multi-process
systems and from processor speeds in multi-processor systems. Weak fairness requires
that no event can be continuously enabled forever without being taken. This is a useful
assumption for multi-process and multi-processor systems: if two continuously enabled
events belong to different processes, fairness implies that the scheduler must give each
process a chance, without specifying the scheduling policy; if two continuously enabled
events are to be executed on different processors, fairness expresses that each processor
is working, without quantifying the relative speed.

If both events in the above example are specified to be weakly fair, then fairness of
L implies that a schedule cannot contain an infinite sequence of R’s, and vice versa. For
example, the above schedule would be excluded, but the following schedule, in which
the number of consecutive R’s continues to increase, is allowed:

LRLRRLRRRLRRRRL . . .

A schedule is weakly k-bounded if for some natural number k, no fair event is neglected
more than k times while being consecutively enabled. Finitary fairness of an event
system means that all schedules are k-bounded for some k ∈N [3]. The above schedule
is not k-bounded for any k ∈N; thus the schedule is allowed when L and R are restricted
by standard fairness but not when restricted by finitary fairness.

Suppose the events belong to different processes. A scheduler is an automaton with
event names as the alphabet. For the above schedule to be generated by an automaton,
the automaton needs to count the number of R’s, so it has an unboundedly large number
of states. Conversely, if the schedule is bounded, only a finite number of states are
needed. Thus, the bounded schedules are exactly the languages of finite state schedulers.
Since any practical scheduler uses a fixed amount of memory, finitary fairness is not
only an adequate, but also a more precise abstraction from scheduling policies than
standard fairness.

Suppose that the events are executed on different processors; the speeds of the pro-
cessors may differ and may vary. Finitary fairness implies that the speeds of the pro-
cessors may not drift apart unboundedly. Alur and Henzinger formalize this claim in
terms of timed transition systems [3]. Again, finitary fairness allows a more precise
abstraction of multiprocessor systems.

The interleaving model of concurrency represents the concurrent execution of two
independent events by a sequential execution in any order. Thus, reasoning about a
concurrent system is reduced to reasoning about a nondeterministic sequential system.
Since finitary fairness is more restrictive than standard fairness, one can expect more
properties to hold under finitary fairness. For example, the event system of Fig. 1 will
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eventually reach a state in which x = TRUE ∧¬powerOf 2(y) holds: if this property
would always be false, then L must be scheduled only when powerOf 2(y) holds, for
increasing values of y, but that is impossible in a bounded schedule.

Finitary fairness allows some problems to be solved for which standard fairness is
not sufficient. Furthermore, termination proofs are simpler with finitary fairness com-
pared to standard fairness, as variants need to be over natural numbers only rather than
well-founded sets as with standard fairness.

In this paper we propose a method for the stepwise development of action systems
with finitary fairness. Finitary fairness is particularly suited for Event-B as in Event-B
variants are only over natural numbers. The core contribution of this paper is a trans-
formation of an event system with finitary weak fairness to an equivalent one without
fairness. A similar transformation was proposed in [3], but that transformation does not
result in an equivalent system, only in one in which all computations terminate if and
only if all finitary weakly fair computations of the original system do (which was the
intention). The transformed system does not have any restriction on the counters, so it
may enter a state in which two counters reach the upper limit at the same time and then
forced to terminate prematurely. Consequently, it does not have the same computations
as the original system. The theoretical finitary restriction, as proposed in [3], can be
applied to both weak fairness and strong fairness, which differs from weak fairness by
requiring that an event must be taken if it is enabled repeatedly, but not necessarily con-
tinuously. In this work, we restrict our transformation to weak fairness as in [3], as for
the example at hand, distributed consensus, weak fairness is sufficient.

Section 2 summarizes related work. Section 3 formally defines transition systems
with fair events, computations, and finitary fairness. Section 4 presents two methods for
transforming an event system with fair and regular events to one that has only regular
events but produces the same computations. In Sect. 5 one of the two transformations
is illustrated in the stepwise refinement of the alternating bit protocol, an example that
has been studied repeatedly in literature; fairness is needed as the assumption that a
message in transmission will not always be lost and has a fair chance of reaching the
destination. In Sect. 6 the other transformation is illustrated in the stepwise refinement of
a distributed consensus algorithm, an example in which finitary fairness can guarantee
termination, but standard fairness cannot. The final section gives an outlook.1

2 Related Work

Programming theories with fairness are well worked out, e.g. [5,6,7]. Extensions of
action systems to fairness have been proposed [8,9,10]. In [9] refinement rules that
preserve temporal (leads-to) and fixpoint (termination) properties are studied for fair
transitions systems (action systems). Here we restrict ourselves to terminating action
systems but consider local variables, allowing a more general notion of refinement.

The approach of [10] is to augment action systems by explicitly specifying and pro-
hibiting unfair non-terminating computations, rather than assuming a fair choice among

1 The models in this paper are developed in Event-B using the Rodin platform [4], an Eclipse-
based IDE for Event-B. All proof obligations have been successfully proved. The Rodin
project files are available at http://www.cas.mcmaster.ca/~zhangt26/ICTAC/

http://www.cas.mcmaster.ca/~zhangt26/ICTAC/
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invariants
x ∈ N

initialisation
x :∈ N

event L
when

x > 0
then

skip
end

fair event R
when

x > 0
then

x := x−1
end

invariants
x ∈ N
C ∈ N

initialisation
x :∈ N
C :∈ N1

event L
when

x > 0
C > 1

then
C := C−1

end
event R

when
x > 0

then
x := x−1
C :∈ N1

end

invariants
x ∈ N
C ∈ 1 ..B

initialisation
x :∈ N
C := B

event L
when

x > 0
C > 1

then
C := C−1

end
event R

when
x > 0

then
x := x−1
C := B

end

(a) (b) (c)

Fig. 2. (a) Event system with fair event R. (b) The counter C is used to ensure standard fairness
of R. (c) The counter C is used to ensure finitary fairness of R.

actions, and to study refinement of such augmented action systems; this allows a wider
range of fairness constraints to be expressed compared to the (weak) fairness considered
here, although in a different style.

The proof rule for the termination of an event system is more involved in the presence
of fairness: events either must decrease the variant or keep fair events which decrease
the variant enabled, as by fairness these will eventually be taken. The proof rule re-
quires that an invariant is specified for each event, e.g. as in [8] for the refinement of
action systems, rather than one invariant for the whole system as in Event-B. This would
require the proof rules of Event-B to be significantly expanded.

The alternative that we follow is to transform an event system by replacing fair events
with regular events and introducing an explicit scheduler [11,1]. The standard proof
rules of Event-B can then be applied. Figure 2 illustrates this. The event system of (a)
will eventually terminate as x is set initially to some natural number, and fair event R
always decreases x. In both transformed event systems (b) and (c) fairness is achieved
by introducing a (down-) counter C that is decreased each time the (regular) event L is
taken. This eventually forces R to be taken as L becomes disabled when C reaches 1.
When R is taken, C is reset. In (b) the (down-) counter C does not have an upper bound,
but still event R will eventually be taken; this ensures standard fairness. In (c), C is at
most B, so B− 1 is the upper bound of how many times event R can be consecutively
ignored before it must be taken, hence the schedules are (B−1)-bounded and the model
ensures finitary fairness.
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A further reason for preferring finitary fairness is that it can simplify proofs of ter-
mination. For a set of events to terminate, there must exist a variant, which is a function
from the states to a well-founded domain, and all events have to decrease the variant.
For proving the termination of the event system in Fig. 2 (c), the following variant with
natural numbers as the well-founded domain is sufficient:

variant
x∗B+C

Event L decreases the variant by decreasing C. Event R decreases the variant by decreas-
ing x (C ∈ 1..B so the variant is still decreased even when C is reset to B). A similar
variant cannot be given for the event system in (b): natural numbers as the well-founded
domain are not sufficient with standard fairness.

The finitary restriction can be used for modelling unknown delays of timed systems.
In the problem of distributed consensus, processes have to agree on a common output
value, but processes with different preferences may try to set the output at the same
time. Besides, each process may fail and not deliver a value. This can be solved using
finitary fairness, as shown in [3], but cannot be solved using standard fairness only [12].

3 Fair Event Systems

When considering finitary fairness, we are interested only in k-bounded computations.
Following definition of fair event systems generalizes that of transitions systems in [3]
by indexing the transitions with the events and by allowing only some events to be fair.

Definition 1. A fair event system P is a structure (Q, I,F,E,T) where

– Q is the set of states,
– I is the set of initial states, I ⊆ Q,
– F is the number of fair events,
– E is the set of all events, with cardinality N ≥ F (we assume that ei is a fair event

for i ∈ 1 ..F and a regular event for i ∈ F+ 1 ..N),
– T is the set of transitions, relations over Q×Q indexed by E.

We write T(e) for the transition relation of event e. A computation comp of P is a finite
or infinite maximal sequence of states and events alternating, written

comp = σ0
τ0−→ σ1

τ1−→ σ2
τ2−→ ·· ·

such that σ0 ∈ I and ∀i · i ∈ N ⇒ τi ∈ E ∧ σi '→ σi+1 ∈ T(τi). That is, states σi and
σi+1 must be in relation T(τi). A computation is a finite sequence, or is terminating,
if it ends with a state σn, for some n ∈ N, that is not in the domain of any transition
relation, i.e. ∀e · e ∈ E ⇒ σn �∈ dom(T(e)). Otherwise it is an infinite sequence, or is
nonterminating. The schedule of a computation comp is the projection of the sequence
comp to the events; the trace of comp is the projection of comp to the states:

schedule(comp) = τ0τ1τ2 . . . trace(comp) = σ0σ1σ2 . . .
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We write schedulei(comp) for τi, the i-th event of computation comp, and tracei(comp)
for σi, the i-th state of computation comp. The guard of an event is the domain of its
relation, grd(e) = dom(T(e)); an event is enabled in a state if the state is in its guard,
otherwise disabled. A computation comp is bounded if it is finite or if for some k ∈ N,
any fair event ef , for some f ∈ 1 ..F, cannot be enabled for more than k consecutive
states without being taken, formally:

∀i, f · i ∈ N∧ f ∈ 1 ..F ⇒
∃j · j ∈ i .. i+ k∧ (schedulej(comp) = ef ∨ tracej(comp) �∈ grd(ef ))

An Event-B model defines the set of states through the variables and invariants, the
transition relations through guards and generalized substitutions, and the initial states
through the initialization event. Thus, fair event systems are abstract representations of
Event-B models, in which we additionally allow some events to be specified as fair.

4 The Finitary Weakly Fair Transformation

Let P = (Q, I,F,E,T) be a fair event system. Now we give the definition of the finitary
weakly fair transformation, the application of which to P written as fwf (P). It expresses
finitary fairness by introducing (down-) counter variables C1, . . . ,CF , one for each fair
event. The counter Ci, for i∈ 1 ..F, of event ei indicates that ei must be taken or disabled
at least once in the next Ci transitions. Once the counter of an event reaches 1, that event
must be tested: if it is enabled, it must be taken, otherwise it may be skipped.

Care is needed to avoid that several counters reach 1 simultaneously, as the cor-
responding events cannot be taken in one transition. A naive approach would be to
initialize them to distinct values between 1 and B and keep them distinct by decreasing
all by 1 simultaneously and cyclically reset them to B: that would enforce round-robin
scheduling, but that is too restrictive as we do not want to preclude any fair schedule.
To obtain an appropriate translation, in fwf (P) we add a permutation p of 1 ..F, on the
basis of fin(P) in [3]. The permutation p satisfies ∀j · j ∈ 1 ..F ⇒ Cp(j) ≥ j in every state,
to guarantee that only one counter can be 1. On every transition, the guards of all fair
events must be tested: if a fair event is enabled but not taken, its counter must be de-
creased, otherwise its counter is reset to B. The counters are all initialized to have the
value B; they do not have to be distinct. Using p keeps the system in safe states, while
the set of possible schedules remains the same.

Definition 2. For fair event system P, the finitary weak fair transformation fwf (P) =
(Q′, I′,0,E,T ′) is given by:

– Q′ = Q× [F,+∞)× [1,B]F

– For every event ei ∈ E, (σ,B,C1, . . . ,CF) '→ (σ′,B′,C′
1, . . . ,C

′
F) ∈ T ′(ei) if:

1. B = B′ ∧σ '→ σ′ ∈ T(ei)∧ (i ∈ 1..F ⇒ C′
i = B)

2. ∀j · j ∈ 1 ..F\{i}⇒
((σ ∈ grd(ej)∧C′

j ≥ 1∧C′
j = Cj − 1)∨ (σ �∈ grd(ej)∧C′

j = B))
3. A permutation p of 1 ..F, exists, such that ∀j · j ∈ 1 ..F ⇒ C′

p(j) ≥ j

– I′ is such that (σ,B,C1, . . . ,CF) ∈ I′ if
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1. σ ∈ I ∧B ≥ F
2. ∀j · j ∈ 1 ..F ⇒ Cj = B

All counters of the finitary fair transformation are between 1 and B, and the permutation
p always exists. That is, for all computations comp of fwf (P), for all natural numbers i
with 0 ≤ i < |trace(comp)|, and writing �� for the type of bijective functions:

tracei(comp) = (σ,B,C1, . . . ,CF)⇒
∃p ·p ∈ 1 ..F��1 ..F∧ (∀j · j ∈ 1 ..F ⇒ Cj ∈ 1 ..B∧Cp(j) ≥ j)

(1)

This property follows by induction over i: with fwf (P) = (Q′, I′,0,E,T ′) the initial states
in I′ satisfy (1) and transitions in T ′ preserve (1).

Compared to fin(P) in [3], the resulting system prevents premature termination, be-
cause it guarantees that as long as one event is enabled in some state σi (i ∈N) in some
computation comp of P, then at least one event is enabled in the corresponding state σ′

i
in comp of fwf (P). If all fair events are disabled, then the additional guards of regular
events are always satisfied, i.e. then the additional guards will not prevent any enabled
regular event from being taken.

The introductory example results from this transformation. In practice, this trans-
formation has the drawback that a term for stating the existence of a permutation will
increase exponentially with the number of fair events. In the following alternative trans-
formation, dist(P), all counters are kept distinct. A term stating the distinctness of F
counters would have (F ∗ (F + 1)/2) clauses, which with large number of fair events
results in significantly more compact descriptions.

Definition 3. For fair event system P, the finitary weak fair transformation dist(P) =
(Q′, I′,0,E,T ′) is given by:

– Q′ = Q× [F,+∞)× [1,B]F

– For every event ei ∈ E, (σ,B,C1, . . . ,CF) '→ (σ′,B′,C′
1, . . . ,C

′
F) ∈ T ′(ei) if:

1. B = B′ ∧σ '→ σ′ ∈ T(ei)∧ (i ∈ 1..F ⇒ C′
i ∈ 1 ..B)

2. ∀j · j ∈ 1 ..F\{i}⇒ C′
j ∈ 1 ..B∧ (σ ∈ grd(ej)⇒ C′

j = Cj − 1)
3. distinct(C′

1, . . . ,C
′
F)

– I′ is such that (σ,B,C1, . . . ,CF) ∈ I′ if
1. σ ∈ I ∧B ≥ F
2. ∀j · j ∈ 1 ..F ⇒ Cj ∈ 1 ..B
3. distinct(C1, . . . ,CF)

All counters of dist(P) are between 1 and B and are distinct, i.e. for all computations
comp of fwf (P) and for all natural numbers i with 1 ≤ i < |trace(comp)|:

tracei(comp) = (σ,B,C1, . . . ,CF)⇒
(∀j · j ∈ 1 ..F ⇒ Cj ∈ 1 ..B)∧distinct(C1, . . . ,CF)

(2)

This property follows by induction over i: with dist(P) = (Q′, I′,0,E,T ′) the initial
states in I′ satisfy (2) and transitions in T ′ preserve (2).

Theorem 1. For any fair event system P, the schedules of fwf (P) and of dist(P) are
exactly the finitary weak fair schedules of P.
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Proof. Let P be (Q, I,F,E,T). We give the proof only for fwf (P); the one for dist(P)
has the same structure. The proof proceeds by mutual inclusion. For showing that the
schedules of fwf (P) are bounded schedules of P, we note that the schedules of fwf (P)
are also schedules of P, so it remains to be shown that they are bounded. We reformulate
the definition of a bounded computation. A computation comp is bounded if it is finite
or for some k ∈ N, for all e ∈ F, for all i ∈N:

(∀j · j ∈ i .. i+ k ⇒ tracej(comp) ∈ grd(e))⇒∃j · j ∈ i .. i+ k∧ schedulej(comp) = e

Let comp be a computation of fwf (P). It is obvious that if schedule(comp) is finite, it is
bounded with k =B−1 by definition. When it is infinite, let ef be a fair event (f ∈ 1 ..F),
let i be a natural number, and assume that ∀j · j ∈ i .. i+k ⇒ tracej(comp)∈ grd(ef ). We
have to show that schedulej(comp)= ef for some j∈ i .. i+k. We prove this by contradic-
tion. If such an index j does not exist, then since ef is consecutively enabled, according
to the properties of transitions in fwf (P), in every step Cf is decremented by 1. After
B steps, Cf is decreased by B. In state tracei, Cf ∈ 1 ..B, so in state tracei+k+1(comp),
Cf ∈ 1−B ..0, which contradicts the constraint Cf ∈ 1 ..B. Hence after at most B tran-
sitions, event ef must have been taken.

Now let comp be a bounded computation of P. We have to show that a computation
comp′ of fwf (P) exists such that schedule(comp′) equals schedule(comp). During ini-
tialization, if B is picked such that B ≥ k+F, then all the counters are always greater
or equal to F in comp (since comp is k-bounded, then every counter in fwf (P) is reset
at least once in every k+ 1 steps, either due to being disabled or executed), so such a
permutation p always exists throughout the schedule (simply id on 1 ..F), and no event
will be disabled by the additional guards; thus a computation comp′ which yields the
same schedule does exist in fwf (P) . This completes the proof.

5 The Alternating Bit Protocol

The alternating bit protocol (ABP) [13], a protocol for reliable communication over
unreliable channels, has repeatedly been formalized. Our treatment is inspired by that
of [5,14]. Channels are modelled as simple variables, as in [15,16], rather than as se-
quences. The first refinement step is similar to the file transfer example of [2]. The
refinement process is illustrated in Fig. 3. It uses the dist(P) transformation.

Specification. In its most abstract form, a transmission copies sequence a to sequence z.
We let SIZE be a positive natural number and DATA a set.

MACHINE ABP0
SEES Context
VARIABLES
z target file
e mark of termination

INVARIANTS
inv1 : z ∈ 1 .. SIZE '→DATA
inv2 : e ∈ 0 .. 1
inv3 : e = 0⇒ z = a

EVENTS
Initialisation

begin
act1 : z :=∅

act2 : e := 1
end

Event TransferAll =̂
Status convergent

when
grd1 : e = 1

then
act1 : z := a
act2 : e := 0

end
VARIANT
e

END
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Sender

a

Receiver

z

TransferAll

a

(a) ABP0

Sender

a
TransferDone

z, b, y, e

Receiver

TransferOne

a(y)

(b) ABP1

Sender

a, x
TransferDone

Receiver

z, b, y, e
Channel

s

SendOne ReceiveOne

a(x) s

(c) ABP2

Sender

a, c, x
TransferDone

Receiver

z, b, d, p, y, e

Data Channel

f, s, t

LoseData

Ack Channel

g, u

LoseAck

a(x) s

SendData

SendAck

TransmitData

DuplData

TransmitAck

DuplAck

(d) ABPDIST

Entities V ariables/Constants Events
Dataflow

Fig. 3. Refinement process of ABP

Copying Data Items Successively. In the first refinement step, the data items are copied
one by one by a new convergent event.

MACHINE ABP1
REFINES ABP0
SEES Context
VARIABLES
z target file
b received part
y index
e mark of termination

INVARIANTS
inv1 : b ∈ 1 ..SIZE '→DATA
inv2 : y ∈ 1 .. SIZE +1
inv3 : b = 1 .. y−1�a

EVENTS
Initialisation

begin
act1 : z :=∅
act2 : b :=∅
act3 : y := 1
act4 : e := 1

end

Event TransferOne =̂
Status convergent

when
grd1 : y ≤ SIZE

then
act1 : b := b ∪ {y '→ a(y)}
act2 : y := y+1

end
Event TransferDone =̂
refines TransferAll

when
grd1 : y = SIZE +1
grd2 : e = 1

then
act1 : z := b
act2 : e := 0

end
VARIANT
SIZE+1−y

END

Introducing Data Channel. A variable s is introduced into which the sender writes
the next data item and the receiver reads from. Sender and receiver maintain their own
count of the number of items sent and received in the variables x and y. Sending and
reading proceeds in a ping-pong fashion, controlled by y− x.

MACHINE ABP2
REFINES ABP1
SEES Context
VARIABLES
z target file
b received part
s the unit of info sent
x sender index
y receiver index

e mark of termination
INVARIANTS
inv1 : s ∈ DATA
inv2 : x ∈ 1 .. SIZE +1
inv3 : x = y∨ x = y+1
inv4 : x = y+1⇒ s = a(y)

EVENTS
Initialisation

begin
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act1 : z :=∅
act2 : b :=∅
act3 : s :∈ DATA
act4 : x,y := 1,1
act5 : e := 1

end
Event SendOne =̂
Status convergent

when
grd1 : x = y∧ x ≤ SIZE

then
act1 : s := a(x)
act2 : x := x+1

end
Event ReceiveOne =̂
refines TransferOne

when

grd1 : x = y+1
then
act1 : b := b ∪ {y '→ s}
act2 : y := y+1

end
Event ReceiverDone =̂
refines TransferDone

when
grd1 : y = SIZE +1
grd2 : e = 1

then
act1 : z := b
act2 : e := 0

end
VARIANT
y+1−x

END

Introducing Faulty Channels. The sender places the data to be transmitted in the vari-
able s and sets the flag for transmitting, t to 1. The sender also flips its alternating bit, c.
Event TransmitData represents successful transmission in which c and s are copied to
f and p, then disables itself by resetting t to 0; the event DuplicateData copies the data
but does not disable itself; the event LoseData does not even copy the data. Successful
data transmission is only possible if TransmitData is fair. On receiving a new value of
f , the receiver appends p to the data received so far and flips its alternating bit g. The
acknowledgement channel works analogously to the data channel. Using a hypothetical
extension of Event-B with fair events, this is expressed as:

MACHINE ABPFAIR
REFINES ABP2
SEES Context
VARIABLES
z target file
b received part
c sender private bit
d receiver private bit
f data channel signal bit
g ack channel signal bit
p data of data channel
s data of sender
t data transmitting signal
u ack transmitting signal
x sender index
y receiver index
e mark of task finished

INVARIANTS
inv1 : c ∈ 0 .. 1
inv2 : d ∈ 0 .. 1
inv3 : f ∈ 0 .. 1
inv4 : g ∈ 0 .. 1
inv5 : p ∈ DATA
inv6 : t ∈ 0 .. 1
inv7 : u ∈ 0 .. 1
inv8 : c = g∨ c �= f ∨d = f ∨d = g

four states: ready to send data; data sent and to be trans-
mitted; ready to receive data; data received and ack to
be transmitted;

inv9 : c = g⇒ c �= d ∧ c = f ∧ x = y
ready to send data

inv10 : c �= f ⇒ c = d ∧ c �= g∧ x = y+1∧ s = a(y)
data sent and to be transmitted

inv11 : d = f ⇒c= d∧c �= g∧x= y+1∧s = a(y)∧ p=
s
ready to receive data

inv12 : d = g⇒ c �= d ∧ c = f ∧ x = y
data received and Ack to be transmitted

EVENTS
Initialisation

begin
act1 : z :=∅
act2 : b :=∅
act3 : c := 1
act4 : d := 0
act5 : f := 1
act6 : g := 1
act7 : p :∈ DATA
act8 : s :∈ DATA
act9 : t,u,x,y,e := 0,0,1,1,1

end
Event SendData =̂
refines SendOne

when
grd1 : c = g∧ x ≤ SIZE

then
act1 : c,s, t,x,u := 1− c,a(x),1,x+1,0

end
FAIR Event TransmitData =̂
Status convergent

when
grd1 : t = 1

then
act1 : f , p, t := c,s,0

end
Event DuplData =̂
Status convergent

when
grd1 : t = 1

then
act1 : f , p := c,s

end
Event LoseData =̂
Status convergent

when
grd1 : t = 1

then
skip
end
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Event SendAck =̂
refines ReceiveOne

when
grd1 : d = f

then
act1 : b,d,u,y, t := b ∪ {y '→ p},1−d,1,y+1,0

end
FAIR Event TransmitAck =̂
Status convergent

when
grd1 : u = 1

then
act1 : g,u := 1−d,0

end
Event DuplAck =̂
Status convergent

when
grd1 : u = 1

then

act1 : g := 1−d
end

Event LoseAck =̂
Status convergent

when
grd1 : u = 1

then
skip

end
Event AllReceived =̂
refines ReceiverDone

when
grd1 : y = SIZE +1
grd2 : e = 1

then
act1 : z := b
act2 : e := 0

end
END

Now we apply dist to ABPFAIR. For expressing the result in Event-B we use following
scheme. Suppose L is a regular event and R1,R2 are fair events. Three variables, B, C1
and C2, are introduced and F = 2 is the number of fair events:

event L
when

g
then

S
end

fair event R1
when

h1
then

T1
end

fair event R2
when

h2
then

T2
end

invariant
C1 ∈ 1 ..B
C2 ∈ 1 ..B
C1 �= C2

initialisation
B,C1,C2 : |B′ ≥ F∧C1′ ∈ 1 ..B′ ∧C2′ ∈ 1 ..B′ ∧C1′ �= C2′

event L
when

g
min({C1,C2})> 1∨ (C1 = 1∧¬h1)∨ (C2 = 1∧¬h2)

then
S
C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧C1′ �= C2′ ∧
(h1⇒C1′ = C1−1)∧ (h2⇒C2′ = C2−1)

end
event R1

when
h1
h2⇒C2−1 ≥ 1

then
T1
C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧C1′ �= C2′ ∧ (h2⇒C2′ = C2−1)

end
. . .

It is easy to see that this scheme satisfies the conditions of dist. If no fair event is
enabled, the additional guard of regular events is satisfied, formally:

(¬h1∧¬h2)⇒ (min({C1,C2})> 1∨ (C1 = 1∧¬h1)∨ (C2 = 1∧¬h2))

This prevents the premature termination of fin(P) in [3]. In the application of this
scheme to ABPFAIR, we additionally introduce a counter step as a “ghost variable” for
proving termination. As a note, the development provides a lower bound of the number
of steps for termination (inv20 below).

MACHINE ABPDIST
REFINES ABP2
SEES Context
VARIABLES
z target file

b received part

c sender private bit
d receiver private bit
f data channel signal bit
g ack channel signal bit
p data of data channel
s data of sender
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t data transmitting signal
u ack transmitting signal
x sender index
y receiver index
e mark of task finished
B bound
C1 down-counter of fair event TransmitData
C2 down-counter of fair event TransmitAck
step step counter

INVARIANTS
inv1 : c ∈ 0 .. 1
inv2 : d ∈ 0 .. 1
inv3 : f ∈ 0 .. 1
inv4 : g ∈ 0 .. 1
inv5 : p ∈ DATA
inv6 : t ∈ 0 .. 1
inv7 : u ∈ 0 .. 1
inv8 : c = g∨ c �= f ∨d = f ∨d = g

four states: ready to send data; data sent and to be trans-
mitted; ready to receive data; data received and ack to
be transmitted;

inv9 : c = g⇒ c �= d ∧ c = f ∧ x = y
ready to send data

inv10 : c �= f ⇒ c = d ∧ c �= g∧ x = y+1∧ s = a(y)
data sent and to be transmitted

inv11 : d = f ⇒c= d∧c �= g∧x= y+1∧s = a(y)∧ p=
s
ready to receive data

inv12 : d = g⇒ c �= d ∧ c = f ∧ x = y
data received and Ack to be transmitted

inv13 : B ≥ F
inv14 : C1 ∈ 1 ..B
inv15 : C2 ∈ 1 ..B
inv16 : C1 �=C2

always distinct
inv17 : step ∈ N
inv18 : step ≤ (x+ y− 2) ∗ (B+ 1)− t ∗C1− u ∗C2+

1− e
the strict upper bound for proving that the variant is
non-negative

inv19 : step ≥ 2 ∗ (x+ y)− (d + g− 1) ∗ (d + g− 1)−
(c− f )∗ (c− f )− e−3
the strict lower bound of step, for proving inv20

inv20 : e = 0⇒ step ≥ 4∗SIZE
the strict lower bound of step when the system termi-
nates (exactly 4∗SIZE when there is no duplication, no
loss, and the last event is AllReceived, right after event
SendAck)

EVENTS
Initialisation

begin
act1 : z :=∅
act2 : b :=∅
act3 : c := 1
act4 : d := 0
act5 : f := 1
act6 : g := 1
act7 : p :∈ DATA
act8 : s :∈ DATA
act9 : t,u,x,y,e := 0,0,1,1,1
act10 : B,C1,C2 : |B′ ≥ F ∧

C1′ ∈ 1 ..B′ ∧C2′ ∈ 1 ..B′ ∧C1′ �=C2′

act11 : step := 0
end

Event SendData =̂
refines SendOne

when
grd1 : c = g∧ x ≤ SIZE
grd2 : min({C1,C2})> 1∨

(C1= 1∧ t = 0)∨
(C2= 1∧u = 0)

then
act1 : c,s, t,x,u := 1− c,a(x),1,x+1,0
act2 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)∧
(u = 1⇒C2′ =C2−1)

act3 : step := step+1
end

Event TransmitData =̂
Status convergent

when
grd1 : t = 1
grd2 : u = 1⇒C2−1≥ 1

then
act1 : f , p, t := c,s,0
act2 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (u = 1⇒C2′ =C2−1)
act3 : step := step+1

end
Event DuplData =̂
Status convergent

when
grd1 : t = 1
grd2 : min({C1,C2})> 1∨

(C1= 1∧ t = 0)∨
(C2= 1∧u = 0)

then
act1 : f , p := c,s
act2 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)∧
(u = 1⇒C2′ =C2−1)

act3 : step := step+1
end

Event LoseData =̂
Status convergent

when
grd1 : t = 1
grd2 : min({C1,C2})> 1∨

(C1= 1∧ t = 0)∨
(C2= 1∧u = 0)

then
act1 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)∧
(u = 1⇒C2′ =C2−1)

act2 : step := step+1
end

Event SendAck =̂
refines ReceiveOne

when
grd1 : d = f
grd2 : min({C1,C2})> 1∨

(C1= 1∧ t = 0)∨
(C2= 1∧u = 0)

then
act1 : b,d,u,y, t := b ∪ {y '→ p},1−d,1,y+1,0
act2 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)∧
(u = 1⇒C2′ =C2−1)

act3 : step := step+1
end

Event TransmitAck =̂
Status convergent

when
grd1 : u = 1
grd2 : t = 1⇒C1−1≥ 1

then
act1 : g,u := 1−d,0
act2 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)
act3 : step := step+1

end
Event DuplAck =̂
Status convergent

when
grd1 : u = 1
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grd2 : min({C1,C2})> 1∨
(C1= 1∧ t = 0)∨
(C2= 1∧u = 0)

then
act1 : g := 1−d
act2 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)∧
(u = 1⇒C2′ =C2−1)

act3 : step := step+1
end

Event LoseAck =̂
Status convergent

when
grd1 : u = 1
grd2 : min({C1,C2})> 1∨

(C1= 1∧ t = 0)∨
(C2= 1∧u = 0)

then
act1 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)∧
(u = 1⇒C2′ =C2−1)

act2 : step := step+1
end

Event AllReceived =̂
refines ReceiverDone

when
grd1 : y = SIZE +1
grd2 : e = 1
grd3 : min({C1,C2})> 1∨

(C1= 1∧ t = 0)∨
(C2= 1∧u = 0)

then
act1 : z := b
act2 : e := 0
act3 : C1,C2 : |C1′ ∈ 1 ..B∧C2′ ∈ 1 ..B∧

C1′ �=C2′ ∧ (t = 1⇒C1′ =C1−1)∧
(u = 1⇒C2′ =C2−1)

act4 : step := step+1
end

VARIANT
2∗SIZE∗ (B+1)+1−step

END

6 Distributed Consensus

Given a group of initial values (in the simplest case, 0 and 1), distributed consensus is
to let a group of processes decide by themselves and finally agree on a value. In this
section, we model the algorithm in [3] and prove its termination in Event-B. It is an
example in case, because its termination can be guaranteed with finitary fairness but
not with standard fairness [3]. The refinement process is illustrated in Fig. 5.

The original algorithm is in Fig. 4. The algorithm proceeds in rounds, using a two-
dimensional bit array x[∗,2] and an infinite array y[∗] over values ⊥, 0, or 1. When the
processes agree on a value, the decision, it is written to the shared bit out, the initial
value of which is ⊥. Each process Pi has a local register vi of its current preference and
a local register ri of its current round number. The ith process has an initial input ini. If
in the rth round, all processes have the same preference v, then they decide on the value
v in round r. Only when two processes with different preferences both find y[r] = ⊥
(line 3), and one of them proceeds and chooses its preference for the next round (line 7)
before the other one finishes the assignment to y[r], there is a conflict, and the processes
continue trying to resolve it in the next round.

In line 5, the empty loop runs for ri times before copying its preference of next round
from y[i], trying to give other processes time to write their preferences into y[i] first.

Shared registers : initiallyout =⊥,y[1..] =⊥,x[1..,0..1] = 0;
Local registers : initiallyri = 1,vi = ini;
1.whileout =⊥do
2. x[ri,vi] := 1;
3. if y[ri] =⊥then y[ri] := vi fi;
4. if x[ri,¬vi] = 0thenout := vi
5. else for j = 1to ri doskipod;
6. vi := y[ri];
7. ri := ri +1
8. fi
9. od;
10. decide(out).

Fig. 4. The original distributed consensus algorithm in [3]
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Fig. 5. Refinement process of distributed consensus (read operations in guards included)

Standard fairness is not enough to guarantee consensus in any round since theoretically
the scheduler might pick this process and continue executing it until the end of the loop,
which leaves the conflict unresolved. However, with finitary fairness, when ri reaches
a certain value, the fairness restriction would ensure that every other process gets its
chance to finish writing to y[i], thus guarantees that a consensus will be reached in that
round.

We translate the algorithm into an event system by breaking down every atomic
operation into one event, and adding a state variable si for the ith process to record
which atomic operation it is to execute next.

Specification. In its most abstract form, read, write and “read&write” on shared regis-
ters are all atomic. We let N be the number of processes. The activenesses of processes
are represented by the variable a, which also serves as the guard of process actions.
The failures of processes are modelled by event PTerminates, to show that the model is
fault-tolerant (as long as some processes survive, they will finally reach a consensus).

MACHINE DC0
SEES Context
VARIABLES
a activeness of processes
out the output
toset signs of whether a process has not assigned a

value to out yet
d decisions of processes

INVARIANTS
inv1 : a ∈ 1 ..N →0 .. 1

1 means active and 0 means inactive
inv2 : out ∈−1 .. 1

all -1s stand for undefined in this model
inv3 : toset ∈ 1 ..N →0 .. 1

1 means has not assigned to out yet and 0 means has
inv4 : d ∈ 1 ..N →−1 .. 1
inv5 : ∀n·n ∈ 1 ..N ⇒d(n) ∈ {−1,out}

agreement: all decisions made by processes must be the
same (as out)

inv6 : out =−1∨ (∃n·n ∈ 1 ..N ∧out = in(n))
validity: the decision must equal to one of the inputs

EVENTS
Initialisation

begin
act1 : a := 1 ..N ×{1}

all active

act2 : out := −1
out undefined

act3 : toset := 1 ..N ×{1}
no process has assigned a value to out yet

act4 : d := 1 ..N ×{−1}
decisions all undefined

end
Event SetOut =̂
Status convergent

any
n the number of the process to be executed

where
grd1 : n ∈ 1 ..N ∧a(n) = 1∧ toset(n) = 1

the process is active and has not assigned a value to
out yet

then
act1 : out : |(out �=−1∧out ′ = out)∨

(out = −1 ∧ (∃nn·nn ∈ 1 .. N ∧ out ′ =
in(nn)))
the assigned value equals in(nn) of some nn, but nn
is not necessarily n

act2 : toset(n) := 0
set its sign to 0

end
Event Decide =̂
Status convergent
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any
n the number of the process to be executed

where
grd1 : n ∈ 1 ..N ∧a(n) = 1∧out ∈ 0 .. 1

the process is active and out has already been set
then
act1 : d(n) := out

set the decision to be out
act2 : a(n) := 0

no longer active
end

Event PTerminates =̂
Status convergent

any
n the number of the process to be terminated

where
grd1 : n ∈ 1 ..N ∧a(n) = 1

the process is active
then
act1 : a(n) := 0

no longer active
end

VARIANT
card({n1·n1 ∈ 1 ..N∧toset(n1) = 1|n1})+

card({n2·n2 ∈ 1 ..N∧a(n2) = 1|n2})
END

Adding restrictions.2 Now only operations read and write on shared registers are atomic.
The assignments y[ri] := vi and vi := y[ri] both have local variable vi on one side, so both
of them can be treated as atomic operations. Here we use this example to demonstrate
the transformation fwf (P). The additional guard of each event guarantees the existence
of legal counter values and a new permutation p after its execution.

Again, termination is shown by counter step; its non-negativeness is guaranteed by
proving the round counter r of each process is no more than B+ 1, therefore the step
counter of each process is no more than 6 ∗B+(B ∗ (B+ 1))/2+ 5, and the total step
counter is no more than B times of this upper limit.

MACHINE DCFWF
Modelling distributed consensus, assuming that only op-
erations read and write on shared registers are atomic

REFINES DC0
SEES Context
VARIABLES
a activeness of processes
out the output
d decisions of processes
y the preference of rounds
x the local preference coverage history of rounds
s state of processes
r local round numbers of processes
v local preferences of processes
j local loop variables of processes
B upper bound of times to delay any consecutively

enabled event
C down-counters of processes
stepsums step counter-summations, stepsums(n)−

stepsums(n− 1) is the step counter of the n-th process,
and stepsums(N) is the counter of total steps
the steps of event PTerminates are not counted, and the
event does not affect the counters neither

s0 the number of total steps when the first time any
process enters state 5 in the B-th round

INVARIANTS
inv1 : y ∈N1 →−1 .. 1

y(i) is the preference of the i-th round
inv2 : x ∈ (N1×0 .. 1)→0 .. 1

x(i,b) = 1 means that at least one process n has entered
state 2 in the i-th round, with local proference v(n) = b

inv3 : s ∈ 1 ..N →1 .. 7
7 possible states for each process

inv4 : r ∈ 1 ..N →N1

inv5 : v ∈ 1 ..N →0 .. 1
inv6 : j ∈ 1 ..N →N1

inv7 : ∀n·n ∈ 1 ..N ⇒
((s(n)= 1∧toset(n)= 1∧r(n)>1⇒x((r(n)−

1) '→ v(n)) = 1)∧
(s(n)∈ 2 .. 7⇒ x(r(n) '→ v(n)) = 1)∧
(s(n)∈ 4 .. 6⇒ y(r(n))∈ 0 .. 1))

some properties of x and y in different states;
used for proving validity

inv8 : ∀n·n ∈ 1..N⇒(∃n1·n1∈ 1..N∧v(n)= in(n1))
used for proving validity

inv9 : ∀i·i ∈ N1 ∧ y(i) ∈ 0 .. 1 ⇒ (x(i '→ y(i)) = 1 ∧
(∃n·n ∈ 1 ..N ∧ y(i) = in(n)))
relation between x and y, as well as and validity of y(i)
(preference of every round)

inv10 : ∀i,b· i∈N1∧b ∈ 0..1∧x(i '→ b) = 1⇒(∀ii·ii∈
1 .. (i−1)⇒ x(ii '→ b) = 1)
if x(i '→ b) = 1 then b has left trace in x for all past
rounds too

inv11 : out ∈ 0 .. 1⇒ (∃n·n ∈ 1 ..N ∧
out = v(n)∧ s(n) = 1∧ x(r(n) '→ out) = 1∧

x(r(n) '→ (1−out)) = 0)
if out has been set then some process has left two key
traces in x

inv12 : ∀n·n ∈ 1 ..N ∧ (out =−1∨ (out = v(n)∧ s(n)∈
2 .. 4))⇒

toset(n) = 1
the relation among the states and the disappeared vari-
able toset;
used for proving the guard refinement relationship of
event S4Y

inv13 : ∀n·n ∈ 1..N∧s(n)= 4∧x(r(n) '→ (1−v(n)))=
0⇒ (out =−1∨out = v(n))
when S4Y is executed, either out =−1 or out = v(n);
used for proving several POs of event S4Y

inv14 : B ∈N1 ∧B ≥ N
B is no less than N

2 Here is the transformed version in Event-B; a version of distributed consensus that uses “fair”
events can be found in
http://www.cas.mcmaster.ca/~zhangt26/ICTAC/appendix.pdf

http://www.cas.mcmaster.ca/~zhangt26/ICTAC/appendix.pdf
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inv15 : C ∈ 1 ..N →1 ..B
inv16 : stepsums ∈ 0 ..N →N
inv17 : ∃p·p ∈ 1 .. N �� 1 .. N ∧ (∀n·n ∈ 1 .. N ⇒

C(p(n))≥ n)
such p, a permutation of 1 .. N, always exists, that
C(p(n))≥ n for n ∈ 1 ..N

inv18 : ∃n0·n0 ∈ 1 ..N ∧ a(n0) = 1⇒ (∃n·n ∈ 1 ..N ∧
a(n) = 1∧

(∃CC ·CC = (1 ..N ×{B})�− (λnn·nn ∈ 1 ..
N \{n}∧a(nn) = 1|C(nn)−1)∧

CC ∈ 1 ..N →1 ..B∧
(∃p·p ∈ 1 .. N �� 1 .. N ∧ (∀nnn·nnn ∈ 1 ..

N ⇒CC(p(nnn))≥ nnn))))
such a p prevents unexpected termination caused by re-
striction on counters, i.e., the additional guards are al-
ways satisfiable as long as the original guards are satis-
fiable;
when ∃n0·n0 ∈ 1 .. N ∧ a(n0) = 1, suppose mn =
min({n|n ∈ 1..N ∧ a(p(n)) = 1}), then with n = p(mn)
and p = ((λn·n ∈ 1 .. N − mn|p(n + mn)) ∪ (λn·n ∈
N + 1 −mn .. N|p(n +mn −N)), CC statisfies the in-
variant in the next state

inv19 : ∀n·n ∈ 1 ..N ∧ a(n) = 1⇒ stepsums(N)≤ B ∗
(stepsums(n)− stepsums(n−1)+1)−C(n)
the number of total steps are no more than B times of
the step counter of any active process

inv20 : stepsums(0) = 0∧ (∀n·n ∈ 1 ..N ⇒
((s(n) = 1 ∧ out = −1 ⇒ stepsums(n) −

stepsums(n−1)≤
6 ∗ (r(n)− 1) + (r(n) ∗ (r(n)− 1))/2+ 2−

a(n))∧
(s(n) = 1 ∧ out �= −1 ⇒ stepsums(n) −

stepsums(n−1)≤
6 ∗ (r(n)− 1) + (r(n) ∗ (r(n)− 1))/2+ 6−

a(n))∧
(s(n) ∈ 2 .. 4⇒ stepsums(n)− stepsums(n−

1)≤
6∗(r(n)−1)+(r(n)∗(r(n)−1))/2+s(n))∧
(s(n) = 5 ⇒ stepsums(n) − stepsums(n −

1)≤
6 ∗ (r(n)− 1) + (r(n) ∗ (r(n)− 1))/2+ 4+

j(n))∧
(s(n) = 6 ⇒ stepsums(n) − stepsums(n −

1)≤
6∗ (r(n)−1)+(r(n)∗ (r(n)+1))/2+5)∧
(s(n) = 7 ⇒ stepsums(n) − stepsums(n −

1)≤
6∗ (r(n)−1)+(r(n)∗ (r(n)+1))/2+6)))

the upper bound on step counter of each process at each
state

inv21 : s0 ∈N
inv22 : s0 = 0⇒ (∀n·n ∈ 1 .. N ⇒ r(n) < B∨ (r(n) =

B∧ s(n)≤ 4))
s0 is 0 until some process enters state 5 in the B-th round

inv23 : s0 > 0⇒ (y(B)∈ 0 .. 1∧ stepsums(N)≥ s0∧
(∀n·n ∈ 1 .. N ⇒ ((a(n) = 1 ∧ r(n) = B ∧

s(n) = 3⇒
C(n)≤ B− stepsums(N)+ s0)∧
(stepsums(N)< s0+B⇒
((r(n)< B∨ (r(n) = B∧ s(n)≤ 5))∧
(a(n) = 1∧ r(n) = B∧ s(n) = 5⇒
j(n)≤ stepsums(N)− s0+1))))))

some properties when s0 > 0, and when s0 > 0 ∧
stepsums(N)< s0+B;
used for proving that when any process is in state 6 of
the B-th round, stepsums(N)≥ s0+B and at that time,
no process is in state 3 of the B-th round (and no process
can enter anymore)

inv24 : ∀n·n ∈ 1 ..N ∧ ((r(n) = B∧ s(n) = 7)∨
(r(n)= B+1∧s(n)∈ 1..4))⇒v(n)= y(B)

once a process reaches state 7 in the B-th round, its lo-
cal preference will equal y(B) until it terminates, and
y(B) will not vary due to inv23, because stepsums(N)≥
s0+B; thus no process is in state 3 nor can any process
enter state 3 to set y(B);
used for proving inv25

inv25 : ((s0= 0∨ (s0> 0∧ stepsums(N)< s0+B))⇒
(x(B+1 '→ 0) = 0∧ x(B+1 '→ 1) = 0))∧
(s0> 0∧stepsums(N)≥ s0+B⇒x(B+1 '→

1− y(B)) = 0)
x(B+1 '→ 1− y(B)) = 0 when s0 > 0;
used for proving inv26

inv26 : ∀n·n ∈ 1 .. N ⇒ (r(n) ≤ B ∨ (r(n) = B + 1 ∧
s(n)∈ 1 .. 4))
no process can enter state 5 in the (B+1)-th round;
this puts an upper bound on the step counter of single
processes and thus on total steps, which is then used to
prove termination (non-negativeness of the variant)

EVENTS
Initialisation

begin
act1 : a := 1 ..N ×{1}
act2 : out := −1
act3 : d := 1 ..N ×{−1}
act4 : y := N1 ×{−1}
act5 : x := (N1×0 .. 1)×{0}
act6 : s := 1 ..N ×{1}
act7 : r := 1 ..N ×{1}
act8 : v := in
act9 : j := 1 ..N ×{1}
act10 : B,C : |B′ ∈N1 ∧B′ ≥ N ∧C′ = 1 ..N ×{B′}
act11 : stepsums := 0 ..N ×{0}
act12 : s0 := 0

end
Event S1 =̂

enter the r(n)-th round and leave a record of local prefer-
ence in x

Status convergent
any

n the number of the process to be executed (the same
meaning in all following events except PTerminates)

CC the value of C after execution (the same meaning
in all following events except PTerminates)

where
grd1 : n ∈ 1 ..N ∧a(n) = 1∧ s(n) = 1

the process is active and in state 1
grd2 : out =−1

out has not been set
grd3 : CC = (1 ..N×{B})�−(λnn·nn ∈ 1 ..N \{n}∧

a(nn) = 1|C(nn)−1)∧
CC ∈ 1 ..N →1 ..B∧
(∃p·p ∈ 1 .. N �� 1 .. N ∧ (∀nnn·nnn ∈ 1 ..

N ⇒CC(p(nnn))≥ nnn))
CC sets the counters of n and inactive processes to
be B, decreases the counters of other processes by 1,
and a new permutation exists (the same meaning in
all following events except PTerminates)

then
act1 : x(r(n) '→ v(n)) := 1
act2 : s(n) := 2

set the state to be 2
act3 : C :=CC

update the counters (the same meaning in all follow-
ing events except PTerminates)

act4 : stepsums := stepsums �− (λnn·nn ∈ n ..
N|stepsums(nn)+1)
update the counter-summations (the same meaning
in all following events except PTerminates)
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end
Event S2Y =̂

if the preference of the r(n)-th round has not been set, try
to set it to be local preference

Status convergent
any

n
CC

where
grd1 : n ∈ 1..N∧a(n) = 1∧s(n) = 2∧y(r(n))=−1

the process is active and in state 2, the preference of
the r(n)-th round has not been set

grd2 : CC = (1 ..N×{B})�−(λnn·nn ∈ 1 ..N \{n}∧
a(nn) = 1|C(nn)−1)∧

CC ∈ 1 ..N →1 ..B∧
(∃p·p ∈ 1 .. N �� 1 .. N ∧ (∀nnn·nnn ∈ 1 ..

N ⇒CC(p(nnn))≥ nnn))
then
act1 : s(n) := 3

set the state to be 2
act2 : C :=CC
act3 : stepsums := stepsums �− (λnn·nn ∈ n ..

N|stepsums(nn)+1)
end

Event S2N =̂
. . .

.

.

.

Event S7 =̂
. . . 3

Event Decide =̂
refines Decide

any
n

CC
where
grd1 : n ∈ 1 ..N ∧a(n) = 1∧ s(n) = 1

the process is active and in state 1
grd2 : out ∈ 0 .. 1

out has already been set
grd3 : CC = (1 ..N×{B})�−(λnn·nn ∈ 1 ..N \{n}∧

a(nn) = 1|C(nn)−1)∧
CC ∈ 1 ..N →1 ..B∧
(∃p·p ∈ 1 .. N �� 1 .. N ∧ (∀nnn·nnn ∈ 1 ..

N ⇒CC(p(nnn))≥ nnn))
then
act1 : d(n) := out

set the decision to be out
act2 : a(n) := 0

no longer active
act3 : C :=CC
act4 : stepsums := stepsums �− (λnn·nn ∈ n ..

N|stepsums(nn)+1)
end

Event PTerminates =̂
refines PTerminates

any
n number of the process to be terminated

where
grd1 : n ∈ 1 ..N ∧a(n) = 1

the process is active
then
act1 : a(n) := 0

no longer active
end

VARIANT
B∗ (6∗B+(B∗ (B+1))/2+5)−stepsums(N)

END

7 Conclusions

This work started with the goal of expressing action systems with fairness in formalisms
like Event-B. The core is the observation that a modification of the transformation fin(P)
of [3] from standard transition systems to a finitary weakly fair one is suitable. It was
shown that that all finitary weakly fair computations of P terminate, if and only if all
computations of fin(P) terminate. However, the schedules of fin(P) are not exactly the
finitary weakly fair ones of P, because the termination in some computations may be
caused by improper scheduling: fin(P) may reach a state q′, such that in its correspond-
ing state q of P, some transitions are enabled, but transitions of fin(P) are disabled by
the additional guards that restrict the counters. This inequality does not affect the cor-
rectness of the proof mentioned above, but this type of termination makes it unsuitable
to model practical transition systems, because the system after transformation will be
at risk of terminating unexpectedly. Certain temporal logic properties cannot be proved,
due to the difficulty of distinguishing terminations caused by original guards or by a
counter of value 0. The transformation fwf (P) and dist(P) suggested here guarantee
that the schedules remain equivalent. Thus, lower bound of steps can be easily proved,
and all temporal logic properties are preserved. We have demonstrated the application
of dist(P) with the development of the alternating bit protocol and the application of

3 Events S2N to S7 are omitted here since they are all similarly translated atomic opera-
tions, refer to http://www.cas.mcmaster.ca/~zhangt26/ICTAC/appendix.pdf for the
complete code.

http://www.cas.mcmaster.ca/~zhangt26/ICTAC/appendix.pdf
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fwf (P) with the development of distributed consensus. We believe that this is the first
mechanically checked development of this distributed consensus algorithm.

In this paper, we have considered only weak fairness. A similar transformation for
finitary strong fairness waits to be worked out. While the examples of the paper have
been processed with Rodin [4], the transformation was done by hand, and the proof was
semi-automatic. Verifying the distributed consensus model with finitary fairness is more
time-consuming than verifying the ABP model, because modelling an arbitrary number
of counters requires additional functions to express the restrictions. It would be useful
to automate this transformation, as well as the verification of the proof obligations that
only involve the bound and counters, which is irrelevant to the original model.

Acknowledgement. We thank the reviewers for their helpful comments.
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Abstract. Cyber-Physical Systems (CPSs) integrate computing, com-
munication and control processes. Close interactions between the cyber
and physical worlds occur in time and space frequently. Therefore, both
temporal and spatial information should be taken into consideration
when modeling CPS systems. However, how we can capture temporal
and spatial information into CPS models that allow describing the logi-
cal properties and constraints is still an unsolved problem in the CPS. In
this paper, a spatio-temporal logic is provided, including the syntax and
semantics, for describing the logical properties and constraints. Based on
the logic, we propose an extended hybrid automaton, spatio-temporal hy-
brid automaton for CPSs. The automaton increases the ability to express
spatial variables, spatial expression and related constraints on spatial
terms. Then, we define formal semantics of spatio-temporal hybrid au-
tomata based on labeled transition systems. At the end of this paper,
a Train Control System is introduced as a case study to show how to
model the system behavior with spatio-temporal hybrid automata.

Keywords: Spatio-temporal logic, CPS, Hybrid automata.

1 Introduction

Cyber-Physical Systems (CPSs) are envisioned as heterogeneous systems of sys-
tems, which involve communication, computation, sensing, and actuating through
heterogeneous and widely distributed physical devices and computation compo-
nents [3]. Therefore, CPS requires close interactions between the cyber and phys-
ical worlds both in time and space. These interactions are usually governed by
events, which have time, location and observer attributes. An unsolved impor-
tant problem is how to capture location and timing information into CPS models
in a way that allow for validation of the logical properties of a program against the
constraints imposed by its physical (sensor) interaction [24]. Thus, a new logic is
needed for describing the constraints on location and time information, and for
specifying the logical properties of CPSs, since the traditional models (e.g. hy-
brid automata, UML, CSP) are without consideration of location information.
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To model a CPS with location and time, a new semantic model is needed for the
purpose of designing the unified system.

Temporal logic has found an important application in formal methods, where
it is used to specify requirements of real-time systems on rules and symbolism
for representing and reasoning about propositions qualified in terms of time.
Propositional temporal logic (PTL) is one of the best known temporal logics,
which has found many applications in CS and AI [1, 7–9]. In [1], Zohar Manna
and Amir Pnueli gave a detailed methodology for the specification, verification,
and development of real-time systems using the tool of temporal logic. However,
the existing approaches can not be used directly in Cyber-Physical Systems. The
reason is that the truth-values of spatial propositions can not be expressed. Spa-
tial logic is a number of logics suitable for qualitative spatial representation and
reasoning, such as RCC-8, BRCC, S4u and other fragments of S4u. The most
expressive spatial formalism of them is S4u [10, 11, 13]. For modeling the truth-
values of spatial propositions, spatial logic should be taken into consideration in
our constructed logic.

The next apparent and natural step is attempting to construct spatio-temporal
hybrids. For example, in [12], Finger and Gabbay introduced a methodology
whereby an arbitrary logic system L can be enriched with temporal features
to create a new system T (L). The new system is constructed by combining L
with a pure propositional temporal logic T . In [14], Wolter and Zakharyaschev
constructed a spatio-temporal logic, based on RCC-8 and PTL, intended for
qualitative knowledge representation and reasoning about the behavior of spa-
tial regions in time. Nevertheless, RCC-8 is a fragment of S4u and has rather
limited expressive power [15]. Following their way, we will construct our spatio-
temporal logic by enriching PTL with S4u for CPSs.

Cyber-physical systems can be usefully modeled as hybrid automata com-
bining the physical dynamics within modes with discrete switching behavior
between modes. However, the location information can not be captured into
models, especially spatial constraints. In this paper, we extend spatial variables
and spatial expressions of a hybrid automaton to increase the ability of ex-
pression. Naturally, spatial expressions and other expressions with connections
in spatio-temporal hybrid automata can be interpreted in our spatio-temporal
logic. We give the formal syntax and semantics (includes state, transition, trace
and parallel composition) of the spatio-temporal hybrid automata.

This paper is organized as follows. Section 2 gives formal syntax and semantics
of the spatio-temporal logic. Section 3 classify variables and expressions. Then,
we give the formal syntax and semantics of the spatio-temporal hybrid automata.
In Section 4, a Train Control System is introduced as a case study to show the
efficiency of our approach.

2 Spatio-Temporal Logic

In CPS, the attributes of an event are application-independent. All CPS events
have time, locations and observer attributes. Therefore, the logic, which will
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be defined, should have the ability of expression on locations and observer at-
tributes. Based on the propositional temporal logic and the construction method
of logics [12], our spatio-temporal logic will be constructed by extending PTL
with spatial temporal logic S4u. By the way, part of our work on the logic can
be found in [4]. The syntax of the spatio-temporal logic is defined as follows:

τ ::= s | τ | τ1 ! τ2 | Iτ
ϕ ::= p | �∀ τ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1Uϕ2 | ϕ1Sϕ2

where

• p are normal propositional variables e.g. p0, p1, p2, . . . in relation to observer
attributes;

• τ are spatial terms in relation to location; τ is the complementary terms of τ ;
• τ1!τ2 is the intersection of spatial terms τ1 and τ2, including any point which
belongs to term τ1 and belongs to term τ2 too;

• Iτ is the modal operator on spatial term τ ;
• ¬ and ∧ are the Booleans;
• �∀ τ means that τ occupies the whole space (all points belong to τ ). We write
�∃τ to say that the part of space represented by τ is not empty (sc. there is at
least one point in τ ). Obviously, �∃τ = ¬�∀ τ .

• U and S are the binary temporal operators.

Certainly, the semantics of our spatio-temporal logic can be interpreted by
a topological temporal model. The topological temporal model is a triple of
the form

M = 〈T, I,U〉

where T is a flow of time, I is a topological space and a valuation U, as an
overloaded function, on the one hand, is a map associating with every spatial
term s and every time point w ∈ W onto a set U(s, w) ⊆ U–the space occupied
by s at moment w; on the other hand, is a map associating with each normal
propositional variable p a set U(p) ⊆ W of time points; w is a nonempty set of
time points; U is a nonempty set, the universe of the space.

Then we can get the following definitions:

U(τ , w) = U − U(τ, w), U(Iτ, w) = IU(τ, w)

U(τ1 ! τ2, w) = U(τ1, w) ∩ U(τ2, w)

The truth-values of spatio-temporal logic are defined as follows:

• (M, w) � p iff w ∈ U(p),
• (M, w) � �∀τ iff U(τ, w) = U ,
• (M, w) � ¬ϕ iff (M, w) � ϕ,
• (M, w) � ϕ1 ∧ ϕ2 iff (M, w) � ϕ1 and (M, w) � ϕ2,
• (M, w) � ϕ1Uϕ2 iff there is v > w such that (M, v) � ϕ2 and (M, u) � ϕ1

for all u ∈ (w, v),
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• (M, w) � ϕ1Sϕ2 iff there is v < w such that (M, v) � ϕ2 and (M, u) � ϕ1

for all u ∈ (v, w).

A formula of spatio-temporal logic ϕ is said to be satisfiable if there exists a
topological temporal model M such that (M, w) � ϕ for some time point w.

Theorem 1. The satisfiability problem for spatio-temporal logic formulas in
topological - temporal models based on arbitrary flows of time is PSPACE-
complete.

For proving the theorem, we can construct a PTL-formula ϕ∗ by replacing every
occurrence of subformulas �∀ τ and normal propositional variable p in ϕ with a
fresh propositional variable pτ . Then given a PTL-model N = 〈T,U〉 for ϕ∗ and
a time point w, we get the set

Φw = {�∀ τ |(N, w) � pτ , pτ
.
= �∀ τ} ∪ {p|(N, w) � pτ , pτ

.
= p}

It is easy to see that if Φw is satisfiable for every w ∈ T in a PTL-model, there
is a topological-temporal model satisfying ϕ based on the flow of time T. Then,
we can use the suitable algorithm [18,19] for PTL-model to check satisfiability
of Φw , which can be done using polynomial space.

Proof 1. Let ϕ be a formula of our spatio-temporal logic. Based on the gen-
eral proving frames(in [2], Lemma B.1 or in [20], Theorem 10.36), we only ex-
tend those spatio-temporal logical formula with the normal propositional variable
p. The corresponding valuation U and topological space on P are added to the
topological-temporal model M = 〈T, I,U〉 and the topological space I = 〈U, I〉.
For any two ultrafilter x1, x2 ∈ V (V is the set of all ultrafilters over U), put
x1Rx2 (R is a quasi-order on V ) iff ∀A ⊆ U (IA ∈ x1 → A ∈ x2). Given
an Aleksandrov topological-temporal model R = 〈T,B,Q〉, where B = 〈V,R〉,
Q(p, w) = {x ∈ V |U(p, w) ∈ x}. Such that, for all w ∈ W and x ∈ V ,

(R, 〈w, x〉) � τ iff U(τ, w) ∈ x,

(R, 〈w, x〉) � p iff U(p, w) ∈ x.

Therefore, it is satisfiable in a topological-temporal model iff it is satisfiable in
an Aleksandrov topological-temporal model based on the same flow of time T.

With every spatial subformula �∀ τ and normal propositional variable p, we
rewrite them with a fresh propositional variable pτ . The PTL-formula ϕ∗ could
be obtained from ϕ by replacing all its subformulas of the form �∀ τ and normal
propositional variables p with pτ .

We could claim that ϕ is satisfiable in an Aleksandrov topological-temporal
model on a flow of time T = 〈W,<〉 iff
• there exists a temporal model N = 〈T,U〉 satisfying ϕ∗;
• for every w ∈ W , the set

Φw = {�∀ τ |(N, w) � pτ , pτ
.
= �∀ τ}

∪{p|(N, w) � pτ , pτ
.
= p}

is satisfiable.
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It is not hard to see that the implication(⇒) is feasible. Conversely, suppose that
we have a temporal model N = 〈T,U〉, which could satisfy those conditions above.

Let the union of Φw: Γ =
⋃

w∈W Φw. For every satisfiable Φ ⊆ Γ , construct
a model based on a finite quasi-order PΦ = 〈VΦ, RΦ〉 and satisfying Φ. Let
n =max{|VΦ| : Φ ⊆ Γ, Φ is satisfiable} and P is the disjoint union of n full
n-ary trees of depth n whose nodes are clusters of cardinality n. It is not hard to
see that every PΦ is a p-morphic image of P. Therefore, every satisfiable Φ ⊆ Γ
is satisfied in an Aleksandrov model based on P.

Thus there is a finite quasi-order P. Then, for every w ∈ W , we can get
〈P,Uw〉 � Φw for some valuation Uw. It is obvious that ϕ is satisfied in the
Aleksandrov topological temporal model 〈T,P,U∗〉, where U∗(p, w) = Uw(p),
U∗(τ, w) = Uw(τ), for every spatial term τ , normal propositional variable p and
every w ∈ W .

Finally, we design a decision procedure for our spatio-temporal logic, which
uses polynomial space, based on the corresponding nondeterministic PSPACE
algorithm [18, 19] for PTL. We modify it as follows. Firstly the algorithm con-
structs a temporal model N = 〈T,U〉 for the formula ϕ∗. For every time point
w ∈ W , it produces a state. In addition, it checks that whether the set Φw is satis-
fiable. Obviously, the extra check can also be performed by a PSPACE algorithm,
which doesn’t increase the complexity of the complete algorithm.

Therefore, the satisfiability problem for spatio-temporal logic formulas in topo-
logical temporal models based on arbitrary flows of time is PSPACE-complete.

!"

In addition, for describing truth values of relations between spatial terms,
there are some basic binary or ternary predicates on spatial terms in Fig.1,
such as

• DC(X,Y)—spatial terms X and Y are disconnected,

DC(X,Y ) = ¬�∃(X ! Y )

• EC(X,Y)— X and Y are externally connected,

EC(X,Y ) = �∃(X ! Y ) ∧ ¬�∃(IX ! IY )

• EQ(X,Y)— X and Y are equal,

EQ(X,Y ) = �∀ (X � Y ) ∧�∀ (Y � X)

• PO(X,Y)— X and Y overlap partially,

PO(X,Y ) = �∃(IX ! IY ) ∧ ¬�∀ (X � Y ) ∧ ¬�∀ (Y � X)

• TPP(X,Y)— X is a tangential proper part of Y ,

TPP (X,Y ) = �∀ (X � Y ) ∧ ¬�∀ (Y � X) ∧ ¬�∀ (X � IY )
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• NTPP(X,Y)— X is a nontangential proper part of Y,

NTPP (X,Y ) = �∀ (X � IY ) ∧ ¬�∀ (Y � X)

• PO3(X,Y,Z)— spatial terms X, Y and Z overlap partially,

PO3(X,Y, Z) = �∃(IX ! IY ∧ IX ! IZ ∧ IY ! IZ) ∧
¬�∀ (X � Y ∨X � Z ∨ Y � Z ∨

Y � X ∨ Z � X ∨ Z � Y ∨)

• EC3(X,Y,Z)— spatial terms X, Y and Z are externally connected,

EC3(X,Y, Z) = �∃(X ! Y ∧X ! Z ∧ Y ! Z) ∧
¬�∃(IX ! IY ∨ IX ! IZ ∨ IY ! IZ)

Withoutdoubt, there aremanyother complexpredicates,which couldbe expressed
using our spatio-temporal logic.

Fig. 1. Basic binary or ternary predicates

3 Spatio-temporal Hybrid Automata

A Spatio-temporal hybrid automaton is an extension of hybrid automaton based
on spatio-temporal logic. Spatio-temporal logic brings a set of expressions into
the hybrid automaton to represent the location or space related information of
CPSs.

3.1 Expressions

After expansion of expression, there are five kinds of variables in spatio-temporal
hybrid automaton :

• discrete variables with discrete values independent of time and location. e.g.
x = 0, 1, 2.
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• continuous variables which can be represented as a continuous function

dependent on time (with its initial condition), e.g. F �
{

x = x(t)
x(0) = 0

• clock variables with a special clock type. A Clock c can be defined as follows:
c ::= (I, ρ), where
– I is a set of time instants. A time instant represents an observation point

of a clock, either physical or logical, reflecting specific events dependent
on time.

– ρ is a function, ρ : I → R≥0 maps every time instant in I to a non-
negative real number. We call ρ the sampling function that discretizes the
continuous time to a series of observation points on demand.

• spatial variables which can be represented by locations. The location attribute
is given by the coordinate in the form of (x, y, z). So the spatial variables can
be represented in the form of ((x, y, z), r), r stands for the radius of an object.

• action variables which have a boolean value specifying whether the corre-
sponding CPS event occurs or not, e.g. θ, η. All CPS events (L, 〈attr, Γ, ι〉)
have observer attributes, time and location, where L is a symbol and used to
label the event. It is used to record the attributes, generate time and location
of the event.

Corresponding to those kinds of variables, there are five kinds of expression: Alge-
braic Expression, Differential Expression, Clock Expression, Spatial Expression
and Action Expression. Algebraic Expressions can be used to describe the rela-
tion between discrete variables. Differential Expressions are capable to describe
activities of continuous variables. Clock Constraint Expressions are used to de-
fine clock-related expressions. Spatial Expressions are used to define expressions
on spatial terms. Action Expressions are used when defining events and actions.
In our formalization, every expression occurring is considered as a predicate over
variables with specific types.

• A(x) is an algebraic expression in terms of either an equation or inequation
over algebraic objects. The expression is satisfied when the evaluation of every
discrete variable makes the equation or inequation hold.

• F (x, dx
dt ) is a differential expression with its initial condition describing the

properties involving continuous variables(x) dependent on time. w(t) is a con-
tinuous variable, the differential expression is satisfied when w(t) is a solu-
tion of F (x, dx

dt ) = 0, and acts on the domain of continuously differentiable
function.

• The clock constraint expression can be represented in terms of either an equa-
tion or inequation over time instants. Based on the clock structure, the current
reading of a clock c could be represented by the first entry of the time instant
sequence c.I. After a clock tick, c.I moves to next instant.

• Giving a radius r, for the location ι, we can get the area occupied by them,
named τ = (ι, r). For the location attributes ι1 and ι2, we can get the area
occupied by them, spatial terms τ1, τ2. The relation between of them can
be described using basic binary predicates or some other predicates which
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are expressed by our spatio-temporal logic, such as PO(τ1, τ2), TPP (τ1, τ2),
NTPP (τ1, τ2).

• Action expression is an expression in terms of action variables. Every action
variable acts as a atom in predicate calculus.

In our formalization, algebraic expressions, differential expressions, clock con-
straint expressions and action expressions are considered as normal propositional
variables p in our spatio-temporal logic. The semantics for logical connectives
with these four kinds of expressions are interpreted by our spatio-temporal logic
like the first order logic language. For example, Let p � v1(x) ∧ v2(x), the vari-
able x � p iff x � v1(x) and x � v2(x). Therefore, all of the expressions could be
expressed by our spatio-temporal logic.

3.2 Spatio-temporal Hybrid Automata

A spatio-temporal hybrid automaton is described by a tuple

(M,X,A, V ar, E, Inv,Act)

where

• M is a finite set, called the set of discrete states or modes. There are the
vertices of a control graph. Every mode has a unique name to identify itself
in the set.

• X is the continuous state space of the hybrid automaton. Generally, X ⊂ Rn

or X is an n-dimensional manifold.
• A is a finite set of symbols which is used to label the edges.
• A set of variables V ar is governed by modes. It includes a set of discrete
variables dV ar, a set of continuous variables cV ar, a set of clock variables
ckV ar, a set of spatial variables sV ar and a set of signals S.

• E is a set of edges called events(or transitions). Every edge is defined by a
5-tuple:

(m, a, grdmm′ , jmpmm′ ,m′)

where m,m′ ∈ M,a ∈ A, A is a finite set of symbols which is used to label
the edges. grdmm′ is the guard condition which specifies when the transition
from m to m′ is enabled. jmpmm′ is a relation defined by a subset X × X .
The transition from mode m to m′is enabled when the condition satisfies
grdmm′ , while the continuous state x jumps to a new value x′ denoted by
(x, x′) ∈ jmpmm′ during the transition.

• Inv is a mapping from the modes M to the subset of X , that is Inv(m) ⊂ X
for all m ∈ M . Whenever the system in mode m, the continuous states x must
satisfy x ∈ Inv(m). The subset Inv(m) for m ∈ M is called the invariant
of mode m. The invariant specifies the global constraints to the variables.
Whenever the invariant condition is violated, the system must exit the relevant
mode.

• Act is called the activity of a mode which is the conjunction of several differ-
ential expressions. Each mode is assigned an Act. The activity of one mode
specifies the changing of continuous variables depending on time within the
mode.
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3.3 Semantics

The execution of a spatio-temporal hybrid automaton results in continuous
change and discrete change. The mixed discrete-continuous dynamic can be ab-
stracted by a fully discrete transition system. In this paper, we formalize it as a
labeled transition system.

Labeled Transition System. A labeled transition system S is a tuple

(States, Labels,→, S0)

where

• States is a set of states.
• S0 is the set of initial states and S0 ⊆ States.
• Labels is a set of labels which identify the transitions.
• →: States× Labels× States is a ternary relation over States specifying the
transitions between states.

State. In spatio-temporal hybrid automata, a state of a system can be formal-
ized as a structure (m, v, i, ι) where

• m ∈ M is a mode name. It specifies the current execution of system is in mode
m.

• v is the current values of every variable of the system. Each variable in Var
owns a value.

• i is a time instant which is the current reading of the default physical clock.
• ι = Loci(m) records the location of mode m with respect to the time instant

i. For each reading of clock, function will record a system location.

Transition. A transition relation →: States×Labels×States is a relation from
a source state s to a target state s′ with specific transition. Generally, a concrete

transition is written as s
λ−→ s′ where λ is a label identifying this transition which

contains three attributes:

1) a trigger event evt(λ) specifies a significant occurrence in time or space.
2) a guard condition grd(λ) specifies when the transition is enable.
3) an action jmp(λ) which is performed when the transition occurs to change

the values of variables.

A transition s
λ−→ s′ can be triggered if a trigger event evt(λ) is observed and

the source state s satisfies the guard condition grd(λ). While a transition is trig-
gered, its action jmp(λ) is performed, then the current system state transforms
to the target state s′. We can use a transition rule to describe the transition

(m, v, i, ι)
λ−→ (m′, v′, i′, ι′) as follows

v, i, ι |= evt(λ) ∧ grd(λ)

(m, v, i, ι)
λ−→ (m′, v′, i′, ι′)

jmp(λ)(v, i, ι, v′, i′, ι′) It states that a transi-

tion is a valid transition iff it holds the following conditions.
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1) v, i, ι |= evt(λ) ∧ grd(λ)
2) ι′ = Loci′(m

′)
3) v, i, ι, v′, i′, ι′ |= jmp(λ)

Trace. For considering the infinite behavior (liveness) of a spatio-temporal
automaton, we should pay close attention on infinite sequences of transitions.

Consider a labeled transition system S and a state s0 of S. A s0-rooted trajec-
tory of S is a finite or infinite sequence of pairs (ai, si)i≥1 of labels ai ∈ Labels

and states si ∈ States thus si−1
ai−→ si, i ≥ 1. A live transition system (S,L) is

a pair, where S is a labeled transition system and L is a set of infinite initial-
ized trajectories ((ai, si)i≥1, s0 is an initial state of S ) of S. If (S,L) is a live
transition system, and (ai, si)i≥1 is either a finite initialized trajectory of S or a
infinite initialized trajectory in L, such that the corresponding sequence 〈ai〉i≥1
is called a finite or infinite trace of a live transition system (S,L).

We associate with each transition of the label transition system S a duration
in R ≥ 0. For trigger events e ∈ evt, the duration of s

e−→ s′ is 0. For actions

j ∈ jmp, the duration of s
j−→ s′ is 0. For guard conditions with the clock

constraint grd := c.Is′ − c.Is ≥ δ, the duration of s
grd−−→ s′ is t. An infinite

trajectory 〈ai, si〉i≥1 of the label transition system S diverges if the infinite sum∑
i≥1 δi diverges, where each δi is the duration of the corresponding transition

si−1
ai−→ si, i ≥ 1. Let L be be set of divergent initialized trajectories of the

label transition system S. The spatio-temporal hybrid automaton H is nonzeno
if L is machine-closed for S( The set L of infinite initialized trajectories is
machine-closed for S if every finite initialized trajectory of S is a prefix of some
trajectory in L. ). Each trace of the live transition system (S,L) is called a timed
trace of H .

Parallel Composition. Given two spatio-temporal hybrid automata we define
a product automaton called the parallel composition. Conceptually, a run of
the parallel composition is comprised of simultaneous runs of the component
automata which are independent except that:

1) They must synchronize on shared events.
2) The only product states that are permitted are those for which the

restrictions on conditions are jointly satisfiable [25].

We define the parallel compositionA‖B of the spatio-temporal hybrid automata
A and B .

A = (MA, XA, AA, V arA, EA, InvA, ActA)

B = (MB, XB, AB, V arB, EB, InvB, ActB)

• M = MA ×MB

• X = XA ×XB

• A = α1 ∪ α2 ∪ α3 where
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1) α1 is a subset of AA. Each element in α1 is used to label the edges such as
(m1,m2) → (m′1,m2), m1,m

′
1 ∈ MA,m2 ∈ MB.

α1 = {a|m1
a−→ m′1}.

2) α2 is a subset of AB. Each element in α2 is used to label the edges such as
(m1,m2) → (m1,m

′
2), m1 ∈ MA,m2,m

′
2 ∈ MB.

α2 = {a|m2
a−→ m′2}.

3) α3 is a set of symbols to label the edges such as
(m1,m2) → (m′1,m

′
2), m1,m

′
1 ∈ MA,m2,m

′
2 ∈ MB.

α3 = {a ∗ b|m1
a−→ m′1,m2

b−→ m′2} ∗ is for simple connection of symbols.
• V ar = V arA ∪ V arB

• E is a set of edges called events. Every edge is a 5-tuple:

(m, a, grd(a), jmp(a),m′)

where a ∈ A is a symbol to label the edges. The guard condition grd(a) is
constructed as follows

grd(a) =

⎧⎨⎩
grd(a) if a ∈ AA

grd(a) if a ∈ AB

grd(b) ∧ grd(c) if a = b ∗ c, b ∈ AA, c ∈ AB

The action jmp(a) is constructed as follows

jmp(a) =

⎧⎨⎩
jmp(a) if a ∈ AA

jmp(a) if a ∈ AB

jmp(b) ∧ jmp(c) if a = b ∗ c, b ∈ AA, c ∈ AB

• Inv = {inv|inv = invm1 ∧ invm2 , invm1 ∈ InvA, invm2 ∈ InvB}, for the
mode m = (m1,m2), m1 ∈ MA, m2 ∈ MB.

• Act = {act|actm1 ∧ actm1} where actm1 is for specifying activity of the mode
m1, actm2 is for specifying activity of the mode m2, act is for specifying activity
of the mode m, m = (m1,m2), m1 ∈ MA, m2 ∈ MB.

4 Case Study: Train Control System

Intelligent Transportation Systems are the future transportation system. It
integrates Electronic sensor technology, Data communication transmission tech-
nology, System control technology and Computer technology to manage the
transportation system. It is a real-time, accurate, efficient and integrated trans-
portation management system. In this section, we will only illustrate a prelim-
inary Intelligent Transportation System, a communication based train control
(CBTC) system [5] as a case study.

Communication Based Train Control System is the trend of development of
rail train control system in the future. The core of a CBTC system is a Vehicle On
Board Controller (VOBC) subsystem, which mainly achieves three functions on
control: Automatic Train Protection (ATP), Automatic Train Supervision (ATS)
and Automatic Train Operation (ATO). ATP is the core subsystem of VOBC
system. The train functions on acceleration, coasting, deceleration, stopping,
and door opening are supervised by the ATP system. But its most important
responsibility is to protect the system from over speed and avoid crashing, that
is what we will discuss in the following.
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4.1 Requirements

In this system we focus on two trains, which construct a global system. The ATP
devices of these two trains are used to protect the train from over speeding and
avoid train crash. Therefore, there are two components: speed supervision unit
(SSU) and distance supervision unit (DSU) in this system. The behavior and
interaction of them can be described as follows:

• After the train finishes self-detection, ATP device is initialized.
• At the same time, distance supervision unit is initialized to observe global
events on the location of trains.

• After every fix period, speed-sensor sends current speed to the speed supervision
unit.

• According to the current driving mode and speed curves sent by wayside
equipment, the speed supervision unit calculates the current limit speed.

• Then, SSU calculates the difference between the limit speed and the current
speed DiffSpeed.

• 1) If DiffSpeed is less than a critical speed criticalSpeed and more than
zero, SSU will send a warning message to the Train Operation Display(TOD)
to inform the driver of deceleration. After warning, SSU will send a normal
brake message to Braking Equipment (BE). Then the BE will apply the normal
brake until the speed is more than criticalSpeed. All these operations should
be done in 150ms.
2) If DiffSpeed is less than zero, SSU will send an emergency message directly
to BE. Then BE will apply the emergency brake until velocity v = 0. These
operations should be done in 100ms.

• As the trains moving in their tracks, location related events of trains are
observed by distance supervision unit (DSU), i.e. locations ι1 and ι2, the
distance between T1 and T2 Dis.

• 1) If SDU observers that the distance is more than a emerge distance Emerge
Distance and less than a safe distance SafeDistance, SDU will send a warning
message to the T1 and T2 to inform the driver of deceleration. After warning,
SDU will send a normal brake message to Braking Equipment (BE). Then the
BE will apply the normal brake until the distance is more than SafeDistance.
All these operations should be done in 150ms.
2) If SDU observers that the distance is less than EmergeDistance, SDU will
send an emergency message directly to BE. Then BE will apply the emergency
brake until velocity v=0. These operations should be done in 100ms.

4.2 Behavior of the System

Based on the syntax and semantics of spatio-temporal hybrid automata model,
we can model the behavior of the Protection functions of ATP system. The most
important components are Component SSU, Component DSU and Component
BE. We use spatio-temporal hybrid automata to model the behavior of them as
follows.
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Fig. 2. Behavior of Speed Supervision Unit

Fig.2 describes the behavior of speed supervision unit. The unit is responsible
for calculating data and sending protection commands. The unique clock of
them is IdealClock. In the following transition system we all refer the current
IdealClock as c for convenience. For lack of space, we only give a transition from
BrakingNoRequired to BrakingRequired as an example.

evt(tr) ∧ grd(tr)= ε ∧ (DiffSpeed < CriticalSpeed),
jmp(tr) = IdealClock := 0,

When v, c, ι |= grd(tr) and (v, c, ι, v, 0, ι′) |= jmp(tr),
tr � (BrakingNotRequired, v, c, ι)

→ (BrakingRequired, v, 0, ι′) ,
λ(tr) = (ε,DiffSpeed < CriticalSpeed, IdealClock := 0).
When braking is required, no matter what kind of braking, the braking duration
should be less than 150 ms. Hence in this mode

inv(BrakingRequired) = (IdealClock < 150) ∧
(DiffSpeed < criticalSpeedDif)
Fig.3 describes the behavior of distance supervision unit(SDU). SDU observers

the system events after it has initialized. It could protect the components in the
system from crashing by capturing the information from events. The transition
system of SDU begins from the initial mode. At once, observer got an event of
train T1 and an event of train T2 at the same time, where

E1 = (L1;< attr1; t; (x1, y1, z1) >)

E2 = (L2;< attr2; t; (x2, y2, z2) >).
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Fig. 3. Behavior of Distance Supervision Unit

SDU calculates spatial terms occupied by trains based on two events and ensures
the distance between these two trains.

τ1 = ((x1, y1, z1), r1)

τ2 = ((x2, y2, z2), r2)

where r1 and r2 are radiuses, which can be generated based on the environment.
Then spatial terms τ1 and τ2 will be used to calculate the guard and then SDU
will control the signal generate through the spatio-temporal hybrid automata
model.

Fig.4 describes the Braking Equipment state machine under the condition of
velocity v ≥ 0. We list a transition for a short specification as follows.

evt(tr) ∧ grd(tr)= Emerge? ∧ TRUE,
jmp(tr) = IdealClock := 0,

When v, c, ι |= grd(tr) and (v, c, ι, v, 0, ι′) |= jmp(tr),
tr � (initial1, v, 0, ι) → (EmergeBraking, v, 0, ι′)
Edge tr is fired immediately after entering submode Emergency.

inv(EmergeBraking) = (IdealClock < 100) ∧ (v � 0)

act(EmergeBraking) =

{
−fW = W

g · dv
dt

v |t=0= v0
.
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Fig. 4. Behavior of component Braking Equipment

If f is a solution of equation act(EmergeBraking), f satisfies
inv(EmergeBraking)[f/v] = TRUE ∧
act(EmergeBraking)[f/v, ḟ/v̇] = TRUE.

In the submode EmergeBraking, the continuous variable v is changing when
time passes, following the act(EmergeBraking). According to Newton second
law of motion, fW is the external force to brake, W

g is the weight of the train

and dv
dt is the acceleration of the train.

5 Related Work

Hybrid automata are formal models for mixed discrete-continuous hybrid system
which constitute the foundations of CPS [21]. It can be viewed as a generalization
of time automata, in which the behavior of variables is governed in each state
by a set of differential equations [22]. Compared to hybrid automata, spatio-
temporal hybrid automata extend the expression on spatial terms and spatial
relations. Since, CPS events not only include time and observe variables but
also locations. We also classify the type of variables and expressions for clear de-
scription in spatio-temporal hybrid automata. The semantics of spatio-temporal
hybrid automata is based on labeled transition system. We define the states and
transitions of the labeled transition system, and discuss the trace semantics and
parallel composition of spatio-temporal hybrid automata.

In [23], CPSs are modeled as co-inductive coroutined constraint logic pro-
grams, physical quantities are faithfully represented as continuous quantities
(i.e., not discretized) and the constraints imposed on them by CPS physical in-
teractions are modeled with constraint logic programming over reals. Therefore,
CPSs are modeled as coroutined, co-inductive CLP(R) programs which can be
used for verifying interesting properties of the system such as safety, utility, and
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liveness. Compare to their work, our approach support a spatio-temporal logic to
describe logical connections between Algebraic Expressions, Differential Expres-
sions, Clock Expressions, Spatial Expressions and Action Expressions with time
flows. The spatio-temporal logic is constructed by extends temporal logic with
spatial characteristics based on spatial logic. Whatever, the logic can be used to
describe the interesting properties of cyber-physic systems for verification.

In formal verification of software, transition systems serve as a formal model
of systems, meanwhile temporal logic serves as a formal language for behavioral
properties. PTL is one of the well known temporal logics and used to spec-
ify requirements of real-time systems [1, 9]. Spatial logic is a number of logics
used for representation and reasoning space, e.g. RCC-8, BRCC, S4u and other
fragments of S4u. The most expressive spatial formalism of them is S4u, which
extends by S4 with the universal modalities in [10, 11, 13]. Nevertheless, spa-
tial logic can not express changes in time of the truth-values of purely spatial
propositions. Spatio-temporal logic is used for describing the change of spatial
proposition over time. There have been attempts to construct Spatio-temporal
hybrids. For example, in [12], Finger and Gabbay introduced a methodology
whereby an arbitrary logic system L can be enriched with temporal features to
create a new system T (L). The new system is constructed by combining L with
a pure propositional temporal logic T . The method can be looked upon as a
guide to combine an arbitrary logic and PTL for our work. In [14], Wolter and
Zakharyaschev constructed a spatio-temporal logic, based on RCC-8 and PTL,
intended for qualitative knowledge representation and reasoning about the be-
havior of spatial regions in time. Nevertheless, RCC-8 is a fragment of S4u and
has rather limited expressive power [15]. The syntax of RCC-8 only contains
eight binary predicates. Nor can RCC-8 represent complex relations between
more than two regions. Therefore, we chose the spatial logic S4u, which has
the more expressive power as one of the basic logic in our work. Furthermore,
those spatial-temporal logic only focus on the change of space over time. Our
work concentrates on construct a spatio-temporal logic which can express both
spatial proposition and normal proposition for CPSs.

6 Conclusion and Future Work

In Cyber-Physical System design and modeling, a big problem is how to capture
time and location information into CPS models, together with specifying logis-
tical properties or constrains. For modeling the relations between spatial terms
and time, we have proposed a spatio-temporal logic based on PTL, S4u and the
method to enrich a logic. The logic is used to express the logical connections
between all kinds of expressions (including spatial expressions) in CPS. Thus,
time, spatial terms and other type of variables can calculate together. We have
constructed a spatio-temporal hybrid automaton for Cyber-Physical Systems,
which is an extension of hybrid automata with spatial variables, spatial expres-
sions based on spatio-temporal logic. Then, we give formal semantics ( including
states, transition, trace and parallel composition) of the automaton based on
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labeled transition systems. Finally, a Train Control System is employed as a
case study to show the usage of spatio-temporal hybrid automata.

In the future, the related algorithms on satisfiability problems should be
considered. Moreover, we will work on the verification and tool support of spatio-
temporal hybrid automata.
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Abstract. We extend the notions of completion and loop formulas of normal
logic programs with functions to a class of nested expressions that properly in-
clude disjunctive logic programs. We show that answer sets for such a logic pro-
gram can be characterized as the models of its completion and loop formulas.
These results provide a basis for computing answer sets of disjunctive programs
with functions, by solvers for the Constraint Satisfaction Problem. The poten-
tial benefit in answer set computations for this approach has been demonstrated
previously in the implementation called FASP. We also present a formulation of
completion and loop formulas for disjunctive logic programs with variables. This
paper focuses on the theoretical development of these extensions.

1 Introduction

Logic programming based on stable model/answer set semantics, called answer set pro-
gramming (ASP), has been considered a promising paradigm for declarative problem
solving. The general idea is to encode a problem by a logic program such that the answer
sets of the program correspond to the solutions of the problem [25,26]. For example,
the graph coloring problem can be encoded in ASP as the following two rules:

1{clr(X, I) : c(I)}1 ← v(X). (1)

← clr(X, I), clr(Y, I), e(X,Y ), c(I). (2)

Here clr(X, I) means that the color of vertex X is I , and e(X,Y ) says that vertexes X
and Y are connected. The rule (1) indicates that every vertex X has to be colored with
exact one color, while the rule (2) constrains the assigned colors for vertexes X and
Y being different if they are connected. With the state-of-the-art ASP solvers such as
CLASP, CMODELS, SMODELS, and DLV, ASP has been applied to a number of practical
domains [3], in particular, to program verification and analysis [30].

Normal logic programs under stable model semantics [11] have been extended in
several directions, one of which is to logic programs with nested expressions (or just
nested expressions) [21]. More recently, nested expressions have been extended to
quantified equilibrium logic [27] and arbitrary first-order sentences [10].
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c© Springer-Verlag Berlin Heidelberg 2013



356 Y. Wang, J.-H. You, and M. Zhang

Another direction is the idea of computing answer sets of logic programs by utilizing
off-the-shelf solvers from other constraint solving formalisms, e.g., by SAT solvers
[23,12], by pseudo boolean solvers [24], and by CSP solvers [22,29]. The idea is that if
a program has no positive loops the models of its completion are answer sets. This idea
has been extended to the notion of tight on a set [8]. Otherwise, loop formulas can be
used to eliminate models of completion that are not answer sets, and more importantly,
to perform conflict-driven learning and generate non-chronological backtracking. The
loop formulas approach has been extended to disjunctive logic programs [15].

In the third direction, ASP has recently been extended with functions. There are
two different approaches to accommodating functions. One of them treats functions
over Herbrand domains [2,16,28,6], in which, just like Horn clause logic programming,
functions are interpreted by fixed mappings, and are language symbols used to define
recursive data structures. This approach yields a language which is more expressive
than the standard function-free ASP language.

In the other approach, to economically and naturally encode problems in ASP, Lin
and Wang considered adding functions into normal logic programs in which functions
are taken as mappings over finite and non-Herbrand domains [22], called intentional
functions. They extended the notions of completion and loop formulas and show that
through program completion and loop formulas, a normal logic program with functions
can be transformed to an instance of the Constraint Satisfaction Problem (CSP). Thus,
off-the-shelf CSP solvers can be used as black boxes in computing answer sets. Ac-
cordingly, they implemented a system FASP1 to compute answer sets of such logic pro-
grams. Recently, such intentional functions have been integrated into logic programs
with weight constraints [29], IF-programs [18] and first-order formulas under stable
model semantics [1].

In the approach by Lin and Wang, a program with functions will be grounded to a
finite ground program for the answer set computation. Thus it doesn’t deal with infinite
domains of any sort. Its aim is at providing a flexible knowledge representation language
enabling both relations and functions. The approach is closely related to the functional
logic language of [5]. A main difference is that in [5] functions are partial, while in [22]
they must be total.

In this paper, we consider further adding functions into nested logic programs with
rules of the form

a1; . . . ; an ← b1, . . . , bm, G

where ai are atoms, bj are atoms or equality atoms, and G is a nested formula in which
every occurrence of an atom occurs in the scope of the negation-as-failure operator
“not ”. Following [15], these programs with nested expressions are called disjunctive
logic programs.

Disjunctive logic programs of this kind can be seen to represent nested expressions as
defined in [21] in the following sense. First, since nested expressions can be transformed
to disjunctive logic programs with negation-as-failure in the head [4], the latter can be
viewed as a normal form for nested expressions. Also in [21], it was shown that a
negative literal in the head of such a disjunctive rule can be moved to the body by
adding a not to it (i.e., not a in the head becomes not not a in the body).

1 http://webdocs.cs.ualberta.ca/˜yisong/fasp/

http://webdocs.cs.ualberta.ca/~yisong/fasp/
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In this paper, we define answer sets for nested expression with functions, and then
formulate completion and loop formulas for disjunctive logic programs with functions.
We show that loop formulas, along with program completion, capture answer sets of
disjunctive logic programs with functions. This can be seen as a generalization of the
main results of [22]. It turns out that, in order to incorporate functions, the notions
of completion, dependency graphs, loops, and loop formulas all require a nontrivial
generalization.

In general, a logic program may have an exponential number of loops and loop for-
mulas [20]. To avoid computing similar loops, first-order loops and loop formulas were
proposed for normal logic programs with variables [7], which are recently extended to
arbitrary first-order sentences [14]. Since the language of disjunctive logic programs
with functions is a many-sorted first-order language and an encoding in it is often writ-
ten with variables, this motivated us to extend first-order loops and loop formulas to
disjunctive logic programs with functions. This can be regarded as a generalization of
normal logic programs [7] and disjunctive logic programs [14] to include functions.

An earlier version of this paper, with proofs omitted, was presented at the 2nd Work-
shop on Answer Set Programming and Other Computing Paradigms (ASPOCP-2009).

2 Preliminary

The concept of atom is defined as in propositional logic. Elementary formulas are
atoms and special symbols ⊥ (“false”) and ( (“true”).2 Formulas are built from ele-
mentary formulas using the unary connective not (negation as failure) and the binary
connectives “,” (conjunction) and “;” (disjunction). A rule with nested expressions is an
expression of the form

F ← G (3)

where both G and F are formulas. A logic program with nested expressions (or called
nested logic program) is a finite set of rules with nested expressions.

For any formula F,G and H , we may write F → G;H to stand for the formula
(F,G); (not F,H) which reads like an if-then-else statement.

Let F be a formula and Z a set of atoms. That Z satisfies F , written Z |= F , is
defined as follows:

– for an atom a, Z |= a if a ∈ Z; Z |= (,
– Z |= (F,G) if Z |= F and Z |= G,
– Z |= (F ;G) if Z |= F or Z |= G,
– Z |= not F if Z �|= F .

Note that, since ⊥ is not an atom, it follows that Z �|= ⊥, for any set of atoms Z .
Z satisfies a logic program P if for every rule of the form (3) in P , Z |= F whenever

Z |= G. The reduct FZ of a formula F w.r.t. a set of atoms Z , is defined recursively as

– for elementary F , FZ = F ,
– (F ⊕G)Z = (FZ ⊕GZ) where ⊕ is “,”, “;” or “←”,

2 The syntax defined in [21] allows classical negation, which can be eliminated by introducing
auxiliary atoms [19].



358 Y. Wang, J.-H. You, and M. Zhang

– (not F )Z = ⊥ if Z |= FZ , and ( otherwise,

The reduct of a logic program P w.r.t. a set Z of atoms is the following set:

{(F ← G)Z : F ← G ∈ P}.

A set of atoms Z is an answer set of a nested logic program P not containing not if Z
is a minimal set satisfying P . For a nested logic program P , Z is an answer set of P if
Z is an answer set of the reduct PZ .

3 Nested Expressions with Functions

Now, we assume that the underlying language L is a many-sorted first-order language
which may have pre-interpreted function symbols like the standard arithmetic functions
such as “+”, “−” and so on. Elementary formulas are atoms, equality atoms (written
s = t)3, and special symbols ⊥ and (, and formulas are built from elementary formulas
using “not”, “,” and “;” as before. By abuse of notation, we may write s �= t for not (s =
t). A nested logic program with functions (a logic program or just a program) is a finite
set of rules of the form

H ← F (4)

where H and F are formulas of L, together with a set of type definitions, one for each
type τ used in the logic program, of the form

τ : D (5)

where D is a finite nonempty set of elements, called a domain4. Here we require that
if a constant c of type τ occurs in a rule of a program P then c must be contained in
the domain of τ . Recall that L is a many-sorted first-order language. A logic program
with variables is taken as the shorthand for the instantiated ground program; i.e., if a
variable x is of type τ and the domain of τ is D according to the type definitions, then
x is instantiated by elements in D. Thus we equate a logic program with variables with
its grounded program unless otherwise stated.

Recall that once a variable in a rule is replaced by objects of a domain, the grounded
rules may have symbols not in the original language L. In the following, we let LP be
the language that extends L by introducing a new constant for each object in the domain
of a type, but not a constant in L. These new constants will have the same type as their
corresponding objects. Now the fully instantiated rules will be in the language LP .

An interpretation of a program not only assigns truth values to ground instances of re-
lations, but also assigns a mapping to each function symbol. Formally, an interpretation
I of a program P is a first-order structure of LP such that

3 Unless explicitly stated otherwise, an atom refers to a non-equality atom, of the form p(t),
where p is a predicate symbol. We distinguish atoms from equality atoms for convenience.

4 We require domains to be finite, since we will define loop formula for ground programs later,
if using an infinite domain, a ground program may be infinite, in this case, loop formulas may
be not well-defined.
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– The domains of I are those specified in the type definitions of P .
– A constant is mapped to itself.
– If R is a relation of arity τ1 × · · · × τn, and the type definitions τi : Di, 1 ≤ i ≤ n,

are in P , then I assigns a relation to R, denoted RI , such that RI ⊆ D1×· · ·×Dn.
– If f is a function of type τ1 × · · · × τn → τn+1, n ≥ 1, and the type definitions

τi : Di, 1 ≤ i ≤ n+ 1, are in P , then I assigns a mapping to f , denoted f I , from
D1 × · · · ×Dn to Dn+1.

Note that pre-interpreted functions follow their standard interpretations, which do not
change from one interpretation to another.

Notice also that the notion of interpretation here is defined for a logic program in-
stead of the underlying language L. In the following, whenever we talk about inter-
pretations of a formula, we assume that the formula under discussion occurs in the
underlying logic program, where the type definitions are fixed.

Let I be an interpretation. The interpretation of a constant c under I , denoted cI ,
is c. If t = f(t1, ..., tn) is a term, and each ti, 1 ≤ i ≤ n, is already interpreted,
denoted tIi , then tI denotes the constant mapped from the vector (tI1, ..., t

I
n) by f I . This

notation naturally extends to vectors of terms. In addition, for an n-ary predicate p and
an n-vector t, we will write pI(t) to denote the valuation of p(t) under I .

We now define satisfaction for formulas with functions. Below, we only define it
for elementary formulas. Along with the definition given in Section 2, the definition of
satisfaction can be extended straightforwardly to all formulas. Let F be an elementary
formula and I an interpretation. We say I satisfies F , written I |= F , if

– F = (;
– F = p(t), and pI(t) holds under I , i.e., tI ∈ pI , where p is a predicate;
– F is an equality atom t = t′, and tI = t′I .

To extend the notion of reduct to logic programs with functions, it is sufficient to define
it for elementary formulas as well. Let F be an elementary formula and I an interpre-
tation. The reduct of F w.r.t. I , written F I , is defined as

– p(tI) if F = p(t);
– ( if F = ( or F is an equality atom such that I |= F ;
– ⊥ if F = ⊥ or F is an equality atom such that I �|= F .

With this, the notion of reduct as introduced in Section 2 naturally extends to logic
programs with functions. Let P I be the reduct of a program P w.r.t. I . Evidently, P I

mentions no functions, equalities and the negation as failure operator “not”. Answer
sets for such logic programs have been defined before: a set of atoms M is an answer
set of such a program P if M is a minimal set satisfying P . We now extend it to logic
programs with functions.

In the following, given an interpretation I , we write Ia to denote the set of atoms
that contain no functions and are true under I , i.e., Ia = {p(c)|(c) ∈ pI}.

Definition 1. Let P be a nested logic program with functions and I an interpretation
of P . I is an answer set of P if Ia is an answer set of P I .
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Example 1. Consider the logic program P :

f : τ → τ, p : τ, τ : {0, 1},
(p(1); f(0) �= f(1)) ← (f(0) = 1 → not p(1); p(0)). (6)

Notice that the types of the predicate p and the function f are part of the given language,
not the program P ; we write them in P for clarity. The rule (6) stands for

(p(1); f(0) �= f(1)) ← (f(0) = 1, not p(1)); (f(0) �= 1, p(0)). (7)

Consider the following interpretation for P :

– I1 with f I1(0) = f I1(1) = 0, pI1(0) and pI1(1) are false. P I1 consists of a single
rule (p(1);⊥ ← (⊥,(); ((, p(0))) which is equivalent to (p(1) ← p(0)). Since
Ia1 = ∅ and ∅ is an answer set of P I1 , thus I1 is an answer set of P .

Traditionally, two logic programs are said to be equivalent if they have the same set of
answer sets. For nested expressions, Lifschitz et al. [21] propose a stronger notion of
equivalence: Two formulas F and G are equivalent if, for any two interpretations I1
and I2, I1 |= F I2 iff I1 |= GI2 . We adopt the same notion of equivalence for nested
logic programs with functions.

Lifschitz et al. also showed a number of results (cf. Propositions 3–7 in [21]). We can
easily extend these results to nested logic programs with functions. Particularly relevant
to this paper, we can show that any rule of the form (4) is equivalent to

– a finite set of rules of the form

a1; . . . ; an ← G (8)

where G is a formula;
– a finite set of rules of the form5

a1; . . . ; an ← b1, . . . , bm, G (9)

where ai(1 ≤ i ≤ n) and bj(1 ≤ j ≤ m) are atoms or equality atoms of L, and G is
a formula of L in which every occurrence of an atom is in the scope of the negation-
as-failure operator “not ”. For convenience, we abbreviate a rule of the form (9) by

F ← B,G (10)

where F stands for “a1; . . . ; an” and B stands for “b1, . . . , bm”. In the following, a
logic program consisting of rules of the form (10) is called a disjunctive logic program
with functions (or a disjunctive logic program, or just a program if no confusion arises).

It is important to mention that though functions can enrich the language for knowl-
edge representation, they are not absolutely necessary semantically speaking. As shown
in [22], functions can be eliminated as follows.

5 It is known that for a polynomial time transformation new propositional symbols may need
to be used, e.g., to convert a conjunctive normal form to a disjunctive normal form (for
transformation of nested expressions see, e.g., [31]).
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Let P be a logic program that may have functions. For each function f : τ1 × · · · ×
τn → τ in P , we introduce two corresponding relations fr and f r. They both have the
arity τ1 × · · · × τn × τ , and informally fr(x1, ..., xn, y) stands for f(x1, ..., xn) = y
and fr(x1, ..., xn, y) for f(x1, ..., xn) �= y. Now let F(P ) be the union of the rules
obtained by grounding the following rules for each function f in P using the domains
in the type definitions of P :

← fr(x1, . . . , xn, y1), fr(x1, . . . , xn, y2), y1 �= y2,

fr(x1, . . . , xn, y) ← not f r(x1, . . . , xn, y),

fr(x1, . . . , xn, y) ← fr(x1, . . . , xn, z), y �= z.

LetR(P ) be the set of rules obtained from the rules inP by the following transformation:

– evaluate all terms that mention only constants and pre-interpreted functions to
constants;

– repeatedly replace each functional term f(u1, . . . , un), where each ui is a simple
term in which it does not mention a function symbol, by a new variable x and
add fr(u1, . . . , un, x) to the body of the rule as a conjunctive term where the term
appears;

– instantiate all the rules obtained in the previous step, please note that, equality atom
will be replaced with ( if it is of the form c = c, and ⊥ if it is of the form c = c′

where c and c′ are two distinct constants.

F(P )∪R(P ) is a logic program without functions and equality, and there is a one-to-one
correspondence between it and P :

Theorem 1. Let P be a nested logic program with functions. An interpretation I for P
is an answer set of P iff R(I) is an answer set of F(P ) ∪ R(P ), where R(I) is the set
of atoms that are true in I:

R(I) = {p(c) | pI(c) holds} ∪ {fr(c, a) | f I(c) = a} ∪ {fr(c, a) | f I(c) �= a}.

3.1 Completion

We now define completion for nested logic programs with functions, which generalizes
that of [15] due to the incorporation of functions.

Let P be a logic program. An atom p(c1, . . . , ck) is said to reside in P if p is a
predicate of type τ1 × . . .× τn in P , τi : Di is in the type definitions of P and ci ∈ Di

for each i(1 ≤ i ≤ n). By Atoms(P ) we denote the set of atoms residing in P .
Given a formula F , we denote by pa(F ) the set of the positive atoms in F . An atom

p(t) is said to be positive in F if there is at least one occurrence of p(t) in F that is not
in the scope of negation as failure.

In the following, we identify a nested formula with a classical formula by replacing
“,” with “∧”, “;” with “∨” and “not ” with “¬”. Also, when we talk about the completion
of a logic program, we always assume the rules in the program are of the form (8).

Let P be a logic program whose rules are of the form (8). The completion of P ,
written COMP (P ), is defined as the set of classical formulas:
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– for each rule of the form (8) in P

G ⊃
∨

1≤i≤n
ai (11)

– and for each atom p(c) ∈ Atoms(P ),

p(c) ⊃
∨

1≤i≤n

⎡⎢⎢⎢⎣
Gi ∧

(∧
q(s)∈pa(Fi)

¬q(s)
)

∧
(∨

p(t)∈pa(Fi)
c = t

)
∧
(∧

p(t)∈pa(Fi)
(c = t ∨ ¬p(t))

)
⎤⎥⎥⎥⎦ (12)

where
• (F1 ← G1), . . . , (Fn ← Gn) are the rules of P such that the atom p(t) occurs

in Fi(1 ≤ i ≤ n) for some t,
• q(s) is an atom such that q is distinct from p, and
• c = t stands for

∧
1≤i≤m ci = ti if c = (c1, . . . , cm) and t = (t1, . . . , tm). In-

tuitively, c = t if the two vectors have the same length and their corresponding
components are all equal.

The intuition behind (12) is that if p(c) is true under an interpretation then at least
one disjunct of the right hand of (12) is true. Specifically, the first line says that Gi is
true and no q(s) in Fi is true (q �= p); the second line means that at least one p(t)
in Fi is interpreted as p(c), and the third line justifies that any other p(t) interpreted
different from p(c) must be false. Note that the definition generalizes that of [15] since
the formulas in the second and third lines of (12) are equal to ( if the underlying
language of P is propositional.

Example 2. Consider the following logic program P

p, q : τ, f : τ → τ, τ : {0, 1},
p(f(0)); p(f(1)); f(0) = f(1) ← p(0), not q(f(0)). (13)

It is clear that any head equality atom can be moved to the body and negated. We thus
consider, equivalently, the following rule instead:

p(f(0)); p(f(1)) ← p(0), not q(f(0)), f(0) �= f(1) (14)

Note that Atoms(P ) = {p(0), p(1), q(0), q(1)}. COMP (P ) consists of

p(0) ∧ ¬q(f(0)) ∧ f(0) �= f(1) ⊃ p(f(0)) ∨ p(f(1)),

q(0) ⊃ ⊥,

q(1) ⊃ ⊥,

p(0) ⊃ (p(0) ∧ ¬q(f(0)) ∧ f(0) �= f(1)) ∧ (0 = f(0) ∨ 0 = f(1))∧
(0 = f(0) ∨ ¬p(f(0))) ∧ (0 = f(1) ∨ ¬p(f(1))),

p(1) ⊃ (p(0) ∧ ¬q(f(0)) ∧ f(0) �= f(1)) ∧ (1 = f(0) ∨ 1 = f(1))∧
(1 = f(0) ∨ ¬p(f(0))) ∧ (1 = f(1) ∨ ¬p(f(1))).
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Suppose I is an interpretation of P such that f I(0) = 0, f I(1) = 1, and pI(0) holds.
The reduct P I consists of a unique rule

p(0); p(1);⊥ ← p(0),(

whose answer set is ∅ while Ia = {p(0)}. Thus I is not an answer set of P . However,
we can verify that I is a model of COMP (P ).

3.2 Loops and Loop Formulas

Given a logic program P , the positive dependency graph of P , written GP , is the di-
rected graph (V,E), where V = Atoms(P ), and for any p(c), q(d) ∈ V , (p(c), q(d)) ∈
E if there is a rule F ← G in P such that there exists an atom p(t) ∈ pa(F ), an atom
q(s) ∈ pa(G) with tI = c and sI = d for some interpretation I of P .

A nonempty subset L of Atoms(P ) is a loop of P if GP has a non-zero length cycle
that goes through only and all the nodes in L. In the following, to define loop formulas,
we assume that every rule has the form (10). Let L be a loop of a logic program P ,
and an atom p(c) ∈ L. The external support formula of p(c) relative to L, written
ES(p(c), L, P ), is the following formula:

∨
1≤i≤n

⎡⎢⎢⎢⎢⎣
Bi ∧Gi ∧

(∨
p(t)∈pa(Fi)

c = t
)

∧
(∧

q(d)∈L
q(t)∈pa(Bi)

¬(t = d)

)
∧
(∧

q(t)∈pa(Fi)

((∧
q(d)∈L ¬(t = d)

)
⊃ ¬q(t)

))
⎤⎥⎥⎥⎥⎦ (15)

where (F1 ← B1, G1), . . . , (Fn ← Bn, Gn) are all of the rules of P such that, for
each i(1 ≤ i ≤ n), Fi mentions the predicate p.The intended meaning of (15) is that
to externally support p(c) (under an interpretation) at least one disjunct of (15) must be
true. More specifically in (15), the first line says that Bi and Gi are true and at least one
p(t) in Fi is interpreted as p(c); the second line means that no atom in Bi is interpreted
as an atom of the loop L; the third line justifies that every atom in Fi which is not
interpreted as some atom in the loop L are false, i.e. this formula supports no more
atoms outside of L.

The loop formula of L in P , written LF (L, P ), is then the following formula:∨
A∈L

A ⊃
∨
A∈L

ES(A,L, P ). (16)

This definition clearly generalizes the one for disjunctive loop formulas [15].

Example 3. (Continue with Example 2) L = {p(0)} is a unique loop of P . LF (L, P )
is the following formula

p(0) ⊃ (p(0) ∧ ¬q(f(0)) ∧ f(0) �= f(1)) ∧ (0 = f(0) ∨ 0 = f(1))

∧(0 �= f(0) ⊃ ¬p(f(0))) ∧ (0 �= f(1) ⊃ ¬p(f(1))) ∧ (0 �= 0)
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which is equivalent to p(0) ⊃ ⊥ and then ¬p(0). Clearly, the interpretation I of P
in Example 2 does not satisfy LF (L, P ). Consequently I is not an answer set of P .
Evidently, any interpretation I ′ such that pI

′
= qI

′
= ∅ satisfies LF (L, P ). It is easy

to see that I ′ is an answer set of P .

Theorem 2. Let P be a nested logic program with functions. An interpretation I for P
is an answer set of P iff I is a model of COMP (P ) ∪ LF (P ) where LF (P ) is the set
of loop formulas of P .

To compute answer sets of normal logic programs with functions, through completion
and loop formulas, FASP requires no function occurring in predicates and functions as
an argument. For this purpose, a transformation was introduced [22]. Similarly, it is not
difficult to transform a nested logic program with functions into one that contains no
function in any predicate and function.

4 First-Order Loop Formulas

In the section, we assume that a logic program contains a finite set of rules possibly
with variables. We further assume that every rule of a logic program is of the form (10),
and through variable renaming, no two rules share common variables.

Recall that, the underlying language L is a many-sorted first-order language. Thus
every predicate has an arity that specifies the number of arguments the predicate has and
the type (sort) of each argument, and similarly for constants and functions. Variables
also have types associated with them, and when they are used in formulas, their types
are normally clear from the context [22].

Let D be a collection of domains in which there is a unique domain corresponding
to each type τ , denoted by Dτ . Given a typed first-order sentence ϕ, the instantiation
of ϕ on D, written ϕ|D, is a formula defined inductively as follows:

– if ϕ does not have quantifications, then ϕ|D is the result of replacing d = d by (
and d = d′ by ⊥ in ϕ, where d, d′ are any two distinct constants;

– ∃xτ .ϕ|D is
(∨

d∈Dτ
ϕ(xτ/d)

)
|D;

– (ϕ1 ∨ ϕ2)|D is ϕ1|D ∨ ϕ2|D; (¬ϕ)|D is ¬(ϕ|D).

Let r be a rule of the form (10). We say r is not in normal form if there is an atom in
pa(F ) containing at least one constant. Otherwise, we say r is in normal form. A logic
program is in normal form if every rule of the logic program is in normal form. Obvi-
ously, we can turn every logic program to normal form using equality. In the following,
we assume every logic program is in normal form unless stated otherwise.

A binding is an expression of the form α/tτ where α is a variable of type τ or a
function term f(t) whose range is of the type τ , tτ a variable or constant of type τ . A
substitution is a set of bindings containing at most one binding for each variable and
functional term.

Given a logic program P (with variables), the completion of P , denoted by comp(P ),
is the set of formulas consisting of
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– for each rule of the form (10) in P ,

∀x(∃y.(B ∧G) ⊃ F ) (17)

where x is the tuple of variables occurring in F and y is the tuple of variables
occurring in B or G but not in F ;

– for each predicate p,

∀x.p(x) ⊃
∨

1≤i≤n
∃yi.

⎡⎢⎢⎢⎣
(Bi ∧Gi) ∧

(∧
q(s)∈pa(Fi)

¬q(s)
)

∧
(∨

p(t)∈pa(Fi)
x = t

)
∧
(∧

p(t)∈pa(Fi)
(x = t ∨ ¬p(t))

)
⎤⎥⎥⎥⎦ (18)

where
• q is a predicate different from p;
• x is a tuple of distinct variables that are not in P , and match p’s arity;
• (F1 ← B1, G1), . . . , (Fn ← Bn, Gn) are the rules in P whose head mentions

the predicate p;
• for each 1 ≤ i ≤ n, yi is the tuple of variables occurring in Bi, Gi or Fi but

not in x.

In particular, if a predicate p does not occur in the head of any rule in P , then we have
∀x.¬p(x) in the completion of P .

Given a logic program P , its (first-order) dependency graph GP can be defined sim-
ilar to that of [7,14]. Formally, let σ(P ) be the signature consisting of object and predi-
cate constants occurring in the rules of P . Now GP is the directed graph (V,E), where

– V is a set of non-equality atoms formed from σ(P ), along with an infinite supply of
typed variables; please note that there is no atom in V mentioning function symbols.

– (p(t)θ, q(t′)θ) is in E if there is a rule of the form (10) in P such that p(t) ∈ pa(F ),
q(t′) ∈ B and θ is a substitution.

A finite non-empty subset L of V is a (first-order) loop of P if there is a non-zero
length cycle in GP that goes through only and all the nodes in L. Please note that, since
σ(P ) has nothing to do with the type definitions of P , loops of P are independent of
the domains of P .

Let P be a logic program, L a loop of P and p(t) ∈ L. The (first-order) external
support formula of p(t) with respect to L, written es(p(t), L, P ), is the disjunction of

∨
θ:p(t)∈pa(Fθ)

∃y.

⎡⎢⎢⎢⎣
(Bθ ∧Gθ)

∧
(∧

q(s)∈L

q(s′)∈pa(Bθ)

¬(s′ = s)

)
∧
(∧

q(s)∈pa(Fθ)

((∧
q(s′)∈L ¬(s′ = s)

)
⊃ ¬q(s)

))
⎤⎥⎥⎥⎦ (19)

for all rules of the form (10) in P , where θ is a substitution that maps the variables
occurring in t to terms appearing in F , y is a tuple of variables occurring in Bθ, Gθ, or
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Fθ but not in t. The (first-order) loop formula of L for P , written lf(L, P ), is then the
following formula:

∀x.
(∨

A∈L
A ⊃

∨
A∈L

es(A,L, P )

)
(20)

where x is the tuple of variables occurring in L.

Theorem 3. Let P be a logic program in normal form and D be a collection of type
definitions such that, for each type τ used in P , there is a finite and non-empty domain
D ∈ D and D contains all τ -type constants occurring in P . An interpretation I of
P ∪ D is an answer set of P ∪ D if and only if I is a model of (comp(P ) ∪ lf(P ))|D
where lf(P ) is the set of loop formulas of P .

5 Related Works

Functions are widely used in logic formalism stemming from first-order logic. In the
ASP community, functions have already been considered in the general theory of stable
models [10] and in Quantified Equilibrium Logic (QEL) [27]. The two theories general-
ize logic programs with nested expressions. In QEL, an equilibrium model is a Kripke
structure, for which no algorithm for computing answer sets is given. In the general
theory of stable models, the answer set semantics is defined by translating first-order
sentences into second-order ones. Lee and Meng proposed the notions of first-order
loop formulas for disjunctive logic programs and arbitrary sentences. However they fo-
cused on Herbrand interpretations only. They also considered loop formulas in second-
order logic for arbitrary first-order sentences. However, the notion of loops depends on
a given interpretation in advance [14].

Calimeri et al. considered integrating functions into disjunctive logic programs and
implemented it into DLV [6]. Again, they considered Herbrand models instead of non-
Herbrand ones. To our knowledge, a closely related work is due to Cabalar [5]. A main
difference is that functions in [5] are partial while in our case they are total. This dif-
ference has impact on how knowledge is represented. More importantly, the totality of
functions enables a translation of programs to instances of CSP. Lee also defined the no-
tions of loop formulas for nested logic programs directly. However, only propositional
case is considered, i.e., function symbols are excluded [13]. Lifschitz [18] proposed in-
tensional functions in IF-programs whose rules have the form H ← B where H and B
are formulas not containing ←, and Bartholomew and Lee [1] presented first-order for-
mulas with intensional functions under stable model semantics. The semantics of these
programs are defined in terms of second-order logic by translating such programs into
second-order theories.

6 Conclusion and Future Work

We have considered adding functions to disjunctive logic programs and formulated
completion, loops and loop formulas, thus generalizing the main results of [22] to nested
logic programs with functions. This will enable us to extend FASP for such disjunctive
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logic programs in the future. We have also shown how to extend the first-order loops and
loop formulas to these programs. In general, an arbitrary program with variables and
negation may be sensitive to the change of domains. Some restriction, like safety, has
been proposed to guarantee domain independence [14]. It is worthwhile to investigate
the same problem under non-Herbrand interpretations.
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Appendix: Proofs

As we know that the splitting theorem for normal logic programs in [17] has already
been generalized to logic programs with nested expressions in [9], to prove Theorem 1,
we follow the same way for the corresponding theorem in [22]. Let F be a formula and
I an interpretation. The functional reduction of F relative to I , denoted by Φ(F, I), is
a formula obtained from F by

– replacing every functional term t occurring in F with tI ;
– replacing each equality atom in F by ( if it is true under I , and ⊥ otherwise.

The functional reduction of a logic program P relative to an interpretation I , written
Φ(P, I), is the logic program obtained from P by replacing each rule Head ← Body
in P by Φ(Head, I) ← Φ(Body, I). The below lemma follows.
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Lemma 1. Let P be a logic program and I an interpretation for P . I is an answer set
of P iff Ia is an answer set of Φ(P, I).

Let F be a formula. By Atoms(F ) we denote the set of the atoms that occurs in F .
Similarly, for a rule r and a logic program P , we have Atoms(r) and Atoms(P ) denote
the set of atoms occurring in r and P respectively. A splitting set of a logic program P
is any set U of atoms such that, for every r ∈ P , if Atoms(Head(r)) ∩ U �= ∅ implies
Atoms(Body(r)) ⊆ U . If U splits P then the bottom of P relative to U , denoted by
bU (P ), is the set of rules r ∈ P such that Atoms(r) ⊆ U . Let U and M be two sets
of atoms, and F a formula. By eU (F,M) we denote the formula obtained from F by,
for each a ∈ Atoms(F ) ∩ U , replacing a by ( if a ∈ M , and ⊥ otherwise. For a logic
program P , by eU (P,M) we denote the logic program obtained from P by replacing
each rule Head ← Body in P with eU (Head,M) ← eU (Body,M).

The following lemma is clear and useful for the sequent proof.

Lemma 2. Let P be a nested logic program with functions such that any rule of P has
the form F ← ⊥ or ( ← G where F and G are arbitrary two formulas. Then P is
equivalent to ∅.

It shows that we can equivalently add (or remove) rules of the form F ← ⊥ or ( ← G
into (resp. from) a logic program P without changing its semantics.

Proof of Theorem 1. As mentioned before, the Propositions 3-7 of [21] can be eas-
ily extended to logic programs with functions. Thus we shall implicitly assume these
propositions and use them with the same annotation to [21] hereafter.

Since Ξ(P ) is a logic program containing neither functions nor equality, we de-
note the set of atoms occurring in Ξ(P ) by Atoms(Ξ(P )) and similarly for any such
logic programs, we have the same denotation. Let’s denote Ξ(P ) = R(P ) ∪ F(P ) and
U = Atoms(F(P )). It is clear that U splits Ξ(P ) and If is an answer set of F(P ).
Because R(P ) can be considered the collection

⋃
r∈P R(r) where r is regarded as a

logic program consisting of the only rule r together with the type definitions of P . By
Proposition 3 of [21], now it is sufficient to show that

Φ(r, I) ⇔ eU (R(r), I
f ) (21)

where U clearly splits R(r). By Proposition 7 of [21], we can assume that the rule r has
the form (9) where classical negation is excluded.

For the sake of simplicity, let’s consider only the following cases for r where F
is a simple disjunction and G is a simple conjunction that mention no functions nor
equality:

(1) r is of the form “p(f(c));F ← G”. Let’s suppose the range of f is {c1, . . . , ck}
and f I(c) = c1 without loss of generality. Now we have Φ(r, I) is “p(c1);F ← G”
and R(r) consists of, for i (1 ≤ i ≤ k),

p(ci);F ← G, fr(c, ci).

Similarly eU (R(r), If ) consists of the rules, for i (1 ≤ i ≤ k),

p(ci);F ← G,(
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which is equivalent to Φ(r, I) by Lemma 2. The proof for the following three cases
are similar to this one.

– r is of the form “F ← G, p(f(c))”;
– r is of the form “F ← G,not p(f(c))”;
– r is of the form “F ← G,not not p(f(c))”.

(2) r is of the form “f(c) = c′;F ← G”. Now we have Φ(r, I) is ((;F ← G) if
c1 = c′ and (⊥;F ← G) otherwise. In any case that c1 is identical to c′ or not,
eU (R(r), If ) is equivalent to Φ(r, I). It is similar to the cases that equality occurs
in the body as f(c) = c′, not f(c) = c′ or not not f(c) = c′.

The combinatorial cases is similar. Please note that, any rule r in P that mentions only
functions and equality, Φ(r, I) must be equivalent to ∅ whenever I satisfies P , i.e.,
Φ(r, I) is equivalent to {( ← ⊥} if I satisfies P . Notice that R(r) ⊆ bU (Ξ(P )). Thus
If is an answer set of bU (Ξ(P )) iff I satisfies the R(r) for each such aforementioned
rule r of P .

I is an answer set of P
iff Ia is an answer set of Φ(P, I) (Lemma 1)
iff Ia is an answer set of eU (Ξ(P ) \ bU (Ξ(P )), If ) (equation (21))
iff Ia ∪ If is an answer set of Ξ(P ) (Splitting Set Theorem of [9])
iff R(I) is an answer set of Ξ(P ).

Lemma 3. Let F be a formula and I an interpretation. Then I |= F iff Ia |= F I .

Proof. It is trivial by induction on the structures of formulas.

Lemma 4. Let I be an interpretation and Γ a set of clauses6. If Ia is a minimal set
satisfying Γ I , then for each p(c) ∈ Ia there is a clause F in Γ such that

Ia ∩ pa(F I) = {p(c)}.

Proof. If it is not the case, then there exists p(d) ∈ Ia such that c �= d and, for
any F ∈ Γ , Ia ∩ pa(F I) �= {p(d)}. Due to the minimality of Ia, there must have
some F ∈ Γ such that p(d) ∈ pa(F I) otherwise Ia \ {p(d)} also satisfies Γ I . Thus
by the assumption, for any F ∈ Γ , if p(d) ∈ pa(F I) then there is another atom
p(d′) ∈ Ia∩pa(F I). It follows that Ia \ {p(d)} is still a model of Γ which contradicts
with the minimality of Ia.

Lemma 5. Let P be a nested logic program and I an interpretation for P . If I is an
answer set of P then I |= COMP (P ).

Proof. Firstly, take any rule F ← G in P and assume I |= G. We need to show I |= F .
By Lemma 3, I |= G ⇒ Ia |= GI ⇒ Ia |= F I since I is an answer set of P implies
Ia |= (F ← G)I . Thus I |= F by Lemma 3 again.

Secondly, let p(c) be an atom such that I |= p(c). We need to show I satisfies
the consequent of the corresponding formula (12). Let Γ be the set of clauses F with

6 A disjunction of atoms.
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(F ← G) belonging to P and I |= G. By the definition of answer sets, Ia is an answer
set of P I and thus Ia is a minimal set satisfying Γ I . By Lemma 4, there exists F ∈ Γ
such that Ia ∩ pa(F I) = {p(c)}. Without loss of generality, suppose H ← G is such a
rule in P with Ia ∩ pa(F I) = {p(c)} and I |= G. Consider the following cases:

– For any q(s) ∈ pa(F ), we have q(sI) /∈ Ia and thus Ia |= ¬q(sI), it implies that
I |= ¬q(s).

– Note that p(c) ∈ pa(F I), then we have p(t) ∈ pa(F ) such that tI = c. Thus
I |=

∨
p(t)∈pa(F ) c = t.

– For any p(t) ∈ pa(F ) with tI �= c, since Ia ∩ pa(F I) = {p(c)}, it follows that
Ia |= ¬p(tI) and consequently I |= ¬p(t).

Consequently, I satisfies the consequent of the formula (12).

Lemma 6. Let P be a nested logic program and L be an arbitrary loop of P . If an
interpretation I for P is an answer set of P then I |= LF (L, P ).

Proof. Note that I is an answer set of P . It follows that Ia is an answer set of P I and
Ia \ L is not an answer set of P I , i.e., there exists a rule H ← B,F in P such that
Ia \ L |= (BI , F I) and Ia \ L �|= HI .

(1) It is clear that Ia |= (BI , F I), thus I |= (B,F ) and then I |= B ∧ F .
(2) By (1) and Ia is an answer of P I , we have that Ia |= HI , i.e., Ia ∩ pa(HI) �= ∅. It

follows that (Ia\L)∩pa(HI) = ∅ and L∩pa(HI) �= ∅. Without loss of generality,
let p(c) ∈ L ∩ pa(HI). Clearly, I |=

∨
p(t)∈pa(H) c = tI .

(3) By Ia \ L |= BI , we have pa(BI) ∩ L = ∅. It follows I |=
∧

q(d)∈L
q(t)∈pa(B)

t �= d.

(4) Let q(t) ∈ pa(H), consider the two cases:
– q(tI) /∈ L. Note that Ia ∩ pa(HI) �= ∅ and (Ia \ L) ∩ pa(HI) = ∅. It

follows that Ia ∩ (pa(HI) \ L) = ∅. Thus q(tI) /∈ Ia and then I |= ¬q(t).
Consequently, I |= (

∧
q(d)∈L t �= d) ⊃ ¬q(t).

– q(tI) ∈ L. In this case, (
∧

q(d)∈L tI �= d) ≡ ⊥. It follows I |= (
∧

q(d)∈L t �=
d) ⊃ ¬q(t).

Now we complete the proof.

Lemma 7. Let P be a nested logic program and I an interpretation for P . If I |=
COMP (P ) ∪ LF (P ) then Ia |= Comp(P I) ∪ DLF(P I) where LF (P ) is the set of
loop formulas of P and DLF(P ) is the set of disjunctive loop formulas of P I in terms
of [15].

Proof. Firstly, we show that I |= COMP (P ) ⇒ Ia |= Comp(P I). For any rule (H ←
B,F ) of P , we have I |= B ∧F ⊃ H ⇒ Ia |= B ∧F I ⊃ HI ⇒ Ia |= BI , F I ⊃ HI .

Note that, for any atom p(c) ∈ Atoms(P I), p(c) ∈ Atoms(P ). Suppose Ia |= p(c).
Clearly, I |= p(c) and thus I satisfies the consequent of the formula (12). It follows that
there is a rule (H ← B,F ) of P such that for some p(t) ∈ pa(H), tI = c and

I |= B ∧ F ∧

⎛⎝ ∧
q(s)∈pa(H)

¬q(s)

⎞⎠ ∧

⎛⎝ ∧
p(s)∈pa(H)

(c = s ∨ ¬p(s))

⎞⎠ .
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Since q is a predicate different from p, we have I |= ¬q(s). For any p(s) ∈ pa(H) with
sI �= c, we have I |= ¬p(s). Consequently, Ia |= ¬q(sI) ∧ ¬p(sI), i.e., Ia |= ¬α for
any α ∈ pa(HI) \ {p(c)}. It follows that

Ia |= BI ∧ F I ∧
∧

α∈pa(HI )

¬α.

Secondly, we show I |= LF (P ) ⇒ Ia |= DLF(P I). Let L be an arbitrary loop of
P I . Obviously, L is also a loop of P . Suppose Ia |=

∨
L. Thus I |=

∨
L. By the

assumption, there exists an atom p(c) ∈ L and a rule (H ← B,F ) in P such that, for
some p(t) ∈ pa(H), p(t) can cover p(c) and

I |=

⎡⎢⎢⎢⎢⎣
B ∧ F ∧

(∨
p(s)∈pa(H) c = s

)
∧
(∧

q(d)∈L
q(s)∈pa(B)

s �= d

)
∧
(∧

q(s)∈pa(H)

((∧
q(d)∈L s �= d

)
⊃ ¬q(s)

))
⎤⎥⎥⎥⎥⎦ .

Notice first that I |=
∨

p(s)∈pa(H) c = s, it follows that for some p(s) ∈ pa(H), sI =

c. Thus pa(HI) ∩ L �= ∅. By I |=
∧

q(d)∈L
q(s)∈pa(B)

d �= s, we have that pa(BI) ∩ L = ∅.

Thus (HI ← BI , F I ) is a rule in P I such that B,F ∧
∧

α∈pa(HI )\L ¬α is a formula in
R(L). Notice again that, for any q(s) ∈ pa(H),

I |=

⎛⎝ ∧
q(d)∈L

s �= d

⎞⎠ ⊃ ¬q(s).

It follows that Ia |= ¬q(sI) if there is no q(d) ∈ L such that sI = d. Thus, for any
α ∈ pa(HI) ∩ L, Ia |= ¬α. Consequently,

Ia |= BI ∧ F I ∧
∧

α∈pa(HI )\L

¬α.

That is Ia |= DLF(L, P I). And we finish the proof.

Proof of Theorem 2. From Lemma 5 and 6, we have that if I is an answer set of P
then I |= COMP (P ) ∪ LF (P ). By Lemma 7, we have that if I is an answer set of P
then Ia |= Comp(P I)∪ DLF(P I). By Theorem 1 of [15], Ia is an answer of P I . Thus
I is an answer set of P from the definition of answer set.

Proof of Theorem 3. The answer sets of P are the models of COMP (ground(P ∪
D)) ∪ LF (ground(P ∪ D)) where ground(P ∪ D) explicitly means the grounding of
P ∪ D, following the proof of Theorem 1 in [7], we can similarly complete the proof
by showing that I is a model of COMP (ground(P ))∪LF (ground(P )) if and only if I
is a model of (comp(P ) ∪ lf(P ))|D.
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Abstract. The concept of interrupts is important in system specifica-
tions across both software and hardware. However, behaviours of inter-
rupts are difficult to capture particularly in a timed environment because
of its complexity. In this paper, the catastrophic interrupt adopted by
the standard CSP models, the generic interrupt presented by Hoare in
his original CSP book and the timed interrupt (time-driven) given in
Timed CSP are considered in Circus Time. The contribution of the paper
is a development of the reactive design semantics of these three interrupt
operators in the UTP, a collection of verified laws, and a comprehensive
discussion on the subtle difference between catastrophic and generic in-
terrupts in applications.
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1 Introduction

Interrupt behaviours are important in system modelling of both hardware and
software. For instance, pressing the reset button can restart a system to its
original state, or a piece of hardware may have a special input line to output
a value even if it has not been ready. In developing software, interrupts can
naturally describe a variety of behaviours such as exception handlers in object-
oriented programs which may stop the current task to indicate an error situation,
and a scheduling algorithm that can always execute a task with a highest priority
by suspending the current tasks. However, formally specifying the behaviour of
interrupts [7,24] is notoriously difficult particularly under a timed environment
because of its complexity.

Over three decades, CSP presented by Hoare in [5] has become a successful
formal language for specifying and reasoning about concurrency and communi-
cation in a system, with important technical results as those presented in [13,14],
and many powerful tools, e.g., FDR [1] and ProB [9]. The interrupt operators
and its applications in CSP have been discussed by Hoare in his original work [5],
in P � Q 1 the execution of P is interrupted on occurrence of the first (external)

1 Hoare’s original work [5] uses P̂Q to express the generic interrupt operator, and

P �̂Q to present the catastrophic interrupt operator where � is a unique event. In
later work, however, Hoare uses different symbols to express the interrupt operators.
Here, we adopt " from [14] and "c from [13] to present the generic and catastrophic
interrupt operators, respectively.
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event of Q . Here, Q is called the interrupting process and P is the interruptible
process. In the standard (untimed) models of CSP [13], the interruptible process
is always interrupted by a catastrophic interrupt event, and thereafter the pro-
cess behaves like Q . This kind of interruptions is called a catastrophe, P �c Q ,
in which c is a unique event that does not appear in P . This simpler interrupt can
avoid the complication that arises from allowing Q to be an arbitrary process.
Alternatively, Timed CSP [14] uses the original interrupt operator in Hoare’s
work [5], namely the generic interrupt operator, since the catastrophic interrupt
operator is insufficient for specifying certain timing behaviours in a timed sys-
tem. For example, the behaviour of P � (Wait d ; c → Skip) cannot be captured
by using a catastrophic interrupt operator. Moreover, Timed CSP [14] provides
a timed interrupt operator, P �d Q , to allow P to execute for d time units
at most before Q takes the control. The characteristic of this timed interrupt
operator, compared with the generic interrupt operator, is that the occurrence
of an interruption is time-driven; that is, the interruption is out of control of the
environment, but only depends on the time.

Circus [3,21,22] is a comprehensive combination of Z [20], CSP [5,13] and
Morgan’s refinement calculus [11], so that it can define both data and behavioural
aspects of a system. Circus Time [15,19] is an extension of a subset of Circus with
some time operators added to the notion of actions in Circus. The semantics
of Circus Time is defined using the UTP [6] by introducing timed observation
variables. The Circus Timemodel is a discrete time model, and time operators are
very similar to that in Timed CSP. In the Circus Time theory, besides some new
time operators, each action is expressed as a reactive design for a more concise,
readable and uniform UTP semantics. The importance of this semantics is that it
exposes the pre-postcondition semantics. In this paper, we develop the reactive
design semantics of the catastrophic interrupt, the generic interrupt and the
timed interrupt operators in Circus Time.

The work in [10] firstly explores the UTP semantics of the catastrophic inter-
rupt operators and related laws in (untimed) CSP. This approach considers an
interruption as a kind of sequential composition, because that the interrupting
process, in fact, has not happened until the occurrence of the catastrophic event.
Therefore, it imitates the idea of the interrupt step law to make the interrupt
event able to happen at any intermediate waiting state of P . The UTP seman-
tics of the catastrophic interrupt operator in a timed environment can be found
in a hybrid CSP system [8]. Unfortunately, these approaches that consider in-
terruptions as sequential composition cannot contribute to the UTP semantics
of the generic interrupt operator, since interrupt events might be a part of an
interrupting process as both P and Q evolve together. From this point of view,
we ponder the generic interrupt operator as a parallel composition.

The main contribution of this paper is to define the reactive designs of the
catastrophic interrupt operator that follows the same idea in the work [10], of
the generic interrupt operator that is inspired by Timed CSP [14] to treat an
interruption as a parallel composition, and of the timed interrupt operator that is
intuitively defined by considering its precondition and postcondition respectively.
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Remarkably, the reactive design semantics indicates that the catastrophic in-
terrupt operator is not equal to the generic interrupt operator with an explicitly
interrupting event, because their reactive designs use different approaches so that
the generic interrupt operator is able to capture more behaviours. In addition,
these reactive designs are underpinned by showing that they still enjoy a number
of existing algebraic laws.

This paper is structured as follows. Section 2 presents an overview of related
UTP theories and Circus Time. The detailed reactive designs of the catastrophic,
generic and timed interrupt operators are given in Section 3 with a number of
relevant laws. Finally, we conclude and discuss future work in Section 4.

2 UTP Theories

The UTP uses the alphabetised relational calculus to supports refinement-based
reasoning in the context of a variety of programming paradigms. In the UTP, a
relation P is a predicate with an alphabet αP , composed of undashed variables
(a, b, ...) and dashed variables (a′, x ′, ...). The former, denoted as inαP , stands
for initial observations, and the latter, outαP , for intermediate or final obser-
vations. A relation is called homogeneous if outαP = inαP ′, where inαP ′ is
obtained by dashing all the variables of inαP . A condition has an empty output
alphabet.

A theory in the UTP is a collection of relations (or alphabetised predicates),
which contains three essential parts: an alphabet, a signature, and healthiness
conditions: the alphabet is a set of variable names for observation, the signature
gives a set of operators and atomic components of the programming theory, and
the healthiness conditions identify properties that characterise the theory.

The program constructors in the theory of relations include sequential com-
position (P ;Q), conditional (P � b �Q), assignment (x := e), nondeterminism
(P ! Q) and recursion (μX • C (X )). The correctness of a program P with
respect to a specification S is denoted by S 1 P (P refines S ), and is defined as
[P ⇒ S ]. Here, the square bracket is universal quantification over all variables
in the alphabet. In other words, the correctness of P is proved by establishing
that every observation that satisfies P must also satisfy S . Moreover, the set
of relations with a particular alphabet is a complete lattice under the refine-
ment ordering. Its bottom element is the weakest relation true, which models
the program that behaves arbitrarily (true 1 P), and the top element is the
strongest relation false, which behaves miraculously and satisfies any specifica-
tion (P 1 false).

2.1 Designs

A design in the UTP is a relation that can be expressed as a pre-postcondition
pair in combination with boolean variables, called ok and ok ′. In designs, ok
records that the program has started, and ok ′ records that it has terminated. If
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P and Q are predicates not containing ok and ok ′, a design with the precondition
P and the postcondition Q , written as P � Q , is defined as

P � Q =̂ ok ∧ P ⇒ ok ′ ∧ Q

which means that if a program starts in a state satisfying P , then it must ter-
minate, and whenever it terminates, it must satisfy Q .

Healthiness conditions of a theory in the UTP are a collection of some funda-
mental laws that must be satisfied by relations belonging to the theory. These
laws are expressed in terms of monotonic idempotent functions. There are four
healthiness conditions identified by Hoare and He [6] in the theory of designs
and here we introduce only two of them.

H1(P) = ok ⇒ P H2(P) = [P [false/ok ′] ⇒ P [true/ok ′]]

The first healthiness condition means that observations of a predicate P can
only be made after the program has started. H2 states that a design cannot
require non-termination, since if P is satisfied when ok ′ is false, it must also be
satisfied when ok ′ is true. A predicate is H1 and H2 if, and only if, it is a design;
the proof is in [6]. The theory of designs (H1 and H2-healthy relations) has an
important role in models for process algebras for refinement like CSP and Circus.
For a tutorial introduction to designs, the reader is referred to [6,23].

2.2 Reactive Processes

A reactive process is a program whose behaviour may depend on interactions
with its environment. To represent intermediate waiting states, a boolean vari-
able wait is introduced to the alphabet of a reactive process. We are able to
represent some states of a process by combining the values of ok and wait . If ok ′

is false, the process diverges. If ok ′ is true, the state of the process depends on
the value of wait ′. If wait ′ is true, the process is in an intermediate state; other-
wise it has successfully terminated. Similarly, the values of undashed variables
represent the states of a process’s predecessor.

Apart from ok , ok ′, wait and wait ′, another two pairs of observational vari-
ables, tr and ref , and their dashed counterparts, are introduced. The variable
tr records the events that have occurred until the last observation, and tr ′ con-
tains all the events including those since last observation. Similarly, ref records
the set of events that could be refused in the last observation, and ref ′ records
the set of events that may be refused currently. The reactive identity, IIrea , is
defined as IIrea =̂ (¬ ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref )
which states that if its predecessor diverges (¬ ok), the extension of traces is the
only guaranteed observation; otherwise (ok ′), other variables keep unchanged. A
reactive process must satisfy the following healthiness conditions:

R1(P)=P ∧ tr≤ tr ′ R2(P(tr , tr ′))=P(〈〉, tr ′−tr) R3(P)=IIrea�wait�P

If a relation P describes a reactive process, R1 states that it never changes
history. The second, R2, states that the history of the trace tr has no influence
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on the behaviour of the process. The final, R3, requires that a process should
leave the state unchanged (IIrea) if it is waiting the termination of its predecessor
(wait = true). A reactive process is a relation whose alphabet includes ok , wait ,
tr and ref , and their dashed counterparts, and that satisfies the composition
R where R =̂ R1 ◦R2 ◦R3. In other words, a process P is a reactive process
if, and only if, it is a fixed point of R. For a more detailed introduction to the
theory of reactive designs, the reader is referred to the tutorial [2].

2.3 CSP Processes

In the UTP, the theory of CSP is built by applying extra healthiness conditions
to reactive processes. For example, a reactive process is also a CSP process if
and only if, it satisfies the following healthiness conditions:

CSP1 P = P ∨ (¬ ok ∧ tr ≤ tr ′) CSP2 P = P ; J

where J = (ok ⇒ ok ′) ∧ wait ′ = wait ∧ tr ′ = tr ∧ ref ′ = ref . The first
healthiness condition requires that, in whatever situation, the trace can only be
increased. The second one means that P cannot require non-termination, so that
it is always possible to terminate. The CSP theory introduced in the UTP book
is different from any standard models of CSP [5,13] which have more restrictions
or satisfy more healthiness conditions.

A CSP process can also be obtained by applying the healthiness condition R
to a design. This follows from the theorem in [6], that, for every CSP process

P , P = R(¬ P f
f � P t

f ), where Pa
b is an abbreviation of P [a, b/ok ′,wait ], and it

is often used in this paper. This theorem gives a new style of specification for
CSP processes in which a design describes the behaviour when its predecessor
has terminated and not diverged, and the other situations of its behaviour are
left to R. For example, P t

f describes the behaviour when P is stable, and P f
f

captures the behaviour before a divergent state. The importance of this reactive
design semantics is that it exposes the pre-postcondition semantics so as to not
only support contract-based reasoning about models, but also simplify proof of
Circus Time laws.

2.4 Circus Time

We give a brief introduction to Circus Time because the reactive design semantics
of interrupts is developed within this timed model. In Circus Time, a CSP action
is described as an alphabetised predicate whose observational variables include
ok , wait , tr , ref , state and their dashed counterparts. Here, ok , ok ′, wait and
wait ′ are the same variables used in the theory of reactive processes. The traces,
tr and tr ′, are defined to be non-empty sequences (seq1(seq Event)), and each
element in the trace represents a sequence of events that have occurred over one
time unit. Also, ref and ref ′ are non-empty sequences (seq1(PEvent)) where each
element is a refusal at the end of a time unit. Thus, time is actually hidden in the
length of traces. In addition, state and state ′ (N '→ Value) records a set of local
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variables and their values. N is the set of valid names of these variables. Circus
Time presents traces and refusals individually rather than using the concept of
failures. However, for their consistency we have to ensure the equality of the
lengths of tr and ref , and tr ′ and ref ′. This is achieved by imposing an extra
constraint on the healthiness conditions.

We explain the details of the notation at the points where they are firstly

used. For sequences, we use head , tail , front , last , #(length), 
(concatenation)

and 
/(flattening). An expanding relation between traces is defined as

tr � tr ′ =̂ front(tr) ≤ tr ′ ∧ last(tr) ≤ tr ′(#tr)

which, for example, states that 〈〈a〉, 〈b〉〉 is expanding 〈〈a〉, 〈b, c〉〉.
An action in Circus Time must satisfy the healthiness conditions, R1ct-R3ct

and CSP1ct-CSP5ct. These healthiness conditions have similar meanings to
those in the CSP theory, but are changed to accommodate discrete time. For the
sake of a simpler proof, we focus on the healthiness conditions, R1ct and R3ct,
since the properties including other healthiness conditions are usually straight-
forward to be proven. A detailed introduction to other healthiness conditions
can be found in [19].

R1ct(X ) =̂ X ∧ RT R3ct(X ) =̂ IIct � wait � X

where the predicate RT , the difference of two traces (diff ), the relational identity
(II ) and the timed reactive identity IIct are given as

RT =̂ tr � tr ′ ∧ front(ref ) ≤ ref ′ ∧ #tr = #ref ∧ #tr ′ = #ref ′

II =̂
(
ok ′ = ok ∧ tr ′ = tr ∧ ref ′ = ref ∧ wait ′ = wait ∧ state ′ = state

)
IIct =̂ (¬ ok ∧ RT ) ∨ (ok ′ ∧ II )

Note that we impose a restriction, #tr = #ref ∧ #tr ′ = #ref ′, to ensure that
the lengths of ref and ref ′ are always the same as those of tr and tr ′ respectively.
This is a consequence of splitting traces and refusals as already explained. Rather
than recording the refusals only at the end of traces in CSP, Circus Time records
the refusals at the end of each time unit in order to retain enough information
for refinement. In other words, we need to keep the history of refusals. However,
we are usually not interested in the refusals of the last time unit after an action
terminates. Therefore, we use front(ref ) ≤ ref ′ in these healthiness conditions,
instead of ref ≤ ref ′. In addition, we have proved in [19] that for every action

P in Circus Time, it can also be expressed as Rct(¬ P f
f � P t

f ).
The full syntax, definitions and detailed explanations of Circus Time can be

found in [19]. Here, we briefly introduce some operators that are used in the
following sections. The action Skip terminates immediately without changing
anything. Stop represents a deadlock, but allows time to elapse. Chaos is the
worst action (the bottom element in the refinement ordering) whose behaviour
is arbitrary, but satisfies Rt. Miracle is the top element that expresses an un-
started process. This primitive operator is not included in the standard failures-
divergences model of CSP. Wait d does nothing except that it requires d time
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units to elapse before it terminates. The sequential composition P ; Q behaves
like P until P terminates, and then behaves as Q . The prefix action c.e → P
is usually constructed by a composition of a simple prefix and P itself, written
as (c.e → Skip) ; P . The external choice, P � Q , may behave either like the
conjunction of P and Q if no external event has been observed yet, or like their
disjunction if the decision has been made. The hiding action P \ CS will behave
like P , but the events within the set CS become invisible.

Here, we use the definitions of simple prefix and normal prefix, which are
used in Section 3.1 and 3.2, to demonstrate how the reactive design semantics
captures behaviours of processes.

Theorem 1. (Simple prefix)

c.e → Skip = Rct(true � wait com(c) ∨ terminating com(c.e)) (1)

wait com(c) =̂ (wait ′ ∧ possible(ref , ref ′, c) ∧ 
/tr ′ = 
/tr) (2)

possible(ref , ref ′, c) =̂ ∀ i : #ref ..#ref ′ • c /∈ ref ′(i) (3)

term com(c.e) =̂

(
¬ wait ′∧ front(ref ′)= front(ref )∧
diff (tr ′, tr)=〈〈c.e〉〉∧ state ′=state

)
(4)

terminating com(c.e)=̂

(
term com(c.e) ∨
((wait com(c)∧ state ′=state) ; term com(c.e)

)
(5)

The precondition of the above definition is true, which means that a simple
prefix never diverges. The postcondition states that, if it starts successfully, a
simple prefix can behave in three different ways: first, the clause wait com(c)
expresses that it can wait for interaction from its environment and meanwhile
communications over the channel c are not refused (possible(ref , ref ′, c)); second,
the clause term com(c.e) simply denotes that the event is executed immediately;
third, the composition of wait com(c) and term com(c.e) means that it may
wait for a while and then terminate with an event c.e. The difference of two
traces is defined as diff (tr ′, tr) =̂ 〈tr ′(#tr) − last(tr)〉 
 tail(tr ′ − front(tr)).
The reactive design of prefix is calculated by means of the simple prefix and
sequential composition as follows.

Theorem 2. (Prefix)

c.e → P =

Rct

⎛⎝ ¬ (terminating com(c.e) ; R1ct(¬ wait ∧ R2ct(P
f
f )))

�
(wait com(c)∨ terminating com(c.e)) ; R1ct(II�wait�R2ct(P

t
f ))

⎞⎠
This theorem states that, from its precondition, c.e → P diverges if P does;
otherwise, from its postcondition, it can wait for the interaction from its en-
vironment, execute c.e right now or wait for a while to execute c.e, and then
behave like P t

f .
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3 Reactive Designs of Interrupts

Hoare’s CSP book [5] gives a generic interrupt operator, P � Q , which allows P
to execute, but it may be interrupted by the first external event from Q and the
program control is simultaneously passed to Q . Thereafter, the standard models
of CSP adopt a catastrophic interrupt, which is expressed as P �c Q . Here,
the catastrophic event c is unique, and its occurrence can interrupt P . However,
this simpler interrupt might not be convenient for specifying real-time systems.
For example, a seminar room is booked for an hour. Therefore one hour later
after the punctual start, the seminar has to be interrupted if the next session has
been booked by someone else. But the speaker may continue his talk if no one
turns up to use this room. This example may be described as follows in Timed
CSP [14] that adopts the generic interrupt operator to satisfy time requirements.

SEMINAR � (Wait 1 ; close → Skip)

Note that the above process does not mean that the interrupt must occur after
one hour because the occurrence of close depends on the environment. If we say
that the seminar must finish after one hour no matter whether this room will
be used then, the generic interrupt operator is not enough. Accordingly, a timed
interrupt operator is introduced in Timed CSP to describe this scenario.

SEMINAR �1 Skip

which means the interruption must happen one hour later. That is to say, the
timed interrupt operator is time-driven and out of control of its environment.

The UTP semantics of the catastrophe in CSP has been discussed in [10], and
in Section 3.1 we will use the same idea to calculate its reactive design within
the Circus Time model. The approach in [10] cannot be used for defining the
generic interrupt operator. Therefore, in Section 3.2 we follow the idea in Timed
CSP to deal with the generic interrupt operator to consider it a special kind of
parallel composition. For the timed interrupt operator, it can still be treated as
a sequential composition because Q happens exactly d time units later if P has
not terminates.

3.1 Catastrophe

We use the same approach in [10] but with changes to accommodate time be-
haviours to generate a UTP definition for a catastrophic interrupt operator,
which is then calculated to produce a reactive design. The general idea in [10]
is to use a new healthiness condition I3, whose name simply reflects its relation
to R3ct, to bring the catastrophic event forward to any waiting state of the in-
terruptible process while this event is not refused by an alphabet extension. An
I3 healthy process can only execute while its predecessor is in an intermediate
state, or can behave like a Circus Time identity if its predecessor terminates.

Definition 1. I3(P) = P � wait � IIct
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Here we can clearly see I3’s relation to R3ct by the law R3ct(I3(P)) = IIct
which states that an I3 healthy process will behave as the identity if it is required
to be R3ct healthy. In addition, to make sure the interrupt event is not refused
during the execution of the interruptible process, an alphabet extension operator
is defined as

Definition 2

P+c =̂(P ∧possible(ref , ref ′, c)); (II �wait�(II−ref ∧ front(ref ′)= front(ref )))

The predicate II−ref is the relational identity without the variables ref and ref ′.
We use front(ref ′) = front(ref ) to free the last element of refusals in P , since
we usually request that the last refusal is arbitrary if a process terminates.

Furthermore, we develop a new predicate, interrupt(c,Q), to describe that an
event is forced to occur despite an apparent situation opposite to an ordinary
action in Circus Time.

Definition 3. try(c,Q) =̂ (II � wait ′ � term com(c)); Q

The behaviour in try(c,Q) is similar to the prefix operator in Circus Time. Com-
pared with the simple prefix (Theorem 1), it simplifies the behaviour by termi-
nating only with the immediate execution of c (term com(c)), or just behaving
like the identity. Here, the usual non-refusal of c is achieved by the alphabet
extension when sequentially composed with the interruptible action.

Definition 4. force(c,Q) =̂ I3(try(c,Q))

The definition of force(c,Q) in Definition 4 is an I3-healthy try(c,Q) that states
that it behaves as the identity (IIct) when its predecessor terminates, and oth-
erwise behaves like try(c,Q). Thus, the predicate interrupt(c,Q) is defined as a
CSP1ct-healthy force, which considers divergences of its predecessor and Q .

Definition 5. interrupt(c,Q) =̂ CSP1ct(force(c,Q))

The definition for catastrophe is given as a sequential composition between the
interruptible action P with an alphabet extension by augmenting the interrupt
event c, and the newly-defined predicate interrupt(c,Q).

Definition 6. P �c Q =̂ R3ct ◦CSP2ct(P
+c ; interrupt(c,Q))

Here, R3ct restricts the bound of I3, and CSP2ct requires that a divergence
within this interrupt may also contain termination.

To calculate the reactive design of catastrophe, we adopt the theorem that
any action P in Circus Time can be expressed as Rct(¬ P f

f � P t
f ). For the reason

of limited space, we show the calculation of its postcondition only (Lemma 3),
and the full proof can be found in [19]. We give Lemma 1 and Lemma 2 that
have no intuitive meaning but avoid verbose proofs. The reader who is interested
in their proofs is referred to [19].

Lemma 1. (P+c ; (¬ ok ∧ RT ))f = (P f
f ∧ possible(ref , ref ′, c)); R1ct(true)
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Lemma 2. P+c ; (ok ∧ try(c,Q) ∧ wait) =(
((P ∧possible(ref , ref ′, c) ∧ ok ′ ∧ wait ′) ∨
((P ∧possible(ref , ref ′, c)); (ok ∧ wait ∧ term com(c)); (¬ wait ∧ Qf )

)
Lemma 3. (P �c Q)tf =⎛⎜⎜⎝

((P f
f ∧ possible(ref , ref ′, c)); R1ct(true))∨

(P t
f ∧ (possible(ref , ref ′, c); front(ref ′) = front(ref ))∧¬ wait ′)∨

(P t
f ∧ possible(ref , ref ′, c) ∧ wait ′) ∨

((P t
f ∧possible(ref , ref ′, c)); (wait ∧ term com(c)); (¬ wait ∧Q t

f ))

⎞⎟⎟⎠
Proof.

(P �c Q)tf [Def-6]

= (R3ct ◦CSP2ct(P
+c ; interrupt(c,Q)))tf [R3ct and substitution]

= (CSP2ct(P
+c ; interrupt(c,Q)))tf [CSP2ct]

= ((P+c ; interrupt(c,Q)) ; J )tf [J-split]

= ((P+c ; interrupt(c,Q))f ∨ (ok ′ ∧ (P+c ; interrupt(c,Q))t))tf [subs.]

= (P+c ; interrupt(c,Q))tf [Def-5]

= (P+c ; CSP1ct(force(c,Q)))tf [CSP1ct]

= (P+c ; ((¬ ok ∧ RT ) ∨ (ok ∧ force(c,Q))))tf [relational calculus]

= (P+c ; (¬ ok ∧ RT ))tf ∨ (P+c ; (ok ∧ force(c,Q)))tf [Lemma 1]

= ((P f
f ∧possible(ref ,ref ′,c)); R1ct(true))∨ (P+c ; (ok ∧ force(c,Q)))tf

[Def-1,4]

=

(
((P f

f ∧ possible(ref , ref ′, c)); R1ct(true)) ∨
(P+c ; (ok ∧ (try(c,Q) � wait � IIct)))

t
f

)
[relational calculus]

= ((P f
f ∧ possible(ref , ref ′, c)); R1ct(true)) ∨ (P+c ; (ok ∧ ¬ wait ∧ IIct))

t
f

∨ (P+c ; (ok ∧ try(c,Q) ∧ wait))tf [IIct and propositional calculus]

= ((P f
f ∧ possible(ref , ref ′, c)); R1ct(true)) ∨ (P+c ; (ok ∧ ¬ wait ∧ II ))tf

∨ (P+c ; (ok ∧ try(c,Q) ∧ wait))tf [Lemma 2]

=

⎛⎝((P f
f ∧ possible(ref , ref ′, c)); R1ct(true)) ∨ (P+c ; (ok ∧ ¬ wait ∧ II ))tf ∨

(P ∧ possible(ref , ref ′, c) ∧ ok ′ ∧ wait ′)tf ∨
((P ∧possible(ref , ref ′, c)); (ok ∧wait ∧ term com(c)); (¬ wait ∧Qf ))

t
f

⎞⎠
[Def-2 and relational calculus]

=

⎛⎜⎜⎝
((P f

f ∧ possible(ref , ref ′, c)); R1ct(true)) ∨
((P ∧ (possible(ref , ref ′, c); front(ref ′) = front(ref ))); (ok ∧¬wait ∧II ))tf ∨
(P ∧ possible(ref , ref ′, c) ∧ ok ′ ∧ wait ′)tf ∨
((P ∧possible(ref , ref ′, c)); (ok ∧wait ∧ term com(c)); (¬ wait ∧Qf ))

t
f

⎞⎟⎟⎠
[relational calculus]
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=

⎛⎜⎜⎝
((P f

f ∧possible(ref ,ref ′,c)); R1ct(true))∨
(P ∧ (possible(ref , ref ′, c); front(ref ′) = front(ref ))∧¬ wait ′)tf ∨
(P ∧ possible(ref , ref ′, c) ∧ ok ′ ∧ wait ′)tf ∨
((P ∧possible(ref , ref ′, c)); (ok ∧wait ∧ term com(c)); (¬ wait ∧Qf ))

t
f

⎞⎟⎟⎠
[substitution and relational calculus]

=

⎛⎜⎜⎝
((P f

f ∧ possible(ref , ref ′, c)); R1ct(true))∨
(P t

f ∧ (possible(ref , ref ′, c); front(ref ′) = front(ref ))∧¬ wait ′)∨
(P t

f ∧ possible(ref , ref ′, c) ∧ wait ′) ∨
((P t

f ∧possible(ref , ref ′, c)); (wait ∧ term com(c)); (¬ wait ∧Q t
f ))

⎞⎟⎟⎠
In the postcondition of the catastrophic interrupt operator, the first clause cap-
tures the divergent behaviour of P that will be absorbed by the precondition of
catastrophe; the second clause states that P terminates without an interrupt, in
which front(ref ′) = front(ref ) makes the last element of ref ′ arbitrary; the third
clause expresses that P has not terminated before c; and the last one states that
P is interrupted by c and it sequentially behaves like Q .

Before we calculate the final reactive design for (P �c Q), we make a change
to the fourth clause in Lemma 3 by adding state ′ = state into its first component
of the sequential composition. Introduction of state and state ′ is one of the
differences of the Circus Time model with the standard CSP models and Timed
CSP. To retain some important refinement laws of CSP in Circus Time, such as
the unit law for external choice P � Stop = P , we do not constrain state ′ at any
waiting state or deadlock. However, we, here, have to impose state ′ = state to
enable Q to gain the initial value of state when P is interrupted. This change is
reflected in Theorem 3.

Thus, we use the similar approach to calculate (P�cQ)ff , and finally get the
following reactive design for the catastrophic interrupt operator.

Theorem 3

(P �c Q) =

Rct

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

¬ ((P f
f ∧ possible(ref , ref ′, c)); R1ct(true)) ∧

¬ ((P t
f ∧possible(ref ,ref ′,c)); (wait ∧ term com(c)); (¬wait ∧Q f

f ))

�
(P t

f ∧(possible(ref , ref ′, c); front(ref ′) = front(ref ))∧¬ wait ′)∨
(P t

f ∧ possible(ref , ref ′, c) ∧ wait ′) ∨(
P t
f ∧possible(ref , ref ′, c)

∧ state ′ = state

)
; (wait ∧ term com(c)); (¬ wait ∧Q t

f )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The precondition from the above definition states that either P diverges while
the interrupt event c has not occurred, or P is interrupted by c, sequentially
composed with the divergence of Q .

This reactive design is derived from rigorous calculation of Definition 6, which
is fully based on the work in [10]. The validation of this definition is also similar
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to that in [10] by proving that it respects a number of laws. For example, the
step law (Law 1) for the catastrophic interrupt operator given in [5,13] is still
valid, and its proof is fully based on the distributive and eliminative laws, and
the approach adopted in [10].

Law 1. (a → P) �c Q = (a → (P �c Q)) � (c → Q)

3.2 Generic Interrupt

In the generic interrupt, P � Q , Q is executed concurrently with P until ei-
ther P terminates the execution, or Q performs an interrupt event. However,
the approach that we used in Section 3.1 cannot be applied here because some
interruptions by a generic interrupt operator cannot be easily expressed by se-
quential composition, such as the example we give in Section 1. Alternatively,
we use the idea in Timed CSP to consider it parallel composition.

The basic idea of the semantics for parallel composition in the UTP is parallel-
by-merge. That is, by labelling the variables of P and Q , we make them become
disjoint (αP ∩ αQ = ∅), and then merge these different variables by synchroni-
sation to generate the final observation. As usual, we label the dashed variables
of P with 0 and Q with 1 as

(P ;U 0(outαP) ∧ (Q ;U 1(outαQ))+{tr ,ref }

The labelling process Ul(m) simply passes dashed variables of its predecessor
to labelled variables and also removes these dashed variables from its alphabet.
Through the labelling process, the output alphabet of Ul(m) consists of l .m only.
However, under some circumstances we do need the initial values of P or Q . For
this reason, we expand the alphabet after the labelling process. For example,
P+{n} denotes P ∧ n ′ = n. Here, we are only interested in tr and ref that will
be used in the merge operation.

First of all, we consider the merge function of timed traces and the sequences
of refusals of P and Q .

ISync(〈〉, S2, ref1, ref2) = (〈〉, ref1) (6)

ISync(S1, 〈〉, ref1, ref2) = (S1, ref1) (7)

ISync(〈t1〉
 S1, 〈t2〉
 S2, 〈r1〉
 ref1, 〈r1〉
 ref2) (8)

= (〈t1〉, 〈r1 ∩ r2〉): ISync(S1, S2, ref1, ref2) iff t2 = 〈〉

ISync(〈t1〉
 S1, 〈t2〉
 S2, ref1, ref2) = (〈t2〉
 S2, ref2) iff t2 �= 〈〉 (9)

where : is a new operator to concatenate a sequence of pairs, defined as

(S1, ref1): (S2, ref2) = (S1

 S2, ref1 
 ref2) (10)

In Circus Time, we split a failure into a trace and a refusal for the convenience of
expression or even simpler mechanisation. Unfortunately, here we have to reunite
them again as a pair because they are manipulated together. Note that ISync
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does not support commutativity. The rule (6) states that P has no further trace
to interact with Q . That is, P may terminate or diverge in practice. The rule
(7) just describes a similar situation for Q . The rule (8) presents the behaviour
that no interrupt happens within the current time unit. The rule (9) underlines
that Q interrupts P .

We also consider the values of ok ′ and wait ′ that are determined by whether
the interrupt has occurred or not. For example, their values are those of Q if
interrupted. Otherwise, we take those of P . Hence, we define two predicates to
show whether one trace can interrupt another.

enable(tr , 0.tr , 1.tr) =̂ ∃ tr0 •
(
tr0≤diff (1.tr , tr)∧
/front(tr0)=〈〉∧
last(tr0) �=〈〉∧#tr0≤#diff (0.tr , tr)

)

disable(tr , 0.tr , 1.tr) =̂

⎛⎝ (
/1.tr = 
/tr ∧ #1.tr ≤ 0.tr) ∨

∃ tr0 •
(

tr0 ≤ diff (1.tr , tr) ∧

/tr0 = 〈〉 ∧ #diff (0.tr , tr) ≤ tr0

)⎞⎠
The predicate enable states that if there exists a subsequence of diff (1.tr , tr),

which has not executed any event (
/front(tr0) = 〈〉) except for the last element
(last(tr0) �= 〈〉), and meanwhile 0.tr has not terminated (#tr0 ≤ #diff (0.tr , tr)),
we conclude that 1.tr can interrupt 0.tr and the merge of them must finish with
the rule (9). The predicate disable states that 1.tr cannot interrupt 0.tr if, either
that the length of 1.tr is shorter or equal to the length of 0.tr and has not
executed any external events, or that there exists a subsequence of diff (1.tr , tr),

which contains empty traces (
/tr = 〈〉) only and whose length is longer or
equal to #diff (0.tr , tr).

We consider the merge predicate of the postcondition first, which describes
non-divergent behaviours. If P does not diverge and Q cannot interrupt P , no
matter Q can diverge or not, the behaviour will not become divergent. In the
meantime the values of ok ′ and wait ′ depend on those of P .

IM 1 =̂

(
IMTR(tr ,tr ′,0.ref ,1.ref ,ref ,ref ′,0.ref ,1.ref )∧disable(tr ,0.tr ,1.tr)

∧ ok ′ = 0.ok ∧ state ′ = 0.state ∧ wait ′ = 0.wait

)
IMTR(tr , tr ′, 0.tr , 1.tr , ref , ref ′, 0.ref , 1.ref ) =̂((

diff (tr ′, tr),
ref ′ − front(ref )

)
=ISync

(
diff (0.tr , tr), diff (1.tr , tr),
0.ref − front(ref ), 1.ref − front(ref )

))
Similarly, if Q does not diverge but does interrupt P , the behaviour is still stable
regardless of the state of P .

IM 2 =̂

(
IMTR(tr ,tr ′,0.ref ,1.ref ,ref ,ref ′,0.ref ,1.ref )∧enable(tr ,0.tr ,1.tr)

∧ ok ′ = 1.ok ∧ state ′ = 1.state ∧ wait ′ = 1.wait

)
For the precondition of the reactive design, we are only interested in the diver-
gence of P if the interruption has not happened, and the one of Q if it has done.
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As a result, the divergent behaviour can be captured as follows.

∃
(
0.tr , 0.ref ,
1.tr , 1.ref

)
•

⎛⎝P f
f [0.tr , 0.ref /tr

′, ref ′]∧Qf [1.tr , 1.ref /tr
′, ref ′]

∧ disable(tr , 0.tr , 1.tr) ∧
IMTR(tr , tr ′, 0.tr , 1.tr , ref , ref ′, 0.ref , 1.ref )

⎞⎠;R1ct(true)

∃
(
0.tr , 0.ref ,
1.tr , 1.ref

)
•

⎛⎝Pf [0.tr , 0.ref /tr
′, ref ′]∧Q f

f [1.tr , 1.ref /tr
′, ref ′]

∧ enable(tr , 0.tr , 1.tr) ∧
IMTR(tr , tr ′, 0.tr , 1.tr , ref , ref ′, 0.ref , 1.ref )

⎞⎠;R1ct(true)

Thus, the integrated definition of the interrupt operator is a combination of the
above cases, including an extra predicate to tackle the immediate divergence of
P or Q . That is, the divergent cases are given in the precondition, and the other
are given in the postcondition.

Definition 7

P � Q =̂⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

¬ (((P f
f ∨ Q f

f ) ∧ tr ′ = tr) ; R1ct(true)) ∧

¬ ∃
(
0.tr , 0.ref ,
1.tr , 1.ref

)
•

⎛⎜⎜⎜⎜⎝
P f
f [0.tr , 0.ref /tr

′, ref ′]∧
Q t

f [1.tr , 1.ref /tr
′, ref ′] ∧

disable(tr , 0.tr , 1.tr) ∧

IMTR

(
tr , tr ′, 0.tr , 1.tr ,
ref , ref ′, 0.ref , 1.ref

)
⎞⎟⎟⎟⎟⎠;R1ct(true) ∧

¬ ∃
(
0.tr , 0.ref ,
1.tr , 1.ref

)
•

⎛⎜⎜⎜⎜⎝
P t
f [0.tr , 0.ref /tr

′, ref ′]∧
Q f

f [1.tr , 1.ref /tr
′, ref ′] ∧

enable(tr , 0.tr , 1.tr) ∧

IMTR

(
tr , tr ′, 0.tr , 1.tr ,
ref , ref ′, 0.ref , 1.ref

)
⎞⎟⎟⎟⎟⎠;R1ct(true)

�
((P t

f ; U 0(outαP)) ∧ (Q t
f ; U 1(outαQ)))+{tr ,ref } ; (IM 1 ∨ IM 2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Here, we use the CSP2ct-converge law that is proved in [19], P t = P t ∨ P f if
P is CSP2ct healthy, to replace Pf and Qf with P t

f and Q t
f respectively.

The generic interrupt operator is unexpectedly different from the catastrophic
interrupt operator even if we make the interrupting action as c → Q . In fact,
their refinement can be expressed as

P � (c → Q) 1 P �c Q (11)

since P � (c → Q) contains more behaviours. The proof of this refinement can
be found in [19]. The idea adopted in this paper to calculate the definition of
catastrophe is to consider Q sequentially composed with P but lifted forward
to happen whenever P is waiting for the interaction. However, in Circus Time,
P may execute an event immediately only so that it cannot be interrupted by
means of the definition in Theorem 3. For example, the interruptible action in
Lemma 4 is not interruptible, and its proof can also be found in [19].
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Lemma 4. ((a → Skip) � Miracle) �c Q = ((a → Skip) � Miracle)

Here, Miracle can force the event a to occur immediately and then terminate.
More discussion about the interaction between Miracle with other operators can
be found in [19]. The behaviour in Lemma 4 can be captured only by the first
clause in the postcondition in Theorem 3. However, Lemma 4 does not hold for
the generic interrupt operator, because the event c is able to interrupt as long
as it occurs immediately too, via the rule 9 in ISync.

The generic interrupt in Circus Time can satisfy a number of algebraic laws
in CSP. For example, it respects a step law, which is also proved by a similar
approach as Law 1.

Law 2. (a → P) � (c → Q) = (a → (P � c → Q)) � (c → Q)

Since Stop offers no external event, it can never interrupt any action. Similarly,
if Stop is interruptible, only interrupt can occur.

Law 3. (P � Stop) = P = (Stop � P)

If Skip is the interrupting action, similar to Stop, the interrupt always behaves
just like the interruptible action.

Law 4. P � Skip = P

However, in Circus Time, Skip can be interrupted because we can allow events
to happen without any delay, which can even occur prior to the start of Skip.

Law 5. Skip � P 1 Skip

In addition, the divergent action cannot be cured by interrupting it, or it is not
safe to specify a divergent action after the interrupt.

Law 6. (P � Chaos) = Chaos = (Chaos � P)

The proofs of Law 2–Law 6 rely on the unfolding of the reactive designs of the
generic interrupt operator and related operators. The hand-written proofs of
these laws can be found in [19].

3.3 Timed Interrupt

A timed interrupt, P �d Q , allows P to run for no more than a particular length
of time, and then performs an interrupt to pass the control of the process to Q .
Compared with the event-driven interrupt where the environment of the process
can prevent the interrupt event from happening, this time-driven interrupt can-
not be avoided (if P does not terminate before time d) since its environment is
not involved. The timed interrupt operator can be defined via the event-driven
interrupt and hiding as follow

Definition 8. P �d Q =̂ (P � Wait d ; (e → Q)) \ {e} e /∈ α(P) ∪ α(Q)

where the special event e becomes urgent to interrupt P immediately after d
time units.

However, to avoid the complex semantics introduced by hiding, we directly
give its definition to describe the behaviour of the timed interrupt, rather than
calculating its reactive design from Definition 8.



388 K. Wei

Definition 9

P �d Q =̂

⎛⎜⎜⎜⎜⎜⎜⎜⎝

¬ ((P f
f ∧ #tr ′ −#tr ≤ d) ; R1ct(true)) ∧

¬ ((P t
f ∧ #tr ′ −#tr = d) ; (wait ∧ II−wait ∧ ¬ wait ′) ; Q f

f )

�
(P t

f ∧ #tr ′ −#tr ≤ d) ∨((
P t
f ∧ #tr ′ −#tr = d

∧ state ′ = state

)
; (wait ∧ II−wait ∧ ¬ wait ′) ; Q t

f

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
The precondition of the above reactive design states that if P does not diverge
within d time units, and if Q does not diverge after an interruption, and the
postcondition guarantees the observation of P within d , or the sequential com-
position of the observation of P before the interruption (during d time units)
and the behaviour of Q . In fact, the timed interrupt is quite like a kind of se-
quential composition because the interrupting action has no influence on the
interruptible action.

The validation of this reactive design semantics for the timed interrupt opera-
tor is retained by proving a number of algebraic laws. There are some interesting
laws for timed interrupts and delays. Law 7 states that a delay can be lifted for-
ward from the interruptible action if its duration is no longer than the allowed
waiting time units. Law 8 states that �d can be eliminated if a delay has still
not terminated when an interruption occurs. Law 9 states that a timed interrupt
can be sequentialised if the interruptible action is Stop.

Law 7. (Wait d ; P) �d+d′ Q = Wait d ; (P �d′ Q)

Law 8. (Wait (d + d ′) ; P) �d Q = Wait d ; Q

Law 9. Stop �d P = Wait d ; P

In addition, we have three zero laws for �d . Law 10 states that a divergence
cannot be recovered, Law 11 states that termination can eliminate�d if an inter-
ruption has not occurred, and Law 12 states that �d cannot make an unstarted
action start.

Law 10. Chaos �d P = Chaos

Law 11. Skip �d P = Skip if d > 0

Law 12. Miracle �d P = Miracle

The proofs of Law 7–Law 12 and more detailed discussions about these laws can
be found in [19].

4 Conclusion

The reactive designs of the three interrupt operators developed in this paper
carry on our previous work [16,17,18] to enhance the expressiveness of the Cir-
cus Time model. The well-established semantics of these interrupt operators is
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significant in proving refinement laws in Circus Time. In line with the strong
capability to deal with data in Circus Time, each action has two observational
variables, state and state ′, in its alphabet to record values of local variables.
The two observational variables are carefully constrained in order to respect
some important refinement laws. For example, we allow state ′ to be arbitrary
at any waiting state or deadlock to retain the unit law, P � Stop = P . That is
to say, we can observe the value of state ′ only when a program terminates. This
claim, here, affects the mechanism for handling local variables within the inter-
rupt operators. For example, a program in Circus Time may have the following
behaviour involving updates of a program variable in an interruption.

x := 0; ((x := x + 1; Stop) � (c → x := x + 1))

The value of x when the program terminates is 1 if c occurs. From the reactive
designs of the three kinds of interrupt operators, the interrupting action always
obtains state from the beginning of an interrupt operator, no matter whether
the interruptible action has changed the values of local variables. In other words,
the interrupt operators in Circus Time cannot capture interruptions, such as a
recovered program from a deadlock can proceed with the latest values of local
variables before falling into the deadlock.

We demonstrate that these reactive designs of the interrupt operators preserve
all related properties in [5,13,14], and also discuss their relations. Different from
the approach used in the work [10], we adopt the parallel-by-merge to define
the generic interrupt operator. However, establishing the proof of parallelism
is always complicated. For simpler cases, the catastrophic interrupt operator is
recommended if enough. A number of algebraic laws of the three operators have
been proved by hand. As such hand-proofs are well-knowingly error prone, the
mechanised proofs in a theorem prover is of course our future work in a short
term. The work of mechanising Circus in ProofPower [12] and Isabelle [4] can
help us to embed this semantics.

Acknowledgments. I thank Jim Woodcock for his advice on the semantics.
This work was fully supported by the hiJaC project (EPSRC-EP/H017461/1).
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Abstract. The PADS (Process Algebra for Demand and Supply) framework is
an approach to model resource demand and supply for the formal analysis of
hierarchical scheduling. Inspired by the demand relation in PADS, we propose
a weak demand relation covering several cases which can not be described by
a demand relation. And we explore some properties of weak demand relation
which are similar to properties of demand relation. Especially, if two tasks are
in a weak demand relation then their schedulabilities are closely related. Further-
more, we present a proof system for the weak demand relation in a decomposing-
composing way, which helps to compare two tasks’ schedulabilities. Finally, we
prove that the proof system is sound and complete with respect to the semantic
definition of weak demand relation.

Keywords: resource demand and resource supply, hierarchical scheduling, real-
time process algebra, demand relation.

1 Introduction

As the complexity of real-time embedded systems is increasing, compositional de-
sign and analysis methods for the assurance of timing requirements are developed.
Component-based design is such a widely accepted approach to facilitate the design
of complex systems. This approach provides means for decomposing a complex sys-
tem into some simpler components and for composing the components using interfaces
which abstract component complexities. In the procedure of using component tech-
nology to design real-time systems, we need naturally consider some corresponding
scheduling problems. For example, if every component is schedulable, is the composi-
tion of components schedulable under a composition of components’ schedule scenar-
ios? For the scheduling analysis in component-based design, compositional hierarchical
scheduling is developed, such as [3,4,7,13,14], which are based on real-time scheduling
theory and interface theory. PADS (Process Algebra for Demand and Supply), first pro-
posed by A.Philippou et al. in [12], is a model for the formal analysis of compositional
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hierarchical scheduling. In PADS, a task is specified by describing its consumption
needs for resources, and the behaviour of supplying resource is modeled by supply pro-
cess. Based on task process and supply process, we can analyze the schedulability for
tasks and their compositionality by using a small number of operators in PADS.

Resource demands describe the needed resources to execute tasks. The relations be-
tween resource demands can help us to analyze task’s schedulability. In order to provide
such a machinery that may allow us to reason about hierarchical approaches to schedul-
ing, A.Philippou et al. present the demand relation between tasks and study its prop-
erties in [12]. In particular, the demand relation satisfies that any supply which is able
to schedule a more demanding task can also schedule a less demanding task. However,
we find that there exist some task pairs, which can not be described by a demand rela-
tion and whose schedulabilities are comparable. For example, task T1 has two possible
executing paths, including {(r1, 2), (r2, 1)} : {(r1, 1)} : FIN and {(r1, 1), (r2, 2)} :
{(r2, 2)} : FIN , in which first actions request same resources and have no any pre-
emption relation; task T2 has only one executing path, i.e. {(r1, 1)} : {(r1, 1)} : FIN .
According to the definition of demand relation, T1 is not more demanding than T2. This
is because that the executing path {(r1, 1), (r2, 2)} : {(r2, 2)} : FIN in T1 is not more
demanding than T2’s executing path. In fact, every supply which is able to schedule T1

could schedule T2. In order to describe these task pairs, this paper proposes a new weak
demand relation between tasks. And we prove that it can be determined in a finite num-
ber of steps whether two tasks are in a weak demand relation or not. Then, we explore
some properties about the weak demand relation. For example, the largest weak demand
relation �D is reflexive and transitive. In particular, such a property holds, which says
that every supply that schedules a stronger demanding task in a weak demand relation
can also schedule a weaker demanding task. The results show that the weak demand
relation contains some task pairs whose schedulabilities can be compared and which
are not included in any demand relation. Therefore, the weak demand relation is a rea-
sonable machinery in the sense of helping us analyze task’s schedulability. Finally, we
present a proof system, named PTT, for a weak demand relation between two finite
task processes, and prove its soundness and completeness with respect to the semantic
definition of weak demand relation. When establishing the proof system PTT, we adopt
a decomposing-composing way, i.e. if task T1 is more weak-demanding than task T2,
then we decompose T1 into several parts according to the executability of actions, and
decompose T2 so that every decomposed part in T1 is more weak-demanding than some
decomposed part in T2, and finally compose these parts using choice operator “+” .

Related work. Formal approach is one of long-standing lines of research for composi-
tional analysis. There have been several formal approaches to scheduling, such as based
on process algebra [1,8,9,10,11], task automata [5,6], preemptive Petri nets [2], etc.
Comparing with these approaches, PADS models resource demand and resource supply
explicitly. About PADS, [12] discusses the schedulability of tasks, explores conditions
under which schedulable systems may be safely composed, and presents a method to
generate a supply to schedule a set of tasks when they are schedulable. In addition, [12]
proposes the demand relation for the hierarchy between tasks and studies its properties.
For example, a supply which is able to schedule a more demanding task could also
schedule a less demanding task. In this paper, our weak demand relation covers some
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task pairs which can not be described by the demand relation. The weak demand rela-
tion satisfies that every supply which could schedule a stronger demanding task is also
able to schedule a weaker demanding task. Furthermore, we discuss how to determine
whether two tasks are in a weak demand relation and build a related proof system.

The remainder of the paper is organized as follows. In Section 2, we introduce
some concepts, lemmas in [12] and a modified definition of demand relation. Section
3 presents the concept of weak demand relation and develops its properties. In Section
4, we establish a proof system PTT for the weak demand relation, and give an example
to show its reasoning ability. Section 5 proves the soundness and completeness of the
proof system PTT. In Section 6, we conclude this paper and present some future work.

2 Preliminary

In this section, we will introduce some concepts, lemmas in [12] and our modified
definition of demand relation.

In PADS, a system is considered to be a set of processes operating on a set of serially
reusable resource. These processes are (1) tasks, which require the use of resources in
order to complete their jobs, and (2) supplies, that specify when each resource is avail-
able to the tasks. In [12], the set of resources is denoted by R; each resource r ∈ R can
be requested by a task; r means that the resource r is granted by a supply;

↔
r means

that the resource r is consumed. A resource r is consumed when a supply and a re-
quest for the resource are simultaneously available. We write Act, ranged over by α
and β, for the set of all actions and distinguish ActR, for the set of actions involving
only resource requests, ranged over by ρ, and ActG, the set of actions involving only
resource grants, ranged over by γ. Given α ∈ Act we write α� to remove all priori-
ties from resource-priority pairs, e.g.{(r1, 1), r2, (

↔
r3, 2)}� = {r1, r2,

↔
r3}, and res(α)

for the set of resources occurring in α, e.g.res({(r1, 1), r2, (
↔
r3, 2)}) = {r1, r2, r3}.

And we write πα(r) for the priority at which resource r is employed within action α,
where we consider all supplied resources to be employed at priority level 0, e.g.for
α = {(r1, 1), r2, (

↔
r3, 2)}, we have πα(r1) = 1, πα(r2) = 0 and πα(r3) = 2. We say

that actions α1 and α2 are compatible with each other if, whenever r occurs in both
actions then one occurrence must be a request and the other a supply of the resource.
Formally, it can be represented as follows:

compatible(α1, α2) =
∧

r∈res(α1)∩res(α2)

(r ∈ α�
1 ∧ r ∈ α�

2) ∨ (r ∈ α�
2 ∧ r ∈ α�

1) .

For compatible actions α1 and α2, there is such a combining operation “⊕”as follows:

α1 ⊕ α2 = {(r, p) ∈ α1 ∪ α2|r /∈ α1 ∪ α2}
∪ {r ∈ α1 ∪ α2|(r, p) /∈ α1 ∪ α2}
∪ {(↔r , p)|(r, p) ∈ αi, r ∈ α3−i, i ∈ {1, 2} or (

↔
r , p) ∈ α1 ∪ α2} .

The syntaxes for the set of tasks T, the set of supplies S and the set of timed systems P
are listed as follows, and their semantics are given in Table 1.
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T ::= FIN | ρ : T | T + T | C

S ::= FIN | γ : S | S + S | D

P ::= δ | T | S | P‖P

Here, C ranges over a set of task constants, each with an associated definition of the

form C
def
= T , where T may contain occurrences of C as well as other task constants;

and D ranges over a similar set of supply constants. δ means that the system is locked.

Table 1. Transition rules

(Idle) FIN
∅� FIN

(ActT) ρ : T
ρ� T (ActS) γ : S

γ� S

(SumT)
Ti

α� T, i ∈ {1, 2}
T1 + T2

α� T
(SumS)

Si
α� S, i ∈ {1, 2}
S1 + S2

α� S

(ConstT) T
α� T ′

C
α� T ′ C

def
= T (ConstS) S

α� S′

D
α� S′ D

def
= S

(Par)
P1

α1� P ′
1, P2

α2� P ′
2

P1‖P2

α1⊕α2� P ′
1‖P

′
2

compatible(α1 ,α2)

P
α� Q

P
α→ Q

there is no P
β�, α ≺ β

As we see in Table 1, the transition relation “→” is based on “�”and is restrained
by the preemption relation among actions. The transition relation “→”is a refinement
of “�”.

According to [12], we write P
α−→ if there exists P ′ such that P

α−→ P ′; if there exists
α such that P

α−→, we write P →; and if there exist α1, · · · , αn and P1, · · · , Pn, n ≥ 1,
such that P

α1−→ P1
α2−→ · · ·Pn−1

αn−−→ Pn = P ′, we write P ⇒ P ′. Moreover, T∗

denotes the set containing all processes of the form T1‖ . . . ‖Tn, n ≥ 1, S∗ represents
the set containing all processes of the form S1‖ . . . ‖Sn, n ≥ 1, and

∑
i∈I Ti denotes

Ti1 + · · ·+ Tin , where I = {i1, . . . , in}.

Definition 1. We define the preemption relation ≺∈ Act× Act so that α ≺ β if one of
the following holds:
1. {r|r ∈ α� or

↔
r∈ α�} = {r|r ∈ β� or

↔
r∈ β�}, α� ∩ R �= ∅ and β� ∩ R = ∅,

that is, α and β use the same consumed and offered resources and α contains some
additional resource requests whereas β does not.

2. res(α) = res(β), α� ∩ R = β� ∩ R = ∅ and {r| ↔r∈ α�} ⊂ {r| ↔r∈ β�}, that is,
α and β involve the same resources, neither of them makes any resources requests,
but β consumes more resources than α.

3. α� = β�, for all r ∈ res(α)πα(r) ≤ πβ(r), and there exists r ∈ res(α), πα(r)
< πβ(r), that is, α and β contain the same resources with β giving greater or
equal priority to all resource usages, and there exists at least one resource which is
associated with a strictly greater priority in β than in α.
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Definition 2. Let α, β ∈ Act.

– We write sat(β, α) if res(β) ⊆ res(α). In the case of β ∈ ActR and α ∈ ActG, we
say that request action β is satisfied by grant action α.

– For a system P , we write β �P α if sat(β, α) and there exists no γ ∈ Act such that
P

γ−→ P ′, sat(γ, α) and either β� ⊂ γ� or β� = γ� and β ≺ γ. If β �P α we say
that β is a maximal response of P with respect to α.

Example 1. Let T = {(r1, 2), (r2, 3)} : {(r2, 1)} : FIN + {(r1, 1)} : FIN +
{(r1, 2), (r2, 2)} : FIN ,α1 = {(r1, 2), (r2, 3)},α2 = {(r1, 1)},α3 = {(r1, 2), (r2, 2)}
and γ = {r1, r2, r3}. Then, T has only two transitions: T

α1−→ {(r2, 1)} : FIN and
T

α2−→ FIN , sat(α1, γ), α1 ⊀ α2 and α�
2 = {r1} ⊂ α�

1 = {r1, r2}. So, α1 �T γ,
α2 �T γ. For action α3, α�

3 = α�
1 and α3 ≺ α1. Thus, α3 �T γ.

Definition 3. A task T ∈ T∗ is schedulable by supply S ∈ S∗ if whenever T ‖S ⇒ P

then (i) P → and (ii) for all P
α−→ we have α� ∩ R = ∅.

Definition 4. A relation S ⊆ T∗×S∗ is a supply simulation relation if for all (T, S) ∈
S , S →, and if S

α−→ S′ then

1. there exists T
β−→ T ′ with sat(β, α) and (T ′, S′) ∈ S , and

2. whenever T
β−→ T ′ with β �T α, then (T ′, S′) ∈ S .

If there exists a supply simulation relation between T and S, then we write S |= T .

Lemma 1. A task T ∈ T∗ is schedulable by supply S ∈ S∗ if and only if S |= T .

In order to characterize the relation between two tasks’ schedulabilities, [12] presents a
concept of demand relation. In the following, we will modify the definition of demand
relation in [12], and our demand relation satisfies that every supply which is able to sched-
ule a more demanding task could also schedule a less demanding task, i.e. Lemma 2.

Definition 5. A relation D ⊆ T × T is a demand relation if for all (T1, T2) ∈ D, if
T1

α−→ then

1. there exist T2
β−→ T ′2 with sat(β, α) and T1

α−→ T ′1, such that (T ′1, T
′
2) ∈ D.

2. for all T2
β−→ T ′2, if β �T2 α∪β, α�T1 α∪β and for no γ, T1

γ−→ and β �T2 γ and
γ �T1 α ∪ β, then there exists T1

α−→ T ′1 such that (T ′1, T
′
2) ∈ D.

3. for all T2
β→ T ′2 with β �T2 α, there exists T1

α→ T ′1 such that (T ′1, T
′
2) ∈ D.

We write �D for the largest demand relation and we say that a task T1 is more demand-
ing than a task T2, T2 �D T1, if there exists a demand relation D with (T1, T2) ∈ D.

Lemma 2. Suppose that task T1 is schedulable by supply S and that T1 is more de-
manding than T2. Then, task T2 is also schedulable by supply S.
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3 Weak Demand Relation

Firstly, we consider the following two examples.

Example 2. Suppose tasks T1 and T2 be defined as follows:

T1 = {(r1, 2), (r2, 3)} : {(r2, 2)} : FIN + {(r1, 3), (r2, 2)} : {(r1, 1)} : FIN ,

T2 = {(r1, 2)} : {(r2, 1)} : FIN .

For either the pair (T1, T2) or (T2, T1), Clause 1 in Definition 5 does not hold. So,
T2 �D T1 and T1 �D T2. Furthermore, we can not build a demand relation to show
their schedulability relation. However, their schedulabilities are related; for every sup-
ply S if task T1 is schedulable by S, then T2 is also schedulable by S.

Example 3. Suppose tasks T3 and T4 be defined as follows:

T3 = {(r1, 1), (r2, 2), (r3, 3)} : {(r1, 1)} : FIN + {(r1, 1), (r3, 2), (r4, 4)} : FIN ,

T4 = {(r1, 1)} : FIN + {(r2, 1), (r4, 1)} : {(r1, 1)} : FIN .

For the pair (T3, T4), Clause 2 in Definition 5 does not hold; for (T4, T3), Clause 1 in
Definition 5 is not satisfied. So, T4 �D T3 and T3 �D T4. Furthermore, we can not
show schedulability relations between T3 and T4 by building a demand relation. In fact,
their schedulabilities are related; for every supply S if task T3 is schedulable by S, then
T4 is also schedulable by S.

As we see in Example 2 and Example 3, the schedulability relations between T1 (T3)
and T2 (T4) are not reflected in the concept of demand relation. So, we propose the
following weak demand relation to describe such task pairs.

Definition 6. A relation D ⊆ T× T is a weak demand relation if for all (T1, T2) ∈ D,
if T1

α−→ then

1. there exist T2
β−→ T ′2 with β�T2α and T1

α′
−→ T ′1 with α′�T1α, such that (T ′1, T

′
2) ∈

D, and

2. for any γ ∈ ActG, if T2
β−→ T ′2 with β�T2 γ and α�T1 γ, then there exists T1

α′
−→ T ′1

with α′ �T1 γ and (T ′1, T
′
2) ∈ D.

We write �D for the largest weak demand relation and we say that a task T1 is more
weak-demanding than T2, T2 �D T1, if there exists a weak demand relation D with
(T1, T2) ∈ D.

To better understand Definition 6, let us first consider the point relating to the existence
of a α′-move of T1 in the first clause. In Example 2, although T2 can not be matched by
the second summand of T1, it is intuitive that T1 is more weak-demanding than T2. Be-
cause for T1 to be scheduled successfully it is imperative that after being offered r1 and
r2 it will be continuously offered both r1 and r2. Thus, it is sufficient for T2’s derivative
to be matched by one of the maximal derivatives of T1 with respect to {(r1, 3), (r2, 2)}.
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The second clause in Definition 6 is concerned with a grant γ under which T1 and

T2 have responses, i.e. T1
α→ with α �T1 γ and T2

β→ T ′2 with β �T2 γ, and it aims to
ensure that if a supply is able to schedule maximal derivatives of T1 with respect to γ
then every maximal derivative of T2 with respect to γ is also schedulable by the supply.
Clause 2 enunciates this requirement in the way that for every maximal derivative T ′2
of T2 with respect to γ there exists a maximal derivative of T1 which is more weak-
demanding than T ′2. About Example 3, we take α = {(r1, 1), (r3, 2), (r4, 4)}, α′ =
{(r1, 1), (r2, 2), (r3, 3)}, β = {(r2, 1), (r4, 1)}. Under a grant γ which offers r1, r2, r3
and r4, a maximal β-derivative of T4 is matched by a α′-derivative of T3. Furthermore,
we could check that T3 is more weak-demanding than T4.

The largest weak demand relation �D is reflexive and transitive. Especially, two
tasks’ schedulabilities are also comparable in a weak demand relation.

Theorem 1. Suppose that task T1 is schedulable by supply S, and T1 is more weak-
demanding than T2, i.e. T2 �D T1. Then, task T2 is also schedulable by supply S.

Proof. The proof consists of showing that the relation

S = {(T2, S)|∃weak demand relation D, supply simulation relation R
and T1 ∈ T, (T1, T2) ∈ D, (T1, S) ∈ R}

is a supply simulation. Suppose (T2, S) ∈ S and T1 is a task such that (T1, T2) ∈ D,
where D is a weak demand relation, and (T1, S) ∈ R, where R is a supply simulation
relation. Assume S

γ−→ S′, then

– Since (T1, S) ∈ R, there exists T11 with T1
ρ1−→ T11 and ρ1 �T1 γ. Thus, by clause

1 in Definition 6, there exists T21 such that T2
ρ2−→ T21 with ρ2 �T2 ρ1, and T12

such that T1
ρ3−→ T12 with ρ3 �T1 ρ1 and (T12, T21) ∈ D. Furthermore, sat(ρ2, γ),

ρ�3 = ρ�1, ρ3 �T1 γ and (T12, S
′) ∈ R. This implies (T21, S

′) ∈ S as required.

– Next suppose that T2
ρ−→ T ′2 with ρ �T2 γ. We know that there exists T1

ρ1−→ T ′1

with ρ1 �T1 γ. Thus, by Clause 2 in Definition 6, there exists T1
ρ′
1−→ T ′′1 such

that ρ′1 �T1 γ and (T ′′1 , T ′2) ∈ D. By the definition of supply simulation relation,
(T ′′1 , S′) ∈ R. Thus (T ′2, S

′) ∈ S which completes the proof.
�

For tasks in Example 2 and Example 3, we have: T2 �D T1 and T4 �D T3. According
to Theorem 1, for any supply S, S |= T1 implies S |= T2 and S |= T3 implies S |= T4.
However, we can not reason about the four tasks’ schedulabilities by using demand
relation. This fact shows that the weak demand relation is a reasonable machinery in
the sense of helping us analyze more tasks’ schedulabilities. Furthermore, the weak
demand relation is strictly weaker than our demand relation.

Theorem 2. If R is a demand relation, then R is also a weak demand relation.

The following Theorem 3 tells us that it can be determined in a finite number of steps
whether a task T1 is stronger demanding than T2 in a weak demand relation. Because
of limited space, we will not give its proof.
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Theorem 3. Assume binary relation D ⊆ T × T. Then, D is a weak demand relation,
if and only if D satisfies the following conditions, i.e. for all (T1, T2) ∈ D, if T1

α−→,
then

(1) there exist T2
β−→ T ′2 with β�T2α and T1

α′
−→ T ′1 with α′�T1α, such that (T ′1, T

′
2) ∈

D, and
(2) let A = {ρ�|T1

ρ−→}, for any nonempty subset B ⊆ A, C =
⋃

ρ�∈B
ρ�, if

T2
β−→ T ′2 with β �T2 β� ∪ C

and α �T1 β� ∪ C, then there exists

T1
α′
−→ T ′1 with α′ �T1 β� ∪C and (T ′1, T

′
2) ∈ D.

4 Proof System PTT

In this section we will present a proof system PTT for a weak demand relation between
task processes without task constants. Firstly, we will define some concepts describing
relations among tasks in order to build proof system PTT. Secondly, we give all the
rules in PTT and take an example to show PTT’s reasoning ability.

4.1 Some Basic Concepts

Definition 7. Let T, T ′ ∈ T. If for any ρ ∈ ActR, T
ρ−→ implies T ′

ρ−→, then we say that
task T ′ preserves executable actions in T , denoted by ↑T ′

T .

↑T ′
T means that any executable action in T is also executable in T ′.

Definition 8. Let T, T ′ ∈ T, γ ∈ ActG. If for any ρ ∈ ActR, T
ρ−→ with ρ �T γ implies

T ′
ρ−→ with ρ �T ′ γ, then we say, task T ′ preserves executable and maximal actions in

T under γ, denoted by �↑T ′
T (γ).

�↑T ′
T (γ) means that any executable and maximal action under γ in T is also executable

and maximal under γ in T ′.

Example 4. Let T = {(r1, 2)} : {(r2, 3)} : FIN , T ′ = {(r1, 2)} : FIN + {(r1, 1),
(r2, 1)} : {(r3, 1)} : FIN . Then, task T has only one transition: T

{(r1,2)}−−−−−→ {(r2, 3)} :

FIN , and T ′
(r1,2)−−−→ FIN . So, we have: ↑T ′

T .
Furthermore, suppose γ1 = {r1}, then {(r1, 2)} �T γ1 and {(r1, 2)} �T ′ γ1. Thus,�↑T ′
T (γ1). But for γ2 = {r1, r2}, “�↑T ′

T (γ2)”does not hold. This is because
{(r1, 2)} �T γ2 and {(r1, 2)} �T ′ γ2.

Definition 9. Let Ti,
∑ki

j=1 αij : Tij ∈ T, and {α�
ij |j = 1, · · · , ki} be a single set,

i = 1, · · · ,m. We say, task “vector” (T1, · · · , Tm) can converge at an element with
task “vector”(

∑k1

j=1 α1j : T1j , · · · ,
∑km

j=1 αmj : Tmj), denoted by

�•(∑k1
j=1 α1j :T1j ,··· ,

∑km
j=1 αmj :Tmj)

(T1,··· ,Tm) ,

if for any γ ∈ ActG, the following property holds:
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i=1 Ti

α−→ T with α �∑m
i=1 Ti

γ and αi0j0 ∈
⋃m

i=1{αij |j = 1, · · · , ki} with

αi0j0 �∑
m
i=1

∑ki
j=1 αij :Tij

γ imply that there exist l ∈ {1, · · · ,m} and

s ∈ {1, · · · , kl}

such that Tl
α−→ T and αls �∑

m
i=1

∑ki
j=1 αij :Tij

γ.

Intuitively, �•(∑k1
j=1 α1j :T1j ,··· ,

∑km
j=1 αmj :Tmj)

(T1,··· ,Tm) means that for task “vectors ”(T1, · · · ,
Tm) and (

∑k1

j=1 α1j : T1j, · · · ,
∑km

j=1 αmj : Tmj), the maximal transition and the
maximal action about the two sums of their elements under any resource grant can
happen at a common element.

Example 5. Let T1 = {(r1, 1), (r3, 2)} : {(r2, 1)} : FIN + {(r2, 2), (r3, 3)} : FIN ,
T2 = {(r1, 2), (r2, 3)} : {(r2, 2)} : FIN + {(r1, 3), (r3, 2)} : {(r1, 1)} : FIN ,
α11 = {(r2, 2), (r3, 2)}, α12 = {(r2, 1), (r3, 3)}, α21 = {(r1, 2)}, α22 = {(r1, 3)},
and T11, T12, T21, T22 be any tasks. Then we have:

�•(α11:T11+α12:T12,α21:T21+α22:T22)
(T1,T2)

.

Because for any γ ∈ {{r1, r2}, {r1, r3}, {r2, r3}, {r1, r2, r3}}, we can verify that
the maximal transition and the maximal action for (T1, T2) and (α11 : T11 + α12 :
T12, α21 : T21 + α22 : T22) can do evolution at a common element.

Similar to Theorem 3, the following Theorem 4 shows that we need only consider a

finite number of resource grants to verify whether “�•(∑k1
j=1 α1j :T1j ,··· ,

∑km
j=1 αmj :Tmj)

(T1,··· ,Tm) ”
holds or not.

Theorem 4. Let Ti,
∑ki

j=1 αij : Tij ∈ T, and {α�
ij |j = 1, · · · , ki} be a single set,

i = 1, · · · ,m; A = {α�
i1|i = 1, · · · ,m}. Then the following two propositions are

equivalent:

(1) “�•(∑k1
j=1 α1j :T1j ,··· ,

∑km
j=1 αmj :Tmj)

(T1,··· ,Tm) ” holds;

(2) For any α with
∑m

i=1 Ti
α−→ and any nonempty subset B ⊆ A, assuming C =⋃

ρ�∈B
ρ�, the following property holds:

m∑
i=1

Ti
α−→ T with α �∑

m
i=1 Ti

α� ∪ C

and

αi0j0 �∑
m
i=1

∑ki
j=1 αij :Tij

α� ∪ C, i0 ∈ {1, · · · ,m}, j0 ∈ {1, · · · , ki0},

imply that there exist l ∈ {1, · · · ,m} and s ∈ {1, · · · , kl} such that

Tl
α−→ T and αls �∑

m
i=1

∑ki
j=1 αij :Tij

α� ∪ C.
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In order to define the length of a task pair (T11, T21), we introduce the following con-
cepts.

Definition 10. Assume (T11, T21), (T12, T22) ∈ T × T. If there exist γ ∈ ActG and
α1, β1 ∈ ActR such that

T11
α1−→ T12 with α1 �T11 γ and T21

β1−→ T22 with β1 �T21 γ,

then we say (T11, T21) can evolve into (T12, T22), denoted by (T11, T21) → (T12, T22).

Definition 11. If (T1i, T2i) → (T1,i+1, T2,i+1), i = 1, · · · , n, then we say the sequence

sq : (T11, T21) → (T12, T22) → · · · → (T1,n+1, T2,n+1)

is an evolving sequence of (T11, T21).

Definition 12. Assume that sq : (T11, T21) → (T12, T22) → · · · → (T1,n+1, T2,n+1)
is an evolving sequence. If (T1,n+1, T2,n+1) = (FIN, FIN) and (T1i, T2i) �= (FIN,
FIN), i = 1, 2, · · · , n, then we say that the evolving sequence sq is a terminated
sequence of (T11, T21), and the length of sequence sq is n, denoted by h(sq) = n.

The length of (T11, T21) is the maximal length in all the terminated sequences of
(T11, T21), denoted by H(T11, T21), i.e.

H(T11, T21) = max{h(sq)|sq is a terminated sequence of (T11, T21)} .

Especially, we set the length of (FIN, FIN) to be 0, i.e. H(FIN, FIN) = 0.

For a task pair consisting of task constants, its length may be undefined; for a task pair
consisting of tasks without containing task constants, we can prove that its length is a
finite number. For convenience, we will call “finite process” instead of “process without
containing constants” in this paper.

4.2 Rules

Proof system PTT consists of eleven inference rules, which are listed in Table 2. These
rules are used to deduce a binary relation “�” over task set T. If T2 � T1 can be inferred
by using rules in PTT in a finite number of steps, we say that T2 � T1 is a theorem of
PTT, denoted by � T2 � T1.

Informally, we will explain every rule in PTT as follows:

– Rules R1, R2 and R3 are three axioms in PTT . Atomic task process FIN means
that it has no resource request and has no action to execute. “�”means more or
equal weak-demanding. So, at the respect of resource demanding FIN is equal to
itself and ∅ : FIN is equal to FIN .

– Rule R4 says that “�”is transitive, i.e. if task T1 is not less weak-demanding than
T2 and T2 is not less weak-demanding than T3, then T1 is not less weak-demanding
than T3.

– R5 says that if a task’s first resource request is not less than another task’s first
resource request and its subsequent task is not less weak-demanding than the other’s
subsequent task, then it is also not less weak-demanding than the other one.
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Table 2. Proof system PTT

R1 FIN � FIN

R2 ∅ : FIN � FIN R3 FIN � ∅ : FIN

R4
T3 � T2, T2 � T1

T3 � T1
R5

T2 � T1, β
 ⊆ α

β : T2 � α : T1

R6

T0 �
∑n

i=1 αi : Ti, α

n+1 ∈ {α

i |i = 1, · · · , n}, ↑
∑n+1

i=1
αi:Ti∑n

i=1 αi:Ti

T0 �
∑n+1

i=1 αi : Ti

R7

∑n
i=1 α1i:T1i �∑m

j=1 β2j :T2j , ∀j,l∈{1,··· ,m}. β�
2j=β�

2l,

∃j0 ∈{1,··· ,m}. T1,n+1 �T2j0
∧

∑m
j=1 β2j :T2j

β2j0−−−→∑n+1
i=1 α1i : T1i �

∑m
j=1 β2j : T2j

R8

∀i∈N:1≤i≤m. Ti �∑ki
j=1 αij :Tij , �•

(
∑k1

i=1
α1i:T1i,··· ,

∑km
i=1

αmi:Tmi)

(T1,··· ,Tm)
,

∀j ∈N:1≤j≤m. �↑
∑m

i=1
Ti

Tj
(α�

j1
), ∀l,s∈N:1≤l<s≤m.α�

l1
�=α�

s1∑m
i=1 Ti �

∑m
j=1

∑kj

i=1 αji : Tji

R9
∃i0 ∈ N : 1 ≤ i0 ≤ n. αn+1 ≺ αi0∑n+1

i=1 αi : Ti �
∑n

i=1 αi : Ti �
∑n+1

i=1 αi : Ti

R10
σ is a permutation of the set {1, 2, · · · , m}∑m

i=1 αi : Ti �
∑m

i=1 ασ(i) : Tσ(i)

R11

∑n
i=1 α1i:T1i �∑m

i=1 α2i:T2i,

∀j ∈N:1≤j≤m.α1,n+1�∑n+1
i=1

α1i:T1i
α�
1,n+1

∪α�
2j∑n+1

i=1 α1i : T1i �
∑m

i=1 α2i : T2i

– Rule R6 talks about the weak-demanding relation changes when adding a new
branch on the more weak-demanding task. If the new branch’s first resource re-
quest set appears in the original more weak-demanding task and it does not prevent
the original more weak-demanding task from executing, then after adding such a
new branch it is also more weak-demanding.

– R7 reflects the weak-demanding relation changes when adding a new branch on the
less weak-demanding task. If the direct successor of the new branch is less weak-
demanding than a direct successor of the original more weak-demanding task, and
all the first resource request sets without priorities are the same in the more weak-
demanding task, then after adding a new branch on the less weak-demanding task
it is also less weak-demanding.

– R8 tells us that for two task “vectors”, if one is more weak-demanding at every ele-
ment than the other, then under some certain conditions the “sum”of its all elements
is more weak-demanding than the “sum”of all elements in the other task “vector”.
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– R9 means that after deleting such a branch as its first action can be preempted by
some first action in the original task, it is still equal to the original task at the respect
of resource demand.

– R10 says that the weak-demanding relation is independent of the order of executing
branches in a task.

– R11 describes another case about adding a new branch on the less weak-demanding
task. If the first resource request in the new branch is less than some resource re-
quests in the original task under some resource grants, or the first action in the new
branch can be preempted by some action in the original task, then after adding such
a branch it is also less weak-demanding.

In the following we will show the reasoning ability of proof system PTT and how to use
it through an example.

Example 6. Assuming tasks T1, T2, T11, T12, T13, T14, T21, T22, T23 be defined as fol-
lows:
T1 = {(r1, 2), (r2, 3)} : T11 + {(r1, 1), (r2, 2)} : T12 + {(r2, 2), (r3, 4)} : T13+
{(r2, 3), (r3, 1)} : T14,
T2 = {(r1, 1), (r2, 3)} : T21 + {(r3, 2)} : T22 + {(r3, 1), (r4, 2)} : T23,
T11 = {(r2, 3), (r3, 1), (r4, 2)} : FIN ,
T12 = {(r2, 4)} : {(r1, 1)} : FIN ,
T13 = {(r3, 2), (r4, 2)} : {(r2, 1)} : FIN + {(r3, 3), (r4, 1)} : {(r4, 2)} : FIN ,
T14 = {(r4, 2), (r5, 3)} : FIN ,
T21 = {(r3, 2), (r4, 3)} : FIN + {(r3, 1)} : {(r2, 2)} : FIN ,
T22 = {(r3, 1)} : {(r2, 2)} : FIN ,
T23 = {(r5, 1)} : FIN .
Then, by using proof system PTT we can prove: � T2 � T1.

Proof Strategy. First, we delete summands in T1 and T2 whose first actions are not
executable. For T1, we delete the summand {(r1, 1), (r2, 2)} : T12. For T2, there are no
such summands to be deleted. Let T ′1 = {(r1, 2), (r2, 3)} : T11 + {(r2, 2), (r3, 4)} :
T13+ {(r2, 3), (r3, 1)} : T14.

Secondly, we divide T ′1 into some “small ”tasks in terms of resource set of its first
action. For T ′1, it can be divided into two tasks, T ′11 and T ′12. T ′11 = {(r1, 2), (r2, 3)} :
T11, T ′12 = {(r2, 2), (r3, 4)} : T13+ {(r2, 3), (r3, 1)} : T14.

Thirdly, for T ′11 and T ′12, we respectively search for their matching summands in T2

with respect to “�”; and for every summand in T2, we also search for its matching
“small ”task. Under the resource grant of the first action of T ′12, i.e. {r2, r3}, we search
for maximal actions in T2. The corresponding maximal action in T2 is {(r3, 2)}. Then,
prove which one in “� T22 � T13”and “� T22 � T14”holds. We can get: � T22 � T13.
Under the resource grant of the first action of T ′11, we need do similar work and can
get: � T21 � T11. The remainder in T2 is {(r3, 1), (r4, 2)} : T23, which need be built
connections with T ′11 or with T ′12. We can consider using rules R7 and R11. Because
{(r3, 1), (r4, 2)} does not satisfy conditions in R11. Only R7 may be usable. According
to R7, We need determine which one among “� T23 � T11”, “� T23 � T13”and
“� T23 � T14”holds. In fact, “� T23 � T14”holds.

Finally, we use choice operator + to connect the small tasks according to R8.
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5 The Soundness and Completeness of PTT

In this section we will give two theorems, which illustrate that the proof system PTT is
sound and complete with respect to the semantic definition of weak demand relation.
The two results show that the binary relation “�”gotten by PTT is exactly the weak
demand relation “�D”over the set of task processes without containing task constants.

Theorem 5 (Soundness). Assuming tasks T1, T2 ∈ T, if � T2 � T1, then T2 �D T1.

Proof Sketch. We will verify by constructing weak demand relations that every rule in
proof system PTT preserves such a property, which is that � T2 � T1 implies T2 �D

T1.

Proof. Because of limited space, we will only prove that Rule R7 in PTT preserves the
property: � T2 � T1 implies T2 �D T1.

Assume that “
∑n

i=1 α1i : T1i �
∑m

j=1 β2j : T2j” and “T1,n+1 � T2j0” respectively
satisfy:

n∑
i=1

α1i : T1i �D

m∑
j=1

β2j : T2j and T1,n+1 �D T2j0 .

Then, there exists a weak demand relation R with

(

m∑
j=1

β2j : T2j ,

n∑
i=1

α1i : T1i) ∈ R and (T2j0 , T1,n+1) ∈ R.

Assume

R
′
= R∪ {(

m∑
j=1

β2j : T2j ,

n+1∑
i=1

α1i : T1i)}.

Then, R′
is a weak demand relation if and only if (

∑m
j=1 β2j : T2j,

∑n+1
i=1 α1i : T1i)

in R′
satisfies the two clauses in the definition of weak demand relation.

Assume
m∑
j=1

β2j : T2j
β2k−−→ T2k, k ∈ {1, · · · ,m}.

By (
∑m

j=1 β2j : T2j ,
∑n

i=1 α1i : T1i) ∈ R, we know that there exists such a transition
n∑

i=1

α1i : T1i
α1l−−→ T1l with α1l �∑n

i=1 α1i:T1i
β�
2k and l ∈ {1, · · · , n},

and there exists
m∑
j=1

β2j : T2j
β2h−−→ T2h with h ∈ {1, · · · ,m} and (T2h, T1l) ∈ R.

For
∑n+1

i=1 α1i : T1i, if there is still such a transition:
n+1∑
i=1

α1i : T1i
α1l−−→ T1l with α1l �∑n+1

i=1 α1i:T1i
β�
2k,



404 X. Yao, M. Zhang, and Y. Chen

then Clause 1 in the definition of weak demand relation is satisfied. Otherwise, either
α1l ≺ α1,n+1 or res(α1l) ⊂ res(α1,n+1) ⊆ res(β2k). Then, we have:

n+1∑
i=1

α1i : T1i
α1,n+1−−−−→ T1,n+1 and α1,n+1 �∑n+1

i=1 α1i:T1i
β�
2k.

For
∑m

j=1 β2j : T2j , there is such a transition:

m∑
j=1

β2j : T2j

β2j0−−−→ T2j0 with (T2j0 , T1,n+1) ∈ R.

And β�
2j0

= β�
2k. So we have:

β2j0 �∑
m
j=1 β2j:T2j

β�
2k.

Thus, Clause 1 in the definition of weak demand relation is still satisfied.
On the other side, for any γ ∈ ActG, assume that

n+1∑
i=1

α1i : T1i
ρ−→ Tρ satisfies ρ �∑n+1

i=1 α1i:T1i
γ

and
m∑
j=1

β2j : T2j
ρ′
−→ Tρ′ satisfies ρ′ �∑

m
j=1 β2j :T2j

γ.

If ρ = α1,n+1 and Tρ = T1,n+1, then there is such a transition:
m∑
j=1

β2j : T2j

β2j0−−−→ T2j0 satisfying β2j0 �∑
m
j=1 β2j :T2j

γ and (T2j0 , T1,n+1) ∈ R.

Otherwise, ρ ∈ {α1i|i = 1, · · · , n} and Tρ ∈ {T1i|i = 1, · · · , n}. So we can assume
ρ = α1u and Tρ = T1u, u ∈ {1, · · · , n}. Furthermore, we have:

n+1∑
i=1

α1i : T1i
α1u−−→ T1u with α1u �∑n+1

i=1 α1i:T1i
γ

and
n∑

i=1

α1i : T1i
α1u−−→ T1u with α1u �∑

n
i=1 α1i:T1i

γ.

According to (
∑m

j=1 β2j : T2j ,
∑n

i=1 α1i : T1i) ∈ R, we can get:

m∑
j=1

β2j : T2j
β2v−−→ T2v with β2v �∑

m
j=1 β2j :T2j

γ and (T2v, T1u) ∈ R.

So, Clause 2 in the definition of weak demand relation is satisfied.
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From the above analysis, we know that R′ is a weak demand relation. Thus,

n+1∑
i=1

α1i : T1i �D

m∑
j=1

β2j : T2j .

�

Theorem 6 (Completeness). Assuming that tasks T1, T2 ∈ T do not contain any task
constant, if T2 �D T1, then � T2 � T1.

Proof Sketch. Because T1 and T2 do not contain task constants. H(T1, T2) is a finite
number. We will make induction on the length of (T1, T2), and analyze it from three
cases, i.e. 1. T1 �= FIN , T2 = FIN ; 2. T1 = FIN , T2 �= FIN ; 3. T1 �= FIN ,
T2 �= FIN .

Proof. Because of limited space, we will only prove the case: 1. T1 �= FIN , T2 =
FIN when making induction on the length of (T1, T2).

Let T11 = T1 and T21 = T2.
Base: H(T11, T21) = 0.
According to the definition of H(T11, T21), we can get: (T11, T21) = (FIN, FIN).

By Rule R1, we have: � T21 � T11.
Induction: Assume that any finite process pair (T11, T21) such that T21 �D T11 and

H(T11, T21) ≤ n can be inferred in PTT, i.e. � T21 � T11.
Let the length of H(T11, T21) be n+1, i.e. H(T11, T21) = n+1. Then, (T11, T21) �=

(FIN, FIN). In the following, we will only discuss the case: T11 �= FIN and T21 =
FIN .

Without losing generality, assume finite process T11 =
∑m

i=1 α1i : T 1
i . Let A =

{α|T11
α−→}, A� = {α�|α ∈ A}, then, according to the definition of T21 �D T11

and process FIN having only one transition: FIN
∅−→ FIN , we can get: for any

β ∈ A�, there exists αβ ∈ A such that α�
β = β, T11

αβ−−→ Tαβ
and FIN �D Tαβ

. So,
there exists {α1l1 , α1l2 , · · · , α1lk} ⊆ A satisfying: 1 ≤ l1 < l2 < · · · < lk ≤ m,
∀li �= lj ∈ {l1, l2, · · · , lk}.α�

1li
�= α�

1lj
, {α�

1l1
, α�

1l2
, · · · , α�

1lk
} = A� and ∀lj ∈

{l1, l2, · · · , lk}.T11

α1lj−−−→ T 1
lj

with FIN �D T 1
lj

. Thus,

(T11, T21) → (T 1
lj , F IN), ∀lj ∈ {l1, l2, · · · , lk}.

Furthermore,
H(T 1

lj , F IN) ≤ n, ∀lj ∈ {l1, l2, · · · , lk}.

According to the induction hypothesis, we have:

� FIN � T 1
lj , ∀lj ∈ {l1, l2, · · · , lk}.

By Rule R5, we can get:

� ∅ : FIN � α1lj : T 1
lj , ∀lj ∈ {l1, l2, · · · , lk}.

For being simple, let
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Aj = {α ∈ A|α� = α�
1lj} = {α1i|1 + lj−1 ≤ i ≤ lj}, j = 1, · · · , k.

Here, l0 = 0. For any lj ∈ {l1, · · · , lk}, using Rule R6 for lj − lj−1 times, we can get:

� ∅ : FIN �
lj∑

i=1+lj−1

α1i : T
1
i .

Assuming Ti = ∅ : FIN , i = 1, · · · , k, then we have:

�↑
∑k

i=1 Ti

Tj
(α�

1lj
), j = 1, · · · , k, and �•

(
∑l1

i=1 α1i:T
1
i ,··· ,

∑lk
i=lk−1+1 α1i:T

1
i )

(T1,··· ,Tk)
.

By Rule R8, we can get:

�
k∑

i=1

Ti �
lk∑
i=1

α1i : T
1
i .

By rules R1 and R5, we have:

� ∅ : FIN � ∅ : FIN.

Using Rule R6 for k − 1 times, we have:

� ∅ : FIN �
k∑

i=1

Ti.

According to rules R3 and R4, we can get:

� FIN �
lk∑
i=1

α1i : T
1
i .

1.1◦ If lk = m, then the above formula is:

� FIN �
m∑
i=1

α1i : T
1
i , i.e. � T21 � T11.

1.2◦ If lk < m, then, by the definitions of A and Aj (j = 1, · · · , k) we have: α1i /∈
A, i = lk + 1, · · · ,m. For any i ∈ {lk + 1, · · · ,m}, there exists β ∈ A with
α1i ≺ β. Using Rule R9 for m− lk times, we can get:

�
lk∑
i=1

α1i : T
1
i �

m∑
i=1

α1i : T
1
i .

By Rule R4, we have:

� FIN �
m∑
i=1

α1i : T
1
i , i.e. � T21 � T11.

�
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6 Conclusion

Inspired by the demand relation in [12], this paper proposed a weak demand relation that
covers some tasks which are not in any demand relation and whose schedulabilities are
comparable. We also explored some properties of weak demand relation. In particular,
for two tasks in a weak demand relation their schedulabilities are comparable. Then, we
built a proof system PTT for the weak demand relation between task processes without
containing task constants. Moreover, we proved that the weak demand relation �D over
the set of tasks without containing task constants is exactly the binary relation � over
the same set, which is gotten in PTT.

It is difficult to introduce inference rules about the weak demand relation between
two task constants. A task constant is different from a task process which does not
contain task constants. A task process without containing task constants will evolve
into FIN after finite movings. However, a task constant will always transform to itself
at some step. There is no such a “base”similar to process FIN which can be relied on in
inductively reasoning about the weak demand relation. Additionally, our weak demand
relation is still not complete with respect to such tasks that their schedulabilites are
comparable. There exist some tasks whose schedulabilites are comparable and which
are not in any weak demand relation. Such tasks’ existence is partly caused by the first
clause in the definition of weak demand relation. Now we have not found an appropriate
way to characterize such tasks.

In the near future, we will continue to pay our attention to solving the above prob-
lems. And exploring the proof complexity about proof system PTT and the topic of
automating the proof system PTT is also in our future work. We hope some readers
could give us some advices. Besides, we plan to study the hierarchies between supplies
and their axiomatizations too.
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Abstract. This paper presents an extension to Hoare Logic for pointer
program verification. The main observation leading to this logic is that
the value of an expression e depends only on the contents stored in
a finite set of memory units. This set can be specified using another
expression (called the memory scope of e) constructed syntactically from
e. A set of construction rules are given in this paper for expressions
which may contain recursive functions (predicates). It is also observed
that the memory scope of e is a super set of the memory scope of the
memory scope of e. Based on this, local reasoning can be supported using
assertion variables which represent arbitrary assertions. Program-point-
specific expressions are used to specify the relations between different
program points. Another feature of this logic is that for formulas with
no user-defined functions, the weakest-preconditions can be calculated
w.r.t. assignments.

1 Introduction

Hoare Logic[1] can not deal with pointer programs because of pointer alias, i.e.
many pointers may refer to one memory location. Some extensions to Hoare
Logic have been made to deal with pointers or shared mutable data structures
[2][3][4]. Among them, Separation Logic is the most successful one. In that logic,
the separation-conjunction connective ∗ is introduced to specify that two asser-
tions hold on disjoint subheaps respectively. Based on this, heap-manipulation
programs can be specified and verified. An important advantage of Separation
Logic is that it supports local reasoning. However, Separation Logic is counter-
intuitive to some extent. This may cause some difficulties to software engineers.
For example, a programmer may use isList(p)∧isList(q) to specify that both
p and q point to lists. However, in Separation Logic, it also means that isList(p)
and isList(q) hold for the exact same heap, which implies that p and q point
to the same list. It is also difficult to use many existing logic tools designed for
conventional first order logic because of the new logical connective and the new
semantic of conventional connectives.

� This paper is supported by the Chinese National 863 Project, NO.2011AA010103

Z. Liu, J. Woodcock, and H. Zhu (Eds.): ICTAC 2013, LNCS 8049, pp. 409–426, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Weakest precondition calculation is useful for code verification. Using the
weakest precondition calculation, a program specification {p} s {q} can be re-
duced into a logical formula p ⇒ WP(q, s), where WP(q, s) means the weakest
precondition of s for q. However, the weakest precondition calculation in Sepa-
ration Logic is hard to deal with using conventional logic tools, because of the
separating implication −∗ and the quantifications in the preconditions.

This paper presents another extension to Hoare Logic for verification of pointer
programs with recursive data structures. This logic use conventional logical con-
nectives only. Program states are specified by FOL formulas augmented with
user-defined recursive functions.

The main observation leading to this logic is that the value of an expression
(or a formula) e, which may contain recursively defined functions, depends only
on the contents stored in a finite set of memory units. We present a set of rules
to syntactically construct an expression (called the memory scope of e, denoted
M(e)) to express this set. The value of e keeps unchanged if no memory unit in
this set is modified by program statements. Another important property of the
memory scopes is that a memory scope expression is the super-set of its memory
scope. Based on this, our logic supports local reasoning using assertion variables.

Besides establishing that some properties hold at a given program state, peo-
ple are also interested in how the values of variables and recursive data structures
are changed by the program. Using program-point-specific expressions, we can
specify and verify relations between different program points (states). Weakest
precondition calculation is also supported in our logic for a large set of formulas
w.r.t. assignment statements, using program-point-specific expressions.

This paper is organized as follows. We first describe the syntax of programs
and specifications in Section 2. A set of axioms are introduced in Section 3 to
model memory access and layout in pointer programs. In Section 4, we intro-
duce the concept of memory scopes. The rules to syntactically construct memory
scopes are given in this section. Two important properties about memory scopes
are also discussed. The axioms and proof rules about program statements are
given in Section 5. In Section 6, the weakest precondition calculation of assign-
ments are discussed. Section 7 discusses how to support local reasoning using
assertion variables. A brief description of our supporting tool is given in Sec-
tion 8. Section 9 concludes this paper.

2 The Syntax of Programs and Specifications

2.1 The Type Systems and Expressions

The small program language used in this paper is strongly typed. Each expres-
sion has a static type. The following types and their operators can be used in
programs. Their meanings are similar to those in the C language.

1. The integer type (int) and the boolean type (bool). Operators of these basic
types can be used in programs.
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2. Array types. Let t be a type and c be a positive integer constant, ARR(t, c)
is an array type. Given an expression e with type ARR(t, c) and an integer-
typed expression ei, e[ei] is an expression with type t. It means the ethi
elements of e if 0 ≤ ei < c.

3. Record types. Let t1, . . . , tk be types, and n1, n2, . . . , nk be k different names,
REC((n1, t1), . . . , (nk, tk)) is a record-types. Let e be an expression of this
record type, e.ni is an expression with type ti. It means the field ni of e.

4. Pointer types. Let t be a type, P(t) is a pointer type. Ptr is the super type
of all pointer types. The symbol nil is used to represent the null pointer. Let
e be an expression with type P(t).
– The type of ∗e is t.
– If t is a record type REC((n1, t1), . . . , (nk, tk)), e → ni and (∗e).ni are

expressions with type ti. These two expressions are equivalent.
– If t is an array type ARR(t, c), (∗e)[ei] is an expression with type t if ei

is an expression with type int.

We can also define user-defined types using the form name := type. In such a
definition, P(name) can appear in the right-hand to define recursive data types.

Example 1. The following is the definition of the node type for binary trees.

Node = REC((l,P(Node)), (r,P(Node)), (K, int))

Let v be a program variable with type Node, the expression v.l→K represents
the field K of the left-child of v. �

2.2 The Syntax of Program Statements

The small program language has three kinds of primitive statements (skip, as-
signment, and memory allocation) and three kinds of control-flow statements
(sequence, selection, and repetition). The syntax of statements is as follows.

st ::= skip | e1 := e2 | e := alloc(t) | st; st | if (e) st else st | while (e) st

The statement skip does nothing. The statement e := alloc(t) allocates a new
t-typed memory block, and stores the reference to this block into the memory
unit referred by L-value of e. The statement e1 := e2 stores the value of e2
into the memory unit referred by L-value of e1. The semantic of control-flow
statements are same as those in C. For an assignment e1 := e2, the type of
e1 and e2 must be the same and must be int, bool, or a pointer type. For a
memory allocation statement e := alloc(t), the type of e must be P(t). For
while-statements and if -statements, the type of e must be bool.

Example 2. A program is depicted in Fig. 1. The first two lines declare program
variables k, root and pt respectively with type int and P(Node), where Node is
the type defined in Example 1. This program searches a binary search tree for
a node of which the field K equals k. The program variable pt is nil if no such
node is found, otherwise it points to the node in the tree. �
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int k;
P(Node) root, pt;
pt:=root;
while (pt �= nil ∧ pt→K �= k)

if (k < pt→ K )
pt := pt→ l

else
pt := pt→ r;

Fig. 1. A program

2.3 The Syntax of Formulas and Specifications

The Syntax of Formulas. All program expressions with type bool can be
used as formulas. For example, p → K ≥ 0 is a formula. Besides, formulas
can also use the operators associated with some abstract types, like finite sets
(SetOf(t)) and finite lists (ListOf(t)). User-defined recursive functions can also
be used in formulas. There are also some new kinds of expressions (formulas) as
follow.

1. A free variable x. It is used in expressions of the form λx.e1[e2] or ∀x ∈ e1.e2
and the right-hand of function definitions.

2. The reference operator &. Given an expression e, &e gives the L-value (ad-
dress) of e. Here, e must be a program variable, ∗e1, e1.n, e1 → n, or e1[e2]
for some expressions e1 and e2.

3. Conditional expressions e0?e1 : e2. Here e0 is called the guard of this expres-
sion. The type of e0 must be bool, and e1 and e2 must have the same type.
The type of this expression is the type of e1(or e2). If e0 evaluates to true,
the value of e0?e1 : e2 is that of e1; otherwise, the value is that of e2.

4. Universal quantifier over a set ∀x ∈ e1.e2. The type of x, e1, e2 must be t,
SetOf(t) and bool respectively for some t. The variable x can only appear
in e2. The expression ∀x ∈ e1.e2 means that for all elements x in e1, e2 holds.

5. Set-image expressions λx.e1[e2]. The type of e2 must be SetOf(t) for some
t. The t-typed free variable x can only appear in e1. Let t′ be the type of e1,
the type of λx.e1[e2] is SetOf(t′). This expression means the set {e1|x ∈ e2}.

6. Union expression
⋃

e. The type of e must be SetOf(SetOf(t)) for some t.
The type of

⋃
e is SetOf(t).

⋃
e means the set {x|∃s.(x ∈ s ∧ s ∈ e)}.

7. Program-point-specific expressions e@i. It is required that e contains no free
variables. Such expressions are treated as special constant symbols in our
logic. The next sub-subsection will give more details.

Example 3. Three recursive functions are defined in Fig. 2. NodeSet(x) yields the
node set of the binary tree with root node x. The function isHBST(x) asserts
that x is the root of a binary search tree. KeySet(x) yields the set of keys stored
in the binary search tree.
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The formula ∀x ∈ NodeSet(root → l).(x → K < root → K) says that all
the keys in the left-subtree is less than the key in the root node. The formula
&pt→K ∈ (λx.(&x →K)[NodeSet(root)]) says that the address of pt→ K is
in the set of addresses of the field K of the nodes in the tree. From the axiom
REC-2 presented later, this formula is equivalent to pt ∈ NodeSet(root). �

NodeSet(x : P(Node)) : SetOf(P(Node))

� (x = nil)? ∅ : ({x} ∪ NodeSet(x→ l) ∪ NodeSet(x→ r))
isHBST(x : P(Node)) : bool

� (x = nil)?true : isHBST(x→ l) ∧ isHBST(x→ r)∧
∀y ∈ NodeSet(x→ l).(y → K < x→ K)∧
∀y ∈ NodeSet(x→ r).(y → K > x→ K)

KeySet(x : P(Node)) : SetOf(int) � λx.(x→ K)[NodeSet(x)]

Fig. 2. A set of recursive functions

The Syntax of Specifications. In our logic, specifications and verifications are
written in the proof-in-code form. Formulas are written at program points, which
are places before and after program statements. For a sequential statement s1; s2,
the point after s1 is just the point before s2. All the program points are uniquely
numbered. A program goes through program points during its execution. A
formula at a program point means that each time when the program goes to this
point, the formula is evaluated to true.

When we concern only one statement s of the program under verification, the
specification can be written as the following Hoare-triple.

{i : P} s {j : Q}

Here, i and j are respectively the program point numbers before and after s. We
can write the specification as {P} s {Q} if the point numbers are irrelevant.

A program point j is said to dominates a point i if the program must go
through the point j before it goes to the point i. For the language used in this
paper, j dominates i if one of the following conditions holds. (I) j = i or there is
a point k such that j dominates k and k dominates i; (II) j is before a statement
s and i is a point in s or the point after s.

Given two program points i and j such that j dominates i, we can write e@j
at the program point i. It represents the value of e evaluated at the point j when
the program was at the point j the last time.

At any program point i, a program-point-specific expression e@i equals to
e if e is meaningful at this point. Because each program point is either before
or after a statement, the following axiom PST specifies this property. In this
axiom, e and e′ represent two arbitrary expressions. It is required that e and e′

are meaningful respectively at the point i and j.

(PST) {i : e = e@i} s {j : e′ = e′@j}
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Program-point-specific expressions should be viewed as a naming convention for
constant symbols. At a point i other than j, a program-point-specific expression
e@j is treated as a constant symbol. We should not infer properties from the
structure of e@j.

Example 4. The program points, together with some formulas, of the program in
Fig. 1 are depicted in Fig. 3. The entrance program point and the exit point are
respectively 1 and 10. The formula isHBST(root) at point 1 is the precondition
of this program, while the formula at point 10 is the postcondition.

The formula at point 8 says that k is in the key set of the right sub-tree of p
evaluated at point 7 if and only if k is in the key set of the initial binary tree.

At point 6, the property pt = (pt → l)@5 holds because of the assignment
pt := pt → l. However, it does not imply pt = pt@5 → l. To prove this property,
we should prove that (pt → l)@5 = pt@5 → l holds at point 5 using the axiom
PST. This formula is not affected by the assignment, so it also holds at point 6.
Now pt = (pt → l)@5 and (pt → l)@5 = pt@5 → l imply pt = pt@5 → l at 6.

Because point 5 does not dominate point 8, the formula k ∈ KeySet(root)@5
can not appear at point 8. �

{1: isHBST(root)}
pt:=root;
{2: (k ∈ KeySet(pt)) = (k ∈ KeySet(root)@1)}
while (pt→K �= k)
{4: pt→K �= k ∧ (k ∈ KeySet(pt)) = (k ∈ KeySet(root)@1) }
if (k < pt→ K )
{5: pt = pt@5 ∧ pt→ l = (pt→ l)@5 ∧ (pt→ l)@5 = pt@5→ l}
pt := pt→ l
{6: pt = (pt→ l)@5 ∧ (pt→ l)@5 = pt@5→ l ∧ pt = pt@5→ l}

else
{7: k > pt→ K ∧ (k ∈ KeySet(pt→ r)) = (k ∈ KeySet(root)@1)}
pt := pt→ r;
{8: (k ∈ KeySet(pt→ r)@7) = (k ∈ KeySet(root)@1)}

{9:(k ∈ KeySet(pt)) = (k ∈ KeySet(root)@1) }
{10:pt = nil?k �∈ KeySet(root)@1 : (k ∈ KeySet(root)@1 ∧ pt→ K = k)}

Fig. 3. A proof-in-code specification

3 The Memory Model and the Axioms about Memory
Access Operators

In this section, we describe the memory model on which the programs execute.
The memory consists of a set of addressed memory units. Each memory unit
has a unique address and stores an integer, a boolean value, or a pointer. So the
memory can be viewed as a map from addresses to int, bool, or Ptr.
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Composite type data (either arrays or records) are stored in memory blocks.
Each memory block is composed of sub-blocks and/or memory units for its
component data. Each memory block has also a unique address. However, the
memory model does not directly map block addresses to values. Instead, the
block addresses are used to derive the addresses of its sub-blocks or units. Given
the address r of a memory block, the address of its components can be derived
using expressions &r → n (if r refers to a record block and n is a field name) or
&(∗r)[i] (if r refers to an array block and i is an integer). The values of &r → n
and &(∗r)[i] depend only on the values of r and i. They are irrelevant to the
contents stored in the memory block.

Example 5. Suppose that a memory block with address p stores a Node-typed
data. This block is composed of three memory units for the fields l, r, and K.
The addresses of these units are respectively &p → l, &p → r and &p → K. �

(DEREF-REF) ∗&e = e (REF-DEREF) e �= nil⇒ & ∗ e = e

(PVAR-1) &v �= nil (PVAR-2) &v1 �= &v2
(PVAR-3) &v �= &r→ n (PVAR-4) &v �= &a[i]

(REC-1) r �= nil⇒ &r → n �= nil
(REC-2) (r1 → n = r2 → n)⇔ (r1 = r2) (REC-3) r1 → n1 �= r2 → n2

(ARR-1) a �= nil ∧ (0 ≤ i < c)⇒ &((∗a)[i]) �= nil
(ARR-2) (&((∗a1)[i1]) = &((∗a2)[i2]))⇔ (a1 = a2 ∧ i1 = i2 ∧ 0 ≤ i1, i2 < c)

(ARR-REC) &a[i] �= &r → n

In these axioms, the type of r, r1, r2 are pointers to some record type and n, n1 and n2

are field names such that n1 and n2 are different. The type of a, a1, a2 are ARR(t, c)
for some t and c. i, i1, i2 are integers. The expression e in DEREF-REF must be of
the form v, ∗e1, e1.n, e1 → n or e1[e2].

Fig. 4. The axioms for memory layout and memory access

The axioms depicted in Fig. 4 are used to specify the addressing operator &, the
memory access operator ∗, and the memory layouts for composite types.

The operators & and ∗ are inverse to each other. This is described by the
axioms DEREF-REF and REF-DEREF.

Each program variable is assigned a unique memory block (or memory unit).
Furthermore, the memory block (unit) is not a component of any other blocks.
So we have the axioms PVAR-1, PVAR-2, PVAR-3 and PVAR-4.

Given a non-nil reference to a composite block, all the references to its sub-
blocks or units are non-nil. So we have the axioms REC-1 and ARR-1. The
axioms REC-2 and ARR-2 say that different components of a composite block
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has different addresses. The axioms REC-3 and ARR-REC say that a component
block/unit uniquely belongs to at most one enclosing memory block.

These axioms can be used to simplify expressions containing the addressing
operator &. For example, the formula &pt→K ∈ (λx.(&x→K)[NodeSet(root)])
can be simplified to an equivalent formula pt ∈ NodeSet(root).

4 Memory Scopes of Expressions and Functions

4.1 Memory Scopes of Expressions

An expression emay have different values before/after the execution of a program
statement. However, the value of e depends only on the contents stored in a
finite set of memory units. This set can be expressed using another expression,
called the memory scope of e, denoted as M(e). We now show that M(e) can be
constructed syntactically.

If e is of the form f(e1, . . . , en), where f is a function/operator other than
∗,&, [ ], .,→, the memory scope M(e) is M(e1)∪ . . .∪M(en)∪M(f)(e1, . . . , en),
where M(f) is the function to compute the memory scopes of applications of f .

1. If f is an algebraic operator (e.g. +,-,. . . ), a boolean operator, or other
abstract operators, M(f) is a constant function which always yields ∅.

2. If f is a user-defined function (predicate), the definition of M(f) can be
derived syntactically from the definition of f , see next subsection.

The memory-scope-construction rules for other kinds of expressions are given in
Fig. 5. The third column is used in the proof of an important property about
memory scopes presented in Subsection 4.3.

Note that the memory scope of e@i is ∅. The reason is that e@i is viewed as
a constant symbol of which the value is irrelevant to the current program state.

Example 6. Given a type ARR(ARR(REC((int, f1), (int, f2))), 100), 100)
and a program variable a of this type. The memory scope of a[i][j].f1 is con-
structed as follow.

M(a[i][j].f1) = M(&a[i][j]) ∪ {&a[i][j].f1} = M(&a[i]) ∪ {&j} ∪ {&a[i][j].f1}
= M(&a) ∪ {&i} ∪ {&j} ∪ {&a[i][j].f1} = {&i} ∪ {&j} ∪ {&a[i][j].f1}

This means that the value of a[i][j].f1 keeps unchanged if the contents stored in
the memory units &i, &j, and &a[i][j].f1 are not modified. �

4.2 Memory Scope of User-Defined Functions

Given a user-defined function f , we abuse the notation M and use M(f) to
denote the name of the memory scope function of f . The formal parameters
of M(f) is the same as those of f . The return type of M(f) is SetOf(Ptr).
Intuitively speaking, M(f)(x1, . . . , xn) yields the set of memory units accessed
during the evaluation of f(x1, . . . , xn). Let f(x1, . . . , xn) � e be the definition
of f , the definition of M(f) is as follow.

M(f)(x1, . . . , xn) � M(e)
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Expressions Memory Scopes Memory Scopes of Memory Scopes

a constant c ∅ ∅
free variable x ∅ ∅

e@i ∅ ∅
&v ∅ ∅
& ∗ e M(e) M2(e)

&e1[e2] M(&e1) ∪M(e2) M2(&e1) ∪M2(e2)

&e.n M(&e) M2(&e)

&e→ n M(e) M2(e)

v {&v} ∅
∗e {e} ∪M(e) M(e) ∪M2(e)

e1.n {&e1.n} ∪M(&e1) M(&e1) ∪M2(&e1)

e1 → n {&e1 → n} ∪M(e1) M(e1) ∪M2(e1)

e1[e2] {&e1[e2]} ∪M(&e1) ∪M(e2) M(&e1) ∪M(e2) ∪M2(&e1) ∪M2(e2)

e0?e1 : e2 M(e0) ∪ (e0?M(e1) : M(e2)) M2(e0) ∪M(e0) ∪ (e0?M
2(e1) : M

2(e2))

e1 ∧ e2 M(e1) ∪ (e1?M(e2) : ∅) M2(e1) ∪M(e1) ∪ (e1?M
2(e2) : ∅)

e1 ∨ e2 M(e1) ∪ (e1?∅ : M(e2)) M2(e1) ∪M(e1) ∪ (e1?∅ : M2(e2))

λx.e1[e2] M(e2) ∪
⋃
(λx.M(e1)[e2]) M2(e2) ∪M(e2) ∪

⋃
(λx.M2(e1)[e2])

∀x ∈ e2.e1 M(e2) ∪
⋃
(λx.M(e1)[e2]) M2(e2) ∪M(e2) ∪

⋃
(λx.M2(e1)[e2])

NOTE: M2(e) is an abbreviation for M(M(e))

Fig. 5. The memory scope for different forms of expressions

Example 7. Let M(NodeSet) be MNS. According to the definition of NodeSet in
Fig. 2, the definition of MNS is as follow.

MNS(x) � (x = nil)?∅ : {&x → l,&x → r} ∪MNS(x → l) ∪MNS(x → r)

The above definition is equivalent to the following one.

MNS(x) � (λy.(&y → l)[NodeSet(x)]) ∪ (λy.(&y → r)[NodeSet(x)])

KeySet and isHBST have the same memory scope function M defined as

M(x) � (λy.(&y → K)[NodeSet(x)]) ∪ (λy.(&y → l)[NodeSet(x)])
∪(λy.(&y → r)[NodeSet(x)])

From the above, the memory scope of the formula pt ∈ NodeSet(root) is

{&pt,&root} ∪ (λy.(&y → l)[NodeSet(root)]) ∪ (λy.(&y → r)[NodeSet(root)])

It means that the formula keeps unchanged if the values of pt, root, and the
fields l and r of the tree nodes keep unchanged. �

4.3 Two Properties of Memory Scopes

This section presents two important properties about memory scopes.
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Theorem 1. Let e be an arbitrary expression and x1, . . . , xn are free variables
in e. Given an assignment to these free variables and two program states s1, s2
such that s1 and s2 agree on all the memory units in M(e). The expression e is
evaluated to the same value at s1 and s2.

Because of the space limitation, we just give a brief proof.

1. If there is no user-defined function in e, the above conclusion can be proved
by an induction on the length of e.

2. If there are user-defined functions in e but none of these functions are recur-
sive, we can expand the function applications with their definitions to get an
equivalent expression e′. There is no user-defined function in e′, and M(e)
is a superset of M(e′). From 1, the conclusion is proved.

3. If there are recursively user-defined functions in e. Let f be such a function
defined as f(. . .) � EXP(f), where EXP(f) is an expression containing f .
Suppose that f recursively called itself n times during the evaluation of e at
the state s1, we can define n functions, f0, f1, . . . , fn as f0 �⊥, f1 � EXP(f0),
. . . , fi � EXP(fi−1), . . . , fn � EXP(fn−1), and replace f in e with fn. The
derived expression e′ equals to e at the state s1, and M(e′) is a subset of
M(e) at the state s1. From 2, e′ has the same value at the states s1 and s2.
It also can be proved that e′ and e evaluates to the same value on s2. So e
evaluates to the same value at the states s1 and s2.

Theorem 2. Let e be an arbitrary expression e such that e is meaningful at a
state s for an assignment to the free variables in e, M(M(e)) ⊆ M(e) is evaluated
to true at s.

The brief proof is as follow. Here, we use M2(e) as an abbreviation for M(M(e)).

1. If e contains no user-defined function symbols, from the table in Fig. 5, we
can prove this theorem by an induction on the length of e.

2. Let f be a user-defined function defined as f(x1, . . . , xn) � e′ and e′ con-
tains no user-defined functions. M(f(e1, . . . , en)) is M(e1) ∪ . . . ∪ M(en) ∪
M(f)(e1, e2, . . . , en);M

2(f(e1, . . . , en)) isM
2(e1)∪. . .∪M2(en)∪M(e1)∪. . .∪

M(en)∪M2(f)(e1, e2, . . . , en). Note thatM(f) andM(f) are respectively de-
fined as M(f)(x1, . . . , xn) � M(e′) and M2(f)(x1, . . . , xn) � M2(e′). From
1, we can prove M2(f(e1, . . . , en)) ⊆ M(f(e1, . . . , en)). So the theorem holds
if the functions in e are not defined with other user-defined functions.

3. We can prove by an induction that M2(f(e1, . . . , en)) ⊆ M(f(e1, . . . , en))
holds for a user-defined non-recursive function f based on 2. So the theorem
holds for expressions containing non-recursive functions.

4. Now we prove the case of recursive functions. From the definition of M,
we have the following fact: let f be a user-defined function symbol in an
expression e, the functions f , M(f) and M2(f) are applied to same real
parameters in e, M(e) and M2(e). Furthermore, in M(e) and M2(e), the
counterparts of the conditional sub-expressions in e have the same guard. So
during the evaluation of e, M(e) and M2(e), f recursively call itself if and
only if M(f) and M2(f) call themselves.
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Let f , M(f) and M2(f) be functions respectively defined as f(x1, . . . , xn)
� e′, M(f)(x1, . . . , xn) � M(e′) and M2(f)(x1, . . . , xn) � M2(e′). Sup-
pose that f recursively calls itself for n times during the evaluation of e
on a state s, the fact above means that M(f) and M2(f) also recursively
call themselves for n times during the evaluation of M(e) and M2(e). So
we can introduce n new functions f0, f1, . . . , fn defined as f0 �⊥, f1 �
EXP(f0), . . . , fi � EXP(fi−1), . . . , fn � EXP(fn−1), where EXP(fi) means
the expression derived by replacing f with fi in e′. It can be proved that
f(e1, . . . , en) = fn(e1, . . . , en), M(f)(e1, . . . , en) = M(fn)(e1, . . . , en), and
M2(f)(e1, . . . , en) = M2(fn)(e1, . . . , en) on the state s. Because fis are not
recursive, we prove that M2(f(e1, . . . , en)) ⊆ M(f(e1, . . . , en)). So the the-
orem holds for expressions containing recursive functions.

In our logic, we use the following axiom to describe this property.

(SCOPE-SHRINK) M(M(e)) ⊆ M(e) Note: e must be meaningful

This axiom is important for local reasoning. We will discuss this in Section 7.

5 The Axioms and Proof Rules of Program Statements

In this section, we present the axioms and proof rules to specify the effects of
program statements. There are three axioms for primitive statements and three
proof rules for control flow statements. They are all presented in Fig. 6.

For an assignment e1 := e2, let i, j respectively be the program points be-
fore/after this statement. It is required that &e1 evaluates to a non-nil pointer
at i. At the program point j, the memory unit referred by &e1 stores the value
of e2 evaluated at i. Furthermore, if a formula holds at the point i, and &e1 is
not in the memory scope of this formula, the formula still holds at the point j.
This is specified by the axiom ASSIGN.

Example 8. Considering the assignment pt := pt → l in Fig. 3. Let Prop be
the formula pt@5 �= nil ∧ (pt → l)@5 = pt@5 → l ∧ &pt = (&pt)@5. M(Prop)
is {&(pt@5) → l}. Substituting ρ with Prop in the axiom ASSIGN, we have

{5 : Prop ∧ (&pt �∈ {&(pt@5) → l}) ∧ (&pt �= nil)} pt := pt → l
{6 : Prop ∧ ∗((&pt)@5) = (pt → l)@5}

From the axioms PVAR-1, PVAR-3, PST, and the proof rules CONSEQ and
CONJ, we have {5 : pt �= nil} pt := pt → l {6 : pt = pt@5 → l}. �

For an allocation statement e1 := alloc(t), let i, j respectively be the program
points before/after this statement. It is required that &e1 evaluates to a non-nil
pointer at the point i. After the execution, the memory unit referred by (&e1)@i
stores a reference to a newly allocated memory block. This memory block is
unreachable at the point i. So ∗((&e1)@i) �∈ e2@i holds at the point j for any
expressions e2 if e2 is meaningful at i. This allocation statement modifies only
the memory unit referred by (&e1)@i and the memory block newly allocated
(this block is unreachable at the point i). If an assertion ρ holds at the point i
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and (&e1)@i is not in the memory scope of ρ, ρ still holds at the point j. This
is specified by the axiom ALLOC. In this axiom, Init(x) is an abbreviation for
the assertion that all the pointers stored in the block referred by x are set to nil.
For example, if the type of x is P(Node), Init(x) is x → l = nil ∧ x → r = nil.

Example 9. Considering the statement t := alloc(Node). From the axiom AL-
LOC, substituting ρ and e2 respectively with isHBST(rt) ∧ (&t = (&t)@i) and
NodeSet(rt), we have

{i : isHBST(rt) ∧ (&t = (&t)@i) ∧&t �∈ M(isHBST(rt)) ∧&t �= nil}
t := alloc(Node);

{j : isHBST(rt) ∧ (&t = (&t)@i) ∧ ((∗((&t)@i) �∈ NodeSet(rt)@i)
∧ (∗((&t)@i) �= nil) ∧ (∗((&t)@i) → l = nil) ∧ (∗((&t)@i) → r = nil)}

From the axioms DEREF-REF, PVAR-1, PVAR-3, PST, and the proof rules
CONSEQ and CONJ, this specification can be simplified to

{i : isHBST(rt)} t := alloc(Node);
{j : isHBST(rt) ∧ (t �∈ NodeSet(rt)@i) ∧ (t �= nil) ∧ (t→ l = nil) ∧ (t→r = nil)}

�

The axiom for the skip statement, the proof rules for control-flow statements,
the consequence rule, and the conjunction rule are depicted in Fig. 6. They are
same as the ones in Hoare Logic.

(SKIP) {q} skip {q} (ASSIGN)
{i : ρ ∧ (&e1 �∈M(ρ)) ∧ (&e1 �= nil)}

e1 := e2
{j : ρ ∧ (∗((&e1)@i) = e2@i)}

(ALLOC)
{i : ρ ∧ (&e1 �∈M(ρ)) ∧ (&e1 �= nil)}

e1 := alloc(t)
{j : ρ ∧ (∗((&e1)@i) �= nil) ∧ (∗((&e1)@i) �∈ e2@i) ∧ Init(∗((&e1)@i))}

IF
{p ∧ e}s1{q} {p ∧ ¬e}s2{q}
{p} if (e) s1 else s2 {q}

WHILE
{p ∧ e} s {p ∧ (e ∨ ¬e)}
{p} while (e) s {¬e ∧ p}

SEQ
{p}s1{q} {q}s2{r}
{p} s1; s2 {r}

CONSEQ
{p}s{q} p′ ⇒ p q ⇒ q′

{p′} s {q′} CONJ
{p} s {q} {p′} s {q′}
{p ∧ p′} s {q ∧ q′}

Fig. 6. The axioms and proof rules for program statements
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6 The Weakest-Preconditions of Assignments

In this section, we will show how to compute the weakest precondition of an
assignment for a postcondition that contains no user-defined function.

e WP(e), the expression equivalent to e before e1 = e2

a const or a quantified variable e

e@k for some point k (k �= j) e@k

&v &v

∗e′ (WP(e′) �= (&e1)@i)?(∗WP(e′)) : (e2@i)

v (WP(&v) �= (&e1)@i)?(∗WP(&v)) : (e2@i)

e′.n (WP(&e′.n) �= (&e1)@i)?(∗WP(&e′.n)) : (e2@i)

e′ → n (WP(&e′ → n) �= (&e1)@i)?(∗WP(&e′ → n)) : (e2@i)

e′[e′′] (WP(&e′[e′′]) �= (&e1)@i)?(∗WP(&e′[e′′])) : (e2@i)

e′ op e′′ WP(e′) op WP(e′′)

op e′ (op is not ∗) op WP(e′)
e0?e

′ : e′′ WP(e0)?WP(e′) : WP(e′′)

&(e′.n) &(WP(&e′)→ n)

&(e′ → n) &(WP(e′)→ n)

&(e′[e′′]) &((∗WP(&e′))[WP(e′′)])

λx.e′[e′′] λx.WP(e′)[WP(e′′)]

∀x ∈ e′.e′′ ∀x ∈WP(e′).WP(e′′)

Fig. 7. The rules to construct WP(e)

Given an assignment e1 := e2, and i, j be the program points before/after
this assignment respectively. The program state at i is different only with the
state at j on the memory unit (&e1)@i. For any address x of a memory unit,
the value of ((x �= (&e1)@i)? ∗ x : e2@i) at the point i equals to the value of ∗x
at the point j.

For an arbitrary formula e, we can construct the weakest precondition of the
assignment e1 := e2 for e according to rules depicted in Fig. 7. The basic idea
of these rules is that for each expression e with an L-value, we first construct an
expression WP(&e), the value of which at i equals to the value of &e at j; then
WP(e) is constructed as ((WP(&e) �= (&e1)@i)? ∗ WP(&e) : e2@i). From the
discussion above, the value of WP(e) at i equals to the value of ∗&e (equivalent
to e by the axiom DEREF-REF) at j.

By an induction on the length of the expression e, we can prove that the value
of e at j equals to the value of WP(e) at i. So a formula e holds at the point j
if and only if WP(e) holds at i. Theorem 3 says that WP(e) is a precondition of
e1 := e2 for e in Scope Logic.

Theorem 3. Given an assignment e1 := e2, and i, j be respectively the program
points before/after this assignment. Let e be a formula containing no user-defined
functions and no program-point-specific sub-expression of the form e@j, the fol-
lowing specification can be proved in Scope Logic.

{WP(e) ∧&e1 �= nil} e1 := e2 {e}
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Proof. From the axiom ASSIGN, we have

{WP(e)∧&e1 �∈ M(WP(e)) ∧&e1 �= nil} e1 := e2{WP(e)∧ ∗((&e1)@i) = e2@i}

By a mathematical induction on the length of e, we can show that &e1 �∈
M(WP(e)) holds at the point i for any e. So we have

{WP(e) ∧&e1 �= nil} e1 := e2 {WP(e) ∧ ∗((&e1)@i) = e2@i}

Because (∗((&e1)@i) = e2@i) implies ∀x.(((x = (&e1)@i)?e2@i : ∗(x)) = ∗x),
we can prove that WP(e)∧ (∗((&e1)@i) = e2@i) ⇒ e holds at the point j. From
the proof rule CONSEQ, we have {WP(e) ∧&e1 �= nil} e1 := e2 {e}. QED.

Usually there are many conditional expressions and operators &, @i in WP(e).
We can remove @i in WP(e) using the axiom PST. Most of the operator & in
WP(e) can be eliminated using the axioms in Section 3. For the conditional sub-
expressions (e′ �= (&e1)@i)? ∗ e′ : e2@i in WP(e), we can automatically simplify
them when (e′ �= (&e1)@i) is either unsatisfiable or a tautology according to the
axioms in Section 3.

Example 10. Here are some examples of the weakest precondition calculation.

1. Let {i : } x := a+b {j : x > y} be an unfinished specification. Applying WP,
it yields ((&x �= (&x)@i)? ∗ (&x) : (a + b)@i) > (((&y �= (&x)@i)? ∗ (&y) :
(a+ b)@i). Simplifying it, we have {a+ b > y} x := a+ b {x > y}.

2. Let {i : } a[a[2]] := 3 {a[a[2]] = 3} be an unfinished specification, where
a is a program variable with type ARR(int, 100). Applying WP, it yields
the precondition ((&a[IND] �= (&a[a[2]])@i)? ∗ (&a[IND]) : 3@i) = 3, where
IND is the abbreviation for (&a[2] �= (&a[a[2]])@i)? ∗ (&a[2]) : 3@i. The
precondition can be automatically simplified to ((((2 �= a[2])?a[2] : 3) �=
a[2])?a[(2 �= a[2])?a[2] : 3] : 3) = 3. Using an SMT solver, it can be easily
proven that this formula is equivalent to a[2] �= 2 ∨ a[3] = 3. So we have
{a[2] �= 2 ∨ a[3] = 3} a[a[2]] := 3 {a[a[2]] = 3}.

3. Let {i : } a[n] := tmp {j : ∀x ∈ [0..n].a[x] >= 0} be an unfinished spec-
ification, [0..n] is the set of integers from 0 to n. Applying WP, we get
∀x ∈ [0..(&n �= (&a[n])@i? ∗ (&n) : tmp@i)].((&a[x] �= (&a[n])@i? ∗ (&a[x]) :
tmp@i) >= 0). Simplifying it, we have the following specification.
{i :∀x∈ [0..n].((x = n?tmp :a[x])>= 0)}a[n] := tmp{j :∀x∈ [0..n].a[x]>= 0}.

�

7 Supporting Local Reasoning

To support local reasoning, a specification should be in the following form.

{ρ ∧ (M(ρ) ∩ e = ∅) ∧ pre} s {ρ ∧ post}

where ρ is an assertion variable representing an arbitrary assertion, and e is (an
over-approximation of) the set of memory units modified by the statement s.
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We say that such specifications are in the memory-modification-bounded form
because the expression e bounds the set of memory units modified by s. The
assertion variable ρ in the specification can be substituted with a formula e′.
Simultaneously, the memory scope of ρ, i.e. M(ρ), is substituted with M(e′).
For example, in the proof of Theorem 4, ρ and M(ρ) are respectively substituted
with e′ ∧ ρ ∧ (M(ρ) ∩ e@i = ∅) and M(e′) ∪M(ρ) ∪M(M(ρ)).

Theorem 4 shows that if we get a specification in the memory-modification-
bounded form, we can expand the specification with a formula e′, if M(e′) is
disjoint with the memory bound e.

Theorem 4. Let ρ be an assertion variable.

pre ∧ e′ ⇒ M(e′) ∩ e = ∅
{i : ρ ∧ (M(ρ) ∩ e = ∅) ∧ pre} s {j : ρ ∧ post}

{i : ρ ∧ (M(ρ) ∩ e = ∅) ∧ (e′ ∧ pre)} s {j : ρ ∧ (e′ ∧ post)}

Proof. First, we substitute ρ in the second premise with e′∧ρ∧(M(ρ)∩e@i = ∅).
The memory scope of this formula is M(e′)∪M(ρ)∪M(M(ρ)). From the axiom
SCOPE-SHRINK, it equals M(e′) ∪M(ρ). So we have

{(e′ ∧ ρ ∧ (M(ρ) ∩ e@i = ∅)) ∧ ((M(e′) ∪M(ρ)) ∩ e = ∅) ∧ pre}
s

{(e′ ∧ ρ ∧ (M(ρ) ∩ e@i = ∅)) ∧ post}

From the first premise and the proof rules CONSEQ, PST, we have

{ρ ∧ (M(ρ) ∩ e = ∅) ∧ (e′ ∧ pre)} s {ρ ∧ (e′ ∧ post)}

QED.

Example 11. Suppose a program REORDER reorders the nodes of a singly-
linked list p, and the derived list is pointed to by q. The programmodifies only the
field link of the nodes. LetMemBnd be ({&q}∪λx.(&x → link)[ListNodes(p)]).
The specification can be written as

{i : ρ ∧ (M(ρ) ∩MemBnd = ∅) ∧ isSList(p)} REORDER
{j : ρ ∧ isSList(q) ∧ ListNodes(q) = ListNodes(p)@i}

Let Prop be ∀x ∈ (ListNodes(p)@i).(x → D > 0). M(Prop) is λx.(&x →
D)[ListNodes(p)@i], which is disjoint with MemBnd. From Theorem 4, we have

{i : ρ ∧ (M(ρ) ∩MemBnd = ∅) ∧Prop ∧ isSList(p)} REORDER
{j : ρ ∧Prop ∧ isSList(q) ∧ ListNodes(q) = ListNodes(p)@i}

Using the proof rules PST and CONSEQ, we have

{i : ρ ∧ (M(ρ) ∩MemBnd = ∅) ∧Prop ∧ isSList(p)} REORDER
{j : ρ ∧ ∀x ∈ (ListNodes(q)).(x → D > 0) ∧ isSList(q)∧

ListNodes(q) = ListNodes(p)@i}

�
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To apply the proof rules WHILE and SEQ, the post-conditions of sub-statements
must also be in the form ρ ∧ (M(ρ) ∩ e = ∅)∧ property. Theorem 5 can be used
to derive such post-conditions.

Theorem 5. Let ρ be an assertion variable.

{i : ρ ∧ (M(ρ) ∩ e = ∅) ∧ pre} s {j : ρ ∧ post}
{i : ρ ∧ (M(ρ) ∩ e = ∅) ∧ pre} s {j : ρ ∧ (M(ρ) ∩ e@i = ∅) ∧ post}

Proof. Note that the memory scope of ρ∧ (M(ρ)∩e@i = ∅) is M(ρ)∪M(M(ρ)),
which equals to M(ρ) from the axiom SCOPE-SHRINK. So ρ∧(M(ρ)∩e@i = ∅)
implies that its memory scope is disjoint with e@i. Substitute ρ in the premises
with ρ∧ (M(ρ)∩ e@i = ∅), and apply the proof rule PST, CONSEQ, we can get

{i : ρ ∧ (M(ρ) ∩ e = ∅) ∧ pre} s {j : ρ ∧ (M(ρ) ∩ e@i = ∅) ∧ post}
QED.

This theorem shows that M(ρ) is still disjoint with e@i on the post-state. We
may replace e@i with some other expressions e′ if post ⇒ e′ ⊆ e@i.

Example 12. Let ST be tmp := p → link; p → link = q; q := p; p = tmp;, which
is the loop-body of the program that reverses a singly-linked list. Let MSet be
{&p,&q,&tmp} ∪ λx.(&x → link)[ListNodes(first)@1], and Prop be

IsList(p) ∧ IsList(q) ∧ (ListNodes(p) ∩ ListNodes(q) = ∅)∧
(ListNodes(p) ∪ ListNodes(q) = ListNodes(first)@1).

The following specification can be proved.
{i : ρ ∧ (M(ρ) ∩MSet = ∅) ∧ Prop} ST {j : ρ ∧ Prop ∧MSet@i = MSet}

From Theorem 5 and the rule CONSEQ, we have
{i : ρ ∧ (M(ρ) ∩MSet = ∅) ∧ Prop} ST {j : ρ ∧ (M(ρ) ∩MSet = ∅) ∧ Prop}

Now, ρ ∧ (M(ρ) ∩MSet = ∅) ∧ Prop can be used as a loop invariant. �

8 The Tool

An interactive tool has been implemented to support code verification using
Scope Logic. Users can input formulas at program points and then prove them.
A formula holds at a point if (1) it is logically implied by other proved formulas
in the same program point; (2) or the formula holds at the predecessor point(s)
and it is not affected by program statement; (3) or it is a natural result of the
program execution, e.g. the condition expression of an if-statement holds at the
point before its then branch.

This tool also supports some automatic verification mechanisms like weakest
precondition calculation and data-flow analysis techniques. However, assertion
variables and local reasoning have not been supported yet.

Many examples, including the Schorre-Waite algorithm, several array-sorting
algorithms, singly-linked list manipulations, binary search tree manipulations,
and a topological sorting algorithm have been verified using this tool.

For more technical details of this tool, please visit the web page of this tool:
http://seg.nju.edu.cn/SCL.html.
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9 Related Works and Conclusions

In this paper, we present an extension to Hoare Logic for programs with point-
ers and recursive data structures. Formulas augmented with recursively defined
functions (predicates) are used to deal with recursive data structures. The logic
can specify and verify relations between different program points using program-
point-specific expressions. Our logic also supports local reasoning, which is impor-
tant for verification of real programs. The weakest precondition of assignments for
postconditions containing no user-defined function is well supported.

In Separation Logic, a new logical connective ∗ (separation conjunction) is in-
troduced to specify that two assertions assert properties of two disjoint heaplets.
However, this new logical connective makes it difficult to use conventional logical
tools and techniques, like SMT solvers. To solve this problem, implicit dynamic
frame (IDF) [10] uses RAS to compute the footprint of an assertion (i.e. the loca-
tions required to be accessed). Though [9] presents a method to convert a certain
fragment of Separation Logic specifications into representations in IDF so that
they can be verified using conventional logic tools. However, recursive predicates
(which are important to specify recursive data structures and their properties)
are not supported yet. The memory scope symbol M in Scope Logic is similar
to RAS in IDF. The main difference is the way in which footprints (memory
scopes) of recursive predicates are dealt with. RAS in IDF uses some axioms
to specify the relation between the footprint functions and the corresponding
predicates. These axioms refer to the global heap directly. In Scope Logic, the
explicit definitions of memory scope functions can be syntactically constructed
based on the predicate (or function) definitions using M. Using explicit defini-
tions, people can do better on reasoning about memory scopes. For example, we
can find that several predicates (functions) share same memory scope functions.
Another benefit of using explicit definitions of memory scope functions is that
the global heap is not referred in code verifications using Scope Logic. Verifica-
tion conditions generated in [10] contain a global heap, many store operators on
the heap, and universal quantifiers over the addresses. From our experience, it
is difficult to verify such complicated formulas using SMT solvers.

In [8], memory unit sets relevant to assertions are specified using ‘region’s. For
a recursively defined predicate, people must define its region together with the
definition of the predicate. Ghost variables and fields are instrumented into pro-
grams such that assertions can refer regions explicitly. In Scope Logic, the mem-
ory scope of a recursive predicate (function) is treated as an intrinsic attribute of
the predicate (function). Memory scopes (similar to ‘region’s) of assertions, ex-
pressions, (recursive) predicates and functions are constructed syntactically. One
advantage of our method is that ghost variables and fields are avoided. Another
advantage is that it is simpler to first define a recursive predicate (function) and
then construct its memory scope function syntactically.

Our logic does not support memory-deallocation statements now. Another dis-
advantage is that we use the conventional FOL as the base logic, people must care-
fully avoidmeaningless (not-welldefined) expressions in code verifications. To solve
this problem, we will try to find a method to generate meaningful-conditions for
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expressions.Wewill also try to extend our logic to dealwithmore sophisticatedpro-
gramstructures like procedure definitions/calls, classes/objects, functionpointers,
etc.
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Abstract. Advanced mechatronic systems, like smart cars or smart
trains, perform reconfiguration as a reaction to their changing environ-
ment. The reconfiguration behaviour of such systems is safety-critical and
needs to be verified by formal verification procedures. In the past, graph
transformation systems have proven to be a suitable formalism for speci-
fication and verification of such systems. However, existing approaches do
not consider that reconfiguration operations consume time. Considering
their duration, several reconfiguration operations can be executed con-
currently in a running system, possibly resulting in undesired behaviour.
In this paper, we introduce durations for graph transformation rules and
a locking mechanism that ensures the safe concurrent execution of time-
consuming operations. Additionally, we show how graph transformation
rules with durations are mapped to an existing verification framework
which enables the formal verification of graph transformation systems
with durative rules. We illustrate our approach using an example of a
smart train system.

Keywords: graph transformation, timed execution, concurrency, recon-
figuration, verification.

1 Introduction

Advanced mechatronic systems, like smart cars or smart trains, operate au-
tonomously in unknown and frequently changing environments. During opera-
tions, they need to cooperate with other systems in their environment, e.g., for
organizing the passage of a crossing. In order to perform these tasks efficiently,
i.e., with minimal (hardware) resources, these systems apply reconfiguration for
adapting their behaviour to their changing environment [5]. Technically, recon-
figuration is achieved by changing the software architecture of the system at
runtime.

The reconfiguration behaviour of a mechatronic system, however, is safety-
critical, because a wrong reconfiguration may lead to an erroneous behaviour
in a certain situation. In case of a smart car trying to pass a crossing such
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erroneous behaviour may lead to a crash. As a consequence, we need to apply
formal verification for guaranteeing that the reconfiguration behaviour is correct
and may not cause such accidents.

In previous publications [2,6], it has been shown that graph transformations [8]
are a suitable formalism for specifying and verifying reconfiguration behaviour.
Our approaches and other related approaches like Real-Time Maude [14] or
GROOVE [10], however, assume that reconfiguration operations are executed
atomically in zero time. In reality, reconfiguration operations obviously need time
for being executed and, hence, reconfiguration operations of different systems
may be executed concurrently. The concurrent execution, however, may cause
reconfiguration operations to interfere which each other. The approach by Rivera
et al. [15] considers such situations and proposes to cancel one of the involved
operations. This, however, has the result that a reconfiguration that has been
started will not be finished correctly. This may lead, again, to an errorneous
behaviour and, in the worst case, to an accident. As a result, we need to take
the duration of a reconfiguration into account upon verification and ensure that
each reconfiguration operation can be finished if it has been started.

In this paper, we extend our graph-based specification approach of [6] by so-
called durative rules. A durative rule extends a normal graph transformation rule
by a duration that it needs for being executed. We define how durative rules can
be mapped to our existing timed graph verification framework [6]. In particular,
we present a locking approach that guarantees that after starting the execution
of a durative rule, it can always be finished correctly. This, in turn, guarantees
that reconfiguration operations can only be executed concurrently if they do not
interfere with each other. We show this property as part of our contribution.

We illustrate our approach using a smart train system which is developed at
the University of Paderborn. In this system, small trains, called RailCabs, drive
autonomously on the track system. A particular feature of the RailCab system1

is the convoy mode where RailCabs drive at very small distances to reduce their
energy consumption.

The paper is structured as follows. In Section 2, we introduce graph transfor-
mation systems as well as timed graphs that are used for representing a state of
the system in our timed graph verification framework. In Section 3, we outline
our approach of durative rules for graph transformation systems in more detail
before introducing the semantics of durative rules and the mapping to our timed
graph verification framework in Section 4. We show that our mapping ensures
the intended properties for concurrent execution in Section 5. Section 6 discusses
related approaches before we conclude the paper in Section 7.

2 Fundamentals

2.1 Graph Transformations

A graph transformation system (GTS) consists of a set of graph transformation
rules (GT rules) and an initial graph. The GT rules can be applied to the initial
1 http://www.railcab.de

http://www.railcab.de
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graph and its resulting successor graphs to construct the state space of the GTS.
The underlying theory of GTS is based on graphs and graph morphisms.

Definition 1 (Graph, Graph Morphism). A graph G = (VG, EG, srcG, tgtG)
consists of a set of nodes VG, a set of edges EG, and source and target functions
srcG, tgtG : EG → VG. A graph morphism f : G → H between two graphs is a
pair of mappings f = (fE , fV ) with fE : EG → EH and fV : VG → VH such that
fV ◦srcG = srcH ◦fE and fV ◦tgtG = tgtH ◦fE. A graph morphism f = (fE , fV )
is injective if fE and fV are injective.

A graph morphism is a mapping of nodes and edges of one graph to nodes
and edges of another graph such that the source and target nodes of edges are
preserved. Such morphisms are used in GT rules to define which nodes and edges
are created, deleted, or preserved when the rule is applied to a graph.

Definition 2 (Graph Transformation Rule). A graph transformation rule
p = (L,R, r) consists of two graphs L and R, called left-hand side (LHS) and
right-hand side (RHS), and an injective partial graph morphism r : L → R, called
rule morphism. Given a graph transformation rule p and a match m : L → G of
its LHS into a host graph G, the direct derivation from G with p at m, written
G

p,m
==⇒ H, is the pushout of r and m in GraphP , the category of graphs and

partial graph morphisms, as shown below. [7]

L R

G H

(PO)

r

r′

m m′

Whether a GT rule can be applied to a graph depends on whether a match of
its LHS to the graph can be found. To further restrict the applicability of a rule,
negative application conditions (NAC) can be used that forbid specific graph
structures from being present in the graph.

Definition 3 (Negative Application Condition). Let p = (L,R, r) be a
graph transformation rule, G a graph, and m : L → G a match. A negative
application condition is a tuple (N,n) with n : L → N and n being injective. If
¬∃q : N → G such that q ◦ n = m, then m satisfies (N,n), written m |= (N,n).

2.2 Timed Graphs and Clock Instances

Timed GTS operate on timed graphs which are an extension of typed graphs [8].
In addition to the normal graph nodes, a timed graph contains a set of clock
instances which measure the progress of time. As in timed automata [1,3], the
values of all clock instances increase continuously and synchronously with the
same rate. A clock instance always applies to a subgraph of the timed graph and
has edges to all nodes of the subgraph but no other edges.
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Definition 4 (Timed Graph). Let TG be a type graph. A timed graph T iG =
(H, type) consists of a graph H = (VG, VCI , EG, ECI , (srcj , tgtj)j∈{G,CI}),
where

– VG and VCI are called graph nodes and clock instances, respectively;
– EG and ECI are called graph edges and clock instance edges, respectively;
– srcG : EG → VG, tgtG : EG → VG are the source and target function for

graph edges;
– srcCI : ECI → VCI , tgtCI : ECI → VG are the source and target function

for clock instance edges;
– type : H → TG is a graph morphism. [16,8]

To define the different kinds of rules of the timed GTS formalism, we need the
definition of a morphism on timed graphs. A timed graph morphism preserves
the source and target nodes of edges, the types of nodes, and the values assigned
to attributes.

Definition 5 (Timed Graph Morphism). A (timed graph) morphism f
between two timed graphs T iGi, i = 1, 2, is a partial graph morphism f =
(fVG , fVCI , fEG , fECI ) with fVj : Vj,1 → Vj,2, j ∈ {G,CI}, and fEk

: Ek,1 →
Ek,2, k ∈ {G,CI}. f commutes for all source and target functions and preserves
types, i.e., type2 ◦ f = type1. [16]

In addition to timed graph morphisms, we need a definition of clock instance
constraints which are used by different rules of the timed GTS formalism. They
are used to restrict the values of a clock instance to a specific interval (either as
application condition or as invariant).

Definition 6 (Clock Instance Constraint). Let VCI be a set of clock in-
stances, ci, cj ∈ VCI . A clock instance constraint is a conjunctive formula of
atomic constraints of the form ci ∼ n or ci − cj ∼ n with ∼∈ {<,≤,=,≥, >},
n ∈ N. Z(VCI) denotes the set of clock instance constraints over VCI . [16,3]

To evaluate whether a clock instance constraint is satisfied or not, we need an
assignment of values to the clock instances of a timed graph.

Definition 7 (Clock Instance Value Assignment). Let VCI be a set of clock
instances. A clock instance value assignment is a function ν : VCI → R+ that
assigns a non-negative real value to each clock instance. For Vres ⊆ VCI , ν1 =
ν[Vres '→ 0] is defined as ν1(ci) = 0 for all ci ∈ Vres and ν1(ci) = ν(ci) for all
ci ∈ VCI \ Vres. For δ ∈ R+, ν2 = (ν + δ) is defined as ν2(ci) = ν(ci) + δ for all
ci ∈ VCI .

Now we can express whether a clock instance constraint is satisfied.

Definition 8 (Clock Instance Constraint Satisfaction). Let VCI be a set
of clock instances, z ∈ Z(VCI) a clock instance constraint over VCI , and ν a
clock instance value assignment over VCI . Then, ν satisfies z, written as ν |= z,
if and only if z[ν(ci)/ci] ≡ true.
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2..*
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1..*

Fig. 1. Class diagram of the RailCab system

3 Approach

To illustrate our approach of durative reconfigurations for GTS, we use a convoy
scenario of the aforementioned RailCab system as running example. Figure 1
shows the simplified software architecture of the RailCab system in a class di-
agram. It consists of track segments that are connected to each other via next
links. A RailCab can occupy such a track segment. Furthermore, RailCabs can
form a convoy. Such a convoy operation is represented by a Convoy object and
member links to each participating RailCab. In addition, there are first and
last links that represent the head and tail of the convoy, respectively.

To model the reconfigurations of a system’s software architecture, we use story
patterns which have a formal semantics2 based on GTS. Story patterns represent
the LHS, RHS, and NACs of a rule in a single graph by using stereotypes.
Elements going to be deleted (LHS only) are equipped with the stereotype «- -»;
elements to be created (RHS only) with «++»; forbidden elements (within NACs
only) are crossed out; elements that are preserved (in both LHS and RHS) are
drawn without stereotype.

Ordinary GTS do not include a notion of time. However, to enable the ver-
ification of timed properties, time should be reflected in the semantics: a path
in the state space of a GTS should clearly indicate when a time-consuming re-
configuration starts and when it ends. Therefore, in our approach, a rule has
an annotated value for its duration. The duration is obtained by computing the
WCET for applying the reconfiguration. For these durative rules we developed
a semantics based on timed graphs and timed GTS. This enables us to use our
existing verification framework [6] for the verification of durative rules.

In our semantics durative reconfigurations are supported by translating them
into two discrete reconfigurations that are temporally linked to each other. One
reconfiguration represents the start of the durative reconfiguration; a second one
represents its end. Since reconfigurations have an application interval now, it
is possible to apply them concurrently. A naive approach that allows concur-
rent rule applications to overlap arbitrarily might lead to conflicts between two
reconfigurations.

Consider for example the story patterns in Figures 2 and 3, which both take
d = 4 time units to execute, and a configuration where two RailCabs are driving
in a convoy at a given time. If the breakConvoy reconfiguration is in the process

2 Story patterns follow the single pushout approach to graph transformation.
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Fig. 2. Story pattern joinConvoy

d = 4

:Track :Track :Track

:RailCab :RailCab

«- -»
:Convoy

next next

on «- -»
on

«++»
on

«- -»
member

«- -»
member

«- -»
last

«- -»
first

Fig. 3. Story pattern breakConvoy
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Fig. 4. Configuration of the system where the breakConvoy rule is in ongoing execution

of execution but the actual change of the state will not happen until its execution
ends, then a joinConvoy reconfiguration could be scheduled in the meantime.
However, as breakConvoy ends before joinConvoy ends, there will be no Convoy
object anymore that the joining RailCab object can be linked to. If such a
sequence of reconfigurations was to be executed, a rear-end collision might occur
in the worst case.

To avert such conflicts we integrate a locking mechanism into the semantics of
durative rules. The application of a start rule adds locks into the host graph. There
are read locks for objects or links that are preserved and write locks for their cre-
ation and deletion. These locks are attached directly to the timed graph as locking
edges when the start rule is applied. The application of the end rule removes these
locking edges again.Conflicts cannot occur anymorebecause start rules require the
non-existence of locking edges according to the changes they specify. Such a use of
locking edges prevents inconsistent configurations from occurring and ensures that
reconfigurations are either carried out completely or not at all. While a concurrent
read is allowed, a concurrent write or read-write is not allowed.

Figure 4 shows a configuration of the system where locking edges have been
created by the application of breakConvoy’s start rule. Locks on objects are
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incorporated into the configuration as self-loops. Locks on links are realized as
locking edges with same source and target as the link itself. To correctly correlate
locking edges to the links they are supposed to restrict the access to, there is
one pair of locking edge types (for read and write locks) for every link type. In
the figure, locking edges are depicted using dashed arrows.

4 Semantics

Our notion of durative rules is inspired by the fact that reconfigurations in
software systems require time. On the syntactic level, a durative rule is merely
a GT rule with an annotated name and duration value. The idea is that the
execution of a durative graph transformation cannot be aborted once it has
been started. A modeller who uses durative rules for specification does not need
to know about the complicated timed behaviour that happens under the hood.

Definition 9 (Durative Graph Transformation Rule). A durative graph
transformation rule D = (DL,DR, dr, name, d) consists of

– two typed graphs, a left-hand side DL and a right-hand side DR,
– a partial graph morphism dr : DL → DR,
– a distinct name name, and
– a duration d ∈ N>0.

The semantics of durative GT rules are defined on top of the rules already
established by the timed GTS formalism. A durative rule induces a pair of timed
rules (i.e., its start and end rule), a so-called clock instance rule, and an invariant
rule. Intuitively, the application of the start and end rule indicate the interval of
the durative rule’s execution, the clock instance rule triggers the measuring of
time, and the time invariant rule enforces the application of the end rule after d
time units have passed since the application of the start rule.

Before giving the definitions of the induced rules, we explain how we realize
the locks in timed graphs. Locking of nodes and edges is done via the creation and
deletion of additional edges, called locking edges. The types of locking edges are
defined in the type graph of the timed GTS. Every node type t has two locking
edge types, rlnode(t) and wlnode(t), as self-loops. For every edge type t (that is
no locking edge type itself), there are locking edges types rledge(t) and wledge(t)
adjacent to the same source and target node types. An object of type rlnode(t)
depicts an obtained read lock on the object; an object of type wlnode(t) a write
lock. Similarly, a link of type rledge(t) depicts an obtained read lock on the link
between its source and target that has the type t, wledge(t) a write lock. In
addition to the locking edges, there is a node type name for every durative rule
and an edge type underApplication from name to every other node type. Objects
of type name are called application indicator and indicate the ongoing execution
of a durative reconfiguration if available in a configuration. Their outgoing links
mark the matching of the durative rule that has been applied, i.e., the subgraph
of the configuration that is changed by the reconfiguration.
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Fig. 5. A durative rule (a), its induced start rule (b), and end rule (c)

4.1 Timed GT Rules

A timed GT rule basically works like a normal GT rule. It searches for a match
of the left-hand side (LHS) in the host graph and transforms the respective
subgraph such that it is isomorphic to the right-hand side (RHS). In addition,
a timed GT rule specifies a timed guard and resets. The time guard is a clock
instance constraint based on the clock instances contained in the LHS. It needs
to be evaluated to true for the rule to be applicable. Upon application, all clock
instances contained in the resets are set back to 0.

Definition 10 (Timed Graph Transformation Rule). A timed graph trans-
formation rule tr = (L,R, r,N , z, Vres) consists of two timed graphs L and R, a
rule morphism r : L → R with r(VCI,L) = VCI,R and |VCI,L| = |VCI,R|, a set of
NACs N , where each NAC is a tuple (N,n) ∈ N with n : L → N , z ∈ Z(VCI,L)
is a clock instance constraint, the time guard and Vres ⊆ VCI,R is a set of clock
instances called resets. [16,6]

Both, the induced start rule and the induced end rule are defined on top of this
timed GT rule. Intuitively, the end rule realizes the reconfiguration syntactically
defined by the durative rule. The start rule serves two purposes:

– It adds information about the execution of the durative rule into the host
graph. This is needed for the annotation of time and for the end rule to find
a match that corresponds to the match of the start rule. Finding a corre-
sponding match is important because together both rules are supposed to
represent the application interval of a durative transformation. With differ-
ent matches there would be no meaningful interpretation for the application
of a durative rule.

– It adds locking edges into the host graph such that subsequent rules do not
match if they access the same elements in a conflicting manner. These locking
edges are removed again by the end rule.

Figure 5 shows an example of a durative rule called Simple and its induced start
and end rule. The durative rule (a) specifies the removal of a link x during an
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interval of 5 time units. The induced start rule (b) has a LHS that corresponds to
the LHS of the durative rule. Negative application conditions allow its applica-
tion only if the preserved nodes are not write-locked and the edge to be removed
is neither read- nor write-locked. When the rule is applied, an application indi-
cator Simple is created. For each preserved node a read lock rl is created; the
edge to be deleted also obtains a write lock wl(x). The LHS of the induced end
rule (c) includes the application indicator node Simple and its adjacent edges.
This ensures the correct matching of the LHS to the host graph. Locking edges
are removed again when the rule is applied. The guard ci ≥ 5 is an application
condition of the end rule. The consumption of 5 time units is guaranteed by the
invariant rule which is formally explained in Section 4.2.

Definition 11 (Induced Start Rule). Let D = (DL,DR, dr, name, d) be a
durative rule. The induced start rule of D is a timed rule sr = (L,R, r,N , z, Vres)
with

1. VG,L = VDL ∧ EG,L = EDL,
2. VG,R = VDL∪{ai}∧type(ai) = name∧EG,R = EDL∪{e|src(e) = ai∧tgt(e) ∈

VG,R ∧ type(e) = underApplication} ∪ ENODELOCKS,R ∪ EEDGELOCKS,R,
3. VCI,L = VCI,R = ∅ ∧ ECI,L = ECI,R = ∅,
4. iL : DL → L is an isomorphism ∧ r|{VG,L,EG,L} is total and injective,
5. N = NNODELOCKS ∪ NEDGELOCKS,
6. z = ∅ ∧ Vres = ∅,
7. NNODELOCKS = {(N,n)|∃v ∈ VG,L : VG,N = VG,L ∧EG,N = EG,L ∪ {ne}∧

src(ne) = tgt(ne) = n(v) ∧ type(ne) = wlnode ◦ type(v) ∧ n is injective} ∪
{(N,n)|∃v ∈ VG,L \ iL ◦ Dom(dr) : VG,N = VG,L ∧ EG,N = EG,L ∪ {ne} ∧
src(ne) = tgt(ne) = n(v) ∧ type(ne) = rlnode ◦ type(v) ∧ n is injective},

8. NEDGELOCKS = {(N,n)|∃e ∈ EG,L : VG,N = VG,L ∧EG,N = EG,L ∪ {ne}∧
src(ne) = src ◦ n(e) ∧ tgt(ne) = tgt ◦ n(e) ∧ type(ne) = wledge ◦ type(e) ∧
n is injective} ∪ {(N,n)|∃e ∈ EG,L \ iL ◦ Dom(dr) : VG,N = VG,L ∧ EG,N =
EG,L ∪ {ne} ∧ src(ne) = src ◦ n(e) ∧ tgt(ne) = tgt ◦ n(e) ∧ type(ne) =
rledge ◦ type(e) ∧ n is injective},

9. ENODELOCKS,R = {le|∃v ∈ VG,L : src(le) = tgt(le) = r(v) ∧ type(le) =
rlnode ◦ type(v)} ∪ {le|∃v ∈ VG,L \ iL ◦ Dom(dr) : src(le) = tgt(le) = r(v) ∧
type(le) = wlnode ◦ type(v)},

10. EEDGELOCKS,R = {le|∃e ∈ EG,L : src(le) = src ◦ r(e) ∧ tgt(le) = tgt ◦
r(e) ∧ type(le) = rledge ◦ type(e)} ∪ {le|∃e ∈ EG,L \ iL ◦ Dom(dr) : src(le) =
src ◦ r(e) ∧ tgt(le) = tgt ◦ r(e) ∧ type(le) = wledge ◦ type(e)}.

We describe every condition separately. The LHS of the induced start rule corre-
sponds to the LHS of the durative rule (Condition 1). The RHS of the start rule
corresponds to its LHS with an additional node ai, called application indicator,
additional edges from ai to all other nodes in the RHS, and additional edges
ENODELOCKS,R and EEDGELOCKS,R that denote the set of locking edges that
are created by the start rule (Condition 2). Intuitively, ai indicates the appli-
cation of the durative rule and the sets ENODELOCKS,R and EEDGELOCKS,R

indicate whether read or write access to specific nodes and edges is locked. Aside
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from adding ai, the start rule applies changes only by creating locking edges.
Therefore, the rule morphism r restricted to graph nodes and edges is total (Con-
dition 4) – r is also unique (up to isomorphism). The sets of clock instances, clock
instance edges, time guards, and clock resets are empty (Conditions 3 and 6) be-
cause the start rule does not add a clock instance measuring the execution time
itself. Instead, the addition of a clock instance for the execution of a durative
rule is done by a clock instance rule.

The remainder conditions implement the locking functionality. Conditions 7
and 8 realize application conditions on the locks by defining NACs on locking
edges and Conditions 9 and 10 realize changes to the locking state by creating
locking edges. The start rule may not be applied if there is a write lock for a
required node or edge; it may further not be applied if there is a read lock for a
node or edge that is going to be deleted according to the syntax of the durative
rule, i.e., the node or edge is not contained in iL ◦ Dom(dr) (Conditions 7 and 8).
The start rule creates a read lock for every required node or edge; it creates a
write lock if the node or edge is deleted according to the syntax of the durative
rule, i.e., if the node or edge is not contained in iL ◦ Dom(dr) (Conditions 9
and 10).

Definition 12 (Induced End Rule). Let D = (DL,DR, dr, name, d) be a
durative rule. The induced end rule of D is a timed rule er = (L,R, r,N , z, Vres)
with

1. VG,L = VDL∪{ai}∧type(ai) = name∧EG,L = EDL∪{e|src(e) = ei∧tgt(e) ∈
VG,L ∧ type(e) = underApplication} ∪ ENODELOCKS,L ∪ EEDGELOCKS,L,

2. VG,R = VDR ∧ EG,R = EDR,
3. VCI,L = VCI,R = {ci} ∧ ECI,L = {(ci, ai)} ∧ ECI,R = ∅,
4. iL : DL → L is a total injective morphism ∧ iR : DR → R is an isomor-

phism ∧ r|{VG,L,EG,L} = iR ◦ dr ◦ i−1L ∧ r|{VCI,L} is total and injective,
5. N = ∅,
6. z = {ci ≥ d} ∧ Vres = ∅,
7. ENODELOCKS,L = {le|∃v ∈ VG,L : src(le) = tgt(le) = v ∧ type(le) =

rlnode◦ type(v)}∪{le|∃v ∈ VG,L \Dom(r) : src(le) = tgt(le) = v∧ type(le) =
wlnode ◦ type(v)},

8. EEDGELOCKS,L = {le|∃e ∈ EG,L : src(le) = src(e) ∧ tgt(le) = tgt(e) ∧
type(le) = rledge ◦ type(e)} ∪ {le|∃e ∈ EG,L \ Dom(r) : src(le) = src(e) ∧
tgt(le) = tgt(e) ∧ type(le) = wledge ◦ type(e)}.

The LHS of the induced end rule corresponds to the LHS of the durative rule plus
the application indicator node ai and the locking edges (Condition 1). The RHS
of the end rule simply corresponds to the RHS of the durative rule (Condition 2).
Thus, the application of the end rule removes the application indicator ai and
the locking edges that were created when the start rule was applied. The rule
morphism r indicates that the end rule realizes the actual graph transformation
syntactically defined by the durative rule (Condition 4). Additionally, the end
rule includes a time guard on the clock value of ci (Condition 6) to guarantee
that the proper amount of time is consumed before being applied. The clock
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Fig. 6. Induced clock instance rule

:Simple ci:ClockhasNode

ci ≤ 5

Fig. 7. Induced invariant rule

instance ci that is connected to ai is not removed by the end rule (Condition 3)
because timed GT rules may neither add nor remove clock instances to or from
a timed graph. Adding clock instances is subject to clock instance rules and
removing them is subject to a singleton clock instance removal rule. Both are
covered in the next section.

4.2 Clock Instance and Invariant Rules

Besides timed GT rules that execute reconfigurations, we need rules to create and
delete clock instances and to restrict the interval of allowed clock instance values
as an invariant condition. This is subject to clock instance rules and invariant
rules.

A clock instance rule specifies the subgraph that the clock instance applies
to as its LHS. The RHS adds the respective clock instance. The rule specifies
a NAC which is the same as the RHS. This prevents that infinitely many clock
instances are added to the same subgraph.

Definition 13 (Clock Instance Rule). A clock instance rule cr = (L,R, r,N )
consists of two timed graphs L and R with a rule morphism r : L → R and a
negative application condition (N,n) ∈ N fulfilling the conditions:

– VCI,L = ∅,
– |VCI,R| = 1 ∧ |ECI,R| ≥ 1,
– r(VG,L) = VG,R ∧ r(EG,L) = EG,R,
– N = R ∧ n = r ∧ |N | = 1. [16,6]

The induced clock instance rule has only the application indicator node in its
LHS. Thus, it attaches a clock instance only if a start rule has been applied
before. Since the application indicator is typed via the name of the durative
rule, there is one induced clock instance rule for each durative rule. Figure 6
shows the induced clock instance rule for the durative rule of Figure 5a.

Definition 14 (Induced Clock Instance Rule).
Let D = (DL,DR, dr, name, d) be a durative rule. The induced clock instance
rule of D, cr = (L,R, r,N ), fulfils the following conditions:

– VG,L = VG,R = {ai} ∧ type(ai) = name ∧EG,L = EG,R = ∅,
– VCI,L = ∅ ∧ VCI,R = {ci} ∧ ECI,L = ∅ ∧ECI,R = {(ci, ai)},
– N = R ∧ n = r ∧ |N | = 1.
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Multiple applications of a start rule create multiple application indicator nodes.
A clock instance can be attached to each of these nodes. If the subgraph that
the clock instance applies to is no longer present in the host graph, the clock
instance needs to be removed as well. This is the case when an end rule is applied
as each application of an end rule removes an application indicator. Removing
the clock instance is subject to a clock instance removal rule. For a given set of
clock instance rules, a clock instance removal rule can be deduced automatically.
It has a single clock instance as its LHS and an empty RHS. In addition, it
specifies the RHSs of all clock instance rules as NACs. This means that the
clock instance removal rule deletes a clock instance if the subgraph that the
clock instance applies to is no longer present in the host graph. There is only
one clock instance removal rule for the whole timed GTS.

Definition 15 (Clock Instance Removal Rule). Let CR be a set of clock
instance rules with cr = (Lcr, Rcr, rcr, Ncr, ncr) ∈ CR. A clock instance removal
rule crrem(CR) = (L,R, r,N ) is defined by the conditions:

– VG,L = ∅, VCI,L = {ci} for a clock instance ci,
– EG,L = ECI,L = ∅,
– VG,R = VCI,R = ∅,
– EG,R = ECI,R = ∅,
– N = {(N,n)|∃cr ∈ CR : N = Rcr ∧ n : L → N with ci '→ ciN and

ciN ∈ VCI,N}.

Invariant rules forbid the existence of a subgraph beyond a specific point in time.
They specify a LHS containing a clock instance and a clock constraint. Whenever
the LHS is matched to the graph, the clock constraint must be fulfilled for the
clock instance. If the subgraph cannot be destroyed by applying a timed GT rule
and time cannot elapse without violating the invariant rule, a deadlock occurs.

Definition 16 (Invariant Rule). An invariant rule ir = (L, z) consists of a
timed graph L with |VCI,L| = 1 and a clock constraint z ∈ Z(VCI,L). [16,6]

In Section 4.1 we stated that the induced end rule specifies a time guard z =
{ci ≥ d} on the clock value of its clock instance ci. To guarantee that the end
rule is indeed applied after d time units instead of being postponed arbitrarily –
the time guard only guarantees that it is not applied earlier – the durative rule
also induces an invariant rule. Figure 7 shows such an induced invariant rule for
the durative rule of Figure 5a.

Definition 17 (Induced Invariant Rule). Let D = (DL,DR, dr, name, d) be
a durative rule. The induced invariant rule of D, ir = (L, z), fulfils the following
conditions:

– VG,L = {ai} ∧ type(ai) = name ∧EG,L = ∅,
– VCI,L = {ci} ∧ ECI,L = {(ci, ai)},
– z = {ci ≤ d}.
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The induced invariant rule specifies an application indicator ai and a clock in-
stance node ci as its only nodes and ci ≤ d as the constraint to be fulfilled
whenever the LHS is matched. At every match there is a distinct application
indicator that was created by a start rule and a clock instance measuring the
elapsed time since the application of its start rule. Intuitively, each match of
the LHS indicates that an application of a durative rule is taking place. The
invariant rule forbids the existence of an LHS match such that the constraint
is unfulfilled. Thus, the invariant rule enforces a timed GT rule destroying its
LHS match to be applied no later than the instant the constraint gets unful-
filled. Destroying the LHS match can only be done by deleting the application
indicator ai. This in turn can only be done by an application of the end rule
that corresponds to the same durative rule as the invariant rule (since the types
of the application indicator nodes have to match). Therefore, the invariant rule
guarantees that the end rule is indeed applied after d time units.

4.3 Operational Semantics

We define the semantics of durative GTS, which is simply a standard GTS using
durative rules, by a mapping to timed GTS. The definition of the operational
semantics of a timed GTS is based on the definitions of the timed GT rule,
the clock instance rule, the clock instance removal rule, and the invariant rule.
However, before defining the operational semantics, we need a definition of the
timed GTS itself.

Definition 18 (Timed Graph Transformation System). A timed graph
transformation system Gt is a tuple (G0, TG, TR, IR,CR), where G0 is a timed
graph, the initial graph, TG is a type graph, TR is a set of timed GT rules, IR
is a set of invariant rules, and CR is a set of clock instance rules. [16,6]

Note that the definition of a timed GTS does not include a clock instance removal
rule in the tuple. The clock instance removal rule cirem(CI) is implied by the
set of clock instances CI according to Def. 15.

A durative GTS is an initial graph and a set of durative rules. Its semantics
is given by a timed GTS whose timed GT rules TR, invariant rules IR, and
clock instance rules CR are all induced by durative rules. We spare us its formal
definition here.

As a basis for our operational semantics we define a configuration of a timed
GTS. Intuitively, a configuration consists of a timed graph and an assignment
of values to the clock instances of the timed graph.

Definition 19 (Configuration, Initial Configuration). A configuration is a
tuple 〈G, ν〉 where G is a timed graph and ν is a clock instance value assignment.
The initial configuration is the tuple 〈G0, ν0〉, where

– V0,CI = ∅ where V0,CI is the set of clock instances in G0 and
– ν0 is an empty function.
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Based on a configuration of a timed GTS, we can now define the operational
semantics of a timed GTS.

Definition 20 (Operational Semantics of a Timed GTS). Let G be a
timed graph and G = (G0, TG, TR, IR,CR) a timed graph transformation sys-
tem. We define

I(G) =
∧

ir∈IR
Iir(G)

where for an invariant rule ir = (Lir, z) ∈ IR and its matchings m1, . . . ,mk from
Lir to G the function Iir(G) is defined as Iir(G) = z[m1(ci)/ci]∧. . .∧z[mk(ci)/ci]
for all i = 1, . . . , k and for all ci ∈ VCI,Lir . The operational semantics is defined
by a transition system where states are configurations 〈G, ν〉. The execution starts
in the initial configuration 〈G0, ν0〉 and transitions are defined by the following
rules:

1. 〈G, ν〉 δ
=⇒ 〈G, ν + δ〉 if (ν + δ) |= I(G) for δ ∈ R+. (delay transition)

2. 〈G, ν〉 tr,m
==⇒ 〈G′′′, ν′〉 for a timed GT rule tr = (L,R, r,N , z, Vres) ∈ TR and

an injective matching m from L to G if ν |= z[m(ci)/ci] for ci ∈ VCI,L,
where
– G′ has been derived by applying tr at m to G,
– G′′ has been derived by applying crrem(CR) to G′,
– G′′′ has been derived by applying all cr ∈ CR in any order to G′′, and
– ν′ = ν[Vres '→ 0] with ν′ ∈ I(G′′′). (action transition)

The operational semantics defines two kinds of transitions: delay transitions and
action transitions. This follows the standard approach as defined for UPPAAL
timed automata [3]. Delay transitions do not apply rules. Instead, they increase
the values of all clock instances synchronously. As a condition for the transi-
tion the new clock instance value assignment has to satisfy I(G) which is the
conjunction of all invariant clock instance constraints. While firing a delay tran-
sition in a configuration with no clock instance is possible, it has no effect, i.e.,
it produces a self-loop in the state space. Action transitions are defined by the
application of timed GT rules. With each application of a timed GT rule, clock
instances are created and destroyed according to the clock instance rules to cre-
ate a successor configuration. In the presence of durative rules, a clock instance
is created when applying an induced start rule and destroyed when applying an
induced end rule.

5 Properties of the Semantics

In this section we argue that our semantics of durative rules is well-defined and
possesses properties that one might expect. Specifically, we cover two properties.
The first property states that we can project the application of a timed action
transition to the untimed case, i.e., the semantics of durative rules is a conser-
vative extension of the semantics of untimed GTS. The second property states
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that each durative rule application terminates properly. This is ensured by the
local confluence of the involved start and end transformations.

Next, we formalize the first property as a theorem. More precisely speak-
ing, the theorem says that the execution of a durative graph transformation
〈T iG, ν〉 D,m

==⇒ 〈T iH, ν〉 results in a graph that is structurally identical to the
graph we receive by executing an untimed graph transformation that is defined
by the same rule morphism and matching.

Theorem 1 (Conservative Extension of GTS)
Let D = (DL,DR, dr, name, d) be a durative rule, T iG = (GTiG, typeTiG) a
timed graph with GTiG = (VG, ∅, EG, ∅), and ν = ∅ a valuation. Let sr denote
the induced start rule of D and er its end rule. Further, let the GT rule r =
(DL,DR, dr) and the graph G = (VG, EG) be a projection of D and T iG to the
untimed case.

If and only if there is a match m : DL → G and a direct graph transformation
G

r,m
==⇒ H, then there are matches msr : Lsr → T iG and mer : Ler → T iG′ and

direct derivations 〈T iG, ν〉 sr,msr
====⇒ 〈T iG′, ν′〉 d

=⇒ 〈T iG′, ν′′〉 er,mer
====⇒ 〈T iH, ν〉 such

that

H = (VH , EH) and T iH = (HTiH , typeTiH) with HTiH = (VH , ∅, EH , ∅).

We give a formal proof of this theorem in [17]. Intuitively, the resulting graphs
are identical because

– executing the start transformation leaves the essential parts of the graph
unchanged,

– all locking elements and special nodes that are created by executing the start
transformation are deleted again by executing the end transformation, and

– the end transformation realizes a graph transformation that conforms to the
untimed graph transformation; in fact, their RHSs are the same.

Next, we formalize the second property which states that each durative rule
application terminates properly. In other words, reconfigurations can only be
executed concurrently if they do not interfere with each other.

Theorem 2 (Termination of Rule Application)
Let D = (DL,DR, dr, name, d) be a durative rule, T iG = (GTiG, typeTiG) a
timed graph with GTiG = (VG, ∅, EG, ∅), and ν = ∅ a valuation. Let sr denote
the induced start rule of D and er its end rule.

If there is a match msr : Lsr → T iG, a direct derivation 〈T iG, ν〉 sr,msr
====⇒

〈T iG′, ν′〉 with ν′(ci) = 0, and a derivation 〈T iG′, ν′〉 seq
==⇒ 〈T iG′′, ν′′〉 with

ν′′(ci) = d and (er,_) /∈ seq, then there is a unique (up to isomorphism) match
mer : Ler → T iG′′ and a direct derivation 〈T iG′′, ν′′〉 er,mer

====⇒ 〈T iG′′′, ν′′′〉.

We give a formal proof of this theorem (by induction over the number of action
transitions in seq) in [17]. Intuitively, this theorem holds because
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– another start transformation that is applied during the interval only adds
elements to the host graph but deletes none, thus cannot conflict with the
applicability of the end rule,

– another end transformation that is applied during the interval and consumes
locking elements would also imply the execution of another start transforma-
tion that created such locking elements earlier in the interval, thus providing
exactly the same (up to isomorphism) locking elements as if none of the two
transformations were applied, and

– elements supposed to be deleted by the application of the end rule can-
not be deleted by another durative graph transformation because the start
transformation attached locking elements to them.

Note, that Theorem 2 requires that no clock instances exist in the run-time state
〈T iG, ν〉, i.e., ν = ∅. In other words, for every start transformation of a durative
rule that has been applied, its end transformation also has been applied to arrive
at 〈T iG, ν〉. However, we can use the Local Confluence Theorem for GTS with
NACs, cf. Habel et al. [9], to easily gain properties where durative rules are
allowed to be in ongoing execution. The Local Confluence Theorem states that
two parallel independent (direct) graph transformations can be applied in any
order and both orderings result in the same graph. By showing that the start
transformation 〈T iG, ν〉 sr,msr

====⇒ 〈T iG′, ν′〉 and a succeeding start transformation
are sequential independent, we can thus prove that they may be reordered. This
relaxes Theorem 2 in the sense that the first start transformation in seq may be
pulled before 〈T iG, ν〉 sr,msr

====⇒ 〈T iG′, ν′〉, i.e., durative rules are allowed to be in
ongoing execution in 〈T iG, ν〉.

6 Related Work

In literature, there exist other approaches supporting durations or time in graph
transformations. The approach by Rivera et al. [15] provides timed graph trans-
formations where rules specify a duration and periodicity for their execution. If
a match is found, the effect of the rule is established at the end of the duration
like in our approach. In contrast to our approach, they do not explicitly lock the
match of a rule, i.e., the matches of rules which are currently executing may be
changed and rules may be cancelled. Real-Time Maude [14] is a model-checker
for object-oriented graph rewrite rules in a textual syntax. It provides support
for discrete and dense real-time models, although verification is only possible for
discrete time models. In contrast to our approach, they do not consider durations
of rules. The MOMENT2 framework [4] provides model transformations based
on MOF meta-models in a textual syntax. The approach supports one unre-
setable clock per object, timers that count down to 0 and timed values that can
be increased or decreased at a certain, fixed rate based on the elapsed time. The
model transformations can be simulated and verified using Real-Time Maude.
The approach by Michelon et. al. [13] specifies a graph formalism for specify-
ing message exchange between objects. Each message has a time information on
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when it is delivered and handled. Rules have no duration and their modelling
formalism relies on their application domain, because each rule needs to consume
at least one message. De Lara et al. [11] add timing information to attributed
graph transformation rules. Each rule specifies a time interval in which it may
be applied, but no duration. For analysis purposes, the system is translated to
timed Petri nets which support durations for transitions. In [12], a discrete event
simulation based on timed GTS is presented where events encode the point in
time when the graph transformation rule is executed. Rules, however, can be
grouped in uninterruptable activities where the execution of one rule requires
the execution of another one at later point in time. This is similar to the in-
duced timed rules of a durative rule. In contrast to our approach, they ensure
the execution of the second rule in their simulation framework rather than in
the GTS itself and provide no rule durations. GROOVE [10], which is probably
the most well-known graph-based verification tool, does neither support time
nor durations for rules.

7 Conclusion

In this paper, we presented an extension of graph transformation systems by
durations for rules. In addition, we introduced a locking approach that allow
for safe concurrent execution of durative rules. In particular, we have proven
that a durative rule can always be finished correctly once it has been started.
We enable the formal verification of graph transformation systems with durative
rules by defining a mapping to timed graph transformation systems. Timed graph
transformation systems may serve as an input to our timed graph verification
framework [6].

The extension of graph transformation rules by durations enables developers
to provide a more precise specification of reconfiguration behaviour by consid-
ering that such behaviour needs time for being executed. In addition, GTS with
durative rules provide an intuitive and easy-to-use modelling approach to spec-
ify concurrent behaviour. Besides formal verification, we have shown in [18] that
durative rules can also be translated into a planning specification. That enables
using the same specification for planning reconfiguration orders.

In our future work, we plan to extend the semantics to support negative
application conditions on the level of durative rules. While simple forbidden
links can be locked by the same locking edges than preserved links, a NAC that
forbids the link of an object to any other object of a certain type requires the
definition of new kinds of locks to block their concurrent creation. Another idea
for future research involves positive influences between durative rules: instead of
blocking other rules from being applicable, a durative rule could enforce another
rule to be applied during its own application interval.
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