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Abstract. We present an extension of the usual agent-based data min-
ing cooperative work flow that adds a so-called adjustment work flow. It
allows for the use of various knowledge-based strategies that use infor-
mation gathered from the miners and other agents to adjust the whole
system to the particular data set that is mined. Among these strategies,
in addition to the basic exchange of hints between the miners, are pa-
rameter adjustment of the miners and the use of a clustering miner to
select good working data sets. Our experimental evaluation in mining
rules for two medical data sets shows that adding a loop with the adjust-
ment work flow substantially improves the efficiency of the system with
all the strategies contributing to this improvement.

1 Introduction

Data mining has become an important tool for decision makers in all kinds of
areas. Tools like Weka (see [5]) are available to provide a wide variety of data
mining algorithms but also methods for preparing data for mining and analyzing
mining results under a common user interface. Despite the efforts in these tools
to simplify the task of running the entire data mining work flow, finding suitable
algorithms, parameters for each algorithm, and relevant sub sets of data to work
on remains a very time-consuming and difficult task.

Using groups of cooperating mining agents (miners) presents a first step to-
wards a solution to overcome the difficulties mentioned above, since the agents
can try out different mining methods in parallel and, by exchanging good mining
results and other information, they can essentially create a ”super”-miner com-
bining the strengths of the individual miners. As works like [4] or [3] (see also
[11] for an overview) have shown, this combination can achieve substantial syn-
ergetic gains. But there are also quite a number of problems around agent-based
approaches. These include the decision when to communicate what to which
other agents, as well as focusing individual agents on the right parts of the data
at the right time and detecting and replacing useless agents.

In this paper, in order to solve the problems from the last sentence, we propose
an approach named CoLe2 that enhances the CoLe cooperative mining system
(see [4]), by adding an outer adjustment work flow to the existing cooperative
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work flow. This outer work flow essentially iterates over the usual preparation-
mining-analysis data mining work flow to automate the process of finding the
right set-up for the miners to create the desired results efficiently. To achieve this,
the CoLe2 system uses so-called knowledge-based strategies that incorporate
knowledge about data mining in general, the mentioned three phases, the miners,
and how the miners act in the cooperative environment.

Our CoLe2 approach uses the adjustment work flow to perform iterative data
selection for the miners using an X-means clustering based method (see [12]),
which runs asynchronously with the inner distributed cooperation work flow.
In addition, it selects miners based on their performance history in the inner
cooperation iterations. It also does parameter adjustment for the miners during
the mining which includes feature selection based on hints from the other miners.
And we use so-called combiners that form additional more complex rules out of
the results of the miners.

We instantiated the general concepts of CoLe2 in a system aimed at mining
rules about two medical databases, one focussing on diabetes (as in [4]) and the
other focussing on chronic kidney disease. In our experiments we compared this
system to CoLe and also looked at the individual knowledge-based strategies and
their contributions. Our experiments showed that CoLe2 substantially improves
the efficiency of the mining while creating rules of the same or even better quality.
The experiments also showed that all knowledge-based strategies contribute to
this improvement.

2 Data Mining Basics

Data mining is the attempt to extract patterns or knowledge from data with the
help of computer programs. The typical data mining process involves 4 steps (see
[6]): data cleaning and integration, data selection and transformation, executing
a data mining algorithm, and evaluating and presenting the results. There are
many different types of data mining tasks within the mining process. The most
common ones are classification, clustering and association analysis. There are
also various representations for knowledge for these different tasks, like decision
trees, neural networks or rules. While our CoLe and CoLe2 concepts can be
applied to all the tasks and to most of the knowledge representations, the system
we use for evaluating CoLe2 is performing data mining of rules for classifying
patients.

In general, a (relational) databaseD can be seen as a number of tables T1,...,Tl,
where a table has a set of attributes A1,...,Am. Then an entry in a table is a
tuple (a1, ..., am), where ai is a value for Ai. A rule overD has the form condition
⇒ consequence where condition is an expression consisting of predicates and
certain operators, as is consequence (although consequence is usually very short).
Predicates are about values of the attributes, usually having the form att rel-
op value, where rel-op, a relational operator, compares the attribute att ’s value
of an entry in D with value. In our system, we allow =, �=, >, ≥, <, and ≤
as relational operators. On the condition level, we use a logical operator (and)
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and a temporal operator (before), together with parenthesis which override the
precedence of the operators. The (or) logical operator is not explicitly used in
the rules. Instead, the rules in a rule set have the (or) relation between each
other.

A rule is true for an entry in a table if whenever the condition is true for the
attribute values in the tuple, then also the consequence is true. Such an entry is
a true positive. On the contrary, if for a tuple condition is true, but consequence
is false, then this tuple is a false positive for the rule. A false negative for a rule
is a tuple that does not fulfill its condition, but the consequence of the rule is
true. A general goal of mining of rules is to find rules with very few (preferably
zero) false positives. And the combination of all mined rules should have very
few (preferably zero, again) false negatives, if classification is the goal. Based on
this, there are various measures for the quality of a rule in the literature. For
example, accuracy is the ratio of the number of true positives to the sum of true
and false positives for the rule. Generalness is the percentage of true positives
out of all entries in D for which the consequence of the rule is true. In our system
in Section 4, we will combine these two measures into a rule fitness.

3 CoLe2

In this section, we present our agent-based CoLe2 data mining model. We first
provide a general overview, then present the cooperative work flow that is es-
sentially identical to the CoLe work flow from [4] and finally look at the new
outer adjustment work flow loop and some knowledge-based strategies that are
possible to use due to this loop.

3.1 The CoLe2 Model: Overview

CoLe2 extends the CoLe approach (CoLe stands for Cooperative Learning) by
having two loops (hence CoLe squared). It has not only a loop where several
miners perform data mining iterations in parallel – the cooperative work flow, but
also a loop iterating over the data selection, data mining, and result evaluation
sequence of the usual data mining work flow, which we call the adjustment
work flow. This produces the general work steps for a CoLe2-based system as
depicted in Figure 1. Naturally, details of these agents and steps depend on the
concrete application. Here we provide a high-level view. An application example
is provided in the next section.

Within a CoLe2-based system, there are 3 types of agents, a controller, several
miners, and one or more combiners. The controller is the agent in charge of the
whole CoLe2 work flow, realizing Steps 2, 3 and 6 in Figure 1 (naturally with
help from the other agents). The controller is also responsible for Step 1 and
Step 7 of Figure 1, but these steps are rather standard and not really part of the
distributed agent-based approach. We will look more closely at the controller
and its various tasks in the next two subsections.

The miner agents obviously are at the core of the approach, performing the
mining of the data they are given. In contrast to a standard mining algorithm,
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Fig. 1. CoLe2 work flow

they have to additionally be able to make use of information communicated from
other miners that run concurrently and from combiners, so-called hints, into their
mining as much as possible. How much use a miner can make of hints depends
on the concrete mining algorithm the miner uses. We use a group of miners
that are heterogeneous, i.e. they all use different mining algorithms, although it
would be possible to also have some miners using the same mining algorithm,
if too much redundant work by such miners can be avoided (by, for example,
having them focus on different parts of the data). Importantly, as demonstrated
in CoLe, the miners can also be heterogeneous in the kind of knowledge they
produce. CoLe used miners for different kinds of rules (conjunctive ones that use
only and and temporal ones that use only before) and the combiners allowed
to create rules combining the types. CoLe2 allows also to use miners that do
clustering to help with the adjustment work flow (to provide miners with better
focus, see Section 3.3).

In general, combiner agents, as the name suggests, collect data mining results
from several miners and combine them into single rule sets (i.e. realizing Step 5
in Figure 1). This goes beyond just creating the union of these rule sets. Instead,
as mentioned above, the combiners use knowledge-based combination strategies
to create out of pieces derived from the results of the various miners new hybrid
rules. Combiners can be used at the end of each cooperation phase, in which
case they are also generating hints that are made available to the miners and
the controller. But a combiner can also be used as the final step of the result
evaluation and to help the controller with the result preparation.



Improving the Efficiency of Distributed Data Mining 73

3.2 The Cooperative Work Flow

The inner loop around the cooperative work flow in CoLe2 is still the core of
a CoLe2-based cooperative mining system. Multiple data mining agents using
different mining algorithms work in parallel on creating new rules. In the first
iteration of the cooperative work flow, a miner receives the data it is supposed to
mine, together with any additional information the controller deems necessary
for this miner (like values for its parameters). In the other iterations, a miner
is only receiving information (hints) from other miners and the combiner. This
information in addition to the data is used by the miner during the mining (Step
4 in Figure 1), but also in the preparation phase (Step 3) of the miner.

The preparation phase of the work flow is performed by each miner individ-
ually. In addition to the integration of information from the other agents, this
allows the miner to do its individual preparation based on the requirements and
characteristics of the concrete mining algorithm it uses. Usually nearly all such
algorithms can profit from attribute selection, techniques to reduce the number
of attributes in the data, which usually leads to a smaller amount of data, po-
tentially less sparse, and faster run times. In our example application, we use
an attribute selection technique based on relevance factors (as in [10]) and the
hints from other agents for two of our miners (PART and the Apriori miner).
The relevance factor is based on the idea that an attribute is relevant for a
particular concept, if it has different distributions over data instances that are
in the concept and instances that are not in the concept. Attributes that are
relevant (based on a threshold regarding the difference of the distributions) get
preferential treatment by the miners when creating rules. The same is true for
attributes that occur often (again, defined via a threshold) in hints from other
miners.

The preferential treatment during the mining phase, as mentioned before, is
the main modification that we make in miners for usage in CoLe2. Predicates
using relevant attributes and predicates occurring in the best rules from other
miners (as determined by the combiner, see below) should be chosen with higher
probability whenever a miner has a choice that involves predicates. While from
an implementation point of view, this is usually easy to accomplish (the choice
needs to be made, so there must be a clearly defined place making an evaluation
and only this evaluation needs to be modified), it is naturally very specific to
the particular miner.

The final phase of the cooperative work flow is the domain of the combiners.
Each miner sends its best rules (based on the rule fitness) to one combiner (in
our example application we use only this one combiner, but it is naturally possi-
ble to use several), which then performs four subtasks: original rule evaluation,
candidate rule generation, combined rule evaluation and pruning, and hint gen-
eration. It has to be noted that a combiner has to be able to handle different
kinds of knowledge (hybrid rules in our case). The first subtask re-evaluates the
rules from the miners, allowing for a different set of data entries to be used
in the fitness evaluation (for example the combination of the sets of the differ-
ent miners, if they got different data sets from the controller), but also collects
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information on the frequency and quality of predicates or groups of predicates
to be used in the next subtask.

In this next subtask, good predicates and groups of predicates are connected
by logical or temporal operators to construct candidate rules (that now often
contain pieces of knowledge from different miners). Naturally, there are many
different ways how such combinations can be done, which means that there
are many possible combiner agents. One simple way is to just concatenate the
conditions from two original rules, but also more sophisticated methods are
possible, like adding predicates to an original rule that have high potential for
improvement and are connected using operators not used in the original rule.

In the third substep, these candidate rules are evaluated and pruned. The
evaluation computes the fitness of the new rules (using the combiner’s data set)
and only rules above given thresholds survive and will be put into the result set
for this iteration of the outer loop. Those rules coming from the miners that are
also above the thresholds and that are not covered by a combined rule generated
out of it will also be put into this result set. Finally, the combiner will also use
the predicates and groups of predicates it identified as of good quality as hints
that are sent to the miners for the next iterations of the cooperative loop.

3.3 The Adjustment Work Flow

Our concept of an adjustment work flow loop is motivated by the observation
that decision makers that use data mining usually go through quite a number
of mining attempts before they get the knowledge they are interested in. While
this is partially because the decision makers have additional knowledge that they
have to find ways to include into the mining process (usually by taking away
data, which is what non-experts in data mining can manipulate and understand
the easiest), it is also due to the various parameters and inputs todays data
mining algorithms have that need to be adjusted the right way to focus on the
right data to create the knowledge a user is interested in. And having several
miners (and additional agents like combiners) available makes this even more
difficult.

Our adjustment work flow tackles this second cause for repetitive attempts
at data mining by integrating knowledge about the miners and how to influence
them into the controller in form of knowledge-based strategies. Similar to the
supervisor in a teamwork-based search system (see [2]), but able to deal with
heterogeneous agents, the controller combines general knowledge with the obser-
vations made in the mining run so far, in order to adjust the whole agent-based
mining system towards more efficiently performing mining and reducing the need
for a human user to provide help. Again, the type of miners and the types of
knowledge mined and generated will influence how the adjustment work flow
needs to be instantiated, but there are several general knowledge-based strate-
gies that offer guidance in this regard and that we will present in the following.

The first step in an iteration of the adjustment work flow is the selection
of miners and parameters for them and the selection of the data sets these
miners should work on. While in the first iteration there is not really much
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to help with this, so that a standard team of miners with standard parameter
settings will have to be used and, if the database is too big, standard methods for
data selection, like random sampling of the data, the moment performance data
for miners is available it is possible to adjust their parameters and to provide
focus to the data selection. Parameter adjustment of the miners should aim to
improve the whole system’s effectiveness and therefore needs information about
the effectiveness of the components from previous iterations of the outer loop.
This information includes the number and quality of newly discovered rules.
Using this information, the controller can

– inform miners with too few rules (in the last few iterations) to produce more
rules (for many miners, this means lowering thresholds) and

– inform miners that produced only sub-par rules to improve rule quality (by
raising thresholds, for example).

While data mining is aiming at large data sets, the reality is that most mining
algorithms run into serious efficiency problems if the data set to mine gets too
big. Consequently, some selection of the data to mine needs to take place and
while theoretically this could be integrated into the cooperative work flow, con-
ceptually it fits better into the adjustment work flow and in this flow we also can
make use of more information. There are several possible data selection strate-
gies, the easiest is the already mentioned random sampling. Random sampling
can be slightly improved by biasing the sampling, for example by requiring the
same distribution of a particular attribute in the sample as in the whole data set.
Another data selection strategy aims at rule coverage by not selecting entries
that are already covered by rules in the result sets from previous iterations.

For an agent-based mining system, data selection based on clustering is a very
interesting method. As the name suggests, the basic idea of this method is to
run a clustering algorithm (resp. agent) over the data set to create clusters of
similar data entries. Then the entries in each cluster can be used as the data set
for all miners for one iteration of the outer loop. It should be noted that this
data selection method, due to using a rather complex algorithm, naturally itself
also has a potential data selection problem. This has to be solved using another
data selection strategy, like random sampling, again. And still, the clustering
miner might take several iterations of the outer loop to finish. Therefore, in our
experiments, we run this miner asynchronously in parallel to the adjustment
work flow, using the results when they become available and before that we use
random sampling or rule coverage for data selection.

The next step in the outer loop is the inner loop that we presented in the last
subsection. After each iteration of the inner cooperative loop, the miners and the
combiner also provide the controller with information about this last iteration,
especially number and quality of the rules found by the miners and execution
time differences between the miners. If a miner is not pulling its weight over
several iterations, the controller can stop the inner loop prematurely and then
also finish the outer loop iteration, so that it can perform adjustments in the
then immediately starting next outer loop iteration.
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The final step of the adjustment work flow is the results evaluation, which
includes both looking at the produced rules, but also the performance of the
miners. We already presented these tasks, since they also represent the first
steps of the next iteration of the adjustment work flow.

4 Case Studies with CoLe2

In this section, we present an instantiation of the CoLe2 method to mine med-
ical databases. One interest of doctors is the prediction of a diagnosis (disease)
based on attributes other than the diagnosis itself in order to perform the appro-
priate tests early and then treat the disease earlier (with usually less cost and
higher chances for a cure). This will be the application of our mining system.
We will first provide more detail about this application, then describe the CoLe2

instantiation and finally report on our experimental evaluation of the system.

4.1 Mining Medical Databases

We evaluated our CoLe2 example system with two medical data sets, one about
diabetes and one about kidney disease. The diabetes set was already used to
evaluate CoLe (see [4]) and contains data from between 1995 and 2000 about
3150 people with a diabetes diagnosis in 2001 and 6300 control cases. Together,
these people produced 436776 transactions with the Calgary health care system,
each of which, among others, have a date and at least 1, but up to 3 diagnoses
in the international ICD-9 code (see [7]).

The kidney disease data set has been collected by the Alberta Kidney Disease
Network and contains data about all Alberta patients that had a chronic kidney
disease related test in the time interval July 2001 to March 2006. Our medical
partners were interested in finding rules predicting death of a patient and we had
11775 such patients among the 110452 in the database. The data base contains
6476150 transactions for these patients, again, among others, containing a date
and between 1 and 3 diagnoses in ICD-9.

Since both data sets come from the Alberta health care system, they have a
similar structure. We mined both data sets with a specific goal (target) in mind,
namely finding rules predicting diabetes, respectively rules predicting death.
This means that the consequences of the mined rules for each data set are fixed.
Similar to [4], we need some preprocessing on the data, since ICD-9 is very
specific and as a result there are too many only slightly different basic diagnoses.
Instead of those, we used the disease groups that ICD-9 associates with the
different diagnoses.

4.2 Instantiating CoLe2

For the mining task described in the previous subsection, we instantiated the
CoLe2 method as follows. We use five miners and two combiners in addition to
the controller. The four miners for the inner loop are a PART conjunctive miner
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and an Apriori miner from the Weka mining library (see [5]), a sequence miner
SeqGA from [4] and a relevance-factor-based descriptive miner. Due to lack of
space, in the following we concentrate on the modifications we made to these
miners for CoLe2 and otherwise describe only the basic ideas of these miners.

The PART miner is based on the well-known C4.5 mining approach (see [13])
and builds partial decision trees, which are transformed into conjunctive rules
by simply collecting all of the predicates on a path in the tree from the root to a
leaf. We modified the PART implementation from Weka by using the predicates
in hints from other miners and combiners to do attribute selection (selecting
them and adding also some randomly selected attributes). We also integrated an
additional pruning of the created rules before they are forwarded to the combiner,
by checking for each predicate in a rule, if its elimination does not influence the
rule fitness. If a predicate is found irrelevant in this way, it is eliminated. This is
in addition to the usual rule pruning in a PART miner. If the controller wants
the PART miner to spend less time, the miner implements this by having less
pruning rounds (and vice versa).

The Apriori association miner (see [1]) also creates rules that have conjunc-
tions of predicates as conditions. The Apriori miner builds rules from the bottom
up by determining item (predicate) combinations that appear frequently in the
transactions. Starting with single items that appear more often than a thresh-
old, items (combinations) are combined and this is iterated with combinations
that are above the threshold. Finally, combinations with the target predicate
are split into a rule where the target predicate is the consequence and all other
predicates form the condition. We modified this general method for CoLe2 by,
again, using hints from other miners for attribute selection, thus limiting the
potentially huge number of item combinations. The Apriori miner can adjust its
runtime by raising or lowering the threshold mentioned above.

The SeqGA miner uses a genetic algorithm (GA) to create sequence rules, i.e.
rules with a condition that is a (temporal) sequence of events. The individuals
of the GA are exactly such sequences, with events being a particular diagnosis
and the sequence indicating that each element in it happened before the next
element. As usual, the GA works on sets of such individuals and each individual
in the set is evaluated with the rule fitness. We use genetic operators to create
new individuals that replace the least fit individuals. Crossover just chooses
two individuals, cuts them at a randomly chosen point (in the sequence) and
concatenates the head part of one individual with the tail of the other. Mutation
randomly either adds an event to an individual, deletes an event or substitutes
an event with a random new one (or one from the received hints). In addition
to sending the rules with the best fitness (above a threshold) to the combiner,
the SeqGA miner also sends the predicates in these rules to the other miners
as hints. The SeqGA miner can react to adjustment requests by the controller
by adjusting the number of generations and, again, by adjusting the fitness
threshold.
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All these 3 miners evaluate rules using the same rule fitness. As in [4], this
fitness fit of a rule r is calculated as

fit(r) =

(
tp

tp + fp

)x

× log(tp)

log(positive)

with tp being the number of data entries correctly classified by r, fp the number
of incorrectly classified entries and positive being the number of entries for which
the rule condition is true. x is a real number parameter that was set to 1.5 in
all our experiments (following [4]).

One of the strengths of multi-agent-based data mining is the cooperation of
miners, which also allows for the use of miners that alone would never be very
good or even acceptable. Our relevance-factor-based miner is such a miner that
essentially acts as ”material generator” for the other miners. It first generates a
set of predicates from attributes in the data set given to it. Nominal attributes
create predicates that test equality with each of the possible values. Predicates
for numerical attributes are collected from all the communicated hints from pre-
vious iterations of the cooperative work flow (in previous outer loop iterations).
Then the miner calculates the relevance factor for each predicate and all predi-
cates that are relevant (according to the factor) are retained. For each of those
predicates p, a rule is constructed either of the form p ⇒ target concept (if the
predicate had a positive relevance) or not(p) ⇒ target concept (else). These rules
are sent to the combiner and the predicates are sent as hints to the other min-
ers. The relevance-factor-based miner is only used in the first iteration of the
cooperative loop within an adjustment work flow iteration.

As stated in the last section, we also use an X-means clustering miner (see [12])
as kind of an assistant to the controller to help with the selection of data sets for
the miners. In contrast to the well-known k-means clustering, X-means does not
produce a pre-determined number of clusters, but determines the best number
of clusters between given lower and upper bounds using the so-called Schwarz
criterion. In our CoLe2-based system, we use random sampling to produce a data
sub-set for the X-means miner, perform a full clustering, and use the cluster with
the highest score of the Schwarz criterion as the data set for the next execution
of the cooperative loop. After that, we determine all entries that are correctly
predicted by the resulting rules, remove them from the remaining clusters created
by the X-means miner, update the cluster centers and reassign the remaining
data entries to the clusters and repeat the cooperative loop with the new best
cluster. If there are no clusters left, we repeat the general X-means clustering
with a new data sub-set of the whole database.

With the description of the miners, we have already presented most of the
instantiation of the cooperative work flow. What remains is the instantiation
of the combiner. The concrete combiner we use follows rather closely what we
described in Section 3.2. It reevaluates all rules communicated by the miners
and puts those above a certain threshold into the candidate set. It then performs
direct combination and cross combination to create more candidates. Direct com-
bination simply combines the conditions of two rules with an and operator. Cross
combination computes the number of occurences of the predicates in the rules
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from the miners. It then goes through all of these rules and randomly chooses
a number of predicates to add and the insertion points of these predicates into
the rule. For each of these points, a predicate is chosen with predicates with
higher occurrence counts having a higher chance to be selected. The operator to
connect the predicate to the condition is then randomly chosen and the new rule
is evaluated. If it is better than the parent rule, this process is repeated until no
improvement is achieved and the rule before that last attempt is added to the
candidate set. Then we prune the candidate set, which includes simplifying the
conditions of a rule by eliminating redundant occurrences of a predicate, throw-
ing away predicates for which a stronger predicate is present in the condition
and throwing away duplicates of a rule and rules similar to a rule with a smaller
fitness. Finally, all remaining rules below a given threshold are also eliminated
and the remaining rules are the result of this iteration.

Rule similarity is based on the similarity of the predictions the rules make,
which essentially creates a similarity on conditions. In theory, we should compare
the performance of two rules on each of the data entries, but this becomes
computationally much too expensive. Instead, we assign the data entries into
n bins (in our experiments we used n = 256) and compare two rules based on
the number of correct classifications (match score) for the bins. If the difference
between two rules with this regard is below a threshold, the rules are considered
similar.

We have also already presented many of the pieces that form the adjustment
work flow, like the data selection and how miners can adjust their parameters.
As already stated in the last section, the controller performs the data selection
for the first round using random sampling. It uses one agent from each of the
miner types (that produce rules) in each of the iterations and tries to keep their
output over all iterations balanced by advising individual miners what parameter
adjustments they should make. The X-means clusterer runs in parallel to the
cooperative loop, so that its results are only available in the following iteration
of the inner loop. The controller collects the result sets from the combiner over
all of the loops. After a given number of iterations of the adjustment loop, the
controller lets a variant of the combiner perform a final simplification of the
complete result set (as already described for the combiner).

4.3 Experimental Results

In this subsection, we present some experimental evaluations of our CoLe2-based
system. As stated in the introduction, our main claim is that CoLe2 improves
the efficiency of an agent-based mining system, so that our experiments focus on
this aspect. Naturally, efficiency improvement should not be achieved by reducing
quality, so that we also look at the quality of the rules (expressed using the rule
fitness). Since some of the miners and some of the knowledge-based strategies
used in the loops involve random decisions and in an agent-based system timing
of messages can happen in slightly different ways, we did not perform only single
mining runs, but always look at the results of three runs.
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Table 1. Runtimes: with and without outer loop

Data Set Experiment Running Time (sec) Time
No. without outer loop with outer loop Ratio

1 1715.54 1234.57 71.96%
diabetes 2 2719.63 1329.73 48.89%

3 1795.72 1535.19 85.49%
Average 2076.96 1366.49 65.79%

1 43263.95 7242.02 16.74%
kidney 2 17714.54 5403.13 30.50%

3 43597.24 6590.54 15.12%
Average 34858.58 6411.90 18.39%
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Fig. 2. Fitness histograms: left: comparison with vs without outer loop; right: compar-
ison with vs without parameter adjustment

Effect of the Outer Loop: Obviously, the outer adjustment loop is the major
contribution of this paper, so that our first experimental series evaluates the
effect of this loop against a configuration of the system that simulates just the
CoLe method. More precisely, the CoLe mode still uses random sampling to
provide small enough working data sets for the miners and performs a loop
around the inner loop that creates different working data sets, but the other
features of the outer loop are not used. Both systems used otherwise the same
parameter settings and were run until more than 95% of the data entries were
used in at least one run of the inner loop.

As Table 1 shows, the outer loop clearly reduces the run time for the system
and importantly does so substantially for the larger data set. For this data set,
even the worst mining run with outer loop is 3 times faster than the run not
using the outer loop (but starting with the same initial working data set).

Figure 2 (left) shows a fitness histogram of the quality of the mined rules
for the 6 runs on the larger kidney set. While it could be argued that the rule
quality with the outer loop is slightly better (higher peaks after a fitness value
of 2), using the outer loop definitely does not result in loosing quality, so that
our primary goal with CoLe2 is clearly fulfilled.

Parameter Adjustment: One of the knowledge-based strategies employed by
the controller is adjusting the parameters of the miners to have them contribute
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Table 2. Run time (seconds): with and without parameter adjustment

Dataset Test Without Parameter With Parameter Time
No. Adjustment Adjustment Ratio

1 1722.55 1223.51 71.03%
diabetes 2 1667.44 907.87 54.45%

3 2473.14 1014.09 41.00%

1 5122.68 3943.20 76.98%
kidney 2 9710.18 6156.67 63.40%

3 8805.31 4655.57 52.87%

evenly to the mining results and to have them running in the inner loop iterations
without large idle times. To test this strategy, we compare in Table 2 runs of
the system using all knowledge-based strategies with runs where no parameter
adjustments of the miners take place.

As can be seen, using all strategies always results in faster runs and for the
smaller data set it can be up to only half of the time when using this strategy
versus not using it. And, as Figure 2 (right) shows, this, again, is achieved
without loss of quality.

X-means Data Selection: To look into the improvement the X-means miner
represents, we measured the quality of rules generated by the miners and the com-
biner of essentially one iteration of the outer loop and compared the average rule
quality usingX-means directed data selection versus random sampling.We did this
for the larger kidney data set, since this data set definitely needs data selection.

As Table 3 shows, while the results with regards to the miners are mixed,
when combined by the combiner, the average rule quality is clearly enhanced,
showing the usefulness of this knowledge-based strategy.

Table 3. Average rule fitness of one iteration: X-means vs random sampling data
selection

Test Miner or Data Selection Method
No. Combiner Random Sampling X-means

PART miner 0.324 0.242
1 SeqGA miner 0.851 0.867

Relevance factor miner 0.553 0.576
Combiner 1.275 1.464

PART miner 0.228 0.600
2 SeqGA miner 0.985 0.625

Relevance factor miner 0.558 0.560
Combiner 1.374 1.790

PART miner 0.309 0.310
3 SeqGA miner 1.043 1.107

Relevance factor miner 0.558 0.560
Combiner 1.606 1.858



82 J. Gao and J. Denzinger

Other Strategies: Due to lack of space, we cannot provide detailed results for
the other strategies. But our experiments showed that having an asynchronous
workflow resulted in improvements between 30 and 70 percent. Although [4]
already showed the usefulness of the created hints, we performed appropriate
experiments, again, and the hints produce an efficiency improvement between 20
and 50 percent and, more importantly, substantial improvements in the quality
of the produced rules (compared to not using hints in the miners).

5 Related Work

Agent-based data mining is of interest because of the ability to deal with dis-
tributed databases. The data mining work has to be done distributively either
due to privacy concerns, or due to the large total data amount which prohibits a
centralized database. An example of a method aimed at this reason is the JAM
framework described in [14], where multiple data sites exist and each of them
employs a classification agent to perform data mining and a meta learning agent
to exchange and combine the classification models. Another example is the frame
presented in [9], where the focus is to establish distributed cooperative data min-
ing in a competitive and privacy restricted environment, with each data mining
agent working on their own private data set using Naive Bayes classifiers. In
these situations, it is natural that the agents in the data mining system coop-
erate towards the same data mining goal. In comparison to typical work in this
area, we are not only interested in mining large amounts of data and enabling
cooperation, but also particularly interested in producing hybrid knowledge that
goes beyond what each of the individual mining agents can produce.

Most approaches in the literature that have some centralized control concept
like our controller have it as part of the inner work flow and do not use hetero-
geneous agents (which naturally makes the control task much easier). In [3], a
manager agent divides the data into disjunct working sets for analyzer agents
that, after having done their own mining, vote on whether to keep the results
of the other agents. [8] is another example for a simple mining loop. We are
not aware of any other work using two loops and the benefits of the outer loop,
like mining cooperatively a certain part of the database or having a specialized
assistant miner to prepare for that.

6 Conclusion and Future Work

We presented CoLe2, a concept for agent-based mining around two work flow
loops, an inner cooperative loop and an outer adjustment loop. The outer loop
allows for various knowledge-based strategies that allow a controller agent to
adapt and focus the whole team of agents on the particular database and min-
ing task. Our experimental evaluation showed that the outer loop substantially
improves the efficiency of the mining system while still producing results of com-
parable quality to without using the outer loop.
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The outer loop offers several more possibilities for using knowledge-based
strategies that we intend to look into in the future. While in this paper we con-
centrated on generally applicable strategies, naturally for databases for which
the mining needs to be periodically repeated it makes sense to integrate applica-
tion specific knowledge into the mining. The outer loop also offers the possibility
to integrate human judgement in form of advice to the controller.
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