Large Scale Visual Classification with Many Classes
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Abstract. The usual frameworks for visual classification involve three steps: ex-
tracting features, building codebook and encoding features, and training classi-
fiers. The current release of ImageNet dataset [1] with more than 14M images
and 21K classes makes the problem of visual classification become more diffi-
cult to deal with. One of the most difficult tasks is to train a fast and accurate
classifier. In this paper, we address this challenge by extending the state-of-the-
art large scale classifier Power Mean SVM (PmSVM) proposed by Jianxin Wu
[2] in two ways: (1) The first one is to build the balanced bagging classifiers
with under-sampling strategy. Our algorithm avoids training on full data and the
training process of PmSVM rapidly converges to the optimal solution, (2) The
second one is to parallelize the training process of all classifiers with multi-core
computers. We have developed the parallel versions of PmSVM based on high
performance computing models. The evaluation on 1000 classes of ImageNet
(ILSVRC 1000 [3]) shows that our approach is 90 times faster than the original
implementation of PmSVM and 240 times faster than the state-of-the-art linear
classifier (LIBLINEAR [4]).

Keywords: Large Scale Visual Classification, High Performance Computing,
Sampling Strategy, Parallel Support Vector Machines.

1 Introduction

Visual classification is one of the important research topics in the area of computer
vision and machine learning. Low-level local features and bag-of-words model (BoW)
are the core of state-of-the-art visual classification systems. The usual frameworks for
visual classification involve three steps: 1) extracting features, 2) building codebook
and encoding features, and 3) training classifiers. All these frameworks were evaluated
on small datasets, e.g. Caltech 101 [5]], Caltech 256 [6]], and PASCAL VOC [7] that can
fit into desktop memory. In step 3, most researchers choose either linear or non-linear
SVM classifiers that can be trained in a few minutes.

However, ImageNet with very large number of classes poses more challenges in
training classifiers. ImageNet is much larger in scale and diversity than the other bench-
mark datasets. The current release ImageNet has grown a big step in terms of the num-
ber of images and the number of classes, as shown in Fig.[I]- it has 21,841 classes with
more than 1000 images for each class on average.

P. Perner (Ed.): MLDM 2013, LNAI 7988, pp. 629-643] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



630 T.-N. Doan, T.-N. Do, and F. Poulet

With millions of images, training an accurate classifier may take weeks or even years
[8], [9]. The recent works in large scale learning classifiers converge on building lin-
ear SVM classifiers. We are able to train linear classifiers (e.g. LIBLINEAR) in order
of seconds, even with millions of training examples. However, in the context of visual
classification, linear classifier is inferior in terms of accuracy, compared to non-linear
classifiers [10], [11], [2]. Wu [2] proposes Power Mean SVM classifier that outper-
forms LIBLINEAR and other additive kernel classifiers in terms of training time and
classification accuracy. Nevertheless, the current version of PmSVM does not take into
account the benefits of high performance computing (HPC). On ILSVRC 1000, it takes
very long time to train all binary classifiers. Therefore, it motivates us to study how to
speed-up PmSVM for large scale visual classification. In this paper, we have developed
the extended versions of PmSVM in two ways:

1. Propose a balanced bagging algorithm for training binary classifiers. Our algo-
rithm avoids training on full data and the training process of PmSVM rapidly converges
to the optimal solution.

2. Parallelize the training process of all binary classifiers based on HPC models. In
the training step of classifiers, we apply our balanced bagging algorithm to achieve the
best performance.

Our approach is evaluated on the 10 and 100 largest classes of ImageNet and ILSVRC
1000. The result shows that our approach is 90 times faster than the original imple-
mentation of PmSVM and 240 times faster than LIBLINEAR without (or very few)
compromising classification accuracy.

The remainder of this paper is organized as follows. Section 2 briefly reviews the re-
lated work on large scale visual classification. Section 3 introduces Power Mean SVM.
In section 4, we present its improvement for large number of classes and describe how
to speed-up the training process of PmSVM by using our balanced bagging algorithm
and take into account the benefits of HPC. Section 5 presents numerical results before
the conclusion and future work.
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Fig. 1. A comparison of ImageNet with other benchmark datasets
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2 Related Work

Many previous works on image classification rely on bag-of-words model (BoW) [12],
local feature quantization and support vector machines. These models may be enhanced
by multi-scale spatial pyramids [13]] on BoWs or histogram of oriented gradient [14]
features. Some recent works consider exploiting the hierarchical structure of dataset
for image recognition and achieve impressive improvements in accuracy and efficiency
[L5]. Related to classification is the problem of detection, often treated as repeated one-
versus-all classification in sliding windows [7], [16]]. In many cases, such localization
of objects might be useful for improving classification accuracy performance. However,
in the context of large scale visual classification with hundreds or thousands of classes,
these common approaches become computationally intractable.

To address this problem, Fergus et al. [17] study semi-supervised learning on 126
hand labeled Tiny Images categories, Wang et al. 18] show classification experiments
on a maximum of 315 categories. Li et al. [19] do research with landmark classifica-
tion on a collection of 500 landmarks and 2 million images. On a small subset of 10
classes, they have improved BoW classification by increasing the visual vocabulary up
to 80K visual words. Furthermore, the current released ImageNet makes the complex-
ity of large scale visual classification become a big challenge. To tackle this challenge,
many researchers are beginning to study strategies on how to improve the accuracy per-
formance and avoid using high cost non-linear kernel SVMs for training classifiers. The
recent prominent works for these strategies are proposed in [8] [9], [20], [21] where the
data is first transformed by a nonlinear mapping induced by a particular kernel and then
efficient linear classifiers are trained in the resulting space. They argue that the clas-
sification accuracy of linear classifiers with high dimensional image representations is
similar to low dimensional BoW with non-linear kernel classifiers. In [9], each local
descriptor is coded either using Local Coordinate Coding [22] or Supper-vector Cod-
ing [23]], after performing spatial pyramid pooling the resulting image representation
is a vector in approximately 262K dimensions. To train classifiers, they propose a par-
allel averaging stochastic gradient descent (ASGD) algorithm. With 1000 classes from
ILSVRC 1000, it takes 4 days to train 1000 binary SVM classifiers (one-versus-all) for
one feature channel on three 8-core computers. Sdnchez and Perronin [21] study the im-
pact of high dimensional Fisher vectors on large dataset. They show that the larger the
training dataset, the higher the impact of the dimensionality on the classification accu-
racy. To get the state-of-the-art result on ILSVRC 1000, they use the spatial pyramids to
increase the dimensionality of their Fisher vectors to approximately 524K dimensions
and then exploit Product Quantizier [24] to compress the data before training classifiers.
With this approach, training 1000 SGD SVM classifiers (one-versus-all) for one feature
channel takes 1.5 days on a 16-core computer.

In contrast with the approaches using the efficient linear SVMs, some recent works
show that in the context of training classifiers for computer vision tasks, linear SVMs
are inferior in terms of accuracy, compared to the kernel versions of SVM. In many
cases of visual classification, learning SVMs with additive kernels give significantly
higher rate in accuracy performance than dot product kernel [[10] [[L1]. The main draw-
back of these approaches is the high cost of training non-linear kernel classifiers. It
may be thousands times higher than linear classifiers. However, some recent solutions
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are proposed to solve this limitation [10], [ 1]. Additive kernel SVMs now use only
few times more training time, compared to the state-of-the-art linear SVM classifiers.
To design a fast and accurate non-linear kernel classifier for large scale dataset, Wu
[2] proposes an efficient algorithm for PmSVM. They show empirically that PmSVM
outperforms LIBLINEAR and the state-of-the-art additive kernel classifiers in terms
of both training time and classification accuracy. For instance, with 1000 classes from
ILSVRC 1000, PmSVM is 3 times faster than LIBLINEAR and 2 times faster than the
state-of-the-art additive kernel implementations while getting a significant improve-
ment in classification accuracy from +4.6% to +7.1%. However, the current version
of PmSVM does not take the benefits of the modern chip manufacturing. On one
core of our computer, it takes more than 18 hours to train 1000 binary classifiers on
ILSVRC 1000.

In the multi-core era, computers with multi-cores or multiprocessors are becoming
more and more popular and affordable. So it motivates us to investigate parallel solu-
tions and demonstrate how PmSVM can benefit from modern platforms. Furthermore,
in the case of large number of classes, we show that our balanced bagging algorithm is
very useful to speed-up the training process of classifiers without (or very few) com-
promising classification accuracy. Our experiments show very good results and confirm
that the balanced bagging algorithm and parallel solutions are very essential for large
scale visual classification in terms of training time.

3 Power Mean Support Vector Machines

Let us consider a binary linear classification task with m datapoints in a n-dimensional
input space xi,X2,...,%, having correspondinglabelsy; ==+1.SVM classification al-
gorithm [25]] aims to find the best separating surface as being furthest from both classes.
It can simultaneously maximize the margin between the support planes for each class
and minimize the error. This can be accomplished through the quadratic program (IJ).
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where K (x;,x;) is a kernel function of x; and x;, C is a positive constant used to tune the
margin and the error.

The support vectors (for which ¢; > 0) are given by the solution of the quadratic
program (1)), and then, the separating surface and the scalar b are determined by the
support vectors. The classification of a new data point x is based on:
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Variations on SVM algorithms use different classification functions. No algorithmic
changes are required from the usual kernel function K as a linear inner product other
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than the modification of the kernel evaluation, including a polynomial function of de-
gree d, a RBF (Radial Basis Function) or a sigmoid function. We can get different
support vector classification models.

PmSVM proposed by Wu [2] replaces the kernel function K (x;,x;) in (1) and @)
with the power mean kernel M (x;,x;) (x; and x; € R’} ), which is well-known as a gen-
eral form of many additive kernels (e.g. x> kernel, histogram intersection kernel or
Hellinger’s kernel).

n
x,,x] 2 xld—I—x 3)

where p € R is a constant.

PmSVM uses the coordinate descent method [26] for dealing with training tasks.
Furthermore, the gradient computation step of the coordinate descent algorithm can
be estimated approximately with the polynomial regression with a very low cost [2].
Therefore, PmSVM is very efficient in both training and testing tasks, compared to
LIBLINEAR and other additive kernel SVMs.

4 Extensions of PmSVM to Large Number of Classes

Most SVM algorithms are only able to deal with a two-class problem. There are several
extensions of a binary classification SVM solver to multi-class (k classes, k > 3) classi-
fication tasks. The state-of-the-art multi-class SVMs are categorized into two types of
approaches. The first one is to consider the multi-class case in an optimization problem
[27]], [28]. The second one is to decompose multi-class into a series of binary SVMs, in-
cluding one-versus-all [25], one-versus-one [29] and Decision Directed Acyclic Graph
[30]. Recently, hierarchical methods for multi-class SVM [31]], [32] start from the whole
data set, hierarchically divide the data into two subsets until every subset consists of
only one class.

In practice, one-versus-all, one-versus-one are the most popular methods due to
their simplicity. Let us consider & classes (k > 2). The one-versus-all strategy builds k
different classifiers where the i’ classifier separates the i class from the rest. The
one-versus-one strategy constructs k(k — 1)/2 classifiers, using all the binary pairwise
combinations of the k classes. The class is then predicted with a majority vote.

When dealing with very large number of classes, e.g. hundreds of classes, the one-
versus-one strategy is too expensive because it needs to train many thousands classifiers.
Therefore, the one-versus-all strategy becomes popular in this case. PmSVM algorithm
also uses the one-versus-all approach to train independently k binary classifiers. How-
ever, the current PmSVM takes very long time to classify very large number of classes.

Due to this problem, we propose two ways for speed-up learning tasks of PmSVM.
The first one is to build the balanced bagging classifiers with sampling strategy. The
second one is to parallelize the training task of all classifiers with multi-core computers.

4.1 Balanced Bagging PmSVM

In the one-versus-all approach, the learning task of PmSVM is to try to separate the
th class (positive class) from the k — 1 others classes (negative class). For very large
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number of classes, e.g. 1000 classes, this leads to the extreme imbalance between the
positive class and the negative class. The problem is well-known as the class imbal-
ance. As summarized by the review papers of [33[], [34], [35] and the very compre-
hensive papers of [36], [37], solutions to the class imbalance problems were proposed
both at the data and algorithmic level. At the data level, these algorithms change the
class distribution, including over-sampling the minority class [38] or under-sampling
the majority class [39]], [40]. At the algorithmic level, the solution is to re-balance the
error rate by weighting each type of error with the corresponding cost. Our balanced
bagging PmSVM belongs to the first approach (forms of re-sampling). Furthermore,
the class prior probabilities in this context are highly unequal (e.g. the distribution of
the positive class is 0.1% in the 1000 classes classification problem), and over-sampling
the minority class is very expensive. We propose the balanced bagging PmSVM using
under-sampling the majority class (negative class).

For separating the " class (positive class) from the rest (negative class), the balanced
bagging PmSVM trains 7 models as shown in algorithm[T]

Algorithm 1. Balanced bagging PmSVM
input :
D, the training data of the positive class
D,, the training data of the negative class
T the number of base learners
output:
PmSVMmodel

Learn:
for k< 1toT do
1. The subset D), is created by sampling without replacement |D),| negative
datapoints from D, (with |D},| = |Dp|)
2. Build a PmSVM model using the training set (including D, and D},)
end
combine 7" models (averaging) into the aggregated PmSV Mmodel

We remark that the margin can be seen as the minimum distance between two convex
hulls, H), of the positive class and H), of the negative class (the farthest distance between
the two classes). Under-sampling the negative class (D)) done by balanced bagging
provides the reduced convex hull of H,, called H),. And then, the minimum distance
between H,, and H,, is larger than H), and H, (full dataset). It is easier to achieve the

largest margin than learning on the full dataset. Therefore, the training task of PmSVM
|Dn|

is fast to converge to the solution. According to our experiments, by setting 7' = \/ e
P

the balanced bagging PmSVM achieves good results in very fast training speed.

4.2 Parallel PmSVM Training

Although PmSVM and balanced bagging PmSVM deal with very large dataset with
high speed, they do not take into account the benefits of HPC, e.g. multi-core
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computers or grids. Furthermore, both PmSVM and balanced bagging PmSVM train
independently & binary classifiers for k classes problems. This is a nice property for par-
allel learning. Our investigation aims at speed-up training tasks of multi-class PmSVM,
balanced bagging PmSVM with multi-processor computers or grids. The idea is to learn
k binary classifiers in parallel.

Algorithm 2. Hybrid MPI/OpenMP paralle]l PmSVM
input :
D the training dataset with k classes
T the number of MPI processes
output:
PmSV Mmodel

Learn:
MPI — PROC,;
#pragma omp parallel for

for i; < 1 tok; do /* class i1 */
Build a binary PmSVM model using the training set D to separate the positive

class iy from the rest.
end

MPI — PROCy

#pragma omp parallel for

for iz <+ 1 to kr do /* class ir */
Build a binary PmSVM model using the training set D to separate the positive
class i from the rest.

end

The parallel programming is currently based on two major models, Message Passing
Interface (MPI) [41] and Open Multiprocessing (OpenMP) [42]]. MPI is a standard-
ized and portable message-passing mechanism for distributed memory systems. MPI
remains the dominant model (high performance, scalability, and portability) used in
high-performance computing today. However, a MPI process loads the whole dataset
(~ 25GB) into memory during learning tasks, making it intractable. The simplest devel-
opment of parallel PmSVM algorithms is based on the shared memory multiprocessing
programming model OpenMP. However OpenMP is not guaranteed to make the most
efficient computing. Finally, we present a hybrid approach that combines the benefits
from both OpenMP and MPI models. The parallel PmSVM algorithm is described in
algorithm 2l The number of MPI processes depends on the memory capacity of high
performance computing systems.

5 Experiments

In this section we compare the extended versions of PmSVM with the original imple-
mentation and LIBLINEAR in terms of training time and classification accuracy. Our
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experiments are run on machine Intel(R) Xeon(R), CPU X5650, 2.67GHz, 24 cores,
and 144GB main memory.

We have implemented four parallel versions of PmSVM: 1) OpenMP version of
PmSVM (omp-PmSVM), 2) balanced bagging version of omp-PmSVM (omp-
iPmSVM), 3) hybrid MPI/OpenMP version of PmSVM (mpi-omp-PmSVM), and 4)
balanced bagging version of mpi-omp-PmSVM (mpi-omp-iPmSVM).

PmSVM. We set the parameters of PmSVM as follow: p = —1 (equivalent to x> ker-
nel) and C = 0.01.

LIBLINEAR. This is the linear SVM from [4] with default parameters (C = 1).

iPmSVM. This is the balanced bagging PmSVM with the same SVM parameters as
PmSVM.

5.1 Dataset

The parallel versions of PmSVM are designed for large scale datasets, so we have eval-
uated the performance of our approach on the three following datasets.

ImageNet 10. This dataset contains the 10 largest classes from ImageNet (24,807 im-
ages with data size 2.4GB). There are more than 2000 diversified images per class. In
each class, we sample 90% images for training and 10% images for testing. First, we
construct bag-of-words histogram of every image by using dense SIFT descriptor (ex-
tracting SIFT on a dense grid of locations at a fixed scale and orientation), and 5000
codewords. Then, we use feature mapping from [10] to get the high-dimensional image
representation in 15,000 dimensions. This feature mapping has been proven to give a
good image classification performance [10]. We end up with 2.6GB of training data.

ImageNet 100. This dataset contains the 100 largest classes from ImageNet (183,116
images with data size 23.6GB). In each class, we sample 50% images for training and
50% images for testing. We also construct bag-of-words histogram of every image by
using dense SIFT descriptor and 5000 codewords. For feature mapping, we use the
same method as we do with ImageNet 10. The final size of training data is 8GB.

ILSVRC 1000. This dataset contains 1000 classes from ImageNet with 1.2M images
(126GB) for training, 50K images (5.3GB) for validation and 150K images (16GB) for
testing. To compare with the results reported in [2]], we use the same method to encode
every image as a vector in 21,000 dimensions. We also take < 900 images per class for
training dataset. Therefore, the total number of training images is 887,816 and the size
of training data is 12.5GB. All testing samples are used to test SVM models.

5.2 Training Time

We have only evaluated the training time of SVM classifiers excluding the time needed
to load data from disk. As shown in Fig. 2l and B on small and medium datasets as
ImageNet 10, ImageNet 100, our four parallel versions show a very good speed-up in
training process, compared to the original implementation of PmSVM and LIBLINEAR
(Table[Iand 2.
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Table 1. SVMs training time (minutes) on ImageNet 10

# OpenMP threads 1 5 10
LIBLINEAR 2.02

PmSVM 6.23

omp-PmSVM 6.23 1.75 0.98
omp-iPmSVM 4.66 1.34 0.77

2 mpi-omp-PmSVM  3.29 0.78 0.76
2 mpi-omp-iPmSVM  2.44 0.67 0.65

Table 2. SVMs training time (minutes) on ImageNet 100

# OpenMP threads 1| 5 10 15 20
LIBLINEAR 30.41

PmSVM 165.45

omp-PmSVM 165.45  21.12 14.52 11.67 10.92
omp-iPmSVM 47.67 12.97 9.09 5.05 4.44
2 mpi-omp-PmSVM  62.18 10.63 8.85 8.25 8.06

2 mpi-omp-iPmSVM  21.56 5.68 4.16 3.79 3.58

Table 3. SVMs training time (minutes) on ILSVRC 1000

# OpenMP threads 1 5 10 15 20
LIBLINEAR 3106.48

PmSVM 1132.03

omp-PmSVM 1132.03 231.00 152.87 140.72  135.63
omp-iPmSVM 173.26  39.55 23.63 19.43 18.12

2 mpi-omp-PmSVM  550.04  119.17  102.81 103.62  103.12
2 mpi-omp-iPmSVM  72.07 16.69 13.08 13.37 13.25

Table 4. SVMs overall classification accuracy (%)

dataset ImageNet 10  ImageNet 100 ILSVRC 1000
LIBLINEAR 75.09 54.07 21.11
PmSVM 73.16 50.17 25.64
omp-PmSVM 73.16 50.17 25.64
omp-iPmSVM 72.79 49.42 25.35
2 mpi-omp-PmSVM  73.16 50.17 25.64

2 mpi-omp-iPmSVM  72.79 49.42 25.35

639
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ILSVRC 1000. Our implementations achieve a significant speed-up in training process
when performing on large dataset ILSVRC 1000.

Balanced Bagging PmSVM. As shown in Fig. @ the balanced bagging version of
PmSVM (omp-iPmSVM running with 1 thread) has a very fast convergence speed
in training process, it is more than 6 times faster than the original implementation of
PmSVM (Table[3).

OpenMP PmSVM. On a multi-core machine, OpenMP version of PmSVM (omp-
PmSVM) achieves a significant speed-up in training process with 20 OpenMP threads.
As shown in Fig. [l our implementation is 8 times faster than the original PmSVM and
23 times faster than LIBLINEAR (Table[3). Due to the restriction of our computer (24
cores), we set the maximum number of OpenMP threads to 20. We can set more than 20
OpenMP threads, but according to our observation there is very few significant speed-
up in training process because there is no more available core.

OpenMP and Balanced Bagging PmSVM. With balanced bagging algorithm applied
to OpenMP version of PmSVM (omp-iPmSVM), we significantly speed-up the training
process on this training data. For instance, with the number of OpenMP threads set to
20, omp-iPmSVM is 62 times faster than the original PmSVM and 171 times faster than
LIBLINEAR.

MPI/OpenMP PmSVM. As show in Fig. @ our hybrid MPI/OpenMP version of
PmSVM (mpi-omp-PmSVM) achieves a significant speed-up in training process with 2
MPI processes and 10 OpenMP threads. Our implementation is 11 times faster than the
original PmSVM and 30 times faster than LIBLINEAR (Table[3). Due to the large size
of this training data, each MPI process of PmSVM needs to use ~ 25GB main memory
to train classifiers. With the memory restrictions of our computer, we can only evaluate
mpi-omp-PmSVM by setting the number of MPI processes to 2. In this case, we vary
the number of OpenMP threads running in each MPI process. Again, with 24 cores of
our computer we set the maximum number of OpenMP threads to 10.

MPI/OpenMP and Balanced Bagging PmSVM. The most significant parallelization
performance of PmSVM we achieve is the combination of MPI/OpenMP and bal-
anced bagging PmSVM (mpi-omp-iPmSVM). As shown in Fig. [l our implementation
achieves a significant performance in training process with 2 MPI processes and 10
OpenMP threads. It is 90 times faster than the original PmSVM and 240 times faster
than LIBLINEAR. On ILSVRC 1000, we need only 13 minutes to finish training 1000
binary classifiers, compared to the original PmSVM (~ 19 hours) and LIBLINEAR
(~ 2 days and 4 hours), as shown in Table[3l This result confirms that our approach has
a great ability to scaleup to full ImageNet dataset with more than 21,000 classes.

5.3 Classification Accuracy

As shown in Fig. Bl on the small datasets like ImageNet 10 and ImageNet 100,

LIBLINEAR outperforms PmSVM and iPmSVM in terms of classification accuracy.
However, when we perform classification on the dataset with very large number

of classes like ILSVRC 1000, the picture of accuracy performance is quite different.
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PmSVM and iPmSVM achieve better results than LIBLINEAR (from +4.24% to
+4.53%, ie. a relative increase of 20.1%).

Note that iPmSVM runs much faster than PmSVM without (or very few) compro-
mising classification accuracy (Table @)

6 Conclusion and Future Work

We have developed the extended versions of PmSVM to efficiently deal with large scale
datasets with very large number of classes like ImageNet. To speed-up the training pro-
cess of the binary classifiers, we have extended PmSVM in two ways. The first one is
to build the balanced bagging classifiers with under-sampling strategy. Our algorithm
avoids training on full training data, so the training process of PmSVM rapidly con-
verges to the optimal solution. The second one is to parallelize the training process of
all classifiers with multi-core computers. We have developed the parallel versions of
PmSVM based on HPC models (OpenMP, MPI, and hybrid MPI/OpenMP). In each
parallel version of PmSVM we apply our balanced bagging algorithm to obtain the best
performance in the training process.

We have evaluated the performance in terms of training time on the large scale
dataset like ImageNet. On ILSVRC 1000, our implementation is 90 times faster than
the original implementation of PmSVM and 240 times faster than LIBLINEAR. To
obtain this performance we set the number of threads to 20 on our computer. There-
fore, with our approach we can get higher performances by using more resources (CPU
cores, computer, etc.). Furthermore, with the balanced bagging approach we signifi-
cantly speed-up the training process of the classifiers without (or very few) compromis-
ing the overall classification accuracy. We need only 13 minutes to train 1000 binary
classifiers on ILSVRC 1000. Obviously, this is a roadmap towards very large scale vi-
sual classification. However, when the training data is larger, PmSVM requires a large
amount of main memory. In the near future, we may study the approach that avoids
loading the whole training data to main memory as in [43]]. Another possibility could
be to compress the training data and handle the compressed data on the fly, as in [21]].
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