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Abstract. We propose a method for power theft detection based on predictive 
models for technical losses in electrical distribution networks estimated entirely 
from data collected by smart meters in smart grids. Although the data sampling 
rate of smart meters is not sufficiently high to detect power theft with complete 
certainty, detection is still possible in a statistical decision theory sense, based 
on statistical models estimated from collected data sets. Even without detailed 
knowledge of the exact topology of the distribution network, it is possible to es-
timate a statistical model of the technical losses that allows indirect estimation 
of the non-technical losses (power theft) with high accuracy.  

1 Introduction 

The power grids of many countries are currently undergoing radical upgrades, and are 
increasingly equipped with massive sensing and communication infrastructure that 
can significantly improve the measurement and control capabilities of the resulting 
"smart" grids. This infrastructure includes devices such as phasor measurement units 
(PMUs) and smart power meters that are installed at many locations and/or measure 
data very frequently, resulting in very high-volume data streams. Using these data 
streams for various decision problems has opened up new opportunities for the appli-
cation of data analytical algorithms and techniques. 

One such decision problem of critical importance to electrical power utilities is the 
reliable detection of power theft [1]. It exists in practically all countries, but in some 
markets, for example Southeast Asia, the amount of theft can even exceed 40% [2-3]. 
The most common type of power theft occurs when an illegal user draws power di-
rectly from the power lines, between the distribution transformer (DT) and any elec-
trical power meter that can measure electricity consumption. In general, the mismatch 
between the total energy supplied by the distribution transformer and the sum of ener-
gy consumed by all legal paying end users (EU) can be detected, and the total amount 
of losses in the distribution sub-network can be estimated. However, this amount 
includes both technical losses that are inevitable during the normal operation of the 
power distribution system, and non-technical losses (theft). Technical losses comprise 
ohmic losses in the electrical lines due to the resistance of the lines, conversion losses 
in any intermediate devices, leaks due to imperfect isolation, etc. Because some  
of these components of the technical losses depend on the amount of power being 
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delivered to customers, and that amount varies significantly throughout the day, week, 
and year, it is generally difficult to decide what part of the total loss is technical, and 
what part might be due to theft.  

It would be possible to calculate accurately the exact amount of technical losses if 
all the parameters of the distribution network were known, including its connection 
topology, order and attachment points of all users, the line resistances between the 
attachment points, as well as the instantaneous power consumption by every user at 
any moment in time. In practice, full knowledge of these parameters is not economi-
cally feasible - a power utility would normally know which user is served by which 
distribution transformer from its geographic coverage plan, but the connection order 
and exact line resistances would not normally be known. In addition, full knowledge 
of the power consumption by any user at any instant in time would only be possible 
by installing detailed measurement equipment, such as PMUs, that performs very 
frequent measurements (multiple times per second). However, such an installation 
would be prohibitively expensive, its cost far exceeding the cost of power theft. In 
practice, utilities collect only infrequent, average and/or aggregated measurements, 
usually over a fairly long period of time - one month for traditional power meters, and 
30 to 60 minutes for the new generation of smart meters that have advanced telemetry 
functions. The most important measurement available to power utilities is the total 
amount of active power consumed by a user during the measurement period, because 
this value is the basis on which payment by the customer is determined. Additional 
variables provided by some meters, for example smart meters conforming to the 
ANSI C12.19 standard, comprise reactive power consumed by the user (important for 
billing of some industrial customers), instantaneous voltage and current at the begin-
ning and end of the measurement interval, power quality information, etc.    

One popular theft detection method, implemented in most meter data management 
systems (MDMS), is to estimate the amount of total losses as described above, by 
performing energy balance between the energy supplied by the DT and the energy 
consumed by all metered users, and calculate the loss rate as a percentage of the total 
amount provided. When this loss rate exceeds a specified threshold, e.g. 3%, theft can 
be suspected and investigated. A disadvantage of this method is that no distinction is 
made between technical and non-technical losses, so when technical losses are un-
usually high for perfectly good and legal reasons, for example very uneven power 
consumption, a power theft even can be detected erroneously.   

The advent of smart meters, with their much more frequent sampling intervals, has 
made it possible to calculate loss rates at a much finer temporal scale, and possibly 
detect power theft events of much shorter duration that would otherwise get lost in the 
much larger monthly energy aggregates measured and reported by traditional power 
meters. However, if power theft is not an irregular, one-time event, but is systematic 
and follows similar consumption patterns as those of the legal electricity users, the 
finer temporal scale of analysis would not improve detection significantly, because it 
would be computing the same loss rate, only more frequently. So, if the same loss rate 
calculation method is applied on smart meter data, higher accuracy of detection could 
not be expected for the economically more significant case of long-term systematic 
power theft. In order to use more productively the much larger data sets produced by 
smart meters, more advanced detection algorithms are needed. Section 2 proposes one 
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such method, Section 3 describes some experimental results using a detailed network 
simulator, and Section 4 concludes and proposes direction for further improvement in 
the accuracy and reliability of the method. 

2 Power Theft Detection Based on a Technical Loss Model 

We consider the problem of estimating the non-technical losses (NTL) in a branch of 
a distribution network consisting of a distribution transformer (DT) connected to a 
sub-station by means of a feeder, and a number of users connected to the secondary 
side of the DT in some manner (Fig. 1). The total amount of losses ܮ௞ in such a net-
work over a particular time interval k can easily be estimated by performing the ener-
gy balance between the energy  ܧ஽்,௞ supplied by the DT during this time interval 
and the sum of the energy ܧ௞௜  consumed by each user i, as measured by each smart 
meter: 

௞ܮ  ൌ ஽்,௞ܧ െ ∑ ௜,௞௡௜ୀଵܧ   . (1) 

 

 

Fig. 1. Diagram of a distribution system. Power theft occurs when one of the end users (EU) is 
attached to the distribution transformer and draws power from it, but its consumption is not 
measured and paid for. 

If we can estimate the amount ܮ෠୩TL of technical losses (TL) during the same inter-
val, we can indirectly compute the amount ෠ܱ௞ of NTL as ෠ܱ௞ ൌ ୩ܮ െ  ෠୩TL, and sinceܮ
NTL are usually attributed to power theft, a decision of whether to investigate can be 
based on this estimate. That is, our approach is to reduce the problem of estimating 
NTL to that of estimating TL. 

One of the biggest problems in estimating the amount of TL ܮ෠୩TL  is that, in  
general, the connection pattern between the end electricity users and the distribution 
transformer is not known. This connection pattern includes the topology and length of 
the power lines between the DT and EU. The most typical connection pattern is by 
means of a feeder connecting the secondary side of the transformer to individual users 
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attached at various points along the feeder. The exact location of these points is not 
known, and the resistances of the line between these points are not known, either.  

In the absence of detailed information about the actual circuit of the branch of the 
distribution system, we make the simplifying assumption that it has a specific topolo-
gy and connectivity pattern, shown in Fig. 2, represented as a one-line diagram [6]. 
We assume that each user (1101 to 1170) is connected to the secondary side of the 
transformer (the bus 1100) by means of an individual line. (When a user is connected 
to multiple phases of the distribution system, we treat each phase as a separate and 
independent user.) Because energy balance and loss modeling is performing indepen-
dently for each phase in a multi-phase system, below we describe the model for a 
single phase only. 

 

 

Fig. 2. Approximating circuit of a distribution system, represented as a one-line diagram. After 
the distribution transformer, all users are attached to the same bus 1100, through independent 
lines of varying resistance, one per user. 

We define the following variables for the simplified circuit: ܴ௜  The actual resistance of the line to user i ෠ܴ௜  The estimated resistance of the line to user i ܫ௜,௞ ൌ  ௞ሻ The measured instantaneous current of branch i at the end of timeݐ௜ሺܫ
interval k ܮ௜,௞  Actual technical loss of branch i during time interval k ܮ෠௜,௞  Estimated technical loss of branch i during time interval k 
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 ௞  Total loss during time interval k for all branches (users), obtained byܮ
means of power balance between the DT and all legal users  ܮ௞்௅  Technical loss during time interval k for all branches (users). When 
there is no theft, ܮ௞்௅ ൌ  ௞  ݈଴  Non-ohmic technical loss (time independent) ෠ܱ௞  The estimated non-technical loss (NTL) during time interval kܮ

For smart meters, the measurement time interval is typically equal to 30 minutes, and 
for traditional meters, it could be equal to one month or longer. 

The ohmic losses during measurement period k due to the resistance of the trans-
mission line to user i are 

௜,௞ܮ  ൌ ׬ ௧ೖ௧ೖషభݐሻଶܴ௜݀ݐ௜ሺܫ        (2) 

In practice, as noted above, we will know neither the actual resistance ܴ௜  of branch i, 
nor the instantaneous current ܫ௜ሺݐሻ at all instants between times ݐ௞ିଵ and ݐ௞ .  For 
this reason, we will make the additional simplifying assumption that the relation be-
tween current magnitude and time is piecewise linear: ܫመ௜ሺݐሻ ൌ ݐ௜,௞ݏ ൅  ௞ିଵሻ,      (3)ݐ௜ሺܫ

where:  

t time, ݐ௞ିଵ ൏ ݐ ൏ ௜,௞ݏ ,௜,௞ slopeݏ ௞ݐ ൌ ூ೔ሺ௧ೖሻ ିூ೔ሺ௧ೖషభሻ ௧ೖି௧ೖషభ   

We rewrite equation (2) as 

෠௜,௞ܮ   ൌ ଵ௦೔,ೖ ׬ ሻூ೔ሺ௧ೖሻ ூ೔ሺ௧ೖషభሻݐ௜ሺܫሻଶܴ௜݀ݐመ௜ሺܫ ൌ  ோ೔ଷ௦೔,ೖ ሾܫ௜ሺݐ௞ሻଷ െ  ௞ିଵሻଷሿ   (4)ݐ௜ሺܫ

The total loss then is:  ܮ෠௞ ൌ ∑ ூ೔ሺ௧ೖሻయିூ೔ሺ௧ೖషభሻయଷ௦೔,ೖ ܴ௜௡௜ୀଵ ൅ ݈଴ ,    (5) 

where: 
n The number of smart meters 
The estimates of the branch resistances ෠ܴ௜ can then be obtained by means of the 

least squares method, for example using Moore–Penrose pseudoinverse: ෠ܴ ൌ ሺܪ்ܪሻିଵ(6)     , ܮ்ܪ 

where: 

ܪ ൌ
ێێۏ
ێێێ
ۍ ூభሺ௧మሻయିூభሺ௧భሻయଷ௦భ,మ ூమሺ௧మሻయିூమሺ௧భሻయଷ௦మ,మ … ூ೙ሺ௧మሻయିூ೙ሺ௧భሻయଷ௦వ,మ 1ூభሺ௧యሻయିூభሺ௧మሻయଷ௦భ,య ூమሺ௧యሻయିூమሺ௧మሻయଷ௦మ,య … ூ೙ሺ௧యሻయିூ೙ሺ௧మሻయଷ௦వ,య 1… … … … 1ூభሺ௧೘ሻయିூభሺ௧೘షభሻయଷ௦భ,೘ ூమሺ௧೘ሻయିூమሺ௧೘షభሻయଷ௦మ,೘ … ூ೙ሺ௧೘ሻయିூ೙ሺ௧೘షభሻయଷ௦೙,೘ ۑۑے1

ۑۑۑ
ې
  

ܮ ൌ  ൦   ௠൪ܮ…ଷܮଶܮ
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෠ܴ ൌ ێێۏ
ۍێ ෠ܴଵ෠ܴଶ…ܴ෠௡݈଴ ۑۑے

ېۑ
  

m the number of measurement periods 
The free term ݈଴  represents the non-ohmic losses, that is, the losses that are not 
caused by and are proportional to line resistances.  

In order to compute the least-squares (LS) estimate of the resistances, the system 
should be over-constrained, that is, the number of measurement periods m should be 
greater than the number of smart meters n, and the matrix H should have full rank 
(n+1).  This requirement is usually easy to satisfy.  

Once the parameter vector ෠ܴ  has been obtained, we can use it to compute the non-
technical losses ෠ܱ௞ for any future period k as  

෠ܱ௞ ൌ ௞ܮ െ ෍ ௞ሻଷݐ௜ሺܫ െ ݏ௞ିଵሻଷ3ݐ௜ሺܫ ෠ܴ௜௡
௜ୀଵ െ ݈଴ 

3 Experimental Set-up 

In order to verify the proposed algorithm, we conducted an experimental study in 
simulation, where a detailed simulator was used to calculate the state of a typical 
branch of a distribution network under typical loads and fairly frequently (every 10 
seconds), and the resulting losses and power consumption measurements were accu-
mulated over the much longer intervals (30 minutes) typical for the current generation 
of smart meters and automatic metering infrastructure. This procedure simulates the 
measurement process of a set of typical smart meters, and the aggregated data com-
puted in this way was provided to the power theft analysis algorithm described above.   

The test branch of the distribution system contained one user group of 30 users, 
such that 10 users were attached to each of the three phases. Without loss of generali-
ty, all consumption was assumed to be single-phase, and the analysis was performed 
on one phase only (phase A). One of the 10 users attached to phase A was assumed to 
be stealing power, resulting in power theft on the order of 10% of total consumption.  

The time span of captured user data was 6 days (144 hours). Power theft occurred 
only during the last 2 days (48 hours). The first 2 days (48 hours) of data was used for 
estimating a predictive model for technical losses, as described above. Then, the last 4 
days (96 hours) were used to verify the accuracy of prediction of technical (and, re-
spectively, non-technical) losses. Of these 96 hours, the first half (48 hours) had no 
theft, and the last half (48 hours) had theft.  

In order to compute the state of the network branch (represented by all voltages, 
currents, phase angles, and active and reactive power consumed at each node), power  
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flow calculation was executed every 10 seconds for the entire period of 144 hours. 
There were a total of 51,840 time periods for which power flow was executed.  

The loading conditions for the network were specified by means of a time-varying 
demand profile for each user. Since actual demand profiles recorded by actual smart 
meters were not available, we generated them from a reasonable statistical model that 
assumed that the demand profile for each user had two components: a seasonal com-
ponent that was the same for every user, and a random component that was different 
for every user. This is a reasonable model under the assumption that all users are of 
the same type (that is, all are commercial or all are residential), and their consumption 
patterns are similar, because they are driven largely by the same external factors (for 
example, by the air temperature in the same neighborhood that determines the demand 
for air conditioning services).  

The seasonal component represents the average demand profile over an entire 
week. For our experiments, we used the actual total demand profile for the entire 
United Kingdom for six consecutive days in June 2012 [4]. Fig. 3 shows this seasonal 
profile. It is very smooth, because it is the sum of the demands of all consumers in an 
entire country (the UK).   

 

Fig. 3. Base load profile ( ௕ܲ௔௦௘) 

The load profile for an individual user in our simulation was generated by adding 
a random component coming from the autoregressive (AR) process given by equa-
tion (7) to the seasonal base profile. Fig. 4 shows an example of the load profile for 
one user. In contrast to the seasonal component, individual load profiles are much 
noisier. 
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Fig. 4. Individual user load profile  

 ௜ܲሺݐ௞ሻ ൌ ௕ܲ௔௦௘ሺݐ௞ሻ ൅ 0.8 · ௜ܲሺݐ௞ିଵሻ ൅ 0.2 · ࣨሺ0, 1ሻ,  (7) 
 
where: 

௜ܲሺݐሻ  The load of user i at time t ௕ܲ௔௦௘ሺݐሻ The base load at time t ࣨሺ0,1ሻ Normal distribution with ߤ ൌ 0 and ߪଶ ൌ 1. 

Here, 0.8 is the autoregressive coefficient of the AR process, and 0.2 is the standard 
deviation of the white noise that is driving the process. 

By using this stochastic process for user demand, we are ensuring that the users at-
tached to the same transformer have similar, but not identical demands. 

4 Experimental Results 

4.1 Resistance Estimates 

The predictive model for technical losses was estimated from the data for the first 48 
hours (96 data points). The resulting estimates for the branch resistances are shown in 
Fig. 5. The agreement is reasonably good, and discrepancies are due to the relatively 
slow sampling rate of smart meters, the quadratic nature of losses, and the necessity to 
approximate the profile of the current during the sampling period (in our case, by a 
piece-wise linear curve). 
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Fig. 5. Estimated and actual values for the nine branch resistances 

4.2 Non-technical Loss Estimates 

For every 30-minute measurement period during all three intervals of 2 days  
(48 hours, or 96 data points) each, we calculated the expected technical losses and 
subtracted them from the measured total losses to arrive at an estimate for the NTL 
during that period. Fig. 6 shows histograms of the NTL estimates for the three pe-
riods. The first histogram shows in red the NTL estimates from the first 48 hours (no 
theft). Since this dataset was used to estimate the line resistances, the shown values 
are in fact equal to the residuals from the least squares (LS) estimation. The implicit 
assumption behind the LS computation is that the residuals come from a normal 
(Gaussian) distribution with mean zero, and the histogram confirms that. This histo-
gram also allows us to compute the expected variation of the NTL estimates under no-
theft conditions, which we can use for determining confidence intervals and detection 
thresholds. 

The second histogram shows in blue the NTL estimates from the second 48 hours 
(still no theft, but the line resistances used in producing these estimates were the ones 
obtained from the first data set). This histogram also shows the variation of the NTL 
estimates that can be expected normally, without theft, and is in agreement with the 
first histogram. 

The third histogram shows in green the NTL estimates from the last 48 hours, 
when there is power theft. Visibly, the NTL values are larger than in the second case, 
when there was no theft. The two histograms (blue and green) do not overlap, so it is 
possible to completely separate the two cases, resulting in 100% accuracy of detection 
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for this level of theft (10%).  For lower level of theft, though, the two histograms 
might overlap, in which case an optimal separation threshold must be determined. 

 

Fig. 6. Histograms for NTL estimates during three testing intervals (phases). In red, NTL esti-
mates are shown for the interval from which the predictive model for technical losses was con-
structed. In blue, NTL estimates are shown for the second interval during which no theft was 
present. In green, NTL estimates are shown for the last interval during which theft did occur.  

 

Fig. 7. A 95% confidence interval for expected total consumption (yellow lines) is computed 
from the measured total supply by the branch DT (blue line) and the predictive model for tech-
nical losses. When the measured total consumption (green line) goes outside of the confidence 
interval, theft can be suspected. The estimated amount of theft is also shown (red line).   

The estimation method applied only to the last two intervals (two days of no theft 
followed by two days of theft) is shown in Fig. 7, as would be seen by power utility 
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employees during actual operation. The blue line shows the total amount of energy 
supplied to the group of users by the branch DT, and the green line shows the sum of 
the reported consumption amounts for all smart meters in the group. The two yellow 
lines represent a 95% confidence interval for the expected total consumption derived 
from the technical loss model, if no theft was happening. So, when the measured con-
sumption (green line) is outside of the confidence interval (yellow lines), power theft 
can be identified. The estimated amount of theft is also shown by the red curve.  

5 Conclusion 

We have described a method for power theft detection based on a predictive model 
for technical losses in distribution networks equipped with smart meters. The predic-
tive model is constructed entirely from data collected by smart meters. Since there are 
several significant sources of error and noise in the measurement process, such as 
infrequent measurements and unknown topology of the distribution circuit, our me-
thod relies on a statistical estimation procedure to fit a good model to the data. Expe-
rimental results in simulation showed that the resulting predictive model still allows 
for excellent separation between cases of theft and no theft, for power theft amounts 
on the order of 10% of power consumption (1 illegal unmetered user out of 10). In 
future work, we will further investigate the accuracy of the method for smaller 
amounts of theft, as well as expand the model to include other external variable fac-
tors, such as environmental temperature, rain, etc. We will also adapt it to the much 
more difficult case when not all users in a distribution network branch are equipped 
with smart meters, and some of them use the traditional kind of meters that provide 
power consumption readings aggregated over much longer periods (one month or 
more). We also plan to address other types of power theft, for example theft after the 
meter by a third party [3,5], again using a data analytical approach.   

References 

1. Depuru, S., Wang, L., Devabhaktuni, V.: Electricity theft: Overview, issues, prevention and 
a smart meter based approach to control theft. Energy Policy 39(2), 1007–1015 (2011) 

2. Nagi, J., Yap, K.S., Nagi, F., Tiong, S.K., Koh, S.P., Ahmed, S.K.: NTL detection of elec-
tricity theft and abnormalities for large power consumers in TNB Malaysia. In: Proceedings 
of 2010 IEEE Student Conference on Research and Development (SCOReD 2010),  
Putrajaya, Malaysia, December 13-14 (2010) 

3. ECI Telecom Ltd., Fighting Electricity Theft with Advanced Metering Infrastructure (March 
2011) http://www.ecitele.com  

4. National Grid UK, 
http://www.nationalgrid.com/uk/Electricity/Data/Demand+Data/  

5. Nagi, J., Mohammad, A., Yap, K., Tiong, S., Ahmed, S.: Non-technical loss analysis for  
detection of electricity theft using support vector machines. In: Proc. 2nd IEEE Int. Power 
and Energy Conf., pp. 907–912 (2008) 

6. McAvinew, T., Mulley, R.: Control System Documentation, ISA, p. 165 (2004) 


	Smart Meter Data Analysis for Power Theft Detection
	1 Introduction
	2 Power Theft Detection Based on a Technical Loss Model
	3 Experimental Set-up
	4 Experimental Results
	4.1 Resistance Estimates
	4.2 Non-technical Loss Estimates

	5 Conclusion
	References




