
P. Perner (Ed.): MLDM 2013, LNAI 7988, pp. 246–259, 2013.
© Springer-Verlag Berlin Heidelberg 2013

SOM++: Integration of Self-Organizing Map
and K-Means++ Algorithms

Yunus Dogan, Derya Birant, and Alp Kut

Dokuz Eylul University, Department of Computer Engineering,
Tinaztepe Campus, Buca, 35397 Izmir, Turkey
{yunus,derya,alp}@cs.deu.edu.tr

Abstract. Data clustering is an important and widely used task of data mining
that groups similar items together into subsets. This paper introduces a new
clustering algorithm SOM++, which first uses K-Means++ method to determine
the initial weight values and the starting points, and then uses Self-Organizing
Map (SOM) to find the final clustering solution. The purpose of this algorithm
is to provide a useful technique to improve the solution of the data clustering
and data mining in terms of runtime, the rate of unstable data points and internal
error. This paper also presents the comparison of our algorithm with simple
SOM and K-Means + SOM by using a real world data. The results show that
SOM++ has a good performance in stability and significantly outperforms three
other methods training time.

Keywords: Data Mining, Clustering, Self-Organizing Map, K-Means++,
Mining Methods and Algorithms.

1 Introduction

Cluster analysis is the process of grouping data into subsets such that each item in a
cluster is more similar to the items in the same cluster than to the other items at the
outside of the cluster. Generally, distance measures like Euclidean distance,
Manhattan distance are utilized to evaluate the dissimilarity between data points.
Cluster analysis is one of the most useful tasks in machine learning and data mining,
and has been used in a variety of fields such as marketing, banking, medicine and
telecommunication. It has been widely used in dimensionality reduction, information
extraction, density approximation and data compression [15] [6] [7] [16].

The K-means [12] algorithm is the most commonly used partitioning cluster
algorithm with its easy implementation and its efficient execution time. Self-
organizing map (SOM) [11] is an unsupervised, well-established and widely used
clustering technique.

In SOM, initial weight values are assigned randomly, method performance is
sensitive to these values and it is prohibitively slow in large data applications. In order
to decrease the time complexity of SOM, we investigated different initialization
procedures for optimal SOM and now propose K-Means++ as the most convenient
method, given the proper training parameters.

 SOM++: Integration of Self-Organizing Map and K-Means++ Algorithms 247

K-Means++ algorithm gives more successful results than standard K-Means at
accuracy and consistency [3]. Because, the K-Means algorithm works only to find a
local optimum and this local optimum often becomes poor by using random initial
center points; however, K-Means++ starts with rational initial points, thus K-
Means++ approximates the best clustering space. Also, K-Means++ outperforms in
speed, too. K-Means++ guarantees O(logk) as the complexity time; however, K-
Means has a complexity time as O(nkd + 1 logn), where k is the number of clusters, n is
the number of data and d is the Euclidean distance between two clusters [3].

This paper proposes a new clustering algorithm SOM++, which is composed by K-
Means++ method followed by SOM clustering. The algorithm consists of two stages:
First, using K-Means++ method to determine the initial weight values instead of
assigning in randomly, then clustering task is done in the second stage by SOM as an
unsupervised clustering method. The experimental results show that the proposed
algorithm, SOM++, is considerably better than the conventional SOM based
algorithms in terms of runtime, the rate of unstable data points and internal error. It
generates similar clustering results with other SOM based clustering algorithms,
however the use of it requires the smaller training time.

The rest of this paper is organized as follows. The second section reviews the
literature and describes SOM, K-Means++ algorithm and how SOM and K-Means
were combined in the previous studies. After the new clustering algorithm SOM++ is
explained in detail and also the principle and the architecture of the algorithm are
presented in the third section, we demonstrate how the proposed algorithm can be
applied on a real world data, including dataset description, experimental setup, and
performance analysis and clustering results in the fourth section. The experimental
studies indicate with figures of map combinations and tables of error rates. Section 5
points out the comparison of the results of SOM++, simple SOM, SOM+K-Means
and SOM+K-Means++ (include all phases of K-Means++). Finally, the summary,
conclusions and future work are given in the Section 6.

2 K-Means++ & SOM

The complexity of SOM algorithm is O(NC), where N is the input vector size and C is
the number of dataset presentation cycles. N contains n2w as the multiply of the map
size n2 and the number of weights w. C contains n2a as the multiply of the map size n2
and the number of attributes a. The number of attributes is equal to the number of
weights; therefore, the complexity of SOM algorithm obtains O(N2)[14].

While simple SOM has been previously used in many applications, extended
versions of SOM has also been proposed such as FSOM (Fast SOM) [15], ABSOM
(Ant Based SOM) [6], and ESOM (Emergent SOM) [7].

When the performance of the K-Means++ algorithm were evaluated on four
datasets and K-Means++ consistently outperformed K-Means, both by completing
faster and by achieving a lower potential value. For example, on one dataset, K-
Means++ terminates almost twice as fast while achieving potential function values
about 20% better, on the larger dataset, it is obtained up to 70% faster and the
potential value is better by factors of 10 to 1000. For this reason, we propose K-
Means++ algorithm in this paper, instead of K-Means [3].

248 Y. Dogan, D. Birant, and A. Kut

In recent years, several studies have compared different SOM-based two-stage
methods. For instance, while Souza et al. [16] compared SOMK (SOM+K-Means)
with SOMAK (SOM+Ant K-Means), Chi and Yang [5] compared both ABSOM
(Ant-based Self-Organizing Map) with Kohonen’s SOM individually, and SOM+K-
Means with ABSOM+K-Means. Besides, Chiu et al. [7], [8] compares four
approaches simple K-Means, SOM+K-Means, PSO+K-Means (Particle swarm
optimization (PSO)) and PSHBMO (Particle Swarm Optimization with Honey Bee
Mating Optimization). As another example, the study of Corrêa and Ludermir [9]
about the comparison of several SOM-based two-stage approaches: SOM, SOM+KM
(K-Means), SOM+W.KM (Weighted K-Means), SOM+AY (proposed by Azcarraga
and Yap) and SOM+W.AY (Weighted AY Method), in terms of classification
accuracy and runtime.

Recently, performing K-Means method after usage of SOM was also studied for
different purposes as examples of the emergency planning to deal with extreme events
such as earthquake, flood and fire [2], clustering meteorological data [10], the
biological wastewater treatment process [1], and the identification of day types of
electricity load [4]. Our proposed algorithm, SOM++ is a general clustering
algorithm; as a result, it can be used in many different applications for different
purposes.

To the best of our knowledge, however, this paper is the first in performing
K-Means method before training neurons by usage of SOM to determine the initial
weight values of SOM.

3 Methodology

The study of Su, Liu and Chang shows that the initializing the weight values increases
the performance of SOM [17]. SOM++ shows that initializing the weight values by
K-Means++ (without K-Means clustering) increases the performance of SOM. Also,
the study of Attik, Bougrain and Alexandre mentions that initializing the weight
values by K-Means clustering increases the performance of SOM without any
example or method [3]; SOM++ is a supportive and integral study of these studies
with K-Means++ (without K-Means clustering) and a new sequential assignment
algorithms.

In this section, it is explained that our new algorithm SOM++, a two-stage
clustering algorithm uses the combination of two data mining techniques, namely
SOM and K-means++ clustering. SOM algorithm uses neurons for all points on its
map and these neurons have weight values for all attribute values. Before showing the
details of SOM++ algorithm, these weight values are indicated in the following part.
In SOM, input neurons are fully connected to output neurons, and each connection
has a weighting value. In the initialization process of SOM, each neuron is associated
with a random weight vector (wi = wi1, wi2, …, win), which has the same dimension
(n) as the input vector (xi = xi1, xi2, …, xin). Using the Euclidean measure, distance
between the input vector and the incoming weight vector of each output map neuron
is calculated. The output neuron with the smallest distance is declared the winner.

 SOM++: Integration of Self-Organizing Map and K-Means++ Algorithms 249

After that, neuron weights are subsequently updated according to (1) using a
neighborhood function (2), which minimizes the overall distance between the neuron
itself and its neighbors.

wij(t + 1) = wij + h(t)(xi – wij) (1)

where wij(t) is the connection weight from input i to output neuron j at time t; xi is
element i of input vector x, and h is the neighborhood function.

h(t) = αGF (2)

where α is the learning rate; GF is the Gaussian Function (3).

GF = exp (-∑║wui - cui║2/2ϕ2 (t)) (3)

where ϕ is the neighborhood width parameter and GF uses the Euclidean distance
between the winner unit (wu) and the current unit (cu).

SOM method performance is sensitive to the randomly assigned initial weight
values and it is prohibitively slowed in the large-scale applications. In order to
decrease the time complexity of SOM, this paper proposes K-Means++ to determine
the initial weight values, instead of random process. In this approach, K-Means++
centers are assigned as SOM weight values; thus, SOM will require fewer iterations.
Since the K-means algorithm is more computationally efficient than SOM, the general
solution will be faster.

3.1 Description of SOM++ Algorithm

The proposed SOM++ is a two-stage algorithm, which is a combination of SOM and
the initialization method of centers in K-means++. Fig. 1 and Fig. 2 show pseudo
codes for SOM++ algorithm. The algorithm starts by finding the center points for the
all clusters by using the method of K-Means++ which initializes the centre points of
the clusters. There must be two sets named as Ф and D. Set D collects the centers of
all clusters during the first part of SOM++ (step 1 and step 6 in Fig. 1). Set Ф collects
the distances between each data and each center (step 2 in Fig. 1). The distances are
calculated by using the Euclidean Distance. According to sum of squares of distances
in set Ф, the centers are obtained (step 3-4-5 in Fig. 1). After obtaining k centers in set
D (step 7 in Fig. 1), the second part of SOM++ is started (Fig. 2).

After these steps, all centre points for all clusters are collected in a set Ф. These
centers have the attribute values and these values must initialize the weight values of
neurons on the map of SOM++. However, the most suitable method must be decided
for locating these initial weight values. If the locating method is not suitable
according to the distances of neurons, the result of SOM++ is not different from the
result of the standard SOM with the random initialization (Comparing the error rates
is given in Section 4.4). Therefore, a new sequence assignment algorithm is
implemented by considering the distances between K centers in set Ф.

Fig. 2 and Fig. 3 show the pseudo code of this sequence assignment algorithm.
Firstly, the most different point in set D is calculated (step 1 in Fig. 2) and

according to the Euclidean Distance, a sorting operation is done by comparing to this

250 Y. Dogan, D. Birant, and A. Kut

outlier point. At the end of sorting operation, a new set which has sorted points
according to the least similar point is obtained (step 2). The values in these points are
assigned to the weight values of neurons as the initial values for SOM++ algorithm
like the sequence in Fig. 3 (step 3 in Fig. 2).

Finding initial weight values of neurons (K-Means++ part)

1 Select data from the data set β randomly
Add this data into a set D

D βRandom(0,i)

2 For each data i in the dataset β
For each data j in the dataset D

Find the Euclidean Distances between βi and Dj
Add the minimum distance into set Ф

Ф ║ ║ ,
where n is equal to the number of attributes, i is equal to the number of

data and j is equal to the number of data in D
3 Find the sum of squares S for the values in Ф

Ф ,
where i is equal to the number of data in Ф

4 Select a real number R between 0 and S randomly

R = Random(0, S)
5 Find the unique integer q so that 12 + 22 + … + q 2 >= R > 12 + 22 + … +

(q-1) 2

 ,
where q Є +, q > 2

6 Add qth data in β into D
D βq

7 Repeat steps 2-3-4-5-6 until the number of data in D is equal to the
number of clusters K

Fig. 1. The K-Means++ part of SOM++ algorithm

Before training operations in SOM++, the number of iteration is initialized as the
number of total data (step 4 in Fig. 2), because actually, the neurons on the map of
SOM++ become trained at the beginning; therefore, the number of iteration must not
start zero. The advantages of initializing both the number of iteration and weight
values of neurons with the values coming from K-Means++ are shown in the Section
4 and 5 in detail. Finally, training operations of neurons starts by using the standard
SOM algorithm (step 5 in Fig. 2).

 SOM++: Integration of Self-Organizing Map and K-Means++ Algorithms 251

The weight values become close to the final and decisive values by means of K-
Means++; on the other hand, it is not enough singly, because the single aim of SOM
algorithm is not to do clustering of data correctly. It is also a mapping algorithm;
therefore, the places of the clusters win the importance in SOM algorithm. If locating
of the weight values which come from the initializing method of K-Means++ is done
randomly, the correct neuron cannot have the correct weight values, and the success
of SOM++ algorithm is not realized certainly.

In Section 4, the importance of the sequential assignment is tested in detail.
Our sequential assignment algorithm needs the sorted values according to the least

similar value to each other in the set. Then, locating operation starts from the neuron
in [0, 0] which is the one of the furthest four neurons ([0, 0], [0, (n-1)], [(n-1), 0] and
[(n-1), (n-1)] as n2 is the number of neurons) from the center on the map, because the
top element in sorted values is the least similar value. The next values after the least
similar value are located like the sequence in Fig. 3.

Initializing weight values of neurons and the number of iteration

1 Find the least similar center L to the other centers in D
 ║ ║ ,

where n is equal to the number of attributes, i is equal to the number of data
in D and j is equal to i+1 for each i.

2 Sort the centers in D from the most similar center to the least similar
center according to L by using the Euclidean Distance

Collect these centers in

 , ║ – ║ , ,
where n is the number of attribute and i is equal to the number of data in D

3 Initialize attribute values of these sorted centers into the weight values of
neurons on the map sequentially like the sequence in Fig 3.

4 Initialize the number of iteration as the number of the data

 I = N ,
where N the number of data in the dataset β and I is the iteration number of

the standard SOM algorithm
5 Start the standard SOM algorithm

Fig. 2. Initializing parameters part of SOM++ algorithm

The steps on the left and right sides are done to down and inner-cross directions.
The steps on the top and bottom sides are done to left and inner-cross directions;
however, the steps on the center side are done mix-cross directions. Finally, the
furthest values are located in the furthest neurons on the map.

252 Y. Dogan, D. Birant, and A. Kut

4 Experimental Studies

The error rates and stability of the maps are tested by a dataset with 699 vectorial
tuples. These datasets have an attribute which puts the correct classes of all data.
However, the datasets are used without this attribute while SOM clustering. Because
SOM is a clustering algorithm and does not need a target attribute while training
neurons. This attribute is used while testing the stability of the maps.

1 x = 0, y = 0, n = 0, , . . ,where i is the number of the
weights in a neuron, M is the map matrix, W is the weight array in a neuron, x
and y are the indexes of M, and n is the index of the

2 1, 1, , . . ,
where BY is the boundary of y in M

3 , 1, 1, 1, , . .],
where BX is the boundary of x in M

4 1, 1, , . . ,
where BX is the boundary of x in M

5 , 1, 1, 1, , . .]

6 Repeat 2-3-4-5 until
0 , 2 0, 2 1 y

, 2 00 , 2 1

7 , 1, 1, 1, , . .]

8 1, 1, , . .

9 , 1, 1, 1, , . .]

10 1, 1, , . .

11 Repeat 7-8-9-10 until 1

12 x = x + 1, n = n + 1, , . . ,

where BX = BY = 4. The first loop
terminates after the 14 steps by using 2nd,
3rd, 4th and 5th conditions. The second loop
terminates after the 24 steps by using 7th,
8th, 9th and 10th conditions.

where BX = BY = 3. The first loop
terminates after the 9 steps by using 2nd,
3rd, 4th and 5th conditions. The second loop
terminates after the 15 steps by using 7th,
8th, 9th and 10th conditions.

Fig. 3. Sequential assignment of the initial weight values which come from K-Means++

 SOM++: Integration of Self-Organizing Map and K-Means++ Algorithms 253

After training neurons without the target attribute, all correct classes for each data
are obtained. Because a neuron can contain more data than one, containing the
elements of the same class or not could be showed with colored neurons. For the
visual compares, the dataset with 699 vectorial tuples is used. This dataset contains 10
attributes and it is about Breast Cancer Wisconsin (BCW) [19]. There are two certain
classes and each neuron which contains the elements of the same class is shown by a
different color on maps.

On all maps in the following figures, there are three different colored neurons as
silver, grey and black. The silver and grey neurons show the correct clustered
neurons. In the other words, these neurons contain the elements of the same class;
however, the black neurons contain the elements of the different classes and the
number of black neurons shows the instability of the map.

4.1 Visual Compares at the Beginning Maps

Before starting to train neurons in SOM algorithm, initializing the weight values
of neurons by a pre-treatment supplies a stability to the map at the beginning
immediately. In the following versions, the distinction, between the sequential
assignments according to the similarities of the centre points which are returned
from K-Means clustering algorithms and the random assignments of them, is
observed, too.

In Fig. 4, the beginning map for the standard SOM algorithm with 20x20 neurons
is shown. The initial weight values are assigned randomly in the version of the
standard SOM; therefore, the map is observed indecisively.

Fig. 4. Standard SOM at the beginning phase by using 20x20 neurons

On the first map in Fig. 5, there are neurons with initialized weight values by
the centre points which are returned from K-Means clustering. On the second map,
there are neurons with initialized weight values by the initial centre points of K-
Means++ without K-Means clustering. On the third map, there are neurons with
initialized weight values by the centre points which are returned from K-Means++
clustering.

254 Y. Dogan, D. Birant, and A. Kut

a b c

Fig. 5. SOM is at the beginning phase by using 20x20 neurons without any training a) K-
Means, b) K-Means++ (without K-Means phase), c) K-Means++

These weight values are not located by using the sequential assignment and these
neurons on the maps are at the beginning phase of SOM algorithm. However, it seems
that the instability cannot be prevented in these examples.

In Fig. 6, the sequential assignment is used and neurons are located according to
the similarities. The importance of the sequential arraignment is observed from the
maps in Fig. 6.

a b c

Fig. 6. SOM is at the beginning phase by using 20x20 neurons with initialized weights by the
sequential assignment. a) K-Means, b) K-Means++ (without K-Means phase), c) K-Means++
(with K-Means Clustering)

It is observed at the visual tests that the successes of the new versions of SOM
algorithm have more stability and less indecisive neurons than the standard SOM.
Also, visually, it can be obtained that using K-Means++ without K-Means clustering
has a near success together with using K-Means++ with K-Means clustering for the
sequential initialized weight values and initialized number of iteration of SOM as the
number of data (699 in the previous examples).

The numerical comparisons of the new versions are done by calculating the error
rates at the phase of training neurons in SOM algorithm.

4.2 Visual Compares at the Beginning Maps

The indecisive neurons are shown by black neurons on the previous maps. They mean
that irrelevant data tuples are in same neurons on the map and if the number of these
neurons is high, the map is not consistent.

 SOM++: Integration of Self-Organizing Map and K-Means++ Algorithms 255

Fig. 7. The comparison of indecisive neurons

The numbers of indecisive neurons in the previous visual compares are collected
like the graph in Fig. 7. This graph shows that because the numbers of total neurons
for the first 5x5 neurons are low, the numbers of indecisive neurons are low, too.
Therefore, the numbers of indecisive neurons are higher for 10x10 neurons and the
versions of SOM could be compared according to the numbers of the indecisive
neurons for 10x10, 15x15 and 20x20 neurons.

The steadiest algorithms are SOM++ (or SOM + K-Means++ (without K-Means))
and SOM + K-Means++ according to the graph. Both of these algorithms use both
initializing iteration number as the number of data and the sequential assignment
algorithm.

As a result, the most successful algorithm is SOM++ with the least number of
indecisive neurons as 6 for 15x15 neurons and only 2 for 20x20 neurons.

4.3 The Error Rates

Error rates are calculated according to is the Gaussian Function in Eq. 3 and they are
obtained for all versions of algorithms like the other comparison tests; however, Table
1 shows the least error results only for K-Means++ without K-Means clustering and
with K-Means clustering.

In Table 1, a1) Error rates for K-Means++ (without K-Means) + SOM; error rates
for K-Means++ (without K-Means clustering) + SOM with the initialized weights by
the sequential assignment according to the number of neurons and the number of
iterations b1) Error rates for K-Means++ (without K-Means)+ SOM with the
initialized number of iteration as the number of total data (699) and without the
initialized weights by the sequential assignment according to the number of neurons
and the number of iterations. c1) Error rates for K-Means++ (with K-Means
clustering) + SOM with the initialized number of iteration as the number of total data
(699) and the initialized weights by the sequential assignment according to the
number of neurons and the number of iterations.

256 Y. Dogan, D. Birant, and A. Kut

Error Rates for K-Means++ (with K-Means Clustering) + SOM; a2) Error rates for
K-Means++ (with K-Means clustering) + SOM with the initialized weights by the
sequential assignment according to the number of neurons and the number of
iterations b2) Error rates for K-Means++ (with K-Means Clustering)+ SOM with the
initialized number of iteration as the number of total data (699) and without the
initialized weights by the sequential assignment according to the number of neurons
and the number of iterations. c2) Error rates for K-Means++ (with K-Means
clustering) + SOM with the initialized number of iteration as the number of total data
(699) and the initialized weights by the sequential assignment according to the
number of neurons and the number of iterations.

Table 1. The error rates list for 25 and 100 neurons

 Iteration Number 5x5 neurons 10x10 neurons

a1
1th 0.42720 0.49013
2nd 0.01000 0.01873

3rd 0.00518 0.00177

b1
1th 1.61001 0.68055
2nd 0.08828 0.01924
3rd 0.03508 0.00733

c1
1th 0.28725 0.05095
2nd 0.00252 0.00058

3rd 0.00125 0.00007

a2
1th 0.43723 0.47991
2nd 0.05145 0.01509
3rd 0.01086 0.00112

b2
1th 1.81375 0.67474
2nd 0.09418 0.01972

3rd 0.03524 0.00777

c2
1th 0.28313 0.08267
2nd 0.00795 0.00029
3rd 0.00298 0.00024

4.4 Training Times

The tests of training times are implemented by using the dataset with 18781 vectorial
tuples and 390 attributes. This large dataset is produced the distinctions on
performance of trainings between simple SOM, SOM++ (with the initialization
method of K-Means++), SOM + K-Means++ and SOM + K-Means absolutely.

The computer, which tests the performances of the algorithms for this large dataset,
has 3.24 GB of RAM and Intel(R) Core(TM) 2 Duo CPU E6550 @ 2.33 GHz. This
computer trains 600x600 neurons with this large dataset which has a large attribute set
for three weeks.

The Fig. 8 shows that the simple SOM trains 600x600 neurons since the first
moment; however, SOM++ (with the initialization method of K-Means++), SOM +

 SOM++: Integration of Self-Organizing Map and K-Means++ Algorithms 257

K-Means and SOM + K-Means++ need a preparation time for SOM. Therefore, the
error rates of SOM are observed stably until a few times for these versions of SOM.
These times are less than an hour for SOM++, about 2 hours for SOM + K-Means++
and about 3 hours for SOM + K-Means, because there are lots of attributes and tuples
in the dataset. After these times, the simple SOM starts with initialized weight values
and iteration values for these versions.

At the end of 7 days, the simple SOM gives about 2.4 of the error rate; however,
SOM++ gives a less error rate than 10x10-7 before 8 days. Also, the error rate for
SOM + K-Means++ is taken a less error rate than 10x10-7 before 9 days and the error
rate for SOM+ K-Mean is taken a less error rate than 10x10-7 before 10 days. These
results show that the versions of SOM have better performances than the simple
SOM. However, SOM++ has the best performance. Because of the complexity of
SOM algorithm as O(N2) where N is the input vector size (N is 390 x 18781 and N2=
53649618668100), SOM algorithm gets the result map with minimum error rates after
some days.

Also, it is observed that the initialization method of center points at K-Means++
accelerates K-Means, because K-Means++ with all steps needs about 2 hours to
cluster a large dataset. However, K-Means needs about 3 hours.

Fig. 8. The error rates - time (day) graphic for the versions of SOM

5 Comparison Results

The accuracy, about which of the SOM versions must be used, is taken by the visual
tests. It is observed that the SOM versions of K-Means++ without K-Means clustering

258 Y. Dogan, D. Birant, and A. Kut

and with K-Means clustering have the least number of indecisive neurons in the visual
tests. If the versions of K-Means++ with K-Means clustering and without K-Means
clustering have a close success, a comparison of time can do the distinction between
them and it is observed that K-Means++ (without K-Means clustering) + SOM has the
best results.

Consequently, our experimental results empirically prove that K-Means++
(without K-Means clustering) + SOM (SOM++ with its short name) is best suited to
data clustering due to its high speed and lower error rates as compared with other
SOM based techniques.

6 Summary, Conclusion and Future Work

This paper introduces a new clustering algorithm SOM++. The significant difference
between SOM++ algorithm and the standard SOM is that SOM++ does not start to
initialize the weight values of neurons with random numbers. SOM++ uses the
initializing center points of clusters method in K-Means++. Eventually, each neurons
represent a cluster and thus, SOM++ takes advantage of K-Means++. Separately,
these significant initial values are not located in the neurons on the map and SOM++
has a special locating algorithm namely the sequential assignment.

Another difference between SOM++ algorithm and the standard SOM is that SOM++
initializes the starting number of iteration. Because the standard SOM starts with the
random values in neurons, the number of iteration is declared as 0. However, because
SOM++ starts with significant values in neurons, the number of iteration is declared as
the number of total data. This initializing increases stability and decreases error rates.

In other words, SOM++ algorithm has many advantages over conventional SOM
based methods. The most remarkable advantage of SOM++ is in saving training time
for clustering large and complicated data sets by using K-Means++ algorithm in the
weight initialization procedure of SOM. Furthermore, the rate of unstable data points
decreases and internal error decreases.

For future work, the proposed algorithm, SOM++, can be used for the computer
security, the healthcare, ecological modeling, the financial sector and another area
which needs clustering its large data successfully.

References

1. Aguado, D., Montoya, T., Borras, L., Seco, A., Ferrer, J.: Using SOM and PCA for
Analysing and Interpreting Data from a P-removal SBR. Engineering Applications of
Artificial Intelligence 21(6), 919–930 (2008)

2. Arthur, D., Vassilvitskii, S.: K-Means++ the Advantages of Careful Seeding. In: Proc.
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1027–1035 (2007)

3. Attik, M., Bougrain, L., Alexandre, F.: Self-organizing map initialization. In: Duch, W.,
Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 357–362.
Springer, Heidelberg (2005)

4. Benabbas, F., Khadir, M.T., Fay, D., Boughrira, A.: Kohonen Map Combined to the
K-Means Algorithm for the Identification of Day Types of Algerian Electricity Load.
IEEE Proc. 7th Computer Information Systems and Industrial Management Applications,
78–83 (2008), doi:10.1109/CISIM.2008.27

 SOM++: Integration of Self-Organizing Map and K-Means++ Algorithms 259

5. Chi, S.-C., Yang, C.-C.: A Two-stage Clustering Method Combining Ant Colony SOM
and K-means. Journal of Information Science and Engineering 24, 1445–1460 (2008)

6. Chi, S.-C., Yang, C.C.: Integration of Ant Colony SOM and K-Means for Clustering
Analysis. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI),
vol. 4251, pp. 1–8. Springer, Heidelberg (2006)

7. Chiu, C.-Y., Chen, Y.-F., Kuo, I.-T., Ku, H.-C.: An Intelligent Market Segmentation
System Using K-Means and Particle Swarm Optimization. Expert Systems with
Applications 36(3), 4558–4565 (2008)

8. Chiu, C.-Y., Kuo, I.-T., Chen, P.-C.: A Market Segmentation System for Consumer
Electronics Industry Using Particle Swarm Optimization and Honey Bee Mating
Optimization. Global Perspective for Competitive Enterprise, Economy and Ecology
pt. 12, ch. 1 (2009)

9. Corrêa, R.F., Ludermir, T.B.: A Hybrid SOM-Based Document Organization System. In:
IEEE Proc. 9th Brazilian Symposium on Neural Networks (SBRN 2006), pp. 90–95
(2006), doi:10.1109/SBRN.2006.3

10. Khedairia, S., Khadir, M.T.: Self-Organizing Map and K-Means for Meteorological Day
Type Identification for the Region of Annaba -Algeria-. In: IEEE Proc. 7th Computer
Information Systems and Industrial Management Applications, pp. 91–96 (2008),
doi:10.1109/CISIM.2008.29

11. Kohonen, T.: The Self-Organizing Map. Proc. of the IEEE 78(9), 1464–1479 (1990),
doi:10.1109/5.58325

12. MacQueen, J.B.: Some Methods for Classification and Analysis of Multivariate
Observations. In: Proc. of 5th Berkeley Symposium on Mathematical Statistic and
Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

13. Poelmans, J., Elzinga, P., Viaene, S., Van Hulle, M.M., Dedene, G.: How Emergent Self
Organizing Maps can Help Counter Domestic Violence. In: IEEE Proc. 2009 WRI World
Congress on Computer Science and Information Engineering (CSIE), Los Angeles, USA,
vol. 4, pp. 126–136 (2009), doi:10.1109/CSIE.2009.299

14. Roussinov, D.G., Chen, H.: A Scalable Self-organizing Map Algorithm for Textual
Classification: A Neural Network Approach to Thesaurus Generation. Communication and
Cognition in Artificial Intelligence Journal 15(1-2), 81–111 (1998)

15. Sagheer, A., El., T.N., Maeda, S., Taniguchi, R., Arita, D.: Fast Competition Approach using
Self Organizing Map for Lip-Reading Applications. In: IEEE Proc. International Joint
Conference on Neural Network (IJCNN), pp. 3775–3782 (2006),
doi:10.1109/IJCNN.2006.1716618

16. Souza, J.R., Ludermir, T.B., Almeida, L.M.: A Two Stage Clustering Method Combining
Self-Organizing Maps and Ant K-Means. In: Alippi, C., Polycarpou, M., Panayiotou, C.,
Ellinas, G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 485–494. Springer,
Heidelberg (2009)

17. Su, M.-C., Liu, T.-K., Chang, H.T.: Improving the self-organizing feature map algorithm
using an efficient initialization scheme. Tamkang Journal of Science and Engineering 5(1),
35–48 (2002)

18. Wolberg, W.H.: Breast Cancer Wisconsin (Original) Dataset (1992), http://archive.
ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29

19. Yang, Y., Rong, L.: Establishment of the Evaluation Index System of Emergency Plans
Based on Hybrid of SOM Network and K-means Algorithm. In: IEEE Proc. 4th
International Conference on Natural Computation, pp. 347–351 (2008),
doi:10.1109/ICNC.2008.454

	SOM++: Integration of Self-Organizing Map and K-Means++ Algorithms
	1 Introduction
	2 K-Means++ & SOM
	3 Methodology
	3.1 Description of SOM++ Algorithm

	4 Experimental Studies
	4.1 Visual Compares at the Beginning Maps
	4.2 Visual Compares at the Beginning Maps
	4.3 The Error Rates
	4.4 Training Times

	5 Comparison Results
	6 Summary, Conclusion and Future Work
	References

