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Preface

The nigth event of the International Conference on Machine Learning and Data
Mining MLDMwas held in New York (www.mldm.de) running under the umbrella
of the World Congress “The Frontiers in Intelligent Data and Signal Analysis,
DSA2013” (www.worldcongressdsa.com).

For this edition, the Program Committee received 212 submissions. After the
peer-review process, we accepted 60 high-quality papers for oral presentation;
from these 51 are included in this proceedings book. The subjects range from the-
oretical topics on classification, clustering, association rule and pattern mining
to specific data mining methods for the different multimedia data types such as
image mining, text mining, video mining and Web mining. Extended versions of
selected papers will appear in the International Journal of Transactions on Ma-
chine Learning and Data Mining (www.ibai-publishing.org/journal/mldm).

Twenty papers were selected for poster presentations and are published in
the MLDM Poster Proceedings by ibai-publishing (www.ibai-publishing.org).

A tutorial on Data Mining, a tutorial on Case-Based Reasoning , a tutorial on
Intelligent Image Interpreation and Computer Vision in Medicine, Biotechnol-
ogy, Chemistry and Food Industry, a tutorial on Standardization in Immunoflu-
orescence, and a tutorial on Big Data and Text Analysis were held before the
conference.

We were pleased to give out the best paper award for MLDM for the fourth
time this year (www.mldm.de). The final decision was made by the Best Paper
Award Committee based on the presentation by the authors and the discussion
with the auditorium. The ceremony took place at the end of the conference.
This prize is sponsored by ibai solutions (www.ibai-solutions.de), one of the
leading companies in data mining for marketing, Web mining, and e-commerce.

The conference was completed by an outlook on new challenging topics in
machine learning and data mining before the Best Paper Award Ceremony.

We would like to thank all reviewers for their highly professional work and
their effort in reviewing the papers. We also thank the members of the Institute of
Applied Computer Sciences, Leipzig, Germany (www.ibai-institut.de), who
handed the conference as secretariat. We appreciate the help and understanding
of the editorial staff at Springer Verlag, and in particular Alfred Hofmann, who
supported the publication of these proceedings in the LNAI series.



VI Preface

Last, but not least, we wish to thank all the speakers and participants
who contributed to the success of the conference. The next World Congress
(www.worldcongressdsa.com), “The Frontiers in Intelligent Data and Signal
Analysis, DSA2014,” will be held in St. Petersburg combining the following three
events: International Conferences Machine Learning and Data Mining MLDM,
the Industrial Conference on Data Mining ICDM, and the International Confer-
ence on Mass Data Analysis of Signals and Images in Medicine, Biotechnology,
Chemistry and Food Industry MDA.

July 2012 Petra Perner
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The Gapped Spectrum Kernel

for Support Vector Machines

Taku Onodera and Tetsuo Shibuya

Human Genome Center, Institute of Medical Science, University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

{tk-ono,tshibuya}@hgc.jp

Abstract. We consider the problem of classifying string data faster and
more accurately. This problem naturally arises in various fields that
involve the analysis of huge amount of strings such as computational
biology. Our solution, a new string kernel we call gapped spectrum ker-
nel, yields a kind of sequence of kernels that interpolates faster and less
accurate string kernels such as the spectrum kernel and slower and more
accurate ones such as the wildcard kernel. As a result, we obtain an
algorithm to compute the wildcard kernel that is provably faster than
the state-of-the-art method. The recently introduced b-suffix array data
structure plays an important role here. Another result is a better trade-off
between the speed and accuracy of classification, which we demonstrate
by protein classification experiment.

Keywords: SVM, string kernels, the b-suffix array,protein classification.

1 Introduction

1.1 Background

One trend that is almost universal in diverse kinds of human activities today is
the rapid growth of the amount of data involved. The examples are everywhere
from space exploration to online commerce. Originated in the context of artificial
intelligence research, statistical machine learning methods are now getting more
and more popular as practical tools for the analysis of huge data. In particular,
support vector machines (SVMs) [22] and the combination of the kernel trick
with them have been studied extensively in the last decade. This research field is
a place where continuous optimization algorithms for general data meet discrete
algorithms for structural data such as strings, trees, graphs etc. through the
link provided by kernels. The key is designing kernels that make it possible to
achieve faster computation and accurate classification at the same time. For
readers who are not familiar with this topic, Subsection 2.1 provides all the
information necessary to read this paper.

Among many kernels for many types of data, string kernels, kernels for strings,
have especially wide range of applications in computational biology because some
of the fundamental objects in this field such as DNA or protein are naturally

P. Perner (Ed.): MLDM 2013, LNAI 7988, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 T. Onodera and T. Shibuya

Table 1. Summary of the time needed to compute various string kernels

x, y: size of the input strings; k, g,m, h: parameters of kernels (see Section 5)

k-spectrum [11] Θ(x+ y)

(k,m)-mismatch [10]
O(αk,m(x+ y)) where

αk,m :=
∑min (2m,k)

l=0

(
k
l

)
(k − l)

[9]

k-subsequence [15] O(kxy)

(g, k)-restricted gappy [13] O(βg,k(x+ y)) where βg,k := (g − k)gg−k+1

(k,m)-wildcard [13] O(km+1(x+ y))

gapped spectrum [this paper] O(h(x + y)) where h < k

represented as strings. For example, string kernels are applied to protein remote
homology prediction [11,14,10,8], prediction of protein-protein interactions [2],
classification of small molecules [21] and prediction of transcription regulation
sites on genome [19] to name a few. Further investigation for faster and more ac-
curate classification methods is still important because the throughput of genome
sequencers is rapidly increasing due to technological advances.

1.2 Problem

In the development of various string kernels, the spectrum kernel [11] played
a foundational role and one can see most other kernels as elaborations of this
kernel. We give a brief survey of existing string kernels at Section 5 and formal
descriptions of those kernels that are relevant to this paper at Subsection 2.2 and
2.3. But in short, elaborate kernels are better in terms of classification accuracy
yet are more time consuming than the spectrum kernel. We fill this gap.

1.3 Our Solution

We introduce a new string kernel, which we call gapped spectrum kernel (Sub-
section 3.1). The feature corresponding to this kernel is, like that of the other
string kernels, based on the statistics of short strings in the input string. But
those short strings are gapped strings instead of contiguous substrings, i.e. they
may contain mismatches at predetermined positions.

For example, the 2-specturm kernel characterizes the string “ababa” by its
substrings of length 2, namely 2 “ab”s (at position 1 and 3) and 2 “ba”s (at
position 2 and 4). On the other hand, the “101”-gapped spectrum kernel char-
acterizes the same string by its substrings of length 3 but without caring the
second characters, thus it captures 2 “a*a”s (at position 1 and 3) and 1 “b*b”
(at position 2) where * represents an arbitrary character.

Although the efficient computation of the corresponding kernel function is
not trivial, the b-suffix array [20], a recently introduced variant of the suffix
array, provides a sufficiently fast algorithm. In particular, the time complexity is
exponential terms-free unlike the cases for other more complex kernel functions
like that of the mismatch kernel [10] or the wildcard kernel [13]. In that sense,
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the gapped spectrum kernel is more similar to the spectrum kernel rather than
to the advanced kernels like the wildcard kernel.

We then propose an way to bridge faster but less accurate kernels and more
accurate but slower kernels (Subsection 3.2). As the above example indicates, the
gapped spectrum kernel has the set of predetermined positions of the gaps as its
parameter and different gap positions yield different instances of the kernel. We
propose picking instances one by one from a certain set randomly and merging
them. What we get is the sequence of kernels converging to the wildcard kernel.

1.4 Our Contributions

This work’s contributions are the followings:

1. an O(kmm(|x|+ |y|))-time algorithm to compute the (k,m)-wildcard kernel;
2. a better trade-off between the time and accuracy of string classification by

string kernels.

As for the algorithm, it computes the wildcard kernel simply by completing the
merge process mentioned in the previous subsection.1 The bound above is m/k
(≤ 1) times smaller than the state-of-the-art method. This efficiency originates
from the gapped spectrum kernel computation using the b-suffix array.

In terms of the second contribution, we demonstrate the trade-off between
time and accuracy through experiments on protein classification (Section 4). The
key observation is that the convergence of the sequence of the kernels toward the
wildcard kernel mentioned in the previous subsection is much faster at the early
part than it is at the later part (a glance at Figure (a) in Subsection 4.3 might
help), which means that the composite of the first few kernels is likely to be good
enough. Furthermore, the random order of merger gives as accurate results as a
seemingly more powerful order, which incorporates the knowledge gained by an
extra work in the training phase, does. This result justifies the introduction of
randomness in the merge of kernels.

2 Preliminaries

2.1 Support Vector Machines and the Kernel Method

SVMs [22] are widely used supervised learning methods to classify data into two
groups. Because there are many good surveys about SVMs, e.g., [1], we just
briefly summarize very fundamental notions, which suffices for our purpose. In
the training phase, a SVM takes a set of points in Euclidean space, each of which
is labeled either positive or negative. Then, it outputs the hyperplane dividing
the positive labeled points and the negative labeled ones with the maximum
margin if any. If the two groups are not linearly separable, you can allow errors
with penalty to guarantee the existence of a solution. In the test phase, a SVM

1 Randomness is not necessary to achieve this gain itself.
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takes a set of points and judges one to be positive or negative according to which
side of the hyperplane it resides. Thus, a support vector machine is formalized
as follows:

given {xi, yi}i ⊂ R
n × {1,−1} and C > 0 ,

minimize |w|2 + C
∑
i

ζi (1)

subject to yi(w
�xi + b) ≥ 1 − ζi, ζi ≥ 0 .

Here, ζi is the error corresponding to xi and C is the weight of error. This is
an instance of the quadratic optimization problem and there are many software
packages that can solve this problem sufficiently fast, e.g., LIBSVM [4].

The above method has two drawbacks:

a) it captures the boundary between the classes only by a hyperplane and can-
not, for example, separate intertwined input points by a curve;

b) it assumes the inputs to be points in Euclidean space.

A natural way to get around these is to prepare a map φ and apply SVM to
{φ(xi), yi}i. The map φ is called the feature map and the range of φ, which is
a Euclidean space of some dimension, is called the feature space. As for a), you
can realize non-linear classification of inputs by mapping them by non-linear
feature map and linearly classifying in the feature space. On the other hand,
you can fix b) just by letting the domain of φ to be an arbitrary set S. If S is
a general set, the notion of linearity is no longer clear but high dimensionality
of the feature space corresponds to a kind of generalization of non-linearity for
those cases. One can intuitively see this by observing the way a polynomial of
degree greater than 1, a typical instance of non-linear map, increases the number
of variables, e.g., x1, x2 to x2

1, x1x2, x
2
2 by a quadratic map. But if one näıvely

increases the dimension of the feature space, the cost of optimization, which, for
example, involves the computation ofw�xi, will get more expensive accordingly.
To avoid this, you can convert the SVM formulation (1) into the following dual
form:

given {xi, yi}i ⊂ S × {1,−1} and C > 0 ,

maximize
∑
i

αi − 1

2

∑
i

∑
j

yiyjαiαjφ(xi)
�φ(xj) (2)

subject to
∑
i

yiαi = 0, 0 ≤ αi ≤ C .

Again, conventional software packages can solve this optimization problem in a
reasonable amount of time and it is easy to convert the optimal solution for this
problem into that for (1). The dual representation has the nice property that
the objective function depends on {xi}i only through the inner products of their
feature vectors. Because of this property, you do not need to maintain feature
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vectors {φ(xi)}i explicitly as long as you can some how compute K(xi, xj) :=
φ(xi)

�φ(xj) efficiently. The map K is called the kernel function. We sometimes
refer a kernel function as just kernel. A feature map’s relevance for classification
and the efficiency of kernel function computation are independent concepts.

2.2 Spectrum Kernel

Let Σ be the set of characters, i.e. a totally ordered set of cardinality σ < ∞. A
string is an element of Σ∗ := ∪∞

i=0Σ
i. We denote the length of a string x as |x|.

Below, we assume a fixed bijection between {1, 2, . . . , σk} and k-mers, and
call the k-mer corresponding to i as the i-th k-mer. The k-spectrum kernel [11]
is a kernel whose corresponding feature map maps a string x as

φk : Σ∗ � x �→
∑

s:k-mer in x

1s ∈ Z
σk

where 1s is the vector whose i-th entry is 1 if s is the i-th k-mer or 0 otherwise.
In other words, the i-th entry of φk(x) is the number of the occurrences of the
i-th k-mer in x.

You can compute the kernel function Kk(x, y) := φk(x)
�φk(y) in optimal

Θ(|x| + |y|)-time by traversing the generalized suffix tree for x and y. [23,5,11]
In practice, it is more desirable to use the suffix array [16] than the suffix tree
because it is several times smaller. The suffix array is a data structure closely
related to the suffix tree and in most cases, it is easy to translate an algorithms
based on one of these data structures into the version based on the other with
no or little overhead. In this case, you can trivially translate the traversal over
the suffix tree into the scan on the suffix array with the use of an auxiliary data
structure called the height array, which you can also compute in Θ(|x|+ |y|)-time
[7]. Not only does this translation work without any overhead, it even makes the
algorithm run faster in practice because the memory access pattern of array scan
is optimal in terms of cache efficiency.

2.3 Wildcard Kernel

Let * denotes the wildcard, a special character that can match any other
character. If a k-mer s ∈ Σk and a k-mer possibly including wildcards t ∈
(Σ ∪ {*})k satisfy s[i] = t[i] for ∀i s.t. t[i] ∈ Σ, we denote s ≈ t.

The (k,m)-wildcard kernel [13] is the kernel defined by the following feature
map:

φ(k,m)Σ
∗ � x �→

∑
s:k-mer in x

∑
t∈(Σ∪{*})k

#{i:t[i]=*}≤m
s≈t

1t ∈ Z
(σ+1)k .

While this kernel achieves better learning performance than the k-spectrum
kernel, the best bound obtained so far for the computation of the corresponding
kernel function Kk,m is O(km+1(|x| + |y|)) for inputs x and y.
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3 Gapped Spectrum Kernel

3.1 Definition and Computation

Let w and k be integers s.t. 1 ≤ w ≤ k. Let b be a binary sequence of length k
containing w 1’s in it and ij be the index of the j-th 1 in b, i.e. {ij}wj=1 is the
subsequence of {1, . . . , k} s.t. b[i] = 1 iff ∃l with i = il. Let maskb be the map
Σk � x1x2 . . . xk �→ xi1xi2 . . . xiw ∈ Σw.

The b-gapped spectrum kernel is the kernel corresponding to the following
feature map:

φb : Σ
∗ � x �→

|x|−k+1∑
i=1

1maskb(xixi+1...xi+k−1) ∈ Z
σw

where, like in Subsection 2.2, we are assuming a fixed bijection between
{1, 2, . . . , σw} and w-mers.

This feature map is a natural generalization of that of the k-spectrum kernel,
and the corresponding kernel functionKb : (x, y) �→ φb(x)φb(y) can be calculated
analogously by using the b-suffix array data structure [20]. Let T be a string
of length n and Ti denotes the i-th suffix of T , i.e. T [i]T [i + 1] . . . T [n]. The
b-suffix array b-SA[1, . . . , n] of T is the unique permutation of {1, . . . , n} s.t.
{maskb(Tb-SA[i])}i is lexicographically increasing breaking the tie by b-SA[i].
In b-SA, for 1 ≤ ∀l ≤ w, the suffixes sharing the ik-th characters for 1 ≤
∀k ≤ l are laid contiguously. The b-height array b-Hgt[1, . . . , n] of T is an array
s.t. b-Hgt[i] is the length of the longest common prefix of maskb(Tb-SA[i]) and
maskb(Tb-SA[i−1]) for 1 < ∀i ≤ n. b-SA and b-Hgt array contain information
about suffixes of a string T and one can extend it for multiple numbers of strings
{Ti}i just by replacing the T in the definitions above with the concatenation of
Ti’s with a special character $, which does not appear in any {Ti}i, inserted
between each other. In the following, we assume there are only two strings T1

and T2 for brevity.
For any w-mer y, one way to compute 1y is to find those i’s that satisfy

maskb(xixi+1 . . . xi+k−1) = y and these i’s are forming contiguous regions in
b-SA.2 The boundaries between different regions correspond to those i’s s.t.
b-Hgt[i] < w. But this calculation involves enumeration of all w-mers. In most
cases, one should not pay such an exponential cost because typically most w-mers
never occur either in T1 or T2. Instead, we can enumerate only those w-mers that
appear at least once in the inputs by directly scanning b-SA. And as already
mentioned, those i’s that contribute to 1y for some y are already collected in
b-SA. One can judge which of T1 ond T2 a suffix b-SA[i] belongs to just by
comparing it with |T1|. Therefore, scanning once on b-SA is enough to compute
all the φb, and thus Kb.

The running time is dominated by the time to build the b-suffix array and
the b-height array, each of which is bounded by O(h(|x| + |y|)) where h is the

2 Except, of course, that i’s corresponding to the suffixes in T1 and T2 are mixed.
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number of the consecutive 1’s in b. In particular, h ≤ min {w, k − w}, which is,
in practice, a good bound because the number of 0’s k−w is often much smaller
than w.

3.2 Multiple Gapped Spectrum Kernel

The following equation links the gapped spectrum kernel and the wildcard kernel:

Kk,m(x, y) =
∑

b of length k
k−w≤m

Kb(x, y). (3)

Note that adding the kernel functions for different b’s is equivalent to concatenat-
ing the feature vectors charging the approximate matches with different positions
of mismatch independently, which is exactly what the wildcard kernel does.

From this we define the multiple gapped spectrum kernels as follows. k,m and
some order on Bk,m := {b of length k : k − w ≤ m} are assumed as parameters

and let bi be the i-th element of Bk,m. We call Σj
i=1Kbi as the j-th multiple

gapped spectrum kernel. From equation (3), the last element of the sequence
matches the wildcard kernel. Because the i + 1-th multiple gapped spectrum
kernel can be computed in O(m(|x| + |y|))-time from the i-th as mentioned
in Subsection 3.1, this gives O(kmm(|x| + |y|)) bound for the wildcard kernel
computation, which is k/m-factor smaller than the best existing one.

4 Experiments

4.1 Protein Classification

We applied the multiple gapped spectrum kernels to automatic classification of
proteins, one of the most important problems in computational biology today.

We took the data set from the SCOP database [18,3]. SCOP had been used
in many studies of string kernels [6,11,12,13] and is the de facto standard data
set in this area. SCOP is a hierarchical database, namely, all proteins in it are
first classified into Classes, then members of each Class are further classified into
Folds, then into Superfamilies, Families and so on. Previous studies focused on
the prediction of membership for Superfamilies. In other words, they predicted
weather a given protein sequence is a member of a Superfamily or not. Recog-
nizing the boundaries of Superfamilies is indeed important because it is essential
to find a new Family under a known Superfamily. But on the other hand, one
should also care about the recognition of boundaries of Families because, with
the growth of the database, the probability that a given unknown protein is a
member of some known Family is increasing. This is especially true for large
Families. Thus, we predicted the membership for large Families here.
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4.2 Experimental Design

We were interested in if it is possible to apply the multiple gapped spectrum
kernels to classify proteins as accurate as, say, the wildcard kernel but faster. In
particular, we wanted to know how randomness can help it because we do not
have enough time to perform a heavy pre-computation such as learning ‘the best’
parameter if any. Having considered this requirement, we applied the following
procedures for each Family F of the 13 Families including at least 50 protein
sequences:

1. split the whole database into two groups, namely, the training set R and the
test set E;

2. train the SVM with R∩F as the positive data set and R \F as the negative
data set;
(a) for each binary string b of length 5 with at most 2 0’s, calculate the

b-gapped spectrum kernel;
(b) generate 10 independently random permutations of binary strings of

length 5 with at most 2 0’s;
(c) continuously add gapped spectrum kernels according to the permutation

giving rise to a multiple gapped spectrum kernels for each permutation;
3. test the SVM with E ∩F as the positive data set and E \ F as the negative

data set trying every kernel of every sequence.

Note that each set of the multiple gapped spectrum kernels converge to the
(5, 2)-wildcard kernel because of the equation (3). Thus, this experiment yields
a kind of interpolations of the gapped spectrum kernel and the wildcard kernel.

As for the performance evaluation, we used the area under the receiver opera-
tion characteristic (ROC) curve [17]. ROC curve is the curve drawn by plotting
the false positive rate as the x-coordinate and the true positive rate as the y-
coordinate shifting the threshold of classification as a parameter. As we relax
the threshold and become more likely to judge one data positive both the true
positive rate and the true negative rate increase, producing an upper trend ROC
curve. Because the increase in terms of the y-coordinate is a good thing while
that of the x-coordinate is a bad thing, the more ROC curve extends to the
upper-left the better. Thus, the goodness is quantized as the area under ROC
curve (AUC), which is some value between 0 and 1. Note that the expectation
of AUC of classification by uniformly random guess is 0.5, not 0.

In order to assess the effectiveness of the random choice, we also tried a
seemingly better yet time expensive method and compared the result with the
results of the above experiment. At this time, we conduct 2-fold cross validation
in the training set R. Then, we obtained multiple gapped spectrum kernels by
greedily adding the gapped spectrum kernels in the order of the score from the
highest to the lowest.

Also, we tried the k-spectrum kernels for 3 ≤ k ≤ 5 because if the k-spectrum
kernel was better than the gapped spectrum kernel or any other kernel, there
would be no reason to use that kernel in the first place.
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4.3 Results

Due to the limit of the space, we show, at Figure (a) and Figure (b), the summary
and, as an example of the result for each Family, the result for Family b.1.1.1
while putting the rests in the appendix.

Before explanations and discussions, let us mention that the Figure (a) is
meant to convey the gist of the results as quickly as possible to the readers and
is not suitable for careful analyses. In particular, it went through some post-
processes, about which we will explain shortly. Please refer to the result for each
Family for serious examination.

The original result we obtained for each of the 13 Families looks like Fig-
ure (b). In each of these figures, the horizontal axis corresponds to the number
of the merged kernels and the vertical axis corresponds to the AUC. The thin
lines, the thick line and the dashed horizontal line, represent the performances
of the random order merges, the greedy order merge and the best k-spectrum
kernel respectively. The summary shown in Figure (a) is a kind of ‘average’ of the
results over all Families. The solid line, the dot-dashed line and the horizontal
dashed line each corresponds to the ‘average’ performance of the random order
merge, the greedy order merge and the best k-spectrum kernel respectively. Be-
sides its construction, Figure (a) clearly demonstrates a) the fast convergence
of the sequence of the random order merged multiple gapped spectrum kernels
to the wildcard kernel, the rightmost dot; b) good competitiveness of random
order strategy against greedy order strategy. Therefore, we claim that we can
randomly merge a small number, say s, of gapped spectrum kernels and use the
resulting multiple gapped spectrum kernel instead of the wildcard kernel, sav-
ing the computation time by the factor of

∑m
i=0

(
k
i

)
/s in expectation and still

be able to expect comparably accurate results. There are several Families for
which the k-spectrum kernel performs very well, e.g., c.2.1.2 (Figure (g)), c.37.1.8

(a) Summary of the Results (b) Result for Family b.1.1.1
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(Figure (h)). This is not a problem because the computation of the k-spectrum
kernel is cheap and we can just try them first if we want.

Last, we describe how Figure (a) was derived. For each result for a Family, the
horizontal axis was normalized so that the score for the wildcard kernel would
be 1 and the average score of the k-spectrum kernels would be 0. Then, thin
lines were averaged over all the trials. After that, all the components were aver-
aged over all the Families. The thick lines were changed to the dot-dashed line
for visibility. The vertical bars stabbing circles represent the average standard
deviations.

5 Related Works

In this section, we briefly summarize existing string kernels relevant to our
results. See also Table 1.

Leslie et al. [11] introduced the spectrum kernel in the context of protein
remote homology search problem. This kernel has an integer parameter k > 0 and
called the k-spectrum kernel when k should be specified explicitly. The feature
it captures is the number of each k-mer included in the string. As explained
in Subsection 2.2, the corresponding kernel function can be computed in the
optimal Θ(x+y)-time. But the accuracy of classification by the spectrum kernel
is not high. Thus, many similar3 kernels were developed since then in the context
of achieving both fast computation and high learning performance at the same
time. The (k,m)-mismatch kernel [10] considers the number of each k-mer that
appears in the string with at most m(< k) mismatches as the feature. The
computation of the kernel function takes O(αk,m(x + y))-time where αk,m :=∑min (2m,k)

l=0

(
k
l

)
(k− l) [9]. The k-subsequence kernel [15] considers the number of

each k-mer that appears as subsequences in the string as the feature.4 It takes
O(kxy)-time to compute the corresponding kernel function. With an additional
assumption that the region in the original sequence spanned by each subsequence
occurrence must be at most g, the (g, k)-gappy string kernel is obtained and the
time needed to compute the kernel function drops to O(βg,k(x+ y))-time where
βg,k := (g − k)gg−k+1 [13]. The (k,m)-wildcard kernel [13], like the (k,m)-
mismatch kernel, is based on the counts of occurrences of k-mers in the input
allowing at most m mismatches. The difference is that only the wildcard kernel
is conscious of where the mismatches occur (see Section 2 for the detail). The
kernel function computation takes O(km+1(x + y))-time. As for the learning
performance, these kernels are as good as each other [13].

Kuksa et al. [9] also gave bounds for the (g, k)-restricted gappy kernel and
(k,m)-wildcard kernel that are, except for some minor terms and truncations in
analyses, the same as the ones above.

3 The common property is that they are based on the statistics of some substructure.
4 In the original paper [15], it is called ‘string subsequence kernel’ with k implicitly
assumed.
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Appendix: Full Results of the Experiment

(c) b.1.1.4 (d) b.1.2.1

(e) b.36.1.1 (f) b.40.4.5
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(g) c.2.1.2 (h) c.37.1.8

(i) c.94.1.1 (j) d.58.7.1
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(k) d.108.1.1 (l) d.144.1.7

(m) g.37.1.1 (n) g.39.1.3
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Abstract. We previously proposed a new typhoon warning system which 
forecasts the likely extent of damage associated with a typhoon towards humans 
and buildings. The relation between typhoon data and damage data was learned 
by self-organizing maps (SOM) and typhoon damage scale (small, middle or 
large) was forecast by the SOM using typhoon data. Although average accuracy 
for actually small scale damage data was comparatively high (96.2%), average 
accuracy for actually large scale damage data was comparatively low (65.2%). 
Thus, we apply a selective presentation learning technique for improving the 
predictability of large scale damage by SOM. Learning data corresponding to 
middle and large scale damage are presented more often. Average accuracy for 
actually large scale damage data was increased by about 9%. The accuracy for 
actually large scale of numbers of fatalities and houses under water was 
increased by 25% and 20%, respectively. 

Keywords: typhoon damage scale forecasting, self-organizing maps, selective 
presentation learning, multiple regression analysis, decision trees. 

1 Introduction 

Intelligent techniques such as back-propagation neural networks (BPNN) [1], self-
organizing maps (SOM) [2], decision trees [3] and Bayesian networks [4] have been 
extensively investigated, and various attempts have been made to apply them to 
identification, prediction, control and so on [e.g., 1-12]. Harada et al. applied BPNN 
to forecasting typhoon course [9], Takada et al. applied BPNN to forecasting typhoon 
damage of electric power systems [10] and Udagawa et al. applied Bayesian networks 
to rain prediction [11]. We previously applied intelligent techniques to forecasting 
typhoon damage to human and buildings [12].  

Damage caused by typhoons to both people and structures has decreased in Japan 
due to improvements of countermeasures against natural disasters, however, such 
damage still occurs [13, 14]. A typhoon warning that represents typhoon menace with 
high accuracy should be issued appropriately. A typical typhoon warning currently 
issued in Japan may be “This typhoon is large and very strong.” We proposed a new 
typhoon warning which forecasts the risk of damage scale to both human and 
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buildings as follows: “We forecast that the coming typhoon has a risk of causing both 
large scale human and building damage. Please take care.” 

We investigate relation between typhoon data and damage data and forecast 
typhoon damage using typhoon data. The typhoon data includes the month when the 
typhoon was born, latitude and longitude where the typhoon was born, lowest 
atmospheric pressure, maximum wind speed and total precipitation. Damage data 
includes human damage data such as number of fatalities and injured persons and 
building damage data such as number of completely destroyed houses and number of 
houses under water. The types of typhoon and damage data are shown in Table 1. 
There are nine types of typhoon data and nine types of damage data, divided into 
three types of human damage and six types of building damage.  

Our previous work and its problem are described in Chapter 2. Typhoon damage 
scale forecasting with equal presentation (conventional) learning and its problem are 
described in Chapter 3. Typhoon damage scale forecasting with selective presentation 
(proposed) learning and its effectiveness are described in Chapter 4. 

2 Previous Work and Its Problem 

2.1 Forecasting Damage Data Using Typhoon Data 

Our previous work [12] is reviewed here briefly. We used SOM [2], multiple 
regression analysis and decision trees [3] for typhoon damage forecasting. Viscovery 
SOMine 4.0 was used as SOM software and See5 release 1.19 was used as decision 
tree software with default parameter values. 139 data records of typhoon data and 
damage data from June 1981 to September 1999 were collected from the typhoon 
database [15, 16]. We used 111 data records (to September 1995) for learning and 28  
 

Table 1. Types of typhoon data and damage data used in this study 

  
  
Typhoon data 

Month when the typhoon was born,  
Latitude and longitude where the typhoon was born,  
Lowest atmospheric pressure, 
Maximum wind speed, 
Total, one-hour and twenty-four-hour precipitation,  
Life span 

  
  
  
  
Damage data 

Number of fatalities, 
Number of injured persons, 
Number of dead and injured persons 
Number of completely destroyed houses, 
Number of half destroyed houses, 
Number of partially destroyed houses, 
Total number of damaged houses, 
Number of houses under water, 
Total number of destroyed non-house structures 
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data records (from July 1996) for testing. The average and maximum of every type of 
damage data in learning data are shown in Table 2. The minimum of every damage 
type was zero. We considered two types of typhoon damage forecasting: two-class 
(yes or no) and three-class (small, middle or large scale) damage forecasting. 

Table 2. Average and maximum of every type of damage data 

Data type Average Maximum 
Number of fatalities 6.0 100 
Number of injured persons 34.2 1499 
Number of dead and injured persons 40.2 1561 
Number of completely destroyed houses 21.7 541 
Number of half destroyed houses 2260.4 169877 
Number of partially destroyed houses 343.3 20303 
Total number of damaged houses 2625.4 170418 
Number of houses under water 8319.8 174124 
Total no. destroyed non-house structures 60.6 3029 

2.2 Two-Class (yes or no) Damage Forecasting 

In two-class damage forecasting, a predictor is trained by two values (0 and 1). In this 
case, 0 means that the damage is zero (no) and 1 means that the damage is not zero 
(yes). Experiments were made with nine types of continuous (or raw) typhoon data as 
inputs and one damage data (two values) as an output. Here, we expect that typhoon 
data such as lowest atmospheric pressure, maximum wind speed, precipitation and life 
span can be forecast with high accuracy by a weather forecasting system such as 
Japanese SYNFOS [17] and hence actual typhoon data was used as inputs.  

In testing with SOM, we input nine types of continuous typhoon data to SOM and 
recall one damage data using the map. In other words, we find the neuron which has 
the nearest weight vector to nine types of continuous typhoon data and obtain one 
damage data from the nearest neuron. The average accuracy of two-class (yes or no) 
damage forecasting for the three intelligent methods is shown in Table 3. Here, 
average accuracy means the average of the accuracy of nine damage data. This 
experiment confirmed that damage data are well related with typhoon data and that 
SOM learned the nonlinear relation very well. The accuracy with SOM was much 
better than that with MR and DT. 

Table 3. Average accuracy of two-class (yes or no) damage forecasting 

Method Learning data Test data 
SOM 100% 93.3% 
Multiple regression (MR) 70.9% 70.2% 
Decision trees (DT) 77.7% 63.9% 
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2.3 Three-Class (small, middle or large scale) Damage Forecasting 

In three-class damage forecasting, a predictor was trained by three values (0, 1 and 2). 
In the learning data, 0 means that the damage is small scale, 1 means the damage is 
middle scale and 2 means the damage is large scale. The average of each damage data 
was calculated as shown in Table 2. Small scale corresponded to under half of the 
average, medium scale corresponded to between half of the average and the average, 
and large scale corresponded to over the average, respectively. The prediction was 
considered accurate when the predicted scale was equal to the actual scale. The 
average accuracy of three-class damage forecasting was shown in Table 4. The 
accuracy with SOM was also much better than that with MR and DT. 

Table 4. Average accuracy of three-class (small, middle or large scale) damage forecasting 

Method Learning data Test data 
SOM 100% 93.3% 
Multiple regression (MR) 76.7% 62.7% 
Decision trees (DT) 88.6% 78.2% 

2.4 Problem 

In previous work [12], the percentage of small scale damage was comparatively high 
(83.2% of learning data) and the percentage of middle scale damage was 
comparatively low (5.2% of learning data). The percentage of large scale damage was 
11.6%. Therefore, we modified the range of scales as follows: small scale 
corresponds to under the 25% point of learning data, middle scale corresponds to 
between 25% and the 75% points, and large scale corresponds to over the 75% point. 
When calculating the 25% and 75% points, zero damage data was excluded. The 25% 
and 75% points of every damage type are shown in Table 5. After modification of the 
range of scales, percentages of small, middle and large scale damage are 65.0%, 
23.2% and 11.8%, respectively. The numbers of each scale of every damage data are 
shown in Table 6. 

Table 5. 25% and 75% points of damage data 

Data type 25% point 75% point
Number of fatalities 2 17
Number of injured persons 4 63
Number of dead and injured persons 5 74
Number of completely destroyed houses 3 31
Number of half destroyed houses 5 520
Number of partially destroyed houses 7 92
Total number of damaged houses 18 399
Number of houses under water 8 3773
Total number of destroyed non-house structures 7 61
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Table 6. Number of every damage data in learning data 

Data type Small Middle Large 
Number of fatalities 84 17 10 
Number of injured persons 76 23 12 
Number of dead and injured persons 74 25 12 
Number of completely destroyed houses 76 23 12 
Number of half destroyed houses 75 24 12 
Number of partially destroyed houses 70 28 13 
Total number of damaged houses 63 32 16 
Number of houses under water 57 36 18 
Total number of destroyed non-house structures 74 24 13 
Total number 649 232 118 
Percentage 65.0% 23.2% 11.8% 

3 Typhoon Damage Scale Forecasting with Equal Presentation 
and Its Problem 

We used 111 data records (from June 1981 to September 1995) for learning in the 
same way as previous work [12] and used 86 data records (from July 1996 to 
September 2008) for testing. 58 recent data records (from September 2000 to 
September 2008) were added to testing. All training data are presented equally to 
SOM. Average accuracy of two-class (yes or no) damage forecasting with SOM for 
86 test data was 96.0%. Average accuracy of three-class damage scale forecasting 
was 86.8%, as shown in Table 7. Although average accuracy for actually small scale 
damage data was comparatively high (96.2%), average accuracy for actually large 
scale damage data was comparatively low (65.2%), as shown in Table 8. 

Table 7. Accuracy of three-class damage scale forecasting for 86 test data with equal 
presentation 

Data type SOM 
Number of fatalities 86.0% 
Number of injured persons 87.2% 
Number of dead and injured persons 86.0% 
Number of completely destroyed houses 87.2% 
Number of half destroyed houses 90.7% 
Number of partially destroyed houses 84.9% 
Total number of damaged houses 88.4% 
Number of houses under water 84.9% 
Total number of destroyed non-house structures 86.0% 
Average 86.8% 
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Table 8. Accuracy of each damage scale forecasting for 86 test data with equal presentation 

Data type Small Middle Large 
Number of fatalities 98.2% 66.7% 50.0% 
Number of injured persons 97.6% 77.8% 76.5% 
Number of dead and injured persons 93.3% 87.0% 61.1% 
Number of completely destroyed houses 92.6% 89.5% 61.5% 
Number of half destroyed houses 94.3% 88.5% 71.4% 
Number of partially destroyed houses 100% 83.3% 63.0% 
Total number of damaged houses 100% 79.3% 77.8% 
Number of houses under water 93.3% 85.4% 66.7% 
Total number of destroyed non-house structures 96.0% 84.2% 58.8% 
Average 96.2% 82.4% 65.2% 

4 Selective Presentation Learning for Typhoon Damage Scale 
Forecasting 

Generally, the predictability of large scale damage is more important than that of 
small scale damage. When all training data are presented equally as in the 
conventional approach, SOM will learn the small and large scale damage equally well 
and cannot learn the large scale damage more effectively. We previously proposed the 
selective-presentation and selective-learning-rate approaches for improving the ability 
of BPNN and SOM to predict large changes and applied them into stock market 
prediction [18-20] and foreign exchange rate prediction [21]. In the selective-
presentation approach, the training data corresponding to large changes in the 
prediction-target time series are presented more often [18, 21]. In the selective-
learning-rate approach, the learning rate for training data corresponding to small 
changes is reduced [19-21].  

We apply the selective presentation learning into typhoon damage scale forecasting 
by SOM. To allow SOM to learn about large scale damage more effectively, we 
separate the learning data into large scale and small scale damage data. As shown in 
Table 6, the number of small scale damage data is comparatively large (65.0%) and 
the numbers of middle and large scale data are comparatively small (23.2% and 
11.8%, respectively). Therefore, the number of presentations of middle and large 
scale data was increased in order to decrease the difference of number of 
presentations for each scale damage data, as shown in Table 9. For example, “* 5” 
means five times presentation per one learning cycle. The percentage of total number 
of presentations per one learning cycle for small, middle and large scale damage  
data was almost the same (33.9%, 33.2% and 32.9%, respectively), as also shown in 
Table 9.  
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Table 9. Number of presentations of every damage data in selective presentation learning 

Data type Small Middle Large 
Number of fatalities 84 * 1 

= 84 
17 * 5
= 85 

10 * 8 
= 80 

Number of injured persons 76 * 1 
= 76 

23 * 3
= 69 

12 * 6 
= 72 

Number of dead and injured persons 74 * 1 
= 74 

25 * 3
= 75 

12 * 6 
= 72 

Number of completely destroyed houses 76 * 1 
= 76 

23 * 3
= 69 

12 * 6 
= 72 

Number of half destroyed houses 75 * 1 
= 75 

24 * 3
= 72 

12 * 6 
= 72 

Number of partially destroyed houses 70 * 1 
= 70 

28 * 2
= 56 

13 * 5 
= 65 

Total number of damaged houses 63 * 1 
= 63 

32 * 2
= 64 

16 * 4 
= 64 

Number of houses under water 57 * 1 
= 57 

36 * 2
= 72 

18 * 3 
= 54 

Total number of destroyed non-house  
structures 

74 * 1 
= 74 

24 * 3
= 72 

13 * 6 
= 78 

Total number of presentations per cycle 649 634 629 
Percentage 33.9% 33.2% 32.9% 

5 Typhoon Damage Scale Forecasting with Selective 
Presentation and Its Effectiveness 

Forecasting results with selective presentation are shown in Tables 10 and 11. 
Although average accuracy of three-class damage scale forecasting was decreased 
(79.6%, as shown in Table 10), average accuracy for actually large scale damage data 
was increased (74.0%, as shown in Table 11). 

We evaluated two-class (large or not large) damage scale forecasting with equal 
and selective presentation. Forecasting results are shown in Tables 12 to 14. Average 
accuracy of two-class damage scale forecasting with equal presentation was 93.4%, as 
shown in Table 12. Although average accuracy for actually small or middle (not 
large) scale damage data with equal presentation was comparatively high (99.5%), 
average accuracy for actually large scale damage data was comparatively low 
(65.2%), as shown in Table 13. Although average accuracy of two-class damage scale 
forecasting with selective presentation was decreased by 1.2% (92.2%, as shown in 
Table 14), average accuracy for actually large scale damage data was increased by 
8.8% (74.0%, as shown in Table 15). Average accuracy for actually small or middle 
(not large) scale damage data with selective presentation was still high (96.3%, as 
shown in Table 15). 
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Table 10. Accuracy of three-class damage scale forecasting for 86 test data with selective 
presentation 

Data type SOM 
Number of fatalities 86.0% 
Number of injured persons 82.6% 
Number of dead and injured persons 74.4% 
Number of completely destroyed houses 82.6% 
Number of half destroyed houses 77.9% 
Number of partially destroyed houses 73.3% 
Total number of damaged houses 76.7% 
Number of houses under water 77.9% 
Total number of destroyed non-house structures 84.9% 
Average 79.6% 

Table 11. Accuracy of each damage scale forecasting for 86 test data with selective 
presentation 

Data type Small Middle Large 
Number of fatalities 93.0% 71.4% 75.0% 
Number of injured persons 92.9% 70.4% 76.5% 
Number of dead and injured persons 82.2% 60.9% 72.2% 
Number of completely destroyed houses 92.6% 68.4% 61.5% 
Number of half destroyed houses 83.0% 69.2% 71.4% 
Number of partially destroyed houses 85.4% 61.1% 63.0% 
Total number of damaged houses 87.2% 58.6% 83.3% 
Number of houses under water 86.7% 68.3% 86.7% 
Total number of destroyed non-house structures 94.0% 68.4% 76.5% 
Average 88.5% 66.3% 74.0% 

Table 12. Accuracy of two-class (large or not large) damage scale forecasting for 86 test data 
with equal presentation 

Data type SOM 
Number of fatalities 95.3% 
Number of injured persons 95.3% 
Number of dead and injured persons 91.9% 
Number of completely destroyed houses 94.2% 
Number of half destroyed houses 97.7% 
Number of partially destroyed houses 88.4% 
Total number of damaged houses 95.3% 
Number of houses under water 90.7% 
Total number of destroyed non-house structures 91.9% 
Average 93.4% 
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Table 13. Accuracy of each damage scale forecasting for 86 test data with equal presentation 

Data type Not large 
(small or middle)

Large 

Number of fatalities 100% 50.0% 
Number of injured persons 100% 76.5% 
Number of dead and injured persons 100% 61.1% 
Number of completely destroyed houses 100% 61.5% 
Number of half destroyed houses 100% 71.4% 
Number of partially destroyed houses 100% 63.0% 
Total number of damaged houses 100% 77.8% 
Number of houses under water 95.8% 66.7% 
Total number of destroyed non-house structures 100% 58.8% 
Average 99.5% 65.2% 

Table 14. Accuracy of two-class (large or not large) damage scale forecasting for 86 test data 
with selective presentation 

Data type SOM 
Number of fatalities 97.7% 
Number of injured persons 94.2% 
Number of dead and injured persons 91.9% 
Number of completely destroyed houses 93.0% 
Number of half destroyed houses 94.2% 
Number of partially destroyed houses 86.0% 
Total number of damaged houses 90.7% 
Number of houses under water 88.4% 
Total number of destroyed non-house structures 94.2% 
Average 92.2% 

Table 15. Accuracy of two-class (large or not large) damage scale forecasting for 86 test data 
with selective presentation 

Data type Not large 
(small or middle)

Large 

Number of fatalities 100% 75.0% 
Number of injured persons 98.6% 76.5% 
Number of dead and injured persons 97.1% 72.2% 
Number of completely destroyed houses 98.6% 61.5% 
Number of half destroyed houses 96.2% 71.4% 
Number of partially destroyed houses 96.6% 63.0% 
Total number of damaged houses 92.6% 83.3% 
Number of houses under water 88.7% 86.7% 
Total number of destroyed non-house structures 98.6% 76.5% 
Average 96.3% 74.0% 
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Results of each damage scale forecasting were as follows: 1) the accuracy for 
actually large scale of numbers of fatalities was increased by 25%, 2) the accuracy for 
actually large scale of numbers of dead and injured persons was increased by 11.1%, 
3) the accuracy for actually large scale of numbers of houses under water was 
increased by 20%, and 4) the accuracy for actually large scale of numbers of each 
damage was not decreased. 

6 Conclusion 

We investigated typhoon damage scale forecasting with SOM trained by selective 
presentation learning. Using nine types of typhoon data as inputs to SOM, learning 
data corresponding to middle and large scale damage were presented more often. 
Average accuracy for actually large scale damage data was increased by about 9%. 
The accuracy for actually large scale of numbers of fatalities and houses under water 
was increased 25% and 20%, respectively. As a result, a typhoon forecasting method 
is proposed as follows: 1) Evaluate two-class (yes or no) damage forecasting (average 
accuracy: 96.0%), 2) When two-class (yes or no) forecasting result is yes, evaluate 
two-class (large or not large) damage scale forecasting (average accuracy: 92.2%), 3) 
Issue a typhoon warning based on above two class (large or not large) damage scale 
forecasting. For example, such a warning may be issued, “According to the Japanese 
typhoon database, we forecast that the coming typhoon has a risk of causing both 
large scale human and building damage. Please take care.” In further research, we will 
consider more detailed damage forecasting and use other predictors such as Bayesian 
networks and support vector machines. We will also investigate the theoretical aspect 
of the proposed method. 
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Abstract. This research uses a Niche Genetic Algorithm (NGA) called Dynam-
ic-radius Species-conserving Genetic Algorithm (DSGA) to select stocks  
to purchase from the Dow Jones Index. DSGA uses a set of training data to 
produce a set of rules. These rules are then used to predict stock prices. DSGA 
is an NGA that uses a clustering algorithm enhanced by a tabu list and radial 
variations. DSGA also uses a shared fitness algorithm to investigate different 
areas of the domain. This research applies the DSGA algorithm to training  
data which produces a set of rules. The rules are applied to a set of testing  
data to obtain results. The DSGA algorithm did very well in predicting stock 
movement. 

Keywords: Niche Genetic Algorithm, Genetic Algorithm, stock forecasting,  
financial forecasting, classification, black-box investing. 

1 Introduction  

Forecasting the price movements of stocks is a difficult task. The possible financial 
reward of picking the correct direction that a stock will move has created much inter-
est in developing systems to predict such behavior. Early work on formal financial 
forecasting began in the early 1900’s [1] and continues to this day [2]. In the last 20 
years a variety of techniques have been used to predict stock movement. These  
include Genetic Algorithms (GAs), Neural Networks and other artificial intelligence 
techniques. 

A variety of methods use GAs and Genetic Programming (GP) to predict stock and 
security movements [3-5]. These methods take different approaches. Some research 
uses GAs and GPs to develop classification rules, while others use GAs in hybrid 
approaches [2]. Much research has been done using these evolutionary approaches to 
perform black-box investing. 

This paper presents a new system for financial forecasting using a Niche Genetic 
Algorithm (NGA). The presented research used an NGA and a set of financial data to 
derive a set of classification rules that the research later applied to another set of data. 
The training and test data each comes from a full quarter of stock prices from the 
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Dow Jones Index. These stocks represent 30 of some of the largest companies in the 
United States. 

2 Literature Review 

Over the last few decades, hundreds of papers have been written on GAs. But only a 
small number of these studies use GAs to classify and forecast stock market data. 
While sparse, research that uses genetic algorithms for this purpose validates its effec-
tiveness and value for future research. Medical research also supports using classifiers 
based on GAs. 

The following literature review discusses these points and lists significant papers 
supporting them. The literature review also provides a brief explanation of genetic 
algorithms, lists a few significant early studies, and suggests that NGA's can be  
effective in a variety of domains. 

2.1 Genetic Algorithms 

GAs are very useful algorithms that can locate optima within very complex domains. 
Early research in the subject began the 1950’s [6]. The 1970’s was another period of 
important research in the area [7-9]. Research in the subject has been going on conti-
nuously since the 1950’s and with more powerful computing power we are beginning 
to see more applied uses for GAs. 

A GA is a specific type of search technique that models biological systems. Indi-
viduals within a population are modeled after values in the domain. Each individual 
has genes that represent different traits. A Fitness Function is used to determine an 
individual’s Fitness, which is how well an individual copes with the environment or 
domain. A GA begins with an initial population, normally randomly generated. Each 
generation goes through three biological operations: Selection, Cross-over and  
Mutation. The fitness of each individual in the population is used to determine which 
individuals will reproduce. Individuals with higher fitness have a greater chance of 
reproducing. The process of selecting two individuals to reproduce is called selection. 
Cross-over is the process of taking some genes from each parent and producing new 
offspring. To encourage exploration within the domain, some genes are changed or 
mutated based upon a mutation rate. Selection, cross-over and mutation produce a 
new generation. Over numerous generations the population converges to the optimum 
within the domain. 

2.2 Genetic Algorithms as Classifiers 

Because GAs are search techniques they are not normally thought of first as being 
tools that classify. However, GAs can be used for classification. GAs have been used 
as data classifiers in the diagnosis of cancer [10]. They have been used in financial 
security forecasting [3-5]. While not the most common use of a GA, they can be used 
to classify data. 

The challenge of using a GA for classification is how to represent the search  
space. Individuals in GAs represent domain values. But classification rules are more 
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complex than simple domain values. Rules have conditions and conclusions. Condi-
tions can be very complex. Mapping these complex rules into strings allows GAs to 
seek out optimal rules. 

De Jong, Spears and Gordon [11] used a GA to develop an algorithm called 
GABIL. GABIL represents classification rules as individuals in disjunctive normal 
form. Each individual within the population is a classification rule. The left-most 
genes describe a condition and the right-most genes indicate the class that data match-
ing the description should be placed into. In their research they present an example 
[11]. The example assumes that the rule is attempting to classify an object as a widget 
or gadget. There are two characteristics of the objects: size and shape. For size there 
are values of {small, medium, large} and for shape there is {sphere, cube, brick, 
tube}. Each value for the characteristics and conclusions are represented by a binary 
value in the Individual’s genes. An Individual containing the following gene  
sequence, 11110000, would represent the following rule: 

 
 111  1000  0 

If object is small, medium or large And object is sphere Then object is widget 
 
GABIL uses variable-length rule sets meaning that multiple rules could be joined 

together to form an individual. This is unusual for GAs that normally have  
fixed length individuals. A set of training data was used to determine the best rules. 
GABIL is used to classify medical data on patients to determine if they have breast 
cancer. 

A second GA classification method is from Booker, Goldberg and Holland [12]. 
This is a hybrid algorithm that combines a GA with a bucket brigade algorithm. This 
algorithm used a GA to discover rules. The bucket brigade algorithm is used to eva-
luate and assign credit to rules generated by the GA. This algorithm was designed for 
domains that are very fluid, in which new information is constantly coming in. An 
example given is to guide a robot that is to locate certain objects in the environment 
while trying to avoid other objects. In the example the robot moves and the object 
moves giving an ever changing domain space to optimize. 

The Booker, Goldberg, Holland [12] algorithm defined individuals much different-
ly than GABIL. This algorithm assigns meaning to binary values of 0 and 1, but also 
introduces a new symbol #. This new symbol is used when the value of the corres-
ponding position is not included in the rule. If the genes of an individual represent 
movement, size and color respectively, then 1#0 would represent the following  
condition: 

 
1  #  0 

Object is moving AND object size is irrelevant  AND object is black 
 
These conditions then get associated with an action that the robot can take, which 

typically is some type of movement. As stated earlier these results of the GA are 
passed to another algorithm, bucket brigade. This algorithm determines the effective-
ness of each rule.  

The two GAs presented in this literature review represent two types of domains  
to be optimized. GABIL represents optimization problems in which the domain is 
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unchanged. The Booker, Goldberg, Holland algorithm contains an ever changing 
domain. The problem of classifying stocks exhibit characteristics of both types of 
optimization.  

2.3 Genetic Algorithms as Financial Forecasters 

There have been hundreds of systems developed to forecast financial data [13]. Most 
use some type of artificial intelligence technique from neural networks [20] to GP. 
Atsalakis and Valavanis [13] state that a goal of the research community is to produce 
the best results using the least amount of information about the stocks and by devel-
oping the least complex model. Many financial forecasting algorithms, including the 
one presented in this paper, attempt to meet these two conditions. 

Mahfoud and Mani [3] developed a GA that classifies stocks by having each indi-
vidual within a population represent a classification rule. They used a clustering NGA 
to develop classification rules that were applied to a large number of stocks. The goal 
of the research was to make a prediction about each stock by classifying them into 
groups to buy or sell. 

The Mahfoud and Mani [3] research provides a novel way to represent stock classi-
fication rules for GAs. Each individual represents a classification rule. Each piece of 
data used in the experiment is given a number of genes in the individual. The first two 
bits represent the numerical condition: 00 is >; 01 is <; 10 is = and 11 is !=. The re-
maining genes store the value for the rule that corresponds to the data about the stock. 
This can be any number of genes based upon the precision needed. Finally a bit used 
to represent if the stock meets the condition should be bought or sold. Now rules can 
be created like: 

If Price < 15 and EPS > 1 Then Buy [3] 

The Mahfound and Mani [3] research uses 15 attributes of the stocks used and covers 
a 12 week period. The GA searches for optimal rules. The evaluations rules are then 
applied to each stock. Results show that the algorithm correctly predicts stock move-
ment 47.6% of the time. It makes no prediction 45.8% of the time. And it incorrectly 
predicts the direction of a stock only 6.6% of the time [3]. The research presented in 
this paper is very similar to Mahfoud and Mani with a few exceptions. The method 
defined in this research attempts to select a single stock to purchase each week. It also 
uses a specialized NGA. 

A variety of other research uses GAs for financial forecasting. Tsang, Markose  
and Er [4] use a GA to attempt to locate temporary misalignment between options  
and futures. When these conditions happen within a market investors can position 
themselves to profit. Wagman [5] uses a GA to evaluate entire portfolios. Other me-
thods create hybrid approaches [14] by combining GAs with other methods. GAs are 
probably not the most popular method to predict stock prices, however results for 
many methods show promise. 
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2.4 Niche Genetic Algorithms 

NGAs are specialized GAs that attempt to find multiple optima within a domain. 
NGAs are often used for finding local maximums and minimums of functional  
optimization problems, while traditional GAs are used for global maximums and mi-
nimums. NGAs generally fall into one of two categories: Fitness Sharing and Crowd-
ing. NGA Fitness Sharing methods alter the fitness function to prevent global conver-
gence. This is done through adjusting an individual’s fitness based upon how close it 
is to other individuals [15]. NGA Crowding methods replace individuals from one 
generation with ones from a previous generation [8, 16, 17]. Most of these methods 
forum groups, called clusters, of individuals that are within a predetermined radius. 
Typically the strongest member of each cluster is moved into the new generation. 
This promotes genetic diversity. NGAs are useful in searching domains in which  
multiple optima exist. 

The Dynamic-radius Species-conserving Genetic Algorithm (DSGA) is a recently 
develop NGA framework that performs very well in a variety of domains [18]. DSGA 
enhances a traditional crowding NGA, SCGA [16], with a tabu list [19] that is used to 
encourage exploration. The tabu list stores investigated areas of the domain. Explora-
tory techniques are used within the algorithm to encourage the population to investi-
gate other areas of the domain. Previous results of DSGA show that it competes very 
well against other NGAs [18]. 

3 DSGA and Financial Forecasting  

The DSGA is a clustering algorithm framework that uses a tabu list and varies the 
radius during execution. The tabu list stores optimal areas of the domain that have 
already been investigated. Future generations are encouraged to explore other areas of 
the domain. As in most clustering algorithms a radius parameter is used to determine 
the area of a cluster in the domain. DSGA varies the radius at fixed intervals as the 
algorithm runs. This helps mitigate poor radius choices. 

3.1 Algorithm Overview 

This research uses two sets of data. DSGA is run against training data and produces a 
set of rules. The rules are then applied to the second set of data, the test data. The set 
of rules are used to select a stock to purchase in the future. By applying rules to data 
from week x, a single stock is selected to be purchased in week x + 1. This is done by 
summing up the number of rules that indicate to buy the stock and subtracting the 
number of rules that indicate to sell the stock. 

Purchase_Indicator(stock) = #_buy_rules(stock) - #_sell_rules(stock) (1) 

This is referred to as the purchase indicator. This can be seen in the Data Flow Dia-
gram in Figure 1. 
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Fig. 1. The DSGA Financial Forecasting algorithm accepts training data and uses DSGA to 
locate a set of rules based upon the training data. The rules are used in a Rule Evaluation  
component that takes weekly stock data and predicts a stock to purchase the following week. 

The algorithm maintains a list of rules, which is the tabu list, as the NGA runs.  
Periodically the algorithm analyzes the current generation and looks for convergence. 
Areas in the domain that the generation converges to are included on the list of rules. 
During this phase of the algorithm the seeds are also placed on the tabu list. This is 
discussed in a future section. The algorithm goes through multiple phases with each 
phase having the opportunity to add rules to the tabu list through convergence or seeds.  

3.2 Individuals and Genes 

The genes used to create individuals form a rule that can be applied to certain stocks. 
The first bit represents the decision to buy the stock or sell the stock. Arbitrarily, 1 
represents a decision to buy and 0 represents a decision to sell. The remaining genes 
are divided into sections for each characteristic in the rule. This research uses four 
stock characteristics which are described in Table 1. 

Table 1. Characteristic of stocks 

Characteristic Description 

Percent stock 
changed 

The percent change in the stock price for week x, which is the 
week prior to the week that the algorithm attempts to predict the 
stock for. 

Percent volume 
changed 

The percent change in volume during week x compared to week 
x - 1. Volume is the number of shares of a stock sold. 

Days to next 
dividend  

The number of days until the next dividend. If the stock does not 
have a dividend, this value is the maximum integer. 

Percent return 
of next dividend 

The percent return based upon the stock price of week x of the 
amount of the dividend. If the company does not give out divi-
dends, this value is 0. 
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Each section begins with a bit to indicate if the characteristic is used in the rule. 
This allows rules to be made up of different combinations of characteristics. The next 
two bits indicate the condition for the characteristics (<=, <, > or >=). The remaining 
bits in the section determine the value for the rule. These are binary numbers and have 
implied decimal places where appropriate. In some cases there is a sign bit. When 
there is a sign bit it is always the first digit. All numbers are stored in little-endian 
format, with least significant digits to the left. Table 2 shows the actual 43 genes. 

The following is an example of the gene sequence 
1111001001001001010110111111011010101010100. This individual corresponds to 
the following rule:  

 

1 1 11 0100100 1 00 10101101 1 11 1101101 0 10 1010100 

Buy Use in 
Rule 

>= -1.8 Use in 
Rule 

< 90 Use in 
Rule

>= 91 Do Not 
Use in 
Rule 

> 0.21 

 

This rule states the following: Buy stock if all of the following conditions are met: 
percent change of stock price during week x >= -1.8 and percent change volume of 
throughout week x < 90 and days to the next dividend >= 91 

Table 2. Positions of genes within individual 

Position(s) Description 

1 

2 

3-4 

5-12 

 

13 

14-15 

16-23 

24 

25-26 

27-33 

34 

35-36 

37-43 

1 = buy, 0 = sell 

1 = include percent change price in the rule, 0 = don’t include it 

00 <; 01 <=; 10 >; 11 >= for percent change price 

number for percent change price rule with one implied decimal place. 

First bit is sign bit 0 -; 1 + 

1 = include percent volume change in the rule, 0 = don’t include it 

00 <; 01 <=; 10 >; 11 >= for percent volume change 

number for percent change volume rule. First bit is sign bit 0 -; 1 + 

1 = include days to next dividend in the rule, 0 = don’t include it 

00 <; 01 <=; 10 >; 11 => for days to next dividend 

number for days to next dividend (max 127 days) 

1 = include percent return on dividend in the rule, 0 = don’t include it 

00 <; 01 <=; 10 >; 11 => percent return on dividend 

number for percent return with 2 implied decimal places. 



34 M.S. Brown, M.J. Pelosi, and H. Dirska 

 

3.3 Distance 

There are a number of ways to determine distance in a GA. There is genetic differ-
ence, where the number of genes that have different values. There is also Euclidean 
distance. When rules for this algorithm are applied to data sets, they return order  
pairs consisting of a stock and week. A rule may return zero or more (stock, week) 
pairs. This research uses the intersection of the (stock, week) pairs between two indi-
viduals. If the rules for two individuals retrieve many of the same (stock, week) pairs, 
the distance between the individuals is very small. This research uses the intersection 
of the two sets of (stock, week) pairs to determine distance. The distance function is 
defined as: 

distance(i1, i2) = 1 / |(sw(i1) ∩ sw(i2))|                        (2) 

The function sw returns the (stock, week) pairs for the conditions encoded in the  
individual. A distance function is needed for all GAs that use fitness sharing.  

3.4 Fitness Function 

In order to choose individuals for the selection process, each individual’s fitness must 
be computed. The fitness function should correspond to the goal of the GA. In this 
case the goal is the highest percent return in the following week, week x + 1. The 
fitness function retrieves all data for (stock, week) combinations that match the rule. 
The fitness is the average of the stock price percent returns for the following week. 
This fitness function encourages the GA to locate stocks that should produce favora-
ble returns in the following week.  

The first bit of the individual indicates if the rule suggests buying or selling the 
stock. If the individual corresponds to a rule to sell, then high fitness would have a 
negative return for the following week. So, for the rules that indicate selling the stock, 
the fitness function returns -1 times the average of the price percent return for the 
following week.  

There were some minor manipulations for the fitness function. It is possible that by 
the fitness function defined above, there could be a negative fitness. This can cause 
issues with selection, so all fitness values were increased by 10. Also, having rules 
that only correspond to a small amount of data in the training data set is not very use-
ful. So a parameter, w, was introduced. If a rule does not retrieve at least w (stock, 
week) pairs in the training data set, the fitness is 0. This encourages the GA to locate 
rules that apply to larger sets of data and not focus in on global optima. These modifi-
cations to the standard fitness function allow the algorithm to locate better rules. 

Unlike other GAs DSGA does not use the fitness function for selection. It uses a 
shared fitness function. The fitness function value is altered to encourage exploration 
in new areas of the domain. The tabu list stored potential optimal areas of the domain 
that have already been explored. The shared fitness function will decrease the fitness 
of individuals close to these areas. The shared fitness for an individual i is, sf(i) = 
fitness(i) / mi. The value for mi is calculated as follows. The variable TLj is the jth 
individual on the tabu list. 
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mi = ∑ 1 ( ,.                        (3) 

Shared fitness encourages the algorithm to explore areas of the domain not on the 
tabu list. 

3.5 Parameters 

There are a variety of parameters used in DSGA. Some are found in all GAs like pop-
ulation size and mutation rate. Some are found in other NGAs like radius. Some are 
unique to DSGA. Table 3 shows the parameters used in DSGA along with a descrip-
tion of their purpose.  

Table 3. DSGA parameters 

Parameter Variable Description 

Population Size N The number of individuals in each generation. 

Number of 
Generations 

NG The number of generations before the GA terminates. 

Mutation Rate M The probability that a gene will be mutated. 

Seed Radius IS The size of the radius at initialization. 

Radius Delta SD The size of the change of the radius. 

Reevaluation 
Loop Count 

RLC The number of generations in the intervals for decid-
ing candidates for the tabu list. 

Convergence 
Limit 

CL The number of identical individuals to be placed on 
the tabu list. 

Weight W The number of (stock, week) pairs that must be re-
turned by a rule in order to have a fitness other than 0. 

3.6 DSGA Algorithm 

DSGA is a typical clustering GA. Within the basic selection, crossover and mutation 
steps of a GA, DSGA incorporates additional steps of seed selection and seed conser-
vation. A seed is the strongest individual within a population for some area of the 
domain. Seeds are selected by sorting the population by fitness. In the case of DSGA 
the sorting is done by the shared fitness as described in the section above. Individuals 
are evaluated for seed selection from the fittest individual to the least fit. If no other 
individuals within a predefined radius are seeds, then the individual is a seed. When a 
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new generation is created, seeds from the previous generation replace individuals in 
the next generation. Each seed replaces the weakest individual within the predefined 
radius. If no individuals are within the radius, the seed replaces the globally weakest 
individual. This ensures that seeds are carried into the next generation. In each gen-
eration seeds are evaluated, so a seed in one generation may not be a seed in the next 
generation. Many clustering GAs work in this way [16]. 

After RLC number of generations, DSGA evaluates the current generation. DSGA 
puts all current seeds on the tabu list. It also analyzes the current generation for con-
vergence. If there are CL or more identical individuals within the generation, one of 
them is placed on the tabu list also. Then all individuals placed on the tabu list are 
replaced within the population with randomly generated individuals. The radius is 
then changed by the Sigma Delta, SD. In this research the radius is always increased 
by SD. Changing the radius helps the algorithm locate other optima. A known limita-
tion to clustering algorithms is poor selection of the radius parameter [21]. Varying 
the radius helps mitigate this limitation. The algorithm then generates another RCL 
number of generations before it performs the evaluation again. Table 4 shows pseudo-
code for the DSGA algorithm. 

DSGA has shown promise in locating local optima [18]. Tests against other NGAs 
show that it is very competitive. DSGA is especially good at locating arbitrarily close 
optima.  

Table 4. DSGA pseudocode 

Line Pseudocode 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Initialization 
While not termination condition 
   For (int r = 1; r < RLC; r++) 
         Seed Selection 
          Selection 
         Crossover 
         Mutation 
         Seed Conservation 
   End for loop 
   If there exists an individual d with CL or more identical individuals then 
      Add d to tabu_list 
      Replace all individuals identical to d with randomly generated individual 
      End if 
      Add the seeds of the current generation to the tabu_list 
      Alter radius by SD 
End while loop 
Output the tabu_list – these are the generated classification rules 
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4 Results 

Data for this research was obtained from the Dow Jones Index stocks, which are 30 of 
some of the largest American companies. The training data came from the first  
quarter of 2011 and the test data came from the second quarter of 2011. In the testing 
data, one stock was purchased each week based upon data from the previous week 
and the rules generated from DSGA. It was assumed that a constant amount of money 
was used to purchase each stock. Calculations in this section are based upon the stock 
being purchased at the opening price at the beginning of the week, which is usually 
Monday. The calculations are based upon the stock being sold at the closing price on 
the last day of the week, usually Friday.  

As mentioned in the previous section, it is possible in a week for two stocks to 
have the same purchase indicator. In situations like this a stock characteristic is used 
to break the tie and resolve the conflict. The characteristic of percent change in price 
was used in this research. If multiple stocks have the same purchase indicator for 
determining to purchase the stock in week x + 1, whichever stock had the greatest 
price percent gain in week x would be selected. Because two stocks rarely have the 
exact same price percent increase for a given week, this is a good characteristic to use 

4.1 Parameter Settings 

Table 5 shows the parameter settings for this research. Their definitions can be found 
in Table 3. The parameter values were determined through experimentation prior to 
running the eight trials.  

Table 5. Parameter settings 

Parameter Variable Value 

Population Size N 25 

Number of Generations NG 80 

Mutation Rate M 0.01 

Seed Radius IS 0.05 

Radius Delta SD 0.01 

Reevaluation Loop Count RLC 20 

Convergence Limit CL 2 

Weight W 10 

4.2 Selected Stocks 

Tables 6 shows the stocks selected for one of the trials. A stock was selected for  
the 13 weeks in the experiment. The second column for each trial shows the percent 
return of the stock in the following week. A total return and weekly return for each 
trial is shown in Figure 2. 
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Table 6. Stocks select for trial 4 

Week Stock Return  Week Stock Return 

1 T -0.10%  8 PFE 2.15% 

2 MRK 2.46%  9 PFE -0.76% 

3 MRK -0.47%  10 DIS -1.74% 

4 DIS 1.79%  11 VZ 0.79% 

5 MRK -0.14%  12 T -0.72% 

6 T 0.67%  13 VZ 5.00% 

7 DIS 0.58%  Total  9.51% 

 

 

Fig. 2. Percent return per trial 

4.3 Rates of Return 

The results for this research show the rate of return for the quarter and average weekly 
rate of return. Since a constant amount of money is invested each week, the rate of 
return for the quarter is the sum of each weekly return. The following graph shows the 
percent return for each of the 8 trials.  

The results for DSGA are compared to other indicators during this period. The data 
shown in the table below for DSGA is the average of 8 runs. Maximum is the true 
optima. This is the rate of return assuming the best performing stock is selected each 
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week. Minimum is the rate of return for selecting the worst performing stock each 
week. The Dow Jones Index shows the rate of return by investing an equal amount of 
money in each of the 30 stocks. Finally, the Average of Stocks shows the rate of return 
for averaging all stocks in the index. The Dow Index and Average of Stocks are rea-
listic returns that many investors obtain. Table 7 shows the results for DSGA and the 
indicators. 

Table 7. DSGA results compared against other indicators 

Methods/Indicators Quarter Week

DSGA 7.075% 0.54%

Maximum 55.90% 4.30%

Minimum -57.02% -4.39%

Dow Jones Index 1.66% 0.13%

Average of Stocks 2.50% 0.19%

 
Of the 8 runs of the DSGA algorithm the average rate of return for the quarter was 

7.075% or 28.3% a year. This corresponds to a 0.54% return per week. The standard 
deviation was 2.166.  

4.4 Discussion of Results 

While the return of DSGA was not optimal, 55.9%, it did do very well against the 
Dow Jones Index. It outperformed the Dow Jones Index by more than a factor  
of three. Even one standard deviation away from the average still beat the Dow  
Jones Index by almost 4%. All of the trials outperformed the Dow Jones Index.  
The minimum return was 3.3% which outperformed the Dow Jones Index 1.64%. The 
maximum return of the trials was 9.5% which outperformed the Dow Jones Index by 
7.84%. These results show that the DSGA algorithm did very well against the Dow 
Jones Index. 

To see if the results could be a coincidence the T-test was performed. The T-test 
was performed with the following values, µ = 1.66, n = 8, average = 7.075, s = 2.166 
and α = 0.001. In the T-test µ is the expected value if the algorithm had no ability to 
select stocks that would increase in value. This comes from the performance of the 
Dow Jones Index. The value n is the number of trials. 7.075 is the average of the re-
sults of the experiment. The value s is the standard deviation of the results. Finally, α 
is the confidence level being tested. When calculated the t value comes out to be 7.1 
which is well within the 0.001 confidence value. The T-test shows that within a 0.001 
confidence level the results of this research were not a coincidence. The T-test is a 
good statistical analysis test for experiments with a low number of trials, normally 
considered n < 30.  
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5 Conclusion and Future Work 

The DSGA algorithm did very well in predicting single stock selection for a week of 
the 30 Dow Jones Index stocks. It produced returns many times greater than the Dow 
Jones Index, which is often considered a safe and lucrative investment selection. The 
Dow Jones Index stocks make a great set of stock for forecasting systems because if 
the system predicts a stock incorrectly losses are normally minimal. DSGA produces 
these results by examining only four stock characteristics: change in stock price, 
change in stock volume, days until the next dividend and return of next dividend. 

The results of this research suggest many other areas of future work. Future re-
search could be to use the DSGA algorithm on other stock data sets, like the S&P 
500, NASDAQ 1,000 and FTSE Eurotop 100. This researched used a three month 
timeframe for training data and test data. This was an arbitrary timeframe. Research in 
other timeframes could be another area of future research. Although the parameters 
for the algorithm produced very good results there may be better parameter values. 
The DSGA algorithm could also be used for other data classification problems. Future 
research in these areas could produce better returns and expand our understanding of 
stock forecasting.  

Portfolio management is another possible area for future research. Instead of using 
the algorithm to predict a stock to purchase, the algorithm could be used to evaluate 
portfolios of already purchased stock. That algorithm could then be used to recom-
mend changes to the portfolio.  

Stock forecasting is a very complex problem because it is based upon many fac-
tors. Some of these factors are human bias which cannot be represented by mathemat-
ical models. NGAs seem capable of locating rules that produce very attractive returns. 
The DSGA algorithm presented in this paper produced returns many times greater 
than the stock index that it was based upon. Results indicate that it is suitable for 
stock forecasting. 
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Abstract. Due to the rapid growth of computer technologies and the extensive 
changes in human needs, expertise and digital information were used to induce 
general conclusions. Such conclusions can be used to deal with future activates 
and make the life of humans easier. One active filed of machine learning that 
was developed for this purpose is inductive learning, and several families have 
emerged from this field. Specifically, RULES family was discovered as cover-
ing algorithm that directly induces good and general conclusions in the shape of 
simple rules. However, it was found that RULES suffer from two major defi-
ciencies. It needs to tradeoff between time and accuracy when inducing the best 
rule and it did not appropriately handle incomplete data. As a result, this paper 
will present a new RULES algorithm, which takes advantage of previous  
versions of RULES family in addition to other advance methods of machine 
learning, specifically Transfer learning. Moreover, multi-modeling is also 
merged to transfer the knowledge of a different classification model and further 
improve the original algorithm. At the end, an empirical test is applied to com-
pare the proposed algorithm with different single-model algorithms to prove 
that using the past knowledge of other agents in different domains improves 
specialization accuracy, whether the data is complete or incomplete.  

Keywords: Rules induction, transfer learning, RULES family, covering  
algorithms, multi-model classification. 

1 Introduction 

In order to predict future activities and induce general conclusions a field of machine 
learning, called inductive learning, was introduced. It is a form of data analysis that 
uses the knowledge gained through training to conclude general conclusion in the 
shape of rules and identify new objects using a classifier. Different methods have 
been proposed to induce classification rules. These methods were divided into two 
main types: Decision Tree and Covering algorithms. Decision Tree algorithms, such 
as ID3 [1] and C4.5 [2], discover rules using a tree that is used to represent the rules 
[3]. This type of algorithm drew a lot of attention in the past few years because of the 
simplicity of deriving a rule from a tree. However, handling of decision trees created 
other problems that badly affected the induction process.  

In covering algorithms, however, the properties of inducing rules directly from the 
dataset made it more preferable than the decision tree structure, as described in [4]. 
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First, representing the rules as “IF  ... THEN” statement makes it more readable than 
trees. It has been empirically proven that rule learning sometimes better than decision 
trees, which make it impossible to say that decision tree methods are absolutely better 
than covering algorithms. Additionally, the resulting rules can be easily translated into 
any expert system language and can be directly stored in any knowledge-based sys-
tems. Finally, it is easy to analyze and modify the induced rules due to its indepen-
dency. Hence, any rule can be understood and validated without the need to reference 
other rules in the repository. 

As a result, researchers have recently tried to improve covering algorithms to be 
comparative or even better than the decision tree methods. Thus, different families 
have been born for this purpose. Specifically, RULe Extraction System (RULES) [5] 
has been developed as a simple covering algorithm family. It allows for the discovery 
of inconsistent rules to automatically obtain partial immunity to noise. It is differen-
tiated from the other algorithms because of its preservation of the covered examples, 
to avoid repetitive computation while generalizing the results. Hence, it will resist 
fragmentation and small combination problems. 

Different versions of RULES family have been proposed by different authors. 
Nevertheless, even though each version of RULES family was proposed for a certain 
purpose but most of them have one common property. Specifically, when searching 
for the best rule, a rule is induced starting from an empty one then a specialization 
process begins to create more specialized rules from the seed examples. This process 
was proposed to improve the accuracy of rule induction, but it consumes a lot of time. 
It needs special pruning procedures to stop the search and reduce its space. It is diffi-
cult to decide what to specialize and when to stop. In addition, as stated in [6], search-
ing by specialization is usually considered as one of the most time-consuming me-
thods. Hence, it causes the needs to tradeoff between the accuracy and speed of the 
algorithm. 

Moreover, another problem that was sought in RULES family is the way it handles 
incomplete data. Examples that have a missing class are either neglected or filled 
based on other examples in the training set. When the example is neglected it is poss-
ible to lose important information and decrease the performance of the algorithm. On 
the other hand, when the current examples are only considered then the available 
classes are only reflected while, in reality, other labels might also be missing from the 
all the training set. Hence, not only the current data is important but also future cases 
should be considered to increase the resistance to noise.  

Moreover, in general, Kotsiantis [7] clarified that the question that should be asked 
when evaluating an inductive learning algorithm is not whether the algorithm is the 
best, but instead “under which conditions a particular method can significantly out-
perform others on a given application problem.” However, testing and choosing the 
best classifier is a difficult task, especially for novice developers. Moreover, inductive 
learning algorithms should be general enough to cover as many problems as possible. 
One active research area that was proposed to solve this problem is learning by mul-
tiple models, like ensemble learning [8]. However, as indicated in [9], most of the 
existing methods of multi-model learning are confusing; the more accuracy it results 
the less comprehensible it becomes.  
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Consequently, the purpose of this paper is to propose a new RULES version that 
improves the searching procedure and incorporates a new scheme to generalize the 
algorithm and efficiently handle incomplete data. Specifically, the proposed algorithm 
is an extended version of RULES-TL [10]; but different inductive models are used 
instead of only one. In addition, Transfer Learning [11] is also applied to transfer 
rules discovered, by other agents, based on different but related tasks. The transferred 
rules are used as the base knowledge to accurately fill incomplete data with all possi-
ble labels, whether it occurs in the training set or in the knowledge base, and to reduce 
the time of specialization and guide the searching process by using past knowledge 
instead of pure pruning. On the other hand, multi-modeling is applied in a simple way 
to improve the accuracy without affecting the comprehensibility. 

This paper is organized as follows. First, the background needed to understand  
the proposed algorithm is presented. Then, the related work is discussed. After that, 
the proposed method is presented, and its details are explained. Following that, the 
algorithm is tested and its empirical result that compares it with other covering  
algorithms is explained and discussed. Finally, the paper is concluded and future work 
is presented.  

2 Background 

This section explains the background needed to understand the proposed algorithm, 
including RULES family and Transfer Learning.  

2.1 RULe Extraction System - RULES 

RULES family is one of the covering algorithms that directly induces rules from the 
training set based on the concept of separate and conquer. It is considered as one of 
the simplest and precise families that induce one rule at a time based on a seed exam-
ple and then apply specialization process to find the best rule. The rule that covers the 
most positive and least negative examples are chosen as the best rule of the current 
seed example. Hence, RULES family does not require finding of consistent rules. It 
allows the best rule to cover some negative examples in order to handle noisy data, 
reduce over-fitting problem, and increase the flexibility of rule induction. After that, 
examples that are positively covered by the discovered rules are marked as covered 
without removal. This way, repeating the discovery of the same rule is prevented 
while coverage accuracy and generality of new rules will be preserved. At the end, the 
algorithm is repeated until all examples are covered.  

Nevertheless, the most important part of RULES algorithm is rule forming process 
[12]; which is the searching strategy that aims to create the best rule to cover a certain 
example. In specific, it searches for the best conjunction of conditions and measures 
its strength using a certain heuristics. To reduce the cost of this process, RULES fami-
ly order the search based on the concept of specialization (general-to-specific) 
process. The main idea of specialization is to start from the most general rule, i.e. null 
rule, and then specialize it by adding one attribute at a time as an additional condition. 
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However, this process still consumes a lot of time and greatly affects the algorithm 
performance. It needs to tradeoff between the speed of the search and its accuracy.  

Consequently, it can be concluded, from all above, that RULES family has a good 
future concerning the rule discovery. However, it needs further improvement. One 
way to improve it is by applying advance machine learning methods, such as Transfer 
learning, as will be explained next.  

2.2 Transfer Learning 

Transfer Learning (TL) is one area of machine learning that makes the agent learn by 
connecting different but related environments [13]. Thus, instead of starting from 
scratch, the agent will be able to direct its learning rather than randomly exploring the 
problem [14]. For example, a person can learn how to read a French text using his 
own knowledge of English characters. Even though French and English are different 
languages, but they have related context that a person can re-use to minimize the  
time needed for the learning process. Hence, it imitates how human could apply  
previously learned knowledge to improve the lifelong learning methods of machine 
learning [15].  

TL approaches, in general, have been divided into different types depending on the 
state of the class labels, as explained by Sinno Jialin and Qiang [11]. Moreover,  
different types of transfer can occur depending on what to transfer. It can transfer 
instances, feature representation, parameters, or even relationship knowledge between 
the source and target tasks depending on the problem at hand [16].  

3 Related Work  

In RULES family, different problems have been targeted, and different methods have 
been proposed along with it. The early versions of RULES family, specifically 
RULES-1 [17], 2 [18], and 3 [19], were basically proposed to enhance the perfor-
mance of covering algorithms and induce better rules using a simple method. Howev-
er, RULES-3+ [20] and RULES-EXT [21] was proposed, afterwards, to improve the 
performance of RULES-3. Nevertheless, RUELS-3+ became very famous and was 
used as the base for many new algorithms. It is different from the previous version in 
the way it searches for the best rule and in sorting and selecting the candidate rules, 
where specialization and H measure were applied.  

After that, RULES-4 [22], which is based on RULES3+, and RULES-IS [23] were 
developed for incremental learning. In addition, RULES-5 [12], RULES-F [24], and 
RULES-5F [25] was also developed based on RULES3+ to handle continuous values 
during the learning process. After that, scalability became a concern so RULES-6 
[26], 7 [27], and SRI [28] were developed to enhance RULES family performance 
and increase its speed.  

Nevertheless, even though these methods served different purposes and were  
designed by different authors, but all these versions worked based on the concept of 
specialization, which caused the need to tradeoff between accuracy and time. Never-
theless, RULES-IS did not have this property since it was built based on the immune 
system network. However, this version has lost the simplicity property that makes 
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RULES family more appealing than the others. Moreover, in all visions of RULES 
algorithm, incomplete data were inappropriately handled. Examples that contain miss-
ing classes were either neglected, removed, or current examples were used to fill it 
without considering future cases or the volatility of data. 

Hence, it can be concluded that RULES family is still lacking in different areas. In 
general, two main deficiencies can be sought when searching for the best rule and 
dealing with incomplete data. Specialization is important to surpass the problem of 
irrelevant conditions. However, it consumes a lot of time and highly affects the algo-
rithm performance. Additionally, incomplete data was inappropriately handled with-
out considering future cases. Therefore, past knowledge of other agents can be used to 
solve these problems.  

Moreover, it was found that past knowledge can be learned from other tasks to be 
used as the base knowledge of the current problem using TL. Hence, TL can be ap-
plied with rule induction. In general, inductive TL has been used in different machine 
learning techniques. Instances were transferred to improve the classification accuracy, 
as in [29]. Features' representation were transferred to create a model to handle unre-
liable data, especially in images and text mining, as in [30]. Parameters were also 
transferred to guide the classification process and, finally, relationship knowledge has 
been transferred to simplify dealing with a complex target problem, as in [31-33]. 

Nevertheless, these techniques were mostly targeting certain type of data. There 
target was either to improve the accuracy or replace the heuristics, and it was usually 
used to deal with a scarce target task that is complex to deal with. Thus, most of these 
algorithms actually increased the space of searching or reduced its accuracy, which 
can even cause greater problems with scalability. However, it was concluded in [34] 
that transferring the whole rule from the source to the target task would tremendously 
improve the induction process performance. Hence, it would be better to take advan-
tage of the good properties that can be gained from transferring rules while avoiding 
its drawback. Moreover, transferring rules from different models can also be applied 
to improve the algorithm performance without affecting its complexity. 

In our knowledge, no one yet has used Rule Transfer in covering algorithms and 
simple multi-model mechanism has not been applied in RULES family. Consequent-
ly, the goal of this paper is to use TL and transfer the rules gathered by different 
agents in different domains to solve the problems of RULES family, as will be ex-
plained next. 

4 RULES with Multi-Model Transfer Learning 

In general, the proposed algorithm is an extended vision of RULES-TL with rule 
induction by multiple models. It is an algorithm that is originally built based on 
RULES-6, and developed to improve the performance of RULES family and scale it 
further over incomplete data. It integrates relational knowledge transfer (in the shape 
of rules) with RULES-6. In particular, Inductive TL is applied, which require that the 
rules transferred from the source contains the class label, and no missing information 
is transferred. These transferred rules are then used in a way to reduce the searching 
space before going through the induction process.  
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The proposed algorithm discovers the rules from the source task using any induc-
tive model. Then, it maps these rules and transfers it to the target tasks. These rules 
are then used to fill missing classes and reduce the search space by marking the ex-
amples covered by these rules so that no further searching is needed in the induction 
rule procedure, as explained in Fig. 1. 

 

 

Fig. 1. Pseudo code of the new algorithm 
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Fig. 1. (Continued) 

In particular, it starts by applying any inductive method, such as PRISM or 
RULES-SRI, over the source tasks to induce the best rules. Then, the resulting rules 
are mapped to the target task representation. The mapping process first removes any 
unrelated rules, where an attribute or value in the rule is not found in the target head-
er. Then, its format is transformed to the format of the target task. After that, every 
mapped rule is taken as the ground base to cover existing examples. If the rule covers 
an example, then the algorithm induces the best rule based on RULES-6 starting from 
the mapped rule instead of empty one. Hence, mapped rule is specialized to induce 
better ones based on the seed example. This will reduce the specialization time and 
increase the accuracy because the specialization process did not start from scratch and 
previous knowledge of different models is used. 

Following that, covered examples are marked as covered, rules that cover at least 
one example are marked as seen rule, and rules that do not cover any example are 
marked as unseen rule for future use. Thus, past knowledge of other agents in differ-
ent task is used as the base to discover and induce good rules instead of always start-
ing from an empty rule which decreases the need of time/accuracy tradeoff.  
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After that, incomplete examples, which miss a class, are filled using the mapped 
rules. It starts to measure the strength of the mapped rules that matches the incomplete 
example using S measure [35], computed using (1); where P and N is the total number 
of positive and negative examples, respectively, and p and n is the number of positive 
and negative examples covered by the new rule. = . _ . (1                                                (1) 

Afterwards, the score is compared to a threshold, computed using (2), so that if the 
rule exceeds this threshold then the example is considered as covered. This threshold 
is called T threshold [22]. It considers the noise level and the ratio of positive exam-
ples in the whole training set. In this threshold, NL is the allowed noise specified  
by the user, Ei is the number of example that belongs to a class i, and E is the total 
number of examples in the training set.  = 2 2 (1 2 (1                                       (2) 

However, if the algorithm was not able to find any matching rule, then the most simi-
lar example in the training set will be used to fill the missing class. The similarity 
measure is computed using equation (3), where Vi

E1 and Vi
E2 are the values of the 

continuous attribute (i) in example E1,E2 respectively, Vi
max and Vi

min are the maxi-
mum and minimum values of attribute (i), and the distance between discrete attributes 
is computed using (4). D-distance, as explained by Pham, Bigot, and Dimov [12], is a 
distance measure that can compare any type of examples together. In this measure, 
distance between continuous attributes is considered in addition to the difference  
between the discrete ones.  

( 1, 2 = ∑ ( . ∑ ( 1, 2 .                    (3) 

( 1, 2 = 0                         1 = 21                         1 2                                      (4) 

After that, RULES-6 algorithm is applied over the uncovered examples to make sure 
that all the examples are marked as covered. Consequently, it can be concluded that 
the accuracy can be improved without trading the induction processing time. Actually, 
it is anticipated that it would further reduce the time since part of the training set is 
covered in advance using the transferred rules. Hence, transferred rules can reduce the 
time of specialization and improve the accuracy due to the use of past knowledge. 
Moreover, incomplete data are accurately handled using past knowledge instead of 
neglect important information just because it is incomplete. Thus, it is anticipated that 
the proposed algorithm will be more scalable and accurate than the original RULES-
6, as will be proven in the next section.  
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5 Experiment  

In order to test the performance of the proposed algorithm, different experiments were 
conducted. The proposed algorithm was first implemented using Java language in 
JBuilder environment. The experiments were conducted on a PC with Intel®Core™ 
i7 CPU, 2.67 GHz processes, and 6GB RAM. In addition, to build the experiments 
and decide on its property, KEEL (Knowledge Extraction based on Evolutionary 
Learning) tool [36, 37] was used. It can compare the performance of the proposed 
algorithm and existing methods. Moreover, it has Statistical Analysis Tools (SAT) 
that can be used to design an experiment and perform a complete analysis on the algo-
rithms' performance using a simple graphical user interface. Hence, three key ele-
ments were defined in order to build the desired experiment, as follows.  

5.1 Dataset  

In order to show how reliable the proposed algorithm is, ten dataset were used to test 
the proposed algorithm. These data set were taken from KEEL dataset repository [37] 
and the property of each dataset is shown in Table 1.  

Table 1. Experiment dataset property 

Dataset #Examples #Attributes #Labels 

ecoli 336 7 8 

yeast 1484 8 10 

Australian Crd. 690 14 2 

Crd. Approval 690 15 2 

Cleveland 303 13 5 

Statlog 270 13 2 

Bupa 345 6 2 

Hepatitis 155 19 2 

Red Wine 1599 11 11 

White Wine 4898 11 11 

 
Each dataset is partitioned to five-pair partition using the hold-out approach [38]. 

Each pair includes a test and training data. Training data was used to train the algo-
rithm, and the test data was used to test its result. In specific, for large dataset (>1000 
example), the test set include one-third of the data while the training set include the 
remaining two third. However, with small data (≤1000 example), the partitioning was 
repeated five times, and the result was averaged.  
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5.2 Predecessors  

In the training set, the attributes values sometimes need further refinement before 
starting with the learning process. In specific, predecessor procedures need to be  
applied over all data to deal with missing and continuous attributes.  

In order to deal with continuous attributes, an offline discretization method was 
applied before inducing the rules. In specific, entropy-based discretization method of 
Fayyad and Irani [39] were applied to convert the continuous values into discrete 
ones. This discretization method was chosen based on the study conducted in [40, 41], 
where it was indicated that the choice of offline discretization method depends on the 
data and algorithm used. Hence, since it was empirically proven in RULES-6 and 
RULES-SRI that Fayyad and Irani discretization is the most appropriate discretization 
method for RULES algorithms then it was decided to use it.  

On the other hand, when it comes to missing attributes' values, in [42] different 
methods that handle missing attributes have been presented and empirically tested 
over different rule induction methods. As a result of this test, it was found that impu-
tation methods, especially Fuzzy K-means (FK-means) [43], are the most suitable 
methods to handle missing values in rule induction. Hence, FK-means method was 
applied over the data to fill missing attributes before inducing the rules. 

5.3 Postprocessor 

After conducting the experiment, and to visualize the result, different statistical analy-
sis tests were applied. Specifically, two statistical tests were recorded to measure the 
accuracy of each algorithm and the rule set complexity. As for the accuracy, it was 
measured based on the classification accuracy of applying the resulting rules over the 
test data file. However, the rule set complexity was measured by recoding the average 
number of rules.  

5.4 Evaluation Results 

In order to prove that the performance of rule induction has improved by using the 
proposed algorithm, other covering algorithms are compared with it; including Ripper 
[44], DataSqueezer [4], PRISM [45, 46], RULES-6, and RULES-SRI. Using the re-
sulting statistics of KEEL analysis tool, it was possible to record the algorithms' per-
formance.  

Table 2 presents the accuracy of the covering algorithms (single model) that have 
been applied over the five target data set. However, Table 3 shows the accuracy result 
of applying the proposed algorithm with three source models, whether the dataset is 
complete or has missing classes. The source models were applied over the five source 
tasks in order to transfer the resulting rules and apply it over the related five target 
tasks. As it can be noticed from these two tables, the proposed algorithm is compara-
ble with the other covering algorithms, whether the data is complete or not. In the 
case of using RULES-6 or PRISM with the proposed algorithm, it was found that the 
accuracy has improved, in comparison to RULES family methods and DataSqueezer. 
Moreover, comparing with RIPPER, it can be seen that the proposed algorithm is 
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comparable, where the accuracy difference has became only 1% to 2%. However, this 
is not the case with PRISM algorithm. The proposed algorithm is still lacking when 
compared to PRISM algorithm. Nevertheless, since it can efficiently handle missing 
classes to be applied over incomplete data, and it reduced the error difference between 
PRISM and other RULES family algorithms (RULES-6 and RULES-SRI), then the 
proposed algorithm is still appealing. 

Table 2. Accuracy result of covering algorithm 

Target Dataset Ripper DataSqueezer PRISM RULES-6 RULES-SRI 
yeast 0.30 0.28 0.62 0.31 0.16 

Credit Approval 0.91 0.68 0.97 0.75 0.65 

Statlog 0.79 0.55 0.92 0.75 0.66 

Hepatitis 0.63 0.83 0.92 0.92 0.67 

White Wine 0.70 0.37 0.78 0.46 0.05 

Average 0.67 0.54 0.84 0.62 0.44 

Table 3. Accuracy result of the new algorithm  

 
 

Alternatively, when comparing the different implementation of the proposed algo-
rithm, illustrated in Table 3, it can be noticed that the accuracy of transferring rules 
from PRISM and RULES-6 is comparable while transferring it from RULES-SRI 
tremendously reduced the accuracy. This result is normal because the accuracy of the 
source model RULES-SRI is very low in comparison to RULES-6 and PRISM. 
Hence, transferring inaccurate rules will naturally give worse result than the accurate 
one. Nevertheless, it must be noted that the multi-model of the proposed algorithm 
when using RULES-SRI is still better than the single model of RULES-SRI. 

Conversely, when comparing PRISM with RULES-6, the first has better perfor-
mance than the second. However, when using the two models as the source of the 
proposed algorithm the result is very similar, as illustrated in Table 3. This is because 
of the rule complexity which is measured using the rule set size. As explained in [28], 
the performance of an algorithm should not only be measured by the accuracy but rule 
set complexity should also be considered. This complexity can be measured by the 
size of the rule set, where small size indicates less complexity. Hence, more resulting 
rules reduce the performance because the rule set will not be general enough for  
future cases and it will be highly affected by noise. 

Dataset RULES-6 à  New Method PRISM à  New Method RULES-SRI à  New Method 
Source Target Miss Class No Miss Class Miss Class No Miss Class Miss Class No Miss Class 
ecoli yeast 0.32 0.31 0.31 0.31 0.31 0.33 

Australian  
Crd. 

Crd.  
Approval 

0.80 0.82 0.67 0.77 0.65 0.74 

Cleveland Statlog 0.80 0.81 0.82 0.83 0.69 0.70 

Bupa Hepatitis 0.91 0.93 0.91 0.93 0.91 0.93 

Red Wine White Wine 0.40 0.40 0.47 0.47 0.23 0.23 

Average 0.65 0.65 0.64 0.66 0.56 0.59 
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Consequently, the average number of rules resulting from each algorithm was rec-
orded in Table 4. As it can be noticed, the rule set size of PRISM is very large in 
comparison to RULES-6. Hence, transferring PRISM rules will badly affect the other 
domain since it is very specialized over the source domain. Thus, even through 
PRISM is more accurate than RULES-6 but it has grater rule set complexity. Accor-
dingly, the result of transferring the rules from PRISM and RULES-6 was very simi-
lar. However, even though the number of rules discovered using RULES-SRI is less 
than the rest, but it resulted in worse performance because the single model perfor-
mance is very bad.  

Table 4. Average number of transferred rules  

Source Dataset PRISM RULES-6 RULES-SRI 
ecoli 42 30 25 

Australian Crd. 106 31 18 
Cleveland 65 27 20 

Bupa 2 2 2 
Red Wine 212 54 39 
Average 85 29 21 

 
Ultimately, it can be said that the proposed algorithm has improved the performance 

of RULES family, in general. It efficiently handled incomplete data and considered 
future cases that are not available in the training set using Transfer learning. Moreover, 
it improved the performance of covering algorithms where it usually resulted in better 
or comparable performance with other covering algorithms. Hence, it can be concluded 
from all above that using multi-modeling usually improve the performance of the  
original algorithm. However, transferring low quality or large number of rules might 
not greatly improve it. Thus, the models used with the proposed algorithm should be 
carefully chosen, where not only the accuracy of the rules is considered but also its 
complexity. The proposed algorithm is a good option for large and incomplete data but 
developers must take extra care when choosing the source model, where the general 
performance must be considered.  

6 Conclusion  

RULES is a covering algorithm family that induces general rules based on training 
set. It is an interesting field of covering algorithm where it gives good results in a 
simple way. This family needs to trade between time and accuracy during the specia-
lization process, and incomplete data were inappropriately handled. Thus, this paper 
has proposed a new algorithm that takes advantage of advance machine learning me-
thods, specifically TL, in order to transfer other agents’ knowledge. This algorithm 
improves the performance while reducing the induction time, where transferred rules 
are used to fill missing classes, cover part of the dataset in advance, and use past 
knowledge of different models to improve the performance.  
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The proposed algorithm performance was tested over ten dataset and compared 
with other single models of RULES family and covering algorithms. It was found 
that, whether the dataset have missing classes or not, the proposed algorithm always 
outperforms its predecessors, RULES-6 and RULES-SRI. Hence, it can be stated that 
the proposed algorithm has improved the scalability of RULES family on complete 
and incomplete data. However, the type of the source model also affects such im-
provement; models with simple and accurate rule sets give the best result. In the fu-
ture, further improvement can be made over the way test examples are classified, in 
order to improve the algorithm performance and outperform PRISM algorithm.  
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Abstract. The increase in the number of spatial data collected has motivated the 
development of geovisualisation techniques, aiming to provide an important  
resource to support the extraction of knowledge and decision making. One of 
these techniques are 3D graphs, which provides a dynamic and flexible increase 
of the results analysis obtained by the spatial data mining algorithms, principal-
ly when there are incidences of georeferenced objects in a same local. This 
work presented as an original contribution the potentialisation of visual  
resources in a computational environment of spatial data mining and, after-
wards, the efficiency of these techniques is demonstrated with the use of a real 
database. The application has shown to be very interesting in interpreting  
obtained results, such as patterns that occurred in a same locality and to provide 
support for activities which could be done as from the visualisation of results. 

Keywords: Geovisualisation, Spatial Data Mining, Database, Geographic  
Information System. 

1 Introduction 

The expressive amount of stored spatial data in the system has awakened the interest 
of various areas of study. As the data is of high complexity, the task of extracting 
knowledge became very costly so, therefore, computational spatial data mining sys-
tems appeared [2], [6], [10], [16]. 

Nevertheless, results were many times not easily visible nor understood, principal-
ly in the case of spatial data in the same geographic coordinates [5]. To overcome this 
obstacle, 3D graphs were developed following geovisualisation guidelines together 
with an analysis of the region of the map. 

The approach by means of a 3D visualisation technique made possible interactivity 
and flexibility of the spatial data mining results [4]. The implementation of that tech-
nique is described in this article, as well as its application with a knowledge extraction 
system. The experimental results were done based on the work accidents real data, 
which validates the efficiency of this work. 
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This article is organised in the following manner: section 2 presents the theoretical 
substantiation; section 3 describes the development of the work; section 4 shows the 
experimental results from the developed work and section 5 the conclusions.  

2 Theoretical Substantiation 

The notorious increase of georeferenced data collected by new technological systems 
such as GPS, remote sensing, spatial localising systems among others, has intensified 
studies in this area [7], [13]. A new concept has emerged, the spatial data mining or 
Knowledge Discovery in Spatial Databases (KDSD) to discover implicit patterns in 
the correlation of spatial and non-spatial attributes [12]. Among these techniques is 
the geovisualisation that has, as a principal, to facilitate the understanding and deci-
sion making from the results of the spatial data mining stage and to emphasise the 
interactivity for exploring knowledge [5], [10].  

Geovisualisation has shown itself to be a very important technique for the analysis 
of results, as it is not necessary to have an extensive knowledge about the technique to 
be able to use it. The technique addresses three important points: data processing, due 
to the large amount and variety of the spatial data; the movement of diverse variables 
to discover implicit patterns; and an interface that is easy to use and understand  
[8], [10].  

Various spatial data mining systems can be found in literature together with their 
geovisualisation guidelines to extract knowledge, such as: 3D mono-colour graph for 
the analysis of outliers [3] that are discrepant points in a set of data; 3D multicolour 
graphs to show different types of rocks and to analyse the wearing out in certain re-
gions [1]; among other relevant works related to this area. 

This work covers both the 3D multicolour graphs for each attribute chosen in the 
data analysis, as well as the manipulation of these resources from any desired angle, 
besides the relationship of the locality to the graph as from a highlighted geographical 
point on the map and the description of the information about the selected georefe-
renced data.  

The implemented techniques can be taken as an effective contribution, since no 
works were found in literature that adopt these techniques for the analysis of results 
obtained from spatial data mining algorithms. 

3 Developed Work 

The developed set of visual resources is coupled to a spatial clustering system, which 
makes for a better understanding of results obtained with knowledge extraction  
process of this system [9], [14]. 

With the potentialisation of visual resources, it is possible to obtain implicit infor-
mation from the results of a cluster, since a large quantity of georeferenced objects  
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4 Experimental Results 

A system namely SIVAT - Sistema de Informação e Vigilância de Acidentes  
do Trabalho (Work Accidents Vigilance System) catalogues all work accident and 
contains the georeferenced data about the places where those accidents occurred so as 
to assist health area actions. Said system is used by the CEREST - Centro de Re-
ferência em Saúde do Trabalhador (Worker Health Reference Centre) in the cities of 
São José do Rio Preto and Ilha Solteira, both in the interior of São Paulo State, to 
collect, register, follow-up and manage work accident notifications [15].  

To summarise the adopted approach so as to optimise the visual resources applied 
to the spatial data mining, a database of work accident notifications, having more  
than 70 thousand registers with more than 20 thousand of them georeferenced, was 
used. 

That repository has the following stored data: occupation of the injured person,  
labour market situation, cause of accident, if hospitalisation and absence from work 
was necessary, among others [15]. Said repository is updated daily and an analysis of 
the data is done periodically which justifies the relevancy of the proposed work and 
its contribution to that activity.  

To do the experiments, a CLARANS - Clustering Large Applications based on 
Randomised Research [11] algorithm of the spatial clustering system was selected so 
that results could be analysed and enriched by the resources implemented in this 
work. Two executions of the algorithm were done: the first about the year 2009 acci-
dents and the second about 2010, and in both was used the same parameters, showed 
in Table 1. 

Table 1. Parameters used in the CLARANS algorithm 

Number of centroids 20 

Maximum iterations 50 

Maximum points in each cluster 20 

Maximum neighbours 30 

4.1 Experiment 1: Cluster of 2009 Data 

The following attributes were chosen for this experiment: lost work time, sex and 
branch of activity in the year 2009. The analysed cluster was made up of 119 work 
accidents, shown in Fig. 4. 

By means of the implemented resources, it is possible to observe that, in the 3D 
graphs of Fig. 5, Fig. 6 and Fig. 7, it was seen that, for each chosen attribute, the clus-
ter had many more accidents than those plotted in the two dimensional map. This is 
due to the fact that many happened in the same place. 
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5 Conclusions 

A large number of valuable discoveries can be done on spatial databases by means of 
the spatial data mining algorithm. To make these discoveries, a system was con-
structed that does the spatial clustering and can visualise said clusters on a map of the 
region in which the points are shown. 

To support with the understanding of obtained results, as well as to permit new 
correlations, a geovisualisation 3D technique was incorporated that makes it possible 
to visualise and search for patterns in certain regions in which the incidence of geore-
ferenced data is high. 3D graphs that can be rotated by the user were constructed to 
permit a more adequate visualisation of the results. Moreover, a filter was developed 
of the points that are not part of the cluster, the information related to their georefe-
renced data and their location on the map. That visual interaction of the generated 
clusters, together with the map and the 3D graphs, represent a new solution for the 
extraction of knowledge from spatial databases, offering the user various interactive 
resources that analyse results, permitting a wider vision of the georeferenced data, as 
well as supporting with decision making in certain localities.  

The use of the proposed system on a real database of work accident reports re-
vealed some interesting spatial correlations that, by means of the 3D graphs and the 
visualisation of points on the map, enabled the CEREST to plan specific strategies in 
accordance with the localities and accident characteristics. 

Therefore, this work proves to be relevant in the computational area by means of 
frontier technologies as well as for public health, since work accidents are responsible 
for jeopardising workers due to corporal wounds and great expense for public agen-
cies that deal with those workers. 
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Abstract. We present an extension of the usual agent-based data min-
ing cooperative work flow that adds a so-called adjustment work flow. It
allows for the use of various knowledge-based strategies that use infor-
mation gathered from the miners and other agents to adjust the whole
system to the particular data set that is mined. Among these strategies,
in addition to the basic exchange of hints between the miners, are pa-
rameter adjustment of the miners and the use of a clustering miner to
select good working data sets. Our experimental evaluation in mining
rules for two medical data sets shows that adding a loop with the adjust-
ment work flow substantially improves the efficiency of the system with
all the strategies contributing to this improvement.

1 Introduction

Data mining has become an important tool for decision makers in all kinds of
areas. Tools like Weka (see [5]) are available to provide a wide variety of data
mining algorithms but also methods for preparing data for mining and analyzing
mining results under a common user interface. Despite the efforts in these tools
to simplify the task of running the entire data mining work flow, finding suitable
algorithms, parameters for each algorithm, and relevant sub sets of data to work
on remains a very time-consuming and difficult task.

Using groups of cooperating mining agents (miners) presents a first step to-
wards a solution to overcome the difficulties mentioned above, since the agents
can try out different mining methods in parallel and, by exchanging good mining
results and other information, they can essentially create a ”super”-miner com-
bining the strengths of the individual miners. As works like [4] or [3] (see also
[11] for an overview) have shown, this combination can achieve substantial syn-
ergetic gains. But there are also quite a number of problems around agent-based
approaches. These include the decision when to communicate what to which
other agents, as well as focusing individual agents on the right parts of the data
at the right time and detecting and replacing useless agents.

In this paper, in order to solve the problems from the last sentence, we propose
an approach named CoLe2 that enhances the CoLe cooperative mining system
(see [4]), by adding an outer adjustment work flow to the existing cooperative
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work flow. This outer work flow essentially iterates over the usual preparation-
mining-analysis data mining work flow to automate the process of finding the
right set-up for the miners to create the desired results efficiently. To achieve this,
the CoLe2 system uses so-called knowledge-based strategies that incorporate
knowledge about data mining in general, the mentioned three phases, the miners,
and how the miners act in the cooperative environment.

Our CoLe2 approach uses the adjustment work flow to perform iterative data
selection for the miners using an X-means clustering based method (see [12]),
which runs asynchronously with the inner distributed cooperation work flow.
In addition, it selects miners based on their performance history in the inner
cooperation iterations. It also does parameter adjustment for the miners during
the mining which includes feature selection based on hints from the other miners.
And we use so-called combiners that form additional more complex rules out of
the results of the miners.

We instantiated the general concepts of CoLe2 in a system aimed at mining
rules about two medical databases, one focussing on diabetes (as in [4]) and the
other focussing on chronic kidney disease. In our experiments we compared this
system to CoLe and also looked at the individual knowledge-based strategies and
their contributions. Our experiments showed that CoLe2 substantially improves
the efficiency of the mining while creating rules of the same or even better quality.
The experiments also showed that all knowledge-based strategies contribute to
this improvement.

2 Data Mining Basics

Data mining is the attempt to extract patterns or knowledge from data with the
help of computer programs. The typical data mining process involves 4 steps (see
[6]): data cleaning and integration, data selection and transformation, executing
a data mining algorithm, and evaluating and presenting the results. There are
many different types of data mining tasks within the mining process. The most
common ones are classification, clustering and association analysis. There are
also various representations for knowledge for these different tasks, like decision
trees, neural networks or rules. While our CoLe and CoLe2 concepts can be
applied to all the tasks and to most of the knowledge representations, the system
we use for evaluating CoLe2 is performing data mining of rules for classifying
patients.

In general, a (relational) databaseD can be seen as a number of tables T1,...,Tl,
where a table has a set of attributes A1,...,Am. Then an entry in a table is a
tuple (a1, ..., am), where ai is a value for Ai. A rule overD has the form condition
⇒ consequence where condition is an expression consisting of predicates and
certain operators, as is consequence (although consequence is usually very short).
Predicates are about values of the attributes, usually having the form att rel-
op value, where rel-op, a relational operator, compares the attribute att ’s value
of an entry in D with value. In our system, we allow =, �=, >, ≥, <, and ≤
as relational operators. On the condition level, we use a logical operator (and)
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and a temporal operator (before), together with parenthesis which override the
precedence of the operators. The (or) logical operator is not explicitly used in
the rules. Instead, the rules in a rule set have the (or) relation between each
other.

A rule is true for an entry in a table if whenever the condition is true for the
attribute values in the tuple, then also the consequence is true. Such an entry is
a true positive. On the contrary, if for a tuple condition is true, but consequence
is false, then this tuple is a false positive for the rule. A false negative for a rule
is a tuple that does not fulfill its condition, but the consequence of the rule is
true. A general goal of mining of rules is to find rules with very few (preferably
zero) false positives. And the combination of all mined rules should have very
few (preferably zero, again) false negatives, if classification is the goal. Based on
this, there are various measures for the quality of a rule in the literature. For
example, accuracy is the ratio of the number of true positives to the sum of true
and false positives for the rule. Generalness is the percentage of true positives
out of all entries in D for which the consequence of the rule is true. In our system
in Section 4, we will combine these two measures into a rule fitness.

3 CoLe2

In this section, we present our agent-based CoLe2 data mining model. We first
provide a general overview, then present the cooperative work flow that is es-
sentially identical to the CoLe work flow from [4] and finally look at the new
outer adjustment work flow loop and some knowledge-based strategies that are
possible to use due to this loop.

3.1 The CoLe2 Model: Overview

CoLe2 extends the CoLe approach (CoLe stands for Cooperative Learning) by
having two loops (hence CoLe squared). It has not only a loop where several
miners perform data mining iterations in parallel – the cooperative work flow, but
also a loop iterating over the data selection, data mining, and result evaluation
sequence of the usual data mining work flow, which we call the adjustment
work flow. This produces the general work steps for a CoLe2-based system as
depicted in Figure 1. Naturally, details of these agents and steps depend on the
concrete application. Here we provide a high-level view. An application example
is provided in the next section.

Within a CoLe2-based system, there are 3 types of agents, a controller, several
miners, and one or more combiners. The controller is the agent in charge of the
whole CoLe2 work flow, realizing Steps 2, 3 and 6 in Figure 1 (naturally with
help from the other agents). The controller is also responsible for Step 1 and
Step 7 of Figure 1, but these steps are rather standard and not really part of the
distributed agent-based approach. We will look more closely at the controller
and its various tasks in the next two subsections.

The miner agents obviously are at the core of the approach, performing the
mining of the data they are given. In contrast to a standard mining algorithm,
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Fig. 1. CoLe2 work flow

they have to additionally be able to make use of information communicated from
other miners that run concurrently and from combiners, so-called hints, into their
mining as much as possible. How much use a miner can make of hints depends
on the concrete mining algorithm the miner uses. We use a group of miners
that are heterogeneous, i.e. they all use different mining algorithms, although it
would be possible to also have some miners using the same mining algorithm,
if too much redundant work by such miners can be avoided (by, for example,
having them focus on different parts of the data). Importantly, as demonstrated
in CoLe, the miners can also be heterogeneous in the kind of knowledge they
produce. CoLe used miners for different kinds of rules (conjunctive ones that use
only and and temporal ones that use only before) and the combiners allowed
to create rules combining the types. CoLe2 allows also to use miners that do
clustering to help with the adjustment work flow (to provide miners with better
focus, see Section 3.3).

In general, combiner agents, as the name suggests, collect data mining results
from several miners and combine them into single rule sets (i.e. realizing Step 5
in Figure 1). This goes beyond just creating the union of these rule sets. Instead,
as mentioned above, the combiners use knowledge-based combination strategies
to create out of pieces derived from the results of the various miners new hybrid
rules. Combiners can be used at the end of each cooperation phase, in which
case they are also generating hints that are made available to the miners and
the controller. But a combiner can also be used as the final step of the result
evaluation and to help the controller with the result preparation.
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3.2 The Cooperative Work Flow

The inner loop around the cooperative work flow in CoLe2 is still the core of
a CoLe2-based cooperative mining system. Multiple data mining agents using
different mining algorithms work in parallel on creating new rules. In the first
iteration of the cooperative work flow, a miner receives the data it is supposed to
mine, together with any additional information the controller deems necessary
for this miner (like values for its parameters). In the other iterations, a miner
is only receiving information (hints) from other miners and the combiner. This
information in addition to the data is used by the miner during the mining (Step
4 in Figure 1), but also in the preparation phase (Step 3) of the miner.

The preparation phase of the work flow is performed by each miner individ-
ually. In addition to the integration of information from the other agents, this
allows the miner to do its individual preparation based on the requirements and
characteristics of the concrete mining algorithm it uses. Usually nearly all such
algorithms can profit from attribute selection, techniques to reduce the number
of attributes in the data, which usually leads to a smaller amount of data, po-
tentially less sparse, and faster run times. In our example application, we use
an attribute selection technique based on relevance factors (as in [10]) and the
hints from other agents for two of our miners (PART and the Apriori miner).
The relevance factor is based on the idea that an attribute is relevant for a
particular concept, if it has different distributions over data instances that are
in the concept and instances that are not in the concept. Attributes that are
relevant (based on a threshold regarding the difference of the distributions) get
preferential treatment by the miners when creating rules. The same is true for
attributes that occur often (again, defined via a threshold) in hints from other
miners.

The preferential treatment during the mining phase, as mentioned before, is
the main modification that we make in miners for usage in CoLe2. Predicates
using relevant attributes and predicates occurring in the best rules from other
miners (as determined by the combiner, see below) should be chosen with higher
probability whenever a miner has a choice that involves predicates. While from
an implementation point of view, this is usually easy to accomplish (the choice
needs to be made, so there must be a clearly defined place making an evaluation
and only this evaluation needs to be modified), it is naturally very specific to
the particular miner.

The final phase of the cooperative work flow is the domain of the combiners.
Each miner sends its best rules (based on the rule fitness) to one combiner (in
our example application we use only this one combiner, but it is naturally possi-
ble to use several), which then performs four subtasks: original rule evaluation,
candidate rule generation, combined rule evaluation and pruning, and hint gen-
eration. It has to be noted that a combiner has to be able to handle different
kinds of knowledge (hybrid rules in our case). The first subtask re-evaluates the
rules from the miners, allowing for a different set of data entries to be used
in the fitness evaluation (for example the combination of the sets of the differ-
ent miners, if they got different data sets from the controller), but also collects
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information on the frequency and quality of predicates or groups of predicates
to be used in the next subtask.

In this next subtask, good predicates and groups of predicates are connected
by logical or temporal operators to construct candidate rules (that now often
contain pieces of knowledge from different miners). Naturally, there are many
different ways how such combinations can be done, which means that there
are many possible combiner agents. One simple way is to just concatenate the
conditions from two original rules, but also more sophisticated methods are
possible, like adding predicates to an original rule that have high potential for
improvement and are connected using operators not used in the original rule.

In the third substep, these candidate rules are evaluated and pruned. The
evaluation computes the fitness of the new rules (using the combiner’s data set)
and only rules above given thresholds survive and will be put into the result set
for this iteration of the outer loop. Those rules coming from the miners that are
also above the thresholds and that are not covered by a combined rule generated
out of it will also be put into this result set. Finally, the combiner will also use
the predicates and groups of predicates it identified as of good quality as hints
that are sent to the miners for the next iterations of the cooperative loop.

3.3 The Adjustment Work Flow

Our concept of an adjustment work flow loop is motivated by the observation
that decision makers that use data mining usually go through quite a number
of mining attempts before they get the knowledge they are interested in. While
this is partially because the decision makers have additional knowledge that they
have to find ways to include into the mining process (usually by taking away
data, which is what non-experts in data mining can manipulate and understand
the easiest), it is also due to the various parameters and inputs todays data
mining algorithms have that need to be adjusted the right way to focus on the
right data to create the knowledge a user is interested in. And having several
miners (and additional agents like combiners) available makes this even more
difficult.

Our adjustment work flow tackles this second cause for repetitive attempts
at data mining by integrating knowledge about the miners and how to influence
them into the controller in form of knowledge-based strategies. Similar to the
supervisor in a teamwork-based search system (see [2]), but able to deal with
heterogeneous agents, the controller combines general knowledge with the obser-
vations made in the mining run so far, in order to adjust the whole agent-based
mining system towards more efficiently performing mining and reducing the need
for a human user to provide help. Again, the type of miners and the types of
knowledge mined and generated will influence how the adjustment work flow
needs to be instantiated, but there are several general knowledge-based strate-
gies that offer guidance in this regard and that we will present in the following.

The first step in an iteration of the adjustment work flow is the selection
of miners and parameters for them and the selection of the data sets these
miners should work on. While in the first iteration there is not really much
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to help with this, so that a standard team of miners with standard parameter
settings will have to be used and, if the database is too big, standard methods for
data selection, like random sampling of the data, the moment performance data
for miners is available it is possible to adjust their parameters and to provide
focus to the data selection. Parameter adjustment of the miners should aim to
improve the whole system’s effectiveness and therefore needs information about
the effectiveness of the components from previous iterations of the outer loop.
This information includes the number and quality of newly discovered rules.
Using this information, the controller can

– inform miners with too few rules (in the last few iterations) to produce more
rules (for many miners, this means lowering thresholds) and

– inform miners that produced only sub-par rules to improve rule quality (by
raising thresholds, for example).

While data mining is aiming at large data sets, the reality is that most mining
algorithms run into serious efficiency problems if the data set to mine gets too
big. Consequently, some selection of the data to mine needs to take place and
while theoretically this could be integrated into the cooperative work flow, con-
ceptually it fits better into the adjustment work flow and in this flow we also can
make use of more information. There are several possible data selection strate-
gies, the easiest is the already mentioned random sampling. Random sampling
can be slightly improved by biasing the sampling, for example by requiring the
same distribution of a particular attribute in the sample as in the whole data set.
Another data selection strategy aims at rule coverage by not selecting entries
that are already covered by rules in the result sets from previous iterations.

For an agent-based mining system, data selection based on clustering is a very
interesting method. As the name suggests, the basic idea of this method is to
run a clustering algorithm (resp. agent) over the data set to create clusters of
similar data entries. Then the entries in each cluster can be used as the data set
for all miners for one iteration of the outer loop. It should be noted that this
data selection method, due to using a rather complex algorithm, naturally itself
also has a potential data selection problem. This has to be solved using another
data selection strategy, like random sampling, again. And still, the clustering
miner might take several iterations of the outer loop to finish. Therefore, in our
experiments, we run this miner asynchronously in parallel to the adjustment
work flow, using the results when they become available and before that we use
random sampling or rule coverage for data selection.

The next step in the outer loop is the inner loop that we presented in the last
subsection. After each iteration of the inner cooperative loop, the miners and the
combiner also provide the controller with information about this last iteration,
especially number and quality of the rules found by the miners and execution
time differences between the miners. If a miner is not pulling its weight over
several iterations, the controller can stop the inner loop prematurely and then
also finish the outer loop iteration, so that it can perform adjustments in the
then immediately starting next outer loop iteration.
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The final step of the adjustment work flow is the results evaluation, which
includes both looking at the produced rules, but also the performance of the
miners. We already presented these tasks, since they also represent the first
steps of the next iteration of the adjustment work flow.

4 Case Studies with CoLe2

In this section, we present an instantiation of the CoLe2 method to mine med-
ical databases. One interest of doctors is the prediction of a diagnosis (disease)
based on attributes other than the diagnosis itself in order to perform the appro-
priate tests early and then treat the disease earlier (with usually less cost and
higher chances for a cure). This will be the application of our mining system.
We will first provide more detail about this application, then describe the CoLe2

instantiation and finally report on our experimental evaluation of the system.

4.1 Mining Medical Databases

We evaluated our CoLe2 example system with two medical data sets, one about
diabetes and one about kidney disease. The diabetes set was already used to
evaluate CoLe (see [4]) and contains data from between 1995 and 2000 about
3150 people with a diabetes diagnosis in 2001 and 6300 control cases. Together,
these people produced 436776 transactions with the Calgary health care system,
each of which, among others, have a date and at least 1, but up to 3 diagnoses
in the international ICD-9 code (see [7]).

The kidney disease data set has been collected by the Alberta Kidney Disease
Network and contains data about all Alberta patients that had a chronic kidney
disease related test in the time interval July 2001 to March 2006. Our medical
partners were interested in finding rules predicting death of a patient and we had
11775 such patients among the 110452 in the database. The data base contains
6476150 transactions for these patients, again, among others, containing a date
and between 1 and 3 diagnoses in ICD-9.

Since both data sets come from the Alberta health care system, they have a
similar structure. We mined both data sets with a specific goal (target) in mind,
namely finding rules predicting diabetes, respectively rules predicting death.
This means that the consequences of the mined rules for each data set are fixed.
Similar to [4], we need some preprocessing on the data, since ICD-9 is very
specific and as a result there are too many only slightly different basic diagnoses.
Instead of those, we used the disease groups that ICD-9 associates with the
different diagnoses.

4.2 Instantiating CoLe2

For the mining task described in the previous subsection, we instantiated the
CoLe2 method as follows. We use five miners and two combiners in addition to
the controller. The four miners for the inner loop are a PART conjunctive miner



Improving the Efficiency of Distributed Data Mining 77

and an Apriori miner from the Weka mining library (see [5]), a sequence miner
SeqGA from [4] and a relevance-factor-based descriptive miner. Due to lack of
space, in the following we concentrate on the modifications we made to these
miners for CoLe2 and otherwise describe only the basic ideas of these miners.

The PART miner is based on the well-known C4.5 mining approach (see [13])
and builds partial decision trees, which are transformed into conjunctive rules
by simply collecting all of the predicates on a path in the tree from the root to a
leaf. We modified the PART implementation from Weka by using the predicates
in hints from other miners and combiners to do attribute selection (selecting
them and adding also some randomly selected attributes). We also integrated an
additional pruning of the created rules before they are forwarded to the combiner,
by checking for each predicate in a rule, if its elimination does not influence the
rule fitness. If a predicate is found irrelevant in this way, it is eliminated. This is
in addition to the usual rule pruning in a PART miner. If the controller wants
the PART miner to spend less time, the miner implements this by having less
pruning rounds (and vice versa).

The Apriori association miner (see [1]) also creates rules that have conjunc-
tions of predicates as conditions. The Apriori miner builds rules from the bottom
up by determining item (predicate) combinations that appear frequently in the
transactions. Starting with single items that appear more often than a thresh-
old, items (combinations) are combined and this is iterated with combinations
that are above the threshold. Finally, combinations with the target predicate
are split into a rule where the target predicate is the consequence and all other
predicates form the condition. We modified this general method for CoLe2 by,
again, using hints from other miners for attribute selection, thus limiting the
potentially huge number of item combinations. The Apriori miner can adjust its
runtime by raising or lowering the threshold mentioned above.

The SeqGA miner uses a genetic algorithm (GA) to create sequence rules, i.e.
rules with a condition that is a (temporal) sequence of events. The individuals
of the GA are exactly such sequences, with events being a particular diagnosis
and the sequence indicating that each element in it happened before the next
element. As usual, the GA works on sets of such individuals and each individual
in the set is evaluated with the rule fitness. We use genetic operators to create
new individuals that replace the least fit individuals. Crossover just chooses
two individuals, cuts them at a randomly chosen point (in the sequence) and
concatenates the head part of one individual with the tail of the other. Mutation
randomly either adds an event to an individual, deletes an event or substitutes
an event with a random new one (or one from the received hints). In addition
to sending the rules with the best fitness (above a threshold) to the combiner,
the SeqGA miner also sends the predicates in these rules to the other miners
as hints. The SeqGA miner can react to adjustment requests by the controller
by adjusting the number of generations and, again, by adjusting the fitness
threshold.
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All these 3 miners evaluate rules using the same rule fitness. As in [4], this
fitness fit of a rule r is calculated as

fit(r) =

(
tp

tp + fp

)x

× log(tp)

log(positive)

with tp being the number of data entries correctly classified by r, fp the number
of incorrectly classified entries and positive being the number of entries for which
the rule condition is true. x is a real number parameter that was set to 1.5 in
all our experiments (following [4]).

One of the strengths of multi-agent-based data mining is the cooperation of
miners, which also allows for the use of miners that alone would never be very
good or even acceptable. Our relevance-factor-based miner is such a miner that
essentially acts as ”material generator” for the other miners. It first generates a
set of predicates from attributes in the data set given to it. Nominal attributes
create predicates that test equality with each of the possible values. Predicates
for numerical attributes are collected from all the communicated hints from pre-
vious iterations of the cooperative work flow (in previous outer loop iterations).
Then the miner calculates the relevance factor for each predicate and all predi-
cates that are relevant (according to the factor) are retained. For each of those
predicates p, a rule is constructed either of the form p ⇒ target concept (if the
predicate had a positive relevance) or not(p) ⇒ target concept (else). These rules
are sent to the combiner and the predicates are sent as hints to the other min-
ers. The relevance-factor-based miner is only used in the first iteration of the
cooperative loop within an adjustment work flow iteration.

As stated in the last section, we also use an X-means clustering miner (see [12])
as kind of an assistant to the controller to help with the selection of data sets for
the miners. In contrast to the well-known k-means clustering, X-means does not
produce a pre-determined number of clusters, but determines the best number
of clusters between given lower and upper bounds using the so-called Schwarz
criterion. In our CoLe2-based system, we use random sampling to produce a data
sub-set for the X-means miner, perform a full clustering, and use the cluster with
the highest score of the Schwarz criterion as the data set for the next execution
of the cooperative loop. After that, we determine all entries that are correctly
predicted by the resulting rules, remove them from the remaining clusters created
by the X-means miner, update the cluster centers and reassign the remaining
data entries to the clusters and repeat the cooperative loop with the new best
cluster. If there are no clusters left, we repeat the general X-means clustering
with a new data sub-set of the whole database.

With the description of the miners, we have already presented most of the
instantiation of the cooperative work flow. What remains is the instantiation
of the combiner. The concrete combiner we use follows rather closely what we
described in Section 3.2. It reevaluates all rules communicated by the miners
and puts those above a certain threshold into the candidate set. It then performs
direct combination and cross combination to create more candidates. Direct com-
bination simply combines the conditions of two rules with an and operator. Cross
combination computes the number of occurences of the predicates in the rules
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from the miners. It then goes through all of these rules and randomly chooses
a number of predicates to add and the insertion points of these predicates into
the rule. For each of these points, a predicate is chosen with predicates with
higher occurrence counts having a higher chance to be selected. The operator to
connect the predicate to the condition is then randomly chosen and the new rule
is evaluated. If it is better than the parent rule, this process is repeated until no
improvement is achieved and the rule before that last attempt is added to the
candidate set. Then we prune the candidate set, which includes simplifying the
conditions of a rule by eliminating redundant occurrences of a predicate, throw-
ing away predicates for which a stronger predicate is present in the condition
and throwing away duplicates of a rule and rules similar to a rule with a smaller
fitness. Finally, all remaining rules below a given threshold are also eliminated
and the remaining rules are the result of this iteration.

Rule similarity is based on the similarity of the predictions the rules make,
which essentially creates a similarity on conditions. In theory, we should compare
the performance of two rules on each of the data entries, but this becomes
computationally much too expensive. Instead, we assign the data entries into
n bins (in our experiments we used n = 256) and compare two rules based on
the number of correct classifications (match score) for the bins. If the difference
between two rules with this regard is below a threshold, the rules are considered
similar.

We have also already presented many of the pieces that form the adjustment
work flow, like the data selection and how miners can adjust their parameters.
As already stated in the last section, the controller performs the data selection
for the first round using random sampling. It uses one agent from each of the
miner types (that produce rules) in each of the iterations and tries to keep their
output over all iterations balanced by advising individual miners what parameter
adjustments they should make. The X-means clusterer runs in parallel to the
cooperative loop, so that its results are only available in the following iteration
of the inner loop. The controller collects the result sets from the combiner over
all of the loops. After a given number of iterations of the adjustment loop, the
controller lets a variant of the combiner perform a final simplification of the
complete result set (as already described for the combiner).

4.3 Experimental Results

In this subsection, we present some experimental evaluations of our CoLe2-based
system. As stated in the introduction, our main claim is that CoLe2 improves
the efficiency of an agent-based mining system, so that our experiments focus on
this aspect. Naturally, efficiency improvement should not be achieved by reducing
quality, so that we also look at the quality of the rules (expressed using the rule
fitness). Since some of the miners and some of the knowledge-based strategies
used in the loops involve random decisions and in an agent-based system timing
of messages can happen in slightly different ways, we did not perform only single
mining runs, but always look at the results of three runs.
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Table 1. Runtimes: with and without outer loop

Data Set Experiment Running Time (sec) Time
No. without outer loop with outer loop Ratio

1 1715.54 1234.57 71.96%
diabetes 2 2719.63 1329.73 48.89%

3 1795.72 1535.19 85.49%
Average 2076.96 1366.49 65.79%

1 43263.95 7242.02 16.74%
kidney 2 17714.54 5403.13 30.50%

3 43597.24 6590.54 15.12%
Average 34858.58 6411.90 18.39%
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Fig. 2. Fitness histograms: left: comparison with vs without outer loop; right: compar-
ison with vs without parameter adjustment

Effect of the Outer Loop: Obviously, the outer adjustment loop is the major
contribution of this paper, so that our first experimental series evaluates the
effect of this loop against a configuration of the system that simulates just the
CoLe method. More precisely, the CoLe mode still uses random sampling to
provide small enough working data sets for the miners and performs a loop
around the inner loop that creates different working data sets, but the other
features of the outer loop are not used. Both systems used otherwise the same
parameter settings and were run until more than 95% of the data entries were
used in at least one run of the inner loop.

As Table 1 shows, the outer loop clearly reduces the run time for the system
and importantly does so substantially for the larger data set. For this data set,
even the worst mining run with outer loop is 3 times faster than the run not
using the outer loop (but starting with the same initial working data set).

Figure 2 (left) shows a fitness histogram of the quality of the mined rules
for the 6 runs on the larger kidney set. While it could be argued that the rule
quality with the outer loop is slightly better (higher peaks after a fitness value
of 2), using the outer loop definitely does not result in loosing quality, so that
our primary goal with CoLe2 is clearly fulfilled.

Parameter Adjustment: One of the knowledge-based strategies employed by
the controller is adjusting the parameters of the miners to have them contribute



Improving the Efficiency of Distributed Data Mining 81

Table 2. Run time (seconds): with and without parameter adjustment

Dataset Test Without Parameter With Parameter Time
No. Adjustment Adjustment Ratio

1 1722.55 1223.51 71.03%
diabetes 2 1667.44 907.87 54.45%

3 2473.14 1014.09 41.00%

1 5122.68 3943.20 76.98%
kidney 2 9710.18 6156.67 63.40%

3 8805.31 4655.57 52.87%

evenly to the mining results and to have them running in the inner loop iterations
without large idle times. To test this strategy, we compare in Table 2 runs of
the system using all knowledge-based strategies with runs where no parameter
adjustments of the miners take place.

As can be seen, using all strategies always results in faster runs and for the
smaller data set it can be up to only half of the time when using this strategy
versus not using it. And, as Figure 2 (right) shows, this, again, is achieved
without loss of quality.

X-means Data Selection: To look into the improvement the X-means miner
represents, we measured the quality of rules generated by the miners and the com-
biner of essentially one iteration of the outer loop and compared the average rule
quality usingX-means directed data selection versus random sampling.We did this
for the larger kidney data set, since this data set definitely needs data selection.

As Table 3 shows, while the results with regards to the miners are mixed,
when combined by the combiner, the average rule quality is clearly enhanced,
showing the usefulness of this knowledge-based strategy.

Table 3. Average rule fitness of one iteration: X-means vs random sampling data
selection

Test Miner or Data Selection Method
No. Combiner Random Sampling X-means

PART miner 0.324 0.242
1 SeqGA miner 0.851 0.867

Relevance factor miner 0.553 0.576
Combiner 1.275 1.464

PART miner 0.228 0.600
2 SeqGA miner 0.985 0.625

Relevance factor miner 0.558 0.560
Combiner 1.374 1.790

PART miner 0.309 0.310
3 SeqGA miner 1.043 1.107

Relevance factor miner 0.558 0.560
Combiner 1.606 1.858
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Other Strategies: Due to lack of space, we cannot provide detailed results for
the other strategies. But our experiments showed that having an asynchronous
workflow resulted in improvements between 30 and 70 percent. Although [4]
already showed the usefulness of the created hints, we performed appropriate
experiments, again, and the hints produce an efficiency improvement between 20
and 50 percent and, more importantly, substantial improvements in the quality
of the produced rules (compared to not using hints in the miners).

5 Related Work

Agent-based data mining is of interest because of the ability to deal with dis-
tributed databases. The data mining work has to be done distributively either
due to privacy concerns, or due to the large total data amount which prohibits a
centralized database. An example of a method aimed at this reason is the JAM
framework described in [14], where multiple data sites exist and each of them
employs a classification agent to perform data mining and a meta learning agent
to exchange and combine the classification models. Another example is the frame
presented in [9], where the focus is to establish distributed cooperative data min-
ing in a competitive and privacy restricted environment, with each data mining
agent working on their own private data set using Naive Bayes classifiers. In
these situations, it is natural that the agents in the data mining system coop-
erate towards the same data mining goal. In comparison to typical work in this
area, we are not only interested in mining large amounts of data and enabling
cooperation, but also particularly interested in producing hybrid knowledge that
goes beyond what each of the individual mining agents can produce.

Most approaches in the literature that have some centralized control concept
like our controller have it as part of the inner work flow and do not use hetero-
geneous agents (which naturally makes the control task much easier). In [3], a
manager agent divides the data into disjunct working sets for analyzer agents
that, after having done their own mining, vote on whether to keep the results
of the other agents. [8] is another example for a simple mining loop. We are
not aware of any other work using two loops and the benefits of the outer loop,
like mining cooperatively a certain part of the database or having a specialized
assistant miner to prepare for that.

6 Conclusion and Future Work

We presented CoLe2, a concept for agent-based mining around two work flow
loops, an inner cooperative loop and an outer adjustment loop. The outer loop
allows for various knowledge-based strategies that allow a controller agent to
adapt and focus the whole team of agents on the particular database and min-
ing task. Our experimental evaluation showed that the outer loop substantially
improves the efficiency of the mining system while still producing results of com-
parable quality to without using the outer loop.
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The outer loop offers several more possibilities for using knowledge-based
strategies that we intend to look into in the future. While in this paper we con-
centrated on generally applicable strategies, naturally for databases for which
the mining needs to be periodically repeated it makes sense to integrate applica-
tion specific knowledge into the mining. The outer loop also offers the possibility
to integrate human judgement in form of advice to the controller.
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Abstract. This paper describes the authors’ experiments with Support Vector 
Machines and Hidden Conditional Random Fields on the classification of freely 
articulated sign words drawn from the Brazilian Sign Language (Libras). While 
our previous works focused specifically on fingerspelling recognition on tightly 
controlled environment conditions, in this work we perform the classification of 
natural signed words in an unconstrained background without the aid of gloves 
or wearable tracking devices. We show how our choice of feature vector, ex-
tracted from depth information and based on linguistic investigations, is rather 
effective for this task. Again we provide comparison results against Artificial 
Neural Networks and Hidden Markov Models, reporting statistically significant 
results favoring our choice of classifiers; and we validate our findings using the 
chance-corrected Cohen’s Kappa statistic for contingency tables. 

Keywords: Gesture Recognition, Sign Languages, Libras, Support Vector  
Machines, Hidden Conditional Random Fields, Neural Networks, Hidden  
Markov Models, Discriminative Models. 

1 Introduction 

Humans are social creatures; and therefore depend heavily on communication to per-
form daily tasks and achieve their goals. But in the event one of the main communica-
tion channels have been damaged or have been deemed unavailable, humans will 
inevitably find a way to restore this communication. In the case of deafness or speech 
impairment, the communication is often restored through Sign Languages.  

However, one of the most immediate problems of the Sign Languages is that very 
few people outside the deaf community are actually able to speak them. Bridging this 
gap with an autonomous translator seems like a logical step towards a more inclusive 
society. Hence, this work aims to walk the first steps in this direction.  

This paper enlists comparative results for the automatic recognition of a finite 
number of words drawn from the Brazilian Sign Language, heretofore Libras. Our 
system works in an unconstrained environment without the aid of gloves, markers or 
controlled lighting. At the heart of our system lies a two-layer architecture based on 
the automatic learning of discriminative models to work on different stages of the 
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recognition process, as suggested in [1]. However, unlike the aforementioned work, 
our layers are composed of Support Vector Machines (SVMs) and Hidden Condition-
al Random Fields (HCRFs), as in [2]. Besides, our system works directly with natu-
rally articulated words rather than fingerspelled ones. These words may also involve 
more than just one hand and even the user’s facial expressions. We intend to present 
our system to the reader, along with comparison results against other approaches and 
also discuss the overall linguistic foundations behind our recognition strategy. 

This paper is organized as follows. After this introduction, Section 2 gives a list of 
related works, raising some points of interest and discussions. Section 3 gives an 
overview of Sign Languages, giving special consideration to Libras. Section 4 
presents the methods, models and tools used in this work. In Section 5 we detail our  
approach to Sign Language recognition. Section 6 then lists our experiments, detailing 
the dataset and strategies we have used. Section 7 presents and discusses our findings, 
while Section 8 concludes this work. 

2 Related Works 

Sign Language recognition is closely related to gesture recognition. Following a  
comprehensive survey on this topic given in [3], one can say gesture recognition me-
thods have been traditionally divided into two main categories: Device-based [4] and 
vision-based [5, 6, 7, 8]. Device-based approaches often constrain the users to wear a 
tracking device, such as a tracking glove, resulting in less natural interaction. Vision 
based approaches, on the other hand, free the user from wearing potentially move-
ment-limiting and otherwise expensive devices. In this paper, we will deal only with 
vision-based approaches. 

Gestures can also be either static or dynamic. Static gestures, often called poses, 
are still configurations performed by the user, passive to be registered in a single still 
image. Dynamic gestures, in turn, vary on time, and have to be captured as a sequence 
of still images, such as image streams. Often, gestures have both elements, such as in 
the case of sign languages [3]. In this paper we will be covering both gesture types. 

Several works have also been published aiming the recognition of specific Sign 
Languages. As examples we have systems targeting the American Sign Language 
(ASL) [9], the German Sign Language (Deutsche Gebärdensprache, DGS) [6], the 
British Sign Language (BSL) [10] and the Australian Sign Language (Auslan) [11]. 
We also have works focusing the same language as ours, such as the works done by 
Pizzolato et al. [1] and colleagues [2], who addressed only fingerspelling; and the 
works by Dias et al. [7], who focused specifically on the movement aspects of Libras. 

The work by Dias et al. provided a convenient mathematical formulation of the 
movement recognition problem, presenting a solution using Self-Organizing Maps 
(SOM) networks and Vector Quantization. Interestingly enough, Carneiro et al. [12] 
also used the SOM model as a preprocessing step to classify signs from the Libras 
manual alphabet, both reporting high classification rates. 

Moreover, other papers have already explored HCRFs [13] and other variants for 
gesture recognition. Morency et al. used Latent Dynamic-CRFs (LD-CRFs) [14]  
to perform gesture recognition in continuous image streams, with excellent results. 
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Elmezain et al. [8] also studied CRFs, HCRFs and LD-CRFs in the recognition of 
alphabet characters and numbers drawn in mid-air using hand trajectories, obtaining 
91.52%, 95.28% and 98.05% for each model, respectively.  

We consider our work to be more closely related to the work done by [10], in 
which the authors considered a linguistic model for signed words. Their structural 
approach attempted to decompose the sign into visemes in the same way a spoken 
word can be decomposed into phonemes. The next sections should make it clear how 
we took a similar approach by decomposing the Libras sign into its appropriate  
component units. 

3 Sign Languages and the Brazilian Sign Language 

Languages based on visual signs have arisen in the same manner as all spoken lan-
guages. Contrary to popular belief, those languages are not mimics. Most often they 
are also not a sign version of the spoken languages, such as English or Portuguese. 
They are fully qualified languages, with their own grammar, lexicons and semantic 
rules to be obeyed. 

Furthermore, Sign Languages are not universal – and thus signers from one coun-
try or community should not be expected to be able to talk with signers from other 
communities unless they know and agree to sign in the same language. Hence Brazil’s 
official Sign Language is the Libras, recognized as such since early 2002. 

The recognition of the Libras as the official language for the country was perceived 
as a victory for the deaf communities in Brazil. This eventually led to its regulation in 
2005, making Libras classes mandatory in teacher formation curses – such as for  
obtaining a Pedagogy degree in Higher Education. The deaf also acquired the right to 
the interpreter in court and in education, further increasing the importance of the  
interpreter in the Brazilian society. The availability of tools for the automatic recogni-
tion of Sign Language could thus be of major interest to help those professionals. 

The Libras also have been studied under linguistics grounds. One of the first and 
still most comprehensive descriptions of the structural organization of the Libras was 
given by Brito [15]. Her effort at characterizing the elements of the Libras sign has 
been one of the major guides in designing this system. Brito had identified 46 funda-
mental Hand Configurations (HC) in the Libras. She also identified other parameters 
such as the Articulation Points (AP), the Movement types (M), the Hand Palm Orien-
tation (HO), the Contact Region (CR) and the Non-Manual Components (NM) used in 
the language. If one could identify all possible elements in the aforementioned para-
meter sets, then a sign could possibly be denoted as a tuple  =   , , , , , .  
One must also give special consideration to the NM set. Non-manual information 
often plays a crucial role in determining the true meaning of a signal in Libras. Facial 
information, for instance, can be used to resolve ambiguities, further qualify the sign 
being performed and even completely negate or change the meaning of a sign. This 
information thus cannot be simply ignored by an automatic recognition system.  
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4 Methods and Tools 

4.1 Artificial Neural Networks 

As the name implies, at their creation Artificial Neural Networks (ANNs) had a 
strong biologic inspiration. However, despite their biological origins, ANNs can be 
regarded as simple functions :  mapping a given input ∈   to a corres-
ponding output  ∈ . The output vectors = , … ,  are also restricted to a 
specific subset of . Each ∈  is restricted to a particular range according to the 
choice of activation function for the output neurons. In the case of sigmoid activation 
functions, this range is 0; 1]; in case of bipolar sigmoid functions, it is 1; 1]. 

Since ANNs can be seen as standard mathematical functions, the learning problem 
can also be cast as a standard optimization problem, in which one would like to mi-
nimize a divergence, in some sense, between the network outputs  and the desired 
answers . One possible way to achieve it is through the minimization of the error 
gradient; and a promising method for this is given by the Resilient Back-propagation 
algorithm (Rprop) [16, 17]. 

The Rprop algorithm is one of the fastest methods for gradient learning restricted 
solely to first-order information. Its basic operational principle is to eliminate the 
(possibly bad) influence of the gradient magnitude in the optimization step. Unlike 
other gradient based methods, such as Gradient Descent, in which the step size is 
always proportional to the gradient vector, Rprop takes into account only the direction 
of the gradient, making it a local adaptive learning algorithm. Because Rprop relies 
only in first-order information, it is not required to compute (and hence store) the 
Hessian matrix of second derivatives for the learning problem, making it especially 
suitable for high dimensional problems. 

One of the biggest challenges in learning ANNs is the presence of multiple local 
minima and the relatively large number of hyper parameters which have to be careful-
ly adjusted in order to ensure a good generalization. In despite of this, they have been 
finding much renewed interested from the machine learning and artificial intelligence 
community thanks to recent advances in learning algorithms for deep layer architec-
tures, in a new approach which is now referred as the deep learning paradigm [18]. 

4.2 Support Vector Machines 

In face of the problems often found with other learning models, such as the presence 
of multiple local minima and the curse of dimensionality, the SVM had been specifi-
cally conceived to avoid such issues. Although some may argue that the SVM does 
not have any edge over the curse of dimensionality [19], their practical importance 
cannot be diminished. These models have shown great performance in many real-
world problems [5, 20, 19], including problems of high dimensionality [21] and of 
large-scale [22]. In the linear case, the SVM decision is given by a simple hyperplane 
decision function on the form 
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 ( = ( 0 (1) 

in which we decide for class  if a point  lies on one side of the hyperplane  
defined by the parameter vector  and threshold ; or class  if it lies on the other. 
The SVM decision function is usually given in its dual form, in terms of Lagrange 
multipliers ,  selected support vectors  and output labels  as 

 (  = ∈ 0 . (2) 

In order to generalize this model to non-linear decision surfaces, one can introduce a 
nonlinear transformation ( :   such that, when applied to the input vectors  ∈  , creates a projection in a high-dimensionality feature space  . Using  
the kernel trick, one can replace inner products in eq. (3) with a Mercer’s kernel of the 
form ( , =  ( , ( . Since  does not have to be explicitly computed, the 
feature space  can have an arbitrarily high dimensionality.  

The learning procedure for such model can be done using an approximate version 
of the Structural Risk Minimization principle [23]. In this work, all training has been 
performed using Platt’s Sequential Minimal Optimization (SMO) algorithm [20, 24]. 

Multiclass Classification Approaches 
An immediate problem arising from the SVM’s original hyperplane formulation is 
that it is not very obvious how to make the model applicable to more than two classes. 
Several approaches have been proposed to overcome this limitation, two of them  
being known as the 1-vs-1 and 1-vs-all strategies for multiple class classification. 

For a decision problem over  classes, 1-vs-all requires the creation of  classifi-
ers, each trained to distinguish one class from the others. The decision then is taken in 
a winner-takes-all approach. However there is no clear indication this approach re-
sults in an optimum decision. In the 1-vs-1 strategy, the problem is divided into ( 1 /2 sub-problems considering only two classes at a time. At the decision 
phase, each machine casts a vote for one of the classes and the label with highest 
number of votes wins. This leaves the problem of evaluating an increased number of 
machines every time a new instance is classified – which could easily become troub-
lesome or prohibitive in time sensitive applications.  

The Decision Directed Acyclic Graph (DDAG), first proposed in [20], provides the 
fast evaluation times of the 1-vs-all strategy while at the same time offering strong 
generalization bounds on the generalization error. The DDAG also keeps the original 
hyperplane decision formulation by sequentially cutting the decision space until a 
decision is found. For a decision problem over  classes, only ( 1  machines 
need be evaluated [20]. The performance of this approach improves significantly 
when using linear machines since each SVM evaluation is reduced to a single vector 
multiplication. 
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4.3 Hidden Markov Models 

Hidden Markov Models (HMMs) attempt to model the joint probability distribution of 
a sequence observations  and their relationship with time through a sequence of 
hidden states . A HMM is described by a tuple = ( , ,  in which  denotes a 
matrix of possible state transition probabilities,  is a vector of probability distribu-
tions governing the observations and  is a vector of initial states probabilities. In the 
literature, HMMs are often described alongside three associated canonical problems: 
evaluation, learning and decoding. Although we will not be discussing those in detail, 
a very comprehensive explanation is due to Rabiner [25].  

Exploring the fact that an HMM is able to provide the likelihood for a given se-
quence , it is possible to create a classifier by creating a model  for each sequence 
label ∈ Ω.  Treating each model  as a density model conditioned to an asso-
ciated class label , one can apply the Bayes’ rule to obtain the a posteriori proba-
bility and then decide for the class with maximum a posteriori. 

4.4 Hidden Conditional Random Fields 

The HCRF can be seen as a latent-variable extension of the Conditional Random 
Field (CRF), first proposed by [26]. The HCRF attempts to model ( | , the proba-
bility of a class label given a sequence, without incorporating an specific model for ( . This is in direct contrast with their generative counterpart given by generative 
classifiers based on sets of hidden Markov models (HMMs), which model ( |  
individually for each class label and attempt to convert those to the posterior probabil-
ities ( |  either using Maximum Likelihood or Maximum a Posteriori estimates 
with the aid of Bayes’ rule. 

A general and comprehensive definition of a CRF can be found in [27], in which 
the authors define a CRF based on the partitioning of a factor graph. As such, consid-
er a factor graph  partitioned in a set of clique templates =  { , , … ,  }. Each 
clique template  should specify a set of sufficient statistics ,    and 
parameters  ∈ ( , in which  is the sequence of observations and  the se-
quence of hidden states associated with the observations . Then, a general model for 
a CRF can then be written as 

 ( | = 1( ( , ;∈∈  (3) 

in which ,  ;  = {∑  ( ,  ( }  and (  is the partition 
function used to keep results as probabilities.  

Unlike HMMs, CRFs assume the label sequence  to be known during training. 
One possible solution to this problem is to handle  as latent variables. By adding a 
variable  to designate class labels, and setting  to be hidden, one arrives at the 
HCRF formulation given by 
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Considering Brito’s work, along this paper we will consider the feature vector 

 

= , , , ,  
 ∈  ,      1 46 , ∈  1  ,   1, ∈ ,  

(6) 

in which  denotes the hand configuration detected by the hand configuration clas-
sifier;  and  are the relative positions of the hand compared to the center of 
the head; and  and  are the angular orientation of the hand and face, respective-
ly. All relative positions are normalized to the unit interval, and angular information is 
given in radians. For clarity, we will refer to the set of 46 possible configurations 
as . To maintain consistency with the following sections, the feature vector will be 
named , and the individual element at the -th position will be indicated by . 

5.1 Static Gesture Recognition Layer 

In order to estimate the location of the hands and the face of the user in a stream of 
continuous images, we use combined information gathered through depth and intensi-
ty sensors. To estimate the position of the face and hands, we combine the standard 
Haar object detection algorithm of Viola and Jones [29] and the Camshift [30] object 
tracker (with a few modifications for increased stability and robustness) with a  
Dynamic Virtual Wall Algorithm [31] for depth image segmentation.  

Although we will not be discussing the segmentation algorithm in detail, our  
approach is centered on quickly detecting a tracking failure and quickly recovering 
from this error. This technique is able to work even when facing noisy and uncon-
trolled environments. As we shall see shortly, since the subsequent processing layers 
are able to cope with isolated frame errors, this approach works very well.  

Continuing the processing flow, after the hands have been located, a bank of SVMs 
disposed in a Large-Margin DDAG is used to classify the hand image into one of the 
possible 46 hand configurations from . The initial experiments and results shown in 
[2] have been proven particularly useful to adequately learn the models used in this 
layer, particularly due the hyperparameter heuristics we had explored earlier. 

5.2 Dynamic Gesture Recognition Layer 

Our second processing layer takes the output of the first layer, combined with trajec-
tory, spatial and facial information and creates the feature vectors shown in (eq. 6). 
Considering each feature vector as an individual observation  belonging to a  
sequence of observations , the goal of this layer is to estimate the word label  
which is most likely associated with a given .  

To create and learn the dynamic gesture models of this layer we considered feature 
functions of both discrete and continuous nature. We initialize our HCRF models  
with probabilities taken from corresponding HMMs, which have been crafted to use 
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independent, mixed joint-distributions of both discrete and continuous variables. This 
independent formulation could be seen as the application of the naïve Bayes assump-
tion to our feature vectors. The emission distributions for the observation sequences 
could then be expressed in the form 

 ( =  (7) 

in which  is a discrete distribution and …  are assumed approximately normal 
with unknown mean and variance. We note there may be some concerns since a nor-
mal distribution is being assumed for variables which are of circular nature. However, 
the importance of this imprecision can be diminished when we consider that face and 
hands movements are limited by the joints of the body and, in case of the face, cannot 
possibly wrap. Choosing a Normal distribution also makes it easier to draw our linear-
chain HCRF features as 

 

( ( , , , = { = } ∈
,(      ( , , , = { } { } , ∈
, ,(     ( , , , = { } {( } ∈∈∈
,(    ( , , , = { } ∈∈
,(     ( , , , = { } ∈∈
,(    ( , , , = { } ∈∈

 (8) 

in which Ω is the set of all possible class labels in our classification problem,  is 
the number of states assumed for sequences of class . The label features (  

trigger when a sequence belongs to class . Transition features ,(  trigger when-

ever there is a transition from state  to state . Emission features , ,(  trigger when 
a discrete symbol  occurs in the -th position of the observation vector while inside 
state . Occupancy features ,(  trigger whenever state  is reached, while the first 

and second moment features ,(  and ,(  perform the sum and sum of squares of 
the observation features at positions  when the state is .   

Using this set of feature functions, an HMM classifier created after each class label ω with prior probabilities α  , transition matrices  and emission densities  
can be viewed as a HCRF with the corresponding components given as 
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( = log ∈
,(     = log , , ∈
, ,(     = log ( ∈∈∈
,(    = 0.5 log 2 ,, ∈∈
,(    = ,, ∈∈
,(    = 12 , ∈∈

 (9) 

in which ,  and ,  refer to the mean and variance for the emission density at 
state  for the observation vector  element at position  in case this element has an 
assumed normal distribution. In case this element is discrete, (  denotes the prob-
ability mass function for the state  for the hand configuration symbol ∈ . 

6 Experiments 

6.1 Datasets 

In order to create and learn our classification models, we acquired and organized a 
gesture dataset containing both static and dynamic gestures. We collected samples 
from 21 distinct subjects using Microsoft’s Kinect sensor, registering both color and 
depth information. We note, however, that any of the results arising from our experi-
ments are not restricted to this particular choice sensor, as all image processing has 
been done at the depth and intensity representation level. Those also have been  
gathered at varying luminosity levels, with both natural and artificial light sources. 

The data acquisition occurred in two phases. At the first phase, the subjects had 
been asked to perform each of the fundamental 46 hand configurations of the Libras, 
purposely varying the location and orientation of the hand while keeping the configu-
ration fixed. We sampled a total of 300 frames for each class to serve as training data 
to our static classifiers, giving a total of 13,800 training instances. Another indepen-
dent and mutually exclusive sample of the same size has been drawn to be used as a 
validation set in the intermediate static gesture classification step.  

In the second phase, we asked subjects to perform 13 natural words from the  
Libras. Those words have been repeated multiple times for a single subject, accom-
modating small variations between different performances. This gave us a total of  
939 sequences of frames and a total sum of 139,154 frames in the dynamic gesture 
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database. Furthermore, those sequences have been further divided into 10 mutually 
exclusive sets in a preparation for applying 10-fold cross-validation. 

The words explored in this work are shown in Table 1. Those have been chosen 
due their particular difficulties: Cabinet involves the occlusion of the face, Sorry  
involves the tilting of the head; I, Shoes, Like and Buy require touching other body 
parts. Sorry and Age are performed with the same hand configuration but differs in 
spatial location and in a head tilting movement. Cabinet and Car are performed  
giving equal importance to both hands. 

Table 1. Signed words contained in our dataset 

Armário (Cabinet) 
Sapato (Shoes) 
Desculpa (Sorry) 
Eu (I) 
Dia (Day) 
Tchau (Bye) 
Oi (Hi) 

Idade (Age) 
Carro (Car) 
Comprar (To Buy) 
Gostar (To Like) 
Nome (Name) 
Querer (To Want) 

6.2 Static Gesture Classifiers 

For the first processing layer we have created a number of SVMs with varying kernel 
functions and multi-class decision strategies. We also created feed-forward activation 
neural networks with a varying number of hidden neurons for comparison purposes. 
All classification machines have been designed to learn directly on a rescaled depth 
image of the user’s hand. Those images have been gathered in the segmentation step 
as described in Section 5, but rescaled to a uniform size of 32 32 and then con-
verted into a feature vector of 1024 positions. Despite the extremely simple nature of 
those features, the raw performance of this layer in correctly recognizing each of the 
hand configurations in  will not be as important as will the regularity of the clas-
sifier in classifying similar gestures with similar labels. Here, the hand configuration 
labels of the linguistic model are being used only as a guide – as long as the gesture 
recognition layer can detect patterns in the class labels generated at this stage, an  
absolute accuracy will not be required.  

6.3 Dynamic Gesture Classifiers 

After creating our static classifiers, we tagged the entire dataset of signed words and 
formed the feature vectors containing both hand configuration labels and trajectory 
information. In each cross-validation run an HMM has been created for each of the 
word labels in our dynamic gesture dataset. Those HMMs have then been used to 
initialize our HCRFs to compose the second processing layer. All results for Cohen’s 
Kappa (  were averaged using ten-fold cross-validation, with variance pooled from 
all validation runs. We also compared the performance of the system without using 
the static classifier information at all, relying solely on trajectory and orientation in-
formation to perform classification. 
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7 Results 

The static classifiers have shown some interesting results. Table 2 enlists selected 
results from tested SVM configurations and the average number of support vector 
(SV) evaluations as a measure of sparseness and efficiency. 

Table 2. Results for the hand configuration candidate machines (first processing layer) 

Kernel 
function 

Multiclass 
Strategy 

Kappa ± (0.95 C.I.)
Average Number of
Vector Evaluations 

Linear 
DDAG 0.2390 ± 0.0074 45 

Max-Wins 0.2404 ± 0.0074 1,035 

Quadratic 
DDAG 0.4737 ± 0.0085 8,069 

Max-Wins 0.4790 ± 0.0085 339,509 

Gaussian 
DDAG 0.3401 ± 0.0042 8,707 

Max-Wins 0.3417 ± 0.0042 375,372 

The graph below also shows the performance of the ANNs as a function of the 
number of neurons in their hidden layer. The best result reported by a neural network 
occured at 1000 neurons, with ̂ = 0.301and  ( ̂  = 4.05 10 . We 
note that after this peak the networks seemed to start overfitting the training data. 

 

Fig. 2. Results for the hand configuration candidate networks (first processing layer) 

Considering accuracy alone a quadratic SVM would be the clear choice to serve in 
the first classification layer. It performed statistically significantly better than all other 
models considered in this experiment. However, the performance cost in running such 
a machine can be huge. In contrast, the cost of computing a linear-SVM DDAG is 
much reduced. The DDAG based on linear SVMs has a constant evaluation rate, since 
its evaluation does not depend on the number of support vectors, but rather on the 
number of classes in the problem. Since a DDAG reduces the evaluation effort from 
computing 1035  decisions to only 45  constant-time decisions, we attain a much 
efficient, but weaker classifier, to serve as the first step in our dynamic gesture recog-
nition system. We shall see shortly that the reduced performance will not be a  
problem due the probabilistic nature of the models on the second layer. 

Table 3 below shows the results for the dynamic gesture experiments. The best 
combination of models was given by a SVM and a HCRF as the first and second  
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Table 3. Recognition results for the sequence classification models (second processing layer) 

Static 

Gesture 

Dynamic 

Gesture 

Training Validation 

Kappa ± (0.95 C.I.) Kappa ± (0.95 C.I.) 

SVM HMM 0.8886 ± 0.0186 0.7951 ± 0.0717 

SVM HCRF 0.9466 ± 0.0131 0.8019 ± 0.0708 

ANN HMM 0.8610 ± 0.0205 0.7473 ± 0.0771 

ANN HCRF 0.9330 ± 0.0148 0.7727 ± 0.0743 

None HMM 0.6411 ± 0.0287 0.5308 ± 0.0898 

None HCRF 0.6638 ± 0.0283 0.5524 ± 0.0897 

 
processing layers in the system, respectively. However, we note that results using 
ANNs were not significantly distinguishable from SVMs. The real difference  
occurred between the use of HMMs and HCRFs.  

While this difference was not statistically visible in validation sets, the same could 
not be said of the training sets. It can be seen the models did not overfit – we obtained 
a statistically significant ( 0.01) performance gain over training instances but no 
loss of generality over unobserved instances. Discriminative models were able to 
retain more knowledge without losing generalization when compared to HMMs.  

On the other hand, when compared with models which did not use the hand confi-
guration information at all, we achieved statistically significant results both for  
training and validation sets. As hinted before, the relatively small values for  re-
ported in Table 2 were no hurdle for the overall system performance. In fact, as in 
boosting mechanisms, where the combination of weak classifiers is able to produce 
one strong classifier, here the second processing layer is able to detect the patterns 
being output by the first layer, consolidating them into notable useful information 
when classifying new gestures. Thus the first processing layer effectively acts as a 
supervised feature extraction stage guided by linguistic information. Interestingly 
enough, the increased knowledge absorption by the discriminative models was mostly 
noticeable only in the presence of this first classification layer. 

8 Conclusion 

Here we have presented our approach to sign word recognition in Libras. By combining 
linear SVMs organized in Decision Directed Acyclic Graphs with Hidden Conditional 
Random Fields, we have shown how the use of discriminative models over generative 
ones helped improve the system’s performance without causing a likely overfit. We 
have shown how the use of linguistic information has been helpful at designing such a 
gesture recognition system; and how our choice of simple features, based on a mixed 
vector with both discrete and continuous components have been suitable for this task. 
One can regard the first processing layer of our system as a guided feature extraction 
step rather than a definite classification stage. The use of a fast hand posture recogni-
tion layer based on DDAGs had been shown extremely useful when combined with 
trajectory and temporal information, achieving statistically significant results in  
comparison to models which did not use the presented technique. 
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Abstract. In several pattern classification problems, we encounter
training datasets with an imbalanced class distribution and the presence
of outliers, which can hinder the performance of classifiers. In this paper,
we propose classification schemes based on the pre-processing of data us-
ing Novel Pattern Synthesis (NPS), with the aim to improve performance
on such datasets. We provide a formal framework for characterizing the
class imbalance and outlier elimination. Specifically, we look into the role
of NPS in: Outlier elimination and handling class imbalance problem. In
NPS, for every pattern its k-nearest neighbours are found and a weighted
average of the neighbours is taken to form a synthesized pattern. It is
found that the classification accuracy of minority class increases in the
presence of synthesized patterns. However, finding nearest neighbours in
high-dimensional datasets is challenging. Hence, we make use of Latent
Dirichlet Allocation to reduce the dimensionality of the dataset. An ex-
tensive experimental evaluation carried out on 25 real-world imbalanced
datasets shows that pre-processing of data using NPS is effective and
has a greater impact on the classification accuracy over minority class
for imbalanced learning. We also observed that NPS outperforms the
state-of-the-art methods for imbalanced classification. Experiments on 9
real-world datasets with outliers, demonstrate that NPS approach not
only substantially increases the detection performance, but is also rel-
atively scalable in large datasets in comparison to the state-of-the-art
outlier detection methods.

Keywords: Class Imbalance, Outlier detection, Classification, Latent
Dirichlet Allocation, Dimensionality Reduction.

1 Introduction

One of the greatest challenges in data mining applications is dealing with
imbalanced datasets [1]. A dataset is “imbalanced” if one or more classes has
significantly less number of samples than the other classes. We encounter imbal-
anced datasets in many real-world domains, such as credit card fraud detection,
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oil spill identification [2] and text classification [3]. For example, in medical di-
agnosis of a certain type of cancer, out of total diagnosed samples, only a small
number of samples actually have cancer. In case of binary classification prob-
lems, the class which contains substantially less number of samples is called the
minority class (class c) and the other class is called the majority class (class c).
Usually in imbalanced datasets, cost of misclassifying the minority class samples
is higher than the cost of misclassifying the majority class samples. To handle
class imbalance problem we need to correctly classify the minority class samples.
In this paper our focus is on ‘two-class imbalanced classification problem’.

Traditional classifiers assume that the training set has roughly an equal
number of patterns from both the classes. When such a classifier is trained on
imbalanced dataset, it often shows a strong bias towards the majority class. This
situation occurs as the standard learning algorithms aim to maximize the overall
prediction accuracy. For example, a high classification accuracy may be achieved
by simply assigning all samples to the majority class. In such a case, performance
of data mining algorithms is reduced, especially the accuracy corresponding to
the minority class. This leads to suboptimal classification performance on the
minority class.

Sampling is a popular approach to address the imbalanced class problem,
where extra patterns are added to the minority class and few patterns are re-
moved from the majority class, as shown in SMOTE [4]. Although these sampling
techniques are straightforward and computationally efficient, these methods are
prone to either increased noise and duplicated samples or informative sample
removal [5]. Alternatively, a cost-metric can be specified to force the classifier to
give more importance to the minority class [6]. This requires choosing a correct
cost-metric which is often unknown a priori.

An outlier [7] is an observation that is quite distinct from the remaining
data in the sample space. Removal of outliers can improve the performance of a
classifier. Hence, our aim is to pre-process the data so as to reduce the impact of
outliers and class imbalance which could be associated with the dataset. In this
paper, we exhibit a Novel Pattern Synthesis technique, which addresses both
these issues simultaneously.

Novel Pattern Synthesis (NPS) technique [8] is developed to improve classi-
fication accuracy of the conventional k-Nearest Neighbour Classifier(kNNC) [9]
as well as the edited 1-NN classifier. In NPS, for every pattern its k -nearest
neighbours are found from the same class and a weighted average of the neigh-
bours is calculated. Such a pattern is called a Synthesized pattern. For each
pattern in the class, we find the corresponding Synthesized pattern. Then we use
the Synthesized patterns in two ways: either we add Synthesized patterns to the
given training data as shown in Algorithm 1 or replace the existing data with
the Synthesized patterns as shown in Algorithm 2. In this article, we use NPS
to handle both class imbalance and outlier detection simultaneously.

Our specific contributions in this paper are:

– We analyse the impact of class imbalance and outliers on classifiers and
provide a formal framework for characterizing class imbalance.
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– We empirically show how NPS can improve the classification accuracy of
minority class samples in imbalanced datasets and how NPS handles outliers.

– We use two variants of Novel pattern synthesis and show that NPS improves
classification accuracy using C4.5 Classifier.

– We thoroughly evaluate the differences between SMOTE and NPS, and ex-
plain how NPS outperforms SMOTE.

– We present comprehensive empirical results which show that NPS outper-
forms state-of-the-art imbalanced learning on several real-world datasets. For
high-dimensional dataset, LDA is used for dimensionality reduction.

– We empirically show that NPS is superior to other state-of-the-art outlier
detection methods in the literature.

The paper is organized as: Section 2 reviews existing techniques in literature
to handle class imbalance problem and outlier detection methods. Section 3
introduces two variants of the NPS. Section 4 describes how pattern synthesis
solves class imbalance and outlier detection. Section 5 presents the results of our
experiments on real world datasets including a comparison with state-of-the-art
methods and Section 6 concludes the paper.

2 Related Work

A majority of the current research to tackle the imbalanced class distribution
problem can be grouped into two categories: algorithmic level approaches and
data level approaches.

The focus of algorithmic level methods has been on modification of existing
classification algorithms so that they can be more effective in dealing with imbal-
anced data, such as biasing towards the minority class, learning from one class
[10] and assigning different classification-error costs on both class instances by
weighting each type. For example, modifications to decision tree algorithm, such
as HDDT [11] have been proposed to improve the standard C4.5.

Data level approaches rebalance the class distribution by resampling the data
space. This way, preprocessing is done on the data and learning algorithm is not
modified. Therefore, they are independent of the classifier used and usually more
versatile. There have been several proposals for coping with skewed datasets [12].
For instance, there are sampling approaches in which we over-sample (i.e., dupli-
cate) examples of the minority class, under-sample (i.e., remove) examples of the
majority class. Random under-sampling [13] removes majority class instances at
random until it contains as many examples as the minority class, the rare in-
stances are often treated as noise. Hovy [14] discussed the impact of different
re-sampling methods on the classifier accuracy and showed under sampling to
be more effective than over sampling for improving the performance of models
built using C4.5 decision trees.

Domingos [6] proposed Metacost, a re-costing method, which relabels the sam-
ples using loss function along with bagging. Risk on the original data is the same
as that of relabelled data. According to Domingos, C4.5 Rules produce lower cost
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classifiers with under-sampling than with over-sampling. Also, Metacost reduces
costs compared to cost-blind classifier which use C4.5 rules.

SMOTE [4] is an over-sampling technique, that synthesizes new minority class
examples by randomly interpolating pairs of closest neighbours in the minority
class. Minority class examples are introduced along the line segments that join
any/all of the k minority class nearest neighbours. However, SMOTE encounters
over generalization problem. It blindly generalizes the region of a minority class
without considering the majority class.

SMOTEBoost [15] uses SMOTE to get new minority class examples in each
iteration. Unlike the general boosting strategy, that is, changing the distribution
of training data by updating the weights associated with each example, SMOTE-
Boost alters the distribution by adding new minority-class examples. In [11], the
Hellinger distance (HDDT) metric was used as the decision tree splitting cri-
terion and shown to be insensitive towards class distribution skewness. HDDT
capitalizes on the importance of designing a decision tree splitting criterion that
captures the divergence in distributions while being skew-insensitive [16].

Random Forest (RF) [17] is designed to produce accurate predictions that do
not overfit the data. RF combines both bagging and random feature selection. RF
is an ensemble classifier that consists of many decision trees and outputs the class
that is the mode of classes output by individual trees. For imbalanced learning
in case of Decision trees, branches useful to predict the minority are likely to
be pruned since replacing them by a majority leaf can lead to a lower error
rate. Class Confidence Proportion Decision Tree (CCPDT) [18] is robust and
insensitive to size of classes and generates rules which are statistically significant.

Outlier detection is an important task in data mining with numerous appli-
cations including credit card fraud detection, video surveillance, stock market
analysis, intrusion detection, and severe weather prediction. In [19], identification
and elimination of outliers is done by a variant of SVM training. This modifi-
cation of SVM training will explicitly identify outliers from training set. Our
scheme deals with outlier elimination by using synthesized patterns.

Local Outlier Factor (LOF) [20] is density estimation based technique which
has been extensively studied as a method for outlier detection. LOF approach
is based on computing distances between data records. After LOF, many local
density-based methods were proposed to compute the outlier factors, such as
LOcal Correlation Integral (LOCI) [21], connectivity-based outlier factor [22],
spatial local outlier measure [23], and local peculiarity factor [24]. Local Density
Function (LDF) is an extension to LOF, which uses kernel density functions.

LDF [25] presents an outlier detection framework that is closely related to
statistical non parametric density estimation methods with a variable kernel to
yield a robust local density estimation. Outliers are then detected by comparing
the local density of each point to the local density of its neighbours. In Fea-
ture Bagging method [26], results are combined from multiple outlier detection
algorithms that are applied using different sets of features.

The behaviour of many classification algorithms degrades with an increase
in dimensionality [27]. Data in high-dimensional space is quite sparse and
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finding nearest neighbours of a pattern is very challenging. So, there is a need
for designing approaches which can work well with high-dimensional data. In
our approach we use Latent Dirichlet Allocation (LDA) [28] to reduce dimen-
sionality, LDA reduces any document to a fixed set of real-valued features, thus
reducing the dimensionality called topics.

3 Novel Pattern Synthesis (NPS)

Novel pattern synthesis (NPS) is a technique to generate new patterns from the
available set of patterns in a class. In NPS, for each pattern its corresponding
k -nearest neighbours are found from the same class and a weighted average of
the neighbours is taken; such a pattern is called a Synthesized pattern. For each
pattern in the class, we find the corresponding Synthesized pattern. Japkowicz
[12] presented algorithms to select the prototypes by using data preprocessed
by NPS.

Bagging or Bootstrapped aggregation is a resampling technique used to reduce
the variance by sampling with replacement from the given dataset. Here samples
are selected from the given dataset with the replacements. Note that our scheme
is different from bagging [29]. Also, SMOTE is an improvement over bagging [4].

3.1 Add Patterns to Minority Class

Algorithm 1. Add patterns to minority class

Input: A minority class dataset D = {X1, X2, ..., Xm} , no. of neighbours k and the
no. of Synthesis iterations l
Output: Synthesized dataset D

1: Let new dataset D2 = D
2: for p = 1 → l do
3: dataset D1 = ∅
4: for i = 1 → m do
5: let k nearest neighbours of Xi in D2 be X1

i , X
2
i , ..., X

k
i

6: XB = 1
k

k∑
j=1

Xj
i

7: D1 = D1 ∪ {XB}
8: D2 = D2 − {Xi}
9: end for
10: D2 = D1

11: D = D ∪D1

12: end for

Property 1: Class imbalance is handled by Algorithm 1

Proof. Using Algorithm 1 we are adding Synthesized patterns to only minority
class, resulting in an increase in the number of minority class samples. Thus class
imbalance is reduced, as the number of minority class samples has increased. We
use the Minimum Distance Classifier (MDC) [9] for Property 2.
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Property 2: Post pattern synthesis the decision boundary will intersect
the line segment between the two means for the Minimum Distance
Classifier

Proof. Let us assume that the two classes are normally distributed:

c : N(μi, σ
2I), c : N(μj , σ

2I),
∑

= σ2I

The corresponding linear discriminant is of the form wT (x−x0) = 0 as mentioned
by Burges [30], where w = μi − μj and

x0 =
μi + μj

2
− σ2

‖ μi − μj ‖2 log
P (c)

P (c)
(μi − μj)

=

{
1

2
− σ2

‖ μi − μj ‖2 log
P (c)

P (c)

}
∗ μi +

{
1

2
+

σ2

‖ μi − μj ‖2 log
P (c)

P (c)

}
∗ μj ..(1)

(1) is of the form,

x0 = λ ∗ μi + (1 − λ) ∗ μj

where,

λ = 1
2 − σ2

‖μi−μj‖2 log
P (c)
P (c)

Typically, 0 ≤ λ ≤ 1 such that the point x1 lies between the two means on the
line joining them. However, when there is a class imbalance such that

e
‖μi−μj‖2

2σ2 <
p(c)

p(c)
⇒ ‖ μi − μj ‖2

2σ2
< ln

p(c)

p(c)
⇒ 1

2
<

σ2

‖ μi − μj ‖2 ∗ ln
p(c)

p(c)

⇒ 1

2
− σ2

‖ μi − μj ‖2 ∗ ln
p(c)

p(c)
< 0 ⇒ λ < 0

Then, decision boundary (D1) passes through x0 which lies to the left of μi as
shown in Figure. 1. This results in classifying all patterns with class label as c.
Thus NPS improves classifier performance on minority class.

Note: Similarly, if there exists class imbalance, such that

e
‖μi−μj‖2

2σ2 < p(c)
p(c) ⇒ ‖μi−μj‖2

2σ2 < ln p(c)
p(c) ⇒ 1

2 < σ2

‖μi−μj‖2 ln
p(c)
p(c)

⇒ − 1
2 > σ2

‖μi−μj‖2 ln
p(c)
p(c) ⇒ 1

2 − σ2

‖μi−μj‖2 ln
p(c)
p(c) > 1 ⇒ λ > 1

Therefore, decision boundary (D2) lies to the right of μj as shown in Figure. 1,
going in favour of c.
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Fig. 1. Shift of Decision Boundary with Novel Pattern Synthesis

3.2 Replace Data by Synthesized Data

In Algorithm 2 the size of input and output datasets will be the same, but output
dataset contains Synthesized patterns. This is depicted in Figure 2. Note that
after NPS, separation between the two classes becomes prominent.

Algorithm 2. Replace data by Synthesized data

Input: A set D = {X1, X2, ..., Xm}, size m and no. of neighbours k
Output: Synthesized dataset D

1: dataset D1=∅
2: for j = 1 → m do
3: let k nearest neighbours of Xi in D = X1

i , X
2
i , ..., X

k
i

4: XB = 1
k

k∑
j=1

Xj
i

5: D1 = D1 ∪ {XB}
6: end for
7: D = D1

Fig. 2. Synthesis of Data using Algorithm 2
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Theorem 1. Expected value of i.i.d patterns in a class remains same even after
Novel pattern synthesis.

Proof. Let k nearest neighbours of X be X1, X2, ..., Xk which are independent
and identically distributed (i.i.d) random variables and X be the Synthesized
point corresponding to pattern X. Let μ be the mean. Then

E[X ] = E[ 1k

k∑
i=1

Xi] =
1
k ∗ E[

k∑
j=1

Xj] (since E[aX ] = aE[X ])

= 1
k

k∑
j=1

E(Xj) (Since Xs
i are i.i.d) = 1

k

k∑
j=1

μ = k∗μ
k = μ

Hence expected value of i.i.d patterns remains same after pattern synthesis.

Theorem 2. Variance of the set of i.i.d patterns in a class decreases after pat-
tern synthesis

Proof. Consider the assumptions as in Theorem 1,
V ar(X) = E[(X − μ)2] = E(X2) − μ2

V ar(X) = V ar( 1k

k∑
j=1

Xj) =
1
k2 V ar(

k∑
j=1

Xj) ( V ar(aX) = a2V ar(X))

= 1
k2

k∑
j=1

V ar(Xj) (Since X
s
j are independent)

= 1
k2

k∑
j=1

σ2(since Xs
j are i.i.d) = 1

k2 (k ∗ σ2) = σ2

k

Therefore, V ar(X) = σ2

k ⇒ std.deviation(X) = σ√
k
= std.deviation(X)√

k

Hence, standard deviation decreases by a factor of
√
k after NPS where k

is the number of nearest neighbours considered while generating Synthesized
patterns.

4 Problems Associated with Classifiers

4.1 Class Imbalance

Class imbalance can affect the performance of a classifier as mentioned in Prop-
erty 2. Prior probability for class c is given as

p(c) = number of patterns belonging to class c
total number of patterns

In this paper, we use NPS to circumvent the class imbalance problem. We add
Synthesized patterns to minority class using Algorithm 1. Hence, number of pat-
terns in the minority class will increase after Pattern synthesis. From Property
1 we proved that there is an improvement in the ratio of number of patterns of
minority class to the number of patterns of majority class after NPS.
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p(c) < pb(c)

We have pb(c) = p(c), since number of patterns in majority class remain the
same after NPS.

ln
pb(c)

pb(c)
< ln

p(c)

p(c)
( since pb(c) = p(c) ) .. (2)

Consider Property 2, where λ is defined as

λ =
1

2
− 1

(μi − μj)T
∑−1

(μi − μj)
log

p(c)

p(c)
and,

λb =
1

2
− 1

(μi − μj)T
∑−1

(μi − μj)
log

pb(c)

pb(c)

where
∑

is the covariance vector. Using (2), we get

λb > λ

where λb is the λ value after NPS. Thus, λ increases after NPS. Repeat the
NPS technique till there is a significant increase in the number of minority class
patterns, such that λb > 0, and point x0 lies between the two means μ1 and μ2.
Hence the hyperplane separates the patterns of the two classes appropriately. As
a result, class c is no more a minority class. NPS solves class-imbalance problem.

4.2 Outliers

An Outlier or outlying observation, is one that appears to deviate markedly from
other members of the class in which it occurs.

In general, presence of outliers will drastically reduce the performance of a
classifier. The outlier pattern typically is away from μ(Sample Mean). Using
Algorithm 2, we replace the original pattern with the synthesized pattern. From
Theorems 1 and 2, we conclude that after NPS the mean of the modified dataset
remains the same but the standard deviation decreases. As a consequence, the
distance between the mean and the outlier decreases after NPS. This indicates
that impact of the outlier is averaged out or reduced. Hence NPS technique as
in Algorithm 2 is useful in handling outliers.

The VC-dimension [30] of gap-tolerant classifier, a variant of SVM is

min{d, �D2
max/M

2
min�} + 1

Note that NPS using Algorithm 2 helps in increasing Margin(Mmin) and decreas-
ing Diameter(Dmax), both these factors help in outlier elimination. It implies
that NPS reduces the VC-dimension.
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4.3 High Dimensional Space

In a high-dimensional datasets, the curse of high dimensionality will affect the
performance of a classifier. For a query point in high-dimensional space, the
ratio of the distance to the nearest neighbour to that of the farthest neighbour
is almost 1. Let Dmax be the farthest neighbour distance, Dmin be the nearest
neighbour distance and ε be a very small positive real number. Then

Dmax ≤ (1 + ε) × Dmin

Sufficient condition of unstability is that the Pearson variation of the correspond-
ing distance distribution degrades to 0 with increasing dimensionality. Distance
function for high-dimensional data is given by Hsu and Chen [31].

5 Experiments

In order to evaluate the performance of NPS, we carried out a number of experi-
ments. NPS is compared with seven models: unpruned C4.5 decision trees (C4.5)
[32], SMOTE (SMT) [4], MetaCost (Meta) [6], Hellinger Distance decision trees
(HDDT) [11], AdaBoost with SMOTE (SMT-BST) [15], Random Forests with
SMOTE applied (RF-SMT) [4] and Class Confidence Proportion Decision Tree
(CCPDT) [18]. We have used C4.5 decision tree [32] as baseline classifier. C4.5
is widely used to deal with imbalanced datasets [33], and C4.5 has also been
included as one of the top-ten data-mining algorithms [34].

All methods (expect HDDT) were modeled based on the WEKA data mining
toolkit [35] and HDDT is modeled using C++ on a computer with a Windows
7 64 bit OS running on 3.1-GHz Intel Core i5-3450 with 3.25 GB RAM. J48 in
WEKA is used to model C4.5. -M1 option is set to C4.5, to increase the sensitiv-
ity of minority class. Value of k is set to 4 by default for Pattern synthesis and
in all over-sampling techniques. To undersample the majority class for uniform
distribution, we used SpreadSubsample [6]. For Metacost, cost of each class was
set to the inverse of the class ratio.

Our experiments are performed on both high and low dimensional datasets.
Table 1 summarizes high-dimensional datasets of domains: Text categorization
datasets such as Cade, 20 News Group, WebKB and R8 are obtained from
(http://web.ist.utl.pt/ acardoso/datasets/); Medical diagnosis datasets such as
CNS, LYMPH, OVARY, PROST, NIPS (http://www.cs.toronto.edu/ roweis).
High-dimensional datasets have less number of samples, we had artificially con-
trolled the class skew on text categorization datasets and NIPS. The set was
rebalanced for five separate class ratios: 1:1, 1:2, 1:4, 1:8, and 1:16. As finding
nearest neighbours in high-dimensional space is challenging, we used LDA to
reduce the dimensionality and then applied pre-processing technique.

Table 2 describes 16 real-world low-dimensional imbalanced datasets from
various domains used in our experiments, from highly imbalanced (the minority
2.32%) to moderately imbalanced (the minority 30.00%). Oil dataset is obtained
from Holte [2]. The CM1, KC1 and PC1 datasets were obtained from NASA
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Table 1. Description of high-dimensional datasets

Dataset Size Dimensionality Classes (pos, neg) Minority(%) Class Ratio

20NG 1908 15584 (hockey, others) 6.96% 133/1775

Cade 1504 25895 (ciencias, others) 8.75% 131/1372

WebKB 2765 7502 (student, others) 13.75% 380/2385

NIPS 320 13649 (neurobiology, others) 14% 45/275

R8 6215 14309 (acq, others) 15.5% 963/5251

OVARY 66 6000 (malignant, benign) 17% 11/55

PROST 89 6000 (prostate, others) 20% 18/71

LYMPH 77 7129 (folicular, B-cell) 22% 17/60

CNS 90 7129 (others, medulloblastomas) 30% 30/60

Table 2. Description of low-dimensional datasets, ordered in decreasing level of
imbalance

Dataset Size Dimensionality Classes (pos, neg) Minority (%) Class Ratio

Mammography 11,183 6 (true, false) 2.32% 260/10923

Oil 937 49 (true, false) 4.38% 41/896

Hypo-thyroid 3163 25 (true, false) 4.77% 151/3012

PC1 1109 21 (true, false) 6.94% 77/1032

Forest cover 38,500 10 (true, false) 7.00% 2695/35805

Glass 214 9 (3, other) 7.94% 44/170

Satimage 6435 36 (4, other) 9.73% 174/6261

CM1 498 21 (true, false) 9.84% 49/449

Pendigits 10,992 16 (true, false) 9.99% 1099/9892

New-thyroid 215 5 (3, other) 13.95% 30/185

KC1 2109 21 (true, false) 15.46% 326/1783

SPECT-F 267 44 (0, 1) 20.60% 55/212

Hepatitis 155 19 (1, 2) 20.65% 32/123

Vehicle 846 18 (van, other) 23.52% 199/647

Adult 48,842 14 (1, 2) 23.99% 11722/37120

German 1000 20 (2, 1) 30.00% 300/700

IV & V Facility MDP repository (http://mdp.ivv.nasa.gov/index.html). The
remaining datasets were compiled from the UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml).

We empirically evaluate the effectiveness of NPS on real world datasets, with
state-of-the-art methods, including LOF [20], LDF [25], Feature Bagging [26],
Bagging [12], and Boosting [13]. In real datasets, the features of the original
data include discrete features and continuous features. We present the results of
a comparison between the NPS using C4.5 as the base classifier in Table 5. All
the data are processed using the standard text processing techniques following
the original steps of the methods [24].
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Datasets used for our experiments are summarized in Table 3. Since rare
class analysis is conceptually the same problem as the outlier detection, we
employed those datasets for the purpose of outlier detection, where we detected
rare classes as outliers. The datasets we used are Mammography, Lymphography,
Ann-Thyroid, Satimage, Shuttle, Segment, LED which are available from UCI
repository and KDD-Cup 1999 dataset is available from the UCI KDD Archive
(http://kdd.ics.uci.edu/). These datasets do not directly correspond to the rare
class problems or outlier detection problems but can be converted into binary
problems by taking one small class (with less than 10% proportion present in the
dataset) and remaining data records or the biggest remaining class as a second
class. Therefore, we converted these datasets to suit binary classification.

Table 3. Description of datasets with outliers

Dataset Modifications made in
the dataset

Size Dimensi-
onality

Number of
outliers

Outlier (%)

KDDCup 1999 U2R vs normal 60839 41 246 0.4%

Ann-thyroid Class 1 vs Class 3 3428 21 73 2.13%

Mammography Class 1 vs Rest 11183 6 260 2.32%

Lymphography Merged Classes 2&4
vs Rest

148 18 6 4.05%

Ann-thyroid Class 2 vs Class 3 3428 21 177 5.16%

Shuttle Class 2, 3, 4, 6, 7 vs
Class 1

14500 9 2 - 809 0.017% -
6.58%

Satimage Smallest Class vs Rest 6435 36 626 9.73%

LED Each Class vs Rest 10000 7 1000 10%

Segment Each Class vs Rest 2310 19 330 14.29%

The evaluation was focused on each model’s predictive performance on the
testing sets. The Receiver Operating Characteristic (ROC) curve represents the
trade-off between the detection rate on y-axis and the false alarm rate on x-
axis. Area Under the ROC Curve (AUC) [36] measures the overall classification
performance, and a perfect classifier has an AUC of 1.0. In order to compare the
classifiers, we used 10-fold cross validation where each dataset was broken into 10
disjoint sets such that each set had (roughly) the same class distribution. Within
each fold, the classification method is repeated ten times considering that the
sampling of subsets introduces randomness. We then computed the AUC value
as the average of each of these runs.

5.1 Performance Evaluation

Algorithm 1 is used to handle imbalanced datasets described in Table 1 and 2,
AUC values of the compared methods are summarized in Table 4. Algorithm 2
is used to handle datasets with outliers mentioned in Table 3, AUC values of
the compared methods are summarized in Table 5. Following observations are
derived from the results:
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Table 4. The (Average)AUC values for Novel pattern synthesis, in comparison with
state-of-the-art imbalanced techniques, with the best highlighted in bold.

Dataset C4.5 NPS SMT Meta HDDT SMT-BST RF-SMT CCPDT

Mammography 0.884 0.948 0.817 0.791 0.912 0.863 0.906 0.859

Oil 0.787 0.869 0.782 0.753 0.799 0.827 0.835 0.836

Hypo-thyroid 0.977 0.988 0.901 0.912 0.981 0.928 0.934 0.897

PC1 0.722 0.897 0.722 0.672 0.842 0.775 0.876 0.842

Forest cover 0.978 0.981 0.886 0.913 0.982 0.941 0.967 0.918

Glass 0.882 0.913 0.751 0.745 0.884 0.834 0.762 0.886

Satimage 0.906 0.953 0.782 0.934 0.911 0.951 0.936 0.917

CM1 0.675 0.776 0.647 0.561 0.684 0.736 0.754 0.716

Pendigits 0.985 0.998 0.979 0.751 0.992 0.996 0.995 0.989

New-thyroid 0.906 0.993 0.911 0.914 0.952 0.976 0.968 0.952

KC1 0.715 0.842 0.695 0.646 0.681 0.734 0.784 0.712

SPECT-F 0.674 0.814 0.642 0.659 0.665 0.736 0.749 0.703

Hepatitis 0.668 0.819 0.806 0.796 0.804 0.812 0.810 0.809

Vehicle 0.972 0.986 0.944 0.938 0.957 0.959 0.974 0.977

Adult 0.785 0.886 0.772 0.798 0.838 0.852 0.864 0.865

German 0.631 0.732 0.654 0.668 0.692 0.714 0.736 0.699

20NG 0.736 0.862 0.752 0.773 0.811 0.826 0.840 0.844

Cade 0.643 0.764 0.651 0.643 0.674 0.719 0.727 0.682

WebKB 0.769 0.898 0.780 0.766 0.813 0.851 0.856 0.817

NIPS 0.822 0.938 0.816 0.815 0.868 0.827 0.884 0.902

R8 0.827 0.984 0.815 0.868 0.911 0.931 0.945 0.985

OVARY 0.807 0.898 0.820 0.807 0.861 0.811 0.839 0.866

PROST 0.822 0.879 0.836 0.821 0.841 0.843 0.869 0.861

LYMPH 0.865 0.954 0.850 0.874 0.896 0.887 0.935 0.925

CNS 0.872 0.927 0.841 0.866 0.877 0.896 0.902 0.884

1. Compared to other models, NPS wins on 22 of the imbalanced datasets and
7 of the datasets with outliers. Results confirm that NPS is more effective
than other class imbalanced techniques and outlier detection methods.

2. Average percentage improvement in AUC values of NPS over state-of-the-
art methods are shown in Table 6 on imbalanced datasets and in Table 7 on
datasets with outliers.

3. NPS has the best AUC result of 0.998 on Pendigits, which has a relatively
high level of imbalance of 9.99%.

4. As mentioned by Chawla [4], minority class sample may have majority class
samples as their nearest neighbour, but this scenario is not seen in NPS
as we find the nearest neighbour of a minority class sample in a minority
class sample set only. Hence NPS performs better than different variants of
SMOTE mentioned in experiments.
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Table 5. The (Average)AUC values for NPS, in comparison with state-of-the-art out-
lier methods, with the best highlighted in bold

Dataset C4.5 NPS LOF LDF Bagging Boosting Feature-
Bagging

KDDCup 1999 0.595 0.961 0.61 0.941 0.611 0.51 0.74

Ann-thyroid
(Class 1 vs Class
3)

0.875 0.992 0.869 0.943 0.98 0.64 0.869

Mammography 0.67 0.896 0.64 0.824 0.74 0.56 0.8

Lymphography 0.795 0.886 0.717 0.879 0.832 0.643 0.685

Ann-thyroid
(Class 2 vs Class
3)

0.51 0.958 0.761 0.957 0.96 0.54 0.769

Shuttle(average) 0.776 0.991 0.852 0.962 0.985 0.784 0.839

Satimage 0.881 0.943 0.864 0.930 0.928 0.781 0.806

LED 0.706 0.811 0.699 0.804 0.736 0.658 0.722

Segment 0.833 0.912 0.820 0.915 0.914 0.806 0.814

Table 6. Average percentage(%) improvement in AUC values of NPS over state-of-
the-art imbalance classification methods

Datasets C4.5 SMOTE MetaCost HDDT SMT-BST RF-SMT CCPDT

Low-Dim 11.6 15.3 18.2 9.8 10.4 7.8 9.1

High-Dim 9.4 11.8 14.6 8.2 8.9 6.3 7.8

Table 7. Average percentage(%) improvement in AUC values of NPS over state-of-
the-art outlier detection methods

Datasets C4.5 LOF LDF Bagging Boosting Feature-Bagging

Outlier-datasets 18.4 16.8 3.8 7.3 22.4 14.5

5. In Section 4.1 and 4.2, we analyzed and theoretically proved that NPS
performs better with imbalanced datasets and in the presence of outliers
respectively. NPS will add a smoothing effect on outliers.

6. C4.5 with NPS performs well in low-dimensional space as it is able to capture
best features. In the high-dimensional cases, the dimensionality is reduced
using LDA and again C4.5 with NPS seems to be performing better than
the other methods.

7. For German dataset, C4.5 with NPS does not perform better because of a
larger height of decision tree and it causes over-fitting.

6 Conclusion

There are many techniques for outlier detection and handling the class
imbalance problem. We present two variants of NPS to handle imbalanced
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datasets and outliers. We theoretically prove that NPS will solve class
imbalance problem by adding synthesized patterns and eliminates outliers. The
experiments on real-world datasets show that the performance of NPS evalu-
ated by AUC metric is better than state-of-the-art imbalanced techniques and
outlier detection methods, with C4.5 as the base classifier. LDA is useful in re-
ducing the dimensionality of a high-dimensional datasets. Theoretical analysis
and empirical evaluations on the real datasets demonstrate that NPS is more
robust and effective for handling imbalanced datasets and outliers. In the future,
we will work on multi-class imbalanced datasets and outlier detection on very
high-dimensional datasets.
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Abstract. This paper tackles the problem of incremental and decre-
mental learning of an evolving and customizable fuzzy inference system
for classification. We explain the interest of integrating a forgetting ca-
pacity in such an evolving system to improve its performances in chang-
ing environments. In this paper, we describe two decremental learning
strategies to introduce a forgetting capacity in evolving fuzzy inference
systems. Both techniques use a sliding window to introduce forgetting in
the optimization process of fuzzy rules conclusions. The first approach
is based on a downdating technique of least squares solutions for un-
learning old data. The second integrates differed directional forgetting
in the covariance matrices used in the recursive least square algorithm.
These techniques are first evaluated on handwritten gesture recognition
tasks in changing environments. They are also evaluated on some well-
known classification benchmarks. In particular, it is shown that decre-
mental learning allow to adapt to concept drifts. It is also demonstrated
that decremental learning is necessary to maintain the system capacity of
learning new classes over time, making decremental learning essential for
the life-time use of an evolving and customizable classification system.

Keywords: Online Classification, Handwriting Recognition, Incremen-
tal Learning, Decremental Learning, Evolving Fuzzy Inference System,
Recursive Least Squares, Concept Drifts; Forgetting.

1 Introduction

Evolving classification systems have appeared in the last decade to meet the
need for recognizers that work in changing environments. They use incremental
learning to adapt to the data flow and cope with class adding (or removal) at
run time. This paper focuses on integrating a forgetting capacity in evolving
fuzzy inference systems to improve their performance in changing environments.
The aim of that forgetting capacity is twofold: first, maintain system capacity of
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learning new classes over time, and second, enable the system to follow changes
of its environment (so-called concept drifts).

The target application of this work is the use of online handwritten gesture
classifiers to facilitate user interactions1 on pen-based interfaces like tablet com-
puters, smart-phones, whiteboards, etc. Gestures can be drawn differently from
one user to another, and users may want to add or remove gestures, as long
as they use the application. Moreover, users would often change progressively
their writing style. Novice users start drawing carefully and slowly their ges-
tures, while they do them in a more fluid and rapid manner as they become
expert. The classifier hence needs to evolve and follow the changes of the data
flow. If most users will use a common subset of gestures, each user will need
some specific gesture classes for his own usage but that other users won’t use.
In addition, classifier usage may change with time, and the end user may need
to add, remove, or change gesture classes to fit his needs. That is why the clas-
sifier needs to be customizable by end users. To cope with these requirements, a
forgetting capacity must be used to increase system reactivity and performance
in such dynamic environments.

In this paper, we extend our evolving classification system Evolve [1] by
integrating a forgetting capacity by the use of decremental learning. Two new
decremental learning strategies are presented, both relying on a sliding window
of data samples. The first technique uses this window to completely unlearn old
data, by downdating the least squares solutions. The second technique uses this
window to integrate differed directional forgetting in the learning process, and
allow old data to be forgotten when needed.

We briefly present the architecture of Evolve and its incremental learning algo-
rithm in Section 2. Section 3 presents forgetting interest and existing techniques.
Our two new approaches are presented in Section 4 and 5. These approaches
are then evaluated on some handwritten gesture recognition tasks in section 6.
Section 7 concludes and discusses future work.

2 System Architecture

We focus here on Fuzzy Inference Systems (FIS) [12], with first order conclusion
structure [15]. FIS have demonstrated their good performance for incremental
classification of changing data flows [2]. Moreover, they can easily be trained
online (in real time) and have a good behavior when new classes are added. [2]
and [1] are recent examples of evolving FIS used for online classification.

A fuzzy inference system consists of a set of fuzzy inference rules like the
following rule example.

Rule(i) : IF x is close to C(i) THEN ŷ(i) = (ŷ
(i)
1 ; . . . ; ŷ(i)

c )� (1)

where x ∈ R
n is the feature vector, C(i) the fuzzy prototype associated to the i-

th rule and ŷ(i) ∈ R
c the output vector. Rule premises are the fuzzy membership

1 See http://youtu.be/qOx4IY6uYf8 for a demonstration of gestural commands.

http://youtu.be/qOx4IY6uYf8
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to rule prototypes, which are clusters in the input space. Rule conclusions are
fuzzy membership to all classes, that are combined to produce the system output.

2.1 Premise Structure

Our model uses rotated hyper-elliptical prototypes that are each defined by a
center μ(i) ∈ R

n:
μ(i) = (μ

(i)
1 ; . . . , μ(i)

n )� (2)

and a covariance matrix Σ(i) ∈ R
n×n (where n is the number of features):

Σ(i) =

⎡⎢⎣ σ2
1 . . . c1,n
...

. . .
...

cn,1 . . . σ2
n

⎤⎥⎦ (3)

To measure the activation degree of each fuzzy prototype, we use the multivariate
normal distribution:

α(i)(x) =
1

(2π)n/2
√

|Σ(i)|
exp

(
−1

2
(x − μ(i))�(Σ(i))−1(x − μ(i))�

)
(4)

2.2 Inference Process

The inference process consist of three steps:

1. Activation degree is computed for each rule with Equation 4, and then nor-
malized as follow:

α(i)(x) =
α(i)(x)∑r

k=1 α
(k)(x)

(5)

where r is the number of rules.
2. System output is obtained from rule outputs using sum-product inference:

ŷ =

r∑
k=1

α(k)(x) · ŷ(k) (6)

3. Predicted class is the one corresponding to the highest output:

class(x) = arg
c

max
k=1

(ŷk) (7)

2.3 Conclusion Structure

In a first order FIS, rule conclusions are linear functions of the inputs:

ŷ(i) = (l
(i)
1 (x) ; . . . ; l(i)c (x))� (8)

l
(i)
k (x) = x� · θ(i)

k = θ
(i)
0,k + θ

(i)
1,k · x1 + · · · + θ

(i)
n,k · xn (9)
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The i-th rule conclusion can be reformulated as:

ŷ(i)� = x� · Θ(i) (10)

with Θ(i) ∈ R
n×c the matrix of the c linear function coefficients of the ith rule:

Θ(i) = (θ
(i)
1 ; . . . ; θ(i)

c ) =

⎡⎢⎢⎣
θ
(i)
1,1 . . . θ

(i)
1,c

...
. . .

...
θ
(i)
n,1 . . . θ

(i)
n,c

⎤⎥⎥⎦ (11)

2.4 Incremental Learning Process

Let xi (i = 1..t) be the ith data sample, Mi the model at time i, and f the
learning algorithm. The incremental learning process can be defined as follow:

Mi = f(Mi−1,xi) (12)

whereas a batch learning process would be:

Mi = f(x1, . . . ,xi) (13)

In our recognizer Evolve [1] learning process, both rule premises and conclusions
are incrementally adapted:

1. Rule prototypes are statistically updated to model the runtime data:

μ
(i)
t =

(t − 1) · μ(i)
t−1 + xt

t
(14)

Σ
(i)
t =

(t − 1) · Σ(i)
t−1 + (xt − μ

(i)
t−1)(xt − μ

(i)
t )

t
(15)

2. Rule conclusion parameters are optimized on the data flow, using Recursive
Least Squares (RLS) algorithm [9]:

Θ
(i)
t = Θ

(i)
t−1 + α(i)C

(i)
t xt(y

�
t − xT

t Θ
(i)
t−1) (16)

C
(i)
t = C

(i)
t−1 −

C
(i)
t−1xtx

�
t C

(i)
t−1

1
α(i) + x�

t C
(i)
t−1xt

(17)

New rules, with their associated prototypes and conclusions, are created by the
incremental clustering method eClustering [3] when needed.

3 Decremental Learning

This paper focuses on the decremental learning of an evolving fuzzy inference
system optimized with the Recursive Least Squares (RLS) algorithm.

Introducing forgetting in Recursive Least Squares is a well studied problem.
The principle of forgetting in the RLS algorithm is to prevent the covariance
matrix, which can be seen as a representation of the system gain, to go to zero
(but without making it going to infinity either).
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Interest of Forgetting. The interest of integrating forgetting in a learning system
is twofold. First, a forgetting capacity is necessary to limit the weight of past
data, and thus to maintain system capacity of learning new classes. If every data
sample has the same relative weight, learning gain will tend to zero and system
will become set with time. Second, a forgetting capacity allows the system to
follow any change – concept drift [17] – of the data flow by forgetting obsolete
data.

On the other side, we mustn’t forget too much. Our purpose here is to improve
the behavior of our system in non-stationary scenarios, but we mustn’t reduce
our its performances in stationary scenarios, nor make our system collapse by
forgetting too much – so-called “catastrophic forgetting”.

Existing Techniques. Several forgetting techniques for the Recursive Least Square
(RLS) algorithm already exist, mostly in the literature dedicated to control of
complex systems. The most common approach is to introduce an exponential
weighting of data with time by the use of an exponential forgetting factor [10].
It comes to using the RLS algorithm on an (exponentially weighted) sliding
window which is a good idea.

However, this algorithm behaves poorly when systems are not uniformly exited
– it is known as the covariance “wind-up” problem [11] – which is the case in
classification problems.

This problem happens when some of the covariance matrix elements grows
abnormally and make the estimator overstep and diverge from its optimum value.
This “wind-up” problem is due to the fact that this exponential factor produce
an uniform forgetting whereas the excitation of the system varies with time, and
is not uniform over the input space. Several “had-oc” strategies [5][14][8] have
been proposed to deal with this instability problem but no universal solution
has been found.

Proposed Approaches. The idea of using a sliding window is not new, it has been
extensively used as a way to get a reactive estimator that follows concept drifts.
We use this window to obtain two new decremental learning strategies applied
to FIS optimization with the RLS algorithm. The first approach is based on
downdating the least square solutions, which unlearn “old” data that leave the
sliding window. The second approach is based on differed directional forgetting
of the covariance matrix used in the RLS algorithm. The length of this window
is a sensitive issue that will be discussed in Section 5.

4 A First Approach: Downdating Least Square Solutions

The principle of this approach is simple, we maintain a sliding window over the
latest data, and we optimize rule conclusions on this window of data only.

As we can’t afford to rebuild rule conclusions at the arrival of each new data,
they are updated using the recursive least squares (RLS) algorithm [1]. In the
same way, we here downdate least squares solutions at the departure of each
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“old” data from the window, without complete rebuilding. To do so, we use the
de-recursive least squares algorithm in order to recursively unlearn “old” data.

De-Recursive Least Squares (DRLS) Algorithm. Let Θ(i)
s→t ∈ R

n×c be the ith rule
conclusion, optimized on data samples from (xs,ys) to (xt,yt) (with xk ∈ R

n

the input vectors, and yk ∈ R
c the binary output vectors).

We propose to downdate least squares solutions with the following DRLS
formulas to unlearn “old” data sample (xs,ys).

Θ
(i)
(s+1)→t = Θ

(i)
s→t − α(i)

s C
(i)
(s+1)→txs(y

�
s − x�

s Θ
(i)
s→t) (18)

Where the covariance matrices C(i) are updated as follows.

C
(i)
(s+1)→t = C

(i)
s→t +

C
(i)
s→txsx

�
s C

(i)
s→t

−1

α
(i)
s

+ x�
s C

(i)
s→txs

(19)

These DRLS formulas are proven in Appendix A.
This real time techniques gives similar results as a batch learning on the

window of data. As a result, the learning gain is kept bounded and the system
keeps its learning properties over time. New classes are learned as quickly after
a long learning time as after a short one. Moreover, this sliding window enables
the system to easily adapt to concept drifts. Data samples that leave the window
are unlearned, and system quickly adapts to new concept as old one is unlearned.

5 A Second Approach: Differed Directional Forgetting

We present here a simple but very efficient new type of forgetting, without any
exponential factor, and based on past data. Our strategy is to use forgetting
but in the direction of “old” data samples. As for the previous approach, we use
a sliding window that enable us to remove “old” data weight from the covari-
ance matrices, when they leave the window. The weight removal can be done
using only the second de-recursive formula for the covariance matrix downdating
(Equation 19).

C
(i)
(s+1)→t = C

(i)
s→t +

C
(i)
s→txsx

�
s C

(i)
s→t

−1

α
(i)
s

+ x�
s C

(i)
s→txs

From Unlearning to Forgetting. The De-Recursive Least Square (DRLS) algo-
rithm enable us to unlearn, to remove completely the effect some data have
had in the optimization process. This unlearning take place in two steps: a first
step to downdate the covariance matrix and a second step to downdate the rule
conclusion coefficients.

Downdating the covariance matrix is indispensable in order to limit old data
weight. Unlearning rule conclusions make the system change and follow concept
drifts. However, if downdating the covariance matrix has little impact on the
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system recognition performances, unlearning rule conclusions deconstructs the
conclusion matrix – erases the knowledge previously acquired – and reduces
system performances.

The learning of the conclusions at the arrival of a data sample is a step
forward, their unlearning is a step backward. At the arrival of a new sample,
this step backward will be redone, but with some minor adjustments. It is more
interesting not to step backward, but to wait and sidestep instead when a new
data sample arrives.

Following this philosophy, the second approach only updates the covariance
matrix, and not the rule conclusions. By doing so, we go from a downdating
approach to a forgetting one. Old knowledge isn’t erased, but will be overwritten
by future knowledge since no more weight is given to the corresponding data in
the covariance matrix.

Discussion of the Window Length

The sensitive issue of these two approaches is the length of the sliding win-
dow. Indeed, performances are directly linked to the window length. In steady
environment, the longer is the window, the lower is the error rate (until a min-
imum rate). However, a too long window reduces system reactiveness and thus
deteriorates performances in changing environments.

We focus on having a large enough window to avoid performances reduction in
stationary environments. Such a window is sufficient to limit old data weight and
to adapt to concept drifts in changing environments. Even if a fixed length sliding
window is not optimal, it provides a good behavior as it will be demonstrated
experimentally.

The window minimum length is a problem dependent variable that can be
empirically determined. It depend on the number of classes, the set of features
used and the intrinsic difficulty of the classification problem. Nevertheless, a
satisfying window length can easily be found experimentally as will be shown in
the next section.

A drawback of these approaches is the need for memorizing all the data in
the window to be able to unlearn/forget them. However, the increase of memory
requirements remains quite small, compared to the initial algorithm, as will be
shown in the next section.

6 Experimental Results

Starting from the state-of-the-art recognizer Evolve [1], we implemented our two
new approaches: Evolve D – with Downdating – and Evolve F – with Forgetting.

As this work is applied to online handwritten gesture recognition, we
first evaluate our two new systems, and the reference one, on handwritten ges-
ture recognition tasks in changing environments. Then, we evaluate these two
approaches on two well-known classification benchmark datasets.
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Incremental Evaluation Protocol. To evaluate our systems in a realistic way,
we used an incremental evaluation protocol called predictive sequential – or
prequential [7] – with a sliding window to converge to the holdout error.

As an incremental system first tries to recognize a data sample, and then
learns from it once it has the true label, we evaluated our systems in a similar
way. Each data sample is first used as a test sample, and then as a learning
sample. Error rates are then computed between every test points.

6.1 Evaluation on Gesture Recognition Tasks

As this work is applied to online handwritten gesture recognition, we evaluated
our new approaches on two handwritten gesture databases: ILGDB2 [13] and
Ironoff-digits [16].

The Heterogeneous Baseline Feature set (HBF49) [4] and a sliding window
length of 50 data samples is used in both cases. Such a window length (with
HBF49) only require to memorize a 50 by 50 matrix, which correspond to the
size of the covariance matrix of one rule.

ILGDB: This database contains handwritten gestures that have been collected
in an immersive environment. It is composed of 6629 mono-stroke gestures, be-
longing to 21 classes, which were written by 38 writers. This database is very
interesting for several reasons.

First, gestures are ordered chronologically in their drawing order which allows
us to see changes in writer style with time, as the writer changes from novice to
expert. Second, class frequencies vary, from 5 to 17 examples per class.

Third, for part of the database, gesture classes are user defined. These features
makes this database very realistic and representative of the real use of an online
recognition system. Some gesture examples are shown in figure 1.

Fig. 1. Gesture samples from ILGDB group 1 (free gestures)

2 Freely available at http://www.irisa.fr/intuidoc/ILGDB.html

http://www.irisa.fr/intuidoc/ILGDB.html
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Ironoff-digits: The interest of this database is that it offers more gestures (in
writer independent mode), but like most classic benchmark databases, Ironoff-
digits is not ordered (there is no chronological evolution of the data with time).

System Inertia to Novelty (New Classes). We test the reactiveness of our sys-
tems, and the evolution of the inertia of their model with time. To that purpose,
we train the different systems with seven classes during a varying period of time
(70, 700 and 2100 training samples) and then introduce three other classes. We
measure the time needed by the different systems to learn those new classes.
Results averaged over 20 different data orders are shown Figure 2.

Fig. 2. Scenario “inertia and reactiveness” – Ironoff-digits database – Adding new
classes after different training times

If all systems behave similarly after 70 training samples, results are different
after 700 or 2100 samples.

Looking at the results of our reference system without forgetting Evolve, we
can clearly see that its reactiveness decreases with time, and that the model
tends to become set. After 2100 training samples, the system needs 400 more
samples to resume to an error rate under 10%, which makes it unusable for quite
some time.

On the contrary, both systems using decremental learning need the same time
to learn and adapt their model to the novelty, whenever it is introduced. Their
reactiveness is independent of their age.

This test scenario shows clearly the necessity of integrating a forgetting ca-
pacity into an incremental learning system operating in a changing environment.

Performance in Slow Changing Environment. We test our systems on a scenario
simulating slow concept drifts. For this purpose, we used the ILGDB 11 writers
of group 3 (whose gestures for each class are identical) in a row. We computed
the error rate for each writer, without taking into account the first 3 samples
per class per writer, to measure system performance when concept drifts are
learned. Mean results over 100 writer orders are plotted Figure 3.

Writers, and their drawing styles, change but the base gesture of each class
stays unchanged. This test scenario is thus nearly stationary and doesn’t really
require the use of decremental learning. Our reference system Evolve achieves
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Fig. 3. Performance in slow changing en-
vironment – Using ILGDB 11 writers of
group 3 (fixed gestures) in a row

Fig. 4. Performance in fast changing en-
vironment – Using ILGDB 21 writers of
group 1 (free gestures) in a row

quite good results here with an average error rate of 6.31%. Without forgetting,
the system is learning from every writers and build a writer independent model.

Evolve D obtains an average error rates of 11.25%. Its performances are lim-
ited by the restrained number of data it is learning from (as old data samples
are completely unlearned). The use of downdating prevent the system to build a
writer independent model and force it to adapt to the current writer (with very
few data).

Evolve F reaches an average error rates of 6.70% which is nearly as good as
Evolve. This is due to the fact that old data samples are not unlearned, but only
their corresponding weights are removed from the covariance matrix used in the
RLS algorithm. This forgetting allow the system to keep previously acquired
knowledge until it is overwritten by some new information.

Performance in Fast Changing Environment. We also test our systems on a
scenario simulating fast concept drifts. For this purpose, we used the ILGDB 21
writers of group 1 (whose gestures are different for the same class) in a row. We
computed the error rate for each writer, without taking into account the first 3
samples per class of each writer, to measure system performance after concept
drifts are learned. Mean results over 100 writer orders are plotted Figure 4.

This testing scenario is quite difficult because the gesture of every classes
completely change as the writer changes. The use of decremental learning is
here mandatory.

The results on this scenario are sharply contrasted. Without any forgetting
capacity, Evolve is not able to adapt its model to the changes in the data flow
and ends up with an error rate of 25%.

Evolve D is again limited by the few data its model is build from. Although
stable, its performance are quite poor: 20.26 % error rate in average.

Evolve F, behaves well and obtains reasonable performance with an average
error rate of 13.08 %. The use of forgetting allow Evolve F to follow the fast
concept drifts.
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6.2 Evaluation on UCI Benchmark Datasets

We also evaluated our new methods on two well-known classification benchmarks
from the UCI machine learning repository [6] to test our methods outside the
field of handwritten gesture classification and with other feature sets. We chose
some datasets following two criteria. First, they are multi-classes problems (our
systems are optimized for classification problem with more than two classes), and
second, they are large enough datasets and allow the incremental learning and
testing of our systems on the long run. We chose the Pen-Digits and Japanese-
Vowels datasets.

In this context, the size of the sliding window has to be changed to adapt
to those problems difficulty. We used a window length of 500 samples which
empirically gives the best results. It increases the memory requirements of our
systems (by storing a 500 by 14 or 16 matrix) but is necessary to keep good
performances for those more difficult problems.

Japanese-Vowels. The Japanese-Vowels dataset is composed of about 10’000
samples. This dataset contains 9 classes: 9 different male speakers that must be
recognized using 14 features extracted from two Japanese vowels.

Pen-Digits. The Pen-Digits dataset contains about 11’000 handwritten digits
that were recorded on a pen based interface. This dataset contains 10 classes
and uses 16 features.

Performances in Stationary Environments. We evaluated our two new approaches
in stationary environment with the Pen-Digits and Japanese-Vowels datasets to
see the effects of decremental learning when it is not needed. Results averaged
on 100 different data orders are presented Figure 5.

Fig. 5. Performance on Japanese-Vowels and Pen-Digits datasets (UCI repository) in
stationary environment

If the use of decremental learning doesn’t improve performances, which is
quite normal in stationary environment, but doesn’t deteriorate them either.
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Performances in Changing Environments. As the aim of decremental learning is
to improve performances in changing environments, we simulated one by adding
half of the classes in the middle of the test. Results averaged on 100 different
data orders are presented Figure 6.

Fig. 6. Performance on Japanese-Vowels and Pen-Digits datasets (UCI repository) in
changing environment (half of the classes are added in the middle of the test)

In this changing environments, decremental learning allow to adapt faster to
the adding of new classes. Using downdating (Evolve D) provides a limited gain
as final performances are limited, but using forgetting (Evolve F ) allows to reach
final performance faster. Evolve F reaches final performances in 1500 and 3000
samples respectively whereas Evolve needs 4500 and 5000 samples respectively
to converge (on Japanese Vowels and Pen Digits respectively).

6.3 Results Discussion

The performances of the first approach – downdating (Evolve D) – are quite
limited compared to the second approach – forgetting (Evolve F ). When down-
dating, we unlearn completely “old” data and deteriorate least squares solutions.
On the other hand, when forgetting, the least squares solutions aren’t modified.
“Old” data weight is removed, but the knowledge stemming from them is kept
until any new data makes it mandatory to overwrite it.

On stationary scenarios, decremental learning isn’t necessary. Evolve F, using
(differed directional) forgetting, obtains similar recognition rates than Evolve,
our reference model. The performances of Evolve D, using downdating, are not
as good due to the limited number of samples its model is build from.

Results on non-stationary scenarios are quite clear-cut. They show the ne-
cessity of using decremental learning to maintain the reactiveness of the system
over time. Without downdating, the system model tends to become set, and take
ages to learn some novelty. Decremental learning is necessary to maintain system
ability to learn new classes over time.

In the same way, we showed that decremental learning is essential to face
concept drifts. Without downdating, the system model becomes more and more
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complex and performance slowly but surely collapses. Decremental learning al-
lows to discard obsolete data and thus enables the system to focus on current
system environment.

These features are very important as our goal is to obtain an evolving classifier
to facilitate user interaction on touch sensitive interfaces. Use-cases of touch
sensitive interfaces are various and aplenty, so it is essential to give the user the
ability to customize the classifier to his needs and adapt to its changes of use.

7 Conclusion

In this paper, we investigated two decremental learning strategies, to introduce
a forgetting capacity in evolving fuzzy inference system used for classification.

Both techniques use a sliding window to introduce forgetting in the optimiza-
tion process of fuzzy rule conclusions. The first approach is based on a down-
dating technique of least squares solutions for unlearning old data. The second
integrates differed directional forgetting in the covariance matrices used in the
recursive least squares algorithm.

This work is applied to handwritten gesture recognition as our goal is to
obtain an evolving and customizable classifier to facilitate user interaction on
touch sensitive interfaces. Such an applicative context in clearly non-stationary
and requires the classifier to allow class adding and to follow concept drifts to
adapt to its use.

We showed that our second approach Evolve F – differed directional forgetting
– performs well in changing environments, without deteriorating performances
in stationary environments. Our method produces a similar effect than existing
techniques to introduce forgetting in the recursive least squares algorithm, but
without the problem of estimator “wind-up”.

Future Work A judicious improvement to this method would be to manage the
window size adaptively. The window length could be increased as long as it
improve performance, and reduced when concept drifts are detected.

Another direction that should be explored is managing adaptively the content
of the sliding window. It could be interesting to keep more data samples of the
classes that are harder to recognize, or that are more subject to confusion with
other classes, and less samples of the classes that are easier to recognize.

A Appendix: Proof of De-recursive Least Squares

Let Θ
(i)
s→t ∈ R

n×c be the ith rule conclusion, optimized on data samples from
(xs,ys) to (xt,yt) (with xk ∈ R

n the input vectors, and y�
k ∈ R

c the binary
output vectors).
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A.1 Downdating Least Square Solutions

The rule cost functions are (for 1 ≤ i ≤ r, where r is the number of rules)

J
(i)
s→t =

t∑
i=s

α(i)(yi − xT
i Θ

(i)
t )2 (20)

J
(i)
s→t = (Ys→t − Xs→tΘ

(i)
s→t)

�A
(i)
s→t(Ys→t − Xs→tΘ

(i)) (21)
where Xs→t = [xs; . . . ;xt]

� with xk = [xk,1; . . . ;xk,n]
� and n the number of

dimensions of the input space ; Ys→t = [y�
s ; . . . ;y

�
t ]

T with yk = [yk,1; . . . ; yk,n]
and yk,l = 1 if yk,l belong to class l and yk,l = 0 otherwise. The weighting
matrices A

(i)
s→t are defined as

A
(i)
s→t = α(i)

s · Id (22)

with α
(i)
k the firing level of the ith rule by data sample xk, and Id the identity

matrix. The weighted least squares solutions are

Θ
(i)
s→t = C

(i)
s→tX

�
s→tA

(i)
s→tYs→t (23)

with the information matrices

R
(i)
s→t = (C

(i)
s→t)

−1 = Xs→tA
(i)
s→tX

�
s→t (24)

The information matrices can easily be downdated

R
(i)
(s+1)→t = R

(i)
s→t − xsα

(i)
s x�

s (25)

and using the matrix inversion lemma (Woodbury identity)
(
A+XBX�

)−1

(26)

= A−1 − A−1X
(
B−1 +X�A−1X

)−1
X�A−1

with A = R
(i)
s→t, X = xs and B = −α

(i)
s , one can easily obtain equation 5 to

downdate the covariance matrices.

A.2 Downdating Covariance Matrices

From equation 23 we can write:

R
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(s+1)→tΘ
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s ys
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which yield equation 18.
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Abstract. In this paper an approach for music clustering, using only
lyrics features, is developed for identifying groups with similar feelings,
content or emotions in the songs. For this study, a collection of 30.000
Spanish lyrics has been used. The songs were represented in a vector
space model (Bag Of Words (BOW)), and some techniques of Part
Of Speech (POS) were used as part of preprocessing. Partitional and
hierarchical methods were used to perform clustering estimating the
appropriate number of clusters (k). For evaluating the clustering results,
some internal measures were used such as Davies Bouldin Index (DBI),
intra similarity and inter similarity measures. At last, the final clusters
were tagged using top words and association rules. Experiments show
that music could be organized in related groups and tagged using
unsupervised techniques as clustering with only lyrics information.

Keywords: Music Information Retrieval, Clustering, Unsupervised
Learning, Feature Selection, Data Mining, Text Mining, Lyrics Analysis,
Association Rules.

1 Introduction

Internet has remained in growth for years. It is estimated that between 2011 and
2016, the average growth in consumer internet traffic will be 32% [6]. For taking
advantage of this new traffic, it is necessary to organize textual information
in websites, offering better search options to users and improving website user
experience.

Most of lyrics websites do not have tags in lyrics. However, clustering lyrics
information could offer benefits to website users like new search options and
recommendations based on previous lyrics visualizations. This could be a starting
point for tagging lyrics and then, with the website users, verifying the relevance
of those tags.

In a standard web search engine, results are based on search words (query)
used by users. In some cases, the results are not relevant. This is because it
is possible that the query has different meanings according to the context. To
solve this problem, some search engines use clustering algorithms (groupings of
the results by proximity or similarity; in the case of text mining, clustering of

P. Perner (Ed.): MLDM 2013, LNAI 7988, pp. 130–143, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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documents can be by topic), like Carrot1 or Yippy2, in order to organize search
results. In lyrics websites, clustering results could allow users to find more related
songs according to their needs.

Song lyrics are documents with some particularities. They are organized in
blocks of chorus and verses; they have rhymes and rhythm and may contain
spelling mistakes because they are added by websites users. These characteristics
have to be managed in preprocessing step to perform a good classification or
clustering.

Most of the studies in MIR that use lyrics have been conducted in classification
tasks using audio and lyrics features. Although, there are some studies that use
only lyrics information for classification tasks.

This study researches applicability and utility of clustering lyrics without any
previous label or tags information using a dataset with 30.000 lyrics in Spanish,
comparing results of clustering with Bag Of Words (BOW) features only and
using Part Of Speech (POS) features. In order to cluster this dataset, K-means
and repeated bisection algorithms are applied evaluating results with Davies
Bouldin Index (DBI), intra similarity and inter similarity measures. Finally, top
words and association rules with FP-growth algorithm were extracted in every
cluster to help to discover cluster tags.

This paper is organized as follows: section 2 presents related works performed
in music classification and music clustering; section 3 describes the process
applied in the lyrics dataset using unsupervised learning. In this part, pre-
processing of data, clustering and evaluation of the results are taken into account.
Section 4 attempts to identify tags in clusters. Finally, conclusions and future
work are found.

2 Related Work

In music there are not a standardized set of features for organizing repositories.
MIR (Music Information Retrieval) researches areas working on obtaining
information from music and organizing music repositories automatically. In 2005
MIREX (Music Information Retrieval Evaluation eXchange) was created and
it took place during the 6th ISMIR Conference. The goal of MIREX is to
compare state-of-the-art algorithms and relevant systems for Music Information
Retrieval. Since then, MIR researchers have developed different techniques and
have made important contributions to music classification using sound [3]. In
recent years, some MIR researches developed techniques using mixing approaches
(sound + lyrics) in order to improve previous approaches that used only sound
[9,4,10,8,14,13].

MIREX has its own standardization and sound datasets that have been used
for different music classification tasks as by genre and mood of the music.

1 See: http://search.carrot2.org/stable/search
2 See: http://search.yippy.com

http://search.carrot2.org/stable/search
http://search.yippy.com
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2.1 Genre of Music

Music genres are not fully defined. These are categories that have arisen through
a complex interplay of cultures, artists and market forces to organize music
collections and characterize musicians [21]. The boundaries between genres still
remain fuzzy, making their separation difficult. Pachet and Cazaly [16] have
shown that there is no general agreement on genre taxonomy and it is not easy
to build a general taxonomy.

Genre can also be classified in different ways [14], for example in the case of
Christmas Carols there is a natural classification based on semantic information,
but they may have styles of singing like rock, classical, pop, etc.

However, MIR researches have addressed this problem using pre-defined
datasets with genre categories in order to evaluate music classification techniques
and compare different approaches on an equal basis [3].

2.2 Mood of Music

The purpose of this approach is to classify music into different emotional
categories. In MIR there are no standard mood categories and it is difficult
to compare different mood classification researches because, in general, these
researches use different mood categories.

Russell’s model [19] is the most popular base model of mood that has been
used in MIR researches [4,5,9]. This is a dimensional model where emotions are
positioned in a multidimensional space. There are two dimensions in it: pleasure
and arousal. The original model places 28 emotions in the dimensional space
(see figure 1)

2.3 Data Mining Task in Music

In order to organize music in categories, MIR researches have applied different
approaches using the info that music provides. There are approaches of
supervised learning (classification) and unsupervised learning (clustering) that
have shown important results for improving music repositories [21,3,8]. In order
to apply these techniques, it is necessary first to make a feature extraction and
after it is possible to apply the classification or clustering approach for finally
annotating music.

Lyrics Feature Extraction. Lyrics are documents that exhibit specific
properties different from traditional text documents. For example lyrics could
have rhyming verses, several repetitions, incomplete phrases, spelling mistakes
and lyrics are loaded by listeners. However, lyrics could be analysed with classical
text information retrieval methods.

Bag-of-words Features. Bag-of-words (BOW) are collections of unordered words.
In these, each unique term is regarded a feature and lyrics are represented
as feature vectors. In those vectors, each word has a value that represents
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Fig. 1. Adapted form Russell’s model of mood [19]

importance of the word in the lyrics. This importance could be frequency of
the word, normalized frequency, TF-IDF weight or a boolean value indicating
presence or absence of the word in the lyrics. TF-IDF is the most widely used
technique in text analysis and MIR.

Additionally, to select the set of words that will make up the BOW is an
important task. Tasks like converting all words to the same case folding, removing
stopwords and word-stemming could be performed in order to obtain better
results.

Part-of-Speech Features. Part-of-speech tagging is a grammatical tagging of
words according to a linguistic category. For example nouns, verbs, pronouns,
adjectives, etc. POS tagging has been used in lyrics classification tasks with the
help of POS tagging software [24].

Rhyme Features. A rhyme is a repetition of similar sounds in two or more words.
This similarity could be lexical word endings or with identical or similar ending
phonemes. Rhyme is common in songs and has been used in previous lyrics
classification tasks [11].

Text Stylistics Features. In lyrics, this refers to special words (e.g., oh, ah, etc.),
punctuations and word statistics (e.g., number of unique words, length of words,
character frequencies, words per line, etc.). These features have been used in
genre identification by Mayer [11].
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2.4 Supervised Learning in Music

In supervised learning (classification) the objective is to learn a target function f
that maps each attribute set of objects x to one of the predefined class categories
y [23].

Music classification could be performed using sound, lyrics or both.
Classification with sound is the most widely studied approach, although recently
mixed and only lyrics approaches have been studied too. Both cases of music
classification are made mainly by genre and mood.

MIR researches have made important progress in this area using sound and
lyrics content of music [9,4,10,14]. However, these classification methods could
be made by other characteristics like artist, instrument (only for sound), style
or similar songs [3].

Classification by genre attempts to identify music genre and is the most widely
studied problem in MIR. Mood classification tries to divide music into different
emotional categories like angry, sad or happy. Artist identification involves tasks
of classifying artist, singer and composer of music. The purpose of instrument
recognition is to identify instruments that are played in an interval or segment
of the song (made by sound).

2.5 Unsupervised Learning in Music

Unsupervised learning approaches try to assign a set of objects into groups or
clusters, so that the objects in the same cluster are more similar to each other
than to those in other clusters. These approaches do not use labels or prior
knowledge when training the model.

In music, unsupervised approaches have been applied less than supervised.
However, there are investigations that attempt to identify genres without prior
information [22,2] and there is another attempt that tries to organize lyrics by
topic in an unsupervised way [8].

2.6 Music Annotation

Music annotation attempts to assign labels called tags to music that have some
meaning to it. This music annotation could be genre, mood, artist, styles, etc.
[3]. For Lyrics, music annotation could be performed with help of word frequency
in clusters by extracting those words and finding a description that summarizes
the cluster [8].

3 Lyrics Clustering Process

There are not enough researches in lyrics clustering. However, lyrics could be
worked with document clustering techniques in order to find groups of songs with
similar content and to tag them. This tagged groups could allow users to retrieve
songs according to the feelings or topic of the song that the user is exploring at
the moment.
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A standard process, in text mining problems, presents a scheme of steps [15]
which may be appropriated for the issue of clustering lyrics. The steps are:
pre-processing, clustering, evaluation and topic detection (see figure 2).

Lyrics website

Lyrics database

Multi-language lyrics
without tags

Pre-processing

Language identification.
Select randomly 30.000

lyrics in Spanish

Clean lyrics. Remove HTML tags
and solve additional problems

Remove stopwords

Transform to TF-IDF representation

Clustering and evaluation

Estimate the number of groups
(K value for clustering)

Test algorithms and criterion
functions

Choose an algorithm with a 
criterion function and apply

it to the dataset

Obtain K clusters

Topic detection

Identify the 20 most
frequent words

per cluster

Identify tags 
in clusters

Identify top 5
association rules per 
cluster with length=3

Extract part-of-speech features

Fig. 2. Lyrics clustering and tagging process

3.1 Pre-processing

The dataset selected for this investigation was taken from a lyrics website
with multi-language lyrics3. The first part of the pre-processing consisted in
the identification of the language. For identifying lyrics language, a language
detection library that detects language using Näıve Bayes and n-grams [12] were
used. From this dataset, there were selected randomly 30.000 lyrics with over
99% of probability of being Spanish and with their length over 500 characters.

Lyrics in this dataset are texts in html format and some of them contain
mistakes introduced by the website users. For cleaning this dataset and
extracting the text, some regular expressions, replacements, spelling corrections
and encoding standardization were applied.

This clean dataset in Spanish was divided into two: one with lemmatization
using freeling software [17], and the other with the original texts. In these two
datasets, the following pre-processing steps were applied:

Term Selection. In order to reduce dimensionality, it is common to remove
stopwords and select relevant terms. Stopwords removal was started by a list
of standard Spanish stopwords, but adding words like ”coro”, ”estribillo”, ”bis”

3 See: http://www.albumcancionyletra.com

http://www.albumcancionyletra.com
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and other words that were found with many repetitions in lyrics dataset and
that did not provide additional information in clustering process. Words with
two or less characters and words that are not in at least some amount of lyrics
were eliminated for preventing spelling mistakes.

TF-IDF Weighting. TF-IDF [20] consists in finding words with high repetition
frequency but low frequency in documents. This method allows words, with
these characteristics, to be representative of the categories which were being
associated. TF-IDF in this lyrics dataset was computed as:

tf × idf(t, d) = tf(d) × ln(N/df(t)) (1)

Where tf(d) is the number of times that term t appears in document d and df(t)
is the number of documents in the collection that term t occurs in.

3.2 Clustering and Evaluation

Previous results in document clustering have shown that hierarchical algorithms
like partitional clustering algorithms are well-suited for clustering large
document datasets due to their relative low computational requirements [25].
For this work K-means and Repeated Bisection algoritms were used and to
achieve comparable results, the same validation measures were applied.

K-means is the most popular partitional algorithm and has been used
widely to compare different results of clustering. For this algorithm a standard
implementation was used. For Repeated Bisection algorithms CLUTO software4

has an implementation in it.
Detecting the amount of clusters is not an easy task. Using small values of K,

results are clusters with mixtures of multiple topics and increasing K, validation
measures perform better [8] but there is not an optimal K value (see figure 3).
For an approximation of K, Pham et al technique [18] was used and the K value
was chosen where the graph starts stabilization (around K=20).

With this K, K-means and repeated bisections algorithms were applied and
compared with the standard K-means results. Cluto has two implementations
of repeated bisections: RB and RBR. The main difference is that RBR applies
an additional local optimization that RB does not apply. In RB and RBR, it is
possible to apply some optimization functions [7] (see figure 4).

K-means changes results in every execution because centroids were selected
randomly. To obtain this result, K-means algorithm was applied 36 times and
mean and standard deviation of the results were calculated.

Results with original dataset using DBI are in table 1 and results using
Inter/Intra similarity, weighted by amount of objects in clusters, are in table 2.

RBR was the algorithm selected for clustering lyrics. This algorithm presents
better results in most cases. POS dataset performs better in the majority of
cases and I2 was the criterion function that offers better results in RBR (POS)
execution.
4 See: http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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Fig. 3. K estimation for Repeated Bisection using DBI and Pham et al function

Fig. 4. Cluto criterion functions adapted from [7]

Table 1. Clustering validation results with K = 20 using DBI (less is better)

Max-I1 Max-I2 Min-E1 Min-G1 Min-G′
1

RB 1,8387 1,8855 1,9169 1,8844 1,9088

RBR 1,8648 1,8850 1,8869 1,8583 1,8860

RB (POS) 1,9190 1,9176 1,9221 1,9232 1,9202

RBR (POS) 1,9177 1,8885 1,8864 1,9045 1,8799

K-Means: 1,9257 +/- 0.007; K-Means (POS): 1,9258 +/- 0.012

Table 2. Clustering validation results with K = 20 using Inter similarity/Intra
similarity (more is better)

Max-I1 Max-I2 Min-E1 Min-G1 Min-G′
1

RB 1,1024 1,1010 1,0881 1,0929 1,0910

RBR 1,1101 1,1085 1,0971 1,1091 1,0997

RB (POS) 1,1130 1,1142 1,1033 1,1044 1,1063

RBR (POS) 1,1249 1,1253 1,1177 1,1198 1,1194

K-Means: 1,1024 +/- 0.002; K-Means (POS): 1,1218 +/- 0.003
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K-means performance was useful, but this algorithm creates groups with
similar amount of objects and for some of them it is difficult to identify tags.
Repeated bisections algorithm creates several groups with different length, and
some of them were well separated and easy to tag.

4 Topic Detection

It is intended to find clusters tags for groups found through categorization
techniques. Only grouping is not enough in lyrics categorization. It is necessary
to show this to the user, for example with tags. In order to achieve this, the
majority of the techniques use the set of most frequent words in each of the
groups to make an approximation to the topic [1].

This set of words provides information that is useful to identify cluster’s tags.
In this case, the 20 most frequently words and the top 5 association rules were
identified. For discovering association rules the FP-Growth algorithm was used
with min length = 3 indicating support value for every rule (see table 3).

Table 3. Cluster results with K = 20 using RBR(POS) and I2 as criterion function

Cluster Id Top Words in TF-IDF Top Itemsets Tags

Cluster 1
(Size: 731,
Inter:0,2688,
Intra:0,1039)

enamorar, amor, estar,
corazón, querer, haber,
decir, mujer, amar, tener,
vida, poder, solo, ese, saber,
ver, niño, dar, tanto, amigo.

enamorar,amor,querer (0.438)
enamorar,querer,estar (0.409)
enamorar,amor,estar (0.379)
enamorar,querer,tener (0.372)
enamorar,amor,corazon (0.360)

In love,
Love,
Heart

Cluster 2
(Size: 750,
Inter:0,2629,
Intra:0,1077)

adiós, doler, amor, decir,
dolor, corazón, haber, amar,
llorar, nuestro, aunque,
tanto, querer, perder, saber,
poder, alma, quedar, vida,
dejar.

adios,amor,decir (0.375)
adios,amor,haber (0.356)
adios,amor,querer (0.332)
adios,decir,haber (0.309)
adios,amor,poder (0.304)

Good bye,
Love, Pain

Cluster 3
(Size: 756,
Inter:0,2437,
Intra:0,0830)

vos, sos, tic, tac, estar, tenes,
querer, co, queres, poder,
corazón, solo, amor, ver, dar,
saber, tener, siempre, pasar,
ese.

vos,estar,querer (0.283)
vos,estar,poder (0.279)
vos,estar,tener (0.254)
vos,querer,poder (0.238)
vos,poder,tener (0.221)

Not
identified

Cluster 4
(Size: 1259,
Inter:0,2548,
Intra:0,1143)

amar, amor, querer, decir,
nadie, vida, corazón, saber,
amarar, solo, haber, tanto,
poder, tener, mujer, dar, de-
jar, ese, estar, siempre.

amar,amor,querer (0.459)
amar,amor,haber (0.372)
amar,amor,tener (0.357)
amar,querer,haber (0.351)
amar,amor,poder (0.345)

Love
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Table 3. (Continued)

Cluster Id Top Words in TF-IDF Top Itemsets Tags

Cluster 5
(Size: 852,
Inter:0,2489,
Intra:0,1114)

contigo, conmigo, querer,
estar, amor, tener, vivir,
solo, vida, decir, poder, ver,
dar, haber, siempre, sentar,
noche, saber, amar, quedar.

contigo,querer,estar (0.488)
contigo,querer,amor (0.435)
contigo,querer,tener (0.408)
contigo,querer,poder (0.393)
contigo,estar,amor (0.393)

Love,
Declaration
of love

Cluster 6
(Size: 1215,
Inter:0,2447,
Intra:0,1138)

olvidar, poder, amor, recor-
dar, querer, amar, dejar,
decir, haber, aunque, pen-
sar, tanto, vida, corazón,
saber, volver, recuerdo, es-
tar, seguir, vivir.

olvidar,querer,amor (0.403)
olvidar,querer,poder (0.390)
olvidar,amor,poder (0.355)
olvidar,querer,haber (0.347)
olvidar,querer,estar (0.328)

Love,
Obscurity,
Memories

Cluster 7
(Size: 1049,
Inter:0,2395,
Intra:0,1041)

llorar, sufrir, amor, querer,
pena, corazón, dolor, haber,
solo, dejar, decir, saber, ver,
lagrimar, estar, vida, amar,
olvidar, pensar, morir.

llorar,querer,amor (0.365)
llorar,querer,haber (0.350)
llorar,amor,haber (0.333)
llorar,querer,estar (0.285)
llorar,querer,ver (0.284)

Pain, Tears,
Love

Cluster 8
(Size: 977,
Inter:0,2199,
Intra:0,0626)

bailar, mover, ritmo, gozar,
pa, menear, cumbia, baile,
fiesta, gustar, pegao, cuerpo,
colita, cheque, sua, poner,
cintura, querer, ver, ese.

bailar,querer,ver (0.288)
bailar,querer,tener (0.275)
bailar,querer,dar (0.247)
bailar,querer,ese (0.233)
bailar,tener,ver (0.230)

Dance

Cluster 9
(Size: 1121,
Inter:0,2369,
Intra:0,1118)

volver, querer, ver, amor,
poder, haber, estar, saber,
dejar, vida, decir, vivir, es-
perar, perder, sentir, d́ıa,
tener, solo, pensar, pasar.

volver,querer,poder (0.354)
volver,querer,haber (0.344)
volver,querer,estar (0.331)
volver,querer,ver (0.329)
volver,querer,tener (0.320)

Love,
Reconcilia-
tion

Cluster 10
(Size: 706,
Inter:0,2194,
Intra:0,0817)

loco, gustar, na, querer,
estar, ese, decir, tener,
dar, volver, amor, zancudo,
haber, saber, ver, nene,
mirar, solo, corazón, dejar.

querer,gustar,tener (0.215)
querer,loco,estar (0.201)
querer,tener,haber (0.200)
querer,tener,loco (0.194)
querer,tener,decir (0.191)

Not
identified

Cluster 11
(Size: 2098,
Inter:0,2046,
Intra:0,1102)

amor, corazón, querer,
morir, vida, dar, solo, do-
lor, haber, poder, tener,
vivir, saber, decir, sentar,
estar, tanto, amar, nuestro,
siempre.

amor,querer,corazon (0.380)
amor,querer,haber (0.343)
amor,querer,tener (0.331)
amor,corazon,haber (0.326)
amor,querer,poder (0.323)

Love, Heart

Cluster 12
(Size: 947,
Inter:0,1835,
Intra:0,0724)

dios, señor, usted, za, jesús,
santo, cristo, gloria, don,
gracia, haber, dar, poder, al-
abar, bendecir, vida, amor,
padre, hijo, estar.

dios,haber,estar (0.189)
dios,haber,tener (0.187)
dios,haber,poder (0.183)
dios,haber,querer (0.182)
haber,querer,tener (0.172)

God,
Religion
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Table 3. (Continued)

Cluster Id Top Words in TF-IDF Top Itemsets Tags

Cluster 13
(Size: 1130,
Inter:0,1773,
Intra:0,0815)

cantar, canción, luna,
flor, maŕıa, querer, noche,
corazón, amor, estrella,
canto, haber, sol, vida, voz,
bello, dar, ese, tener, mirar.

cantar,querer,haber (0.197)
cantar,querer,amor (0.184)
cantar,querer,cancion (0.183)
cantar,querer,tener (0.176)
cantar,cancion,haber (0.168)

Sing

Cluster 14
(Size: 1552,
Inter:0,1673,
Intra:0,0660)

pa, mami, dar, gato, poner,
eh, hey, ma, vamo, tra,
tener, papi, nene, querer,
ese, meter, ver, tirar, duro,
gustar.

tener,querer,dar (0.385)
tener,querer,ver (0.348)
tener,querer,decir (0.350)
tener,querer,ese (0.335)
tener,querer,haber (0.303)

Not
identified

Cluster 15
(Size: 892,
Inter:0,1680,
Intra:0,0679)

rap, mierda, os, puta, bla,
rock, hop, hip, estilo, rima,
perro, tener, ese, pa, mc,
culo, roll, haber, dar, joder.

tener,haber,estar (0.352)
tener,haber,ver (0.343)
tener,haber,dar (0.339)
tener,estar,dar (0.332)
tener,haber,querer (0.330)

Rap

Cluster 16
(Size: 1974,
Inter:0,1789,
Intra:0,0953)

beso, cuerpo, besar, piel,
noche, labio, boca, querer,
mujer, amor, ah, dar, fuego,
ojo, sentir, solo, tener, mio,
ese, sentar.

querer,amor,tener (0.216)
querer,amor,beso (0.209)
querer,amor,haber (0.188)
querer,amor,estar (0.188)
querer,amor,dar (0.187)

Love, Kiss

Cluster 17
(Size: 2987,
Inter:0,1817,
Intra:0,1048)

decir, poder, querer, saber,
pensar, haber, algo, nadie,
estar, entender, solo, igual,
ver, hablar, mejor, dejar,
tener, importar, cambiar,
mal.

querer,decir,poder (0.304)
querer,decir,haber (0.291)
querer,decir,estar (0.282)
querer,decir,tener (0.281)
querer,poder,haber
(0.279)

Not
identified

Cluster 18
(Size: 3252,
Inter:0,1799,
Intra:0,1066)

solo, estar, sueño, vida,
quedar, poder, vivir, haber,
encontrar, d́ıa, siempre,
perder, esperar, tanto,
ver, seguir, querer, sentar,
pensar, junto.

estar,poder,querer (0.232)
haber,estar,poder (0.229)
haber,estar,querer (0.227)
estar,poder,solo (0.222)
haber,estar,solo (0.220)

Loneliness

Cluster 19
(Size: 2248,
Inter:0,1654,
Intra:0,0837)

volar, sol, mar, luz, cielo,
azul, estrella, viento, noche,
agua, ver, tierra, ojo, brillar,
poder, amor, luna, haber,
sueño, querer.

haber,ver,poder (0.118)
querer,ver,poder (0.115)
haber,querer,ver (0.112)
haber,querer,poder (0.110)
haber,querer,amor (0.109)

Firmament,
Sky

Cluster 20
(Size: 3504,
Inter:0,1323,
Intra:0,0725)

haber, amigo, tener, bueno,
gente, malo, ese, niño, calle,
matar, dar, hombre, venir,
estar, mucho, decir, pasar,
hijo, madre, viejo.

haber,tener,querer (0.219)
haber,tener,estar (0.210)
haber,tener,ver (0.203)
haber,tener,decir (0.203)
haber,tener,poder (0.197)

Not
identified

These results with top words and association rules help in the process of
tagging but the tags depends on the person that performs tagging process. In
this case, using 20 clusters was possible to identify tags for 15 of them in Spanish.
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5 Conclusion and Future Work

Music categorization is an actual trend with wide researches in recent years.
Those researches have focused their efforts on classifying datasets mainly
composed by sound, but there are cases when they use lyrics too.

Efforts have focused primarily on two branches: genre and mood. When using
genre, lyrics do not provide much information, whereas in the case of mood, the
lyrics present larger contributions. In this work it was found that some specific
topics, not related with mood or genre, could be discovered too.

The feature selection stands as one of the main points in the whole mining
process. Dataset using POS reduces dimensionality and improves results.

Internal measures like Davies Bouldin Index (DBI) estimate clustering quality
using averages of worst case scenarios. In the case of lyrics, some clusters are
compact and well separated, but others are not. Inter similarity / Intra similarity
offer better results for choosing the best option between different algorithms.

Repeated bisections with optimization (RBR) was the algorithm that offers
better results in most cases. Additionally, with this algorithm it is possible to
bisect clusters in which it is not possible to identify tags.

Our model takes into account all steps in lyrics clustering process, to finally
discover topics and assign tags in some clusters. This model shows how it is
possible to apply text mining techniques in a problem from the real world with
a large amount of data.

Detecting the appropriate number of groups K is not an easy task. This
happens because groups could be divided into several different topic groups
(like genre, artist, mood, sentiment, topic, etc) with different boundaries. In our
results some tags were genre others - moods and topics. This model helps in the
process of tagging lyrics but has not given a complete set of tags for music.

The experiment results show how our analysis gives initial results in music
tagging. Using 20 clusters allows to identify tags for 15 of them using top words
and association rules. In other cases, it could be possible that those groups need
more splits for performing tag annotation.

Future work could apply additional clustering techniques in depth like fuzzy
techniques, test other datasets in other languages and improve K detection and
tagging process.
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Abstract. Freezing of gait (FoG) is a common gait impairment among
patients with advanced Parkinson’s disease. FoG is associated with falls
and negatively impact the patient’s quality of life. Wearable systems
that detect FoG have been developed to help patients resume walking by
means of auditory cueing. However, current methods for automated de-
tection are not yet ideal. In this paper, we first compare feature learning
approaches based on time-domain and statistical features to unsuper-
vised ones based on principal components analysis. The latter systemat-
ically outperforms the former and also the standard in the field – Freezing
Index by up to 8.1% in terms of F1-measure for FoG detection.

We go a step further by analyzing FoG prediction, i.e., identification
of patterns (pre-FoG) occurring before FoG episodes, based only on mo-
tion data. Until now this was only attempted using electroencephalog-
raphy. With respect to the three-class problem (FoG vs. pre-FoG vs.
normal locomotion), we show that FoG prediction performance is highly
patient-dependent, reaching an F1-measure of 56% in the pre-FoG class
for patients who exhibit enough gait degradation before FoG.

Keywords: Unsupervised feature learning, Freezing of Gait,
Parkinson’s disease.

1 Introduction

Freezing of gait (FoG) is a common gait impairment among patients with Parkin-
son’s disease (PD), defined as a “brief, episodic absence or marked reduction
of forward progression of the feet despite the intention to walk“ [18]. Patients
describe FoG as the feeling of having the feet glued to the ground and being
temporarily unable to re-initiate gait. According to a survey of 6620 PD pa-
tients, 47% of the subjects reported regular freezing and 28% experienced FoG
daily [13]. FoG is associated with falls [12], has substantial clinical and social
consequences [6, 15] and is often resistant to pharmacological treatment [2].

Rhythmic auditory stimulation (RAS) was introduced as an assistive tool for
FoG treatment [8]. RAS can be applied to produce a rhythmic ticking sound upon

P. Perner (Ed.): MLDM 2013, LNAI 7988, pp. 144–158, 2013.
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detection of a FoG episode, to help the patient resume walking. Wearable systems
based on motion sensors have been proposed for the detection and treatment
of FoG with auditory stimulation [1, 11]. While RAS upon detection helps to
shorten the duration of FoG episodes [1], it cannot avoid them altogether due
to the latency of the detection, which is at best on the order of hundreds of
milliseconds [11]. A step further is to predict when a patient is about to experience
FoG, thus enabling preemptive RAS, with the goal of avoiding the FoG episodes.
We call this FoG prediction as opposed to FoG detection.

There are some known specific properties that differentiate the sensor data
during FoG episodes from normal walking (e.g., a large increase in the signal
energy in the 3-8Hz frequency band [9,15]) and the gait of patients with FoG also
differs between freezing episodes, compared to patients who do not experience
FoG [10]. There are even suggestions of a characteristic change in the gait pattern
just prior to the occurrence of a FoG episode; however, currently, there is no way
of automatically identifying the prodromal state, when the normal gait pattern
is about to transform into FoG.

The lack of physiological understanding of the gait deterioration preceding FoG
makes it difficult to come up with a model or with problem-specific features based
on expert knowledge. Moreover, walking styles of PD patients differ across sub-
jects (including diverse motor anomalies) [17]. Thus eventual patterns in the data
just before a FoG event will also likely be highly subject-specific. Nevertheless,
previous work suggests that there is a deterioration of the normal gait before FoG,
although this deterioration can be expressed in various ways [17–19].

In this work, we first formulate the FoG detection problem as a two-class
classification problem: FoG versus normal locomotion. Similarly, we treat FoG
prediction problem as a three class classification problem. Beside FoG and normal
locomotion, we consider the walking periods before FoG episodes as a third class
called pre-FoG. We hypothesize that there is a detectable deterioration of gait
in this phase which precedes FoG. We assume different durations of the pre-
FoG events, since these cannot be labeled by an expert, but can rather only
be retrieved through data mining from segments of data preceding FoG events.
We focus on the analysis of different feature extraction approaches that lead to
a meaningful representation of both the FoG and the new pre-FoG class. The
feature extraction approaches that we investigated are the following:

(a) Extraction of standard frequency-based features, namely Freezing Index and
total energy in the frequency band 0.5-8 Hz. This is the current standard in
the field and serves as a baseline [15].

(b) Extraction of various hand-crafted time-domain and statistical features,
which are used in pattern recognition problems involving motion or human
activity recognition.

(c) Unsupervised feature learning [20]. This method involves extraction of in-
formation from the raw data, without relying on domain specific knowledge,
or on the availability of ground truth annotations. We evaluate the use of
principal component analysis for extracting a compact representation of the
structure of the signals.
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The contributions of this work are summarized as follows:

1. We go beyond state of the art by explicitly introducing and performing
a first step toward FoG prediction, as opposed to mere detection, thereby
potentially allowing for the possibility of applying preemptive RAS;

2. We compare three methods for feature extraction in the FoG detection and
FoG prediction problems and show that unsupervised feature learning out-
performs on average standard feature extraction schemes in our real-life
dataset;

3. We show that removal of pre-FoG sequences from the training data for FoG
detection improves classification performance;

4. For FoG prediction, we show that, for some patients, gait anomalies associ-
ated with the upcoming onset of FoG can be detected, thereby allowing for
an early intervention with RAS.

2 Related Work

FoG Detection. Several research groups have proposed wearable systems for
the detection of FoG episodes [1, 4, 5, 7, 11, 14–16, 21, 23]. Most sensor setups
involve accelerometers and/or gyroscopes [1, 5, 11, 16, 21], extended with elec-
troencephalography (EEG) [7] or electromyography (EMG) [4]. One standard
feature which is extracted from the raw signals is the Freezing Index (FI), de-
fined as the ratio between the power contained in the so-called freezing and
locomotion frequency bands (3-8 Hz and 0.5-3 Hz respectively) [1, 11, 15]. This
feature is convenient since it requires only FFT-computation. Other feature ex-
traction approaches involve mixed time-frequency features [23] and entropy [21].
In [14], the authors investigated the use of time-domain and statistical features,
together with FFT-features. Various classifiers have been used for the two-class
classification problem (FoG versus no-FoG), including Decision Trees, Random
Trees/Forests, Naive Bayes [21] as well as rule-based classifiers [5] and simple
thresholds on the FI [1]. Overall, the different proposed approaches reach de-
tection sensitivities that often exceed 80%, but the detection is performed with
at best a latency of a few hundred milliseconds. Handojoseno and colleagues [7]
make use of wavelet decomposition to analyze the dynamics of EEG signals
during the onset and the freezing periods. Their aim was to achieve an early de-
tection of FoG from brain activity that could, potentially, help patients to avoid
an impending FoG episode. To our best knowledge, no attempts have been yet
made at tackling the FoG prediction problem using just motion sensors. We
therefore perform a first analysis in this direction.

Unsupervised Feature Learning. Automatic (unsupervised) feature extrac-
tion has been proposed in the context of human activity recognition based on
motion sensors. Plötz et al. [20] argued that instead of using the explicit knowl-
edge to select specific features, one can extract the core signal characteristics by
means of principal components analysis. This allows one to uncover meaningful,
low-dimensional representations of raw data without relying on domain-specific



Feature Learning for Detection and Prediction of Freezing 147

knowledge. The results on public activity recognition datasets showed that the
features learned in this unsupervised manner are more discriminative than state
of the art representations based on time- and frequency-domain features. We
propose to apply this method for detection and prediction of FoG, since the
properties of the FoG and pre-FoG signals are subject-dependent and difficult
to model.

3 Feature Extraction for FoG Detection and Prediction

The general process that we adopt for signal processing and classification is de-
picted in Figure 1. The set of operations is standard in pattern recognition prob-
lems involving motion data from on-body 3-dimensional accelerometers: sensor
signals are sampled and sliced into partially overlapping windows. In each win-
dow, features are extracted and the resulting vectors are classified according to
a pretrained model. In this work, we empirically set the window length to 1s (64
samples) with 0.25s of overlap (16 samples). We choose a Decision Tree classifier,

Fig. 1. Signal processing and classification for the detection and prediction of FoG

because of its low computational cost when deployed. In this work, we focus on
the selection of the appropriate features for detection and prediction of FoG, so
the optimization of the classifier parameters is out of our scope. In the training
phase of the system, we use feature ranking based on Mutual Information (MI)
to rank the top discriminant time-based and statistical features [3]. We denote
with NF the number of top-ranked features retained in the classification process.

3.1 Feature Extraction Schemes

We choose three groups of features, the first of which has been already used in
the context of FoG detection and is used here as a baseline. We call supervised
the first two feature extraction approaches, since they involve features manually
selected due to expert knowledge. The features are computed for each window.

Supervised: Domain-specific Feature Extraction. The first feature group
contains the Freezing Index and the sum of energy in the freezing (3-8 Hz) and
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locomotory (0.5-3 Hz) frequency bands. These features are obtained by comput-
ing the FFT, followed by binning, in order to compute the spectral distribution
of the energy in the desired bands.

Supervised: Feature Extraction of Time-domain and Statistical
Features. The second group of features is often used in activity recognition [22].
Until now, only a small subset of these has been also applied to FoG detec-
tion [14]. We list the used features in Table 1. We extracted 18 features for each
of the three accelerometer axes (x, y, z) and six features using data from all three
axes. Unsupervised Feature Learning. For learning the implicit structure of

Table 1. Computed statistical features and their brief descriptions

Axis Features
No. Feature Description

1,2 Min, Max Minimum and maximum of the signal
3 Median Median signal value
4,5 Mean, ArmMean Average value, and the harmonic average of the signal
6 Root Mean Square

(RMS)
Quadratic mean value of the signal

7 GeoMean Geometric average of the signal
8 Variance Square of the standard deviation
9 Standard Deviation

(STD)
Mean deviation of the signal compared to the average

10 Kurtosis The degree of peakedness of the sensor signal distribution
11 Skewness The degree of asymmetry of the sensor signal distribution
12 Mode The number that appears most often in the signal
13 TrimMean Trimmed mean of the signal in the window
14 Entropy Measure of the distribution of frequency components
15 Asymmetry coeffi-

cient
The first moment of the data in the window divided by STD over
the window

16 Range The difference between the largest and smallest values of the signal
17 Zero Crossing Rate

(ZCR)
Total number of times the signal changes from positive to negative
or back, normalized by the window length

18 Mean Crossing Rate
(MCR)

Total number of times the signal changes from below average to
above average, normalized by the window length

Sensor Features
No. Feature Description
55 Signal Magnitude

Vector (SMV)
Sum of the euclidean norm over the three axis over the entire win-
dow normalized by the window length

56 Normalized Signal
Magnitude Area
(SMA)

Acceleration magnitude summed over three axes normalized by the
window length

57,58,59 Eigenvalues of Dom-
inant Directions
(EVA)

Eigenvalues of the covariance matrix of the acceleration data along
x, y, and z axis

60 Averaged Accelera-
tion Energy (AAE)

Mean value of the energy over three acceleration axes

the data, each data window containing 64 samples for the three accelerometer
axes is arranged into a 192-dimensional vector (the first three entries correspond
to the first samples from the x, y and z axes, and so on). In the training phase,
principal component analysis (PCA) is then applied to the whole training data
matrix, obtained by stacking all the 192-dimensional vectors in the training set
and disregarding class labels. This yields a projection matrix, which is then used
in the testing phase to project the single data frames.
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3.2 Assumptions about pre-FoG Events: From FoG Detection to
Prediction

We assume that the gait cannot enter in the FoG state directly from walking
state. Rather, we assume that prior to FoG, there is a gait deterioration that
eventually leads to the FoG. This is represented by a transition period of vari-
able duration TPrefog that we refer to as the pre-FoG state. An example of
FoG episode, with supposed pre-FoG, is shown in Figure 2. The optimal value
of TPrefog will be patient-dependent. The identification of segments of pre-FoG
data is valuable both for FoG detection and prediction. Making Detection

Fig. 2. An example of an accelerometer signal, on the three acceleration axes, that
captures the motor variations in the gait of a patient with Parkinson’s disease. The
sequence contains normal gait, a FoG episode, preceded by a assumed pre-FoG period.

More Robust. For the detection problem, we set up a two-class classification
problem. We name the two classes WALK (which includes instances of normal
locomotion, including walking, standing, turning, etc.) and FoG, which repre-
sents the freezing episodes. In the training phase, we remove data for a duration
of TPrefog before each FoG event contained in the training set. This aims at
having a more precise classifier model for the FoG and for the WALK classes.

Towards FoG Prediction. For prediction, we set up a three-class classification
problem. Besides the two classes described above (WALK and FoG), we use the
segments assumed to be in a pre-FoG state to build the model for the third class.
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4 Dataset

We validated the proposed approach on the public available DAPHNet dataset1

[1], which contains data collected from eight PD patients that experienced regu-
lar FoG in daily life. Data were recorded using three 3D accelerometers attached
to the shank (above the ankle), the thigh (above the knee) and to the lower
back of each subject. For our experiments here we focused on movement data
recorded from the ankle, as the data from the other two sensors generally behave
similarly. Subjects completed sessions of 20-30 minutes each, consisting of three
walking tasks: (1) Walking back and forth in a straight line, including several
180-degrees turns; (2) Random walking with a series of initiated stops and 360
degrees turns; (3) Walking simulating activities of daily living, which included
entering and leaving rooms, walking to the kitchen, getting something to drink
and returning to the starting room with a cup of water.

Motor performances varied strongly among the participants. While some sub-
jects maintained regular gait during nonfreezing episodes, others walked slowly
and were very unstable. The DAPHnet dataset contains 237 FoG episodes; the
duration of FoG episodes is between 0.5s and 40.5s (7.3±6.7s). 50% of the FoGs
lasted for less than 5.4s and 93.2% were shorter than 20s. FoGs were labeled by
physiotherapists using synchronized video recordings. The start of a FoG event
was defined as the point when the gait pattern (i.e., alternating left-right step-
ping) was arrested, and the end of a FoG was defined as the point in time when
the pattern was resumed.

5 Experiments and Evaluation

We performed two sets of experiments using the DAPHnet dataset described in
Section 4: one for FoG detection and one for FoG prediction. For FoG-detection
we ignored the pre-FoG sequences. For both sets of experiments and for two of
the three groups of features introduced in Section 3.1, we varied the number
of selected features NF from 5 to 60 in steps of 5. This cannot be done for
the domain-specific features, since they are only two - FI and total energy. We
further characterized the influence of different choices of the pre-FoG duration
on both the two-class and three-class problem, by sweeping the assumed pre-FoG
duration in the range TPrefog ∈ {1s, 2s, ..., 11s}.

The evaluation was performed on a patient-dependent basis. Since in each
patient dataset the WALK class was over-represented compared to the FoG
class, we chose to balance the data by having size(WALK) = X ∗ size(FoG),
where X ∈ {1.5, 2, ..., 10}. We performed an N = 10-fold cross validation, in
which the training data contains N-1 parts from the FoG data, N-1 parts from
normal locomotion data, and the testing data the rest. The data were split for
each fold in such a way as to avoid having time-correlated chunks of the same
FoG, WALK, or pre-FoG events in the training and testing data.

1 www.wearable.ethz.ch/resources/Dataset

www.wearable.ethz.ch/resources/Dataset
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We report results in terms of overall patient datasets average sensitivity and
average specificity of the FoG class, and F1-measures for FoG, WALK and
pre-FoG classes, in a window-to-window comparison.

6 Results

In the following, we analyze the performance of the different feature extraction
strategies for the FoG-detection and FoG-prediction problems.

6.1 Time-Domain and Statistical Features

The top ranked features based on MI for FoG detection are AAE, eigenvalues of
dominant directions, range, variance, root mean square, and standard deviation
(some features, like standard deviation and variance are of course strictly re-
lated). The top ranked features according to their MI are those computed from
the entire data window (all axes), followed by those on x-axis. Table 2 shows the
top k ranked features, for k ranging from 5 to 20. Note that selecting features

Table 2. Average top ranked features with Mutual Information

Top k x axis y axis z axis sensor
Top 5 variance - variance EVA (2 direc-

tions), AAE
Top 10 RMS, variance,

range
variance, range variance EVA (3 direc-

tions), AAE
Top 15 variance, range,

RMS, min, STD
variance, range,
RMS

variance, range,
RMS

EVA (3 direc-
tions), AAE

Top 20 max, RMS, vari-
ance, STD, min,
range

variance, range,
RMS, max, min,
STD

RMS, variance,
range, min

EVA (3 direc-
tions), AAE

(a) Patient 2 (b) Patient 8

Fig. 3. AAE vs. variance on x-axis for (a) Patient 2 data and (b) Patient 8 data

that are ranked highly by the MI does not automatically guarantee that they
are also discriminative enough. Figure 3 contains an example of distribution of
the top ranked features AAE and variance on x-axis. For some patients these
features are enough to distinguish between FoG and WALK – the two classes
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form two distinct clusters when represented by these two features. Still, this does
not work for all the patients. For example, in the case of Patient 8, even if the
top ranked features with MI are the same, their discriminative power is lower –
FoG is easily confused with WALK, when represented by the same two features.

6.2 FoG Detection

We compare the different feature learning approaches in terms of producing
discriminative feature sets for distinguishing FoG and normal gait. In Table 3
the sensitivity, specificity and F1 measures for two feature-extraction methods
are depicted as a function of number of features NF used for classification, for a
fixed duration of ignored data TPrefog = 3s before each FoG. The classification
results are significantly improved when performing unsupervised feature learning
compared to the results for the standard feature set, for values of NF < 30.
Classification based on PCA features also outperforms the one using FFT-based
features, when using small number of PCA features (see Figure 4). In Figure 4,

Table 3. Average of the sensitivity, specificity and F1-measure for the FoG class for
supervised and unsupervised feature extraction methods, in the two-class classification
problem. The pre-FoG duration is fixed as TPrefog = 3s

Sensitivity (%)

Features 5 10 15 20 25
Unsupervised 77.15 77.7 76.29 76.86 76.86
Supervised 67.8 68.53 69.42 66.65 67.58

Specificity (%)

Features 5 10 15 20 25
Unsupervised 86.71 87.56 86.65 86.21 85.52
Supervised 84.75 86.76 87.76 88.74 88.52

F1 (FoG)(%)

Features 5 10 15 20 25
Unsupervised 78.2 79.09 77.53 77.62 76.29
Supervised 70.94 72.54 73.79 72.33 73.02

F1 (WALK) (%)

Features 5 10 15 20 25
Unsupervised 85.91 86.53 85.67 85.5 85.35
Supervised 82.25 83.58 84.37 84.21 84.29

we observe that for larger values of NF , the classification performances tend to
decrease for unsupervised extracted features. PCA concentrates the variability
and the useful information from the raw data in the first features. The usefulness
of a feature decreases with its rank. However, our target is to use as few features
as possible, as noted above.

In Figure 5, we present the classification results with NF = 10 features, when
varying the amount of discarded data before each FoG episode in the range
TPrefog ∈ [1s, 11s], in steps of 1s. We observe that for both supervised and
unsupervised features, FoG detection performance increases with the increase of
TPrefog, until reaching a plateau value at TPrefog = 5 − 6s. This suggests that
these discarded portions of data could contain properties that are different both
from FoG and normal locomotion. In the next set of experiments, we analyze
whether this dataset has specific properties that will lead to prediction of FoG
episodes.
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(a) F1 for FoG class (b) F1 for WALK class

(c) Sensitivity (d) Specificity

Fig. 4. Sensitivity, Specificity and F1 measures for FoG detection when using different
values for NF unsupervised and supervised extracted features. The amount of discarded
data is fixed to TPrefog = 3s before each FoG episode.

6.3 Towards FoG Prediction

In the previous experiments, we observed that discarding TPrefog data preceding
each FoG episode improved the FoG detection results for all types of feature
extraction. We now present the results for the three-class classification problem,
where we use the discarded chunks as examples of the pre-FoG class. As a first
step, we analyzed the impact of the addition of this third class to the mutual
information between the various features and the classes.

Mutual Information. We compare the mutual information of the features in
the FoG-detection and FoG-prediction problems. Figure 6 shows an example of
MI values computed for both supervised and unsupervised features, on the same
Patient 2 dataset, in case of FoG detection and FoG prediction problems. We
observe that all MI values improve for top ranked features, when adding the
third class. This suggests that the pre-FoG data can indeed be representative.

Performance of FoG Prediction. In the next experiments, we set NF = 10,
and we varied Tpre−FoG from 1s to 6s, in steps of 1s. We stopped at 6s because
a further increase did not improve the FoG prediction results.

Figure 7 shows the variation of F1-measures for all the three classes versus
the value of TPrefog. We first observe that, like in the two-class classification
problem (FoG detection), the unsupervised features perform better than the
supervised ones. Second, the F1-measures for the FoG and WALK classes are
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Fig. 5. Sensitivity, Specificity and F1-measures for FoG detection when using NF = 10
unsupervised and supervised extracted features. The amount of discarded data varies
between TPrefog = 1s and TPrefog = 11s.
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Fig. 6. MI values for all Ntotal = 60 computed features, both with supervised and
unsupervised methods, for FoG detection and FoG prediction. TPrefog = 5s

smaller than in the two-class problem. This is expected since we are trying to
solve a classification task with one extra class – pre-FoG – which is identified
using an assumption on its presence and duration, which leads inevitably to a
noisy training. Instances of the pre-FoG class will indeed not always be radi-
cally different from WALK or FoG instances, which will introduce confusion.
Nevertheless, we identify a trade-off: we can use the unsupervised feature ex-
traction to perform FoG prediction at the expense of performance on detection.
Too small values of TPrefog lead to poor results on the F1-measures, because
the pre-FoG class is not representative enough. On the contrary, indefinitely in-
creasing TPrefog improves the F1-measure only for this class, but dramatically
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Fig. 7. F1-measures for FoG prediction when using NF = 10 unsupervised and super-
vised extracted features, with TPrefog ∈ [1s, 6s]

decreases that of the other classes. This is due to the fact that the pre-FoG and
WALK classes become more and more similar.
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Fig. 8. F1-measures for FoG prediction on Patient 3 and Patient 8 data when using
NF = 10 unsupervised and supervised extracted features, with TPrefog ∈ [1s, 6s].

Figure 8 displays the F1-measure variations for the datasets of Patient 3
(PD3) and Patient 8 (PD8). In the case of PD3, when using unsupervised ex-
tracted features, for TPrefog periods of 2s and 3s, the F1-measures increase for
all the classes. The F1-measures for the pre-FoG class are 0.42 for TPrefog = 2s
and 0.56 for TPrefog = 3s. So there are common patterns in the 2s or 3s be-
fore FoG episodes that are distinct from WALK and FoG. The same behavior
of F1-measures is observed for supervised extracted features, but with a delay
compared to using unsupervised features. For TPrefog = 1s supervised features
even outperform the unsupervised ones. The likely reason is that with such short
pre-FoG durations, PCA in unable to capture the structure of that class. On the
other hand, for PD8, an increase of TPrefog leads to a constant decrease in per-
formance for the detection of the FoG and WALK classes, while having a small
increase for pre-FoG (along with a decrease of the WALK F1-measure). That
shows that WALK and pre-FoG are similar, thus using two distinct classes just
leads to confusion in the classification. So, for this patient, we cannot extract
specific patterns that could differentiate pre-FoG from the global WALK class.
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6.4 Discussion

The classification performance for FoG detection is not as high as that reported
in other works. We believe this is mainly due to a less optimistic evaluation
scheme, where we selected the training and testing data in each fold to avoid
having training and testing data chunks coming from the same FoG episodes at
once. This should lead to a more realistic estimate of the performance of a real-
world deployed system. Furthermore, FoG-prediction performances vary consid-
erably across subjects. We can claim that for some PD patients, like Patient 3,
there are patterns, visible in the accelerometer data, that are characteristic of
the pre-FoG class, making it different from the normal locomotion class. These
patients exhibit a deterioration of the walk just before FoG episodes.

There are some limitations related to the assumtpions on the pre-FoG class:

– Different nature of the FoG episodes. Some FoG events occur when the sub-
ject starts walking, meaning there is no gait before the FoG, so that the gait
deterioration that we assume to exist in the pre-FoG phase does not exist,
rendering FoG prediction especially challenging for those cases.

– The duration of the pre-FoG class TPrefog is considered to be fixed for each
patient. Nevertheless, the pre-FoG pattern duration will probably vary even
for different FoG episodes for the same patient. This means that an opti-
mal training set for the pre-FoG class for a single patient might need to
contain segments having different values for TPrefog. In order to determine
the correct value for each single instance, an approach could involve a di-
rect monitoring of the variation of the features, to detect when they start
changing from the normal status to the FoG status.

7 Conclusion

In this work, we analyzed the performance of three feature extraction approaches
for detecting freezing of gait in patients with Parkinson’s disease. Features based
on time-domain and statistical features where compared to unsupervised ones
based on principal components analysis, while Freezing Index (FI) was used as
a baseline reference. We tested the approaches on acceleration data collected at
the ankle from patients that experienced FoG in daily-life. Unsupervised feature
learning outperformed FI by up to 7.1% and the time-domain and statistical
features by up to 8.1% in terms of F1-measure for FoG detection.

We went a step further by analyzing FoG prediction, i.e. identification of pat-
terns (pre-FoG) occurring before FoG episodes, based only on acceleration data.
The purpose is to predict FoG so to assist patients in avoiding freezing periods
altogether. For this, we assume that walking sequences of a fixed length TPrefog

just previous to a FoG episode have different characteristics compared to normal
locomotion patterns and to FoG. On the three-class problem (FoG vs. pre-FoG
vs. normal locomotion) we obtained results highly patient-dependent, reaching
an F1-measure of 56% in the pre-FoG class for one patient. The identification of
pre-FoG patterns is also beneficial for the simple FoG detection: when pre-FoG
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data are discarded from the training set, performance on FoG detection increases
for all the feature extraction methods.

The use of unsupervised features is a promising avenue, since these capture
important variations in the data, without the bias of an expert choosing features
manually and without any prior knowledge of the class labels. In order to improve
the results, other, more complex unsupervised methods for feature learning will
be tested (PCA using nonlinear kernels, deep learning). Furthermore, additional
unobtrusive sensing modalities could be considered (e.g. gyroscopes). Finally,
our assumption on a fixed duration of the pre-FoG class for all FoG events
might need to be revised. To this end, methods monitoring directly changes in
the extracted features could be beneficial for identifying the actual start of the
pre-FoG phases, where present.
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Abstract. The automation of the process of summarizing documents
plays a major rule in many applications. Automatic Text Summarization
has been focused on retaining the essential information without affecting
the document quality. This paper proposes a new multi-document sum-
marization method that combines topic model and fuzzy logic model.
The proposed method extracts some relevant topic words from source
documents. The extracted words are used as elements of fuzzy sets.
Meanwhile, each sentence on the source document is used to generate
a fuzzy relevance rule that measures the importance of each sentence. A
fuzzy inference system is used to generate the final summarization. Our
summarization results are evaluated against some well-known summary
systems and performed well in divergences and similarities.

Keywords: Fuzzy Systems, Data mining, Text Analysis, and Semantics.

1 Introduction

Summarization is the creation of a concise document that represents a meaning-
ful content of a given set of documents. As the tremendous increase in informa-
tion on the internet is overwhelming manual processing, it is necessary to employ
computers to automate the process of summarizing documents. Summarization
produces condensed information that maintains document coherence and avoids
redundancy. Automatic Text Summarization has been used in many areas, such
as news and media to become suitable display on a small-sized mobile device.
The document processing research community has been trying to generate ap-
propriate metrics for measuring the quality of summarizer since the early 90s
several articles dealing with this issue have published. Document Understanding
Conference (DUC) [2], Text Retrieval Conferences (TREC) [1], Text Summa-
rization Challenge (TSC) [4], and Text Analysis Conference (TAC)[3] are some
of these conferences that have been held from 1992 to present.

The fuzzy set theory [5] which has an advantage of modeling uncertainty
can reduce the gap between different meanings in a document. R. Witte et al.
[6] presented how the uncertainty in natural language can be modeled with a
fuzzy-theory based representation using fuzzy heuristics and fuzzy co-reference
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chains. Ladda et al. [8] proposed 8 sentence features and applied those features
to the fuzzy set theory. Ravindra et. al. [9] describes the automatic evaluation
method using Fuzzy set model. Our approach is motivated by [8]. Ladda et
al. calculated a score from each sentence in a document as the vector of their
features making rules for their fuzzy set, and then extracted important sentences
to generate a summary. Their summary was evaluated with other summarizers
using the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [7]. Our
approach is different from their approach: First, we borrow the concept of the
Latent Dirichlet Allocation (LDA) model [13] and use this model to generate
topic words in all input documents with the help of a graphical user interface
tool [14]. Second, we reduced the number of features to only four features: TF-ISF
score, title score, length score, and position score. Last, our summary results were
evaluated using computer generated evaluation tool instead of human metrics
which requires human made summary to be available. This evaluation tool is very
important because computer generated summary may not have an equivalent
human made summary. The computer generated summaries can still benefit
from metrics like ROUGE.

In this paper, we focus on extracting vital sentences from multi-documents
using the topic model. For this purpose, a fuzzy technique is used to extract
the important sentences present in multi-documents. Because the weights of
sentences in various documents are different, the formation of the summaries may
have vagueness. Fuzzy set theory and fuzzy logic are ideally suited for dealing
with this type of uncertainty. Thus, we propose the fuzzy logic for automatic text
summarization and the effectiveness of our proposed method is being evaluated
against similar approaches. Section 2 describes our system design that includes
a pre-processing stage, the scoring of sentences, and the fuzzy logic approach.
Section 3 evaluates our method to other approaches. Finally, conclusions and
plans for future extension of our study are given in Section 4.

2 Topic Summary System Design

Generally, two approaches in the automatic text summarization have been stud-
ied: extractive summary and abstractive summary. The first one is a summary
which generates a summary taken exactly as they appear in the documents
whereas the abstractive summary generates paraphrased sentences in the input
documents. In this paper, our approach is relevant to the extractive summary.
Based on the extractive summary, we use both the topic modeling method and
the Fuzzy System to extract a summary from the source documents. Blei et al.
proposed the LDA which is a generative probabilistic model of a corpus [13].
LDA generates a set of topics providing a document representation. For gen-
erating a topic in the source document, we borrow the concept of LDA topic
modeling. Since the weights of sentences in documents are different, the compu-
tation of the extractive summary may have vagueness. We used a fuzzy technique
to reduce the vagueness. Fig. 1 shows our system design. As a first step, source
documents are divided into the sentences for determining each sentence score.
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The preprocessing stages: the sentence boundary detection, stop-word remover,
and stemming produce a clean sentence. Second, scores are determined for all
topics and their associated sentences. Then, these scores are used in the Fuzzy
System in order to decide the important sentences in the source document. Last,
Fuzzy System selects sentences that can be extracted into the summary docu-
ment. This procedure is described in Fig. 1.

Fig. 1. Design of the Topic Summary System

2.1 Pre-processing

Sentence Boundary Detection. The raw source documents need to be seg-
mented into sentences for processing by other components of the system. The
sentence segmentation is achieved with the help of a supervised system that
classifies sentence boundaries without any heuristics or hand-generated lists. We
used Wall Street Journal news combined with the Brown Corpus to train our
system. The trained system produced low error rates on test news data of nearly
0.25%. [10] This model uses the same training data as mxTerminator [11], and
allows for Navie Bayes or SVM model. In section 4, we evaluate our produced
summary with input from various news documents.

Stop Words Remover. In order to compare the weights between words, we
need to remove the stop words which are generally filtered out prior to, or after,
processing natural language data. In fact, there is no clear definition for the list
of stop words which all tools use. In this paper, we used the most common stop
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words list that includes words such as a and the. The stop words are removed
from the source documents to increase search performance.

Stemming. Stemming is a process for reducing inflected words to their stem,
base or root from. Algorithms for stemming have been studied in computer
science since 1968. We used Porter Stemmer [12], a very widely used algorithm
which became the standard algorithm used for English word stemming.

2.2 Topic Scoring

David Newman [14] developed a graphical user interface tool for the LDA topic
modeling.We used the topic modeling toolbox for extracting three topics from
source documents. The Newsblaster systems archives [18] are trained as the input
documents and each topic is set to 20 topic words.

Topic Score. Each topic word extracted from the source documents is used to
in determining a score for each sentence in the document. The sentence score
ST is calculated by the equation below:

ST = numTopics/Max(numTopics) (1)

, where numTopics is the number of topic terms in a sentence.Max(numTopics)
is the maximum number of topic terms in a sentence. The maximum number of
topic terms is computed by counting the number of topic terms in all sentences.

2.3 Feature Scoring

Term Frequency · Inverse Sentence Frequency (TF · ISF). The Term
Frequency (TF) is the frequency of term within a document and the Inverse
Document Frequency (IDF) is a well-known measure of a words importance. TF
· ISF [29] is an adaptation of the TF · IDF [26]. We defined the TF · ISF score
S1 as below:

TF · ISF = TF (t, s) × ISF (t) (2)

ISF = 1 + log
totalSen

numSen+ 1
(3)

S1 =

∑n
i=1 TFi · ISFi

Max(
∑n

i=1 TF
k
i · ISF k

i )
(k = 1, 2, . . . ,m), (4)

where TF (t, s) is the number of term t in a sentence s. ISF (t) is the inverse
sentence frequency of the term t. k is the number of sentences. totalSen is the
total number of sentences in a document. numSen is the number of sentences
that the term t occurs.
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Title Score. Jaccard similarity coefficient [27] which measures similarity be-
tween two sets is used for the title core. The title score S2 is based on how many
of the title terms are found in a sentence. Thus, the more a sentence contains
the title terms, the higher the title score in the sentence is.

S2 =
St ∩ Tt

St ∪ Tt
, (5)

where St is terms in a sentence. Tt is terms in a title.

Length Score. The length of a sentence is scored. The length score S3 is
computed by normalizing the value given the total number of terms in a sentence.
The longer a sentence is, the less the length score in the sentence is. Generally,
it returns smaller values when the number of terms is large and returns larger
values when the number of terms is small.

S3 = 1 − L

Max(L)
, (6)

where L is the number of terms in a sentence. Max(L) is the maximum number
of terms in a sentence.

Position Score. Our position score is based on the hypothesis in which sen-
tences which occur under certain headings are positively relevant and topic terms
tend to occur very early or very late in a document. Position score S4 is computed
as below:

S4 = first5sentences|last5sentences, (7)

where first5sentences is the first five sentences scores and last5sentences is the
last five sentences scores. Each score in the sentences ranges from 0 to 1.

2.4 Fuzzy System

Fuzzy technique is widely used in various machine control system. In general, an
input variable in a fuzzy system are mapped by a set of membership functions
called fuzzy sets and the crisp input value is converted into a fuzzy value during
the process called fuzzification. Then, the fuzzy system makes decisions gener-
ating output values for the input variables based on a set of rules. We used the
fuzzy technique to extract the important sentences present in multi-documents.
For the fuzzy input membership function, we use five scoring features; topic
score, TF-ISF score, title score, length score, and position score. Each feature
has fuzzy sets below:

S = {(w, μs(w))|w ∈ W}, (8)

where S is a fuzzy set. W is a set of degrees for the scores. μs(w) ∈ [0, 1] is a
membership function.
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Fig.2 shows the membership function of the TF · ISF score. For the fuzzy
inference, we use the logic of the minimum t-norm below:

Fig. 2. The mumbership function of TF-ISF

μs1ANDμs2 = min{μs1, μs2}, (9)

where μs1 and μs2 are fuzzy sets.
The rules are performed by using the intersection operation and produce the

output fuzzy set. For example, if topic score is high AND TF · ISF score is high
AND title score is high AND length score is high AND position score is high,
THEN the importance is high. For the de-fuzzification, we use the centroid
defuzzification using max-min inferencing below:

CenterofGravity =

∑n
w=1(μs(w) × Lw)∑n

w=1 μs(w)
, (10)

where μs(w) is the mass of the scores and L the location of the mass

3 Evaluation

Many evaluation methods for text document summary are based on human
made summary. Generally, researchers compare the human made summary with
their computed summary in order to evaluate their summaries. Even though
human summaries are still beneficial for evaluating summaries using metrics like
ROUGE, we may not be able to evaluate our summaries when we cannot find the
reference human summaries. In order to resolve this problem, Annie Louis and
Ani Nenkova [17] proposed an evaluation method comparing input documents
with candidate summaries without the need for human summary. They ana-
lyzed various features for comparing input documents with some summaries and
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produced very good correlations between their work and humans one. For the
sake of evaluating our summary, in this paper, we implemented their evaluation
method which uses various features obtained directly from the document.

3.1 Data Sets

A tool SIMetricx-v1 [21] built to compare a generated summary with the input
documents is used in the evaluation process. This tool predicts the summary
quality producing divergences between vocabulary distributions of the input doc-
ument and the summary. The input documents consist of input 1, input 2, and
input 3 from the Newsblaster systems archives [18]. All input documents and
summaries are in plain text and contain no HTML tags etc. In order to compare
our summaries, we use two base line summaries and two other summaries:

– base1: A baseline system. The first sentences of each document starting from
most recent are added up to the length limit.

– base2: Another baseline where the lead sentences only from the most recent
document are added up to the 150 word limit

– News blaster: Summary from the news blaster system
– MEAD: Summary produced by the MEAD summarizer [19]

3.2 Results

Our results are based on the features of [17] which are defined as:

– KLInputSummary - Kullback Leibler divergence between input and sum-
mary

– KLSummaryInput - Kullback Leibler divergence between summary and in-
put

– unsmoothedJSD - Jensen Shannon divergence between input and summary
– smoothedJSD -Smoothed Jensen Shannon divergence.
– cosineSimilarity - Cosine similarity between all words in input documents

and a summary.
– topicTerms- Proportion of topic terms in a summary that are topic words of

the input.
– unigramProb - Unigram probability of a summary
– multinomialProb - Multinomial probability of a summary

Table 1 shows the results of the features for summaries. For establishing the effec-
tiveness of our system, we used three document sets: input 1, input 2, and input
3, which include 20, 15, and 19 documents respectively. Kullback Leibler (KL)
divergence [30] is a non-symmetric method of measuring the difference between
two probability distributions. The divergence is defined as the average number of
words wasted by the samples that have two probability distributions: the input
document and the summary. In this paper, we computed the divergence by two
ways, input-summary and summary-input because KL divergence is not sym-
metric. Jensen Shannon (JS) divergence is a well-known method of measuring



166 S. Lee, S. Belkasim, and Y. Zhang

Table 1. Comparision our system with the baselines

ID SysID KL-IS KL-SI JSD-unS JSD-S Cosine Topics uni-Prob multi-Prob

input1 Base1 1.92115 1.61838 0.45389 0.32542 0.60395 0.47297 -201.19195 -97.63694
Base2 2.03388 1.65006 0.4537 0.33553 0.88069 0.50588 -228.03998 -108.28518
MEAD 1.88596 1.38862 0.4276 0.30887 0.6537 0.62651 -209.58353 -94.62087
NewsB 2.18943 1.8889 0.48795 0.36337 0.78131 0.4125 -230.99905 -115.90475
TFuzzy 1.85217 1.44667 0.45941 0.30961 0.8256 0.66102 -147.10274 -73.18053

Input2 Base1 1.90647 1.44921 0.40439 0.30928 0.6541 0.41975 -207.71389 -92.9944
Base2 2.65826 2.00215 0.5026 0.40801 0.28824 0.21591 -252.33676 -123.7654
MEAD 1.84536 1.30667 0.38211 0.29166 0.79683 0.54651 -212.6833 -91.04515
NewsB 1.96263 1.4549 0.40172 0.31111 0.7185 0.49425 -222.87001 -98.74827
TFuzzy 1.64461 1.51851 0.50393 0.2885 0.62851 0.69565 -53.60434 -33.47514

Input3 Base1 1.74798 1.49149 0.43173 0.30163 0.63495 0.45946 -195.50509 -92.72824
Base2 1.97371 1.77928 0.4775 0.33862 0.80364 0.37143 -191.40065 -97.54206
MEAD 1.87949 1.46613 0.42816 0.31038 0.75478 0.44828 -225.95963 - 102.96823
NewsB 1.88447 1.45429 0.42111 0.3091 0.76432 0.4086 -244.32748 -109.48751
TFuzzy 1.62052 1.55735 0.52489 0.28983 0.71508 0.5 -69.93805 -43.33927

the similarity between two probability distributions [28][26]. JS divergence is a
natural extension of the KD divergence to a set of distributions. We borrowed
the concept of smoothing method [17] to avoid the undefined divergence problem
in which the second probability of the summary-input document is zero. In table
1, higher divergence scores indicate poor quality summaries and higher scores
of other features indicate better summaries. Our system generates the lowest
divergence scores in the KL input-summary divergence of input 1, input 2, and
input 3 and smoothed JS divergence of input 2 and input 3. This is because the
average number of words wasted in both the KL input-summary divergence and
smoothed JS divergence is the smallest meaning that the similarity between in-
put documents and the summary is the highest. On the other hand, our system
obtained high divergence scores both in the KL summary-input divergence and
unsmoothed JS divergence. In order to compare the similarity between input
documents and summary, we computed the cosine similarity. The score of our
summary in the cosine similarity is lower than others comparatively. However,
high scored summaries in the cosine similarity do not mean that the summaries
are more important than others. This is because the cosine similarity is only
computed with all words in the input documents. We computed the proportion
of the topic words in summaries. In all document sets, our summary has a higher
proportion of topic words to other summaries. We also computed the unigram
probability and multinomial probability of summaries. These probabilities rep-
resent the log likelihood of a summary given the input documents. The results
show our summary has more weights than other summaries in those features.

4 Conclusion

We proposed a multi-document summary system using both a topic model and
a fuzzy method, which reduces the error rates of divergence between the input
document and the summary. For extracting the topics on the source documents,
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the Latent Dirichlet Allocation (LDA) method is used, and each sentence in the
input documents is scored by using the topic words. Also, other scores were gen-
erated by adding different weights for sentences. With the fuzzy system, these
scores produce a rule based decision that determines whether a sentence is im-
portant or not. We also compared our system with other systems by evaluating
their divergences and similarity. Our summary have showed a good quality in
KL input-summary divergence and smoothed JS divergence between input doc-
uments and summary. However, our summary does not have good qualities in
other divergences and cosign similarities. To solve this problem, we propose to
the type2-fuzzy set system that can handle larger uncertainty [24] and con-
tinue to reduce the similarity gap between the input document and the sum-
mary. Recently, many summarization models have been proposed for medical
domain [22][23], but the medical articles still have vague terms, making it diffi-
cult to extract the information. We will need to use medical data as input docu-
ments generating a summary, and this work will be very beneficial for extracting
important meaning of the documents.
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Abstract. In a classification problem typically we face two challenging issues,
the diverse characteristic of negative documents and sometimes a lot of nega-
tive documents that are closed to positive documents. Therefore, it is hard for a
single classifier to clearly classify incoming documents into classes. This paper
proposes a novel gradual problem solving to create a two-stage classifier. The
first stage identifies reliable negatives (negative documents with weak positive
characteristics). It concentrates on minimizing the number of false negative doc-
uments (recall-oriented). We use Rocchio, an existing recall based classifier, for
this stage. The second stage is a precision-oriented “fine tuning”, concentrates on
minimizing the number of false positive documents by applying pattern (a statis-
tical phrase) mining techniques. In this stage a pattern-based scoring is followed
by threshold setting (thresholding). Experiment shows that our statistical phrase
based two-stage classifier is promising.

Keywords: Two-stage classification, Text classification, Pattern mining,
Scoring, Thresholding.

1 Introduction

In real life, many classification problems are multi-class and multi-label. Multi-class
and multi-label classification is popularly solved by splitting into several binary classi-
fications. Support Vector Machine (SVM) and Rocchio classifiers usually apply this ap-
proach. Binary classification theoretically is more generic than multi-class classification
or multi-label classification [15]. In this paper we use binary dataset for experiments.

In a classification problem typically we face two challenging issues, the diverse char-
acteristic of negative documents and sometimes a lot of negative documents that are
closed to positive documents. Therefore, it is hard for a single classifier to clearly clas-
sify incoming documents into classes. Most of existing popular text classifier such as
SVM, Rocchio and k Nearest Neighbours (kNN) are single stage classifiers.

Term 1 is the most common type of feature in document representation. A complex
natural language document is transformed into a set of simple independent terms. Using

1 Terms are normalized words. Word normalization handles superficial differences, such as ac-
cents and diacritics, capitalization/case-folding, and other issues in a language e.g. color vs.
colour in English [10].

P. Perner (Ed.): MLDM 2013, LNAI 7988, pp. 169–182, 2013.
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simple term feature makes the classification efficient. However, relation information
among terms is lost [16].

A topic might have clues (good indicators) to represent the topic. For example in
TREC-11 RCV1 corpus [17]; topic “Economic espionage” (e.g. “spy”, “espionage”,
“industry”) has less number of good indicators than topic “Progress in treatment of
schizophrenia” (a lot of treatments jargon). In topics with a lot number of clues, term-
based might not be able to catch the theme of document, so the effectiveness is low [14].
A solution to this problem, we can use terms co-occurrence approach. A new approach
for document representation is using termset (pattern), a “statistical phrase”. Pattern
Taxonomy Model (PTM) [18,6] used intra-document based frequent closed sequential
pattern with paragraph as the transactional unit.

The main evaluation metric for text classification is F measure which is based on
recall and precision [15]. The problem of text classification can be divided into recall-
oriented classifier and precision-oriented classifier separately. Our approach combine
Rocchio as a recall-oriented stage, and a novel pattern based scoring-thresholding stage
as precision-oriented stage.

Typically, scoring process is conducted by the classifier and thresholding is a post-
processing. For classification, thresholding is often considered as a trivial process and
is not important; therefore it is under-investigated. However, Yiming Yang [20] proved
that thresholding is important and not simple. She proved that an effective thresholding
strategy produces significantly better classification than other thresholding strategies.

We propose a new precision-oriented classifier which set both score and threshold
values explicitly. In scoring phase, we focus on describing positive feature by using
patterns, statistical semantic features that captures semantic relations between terms.
While in thresholding phase we use an effective training-based model.

We conducted substantial experiments on popular text classification corpus based on
Reuters Corpus Volume 1 (RCV1), compared with SVM, Rocchio and another two-
stage classifier to evaluate the proposed model. The results show that our pattern based
two-stage classifier is promising.

The rest of this paper is structured as follows: Section 2 discusses related work.
Section 3 proposes our two-stage text classification approach. The experiment design is
described in Section 4, whereas the results are discussed in Section 5. Finally, Section
6 gives concluding remarks.

2 Related Work

SVM and Rocchio are among the most popular learning algorithms for text classifica-
tion [15,10]. SVM is an outstanding text categorization method because of its capability
to overcome text properties [4]. The properties of text are high dimensional (more than
1000), few irrelevant features (dense concept vector), sparse document vectors (most
feature in document vector are zero), and most text categorization problems are linearly
separable [4]. Even if all available features were used (no dimensional reduction), SVM
had good effectiveness, and difficult to be beaten [11].

Classification can be done in two ways, new documents is directly predicted the
class, or performed in two-stages scoring/ranking and thresholding [15]. Scoring
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process conducted by the classifier and thresholding is a post-processing. Information
retrieval models are the basis of ranking algorithm that is used in search engines to
produce the ranked list of documents [2].

Scoring for ranking is the main problem in information filtering field, the objective
is to effectively score incoming documents to rank. Some recent work in information
filtering are including [6].

Different to the ranking task, classification is the task of assigning documents to
predefined categories. A comprehensive review of text classification methods can be
found in [15]. To date, many classification methods, such as Naive Bayes, Rocchio,
kNN and SVM have been developed in IR [10].

For classification, thresholding is often considered a trivial process and is not impor-
tant; therefore it is under-investigated. However, Yiming Yang [20] proved that thresh-
olding is important and not simple. She proved, using kNN, an effective thresholding
strategy produces significantly better classfication effectiveness significantly than other
thresholding strategies.

Existing works on thresholding strategy are generally in the context of post-procesing
classification or for multi-label classification problems such as [3,20]. However, in
principle, these thresholding strategies can be used for tranforming ranking to binary
decision classification. To our knowledge, only a few number of works focused on
thresholding strategies for ranking into binary decision, among others [7,21].

There are two steps in rank to binary decision transformation, firstly scoring
documents score(dj , ci), then thresholding [15]. These classifier usually use default
threshold, for example threshold score is zero for SVM and probability is 0.5 for Bayes
classifier [3]

There are at least three popular thresholding strategies, namely ranking-based,
score-based, and proportional-based. Yiming Yang [19,20] respectively named them
as RCut (rank-based thresholding), SCut (score-based local optimization), and PCut
(proportion-based assignment). Ranking-based thresholding is referred as fixed thresh-
olding [15] or ”k-per-doc” thresholding [5]; and score-based thresholding as CSV
thresholding [13,15].

A two-stage method for information filtering was introduced in [8,9] to significantly
improve the performance.

3 A Pattern Based Two-Stage Text Classifier

The set of negative documents have a variety of topics. Simply put, negative documents
N divided into two parts, the N1 and N2. N1 (near negative documents) are documents
that have close similarity with positive documents P (see Figure 1).

Figure 2 shows the classification of two-stage global framework. By using the same
training set, each stage produces a classification model. In classifying phase, the classi-
fication model on stage one concentrates to identify negative documents. At this stage,
documents that are predicted as negative documents are grouped into TN1 (true nega-
tive group one) if the document is a true negative, or FN1 (false negative group one)
if the documents actually are positive documents. At this stage (stage one), the priority
is to minimize FN rate, with acceptable FP (false positive, i.e. negative documents
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Fig. 1. Positive P , and negative N1 (near positive), N2 in a binary class

falsely predicted as postive) rate. Then, classification model two, whic is produced in
stage two, is used to identify documents that positively predicted in stage one. In our
two-stage model, true negative TN = TN1+TN2, false negative FN = FN1+FN2,
true positive TP , and false positive FP . This stage two is a fine tuning process.
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Fig. 2. Two-stage framework

In our two-stage model, at classifying phase the first stage is a recall-oriented focused
on documents with low scores, while the second stage is a precision-oriented focused
on documents with high scores (see Figure 3).

Our two-stage classifier (TSC) use Rocchio classifier for stage one and a pattern-
based RFDτ classifier for stage two. Our proposed classifier RFDτ is decribed in next
subsection. Learning and classifying phases of TSC algorithms are outlined in Algo-
rithm 1 and Algorithm 2.
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Stage 1, Recall oriented 

High score Low score 

High score Low score 

Stage 2, Precision oriented 
Top highest 

Top lowest 

Fig. 3. Two-stage framework: classifying phase

Algorithm 1. TSCLearning

Input : A training set, D = D+ ∪D−.
Output: Rocchio classification model; and

threshold value, τ .

// Learn training dataset using Rocchio classifier, get
Rocchio model.

1 ModelRocchio = ClassifierRocchio(D) ;
// Calculate the score of training documents using RFD.

2 Dscore = RFD(D,min sup, θ1, θ2) ;
// Calculate the threshold value, τ.

3 τ = Thresholding(Dscore) ;

Algorithm 2. TSCClassifying
Input : A new unlabel document;

Rocchio classification model; and
threshold value, τ .

Output: Class label for unlabel document.

// Pedict label the new documents dunlabeled by using Rocchio
model.

1 dlabeled = Rocchio(dunlabeled,ModelRocchio) ;
// If Rocchio label it as negative, so the final label of

the documen is negative
2 if dlabeled is negative then label of d is negative ;
// If Rocchio label it as positive, so the final label of

the documen is depend on RFDτ

3 else dlabeled = RFDτ (dunlabeled,ModelRocchio) ;

3.1 Pattern-Based Scoring Model

In this paper, we assume that all documents are split into paragraphs. So a given doc-
ument di yields a set of paragraphs PS(di). In our model, we use sequential closed
patterns. The definition of sequential closed pattern can be found in [6].
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Table 1. Pattern based document representation

Doc Patterns

d1 〈carbon〉4, 〈carbon, emiss〉2, 〈air, pollut〉2
d2 〈greenhous, global〉3, 〈emiss, global〉2
d3 〈greenhous〉2, 〈global, emiss〉2
d4 〈carbon〉3, 〈air〉3, 〈air, antarct〉2
d5 〈emiss, global, pollut〉2

Table 1 illustrates document representation in our pattern-based model, which
is based on Relevance Feature Discovery (RFD) [6] and Pattern Taxonomy Model
(PTM) [18]. In this figure d1 has three pattern features 〈carbon〉4 , 〈carbon, emiss〉3,
and 〈air, pollut〉2. Subscripted values are support values which represents weight. It
means that in d1 there are four paragraphs contain pattern 〈carbon〉, three paragraphs
contain pattern 〈carbon, emiss〉, and two paragraphs contain pattern 〈air, pollut〉. A
termset X is called a frequent sequential pattern if its relative support suppr(X) is
greater than or equal to a predefined minimum support, that is, suppr(X) ≥ min sup.

In pattern-based, the class representation is in the form of a set of weighted terms.
The number of terms in class representation is relatively small compared to the size of
the vocabulary in the class. The terms weight in class representation is calculated from
the appearance of terms in the document representation (patterns). There are several
ways to calculate the weight of term [6,18]. The basic weight of term t in dataset D+ is

weight(t,D+) =

|D+|∑
i=1

|{p|p ∈ SPi, t ∈ p}|∑
p∈SPi

|p|

where SPi is pattern set of pattern p in document di, and |p| is the number of term in
pattern p. For example in Table 1, D+ = {d1, d2, . . . , d5}, term global (which appears
in document d2, d3, . . .d5), has weight(global,D+) = 2

4 + 1
3 + 1

3 = 7
6 .

Algorithm 3 describes RFD document scoring model.

3.2 Thresholding Model

The threshold value (τ ) in our model is based on score of document. Score in document
di, Score(di), is its weight in RFD model. For thresholding, score can be based on

 Low score High score 

Training dataset 

  

Testing dataset 

Low score High score 

Fig. 4. Threshold setting
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Algorithm 3. RFD

Input : A training set, D = D+ ∪D−;
parameter minimum support, min sup; and
experimental parameters, θ1 and θ2.

Output: Score of a document, score(d).

// Extract positive patterns P+ from D+. Detail of
algorithm SPMining is in [18].

1 P+ =SPMining(D+,min sup) ;

// Extract terms TP+

from P+.

2 TP+

= {t | t ∈ p, p ∈ P+} ;

// Calculate initial term weight of TP+

.

3 weighti(t) = support(t,D+), t ∈ TP+

;
// Select top rank negative samples (offender), D−

o .

4 D−
o = {di | di ∈ D−, score(di) > 0, i < �D+�

2
} ;

// Extract negative patterns P−
o from D−

o .
5 P−

o =SPMining(D−
o ,min sup) ;

// Extract terms TP−
o from P−

o .

6 TP−
o = {t | t ∈ p, p ∈ P−

o } ;
// Calculate initial term weight for terms that just only

appear in D−
o .

7 weighti(t) = −support(t,D+), t ∈ {TP−
o − TP+} ;

// Get the set of terms T as union of TP+

and TP−
o .

8 T = T ∪ To ;
// Classify T into three categories based on their

specificity: positive specific T spe+, negative specific
T spe−, and general T gen .

9

⎛
⎝

T spe+ = {t ∈ T | spe(t) > θ2},
T gen = {t ∈ T | θ1 ≤ spe(t) ≤ θ2}, and
T spe− = {t ∈ T | spe(t) < θ1}

⎞
⎠,

where spe(t) = 1
n
× (|{d | d ∈ D+, t ∈ d}| − |{d | d ∈ D−

o , t ∈ d}|);
// Revise term weight function, based on their term

specificity.
10

weight(t) =

⎧⎪⎨
⎪⎩

weigthi(t) + (weighti(t)× spe(t)), if t ∈ T spe+

weigthi(t), if t ∈ T gen

weigthi(t)− (weigthi(t)× spe(t)), if t ∈ T spe−

// Calculate document score
11 score(d) =

∑
t∈T,t∈d weight(t)
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Testing set, case B 

  

Testing set, case A 

  
 

 

Training set, case B 

  
  

Training set, case A 

Fig. 5. Training and testing cases. Case A is a non-overlap training score τP > τN , case B is
an overlap training τP < τN . In both case A and case B testing score are overlap, and usually
Δ3 < Δ4.

training set, validation set, or testing set. For a dataset with a small number of training
set, it is difficult to get a representative validation set. Using testing set for threshold-
ing makes thresholding model is not suitable for online learning. Our model generate
threshold based on score of training set D, which consists of a set of positive documents,
D+, and a set of negative documents, D−.

Algorithm 4. RFDτLearning
Input : A new unlabel documents;

Rocchio classification model; and
threshold value, τ .

Output: Class label for unlabel document.

// Calculate score of training document
1 Dscore = RFD(D,min sup, θ1, θ2) ;
// Calculate the threshold value, τ.

2 τ = Thresholding(Dscore) ;

Our τ is based on minimum score of positive training document (τP ) and minimum
score of negative training document (τN ) (see Figure 4).

τP = min
di∈D+

{Score(di)}

τN = max
di∈D−

{Score(di)}

A multi-class classification can run in several binary classification. These binary classi-
fications usually have imbalance classification problem, where the number of negative
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Algorithm 5. RFDτClassifying
Input : A new unlabel documents;

Label Rocchio classification model; and
threshold value, τ .

Output: Class label for unlabel document.

// Classify document based on τ and its score
1 if score(d) > τ then d is labeled as positive documents ;
2 else d is labeled as negative documents

much more than of positive. The performance of imbalance classification problem typ-
ically has peak on the left side of data distribution (see Figure 6).
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Fig. 6. Typical performance for binary classification

Based on [7] with only score of positive training documents D+ available, the op-
timal threshold is τP . In a real dataset, in most cases the maximum score of negative
testing document are more than the minimum score of positive testing document (see
Figure 5). Therefore,

τ = τP − α

where 0 ≤ α ≤ (τP − τN ). With simplification version

τP ≤ τ ≤ τN

With both D+ and D− available, we found that

τ = min(τP , τN )

that is

τ =

{
τP , if τP < τN
τN , if τP > τN

Algorithm 4 and Algorithm 5 describe RFDτ in learning and classifying phase
respectively.
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4 Evaluation

In this section, we first discuss the data collection used for our experiments. We also
describe the baseline models and their implementation.

In this study we use the 50 assessor topics of TREC-11 Filtering Track RCV12

dataset contains 21,605 documents. According to Buckley and others [1], 50 topics are
stable and enough for high quality experiments. RCV1 corpus consists of all and only
English language stories produced by Reuter’s journalists. Each topic in the dataset is
binary class with its own positive and negative set. Documents in TREC-11 are from
RCV1, has developed and provided 100 topics for the filtering track aiming at building
a robust filtering system. The first 50 topics of TREC-11 RCV1 documents were cat-
egorised by humans; the other 50 topics were categorised by intersecting two Reuters
topic categories. The assessor topics are more reliable and the quality of the intersection
topics is not quite good [17].

The documents are treated as plain text documents by preprocessing the documents.
The tasks of removing stop-words according to a given stop-words list and stemming
terms by applying the Porter Stemming algorithm are conducted.

Two popular baseline classifiers are used: Rocchio, and SVM. In this paper, our
proposed model is called TSC (Two-stage Classifier).

The Rocchio algorithm [12] has been widely adopted in the area of text catego-
rization. It can be used to build the profile for representing the concept of a topic
which consists of a set of relevant (positive) and irrelevant (negative) documents. Two
centroids c+ for positive and c− for negative are generated

c+ =
1

|D+|
∑

d∈D+

d

||d||

c− =
1

|D−|
∑

d∈D−

d

||d||

For predicting new documents, we use cosine similarity between centroid cj and docu-
ment di

sim(cj ,di) =
ci · di

||ci|| × ||di||
New documents will be predicted as positive if they are more similar to positive cen-
troid, otherwise it will be predicted as negative.

SVM is a statistical method that can be used to find a hyperplane that best separates
two classes. SVM is one of state of the art of text classifier. It achieved the best per-
formance on the Reuters-21578 data collection for document classification [15]. For
experiments in this paper, we used SVMLight package 3.

Effectiveness for text classification was measured by two different means Fβ and
Accuracy (Acc). Fβ is the most important metric [15]. Fβ is a unification value of
Recall (R) and Precision (P ):

2 http://trec.nist.gov/data/t2002 filtering.html
3 http://svmlight.joachims.org/
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Fβ =
(β2 + 1)PR

β2P +R

The parameter β = 1 is used in this paper, which means that recall and precision is
weighed equally.

F1 =
2PR

P +R

To get the final result of several topics, two different ways may be adopted, microaver-
aging (Fμ

1 ) and macroaveraging (FM
1 ) [15]:

Fμ
1 =

2PμRμ

(Pμ +Rμ)

where

Pμ =
TP

TP + FP
=

∑|C|
i=1 TPi∑|C|

i=1(TPi + FPi)

Rμ =
TP

TP + FN
=

∑|C|
i=1 TPi∑|C|

i=1(TPi + FNi)

TP (True Positive) is the number of documents the system correctly identifies as posi-
tives; TN (True Negative) is the number of documents the system correctly identifies as
negatives; FP (False Positive) is the number of documents the system falsely identifies
as positives; FN (False Negative) is the number of positive documents the system fails
to identify; and |C| is the number of topics.

FM
1 =

∑|C|
i=1 F1,i

|C|

where F1,i is the F1 for topic i.
For accuracy,

Acc =
TP + TN

TP + FP + TN + FN

Accμ =

∑|C|
i=1(TPi + TNi)∑|C|

i=1(TP + FP + TN + FN)

AccM =

∑|C|
i=1 Acci

|C|

The statistical method, paired two-tailed t-test, is also used to analyze the experimental
results. If the associated p-value is low (< 0.05), that shows the difference in means
across the paired observations is significant.
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Table 2. Comparison of TSC and popular text classifers

Model
Macro-average Micro-average

F1 Acc F1 Acc

TSC 0.44 0.69 0.57 0.71
SVM 0.19 0.56 0.50 0.61

Rocchio 0.37 0.66 0.42 0.68
%change 19.6% 4.4 % 12.8% 3.7%

5 Results and Discussion

In this section we present the experimental results for comparing the proposed model
TSC with the baseline models. The results listed in Table 2 and Table 3 show that our
model outperforms baseline models and other two- stage model.

In accuracy results, with using original testing for dataset with imbalanced number of
positive and negative, accuracy produce misleading measurements. For example in our
TREC-11 RCV1 dataset if we predict all of testing documents as negative, we get Recall
= 0, Precision=0, F1 = 0, Accuracy = 81% (macro average), 82% (micro average). If
all testing documents are predicted as positive, we get Recall = 1, Precision = 0, F1 =
0, Accuracy = 19% (macro average) 18% (micro average). Therefore, we use average
of five random balance of testing (the number of positive and the number of negative
is the same). In balance testing set, if we predict all testing document as negative, we
get Recall = 0%, Precision = 0%, F1 = 0, Accuracy ≈ 50% (macro average) ≈ 50%
(micro average). If all testing documents are predicted as positive, we get Recall = 1,
Precision=0, F1 = 0, Accuracy ≈ 50% (macro average) ≈ 50% (micro average).

Table 3. Comparison of two-stage classifiers

Model
Macro-average Micro-average

F1 Acc F1 Acc

TSC 0.44 0.69 0.57 0.71
Two-stage: Rocchio-SVM 0.19 0.56 0.46 0.61
%change 129.2% 22.3 % 22.4% 17.2%

The t-test p values in Table 4, indicate that the difference in scores is statistically
significant.

Table 4. p-values for baseline models comparing to TSM in all accessing topics

F1 Acc

SVM 8.516E-12 9.569E-15
Rocchio 0.0317 0.045

TS Rocchio-SVM 4.323E-12 1.1E-09
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Table 5. Experiment Result in Scoring Phase [6]

top-20 MAP F1 b/p IAP

SVM 0.45 0.41 0.42 0.41 0.44
Rocchio 0.47 0.43 0.43 0.42 0.45
RFD 0.56 0.49 0.47 0.47 0.51

Table 6. Recall-oriented stage one and precision-oriented stage two

Model
Macro-average Micro-average

Rec Prec Rec Prec

Stage 1: Rocchio 0.82 0.27 0.85 0.28
Stage 2: RFDτ 0.59 0.39 0.70 0.42

Some classifiers, such as SVM and Rocchio, use scoring then thresholding stages.
The final performance of a classifier is based on both stage. In scoring stage, RFD scor-
ing has better result than SVM and Rocchio (see Table 5), where top-20 is the average
precision of the top 20 documents, MAP is Mean Average Precision, b/p is the break-
even point, and IAP is Interpolated Average Precision. With an efficient thresholding,
scoring methods can maintain overall classifier’s performance. Table 6 shows that our
effective two-stage classifier is recall-oriented in stage one and precision-oriented in
stage two.

6 Conclusions

Effective text classification is not a trivial process. In this paper, we proposed a new
approach for text classification by using a pattern based two-stage classifier. We pro-
posed a novel pattern based scoring and thresholding for stage two. The scoring model
is based on pattern mining which capture semantic content of the text; and the thresh-
olding model is based on training set that makes it efficient. Experiment shows that our
proposed model is comparable to existing state of the art text classifiers.
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Abstract. Traditional CBIR method relies on visual features to identify objects 
in an image and uses predefined terms to annotate images, thus it fails to depict 
the implicit meanings. Recent textual content analysis methods applied to image 
annotation were blamed for their complexity of computation. In this research, 
we propose a corpus-free, relatively light computation of term segmentation 
method, namely “Iterative Merging Chinese Segmentation (IMCS) ,” to identify 
representative terms from a single web page to obtain anecdotes as a semantic 
enrichment of the target image. It requires minimum computation needs that  
allows to share characters/words and facilitate their use at fine granularities 
without prohibitive cost. In the experiment, this method achieves a precision 
rate of 86.02%, and gains acceptance from expert rating and user rating of 75% 
and 68%, respectively. In performance testing, it only takes 0.006 second to 
process each image in a collection of 1,728 testing data set. 

Keywords: Automatic Image Annotation, Iterative Merging Chinese  
Segmentation, N-Gram, Lexical Chain. 

1 Introduction 

With the rapid development of image technology and digital devices, more and more 
web images are stored and displayed on the Internet. As a result, the way to process 
these images to be retrieved efficiently has become a crucial issue. Content-Based 
Image Retrieval (CBIR) with its focus on rapid application of voluminous low-level 
visual features such as color, texture, shape, etc. gains popularity to support efficient 
searching and browsing images. Due to the visual features explain less semantics, and 
the annotation relies on limited predefined terms, thereby the results usually are not 
satisfactory. 

A glimpse of related studies would reveal that a couple of supervised learning  
approach and clustering techniques have been applied to image annotation including 
Support Vector Machine (SVM) [1, 2], Bayesian [3] and Self-Organizing Feature 
Map (SOM) [4, 5]. In addition, various text processing techniques that support con-
tent identification to analyze textual content based on word co-occurrence, location, 
and lexical-chained concepts have been elaborated in [6-8]. However, the aforemen-
tioned techniques suffer the same disadvantages of heavy computation for  
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multi-document processing, which will consume lots of memory and may incur  
run-time overhead. In this study, we propose a corpus-free, relatively light computa-
tion of term segmentation for single document processing, namely “Iterative Merging 
Chinese Segmentation (IMCS) method.” The IMCS method is to identify representa-
tive terms from a string in a single document with minimum computation needs that 
allows to share characters/words and facilitate their use at fine granularities without 
prohibitive cost. The results showed that applying our method in a single document is 
enough to generate content descriptor for image annotation. The precision rate 
achieves 86.02%, and the acceptance from expert and user rating reach 75% and 68%, 
respectively.The performance testing is also very promising. 

The rest of the paper is organized as follows. Section 2 presents the related work 
including automatic image annotation, text processing, and lexical semantics. Then, 
we address the design of our experiment in Section 3. The experimental result and 
evaluation method are described in Section 4. Finally, in Section 5, we draw some 
conclusions and propose future work. 

2 Related Work 

2.1 Automatic Image Annotation 

There have been a number of models applied for image annotation. In general,  
image annotation can be categorized into three types: retrieval-based, classification-
based, and probabilistic-based [6]. The basic notion behind retrieval-based annota-
tion is that semantic-relevant images are composed of similar visual features. CBIR 
have been proposed in 1992 [9]. Since then, more and more studies annotated the 
images based on this method [10]. CBIR is applied by the use of images features, 
including shape, color and texture. However, this method is limited by the training 
data set and the hidden semantic or abstract concepts can’t be extracted because the 
keywords are confined to pre-defined terms. Consequently, the results of CBIR are 
usually not satisfactory. The second type, also known as the supervised learning 
approach, treats annotation as classification using multiple classifiers. The images 
are classified based on the extracted features. This method processes each semantic 
concept as an independent class, and assigns each concept as one classifier.  
Bayesian [3] and SVM [11] are the most often used approaches. The third type is 
constructed by estimating the correlations between images and concepts with a par-
ticular emphasis on the term-term relationship and intends to solve the problem of 
“homograph” and “homophony.” Frequent used approaches include co-occurrence 
model [12], LSA [5], PLSA [13] and HMM [14]. Notwithstanding the efforts made 
on the enhancement of annotation quality, the aforementioned approaches suffer the 
same disadvantages of complex processing of contents and semantics. 

2.2 Text Processing 

In the field of Information Retrieval, text processing technique was conducted to  
extract keywords or features that can represent document content. One of the most 
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prominent problems in processing Chinese texts is the identification of valid words in 
a sentence, since there are no delimiters to separate words in a sentence, identifying 
words/phrases is difficult because of segmentation ambiguities and the occurrences of 
newly formed words. In general, Chinese texts can be parsed using dictionary lookup, 
statistical or hybrid approaches [15]. The dictionary lookup approach identifies key 
words of a string by mapping well-established corpus. The statistical technique ex-
tracts elements by using n-gram computation. The hybrid method conducts dictionary 
mapping to process the major task of word extraction and handle the remains through 
n-gram computation. For example, the Chinese string Tsai ying wen bei jian tan bian 
hui mian yi xiao shi 蔡英文北監探扁會面一小時 'Ying-wen Tsai went to Taipei 
prison to visit Shui-bian Chen for an hour' will be parsed as: ' [Tsai ying wen] [蔡英
文], ' ' [bei jian] [北監],' '[tan ] [探],' '[bian] [扁],' '[hui mian] [會面],' and '[yi xiao 
shi] [一小時]' by a dictionary-based CKIP Chinese word segmentation system (CKIP 
for short). This method is very efficient while it fails to identify newly-formed or  
out-of-the-vocabulary words and it is also blamed for the triviality of the list of the 
extracted words. The statistical technique is conducted by extracting each n-gram  
(bi-gram, tri-gram, … etc.) from the input string. This method relies on the frequency 
of each n-gram and a threshold to determine the validity of each word. The above 
string through n-gram segmentation will produce: '[蔡英], [英文], [文北], [北監], [監
探], [探扁], [扁會], [會面], [面一], [一小], and [小時];'  '蔡英文, 英文北, …, 一
小時; ' and so on. The application of this method has the benefit of corpus-free and 
the capability of extracting newly-formed or out-of-the-vocabulary words while at the 
expense of huge computations and the follow-up filtering efforts. Recently,  a num-
ber of studies proposed substring [9], significant estimation [16], and relational nor-
malization [17, 18] to identify words based on statistical calculations.  

The following task after word extraction is to assign each word a weight, or value, 
reflecting its presumed importance for purposes of content identification. Probably the 
most popular and well-implemented algorithm in traditional computing for term 
weighting is TFIDF (Term Frequency - Inverse Document Frequency) [19]. TFIDF 
regards the importance of a word is proportional to the standard occurrence frequency 
of each word k in each document i (that is, FREQik ) and inversely proportional to the 
total number of documents to which each word is assigned. The term discrimination 
value can be used to compute a weight for each word in each document of a collection 
by combining the term frequency factor with the discrimination value. Some studies 
[20] [21] proposed methods to assign different weights to words by location. 

2.3 Lexical Semantics 

Lexical cohesion can be interpreted as the state of cohering for making the sentences 
of a text, indicated by the use of semantically related vocabulary. Lexical chains 
(LCs) are sequences of words which are in lexical cohesion relation with each other 
and they tend to indicate portions of a text that form semantic units; they could serve 
further as a basis for a segmentation [22]. This method is usually applied in a summa-
rization generation [23]. For instance, the string xiang liang kong jian mo xing  
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向量空間模型 'Vector space model' may be parsed as '[xiang liang] [向量] ,' '[kong 
jian] [空間] ,' and '[mo xing] [模型]' if there is no further merging process under-
going. Thereby the most informative word xiang liang kong jian mo xing 向量空間
模型 will be left out. Usually LCs are constructed in a bottom-up manner by taking 
each candidate word of a text, and finding an appropriate semantic relation offered by 
a thesaurus. Instead, the paper [24] proposes a top-down approach of linear text  
segmentation based on lexical cohesion of a text. Some scholars suggested to use 
machine learning approaches to create a set of rules to calculate the rate of forming a 
new word by characters for entity recognition including the maximum entropy model 
(MEM) and hidden Markov model (HMM) and claimed this method was able to 
achieve reasonable performance with minimal training data [25, 26]. 

3 Research Design 

3.1 Research Model Overview 

This study covers three tasks: text processing, image annotation, and image evalua-
tion. The image-resided web pages were collected from Taiwan news website and the 
framework of our research is depicted as Fig. 1. We used the news title and the text as 
input data; the image captions as ground truth labels. Then, we conducted IMCS and 
term weighting for the input data. After that, we generated a list of three representa-
tive words for each image. From the list, we assigned the word with the highest 
weight as the primary annotation and the rest as secondary annotations. Finally, we 
evaluated the primary and secondary annotations by using the image caption and  
human judgment, respectively. In the following section, we will introduce the process 
of IMCS and the way of term weighting and the word annotation. 

Parse News Texts Process IMCSNews Webpages

Image Caption

Title and Content  Process Term 
Weighting 

Process Accuracy 
Evaluation

Process 
Acceptance 
Evaluation

Secondary 
Annotation

Primary 
Annotation

 
Fig. 1. Research Model 

3.2 Iterative Merging Chinese Segmentation, IMCS 

The fundamental idea of the IMCS was a hybrid of n-gram and LCs processing. Each 
gram is regarded as a Chinese character. We will examine the probability distribution 
rate of each character from a string with its chained characters. A chain-like iterative 
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merging to form compounds for lexical consideration will be employed. Physically, 
the same character may appear in different locations in the text structure. Logically 
there is only one character for every occurrence of a given character in the text.  
Because the number of different characters processed is less than the number of  
characters in the document, the total number of characters is substantially less than 
what an implementation would use by the merging. The iterative merging process is 
discussed with an example as stated below. 

3.2.1 Step 1: Build up a Directed Graph 
The string:  Tsai fan chi: yu chang an pu shih pi an, tse mo yi chih wen, yu chang an 
kuo fa chi chin wei he yi tsai fang chi chuan li 蔡反擊：宇昌案不是弊案，怎麼一
直問，宇昌案國發基金為何一再放棄權利, 'Tsai fired back against the comments 
and stated that Yu Chang is not a scandal, why did you keep asking for and why the 
National Development Fund abandons its rights repeatedly?' will produce a directed 
graph as Fig. 2. After removing duplicate characters and replacing a punctuation with 
a new line, each character will form a vertex and an edge with an arrow extending 
from itself to its chained characters (vertices). In this example, it is clear that the  
character "一" appears twice in the string, while there is only one vertex to present it 
in the graph.  

 

Fig. 2. The graph of Step 1 of IMCS 

3.2.2 Step 2: Calculate the Probability Distribution of Edges 
In a graph, two vertices form an edge are said to be the endpoints of it and the edge is 
said to be incident to the vertices. This step is to calculate the degree of a vertex in a 
graph. The degree of a vertex in a graph is the number of edges incident to it. In this 
example, the vertex "案" points to both the vertex "不" and the vertex "國" therefore 
the probability of the edges "案→不" and "案→國" is 50% (or 0.5) for each, shown 
as Fig. 3. In the figure, the expression “percent” in [percent, digit] represents the  
average probability distribution of a vertex to the other vertices and “digit” means the 
number of links of a vertex to all its connected vertices in the string. 
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Fig. 3. The graph of Step 2 of IMCS 

3.2.3 Step 3: Concatenate Vertices 
To determine whether two vertices can be concatenated, it depends on the criteria 
listed in (1).  

( )( ) ( )( ) 1,,Pr >∧≥ oiLCDISCji  

and                        (1) 

SN
DISC

log

1= , if 10>SN ;  1=DISC  , otherwise  

where ( )ji,Pr  represents the probability of the concatenation from a vertex i to a 

vertex j; the discriminator DISC is the threshold value; ( )oiLC ,  means the number 

of lexical chains extending from a vertex i to all its connected vertices; SN represents 
the number of segments of the string. The discriminator is used as a way of normaliz-
ing the length of the string, thereby reducing the divergence terms in a lengthy docu-
ment. For example, since there are four segments of the string "[蔡反擊]：[宇昌案不
是弊案]，[怎麼一直問]，[宇昌案國發基金為何一再放棄權利]," the value of the 
threshold will be 1. The probability of "宇→昌" and "昌→案" is 100% (or 1) for each 
and that meets the requirement; thereby these two chains will be concatenated as the 
vertices [宇昌] and [昌案], respectively as shown in Fig. 4. Our data sets showed that 
the average number of segments in a news document is around 60-70. The concatena-
tion process performs better when we set the threshold value near 0.5. Each concate-
nated vertex is regarded as a compound unit which will proceed to its next links and 
establish new edges and recalculate the probabilities of the vertices "宇昌→案," "昌
案→不," and "昌案→國." 

3.2.4 Step 4: Run Iteration 
The above steps will be iterated until no concatenation can be found, and this iteration 
process will generate a series of short and long LCs from the string. A long LC is 
believed to be more content representative than a short LC could possibly be. In this 
example, it is obvious that "宇昌案" is a better content indicator than either "宇昌" or 
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"昌案." To reduce the possibility of extracting less representative LCs from the  
concatenation, we will take a post-processing as the last step to finalize the IMCS. 

[100%, 1]

[100%, 1]

[100%, 2]

[100%, 2]

[50%, 1]

[100%, 1]

[100%, 1]

[100%, 1]

[100%, 1]

[100%, 1]

[50%, 1]

[100%, 1]

[50%, 1]

[100%, 1]

[100%, 1]

[100%, 1]

[100%, 1]

[100%, 1]

1

[50%, 1][100%, 1]

[100%, 1]

[100%, 1]

[100%, 1]

[100%, 2]]

[50%, 1]

  

Fig. 4. The graph of Step 3 of IMCS 

3.2.5 Step 5: Execute Post-processing 
In the final step, significant words are determined by observing the information  
mutually shared by two overlapped LCs using the following significance estimation 
(SE) function as (2). 

iSE  = 
iba

i

fff

f

−+
 (2)

where i denotes the iLC  to be estimated, i.e., i =i1i2…in ; a and b represent the two 
longest compound substrings of iLC  with the length n-1, i.e., a = i1i2…in-1  and 
b = i2i3…in As for af , bf and if  are the frequencies of a, b, and i, respectively. For 

example, the term i "宇昌案" shall gain the SE value of 0.83 with its frequency 6 of 
substring a “與ˇ” as well as the frequency 6 of its substring "宇昌 ( )af " and the val-

ue 5 of the other substring "昌案 ( ).bf " We will retain both term i and remove term a 

if if = af , because the full term is more representative than its substring. Likewise, 

we will remove b if if = bf . In the example above, since the frequency of "宇昌案

( )if "is equal to "宇昌 ( )af ," so we remove "宇昌 ( )af "; but "宇昌案 ( )if " is less than 

"昌案 ( )bf ," so we retain both terms. 

3.3 Term Weighting 

It is suggested that the obvious place where appropriate content identifiers might be 
found in a news is the title and the first paragraph. In addition, we also considered 
frequency and the length of a word as the indicators of word significance in a docu-
ment. Given a word iLC , the term weighting algorithm may be defined as (3). 
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iWeight  = itf × ( )ilengthvalval ++ 21  

and                                 (3) 
 

 


 ∈

=
otherwise

titleword
val

i

,0

,2
1   



 ∈

=
otherwise

raphfirstparagword
val

i

,0

,2
2  

 
where itf  represents the frequency of iLC ; 1val and 2val  express the extra weight 

of  iLC based on its position in the news report. If iLC  appears in the title or the 
first paragraph, it gains an extra weight of 2 respectively. 

4 Evaluation 

In this experiment, we collected 1,738 image-resided web pages from Taiwan news 
website as the data sets. To verify our proposed IMCS method can successfully iden-
tify the content representation for image annotation, we used image captions served as 
ground truth labels to see whether the generated primary annotation is included in the 
list. We invited three experts to assess the appropriateness of the secondary annota-
tions (the second and the third high scores of a word list) with respect to the image 
content. In the end, we also measured the performance of the IMCS method in a  
real-time mode. 

4.1 Evaluation of Primary Annotation 

Since an image caption is written by a journalist, it is assumed that a man-made cap-
tion would be faithful to an image scenario. Therefore, we considered image captions 
as the ground truth labels which will be used to evaluate the accuracy rate of the gen-
erated image annotations from title and text. If our generated primary annotation 
matches a substring of the image caption, we will be confident to assure that the 
IMCS method works well as anticipated.  

Due to the problem of semantic ambiguity in part of Chinese words, where the  
interpretation of image annotations may vary from user to user, therefore the exact 
number of correct annotations of an image will not be clearly identified. For example, 
the string zong tong ma ying jiu 總統馬英九 'President Ma Ying-jiu' is meant to be 
regarded as a single lexical word, therefore it may not be appropriate to segment it 
into [總統 'President'] and [馬英九 'Ma Ying-jiu'] even though these two words are 
valid. Consequently, the recall measurement did not apply to this study. A precision 
measurement was used to understand the proportion of primary annotations actually 
matched the image captions as (4). 

S

S

PAofnumbertotal

captionsinPAmatchedofnumber
p =  

(4)
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where PAs represent the generated primary annotations from 1,738 documents. After 
the IMCA processing, the total number of matched PAs in captions are 1,495.  
We obtained a precision rate of 86.06%. 

4.2 Evaluation of Secondary Annotation by Experts 

To evaluate the validity of the secondary annotations, we invited three experts to par-
ticipate in the assessment. Sixty pieces of news were randomly selected from which 
we extracted the second and the third high scores LCs and produced 120 annotations. 
To reduce ambiguous judgements, each annotation was evaluated based on a method 
of dichotomic classification to which the annotation represents the image content. 
Each expert could only select either “agree” or “disagree” for each annotation. The 
result showed that the number of check marks of consent is 270 out of 360. It implies 
that the agreement of the appropriateness of the secondary annotations to the images 
achieves 75%.  

4.3 Evaluation of Secondary Annotation by Users 

To evaluate the appropriateness of the secondary annotation, we conducted another  
survey to understand the differences between the image annotation and the users' 
expectation. Sixty-three graduate and undergraduate students were recruited from the 
National Yunlin university of Science & Technology, Taiwan to participate in the 
assessment. Thirty pieces of news were randomly selected from which we extracted 
the second and the third high scores LCs and produced 60 annotations. To assist the 
assessment, we provided news title, texts and caption for references. Each annotation 
was evaluated by 63 subjects to understand the degree to which the annotations ap-
propriately address the image content. The result in Table 1 shows that the number of 
check marks of agreement is much higher than that of disagreement. The agreement 
rate of user evaluation reaches 68.2%.  

Table 1. Statistics of Results of user satisfaction 

 
Highly  
Agree 

Agree Average Disagree 
Highly 

 Disagree 
Total 

Number 1490 1088 748 288 166 3780 

4.4 Performance Testing 

After the validity and acceptance evaluation, we conducted a performance testing 
with respect to the time spent of processing from an event trigger to system  
response. Often real-time response times are understood to be in milliseconds and 
sometimes microseconds. Our testing data sets consist of 1,738 pieces of news, the 
processing time is 10.45 seconds in total with 0.006 seconds on average for each 
news.  
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5 Conclusion 

In this paper, we propose a corpus-free, relatively light computation of term segmen-
tation for single document processing, namely “Iterative Merging Chinese Segmenta-
tion (IMCS) method” to identify representative terms for image annotation. The 
IMCS method is based on a hybrid of n-gram and lexical chain processing for image 
annotation. Unlike previous techniques suffer the problems of heavy computation for 
multi-document processing, which will consume lots of memory and may incur unac-
ceptable run-time overhead. Our method considers an input document as a string 
composed of a series of lexical chains with varied lengths. This purpose of this study 
is to extract these lexical chains in a precise way with minimum computation needs. 
Each iteration automatically calculates the probability of lexical chain between two 
vertices and creates concatenate compound units. This processing allows to share 
characters/words and facilitate their use at fine granularities without prohibitive cost. 
Results showed that this method achieves a precision rate of 86.02%, and gains accep-
tance from expert rating and user rating of 75% and 68%, respectively. In perfor-
mance testing, it only takes 0.006 second to process each image in a collection of 
1,728 testing data set. 

Even though the IMCS method is only applied to single-document processing in 
the current study, the results showed that it is enough to generate content descriptor 
for image annotation. With the benefit of corpus-free and lightweight features, it can 
also be easily embedded in any text processing application. Furthermore, it would be 
interesting to implement this algorithm to multi-document processing and test its per-
formance. Other researchers may verify our study using a larger data set or compare 
with the state of the art algorithms. It is hoped that our research will invite more pers-
pectives on automatic image annotation. 
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Abstract. In machine learning, the choice of a learning algorithm that
is suitable for the application domain is critical. The performance metric
used to compare different algorithms must also reflect the concerns of
users in the application domain under consideration. In this paper, we
propose a novel probability-based performance metric called Relevance
Score for evaluating supervised learning algorithms. We evaluate the
proposed metric through empirical analysis on a dataset gathered from
an intelligent lighting pilot installation. In comparison to the commonly
used Classification Accuracy metric, the Relevance Score proves to be
more appropriate for a certain class of applications.

Keywords: Machine learning algorithms, performance metric,
probabilistic approach.

1 Introduction

One of the general goals of a machine learning (ML) algorithm is to capture
complex relationships and patterns within a dataset and to apply such knowledge
on new data that is believed to have the same (or a similar) pattern. The success
criteria for the ML algorithm depend on many factors, most importantly, on the
user concerns that are specific to the application domain.

Consider a car navigation system that utilizes a specific ML algorithm to
select the best route from a source location to a destination. There are many
ways to measure the performance of this algorithm objectively. Useful metrics
can be, for instance, the actual time to reach the destination, the amount of gas
consumption and the amount of tolls paid. However, it is often the case that a
combination of these metrics cannot directly be mapped to the real satisfaction
of the driver from the navigation experience, whereas this is what matters in the
end. Assume that there are only two home-office routes possible and the driver
generally likes to take the first route, which is shorter, faster and safer. On the
other hand, sometimes, the driver likes to take the second route that goes along
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the sea shore, especially when it is sunny and the driver is in the mood. The ML
algorithm can be expected to learn to pick the desired route among the two only
if weather is a parameter that can be and is monitored by the navigation device.
Monitoring the mood of a person is very difficult nonetheless. Alternatively, the
ML algorithm will simply start looking for patterns within other data that is
available to it, e.g. the time of the day, which may or may not have any actual
impact. In this case, the desired route may also depend on those parameters, i.e.
features, which are relevant yet not considered by the navigation device.

It is a difficult task to identify all the features that are relevant for the ML
algorithm employed by an application. The features that are relevant for the
application define a context. Even when the context is known, it may be techni-
cally very challenging or very intrusive to monitor some features especially when
users are involved, e.g. the driver’s mood in the previous example. The subset of
relevant features that are monitored define an observed context. Depending on
the application under consideration and the observed context, sometimes evalu-
ating an output, i.e. a prediction made by the ML algorithm, as either right or
wrong might not be sufficient as there are gray areas in between. For example,
the intelligent environment described in [1] offers lighting services (light settings)
depending on several contextual factors such as user identity, user activity and
time of the day. When the dataset collected from this intelligent environment
is examined, there are two important remarks to be made. The first remark is
that the desired light settings are not fixed for a given instance of observed con-
text. Since perception of lighting also depends on subjective factors that cannot
be monitored, even the same user, the same activity and the same time of the
day may result in different desired light settings. The second remark is that,
for a given observed context, there are acceptable (desired at least once) and
unacceptable light settings (never desired).

This means that the overall performance of the ML algorithmmay be hindered
by the fact that the observed context is not entirely representative of the actual
context of an application. When this is the case, it is a challenge to evaluate and
compare the performances of different ML algorithms in the application domain.
In the literature, different evaluation metrics assess different characteristics of
ML algorithms [2]. Classification problems in ML are broadly categorized into
multi-class classification and multi-label classification problems. Multi-class clas-
sification algorithms [3] are for those categories of problems where, for a given
input instance, there is exactly one correct output class, which is selected out of
several classes. Examples of multi-class classification include image recognition
and diagnosis [4]. The commonly used evaluation metric for multi-class clas-
sification problems are accuracy, precision and recall. Multi-label classification
algorithms [5] address that category of problems where multiple output classes
must be selected for each input instance. Examples of multi-label classification
include text [6] and music categorization [7]. The commonly used evaluation
metrics for multi-label classification problems are hamming-loss, precision and
recall.
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As illustrated by the examples of car navigation and intelligent lighting, there
also exists another class of applications. In these applications, the ML predic-
tion model has to select a unique output class for a given input instance (as
in multi-class classification), and the output for a given input instance may fall
into multiple acceptable output classes (as in multi-label classification). An in-
teresting property of such an application is randomness in the output, i.e. there
is no single acceptable outcome for a given observed context but there is a sta-
tistical regularity associated with different possible and acceptable outcomes. In
such cases, even though the prediction models that are used to solve multi-class
classification problems suits the need, the evaluation metrics such as accuracy,
precision and recall are not suitable. For instance, the use of accuracy as a met-
ric would lead to a score of zero for a misclassified sample, which should not be
the case. The bad choice of performance metrics would produce results that are
meaningless to achieve the design goal of an application [8] [9].

In this paper, we devise a new evaluation scheme to evaluate the performance
of supervised learning algorithms for this class of applications and propose a new
evaluation metric called Relevance Score (RS). We consider an intelligent lighting
scenario to describe and formulate the problem. Relevance Score is defined as a
percentage measure of how much relevant an output or outcome is, as predicted
by the prediction model for a given observed context. The score is based on the
probabilistic distances among the different outcomes, i.e. predicted and actual
outcome. We use this metric to evaluate several rule based prediction models
and then compare it with the commonly used metric Prediction Accuracy or
Classification Accuracy (CA) to validate the significance of the proposed metric.

The paper is organized as follows. Section 2 discusses the drawbacks of using
the commonly used CA metric with an example of intelligent lighting application
and identifies improvement directions. Section 3 presents the proposed relevance
metric. Section 4 provides an evaluation of the proposed metric. Finally, Section 5
concludes the paper.

2 Problem Definition

In this section, we discuss the drawbacks of Classification Accuracy (CA) as a
metric for evaluating supervised learning algorithms, which motivates the need
for a new metric using an intelligent lighting application scenario.

Let xi ∈ X denote the ith sample in a dataset, where xi = (xi1, xi2, . . . , xin)
and X represents an n-dimensional input feature space given by X = X1 ×
X2 × X3 × . . . × Xn. Let us denote the output class label as y where y ∈ Y =
{y1, y2, . . . , yK} and K denotes the number of possible outcomes. In the intel-
ligent lighting application under consideration [1], there are 8 possible presets
for output lighting conditions (K=8) in a breakout area, as shown in the three
dimensional space in Fig. 1. Each octant represents a possible light combination
(e.g. static-warm-dim).

A user is provided with a lighting condition based on six input features (n = 6)
namely user-identity, type of activity, area of activity, number of users, time of
the day and the external light influence.
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Fig. 1. Possible Output Light Combinations

In [1], the supervised learning approach is explored where a considered classi-
fication model is trained on the breakout dataset to predict a unique light output
yi ∈ Y = {y1, y2, . . . , y8} for a given input xi = (xi1, xi2, . . . , xi6). The success
of an intelligent lighting application depends on selecting the best suitable pre-
diction model that selects the desired lighting condition for a given observed
context. The performance of the selected models is evaluated using CA as a
metric.

Let us assume that a classification model h is trained using the breakout
dataset. The breakout dataset contains a sample x 10 times and the output light
condition selected by a user is light A (LA) four times, light B (LB) four times
and light C (LC) two times. This means that the user for a given input instance
x has selected LA, LB and LC with probabilities 0.4, 0.4 and 0.2 respectively,
i.e. a sample x has multiple output classes. Assume that the classifier h selects
LA based on what it has learnt from the training data, whereas the user actually
desires LB as the lighting condition. Here the classifier h is not right with the
prediction, but not entirely wrong either. If CA is used as a metric, then the
selection made by the classifier h would be assessed as completely wrong. From
the application point-of-view the CA metric is not very representative as it is
important to measure how relevant the lighting condition is for a given observed
context, rather than to measure how accurate it is. It can never be 100% accurate
as the user is not consistent in choosing the desired lighting condition, based on
the observed context.

From the example above it is evident that CA is not a relevant metric for
similar applications as it fails to capture the degree of relevance when there is a
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Table 1. Sample comparison of metrics

Actual Output Predicted Output CA Metric Alternative Metric

LA LA 100 Good match

(100)

LB LC 0 Decent match

( 75)

LC LA 0 Irrelevant match

(0)

LA LB 0 Relevant match

( 50)

LB LB 100 Good match

(100)

200/5 = 40% 325/5 = 65%

“non-ideal” prediction. Hence, it is necessary to have an evaluation mechanism
that is able to compute the distance between actual and predicted outcome when
they are not equal. An example of such a metric for a given classifier is shown
in Table 1.

As shown in Table 1, by virtue of the problem, CA gives a low accuracy of
40%, whereas the user is given relevant outputs 80% of the time and irrelevant
outputs only 20% of the time according to the Alternative Metric, resulting in
an average score of 65%. Here the Alternative Metric computes the relevance of
the outcome i.e. how good is the output selection made by a prediction model
through the data statistics available from the observed environment, thereby
making it more suitable than the CA metric.

Formally, we propose an evaluation metric named as Relevance Score, which is
more suitable for the third class of applications mentioned in Section 1 than the
commonly used CA metric. In particular, we seek to find a performance function
f : (X,Y ) → R100

+ where R100
+ = {RS ∈ R|0 ≤ RS ≤ 100}.

3 Proposed Metric

In this section, we propose a new mechanism to evaluate supervised prediction
models used in the presented class of applications, e.g. in intelligent lighting.
Here, we formulate a function that quantifies the relevance of the predicted
outcome when there is a mismatch between the predicted and actual outcome.

The well known CA metric is computed as an average of the sum of individual
accuracies for k test set samples as in equation 8.

CA =
1

k

k∑
i=1

Acci (1)
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Fig. 2. Relevance Score computation procedure

We inherit the same mechanism to compute the Relevance Score on a test set
for a given prediction model with a minor modification where the accuracy Acc
for a sample is replaced by Score as in equation 2 and computed as in equation 8.

RS =
1

k

k∑
i=1

Scorei (2)

We divide RS computation into two phases: 1. Probability Computation Phase,
and 2. Evaluation Phase. The entire process of computing RS is shown in Fig. 2.

3.1 Probability Computation Phase

An ErrScore is a real number that is calculated when there is an error in pre-
diction by the prediction model. It is computed based on five parameters, the
predicted outcome (OP ), the actual outcome (OA), the probability of occurrence
of the predicted outcome (P (OP )), the probability of occurrence of the actual
outcome (P (OA)) and the probability of the most frequently selected outcome
(P (OH)). These probabilities are the values that are computed from the entire
dataset. The probability values are computed for the different output class la-
bels (y ∈ Y ) for every input instance (xi) in the breakout dataset. Formally,
compute P (y|xi) for i = 1, 2, 3, ...,m where m is the number of samples in the
entire dataset. In this phase, the values of the most probable feature that is
responsible for the randomness in output (e.g. user identity feature in intelligent
lighting application) is removed for generalization.
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Table 2. Qualitative Relevance

CASE OUTCOME PROBABILITIES QUALITATIVE

RELEVANCE

1 OP = OA - Highly Relevant

2 OP 	= OA P (OH) = P (OP );P (OP ) > P (OA) Moderately Relevant

3 OP 	= OA P (OH) > P (OP ) > P (OA) Relevant

4 OP 	= OA P (OH) > P (OA) > P (OP ) Less Relevant

5 OP 	= OA P (OH) = P (OA);P (OA) > P (OP ) Irrelevant

3.2 Evaluation Phase

In this phase, the predictions on the test data are evaluated using the considered
classification models. If d denotes the probabilistic distances in general, then the
distances between the probabilities are given by,

dHP = |P (OH) − P (OP )| (3)

dPA = |P (OP ) − P (OA)| (4)

dHA = |P (OH) − P (OA)| (5)

Several cases are possible for a given input instance based on the predicted and
the actual outcomes and their computed probabilities. The cases may be classi-
fied qualitatively in terms of relevancy of the outputs provided. The decreasing
order of relevance we consider for different cases is summarized in Table 2. The
ordering is based on the consequence of individual cases as explained later. Thus,
ErrScore is a score that is obtained by quantifying these cases.

Case 1: OP = OA

In this case, for a given input instance in the test set, the predicted out-
come and the actual outcome are equal. Thus, there is no error in the predicted
outcome.

Case 2: OP �= OA;P (OH) = P (OP ) > P (OA)
In this case, for a given input instance the predicted outcome and the highest

probable outcome are equal but a different output (actual outcome) is selected.
Since the predicted outcome is equal to the highest probable outcome (dPH = 0)
and the classification model has not been able to capture the switch in output,
the error is kept minimum and is equal to β · dPA where β is a positive real
constant, whose value depends on the application.

Case 3: OP �= OA;P (OH) > P (OP ) > P (OA)
In this case, for a given input instance the predicted outcome, the actual

outcome and the highest probable outcome are not equal. Since the probability
of the predicted outcome lies in between that of the highest probable outcome
and the actual outcome, the error value is higher than the previous case, and is
equal to (α · dHP + β · dPA) where α and β denote positive real constants.
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Case 4: OP �= OA;P (OH) > P (OA) > P (OP )
In this case, for a given input instance the predicted outcome, the actual

outcome and the highest probable outcome are not equal. Since the probability
of the predicted outcome lies farther away than that of the highest probable
outcome and the actual outcome, the error value is much higher, and equal to
(α · dHP + β · dPA) as in Case 3.

Case 5: OP �= OA;P (OH) = P (OA) > P (OP )
In this case, for a given input instance the actual outcome and the highest

probable outcome are equal but the classification model selects a different output
(predicted outcome). Since the actual outcome is equal to the highest probable
outcome and the performance of the classification model was poor to select a
different output, the error rate is much higher than that of the previous cases.
The error is equal to (α+ β) · dHP .

Combining above equations and normalizing over (α+β), we find the following
error score function

ErrScore =
α(dHP ) + β(dPA)

α+ β
. (6)

Therefore, the RS for a sample is computed as below

Score = (1 − ErrScore) × 100, (7)

Score = (1 − α(dHP ) + β(dPA)

α+ β
) × 100. (8)

4 Experimentation and Results

In this section, we study the performance of the proposed RS metric and compare
it to the CA metric for different classifiers used in the breakout dataset. We
further investigate the influence of α and β parameters of the RS metric function.

The performance of RS metric is studied through various experimentations
using the Weka [10] simulator on the following rule-based prediction models:
DecisionTable [11], JRip [12], Nearest Neighbor with generalization (NNge) [13],
PART [14], ConjunctiveRule [15] and Ridor [16] on the breakout dataset [1]. The
breakout dataset consists of 236 samples of data from different users gathered
from the breakout area. Here 70% of the dataset is used for training and the
remaining 30% is used as test set. We consider 10 randomly shuffled training
and test sets for experimentation and then mean the results to avoid biased
results. We perform the following investigations:

1. Comparison of RS and CA Metrics
2. Significance of α and β
3. Lower and Upper Bounds of RS with changing α and β
4. Testing of RS on Random Output Data
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Fig. 3. Performance Metric vs. Prediction Model

4.1 Comparison of RS and CA Metrics

Fig. 3 shows the graph of Performance Metric vs. Prediction Model for two
different metrics: CA and RS. The RS values are computed with α = 2 and
β = 1. As discussed earlier, low accuracy values are achieved with the CA metric.
This means that no prediction models provide exact lighting conditions based
on the input instances in more than 50% of the test samples. However, with
RS as a metric, a maximum of 73% relevant lighting condition is achieved with
DecisionTable prediction model.

An interesting observation is that the prediction model Ridor has lower CA
than Conjunctive Rule, whereas Ridor has a better RS value than Conjunctive
Rule. This is interpreted as follows. For a portion of the data samples, the most
desired outcome (the best match) is calculated for each prediction model and
ConjunctiveRule performs better than Ridor, i.e. it has higher classification ac-
curacy. However, when it comes to the relevance of the predicted outcomes, the
Ridor is more successful than ConjunctiveRule, i.e. it predicts the most rele-
vant outcomes on average. Even though ConjunctiveRule finds the best match
slightly more often than Ridor, when it cannot find the best match, it comes
up with less relevant predictions. Therefore, Ridor is preferable for applications
where relevance of the predicted outcome is more critical than accuracy. As a
consequence, for such applications, RS as a performance metric is more relevant.
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Fig. 4. Relevance Score vs. Prediction Model

4.2 Significance of α and β

In this experiment, we investigate the influence of varying values of α and β on
RS. Fig. 4 shows the plot of RS vs. Prediction Model for different values of α and
β. The graph shows that the prediction model DecisionTable is more consistent
with the changing (α, β) whereas the RS values improve with α decreasing and
β increasing for other prediction models. The parameters α and β are used as
weights for probabilistic distances dHP and dPA, respectively. Thus, when α is
higher the product α · (dHP ) is emphasized more, i.e. the probabilistic distance
between the predicted and actual outcome is given less importance. When β is
higher, the product β · (dPA) is emphasized more, i.e. the probabilistic distance
between the most probable outcome and the predicted outcome is given less
importance.

Fig. 5 shows the plot of RS vs. α, β for different prediction models. From the
graph, we find that the predictions made by ConjunctiveRule model are closer to
the actual outcome and hence varying α, β has more influence on the RS values.
The low RS values for the ConjunctiveRule are due to the fact that the model
is not good in consistently predicting relevant outcomes for the given scenarios.

4.3 Lower and Upper Bounds of RS with changing α and β

Maximum or minimum RS that a prediction model can reach is found by taking
either α or β to be very large.
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When α is very large compared to β, the error is computed is as follows:

ErrScore = lim
α→∞

α(dHP ) + β(dPA)

α+ β
= lim

α→∞

α(dHP )

α
= dHP . (9)

When β is very large compared to α, the error is computed is as follows:

ErrScore = lim
β→∞

α(dHP ) + β(dPA)

α+ β
= lim

β→∞

β(dPA)

β
= dPA. (10)

The lower and the upper bounds on RS for the considered prediction models are
summarized in Table 3.

Table 3. Summary of maximum and minimum RS values for various prediction models
on the breakout dataset

α → ∞ β → ∞
DecisionTable 73.68 73.56

JRip 65.50 68.10

NNge 67.50 69.26

PART 65.79 70.48

ConjunctiveRule 57.13 67.28

Ridor 64.90 66.87

4.4 Testing of RS on Random Output Data

In this test, we study the RS results on the same dataset with randomly gener-
ated output. One of the main motivations for this research was the fact that the
performance of the prediction model should not be punished for inconsistencies
in the data pattern that are caused by factors outside the observed context. For
example, a prediction model whose goal is to find the desired lighting conditions
for the user can be expected to perform at best as good as the user himself. If
the user is generating inconsistent data, i.e. if an observed context maps to dif-
ferent outcomes at different times, then the student (the prediction model) will
be learning from an inconsistent teacher (the user), whose reasons for changing
mind are completely hidden from the student, i.e. the reasons either don’t exist
or they are beyond the observed context. Consider the extreme case where there
is no relation between the input instances and output lighting conditions, i.e. the
user throws an 8-sided dice to select the desired lighting condition and the dice
is not part of the observed context. In this case, the CA metric would be equal
to 1/8 as there are 8 possible lighting conditions. We also expect to achieve a
lower RS in comparison to the scores on the dataset with real output. On the
other hand, note that the user makes no distinction between lighting conditions.
For a given observed context, even though there is exactly one desired lighting
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Fig. 5. Relevance Score vs. (α, β)

condition, all possible lighting conditions are indeed somewhat relevant. There-
fore, we expect that the RS metric will be higher than the CA metric. Fig. 6
shows the plot of RS vs. prediction model for random output data and for the
real output data from the breakout dataset.

In the random output dataset, since one of the eight light conditions is chosen
at random i.e. with probability 0.125, the output probability distributions are
almost uniform for the input instances. This makes it difficult for the prediction
models to select the right output choice. Thus all the considered prediction mod-
els lie between the range 50 and 60%. But in case of real output dataset, there
are some relationships between the input and output causing the output proba-
bility distribution to be non-uniform. Thus the prediction model DecisionTable
performs the best with a RS of 74%.

From the performed studies, we find that RS is a more suitable metric than
the commonly used metrics for the mentioned class of applications. Further-
more, the RS metric provides a provision to select the prediction models that
have different characteristics in predicting the outcomes. This depends on the
application requirement, and is done by varying parameters α and β. For ex-
ample, a higher value of α is chosen as compared to β (say α = 10 and β = 1)
for applications where capturing inconsistencies in the outcome for an observed
context is not so critical. A small value of α is chosen as compared to β (say
α = 1 and β = 100) for applications where it is necessary to select a prediction
model that is highly sensitive to the inconsistencies in the outcome.
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5 Conclusion

The choice of a suitable performance metric is critical to select a machine learn-
ing algorithm for intelligent applications. In this direction, we presented the
drawback of the commonly used evaluation metric CA with an illustration of
intelligent lighting and similar class of applications. We further proposed a new
metric named as Relevance Score to evaluate machine learning algorithms when
there is more than one choice of output class labels suitable for an input instance.
The metric is based on the probability values of the outcomes computed from
the dataset for a given observed context. We also presented a detailed analysis
on the performance and relevance of the proposed metric RS through various
experiments on the breakout dataset. From the obtained results, we conclude
that RS is a better performance metric for the class of applications where the
relevance of predictions is critical rather than the prediction accuracy. Moreover,
variants of RS computation can be used by carefully selecting the parameters of
the RS computation function based on the application requirement.
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Abstract. A new prepruning technique for rule induction is presented which 
applies instance reduction before rule induction.  An empirical evaluation 
records the predictive accuracy and size of rule-sets generated from 24 datasets 
from the UCI Machine Learning Repository. Three instance reduction algo-
rithms (Edited Nearest Neighbour, AllKnn and DROP5) are compared. Each 
one is used to reduce the size of the training set, prior to inducing a set of rules 
using Clark and Boswell's modification of CN2.  A hybrid instance reduction 
algorithm (comprised of AllKnn and DROP5) is also tested.  For most of the 
datasets, pruning the training set using ENN, AllKnn or the hybrid significantly 
reduces the number of rules generated by CN2, without adversely affecting the 
predictive performance.  The hybrid achieves the highest average predictive  
accuracy. 

Keywords: Rule Induction, Overfitting, Noise Filtering, Instance Reduction. 

1 Introduction 

Our work concerns the use of pruning to solve one of the most important problems in 
the field of machine learning, namely, overfitting which affects the predictive accura-
cy. We say the produced classifier overfits the data if we can find a different classifier 
with more error over training examples but smaller error over test data. Overfitting 
occurs in two situations: when the training set contains noisy instances and when the 
training set is not a representative sample from the instance space [19]. Both of these 
situations are common in real world applications. 

The aim of our work is to investigate whether overfitting can be reduced by  
preceding rule induction with instance reduction. We focus on instance reduction 
methods which have proved capable of reducing the size of training set and resulted 
in the smallest reduction in predictive accuracy [29], [28]. More specifically, we will 
apply algorithms that try to remove the border instances, which tend to be noisy  
instances or hard-to-learn, untypical instances [10].  
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The paper is organized as follows. Section 2 reviews the typical methods for rule 
pruning. Section 3 reviews the instance reduction techniques we use in this work. In 
Section 4, we discuss the results of pre pruning for rule induction using CN2 in terms of 
predictive accuracy and number of generated rules. Section 5 presents our conclusions.  

2 Rule Pruning 

A variety of methods has been proposed to prune the produced rule sets, and can be 
categorized into:  

- Prepruning: These algorithms either use heuristics (i.e., stopping criteria.) to relax 
the constraint of completely satisfying the training instances, or reduce the number of 
training examples before generating the classifier[9], in the hope that using fewer 
training examples will produce fewer rules. 

- Post Pruning: Initially introduces a rule set that is consistent with training in-
stances, and then the rule set is examined to remove rules and conditions that do not 
reflect true regularities of the domain. Examples of post pruning algorithms include 
REP (Reduced Error Pruning algorithm) [2], GROW [5], SSRR [20] and hybrid and 
incremental post pruning techniques [24].  

- Integration Pre Pruning and Post Pruning: Instead of learning the entire rule set 
and then applying the pruning, this category prunes each rule immediately after it has 
been learned. Examples of such algorithms are IREP (Incremental Reduced Error 
Pruning) [11], RIPPER [6], SLIPPER [7] and IREP++ [8].  

The aim of our work is to empirically investigate whether pre pruning for rule induc-
tion can eliminate some of the produced classification rules while retaining the same 
level of predictive accuracy.  

Pre pruning for rule induction can be achieved in two ways: 

1- Condition reductions: pruning each rule independently in the course of learn-
ing by using a heuristic to determine when to stop adding conditions to the 
rule. 

2- Rule Pruning: trying to reduce the number of produced rules by either 
a. Removing the most specific produced rules (hopefully that cover the 

noisy instances from typing or measurement errors).  
b. Reducing the instances used to build the rules. 

Previous research on pre pruning focused on simplifying the rules during induction. 
There is a case study which investigated the effect of a new noisy instance detection 
method before induction on specific dataset (i.e early diagnosis of rheumatic diseases) 
[9], and the suggested method is suitable for datasets with just two classes. Grudzinski 
et al. concentrated on the EkP system [14] as instance reduction method before rule 
induction, and they illustrated it is possible to extract simpler sets of rules from  
reduced datasets [13]. However no one has investigated the effect of preceding  
rule induction with instance reduction methods, in terms of predictive accuracy and 
number of generated rules. 
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We will apply some instance pruning methods that have been proven to maintain the 
predictive accuracy and reduce the size of training set. We will investigate whether 
applying the rule induction methods to the pruned training set reduces the number of 
classification rules without adversely affecting the predictive accuracy. 

3 Instance Reduction Technique 

Instance pruning tries to prune the original training set to get a smaller subset of it. 
Searching for a subset S of instances to keep instead of the original training set T can 
proceed in variety of directions, including: incremental, decremental and batch [28]. 

Incremental methods begin with empty subset S, and add instances (from training 
set T) to subset S if it fulfills some criteria. Thus if new instances are made available 
later (after training is completed) they can continue to be added to S according to the 
same criteria. Incremental methods are sensitive to the order of presentation of the 
instances. Condensed Nearest Neighbor (CNN) [15] and Selective Nearest Neighbor 
(SNN) [22] are examples of Incremental methods. On the other hand, decremental 
methods begin with all the instances in the training set (i.e. T=S), and search for  
instances to remove; they are often computationally more expensive than incremental 
methods. Reduced Nearest Neighbor (RNN) [12] and Decremental Reduction  
Optimization Procedure (DROP1-5) [29] represent examples of decremental methods. 
Finally, batch methods, as decremental methods, begin with all instances in training 
set, but before they remove any, they find all of the instances that meet the removal 
criteria and then they remove them all at once [25]. Batch methods also suffer from 
increased time complexity compared with incremental methods. In our experiments, 
we will use decremental and batch methods because, in comparison to incremental 
methods, they have been shown to give rise to higher predictive accuracies [29]. 

Instance reduction methods can be categorized as retaining either internal or border 
instances: 

- Border instances: the intuition for retaining border instances is that internal in-
stances do not affect the decision boundaries and thus can be removed with relatively 
little effect on classification. 

- Internal instances: seek to remove border instances, and hopefully removes in-
stances that are noisy.  

In our experiments, we focus on three reduction algorithms that performed well in 
reducing the number of instances [28], and provided good results before applying 
Neural Network learning [10]. These algorithms eliminate border instances which 
tend to be noisy instances or hard to learn untypical instances.  

3.1 The Edited Nearest Neighbor Algorithm 

Edited Nearest Neighbor ENN [27] is decremental algorithm which removes an  
instance if it does not agree with the majority of its k nearest neighbor (with k= 3). 
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This removes noisy instances as well as near border instances and retains all internal 
instances. Figure 1 shows the pseudo code for ENN algorithm.  

3.2 AllKnn 

AllKnn [25] is batch algorithm which makes k iteration, at the ith iteration; it flags  
as bad any instance that is not classified correctly by its i nearest neighbors. After 
completing all iterations, the algorithm removes all instances flagged as bad. Figure 2 
shows the pseudo code for AllKnn algorithm. 
 
For each instance (i) 

    If (the class of instance (i) <> the majority class of k neighbors) 
     Remove the Instance 
        

Fig. 1. Pseudo-code for ENN algorithm 

 
oldk = k 
For each instance (i) 
   For k=1 till oldk 

    If (the class of instance (i) <> the majority class of k neighbors) 
          Flag the Instance for pruning 

Remove each flagged instance 

Fig. 2. Pseudo-code for AllKnn algorithm 

 
Let T be the initial set of instances 
Measure the distance of each instance in T from its nearest enemy (instance with dif-
ferent class). Sort the instances in T by their distance, in ascending order.  
Let S = T. 
 For each instance P in S: 
        Find P.N1..k+1, the k+1 nearest neighbors of P in S. 
        Add P to each of its neighbors’ lists of associates. 
 For each instance P in S: 
        Let with= # of associates of P classified correctly with P as a neighbor. 
        Let without= # of associates of P classified correctly without P. 
        If without >= with 
                Remove P from S. 
                For each associate A of P 
                       Remove P from A’s list of nearest neighbors. 
                       Find a new nearest neighbor for A. 
                       Add A to its new neighbor’s list of associates. 
 Return S. 

Fig. 3. Pseudo-code for DROP5 algorithm 
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3.3 DROP5 

DROP5 [29] is decremental algorithm which removes the instance "S" if at least as 
many of its associates (instances have "S" on their nearest neighbor list) are classified 
correctly without it. It considers removing first the instances that are nearest to their 
nearest enemy (i.e instance from different class), and proceeding outward. By remov-
ing points near the decision boundary first, the decision boundary is smoothed. Figure 
3 shows the pseudo code for DROP5 algorithm. 

4 Empirical Results for CN2 Using the Reduced Set 

Using the noise filtering methods to reduce the border instances before applying the 
induction method can avoid the overfitting problem. That may improve the predictive 
accuracy for the induction method. El Hindi and Alakhras (2009) showed that filter-
ing out border instances before training artificial neural network will improve the 
predictive accuracy and speed up the training process by reducing the training epochs. 

The CN2 [4] algorithm induces an ordered list of classification rules from  
examples, using entropy as its heuristic. Then Clark and Boswell improved CN2 by 
using a Laplacian error estimate as alternative evaluation function and producing 
unordered classification rules [3]. Our objective is to apply some Instance reduction 
methods before applying the modified CN2 algorithm and compare the results with 
and without applying the reduction 

4.1 Method 

We applied the three methods for instance reduction (AllKnn, ENN and DROP5) that 
are intended to remove the border and noisy instances before using the CN2. We also 
apply DROP5 [29] method on instances flagged by AllKnn to be removed and we call 
this method as AllKnnDROP5 method. 

To test if these methods will affect the accuracy of the CN2 algorithm, we  
conducted experiment on a collection of Machine Learning data sets available from 
the repository at University of California at Irvine [18]. Predictive accuracy was esti-
mated using 10-fold cross-validation [16]. Instance-removal was performed separately 
for each fold of the cross-validation. 

4.2 Results 

Table 1 shows the results obtained using the four prepruning methods with respect to 
the predictive accuracy.  Our experiments show that applying the AllKnnDrop5  
algorithm is generally better than applying the other pruning methods with respect to 
predictive accuracy. Also the results reveal that the predictive accuracy increased on 
13 datasets when applying AllKnnDrop5, on 11 datasets when applying AllKnn and 
on 10 datasets after using the ENN.  However the predictive accuracy increased on 
only 4 datasets after using the DROP5. On average we can see that CN2 after using 
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AllknnDROP5 and AllKnn has better predictive accuracy than CN2 without pruning. 
This shows that applying a prepruning technique on training set before applying the 
rule induction can reduce the overfitting problem that can adversely effect on predic-
tive accuracy.   

Table 2 shows that all of the instance reduction techniques reduce the number  
of rules generated by CN2. We can see that DROP5 achieved the largest reduction. 
Applying AllKnnDrop5 and AllKnn reduces the generated rules by 44% and 48% on 
average respectively. 

From our results we can state that applying instance reduction techniques as a  
prepruning process for rule induction will reduce the number of generated rules and 
not adversely affecting the predictive accuracy and may improve it in some cases 

Table 1. Empirical results comparing predictive accuracy for using AllKnn ENN, DROP5 and 
AllKnnDrop5 prepruning 

Data Sets Without 
pruning 

ENN AllKnn DROP5 AllKnnDrop5 

Iris 89.98 92.00 92.67 80.67 93.34 
Voting 95.34 95.10 95.33 85.35 95.57 
Vowels 67.11 65.97 66.75 85.07 67.31 
heart (C) 80.66 76.66 77.33 71.66 79.34 
Glass 64.76 58.05 61.98 51.92 66.22 
Liver disorders 66.77 64.11 65.64 60.3 66.52 
Wine 91.77 94.11 93.52 70 95.28 
Pima Indians Diabetes 74.61 73.69 76.34 73.82 76.18 
Promoters 85.00 81.00 80.00 63 80.00 
Hepatitis 78.65 80.00 80.00 52.67 79.34 
Vehicle 57.85 60.10 60.71 54.99 60.10 

pole-and-cart 61.68 63.88 66.24 62.56 63.51 
Blood Transfusion Ser-
vice Center 75.68 76.61 76.35 73.11 75.96 

Ecoli 79.10 83.31 80.91 73.34 80.90 

Soybean 86.32 82.67 83.01 63 83.32 

ZOO 92.00 87.00 90.00 81 89.00 

Yeast 48.98 55.47 56.43 51.82 56.56 

Led Creator 72.30 72.30 71.30 68.9 71.90 

vertebral_column 80.96 83.21 81.28 81.28 82.24 

Ionosphere 89.43 85.71 86.56 53.71 85.71 

Wave 69.70 70.38 70.74 67.96 71.38 

Balance Scale 75.30 74.70 74.34 67.1 74.34 

Letter recognition 70.52 69.50 67.91 58.87 69.69 

Average 76.28 75.89 76.32 67.48 76.68 
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Table 2. Empirical results comparing generated rules for using AllKnn ENN, DROP5 and 
AllKnnDrop5 prepruning. 

 ENN AllKnn DROP5 AllKnnDROP5 
Data Sets RCN2 RENN REN

N / 
RCN2 

RAllKnn RAllKnn 
/ RCN2 

RDROP5 RDRO

P5/ 
RCN2 

RAllKnn

DROP5 
RAllKnnD

ROP5/ 
RCN2 

Iris 6.30 3.9 0.62 3.6 0.57 3 0.48 3.6 0.57 
Voting 17.3 6.2 0.36 5.7 0.33 3 0.17 6.1 0.35 
Vowels 46.2 42.2 0.91 41.5 0.9 31.7 0.69 44.3 0.96 
heart (C) 21.3 11.2 0.53 9.4 0.44 7 0.33 10.6 0.5 
Glass 22.0 12.8 0.58 12.1 0.55 9.2 0.42 10.3 0.47 
Liver disord-
ers 31.3 17.6 0.56 15.2 0.49 12.6 0.4 18.1 0.58 
Wine 8.60 7.4 0.86 6.9 0.8 3 0.35 6.9 0.8 
Pima Indians 
Diabetes 44.4 20.8 0.47 18.1 0.41 15.6 0.35 21.3 0.48 
Promoters 12.4 10.4 0.84 9.6 0.77 2.7 0.22 9.7 0.78 
Hepatitis 17.8 1.80 0.1 4.2 0.24 1.7 0.1 4.7 0.26 
Vehicle 48.4 29.3 0.61 25.9 0.54 27.2 0.56 29.3 0.61 

pole-and-cart 109.8 56.9 0.52 46.7 0.43 51.7 0.47 50.8 0.46 
Blood Trans-
fusion Service 
Center 61.2 13.0 0.21 11.9 0.19 13.2 0.22 16.5 0.27 

Ecoli 24.7 12.7 0.51 10.5 0.43 7.7 0.31 12.3 0.5 

Soybean 32.7 15.9 0.49 24.8 0.76 21.3 0.65 27.2 0.83 

ZOO 8.70 6.1 0.7 6.3 0.72 6.2 0.71 6.3 0.72 

Yeast 121.2 40.7 0.34 37.0 0.31 40.5 0.33 47.3 0.39 

Led Creator 79.9 21.8 0.27 19.9 0.25 23.4 0.29 24.3 0.3 
verte-
bral_column 16.7 10.4 0.62 9.1 0.54 6.9 0.41 10.1 0.6 

Ionosphere 17.6 6.5 0.37 7.2 0.41 4.9 0.28 9.7 0.55 

Wave 204.8 

118.

0 0.58 102.3 0.5 60.3 0.29 111.6 0.54 

Balance Scale 150.1 75.4 0.5 63.0 0.42 21.6 0.14 65.2 0.43 

Letter recog-
nition 263.8 

232.

5 0.88 228.0 0.86 173.8 0.66 233.0 0.88 

Average 59.4 33.6 0.54 31.3 0.52 23.83 0.38 33.9 0.56 
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5 Conclusion 

In this paper, we have mentioned different instance reduction techniques, and applied 
them as preprocessing before CN2 algorithm. Our experiments showed that for most 
datasets, pruning the training set using AllKnn, ENN or AllKnnDrop5 significantly 
reduces the number of rules generated by CN2 without adversely affecting the predic-
tive performance. Also applying AllKnnDrop5 gave the best result with respect  
to predictive accuracy on average. Other instance reduction algorithms, such as  
C-Pruner [30], conduct instance pruning more carefully, so as to avoid deleting  
important instances. For future work, we recommend comparing them with ENN, 
AllKnn and DROP5, to investigate whether the technique of preceding rule induction 
with instance reduction can be further improved.  

Only one rule-induction algorithm was used in our experiments. To investigate 
how generic the technique is, instance reduction should be applied as a pre-processing 
step before using other rule induction algorithms and the effect on number of generat-
ed rules and prediction accuracy observed.   

El Hindi and Alakhras (2009) investigated using instance reduction on Neural 
Network and they reported good results. We recommend testing instance reduction 
with other types of classifiers like decision trees.  

Acknowledgments. We would like to express our sincere gratitude to Dr. Khalil  
el Hindi for the useful comments, remarks and the suggested ideas which led us to 
investigate instance pruning as pre pruning technique for rule induction.  
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Abstract. Support vector machines (SVMs) rely on the inherent geom-
etry of a data set to classify training data. Because of this, we believe
SVMs are an excellent candidate to guide the development of an ana-
lytic feature selection algorithm, as opposed to the more commonly used
heuristic methods. We propose a filter-based feature selection algorithm
based on the inherent geometry of a feature set. Through observation,
we identified six geometric properties that differ between optimal and
suboptimal feature sets, and have statistically significant correlations
to classifier performance. Our algorithm is based on logistic and linear
regression models using these six geometric properties as predictor vari-
ables. The proposed algorithm achieves excellent results on high dimen-
sional text data sets, with features that can be organized into a handful
of feature types; for example, unigrams, bigrams or semantic structural
features. We believe this algorithm is a novel and effective approach to
solving the feature selection problem for linear SVMs.

1 Introduction

Support Vector Machines (SVMs) are kernel-based machine learning classifiers
[1]. Using optimization methods such as quadratic programming, SVMs produce
a hyperplane that separates data points into their respective categories. When a
new, unlabeled, data point is introduced, its position relative to the hyperplane
is used to predict the category the new point belongs to. One of the most impor-
tant aspects of any machine learning classification problem is determining the
particular combination of variables, or features, within a data set that will lead
to the most accurate predictions, which is commonly known as the feature selec-
tion problem. Currently the methods used by most machine learning engineers
are heuristic in nature, and do not depend heavily on intrinsic properties of the
data set [2]. Due to the geometric nature of an SVM, it is natural to suggest that
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the performance of a particular feature set may be tied to its underlying geo-
metric structure. This structure-performance relationship has in turn motivated
us to develop an analytically driven approach to the feature selection problem
for linear SVMs.

The primary goal of this research is to identify underlying geometric properties
of optimal feature sets, and use these properties to create a feature selection
algorithm that relies solely on the inherent geometry of a particular feature
set. To accomplish this, we first create n-dimensional point clouds to represent
known optimal and suboptimal feature sets. These point clouds are then used to
identify structural differences between the optimal and suboptimal feature sets.
Once these differences are identified, we design an algorithm to identify optimal
feature sets based on these observations.

This feature selection algorithm is based on mathematical properties of the
feature sets, making it analytic in nature. This sets the algorithm apart from
the current, most widely used, wrapper-based or filter-based feature selection
methods, which are mostly heuristic in nature [2]. These methods sometimes
require assumptions about the data set, for example, independence among the
features, that might not be met by the data. Since our method is based on the
geometric structure of the data set, it does not make such assumptions. Also,
as machine learning techniques such as SVM become more widely adopted in
various application domains, it is important to understand more about the inter-
action between a learner and a particular data set, as these insights may guide
further development in the field. By discovering some mathematical properties
that separate optimal feature sets from suboptimal feature sets, we can guide the
feature selection process in a much more precise manner. Additionally, knowing
these properties can help us to maximize the efficacy of SVMs for a particular
classification problem. These properties could even be used to guide data collec-
tion efforts, in effect ensuring that the data collected is capable of providing a
good feature space.

The algorithm is based on six properties that have been observed across sev-
eral text data sets. The properties are based on dimensionality and intersection
qualities of the affine hulls of the n-dimensional point clouds generated from a
particular feature set. We evaluated the algorithm on several types of data sets,
including low dimensional continuous data, low dimensional categorical data,
high dimensional text data in a binary sparse vector format, and high dimen-
sional text data in a word frequency-based sparse vector format. We identified
the optimal feature sets of each data set using a wrapper based feature selection
method which considers all possible subsets of the whole feature space. These
optimal feature sets are then used to develop and evaluate the proposed feature
selection algorithm, based on accuracy, precision and recall. We have observed
that the algorithm delivers the best performance on the high dimensional text
data, in both binary and word frequency-based formats. The algorithm is best
suited to data whose features can be grouped together into feature types, for
example, unigrams and bigrams.
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Our algorithm achieves accuracies ranging from 76% to 86% within the data
sets on which the model was trained, with an average precision of 86%, and an
average recall of 72%. On test sets with dimensions ranging from 480 to 1440,
accuracy ranges from 76% to 86%, with an average precision of 83% and an
average recall of 81%. Precision remains high (.9-1) for data sets up to 3000
dimensions. However, the proposed algorithm does not perform well on test
sets with dimension lower than approximately 500. More efforts are required
to understand and address this phenomenon. While the CPU time used by the
algorithm increases quadratically in both the number of features and the number
of examples, the proposed algorithm requires no human interaction during its
runtime.

We believe that this algorithm has a significant impact on the problem of
feature selection. Its analytic nature sets it apart from current, more heuristic,
methods used widely throughout industry. The process requires no supervision
from the user, and thus provides a marked reduction in man hours needed to
determine optimal feature sets.

2 Related Work

A great deal of studies have been carried out to identify the optimal features
for a classification problem [3] [4]. However, such studies are mostly heuristic in
nature. In this section we review the two studies that are most germane to our
proposed feature selection algorithm.

Garg, et al. introduce the projection profile; a data driven method for comput-
ing generalization bounds for a learning problem [5]. This method is especially
meaningful in high dimensional learning problems, such as natural language pro-
cessing [5]. The method hinges on random projection of the data into a lower
dimensional space. Garg, et al. assert that if the data can be projected into a
lower dimensional space with relatively small distortions in the distances be-
tween points, then the increase in classification error due to these distortions
will be small [5]. This is important, because in the lower dimension the gen-
eralization error bounds are smaller. Bradley, et al. [6] state that a lower data
dimension also corresponds to a lower VC dimension, which in turn also causes
lower generalization error [1]. Expanding on this idea, we apply these concepts
to the feature selection problem by quantifying a particular feature sets capacity
for dimensionality reduction, giving preference to those feature sets that have
the potential to produce lower generalization error.

Bern, et al. emphasize the importance of the maximizing the margin between
reduced convex hulls in the case of non linearly separable data. [7]. We inves-
tigate a relationship between classifier accuracy and properties of the intersec-
tion of the affine hulls of the class separated point clouds. In a sense, we are
describing an upper bound on this margin, the idea being that the more inter-
twined the class separated point clouds are, the smaller the maximum margin
between their reduced convex hulls becomes. We use the affine intersection of the
class separated point clouds as a measure of a feature set’s suitability for SVM
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classification with a linear kernel. The choice of affine hulls will be discussed
further in the next section.

3 Identifying the Relevant Geometric Properties of a
Data Set

The overall approach of this work is to examine feature sets arising from sev-
eral natural language processing classification problems. We seek to identify key
geometric properties that can be used to describe those feature sets for which
an SVM performs well. This process of identifying relevant geometric proper-
ties is described in this section. In the next section, we construct an empirical
algorithm for feature selection based on the geometric properties identified here.

Our training data consists of 717 feature sets, each manually labeled as opti-
mal or suboptimal. These labels, based on classifier accuracy, were determined
using an all subsets wrapper-based feature selection method on five data sets
from four different classification problems. (These data sets are summarized in
Table 3, Section 5.) For each classification problem, we train every possible bi-
nary SVM using every possible subset of features.

SVMs are inherently binary classifiers. There are several ways to address this
when using SVMs for multi class problems. A commonly used approach, as
described in [2], is the one vs all approach. We use the following variation on
this method. Consider a multi class classification problem with � classes; this
problem consists of 2� classifiers that represent all possible ways to subdivide �
classes into two groups. We remove half of these possibilities due to symmetry.
Finally, we do not consider the subset with an empty positive class to be a
viable classifier, leaving 2�−1 − 1 possible binary classifiers. Each example in our
training data represents one possible feature set for one possible binary classifier
for a particular classification problem.

Because, for most of the five data sets we used, the number of samples we
have is smaller than the total number of available features, we chose to focus on
a linear kernel SVM, since, given the small number of samples, more complex
kernels will likely lead to overfitting. As a linear kernel SVM performs linear
separation if possible, it would have been natural to study the convex hulls of
the positive and negative classes of samples. However, due to considerations of
performance and ease of implementation, we instead chose to focus on a much
simpler geometric invariant: the affine hulls of the positive and negative classes of
samples. This choice allows us to use standard and widely-available linear algebra
libraries for our computations so that we can work with high dimensional data
sets, like those associated with natural language applications, in a manner that
is computationally feasible.

In this paragraph, we review some basic material on affine hulls. For more
information, we refer the reader to standard geometry textbooks such as [8, 9].
Let v0, v1, . . . , vk be vectors. For any set of vectors, we write (v0, v1, . . . , vk) to
denote the matrix with the vi as columns. The linear hull span(v0, v1, . . . , vk) of
the vectors vi is the smallest linear space containing all vi which, equivalently,
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can be defined as span(v0, v1, . . . , vk) = {
∑

λivi | λi ∈ R}. The dimension of the
linear hull is the rank of the matrix with the vi as columns. An affine space is
a translate of a linear space. In particular, it does not necessarily contain the
origin. The affine hull aff(v0, v1, . . . , vk) of the vi is the smallest affine space
containing all vi, which, equivalently, can be defined as

aff(v0, v1, . . . , vk) =

{
k∑

i=0

λivi

∣∣∣∣∣ λi ∈ R,

k∑
i=0

λi = 1

}
.

The dimension of the affine hull is the dimension of the linear space that the
affine hull is a translate of. In particular, the dimension of the affine hull of a
point set is the same as the dimension of the polytope that is its convex hull.
Thus, by definition, the dimension of the affine hull can be written as:

dim(aff(v1, . . . , vd)) = rank(v1 − vd, . . . , vd−1 − vd)

This simple observation makes calculations for higher dimensional data sets easy
to implement and computationally efficient.

Now, suppose we have n+1 points in n-dimensional space. If the points are in
general position, then the dimension of their affine hull is n. Moreover, assuming
the points are in general position, then we can find a separating hyperplane for
any partition of the points into two classes, i.e., the point set can be shattered.
Somewhat surprisingly, it turns out however that the samples in our natural
language processing data sets are not in general position. In fact, their affine
hull has very low dimension, compared with the dimension of corresponding
feature space. The ratio of the dimension of the affine hull and the dimension
of the feature space in the data sets used to develop our training data are as
low as .2, with an average of .52. Intuitively, if the ratio of the dimension of
the affine hull over the dimension feature space is low, we expect the data set
to contain a lot of structure, which the SVM can use to construct a classifier.
(See also [5, 6], who show that if a data set can be effectively projected into
a lower dimension with small distortions in the distances between points, the
generalization error of that data set is lower than that of a data set lacking this
property. ) This observation has led us to consider several geometric measures,
called f1 through f6, defined in terms of simple ratios. We use these measures
to assess the differences in the geometric structure of optimal and suboptimal
feature sets with respect to the given data.

Before we can define the properties fi, we need to introduce some notation.
The input data set to a binary classification problem is given in terms of a sparse
matrix, with each point in the original data set represented as a row. The unique
value of each feature is represented by a column in the matrix. That is, an entry
aij in the matrix is 1 if the data point i contains feature j and it is 0 otherwise.
The rows of this matrix are organized into blocks such that each block contains
all the data points belonging to the same class. We refer to this matrix as the
full matrix, or Mf . The submatrix consisting of only the rows in the positive
class is referred to as the positive matrix Mp and the submatrix consisting of
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only the rows in the negative class is referred to as the negative matrix Mn. By
considering every row as point in feature space, we can associate to each of these
matrices a set of points in feature space. We refer to the resulting three point
sets as the full point cloud, Pf , the positive point cloud, Pp and the negative point
cloud, Pn. The affine dimension of a point cloud P is the dimension of its affine
hull, aff(P ). To assess the dimension of the ambient space, we could use the
dimension of feature space, i.e., the total number of columns. However, it may
happen that some of the columns in a given matrix are zero, and as such columns
contain no additional information, we chose to exclude them from our count.
Therefore the ambient dimension is defined as the number of non-zero columns
in a given matrix. Geometrically, this is the dimension of the smallest coordinate
subspace the corresponding point cloud is contained in. Given this terminology,
we now define ratios f1 through f6 as given in Table 1. Ratios f1 through f5
each contain in affine dimension in their numerator and an ambient dimension
in their denominator. Ratio f6 divides the number of samples contained in both
of the affine hulls of Pp and Pn by the total number of samples.1

Table 1. Definitions of Geometric Properties f1-f6

property numerator denominator
f1 affine dimension of Pp ambient dimension of Pp

f2 affine dimension of Pn ambient dimension of Pn

f3 affine dimension of Pp ambient dimension of Pf

f4 affine dimension of Pn ambient dimension of Pf

f5 affine dimension of Pf ambient dimension of Pf

f6 # of samples in aff(Pp) ∩ aff(Pf ) # of total samples

The purpose of the properties fi is to allow us to assess the geometric structure
of the data with respect to different feature sets. In this setting, a feature set
is a set of columns. Selecting a certain subset of features amounts to removing
the other columns from the matrices. Geometrically, this means projecting the
point set onto the coordinate subspace corresponding to the selected feature set.
We can then apply the measures fi to these projected data sets and compare
the values we obtain.

For each feature set in our training data, we trained a linear kernel SVM on
the training data and assessed the performance of the linear classifier obtained
on the test data. We also computed the values of the fi for each feature set using
the LinAlg library of NumPy [10].

The results of this experiment are shown in Figure 1. Each plot shows the
standardized z-scores of the values of a particular geometric property for each
of the 717 feature sets in our training data. The value of this ratio is plotted

1 Note that if, in the definition of f6, we used the term convex hull instead of affine hull,
a value of f6 = 0 would guarantee linear separability. However, with our definition
of f6 a value of f6 = 0 is neither necessary nor sufficient for separability.
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Fig. 1. Distributions of Geometric Properties

against a standardized measure of that particular feature set’s performance. In
most cases this measure is classifier accuracy, but in the case of f4, we noticed
a much stronger correlation between the f4 value and the F1-Score for a given
feature set, which is defined as

F1-Score = 2 · precision · recall
precision + recall

where precision and recall are given by

precision =
tp

tp+ fp
and recall =

tp

tp+ fn

and tp, fp, fn represent the number of true positives, false positives and false
negatives, respectively. (These values are calculated by comparing the predicted
values against the labels that were manually assigned during the generation of
our training set.) Notice the clear negative relationship between each of the prop-
erties and classifier performance. Each of the linear regression models pictured
in Figure 1 are significant on an α = .01 level.

Clearly, the geometric properties fi contain information about the quality of
a given feature set. In the next section we use the fi as predictor variables to
develop a logistic regression model, as well as a linear regression model that is the
basis of our feature selection algorithm. We chose linear and logistic regression
based on the observations in Figure 1, and the fact that we wish to determine
whether a feature set is optimal or suboptimal, ultimately a binary decision.
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4 Geometric Properties-Based Feature Selection
Algorithm

The goal of this algorithm is to use the observations discussed in the previous
section to identify optimal feature sets for a text classification problem using an
SVM with a linear kernel. This section describes the specifics of the algorithm.

The input includes a training data set, a list of categories used to label the
data, a set of boundary values for the feature types and a directory to store
the output files. The columns representing a given feature type must be stored
in consecutive columns, as previously described in Section 3. It is necessary for
each training vector to contain at least one nonzero column for each feature type.
If the data does not lend itself to this naturally, the user must handle missing
values in the manner best suited to the particular learning problem. The vectors
of the training data set should be represented in sparse vector notation.

1 for each unique binary classifier:

2 for each possible subset of features:

3 generate training vectors for subset

4 build positive , negative and full matrices

5 for each matrix:

6 calculate ambient and affine dimension

7 calculate dimension based features:

(see Section 3 for details)

8 calculate affine intersection rate (f_6)

(see Section 3 for details)

9 standardize values for f1 -f6 for all possible subsets

10 for each possible subset of features:

11 lin_pred = predict using linear regression model

12 log_pred = predict using logistic regression model

13 if lin_pred > 0 and log_pred >= .5:

14 prediction = optimal

15 write subset to file

16 else:

17 prediction = suboptimal

Fig. 2. Structural Feature Selection Pseudo Code

Figure 2 shows the structure of the algorithm. The program starts by identify-
ing all the unique binary classifiers, and all the possible combinations of feature
types(lines 1-2). It does this by generating all possible combinations of labels
and eliminates those which are symmetric to an existing subset. It is necessary
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to remove the empty feature set, and the binary classifier with an empty posi-
tive or negative class. The program creates a directory chosen by the user and
creates files within it to store the results for each of the unique binary classi-
fiers. Then, the program executes a nested loop as shown in figure 2(lines 3-9).
For each subset, we first need to process the training vectors so that they only
include vectors for that particular feature set. Once this is done, the data points
in the training set are split into positive and negative examples. Then, three ma-
trices are used to represent the point clouds Pn,Pp and Pf (line 5). The ratios,
described in Section 3, are calculated using the affine and ambient dimensions
of these point clouds.

Table 2. Logistic and Linear Regression Models

Predictor Logistic Coefficient Linear Coefficient
β0 -0.64063267 -1.039011e-12
f1 0.15706603 .0
f2 0.1327297 0
f3 -0.03350878 09114375
f4 -0.15182902 -.01223389
f5 0.19548473 -.0200644
f6 -0.68787718 0

Finally, the algorithm makes a predication for a particular feature set based
on the linear and logistic regression models detailed in Table 2. These models
were selected using forward stepwise inclusion with the AIC as the evaluation
criterion. In order for a feature set to receive a prediction of optimal, the logistic
regression model must predict a value greater than .5, and the linear model must
predict a positive standardized accuracy. (Recall that a z-score of zero indicates
the norm.) If both of these conditions are met, then the subset is written to the
appropriate output file.

The output of the algorithm is a list of suggested feature sets that have the
structural characteristics associated with optimal feature sets. Remember, an
optimal subset need not be unique. The algorithm gives the user a list of subsets
to chose from, based on the user’s own criteria.

5 Algorithm Evaluation

In this section, we evaluate the power of the feature selection algorithm. We
discuss some limitations of the algorithm, particularly, the relationship between
the algorithm’s performance and the dimensionality of the input data. We also
present a theoretical and empirical time complexity analysis for the algorithm.
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5.1 Algorithm Performance

The algorithm was run on each of the text data sets used to build the training set,
and the results are presented in table 4. The polarity1, polarity2 and strength
sentences are data sets originally used to classify the polarity and strength of
relationships between a food/chemical/gene and a disease [12]. The movies docu-
ments [13] and webtext sentences [14] are built from corpora included in Python’s
Natural Language Tool Kit [14]. The movie review corpus is intended for clas-
sifying the polarity of reviews as positive or negative, and the webtext corpus
consists of sentences from six different websites, each labeled according to their
site of origin.

Table 3. Summary of Data Suite Used to Train Model

Data Set R C BC FT resulting feature sets
Polarity1 Sentences 463 645 7 5 156
Polarity2 Sentences 324 600 7 5 183
Strength Sentences 787 645 7 5 179
Movies Documents 300 1000 1 3 7
Webtext Sentences 1200 500 15 4 192

Table 3 is a brief summary table of each set we used to train the model
used in our feature selection algorithm. It includes the number of rows(R) and
columns(C) of each raw data set. Each data set contains different types of fea-
tures, and the number of these, (FT), is also listed for each data set. The number
of unique binary classifiers (BC) resulting from the classification labels is also
listed. Finally, the number of feature sets added to our training set as a result
of the creation process is listed.

To evaluate our feature selection algorithm, we calculate its accuracy, precision
and recall by comparing the predictions made by the algorithm to the labels that
were generated during creation of the training set. (See Section 3 for the label
generation process.) Using these labels, we define accuracy, precision and recall
as follows:

accuracy =
tp+ tn

tp+ fp+ tn+ fn

precision =
tp

tp+ fp

recall =
tp

tp+ fn
,

where tp, tn, fp, fn represent the number of true positives, true negatives, false
positives and false negatives, respectively. With respect to our algorithm, preci-
sion evaluates whether the feature sets selected by the algorithm actually perform
optimally. Recall, on the other hand, measures how well the algorithm identi-
fies all optimal feature sets. Recalling that an optimal feature set need not be
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Table 4. Algorithm Performance for Training Data

Data Set Accuracy Precision Recall
Polarity1 Sentences 0.7564 0.8621 0.625
Polarity2 Sentences 0.7542 0.6304 0.8529
Strength Sentences 0.7814 0.8986 0.6526
Movie Documents 0.8571 1 0.8
Webtext Sentences 0.8091 0.9067 0.6602

unique, we see that precision is extremely important to this task. It is of more
value to the user that the percentage of recommended feature sets that actually
produce optimal results is high, since these results are the pool from which the
user will ultimately choose a feature set. Optimal feature sets that are excluded
from the results, or false negatives, do not have nearly as much consequence.

Note, in table 4, the high precision within each data set. These numbers
indicate that the algorithm we designed is quite effective for selecting optimal
feature sets within the training data. Especially within the Movie Documents,
where the algorithm achieves a precision of 1. This means that every feature
set the algorithm returned was in fact an optimal feature set for classifying
the Movies Documents with a linear SVM. While the algorithm’s precision is
somewhat lower on the Polarity2 Sentences, it is still impressive, given that only
38% of the feature sets within the Polarity2 Sentences are actually labeled as
optimal.

In the aforementioned data sets the full feature set is close to optimal, which
means that running a linear SVM directly on the data with all features included
gives almost the same accuracy as first running our feature selection algorithm
and then applying the linear SVM. To assess if our algorithm can effectively
reduce the dimension when the full feature set is not optimal, we ran the follow-
ing experiment. The Polarity1 data set was modified by adding 25% additional
columns, increasing the total number of columns to 806. Each additional col-
umn was a random binary vector and received a random label. We applied our
algorithm to each of the resulting binary classification problems. In all cases our
algorithm recognized that the random columns did not contain relevant infor-
mation and excluded them from the feature set. Applying the linear SVM to the
reduced feature set, as selected by our wrapper algorithm, leads to a substan-
tial improvement over applying the linear SVM directly to the full feature set:
Accuracy increased by between 10% and 26% with a median increase of 15%.

To test our algorithm on larger data sets, we created several data sets from
the Amazon Customer Review Data, available from the UCI Machine Learning
Repository [15]. The raw data consists of 10,000 features and 1500 examples, with
labels corresponding to 50 different authors. We developed each test set using
a different set of five authors. Using different authors ensures that the reviews
will be entirely different from one data set to the next. Because the reviews
are different, the particular set of features generated will also be different, even
though they are created in the same manner. The dimension of the resulting
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data sets can increased or decreased by controlling the frequency requirements
for inclusion of a feature. For example, to reduce the numbers of features, we
would require that a particular unigram feature be present within the reviews at
least 10 times. Then, to increase the dimension, we simply include less and less
frequent features. Each test set also went through the same labeling process as
the training data, in order to determine the algorithm’s accuracy, precision and
recall on previously unseen data. Recall this process was based on a wrapper
based, all subsets algorithm that is commonly used to address the problem of
feature selection. The results indicate that the algorithm also performs very well
on previously unseen data. The Amazon data set was used to test the algorithm
over a range of dimensions, and table 5 summarizes the performance for these
tests for column dimensions ranging from 480 to 1440. These results indicate
that the algorithm performs very well within this range of column dimensions.
We have observed that precision remains high (.9-1) for dimensions up to 3000.

Table 5. Peak Algorithm Performance for Amazon Data

Dimension Accuracy Precision Recall
480 0.768888889 0.823529412 0.711864407
640 0.76 0.838095238 0.704
800 0.831111111 0.844444444 0.870229008
960 0.817777778 0.837037037 0.856060606
1120 0.813333333 0.822222222 0.860465116
1280 0.795555556 0.8 0.850393701
1440 0.804444444 0.82962963 0.842105263

5.2 Limitations

As explained in Section 3, the proposed algorithm is designed to work well for
linear kernel SVMs. In situations where the ratio of the number of samples to
the total number of features is very large and the use of a higher degree kernel is
warranted, we do not expect the affine geometry of the data set to reveal much
useful information about which feature sets allow the SVM to generalize well.

Moreover, the proposed algorithm is tailored towards binary data and we do
not expect it to perform well on continuous data: Suppose the data consists of
n points in n-dimensional space that are drawn from a model that generates
points on a 1-dimensional affine subspace with a small additive error that is
normally distributed. In this scenario the n data points will span an affine space
of dimension n, even though the true model is 1-dimensional. These theoretical
considerations are confirmed by experiments which show that the algorithm
does not perform well for continuous and categorical data. Table 6 provides a
summary of the algorithm’s performance on several test data sets according to
column dimension and data type. A precision or recall score of 0 indicates that
the algorithm did not accurately identify any optimal feature sets.
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Table 6. Predictive Results for Low Dimensional Data

Column Dimension Data Type Accuracy Precision Recall
13 continuous 0.3218 0.1111 0.2083
38 categorical 0.4444 0 0
100 categorical 0.4286 0 0

Moreover, the data presented in Table 6 suggest that low dimensional data
sets may limit the performance of the proposed algorithm. To better understand
the relationship between our algorithm’s performance and dimensionality, we de-
signed an experiment using an Amazon data set as described above. The columns
within each of the four feature types are organized in terms of frequency, so that
the most common features occur in the earlier columns of each feature type
block. The algorithm is used on these data sets repeatedly, while incrementing
the number of dimensions included each time. For instance, the first run of the
algorithm may include a total of 80 dimensions, the first 20 columns from each
feature type. The algorithm’s accuracy, precision and recall are recorded for the
particular dimension, as well as the CPU time. The total number of features in-
cluded is then increased to 160, by including the first 40 columns of each feature
type. This process is repeated until all available dimensions are being used in
the feature selection process. This is different than the previous Amazon data
sets, because we are using the same set of five authors throughout the entire
experiment, to control for variance between raw data sets. Figure 3 shows the
results of this experiment. This experiment was repeated several times each using
a different set of five authors with similar results.

These experiments indicate that the performance of the algorithm is very de-
pendent on the dimensionality of the input data. Note the low values in accuracy,
precision and recall for those data sets with less than 400-500 columns. Figure 3
shows the rapid growth in accuracy, precision and recall for the lower dimensions
that becomes much slower for dimensions larger than 500. Further study may
be warranted to discover the cause of the dimensionality dependence observed
in these experiments.

In figure 3, we see that the CPU time increases quadratically with column
dimension. Note though, that the number of rows, feature types and labels are
all held constant through out the experiment. The theoretical time complexity
of the algorithm is in fact a function of all of these variables;

O
(
(2(�−1) − 1)(2k − 1)(m2n2)

)
,

where � is the number of classification labels in the problem, k is the number of
feature groups present, and m,n are the number of rows and columns, respec-
tively, in the training data. The O(m2n2) terms come from the complexity of
the singular value decomposition algorithm which is O(mn2) [16]. In our algo-
rithm, we perform this calculation (m + 2) times during the calculation of the
affine intersection ratio. Recall, that the affine intersection ratio is calculated for
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Fig. 3. Dimension Testing Results

(2k − 1) feature sets, for each of (2�−1 − 1) unique binary classifiers. While the
Amazon data sets had the capacity to test up to 10,000 columns, the run time
became unreasonably long after around 2400 dimensions on a lap top computer.

6 Conclusion

Support Vector Machines are machine learning classifiers that use geometry to
separate training examples into their respective classes. Because of this, SVMs
are an excellent candidate for a structural based feature selection algorithm.
Many of the commonly used feature selection algorithms are heuristic in nature
and do not use inherent characteristics of the data. A more data driven, analytic
approach to feature selection will help machine learning engineers to better un-
derstand the relationship between a particular classification problem and a given
optimal feature set. This understanding can influence data collection efforts and
improve classification accuracy.

Through investigating the geometric structure of optimal and suboptimal fea-
ture sets, we found six qualities that differ significantly between them. We have
discovered a linear relationship between the values of our dimensionality and in-
tersection based features with classifier performance. We built linear and logistic
regression models that use these six properties as predictor variables to identify
optimal feature sets. We used these models to design a filter based feature se-
lection algorithm that is analytic in nature, as opposed to the more commonly
used wrapper based heuristic methods.
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Our feature selection algorithm performs best on text data sets that have more
than approximately 500 features that can be organized into a handful feature
types. While the precision remains high for data sets with more that 2500
features, the computation time needed for these sets is too long to be practical
on a single computer. Because of this, further study into parallelization of the
algorithm may be warranted.

The algorithm did not perform well on low dimensional data sets. More study
is needed to determine the cause of the relationship between the dimensionality
of the original input data set. Currently, the algorithm does not support feature
selection for SVMs using non linear kernels. However, we hypothesize that the
algorithm could be successful when applied to other kernel types, if the data is
first transformed using the chosen kernel, and the fi’s are then calculated in the
transform space. Further study is needed to accept or reject this hypothesis. De-
spite these limitations, our algorithm presents a useful and innovative approach
to the problem of feature selection.
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Abstract. Since hyperspectral imagery (HSI) (or remotely sensed data)
provides more information (or additional bands) than traditional gray
level and color images, it can be used to improve the performance of im-
age classification applications. A hyperspectral image presents spectral
features (also called spectral signature) of regions in the image as well
as spatial features. Feature reduction, selection, and transformation has
been a challenging problem for hyperspectral image classification due
to the high number of dimensions. In this paper, we firstly use Ran-
dom Forest (RF) algorithm to select significant features and then apply
Kernel Fukunaga Koontz Transform (K-FKT), a non-linear statistical
technique, for the classification. We provide our experimental results on
AVIRIS hyperspectral image dataset that contains various types of field
crops. In our experimental results, we have obtained overall classifica-
tion accuracy around 84 percent for the classification of 16 types of field
crops.

1 Introduction

An ordinary color image has three bands (e.g., red, green, and blue) of the visible
light just as human eye can see. So most imaging systems are restricted only a
few spectral bands. These few bands or dimensions are usually not enough for
the classification of a single pixel. However, hyperspectral imaging sensors divide
the visible light spectrum into hundreds of bands for a single pixel as presented
in Figure 1.

Spectral features (or bands) are sensitive to the type of material in addition to
the color or shapes of objects. Because of this ability, hyperspectral imagery has
different applications in many areas such as agriculture, mineralogy, physics, and
homeland security. Although it was inconvenient technology in the past, recent
advances have simplified the capture and process of hyperspectral images.

On the other hand, hyperspectral imagery (HSI) has some challenges to be
overcome. Firstly, some of the spectral bands may have large amount of noise due
to water absorption bands and some other environmental effects, since spectral
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Fig. 1. Example of Hyperspectral Imagery

bands are more sensitive than typical vision sensors. Secondly, image processing
and classification takes longer than the analysis of traditional gray scale and color
images, since there are many number of features to be analyzed and processed.
Therefore, some spectral bands might be noisy and redundant for image content
analysis. It is necessary to detect the redundant bands and eliminate them to
improve the processing speed and classification accuracy [1].

The research on HSI classification can be categorized based on feature selec-
tion and the classification method. The feature selection is sometimes handled
manually by using prior information about the spectral bands or using previ-
ous experimental results. Various classification techniques including neural net-
works, support vector machines, bayesian classifier and decision trees have been
used. In 2005, Benediktsson et al. [2] proposed a classification method using ex-
tended morphological models and neural networks. Banarjee et al. [3] studied on
anomaly detection in HSI and used support vector machines for the classification
in 2006. In 2007, Borges et al. [4] proposed discriminative class learning using
a new Bayesian based HSI segmentation method. In 2008, Alam et al. [5] pro-
posed a Gaussian filter and post processing method for HSI target detection. Du
et al. [6] studied on HSI classification based on decision level fusion in 2010. In
2011, Tuia et al. [7] worked on the same topic using multi-scale cluster kernels.
Samiappan et al. [8] proposed an SVM based HSI classification study which uses
the same dataset used in this paper. Automated feature selection and acquiring
high accuracy are still major problems for HSI.

In this study, we evaluate the combination of Random Forest (RF) algorithm
and Kernel Fukunaga-Koontz transform (K-FKT). Firstly we performed auto-
mated feature elimination using RF algorithm, and then K-FKT is used to clas-
sify HSI data. We present our experimental results on the AVIRIS dataset [9]
that contains images of 145x145 pixels with 220 spectral bands. Each spectral
interval is 10 nm from the range 400 to 2450 nm wavelength. AVIRIS Image
covers 2 x 2 mile portion of Northwest Tippecanoe County, Indiana.

This paper is organized as follows. The following section explains feature
selection or ranking using Random Forest algorithm. Section 3 presents Kernel-
Fukunaga-Koontz Transform in detail including its training and testing stages.
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Classification results of different feature sets are presented in Section 4. The last
section concludes our paper.

2 Feature Selection Using Random Forest

Random Forest (RF) algorithm is applied to select informative features in spec-
tral signatures. RF is a type of an ensemble classifier that employs many different
(independent) decision trees. Basically in this method every single decision tree
makes a prediction for a data item. The predictions of each decision tree are
evaluated to determine the class of the data item. If the majority voting is used,
the most voted class is chosen as the class of the data item. This approach as
a random forest was first proposed by Leo Breiman and Adele Cutler in 2001
[10]. RF algorithm provides remarkably high accuracy in various studies [11]
especially on large data sets. Cumbaa et al. [12] present the performance of RF
algorithm on protein crystallization analysis using very a large database.

Random forests (RF) are comprised of decision trees and starts with selecting
many bootstrap samples. A bootstrap data set has almost 63 percent of the
original observations which are chosen randomly from the original dataset. The
other samples which are not in the bootstrap dataset are called as out-of-bag
observations. The best split for each tree is selected by using chosen attributes.
This process repeats for each branch until our bootstrap grows into a proper well-
formed tree. When the leaf nodes have small number of samples to split or no
splitting criterion can be found, the decision tree induction ends. A decision tree
is constructed for each bootstrap sample. Then each decision tree is employed
to classify the out-of-bag observations. The predicted class of an observation is
calculated by majority of votes of all decision trees for that observation (see
Figure 2).

Generally a statistical classification or a regression method measures feature
importance by choosing variables using statistical importance. However, RF ap-
proach runs in a completely different way. For each individual decision tree in
the forest, there is a misclassification rate for the out-of-bag samples. In order
to decide the importance of a specific predictor variable or a feature, the values
of the features are randomly ordered for the out-of-bag observations. The algo-
rithm performs prediction and checks for the change of the mean squared error
(MSE) of out-of-bag data in which the corresponding variable is reordered and
all others are fixed. In this way, a variable can be scored based on the prediction
results.

3 Classification using Kernel Fukunaga-Koontz
Transform

Kernel Fukunaga-Koontz Transform is applied in order to classify field crops
in hyperspectral image for each selected feature set. Classical FKT is a well-
known approach [13] [14] [15] [16] for separating two classes, and it operates by
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Fig. 2. Voting in Random Forest

transforming data into a new space where both classes share the same eigen-
values and eigenvectors. However, when the data is non-linearly distributed, the
classical FKT method is not able to give satisfactory results for the classifica-
tion. Therefore, Kernel transformation is combined with classical the FKT to
classify non-linearly distributed data as if it was linearly distributed. K-FKT
algorithm as a supervised classification approach consists of two stages: training
and testing.

3.1 Training Stage

K-FKT is a binary classification approach. So we employ one-versus-all method
to deal with the multi-class classification problem. The target class is the one
which we want to classify, and the background class is the combination of all
the other classes. Equations (1) and (2) represent these separated datasets for a
sample target class as follows:

X = [x1, x2, ...xN ] (1)

Y = [y1, y2, ...yN ] (2)

where X and Y contain the target training data and the background training
data, respectively; and xi and yi represent the samples (observations) for the
target and background classes (or training signatures), respectively.
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When data have a non-linear distribution, we are not able to separate classes
with a linear classifier. But we can achieve this limitation with transforming the
data into a higher dimensional space. Assume that a virtual mapping function
maps the data into higher dimensional space as shown in (3) and (4):

X̃ = [x̃1, x̃2, ...x̃N ] (3)

Ỹ = [ỹ1, ỹ2, ...ỹN ] (4)

where the symbol ’∼’ indicates that corresponding sample has been transformed
to the higher dimensional kernel space. In that case transformed data may be
linearly separable only if the proper mapping function is chosen. However, in
most cases, the virtual mapping function does not exist (or we do not need
to use) in applications. Instead, a kernel function 5 is employed by following a
’kernel trick’ approach [15]. By using kernel trick, we are able to measure the
distance between samples directly in higher dimensional kernel space without
mapping data into that space.

K(xi, xj) = exp(
‖xi − xj‖2

2σ2
) (5)

In this study Gaussian type kernel function is selected. This function measures
the distances between two samples by using a calibration parameter σ (0 < σ <
1). In this way the classification process can be achieved in a linear fashion.

According to the FKT, covariance matrices of X̃ and Ỹ must be computed.
As shown in (6) and (7), covariance matrices are named as T0 and C0 for the
target and the background datasets, respectively:

T0 = X̃X̃T (6)

C0 = Ỹ Ỹ T (7)

The next step of the FKT algorithm is to sum T0 and C0 and to decompose
this sum matrix into eigenvalues and eigenvectors. In (8) V represents the eigen-
vector matrix and D represents the eigenvalue matrix. Diagonal elements of D
correspond to eigenvalues of the summation matrix.

T0 + C0 = V DV T (8)

In this way we are able to construct transformation operator P by using V and D
matrices. This new operator is employed to transform data into the eigenspace.
Note that this transformation is different from the kernel transformation in (5).
Equation (9) shows how to derive the transformation operator:

P = V D
−
1

2 (9)
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Then T0 and C0 matrices are transformed into a lower dimensional eigenspace
using the transformation operator P . The new T and C matrices are obtained
as shown in (10) and (11),

T = PT0P
T (10)

C = PC0P
T (11)

where T and C represent the transformed target and background matrices, re-
spectively. The sum of the transformed matrices should be equal to the identity
matrix as shown in (12) since they are transformed by the same operator and
share the same eigenvectors and eigenvalues:

I = T + C (12)

Equation (12) states that while T contains more valuable information for the
target class, C contains more important information for the background class.
After obtaining these two matrices, the training stage is completed. These ma-
trices are in the testing stage.

3.2 Testing Stage

In the testing stage, the test vector z must be transformed into the kernel space
as performed in the training stage. Due to similar requirements as in the training
stage, the ’kernel trick’ method must be applied again for the kernel transfor-
mation:

Z = [K(x1, z),K(x2, z), ...,K(xN , z)] (13)

In (13), z is a test sample (spectral signature that we want to classify) on the
hyperspectral image, xi is the ith target training sample in (1), K(x, y) is a
kernel function, and Z is the kernel matrix of the corresponding test sample.
This matrix is necessary to have the transformed feature vector for the test
sample as shown in (14):

Fj =
1√
λj

φT
j Z j = 1, 2, ...N (14)

where λ and φ represent the eigenvalues and eigenvectors of the normalized
target matrix T̂ in (15):

T̂ = T0 − I1/NT0 − T0I1/N + I1/NT0I1/N (15)

where I1/N is equal to the division of an identity matrix INxN by N (INxN/N).
Then we decompose the eigenvalues and eigenvectors of the normalized target

matrix T̂ and multiply the feature vector F with the transpose of the eigenvector
matrix of T̂ as shown in (16):

R = ΦTF (16)
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where Φ represents the eigenvectors of T̂ . The decision result R is obtained by
(16). This operation helps us decide the class that a test sample belongs. If
the value of R is greater than a threshold value, it belongs to the target class;
otherwise, it belongs to the background class.

4 Experimental Results

Dataset and Preprocessing. In this section, we explain the set of exper-
iments which we performed using the AVIRIS Hyperspectral Image datasets
called ’Indian Pines’ [17]. The Indian Pines scene contains several type of areas.
Among these areas, there are agricultural fields, forests, highways, a rail line, and

Fig. 3. RGB view of AVIRIS Image

Fig. 4. Ground Truth data of AVIRIS Image
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Table 1. Class Names and Number of Samples

Class Number Class Samples

1 Alfalfa 54
2 Corn-notill 1434
3 Corn-mintill 834
4 Corn 234
5 Grass-pasture 497
6 Grass-trees 747
7 Grass-pasture-mowed 26
8 Hay-windrowed 489
9 Oats 20
10 Soybean-notill 968
11 Soybean-mintill 2468
12 Soybean-clean 614
13 Wheat 212
14 Woods 1294
15 Buildings-Grass-Trees-Drives 380
16 Stone-Steel-Towers 95

Total 10366

some low density housing. The colored view of the scene is shown in Figure 3. In
this dataset, there are 16 different classes which are represented as a ground truth
data in Figure 4. The names of the classes and the number of samples are shown
in Table 1.

Fig. 5. Importance Coefficients of Features
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The AVIRIS data (or image) comprises of a 145× 145× 220 matrix that cor-
responds to 220 different bands of images having size of 145×145. We transform
the matrix data to a vector form as a 21025 × 220 matrix. This representation
indicates that there are 21025 samples with 220 different features.

Our goal is to classify the field crops. So firstly, we removed regions that do not
correspond to field crops (dark blue areas in Figure 4) from the dataset. Among
21025 different samples, nearly half of them do not have meaning since they
do not correspond to field crops. These samples are labeled with class 0 (zero).
After this operation, the number of remaining samples is 10336 as presented in
Table 1.

Table 2. Precision and Recall Classification Results of 16 Classes with respect to
number of features

#of features 219 190 182 163 129 98 70 53 43 29 20 12 7 #of samp.

Class 1
prec 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.90 0.90 0.90 0.87

26recall 0.77 0.77 0.77 0.77 0.92 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Class 2
prec 0.76 0.76 0.76 0.76 0.71 0.65 0.61 0.60 0.60 0.60 0.60 0.47 0.46

716recall 0.89 0.89 0.89 0.90 0.92 0.95 0.97 0.98 0.98 0.99 1.00 0.85 0.81

Class 3
prec 0.88 0.88 0.88 0.88 0.86 0.82 0.78 0.77 0.76 0.70 0.64 0.60 0.45

416recall 0.73 0.73 0.73 0.73 0.77 0.81 0.84 0.85 0.85 0.85 0.85 0.80 0.76

Class 4
prec 0.95 0.95 0.95 0.95 0.89 0.70 0.65 0.64 0.64 0.64 0.64 0.64 0.49

116recall 0.93 0.93 0.93 0.93 0.95 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.86

Class 5
prec 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.08

249recall 0.95 0.95 0.95 0.95 0.96 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.08

Class 6
prec 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.92 0.89 0.43 0.41 0.41 0.36

373recall 0.87 0.87 0.87 0.87 0.88 0.90 0.93 0.95 0.95 0.76 0.69 0.69 0.57

Class 7
prec 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.80 0.80 0.80 0.80 0.71

12recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Class 8
prec 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.95 0.92 0.89 0.89 0.85

245recall 0.95 0.95 0.95 0.95 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00

Class 9
prec 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.92 0.92

10recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Class 10
prec 0.76 0.76 0.76 0.76 0.71 0.68 0.61 0.61 0.46 0.46 0.46 0.46 0.46

484recall 0.87 0.87 0.87 0.87 0.89 0.93 0.99 0.99 0.85 0.84 0.83 0.83 0.80

Class 11
prec 0.79 0.79 0.79 0.79 0.75 0.69 0.66 0.65 0.64 0.45 0.45 0.45 0.45

1234recall 0.76 0.76 0.76 0.77 0.81 0.86 0.92 0.93 0.94 0.80 0.79 0.79 0.75

Class 12
prec 0.85 0.85 0.85 0.85 0.84 0.80 0.70 0.66 0.63 0.60 0.46 0.46 0.46

306recall 0.91 0.91 0.91 0.91 0.92 0.92 0.97 0.98 0.99 1.00 0.86 0.86 0.83

Class 13
prec 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.86 0.78 0.73 0.68 0.21

106recall 0.94 0.94 0.94 0.94 0.95 0.97 0.98 0.99 0.99 1.00 1.00 1.00 0.26

Class 14
prec 0.81 0.81 0.81 0.81 0.79 0.79 0.80 0.80 0.80 0.80 0.79 0.79 0.79

646recall 0.91 0.91 0.91 0.91 0.93 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Class 15
prec 0.91 0.91 0.91 0.91 0.88 0.84 0.73 0.73 0.73 0.73 0.73 0.73 0.44

190recall 0.86 0.86 0.86 0.87 0.87 0.87 0.89 0.98 0.93 0.94 0.95 0.95 0.79

Class 16
prec 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.74 0.47 0.41

47recall 0.72 0.72 0.72 0.72 0.72 0.72 0.79 0.83 0.85 0.89 0.94 0.89 0.70

Avg.
prec 0.91 0.91 0.91 0.91 0.90 0.87 0.84 0.82 0.79 0.72 0.69 0.66 0.52

5176recall 0.87 0.88 0.88 0.88 0.90 0.93 0.95 0.96 0.95 0.94 0.93 0.92 0.77
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We performed a randomization to the permutation of the data in order to
have a reliable classification result. After that we split data into two parts and
choose 5190 samples for the training set and 5176 samples for the testing set.

Feature Selection Experiments. For the feature selection part, the number
of of decision trees that are trained is set to 500. Only 14 features are available as
the candidates at each split to increase the independence among decision trees.
The square root of the total number of features is usually recommended as the
number of candidate features at a node of a decision tree. According to these
parameters, Figure 5 represents the importance coefficients, produced by RF,
for each feature in the AVIRIS data.

Classification Performance.We rank the features and select the best N fea-
tures using importance coefficients in Figure 5 for each experiment. Table 2 lists
the precision and recall for each feature set. The results show that reducing the
number of features increases the accuracy for most classes. This consequence
verifies the presence of redundant features in HSI to be eliminated.

For overall evaluation of experimental results, Table 3 is generated with a
single accuracy value for each case. This accuracy is computed as the ratio of
the number of ’True Positive’ and ’True Negative’ samples to the number of all
samples.

At the bottom of the table, the weighted accuracy is presented in which the
ratio of the number of test samples in a class to the total number of test samples
is considered as the weight of a class. Table 3 points out that to select best 98
features offers the best performance for classes.

Table 3. Overall Accuracy Results

#of features 219 190 182 163 129 98 70 53 43 29 20 12 7 #of samp.

Class 1 0.93 0.93 0.93 0.93 0.94 0.94 0.98 0.98 0.98 1.00 0.98 0.98 0.98 26

Class 2 0.72 0.72 0.72 0.72 0.74 0.75 0.75 0.75 0.75 0.74 0.74 0.74 0.74 716

Class 3 0.80 0.80 0.80 0.80 0.80 0.80 0.79 0.77 0.76 0.76 0.74 0.73 0.72 416

Class 4 0.89 0.89 0.89 0.89 0.92 0.90 0.87 0.80 0.79 0.71 0.68 0.68 0.51 116

Class 5 0.84 0.84 0.84 0.85 0.86 0.88 0.90 0.92 0.92 0.92 0.90 0.87 0.86 249

Class 6 0.91 0.91 0.91 0.91 0.91 0.91 0.94 0.94 0.93 0.90 0.84 0.70 0.63 373

Class 7 0.96 0.96 0.96 0.96 0.96 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 12

Class 8 0.93 0.93 0.93 0.93 0.94 0.96 0.97 0.98 0.98 0.97 0.96 0.95 0.95 245

Class 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.94 0.94 10

Class 10 0.83 0.84 0.84 0.84 0.85 0.87 0.81 0.77 0.73 0.69 0.68 0.67 0.66 484

Class 11 0.83 0.83 0.83 0.84 0.83 0.82 0.81 0.80 0.80 0.79 0.77 0.77 0.77 1234

Class 12 0.78 0.78 0.78 0.78 0.78 0.77 0.74 0.73 0.73 0.72 0.68 0.65 0.64 306

Class 13 0.94 0.94 0.94 0.95 0.95 0.97 0.98 0.98 0.97 0.96 0.97 0.95 0.94 106

Class 14 0.84 0.84 0.84 0.84 0.84 0.84 0.87 0.88 0.88 0.88 0.88 0.87 0.87 646

Class 15 0.84 0.84 0.84 0.84 0.86 0.88 0.84 0.83 0.82 0.82 0.81 0.79 0.79 190

Class 16 0.81 0.81 0.81 0.81 0.82 0.84 0.84 0.87 0.89 0.91 0.89 0.87 0.86 47

Weig. Acc. 0.83 0.83 0.83 0.83 0.84 0.84 0.83 0.82 0.82 0.81 0.79 0.77 0.76 5176
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However, the performance of some classes such as ”Class 2” and ”Class 12” does
not exceed 80% accuracy. In order to clarify this lower performance spectral signa-
tures are examined in more detail and we realized that these two classes does not
have a specific distinguishing behaviour like other classes. In other words, there
are samples which are very similar to the other class signatures. That is why our
classification approach is not able to predict these problematic samples. We have
focused on using only spectral features in this study but employing also spatial
features (e.g, neighbourhood information) of HSI may improve the results.

Comparison. Samiappan et al. [8] classifies the same dataset using support
vector machines with non-uniform feature selection. They divide the spectral
bands into regions in order to obtain the best feature set combination. Finally
they employ radial-based SVM (Support Vector Machine) classifier to classify
regions. Their results presented 75% of overall accuracy by using the 100 of 220
features on the AVIRIS dataset. In this study we select the best 98 features of
220. Our results point out a remarkable contribution and exceeds 75% accuracy
by reaching 84% overall accuracy.

In a different study [18], same ’Indian Pine’ dataset is used for the same clas-
sification problem. According to that study, their overall classification accuracy
is 87% and slightly higher than our results. Although there is a 3% difference,
the way of selecting training and testing samples may be different because the
authors do not mention how they divided their data into training and testing.
They also used higher number of training samples and lower number of test
samples than our study.

Another important issue is that optimal number of features may be different
for classes. So we do not have to use all 98 features for all classes. For example,
choosing the best 29 features for classes 1, 5, 9 and 16 produce the highest
accuracy. Similarly classes 7 and 14 give the best results using best 20 features.
Therefore, if our goal is to classify a specific class we can consider the optimal
feature set for that particular class. Otherwise, we can use 98 features (bold
values in Table 3) for all classes with 84% overall accuracy.

5 Conclusion

In this study we evaluated a combination of two powerful methods for the HSI
classification problem. We have used Random Forest algorithm to select the
important features. Then we used Kernel Fukunaga-Koontz Transform to apply
binary classification. Experimental results show that reducing the number of
features using RF algorithm increases the performance up to some limit for
majority of classes. Moreover we have obtained promising weighted classification
accuracy around 84%.
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Abstract. Data clustering is an important and widely used task of data mining 
that groups similar items together into subsets. This paper introduces a new 
clustering algorithm SOM++, which first uses K-Means++ method to determine 
the initial weight values and the starting points, and then uses Self-Organizing 
Map (SOM) to find the final clustering solution. The purpose of this algorithm 
is to provide a useful technique to improve the solution of the data clustering 
and data mining in terms of runtime, the rate of unstable data points and internal 
error. This paper also presents the comparison of our algorithm with simple 
SOM and K-Means + SOM by using a real world data. The results show that 
SOM++ has a good performance in stability and significantly outperforms three 
other methods training time. 

Keywords: Data Mining, Clustering, Self-Organizing Map, K-Means++, 
Mining Methods and Algorithms. 

1 Introduction 

Cluster analysis is the process of grouping data into subsets such that each item in a 
cluster is more similar to the items in the same cluster than to the other items at the 
outside of the cluster. Generally, distance measures like Euclidean distance, 
Manhattan distance are utilized to evaluate the dissimilarity between data points. 
Cluster analysis is one of the most useful tasks in machine learning and data mining, 
and has been used in a variety of fields such as marketing, banking, medicine and 
telecommunication. It has been widely used in dimensionality reduction, information 
extraction, density approximation and data compression [15] [6] [7] [16]. 

The K-means [12] algorithm is the most commonly used partitioning cluster 
algorithm with its easy implementation and its efficient execution time. Self-
organizing map (SOM) [11] is an unsupervised, well-established and widely used 
clustering technique.  

In SOM, initial weight values are assigned randomly, method performance is 
sensitive to these values and it is prohibitively slow in large data applications. In order 
to decrease the time complexity of SOM, we investigated different initialization 
procedures for optimal SOM and now propose K-Means++ as the most convenient 
method, given the proper training parameters. 
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K-Means++ algorithm gives more successful results than standard K-Means at 
accuracy and consistency [3]. Because, the K-Means algorithm works only to find a 
local optimum and this local optimum often becomes poor by using random initial 
center points; however, K-Means++ starts with rational initial points, thus K-
Means++ approximates the best clustering space. Also, K-Means++ outperforms in 
speed, too. K-Means++ guarantees O(logk) as the complexity time; however, K-
Means has a complexity time as O(nkd + 1 logn), where k is the number of clusters, n is 
the number of data and d is the Euclidean distance between two clusters [3].   

This paper proposes a new clustering algorithm SOM++, which is composed by K-
Means++ method followed by SOM clustering. The algorithm consists of two stages: 
First, using K-Means++ method to determine the initial weight values instead of 
assigning in randomly, then clustering task is done in the second stage by SOM as an 
unsupervised clustering method. The experimental results show that the proposed 
algorithm, SOM++, is considerably better than the conventional SOM based 
algorithms in terms of runtime, the rate of unstable data points and internal error. It 
generates similar clustering results with other SOM based clustering algorithms, 
however the use of it requires the smaller training time.  

The rest of this paper is organized as follows. The second section reviews the 
literature and describes SOM, K-Means++ algorithm and how SOM and K-Means 
were combined in the previous studies. After the new clustering algorithm SOM++ is 
explained in detail and also the principle and the architecture of the algorithm are 
presented in the third section, we demonstrate how the proposed algorithm can be 
applied on a real world data, including dataset description, experimental setup, and 
performance analysis and clustering results in the fourth section. The experimental 
studies indicate with figures of map combinations and tables of error rates. Section 5 
points out the comparison of the results of SOM++, simple SOM, SOM+K-Means 
and SOM+K-Means++ (include all phases of K-Means++). Finally, the summary, 
conclusions and future work are given in the Section 6.  

2 K-Means++ & SOM 

The complexity of SOM algorithm is O(NC), where N is the input vector size and C is 
the number of dataset presentation cycles. N contains n2w as the multiply of the map 
size n2 and the number of weights w. C contains n2a as the multiply of the map size n2 
and the number of attributes a. The number of attributes is equal to the number of 
weights; therefore, the complexity of SOM algorithm obtains O(N2)[14].  

While simple SOM has been previously used in many applications, extended 
versions of SOM has also been proposed such as FSOM (Fast SOM) [15], ABSOM 
(Ant Based SOM) [6], and ESOM (Emergent SOM) [7]. 

When the performance of the K-Means++ algorithm were evaluated on four 
datasets and K-Means++ consistently outperformed K-Means, both by completing 
faster and by achieving a lower potential value. For example, on one dataset, K-
Means++ terminates almost twice as fast while achieving potential function values 
about 20% better, on the larger dataset, it is obtained up to 70% faster and the 
potential value is better by factors of 10 to 1000. For this reason, we propose K-
Means++ algorithm in this paper, instead of K-Means [3].  
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In recent years, several studies have compared different SOM-based two-stage 
methods. For instance, while Souza et al. [16] compared SOMK (SOM+K-Means) 
with SOMAK (SOM+Ant K-Means), Chi and Yang [5] compared both ABSOM 
(Ant-based Self-Organizing Map) with Kohonen’s SOM individually, and SOM+K-
Means with ABSOM+K-Means. Besides, Chiu et al. [7], [8] compares four 
approaches simple K-Means, SOM+K-Means, PSO+K-Means (Particle swarm 
optimization (PSO)) and PSHBMO (Particle Swarm Optimization with Honey Bee 
Mating Optimization). As another example, the study of Corrêa and Ludermir [9] 
about the comparison of several SOM-based two-stage approaches: SOM, SOM+KM 
(K-Means), SOM+W.KM (Weighted K-Means), SOM+AY (proposed by Azcarraga 
and Yap) and SOM+W.AY (Weighted AY Method), in terms of classification 
accuracy and runtime. 

Recently, performing K-Means method after usage of SOM was also studied for 
different purposes as examples of the emergency planning to deal with extreme events 
such as earthquake, flood and fire [2], clustering meteorological data [10], the 
biological wastewater treatment process [1], and the identification of day types of 
electricity load [4]. Our proposed algorithm, SOM++ is a general clustering 
algorithm; as a result, it can be used in many different applications for different 
purposes.  

To the best of our knowledge, however, this paper is the first in performing  
K-Means method before training neurons by usage of SOM to determine the initial 
weight values of SOM.  

3 Methodology 

The study of Su, Liu and Chang shows that the initializing the weight values increases 
the performance of SOM [17]. SOM++ shows that initializing the weight values by 
K-Means++ (without K-Means clustering) increases the performance of SOM. Also, 
the study of Attik, Bougrain and Alexandre mentions that initializing the weight 
values by K-Means clustering increases the performance of SOM without any 
example or method [3]; SOM++ is a supportive and integral study of these studies 
with K-Means++ (without K-Means clustering) and a new sequential assignment 
algorithms. 

In this section, it is explained that our new algorithm SOM++, a two-stage 
clustering algorithm uses the combination of two data mining techniques, namely 
SOM and K-means++ clustering. SOM algorithm uses neurons for all points on its 
map and these neurons have weight values for all attribute values. Before showing the 
details of SOM++ algorithm, these weight values are indicated in the following part. 
In SOM, input neurons are fully connected to output neurons, and each connection 
has a weighting value. In the initialization process of SOM, each neuron is associated 
with a random weight vector (wi = wi1, wi2, …, win), which has the same dimension 
(n) as the input vector (xi = xi1, xi2, …, xin). Using the Euclidean measure, distance 
between the input vector and the incoming weight vector of each output map neuron 
is calculated. The output neuron with the smallest distance is declared the winner. 
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After that, neuron weights are subsequently updated according to (1) using a 
neighborhood function (2), which minimizes the overall distance between the neuron 
itself and its neighbors.  

wij(t + 1) = wij + h(t)(xi – wij)                                            (1) 

where wij(t) is the connection weight from input i to output neuron j at time t; xi is 
element i of input vector x, and h is the neighborhood function.  

h(t) = αGF                                                           (2) 

where α is the learning rate; GF is the Gaussian Function  (3). 

GF = exp (-∑║wui - cui║2/2ϕ2 (t))                                      (3) 

where ϕ is the neighborhood width parameter and GF uses the Euclidean distance 
between the winner unit (wu) and the current unit (cu). 

SOM method performance is sensitive to the randomly assigned initial weight 
values and it is prohibitively slowed in the large-scale applications. In order to 
decrease the time complexity of SOM, this paper proposes K-Means++ to determine 
the initial weight values, instead of random process. In this approach, K-Means++ 
centers are assigned as SOM weight values; thus, SOM will require fewer iterations. 
Since the K-means algorithm is more computationally efficient than SOM, the general 
solution will be faster.    

3.1 Description of SOM++ Algorithm 

The proposed SOM++ is a two-stage algorithm, which is a combination of SOM and 
the initialization method of centers in K-means++. Fig. 1 and Fig. 2 show pseudo 
codes for SOM++ algorithm. The algorithm starts by finding the center points for the 
all clusters by using the method of K-Means++ which initializes the centre points of 
the clusters. There must be two sets named as Ф and D. Set D collects the centers of 
all clusters during the first part of SOM++ (step 1 and step 6 in Fig. 1). Set Ф collects 
the distances between each data and each center (step 2 in Fig. 1). The distances are 
calculated by using the Euclidean Distance. According to sum of squares of distances 
in set Ф, the centers are obtained (step 3-4-5 in Fig. 1). After obtaining k centers in set 
D (step 7 in Fig. 1), the second part of SOM++ is started (Fig. 2). 

After these steps, all centre points for all clusters are collected in a set Ф. These 
centers have the attribute values and these values must initialize the weight values of 
neurons on the map of SOM++. However, the most suitable method must be decided 
for locating these initial weight values. If the locating method is not suitable 
according to the distances of neurons, the result of SOM++ is not different from the 
result of the standard SOM with the random initialization (Comparing the error rates 
is given in Section 4.4).  Therefore, a new sequence assignment algorithm is 
implemented by considering the distances between K centers in set Ф. 

Fig. 2 and Fig. 3 show the pseudo code of this sequence assignment algorithm.  
Firstly, the most different point in set D is calculated (step 1 in Fig. 2) and 

according to the Euclidean Distance, a sorting operation is done by comparing to this 
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outlier point. At the end of sorting operation, a new set which has sorted points 
according to the least similar point is obtained (step 2).  The values in these points are 
assigned to the weight values of neurons as the initial values for SOM++ algorithm 
like the sequence in Fig. 3 (step 3 in Fig. 2). 

 
Finding initial weight values of neurons (K-Means++ part) 

1 Select data from the data set  β randomly 
Add this data into a set D 

D                  βRandom(0,i)

2 For each data i in the dataset β 
For each data j in the dataset D 

Find the Euclidean Distances between βi and Dj 
Add the minimum distance into set Ф 

Ф ( ║ ║ , 
where n is equal to the number of attributes, i is equal to the number of 

data  and j is equal to the number of data in D 
3 Find the sum of squares S for the values in  Ф 

= Ф , 
where i is equal to the number of data in Ф 

4 Select a real number R between 0 and S randomly 

R     =    Random(0, S)
5 Find the unique integer q so that 12 + 22 + … + q 2 >= R > 12 + 22 + … + 

(q-1) 2 

            , 
where q Є  +, q > 2 

6 Add qth data in  β into D 
D                  βq

7 Repeat steps 2-3-4-5-6 until the number of data in D is equal to the 
number of clusters K 

Fig. 1. The K-Means++ part of SOM++ algorithm 

Before training operations in SOM++, the number of iteration is initialized as the 
number of total data (step 4 in Fig. 2), because actually, the neurons on the map of 
SOM++ become trained at the beginning; therefore, the number of iteration must not 
start zero. The advantages of initializing both the number of iteration and weight 
values of neurons with the values coming from K-Means++ are shown in the Section 
4 and 5 in detail. Finally, training operations of neurons starts by using the standard 
SOM algorithm (step 5 in Fig. 2). 
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The weight values become close to the final and decisive values by means of K-
Means++; on the other hand, it is not enough singly, because the single aim of SOM 
algorithm is not to do clustering of data correctly.  It is also a mapping algorithm; 
therefore, the places of the clusters win the importance in SOM algorithm. If locating 
of the weight values which come from the initializing method of K-Means++ is done 
randomly, the correct neuron cannot have the correct weight values, and the success 
of SOM++ algorithm is not realized certainly.  

In Section 4, the importance of the sequential assignment is tested in detail. 
Our sequential assignment algorithm needs the sorted values according to the least 

similar value to each other in the set. Then, locating operation starts from the neuron 
in [0, 0] which is the one of the furthest four neurons ([0, 0], [0, (n-1)], [(n-1), 0] and 
[(n-1), (n-1)] as n2 is the number of neurons) from the center on the map, because the 
top element in sorted values is the least similar value. The next values after the least 
similar value are located like the sequence in Fig. 3.  

 
Initializing weight values of neurons and the number of iteration 

1 Find the least similar center L to the other centers in D 
 =  ( ║ ║ ,  

where n is equal to the number of attributes, i is equal to the number of data 
in D and j is equal to i+1 for each i.  

2 Sort the centers in D from the most similar center to the least similar 
center according to L by using the Euclidean Distance 

Collect these centers in  

               ,   =    ( ║  –  ║   ,    , 
where n is the number of attribute and i is equal to the number of data in D 

3 Initialize attribute values of these sorted centers into the weight values of 
neurons on the map sequentially like the sequence in Fig 3. 

4 Initialize the number of iteration as the number of the data 

 I     =   N  ,   
where N the number of data in the dataset β and I is the iteration number of 

the standard SOM algorithm
5 Start the standard SOM algorithm    

Fig. 2. Initializing parameters part of SOM++ algorithm 

The steps on the left and right sides are done to down and inner-cross directions. 
The steps on the top and bottom sides are done to left and inner-cross directions; 
however, the steps on the center side are done mix-cross directions. Finally, the 
furthest values are located in the furthest neurons on the map. 
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4 Experimental Studies 

The error rates and stability of the maps are tested by a dataset with 699 vectorial 
tuples. These datasets have an attribute which puts the correct classes of all data. 
However, the datasets are used without this attribute while SOM clustering. Because 
SOM is a clustering algorithm and does not need a target attribute while training 
neurons. This attribute is used while testing the stability of the maps. 
 

1 x = 0, y = 0, n = 0,  ( , ]. ] = ]. ] ,where i is the number of the 
weights in a neuron, M is the map matrix, W is the weight array in a neuron, x 
and y are the indexes of M, and n is the index of the  

2 = 1,    = 1, ( , ]. ] = ]. ] , 
where BY is the boundary of y in M 

3 , (     ( = 1,    = 1,    = 1, ( , ]. ] = ]. ] ], 
where BX is the boundary of x in M 

4 = 1,    = 1, ( , ]. ] = ]. ] , 
where BX is the boundary of x in M 

5 , (     ( = 1,    = 1,    = 1, ( , ]. ] = ]. ] ] 

6 Repeat 2-3-4-5 until = 0 , 2 = 0, 2 = 1      y= , 2 = 00 , 2 = 1  

7 , (     ( = 1,    = 1,    = 1, ( , ]. ] = ]. ] ] 

8 = 1, = 1, ( , ]. ] = ]. ]  

9 , (     ( = 1,    = 1,    = 1, ( , ]. ] = ]. ] ] 

10 = 1, = 1, ( , ]. ] = ]. ]  

11 Repeat 7-8-9-10 until  = 1 =  

12 x = x + 1, n = n + 1,  ( , ]. ] = ]. ] , 

 

where BX = BY = 4. The first loop 
terminates after the 14 steps by using 2nd,  
3rd, 4th and 5th conditions. The second loop 
terminates after the 24 steps by using 7th, 
8th, 9th and 10th conditions. 

where BX = BY = 3. The first loop 
terminates after the 9 steps by using 2nd,  
3rd, 4th and 5th conditions. The second loop 
terminates after the 15 steps by using 7th, 
8th, 9th and 10th conditions. 

 

Fig. 3. Sequential assignment of the initial weight values which come from K-Means++ 
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After training neurons without the target attribute, all correct classes for each data 
are obtained. Because a neuron can contain more data than one, containing the 
elements of the same class or not could be showed with colored neurons. For the 
visual compares, the dataset with 699 vectorial tuples is used. This dataset contains 10 
attributes and it is about Breast Cancer Wisconsin (BCW) [19]. There are two certain 
classes and each neuron which contains the elements of the same class is shown by a 
different color on maps. 

On all maps in the following figures, there are three different colored neurons as 
silver, grey and black. The silver and grey neurons show the correct clustered 
neurons. In the other words, these neurons contain the elements of the same class; 
however, the black neurons contain the elements of the different classes and the 
number of black neurons shows the instability of the map. 

4.1 Visual Compares at the Beginning Maps 

Before starting to train neurons in SOM algorithm, initializing the weight values  
of neurons by a pre-treatment supplies a stability to the map at the beginning 
immediately. In the following versions, the distinction, between the sequential 
assignments according to the similarities of the centre points which are returned  
from K-Means clustering algorithms and the random assignments of them, is 
observed, too. 

In Fig. 4, the beginning map for the standard SOM algorithm with 20x20 neurons 
is shown. The initial weight values are assigned randomly in the version of the 
standard SOM; therefore, the map is observed indecisively.  

     

Fig. 4. Standard SOM at the beginning phase by using 20x20 neurons 

On the first map in Fig. 5, there are neurons with initialized weight values by  
the centre points which are returned from K-Means clustering. On the second map, 
there are neurons with initialized weight values by the initial centre points of K-
Means++ without K-Means clustering. On the third map, there are neurons with 
initialized weight values by the centre points which are returned from K-Means++ 
clustering.  
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a                                b                            c 

Fig. 5. SOM is at the beginning phase by using 20x20 neurons without any training a) K-
Means, b) K-Means++ (without K-Means phase), c) K-Means++ 

These weight values are not located by using the sequential assignment and these 
neurons on the maps are at the beginning phase of SOM algorithm. However, it seems 
that the instability cannot be prevented in these examples.  

In Fig. 6, the sequential assignment is used and neurons are located according to 
the similarities. The importance of the sequential arraignment is observed from the 
maps in Fig. 6. 

 

a                                b                            c 

Fig. 6. SOM is at the beginning phase by using 20x20 neurons with initialized weights by the 
sequential assignment. a) K-Means, b) K-Means++ (without K-Means phase), c) K-Means++ 
(with K-Means Clustering) 

It is observed at the visual tests that the successes of the new versions of SOM 
algorithm have more stability and less indecisive neurons than the standard SOM. 
Also, visually, it can be obtained that using K-Means++ without K-Means clustering 
has a near success together with using K-Means++ with K-Means clustering for the 
sequential initialized weight values and initialized number of iteration of SOM as the 
number of data (699 in the previous examples).  

The numerical comparisons of the new versions are done by calculating the error 
rates at the phase of training neurons in SOM algorithm. 

4.2 Visual Compares at the Beginning Maps 

The indecisive neurons are shown by black neurons on the previous maps. They mean 
that irrelevant data tuples are in same neurons on the map and if the number of these 
neurons is high, the map is not consistent. 
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Fig. 7. The comparison of indecisive neurons 

The numbers of indecisive neurons in the previous visual compares are collected 
like the graph in Fig. 7. This graph shows that because the numbers of total neurons 
for the first 5x5 neurons are low, the numbers of indecisive neurons are low, too. 
Therefore, the numbers of indecisive neurons are higher for 10x10 neurons and the 
versions of SOM could be compared according to the numbers of the indecisive 
neurons for 10x10, 15x15 and 20x20 neurons. 

The steadiest algorithms are SOM++ (or SOM + K-Means++ (without K-Means)) 
and SOM + K-Means++ according to the graph. Both of these algorithms use both 
initializing iteration number as the number of data and the sequential assignment 
algorithm. 

As a result, the most successful algorithm is SOM++ with the least number of 
indecisive neurons as 6 for 15x15 neurons and only 2 for 20x20 neurons. 

4.3 The Error Rates 

Error rates are calculated according to is the Gaussian Function in Eq. 3 and they are 
obtained for all versions of algorithms like the other comparison tests; however, Table 
1 shows the least error results only for K-Means++ without K-Means clustering and 
with K-Means clustering. 

In Table 1, a1) Error rates for K-Means++ (without K-Means) + SOM; error rates 
for K-Means++ (without K-Means clustering) + SOM with the initialized weights by 
the sequential assignment according to the number of neurons and the number of 
iterations b1) Error rates for K-Means++ (without K-Means)+ SOM with the 
initialized number of iteration as the number of total data (699) and without the 
initialized weights by the sequential assignment according to the number of neurons 
and the number of iterations. c1) Error rates for K-Means++ (with K-Means 
clustering) + SOM with the initialized number of iteration as the number of total data 
(699) and the initialized weights by the sequential assignment according to the 
number of neurons and the number of iterations.   
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Error Rates for K-Means++ (with K-Means Clustering) + SOM; a2) Error rates for 
K-Means++ (with K-Means clustering) + SOM with the initialized weights by the 
sequential assignment according to the number of neurons and the number of 
iterations b2) Error rates for K-Means++ (with K-Means Clustering)+ SOM with the 
initialized number of iteration as the number of total data (699) and without the 
initialized weights by the sequential assignment according to the number of neurons 
and the number of iterations. c2) Error rates for K-Means++ (with K-Means 
clustering) + SOM with the initialized number of iteration as the number of total data 
(699) and the initialized weights by the sequential assignment according to the 
number of neurons and the number of iterations. 

Table 1. The error rates list for 25 and 100 neurons 

 Iteration Number 5x5 neurons 10x10 neurons 

a1 
1th 0.42720 0.49013 
2nd 0.01000 0.01873 

3rd 0.00518 0.00177 

b1 
1th 1.61001 0.68055 
2nd 0.08828 0.01924 
3rd 0.03508 0.00733 

c1 
1th 0.28725 0.05095 
2nd 0.00252 0.00058 

3rd 0.00125 0.00007 

a2 
1th 0.43723 0.47991 
2nd 0.05145 0.01509 
3rd 0.01086 0.00112 

b2 
1th 1.81375 0.67474 
2nd 0.09418 0.01972 

3rd 0.03524 0.00777 

c2 
1th 0.28313 0.08267 
2nd 0.00795 0.00029 
3rd 0.00298 0.00024 

4.4 Training Times 

The tests of training times are implemented by using the dataset with 18781 vectorial 
tuples and 390 attributes. This large dataset is produced the distinctions on 
performance of trainings between simple SOM, SOM++ (with the initialization 
method of K-Means++), SOM + K-Means++ and SOM + K-Means absolutely.  

The computer, which tests the performances of the algorithms for this large dataset, 
has 3.24 GB of RAM and Intel(R) Core(TM) 2 Duo CPU E6550 @ 2.33 GHz. This 
computer trains 600x600 neurons with this large dataset which has a large attribute set 
for three weeks.  

The Fig. 8 shows that the simple SOM trains 600x600 neurons since the first 
moment; however, SOM++ (with the initialization method of K-Means++), SOM + 
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K-Means and SOM + K-Means++ need a preparation time for SOM. Therefore, the 
error rates of SOM are observed stably until a few times for these versions of SOM. 
These times are less than an hour for SOM++, about 2 hours for SOM + K-Means++ 
and about 3 hours for SOM + K-Means, because there are lots of attributes and tuples 
in the dataset. After these times, the simple SOM starts with initialized weight values 
and iteration values for these versions. 

At the end of 7 days, the simple SOM gives about 2.4 of the error rate; however, 
SOM++ gives a less error rate than 10x10-7 before 8 days. Also, the error rate for 
SOM + K-Means++ is taken a less error rate than 10x10-7 before 9 days and the error 
rate for SOM+ K-Mean is taken a less error rate than 10x10-7 before 10 days. These 
results show that the versions of SOM have better performances than the simple 
SOM. However, SOM++ has the best performance. Because of the complexity of 
SOM algorithm as O(N2) where N is the input vector size (N is 390 x 18781 and N2= 
53649618668100), SOM algorithm gets the result map with minimum error rates after 
some days.   

Also, it is observed that the initialization method of center points at K-Means++ 
accelerates K-Means, because K-Means++ with all steps needs about 2 hours to 
cluster a large dataset. However, K-Means needs about 3 hours. 

 

Fig. 8. The error rates - time (day) graphic for the versions of SOM 

5 Comparison Results 

The accuracy, about which of the SOM versions must be used, is taken by the visual 
tests. It is observed that the SOM versions of K-Means++ without K-Means clustering 
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and with K-Means clustering have the least number of indecisive neurons in the visual 
tests. If the versions of K-Means++ with K-Means clustering and without K-Means 
clustering have a close success, a comparison of time can do the distinction between 
them and it is observed that K-Means++ (without K-Means clustering) + SOM has the 
best results.  

Consequently, our experimental results empirically prove that K-Means++ 
(without K-Means clustering) + SOM (SOM++ with its short name) is best suited to 
data clustering due to its high speed and lower error rates as compared with other 
SOM based techniques. 

6 Summary, Conclusion and Future Work 

This paper introduces a new clustering algorithm SOM++. The significant difference 
between SOM++ algorithm and the standard SOM is that SOM++ does not start to 
initialize the weight values of neurons with random numbers. SOM++ uses the 
initializing center points of clusters method in K-Means++. Eventually, each neurons 
represent a cluster and thus, SOM++ takes advantage of K-Means++. Separately, 
these significant initial values are not located in the neurons on the map and SOM++ 
has a special locating algorithm namely the sequential assignment. 

Another difference between SOM++ algorithm and the standard SOM is that SOM++ 
initializes the starting number of iteration. Because the standard SOM starts with the 
random values in neurons, the number of iteration is declared as 0. However, because 
SOM++ starts with significant values in neurons, the number of iteration is declared as 
the number of total data. This initializing increases stability and decreases error rates.  

In other words, SOM++ algorithm has many advantages over conventional SOM 
based methods. The most remarkable advantage of SOM++ is in saving training time 
for clustering large and complicated data sets by using K-Means++ algorithm in the 
weight initialization procedure of SOM. Furthermore, the rate of unstable data points 
decreases and internal error decreases. 

For future work, the proposed algorithm, SOM++, can be used for the computer 
security, the healthcare, ecological modeling, the financial sector and another area 
which needs clustering its large data successfully. 
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Abstract. Census data provides an important source of information with respect
to decision makers operating in many different fields. However, census collection
is a time consuming and resource intensive task. This is especially the case in
rural areas where the communication and transportation infrastructure is not as
robust as in urban areas. In this paper the authors propose the use of satellite
imagery for census collection. The proposed method is not as accurate as “on
ground” census collection, but requires very little resource. The proposed method
is founded on the idea of collecting census data using classification techniques
applied to relevant satellite imagery. The objective is to build a classifier that
can label households according to “family” size. More specifically the idea is
to segment satellite images so as to obtain pixel collections describing individual
households and represent these collections using some appropriate representation
to which a classifier generator can be applied. Two representations are considered,
histograms and Local Binary Patterns (LBPs). The paper describes the overall
method and compares the operation of the two representation techniques using
labelled data obtained from two villages lying some 300km to the northwest of
Addis Ababa in Ethiopia.

Keywords: Data Mining, Image Classification, Satellite Image Analysis,
Satellite Image Mining, Census Analysis, Census Mining.

1 Introduction

National census data provides an important source of statistical information with respect
to planners and decision makers working in a wide diversity of domains. Census data is
seen as an important source of information with which to measure the “well being” of
a population and to provide input to national and regional development projects (both
economic and social). For example development of public services such as education,
health and transport services. Census data is typically obtained using a questionnaire
format either for self-completion by individuals (in which case they are typically dis-
tributed by post or electronically), or for completion by field staff. There are a number
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of obstacles to the collection of national census data: it is both time consuming and
resource intensive (with respect to both collection and analysis) while at the same time
people are often reluctant to participate (typically they are suspicious of the motiva-
tion for the census). In financial terms the cost of census collection is often substantial.
For example it has been suggested that the 2006 Australian national census cost an
estimated $300 million Australian dollars, while the 2010 US census was expected to
cost more than $11 billion US dollars and involve a million part time employees1. The
difficulties associated with census collection are compounded in rural areas where the
population tends to be sparser and the communication and transport infrastructure tends
to be less robust than in rural areas [8].

The solution proposed in this paper is founded on the idea of using satellite imagery
to generate census data by segmenting images, identifying households and using a clas-
sifier to predict household size (number of people living in the household). Given a
training set of hand-labeled households we can build a classifier to predict household
type and size and use this to generate census information. The proposed approach is not
applicable with respect to all areas (such as inner city areas where population estimates
are difficult to obtain from satellite imagery) but is applicable in more rural areas. The
focus for the study is the Ethiopia hinterland. The advantages offered by the proposed
approach are: (i) low cost, (ii) speed of collection and (iii) automate processing. The
disadvantage is that it will not be as accurate as more traditional “on ground” census
collection, however it is suggested that the advantages out weigh the disadvantages.

The main challenge of the proposed census collection method, with respect to the
work presented in this paper, is how best to represent the image data so that classifier
generation techniques can be applied and census data effectively collected. Two image
representations are considered: (i) Colour Histograms and (ii) Local Binary Patterns
(LBPs). These are two techniques that have been “tried and tested” with respect to
other image analysis applications. Histogram representations have been widely used
for whole image representation (see for example [11]) because they offer the advantage
that they obviate the need for image object identification. LBPs, alternatively, have been
extensively used with respect to texture analysis [16].

The proposed approach is fully described in the remainder of this paper and evalu-
ated using test data collected from two villages lying some 300km to the northwest of
Addis Ababa in Ethiopia. The rest of this paper is organised as follows. In Section 2
some previous works is presented. Section 3 provides detail of the geographical study
area in Ethiopia used for evaluation purposes. Section 4 then provides a description of
the proposed census mining framework. Section 5 describes the proposed colour his-
togram based representation and Section 6 the proposed LBP representation. Section 7
reports on the evaluation of the framework. Finally, a summary and some conclusions
are presented in Section 8.

2 Previous Work

Image understanding is an important and fundamental problem in domains such as
computer vision and pattern recognition where the main objective is to understand

1 http://usgovinfo.about.com/od/censusandstatistics/a/
aboutcensus.htm

http://usgovinfo.about.com/od/censusandstatistics/a/aboutcensus.htm
http://usgovinfo.about.com/od/censusandstatistics/a/aboutcensus.htm
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the characteristics of an image and interpret its semantic meaning. Image classification
is an emerging image interpretation technique which can be used to categorise image
sets according to a predefined set of labels. The performance of classifiers depends
on the quality of the features used, features such as colour and texture. One method
of encapsulating image colour is to use a histogram image representation technique
whereby colour histograms represents the number of pixels associated with a particu-
lar subset of colours. The advantages offered by histogram-based representation are: (i)
low storage requirements, (ii) automated generation and (iii) fast querying. Histogram
representations have been used with respect to many applications including image re-
trieval [19,4,13] and remote sensing applications such as land usage analysis [1,2] and
land change detection [14,3]. The histogram representation is one of the representations
considered in this paper.

Texture is an important feature with respect to both human and computer vision. one
example where texture analysis has been usefully employed is with respect to pattern
recognition [21]. There are three principle mechanisms that may be adopted to describe
the texture in digital images: (i) statistical, (ii) structural and (iii) spectral. The statis-
tical approach is concerned with capturing texture using quantitative measures such as
“smooth”, “coarse” and “grainy”. Structural approaches describe image texture in terms
of a set of texture primitives or elements (texels) that occur as regularly spaced or re-
peating patterns. In the spectral approach the image texture features are extracted by
using the properties of (say) the Fourier spectrum domain so that “high-energy narrow
peaks” in the spectrum can be identified [9]. Local Binary Patterns (LBPs) are a texture
representation method which is both statistical and structural in nature [17]. Using the
LBP approach a binary number is produced, for each pixel, by thresholding its value
with its neighbouring pixels. LBP offers the advantages of tolerance with respect to il-
lumination changes and its computational simplicity. The LBP method has been used
in many application such as face recognition [10,20]. The LBP representation is the
second representation considered in this paper.

Remote Sensing is concerned with techniques for observing the Earths surface, or
its atmosphere, using sensors located on spacecraft or aircraft platforms and produc-
ing images of regions on the earths surface as a result. Satellite image interpretation
offers advantages with respect to many applications for example: geoscience studies,
astronomy, military intelligence, and geographic information systems [6,12]. There are
a small number of reports available on the use of satellite imagery for census data
collection purposes. For example “nightlight” satellite images have been used to pro-
duce population census data and to analysis issues concerned with population density
at the “sub-district level” [5]. In [15] classification techniques were applied to satellite
image data to estimate the population density distribution with respect to one kilome-
tre “blocks”. The difference between the work described in [15] and that proposed in
this paper is that the considered approach operates at a much finer level of granularity.
The authors have themselves conducted some previous work concerned with the ap-
plication of classification techniques to satellite imagery to generate census data. This
is described in [7]. The work attempted to define satellite image data using an earlier
version of the histogram based approach presented in this paper, the evaluation was also
directed at a much smaller data set and therefore not conclusive.
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3 Case Study Application Domain

To act as a focus for the research a case study was considered directed at a rural area
within the Ethiopian hinterland, more specifically two data sets were collected with re-
spect to two villages (Site A and Site B) located within the Harro district in the Oramia
Region of Ethiopia (approximately 300 km north-west of Addis Abba) as shown in
Figure 1. Site A was bounded by the parallels of latitude 9.312650N and 9.36313N,
and the meridians of longitude 37.123850E and 37.63914E and. Site B was bounded
by the parallels of latitude 9.405530N and 9.450000N, and the meridians of longitude
36.590480E and 37.113550E. Using the know bounding latitudes and longitudes of our
two test sites appropriate satellite imagery was extracted from Google Earth2. The im-
ages were originally obtained using the GeoEye satellite with a 50 centimetre ground
resolution. The satellite images for Site A were released by Google Earth on 22 August
2009 (Figure 1(b)) and those for Site B (Figure 1(c)) on 11 February 2012. The Site B
satellite images were obtained during the “dry season” (September to February), while
the site A images were obtained during the rainy season (June to August). From Figure
1(b) the households can be clearly identified, many of the households have tin roofs
which are easy to differentiate from the (green) backgrounds, the households are less
easy to identify in Figure 1(a) where they tend to merge into the (light-brown) back-
ground. On-the-ground household data (including family size and household latitude
and longitude) was collected by University of Liverpool field staff in May 2011 and
July 2012. The minimum and maximum family size were 2 and 12 respectively, the
mean was 6.31, the medium were 6 and standard deviation was 2.56. These two data
sets then provided the training and test data required for our proposed census collection
system.

4 Census Mining Framework

The proposed census mining framework is presented in this section. A schematic of
the proposed framework is given in Figure 2. The framework supports a three phase
census collection form satellite imagery process: (i) Data preprocessing, (ii) Classifier
generation and (iii) Classifier evaluation.

During the data preprocessing phase (left hand block in Figure 2) the satellite image
input data is prepared ready for the application of the classifier generation phase. The
preprocessing stage comprises five individual stages: (i) coarse segmentation. (ii) im-
age enhancement, (iii) detailed segmentation, (iv) image representation and (v) feature
selection. During coarse segmentation the input imagery is roughly segmented to give a
set of large scale sub-images each covering a number of households (typically between
two and four). In the next stage various image enhancement processes are applied to
the identified sub-images. During the detailed segmentation stage the enhanced coarse
sub-images are segmented to obtain individual households. Figures 3(a) and (b) show
two example of segmented household images taken from Site A and Site B respectively.
The result is one image per household. For classifier generation purposes each labeled
segmented households must be represented in a manner that ensures that the salient

2 http://www.google.co.uk/intl/en_uk/earth/index.html

http://www.google.co.uk/intl/en_uk/earth/index.html
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Fig. 1. The test site location: Harro district in Ethiopia

features are maintained (so as to ensure an effective classifier); as noted in the intro-
duction to this paper two representation techniques are considered: a histogram based
technique and an LBP based technique. The final step in the preprocessing phase com-
prised feature selection, the aim here was to reduce the overall size of the feature space
(histogram based or LBP based) so that those features that best served to discriminate
between classes were retained. For details concerning steps 1 to 3 the reader is referred
to the authors earlier work presented in [7]. The histogram and LBP representations to
support effective classifier generation are amongst the main contributions of this paper
and are considered in more detail in Sections 5 and 6 respectively.

Fig. 2. Proposed census data from satellite imagery framework
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Classifier generation is the second phase (centre block in Figure 2) in the proposed
framework during which the desired classifier was generated from labeled training data
produced during the data preprocessing phase (Phase1) described above. The final phase
(right hand block in Figure 2) was classifier evaluation where the classifier was applied
to a labelled test set and the generated results compared with known results, the aim was
to produce statistical measures indicating the confidence that can be associated with the
generated classifier.

Fig. 3. Example segmented household images

5 Color Histogram

In the histogram based satellite image representation image colour is the central feature
used. Image colour distribution is captured using a set of histograms (one set per satel-
lite image). The advantage offered is that histograms are simple to generate, invariant
to translation and rotation of image content, low on storage requirement and allow for
fast query execution. The X-axis of each histogram comprises a number of “bins” each
representing a “colour range”. The Y axis of each histogram then represents the number
of pixels falling into each bin. For each preprocessed household satellite image seven
different histograms was extracted: (i) three histogram from the RGB colour channels
(red, green, blue), (ii) three histograms from the HSV colour channels (hue, saturation,
value) and (iii) a grayscale histogram. Each of the seven histograms comprised 32 bins,
giving 224 (7 × 32) features in total. Figure 4 shows the seven example histograms
produced from one of the identified household image used in the evaluation presented
below (Section 7).

A simple alternative representation was to extract some simple statistical colour
information from the image data. The idea here was that this statistical information
could be used to augment the colour histogram information (or used as a representation
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Fig. 4. Histogram representation for an example image

on its own). A total of 13 statistical features were identified: (i) 5 features describing
the RGB colour channels, (ii) 5 features describing the HSV colour channels and (iii)
3 feature describing the grayscale channel. The individual features are listed in Table
1. Thus on completion of the histogram based representation stage each household is
represented using a feature vector of length 237 (224+ 13= 237).

Table 1. Additional colour based statistical features

# RGB color channel # HSV color channel # Grayscale channel
descripton description description

1 Average red 6 Average hue 11 Mean of grayscale
2 Average green 7 Average saturation 12 Standard deviation of
3 Average blue 8 Average value grayscale
4 Mean of RGB 9 Mean of HSV 13 Average of grayscale
5 Standard deviation of

RGB
10 Standard deviation of

HSV
histogram
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6 Local Binary Pattern

As already noted, Local Binary Patterns (LBPs) are generally used for representing
image texture. However, there is no reason why LBPs cannot be used to represent im-
ages irrespective of whether we are interested in texture or not. The LBP representation
offers the advantages that they are easy to generate and tolerant against illumination
changes. The use of LBPs was therefore considered as an alternative to the proposed
histogram based representation.

To generate a set of LBPs from individual household images the images were first
transform into grayscale. A 3 × 3 pixel window, with the pixel of interest at the centre,
was then used as the basic “neighbourhood”definition with respect to the LBP represen-
tation. For each neighbourhood the grayscale value for the centre pixel was defined as
the threshold value with which the surrounding eight neighbourhoods were compared.
For each neighbourhood pixel a 1 was recorded if the grayscale value of the neighbour-
hood pixel was greater than the threshold, and a 0 otherwise. The result is an eight digit
binary number. In other words 256 (28) different patterns can be described (note that
LBPs calculated in this manner are not rotation invariant).

Variations for the basic LBP concept can be produced by using different sizes (radii)
of neighbourhoods. These variations can be described using the (P,R) notation where
P is the number of sampling points and R is the radius surrounding the centre pixel
[18]. For evaluation purposes three different variations of the LBP representation were
used (Figure 5): LBP(8,1), 8 sampling points within a radius of 1; LBP(8,2), 8 sampling
points within a radius of 2; and LBP(8,3), 8 sampling points within a radius of 3.

Fig. 5. Local Binary Pattern (LBP) variations

The resulting LBP representation were conceptualised in terms of a 2R dimensional
feature vector where each element represented a potential LBP value and the value held
within each element corresponded to the number of pixels associated with each LBP
value.

As in the case of the histogram representation, an alternative to the LBP represen-
tation is to use statistical measures of texture. Again the idea was that such statistical
features could be used to augment the LBP representation (or used as a representation
on its own). Three categories of texture statistic were identified: (i) entropy features
(E), (ii) grey-level occurrence matrix features (M) and (iii) wavelet transform features
(W). Table 2 lists the statistical features generated (the letter in parenthesis in each
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case indicates the category of the feature). Thus on completion of the LBP based rep-
resentation stage each household is represented using a feature vector of length 266
(2R + 10 = 28 + 10 = 256+ 10= 266).

Table 2. Additional texture based statistical features

# Description # Description # Description
1 Entropy (E) 7 Average approximation 10 Average diagonal
2 Average Local Entropy

(E)
coefficient matrix, cA
(W)

coefficient matrix, cD
(W)

3 Contrast (M) 8 Average horizontal
4 Correlation (M) coefficient matrix, cH

(W)
5 Energy (M) 9 Average vertical
6 Homogeneity (M)) coefficient matrix, cV

(W)

7 Evaluation

To evaluate and compare the proposed histogram and LBP representations in the context
of classifier generation for census data collection the test data introduced in Section
3 was used. A total of 120 records were selected from the two test sites: 70 records
from Site A and 50 records from Site B. The labeled household data was separated
into three classes: (i) “small family” (less than or equal to 5 people), (ii) “medium
family” (between 6 and 8 people inclusive) and (iii) “large family” (more than 8 people).
Some statistics concerning the class distributions for the Site A and B data sets are
presented in 3.

Table 3. Class label distribution for data set Site A and data set Site B

small family medium family large family total
Site A 28 32 10 70
Site B 19 21 10 50
total 47 53 20 120

Before classification could commence the input data was first discretised (ranged), a
sub-process that served to decrease the size of the feature space (fewer values for each
feature/dimension). Feature selection was then applied so as to reduce the number of
dimensions (Step 5 in Phase 1 of the proposed framework). In the context of the evalua-
tion presented in this section the Chi-square feature selection strategy was applied. For
classifier generation purposes a number of classifier learners were used as implemented
in the Waikato Environment for Knowledge Analysis (WEKA) machine learning work-
bench3. For the evaluation purposes Ten fold Cross-Validation (TCV) was applied and

3 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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the effectiveness of the generated classifiers reported in terms of: (i) accuracy (AC),
(ii) area under the ROC curve (AUC), (iii) sensitivity (SN), (iv) specificity (SP) and
precision (PR).

Three sets of experiments were conducted directed at:

1. A comparison of the proposed histogram and LPB based representations in the
context of classification for census data collection.

2. Identification of the most appropriate number (K) of attributes (features) to retain
during feature selection.

3. Determination of the most appropriate classifier generator to use (for the purpose
of classification for census data collection).

each set of experiments is discussed in further detail in the following three subsections
(Subsections 7.1, 7.2 and 7.3).

7.1 Colour Histograms v. LBPs

To compare the operation of the proposed representations three different variations
of the histogram representation were considered together with seven variations of
the LBP representation. The histogram representations considered were: (i) colour
histogram only (CH), (ii) colour statistics only (CS) and (iii) colour histogram and
statistics combined (CH+CS). The LBP representations considered were: (i) LBP(8,1)
only, (ii) LBP(8,2) only, (iii) LBP(8.3) only, (iv) texture statistics only (TS), (v)
LBP(8,1) and statistics combined (LBP(8,1)+TS), (vi) LBP(8,2) and statistics com-
bined (LBP(8,2)+TS) and (vii) LBP(83) and statistics combined (LBP(8,3)+TS). For
the experiments Chi-Square feature selection was used with K = 35 (K = 25 was used
for the experiments reported in Sub-section 7.2, had revealed that this was the most ap-
propriate value for K) and a Neural Network learning method as these had been found
to work well (see Sub-section 7.3). The results are presented in Table 4 (highest values
indicated in bold font). Although the results are not conclusive from the Table it can be
observed that:

– With respect to the colour histogram based representation best results were ob-
tained using CH for Site A (wet season) and CH+CS for Site B (dry season), the
distinction is assumed to occur because of the predominantly green colour of the
wet season images in comparison with the predominantly brown colour of the dry
season images.

– With respect to the LBP representation best results were produced using LBP(8,1)
with respect to both Site A and Site B.

– Comparing the results obtained using both the colour histogram and the LBP rep-
resentations, LBP(8,1) produced the best overall results.

Thus we conclude that in the context of the test scenario the LBP representation
produced the most eftective results.
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Table 4. Comparison of different variations of the proposed histogram and LPB based represen-
tations in terms of classification performance (neural network classifier and K = 35)

Types Data set
Site A Site B

AC AUC PR SN SP AC AUC PR SN SP

Histogram
CH 0.614 0.754 0.615 0.614 0.761 0.560 0.753 0.568 0.560 0.723
CS 0.400 0.550 0.404 0.400 0.629 0.480 0.645 0.480 0.307 0.754

CH+CS 0.557 0.741 0.551 0.557 0.713 0.580 0.755 0.602 0.580 0.728

LBP

LBP(8,1) 0.771 0.880 0.758 0.771 0.856 0.600 0.792 0.599 0.600 0.764
LBP(8,2) 0.614 0.765 0.618 0.614 0.725 0.600 0.705 0.600 0.600 0.762
LBP(8,3) 0.586 0.718 0.583 0.586 0.710 0.600 0.792 0.599 0.600 0.764

TS 0.414 0.502 0.379 0.414 0.595 0.500 0.650 0.602 0.500 0.754
LBP(8,1)+TS 0.757 0.848 0.754 0.757 0.847 0.600 0.768 0.601 0.600 0.757
LBP(8,2)+TS 0.643 0.770 0.645 0.643 0.746 0.580 0.736 0.580 0.580 0.742
LBP(8,3)+TS 0.557 0.706 0.553 0.557 0.686 0.600 0.768 0.601 0.600 0.757

7.2 Number of Attributes

In order to investigated the effect on classification performance of using different
values of K with respect to Chi-Squared feature selection a sequence of experiments
were conducted using a range of values for K from 10 to 35 incrementing in steps of
5. For the experiments the colour histogram (CH) and LBP(8,1) representations were
used because previous experiments had indicated that these two representations pro-
duced the best performance (see above). Neural Network machine learning was again
adopted. The results produced are presented in Table 5 (best values obtained are again
highlighted in bold). From the Table the following can be observed:

– With respect to the colour histogram based representation best results tended to be
obtained using K = 25 for Site A (wet season) and K = 10 for Site B (dry season),
with better results being produced using the Site B data.

– With respect to the LBP representation best results tended to be produced using
K = 35 with respect to both the Site A and the Site B data.

– The LBP(8,1) representation outperformed the Colour histogram (CH)
representation.

Thus it can be concluded that higher K values, such as K = 35, produce better results
using the LBP representation, while with respect to the histogram representation lower
values for K (K = 10) produced the best result. Here it should be noted that as K in-
creases the time complexity increases. For example the processing time for LBP(8,1)
with respect to the Site A data set using a neural network learning method with K = 15,
K = 25 and K = 35 was 6.07, 16.47 and 32.73 seconds respectively.
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Table 5. Comparison of different values of K with respect to Chi-Squared feature selection in
terms of classification performance (CH and LBP(8,1), and neural network classifier)

Data set No of attribute
Site A Site B

AC AUC PR SN SP AC AUC PR SN SP

CH

10 0.574 0.678 0.576 0.571 0.691 0.680 0.777 0.679 0.680 0.801
15 0.614 0.719 0.608 0.614 0.754 0.580 0.757 0.559 0.580 0.749
20 0.586 0.727 0.588 0.586 0.734 0.640 0.780 0.645 0.640 0.776
25 0.629 0.766 0.631 0.629 0.768 0.620 0.796 0.637 0.620 0.754
30 0.614 0.776 0.607 0.614 0.751 0.600 0.773 0.608 0.600 0.752
35 0.614 0.754 0.615 0.614 0.761 0.560 0.753 0.568 0.560 0.723

LBP(8,1)

10 0.657 0.786 0.646 0.657 0.772 0.580 0.677 0.587 0.580 0.745
15 0.757 0.875 0.752 0.757 0.835 0.580 0.699 0.590 0.580 0.730
20 0.714 0.874 0.719 0.714 0.835 0.580 0.718 0.593 0.580 0.725
25 0.757 0.887 0.749 0.757 0.849 0.600 0.713 0.595 0.600 0.754
30 0.757 0.868 0.743 0.757 0.837 0.580 0.761 0.581 0.580 0.742
35 0.771 0.880 0.758 0.771 0.856 0.600 0.792 0.599 0.600 0.764

7.3 Learning Methods

Eight learning method were considered with respect to the experiments directed at iden-
tifying the effect of different learning methods on classification performance including:
(i) Decision Tree generators (C4.5), (ii) Naive Bayes, (iii) Averaged One Dependence
Estimators (AODE), (iv) Bayesian Network, (v) Radial Basis Function Networks (RBF
Networks), (vi) Logistic Regression, (vii) Sequential Minimal Optimisation (SMO) and
(viii) Neural Networks Back-propagation (in WEKA this is referred to as a Multilay-
erPerceptron). The Colour Histogram (CH) and LBP(8,1) representations were again
used. K = 10 Chi-Squared feature selection was used with the Colour Histogram (CH)
representation and K = 35 for the LBP(8,1) representation. The obtained results are
presented in Table 6. From the Table it can be observed that:

– With respect to the colour histogram based representation best results were obtained
using the Bayes Network learner with respect to the Site A data, and AODE and
Bayes Network with respect to the Site B data.

– With respect to the LBP based representation best results were obtained using using
Neural Networks with respect to the Site A data, and Logistic Regression with
respect to the Site B data.

– The C4.5, Naive Bayes, RBF Network and SMO learners did not perform well.
– Overall the Neural Network learner, combined with the LBP(8,1) representation

and K = 35 Chi-Squared feature selection, produced the best overall result.

Thus in conclusion a number of different machine learners produced good results,
different machine learners tended to be more compatible with different representations,
but overall Neural Network learning produced the best result.
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Table 6. Comparison of different classifier generators in terms of classification performance (CH
with K = 10 and LBP(8,1) with K = 35)

Data set Learning method
Site A Site B

AC AUC PR SN SP AC AUC PR SN SP

CH
+ 35
atts

C4.5 0.557 0.640 0.573 0.557 0.677 0.480 0.618 0.450 0.480 0.681
Naive Bayes 0.629 0.731 0.635 0.629 0.734 0.640 0.780 0.646 0.640 0.797

AODE 0.586 0.709 0.605 0.586 0.686 0.700 0.706 0.702 0.700 0.813
Bayes Network 0.629 0.751 0.630 0.629 0.736 0.680 0.794 0.684 0.680 0.815
RBF Network 0.571 0.692 0.576 0.571 0.720 0.440 0.649 0.449 0.440 0.700

Logistic Regression 0.486 0.637 0.486 0.486 0.670 0.580 0.700 0.560 0.580 0.744
SMO 0.457 0.542 0.481 0.457 0.598 0.600 0.710 0.589 0.600 0.768

Neural Network 0.574 0.678 0.576 0.5710 .691 0.680 0.777 0.679 0.680 0.801

LBP(8,1)
+ 35 atts

C4.5 0.614 0.718 0.619 0.614 0.773 0.500 0.657 0.495 0.500 0.708
Naive Bayes 0.543 0.709 0.583 0.543 0.763 0.540 0.762 0.594 0.540 0.796

AODE 0.557 0.755 0.529 0.557 0.698 0.600 0.782 0.596 0.600 0.766
Bayes Network 0.571 0.729 0.599 0.571 0.768 0.520 0.767 0.554 0.520 0.772
RBF Network 0.657 0.740 0.665 0.657 0.818 0.600 0.743 0.601 0.600 0.783

Logistic Regression 0.757 0.857 0.757 0.757 0.866 0.757 0.857 0.758 0.757 0.866
SMO 0.729 0.789 0.718 0.729 0.823 0.729 0.789 0.718 0.729 0.823

Neural Network 0.771 0.880 0.758 0.771 0.856 0.600 0.792 0.599 0.600 0.764

8 Conclusion

A data mining mechanism for generating census data (household size) from satellite im-
agery has been proposed. More specifically a three phase framework has been suggested
that takes large scale satellite imagery as input and produces an evaluated classifier for
household size census collection. The key element with respect to the process is the
way in which individual households are represented so that an effective classifier can be
generated. Two basic representations were proposed: colour histograms and LBPs. Ten
variations of these representations were considered. Experiments were conducted using
a training set obtained from a rural part of the Ethiopian hinterland. This was selected
because of the availability of on-the-ground data and because the proposed process is
intended for use in rural areas, particularly rural areas with poor communication and
transport infrastructures that tend to exacerbated the issues associated with traditional
forms of census collection. Experiments were also conducted to identify a best K value
with respect to Chi-Squared feature selection and a number of classifier generators. The
main findings were: (i) that it is possible to collect household size census data using the
proposed approach to a reasonable level of accuracy (a best ROC value of 0.880 was
obtained), (ii) that there was a performance distinction between the “green” wet season
data (Site A) and the “brown” dry season data (Site B), (iii) that the LBP(8,1) represen-
tation tended to produce the best results, (iv) the most desirable value for K depended
on the nature of the representation adopted (high with respect to the LBP representation,
lower with respect to the histogram representation), and (v) that a number of machine
learners performed well but the use of neural networks provided the best results. For
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future work the research team intend to investigate representations based on quad tree
decompositions and better segmentation techniques to generate individual house hold
images.
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Abstract. In this paper we show how to improve the generalization
performance of Support Vector Machine (SVM) by incorporating
density ratio based on Unconstrained Least Square Importance Fitting
(uLSIF) into the SVM classifier. ULSIF function is known to have
optimal non-parametric convergence rate with optimal numerical stabil-
ity and higher robustness. The ULSIF-SVM classifier is validated
using marketing dataset and achieved better generalization performance
as compared against classic implementation of SVM.

Keywords: Density ratio estimation, support vector machine,
unconstrained least square importance fitting.

1 Introduction

Classic machine learning algorithms assume that probability distribution of test-
ing data is the same as the probability distribution of training data [4]. As the
result, life span of new machine learning model, especially in classification is
short. This is because most of real world data are non-stationary, whereby they
keep changing over time [8]. Therefore, instead of performing common model
selection such as cross validation [1, 2], estimating ratio between two sample
distribution and use it inside the learning model is preferable [3]. Density ra-
tio or importance weight estimation is a technique to estimate weight from two
different samples (training and testing) such that:

β(x) =
ptest(x)

ptrain(x)

There are several methods to estimate importance weight. The naive way is to
estimate the probability density function for both samples. Histogram estimation
or kernel density estimation can be used. However, these methods suffer from
the curse of dimensionality when input dimension increases. The best method,
especially in machine learning, is to directly estimate the importance weight
without estimating the probability density function of both samples. We selected
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Unconstrained Least square Importance Fitting (ULSIF) [4] for this research.
Several researches have shown good classification result when using importance
weights estimated from ULSIF for importance weight estimation [5, 9, 10].

In this paper, we incorporate the density ratio into SVM formulation and
attempt to improve the generalization of SVM classifier model on a highly im-
balanced data [7] without sacrificing classification accuracy. In section 2, we
briefly explain about SVM and how to incorporate importance weight into the
SVM. Section 3 will discuss what is ULSIF. In section 4, we will detail out how
we perform the experiment and analyze the results. Finally, section 5 will have
our conclusion and future research suggestion.

2 Support Vector Machine

Support vector machine [6] is used to build a classification model from a training
data given a set of instance-label pairs (xi, yi), i = 1, ..., l where xi ∈ Rn and y ∈
{1,−1}l, the support vector machines (SVM) requires the solution of following
optimization problem:

min
w,b,ξ

1

2
wTw+ C

l∑
i=1

ξi

subject to yi(w
Tφ(xi + b) ≥ 1 − ξi, (1)

ξi ≥ 0.

where C is a regularization parameter and C ≥ 0 . Instead of solving the primal
problem, we convert it into Lagrangian dual problem:

max
α

n∑
i=1

αi − 1

2

l∑
i

l∑
j

αiαjyiyjk(xi,xj)

subject to

n∑
i=1

αiyi = 0, (2)

0 ≤ αi ≤ C

where k(xi,xj) is a kernel to map feature space to high dimensional space. Given
a weight vector v = {β(xi)|in1} from density ratio estimation of two samples,
equation (1) become

min
w,b,ξ

1

2
wTw+ C

l∑
i=1

viξi

subject to yi(w
Tφ(xi + b) ≥ 1 − ξi, (3)

ξi ≥ 0.
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The Lagrangian dual problem is:

max
α

n∑
i=1

αi − 1

2

l∑
i

l∑
j

αiαjyiyjk(xi,xj)

subject to

n∑
i=1

αiyi = 0 (4)

0 ≤ αi ≤ Cvi

3 Unconstrained Least Square Importance Fitting

Unconstrained Least Square Importance Fitting (ULSIF) is an approximation
method based on Least Square Importance Fitting (LSIF) [4]. LSIF will estimate
density ratio w(x) between two samples by the following linear model:

ŵ(x) =
b∑

�=1

α�ϕ�(x), (5)

where α = (α1, α2, ..., αb)
� are parameters to be learned from data samples, �

denotes the transpose of a matrix or a vector and {ϕ�(x)}b�=1 are basis function
such that

ϕ�(x) ≥ 0 for all x ∈ D and for � = 1, 2, ..., b (6)

The parameter {α�}b�=1 is determined by this optimization formula as follows

min
α∈Rb

[
1

2
α�Ĥα − ĥ�α+ λ1�b α

]
subject to α ≥ 0b, (7)

where 0b and 1b are the b-dimensional vectors with all zeros and ones, respec-
tively. However, the author shows that LSIF tends to suffer from numerical
problems which make it not reliable. The author then propose a method to ap-
proximate the density ratio by replacing 1�b α in (7) with α�α/2 which results
in new optimization problem

min
α∈Rb

[
1

2
α�Ĥα − ĥ�α+

λ

2
α�α

]
. (8)

4 Experiment Results

The sample is collected from [7] has 16 features and is divided to 3 categories,
which are bank client data, last contact of the current campaign and other addi-
tional features. There are total of 45211 instances in the dataset. Our objective
is to predict if the client will sign a long term deposit or not based on these
features.
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4.1 Data Analysis and Preprocessing

The dataset is highly imbalanced with 5289 (11.70%) signed a long term de-
posit and 39922 (88.30%) did otherwise. Because the data consist both numer-
ical and non-numerical, we transformed all non-numerical data into numerical
and normalized all the features so that it ranges between 0 and 1. Next, we
generated 3 experimental sets consisting of training and testing data from the
original dataset. Both training and testing data are unique, and the probability
distribution for training and testing data are similar to the original sample.

Set 1 : 60% (27127) training data and 40% (18084) testing data.
Set 2 : 50% (22606) training data and 50% (22605) testing data.
Set 3 : 40% (18084) training data and 60% (27127) testing data.

For every set, we split the training data into two set (Set A and Set B). Again,
each set has similar probability distribution with the original sample. Table 1
shows the details of each dataset.

Table 1. Total Set A and Set B data for each experiment set from Set 1, Set 2 and
Set 3

Set A Set B
Set 1 13563 13564
Set 2 11303 11303
Set 3 9042 9042

4.2 Result

We used LIBSVM to build classification model and C++ implementation of
ULSIF to estimate the importance weight. Our experiment consist of two parts.
In the first part, we built the SVM classification model using training data
from each experimental set. Table 2 show the performance of the classification
model.

In the second part, we extended the experiment by building two types of SVM
classification model. For the first classification model, we built a classifier from
set A for each experimental set. For second classification model, we estimated
the importance weight of set A based on set B for every experimental set. Next,
we built the classifier from set A by incorporating the importance weight. Table
3 shows the result of our experiments. From table 3, we can see that although
the classification accuracy does not change, the total number of support vectors
are lower. This means the weighted approach is able to improve generalization
performance of the SVM classifier.
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Table 2. Performance of SVM on training data

Accuracy Total Support Vector
Set 1 88.6474% 6395
Set 2 88.9759% 5327
Set 3 88.3400% 4259

Table 3. Performance of normal and weighted SVM

Accuracy Support Vector
Normal Weighted Normal Weighted

Set 1 88.3046% 88.3046% 3211 2769
Set 2 88.3035% 88.3035% 2680 2513
Set 3 88.3142% 88.3032% 2151 1761

5 Conclusion and Future Research

In this paper, we have demonstrated that by incorporating importance weight
to the classifier, the number of support vectors are reduced which increase the
classifier generalization compared to normal SVM. Future research will be on (i)
using and comparing other density ratio estimation algorithm to get importance
weight, (ii) finding on how to improve the accuracy of the classifier and (iii)
finding the correlation between the classification accuracy and the degree of
difference in probability density function of both training and testing samples.

Acknowledgment. This project is funded by the Malaysian Ministry of Higher
Education (MOHE) under the Exploratory Research Grant Scheme (ERGS).
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Abstract. Measuring the performance of a classifier properly is
important to determine which classifier to use for an application do-
main. The comparison is not straightforward since different experiments
may use different datasets, different class categories, and different data
distribution, thus biasing the results. Many performance (correctness)
measures have been described to facilitate the comparison of classifica-
tion results. In this paper, we provide an overview of the performance
measures for multiclass classification, and list the qualities expected
in a good performance measure. We introduce a novel measure, prob-
abilistic accuracy (Pacc), to compare multiclass classification results and
make a comparative study of several measures and our proposed method
based on different confusion matrices. Experimental results show that our
proposed method is discriminative and highly correlated with accuracy
compared to other measures. The web version of the software is available
at http://sprite.cs.uah.edu/perf/.

1 Introduction

There are a number of factors that affect the performance of a classification
problem: the classification algorithm, the features, the datasets, and the data
distribution. The performance of a classification methodology should be com-
pared and analyzed to select a particular method based on the usefulness of the
classifier. Result of a classification problem is often represented in the form of a
matrix called the confusion matrix. Thus, the performance of two classifiers can
be evaluated by comparing the corresponding confusion matrices.

The most common method for the evaluation of classification results is to
compute a performance metric based on the confusion matrix. Several such mea-
sures have been described in the literature. Most of these measures have been
developed for binary classification. Accuracy is one of the widely used measures
which is the percentage of correct decisions made by the classifier. However,
the overall accuracy is not a very reliable measure for problems such as pro-
tein crystallization classification [1] where the cost of misclassifying crystals as
non-crystals is very high or the proportion of data in the different categories is
significantly different. There are also other measures like sensitivity, specificity,
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precision and F-measure are formulated for binary classification. Some research
[2], [3] describes methods to extend F-measure for multiclass classification. Re-
search studies [4], [5], and [6] propose extensions to area under the ROC curve
(AUC) for multiclass result evaluation. There are also other measures like con-
fusion entropy [7] and K-category correlation coefficient [8] that are naturally
applicable for the performance evaluation of multiclass classification results.

Analysis based on multiple performance measures is also another popular
method for evaluation of classifiers. For example, precision and recall are often
analyzed together. For using multiple measures, a problem is that when com-
paring classifier A and classifier B, classifier A may outperform classifier B with
respect to one measure, while classifier B may outperform classifier A with the
other measure.

The advantages and disadvantages of the widely used performance measures
like accuracy, precision, recall, correlation coefficient, relative entropy, etc. are
analyzed in [9] and [10]. Sokolova et al. mention that different performance mea-
sures possess invariance properties with respect to the change in a confusion
matrix and these properties can be beneficial or adverse depending on the prob-
lem domain and objectives [9]. Statistical techniques for comparison of classi-
fiers over multiple datasets are described in [11] and [12]. Perner [13] describe
a methodology for interpreting results from decision trees. Though there are
research studies on measures for classification results, a comparative study of
these measures with classification results for binary and multiclass classification
have not been explored much.

This paper focuses on the analysis of performance measures for multiclass
classification. We try to analyze the consistency between different measures and
also the degree of discrimination for confusion matrix comparison. We propose
a new measure, probabilistic accuracy (Pacc), which is based on the difference
in probability of correct classification and probability of misclassification given
a confusion matrix. Accuracy measure is still one of the widely used measures
despite its limitations. A major reason for this is that the accuracy measure has
simple semantic correspondence to our understanding. For some other measures,
the applicable range is different and it is hard to derive a semantic meaning from
those measures. Therefore, we develop our measure in a way that it is consistent
with accuracy but more discriminative than accuracy. Besides it is defined for
every type of confusion matrix (binary or multiclass) with valid values and is
less susceptible to scaling of the number of items in a class. The web-version
of the software is available online at http://sprite.cs.uah.edu/perf/ which allows
computation of Pacc measure along with other popular performance measures
for evaluation of classification results.

The rest of this paper is organized as follows. Section 2 provides an overview
of several multiclass classification performance measures. Section 3 discusses
about the qualities expected in a good performance measure for classification
results comparison. Section 4 provides the formal definition and semantics of
Pacc measure. Section 5 provides a comparative study of several performance
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measures and our proposed measure considering several cases of confusion
matrices. Section 6 concludes the paper.

2 Multiclass Performance Measures

The result of an N-class classification experiment with classes 0..N-1 can be
visualized in matrix of size N x N. This matrix is called confusion matrix, con-
tingency matrix, or contingency table. Matrix C represents a generalized N x N
confusion matrix.

C =

⎛⎜⎜⎜⎜⎜⎜⎝
C00 C01

. . . C0(N−1)

C10 C11
. . .

. . .

. . .
. . .

. . .
. . .

C(N−1)0 C(N−1)1

. . . C(N−1)(N−1)

⎞⎟⎟⎟⎟⎟⎟⎠
The value Cij refers to the number of items of ith class classified as jth class
where i represents the actual class and j represents the predicted class. The
elements in the diagonals represent the number of items of each class correctly
classified while the rest constitute misclassification. Brief discussion and defi-
nition of the performance measures for multiclass classification based on this
generalized confusion matrix is presented below.

2.1 Confusion Entropy

Wei et al. introduce confusion entropy method as a performance measure for
multiclass classification [7]. The authors apply the concept of probability and
information theory for the calculation of confusion entropy. The misclassication
probability of classifying samples of class i to class j subject to class j is denoted
by P j

ij and is given by (1). Similarly, P i
ij is the misclassication probability of

classifying samples of class i to class j subject to class i.

P j
ij =

Cij

N−1∑
k=0

Cjk + Ckj

i �= j, i, j = 0..N − 1 (1)

Note that P i
ii=0. Confusion entropy of class j is defined as in (2).

CENj = −
N−1∑

k=0,k =j

P j
jklog2(N−1)P

j
jk + P j

kj log2(N−1)P
j
kj (2)

Overall entropy (CEN) is defined by (3).

CEN =
N−1∑
j=0

PjCEN j (3)

where Pj is defined as in (4):
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Pj =

N−1∑
k=0

Cjk + Ckj

2
N−1∑
k=0

N−1∑
l=0

Ckl

(4)

The value of CEN ranges from 0 to 1 with 0 signifying the best classification
and 1 indicating the worst classification.

2.2 K-Category Correlation Coefficient

Gorodkin proposes K-category correlation coefficient to compare two confusion
matrices [8]. The method utilizes the concept of covariance and tries to compute
the covariance between actual K-category assignment and the observed assign-
ment. Consider two matrices X , Y of size N x K where N is the number of
items and K is the number of categories. Let matrix X and matrix Y represent
the actual assignment and predicted assignment, respectively. The correlation
coefficient, Rk is defined as (5).

Rk =
cov(X,Y )√

cov(X,X)
√
cov(Y, Y )

(5)

In terms of confusion matrix as denoted in the beginning of this section, the
covariances can be written as follows:

cov(X,Y ) =
N−1∑

k,l,m=0

CkkCml − ClkCkm (6)

cov(X,X) =

√√√√N−1∑
k=0

(
N−1∑
l=0

Clk

)(
N−1∑

f,g=0,f =k

Cgf

)
(7)

cov(Y, Y ) =

√√√√N−1∑
k=0

(
N−1∑
l=0

Ckl

)(
N−1∑

f,g=0,f =k

Cfg

)
(8)

The value of Rk ranges from -1 to +1 with +1 indicating the best classification
and -1 indicating the worst classification.

2.3 F-Measure for Multiclass Problems

F-measure combines the two metrics - recall and precision and is defined as the
harmonic mean of the two. As described in [3], the recall (Ri), precision (Pi), and
F-measure (Fi) for class i in a multiclass problem can be defined by following
equations:

Pi =
TPi

TPi + FPi
, Ri =

TPi

TPi + FNi
, (9)
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(Fi) =
2PiRi

Pi +Ri
(10)

where TPi is the number of objects from class i assigned correctly to class i,
FPi is the number of objects that do not belong to class i but are assigned
to class i, and FNi is the number of objects from class i predicted to another
class. To compute the overall F-measure, macro-averaging and micro-averaging
are used. Macro-averaged F-measure, F(macro), is calculated as the average of
F-measure for each category. Micro-averaged F-measure, F(micro), aggregates
the recall and precision of classes.

F (macro) =
1

N

N−1∑
i=0

Fi, F (micro) =
2PR

P +R
(11)

where P and R are defined by the following equations:

P =

N−1∑
i=0

TPi

N−1∑
i=0

TPi + FPi

, R =

N−1∑
i=0

TPi

N−1∑
i=0

TPi + FNi

(12)

2.4 Kappa Statistic

Kappa statistic is defined as the proportion of agreement between two rankings
corrected for chance [14]. In the context of classification result, the agreement
between the actual categories and predicted categories forms the basis for cal-

culation of Kappa. Let S =
N−1∑
i=0

N−1∑
j=0

Cij represent the total number of items

in the confusion matrix, Ci. =
N−1∑
j=0

Cij represent the ith row marginal and

C.i =
N−1∑
j=0

Cji represent the ith column marginal. Then, Cohen’s Kappa (K)

is given by (13).

K =
Po − Pe

1 − Pe
(13)

where Po = 1
S

N−1∑
i=0

Cii is the proportion of agreement between observed and

actual categories, and Pe = 1
S2

N−1∑
i=0

Ci.C.i is the proportion of observations for

which agreement is expected by chance. Po − Pe is the proportion of agreement
beyond what is expected by chance, and 1 − Pe is the maximum possible pro-
portion of agreement beyond what is expected by chance. Values of Kappa can
range from -1 to +1, with -1 indicating perfect disagreement below chance, and
+1 indicating perfect agreement above chance.
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3 Qualities of Good Performance Measure

Consider the following confusion matrices.

M =

(
70 10
10 10

)
N =

(
80 0
20 0

)
K =

(
20 0
20 10

)
L =

(
100 0
20 10

)
Matrix M has 10 items of each class misclassified and Matrix N has all items
of class 1 misclassified while all items in class 0 are correctly classified. The
accuracy for both matrices is 80%. However, the classifier that results N might
not be useful since all items have been classified to a single class. This is because
the distribution of misclassification is ignored by the measure. Consider other
hypothetical classification results given by matrix K and L. The first category
has all items correctly classified while 20 of 30 objects are misclassified for the
second category. Suppose the data items of the first category are increased by 5
folds and the new confusion matrix is given by matrix L. This could be the case
where it is easy to classify the objects of the first category. The accuracy of the
experiment is increased from 60% to 84% just by increasing the items in the first
category. This result can be misleading if the judgement is based on accuracy
measure.

In this section, we list the qualities expected in a good performance measure
for the evaluation of classification results. We first list the desired qualities in a
good performance metric irrespective of the problem domain. These are listed
as follows:

– The measure should have the highest value for the best case i.e., when all
items correctly classified. There can be many varieties of the worst case de-
pending on the distribution of misclassification. We may want to distinguish
those cases.

– The measure should not be affected by a scale factor. This means that the
measure for matrix C should be same as the measure for a x C where a is a
scale factor.

– The measure should be based on all the values in the confusion matrix for
the calculation.

– The measure should be able to distinguish different confusion matrices. The
value should decrease with increase in misclassified cases and increase with
decrease in misclassified cases or vice versa.

– It should be useful for classification with any number of classes.

Likewise, there are some other qualities which may or may not be desired
depending on the application. These are listed as follows:

– If the important class occurs very rarely, performance measures are affected
by the scaling of data. Thus we desire that a performance measure should
be less affected by the scaling of one or more of the classes as long as the
distribution of misclassification is proportional. However, in some cases, we
may want to pay extra attention to a class which is more likely than others.
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– Misclassification into a single class may be considered better than misclassi-
fication into several classes. If the misclassification occurs into a single class,
the classifier may be tuned by focusing on the problematic classes.

4 Proposed Pacc Measure

We introduce probabilistic accuracy (Pacc) measure for comparison of two
N-class confusion matrices. This measure is based on the difference in the prob-
ability of correct classification and the probability of misclassification. Cij refers
to the number of items in class i that are classified to class j. The occurrence
(probability) of Cij is related to both the number of items in class i and the num-
ber of items of other classes that are classified to class j. Pij is the probability
of occurrence of Cij subject to actual class i and observed class j and is defined
as in (14). Apparently, Cij is contained in both sub-parts of the denominator. If
i �= j, Pij is the probability of misclassifying item of class i subject to class j. Pij

should increase if the majority of incorrect classifications into class j are coming
from items in class i. Note that the numerator does not contain the correctly
classified cases. Likewise, the probability of correctly classifying items, denoted
by Pii, can be defined as (15). Here the numerator consists only the correctly
classified cases i.e., the diagonal elements of the confusion matrix.

Pij =
2Cij

N−1∑
k=0

Cik + Ckj

i �= j, k = 0, ..N − 1 (14)

Pii =
2Cii

N−1∑
k=0

Cik + Cki

(15)

Maximum value for any Pij is 1. This occurs when all items of class i are classified
solely to class j and none of the items from other classes are classified to class
j. In other words, this is like pure misclassification probability between class i
and j which indicates that all items of class i are classified as class j and all
observed class j classifications result from class i items. The minimum value is
0 which occurs when all items in a class are correctly classified and no items of
other classes is predicted to this class.

Now we define two terms: error (ε) and correctness (c) in terms of Pii and
Pij as given in (16) and (17), respectively. Error probability (ε) is the average
of the probabilities of misclassification and correctness probability (c) is the
average of the probabilities for correct classification. c and ε lie between 0 and
1. High correctness probability and low error probability are desired for good
classification. The difference between c and ε yields a value between -1 to +1. It
is normalized to the range 0 to 1 as in (18) so that it can be correlated with the
accuracy measure.
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Table 1. Classification results for 2-class problem

O0 O1 O0 O1 O0 O1 O0 O1 O0 O1

A B C D E

C0 50 0 25 25 50 0 10 40 0 50

C1 0 50 25 25 50 0 40 10 50 0

F G H I J

C0 80 0 70 10 80 0 40 40 0 80

C1 0 20 10 10 20 0 10 10 20 0

ε =
1

N

N−1∑
i=0

N−1∑
j=0,i=j

Pij (16)

c =
1

N

N−1∑
i=0

Pii (17)

Pacc =
1

2
+

c − ε

2
(18)

The value of Pacc is maximum (i.e., 1) when all the items are correctly classified.
In this case, ε is 0 because every Cij where i �= j is 0. Likewise, c is equal to 1.
Hence, the difference between c and ε is 1 and the normalization to [0-1] gives
the value 1.

ε =
1

N

N−1∑
i=0

N−1∑
j=0,i=j

Pij = 0

c =
1

N

N−1∑
i=0

Pii =
1

N

N−1∑
i=0

2Cii

Cii + Cii
=

1

N

N−1∑
i=0

1 = 1

Pacc =
1

2
+

c − ε

2
=

1

2
+

1 − 0

2
= 1

The value of Pacc is minimum (i.e., 0) when every items from a class are
misclassified to a unique single class.

5 A Comparative Study of Performance Measures

In this section, we perform a comparative study of the following performance
measures: accuracy (ACC), Kappa statistic (KAPPA), K-category correlation
coefficient (Rk), confusion entropy (CEN), macro-averaged F-measure (FMEAS)
and our Pacc measure for several confusion matrices. The measure for CEN is
subtracted from 1 to simplify the comparison (for this measure the lowest value
(i.e., 0) is the best and the highest value (i.e., 1) is the worst).
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Table 2. Performance measures for matrices A to J in Table 1

MATRIX ACC KAPPA Rk 1-CEN FMEAS Pacc

A 1.00 1.00 1.00 1.00 1.00 1.00

B 0.50 0.00 0.00 0.00 0.50 0.50

C 0.50 0.00 NaN 0.60 NaN 0.50

D 0.20 -0.60 -0.60 -0.06 0.20 0.20

E 0.00 -1.00 -1.00 0.00 NaN 0.00

F 1.00 1.00 1.00 1.00 1.00 1.00

G 0.80 0.37 0.38 0.40 0.69 0.74

H 0.80 0.00 NaN 0.68 NaN 0.64

I 0.50 0.00 0.00 0.17 0.45 0.50

J 0.00 -0.47 -1.00 0.28 NaN 0.00

5.1 Analysis of Measures for 2-class Classification

Consider the classification results for the 2-class problems as given by confusion
matrices A to J in Table 1. The matrices follow the generalized confusion matrix
structure outlined in Section 2. The columns Oi indicate the objects classified
to class i and the rows Ci indicate the actual categories. Table 2 shows the
performance measures for the matrices in Table 1.

Accuracy does not account for the distribution of misclassified items. As long
as the numbers of correct predictions remain the same, accuracy remains the
same. In matrix G, the accuracy is 80% where half of the items in class 1 are
misclassified to class 0. Similarly, in matrix H, the accuracy is still 80% where
all items of one class have been classified to other class. Thus analysis based on
accuracy measure can be misleading.

Kappa statistic is less discriminative. Also, Kappa doesn’t take the least value
(= -1) for matrix J where none of the items are correctly classified. The value
NaN in the Rk columns corresponding to matrix C and matrix H indicates that
it is not a number (NaN). Another observation is that Kappa and Rk measures
are less correlated with accuracy measure.

For matrix B in Table 2, the value of (1-CEN) is 0, signifying the worst
classification. However, Matrix B has half the items in each class correctly clas-
sified. Moreover, the value of CEN goes out of range in some cases. For matrix
D, CEN value is 1.06 which is out of the range. Such cases arise when the ratio of
correct cases to incorrect cases is less than 1 for both the categories. Among the
matrices G, H, I, and J, we would expect the measure to indicate G as the best
classification and J as the worst classification. The CEN values indicate matrix
H to be the best among the four and matrix I to be the worst. Definitely, the
performance measure for J should have the worst value as it has all the items
misclassified. This shows that CEN is not a reliable measure.

There are several cases where the F-measure is undefined. Such cases arise
when there are some categories for which no correct classification is made. More-
over, we can observe that NaN does not necessarily occur when the confusion
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Table 3. Classification results for 3-class problem

O0 O1 O2 O0 O1 O2 O0 O1 O2 O0 O1 O2

A B C D

C0 60 0 0 40 0 20 30 30 0 30 15 15

C1 0 60 0 0 60 0 0 60 0 0 60 0

C2 0 0 60 0 0 60 0 0 60 0 0 60

E F G H

C0 40 10 10 0 30 30 20 20 20 0 0 60

C1 10 40 10 0 60 0 20 20 20 0 60 0

C2 10 10 40 0 0 60 20 20 20 60 0 0

Table 4. Performance measures for matrices A to H in Table 3

MATRIX ACC KAPPA Rk 1-CEN FMEAS Pacc

A 1.00 1.00 1.00 1.00 1.00 1.00

B 0.89 0.83 0.85 0.86 0.89 0.90

C 0.83 0.75 0.78 0.84 0.82 0.84

D 0.83 0.75 0.78 0.76 0.82 0.83

E 0.67 0.50 0.50 0.40 0.67 0.67

F 0.67 0.50 0.58 0.72 NaN 0.63

G 0.33 0.00 0.00 0.14 0.33 0.33

H 0.33 0.00 0.00 0.67 NaN 0.33

matrix has low accuracy. As can be seen in Table 2, the value of FMEAS is NaN
for matrix H and matrix J. The corresponding accuracy for H and J are 0.80
and 0, respectively.

For the binary cases with balanced distribution, our Pacc measure is consistent
with the accuracy. For the unbalanced cases, Pacc is more discriminative and
closer to accuracy than other measures.

5.2 Analysis of Measures for 3-class Classification

Consider 3-class classification results (confusion matrices A to H) in Table 3
with balanced distribution of items in each class. The performance measures for
these matrices are provided in Table 4. Figure 1 shows the plot of these measures
for the corresponding matrices. F-measure is not included in this graph as some
values are undefined for this measure. As we go from matrix A to matrix H, the
number of misclassified items is increased. Therefore, we expect similar changes
in the performance measure. From the performance measures in Table 4 and
graph in Fig. 1, we observe the following.

– Accuracy measure is less discriminative. For example, matrices C and D, E
and F, and G and H have the same accuracy. Therefore, we cannot rank these
matrices based on accuracy. Likewise, Kappa statistic is less discriminative
than our Pacc measure.
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Fig. 1. Graph showing the plot of performance measures from Table 4

– Rk measure and our Pacc measure behave almost the same way in terms
of ranking the matrices. However, the applicable range of -1 to +1 for Rk

makes it difficult to correlate with accuracy measure.
– Confusion entropy measure is not consistent with other measures. Confusion

entropy measure suggests confusion matrices F and H being better than E
which does not look correct. Likewise, the results are not as expected when
we compare matrix E and H. Matrix E has 40 items in each category correctly
classified. On the other hand, Matrix H has none of the items in the first
category and third category correctly classified. CEN suggests matrix H to
be better result compared to matrix E. Therefore, the result is not as desired.

– F-measure is not computable for the confusion matrices F and H and is less
discriminative compared to Pacc measure.

– Pacc follows the decreasing trend of values as we go from error matrix A to
H. At the least, Pacc measure is as discriminative as any other measure.

5.3 Comparative Evaluation of Performance Measures

Discriminative property: One important requirement for a performance measure
is the ability to distinguish confusion matrices. From the examples presented
in earlier sections, it is seen that measures like accuracy and Kappa statistic
have low discriminative power. To analyze the discriminative power of the var-
ious measures, we considered a 3-class problem with 5 items in each category.
21 combinations are possible for the distribution of 5 items into different cate-
gories. Therefore, a total of 9261 (21 x 21 x 21) confusion matrices are possible.
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Table 5. Table showing the count of distinct values from 9261 possible confusion
matrices in a 3-class problem with 5 items in each category

Measure Num distinct values Avg(abs diff with acc)

ACC 16 -

KAPPA 16 0.166

Rk 183 0.166

CEN 1504 0.359

FMEAS 368 0.169

Pacc 669 0.029

We calculated all the measures for these confusion matrices. Table 5 shows the
count of distinct values obtained for 9261 confusion matrices. Accuracy and
Kappa statistic have the lowest discriminative power as both of these measures
have only 16 possible values for all of these matrices. Confusion entropy has
the largest number of distinct values. Pacc measure also has high discriminative
power.

NaN values and our resolution: Measures like F-measure and correlation
coefficient may produce NaN as the result. For the 9261 possible confusion ma-
trices in a 3-class problem with 5 items in each category, F-measure is NaN
for almost 63% of the confusion matrices. If both precision and recall are 0, F-
measure becomes undefined or NaN. Therefore, when these measures are used
for the evaluation of classification results, necessary patches should be applied
so that NaN is not an output. One approach to solve this would be to take the
measure to be equal to 0. Nonetheless, there are multiple cases for the measure
to be 0 making it difficult to distinguish/rank classification results. Correlation
coefficient can produce NaN in case all the items are classified to a single class.
If all items are classified into a single class, the variance for that class is 0.
Since there are no items that are classified into other classes, the variance for
those classes are also 0. This corresponds to a column in confusion matrix with
non-zero values where the rest of the values are 0 in the confusion matrix.

Accuracy correlation: Table 5 provides the average of absolute difference
between accuracy and other measures for the 9261 confusion matrices. For the
correlation coefficient and Kappa statistic, the final average value is divided by
2 since its original range is from -1 to +1. The difference is the least for Pacc
measure, thus revealing a high correlation of Pacc measure with accuracy . The
inconsistency in confusion entropy measure is also reflected by the low correla-
tion with accuracy. Kappa, Rk, and F-measure also have lesser correlation with
accuracy compared to Pacc measure.

Scale invariance: A new set of confusion matrices were created by scaling the
confusion matrices A to H provided in Table 3. For each of these matrices, the
second row is doubled and the third row is increased by 5 times. The performance
measures for the modified matrices are presented in Table 6. Figure 2 shows the
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Table 6. Performance measures for the matrices A to H in Table 3 with second row
increased twice and 3rd row increased by 5 times

MATRIX ACC KAPPA Rk 1-CEN FMEAS Pacc

A 1.00 1.00 1.00 1.00 1.00 1.00

B 0.96 0.92 0.92 0.92 0.92 0.93

C 0.94 0.88 0.89 0.93 0.85 0.88

D 0.94 0.88 0.88 0.89 0.86 0.89

E 0.67 0.44 0.46 0.46 0.61 0.65

F 0.88 0.75 0.77 0.85 NaN 0.73

G 0.33 0.00 0.00 0.23 0.30 0.35

H 0.25 0.04 0.06 0.76 NaN 0.33

Table 7. Table listing the properties of various measures

Measure Discriminative NaN values Accuracy correlation Scale invariance

ACC Low No - Low

KAPPA Low No Low Low

Rk Medium Yes Low Medium

CEN High No Very Low High

FMEAS Medium Yes Low High

Pacc High No High High

Fig. 2. Graph showing the difference in the values of performance measures in Table
4 and Table 6
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plot of the difference in the performance measures in Table 4 and Table 6 (i.e.,
the difference in the measures between original and scaled matrices). F-measure
is not included in this plot as there are some values for F-measure that are
undefined. From the figure, we can see that accuracy and K-category correlation
coefficient (Rk) are the most affected measures by the scaling. CEN measure and
Pacc measure are comparatively less affected.

Table 7 provides a summary of various properties exhibited by the different
measures. The level of discrimination and the level of scale invariance for accu-
racy is considered to be low. The levels for other measures are assigned relative
to the level for accuracy. The accuracy correlation column is derived from the
values in third column of table 5. The ranges for absolute difference with accu-
racy as ≤ 0.05, 0.05 - 0.1, 0.1 - 0.2, and ≥ 0.2 are considered to be high, medium,
low, and very low levels respectively. Pacc measure compares best among the
others as it has high level of discriminancy, does not result NaN values, is highly
correlated with the accuracy measure, and the scale invariance is high.

6 Conclusion

In this paper, we explained the difficulties in comparing two classification ex-
periments and highlighted the need for a good performance measure. We listed
expected qualities in a good classifier performance measure and introduced a
novel measure, probabilistic accuracy (Pacc), which is based on the difference
between probabilities of correct and incorrect classification. We made a com-
parative analysis of five multiclass performance measures and our proposed
method considering different cases of confusion matrices. Correlation coefficient
and Macro-averaged F-measure can produce NaN and this does not necessarily
happen when the performance is very low. The K-category correlation coeffi-
cient (Rk) and Kappa statistic exhibit low correlation with accuracy. Likewise,
we showed that confusion entropy measure is not consistent. The results show
that the proposed Pacc measure is relatively consistent with the accuracy mea-
sure and also is more discriminant than others. The Pacc measure was shown
to be less affected by the scaling of data. Therefore, our Pacc measure fairs best
among others for the evaluation of classification results.

Choice of a performance measure and its analysis can be domain/problem
dependent. Also, analysis based on a single measure can be misleading as dif-
ferent measure can produce contrasting decision for the selection of a classi-
fier. The measures may have specific biases and hence should be carefully used
and analyzed. This follows that results of classification experiments should be
accompanied by the confusion matrix.

A classifer can be said to be useful only if it performs better than a random
classifer. As future work, we plan to investigate methods to analyze performance
based on how well a classifier is performing compared to a random classifier.
Similarly, we would like to formulate methods to evaluate performance where the
order of classification category is important. Likewise, we also plan to investigate
matrix normalization techniques to our proposed method.
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Abstract. Classification of network traffic for intrusion detection is a
Big Data classification problem. It requires an efficient Machine Learning
technique to learn the characteristics of the rapidly changing varieties of
traffic in large volume and high velocity so that this knowledge can be
applied to a classification task. This paper proposes a supervised-learning
technique called the Unit Ring Machine which utilizes the geometric pat-
terns of the network traffic variables to learn the traffic characteristics. It
provides a single-domain, representation-learning technique with a class-
separate objective for the network intrusion detection. It assigns a large
volume of network traffic data to a single unit-ring and categorizes them
based on the varieties of network traffic, making it a highly suitable
technique for the Big Data classification of network intrusion traffic.

Keywords: Machine learning, big data classification, intrusion detec-
tion, unit-circle representation, supervised learning, labeled datasets.

1 Introduction

The term Big Data describes the data that cannot be managed efficiently by
the current techniques, tools and devices. The Big Data is defined as the data
that must be studied in whole rather than in parts using the standard sampling
techniques. This is because the sampling may ignore some of the important
properties that may play a negative role in the formulation of long-term models.
The paper [1] has recently defined the Big Data as a dataset that consists of data
points represented by a mathematical relationship between three independent
variables, Volume, Velocity and Variety. With this definition the complexity
in analyzing and visualizing this space, and extracting useful patterns from this
space can lead to Big Data problem. The network traffic information collected at
an intermediate system in a distributed network show high volume of data with
large varieties of traffic types arriving in high velocity. These Big Data properties
of network traffic lead to data with multiple distributions within a single dataset.
Hence the application of a standardMachine Learning (ML) technique to this Big
Data environment of network intrusion can be challenging [2], [3]. There are two
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main problems associated with the Big Data classification of network traffic. The
first problem is the processing power required for the analysis and visualization
of the massive size data. This problem can be addressed by using the emerging
Big Data platforms like the Hadoop Distributed File System (HDFS) [4]. The
HDFS takes the input data with an associated task and divides them into smaller
fragments (data and task) using the two concepts called the Map and Reduce. It
then distributes the tasks and data to multiple nodes in a cluster and executes
these tasks in those nodes. This distribution scheme helps to achieve bandwidth
requirements and a fault-tolerant system.

The second problem is to find a robust representation for the data to learn
the characteristics of the traffic distribution. It can help develop classifiers using
training dataset and validate the classifiers using the test dataset. This data
representation problem can be addressed by representation-learning techniques
which are used in ML research [5]. The representation-learning can help learn
robust data representations that can be used to classify regular and intrusion
traffic using Big Data platforms. The intrusion datasets are high dimensional and
hence the representation-learning can be used to select features that contribute
to the classification of the traffic types (i.e. feature selection), transform the high
dimensional dataset into several manageable and meaningful low dimensional
datasets (i.e. feature extraction), and define a suitable measure that can calculate
the class separation distances adequately (i.e. distance metric learning) [6].

In a classification task a representation-learning model is trained using a
labeled (training) dataset. This trained model is then validated using cross-
validation ap-proaches and applied to a classification task of new incoming data.
This process is carried out under the assumption that the pattern of the distri-
bution is the same for all datasets, although multiple distributions are possible
within a dataset. In this case the representation-learning is called single domain,
where the multiple datasets (training, test and incoming datasets) represent the
same domain. Although the single-domain, representation-learning will not give
a complete solution to Big Data classification, it must be studied to understand
the suitability of the new concept, the unit-circle algorithm (UCA) [7] for the
development of a network intrusion detection system.

This paper proposes a single-domain, representation-learning technique with
a class-separate objective which characterizes the geometric representation prop-
erties of the network intrusion traffic using the concept of unit-circle algorithm
and helps to classify the network intrusion and regular traffic. This approach
is called the unit-ring machine (URM) because it catches the distribution simi-
larity using the unit-circle representation and determines the distribution with
unit-rings, where a unit-ring con-tains a collection of unit-circles. It provides a
theory and results focusing on feature extraction and distance metric learning
for a predetermined pair of features, hence the feature selection learning is not
discussed in this paper. However a simple feature selection approach is presented
for learning the selection of feature variables. Since the Big Data and Visual-
ization go hand-in-hand, the results and findings are discussed mostly using the
visual examples rather than numerical examples.



298 S. Suthaharan

2 Background

The importance of the representation-learning has been discussed in detail in
a recent paper by Bengio et al [5]. They addressed its applications to speech
recognition, object recognition, natural language processing and signal process-
ing. However its application to network security is also very important and that is
the focus of this paper. The intrusion datasets depend on many feature variables
and extracting robust features under the constraints of a large number of feature
variables is a challenging problem. Several supervised learning approaches [7], [8],
[9], [10], [11] have been proposed for the classification of network intrusion traffic.
However the learning technique based on the Support Vector Machine (SVM)
became popular for intrusion detection because of its classification accuracy.
The SVM technique is computationally expensive and thus several versions of
SVM have been proposed subsequently to address this problem [12], [13]. These
techniques do not provide generalized solutions with associated representation
learning and class-separate objectives. Recently simultaneous classification and
feature selection process is integrated into SVM [13]. However it is not suit-
able for dynamically growing large amount of data like the network intrusion
traffic because of its requirements for a subset of prior knowledge. Hence other
alternative approaches must be explored for Big Data situation.

Several representation learning approaches, that might be suitable for a dy-
namically growing dataset, have been proposed for intrusion detection in recent
years [14], [15], [16] and they mainly focus on the feature selection aspect of
the representation learning. The representation learning generally carried out
independently and they do not include associated class-separate objectives. Be-
cause of the lack of coordination between the learning and classification, the
classification accuracy is affected negatively in many applications. Therefore it
is appropriate to develop an associated class-separate objective to each repre-
sentation learning technique. Most recently Tu and Sun [6] addressed this issue
and proposed a cross-domain representation learning framework with an asso-
ciated class-separate objective. This approach is not developed for Big Data
classification that can utilize the emerging HDFS technology.

A recent study with an intrusion dataset indicates that the intrusion can be
represented by unit-circles and this representation can be used for classification
of traffic types [7]. This study introduced the Unit Circle Algorithm mentioned
earlier. It is a two-class, two-dimensional technique and it provides a static clas-
sifier for the classification of intrusion and regular traffic with no representation-
learning. The static classifier introduces a fuzzy boundary in the UCA-based
classification. When the Big Data is considered and analyzed, the classification
need to deal with datasets with rapidly changing varieties of traffic types in large
volume and high velocity. The fuzzy boundary problem of UCA also causes se-
vere inaccuracies in the classification results. Therefore it is important to adopt
a learning technique to train the machine to find a suitable boundary param-
eter. In this paper a boundary parameter is introduced to the UCA approach
to represent the intrusion data in unit-rings and allow representational learning
with class-separate objective. The proposed URM technique adopts the concept
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of unit-circle representation of intrusion datasets, but suggests some modifica-
tions which will enable representation learning with class-separate objective. The
motivation behind this approach is to represent the multidimensional intrusion
data into multiple two-dimensional representation using unit-circles and help
the HDFS technology to solve Big Data intrusion classification. In this paper
a suitable representation learning technique with an associated class-separate
objective is developed and evaluated using a label dataset.

3 Unit-Circle Algorithm

The UCA approach presented in a short-paper [7] is discussed in this section
with additional examples. The UCA approach allows two feature variables as
input and constructs the concentric unit-circles with radius less than or equal
to 1. As stated in the development of UCA classifiers, the observations of the
feature variables are normalized to satisfy the formulation of unit-circles. As an
example, if we represent two feature variables by X and Y, and their normal-
ized observations by xi and yi (where i=1..n) respectively, then the following
inequalities can be satisfied [7]:

0 ≤ xi, yi ≤ 1, where, ∀i = 1..n (1)

The UCA then constructed the unit-circle region according to the following
mathematical expression presented in [7]:

R =
{
(xi, yi)|0 ≤ x2

i + y2i ≤ 2, i = 1..n
}

(2)

This unit-circle region was then divided into two disjoint regions to generate
suita-ble classifiers for two types of data [7]:

R1 =
{
(xi, yi)|0 ≤ x2

i + y2i ≤ 1
}

(3)

R2 =
{
(xi, yi)|1 < x2

i + y2i ≤ 2
}

(4)

This class separation was carried out based on the observation that the back
attack and regular traffic in the NSL-KDD [17] dataset satisfy this property. If
we divide the inequalities by 2 both sides and take square root then we have
classifiers that are separated by 1/2. However a fuzzy boundary was noticed and
hence a tolerance value of 0.005 was used to reduce this fuzziness. Thus the
classifiers were modified in [7] as:

Regular traffic class

C1 =
{
(X,Y )|0 ≤

√
(X2 + Y 2)/2 ≤ 0.7121

}
(5)

Intrusion traffic class

C2 =
{
(X,Y )|0.7021 <

√
(X2 + Y 2)/2 ≤ 1

}
(6)



300 S. Suthaharan

Fig. 1. Normalized values of back attack traffic

These classifiers were applied to the classification of back attack and normal
traffic in the NSL-KDD datasets [7]. The features 5 and 32 were used to construct
the unit-circles of the UCA (features 23 and 24 were used for Neptune attack
and normal traffic). These features were selected based on a distribution-based
feature selection algorithm. The results indicated that the distinct properties of
the intrusion and regular traffic activities can be obtained with these classifiers.

Similar results are obtained with different random samples of the back attack
and regular traffic and hence these new results are presented in Figures 1 and 2
to support the classification capabilities of the UCA concept. These figures show
a sharp boundary between the classes and the tolerance of 0.005 can handle the
fuzziness reasonably. In addition the results obtained using the UCA classifiers
for the Neptune attack and its corresponding normal traffic are presented in
Figure 3 and Figure 4. In this case the features 23 and 24 are used to construct the
unit-circles of the UCA. This simulation shows no sharp boundary between the
classes and the tolerance level 0.005 cannot handle, thus high fuzziness occurred
in this case. Based on the results presented in these figure, we may conclude that
the UCA classifiers can classify the attacks and normal, however fuzzy boundary
is still a problem. This problem can be increased significantly with the data
that satisfy the definition of Big Data. Hence this approach is not suitable for
the classification of Big Data. In addition, the same features cannot be used
to construct the unit-circles for dif-ferent combinations of attack and normal
traffic classes. It requires a feature selection module. To reduce fuzzy boundary
effect and to use HDFS technology, a combined representation learning and class-
separate objective is required. The UCA provides a static boundary as a classifier
and hence representation learning is not possible. However UCA supports the
concept of representing intrusion data by unit-circles and it play a major role
in the proposed Unit Ring Machine for representation-learning in which a ring
represents a collection of related unit-circles.
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Fig. 2. Normalized values of regular network traffic

Fig. 3. Normalized values of Neptune attack traffic

4 Unit Ring Machine

The concept of URM is to represent the data by unit-rings and classify the
data by classifying the unit-rings. Compared to UCA, the URM has adjustable
widths for representation learning. The adjustable ring width will help feature
extraction learning and distance metric learning with class-separate objective.
The URM approach, like UCA, accepts two feature variables and constructs
unit-rings. The feature variables are denoted by X and Y, and their normalized
observation are represented by xi and yi, respectively, hence they satisfy the
following inequalities:
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Fig. 4. Normalized values of regular network traffic

0 ≤ xi, yi ≤ 1, where, ∀i = 1..n (7)

These normalized observations of the feature variables can form the following:

R =

{
(xi, yi)|0 ≤

√
(x2

i + y2i )/2 ≤ 1, i = 1..n

}
(8)

In the URM approach, this circular region is divided into k unit-rings with equal
widths as follows:

Rj =

{
(xi, yi)|(j − 1)/k ≤

√
(x2

i + y2i )/2 ≤ j/k

}
(9)

In this equation j=1..k, which represents a ring number, and i=1..n. Based on
the concept of UCA these rings can be divided into two disjoint classes as follows:

Regular traffic class

C1 = ∪Rj , where, 0 ≤ j ≤
⌈
k/
√
(2)
⌉

(10)

Intrusion traffic class

C2 = ∪Rj , where,
⌈
k/
√
(2)
⌉
< j ≤ k (11)

These are the classifiers of URM, where the operator provides the rounded in-teger
value for the operand z, and they will be trained using the parameter k.

Representation Learning: The proposed representation learning involves the
ex-traction of features (e.g. geometric patterns, statistical distributions), and
the devel-opment of a distance metric that estimates the distance between the
unit-rings of data point for a pair of feature variables. The proposed learning
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mechanism selects a pair of features X and Y by sorting their normalized obser-
vations xi and yi and measuring their Euclidean distances. If the distance shows a
significant separation then these features are selected for the input to the URM.
In general the distance metric learning is for maximizing the distance between
the points in different classes. In the proposed approach each ring has a set of
data points and thus the distance metric is between the unit-rings to reduce
the fuzzy boundary. In other words the distance metric defines the width of a
unit-ring. In the proposed approach the feature extraction learning relates to the
learning of data distribution within each unit-ring. Therefore the representation-
learning selects the parameter width (1/k) for the unit-rings and then calculates
the percentage of data points that fall inside each circle with respect to the data
points fall in the other circles together. Thus the URM technique will learn these
properties of the data as a representation-learning approach.

5 Simulation and Results

In this section the proposed representation learning and class-separate capability
are evaluated using specific examples. The URM technique is applied to the
subsets of the NSL-KDD training and test datasets and the results are presented.
The repre-sentation-learning involves feature extraction learning and distance
metric learning for a fixed pair of features selected by the Euclidean distance
metric for a traffic class.

Training Results: In the training phase, the back attack and regular traffic
pair; and the Neptune attack and regular traffic pair are used. For back attack
and regular traffic, features 5 and 32 are used and they are mapped to unit-
circles to demonstrate the learning technique. The radius of these unit-circles
are sorted and plotted in Figure 5, which demonstrates the Euclidean between
these traffic classes.

Figure 5 allows us to calculate the Euclidean distance between the back attack
(red) and regular traffic (blue). A significant separation between the back attack
and regular traffic can be clearly seen. It also shows that both back attack
and regular traffic can have the same or similar radius values and it will be a
significant problem when the dataset grows to Big Data.

Similarly Figure 6 demonstrates the distance between the Neptune attack
(red) and regular traffic (blue) using the features 23 and 24. A significant sep-
aration between the Neptune attack and regular traffic can also be seen, and
the same conflict can occur for the Neptune attack and regular traffic as well
when the dataset grows to Big Data. For the distance metric learning, the width
for a unit-ring is selected as 0.05 using n-fold cross-validation test [18], and the
unit-rings that have less than 5 data points within these rings will be eliminated.

Figure 7 shows the unit-rings of the back attack and regular traffic calculated
using the width of 0.05. Each point in this figure represents a concentric ring
corresponding to the radius mapped on the y-axis. The space between two points
represents the width of the ring. For example if we consider the red point at
(4, 0.4) then it is the fourth concentric ring of the back attack class with
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Fig. 5. Sorted representation of back attack and regular traffic

Fig. 6. Sorted representation of Neptune attack and regular traffic

radius 0.4 and the width of 0.05 (i.e. 1/20). Similarly if we consider the blue
point at (9, 0.4) then it is the ninth concentric circle of the regular traffic
class, its radius and widths are also 0.4 and 0.05. As a whole, by drawing a
horizontal line at a particular radius, we can say that there is a high chance
of having a single ring with data points from both the intrusion class and the
regular traffic class. However the feature learning can eliminate the rings that
have significantly low number of records. In this experiment the rings with less
than 5 records (data points) are eliminated from the computation of the classifi-
ers. Figure 8 demonstrates the results of this process with unit-circles. If we
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Fig. 7. Rings assigned by URM for back attack and regular traffic in the training data

compare the Figures 7 and 8, and consider the blue points (i.e. regular traffic
class) then all the blue points above 0.7 (radius) are eliminated. Note that some
blue points below 0.7 are also eliminated. Similarly if we consider the red points
(i.e. intrusion traffic class) then all the red points below 0.7 are eliminated.
This process completely removes the fuzziness at the class boundary 0.7 and
this effect can be clearly seen in Figure 8, and thus meets the class-separate
objective.

Fig. 8. Rings detected by URM for back attack and regular traffic in the training data
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Fig. 9. Rings assigned by URM for Neptune and regular traffic in the training data

Similar results of Neptune attack and regular traffic are obtained and also
presented in Figures 9 and 10. These figures demonstrate that the learning can
help to remove fuzziness at 0.2 and classify the Neptune attack and regular traffic
robustly. Hence the results of training phase show that the URM can be trained
successfully to achieve class-separate objective with the proposed representation
learning. In summary, the knowledge acquired by the URM-based representation
learning for the intrusion datasets are with (i) features 5 and 32 for back attack
and regular traffic pair, and (ii) features 23 and 24 for Neptune attack and regular
traffic pair are (i) twenty rings; each has the width of 0.05; and (iii) rings with
less than 5 records (data points) should be eliminated to achieve an acceptable
class-separate objective.

Testing Phase Results: In this testing phase, the leaned and retained knowl-
edge at the training phase will be transferred to testing phase. For this purpose
the test dataset of NSL-KDD is used. Firstly the back attack and regular traffic
records, with features 5 and 32, of this test dataset are analyzed with the URM
technique and the results are presented in Figures 11 and 12. Figure 11 shows
all the possible 20 rings calculated for the test dataset and it demonstrates sim-
ilar properties as of training dataset pre-sented in Figure 7. Figure 12 shows a
perfect class-separate for the back attack and regular traffic and these results
are comparable with the results in Figure 8. Hence the class-separate objective
is achieved.

In the next simulation, Neptune attack and regular traffic records, with fea-
tures 23 and 24, of the NSL-KDD test dataset are analyzed using the URM
technique. The results are presented in Figures 13 and 14. Figure 13 shows
all the possible 20 rings calculated for the test dataset and it shows some dis-
similarity to the results of the training dataset presented in Figure 9. Also,
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Fig. 10. Rings detected by URM for Neptune and regular traffic in the training data,
similar unit-circle separation in Figure 8 can be seen

Fig. 11. Rings assigned by URM for back and regular traffic in the test data

the classification results presented in Figure 14 does not show perfect class-
separate. However the isolated point (blue, regular traffic) can be removed with
outlier detection techniques. Further training (i.e. multiple instance learning)
using the proposed URM technique is required to separate other overlapping
points.
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Fig. 12. Rings detected by URM for back and regular traffic in the test data, similar
unit-circle separation in Figure 8 can be seen

Fig. 13. Rings assigned by URM for Neptune and regular traffic in the test data



A Single-Domain, Representation-Learning Model 309

Fig. 14. Rings detected by URM for Neptune and regular traffic in the test data,
similar unit-circle separation in Figure 8 can be seen

6 Conclusion

The concept of UCA helped build the URM technique for intrusion detection.
The proposed URM technique used the geometric properties of the intrusion
and regular network traffic, and assigned many traffic records to a single ring to
handle Big Data representation and accomplish class-separate objective. The
results are evaluated by the visual tools only, because it provides the suffi-
cient information to understand and assess the performance of the proposed
representation-learning model. The evaluation of the URM technique, using a
subset of the NSL-KDD dataset, showed that this technique can be used to
manage Big Data classification tasks. It also showed that it can be used to
reduce the fuzzy boundary between network traffic classes through a single-
domain, representation-learning. However, it can be improved to get better
classification accuracy for every intrusion and regular traffic class tested hence
further research is required with multiple-domain, representation-learning with
knowledge-transfer and class-separate objectives. The proposed technique will
be implemented and validated using the emerging HDFS platforms as a part of
the on-going research.
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Abstract. Data Mining explanatory models must deal with relevance: how val-
ues of different data items are relevant to the values of other data items. But to be
able to construct explanatory models, and in particular causal explanatory mod-
els, we must do so by first understanding irrelevance and exactly how irrelevance
plays a role in explanatory models. The reason is that the conditional irrelevance
or conditional no influence relation defines the boundaries of the ballpark within
which an explanatory model lives.

This paper reviews the theory of no influence in the mathematical relation data
structure. We discuss the relationship this theory has to graphical models and we
define a coefficient of no influence and give a method for the estimation of its
p-value.

1 Introduction

Informally, A is irrelevant to B, or A has no influence on B, means A is unrelated,
extraneous and not pertinent to B. Formally, a set of variables A has no influence on a
set of variables B in the context of a set of variables C if and only if for each tuple of
values for C, every tuple of values taken by A can co-occur with every tuple of values
taken by B. This is equivalent to the qualitative independence of Shafer et. a.[8] and
the multivalued dependence of Fagin and Vardi[3] and it bears a direct similarity to the
causal irrelevance definition of Galles and Pearl[4]. Lauritzen (1996)[6] states it this
way: knowing C, reading A is irrelevant for reading B. Consider a causal context in
which C is the direct cause of A. If B is a non-descendant of A, then A has no influence
on B given C. This is called the causal Markov condition.[5] Other phrases for this is
that C shields B from A[9] or that C screens off B from A.

When A has no influence on B in the context of C, then the observed data relation
can be decomposed into two factor relations whose relational join is the observed data
relation. Each factor relation is a projection of the observed data relation. One factor is
the projection on A ∪ C and the other factor is the projection on B ∪ C. With many no
influences, there will be multiple factors. Each factor relation will be a projection of the
observed data relation. Then a relation join decomposition can be computed in which
the factor relations of the join take on the role similar to prime factors in an arithmetic
prime factor decomposition and all the tuples of the observed relation are determined
by the relation join of the factor relations.
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The relation join decomposition can lead to explanatory models. If the small factor
relations are metaphorically thought of as little stories, the relation join of the small
factor relations creates that big story consistent with all the small stories. This process
essentially threads or chains the small stories together. This chaining or threading is,
in fact, equivalent to propositional logic reasoning. The small factor relations are es-
sentially relational constraints and the tuples that belong to the join decomposition are
tuples that satisfy all the constraints.

Real observed data relations typically would not have perfect decompositions, the
same way that in multi-variate analysis it would be rare to observe a sample correlation
coefficient to be zero or a sample regression coefficient to be zero. The way this is
handled is for approximate models to be set up in which the correlation coefficients or
regression coefficients that are statistically insignificantly different from zero are set to
zero. We follow the analogous methodology with relation decomposition.

The first four sections define the concepts we will need, the notation we use and the
theory. The last section explains how we use the theory to form relation decompositions.

2 Preliminary Concepts

2.1 Index Sets and Indexed Relations

Let X1, . . . , XN be the N variables associated with a relation. Let Ln be the set of possible
values variable Xn can take. Let R be a data set to be mined. As our methodology
does not deal with probability, we can assume that each data tuple is unique: it occurs
precisely once. Hence the observed data can be represented as a relation R.

R ⊆
N�

n=1

Ln

We will be working with many relations associated with different and overlapping vari-
able sets and therefore over different domains. For this purpose we will carry an index
set along with each relation. The index set indexes the variables associated with the
relation. An index set is a totally ordered set.

Definition 1. I = {i1, . . . , iK} is an index set if and only if i1 < i2 < · · · < iK . ♠

For a natural number N, we use the convention that [N] = {1, . . . ,N} and |A| designates
the number of elements in the set A. Next we need to define Cartesian product sets with
respect to an index set.

Definition 2. If I = {i1, . . . , iK} is an index set, we define the Cartesian product

�

i∈I
Li =

K�

k=1

Lik = Li1 × Li2 × · · · × LiK

♠
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The definition tells us that the order in which we take the Cartesian product
�

i∈I Li

is precisely the order of the indexes in I.
Now we can define the relation with its index set as a pair called the indexed relation.

Definition 3. If I is an index set with |I| = N and R ⊆
�

i∈I Li, then we say (I,R) is
an indexed N-ary relation on the range sets indexed by I. We also say that (I,R) has
dimension N. We take the range sets to be fixed. So to save writing, anytime we have an
indexed relation (I,R), we assume that that R ⊆

�
i∈I Li, the sets Li, i ∈ I, being the

fixed range sets. ♠

We can perform the usual set operations of union and intersection with the structures
(I,R) and (J, S ) and when I = J:

(I,R) ∪ (I, S ) = (I,R ∪ S )

(I,R) ∩ (I, S ) = (I,R ∩ S )

The subset relation also has the usual meaning.
If R ⊆

�
i∈I Li and S ⊆

�
i∈I Li, then

R ⊆ S if and only if (I,R) ⊆ (I, S )

2.2 Projection

Next we need the concept of projection. If (J,R) is an indexed relation and I ⊆ J, the
projection of (J.R) onto the ranges sets indexed by I is the indexed set (I, S ) where a
tuple (x1, . . . , x|I|) is in S whenever for some |J|-tuple (a1, . . . , a|J|) of R, xi is the value
of that component j of (a1, . . . , a|J|) where the variable associated with place i of the
tuple (x1, . . . , x|I|) is the same as the variable associate with place j of (a1, . . . , a|J|). The
projection operator defined here is the same as the projection operator in the relational
database world.

Let I and J be index sets with I ⊆ J. The projection operator projecting a relation
on the range sets indexed by J onto the range sets indexed by I is written as

πI(J,R) = (I, S )

Projection operators are idempotent. For J ⊆ I, πJ(I,R) = πJ(πJ(I,R)). More generally,
if K ⊆ J ⊆ I, then πK(πJ(I,R) = πK(I,R).

2.3 Relation Join

It follows from the definition of join that the join of projections of an indexed relation
(K,R) must be a superset of (K,R) when the union of the index sets of the projections
equals the index set K.

There is an join absorption law. If (M,R) is an indexed relation and I ⊆ J ⊆ M are
index sets, then

πI(M,R) ⊗ πJ(M,R) = πJ(M,R)

.
The relation join has a number of properties as stated in the following proposition.
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Proposition 1. Let (I,R), (I,U), (J, S ),and (K, T ) be indexed relations with R ⊆
�

i∈I Li,
S ⊆
�

j∈J L j, T ⊆
�

k∈K Lk, and U =
�

i∈I Li. Then,

(I,R) ⊗ (J, S ) = (J, S ) ⊗ (I,R)

((I,R) ⊗ (J, S )) ⊗ (K, T ) = (I,R) ⊗ ((J, S ) ⊗ (K, T ))

(I,R) ⊗ (I,U) = (I,R)

(I,R) ⊗ (I,R) = (I,R)

(I,R) ⊗ [(J, S ) ∪ (J, T )] = [(I,R) ⊗ (J, S )] ∪ [(I,R) ⊗ (J, T )]

[(I,R) ∪ (I, T )] ⊗ (J, S ) = [(I,R) ⊗ (J, S )] ∪ [(I, T ) ⊗ (J, S )]

(J, S ) ⊆ (J, T ) implies (I,R) ⊗ (J, S ) ⊆ (I,R) ⊗ (J, T )

(I,R) ⊆ (I, T ) implies (I,R) ⊗ (J, S ) ⊆ (I, T ) ⊗ (J, S )

This makes the relation join operator one which is an operation of an idempotent com-
mutative groupoid and as well it is union preserving on both its left and right operands.
The union preserving property makes it increasing on both its left and right operands.

We now define the restriction operator on indexed relations. This is the same as the
selection operator in the relational database world.

Definition 4. Let (I,R) be an indexed relation with R ⊆
�

i∈I Li. Let J ⊆ I and a ∈�
j∈J L j. Then the restriction of (I,R) to (J, a) is denoted by (I,R)|(J,a) and is defined by

(I,R)|(J,a) = (I, {r ∈ R | πJ(I, r) = (J, a)})

♠

Having the concept of restriction, we can state the Join Representation Theorem.

Theorem 1. Let M = I ∩ J � ∅. Then

(I,R) ⊗ (J, S ) =
⋃

(M,c)∈πM (I,R)∩πM (J,S )

(I,R)|(M,c) ⊗ (J, S )|(M,c)

The representation of an indexed relation join can be completely expressed in terms of
the join of projections as stated in the following corollary.

Corollary 1.

(I,R) ⊗ (J, S ) =
⋃

(M,c)∈πM (I,R)∩πM (J,S )

πI−M(I,R)|(M,c) ⊗ (M, c) ⊗ πJ−M(J, S )|(M,c)

3 No Influence

The idea of no influence of an index set I on an index set J in an indexed relation (K,R)
is that the tuple values in (K,R) taken on the domain indexed by I do not constrain
or limit in any way the tuple values in (K,R) taken on the domain indexed by J in
each block (K,R). For any (M, c) ∈ πM(K,R), the (M, c) block of (K,R) is defined by
(K,R)|(M,c). The tuples on the domain indexed by I in the (M, c) block are given by the
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restriction πI(K,R)|(M,c). The tuples on the domain indexed by J in the (M, c) block are
given by πJ(K,R)|(M,c). No influence means that every tuple in πI(K,R)|(M,c) can form
a join with every tuple in πJ(K,R)|(M,c) and then form a join with (M, c). So if there
are m tuples in πI(K,R)|(M,c) and n tuples in πJ(K,R)|(M,c), there will be mn tuples in
πJ(K,R)|(M,c) ⊗ (M, c) ⊗ πI(K,R)|(M,c) in the case of no influence.

Definition 5. Let (K,R) be an indexed relation and {I, J,M} a non-trivial partition of
K. We say conditioned on M, I and J have No Influence on each other if and only if

∪(M,c)∈πM (K,R)πI((M,R)|(M,c)) ⊗ (M, c) ⊗ πJ((M,R)|(M,c)) ⊆ (K,R)

We also use the language that I has no influence on J.

♠

Figure 1 shows a simple relation ({1, 2, 3},R in which 1 has no influence on 2 given 3.
a1 must be different from a2 and a3 must be different from a4. c1 must be different from
c2. b1, b2, b3 must all be different and b4 and b5 must be different. In the context of the
block defined by ({3}, c1), i.e. ({1, 2, 3},R)|{3},c1) each occurring value for the variable of
index 1 pairs with each occurring value for the variable of index 2.

1 3 2
a1 c1 b1

a1 c1 b2

a1 c1 b3

a2 c1 b1

a2 c1 b2

a2 c1 b3

a3 c2 b4

a3 c2 b5

a4 c2 b4

a4 c2 b5

Fig. 1. Shows a no influence example. 1 has no influence on 2 given 3. See all possible pairings
in the block of c1 and all possible pairings in the block of c2.

Based on corollary (1) we have a specialization when both sets of a join decomposi-
tion are projections of the same indexed relation.

Proposition 2. Let {I′, J′,M} be a partition of K. Then,

πI′∪M(K, T ) ⊗ πJ′∪M(K, T ) =
⋃

(M,c)∈πM (K,T )

πI′ (K, T )|(M,c) ⊗ (M, c) ⊗ πJ′(K, T )|(M,c)

The definition of no influence immediately leads to the no influence theorem.
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Theorem 2. No Influence Theorem
Let (K,R) be an indexed relation and {I′, J′,M} be a non-trivial partition of K. Then I′

has no influence on J′ if and only if

πI′∪M(K,R) ⊗ πJ′∪M(K,R) = (K,R)

In the database world, the relation join decomposition of the no influence theorem is
called a lossless decomposition. The concept of a relation being a join decomposition
of two relations is related to the generalization of functional dependency in the database
world. The generalization is called multivalued dependency.[2]

Definition 6. Let (M,R) be an indexed relation and {I, J,K} be a partition of M. The
multivalued dependency I →→ J holds in (M,R) if and only if for every (I ∪ K, d), (I ∪
K, d′) ∈ πI∪K(M,R), where πI(I ∪ K, d) = πI(I ∪ K, d′),

πJ(M,R)|(I∪K,d) = πJ(M,R)|(I∪K,d′)

♠

Theorem 3. (Fagin 1977)
Let (M,R) be an indexed relation. Then I →→ J holds in (M,R) if and only if (M,R) =
πI∪J(M,R) ⊗ πI∪K(M,R)

We adopt the notation that Dawid[1] uses for conditional independence to indicate no
influence.

Definition 7. Let (K,R) be an indexed relation and {I, J,M} be a partition of K. If I has
no influence on J we will write I � J | M : (K,R). If the context (K,R) is clear we will
just write I � J | M.

If the context is the indexed relation (K,R) and if I, J,M are mutually exclusive sub-
sets of K that do not cover K, then we will write I � J | M : (K,R) to mean

πI∪M(K,R) ⊗ πJ∪M(K,R) ⊆ πI∪J∪M(K,R)

♠

There are some additional properties of the no influence relation: it satisfies the proper-
ties of what has been called a semi-graphoid (Pearl and Paz[7] called it a graphoid). A
semi-graphoid is a set of triples in which each component is an index set and satisfies
the properties stated in the following definition.

Definition 8. Let G ⊆ P(M)3. G is a semi-graphoid if and only if

– Exclusivity: (A, B,C) ∈ G implies A, B,C are mutually exclusive sets M
– Symmetry: (A, B,C) ∈ G implies (B, A,C) ∈ G
– Decomposition: (A, B∪ C,D) ∈ G implies (A, B,C ∪ D) ∈ G
– Weak Union: (A, B ∪ C,D) ∈ G implies (A, B,D) ∈ G
– Contraction: (A, B,D) ∈ G and (A,C, B ∪ D) ∈ G imply (A, B∪ C,D) ∈ G
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4 Factoring

Now we begin the development of the full join decomposition of a relation. Each of the
component relations in the join decomposition we call a factor relation. When the join
of two factor relations equals a given relation we say that the given relation is factored.
The index set on which a factor relation is defined we call its index factor set. In this
section we develop the properties relating to this kind of factoring.

The first property is that if the join of two factor relations equals the given relation,
then any factor relations defined on supersets of the index factor sets will also factor the
given relation.

Proposition 3. Suppose πI(M,R) ⊗ πJ(M,R) = (M,R). If I ⊆ I′ and J ⊆ J′, and
I′ ∪ J′ = M, then πI′ (M,R) ⊗ πJ′(M,R) = (M,R).

If a given relation is factored into a decomposition of N factor relations, then grouping
these factor relations into two possibly overlapping groups will also factor the given
relation.

Proposition 4. Let (M,R) = ⊗N
n=1πMn (M,R) and S ∪ T = {1, . . . ,N}. Then

π∪s∈S Ms (M,R) ⊗ π∪t∈T Mt (M,R) = (M,R)

Because of the relationship between relation join decomposition and no influence, we
can see that in any possibly overlapping grouping of the factor relations, where U is the
union of the index factor sets in the first group and V is the union of the index factor
sets in the second group, U − V � V − U | U ∩ V .

Corollary 2. No Influence Corollary
Let (M,R) = ⊗N

n=1πMn (M,R). Define T = {T | for some S ⊆ [N], T = ∪s∈S Ms}, then
U,V ∈ T implies

U − V � V − U | U ∩ V

Now we begin to explore the relationship between a join decomposition of a indexed
relation (M,R) and the various no influence relationships it implies. Suppose that
M1, . . . ,MN are the index factor sets of the factoring so that M = ∪N

n=1Mn, and I, J ⊂ M,
I ∩ J = ∅. If I has a nonempty intersection with some index factor set implies that J’s
intersection with that index factor set is empty, then this forces I to have no influence
on J given the remaining index set: I � J | M − (I ∪ J)

Proposition 5. Let (M,R) = ⊗N
n=1πMn (M,R). Suppose I, J ⊆ M and I ∩ J = ∅. If

I ∩ Mn � ∅ implies J ∩ Mn = ∅, n = 1, . . . ,N, then I � J | M − (I ∪ J)

Definition 9. No Influence Graph and Relation
Let (M,R) be an indexed relation. The no influence graph G associated with (M,R) is
given by G = (M, E) where E = {{i, j} | i � j | M − {i, j}}. The no influence relation
F associated with (M,R) is defined by F = {(i, j) ∈ M × M | i � j | M − {i, j}}. The
complement of the no influence graph is called the influence graph. ♠
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The next proposition states that the Cartesian product of the two set differences between
the index factor sets of a join decomposition must constitute a block of the no influence
relation.

Proposition 6. Let (M,R) be an indexed relation with no influence relation F =

{(i, j) | i � j | M − {i, j}}. If πA(M,R) ⊗ πB(M,R) = (M,R), then

(A − B) × (B − A) ⊆ F

Definition 10. Rectangular Block
Let E ⊆ M × M. (A, B) is called a rectangular block of E if and only if A × B ⊆ E.

♠

Any pair (I, J) of no influence sets of an indexed relation (M,R) constitute a rectangular
block of the no influence relation of (M,R).

Proposition 7. Let (M,R) be an indexed relation and its no influence relation F =
{(i, j) | i � j | M − {i j}}. Then I � J | M − (I ∪ J) implies I × J ⊆ F.

The next result we discuss is concerned with block covers of relations and how they
relate to no influence: if I � J | M − (I ∪ J), then each set of the cover is a subset of
M − I or a subset of M − J.

Definition 11. Block and Block Cover
Let E ⊆ M ×M. Then a subset A ⊆ M is called a block of E if and only if A × A ⊆ E. A
collection of sets {A1, . . . , AN} is called a block cover of E if and only if∪N

n=1An×An = E.

Clearly, if ∪N
n=1An × An = E, then M ×M − ∪N

n=1An × An = Ec. And if I × J ⊆ M ×M −
∪N

n=1An × An, then Mn ⊆ I or Mn ⊆ J.

Proposition 8. Let {Mn}Nn=1 be a cover of M. If

I × J ⊆ M × M − ∪N
k=1Mk × Mk

Then for every n ∈ {1, . . . ,N}, Mn ⊆ M − I or Mn ⊆ M − J

If {Mn}Nn=1 is a block cover of the influence relation E. Then M ×M −∪N
n=1 Mn ×Mn is a

block cover of the no influence relation Ec. And if (M,R) is factored with index factor
sets A and B, then Mn ⊆ A or Mn ⊆ B.

Proposition 9. Let (M,R) be an indexed relation and {Mn}Nn=1 be a cover for M satis-
fying

{(i, j) | i � j | M − {i, j} = M × M − ∪N
n=1Mn × Mn}

If πA(M,R) ⊗ πB(M,R) = (M,R), then for every n ∈ {1, . . . ,N}, Mn ⊆ A or Mn ⊆ B.

Definition 12. Clique
Let G = (M,H) be a graph. A subset I ⊆ M is called a clique of G if and only if

1. i, j ∈ I implies {i, j} ∈ H
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2. if J ⊇ I and i, j ∈ J implies {i, j} ∈ H, then J = I

Let P ⊆ M × M. A subset I ⊆ M is called a clique of P if and only if

1. Block: I × I ⊆ P
2. Maximal: J ⊇ I and J × J ⊆ P implies J = I

Figure 2(b) shows what happens when an indexed relation is join decomposed into
factors whose index factor sets are the cliques of the influence graph. When the factor
relations are grouped into two factor groups, each factor must be in at least one of the
groups. Each of the two group index factor sets is a superset of the union of the factor
sets they contain.

1

2

3

4

5

6

7

8

9

(a) Influence Graph

M = {1, 2, 3, 4, 5, 6, 7, 8, 9}
(M,R) = ⊗8

n=1πMn (M,R)
I = {1, 2}, J = {8, 9}, M − (I ∪ J) = {3, 4, 5, 6, 7}

I ∩ J = ∅, I � J |M − (I ∪ J)
I ∪ (M − (I ∪ J)) =M − J
J ∪ (M − (I ∪ J)) =M − I

(M,R) = πM−I(M,R) ⊗ πM−J(M,R)
I × J ⊆M ×M − ∪8

n=1Mn ×Mn

S = {n |Mn ⊆M − J} = {1, 2, 5, 6, 7}
T = {n |Mn ⊆ M − I} = {3, 4, 6, 7, 8}

M − J =M1 ∪M2 ∪M5 ∪M6 ∪M7 = ∪s∈SMs

M − I =M3 ∪M4 ∪M6 ∪M7 ∪M8 = ∪t∈TMt

Clique M − J M − I
Symbol Cliques {1, 2, 3, 4, 5, 6, 7} {3, 4, 5, 6, 7, 8, 9}

M1 {1, 2, 4} 1 0
M2 {2, 4, 5} 1 0
M3 {5, 6, 9} 0 1
M4 {5, 8, 9} 0 1
M5 {2, 3} 1 0
M6 {3, 6} 1 1
M7 {4, 7} 1 1
M8 {7, 8} 0 1

(b) Clique Containment Table

Fig. 2. Shows relationship between cliques and no influence pair of sets I = {1, 2}, J = {8, 9}
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Theorem 4. No Influence Decomposition Theorem
If (M,R) = ⊗N

n=1πMn (M,R) and I × J ⊆ M ×M − ∪N
n=1 Mn ×Mn, then I � J|M − (I ∪ J).

The collection of cliques of an influence graph of an indexed relation (M,R) cover M.
There is a relationship that can be defined between covers of a set. Let C be a collection
of covers of a set M. Define a binary relation P ⊆ C × C by

P = {(C1,C2) ∈ C × C | C ∈ C1 implies that for some D ∈ C2,C ⊆ D}

When (C1,C2) ∈ P we say that C1 is a refinement of C2 or equivalently, that C2 is a
coarsening of (C1.

It is easy to see that the binary relation P is reflexive and transitive and is therefore
a pre-order. However, if the cover has the property that no two sets in the cover can be
in a subset relation, then the binary relation P is antisymmetric and therefore a partial
order.

Definition 13. Let C be a cover of a set M. C has the Subset Property if and only if
A, B ∈ C and A ⊆ B imply A = B.

Notice that any collection of cliques of a graph constituting a cover has the subset
property.

Proposition 10. Let C be a collection of covers of a set M where each cover in C has
the subset property. Define a binary relation P ⊆ C × C by

P = {(C1,C2) ∈ C × C | A ∈ C1 implies that for some B ∈ C2, A ⊆ B}

Then P is a partial order.

Definition 14. Let P be a partial order on a set C. CM is called a Largest Element if
and only if for every C1 ∈ C, (C1,CM) ∈ P.

Proposition 11. Largest elements of a partial order are unique.

Now it is clear that if P is defined on the collection of all block covers of the influence
graph having the subset property, the cover defined by the set of cliques of the influence
graph is the unique largest element. Since it is the case that the larger the index sets are
in a join composition, the smaller the resulting join. Therefore, the smallest resulting
join composition is the join composition resulting from projections using index sets that
are the cliques of the influence graph. Therefore, if the collection C is the collection of
the cliques of the influence graph of (M,R), then it must be the case that for any other
block cover B of the influence graph of (M,R),

⊗C∈CπC(M,R) ⊆ ⊗B∈BπB(M,R)

Even though ⊗C∈CπC(M,R) produces the smallest possible decomposition, it still may
even properly contain (M,R). So the strongest statement that can be made is (M,R) ⊆
⊗C∈CπC(M,R).
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Definition 15. Irreducibility
Let (M,R) be an indexed relation. (M,R) is called an irreducible indexed relation if
and only if for every possible distinct {M1,M2} cover of M

(M,R) � πM1 (M,R) ⊗ πM2 (M,R)

A join decomposition (M,R) = ⊗N
n=1πMn (M,R) is called an irreducible decomposition

if and only if for each n ∈ [N], πMn (M,R) is an irreducible indexed relation. ♠

It immediately follows from the definition of irreducibility that an indexed relation
(M,R) is irreducible if and only if its no influence relation is empty. So it is certainly the
case that for any {I, J} cover of M it is not the case that I � J | M− (I ∪ J). In particular
this implies that for any i, j ∈ M, it is not the case that i � j | M − {i, j}. Thus in an
irreducible join decomposition (M,R) = ⊗N

n=1πMn (M,R), each of the factor projections,
πMn (M,R), is a maximal projection, maximal in the set Mn, having an empty no influ-
ence relation. So if we define the influence graph G = (M, E) arising from the indexed
relation (M,R), by Ec = {{i, j} | i � j | M − {i, j}}, then {Mn}Nn=1 are the cliques of G.

Definition 16. Complete Irreducible Decomposition
An irreducible decomposition (M,R) = ⊗N

n=1πMn (M,R) is called a complete irreducible
decomposition if and only if C a clique of the influence graph of (M,R) implies C ∈
{Mn}Nn=1. ♠

In arithmetic, irreducible numbers are numbers that cannot be further factored. Such
numbers are called prime. We might think that like in arithmetic, a prime factor decom-
position of relations is unique up to the order of the factors. But for relation decomposi-
tion this is not the case. There can be multiple irreducible factor decompositions of the
same composite relation.

When (M,R) = ⊗N
n=1πMn (M,R), we say that the Mn sets are the index factor sets.

If for the same relation πA(M,R) ⊗ πB(M,R) = (M,R) we say that A and B are group
factor sets. As stated in the next proposition, the group factor sets are bounded above
by unions of the index factor sets.

Proposition 12. Let (M,R) = ⊗N
n=1πMn (M,R) be a complete irreducible join decom-

position. Let {A, B} be a cover of M satisfying A − B � ∅ and B − A � ∅ and
πA(M,R) ⊗ πB(M,R) = (M,R). Then there exists S , T ⊆ [N] such that S ∪ T = [N]
and

A ⊆ ∪s∈S Ms

B ⊆ ∪t∈T Mt

and (
π∪s∈S Ms (M,R)

)
⊗
(
π∪t∈T Mt (M,R)

)
= (M,R)

Recall that the decomposition proposition implies that if I � J | M − (I ∪ J), then for
any subsets I′ ⊆ I and J′ ⊆ J, I′ � J′ | M − (I′ ∪ J′). So a no influence pair of sets can
be decomposed into a smaller pair of sets having no influence. But the inverse does not
hold. It does not follow that if I � J | M − (I ∪ J) and I � K | M − (I ∪ K), then we can
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build up the no influence pair of sets and obtain I � J∪K | M− (I∪ J∪K). However, if
the indexed relation (M,R) has a decomposition (M,R) = ⊗N

n=1πMn (M,R) and the factor
sets of the decomposition satisfy {(i, j) | i � j | M − {i, j}} = M × M − ∪N

n=1 Mn × Mn,
then

I � J | M − (I ∪ J) and I � K | M − (I ∪ K) imply (I � J ∪ K | M − (I ∪ J ∪ K)

Proposition 13. Intersection Property
Let (M,R) be an indexed relation and its no influence relation

F = {(i, j) | i � j | M − {i j} }

If {Mn}Mn=1 is a cover of M satisfying

(M,R) = ⊗N
n=1πMn (M,R)

F = M × M − ∪N
n=1 Mn × Mn

then, I � J | M − (I ∪ J) and I � K | M − (I ∪ K) imply I � (J ∪ K) | M − (I ∪ J ∪ K)

Thus an indexed relation (M,R) that has factors satisfies the intersection property and
this makes the collection of triples

G = {(A, B,D) ∈ P(M) | A � B | C : (M,R)}

a graphoid.
Figure 3 shows how conditional no influences can be seen from the maximally com-

plete bipartite subgraphs of the no influence graph GN of a relation (M,R) whose factors
are the cliques of its influence graph. If (I, J) is pair of sets associated with a maximally
complete bipartite subgraph, then I � J | M − (I ∪ J) and in the influence graph I is
separated from J by M − (I ∪ J).

5 Forming the Decomposition

Let (M,R) be an indexed relation and i, j ∈ M. If i � j | M − {i, j}, then it would
be the case that (M,R) = πM−{i}(M,R) ⊗ πM−{ j}(M,R). Since it always is the case that
(M,R) ⊆ πM−{i}(M,R)⊗πM−{ j}(M,R), it is reasonable to base a coefficient of no influence
on |πM−{i}(M,R) ⊗ πM−{ j}(M,R) − (M,R)|. Normalized,

ρi j =
|πM−{i}(M,R) ⊗ πM−{ j}(M,R) − (M,R)|

|πM−{i}(M,R) ⊗ πM−{ j}|

takes the value 0 when i � j | M − {i, j} and takes a value greater than 0 otherwise.
To determine the statistical significance of ρi j we do a permutation test. Thinking of

the tuples of (M,R) arranged as a matrix with each row representing one tuple, we can
take the column associated with the index i and randomly shuffle all the values of the
column. Similarly, we can take the column associated with the index j and randomly
shuffle all the values of that column. Call the permuted relation (M,R1). Let us do
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this Z times forming the permuted relations (M,R1), . . . , (M,RZ). Associated with each
permuted relation (M,Rz) is its coefficient of no influence ρz

i j. We define the p-value
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(a) Influence Graph
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(b) No Influence Graph
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(c) Bipartite 1
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(d) Bipartite 2

1
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3 5

(e) Bipartite 3

2 4

5

6

(f) Bipartite 4

3

4

5

6

(g) Bipartite 5

4

5

6

(h) Bipartite 6

Fig. 3. Shows an example no influence graph and its complement, the influence graph. The max-
imally complete bipartite subgraphs of the no influence graph are shown. In the influence graph:
(Bipartite 1) {1, 7} is separated from {2, 3} by {4, 5, 6}. (Bipartite 2) {2} is separated from {3, 4, 7}
by {1, 5, 6}. (Bipartite 3) {3} is separated from {1, 2, 5} by {4, 6, 7}. (Bipartite 4) {4} is separated
from {2, 5, 6} by {1, 3, 7}. (Bipartite 5) {5} is separated from {3, 4, 6} by {1, 2, 7}. (Bipartite 6) {6}
is separated from {4, 5} by {1, 2, 3, 7}.
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associated with the Null Hypothesis that i � j | M − {i, j} by

p − valuei j =
|{z | ρz

i j > ρi j}| + 1
2 |{z | ρ

z
i j = ρi j}|

Z + 1

We reject the hypothesis that i � j | M−{i, j} at significance level αwhen p−valuei j <
α. Now we can define the relation F ⊆ M × M by

F = {(i, j) ∈ M × M | p − valuei j < α}

Associated with the collection of cliquesC of F, we can form the relation decomposition

⊗A∈CπA(M,R)

6 Concluding Discussion

Let (M,R) be the observed data relation and let ⊗A∈CπA(M,R) be its relation decompo-
sition. Then we can asert that for the variables indexed in each A ∈ C, the variables are
directly jointly dependent and the action of the joint dependence is given by the tuples
in πA(M,R). Note that because of the dependency, πA(M,R) ⊂

�
a∈C La Proper subsets

indicate constraints and constraints define dependency.
For any A, B ∈ C, such that A ∩ B = ∅, we can assert that the variables indexed

by A have no influence on the variables indexed by B given the remaining variables
indexed by M − (A∪ B). Further, we can define the full collection of explanatory causal
models which are consistent with the relation decomposition. These causal models can
be feedforward like Bayesian Networks or can be feedback causal models. Each such
model constitutes a causal explanation of the process by which the observed data (M,R)
arises.
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Abstract. The issue of detecting optimal split points for linear regression trees 
is examined. A novel approach called Turning Point Regression Tree Induction 
(TPRTI) is proposed which uses turning points to identify the best split points. 
When this approach is used, first, a general trend is derived from the original 
dataset by dividing the dataset into subsets using a sliding window approach 
and a centroid for each subset is computed. Second, using those centroids, a set 
of turning points is identified, indicating points in the input space in which the 
regression function, associated with neighboring subsets, changes direction. 
Third, the turning points are then used as input to a novel linear regression tree 
induction algorithm as potential split points. TPRTI is compared in a set of  
experiments using artificial and real world data sets with state-of-the-art regres-
sion tree approaches, such as M5. The experimental results indicate that TPRTI 
has a high predictive accuracy and induces less complex trees than competing 
approaches, while still being scalable to cope with larger datasets. 

Keywords: Prediction, Linear Regression Tree, Model Tree, Turning Point  
Detection. 

1 Introduction 

Regression trees are widely used machine learning techniques for numerical prediction. 
Among the regression trees, we may distinguish those that associate a constant to each 
leaf node, for instance CART [2], and those that fit a less trivial model to each leaf node. 
Among the latter, we further distinguish a class of regression trees that fit a linear model 
to each leaf node, such as linear regression trees. Linear regression tree induction has 
been intensely researched. One of the first approach, M5[12], induces the tree using a 
CART-like splitting decision which is a binary split based on mean values and uses con-
stant regression functions in the nodes; the attribute that best reduces the variance in the 
nodes is chosen for the split, and its mean value is selected as the split value. After the 
tree is fully developed M5 fits a linear model to each leaf-node during pruning phase. 
This splitting method is also used by many regression approaches which associate  
non-constant models with the leaf-nodes. However, in conjunction with non-constant 
regression models, using mean values of attributes as split points and using variance 
reduction as an objective function does not necessarily obtain the best model [7]. 

To address this issue Karalic proposed RETIS [7] which fits a linear model in each 
node and uses minimization of the residual sum of squared errors (RSS) instead of the 
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variance as splitting function. However, although the approach yields significantly 
better accuracy and smaller regression trees than M5 [12], it has been labeled “intrac-
table” because to find the best pair {split attribute/split value} all potential split values 
for each input attribute need be evaluated, making this approach too expensive even 
for medium-sized datasets. Therefore, many more scalable algorithms for inducing 
linear regression trees have been proposed [1, 6, 7, 11, 12, 15, 5, 17] which rely  
on heuristics, sampling, approximations, and different node evaluation functions to 
reduce the computational cost of the RETIS algorithm.  

Detecting turning points which indicate locations where the general trend changes  
direction can be useful in many applications. In this paper, we propose a new approach 
for Linear Regression Tree construction called Turning Point Regression Tree Induction 
(TPRTI) that infuses turning points into a regression tree induction algorithm to achieve 
improved scalability while maintaining accuracy and low model complexity. TPRTI 
induces decision trees using the following procedure. First, a general trend is derived 
from the dataset by dividing the dataset into a sequence of subsets of equal size using a 
sliding window, and by associating a centroid with each subset. Second, using those 
centroids, a set of turning points is identified, indicating points in the input space in 
which the piecewise linear function associated with neighboring subsets changes  
direction. Finally, the identified turning points are used in two novel top down linear 
regression tree induction algorithms as potential split points. The two algorithms which 
are called TPRTI-A and TPRTI-B are discussed in section 2. 

 

Fig. 1. Panel (A) represents hypothetical dataset in a plane (x,y). (B) The dataset is subdivided 
into overlapping subsets of equal size. (C) Centroids are joined by straight lines to form a gen-
eral trend in the dataset. In panel (D) m1 and m3 are detected as turning points. 
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Figure 1 illustrates our proposed approach to detecting turning points. The input 
dataset is shown in panel (A). In panel (B) the dataset is sorted by the input attribute 
and divided into subsets of equal size using a sliding window approach. In panel (C) 
the general trend in the dataset is derived by connecting the centroids of neighboring 
subsets, obtaining a piecewise linear function. Finally in panel (D), points m1 and m3 
are selected as turning points as they exhibit sharp turns in the piecewise linear func-
tion. The selected turning points are later fed to a linear regression tree algorithm as 
potential split points. Algorithm 1 gives the pseudo code of turning point detection 
algorithm. 

 
Algorithm 1: Determining turning points 
1 Inputs 

2   plane (Xk,Y) where Xk’s  are input attributes (k=1,2,..p) 

3  Xk: real valued discrete or continuous variable 

4   y: target variable  

5 Outputs 

6   Turning points set 

7 

8 Project dataset onto each plane (Xk,Y) 

9  For each plane (Xk,Y) 

10  Sort the data per attribute Xk  

11  if Xk discrete attribute then 

12   Compute centroids for each distinct value of Xk  

13   Label centroids as turning points   

14  else 

15   Use a sliding window of fixed size subsets for the input 

attribute to split the data into neighboring subsets from 

small values of Xk
 to the largest value of Xk  

16    Determine general trends by computing the centroids of 

each subset and connect them to obtain piecewise linear 

functions 

17    Identify turning points by analyzing the angle θ between 
neighboring subsets of the piecewise linear function 

18  Output the set of turning points 

The main contributions of the paper include: 

1. A novel approach for turning point detection which relies on window sub-setting is 
introduced. 

2. Two novel linear regression tree induction algorithms called TPRTI-A and TPRTI-
B which incorporate turning points into the node evaluation are introduced. 

3. State of the art linear regression tree algorithms are compared with each other and 
with TPRTI-A and TPRTI-B for a challenging benchmark involving 12 datasets. 

4. The experimental results indicate that TPRTI is a scalable algorithm that is capable 
of obtaining a high predictive accuracy using smaller decision trees than other  
approaches. 
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The rest of the paper is organized as follows. Section 2 contains the description of our 
proposed methods for linear regression trees. In section 3 we show results of experi-
mental study and we conclude in Section 4. 

Table 1. Notation used in the remaining of the paper 

K 
User defined overlapping parameter characterizing the number of examples pertaining to two consecutive 

subsets.  

S  Size of each subset 

θ Angle at a centroid  

β  User-defined threshold angle such that if cosθ < cosβ then the centroid with angle θ is a turning point 

StpXY Set of turning points in the XY-plane  

Stp  Union of all StpXY (for all planes) 

Stp_left Turning Points set for left sub-node such that Stp=Stp_left U Stp_right 

Stp_right Turning Point set for right sub-node such that Stp=Stp_left U Stp_right 

RSS Residual Sum of Squared errors 

2 The Tprti Approach 

Linear regression algorithms can be divided into three groups: The first group fits a 
constant regression model to each intermediate node. M5 [12] is an example of this 
approach. The second group fits a more complex regression model to each node; 
usually at least a model is needed per input attribute. RETIS [7] is one such example 
since it fits multiple regression models per input attribute; one regression model for 
each distinct value of each input attribute. The third group uses linear regression 
models in the leaves, but at each node transforms the regression problem into a classi-
fication problem in order to use more efficient node evaluation function. SECRET 
[5], GUIDE [9], and SUPPORT [3], are examples of such approaches. Each group can 
be distinguished by how well it performs with respect to model accuracy, model com-
plexity, and runtime complexity, which is how scalable the approach is when data 
sizes increase. To evaluate a node, the first group is computationally more efficient 
since the evaluation function in each node is the simplest; however it often yields 
complex models and low accuracy. The second group has a much better accuracy, and 
model complexity but it comes at the expense of a higher cost node evaluation. Be-
tween both ends of the spectrum lies the third group. The major limitation of the first 
group of algorithms is illustrated next. 

2.1 Illustrating the Limitations of the Variance Based-Approaches 

Many widely used first group algorithms use variance as node evaluation function  
and we will refer to them as “variance-based approaches”. M5 [12] is one such an 
example. As pointed out in [7] variance based algorithms have a fundamental imper-
fection to induce linear regression trees that are optimal because the variance is not a 
good node evaluation criterion. To illustrate this point let us consider a dataset called 
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2.2 Centroids and Turning Points Computation 

First, a general trend is derived from the dataset by sorting the examples based on the 
input attributes, by dividing the dataset into subsets of equal size using a sliding  
window, and by associating a centroid with each subset. Second, using those centro-
ids, a set of turning points is identified, indicating points in the input space in which 
the piecewise linear function—which was obtained by connecting centroids of neigh-
boring subsets—significantly changes direction. 

The input attributes to the algorithm are real valued attributes that are either dis-
crete or continuous. Lines 8, 9, and 10 in algorithm 1 project the dataset onto the p 
xky-planes (k=1,..,p). For the remaining of the lines, line 11 to 17 we consider one 
plane at a time. Line 10 ensures that the dataset associated with the plane is sorted 
with respect to the input attribute. Lines 11, 12, and 13 treat the case of discrete 
attributes. First, the algorithm queries the distinct values of the discrete attribute. It 
then computes the centroids for each attribute. Next, each centroid is labeled turning 
point.  

Lines 14 to 17 treat the case where the input attribute is continuous. There are 
three user-defined parameters K, S, β that need to be set. Let assume that a centroid 
has angle θ. β is a user-defined angle such that if cos  < cos  then the centroid is a 
turning point. K is the overlapping parameter characterizing the number of exam-
ples pertaining to two consecutive subsets. S is the size of each subset. In line 15 
subsets of equal size S are created using the sorted dataset as follows: S0 is com-
posed of the first S examples. At any given step i, (i>0), the examples in subset Si 
are determined by dropping the first K examples in Si-1 and by adding the next K 
new examples. When K=S, the subsets are disjoint. When 0<K< S the subsets over-
lap. In line 17 turning points are computed for each plane by analyzing the angle at 
each centroid.  

2.3 Node Evaluation 

We introduce TPRTI-A, which is a mixture of first group and second group approach 
in that its node evaluation avoids exhaustive search by evaluating only a supplied list 
of turning points. We also introduce TPRTI-B which is a mixture of all 3 groups in 
that it uses a two-step node evaluation. It avoids exhaustive search by evaluating only 
a supplied set of turning points. It first fits a model to current node, and uses a simple 
evaluation function which is the distance of each turning point to the fitted model, to 
select the turning point which distance is the largest. TPRTI-A and TPRTI-B differ by 
their node evaluation function. They both use as input, a set of predetermined turning 
points. 

2.3.1 Node evaluation for TPRTI-A 
The first approach, TPRTI-A, evaluates all turning points by a look-ahead strategy 
and selects the one that yields the minimum RSS. 
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Algorithm 3: Node evaluation for TPRTI-B  
1  If stopping criteria is reached then  
2    Return 
3  Fit current node with linear model F  
4  For each turning point tp in Stp 

5    Compute distance to F 
6  Select tp_max the point with the largest distance to F 
7  For each input coordinate of tp_max 
8   Split data in SLeft and Sright 
9   Compute look-ahead weighted RSS  
10 Select the turning point that minimizes weighted RSS as split 
   point 
11  split Stp in Left_Stp, and Right_Stp 

 
In line 3 a model F is fitted to the node. Lines 4, 5, and 6 select the point with the 

largest distance to F. Line 7 to 11 are similar to what was presented for TPRTI-A in 
2.3.1 except that here the points are represented in the actual space; not in a plane. 
Hence the turning points set Stp, although computed as presented previously in  
algorithm 1, is formed of points with their coordinates in the data space. This is so 
because line 3 needs to compute the distance to F in the entire space.  

2.4 Runtime Complexity 

We compute the runtime cost to evaluate a node. Let N be the total number of training 
examples in the node, m the number of subsets, p the number of input attributes, and t 
total number of turning points. Assuming N>>p, evaluating each split candidate costs 
O(p2N); If TPRTI-A method is used, all the turning points are evaluated and the cost 
to evaluate a node is O(p2Nt). If TPRTI-B is used the distance of each turning point in 
the data space to the fitted curve cost O(p) which leads to O(pt) for the t turning 
points. O(p2N) is needed to evaluate each of the p input attribute, and O(p2N) is as 
well needed to fit a model to current node; obtaining: O(pt+p2N+Np3) =O(p2N(p+1)) . 
With M5, the split point is the mean point of each p variable. Hence, t=p obtaining 
O(p3N); In the worst case, RETIS will test each value of each variable leading to 
t=pN ; thus O(p3N2). TPRTI-A worse case happens when each centroid is a turning 
point; which leads to t=pm hence O(p3Nm). Table 2 summarizes the runtime  
complexity of each approach. 

Table 2. Node Runtime complexity of TPRTI in comparison to M5 and RETIS 

 
RETIS TPRTI-A TPRTI-B M5 

Runtime complexity O(p3N2) O(p3Nm) O(p2N(p+1))  O(p3N) 

2.5 Stopping Criteria 

RETIS, M5 and TPRTI share the following stopping criteria 

• The algorithm stops if the number of examples in the node is less than a minimum 
number set by user.  
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• The algorithm stops if the subsequent split sub-nodes do not improve the error 
function more than a minimum value set by user. 

• However, TPRTI has an additional stopping condition: The algorithm may  
terminate if there is no more turning point in the node dataset to evaluate. 

3 Empirical Evaluation  

In this section results of extensive experimental study of TPRTI-A and TPRTI-B are 
provided. We compare both algorithms with each other and against the well-known 
M5 [12], SECRET [5], GUIDE [9], and RETIS [7] algorithms in term of accuracy, 
scalability and model complexity. The experimental result published in [5], for 
GUIDE and SECRET, two state-of-the-art scalable linear regression tree induction 
algorithms are used in this study for comparison. The GUIDE and SECRET  
algorithms were built to be both fast and accurate. Model complexity results for  
previously used datasets were not available for comparison. We performed all the 
experiments reported in this paper on a 64-bit PC i7-2630 CPU at 2Ghz running  
Windows 7. Datasets and extended version of this paper are available at [19]. 

3.1 Datasets 

Five artificial and 7 real-world datasets were used in the experiments; Table 3 and 4 
give a summary for the 12 datasets. The last column in both tables contains in paren-
thesis the number of attributes. 

Table 3. Artificial datasets 

Dataset Description 

 

Number of 

examples 

dataset #1 

 

x1, x2 are the input variables and y the output variable; x1 ∈ R ,x2 ∈ R, y∈ R =  2 1 0 1 100 2 = 0 =  700 5 1 100 1 200 2 = 0= 300 3 2 0 2 100 1 = 200  

300 (3) 

 

dataset #2 x1 ∈ 0,250] and  x2=0, and y ∈   = 1; 0 1 50= 100 1; 50 1 250 

2500 (3) 

 

CART 

dataset 

This dataset was found in [2]with 10 predictor attributes:X1 ϵ {−1, 1} with equal 

probability that X1 =1 or X1 = -1; Xi ϵ {−1, 0, 1},  with i ϵ {2 . . . 10}  and the pre-

dicted attribute y determined by  =  3  3 2  2 3  4       1 = 1= 3  3 5  2 6 7 = 1 

A random noise   between [-2 and 2] was added to Y 

750 (11) 

 

3DSin 

dataset 

This dataset has two continuous predictor attributes x1, x2 uniformly distributed in 

interval [−3, 3] determined by Y = 3 sin(X1) sin(X2). 

500(3) 

 

Fried 

dataset 

 

This dataset has 10 continuous predictor attributes with independent values uniformly 

distributed in the interval [0, 1] Y = 10 sin(πX1X2) + 20(X3−0.5)2 + 10X4+5X5;A 

random noise  between [-1;1] was added 

700(11) 
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Table 4. Real world dataset 

Dataset Description 
Number of examples  

(number of attributes) 

Abalone  
This dataset was obtained from UCI [16] machine learning 
repository.  4177 (8) 

Auto-mpg 
This dataset obtained from UCI [16] repository. Tuples with 
missing data were removed. 392 (8) 

Boston Housing This dataset obtained from UCI[16]  repository  506 (14) 
Kin8nm  This dataset was obtained from the DELVE [4]repository.  8192 (9) 

Normalized Auto-
mpg 

This is the auto-mpg dataset from UCI [16]  repository that 
has been normalized with z-score values 392 (8) 

STOCK 

This dataset is from SatLib[14]. The dataset contains 950 
examples. However, the first tuple was removed because it 
did not appear correctly formatted 949 (10) 

Tecator Dataset This dataset originated from the StatLib [14] repository.  240 (11) 

3.2 Experimental Methodology 

All the experiments were done with a 10-fold cross validation and repeated 10 times 
with different seeds for each run. The average values are reported in table 7 along 
with corresponding standard deviation. Five artificial datasets were used three  
of which were previously used and results for GUIDE and SECRET are available in 
[5]. We also used 7 real world datasets of which 6 were previously used and results 
for GUIDE and SECRET available in [5]. The datasets which have not been previous-
ly used are dataset#1, dataset#2 and the normalized auto mpg dataset. We imple-
mented TPRTI making use of R software [13] libraries. We run M5 using Weka [18]. 
R and Weka are publicly available software. Our implementation of RETIS relies on 
running TPRTI-A with all input attributes set as discrete attributes.  

3.2.1 Input Parameters and Stopping Rules Used for the Experiments 
For each dataset, different input parameters and stopping rules were used for TPRTI-
A, and TPRTI-B. Table 5 summarizes the parameters used for each dataset where 
cosβ is the cosine threshold used to determine the turning points, “Min. Node Size” is 
the minimum required size of a node expressed as 100*(current node size)/(initial 
dataset), and “Min. RSS imp.” is the minimum improvement of the sum of the 
weighted RSS of both sub-nodes required to split a node. It is expressed as 
100*(Parent RSS - weighted sum of children nodes RSS)/Parent RSS. 

The input parameter “Subset Size” is used to subdivide the input data into  
subsets of equal size in order to compute the centroids.  RETIS was run without 
post pruning.  
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Table 5. Input and stopping parameters for TPRTI 

  TPRTI-A TPRTI-B 

  Input parameters *Stopping rules Input parameters Stopping rules 

  
Subset 

Size 
cos β 

Min. Node 

Size (in %)

Min. RSS  

imp.  ( in%) 

Subset 

size 
cos β 

Min. Node 

Size (in %) 

Min. RSS imp. 

(in %) 

Dataset #1 3 0.8 10 10 3 0.8 10 10 

Dataset #2 9 0.8 10 10 9 0.8 10 10 

CART 5 0.8 10 10 5 0.8 10 10 

3DSin 4 0.8 10 10 5 0.8 10 10 

Fried 3 0.85 10 10 3 0.85 10 10 

Abalone 55 0.8 10 10 21 0.8 10 10 

Auto mpg 4 0.85 10 10 4 0.85 10 10 

Boston Housing 14 0.8 12 12 14 85 12 12 

Normalized  auto 

mpg (z-score) 
4 0.85 10 10 4 0.85 10 10 

Stock Data 4 0.8 10 10 13 0.85 10 10 

Tecator 8 0.8 10 10 21 0.7 10 10 

Kin8nm 250 0.95 3 1 250 0.95 3 1 

*Stopping rules: The stopping parameters set for TPRTI-A are same parameters 
used for RETIS.  

3.3 Results 

Accuracy was measured by the MSE (Mean Squared Error). Model Complexity was 
measured by the number of leaf-nodes. However, a bad model may have small num-
ber of leaf-nodes. Thus complexity was slightly redefined as number of times an ap-
proach obtained the combination (best accuracy, fewest leaf-nodes). Both the number 
of leaf-nodes and MSE are provided as μ ± c where μ is the average MSE (or number 
of leaf-node) and c the standard deviation over several runs. Let μ1 ± c1 and μ2 ± c2 be 
two results such that μ1 < μ2. We consider a tie between the two results if μ1 + c1 > μ2. 
Both Accuracy and number of leaf-nodes are reported in table 7 with the number of 
leaf-nodes in parenthesis. The main findings of our study are: 

3.3.1 On Accuracy  
TPRTI-A, and TPRTI-B are compared with the approaches in the columns. The  
number in each cell denotes (number of wins/number of ties/number of losses). For 
example, (6/5/1) in the first column of the first row means that TPRTI-A is more  
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Table 6. Comparison between TPRTI-A, TPRTI-B and state-of-the-art approaches with respect 
to accuracy 

  M5 TPRTI-A TPRTI-B RETIS GUIDE SECRET 

TPRTI-A (6/5/1) - (4/6/2) (4/6/0) (5/1/2) (4/2/2) 

TPRTI-B (4/6/2) (2/6/4) - (3/7/0) (5/1/2) (1/4/3) 

 
accurate than M5 on 6 datasets, ties M5 on 5 datasets and loses on 1 dataset. Overall, 
TPRTI yields comparable result as or slightly better result than RETIS. It has better 
accuracy than GUIDE and SECRET. 

Table 7. Accuracy results 

  M5 RETIS GUIDE SECRET TPRTI-A TPRTI-B 

Dataset #1 
446.8996 ±36.45 

(11±0.00) 
0.000 ±0.0000  

(3±0.00) N.A N.A 
0.089 ±0.0000  

(3±0.00) 
0.089 ±0.0000  

(3±0.00) 

Dataset #2 
4.75 ±0.239 
 (11±0.00) 

0.000 ±0.0000  
(2±0.00) N.A N.A 

0.000 ±0.0000  
(2±0.00) 

0.000 ±0.0000  
(2±0.00) 

CART 
0.0932 ±0.0009  

(2±0.00) 
0.085 ±0.0125  

(4.1±0.32) N.A N.A 
0.07614 ±0.0100  

(4.1±0.32) 
0.098±0.33  
(6.1±0.32) 

3DSin 
0.0015 ±0.0002 

(20±0.00) 
0.01 ±0.0074 

 (4±0.00) 
0.0448 

±0.0018 
0.0384 

±0.0026 
0.0074 ±0.01  

(4±0.00) 
0.0063 ±0.01  

(3±0.00) 

Fried 
4.888 ±0.1536  

(3±0.00) 
4.773 ±0.3893  

(3±0.00) 
1.21 

±0.0000 1.26 ±0.010
3.1114 ±0.80 

 (4±0.00) 
1.4968 ±0.60 
 (6.7±0.48) 

Abalone 
4.6910 ±0.586  

(2±0.00) *N.A 4.63 ±0.04 4.67 ±0.04
4.3806 ±2.71  

(4±0.00) 
4.1527±2.59 
 (5.1±0.45) 

Auto mpg 
8.5073 ±0.3105  

(5±0.00) 
8.8470 ±7.2183  

(3.1±0.32) 
34.92 

±21.92 15.88 ±0.68
7.6021 ±6.33  

(5±0.00) 
8.4493 ±6.39  

(4.6±0.52) 

Boston 
Housing 

28.8397 
±30.8896 
(10±0.00) 

24.569±20.090  
(4.2 ±0.92) 40.63 ±6.63 24.01 ±0.69

16.0922±10.29  
(5.5±0.53) 

19.6237 ±9.24  
(4.8±0.92) 

Normalized 
Auto mpg  
(z-score) 

0.1396 ±0.0051 
 (5±0.00) 

0.1186±0.0895  
(4.0 ±0.00) N.A N.A 

0.1169 ±0.07  
(3.8±0.63) 

0.1342 ±0.09 
 (4.7±0.82) 

Stock Data 
1.0389 ±0.1008 

(19±0.00) 
11.977±7.884  

(3.9 ±0.32) 1.49 ±0.09 1.35 ±0.05
0.2067 ±0.10 

 (3±0.47) 
4.8867 ±3.09  

(4.9±0.88) 

Tecator 
9.4513 ±2.9519 

(6±0.00) 
6.6310±6.3036  

(5.4 ±0.51) 13.46 ±0.72 12.08 ±0.53
2.8315 ±1.412  

(3.1 ±0.31) 
7.1266 ±8.20  

(6.4±0.70) 

Kin8nm 
0.0303 ±0.0009 

(24±0.00) *N.A. 
0.0235 

±0.0002 
0.0222 

±0.0002 
0.0303 ±0.001 

(5.33±0.57) 
0.0227±0.0020 

(25.5±0.17) 

*N.A is used to express the fact that the program runs more than 3 hours without 
outputting a result or runs out of memory whereas N.A is used to express the fact that 
the result is not available. 

3.3.2 On Model Complexity  
In this study we consider a linear regression model to have a good model complexity 
when it is both accurate and has a small number of leaf-nodes. Table 8, which is  
compiled from table 7, presents the number of cases where an approach obtained both 
best accuracy and fewest nodes at the same time. 
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Fig. 5. Direct runtime comparison among TPRTI-A, TPRTI-B and RETIS 

4 Conclusion 

The paper proposes a new approach for Linear Regression Tree construction called 
Turning Point Regression Tree Induction (TPRTI) that infuses turning points into a 
regression tree induction algorithm to achieve improved scalability while maintaining 
accuracy and low model complexity. Two novel linear regression tree induction algo-
rithms called TPRTI-A and TPRTI-B which incorporate turning points into the node 
evaluation were introduced and experimental results indicate that TPRTI is a scalable 
algorithm that is capable of obtaining a high predictive accuracy using smaller deci-
sion trees than other approaches. 

Future Work. We are investigating how turning point detection can also be used to 
induce better classification trees.  
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Abstract. The identification, classification and integration of databases
on the Web (also called web databases) as information sources is still a
great challenge due to their constantly growing and diversification. The
classification of such web databases according to their application do-
main is an important step towards the integration of deep web sources.
Moreover, given the design and content heterogeneity that exists among
the different web databases, their automatic classification become a great
challenge and a highly demanded task, requiring techniques that allow to
cluster web databases according to the domains they belong to. In this
paper we present a strategy for automatic classification of web databases
based on a new supervised approach. This strategy uses the visible in-
formation available on a group of specific-domain Web Query Interfaces
(WQIs) to construct a dictionary or lexicon that will allow to better de-
scribe a particular domain of interest. The dictionary is enriched with
synonyms. In our experiments, the dictionary was built from a set of
randomly selected specific-domain WQIs. The automatic WQI classifi-
cation based on dictionaries generated in this way showed efficient and
competitive results compared against related work.

Keywords: deep web, web databases, web query interfaces, classifica-
tion, domain-dictionary, models of vectorial representation.

1 Introduction

Nowadays the Web remains as one of the most important sources of informa-
tion, which can be divided in surface web and deep web. Compared with the
surface web, the huge amount of information stored on the deep web cannot
be easily crawled and indexed by conventional Web search engines as Google,
Y ahoo, Bing among others [3]. Furthermore, deep web is conformed by web
databases, that store information related to a specific application domain, for
example molecular biology, job postings, flight schedules, accommodation reser-
vation, etc. The information coming from the deep web and presented to the user
is built dynamically as an HTML response to a query that was sent through a

P. Perner (Ed.): MLDM 2013, LNAI 7988, pp. 340–351, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Web Query Interface (WQI). A WQI is a special type of HTML form designed
to access information of a specific web database. As new WQIs are designed,
others are frequently removed or changed. Since a WQI is designed to access a
specific web database, it would be desired that a single WQI could access all
the web databases related to a specific domain available in the deep web. For
example, it would be desirable for an user interested on flights to use a single
WIQ to search for flights across all companies or airlines So, in this suggested
integration process, a task that must be carried out is the classification of web
databases according to the domain they represent.

One first challenge that a user faces when trying to access web databases
is to know where they can be found (discovery), because they are distributed
and appear in all over the web. As a difference with traditional databases, the
web database schemes (meta data) are unknown for users, so they must be
deduced from their superficial data, which is showed through the WQIs. This
visible information usually includes a brief description of attributes associated
with the corresponding web database design. Since WQIs are not created neither
designed to be used and understood by computer applications, simple tasks (from
the position of an user) such as content identification or fill out HTML forms
turn out to be a computationally hard problem [16]. Moreover, the structure of
WQIs of web databases change frequently without notification and their query
capabilities can be limited due to the amount of data received by the user as well
as the number of attributes contained in the schema itself. After the identification
(discovery) of web databases, one important issue is to determine the application
domain of such web databases, which is challenging because the homonymous
terms that exist in the WQIs. For example, WQIs of different domains use similar
terms for different purposes. In other cases, there may be such homonym even
inside a particular domain. Homonymy (semantic ambiguity) is a well known
issue in information integration tasks. However it has not been fully solved and
keeps as a research topic mainly for smaller and static scenarios as the case of
WQIs.

In this work we present a strategy for automatic classification of web data-
bases into domains based in the pre-query approach [15]. The key part in our
proposed strategy is the building of domain-dictionaries for classification of new
examples of web databases. Several works reported in the literature for clas-
sification of web databases [8,2,11] use a clustering model that is not able to
automatically assign a class name to the generated clusters. Moreover, for some
samples that share properties with members of different clusters, it could be hard
to assign the correct class name, leading to an ambiguity problem. Our proposed
strategy identifies representative terms contained in WQIs that belong to a spe-
cific domain and uses them for building domain-dictionaries. Terms are cleaned
applying a pre-processsing task, which consider the elimination of stop-words
using the rules described in [4]. Afterwards, the terms are transformed to their
root words by a stemming process. The resulting terms are sorted according to
their relevance, determined using the TF-IDF weighting scheme. The WQIs are
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represented using a vectorial representation model called bag of words (BOW),
and faced the homonymy problem of terms by using a weighted terms schema.

The rest of this paper is organized as follows: Section 2 describes works re-
lated to classification of web databases. Section 3 presents the proposed strategy
based on the building of domain dictionaries. Section 4 presents and discusses
the experimental results obtained by our proposed strategy. Finally, Section 5
concludes this work.

2 Related Work

Most of the reported works to solve the problem of automatic classification of
web databases can be categorized into two approaches: Pre-Query and Post-
Query [15]. The Pre-Query approach [2,8,11,17] exploits the internal content
provided by WQIs such as control elements, attributes, values of attributes and
user’s tags. This approach only relies on visible features of WQIs. On the con-
trary, the Post-Query approach [10,6,7] is based on the identification of web da-
tabases from the resulting pages retrieved by submitting probing queries through
WQIs. This approach depends on the correct construction of queries for a given
domain. The Post-Query approach is difficult to apply to WQIs with multi-
attributes because they require to be automatically filled out with valid values.

In [8], Kabisch used two different methods for domain classification: a pattern-
based classification method and a neighbor-based classification technique. The
first approach is based on a set of mappings among WQIs from a learning set
to derive interface domain-patterns and cluster all elements by their concepts.
The pattern-based classification method uses a representation model of tree for
unknown WQIs schemes. It matches the nodes of the schema tree to the pattern
of each known domain. Then, it assigns the interface to the domain contain-
ing the best matching pattern. Kabisch derives a useful domain pattern from
a sample set of interfaces if (1) the number of relevant concepts in a specific
application domain is rather small and (2) the elements on the query interfaces
can be clustered to their concepts by exploiting similarities among their terms
used, structures and layouts. In the neighbor-based classification method, it is
assumed that those interfaces that contain similar elements and have a similar
structure most likely belong to the same domain. Therefore, the classification
problem is transformed into a similarity estimation problem at interface level.

Barbosa and Freire [2] proposed a clustering strategy called CAFC-C (Context-
Aware Form Clustering). This strategy is based on a k-means clustering
algorithm which uses the form-page model and obtains clusters that are ho-
mogeneous. To improve the quality of CAFC-C, the authors exploit a set of
features provided by: the hyperlink structure, e.g., anchor text and the quality
of hub pages; and form contents, e.g., structural information and automatically
extracted labels. The authors use a broad set of meta data in the form context,
instead of just the form content. This allows CAFC to uniformly handle web
databases accessible through both single- and multi attribute forms.
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In [11] the authors propose a new approach for clustering e-commerce search
engines (ESEs) on the Web, which utilizes the features available on the WQI,
including the label terms and value terms appearing in the search form, the
number of images, normalized price terms as well as other terms. They report
the design of WISE-Cluster, a tool that aims to automatically cluster ESEs into
different groups according to their domains. However, the authors do not solve
the problem of ambiguity of terms.

Wang, et. al [17] present a framework for locating Hidden-Web databases
based on a focused crawler assisted by an ontology. Their framework is composed
by three classifiers: a Web Page Classifier (WPC), a Form Structure Classifier
(FSC) and a Form Content Classifier (FCC). The WPC searches interesting
Web pages by means of analyzing their features. FSC determines whether these
pages contain searchable forms by analyzing their structural characteristics and
the FCC identifies whether searchable forms belong to a given domain. The au-
thors implemented an ontology which contains concepts and relations of DOCM
(Domain Ontology Concept Model) from searchable forms and resulting pages.
To locate interesting Web pages that may contain searchable forms belonging
to a given domain, the crawler follows two strategies: The crawler starts from a
Web page which is classified as belonging to a topic. From that Web page the
crawler follows the hyperlinks found on that page until a specified level of depth
is reached. During the search of interesting Web pages the crawler builds two
vectors, a page feature vector and a topic vector to find similarity between the
page found and the source page. FCC is proposed to identify domain-specific
databases by analyzing domain-specific form content.

In [5] the authors transform the problem of sources organization into clustering
of categorical data. Their approach hypothesizes that homogeneous sources share
the same hidden generative model, which probabilistically generates schemes
from a finite vocabulary of attributes. The authors propose a new objective
function, model-differentiation, which employs an hypothesis to maximize sta-
tistical heterogeneity among clusters. They derived a new similarity measure for
the general HAC (Hierarchical Agglomerative Clustering) algorithm.

Table 1 shows a summary of related works that face the automatic classifi-
cation problem of web databases using an pre-query approach. In table 1, the
second column indicates the technique used for classification, the third column
shows the number of domains used for experimental evaluation, the fourth col-
umn represents the average percentage of web databases classified correctly over
the distinct domains and finally, the last column, indicate the weighted harmonic
mean of precision and recall of the classification process.

3 Proposed Strategy for Automatic Classification of
WQIs

In this section, we present a strategy for automatic classification of WQIs based
on domain dictionaries. This strategy uses textual labels of fields present in
the WQIs as the main elements to determine the WQI’s domain. We consider
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Table 1. Reported Works for automatic domain classification of web databases

Ref. Techniques Domains Accuracy F-measure

[8] Pattern based classification 7 78% 80%

[8] Neighbor based classification 7 90% –

[2]
Clustering based on

8 – 88%
the textual contents (CAFC-C)

[17]
Form Content Classifier (FCC)

1 – 89%
assisted by an ontology

[11]
ESEs (e-commerce search

12 – 90%
engines) Clustering

the problem of web databases classification as a text-classification task, where
there is a restricted vocabulary of terms that appear in a WQI, which describes
its semantics. Figure 1 shows an overview of the proposed strategy, which is
formed by four components: an automatic extractor of terms, a pre-processing
module, a dictionary-generator and classification module. We start from a set
of WQIs detected and extracted form a set of Web pages belonging to a specific
domain. Then, textual-labels associated to fields are extracted from WQIs by
using a heuristic. These textual-labels called terms are cleaned, and finally, the
homonymy problem is addressed over the resulting set of terms, by assigning
weights to the terms according to their frequency. This weight assignment allows
us to select those terms that better characterize WQIs for a specific domain and
they are used in the classification process.

We represent the terms extracted from the WIQs using the distributional
term representation model BOW (Bag of Words), which is the mos used in the
literature. BOW assumes that a document di is represented as a vector of terms

Pre-processing 
Elimination of 

stop-words
WQIs 

Collection
Stemming 
of terms

Domain-dictionary 
generator

Weighted Terms

Automatic extractor
Heuristic for 

identification of 
textual labels

Building Domain-Dictionaries

Comparison of 
terms
Score 

Test set of 
WQIs

WQI_1  domain_i

WQI_2  domain_j

WQI_3  domain_k

Fig. 1. Block diagram of the proposed strategy for automatic classification of web
databases
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weights dj = (w1j , ..., wrj) where r is the cardinality of the dictionary δ and
0 ≤ wkj ≤ 1 represents loosely speaking the contribution of term tk to the
specification of the semantics of dj [9].

In the next section we describe with details each component in our proposed
strategy shown in figure 1.

3.1 Automatic Term Extractor

After the WQIs are identified, gathered and organized in the WQIs repository,
they are processed to extract their textual labels of fields (o terms) associated
to each control element present on them. This extraction process is challenging
due to the heterogeneity in the design, structure, and domain values of the
WQIs. In addition, it is not possible to assume that some terms present in a
WQI will be present in other WQIs even for the same domain. That is why
it is difficult to identify those terms that provide useful information about the
WQI’s domain. Textual-labels of fields are identified by a heuristic, based on the
spatial position of the labels. The proposed heuristic is as follows. The segment
of HTML document corresponding to the WQI identified is cleaned, removing
white spaces and newlines, above, below, before and after each control element
in the WQI. Afterwards, the row number where each control element in the
WQI appears is located. Each control element has a field, which is defined as the
triplet <name, type, value>, where name represents the name of the field, type
of control element radio, text box, check box and value represents the domain
value of field. Once the row is identified, the textual-label is extracted taking
into consideration two aspects:

1. If the control element corresponds to a text-box, the textual-label is com-
monly located before, up, or inside the control element.

2. If the control element is a radio-button, the label is commonly located after
the control element. The same applies for list-down.

In the heuristic we propose, only three types of control elements are considered:
text-box, list-down, and check-box, because those are some control elements that
better characterize a WQI [13].

3.2 Pre-processing

In information retrieval the elimination of stop-words is a common process. A
stop-word is a extremely common word (such as articles, prepositions, conjunc-
tions or any other term that is not considered as relevant in an language) with
little value for documents matching, that bear no semantic content by itself [12].
The identification of stop-words in textual terms on WQIs can be tricky, for
example the words from and to in a WQI schema for the traveling (airline or
bus) domain can denote an origin and destination city, respectively. If these
words were removed, an empty label will result which is unacceptable. Similarly,
if these words are found in the labels from city and to city and they are removed,
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then the resulting labels are undistinguished (city in this case), which leads to
the homonym problem [4]. The pre-processing that we applied to text terms on
WQIs consists of three normalized steps:

– First, all the terms on the WQIs are identified, extracted and stored in a
collection S as it was explained in section 3.1. We identified and removed
true stop-words from S using the analysis done in [4], where the authors
establish two assertions: first, a true stop-word is one that does not generate
empty labels and second the elimination of a stop-word must not generate a
homonym or hypernym problem with another text-label in the WQIs.

– Next, we normalized all remaining terms in S by applying a steaming process,
which consists in reducing inflected (or sometimes derived) words to their
stem, base or root form, generally a written word form. The stem is not
necessarily identical to the morphological root of the word; it is usually
sufficient that related words map to the same stem, even if that stem is not
a valid root.

– Finally we identified synonymous for the remaining terms in S using the
lexicon-conceptual dictionary WordNet. These synonymous are aggregated
to domain dictionaries.

3.3 Domain-Dictionary Generator

A problem faced in the classification of WQIs is the existence of homonymous
terms, that is, similar terms for different purposes depending on the application
domain of the WQI, considering also, that there are terms that have multiple
synonym terms on different WQIs. This is not new in information retrieval, and
its solution would improve significantly the classification task of web databases.

To disambiguate the sense of terms, we compute the relevance of each term
using the TF-IDF vector-space model [12]. Let the frequency of a term t to
be defined as the number of occurrences of t contained in the WQI schema Q,
denoted as freq(Q; t). The (weighted) term-frequency matrix TF(Q; t) measures
the association of a term respect to Q. It is generally defined as 0 if the WQI does
not contain the term, and nonzero otherwise. There are many ways to define the
term-weighting for the nonzero entries in such vector. In our case, we can simply
set TF(Q; t) = 1 if the term t occurs in the WQI schema Q.
Besides the term frequency measure, there is another important measure called
inverse document frequency (IDF), which represents the scaling factor or the
importance of a term t. If a term t occurs in many WQIs, its importance will be
scaled down due to its reduced discriminative power. We defined IDF (t) by the
following formula:

IDF (t) = log
N

ni
(1)

where N represent the total collection of WQIs and ni is the set of WQIs con-
taining term t. If ni << N , the term t will have a large IDF scaling factor,
otherwise will be negligible.
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Finally, the weight of a term is obtained by the relation between the metrics
TF and IDF in equation 2

TF − IDF (Qj , ti) = TF (Qj, ti) × IDF (ti) (2)

For each training set of WQIs for specific application domain we built a domain
dictionary of weighted terms. We define a domain dictionary as:

Definition. A domain dictionary D is a set of interrelated terms to represent the
topic of a set of WQIs. Each domain dictionary can be seen as a set of triplets
of the form < ti, fi, wi > where ti is the ith term of domain dictionary δ; fi is
the frequency of this ith term and wi correspond to assigned weight using the
vector-space model TF-IDF.

3.4 Comparison of Terms

A domain dictionary contains relevant terms associated to a given domain to-
gether with the synonyms for each term. These dictionaries are then used to
classify new instances of WQIs, assigning the domain name to the given WQI.
The classification consist in comparing the terms of the incoming new WQI, each
term ti in the WQI is looked up in the domain dictionary dj and if it matches, the
corresponding weight associated to ti in the dictionary is accumulatively added
to obtain the score sj of the WQI for the domain represented by dj . Afterwards,
once all of the dictionaries have been considered, the domain assigned for the
WQI is that corresponding to the highest score sj .

The next section describes the experimental results using the strategy for web
databases classification proposed in this work.

4 Experimental Results

For building our domain-dictionaries we used the WQIs contained in ICQ dataset
from the University of Illinois at Urbana-Champaign UIUC repository [1]. We
built three domain dictionaries using the datasets of reference: airfares, books,
and automobiles. Additionally, the Tel-8 dataset from the UIUC repository was
used as test set to evaluate our proposal.

We carried out three experiments with the aim of evaluating the effectiveness
of our domain-dictionaries-based proposal:

1. We evaluated the precision of our strategy by computing the number of
true positives (i.e. the sum of true positives and false positives that are
WQIs incorrectly labeled as belonging to the positive class) divided by the
total number of WQIs labeled as belonging to the positive class (i.e. the
sum of true positives and false positives, which are WQIs incorrectly labeled
as belonging to the class) [14], that is the ratio of number of WQIs that
are correctly classified divided by the number of WQIs with a class name
assigned.
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2. Also, we evaluated the proportion of true positives of WQIs cases divided
by the total number of WQIs cases that actually belong to the positive class
(recall or sensitivity ) [14], that is the ratio of number of WQIs that are
correctly classified divided by the number of WQIs that should have been
classified.

3. Finally, we computed the f −measure to normalize the precision and recall
generated since higher precision is generally sacrificed by lower recall and
vice versa.

Table 2. Comparison of the domain-dictionary based strategy against related works
for web database classification

Strategy Accuracy F-measure

Domain-Dictionaries 92% 94%
(Proposed strategy)

Pattern based classification [8] 78% 80%

Neighbor based classification [8] 90% –

FCC assisted by an ontology [17] – 89%

In each experiment we used training sets of different sizes (twenty, ten and five
WQIs samples) from three datasets: airfares, books, and automobiles. The
instances of the training set were selected randomly, considering a real scenario
where new WQIs can be classified from a small number of sample WQIs. To
evaluate the proposed approach we used as test set one hundred WQIs from the
TEL-8 dataset.

Figures 2, 3, 4 show the precision, recall and f-measure respectively obtained
using different training set sizes. Figure 2 shows that the average precision using
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Fig. 4. F-measure of the domain-dictionaries strategy for the automatic classification
of web databases

the domain dictionaries strategy is approximately 90% for most of the considered
domains. It demonstrates that the proposed strategy is highly competitive com-
pared against other approaches in the literature (see table 1). As it can be ob-
served from figure 3, the average recall is close to 0.8. The f-measure shown in
figure 4 allows to weigh the precision and recall, showing the performance of our
proposed approach for web databases classification. In the graph shown in figure 4,
f-measure is about 84%, a value that outperforms the one obtained in [8].

Table 2 compares our domain-dictionaries proposal against two related works
that also use a supervised strategy. In [8], Kabich used a dataset that contain
140 WQIs of seven domains. They pick up one interface, learn the domains using
a subset of the remaining interfaces and apply the classification algorithm for
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the selected interface. On the other hand, in [17], the authors used only one
domain to carry out one test of precision, f-measure and recall of their word.
They used 160 WQIs from the domain of Books. In table 2 we can see that the
proposed strategy of domain-dictionaries can identify WQIs with higher precision
compared to other works.

5 Conclusions

Web Query Interfaces (WQIs) allow to access web databases and retrieve useful
information that is not reachable by traditional search engines. The automatic
classification of web databases is a complex task given the heterogeneity in their
design, style, semantic content among others. This work presented an strategy
for automatic classification of web databases. The performance of the proposed
strategy was evaluated by performing experiments using Tel-8 and ICQ datasets.
Our strategy addresses the homonymy problem by the assignation of weights to
those relevant terms and their synonyms contained in WQIs. The results achieved
give evidence of the effectiveness and usefulness of the domain-dictionaries based
proposed strategy.
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Abstract. DNA microarrays allow simultaneous measurements of expression 
levels for a large number of genes within a number of different experimental 
samples. Mining association rules algorithms are used to reveal biologically 
relevant associations between different genes under different experimental 
samples. In this paper, we present a new mining association rules algorithm 
called Mining Maximal High Confidence Rules (MMHCR). The MMHCR 
algorithm is based on a column (gene) enumeration method which overcomes 
both the computational time and memory explosion problems of column-
enumeration method used in many of the mining microarray algorithms. 
MMHCR uses an efficient data structure tree in which each node holds a gene’s 
name and its binary representation. The binary representation is beneficial in 
two folds. First, it makes MMHCR easily find all maximal high confidence 
rules. Second, it makes MMHCR more scalable than comparatives. In our 
experiments on a real microarray dataset, MMHCR attained very promising 
results and outperformed other counterparts. 

Keywords: Data mining, DNA microarray, mining association rules, closed 
itemsets, row enumeration, column enumeration, maximal high confidence 
rules. 

1 Introduction 

Gene expression is the process of transcribing DNA sequences into mRNA 
sequences, which are later translated into amino acid sequences called proteins. The 
number of copies of the produced RNA is called the gene expression level. The 
regulation of gene expression level is essential for proper cell function. Microarray 
technologies provide the opportunity to measure the expression level of tens of 
thousands of genes in cells simultaneously. Usually, the expression level is correlated 
with the corresponding protein made under different conditions (samples). Due to the 
huge amount of data, most studies are focused on the analysis and the extraction of 
useful and interesting information from microarray data [1-3].  
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The microarray dataset can be seen as an M×N matrix G of expression values; 
where the rows represent genes g1, g2, …, gm and the columns represent different 
experimental conditions or samples s1, s2, …, sn. Each element G[i, j] represents the 
expression level of the gene gi in the sample sj see Table 1. The matrix usually 
contains a huge data; therefore, data mining techniques are used to extract useful 
knowledge from such matrices [3-4].  

Mining association rules is currently a vital data mining technique for many 
applications [4-6]. Mining association rules technique is applied to microarray dataset 
to extract interesting relationships among sets of genes [2], [4], [7]. Let G1 and G2 be 
two sets of genes, then the association rule G1G2 (with support 80% and confidence 
90%) unmasks the relations among those sets of genes, that is, both sets are expressed 
in 80% of the microarray experiments and if G1 is expressed then G2 is also expressed 
with probability 90% [3].  

In order to mine association rules in microarray dataset, the data is pre-processed 
by applying the logarithms procedure to ensure that the data is suitable for analysis. 
The logarithms procedure transforms DNA microarray data from the raw intensities 
into log intensities [1]. Then, the transformed dataset is discretized [8] into binary 
matrix such that each value is mapped into 1 or 0 based on whether greater than or 
equal (≥) or less than (<) a predefined specified threshold respectively-in this paper 
the predefined threshold is 0.2. Table 2 shows the discretized microarray. Many 
frequent pattern mining methods are based on one of two perspectives, either column 
enumeration methods or row enumeration methods [4].  

    Table 1. Microarray Dataset        Table 2. .Discretized Microarray 

              
 

In this paper, we present a new algorithm based on the column (gene) enumeration 
method. The proposed algorithm is called Mining Maximal High Confidence Rules 
(MMHCR) which overcomes both the computational time and memory explosion 
problems of column-enumeration used in many algorithms for mining microarray 
datasets [4]. MMHCR scans the microarray dataset to obtain a list of all genes. Each 
gene is associated with a binary representation where each element in the 
representation shows whether the gene is expressed in the corresponding sample. For 
example, the binary representation of the gene a is [01111] as in Table 2. This 
structure helps in finding easily and faster all maximal high confidence rules.  
The experimental results show that the MMHCR algorithm is faster than the  
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row-enumeration based methods MAXCONF [9] and RERII [10]. Since, RERII and 
MAXCONF are better than other methods based on column enumeration like 
CHARM [11], As a result, MMHCR algorithm is also faster than the column 
enumeration method CHARM. 

The rest of the paper is organized as follows. In section 2, we present the 
background of mining association rules, while in section 3, we present related works. 
In section 4, the proposed MMHCR algorithm is presented for extracting all maximal 
high confidence rules. In section 5, we show our experimental results. Finally, we 
conclude the paper in section 6. 

2 Mining Association Rules 

Mining association rules technique [12] extracts interesting relationships among sets 
of items (genes) in a large dataset. One of the most famous applications of this 
technique is market basket analysis [5-6] where the objective is to find the 
relationships between the purchased items under different transactions. Also, mining 
association rules is applied in microarray datasets in order to find the relationships 
between genes under different samples. For example, Table 3 shows the transactions 
(samples) datasets of the discretized dataset in Table 2. In this section, we introduce 
some notations we use throughout the paper.  

Table 3. (Transactions (Samples) Dataset) 

tiD (samples id) Transactions (samples) 
1 
2 
3 
4 
5 

b,d,e,f 
a,c,e,f 
a,c,d,e 
a,b,c,d,e,g 
a,b,c,d,e,f 

 
Definition 1 (Association Rules). Let I= {i1, i2, …, in} be a set of items (genes). A 
subset T ⊆ I is called a transaction (sample). The transactions (samples) dataset D is a 
set of transactions; where each transaction has a unique id called tid. In other words, 
D= {<tid,T>; T⊂I, tid ∊ {1, 2, …, k}; k=|D|}. An association rule is a pair of 
itemsets(X, Y) where X, Y ⊆ I and X∩Y=Φ, and is denoted by XY. The itemsets 
(set of items) X and Y are called antecedent and consequent of the rule XY, 
respectively. 

Convention: T∊D denotes that  tid such that <tid,T>∊D. 

For example, the transaction (sample) {b, d, e, f} (Table 3) at the first row (sample) 
represents the items (genes) that appear (expressed) at sample 1.   
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Definition 2 (Measurements of Association Rules). An association rule XY has 
two measurements: support and confidence. They are defined, with respect to a 
transactions (samples) dataset D, as follows:  suppD(X Y = suppD(X Y|D|  confD(X Y =  suppD(X YsuppD(X  where suppD(X = |{T; X T, T ∊ D}|. 

 
Definition 3 (Frequent Itemset and Strong (Confident) Association Rules). The 
itemset X is called frequent if supp(X) ≥ minsup; where minsup is a user defined 
threshold. The rule X→Y is called strong (or confident) if supp(X→Y) ≥ minsup and 
conf(X →Y) ≥ minconf; where minconf is another user defined threshold. 

 
The process of mining confident association rules is performed in two steps [5-6], 
[12]: 

1. Generate all frequent n-itemsets (set of n items). 
2. Using all frequent n-itemsets, generate all strong (confident) association rules 

X→Y, where X and Y are frequent n-itemsets. 

The dataset such "market basket analysis" has the property that the number of items in 
the dataset is less than the number of transactions. These kinds of dataset called 
sparse, i.e., the longest frequent itemsets are relatively short. However, there are many 
real-life datasets such as microarray datasets, that the number of items (genes) in the 
dataset is greater than the number of transactions (samples). This kind of datasets 
called dense, i.e., they contain very long frequent itemsets (genesets). Therefore, 
generating all frequent itemsets in such dense dataset requires large memory. Hence, 
recent algorithms prevent this problem by expanding only frequent closed itemsets [9-
10], [13-15].   
 
Definition 4 (Frequent Closed Itemset). The frequent itemset X is called a frequent 
closed itemset if  a frequent itemset Y such that X ⊆ Y and supp(X)=supp(Y). 
 
For example, if AB and ABC are two frequent itemsets with supp(AB)=supp(ABC), 
then AB is called non-closed itemset. 
 

The set of all confident association rules created from frequent closed itemsets 
might still be very large. Therefore, the recent algorithms for mining microarrays 
mine only the maximal confident association rules, as in MAXCONF algorithm [9]. 
 
Definition 5 (Maximal Confident Association Rules). A confident rule r1 is called 
maximal confident association rule, if  other confident rule r2 such that  

1) antecedent(r1) = antecedent(r2), and  
2) consequent(r1) ⊂ consequent(r2).  
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For example, if the rules A  BCD and A  BC are confident, then A  BC is 
called non-maximal confident association rule. 

In section 3, we review two algorithms for mining association rules related to our 
algorithm.  

3 Related Works 

Almost mining strong association rules algorithms face the following problems; the 
repeatedly scanning of the dataset and the explosion of generating all frequent 
itemsets. Apriori [5] algorithm based on column enumeration method did not solve 
these problems. Some modification and restrictions are made to Apriori algorithm for 
overcoming these problems. Max-Miner algorithm [16] mines only all maximal 
strong association rules, which can be fitted in memory, by pruning all the non-
maximal frequent itemsets in early steps. But Max-Miner algorithm still scans the 
dataset many times to calculate the support of all frequent item sets. In the dense 
microarray datasets, Aprioir and Max-Miner enumerate the items (genes) which are 
larger than the transactions (samples). On the other hand, the algorithms like CHARM 
[11] and RERII [10] algorithms, are based on row enumeration method, overcome the 
problems of column enumeration method by listing the transactions rather than items. 
Their experimental results show that these algorithms outperforms than the column 
enumeration method when applied on microarray datasets. MAXCONF [9] algorithm 
is a modification of RERII algorithm by setting some restrictions to get only maximal 
high confidence rules; where recent paper [4] noted that "A comparative analysis 
using several known microarray datasets revealed that without using any support 
threshold MAXCONF provide excellent results". In this regards, we present the 
MAXCONF algorithm in the following subsection that is related to our approach for 
mining only maximal high confidence rules. Also, we present the advantages and 
disadvantages of this algorithm.  

3.1 MAXCONF (Free Support-Based Pruning) 

The MAXCONF algorithm [9] depends only on confidence pruning (free support 
pruning) to produce all maximal high confidence association rules without support 
pruning. The algorithm creates the rules with only one gene on the LHS; all rules on 
the form LHSRHS, where |LHS|=1). MAXCONF uses the following two 
confidence pruning methods:  

1. Level 1 pruning 
Based on the row enumeration tree’s structure, for each node in the tree, the 
maximum support can be predicted. The maximal support of a node is calculated by 
the initial support of a node plus the number of right sibling of this node. If maximum 
support of the node<minconf, then this node will be pruned. 
2. Level 2 pruning  
MAXCONF mines all maximal high confident rules, i.e., it prunes the non-maximal 
rules in earlier steps. I.e., if some rules are created from node ni, then ni goes to make 
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some restrictions on its children to prevent the creation of non-maximal rules from 
them. But any node sibling to ni may be produce non-maximal rules, this because ni 

makes restrictions only on its children not on its siblings.   

Advantages of MAXCONF 
• Using the two pruning methods reduce the row enumeration space.  
• It mines all common relationships and rare interesting relationships.    
• It is faster than the row enumeration based algorithms RERII [10], and 

CARPENTER [13]. Also it is faster than a column enumeration based algorithms 
CLOSET+ [15] and CHARM [11]. As consequent, it is faster than Apriori [5] and 
Max-Miner [16] algorithms. 
 

Disadvantages of MAXCONF 
1- The intersection amongst the itemsets leads to time and space consumption.  
2- It still produces non-maximal rules.  

4 Mining Maximal High Confidence Rules Algorithm 

This section introduces our "Mining Maximal High Confidence Rules" algorithm 
(MMHCR) that based on the column (gene) enumeration method. MMHCR algorithm 
uses only confidence pruning for mining maximal high confidence. The mined rules 
have the form LHS  RHS (conf ≥ minconf); |LHS|=1. The sample dataset in Table 2 
is used as running example to illustrate the proposed algorithm; where minconf is set 
to be 50%. The overall structure of MMHCR algorithm consists of the following four 
consecutive steps: 

4.1 Discretization 

The normalized microarray dataset is usually represented as a series of continuous 
numbers. Discretization is the process of transformation from continuous data into 
discrete data. There are many discretization techniques [8, 17]. In this paper we use 
threshold methods in order to discretize data; where genes with expression values 
greater than a particular threshold are considered as expressed. Therefore in order to 
mine association rules, microarray matrix G is converted into matrix G' depending on 
the particular threshold cut value (c) [17]:  

  1      G [i, j] ≥ c,  (gi is  expressed ) 
  G' [i, j]=  

0      otherwise    

For example, Table 2 shows the microarray dataset after discretized; where the 
threshold c=0.2. Based on this discretization, we can represent each gene with its 
binary representation. Fro example, the binary representation of gene b is 10011; this 
means that the gene b is expressed in samples 1, 4, and 5 but is non-expressed in 
samples 2 and 3. 
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4.2 Build Tree 

MMHCR algorithm employes tree data structure to enumerate all genes in which the 
tree will have only three levels: 

• Level 1: contains only the root of the tree. This root refers to all genes from 
microarray dataset that contains one field: 
o Children: refers to all genes at level 2. 

• Level 2: contains set of nodes, each node contains one or more genes. The genes 
that are appeared (expressed) in the same samples will be combined into one 
node. Each node N  at level 2 consists of the following fields: 
o Antecedents_genes_set(ant_set): list of all genes' names that always 

appeared (expressed) together in the same samples. Each gene gi∊ant_set 
will produce a rule on the form giRHS; where RHS is set of genes will be 
created later. 

o Consequents_Set (conseq_set): list of all genes' names that will be subset 
from the RHS of the created rules from node N.  

o Binary_Representation_of_ant_set(BR): the binary representation of the 
node is equal to the binary representation of any gene belong to ant_set. I.e., 
N.BR=gi.BR; gi is any gene∊ant_set. 

o Support_of_ant_set(supp): the number of ones in N.BR.  
o Children_Set (children): contains set of nodes at level 3. 

• Level 3: contains sets of nodes which represent all children of the nodes at level 
2. Note that, all children nodes will be subset of RHS of the created rule. Each 
child node C at level 3 contains the following fields:- 
o Consequents_genes_Set(conseq _set): the list of all genes' names that will 

be subset from the RHS of the created rules from its parent node N.  
o Binary_Representation_of conseq_set(BR): a binary representation of the 

node= N.BR  BR(gi); N is the parent node and gi is any gene ∊ 
C.conseq_set. 

o Support_of_genes_set(supp): the number of ones in C.BR. 
o Sub_Node(sub_node): if this field is set to be true, then this node will 

produce non-maximal rule (Definition 5). Therefore, this node will be pruned 
later after generating all its siblings (Definition 6). 

o Participate (part): contains all the nodes' indices which participate to 
generate this node. For example, if node ni and node nj will be combined to 
form a new node called nij. Therfore, nij.part={i,j}. 
 

Defintion 6 (Sub_node). A child node Ci at level 3 is called sub_node if one of the 
following two cases are hold: 

1-  child node Ck at level 3; Ck.BR ⊂ Ci.BR. i.e., the children nodes Ci and Ck are 
comined into the child node Ck. In this case, we set Ci.sub_node=true, 
Ck.consq_set= Ck.conseq_set  Ci.conseq_set, and Ck.part=Ck.part {i}. I.e., child 
node Ci participates to form Ck. The created rule using the cild node Ci will be 
non-maximal rule.   
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g,  

00010 

φ 
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11001 

φ 

b 

10011 

φ 
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11111 

φ 

d 

10111 

φ 

ac 

01111 

φ 

root

2-  child node Ck, Ci at level 3; d= Ci.BR  Ck.BR and supp(d) / parent(Ci).supp ≥ 
mincof i.e., a new child node Cik will be created; Cik.BR=d, Cik.supp=supp(d), 
and Cik.conseq_set=Ci.conseq_set  Ck.conseq_set. In this case, 
Ci.sub_node=true and Ck.sub_node=true. In addition, Cik.part= Cik.part {i,k}. 
i.e., Ci and Ck participate to form node Cik. 

4.3 Mining Maximal High Confidence Rules 

To generate all maximal high confidece rules, MMHCR algorithm works as follows: 

i. Scan the microarray dataset (Table 2) in which each line contains both a gene and 
its binary representation. MMHCR algorithm saves each line in a single node at 
level 2 in the tree. 

ii. Sort the nodes in ascending order with respect to its support. The genes with the 
same binary representation will be combined into only one node (Fig. 1). For 
example: since genes a and c have the same binary representation, then the genes 
a and c are combined into single node with genes ac. The sort process will reduce 
the number of nodes at level 2. In Addition, the sort process will help us to easy 
find the nodes of level 3. 

 
 

 

 

 

 

 

Fig. 1. The Sorted Column (gene) Enumeration Tree for Microarray Dataset 

iii. For each node ni at level 2 (Fig. 1); i=1,2,…, #(root.children)-1, we process the 
following three steps: 

a. Create all children nodes of ni that produce all high confidence rules  
In order to generate all children nodes of ni, the node ni will be compared with its 
all right siblings nk; k=i+1,…, #(root.children). Lemma 1 shows all cases of 
comparison between any two nodes at level 2. Fig. 2 and Fig. 3 show the pseudo 
code of Lemma 1; where for each sibling node nk the procedure compare (ni, nk) in 
Fig.2 is invoked. Finally, Fig. 4 shows the complete tree after finish all 
comparisons. 

Lemma 1. Let ni and nk be two nodes at level 2; d= ni.BR  nk.BR, then one of the 
following cases holds: 

1.  if node ni ⊂ node nk (ni.BR=d). Then add nk.ant_set to ni.conseq_set. 
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2. if (supp(d) / ni.supp) ≥ minconf; supp(d) = #ones in d. In this case, ni.children= 
ni.children  newNodeAtLevel3 (nk.ant_set, ni.BR  nk.BR, supp (d), false, ). 

 
Note that, In each case of the Lemma 1, The procudeure compare (Fig. 2) checks 
the node nk if it can be updated with node ni as children or not. 

 

For example, Fig. 4 shows that node n1 with support 1 is subset from node n3 with 
support 3; d= n1.BR n3.BR=00010  10011= 00010 = n1.BR (n1⊂ n3), (i.e., the rule 
n1 n2 (conf=100%)), then according to case 1 in Lemma 1 n1.conseq_set= 
n1.conseq_set  n3.ant_set = {b}. Similarly, node n1 is subset from node n4, n5, n6 
n1.conseq_set= {b}  {ac}  {d}  {e} = abcde. The node n4 with supp=4 is not equal 
n5 with supp=4; d= n4.BR  n5.BR=01111  10111= 00111, supp(d) = 3, and supp(d) 
/ n4.supp= 3/4 = 75% ≥ minconf= 50% (i.e., the rule n4n5 (conf=75%)), then new 
node np is created; np.conseq_set = n5.ant_set={d}, np.BR = d = 00111. Also, supp(d) / 
n5.supp = 3/4 = 75% ≥ minconf = 50% (i.e., the rule n5  n4 (conf=75%)), then new 
node nq is created; nq.conseq_set = n4.ant_set ={ac}, nq.BR=d=00111. Finally, 
according to case 2 in Lemma 1, np and nq are added to children of node n4 and n5 

respectively.      

                                                                           
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2. Procedure Compare 

procudure Compare(node ni , node nk) 
  d=ni.BR  nk.BR; 
  if(ni.BR = d) // ni.BR ⊂ nk.BR  
     ni.conseq_set= ni.conseq_set  nk.ant_set; 
 
     conf=supp(d)/nk.supp; 
     if(conf ≥ minconf) 
         nk.children=nk.children  newNodeAtLevel3    
                 (ni.ant_set,d,supp(d),false,φ). 
 
  else if(supp(d)/ni.supp ≥ minconf)  
 ni.children=ni.children  newNodeAtLevel3 
   (nk.ant_set,d,supp(d),false,φ)   

 
conf= supp(d)/nk.supp; 
if(conf≥minconf) 

     nk.children=nk.children  newNodeAtLevel3 
   (ni.ant_set,d,supp(d),false,φ).    
    end if 
end if 
end procedure.  
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Fig. 3. Function Create New Node at Level 3 

b. Create all children nodes of ni that produce all maximal high confidence rules 
The children nodes at level 3 will be compared with each other in order to produce 
only the nodes that will produce all maximal high confidence rules. Therefore, 
MMHCR algorithm makes the following three additional steps: 

1. All children nodes of ni are moved to children_buffer list (i.e., ni.children will 
become empty). 
2. The first node n1∊children_buffer will be inserted to ni.children without any 
comparison. 
3. Each node nk∊children_buffer; k=2, 3, …, #(children_buffer) will be inserted 
in the right position in ni.children. Therefore, node nk is compared with all existed 
nodes nj; nj∊ni.children and nj.sub_node=false. Lemma 2 shows all cases of 
comparison between the two nodes nk and node nj. Fig. 5 shows the pseudo code 
of Lemma 2. [Note that, in case nk.BR=nj.BR, then nj will be updated with genes 
of nk]. Fig. 6 shows the final column enumeration tree of the dataset on Table 2.  

 

Fig. 4. The Tree After Generating All Children Nodes at Level 3 
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function newNodeAtLevel3 (conseq_set, BR, supp,     
                     sub_node ,part):node at level 3. 

construct new child node C; 
C.conseq_set = conseq_set;  
C.BR = BR;     
C.supp = supp;  
C.sub_node = sub_node;   
C.part= part;  
return C; 

end function 
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Fig. 5. Procedure Insert 

Lemma 2. Let a parent node ni at level 2 and a node nk ∊ buffer_children, firstly nk is 
added at position p in ni.children, secondly, for each node nj ∊ ni.children; j=1, 2, ...,  
k-1; nj.sub_node = false, and d=nk.BR  nj.BR. The comparisons between nk and all nj 
have one of the following cases: 

1- If nk ⊂ nj, then  
o a node nk will be updated with genes of nj, nj will be pruned after finish 

generate all children of ni (i.e., nj.sub_node=true), and add j to nk.part.   
2- If nj ⊂ nk then 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

procedure Insert (nk,ni) 
//nk will be added to ni.children 
add nk at position p in ni.children 
for each node nj ni.children do 
  if (nk.BR =nj.BR) nj.conseq_set=nk.conseq_set; return; 
  end if 
end for 
p= size(ni.children);//the paosition of new node nk 
newNodes: list of new created nodes"children". 
for each node nj in ni.children do 
 if  (ni.sub_node= false)  
 d= nk.BR  nj.BR; 
 if (supp(d)= nk.supp) // nk nj 
   nk.conseq_set=nk.conseq_set nj.conseq_set 
   nk.part =nk.part //njparticipate to from node       
    nk,nj.sub_rule=true;  //nj becomes sub node 
 else if (supp(d)=nj.supp) // nj nk 
   nj.conseq_set =nj.conseq_set  nk. conseq_set 
   nj.part =nj.part //k is the position nk     
   nk.sub_rule=true; nj.sub_rule= false;  //update nj  else if (supp(d)/ni.supp>=minconf)    
   node nkj=newNodeAtLevel3(nj.conseq_set  
   nk.conseq_set,d,d.length,false,{j,p}) 
   nk.sub_rule=true; nj.sub_rule=true; 
   insert(nkj,ni). //recursive call else if (nj.part ≠φ)   
    //the node cannot produce new node from nj,then try to compare     
    //it with all the nodes that participate to form nj 
    for each node nq nj.part do 
     //call another procedure with the same 4 steps but without loop  
       compare nq and nk using the 4 cases of this procedure.  
    end if 
 end if 
end for  
end procedure 
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o a node nj will be updated with genes of nk, nk will be pruned after finish 
generate all children of ni (i.e., nk.sub_node=true), and add p to nj.part.   

3- If supp(d)/ni.supp ≥ minconf  then 
o Recursively add new node, nkj , to ni.children (again using the steps of this 

lemma), add the two indices  and j to nkj.part, nk.sub_node= true, and 
nj.sub_node=true. 

4- Otherwise [nk and nj cannot be combined], repeat the Lemma 2 to compare 
node nk with all the nodes at indices m; m∊ nj.part.   

For example, Fig. 6 (this example shows the case 4 in Lemma 2) shows that the two 
children nodes nf and nb at level 3 of the parent nd; nf.BR ⊂ nb.BR. In this case, we set 
nf.sub_node= true, nb.conseq_aset=bf , and nb.part={2}; 2 is the index of node nf. The 
node nac with gene ac will be compared with all rules nk; nk.sub_node= false, then the 
node nac will be compared with the nbf with genes nf only. But nac and nbf cannot be 
combined, then nac will be compared with nodes at indices i; i∊nbf.part. I.e., node nac will be compared with node nf to form new node nacf with genes acf; nacf.part={2,3}; 2 and 3 are the indices of node nf  and nac respectively. Also, nac.sub_node=true, nf.sub_node=true. 

 

Fig. 6. Tree Contains All Nodes Which Mines Maxima High Confidence Association Rules 

c. Generate all maximal high confidence rules of node ni: 
Finally, after all children nodes are created for node ni (see Fig. 6). All nodes nk∊ 
ni.children with ni.sub_node=true will be pruned, because these nodes will 
produce non-maximal rules. After that, each node nk ∊ ni.children with 
nk.sub_node=false will produce all maximal high confidence rules of node ni. Fig. 
7 shows the procedure GenerateMaximalHighRules that generates all maximal 
high confidence rules of ni. Fig. 8 shows all the extracted maximal high 
confidence rules from the tree in Fig. 6. 
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Fig. 7. Procedure to Mine All Maximal High Confidence Rules 
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Fig. 8. Extracted Maximal High Confidence Rules 

4.4 The MMHCR Algorithm Overall Structure 

Fig. 9 shows the overall structure of our proposed MMHCR algorithm.  

 

Fig. 9. MMHCR Algorithm 

procedure GenerateMaximalHighRules(ni) 
for each cj  ni.childrendo 
  for each ap ni.ant_set do  
 Form a rule on the form ap  
 (ni.ant_set-{ap})  ni.conseq_set   cj. end procedure 

MMHCR algorithm 
INPUT: microarray dataset D, minconf. 
OUTPUT: All maximal high confidence rules 
Algorithm: 
//the nodes with the same binary representation are combined. 
    // step i and ii  

   frequentTree=sorted list of nodes. 
    //step iii  

   for each node ni in frequentTree do  
 //step iii a 
      for each sibling node nj to ni do 
  Compare(ni,nj);  
      end  
       //step iii b 

      buffer_children=ni.children 
      for each node nj∊buffer_children do 
   Insert (nj, ni); 
 end  
     //step iii c  

    GenerateMaximalHighRules(ni); 
    clear ni and their children 
   end   
end algorithm 
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MAXCONF algorithm. Moreover, the binary representation saved the used memory; 
where all association rules are fitted in the available memory. The experimental 
results on the real microarray dataset showed that our algorithm is an efficient and 
scalable than MAXCONF algorithm. 
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Abstract. This paper presents an exploratory study using statistical and IA 
techniques in the partial discharge database located in Vila do Conde substa-
tion, Barcarena, Pará state, Brazil, ELETRONORTE property. Through am-
biental and system variables analysis, it was possible to identify that the 230kV 
reactive power and period of day have a strong relation to partial discharge 
measures. With the obtained knowlegde and specialists knowlegde, a initial 
fuzzy system is proposed for partial discharge classification in diferents opera-
tional situations of alert, contributing to the operational status diagnosis of 
power transformers and amplifying the knowledge about the theme. 

Keywords: Partial discharges, Fuzzy Logic, Reactive Power. 

1 Introduction 

In the electric system, problems in energy supply are common, caused by equipment 
failures like power transformers, or when performing maintenances, causing losses 
for companies and consumers. Therefore, it is important to perform periodic and pre-
ventive diagnostics to provide a quality service. Researches and experiments indicates 
that partial discharge phenomenon occurs when there are defects in the equip-
ment[1][2]. 

Partial discharges (PD) are electrical discharges located at the junction between 
two conductors through the insulation, which may or may not occur near a conductor 
[3]. These phenomena are caused by the rupture of localized dielectric strength of the 
insulating material, which is characterized as one of the possible sources of faults in 
electrical insulation [4, 5]. 
                                                           
* Corresponding author. 
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In recent years, much has been done to develop and improve the system for detect-
ing partial discharges. Researchers have studied techniques and developed analysis 
tools to identify patterns in PD data as shown in[6]. Different methods have been 
developed to select the features that can provide information relevant to the recogni-
tion of patterns in PD, such as statistical methods, the analysis of the shape of  
the pulses, signal processing, image processing and computational intelligence  
techniques. 

Statistical methods, eg, statistical moments [7], independent component analysis 
(ICA) [8, 9], principal curve analysis (PCA) [10] correlation techniques and simple 
[11] and multiple [12] linear regression have been used, but also multivariate  
techniques such as the principal component analysis, factor analysis and cluster anal-
ysis  have been used to study features of partial discharge[13]. Using computational 
intelligence techniques, authors [14, 15] have proposed solutions using ANFIS 
(Adaptive Neuro-Fuzzy Inference System) and neuro-fuzzy techniques, for the  
recognition and classification of 4 types of partial discharge patterns.  

In recent publications, authors [16] and [17] proposed a fault diagnosis method for 
high power transformers using neural network technique on a partial discharge data-
base from dissolved gas analysis technique, which indicates transformers status and 
operability.  

In this sense, this paper presents the results of an exploratory study using a  
database on seasonal partial discharges of  Eletronorte-Eletrobras, at Vila do Conde 
Power station. The database was originated from acoustic emission technique, which 
is an alternative to dissolved gas analysis technique. A fuzzy system is also proposed, 
based on the knowledge acquired in the research, for classification of partial dis-
charges in different situations, ranging from normality to the generation of inspections 
alerts on the equipment.  

2 Materials and Methods 

2.1 Study Area 

Vila do Conde is a Brazilian power station is located in Barcarena, a city of Pará 
state and belongs to the company Centrais Elétricas do Norte do Brasil S/A (Eletro-
norte) where a database of partial discharge measures from autotransfomers is stu-
died. Autotransformers aims to transform the energy received from 500 kV to 230 
kV. Eletronorte has a measurement system that captures values of partial discharges 
at the autotransformer input (500 kV) and output (230 kV), to obtain indices indi-
cating equipment status and operability .The system operates at a risk, since the loss 
of one or two 500/230 kV MVA autotransformers may cause an overload of the 
remaining autotransformers and generate serious consequences, such as the general 
shutdown of the Vila do Conde substation and, therefore, an interruption in the 
State power supply. 
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Fig. 1. Location of Barcarena – Pará 

2.2 Exploratory Analysis of the Data 

Data was collected using the internal Eletronorte - Eletrobras system and the Sinda 
website (National Environmental Data) during the period from 01/05/2012 to 
22/12/2012, totalling 1336 partial discharge measurements in picocoulomb(pC), 
obtained every three hours. The other variables were also obtained: 

• Current of phases A, B, V in 230 kV and 500 kV; 
• Voltage of phases AB, BV, VA in 230 kV and 500 kV;  
• Active power in 230 kV and 500 kV; 
• Reactive Power in 230 kV 500 kV; 
• Oil temperature of phases A, B and V;  
• Winding Temperature of phases A, B in 13 kV,    230 kV and 500 kV; 
• Frequency in 230 kV and 500 kV;  
• Power Factor in 230 kV and 500 kV. 

The following environmental data were also obtained by means of the Sinda website: 

• Rainfall Index 
•     Air Temperature 
• Humidity 

2.3 Cluster Analysis 

This technique seeks to identify clusters (or families) formed by similar sets. The 
clustering algorithm used was the k-means, which is based on the averages (centroids) 
of the clusters minimizing intra-cluster variance and maximizing inter-cluster  
variance [18] .The folowing variables correlated with partial discharges were used 
when applying this technique: reactive power (230 kV), temperature (oC) and relative 
humidity. 
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2.4 Correpondence Analysis 

The correspondence analysis is a multivariate technique used to examine the associa-
tions between nominal variables containing several categories. This tool was used to 
examine possible associations between the intensity of the partial discharges and the 
time period, that was divided into class intervals. This technique allows a graphical 
analysis, in a multidimensional space, of the association between variables by means 
of a contingency table for the calculation of inertia, which is the weighted sum of  
all distances from the centroid by summing all cells in the table. To investigate the 
suitability and best interpretation of the correspondence analysis the contingency 
coefficient C and residual Chi-square analysis were used [19]. 

2.5 Fuzzy System 

Fuzzy logic is a computational intelligence technique that handles verbal expressions, 
inaccurate, qualitative and inherent in human communication, which have varying 
degrees of inaccuracy, translating the values in fuzzy terms understandable by  
computers [20]. These values are placed in an expression with a certain degree of 
relevance, always in an interval of [0,1], where 1 is the highest possible relevance. 

Generally, a fuzzy system consists of four components [21, 22]: the fuzzyfier, that 
converts the real values of entry into a degree of membership in fuzzy sets to be 
processed by the fuzzy inference machine, the rule base, which consists a set of rules 
based on the system inputs and outputs, the fuzzy inference engine, which uses the 
principles of fuzzy rules for combining the existing fuzzy rule base in a mapping of  
a fuzzy set input to an fuzzy set output, and the defuzzyfier, that maps a fuzzy set, 
obtained in the inference engine, into a real value (output). 

The proposed fuzzy system was implemented using the Matlab Fuzzy Logic  
Toolbox 7.0 [23] based on the knowledge gained from the statistical analysis of the 
investigated database  as shown in section 3. 

3 Data analysis and Results Discussion 

3.1 Knowledge Acquired Through the Statistical Techniques 

In the clustering process we used the following variables correlated with partial dis-
charges: reactive power (230kV), temperature (oC) and relative humidity, where it 
was possible to obtain four clusters in pC: PD <500, 500 ≤ PD <800 , 800 ≤ PD < 
1200 and PD ≥ 1200. The analyses were performed using the Statistical software 
package[23]. 

Table 1 shows the contingency table for the partial discharges by period. The C test 
from the correspondence analysis was significant, with p = 0.000. 
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Table 1. Contingency table of partial discharges at the transformer output 

Period PD<500 500≤PD<800 800≤PD<1200 PD≥1200 Total 
LateNight 189 53 38 61 341 
Morning 206 51 36 41 334 
Afternoon 270 32 11 10 323 
Night 214 59 35 30 338 
Total 879 195 120 142 1336 

 
The circles in Figure 2 show the highest degrees of associations between the time 

of day and the group of partial discharges. The residue analysis validated the chi-
square analysis (Table 2), and it can be observed that the greatest association occurred 
in the afternoon  with PD < 500 pC, followed by late night with PD > 1200 pC. 

 

Fig. 2. Graph representing the chi-square residue analysis 

Table 2. Analysis of the chi-square residue analysis 

Period PD<500 500≤PD<800 800≤PD<1200 PD≥1200 
LateNight -0.93 0.32 1.10 0.92 
Morning -0.56 1.38 0.84 -0.99 
Afternoon 3.94 -2.21 -3.34 -4.15 
Night -2.36 0.46 1.33 4.11 

3.2 Fuzzy System 

Based on the correspondence analysis and chi-square residue analysis results and 
information on previous research by other experts in the field[4], it was possible to 
identify patterns of behavior for 3 variables (Reactive Power 230kV, Time of Day and 
Partial Discharge), which allowed for the construction of a fuzzy system to generate 
alerts inspections on the analyzed equipment. The behavior patterns of these variables 
were translated to the fuzzy approach by means of Figures 3, 6 and 7 respectively. 
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Reactive Power 

 

Fig. 3. Reactive Power 230kV 

The histogram of Figure 4 implies that the dominance of the reactive power varies in 
the range of -50 to 60. 

 

Fig. 4. Histogram of Reactive Power 230 kV 

Partial Discharge 

Reactive Power 

Time of Day 

 

Alert Generation 

 

FIS 
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The line in Figure 5, relating to the linear regression, indicates the relationship of 
increased reactive power with the partial discharge. However, we can observe that 
there are points indicating high values for low values of discharges reactive power 
and vice versa. 

When the reactive power reaches above 20, the frequency of partial discharges 
above 500pC intensifies, so when this limit is reached, the high range of the fuzzy set 
of Figure 1 is considered high with maximum relevance. 

 

Fig. 5. Scatterplot with Linear Regression between Partial Discharge and Reactive Power 
230kV 

Time of Day 

 

Fig. 6. Time of Day 
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The variable of Figure 6 has the highest relevance throughout the time of day for 
all intervals. Because the data are divided into 6 hour intervals, there are only 2 possi-
bilities of values, as follows: 

• LateNight: times between 0:00 and 6:00 
• Morning: times between 6:00 and 12:00 
• Afternoon: times between 12:00 and 18:00 
• Night: times between 18:00 and 24:00 

Partial Discharge 
 

 
Fig. 7. Partial discharge 

According to the ABNT NBR 5356 norm [4], in order to consider a partial discharge 
safe, it must be below the 500pC represented by the fuzzy set as low in the variable of 
Figure 7. 

 

Fig. 8. Histogram of partial discharge 
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A third fuzzy set, VeryHigh, was added to represent unusual discharge values, as 
shown in the histogram of Figure 8, where in rare occasions discharges occur above 
2000pC. 

Alert Situations 

 

Fig. 9. Alert situations 

During the exploratory data analysis, we found some unfamiliar situations not recog-
nized by experts in the field. Using the tacit knowledge of experts from the Eletro-
norte laboratory, it was possible, from the variables of Reactive Power 230kV, Time 
of Day and Partial Discharge, to propose a classification of partial discharges grouped 
into four (4) sets of conditions (Figure 9), which allowed the following Base construct 
production rules: 

Rule base examples used in the present study 

1. If (ReactivePower230kV is Low) and (PartialDischarge is low) then (Situation is 
Situation1); 

2. If (ReactivePower230kV is Low) and (PartialDischarge is High) and (TimeofDay 
is LateNight) then (Situation is Situation2); 

3. If (ReactivePower230kV is Low) and (PartialDischarge is High) and (TimeofDay 
is Morning) then (Situation is Situation2); 

4. If (ReactivePower230kV is Low) and (PartialDischarge is High) and (TimeofDay 
is Afternoon) then (Situation is Situation3); 

5. If (ReactivePower230kV is Low) and (PartialDischarge is High) and (TimeofDay 
is Night) then (Situation is Situation2); 

6. If (ReactivePower230kV is Low) and (PartialDischarge is VeryHigh) an (Timeof-
Day is LateNight) then (Situation is Situation2) 

7. If (ReactivePower230kV is Low) and (PartialDischarge is VeryHigh) and (Time-
ofDay is Morning) then (Situation is Situation3) 

8. If (ReactivePower230kV is Low) and (PartialDischarge is VeryHigh) and (Time-
ofDay is Afternoon) then (Situation is Situation4) 
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9. If (ReactivePower230kV is Low) and (PartialDischarge is VeryHigh) and (Time-
ofDay is Night) then (Situation is Situation3) 

10. If (ReactivePower230kV is High) and (PartialDischarge is Low) and (TimeofDay 
is LateNight) then (Situation is Situation1) 

11. If (ReactivePower230kV is High) and (PartialDischarge is Low) and (TimeofDay 
is Morning) then (Situation is Situation1) 

12. If (ReactivePower230kV is High) and (PartialDischarge is Low) and (TimeofDay 
is Afternoon) then (Situation is Situation1) 

13. If (ReactivePower230kV is High) and (PartialDischarge is Low) and (TimeofDay 
is Night) then (Situation is Situation1) 

14. If (ReactivePower230kV is High) and (PartialDischarge is High) and (TimeofDay 
is LateNight) then (Situation is Situation1) 

15. If (ReactivePower230kV is High) and (PartialDischarge is High) and (TimeofDay 
is Afternoon) then (Situation is Situation2) 

16. If (ReactivePower230kV is High) and (PartialDischarge is High) and (TimeofDay 
is Night) then (Situation is Situation1) 

17. If (ReactivePower230kV is High) and (PartialDischarge is High) and (TimeofDay 
is Morning) then (Situation is Situation1) 

18. If (ReactivePower230kV is High) and (PartialDischarge is VeryHigh) and (Time-
ofDay is LateNight) then (Situation is Situation1) 

19. If (ReactivePower230kV is High) and (PartialDischarge is VeryHigh) and (Time-
ofDay is Morning) then (Situation is Situation2) 

20. If (ReactivePower230kV is High) and (PartialDischarge is VeryHigh) and (Time-
ofDay is Afternoon) then (Situation is Situation3) 

21. If (ReactivePower230kV is High) and (PartialDischarge is VeryHigh) and (Time-
ofDay is Night) then (Situation is Situation2) 

 
 

 

Fig. 10. System results for a situation 
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Figure 10 shows the result of the situation for an event consisting of the following 
values: Reactive Power 230KV = 37.8, Partial Discharge = 316 and Time of Day = 
14.6. It can be observed that the value of 0.318 for the variable Situation signifies  
a state transition from situation 1 to situation 2 on the scale of inspection alerts  
situations. 

4 Conclusion 

The study results demonstrate that it is possible to construct a proposed approach 
using fuzzy computational intelligence, to help expand the knowledge of specialist in 
the fields of control and diagnosis of transformers operational status in Electric Power 
Systems. A Cluster analysis associated with a Correspondence Analysis allowed to 
establish groups of discharges and their association with times of day, determining the 
periods where the occurrence of discharges are higher or lower. 

This approach can be a valuable tool for use in solving problems in environments 
of uncertainty, such as the process of decision-making regarding the maintenance 
needs of high power transformers. This approach enables the means to diagnose the 
operating condition of the equipment prior to physical defects that might appear and, 
thereby, guide the construction plan of preventive maintenance to avoid possible 
equipment failures. The prediction of preventive inspection alerts supported in this 
study of partial discharge is an inexpensive monitoring method.  

In future works, a comparison of this proposed method results and other known 
techniques to diagnose transformers, will be made for testing and validation. 
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Abstract. We propose a method for power theft detection based on predictive 
models for technical losses in electrical distribution networks estimated entirely 
from data collected by smart meters in smart grids. Although the data sampling 
rate of smart meters is not sufficiently high to detect power theft with complete 
certainty, detection is still possible in a statistical decision theory sense, based 
on statistical models estimated from collected data sets. Even without detailed 
knowledge of the exact topology of the distribution network, it is possible to es-
timate a statistical model of the technical losses that allows indirect estimation 
of the non-technical losses (power theft) with high accuracy.  

1 Introduction 

The power grids of many countries are currently undergoing radical upgrades, and are 
increasingly equipped with massive sensing and communication infrastructure that 
can significantly improve the measurement and control capabilities of the resulting 
"smart" grids. This infrastructure includes devices such as phasor measurement units 
(PMUs) and smart power meters that are installed at many locations and/or measure 
data very frequently, resulting in very high-volume data streams. Using these data 
streams for various decision problems has opened up new opportunities for the appli-
cation of data analytical algorithms and techniques. 

One such decision problem of critical importance to electrical power utilities is the 
reliable detection of power theft [1]. It exists in practically all countries, but in some 
markets, for example Southeast Asia, the amount of theft can even exceed 40% [2-3]. 
The most common type of power theft occurs when an illegal user draws power di-
rectly from the power lines, between the distribution transformer (DT) and any elec-
trical power meter that can measure electricity consumption. In general, the mismatch 
between the total energy supplied by the distribution transformer and the sum of ener-
gy consumed by all legal paying end users (EU) can be detected, and the total amount 
of losses in the distribution sub-network can be estimated. However, this amount 
includes both technical losses that are inevitable during the normal operation of the 
power distribution system, and non-technical losses (theft). Technical losses comprise 
ohmic losses in the electrical lines due to the resistance of the lines, conversion losses 
in any intermediate devices, leaks due to imperfect isolation, etc. Because some  
of these components of the technical losses depend on the amount of power being 
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delivered to customers, and that amount varies significantly throughout the day, week, 
and year, it is generally difficult to decide what part of the total loss is technical, and 
what part might be due to theft.  

It would be possible to calculate accurately the exact amount of technical losses if 
all the parameters of the distribution network were known, including its connection 
topology, order and attachment points of all users, the line resistances between the 
attachment points, as well as the instantaneous power consumption by every user at 
any moment in time. In practice, full knowledge of these parameters is not economi-
cally feasible - a power utility would normally know which user is served by which 
distribution transformer from its geographic coverage plan, but the connection order 
and exact line resistances would not normally be known. In addition, full knowledge 
of the power consumption by any user at any instant in time would only be possible 
by installing detailed measurement equipment, such as PMUs, that performs very 
frequent measurements (multiple times per second). However, such an installation 
would be prohibitively expensive, its cost far exceeding the cost of power theft. In 
practice, utilities collect only infrequent, average and/or aggregated measurements, 
usually over a fairly long period of time - one month for traditional power meters, and 
30 to 60 minutes for the new generation of smart meters that have advanced telemetry 
functions. The most important measurement available to power utilities is the total 
amount of active power consumed by a user during the measurement period, because 
this value is the basis on which payment by the customer is determined. Additional 
variables provided by some meters, for example smart meters conforming to the 
ANSI C12.19 standard, comprise reactive power consumed by the user (important for 
billing of some industrial customers), instantaneous voltage and current at the begin-
ning and end of the measurement interval, power quality information, etc.    

One popular theft detection method, implemented in most meter data management 
systems (MDMS), is to estimate the amount of total losses as described above, by 
performing energy balance between the energy supplied by the DT and the energy 
consumed by all metered users, and calculate the loss rate as a percentage of the total 
amount provided. When this loss rate exceeds a specified threshold, e.g. 3%, theft can 
be suspected and investigated. A disadvantage of this method is that no distinction is 
made between technical and non-technical losses, so when technical losses are un-
usually high for perfectly good and legal reasons, for example very uneven power 
consumption, a power theft even can be detected erroneously.   

The advent of smart meters, with their much more frequent sampling intervals, has 
made it possible to calculate loss rates at a much finer temporal scale, and possibly 
detect power theft events of much shorter duration that would otherwise get lost in the 
much larger monthly energy aggregates measured and reported by traditional power 
meters. However, if power theft is not an irregular, one-time event, but is systematic 
and follows similar consumption patterns as those of the legal electricity users, the 
finer temporal scale of analysis would not improve detection significantly, because it 
would be computing the same loss rate, only more frequently. So, if the same loss rate 
calculation method is applied on smart meter data, higher accuracy of detection could 
not be expected for the economically more significant case of long-term systematic 
power theft. In order to use more productively the much larger data sets produced by 
smart meters, more advanced detection algorithms are needed. Section 2 proposes one 
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such method, Section 3 describes some experimental results using a detailed network 
simulator, and Section 4 concludes and proposes direction for further improvement in 
the accuracy and reliability of the method. 

2 Power Theft Detection Based on a Technical Loss Model 

We consider the problem of estimating the non-technical losses (NTL) in a branch of 
a distribution network consisting of a distribution transformer (DT) connected to a 
sub-station by means of a feeder, and a number of users connected to the secondary 
side of the DT in some manner (Fig. 1). The total amount of losses  in such a net-
work over a particular time interval k can easily be estimated by performing the ener-
gy balance between the energy  ,  supplied by the DT during this time interval 
and the sum of the energy  consumed by each user i, as measured by each smart 
meter: 

 = , ∑ ,   . (1) 

 

 

Fig. 1. Diagram of a distribution system. Power theft occurs when one of the end users (EU) is 
attached to the distribution transformer and draws power from it, but its consumption is not 
measured and paid for. 

If we can estimate the amount TL of technical losses (TL) during the same inter-
val, we can indirectly compute the amount  of NTL as = TL, and since 
NTL are usually attributed to power theft, a decision of whether to investigate can be 
based on this estimate. That is, our approach is to reduce the problem of estimating 
NTL to that of estimating TL. 

One of the biggest problems in estimating the amount of TL TL  is that, in  
general, the connection pattern between the end electricity users and the distribution 
transformer is not known. This connection pattern includes the topology and length of 
the power lines between the DT and EU. The most typical connection pattern is by 
means of a feeder connecting the secondary side of the transformer to individual users 
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attached at various points along the feeder. The exact location of these points is not 
known, and the resistances of the line between these points are not known, either.  

In the absence of detailed information about the actual circuit of the branch of the 
distribution system, we make the simplifying assumption that it has a specific topolo-
gy and connectivity pattern, shown in Fig. 2, represented as a one-line diagram [6]. 
We assume that each user (1101 to 1170) is connected to the secondary side of the 
transformer (the bus 1100) by means of an individual line. (When a user is connected 
to multiple phases of the distribution system, we treat each phase as a separate and 
independent user.) Because energy balance and loss modeling is performing indepen-
dently for each phase in a multi-phase system, below we describe the model for a 
single phase only. 

 

 

Fig. 2. Approximating circuit of a distribution system, represented as a one-line diagram. After 
the distribution transformer, all users are attached to the same bus 1100, through independent 
lines of varying resistance, one per user. 

We define the following variables for the simplified circuit: 
  The actual resistance of the line to user i 
  The estimated resistance of the line to user i , = (  The measured instantaneous current of branch i at the end of time 

interval k ,   Actual technical loss of branch i during time interval k ,   Estimated technical loss of branch i during time interval k 
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  Total loss during time interval k for all branches (users), obtained by 
means of power balance between the DT and all legal users  

  Technical loss during time interval k for all branches (users). When 
there is no theft, =   

  Non-ohmic technical loss (time independent) 
  The estimated non-technical loss (NTL) during time interval k 

For smart meters, the measurement time interval is typically equal to 30 minutes, and 
for traditional meters, it could be equal to one month or longer. 

The ohmic losses during measurement period k due to the resistance of the trans-
mission line to user i are 

 , = (        (2) 

In practice, as noted above, we will know neither the actual resistance   of branch i, 
nor the instantaneous current (  at all instants between times  and .  For 
this reason, we will make the additional simplifying assumption that the relation be-
tween current magnitude and time is piecewise linear: ( = , ( ,      (3) 

where:  

t time,  

,  slope, , = (  (  
  

We rewrite equation (2) as 

  , = , ( ((  ( =  , ( ( ]   (4) 

The total loss then is:  = ∑ ( (,  ,    (5) 

where: 
n The number of smart meters 
The estimates of the branch resistances  can then be obtained by means of the 

least squares method, for example using Moore–Penrose pseudoinverse: = (  ,     (6) 

where: 

=
( (, ( (, … ( (, 1( (, ( (, … ( (, 1… … … … 1( (, ( (, … ( (, 1   

=  …   
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= …   

m the number of measurement periods 
The free term  represents the non-ohmic losses, that is, the losses that are not 
caused by and are proportional to line resistances.  

In order to compute the least-squares (LS) estimate of the resistances, the system 
should be over-constrained, that is, the number of measurement periods m should be 
greater than the number of smart meters n, and the matrix H should have full rank 
(n+1).  This requirement is usually easy to satisfy.  

Once the parameter vector  has been obtained, we can use it to compute the non-
technical losses  for any future period k as  

= ( (3  

3 Experimental Set-up 

In order to verify the proposed algorithm, we conducted an experimental study in 
simulation, where a detailed simulator was used to calculate the state of a typical 
branch of a distribution network under typical loads and fairly frequently (every 10 
seconds), and the resulting losses and power consumption measurements were accu-
mulated over the much longer intervals (30 minutes) typical for the current generation 
of smart meters and automatic metering infrastructure. This procedure simulates the 
measurement process of a set of typical smart meters, and the aggregated data com-
puted in this way was provided to the power theft analysis algorithm described above.   

The test branch of the distribution system contained one user group of 30 users, 
such that 10 users were attached to each of the three phases. Without loss of generali-
ty, all consumption was assumed to be single-phase, and the analysis was performed 
on one phase only (phase A). One of the 10 users attached to phase A was assumed to 
be stealing power, resulting in power theft on the order of 10% of total consumption.  

The time span of captured user data was 6 days (144 hours). Power theft occurred 
only during the last 2 days (48 hours). The first 2 days (48 hours) of data was used for 
estimating a predictive model for technical losses, as described above. Then, the last 4 
days (96 hours) were used to verify the accuracy of prediction of technical (and, re-
spectively, non-technical) losses. Of these 96 hours, the first half (48 hours) had no 
theft, and the last half (48 hours) had theft.  

In order to compute the state of the network branch (represented by all voltages, 
currents, phase angles, and active and reactive power consumed at each node), power  
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flow calculation was executed every 10 seconds for the entire period of 144 hours. 
There were a total of 51,840 time periods for which power flow was executed.  

The loading conditions for the network were specified by means of a time-varying 
demand profile for each user. Since actual demand profiles recorded by actual smart 
meters were not available, we generated them from a reasonable statistical model that 
assumed that the demand profile for each user had two components: a seasonal com-
ponent that was the same for every user, and a random component that was different 
for every user. This is a reasonable model under the assumption that all users are of 
the same type (that is, all are commercial or all are residential), and their consumption 
patterns are similar, because they are driven largely by the same external factors (for 
example, by the air temperature in the same neighborhood that determines the demand 
for air conditioning services).  

The seasonal component represents the average demand profile over an entire 
week. For our experiments, we used the actual total demand profile for the entire 
United Kingdom for six consecutive days in June 2012 [4]. Fig. 3 shows this seasonal 
profile. It is very smooth, because it is the sum of the demands of all consumers in an 
entire country (the UK).   

 

Fig. 3. Base load profile ( ) 

The load profile for an individual user in our simulation was generated by adding 
a random component coming from the autoregressive (AR) process given by equa-
tion (7) to the seasonal base profile. Fig. 4 shows an example of the load profile for 
one user. In contrast to the seasonal component, individual load profiles are much 
noisier. 
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Fig. 4. Individual user load profile  

 ( = ( 0.8 · ( 0.2 · (0, 1 ,  (7) 
 
where: (   The load of user i at time t (  The base load at time t (0,1  Normal distribution with = 0 and = 1. 

Here, 0.8 is the autoregressive coefficient of the AR process, and 0.2 is the standard 
deviation of the white noise that is driving the process. 

By using this stochastic process for user demand, we are ensuring that the users at-
tached to the same transformer have similar, but not identical demands. 

4 Experimental Results 

4.1 Resistance Estimates 

The predictive model for technical losses was estimated from the data for the first 48 
hours (96 data points). The resulting estimates for the branch resistances are shown in 
Fig. 5. The agreement is reasonably good, and discrepancies are due to the relatively 
slow sampling rate of smart meters, the quadratic nature of losses, and the necessity to 
approximate the profile of the current during the sampling period (in our case, by a 
piece-wise linear curve). 
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Fig. 5. Estimated and actual values for the nine branch resistances 

4.2 Non-technical Loss Estimates 

For every 30-minute measurement period during all three intervals of 2 days  
(48 hours, or 96 data points) each, we calculated the expected technical losses and 
subtracted them from the measured total losses to arrive at an estimate for the NTL 
during that period. Fig. 6 shows histograms of the NTL estimates for the three pe-
riods. The first histogram shows in red the NTL estimates from the first 48 hours (no 
theft). Since this dataset was used to estimate the line resistances, the shown values 
are in fact equal to the residuals from the least squares (LS) estimation. The implicit 
assumption behind the LS computation is that the residuals come from a normal 
(Gaussian) distribution with mean zero, and the histogram confirms that. This histo-
gram also allows us to compute the expected variation of the NTL estimates under no-
theft conditions, which we can use for determining confidence intervals and detection 
thresholds. 

The second histogram shows in blue the NTL estimates from the second 48 hours 
(still no theft, but the line resistances used in producing these estimates were the ones 
obtained from the first data set). This histogram also shows the variation of the NTL 
estimates that can be expected normally, without theft, and is in agreement with the 
first histogram. 

The third histogram shows in green the NTL estimates from the last 48 hours, 
when there is power theft. Visibly, the NTL values are larger than in the second case, 
when there was no theft. The two histograms (blue and green) do not overlap, so it is 
possible to completely separate the two cases, resulting in 100% accuracy of detection 
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for this level of theft (10%).  For lower level of theft, though, the two histograms 
might overlap, in which case an optimal separation threshold must be determined. 

 

Fig. 6. Histograms for NTL estimates during three testing intervals (phases). In red, NTL esti-
mates are shown for the interval from which the predictive model for technical losses was con-
structed. In blue, NTL estimates are shown for the second interval during which no theft was 
present. In green, NTL estimates are shown for the last interval during which theft did occur.  

 

Fig. 7. A 95% confidence interval for expected total consumption (yellow lines) is computed 
from the measured total supply by the branch DT (blue line) and the predictive model for tech-
nical losses. When the measured total consumption (green line) goes outside of the confidence 
interval, theft can be suspected. The estimated amount of theft is also shown (red line).   

The estimation method applied only to the last two intervals (two days of no theft 
followed by two days of theft) is shown in Fig. 7, as would be seen by power utility 
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employees during actual operation. The blue line shows the total amount of energy 
supplied to the group of users by the branch DT, and the green line shows the sum of 
the reported consumption amounts for all smart meters in the group. The two yellow 
lines represent a 95% confidence interval for the expected total consumption derived 
from the technical loss model, if no theft was happening. So, when the measured con-
sumption (green line) is outside of the confidence interval (yellow lines), power theft 
can be identified. The estimated amount of theft is also shown by the red curve.  

5 Conclusion 

We have described a method for power theft detection based on a predictive model 
for technical losses in distribution networks equipped with smart meters. The predic-
tive model is constructed entirely from data collected by smart meters. Since there are 
several significant sources of error and noise in the measurement process, such as 
infrequent measurements and unknown topology of the distribution circuit, our me-
thod relies on a statistical estimation procedure to fit a good model to the data. Expe-
rimental results in simulation showed that the resulting predictive model still allows 
for excellent separation between cases of theft and no theft, for power theft amounts 
on the order of 10% of power consumption (1 illegal unmetered user out of 10). In 
future work, we will further investigate the accuracy of the method for smaller 
amounts of theft, as well as expand the model to include other external variable fac-
tors, such as environmental temperature, rain, etc. We will also adapt it to the much 
more difficult case when not all users in a distribution network branch are equipped 
with smart meters, and some of them use the traditional kind of meters that provide 
power consumption readings aggregated over much longer periods (one month or 
more). We also plan to address other types of power theft, for example theft after the 
meter by a third party [3,5], again using a data analytical approach.   
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Abstract. In this paper, we describe the development of a systematic review 
about the topic “Discovering Frequent Itemsets on Uncertain Data”. To the best 
of our knowledge, this work seems to be the first systematic review addressing 
the topic. We show the whole process executed and its findings. Initially we  
define a rigorous protocol to lead the process. In the first phase, we create a  
systematic mapping of the area. In addition, from the complete reading of each 
article, a panorama of this area is presented. We reveal the search engines that 
most publicize this topic and which publishing types, authors and research insti-
tutions are involved in these papers. Moreover we identify the algorithms and 
the classes of these algorithms most compared over the years, how are made 
these comparisons, as well as their availabilities. Therefore this systematic  
review becomes a rich material for understanding this knowledge area. 

Keywords: Systematic Review, Systematic Mapping, Uncertain Data, Frequent 
Itemsets, Frequent Patterns, Probabilistic Databases. 

1 Introduction 

One of the well-known and widely used descriptive tasks in the Data Mining area is 
the “Extraction of Association Rules” [3], or as called by Han et al [16], “Mining of 
Frequent Patterns”. This task consists basically in sweeping a large amount of pre-
viously processed data to discover multidimensional correlations on them. 

According to Agrawal [3], discovering frequent patterns is a process of two phases. 
The first one is responsible for finding all the frequent itemsets (those that satisfy a 
pre-define threshold). The second aims to generate the association rules among the 
items, into the itemsets discovered in the first phase. Han et al [16] say that the first 
step is more computationally expensive than the second. 

Nowadays, extraction of association rules is also needed on contexts with likelih-
ood in the data [2]. This is due to several techniques of data gathering. Besides, cur-
rent applications also have increased the data with uncertainty, caused by imprecise 
measurements, outdated sources or sampling errors [10]. 

In [1], Aggarwal et al affirm and prove that classical algorithms as Apriori [3], Apri-
oriTid [4] and FP-Growth [15] are not adapted to keep the probabilistic characteristics 
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of the data. Thus, new methods have been developed to capture and work under these 
circumstances. Aggarwal et al [2] claim that studies about this theme have extended 
known algorithms to deal with uncertain data, from the pruning data and the creating 
of different computational structures to store the probabilities. 

In order to contribute to the understanding of the subject area, this article discusses 
the results consolidated from a systematic review about the topic “Discovering Fre-
quent Itemsets on Uncertain Data”. Using a rigorous method, based on the ideas and 
protocol suggested by Kitchenham [21] and Biochini et al [8], this research discusses 
perspectives and directions found in the selected works. 

This article has five sections. After this introduction, the second section explains 
the systematic review, its concepts and the protocol used. In the third section, it is 
presented the Systematic Mapping produced by applying the protocol indicated. The 
fourth section examines and explains some findings of the systematic review and the 
last section presents our achievements and limitations. 

2 Systematic Review 

A systematic review is a kind of secondary study used as initial step of a research. It 
maps the knowledge about a topic and discovers initiatives already undertaken. The-
reby, it is possible to look for techniques, ideas, algorithms and strategies that exploit 
the studied topic. Consequently, researchers receive more support to guide their scien-
tific investigation processes, avoiding efforts in wrong directions and, thus, helping 
them to plan new researches. 

In [21], a systematic review is characterized as a long investigation applied on a 
large set of bibliographies, of a particular theme, with a previous and organized plan-
ning. This method of research follows a methodological sequence with clearly defined 
steps according to a protocol. The creation of this protocol occurs in the beginning of 
the process, by focused and well-structured questions. 

2.1 The Protocol 

The protocol developed in this systematic review has many items, and due to the lack 
of space, we summarized our observations, considering the most important items. 

The Research Question 
According to [21] the main activity during the construction of the protocol is to for-
mulate the research questions. This work has three questions and they need to be ans-
wered at the end of the systematic review: 

(i) Which are the algorithms, algorithm classes and frameworks most studied in the 
context of “Discovering Frequent Itemsets on Uncertain Data”? 
(ii) How comparisons between algorithms and frameworks on uncertain datasets 
were made? 
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(iii) Can the algorithms and datasets found be used to develop comparative studies 
with new approaches? 

Keywords 
The keywords guide the creation of the search string that will be used on the web 
search engines. The keywords were organized in four groups and they were chosen 
from authors’ background, bibliographic searches ad-hoc and discussions with other 
expert researchers in the areas of Systematic Review and Data Mining. 

The keywords for each group are defined as following: Essential Terms: Itemset, 
Item, Pattern. Data Mining Techniques: Association Analysis, Frequent Itemsets Min-
ing, Frequent Itemsets, Frequent Items, Frequent Patterns. Algorithm 
Classes/Algorithms: Generate and Test Algorithms, Hyper-Structure Algorithms, 
Pattern Growth Algorithms, Apriori, UApriori, FP-Growth, UFP-Growth, H-Mine, 
UF-Growth, UH-Mine, UEclat. Data Sources: Uncertain Data, Probabilistic Data, 
Uncertain Database, Probabilistic Database. 

Sources Selection 

Sources Identification 
This section selects the sources where the primary studies will be searched [8]. The 
protocol subdivides this moment in some items. Regarding to local search, we se-
lected the search engines IEEExplore, ACM Digital Library, Scopus and Elsevier 
InterScience. These virtual libraries were chosen because they are important refer-
ences of research in Computer Science area. Based on keywords defined previously, 
the search string below was generated to be submitted in the elected search engines: 

("Itemset" OR "Item" OR "Pattern") AND ("Frequent" OR “Analysis Association”) 
AND (“Generate and Test” OR “Hyper-Structure” OR “Pattern Growth” OR “Apri-
ori” OR “UApriori” OR “FP-Growth” OR “UFP-Growth” OR “H-Mine” OR "UF-
Growth" OR "UH-Mine" OR "UEclat") AND ("Uncertain" OR “Uncertain Data” OR 
“Probabilistic Data” OR “Uncertain Database” OR “Probabilistic Database") 

The algorithms listed above were added to search string in order of reduce the scope 
of the research. Moreover, most papers of this area perform comparisons among some 
of these algorithms. However, if at least one algorithm name cited does not appear in 
the title or abstract of a paper, it will not be selected. 

Control Article 
The paper of Aggarwal [1] is referenced by various articles that work with uncertain 
data and the discovery of frequent patterns. Therefore, the results of the searches must 
show this article. The search string, which has been shown previously, recovered the 
control article in the search engines of the ACM Digital Library and Scopus. Howev-
er, the Elsevier InterScience and IEEExplore engines did not show this paper. After 
some investigation we figured out that none of these two databases record that paper. 
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Inclusion and Exclusion Criteria Definition 
After elected the sources, it is necessary to describe the criteria for studies selection 
and evaluation. Typically search engines recover a lot of articles. As a consequence, it 
is important to define the choice criteria of the returned studies. In this systematic 
review it was observed four criteria: 

(a) the article must approach at least one algorithm or algorithm class of those listed 
by the keywords; 
(b) the algorithms/frameworks must run on uncertain data;  
(c) the papers must work with frequent itemset patterns on traditional data model; 
(d) the publish year of article must be equal or greater than 2005. 

The criterion (c) was used because discovering itemset patterns on complex structures 
is a wide research area and it would increase too much the amount of articles  
returned. The criterion (d) was added because previous ad-hoc searches did not list 
articles with date less than 2005. 

Procedures for Studies Selection 
In the beginning, the search string was submitted to the four search engines selected. 
All articles displayed were collected and cataloged. The selection of the studies was 
divided in two phases. 

In the first phase, the title and abstract of all articles retrieved were read. Each  
article was characterized with the following items: title, authors, abstract, year, publi-
cation type, publishing vehicle name, and search engine. For each article, it was also 
answered the criteria of inclusion and exclusion (a), (b), (d), defined in previous sub-
section. The papers selected to next phase answered yes for the criterion (d) and ans-
wered yes for any of the criteria (a) or (b). 

The second phase refines the systematic review. At this point, all articles that satis-
fied first-phase criteria were completely read. The criterion (c) was used after the 
complete reading of articles. A list of issues was created to allow a better comprehen-
sion of each paper and raised many important discussions, detailed in section 4. 

Planning Evaluation 
This step of the systematic review is essential to ensure its consistency and to capture 
perceptions about its feasibility. With this goal, the protocol was presented and dis-
cussed with the supervisor of a research group in business intelligence. The protocol 
was also showed to a Software Engineering researcher, expert in conducting syste-
matic reviews. Afterwards, the protocol defined was discussed with two PhD  
students, whose do research on data mining field. 

From these discussions, new ideas were raised and the absence of some items in 
the protocol was identified. The search string was rewritten until the one listed in the 
subsection “Sources Identification”. Therefore, the systematic review became more 
consistent and precise. 

Execution of the search string 
The string was executed in two different ways on the four engines: (1) singular words 
only (2) plural words. Table 1 illustrates the number of articles found for each search 
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engine. We can see that some engines were susceptible to variation between singular 
and plural. 

Table 1. Number of articles extracted from search engines 

 Scopus IEEExplore ACM Elsevier
singular 41 2 60 103
plural 42 2 62 103

3 Systematic Mapping 

In the first phase of the systematic review all titles and abstracts were read and only 
those articles that respect the criteria (a), (b), and (d), detailed in the subsection “Pro-
cedures for Studies Selection”, were selected. From the 209 articles, just 36 (17.22%) 
[1, 5, 6, 7, 9, 11, 12, 13, 14, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 
34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 47, 48, 49] obeyed these criteria. Based on this, 
it was executed the mapping about discovering of frequent patterns on uncertain data. 

 

Fig. 1. Articles retrieved by search engine Fig. 2. Number of articles by year 

3.1 Search Engine 

Fig. 1 shows a chart distribution of the 36 articles, segmenting them by search engine. 
The Scopus database presented the greatest amount of papers, 43.18%, followed by the 
ACM database that returned 38.63%. These two virtual libraries have concentrated 
81.81% of the 36 articles selected. It was noted that 6 articles were present in both  
engines: ACM and Scopus. Besides, 2 articles were listed for Scopus and IEEExplore. 

3.2 Year 

It was also evaluated the evolution of the area in the past seven years. Analyzing the 
Fig. 2, it is possible to observe the growing interest in the area. Since 2008 many  
articles have been published. In 2010 and 2011, this growth was very evident. 
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3.3 Publishing Type 

The articles of the area were accepted in 25 conferences, 10 journals and one work-
shop. The theme had better acceptance in conferences and from the 25 articles found 
in conferences, 17 (68%) of them are concentrated in 5 conferences: ACM SAC, 
PAKDD, SIGKDD, IDEAS and CIKM, as stated in the Table 2. The remaining ar-
ticles are distributed in 8 distinct conferences. 

Table 2. Amount of articles by conference 

Conference ACM SAC PAKDD SIGKDD IDEAS CIKM 
Articles 4 4 4 3 2 

 

The 10 articles found in journals were detected in 9 different vehicles of publish-
ing. Just the journal “Expert Systems with Applications” recovered 2 articles about 
the theme. The only article published in workshop was written to the workshop on 
knowledge discovery of uncertain data, held in Paris, 2009. 

3.4 Authors 

This mapping also permits to discover which authors publish more. 69 dissimilar 
authors were found. Only 12 authors have more than one publication about the theme, 
showing the great heterogeneity in the authorship of the articles. Indeed, two authors 
stood out, “Leung, Carson Kain-Sang” and “Brajczuk, Dale A.”, both from University 
of Manitoba, with 8 and 5 articles, respectively. The authors “Gao, Hong”, “Li, Jianz-
hong”, “Zou, Zhaonian” and “Muzammal, Muhammad” also appeared with 3 articles 
each one. 

In order to understand the relation between researchers, a graph was generated ex-
hibiting the Social Network Analysis (SNA) [17], composed by authors (graph not 
presented due to space limitations). The statistical tool R was used to build this SNA. 
[43]. From the graph, we perceived some common relations among the authors. 
“Brajczuk, Dale A.” and “Leung, Carson Kain-Sang” are the authors that publish 
more together, with 5 joined articles written.  

4 Findings on the Area 

After the complete reading of the 36 articles, it was necessary to include and eliminate 
some articles of the discussion. The famous article of “Chui et al” [12] was not listed 
in the 36 articles returned. The article did not appear in any search engine used in this 
systematic review, because, as stated in section Sources Selection, the article does  
not cite any algorithm of the search string in its title and abstract. However, as 22 of 
the total (61.1%) cited it, evidencing its relevance to this area, we decided to include 
it in this phase. We did not find any other frequently cited paper by the 36 selected 
ones. 
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It was also observed that 5 articles [11, 18, 22, 36, 45] do not work with uncertain 
data, although they have been selected. Still, 12 articles were removed because they 
are not in conformity with the criterion (c), detailed in subsection “Inclusion and Ex-
clusion Criteria Definition”. Explaining the exclusion of these 12 papers: from their 
complete reading, it is possible to classify the algorithms, techniques and frameworks 
found on four different approaches: 

• Frequent itemset patterns: in this classical approach, the datasets are com-
posed by traditional transactions, whose items (or transaction in some cases) 
are associated with existential probabilities, defining a model of uncertain data. 
Using this uncertain data model (with some variations), twenty articles were 
found [1, 5, 6, 9, 12, 13, 14, 23, 24, 25, 26, 27, 29, 31, 32, 39, 40, 41, 42, 44]. 
• Frequent sequential pattern: Sequential Pattern Mining (SPM) is an adapta-
tion of the classical approach. It consists basically in finding frequent se-
quences of specific events with a temporal component associated. Five articles 
[7, 19, 33, 34, 35] work in this context. 
• Frequent itemset pattern on streaming data: according to Carson Leung, et al 
[28], nowadays there is a large volume of applications that generate data 
streaming. Examples of these generators are environmental sensors. However, 
because of the limitations of these sensors, data streaming can contain uncer-
tainty. In this systematic review, two articles approach this context, [28, 30]. 
• Frequent structured pattern: another approach was detected in five articles 
[20, 37, 47, 48, 49]. They work with discovering frequent patterns on graphs 
with uncertain associated. 

The protocol of the systematic review allows (criterion c) the inclusion of articles that 
work only with traditional data models, excluding those with complex structures. 
Thereby, the 12 articles that work with the last three approaches presented above were 
eliminated. Thus, “20 articles” remained in the systematic review. 

Aiming to raise discussions to answer the research questions formulated, other 
quality criteria were created in the protocol to lead this phase of the systematic re-
view. The criteria showed in Table 3, were analyzed for each one of the 20 articles 
selected. 

All the 20 articles are classified as basic research because they propose algorithms 
and frameworks, producing new knowledge about the area. The studies are explorato-
ry because they examine deeply the theme, and it has gained space, in the last years, 
in conferences and journals, according to Fig. 2. The research method used for all 
articles is the benchmarking. They make the evaluation of both CPU performance and 
memory trade-off. This method is essential to the maturity of the area, because it 
creates a consensus about the existing problems and which approaches are more ap-
propriated to solve them. 
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Table 3. Quality criteria used in the systematic review 

What type of Study is 
used in the paper? 

Are used datasets availa-
ble? 

Is the dataset type real or 
synthetic? 

Which are the algorithms 
classes cited in the paper? 

Are the developed algo-
rithms available? 

How are the synthetic 
datasets generated? 

Data type: with uncer-
tainty or not? 

What is the dataset size? Does the article detail 
some pruning technique? 

Does the article introduce 
a new algorithm? What is 
the algorithm’s name? 

Are there other graphical 
comparatives? Which 
ones? 

Is there charts comparing 
support and dataset size 
variations? 

How the data uncertainty 
is represented? Which 
structure type is used to 
model this representa-
tion? 

Does the paper make 
comparisons among algo-
rithms? Which ones? 

Is there charts comparing 
CPU and memory costs? 

4.1 Representation of the Uncertain Data 

From the 20 studies, 17 (85%) work on datasets composed of transactions, which 
items are associated with existential probabilities. Table 4, extracted and adapted from 
[14], shows an example of this database type. It consists of two transactions T = {T1, 
T2} and each transaction tj ∈ T, is constituted of four items ik ∈ I, where 
I = {i1, i2, i3, i4}. 

Table 4. Data Model with uncertain associated 

 i1 

(Insomnia) 
i2 

(Depression)
i3 

(Hypertension)
i4 

(Obesity)
T1 0.5 0.2 0.25 0.4 
T2 0.9 1.0 0.2 0.5 

 

The existential probability of an item ik is expressed by p(ik, Tj) ∈ (0,1]. The exis-
tential probability of the item i1 in T1 is equal to 0.5, represented by T1,1 = <i1, 0.5>. 
Semantically, this means that p(i1, T1) has 50% chance of suffering Insomnia. 

There are 3 exceptions that represent uncertain data of different ways. In [44] the 
probabilities are associated to each tuple (transaction). In this case, the likelihood of a 
transaction tj is represented by P(tj) ∈ (0,1]. 

The article [29] organizes data in a different way, in a vertical format. Each tuple is 
represented by an item ik, with a collection of related transactions, called tidlist, and 
its associated probabilities. Consider the tidlist of an item ik as tidlist (ik): {t1:0.9, 
t2:0.8, t3:0.2}. The item ik appears in the transaction t1 with 90% of probability and is 
also present in the transactions t2 and t3 with 80% and 20% of certainty, respectively.  

The last exception is the article [32]. It names the data as univariate uncertain data. 
Each item ik, in a transaction tj, has the likelihood represented by a basic quantitative 
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interval. This representation can be applied in some cases. For example, a sensor of 
low sensibility, used to record the amount of atmospheric pollution particles on the 
air, at 5 am, will store a quantitative interval, instead of a precise value. 

4.2 The Algorithms and Its Classes 

The articles selected develop and discuss many different algorithms and frameworks. 
Liu [32] categorizes the approaches that work on uncertain data in three classes:  
Apriori-based, FP-growth-based and H-mine-based. On the other hand, Aggarwal [1] 
divides the algorithms in two classes: Candidate Generate-and-Test and Pattern Growth. 

Grouping the two classifications it is possible to say that the algorithms belonging 
to Candidate Generate-and-Test class are based on the traditional algorithm Apriori 
[4]: they are Apriori-based. Otherwise the Pattern Growth class is composed by the 
algorithms FP-growth-based and H-mine-based.  

To [1], these two algorithm types have as main difference the data structure used to 
save the data in memory. FP-growth-based algorithms adopt a tree-based structure 
[15] and H-mine-based algorithms work with a hyper-linked array, developed origi-
nally in [38]. 

Table 5. Classification of the algorithms 

Class Algorithms and frameworks 

Apriori-based 
P-Apriori [14], uCBA [39], U-Apriori [1, 6, 12, 13], UCP-Apriori 
[13], IMBP [41], PFCIM [42], p-FPS and TODIS [40], Apriori 
with Poisson binomial distribution [44], PFIM [5]. 

FP-growth-based 
U2P-Miner [32], UFP-Growth [1, 6, 9], UF-Growth [23], U-FPS 
[24], U-FPS [26], uCFS [25], uCFS2 [27], CUFP-mine [31]. 

H-mine-based UH-Mine [1], P-Hmine [6]. 
Eclat U-Eclat [9], UV-Eclat [29] 

 

Table 5 organizes the algorithms pointed out by articles in their respective classes. 
The majority of them were classified in the three classes cited previously. Just two 
algorithms work with another approach: based on the Eclat algorithm [46]. 

4.3 Availability of the Algorithms 

Four [11, 402, 413, 424] from 20 articles offer their source code in a repository.  
Clearly, this fact demonstrates the lack of habit from the scientific community to 
make available their ideas and approaches to be used by other researchers. Thus, it is 
                                                           
1 http://dbgroup.cs.tsinghua.edu.cn/liyan/u mining.tar.gz 
2  http://www.cs.hku.hk/~lwsun/codes/kdd10/ 
3  http://code.google.com/p/imbp-programe- 
dataset/downloads/detail?name=IMBP and datasets.rar&can=2&q= 

4  http://www.erichpeterson.com/wp-
content/uploads/2009/04/Archive.zip 
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necessary to implement most of the algorithms to compare them. Besides of the time 
to do this task, locally-created solutions may have different behavior comparing to the 
original implementations, making difficult a fair comparison. 

4.4 Dataset Types 

All articles extract their analyses and discussions from tests on real and synthetic 
datasets. 14 articles [1, 6, 9, 14, 23, 24, 25, 27, 29, 32, 40, 41, 42, 44] work with both 
dataset types, 4 papers [5, 12, 13, 26] use just synthetic datasets and 2 papers [31, 39] 
use only real datasets. 

Generation of Synthetic Datasets 
From the 18 articles that use synthetic datasets, just 2 [41, 42] do not use the IBM 
Synthetic Data Generator, initially developed by Agrawal and Srikant [4]. Instead, 
they use synthetic datasets available at Frequent Itemset Mining Dataset Repository 
(FIMI - http://fimi.cs.helsinki.fi/data/). However, IBM Synthetic Data Generator was 
also used to generate the synthetic datasets in FIMI. 

The articles produce the data, basically, in two steps. The first one generates the 
datasets without uncertainty, using just IBM Generator and the second step assigns 
likelihood to data. This data generator creates automatic and configurable datasets, 
with transactions of users, simulating a market basket data. It allows the configuration 
of three variables: (a) average number of items by transaction (T); (b) average size of 
frequent itemsets (I) and (c) amount of transactions in the dataset (D). 

Thereby, several articles identify their synthetic datasets by abbreviations like 
T20I6D100K. In this example, each transaction has an average of 20 items, whose 
average number of frequent items (itemsets) is equal to 6 and the dataset is constituted 
by 100 thousand transactions. 

The second step is responsible by introduce uncertainty for each item (or transac-
tion) of the generated dataset. In the article of Chui [12], for example, some items are 
associated with high probabilities and others with low probabilities. These items use a 
distribution with mean and standard deviation established previously. 

Feng Gao and Chengrong Wu [14] created two datasets setting T20I10D100K, be-
sides generating probabilities using a normal distribution with mean equal to 0.2 and 
0.8. The standard deviation in this case was equal to 0.01 to both datasets. The work 
of Liang Wang et al [44] also tests two synthetic datasets, one with probabilities in 
the items and other with likelihood in the tuples (transactions), using the configuration 
T10I4D100K. Its average number of items per transaction and the average size of 
frequent itemsets are lower than the work of Feng Gao and Chengrong Wu [14]. Lian 
Wang also uses different mean and standard deviation to generate probabilities: 0.5 
and 0.125, respectively. 

Charu C. Agrawal, et al [1] applies its tests on two synthetic datasets, with different 
configurations (T40I10D100K and T25I15D320K) too. In this article the probabilities 
also are generated from a normal distribution, with the mean and standard deviation 
varying randomly in the range [0.87, 0.99] and [1/21, 1/12], respectively. 
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Analyzing only the articles cited, it was visible the large diversity of configurations 
applied on the synthetic datasets used in the tests. This absence of homogeneity  
interferes in the comparison of the results between the articles. 

Real Datasets 
From 16 articles that work with real datasets, 15 apply their experiments on well-
known repositories: FIMI and UC Irvine Machine Learning Repository (UCI - 
http://archive.ics.uci.edu/ml/). Only the article [32] works with other repositories. The 
15 articles use the repositories in accordance with Table 6. 

Table 6. Articles and repositories used 

Repositories Amount of articles References 
FIMI 9 [1, 6, 9, 14, 31, 40, 41, 42, 44] 
UCI 2 [29, 39] 
Both 4 [23, 24, 25, 27]  

Although UCI and FIMI repositories have many datasets, the articles often use a 
short set of them. The datasets most frequent in the papers, remembering that in some 
cases one article uses more than one dataset, are Accident, Chess, Mushroom,  
Kosarak and Retail. 

4.5 Comparisons between Algorithms 

Table 7 shows the algorithms proposed in each article and the ones that they were 
compared with. It also displays the comparison type performed. This table was sorted 
by publishing year, in order to give a chronological view of comparisons. 

The column “Compare with” shows the greater interest of the researchers to com-
pare their solutions with the algorithms U-Apriori, UF-Growth, UH-Mine and UFP-
Growth. The algorithm U-Apriori, introduced by [12], is present in 9 comparisons of 
different articles. The other three algorithms UF-Growth, UH-Mine and UFP-Growth 
are compared in 6, 3 and 3 different papers, respectively. Just three articles [12, 14, 
42] do not make any comparison with other solutions. 

Most articles use many charts to analyze parameters. According to column “Com-
parison type” the parameters analyzed are various. From 20 articles, 13 use charts to 
show the execution time of the algorithm versus support (CPU cost vs. support). In 
addition, seven articles compare the CPU cost versus dataset size. Only the article 
[29] does not exhibit comparative charts. 

Table 7. Articles selected 

Year 
[Ref] 

New 
solution 

Compare 
with 

Comparison 
type 

2007 
[12] 

U-Apriori, 
LGS-
Trimming. 

The both solutions 
created. 

CPU cost vs. % items with low existential proba-
bilities; CPU cost vs. support; CPU cost vs. itera-
tion; Number of dataset scan vs. iteration. 

2008 
[13] 

UCP-Apriori. U-Apriori, Framework 
LGS-Trimming. 

% of candidates pruned vs. fraction of dataset 
scanned; CPU cost vs. iteration 
CPU cost vs. support; CPU cost vs. % items with 
low existential probabilities. 
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Table 7. (Continued) 
Year 
[Ref] 

New 
solution 

Compare 
with 

Comparison 
type 

2008 
[23] 

UF-Growth. U-Apriori. CPU cost vs. support; CPU cost vs. dataset size; 
CPU cost vs. existential probability; Reduction in 
tree size vs. support. 

2009 
[1] 

U-Apriori, 
UFP-Growth, 
UH-mine. 

The algorithms itself, 
besides UCP-Apriori, 
UFP-Growth. 

CPU cost vs. support; Memory usage vs. support; 
CPU cost vs. Number of Transactions; Memory 
usage vs. Number of Transactions. 

2009 
[24] 

U-FPS (with 
UF-Tree). 

UF-Growth, FPS. CPU cost vs. percentage of items selected; CPU 
cost vs. support; CPU cost vs. dataset size. 

2009 
[5] 

PFIM. Five approaches of the 
framework itself. 

CPU cost vs. dataset size; CPU cost vs. dataset 
density; CPU cost vs. support vs. dataset density. 

2009 
[25] 

uCFS U-Apriori, UF-Growth, 
CAP, FIC, DCF. 

CPU cost vs. constraint selectivity; CPU cost vs. 
existential probability; CPU cost vs. support; CPU 
cost vs. dataset size. 

2010 
[9] 

U-Eclat and 
UFP-Growth. 

U-Eclat, UCP-Apriori, 
UH-Mine. 

CPU cost vs. support; Error vs. support; Precision 
vs. support; Recall vs. support. 

2010 
[39] 

uCBA. CBA. Accuracy vs. coverThreshold

2010 
[27] 

uCFS2. U-Apriori, UFP-
Growth, CAP, uCFS. 

CPU cost vs. selectivity (% of frequent sets se-
lected); Number of constraints checks vs. selectivi-
ty; Number of extensions vs. selectivity. 

2010 
[26] 

U-FPS DCF, CAP, FIC, U-
Apriori, UF-Growth, U-
FPS. 

CPU cost vs. selectivity.

2010 
[40] 

p-Apriori 
(bottom-up), 
TODIS (top-
down). 

p-Apriori DP, p-Apriori 
DC, p-Apriori DP-n, p-
Apriori DC-n. 

CPU cost vs. dataset size; CPU cost vs. support; 
CPU cost vs. confidence. 

2010 
[44] 

Two algorithms 
Apriori-based 
using binomial 
distribution of 
Poisson. 

Apriori-based using 
dynamic programming.

CPU cost vs. support; Number of PFIs vs. support; 
CPU cost vs. probability; CPU cost vs. dataset 
size; CPU cost vs. probability distribution; Dataset 
scanned vs. support; CPU cost vs. top-k. 

2011 
[14] 

P-Apriori. The P-Apriori itself. CPU cost vs. support; CPU cost vs. confidence; 
CPU cost vs. top-k; Memory usage vs. support; 
Memory usage vs. confidence; Memory usage vs. 
top-k. 

2011 
[29] 

UV-Eclat. U-Apriori, UF-Growth, 
UH-Mine. 

It don’t show comparative graphs.

2011 
[6] 

P-Hmine. U-Apriori, P-
MaxClique, UFP-
Growth. 

CPU cost vs. support; Memory usage vs. support. 

2011 
[42] 

PFCIM. The PFCIM itself. CPU cost vs. support; CPU cost vs. frequentness 
probabilities. 

2012 
[32] 

U2P-Miner. Extended Apriori, H-
miner and extended 
Depth-first backtrack-
ing. 

CPU cost saving vs. support; CPU cost vs. dataset 
size; CPU cost vs. support. 

2012 
[41] 

IMBP (based in 
the MBP). 

MBP. CPU cost vs. support; Recall vs. support; Number 
of candidates generated vs. support. 

2012 
[31] 

CUFP-Mine. UF-Growth. CPU cost vs. support; Number of nodes vs. sup-
port; CPU cost vs. decimal range; Number of 
nodes vs. number k of decimals; Number of nodes 
vs. number k of decimals. 
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5 Discussion and Conclusion 

The systematic review answered the questions (i), (ii) and (iii), listed in “The  
Research Question” section. 
(i) Apriori-based and Pattern-Growth are the most studied classes in the context of 
uncertainty data. Regarding to algorithms, those that received more attention from 
scientific community are the U-Apriori and UFP-Growth. 
(ii) Most articles concentrate their analysis focusing on the performance of the  
proposed algorithms, often making comparisons using memory consumption and 
CPU cost. 
(iii) Real datasets used can be comfortably retrieved from FIMI and UCI reposito-
ries. However, the synthetics datasets, although generated by IBM Synthetic Data 
Generator in 88.88% of the papers, have great diversity in the configuration parame-
ters, making difficult performance comparisons between the algorithms. 

5.1 Limitations and Future Work 

This systematic review has two limitations. The first one is the small number of 
search engines used. Probably, the use of other engines, such as Google Scholar, Wi-
ley and Springer, would enrich the work, but the time necessary to do other compari-
sons would be much longer.  

Rigorously, the whole process of systematic review was carried out by only one of 
the authors. However, frequent interactions between the authors helped to check all 
tasks, solve doubts and plan next steps. In fact, this method allowed a better homo-
geneity of the discussions in the article, but recommendations to the application of 
systematic review strongly state the whole process should be performed by at least 
two researchers. 

The most articles work with the definition of mining frequent itemsets over uncer-
tain data using expected support-based itemsets semantic approach [1][12][13]. 
Another approach implemented in the articles is based in probabilistic frequent item-
sets [5][44]. Studies that compare both definitions were not found and suggest future 
works. Even as the absence of articles that shows the results over uniform datasets 
also suggest future investigations, because they will allow comparisons and conclu-
sions most realistic. 
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Abstract. This paper tackles the problem of detecting topical
communities from within an organization by mining readily available
network access pattern information. A Bayesian generative process is
used to model the behavior of user’s network access pattern and thereby
her consumption of online content. The idea is that users within same
topical interest group tend to share similar online access patterns. By
leveraging this pattern, along with side information of domain-names
and keywords within the accessed websites, one is able to model these
observations under the framework of a mixed membership statistical
model. Hence the access patterns of users-to-websites, as measured at
the edge of an organization’s network boundary, can be decomposed into
constituent topical communities without any human effort in selecting
specific features. Experimental results on real-world network flow trace
demonstrate that the proposed method can effectively detect topically
meaningful community structures. Besides better detection accuracy of
communities compared with other community detection methods, the
proposed method can detect interesting but non-evident hidden commu-
nities which cannot readily be detected by other known methods.

Keywords: Topical Community Detection, Generative Model, LDA,
Network Flow.

1 Introduction

With the emergence of social media, the role of web users has shifted from
passive navigators to active content creators, moderators and consumers. Given
the rich source of data and tools provided by Web 2.0, users have the ability to
actively create and share content while collaborating and communicating online.
Consequently, there are now many rich sources of heterogeneous data created
by millions of users participating in numerous online social interactions, not
only accessing but creating, sharing, and annotating content they are interested
in. Furthermore, the millions of users who share, communicate, and interact
with each other online come from diverse demographical, geographical, and even
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topical interest groups which may be implicitly reflected in the content that they
access and other online behavior patterns they demonstrate.

Analyzing user interaction data and exploiting both evident and non-evident
(often hidden) communities that are created is important[19] since the communi-
ties a user belongs to can critically influence the content he/she consumes. And
the aggregate community behavior will probably drive the trends and events on
a website or even the entire Web [13]. Moreover, the discovery of either explicit
or implicit user communities on the Web can be beneficial as many web or en-
terprise based applications could specifically tailor and leverage such community
information[13]. Applications such as recommendation[18], personalization[11],
content distribution[12], and marketing[13], can become more efficient, targeted
and focused. In addition, information such as access performance, quality of ser-
vice and user satisfaction could be improved if information on users’ community
relationships is known[23].

The problem of decomposing networks into cohesive clusters, mostly known
as community detection, has attracted increasing attention and research in re-
cent years. While different techniques of community detection have been widely
used in many scientific disciplines and in many different ways (such as search en-
gine optimization, targeted advertising, and personalized recommendations [24]),
most research has focused on detecting either social communities or common
groups using the interaction graph of users [23]. Hence these approaches, while
focusing on the user-to-user interaction graph, remain limited to the aspects of
people’s behavior on specific websites (such as a certain social network website
or a shopping website) and therefore do not fully leverage user’s day-to-day net-
work access behavior across multiple websites and their broader semantical topic
interests. For example, decomposing all the users accessing a shopping website
cannot fully exhibit the actual users’ professional topical interest, which might
be reflected in their activities while visiting other websites.

In this paper we are interested in the topic-based community detection
problem from users’ web access behavior across multiple websites. This can in
general be difficult as such information can be hard to obtain. However, we
observe that for users within an institution, their web access patterns can be
readily gleaned from simple and readily available network flow data. By looking
into the aggregated network access patterns observable from network flow data,
we aim to discover the hidden topical-driven communities within the organiza-
tion. Here “the topical communities” we want to discover could be groups of
users either from similar demographical or ethical groups, or formed by sharing
similar interests and visiting external websites of similar topical content, as per
the extracted text information from the external websites visited.

By leveraging the network access patterns as well as scarce content
information, we show that users within an organization could be categorized
into both evident demographical and non-evident topical clusters. Understand-
ing the topical interests within an organization could be useful in many ways.
For an enterprise, if one can understand which types of professional topics and
industry trends are ongoing, he/she can then predict interest trends, grasp the
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most popular industry innovations and take opportunities to make the business
more successful. As shown in[11], companies are very interested in leveraging
the on-going topical communities in context of productivity and security. Un-
derstanding the hidden topics within a company is critical and beneficial in many
aspects such as expertise and knowledge search, social proximity and collabo-
ration, social recommendations and even cyber-security. For non-profit driven
institutes such as colleges and universities, a better understanding of the topical
communities will facilitate the school to be able to provide better educational
resources as well as more specific talent discovery and matching.

In the rest of this paper, we report our experience and solutions for discovering
and analyzing existing topical communities in organizations such as enterprise
or institutions. Given the network access trace of users within an organization,
we use Latent Dirichlet Allocation (LDA), a Bayesian topical model, to predict
the topical communities that each user belongs to.

More specifically, the contributions made in this paper are as follows:

1. We tackle the problem of mining semantically meaningful topic communities
from within an organization, and formulated the topical community detec-
tion problem as a probabilistic model for clustering users in a graph.

2. Using only the observed who-visited-what network flows, along with lim-
ited content-based keyword frequency information extracted from either the
website itself or an external source, we present a methodology to use an LDA-
based approach to dynamically cluster users into possibly overlapping com-
munities, each of which represents a certain topical interest shared among a
group of users.

3. Experimental results on a real-world network flow trace from an institute
shows that our proposed method can effectively detect topically meaningful
communities including both demographical communities and non-evident
communities sharing similar interests in certain semantic topic, which cannot
readily be detected by other known methods.

The rest of this paper is organized as follows. In Section 2 we discuss related work
on community detection. Then we describe our approach in details at Section 3
and present the experimental results in Section 4. In Section 5, we conclude and
discuss limitations and future work.

2 Related Work

Detecting community structures from complex networks has been studied in
different contexts such as Social Network[6][7][14][16][2][3], Web Graph[19], and
Biology[15]. Most of these approaches could be categorized as either modularity-
driven[15], where the goal is to optimize certain objective function given the
graph structure, or statistical inference based where a Bayesian Generative
Model is applied [20][21]. Working under the definition of a community which
should have better internal connectivities than external connectivities, the ob-
jective function to optimize is often related to the cut of a graph, and the
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problem under this scenario is proven to be NP-hard[26]. Therefore, different
heuristics[24] are employed to solve the problem. Meanwhile, there are also ap-
proaches using Bayesian Generative Models to tackle the community detection
problem[20][21]. Then the question becomes what posterior settings of members
belonging to each community best explains the membership data-observed. For
detailed comparison of the community detection algorithms, we point to the
survey and comparison in [24].

Studying the community detection problem from an enterprise angle for ei-
ther talent discover or industry revenue/trend prediction has been proposed by
Lin in [13][11][12], where the behavior of users within an enterprise is studied
and modeled. Users’ behaviors on different social websites as well as content
information is utilized in the work[13] to bring predictive value for the enter-
prise. Community detection has also attracted interest from the social network
area. In [17], the authors proposed an LDA approach to model user interaction
behavior communities. In [9][10], researchers demonstrated information leakage
could happen for certain user groups. More specifically, by adopting a similar
LDA-based approach, they are able to infer demographical information based on
user ’likes’ on social network sites such as Facebook. In [8][1], both content and
user interaction data are utilized to provide semantically improved clusterings.

3 Topic Modeling on Web-Access Data from NetFlow

In this section we describe our community mining approach. We first describe
how we build a graph from network flow data. Then we describe the intuition
how we can apply the Latent Dirichlet Allocation(LDA) algorithm in our setting.
Finally we formulate our approach and present the detailed algorithm used.

3.1 User-Web Access Graph

Network flow data, specifically the industry standard NetFlow, is the main source
of information we use for community detection. When the edge router within
an enterprise network is NetFlow enabled, statistics of communication sessions
between two hosts (one inside the network and the other outside) are collected in
the form of a NetFlow record. From each NetFlow record we only use the source
and destination addresses as well as the port number and protocol associated
with the flow. Given this information we first extract all the web accesses made
by only considering flows which are associated with web access ports (such as
port 80, 8080, 8081). For each such flow, the internal IP address represents an
internal user while the external IP represents a website which the user visited.
Given that domain name information is public, we query the DNS servers along
with other public Domain name services (such as Google DNS) to get the real-
time domain name mapping of the external website for each record and store
this information.

What we now have is a bi-partite graph which has two type of nodes. On one
side are the internal IP addresses (or users) and the other side is the external
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website domain names, and there is an edge between an internal user that ac-
cessed a particular website. We call this graph the User-Web Access Graph. We
make assumption here that the mapping of User-Identify to IP is relative stable
in a short period of time given prior work on the dynamics of IP addresses[25].

Annotating the User-Web Access Graph with Content Information. The bipartite
nature of the User-Web Access Graph described above makes it hard to capture
social interactions between users, i.e., the user-to-user social graph which has
often been used for user segmentation and profiling[17]. However, the bipartite
graph represents more complete and multi-faceted activities of users, as it is not
restricted to specific websites. This richer source of activities provides us with
users’ website access patterns. In this section we show how we can supplement
these access patterns with content-based semantic information. The resulting
dataset reflects topic-driven user behaviors, where the patterns of how users
visit different websites and what content they consume are largely dependent on
such explicitly expressed or implicitly self-formed communities (which we refer
to as “topical communities”).

To capture semantic information for each website in the User-Web Access
Graph we extract text content from these external websites by performing the
following procedures. Firstly, we actually query the website against external
repositories of information such as Wikipedia and mine the descriptive text from
that source. By performing tf-idf based processing of the frequencies of the words
in the extracted text, we store the frequencies of the remaining words in the text,
which we address as descriptive “keywords” depicting the characteristics of the
website’s content. So for example, when a user visited techcrunch.com, keywords
such as “technology” and “start-up” will be extracted.

In many cases, such Wikipedia like descriptions may not be available. We
then actually establish a connection to the external website and mine the text
using existing web-text mining tools. In this way, for each website, we will have
keywords information describing the website. For globally popular websites such
as Amazon.com or facebook.com, the mined keywords may not be descriptive
enough to annotate the content preference of users. Therefore we discard these
keywords from such general-purpose websites and only store the domain name
related keywords. However, if a users visits websites such as techcrunch.com
or a specific websites only for people speaking certain languages, the extracted
keywords will then be informative in representing users’ characteristics, either
in a demographical or topical fashion.

We now have the dataset we run our algorithm consists of User-Web Access
graph, along with frequencies of keywords annotating each external website.

3.2 The Intuition of Applying LDA for Clustering

Given the bipartite nature of the fully observed User-Web access graph and very
limited content information extracted from the websites, we propose to apply
LDA as a topic modeling tool to solve the community detection problem. In the
context of our problem, the LDA model formalizes the intuition that users visit
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certain websites for a “topical purpose”. The idea is that, if we were to treat
users and websites as nodes in a graph and place an edge between two entities
if they are found to communicate, then densely connected regions (nodes and
edges) of the graph are likely to belong to the same topical interest. The rationale
for this is that there are likely to be many more links between members of the
same topical community in the web-visiting graph, than between two different
topical communities.

Imagine that each web-access record between an internal host and an external
host was produced by an imaginary two-step process (see Fig 1): each internal
host first picks, at random, a topical community to participate in one out of
K possible communities, and then given the chosen community, an external-
website that belongs to that community is picked, also at random. This two step
process is repeated for each web-access network record, with the random draws
made independent of other draws. Each of the two random draws are made
according to specific (as yet unknown) distributions - the first, a distribution
over communities, and the second, over external websites. These distributions
can be treated as tunable parameters of a model. Using Bayes’ rule to answer the
question: “What setting of the parameters best explains our observed web-access
activities?”, gives us the distributions, from which we can infer a grouping of
hosts into communities. In addition to clustering the users, external websites are
also clustered into different topical communities together with the users. Then
with content keywords extracted from these websites, we are able to label and
explain the topical communities in our results.

3.3 Applying LDA to Mine Topical Communities

The LDA model has been applied to community discovery in social networks
[17][22]. We describe it here in our problem’s setting. Consider a dataset D, con-
sisting of {internalUser, ExternalWebsite} pairs in a given time interval, where
internal users are represented by IP address and external websites are identified
as domain names. If we think of D as a graph G where vertices represent hosts,
and undirected edges represent flows between pairs of hosts, then G is a bipartite
graph. Each user in D can be a member of one or more topical communities. We
assume there are K topical communities in all.

Detailed description of terminology is presented in Table 1. We first define
two families of multinomial distributions:

θ: For each user(identified as an internal IP) i, consider a K-dimensional multi-
nomial probability distribution θi, where i = 1, . . . , Nint, where Nint is the
number of internal users in D. The nth element of θi represents the extent
to which internal user i belongs to the nth topical community.

β: For each topical community Cj , j = 1, . . . ,K, consider a multinomial prob-
ability distribution βj , j = 1 . . .K over all the external websites in D. The
dimensionality of each βj is Next, the number of external websites that users
have visited. The mth element of βj represents the extent to which the mth

external website participates in the jth topic community.
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Table 1. Summary of notation

Symbol Meaning
D Dataset of {Internal User-IP, External Website } pairs
Di Set of all flows involving internal users i

Nint Number of internal users
Next Number of external websites

K Approximate number of topical communities
θi Multinomial of dimension K
βj Multinomial of dimension Next

Ci,n Community of the nth network access record of internal user i

Hi,n External website involved in ith internal user’s nth flow
α Dirichlet hyperparameter for producing prior θis
η Dirichlet hyperparameter for producing prior βjs
γ Fraction of users that are internal

We first collect all the website accessing records in D involving internal user i
into a datasetDi. Let |Di| denote the number of accessing records in Di. We
ignore the order in which these accessing network flows occur. The behavior of
each internal user i in Di can be described via a probabilistic generative process
as follows (see Fig1 for an illustration of the generative process. The numbers
within parentheses in Fig1 correspond to the numbering of the 3 steps below as
well as in Fig2).

1. A Dirichlet distribution (a distribution over distributions) is sampled to ran-
domly pick a multinomial for each of the θi and βj distributions. In Figure
2, α and η are parameters of the two separate Dirichlet distributions. We
use α = 0.3 and η = 0.01 based on suggestions in [5].

2. For each website access record in Di, first randomly pick one of the K com-
munities, by sampling the multinomial θi. Let the chosen community be
denoted by Ci,n.

3. Then given Ci,n = k was picked, (k ∈ {1, . . . ,K}), pick an external website
by sampling from βk. Let the external website picked be denoted by Hi,n.

The last two steps above are repeated for each of the |Di| flows in Di, and the set
of three steps above is repeated for each internal user in D. Given prior distri-
butions θi, i = 1, ..., Nint and βj , j = 1, ...,K, and this probabilistic generative
process (i.e., how observed data D is linked to a given set of prior distributions
θi and βj), our objective is to infer posteriors θi, βj |D. Exact computation of the
posteriors on θi and βj is intractable. We used collapsed Gibbs sampling as our
approximate inference algorithm as it is scalable and could be paralleled on a
cluster[4].

As a result, the Gibbs sampling based LDA algorithm provides us with a
matrix of size Next × K in which the (i, j)th element is the estimate of the
number of access-records that external websites i has been involved in while
participating in community j. The columns of these matrices can be normalized
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Fig. 1. The probabilistic generative process that explains the dataset of (User, Website)
pairs. The numbers in parenthesis correspond to the steps in Section 3.2 and Figure 2.

Fig. 2. The probabilistic graphical model for LDA. Only the shaded nodes are observed

to sum up to 1 to yield the posterior distributions βi, i = 1, . . . ,K. Since inter-
nal users are connected to external websites by web-access flows, and we have
assigned external hosts to communities, we can now infer a second matrix of
size Nint × K containing the estimated number of flows for each internal user
in each community. The rows of this matrix can be normalized to sum up to 1,
to yield the posterior distributions θi, i = 1, . . . , Nint. By examining into these
estimated posterior probabilities, we are able to put the internal users as well
as external websites into possible overlapping clusters by simple thresholding on
the posterior probability values.

Given the discovered communities of our algorithm, the remaining problem
is how to label and interpret these communities that we have generated. We
use the mined frequencies of keywords (as described in Section 3.1) associated
with the websites a cluster of users have visited, to interpret our discovered
communities. These keywords are filtered to remove stop words without semantic
significance. By labeling each user community with a collection of keywords,
the keywords and their associated frequencies constitute a description of the
“topic” in this community. By annotating the discovered communities with these
mined text keywords, we have decomposed the user-to-website access record
into interesting descriptive clusters. Each community will have a “description”,
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which is essentially a distribution over the keywords. These keywords somehow
represent the popular topic(s) within the discovered community, and enables us
to explain and interpret the topics for the community. As a simple example, if
we see a community whose keywords are mostly related to a country, then we
have probably discovered the demographical community from that country.

By running our algorithm periodically over a time-window (12 Hours in our
setting), we are able to perform topical community discovery by clustering all
the users into topical communities characterized by a unique distribution of
keywords. Looking into the keywords of each community, we are able to infer
semantical meaning of the topics we have generated. Such topics may include
information such as demographics, ethnicity, occupations, professional interests
and skills, and popular topics on the internet. More interestingly, we can not only
build a knowledge base of users’ topical interests, but also monitor the dynamics
and developments of each topical community. In addition, new trending and
unseen topics could also be exhibited by running our approach and examining
the changing frequencies of keywords as well as new keywords.

4 Experimental Results

We now present experimental results showing that our approach can accurately
identify topical communities. In addition, we examine and present the charac-
teristics of several expected communities as well as some unexpected ones.

4.1 Evaluation Metric and Labeled Dataset from DHCP Log

Given our unique problem setting and viewpoint, obtaining a labeled dataset
is difficult for several reasons. First, getting the complete topical interests from
users is difficult due to privacy concerns. In addition, each user has his/her own
unique topical interests and a reasonably large dataset has to be obtained to
cover a large portion of users in order to perform accurate evaluation. Rather
than manually obtaining a small labeled dataset by individual user survey, we ex-
plored the dhcp log associated with our network access traffic. Dhcp log includes
information on which IP addresses have been assigned to each device. A device,
which could either be a PC, laptop, tablet or even mobile phone, is identified by
either its MAC address or a host name. In our case, we found that many devices
actually have meaningful host names associated with them. In many cases, the
host name included information of the users’ actual name or information of the
office location of the computer. By connecting this information with our roster
database, we were able to accurately identify 262 users’ identities. With this in-
formation, we constructed a labeled dataset which describes the demographical
and ethnic data of these users, as shown in Table2. This dataset then was used
as a benchmark for evaluating our approach for measuring performance of iden-
tification of ethnic communities. It should be noted that the experiments were
done with procedures approved by the university IRB and proper procedures to
protect the privacy of individuals were put in place.
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4.2 Performance of the Mined Topical Communities

To evaluate the accuracy of our approach, we ran our clustering algorithm and
compared with the ground truth labeled community dataset for the period of
time where the corresponding dhcp log was recorded. To pick an appropriate
number of communities, we adapted the notion of perplexity measure as sug-
gested in [5]. Note that the precise number of communities is difficult to compute
and remains an open problem. However, in our scenario, a good approximation
which enables us to capture most active communities will suffice. In our problem,
the number K was tuned to be 40.

Two metrics, precision and recall, were used to measure performance. Let C
denote a labeled demographical community and Ĉ be its detected version. In
order to pick up the “detected” version of C, we went through every discov-
ered community and chose the one with most “similarity” with respect to C .
More specifically, for each community, we compute its Jaccard Similarity with
the labeled demographical community, and select the one with highest Jaccard
Similarity as the “detected” corresponding one. Precision and recall were then
computed from C and Ĉ. Precision was defined as the fraction of the members
in Ĉ that actually come from the underlying ground-truth community C. Re-
call was defined as the fraction of members in C that appear in the detected

community Ĉ. Formally:precisionC(Ĉ) = |C∩Ĉ|
|Ĉ| ; recallC(Ĉ) = |C∩Ĉ|

|C|

Table 2. Labeled Ground Truth: Demographical Topical Communities

Community
Information

Community
Size

Total Number of
Web Access Flows

India(IN) 48 6594

China(CN) 132 10270

Germany(DE) 132 2787

Russia(RU) 29 1069

Italy(IT) 13 385

Poland(PL) 12 1161

Turkey(TR) 9 3601

Japan(JP) 7 104

Total 262 23971

To compare we also implemented the K-Means clustering algorithm[24], where
the distance between two internal users is measured by the Jaccard Similarity
between the sets of the external websites these two users have visited. Experi-
mental results on precisions and recall are shown in the bar graph Fig 3, where
the height of the bars indicates accuracies and recalls. The results are ordered
by the sizes of the ground-truth communities.

From the graph, it can be seen that the LDA-approach performs consistently
and significantly better than the K-Means algorithm. More specifically, the al-
gorithm tends to have better performance given more active communities. For
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Fig. 3. Detection precisions and accuracies on labeled demographical communities,
compared with K-Means clustering algorithm

example, the Russian demographical topic community has a larger size in terms
of number of users. However, the LDA algorithm shows better detection for
the Turkish community where the number of captured web-access flow records
is larger. Also, even though the algorithm is able to detect most communities,
there are certain small communities (such as the Japanese and Italian commu-
nity), which are not very well detected. This is not surprising given that LDA is
a Bayesian algorithm where its performance gets better with more data (essen-
tially more stable statistics). Given the smaller size of these communities and
lower activity, LDA will not be able to detect these ones given the inherent
“resolution” of LDA’s application in our problem.

To have a sense of how active a community has to be in order to be detected,
we conducted experiments on a relatively large community (the Chinese com-
munity). By intentionally deleting some web-access flows randomly, we repeated
our experiments to see how the portion of remaining flows will affect detection
performance. The graph in Fig4 shows how the detection performance changes
with respect to the remaining number of web-access records. While precision is

Fig. 4. Performance of LDA communities with Changing Level of Website Access Flow
Records Captured
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slowing decreasing, recall is more effected by the activities of a community as it
goes lower more quickly with smaller activitiy level of the community.

4.3 Expected and Unexpected Communities

Demographical communities, while being measurable against ground truth, are
perhaps less interesting and valuable to an enterprise as opposed to other types
of subject matter based communities. In addition to comparing with the ground
truth communities to evaluate the exact performance of our algorithm, it is
also interesting to study the “expected” and “unexpected” communities that
were discovered, especially the topic driven ones. Most of these communities
are either identifiable by demographically featuring keywords as shown in the
domain names, or driven by topical content. We address these as the “expected”
communities as we expect our algorithm to be able to discover existing and
on-going topics within our institute.

Among the 40 communities discovered, around 50% of them (22 communities)
were highly associated with demographical keywords such as a specific coun-
try. The remaining communities were more driven by specific keywords such as
“linux” and “hack”. Note that the results were conducted based on datasets col-
lected from an engineering-focused college. More characteristics of the detected
communities are shown in Table 3. Given that our NetFlow data comes from
a university, where a significant amount of students are international students,
the demographical communities are mainly driven by nationalities and languages
of the visited external websites. More interestingly, for the content-based com-
munities, there are many topical communities which we can interpret from the
associated keywords. Due to space limit, we present as example, four commu-
nities of “Consumer-Electronics”, “Hacker-Security”, “Deals-Online-Sales”, and
“Academia-Education-Admission”, along with their most frequent keywords in
Fig 5. From the keywords associated with these communities, we can infer the
topics driving the common interests of the users within these communities.

Table 3. Detected communities and their statistics

Categories
Total Number
of Communities

Total Number
of Users

Example
Communities

Demographical 22 1227
Chinese
Indian
Korean

Content Based 15 538

Consumer-Electronics
Hacker-Security

Deal-Sales-Shopping
Academia-Education-Admission
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Fig. 5. Examples of 4 content topical communities discovered: each column represents
a topical community. The colored text is the name we give to the community, followed
by the most frequent keywords from the websites associated with these users accesses.

In addition to these foreseeable demographical or common topical com-
munities, we also present case studies of two correlated special communities.
Both of them have unique keywords distributions making themselves very
self-explanatory. These communities we address as “unexpected”.

Two Special Communities: The “Apple-Steve-Jobs-Death” Topic and
the “Sales-Deals-Buy-Iphone” Topic. By coincidence, the dates when we
built the labeled datasets is very close to the major news of the death of Steve
Jobs. Interesting, two related topics, one featuring keywords such as ”apple,
steve-jobs, death”, and the other featuring keywords as ”sales, deals, iphone”,
both get discovered in our system. The degree distributions, along with the fea-
turing keywords are shown in Fig6. The associated keywords somehow tell the
stories. There is a popular topic about the death of Steve Jobs while there is
another overlapping community discussing buying iphone and Android phones.
Interestingly, the degree distribution for the first one is very concentrated,
meaning that the death of Steve-Jobs is the only dominant topic in this
community. However for the “Buy-Iphone” topic, there are two peaks. Look-
ing into the graph structure of the community, it actually has ”iphone” and
“android” as two clustering centers, thereby making two peaks in the degree
distribution.
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Fig. 6. Degree distribution for the case-studies: (1)Apple-Steve-Jobs community along
with featuring keywords (2) The Iphone-Android Sales Community with featuring key-
words sorted. Both keywords are sorted by their mined frequencies.

5 Conclusion, Limitations and Future Work

In this paper, we proposed to use Latent Dirichlet Allocation (LDA) as an
innovative approach to solve the problem of topical community detection within
an enterprise like setting, where we observe the full user-to-website network
traffic graph with limited content information. By utilizing the analogy of LDA
document-topic-word to user-topic-websites, along with extracted keywords from
crawling the external websites, we show that our LDA method can success-
fully discover many interesting and active topical communities with better
precision and recalls than other method(s). The discovered topical communi-
ties are either formed by demographical similarities of users, or common interest
based on similar content.

Given the Bayesian nature of our approach, our performance is expected to
get better with more observed data. However, there is a limit to the length
of the time-window on which we conduct our solution. As we used internal IP
address to identify an internal user, the IP-Churn [25] problem places a limit
on the time window we can employ while still making statistical sense. Once
the user’s IP changes, the collected flow data is no longer consistent in the
sense of indicating internal users. This could be partially solved given the access
to DHCP log which records the allocation of IP addresses to physical devices.
However, it is not common to assume that the DHCP log is always available.
In fact, DHCP log is more privacy sensitive than Netflow data. To overcome
this limitation, possible approaches may leverage Hierarchical Dirichlet Process
(HDP)[22], where the IP-Churn is also captured by the generative model. We
leave this as future work.
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Abstract. Some response signals being modeled for humans over some time 
segments may not be relevant for analysis and modeling. These signals could 
contribute to reducing the quality of patterns captured by models, inefficient 
processing and may impose huge demands on storage resources. This work 
proposes an approach to search for relevant time segments from human  
response signals particularly, physiological and physical signals to recognize 
stress. The paper proposes an approach to determine time segments that were 
critical to differentiate the types of text based on stress. A support vector  
machine (SVM) was used to classify the different types of text based on the  
features of the response signals. A SVM and genetic algorithm (GA) hybrid  
approach is developed to determine optimal time segments for stress detection 
(OTSSD). As well as optimizing time segments, the GA also dealt with  
hundreds of stress features that may have included redundant and irrelevant fea-
tures. Optimal time segments for stress in reading were successfully found and 
the GA and SVM hybrid classifier showed an improvement in stress recognition 
when optimized features from the critical time segments were used. 

Keywords: time segments, genetic algorithms, support vector machines, physi-
ological signals, physical signals, stress modeling. 

1 Introduction 

Human response signals can be used to objectively determine the state of a person in 
terms of how they feel and react to stimuli at certain points in time or over certain 
time periods. The main types of response signals to determine the states of a human 
are physiological (e.g. heart rate [1-3] and galvanic skin response [4, 5]) and physical 
(e.g. facial expression [6-9]) signals. To determine the state of a person under some 
given circumstance, these signals are captured over some time period to include the 
data for analyzing the state of the human. However, the signals over the total time 
period may not be necessary for processing to extract patterns for detecting the state 
and it may be possible that a smaller segment of the total time period may contain the 
data sufficient for analysis and modeling. Analysis of the smaller segment could result 
in significant improvement in efficiency because the effect of irrelevant or redundant 
data on the analysis will be reduced. 

Several computational techniques already reported in literature can be used to  
select relevant and optimal time segments, but they are not useful for cases when 
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relationship between the characteristics of signals and their features characterizing the 
human state that needs to be identified are not known. Visual inspection could be used 
to support selection of a more optimal time segment as reported in literature [10]. The 
visual analysis could be difficult and prone to errors. Previous research in literature 
has developed techniques to detect events from time series data and modeled the 
problems statistically e.g. change point detection problem using maximum likelihood 
methods [11]. These methods have been applied to traffic data [11] and electrical 
brain signals (EEG) [12]. For a problem like stress recognition defined in this paper, 
multiple response signals need sourcing and analysis. This poses a major technical 
challenge as little information is available on how the various signal combinations can 
be decoded and how the features affect stress recognition. Feature extraction methods 
including clustering analysis provide amenable methods to extract and use optimal 
patterns from time segments. These time segments have to be optimally selected 
though. Some human intervention may still be required in the process.  

Stress is the body’s reaction or response to the imbalance caused between demands 
and resources available to a person. Stress is seen as a natural alarm, resistance and 
exhaustion [13] system for the body to prepare for a fight or flight response to protect 
the body from threats and changes. When experienced for longer periods of time and 
left unmanaged, stress has been recognized as a growing concern in our age adversely 
impacting society due to its potential to cause chronic illnesses (e.g. cardiovascular 
diseases, diabetes and some forms of cancer) and high economic costs (especially in 
developed countries [14, 15]). Benefits of stress research range from improving per-
sonal operations, through increasing work productivity to benefitting society - moti-
vating interest, making it a socially beneficial area of research and posing technical 
challenges in Computer Science. Various computational methods have been used to 
objectively classify stress to differentiate conditions causing stress from other condi-
tions. The methods developed have used simplistic models formed from techniques 
like Bayesian networks [16], decision trees [17] and support vector machines [18]. 
These models have been built from a relatively smaller set of stress features than the 
sets used in the models in this paper. Further, this work contributes to stress research 
in the understanding of when individuals respond to stress during a typical activity 
like reading using a computational approach. 

An experiment was conducted where an experiment participant read stressed and 
non-stressed text while their physiological and physical response signals were cap-
tured. Text was displayed to a participant for a specific time period and of this time 
period possibly a portion is needed to determine the stress state of participants. It may 
be that participants showed stress in their response signals while they were reading or 
they may have showed stress after they finished reading and digested what they read. 
This paper proposes approaches for selecting the critical time segments during the 
reading time. 

The human body’s physiological and physical response signals obtained from non-
invasive methods that reflect reactions of individuals to stressful situations have been 
used to interpret stress levels. Physiological signals include the galvanic skin response 
(GSR), electrocardiogram (ECG) and blood pressure (BP). Unlike physiological  
signals, we define physical signals as a time-varying characteristic where changes can 
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be seen by humans without the need for equipment and tools that need to be attached 
to individuals to detect general fluctuations. However, sophisticated equipment and 
sensors using vision technologies are still needed to obtain physical signals at sam-
pling rates sufficient for capturing stress patterns. Examples of physical signals are 
eye fixation and pupil dilation signals. GSR, ECG, BP, eye fixation and pupil dilation 
signals are the primary stress response signals used in this paper. 

The aim of this paper is to determine whether time segments for stress exist that 
are more relevant to recognize stress in reading. We coin the term stress episode to 
mean a time segment that gives stress patterns in stress response signals required for 
stress recognition and critical to classify stress. As a consequence of this definition, 
without stress episodes, two different types of stimuli cannot be differentiated based 
on stress provided that one stimulus causes stress and the other stimulus does not 
cause stress. A computational approach is proposed to obtain stress episodes based on 
a support vector machine (SVM) and a genetic algorithm (GA). The approach also 
deals with redundant and irrelevant features from stress response signals for stress 
classification. 

The paper presents the reading experiment that was implemented to collect physio-
logical and physical data from which stress features were derived. Then it proposes a 
hybrid method to search for stress episodes in the features using a GA and a SVM. 
The GA was implemented to optimize time segments encoded in various forms. The 
optimization was based on the features and stress classification quality obtained from 
a SVM. Results of the optimization of the time segments encoded in various forms are 
presented and discussed. A summary of this work and suggestions for future work are 
provided as conclusion. 

2 Data Collection: Reading Experiment 

A reading experiment was done to collect various physiological and physical data 
from individuals while they read text. Thirty-five undergraduate Computer Science 
students, compromising 25 males and 10 females, over the age range of 18 to 24 years 
old were recruited as experiment participants. Each participant had to understand the 
requirements of the experiment from written experiment instructions with the  
guidance of the experiment instructor before they filled in the experiment consent 
form. Afterwards, physiological stress sensors were attached to the participant and 
physical stress sensors were calibrated. The instructor notified the participant to start 
reading, which triggered a sequence of text excerpts. After finishing the reading,  
participants had to do an assessment. To summarize, the process of the experiment for 
an experiment participant was: 

1. Study experiment requirements 
2. Provide consent 
3. Calibrate sensors 
4. Read text 
5. Answer survey questions related to the reading 
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Every participant had their physiological and physical measurements taken over 
the twelve minutes reading time period. During the reading period, a participant read 
the experiment instruction text and then read the main text, which was made up of 
stressed and non-stressed types of text validated by participants. The instruction text 
was in the style of the main text for participants to get trial runs of the reading tasks. 
Stressed text had stressful content in the direction towards distress (e.g. an excerpt 
about war victims and an excerpt about a ghost in a bedroom), whereas the non-
stressed text had content that created an illusion of meditation or soothing environ-
ments (e.g. an excerpt about a drive through a scenic terrain and an excerpt about a 
flower festival) and was not stressful or at least was relatively less stressful compared 
with the text labeled as stressed. Results from the experiment survey validated the text 
classes. This is a common method used in literature to validate stress classes for tasks 
[19]. Participants found the text that were labeled stressed stressful and text labeled 
non-stressed as not stressful with a statistical significance of p < 0.001 according to 
the T-test. 

Each type of text had the same number of text excerpts and each text excerpt was 
displayed on a computer monitor for participants to read. For consistency, each text 
excerpt had approximately 120 words. It was displayed on a 1050 x 1680 pixel Dell 
monitor, displayed for 60 seconds and positioned at the same location of the computer 
screen for each participant. Each line of the text had 70 characters including spaces. 
 

 

Fig. 1. Equipment setup for the reading experiment 



 Optimal Time Segments for Stress Detection 425 

 

Feature values were derived from physiological and physical signals. Biopac 
ECG100C, Biopac GSR100C and Finapres Finger Cuff systems were used to take 
ECG, GSR and blood pressure recordings at a sampling rate of 1000 Hz. Eye gaze 
and pupil dilation signals were obtained using Seeing Machines FaceLAB system 
with a pair of infrared cameras at 60 Hz. The equipment setup for the reading experi-
ment is shown in Fig. 1. Other stress symptom signals were derived from primary 
signals such as, heart rate variability, which was calculated from consecutive ECG 
peaks and another popular signal used for stress detection [20, 21]. Statistics (e.g. 
mean and standard deviation) were calculated for the signal measurements for each 5 
second interval during the stressed and non-stressed reading. Measures such as the 
number of peaks for periodic signals, the distance an eye covered, the number of for-
ward and backward tracking fixations, and the proportion of the time the eye fixated 
on different regions of the computer screen over 5 second intervals were also ob-
tained. Regions of the computer screen are shown in Fig. 2. The statistic and measure 
values formed the stress feature set. There were 215 features in total. Feature vectors 
for each participant were normalized by the participant’s baseline before they were 
provided to the classifier. 

   D 
 
 

B 
 

 A  

 
 
 
 

. 

Fig. 2. Bounding rectangles define the different regions of the computer screen to determine a 
subset of eye gaze features. The bounding rectangles show regions A, B, C and D. Region A 
contains the text area where text was displayed to a participant. Region B is the region without 
A and regions C and D are defined similarly. Region D had the application menu and the tool-
bar. Note that the diagram is not drawn to scale. 

 

A participant was shown a segment of text for a set period of time for reading.  
According to the reading rate for an average person and considering the number of 
words per line and character size, sufficient time was given to participants to read the 
text [22]. This was validated by the participants’ eye movement data patterns and survey  
responses. In addition, results from the survey responses showed that participants easily 
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understood the text. However, the reading time provided may have been longer than 
necessary to show stress. Using stress response signals over the total reading time may 
bury the critical time segments that have stress symptoms. As a result, the data over the 
irrelevant time segments may be irrelevant and could outweigh the data that has stress 
symptoms. This may have a negative impact on stress classification. 

3 A Genetic Algorithm for Feature and Time Segment Selection 

GAs have been widely used for optimization problems. A GA is a global search  
method and it has been successfully used for feature selection from physiological 
signals for human state classification [23]. This work uses a GA for feature selection 
from various stress response signals and proposes a GA based approach to find stress 
episodes in the reading data. 

A GA is based on the concept of natural evolution. It evolves a population of  
candidate solutions, represented by chromosomes, in search for better quality chromo-
somes. The approach applies crossover and mutation operations to the chromosomes 
to achieve diversity in the population and reduce risk of the search to reach a local 
optimal population. After each iteration during the search, the GA selects chromo-
somes, mostly made up of better quality solutions, for the population in the next itera-
tion to direct the search to more favorable chromosomes. In this work, the quality for 
a chromosome is based on the accuracy, sensitivity, specificity and the F-score values 
of the stress classifications using the information represented by the chromosome. 

A chromosome for the problem for stress recognition in reading either represented 
time segments as candidate stress episodes, a subset of features from the set of all 
stress features or a combination of both. Conventionally, a chromosome has encoding 
for one type of a solution e.g. features [23]. In the case for this work, the goal was to 
find stress episodes and features over the stress episodes that produced better stress 
recognition results. Hybrid chromosomes have been developed and used in literature 
[24, 25] but to the best of our knowledge, it has not been used for this kind of work 
particularly, for encoding signal and time segment data.  

Each chromosome was a binary string of fixed length. For the chromosome that 
encoded features, which we denote as CF, the chromosome contained information for 
all the features in the space of all stress features. The index of the chromosome 
represented a feature and its value indicated whether the feature was used in the clas-
sification to define the corresponding model. The length of the chromosome was 
equal to the number of stress features. On the other hand, there were three different 
ways in which time segments were encoded. A time segment chromosome had one of 
the following definitions: 

• CTS. An index of the chromosome represented a time segment of the total read-
ing time. The value for the index represented whether the feature values over the 
corresponding time segment was used in the classification.  

• COTS. A chromosome that had overlapping time segments where an index of the 
chromosome represented a time segment of the total reading time. Similar to  
C-TS, the value for the index represented whether the feature values over the 
time segment was used in the classification. 
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• CTTS. A chromosome that had the start and end times of a time segment where 
the first half of the chromosome had the start time of the time segment and the 
second half had the end time. Stress feature values over the time segment used 
in the classification. 

Another type of chromosome was developed that had encodings for both features and 
time segments. The classification model was defined by the feature values during the 
time segments depicted in the time segment encoding component of the chromosome. 
There were three variations for this type of chromosome and they differed on the time 
segment encoding component: 

• CF-TS. A composite structure with encodings for features and time segments of 
the total reading time. An index of time segment encoding component of the 
chromosome represented a time segment in the total reading time and its value 
represented whether the feature values in the feature encoding component was 
used in the classification. 

• CF-OTS. A composite structure with encodings for features and overlapping time 
segments of the total reading time. An index of time segment encoding compo-
nent of the chromosome represented a time segment in the total reading time 
and its value represented whether the feature values in the feature encoding 
component was used in the classification. 

• CF-TTS. A composite structure with encodings for features and start and end times 
of a time segment. The definition for time segment encoding component was 
based on CTTS. Feature values depicted by the feature encoding component over 
the time segment was used in the classification. 

4 A Genetic Algorithm and Support Vector Machine Hybrid 
Stress Classifier 

A stress recognition approach consisting of a hybrid of a GA and SVM was used to 
determine OTSSD. The GA searched for stress episodes based on the quality of the 
stress classifications produced by the SVM given subsets of stress features and time 
segments over the reading time. 

SVMs have been widely used in literature for classification problems based on 
physiological data [26]. A SVM constructs a maximum margin separator, to separate 
data into classes. It transforms the data to a higher dimensional space where it con-
structs a linear separating hyperplane. The hyperplane is a decision boundary with the 
largest possible distance to example points. This helps to generalize classifications 
well and have been claimed to be resistant to overfitting the data. However, the classi-
fication performance of a SVM is subject to the features provided as input. The GA 
provided a set of features over GA selected time segments to the SVM to determine 
the quality of stress classifications and evolved the set of features and time segments 
in search for stress episodes. 
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To obtain stress classification results from a SVM, the stress reading data set was 
divided up into 3 subsets – training, validation and test sets – where 50% of the data 
samples were used for training the SVM model and the rest of the data set was  
divided up equally to validate and test the model. MATLAB was used to implement 
and test the models. 

The parameters for the GA implemented were set as provided in Table 1. 

Table 1. Parameter settings for GAs that used to find optimal time segments and feature 
selection 

GA Parameter Value/Setting 

population size 100 

number of generations 2000 

crossover rate 0.8 

mutation rate 0.01 

crossover type scattered crossover 

mutation type uniform mutation 

selection type stochastic uniform selection 

5 Results and Discussion 

The GA-SVM hybrid approach was implemented using each of the different chromo-
somes to search for stress episodes in reading. GA-SVMs with CTS, COTS, CF-TS and 
CF-OTS were implemented with different time segment intervals. The interval sizes 
were chosen based on the time segment size for feature extraction, which was 5 
seconds and detailed earlier in section 2. The GA provided multiple time segments at 
the end of the GA search from which the longest time segment that was defined by 
the multiple consecutive time segment intervals was chosen as a stress episode. Re-
sults of the GA and SVM approach using the different types of chromosomes to 
search for OTSSD are presented in Table 2. The interval length for a time segment in 
each of the chromosomes CTS, COTS, CF-TS and CF-OTS is depicted by i seconds in CTS_i, 
COTS_i, CF-TS_i and CF-OTS_i respectively. 

Participants of the reading experiment were given 60 seconds to read a text  
excerpt. Results in Table 2 show that stress episodes in the reading data appeared 
within a smaller segment of the total reading time in particular, they appeared around 
15-30 seconds. During this time interval, the SVM produced the highest stress  
recognition rates. Fig. 3 shows the number OTSSD searches that produced stress 
episodes during various time intervals of the total reading time. Each OTSSD search 
used one type of chromosome listed in Table 2. The distribution of the number of 
OTSSD searches show that most of the searches produced stress episodes between 
15-30 seconds. 
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Table 2. Summary of the results obtained for different types of chromosomes used to find 
stress episodes in the reading data set. The table shows stress episodes obtained from the 
different types of chromosomes and their performances in stress recognition based on 10-fold 
cross-validation are provided. 

Chromosome 
Stress episode interval  
(seconds) 

Recognition rate F-score 

CTS    
CTS_60 0-60 0.67 0.67 
CTS_30 0-30 0.75 0.72 
CTS_20 0-20 0.85 0.86 
CTS_15 15-30 0.89 0.88 
CTS_10 10-20 0.90 0.89 
CTS_5 15-30 0.92 0.90 

COTS    
COTS_30 0-30 0.75 0.72 
COTS_20 10-30 0.85 0.86 
COTS_15 15-30 0.89 0.88 
COTS_10 15-30 0.89 0.90 
COTS_5 15-30 0.92 0.90 

CTTS    
CTTS 15-30 0.92 0.90 

CF-TS    
CF-TS_60 0-60 0.76 0.74 
CF-TS_30 0-30 0.88 0.90 
CF-TS_20 0-20 0.93 0.91 
CF-TS_15 15-30 0.99 0.98 
CF-TS_10 10-20 0.93 0.91 
CF-TS_5 15-30 0.99 0.98 

CF-OTS    
CF-OTS_30 20-50 0.80 0.82 
CF-OTS_20 20-40 0.87 0.86 
CF-OTS_15 15-30 0.99 0.98 
CF-OTS_10 10-20 0.93 0.91 
CF-OTS_5 15-30 0.99 0.98 

CF-TTS    
CF-TTS 15-30 0.99 0.98 
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(a) 

 

           
                                  (b)                                                                       (c) 

Fig. 3. Distribution for the stress episodes produced by OTSSD searches where each search 
used one type of chromosome in Table 2 over the reading time. Frequency of the OTSSD 
searches that produced stress episodes within various time intervals: (a) 5 seconds (b) 10 
seconds starting from 0 seconds and (c) 10 seconds starting from 5 second. 
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Fig. 4. Average eye fixation coordinates of experiment participants reading a text excerpt over 
different time intervals of the total reading time 

Searches for OTSSD that optimized features produced better stress recognition rates 
than searches with chromosomes that only optimized time segments. The searches that 
optimized features had chromosomes that had a feature encoding component. The 
average stress recognition rate for searches that optimized features was 0.92 whereas 
the average stress recognition rate searches without feature optimization was 0.85. 
Without feature optimization, redundant features and features irrelevant to SVM based 
stress recognition may have existed. These features were reduced with the use of a  
GA in search for OTSSD, which produced a better stress recognition rate. The best 
recognition rate was 99% and it was produced by the OTSSD search that optimized 
features and found a stress episode between the 15-30 reading time interval. 

OTSSD searches with chromosomes with time segment intervals that evolved the 
start and end times of the time segment interval and time segments with relatively 
short time intervals, in particular 5 seconds, found stress episodes with higher stress 
recognition rates. Using chromosomes CTTS and CF-TTS in the search that evolved the 
start and end times for candidate stress episodes provided more flexibility in the 
search for OTSSD because the search space was less constrained. Chromosomes with 
time segments that had 5 second intervals also had a similar characteristic. On the 
other hand, the design for other chromosomes made it difficult or impossible for the 
OTSSD search to find stress episodes with higher stress recognition rates. 

To relate the time interval for stress episodes found by the OTSSD searches to an 
average reading excerpt in the experiment, average eye fixations of participants in 
relation to the reading display during the reading time are presented in Fig. 4. In  
accordance to the stress episode for reading, participants approximately read a third of 
the text before the start of the stress episode. They read over half of the text in total  
by the end of the stress episode. Investigation of the content of a text excerpt with 
division of text by content and its relationship with stress was beyond the scope for 
this work. Future research could investigate what divisions of a text excerpt caused 
stress episodes. 

0-15 seconds

15-30 seconds
30-60 seconds
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6 Conclusion and Future Work 

A computational approach for optimal time segments for stress detection (OTSSD) 
was developed to determine optimal time segments, or stress episodes, with optimized 
stress features to obtain necessary stress data and improve stress recognition in read-
ing. A GA and SVM based hybrid technique was used where the GA searched for 
stress episodes based on the classification results produced by the SVM. The GA was 
extended to include stress feature optimization as well. Stress episodes were success-
fully found and results showed an improvement in SVM based stress recognition 
when a GA was used to select appropriate features and relevant time segments for 
stress during the reading period. The GA and SVM hybrid proposed could be ex-
tended to search for stress episodes or other types of critical time segments for other 
types of signal based classification for efficient storage, processing and analysis. 
There may be a possibility that certain feature signals correspond to stress levels more 
strongly than other feature signals during a particular time segment. To consider such 
a case and possibly different latency times for stress symptoms from the different 
response signals, future work could investigate developing classification models with 
time segment selection that are adaptable to features individually. Further, future re-
search could extend statistical methods for event detection reported in literature for 
the multi-signal reading stress data. 
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Abstract. In order to improve the performance of the existing recommendation 
algorithms, previous researches on expert-based recommender systems have 
exploited the knowledge of experts. However, the previous expert-based re-
commender systems are limited in that the same experts are suggested for all 
users. In this paper, we study personalized expert identification problem, as-
suming each user needs different kinds and levels of expert help. We demon-
strate the feasibility of personalized expert-based recommendation; we present 
and analyze an SVM framework for finding personalized experts. 

Keywords: Expert-based Recommender System, Collaborative Filtering (CF), 
Support Vector Machine (SVM), Personalized Expert. 

1 Introduction 

With the success of many e-commerce services (e.g. Amazon, Netflix, Last.fm),  
recommender systems have gained much interests and popularity over years; there 
have been much research efforts to build better recommender systems and algorithms.  

A typical recommender system builds up user profiles based on users' past records; 
and the system provides personalized recommendations based on either collaboration 
of users or similarity of items; many variations of the above approach have been  
introduced to enhance performance of the existing recommendation algorithms.  

One of the interesting ideas suggested in recent studies is to use expert knowledge 
for generating recommendations. Real users often trust more reliable and knowledge-
able experts in making decisions to buy products. Following this observation, recent 
studies on expert-based recommender systems have exploited the knowledge of the 
real-world experts [1] or that of the experts identified among users from a user group 
[2]. Although the suggested approaches showed some promising results, those  
approaches are still limited in that the same experts are suggested for all users.  

Users have different needs and expectations. Hence, it is more intuitive to suggest 
different groups of experts to different users. In this paper, continuing our earlier 
work on personalized expert-based recommender system [8], we study a problem of 
identifying a personalized expert group for each user, within the same user group; 
preferences of personalized experts of a user are used to generate recommendations 
for the user.  
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To demonstrate the idea, we translate the personal expert identification problem in-
to an SVM optimization problem; we present a framework for using Support Vector 
Machine (SVM, C-SVM) to find varying expert groups for users. However, use of 
SVM requires generating training data with proper expert labels; in the context of 
real-world applications, it is much preferable to label data without any user feedback. 
Here we approximate the optimal solution or personalized expert groups using a ran-
dom search based method and label training data using the approximated solution. 

As noted in the previous studies, evaluating each user's recommendation perfor-
mance gain to identify optimal experts is too cost intensive. To reduce the computa-
tional complexity, we assume that the personal experts of a user are somewhat similar 
in preference to the user. Rather than searching for the optimal experts across the 
entire user group, we reduce the search space to a handful of the most similar users.  

It is shown in an experiment that the personalized expert-based recommender  
system outperforms the traditional nearest neighbor algorithm. Furthermore, the pro-
posed SVM approach can identify personalized experts, even with a class imbalanced 
training dataset. 

The rest of this paper is organized as follows. In Section 2, we discuss related 
works in expert-based recommender systems and recommender systems using SVM. 
In Section 3, we describe the personal expert identification problem, as well as the 
two approaches to solve the problems: random search algorithm and SVM framework 
for personalized expert identification. In Section 4, we discuss our experimental  
results. Finally, we conclude in Section 5.  

2 Related Work 

2.1 Expert-Based Recommender Systems 

Previous works on expert-based recommendation systems have exploited the know-
ledge of the common experts. Amatrianin et al. [1] use explicit expert data (from a 
movie review website) to model preferences of a much larger user group; they show 
that one can utilize expert knowledge to generate recommendations for users, yielding 
comparable results to traditional collaborative filtering algorithms.  

Sang et al. [2] suggest a different approach to exploit expert knowledge in recom-
mender systems. They propose three different expert measures and identify expert 
users using a latent variable model; the opinions of expert users are used for generat-
ing recommendations for other users. 

Both approaches use the same experts to generate recommendations for all other 
users. However, it is more intuitive to consult personalized experts to generate rec-
ommendations for each user. In our initial work on expert-based recommender system 
[8], we suggest a personalized expert-based recommender system, assuming each user 
needs different kinds and levels of expert help 

2.2 Recommender Systems Using SVM 

Standard SVM classifier has not been very successful in recommender systems due to 
the sparse problem, in which there are insufficient transactional data for training [6]. 
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Xia et al. [7] proposed a heuristic method to fill in the missing transactional data for 
training a SVM classifier for recommendable items. In their proposed recommender 
system, a SVM classifier is built for each user, treating every user as a different prob-
lem. The computational cost for generating and updating different SVM models for 
every other user makes the approach impractical for real-world applications. 

Similarly, Xu et al. [3] suggested building a personalized SVM model to recom-
mend TV programs for each user. In addition to the computational cost for building 
an SVM model for every other user, their approach uses user feedbacks to train SVM 
models. Such feedback information is often not available in real-world applications. 

In this work, we train a single global SVM classifier to identify a personalized ex-
pert group for each and every user, instead of directly generating recommendation 
lists; next, recommendations are generated by a collaborative filtering algorithm 
based on the expert groups, without explicit user feedback. The proposed approach is 
computationally more favorable than previous SVM-based recommender systems as it 
builds a single SVM model for all users, instead of a single user. 

3 Personalized Expert Identification 

3.1 Problem Statement 

A typical recommendation system builds up user profiles based on users' past records; 
and the system provide personalized recommendations based on either collaboration 
of users or similarity of items. Given a user set, U = { }, an item set, I = , and 
the associated ratings, denoted as , we want to identify a personalized expert 

group  for each user. In this problem, we define experts as users, whose prefe-
rences are more valuable in generating more accurate recommendations. 

Personalized expert identification problem can be formalized as follows: 

( ,  (1)= { } is an optimal personalized expert set for . The personalized expert 
group for , (  is identified using a function  learned by an SVM classifi-

er; ( ,  measures the similarity between the two sets; We find  that 

gives near optimal personalized experts for all users. 

3.2 Random Search Algorithm for Personalized Experts 

Evaluating each user's recommendation performance gain to identify optimal experts is 
cost intensive. To reduce the computational complexity, we assume that the personal 
experts of a user are somewhat similar in preference to the user. Rather than searching 
for the optimal experts across the entire user group, we reduce the search space to a 
handful of the most similar users. 
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Within the reduced search space, U =  for , we randomly choose a fixed 
number of users, ′ , to recommend items to  using nearest neighbor collaborative 

filtering algorithm; this random search procedure is repeated many times; ′  with 
the best prediction accuracy is taken to be an approximated solution for . 

Approximating optimal personalized experts for every user is still very expensive. 
In the following section, we present an SVM framework for finding personalized 
experts. Here we label training data using the approximation results, but the expensive 
random search based method is only used in training phase; the single generated  
SVM model can be used for all users, classifying a personalized expert group for each 
user. 

3.3 SVM for Personalized Experts 

We translate the personalized expert identification problem into a SVM optimization 
problem:  

 · ∑ ∑  (2)   · 1 ,   ,    0   ,  

Here we introduce expertise , which indicates how much  views  as an ex-

pert. Given an optimal expert group for , we get  with corresponding ; we 
train SVM to learn personalized expert identification function . 

The above formulation can be further generalized to a C-SVM optimization  
problem as follows: 

 · ∑ ∑ ∑ ∑  (3)   · 1 ,   ,    0   ,  

 and  control the tradeoff between training errors and margin maximization for 
positive and negative examples, respectively. By tuning the cost factor, / , one 
can more effectively learn from class imbalanced data sets. 

In addition to the above SVM formulations, we also suggest using a threshold value 
for SVM output in testing. In this way, only testing examples with larger margin (out-
put value larger than the threshold) are chosen to be personalized experts for a user. In 
this work, we use three times standard deviation of ·  as the threshold 
value for . 
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3.4 Expertise 

In plain English, expertise  indicates how much  views  as an expert. We 
measures expertise between every pair of users, with respect to four expertise meas-
ures. First, we measure similarity of   and  by adjusted cosine similarity: 

 
∑ (∈ ( ( (∑ (∈ ( ( ∑ (∈ ( (  (4) 

Second, we measure how much often  accesses the service than . We take the 
difference between the item set accessed by  and the item set accessed by , and 
then we normalize the difference by the size of the whole item set. Note that this 
measure can be negative if  is more heavy user than : 

 
| ( || |  (5) 

Third, we measure how many new items  has rated. If has not rated item , 

then  is a new item to . Note that if  has no new items, then the relative com-

plement of  in (  would be an empty set: 

 
(| |  (6) 

Lastly, we measure average rating difference between  and : 

  (7) 

Furthermore, in constructing the mapping between features of  and , we only 
use users’ preference, , , , and no explicit user feedback; those four 

measures are used as features for training SVM models. 

4 Experimental Results 

4.1 Dataset 

Due to the computational challenge in dealing with large-scale data, we used a subset 
of Netflix challenge dataset for the evaluation of our system. The subset data contains 
10,000 users and 1,000 movies, while the original dataset contains 480,189 users and 
17,770 movies. In addition, we only use users’ preference information, , , . The dataset is randomly divided into a training data of 9,000 users 

and a testing data of 1,000 users. 
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4.2 k-Nearest Neighborhood 

We use k-Nearest Neighbor (kNN) algorithm as a reference. The lowest Root Mean 
Squared Error (RMSE) is 0.7773 when the nearest neighborhood size is 17. As it is 
shown in Figure 1, taking more opinions (larger neighborhood) does not guarantee 
more accurate rating prediction. 
 

 

Fig. 1. kNN recommendation accuracy (RMSE) for different neighborhood size (k) 

4.3 Personalized Expert 

In personalized expert-based recommender system evaluation, we first fix the number 
of (optimal) personalized experts to the best size of nearest neighborhood, k = 17, to 
show that opinions of personalized experts are more valuable in recommending items. 
Random search based method described in Section 3.2 is used to identify the optimal 
personalized experts for each user. 

For every user in the dataset, we search 17 personalized experts using a random 
search algorithm. Due to the computational complexity, we reduce the expert search 
space to 17 3 most similar users. This reflects our assumption that personalized 
experts of a user are similar to the user with some degrees. Furthermore, three times 
the size of the expert group is reasonably small enough (note,  is still a huge 
number). 

The search for the optimal expert group is repeated over 3,000 times for each user; the 
testing prediction error (RMSE) is 0.0596, which is 92% improvement over the best 
result of kNN. The recommendation accuracy is surprisingly high, and this near perfect 
accuracy is mainly due to our definition of expert: the algorithm simply searches for 
neighborhoods that give the best recommendation accuracy for each user. The significant 

RMSE

k
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improvement over the reference result (kNN) indicates that there exist personalized  
expert groups, which can be exploited for more accurate recommendations. 

The computational cost of running the algorithm motivates us for a model-based 
approach; we use the optimal personalized expert groups to label training data for 
SVM. 

4.4 SVM for Personalized Expert 

We train SVM and C-SVM to identify any number of personalized experts for each 
user. Using SVM classifier models, we can much more efficiently identify persona-
lized expert groups for users; we do not fix the size of the personalized experts as in 
the experiments using random search algorithm. This allows the number of persona-
lized experts vary for each user, utilizing just the right amount of expert knowledge. 

The trained SVM model identifies personalized experts for every other user in the 
testing data; the recommendation accuracy for personalized expert-based recom-
mender system using SVM and C-SVM are shown in Table 1.  

Table 1. Personalized expert-based recommender system accuray (error) measures 

 
kNN PE-RS 

PE-
SVM 

PE-
CSVM 

PE- 
SVM 

PE-
CSVM 

RMSE 
0.7773 0.0596 1.1550 1.2742 0.9968 0.9638 

k 
17 17 17 17 214 971 

Table 2. Testing results of personalized expert-based recommender system using C-SVM 

 2 3 4 5 

Accuracy 77.63 73.65 70.31 66.24 

Precision 69.93 65.16 61.75 58.14 

Recall 90.00 91.67 92.98 94.69 

RMSE 0.9659 0.9638 0.9659 0.9682 

k 765 971 1251 9998 

 
Personalized expert-based recommender systems using SVM and C-SVM are not 

as good as the reference (kNN). However, if SVM classifiers can identify the optimal 
personalized experts more accurately, then PE-SVM and PE-CSVM would outper-
form kNN as the random search-based approach (PE-RS) does.  

We suspect that the poor performances of the SVM classifiers are mainly due to the 
class imbalanced training dataset. Furthermore, as shown in Table 2, forcing C-SVM 
classifier to handle positive examples with care ( ) makes the classifier to 
classify most users as experts, with high recall and low precision values. 
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The computational efficiency of SVM makes our personalized expert-based  
recommender system more feasible, compared to the case of using random search 
algorithm. In the future, we plan on studying ways to improve the classification  
performance of the SVM-based models in this context. 

5 Conclusion 

In this work, we study a personalized expert identification problem in the context of 
personalized expert-based recommender system.  

Our experimental results show that there exist personalized expert groups, which 
can be exploited for generating accurate recommendations. Furthermore, we present 
and analyze SVM/C-SVM framework for personalized expert identification; with a 
proper handling of class imbalance dataset, SVM-based models can be computational-
ly efficient alternatives to the random search algorithm. 

In the near future, we will investigate the meaning of personal expertise and its fea-
ture space. We look to devise better features for personalized expertise. Semi-
supervised learning and probabilistic approaches are other possibilities we need to 
examine for personalized expert identification. 
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Abstract. In this work we perform an extensive comparative study of
approaches for mobile visual recognition by simultaneously evaluating
the performance and the computational cost of state-of-the-art key-point
detection, feature extraction and encoding algorithms. Every step is inde-
pendently tested so that its contribution to the final computational cost
can be measured. The widely used OpenCV library is utilized for the im-
plementation of the algorithms, while the evaluation is performed on the
PASCAL VOC 2007 dataset, a challenging real world dataset crawled
from the web. Our study identifies the algorithmic configurations that
manage to optimally balance performance and computational cost, and
provide a viable solution for real time mobile visual recognition.

Keywords: image classification, feature extraction, mobile visual
recognition, OpenCV.

1 Introduction

In the 90s, the second generation (2G) cellular technology limited the func-
tionalities of mobile phones to the very basics, i.e. making calls and sending text
messages (SMS). Rapidly, mobile networks and devices began to evolve to higher
speed networks (GPRS and WAP) and smaller devices with new functionalities
(MMS and emails). In the last decade, the third generation (3G) was launched
which in turn gave its place to 4G in 2009. In parallel with the developments in
network capabilities, mobile devices evolved to smartphones, typically equipped
with more processing power, rich sensors like GPS receivers and quality cameras.
This fact opened up a whole new range of possibilities and radically new services
like mobile visual recognition, a field of intense research for the last years. Mobile
visual recognition refers to the process of taking a photo with the mobile phone
camera and, after processing its visual content, presenting relevant information
back to the user. A typical example is when a photo of a landmark is processed
to return textual information (e.g. a wikipedia article) or related images (e.g.
different views of the same landmark).

P. Perner (Ed.): MLDM 2013, LNAI 7988, pp. 442–457, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The basic motivation for using mobile image recognition is the ability of visual
content to transfer rich semantic content that is either too complicated or too
ambiguous to be expressed with words. Indeed, if the user is not sure how to
describe something with words it may be easier to search with a picture. More-
over, it is also possible to use image recognition services with embedded optical
character recognition (OCR) capabilities for translating foreign billboards and
road signs. Finally, the ability of mobile image recognition to turn the world
around us into semantic links through a mobile phone camera, e.g. in the form
of augmented reality metatags pointing to news, websites, or special offers (e.g.
Layar, Wikitude) is what makes this service way more attractive than text or
voice-based search that are more demanding from the perspective of user input.

Although research in visual recognition has made great progress during the
last decade achieving relatively high performance figures [11],[24], the situation
is different when aiming for practical applications where real-time processing
is a critical factor. According to [4], 40% of the users will abandon a mobile
application if they have to wait more than three seconds, and if that time rises
to 10 seconds, 60% will not use it for a second time. For a visual recognition
application, this formulates the typical trade off between the accuracy of the
utilized algorithms and their computational cost, which is even more critical
in the mobile environment where the resources are limited. In this context, the
majority of existing mobile visual recognition applications employ a client/server
architecture (Fig. 1). Cell phones act as clients that capture the object of interest
and send queries to the server where the actual processing part takes place
(i.e. analyze the image, identify its content, retrieve relevant information from
the data pool and send it back to the client). However, with the fast paced
evolution of mobile phones and the increased processing power, it becomes more
and more interesting to investigate whether the entire processing load can be
allocated solely on the smartphone, and in this way avoid the shortcomings of
the client/server architecture like bandwidth limitations, data transfer latencies
and service dependence on the existence of WiFi or 3G network availability.
Moreover, another appealing property of this architecture is its potential to
scale to an unlimited number of users since the algorithms run entirely on the
phone and information is stored locally, removing the possibility of overloading
the centralized server by numerous requests.

Fig. 1. Client/server architecture
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In this work, we attempt to balance the computational cost and the perfor-
mance of a visual recognition system so as to select a configuration that is able
to run in an acceptable time frame and, at the same time, can provide sat-
isfactory results for the specific application. We only consider the case where
the entire process runs on the smartphone, and additionally look for a solution
that can be executed close to real time. The goal is to identify a configuration
that performs at less than one second per image in order to be appealing to the
end user. In addition, considering the space and memory limitations of a mobile
device environment, the typical content-based image retrieval scheme (i.e. find
relevant images with the query image captured by the phone) would not be able
to scale to large databases. For this reason, the objective of the proposed system
falls under a classification scheme (i.e. analyze a captured image and provide
keywords that describe its content), that only requires the storage of a machine
learning model in the local database for each concept. Possible applications of
such a scheme include the automatic annotation of mobile photo collections for
keyword-based retrieval, personalized photo sharing and object recognition and
annotation in real time for relevant information provision (e.g. detecting a bus
and combining location information, the routes timetables can be presented).

We select one of the most popular image recognition pipelines that con-
sists mainly of two parts, the image representation and the machine learning-
classification component. For the classification component, being a field of high
research interest for many decades now, many advances have been achieved, re-
sulting in very effective and efficient algorithms [32]. It usually consists of the
training step, which is the computationally expensive one, and the testing step.
In a mobile recognition setting, the training step is done offline and only the
testing step is performed online. Considering that the testing step can be rather
fast even for very expensive algorithms, we have decided to employ Support
Vector Machines (SVMs) [8], which is a state-of-the-art algorithm that can be
very fast at the testing step for linear and additive kernels, while demonstrating
exceptional generalization ability. On the other hand, the image representation
algorithms will need to be executed online for every captured image and thus
need to be carefully selected in order to achieve maximum performance at min-
imum cost. Towards this direction, we compare different algorithmic configura-
tions consisting of key-point detection, feature extraction and feature encoding,
so as to identify the ones that combine speed and performance. Our contribu-
tion is on thoroughly studying the existing state-of-the-art algorithms for visual
recognition in a mobile environment and providing the necessary information
for deciding how to optimally balance the aforementioned trade off based on the
requirements of the application at hand.

The rest of this manuscript is organized as follows. In Section 2, related works
are presented. In Section 3, an overview of the evaluated system architecture is
described, while the two components of the system, image representation and
classification, are analytically discussed in the next two Sections 4 and 5, respec-
tively. The experimental results are shown in Section 6, while Section 7 concludes
our work and discusses our plans for future work.
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2 Related Work

Visual recognition has been a field of intense research interest for the past
decades. This has increased even more with the recent changes in software,
hardware and network technologies, i.e. digital cameras, Web 2.0 applications,
smartphones, computers with high processing power, etc. This technological evo-
lution has resulted into huge amount of multimedia content and has brought up
the need for automatic visual recognition. The Query-by-example is the first ap-
pearance of image retrieval attempts that are based on visual content. ALIPR
(Automatic Photo Tagging and Visual Image Search) [17] is one of the first
attempts by researchers to incorporate visual content in search engines. In a
similar direction, the authors of [25] present a framework for efficient large scale
object retrieval that can potentially be applied on web-scale databases of billions
images. Nowadays, Google search engine has employed an image retrieval service
where the user can drag an image to the search box and it searches for similar
images and sites with respect to its visual content in the Web.

On a mobile environment visual-based image search is even more useful and
practical as it is way easier to capture an image to trigger the search than to
type keywords. In general, in the visual recognition area the leap from academic
research to commercial products has been much shorter and many companies
have already incorporated visual recognition in mobile applications. For exam-
ple, the service offered by Kooaba (www.kooaba.com) receives a snapped im-
age as query and displays related information, further links and available files,
applied to wine lists, printed catalogues, etc. oMoby (www.omoby.com) offers
a shopping service that helps users find information about products by snap-
ping a photo, such as links to retailers offering product information, reviews,
prices, and more. Point & Find (pointandfind.nokia.com) is a service offered
by Nokia that uses visual search technology to let users find more informa-
tion about the surrounding objects, places, etc., in real time. Google Goggles
(www.google.com/mobile/goggles/) is a mobile application that lets users search
the web using pictures taken from their mobile phones.

On a research level, a few approaches have been presented that attempt to
exploit the benefits of visual recognition in a mobile environment. The authors
of [29] propose an augmented reality system, that recognizes landscapes within a
database which is cached locally in the mobile phone, and presents related links
to the user. They utilize a combined visual and location (GPS) based retrieval
scheme and the whole system runs exclusively on the phone. In [18], a mobile
application that uses visual recognition in order to find relevant documents in a
locally hosted database is proposed. The authors of [33] propose lighter mobile
versions of two popular feature descriptors so that the adopted natural scene
tracking system can perform at frame rates of up to 20Hz.

In this work we attempt to examine the visual recognition pipeline in a mobile
environment by simultaneously evaluating the image representation algorithms
with respect to performance and computational cost. Our work can be considered
more closely related to [13], which evaluates a retrieval scheme and focuses on the
various architectures that can be employed in a mobile visual search framework.
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On the other hand, we select to implement the architecture which dictates that
all the processing takes place on the phone and focus our experiments on com-
paring the various algorithmic configurations in an effort to balance performance
and computational cost.

3 Framework Overview

A visual recognition framework can be considered to consist of two parts, the
image representation and the classification part. In the last decade, the most
popular approach that has been employed for image representation is referred
to as bag of visual words (BOW) [9]. A typical pipeline for this approach is
shown in Figure 2. For each image, points of interest are detected and for every
key-point a set of features are extracted so as to be encoded into a single vector
using the BOW approach. In order to train the vocabulary of visual words, key-
point detection and feature extraction is applied on a large database of images
and the features are clustered into visual words. Each component is analyzed in
more detail in Section 4.

Finally, after representing each image with a single feature vector, a model
that learns the correspondence between image labels and features needs to be
trained. A very popular algorithm that learns to map features to concepts is the
SVMs [8], which aims at splitting the input feature space so that the different
classes are separated. For every concept, the images are either labelled as positive
or negative if they depict or not the concept respectively. The algorithm attempts
to split the feature space by a hyperplane that maximizes the margin between
the positive and the negative side. A new image is then classified as positive
or negative depending on the placement of its feature vector according to the
hyperplane.

Fig. 2. Framework overview
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Table 1. Description of key-point detection algorithms (*** stars represent the fastest
and * star the slowest)

Algorithm Speed Translation
invariance

Description Ref.

Dense *** ✗ Key-points are selected on a grid using a step of a
fixed number of pixels.

-

FAST *** ✗ Key-points are selected based on the intensities of the
pixels around the examined pixel

[26]

GFTT ** ✓ Pixels are ranked based on a quality measure that is
extracted using eigen analysis

[28]

HARRIS ** ✗ Detects high intensity variations of sliding windows
around the pixel and defines a corner based on a score

[14]

MSER * ✓ Detects connected regions with little change across
several intensity thresholdings of the image

[21]

SIFT ** ✓ Locations at minima and maxima of a Difference of
of Gaussian function are selected as key-points

[20]

STAR * ✓ Detects the extrema of the Gaussian operator’s Lapla-
cian across scale

[1]

SURF ** ✓ Uses integral images and box filtering techniques [3]

ORB ** ✗ Augments the FAST detector with a pyramid scheme
and the Harris corner measure

[27]

4 Image Representation

4.1 Key-Point Detection

Key-point detection refers to the detection of well defined positions in an image
that can robustly characterize its conent. They are usually points of high interest
that are used to represent important aspects of the image. Visual recognition
requires repeatable key-points under several transformations such as rotation,
scale changes, translation and lighting variations, whilst maintaining the de-
tection time to the minimum. Mikolaijczyk et al. [22] review several key-point
detectors on a benchmark dataset. The key-point detection algorithms that were
used for our experiments can be seen at the first column of Table 1. In the sec-
ond column, the relative speed of each detector is indicated by stars (more/less
stars means the detector is faster/slower). In the third column, the translation
invariant detectors are checked and the non invariant are crossed.

4.2 Feature Extraction

The feature extraction component attempts to describe the surrounding envi-
ronment of each key-point so that it captures characteristic and indicative in-
formation of its visual content. Each key-point that was previously detected is
represented as a multidimensional feature vector (descriptor). Several state-of-
the-art descriptors are evaluated in [30]. In this work the evaluated descriptors
are shown in Table 2, along with information about the extraction time and
whether they are rotation and/or scale invariant.
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Table 2. Description of feature extraction algorithms (*** stars represent the fastest
and * star the slowest)

Algorithm Speed Size Rotation
invariance

Scale
invariance

Description Ref.

BRIEF *** 32 ✗ ✗ Bit string description of an image
patch, constructed by a set of bi-
nary tests

[6]

ORB *** 32 ✓ ✗ Steered version of BRIEF according
to the orientation of key-points

[27]

SURF ** 128 ✓ ✓ Uses box filtering techniques and
integral images

[3]

SIFT * 128 ✓ ✓ A histogram of orientations is com-
puted in a 16x16 area around the
key-point

[19]

4.3 Feature Encoding

After applying the key-point detection and the feature description algorithms,
each image is represented by a set of multidimensional vectors. In order to trans-
form these vectors into a single vector representation, a feature encoding algo-
rithm is applied. The most popular method, borrowed from text retrieval, is the
bag of visual words. A vocabulary of visual words is constructed from a large
independent training set of images by clustering the extracted descriptors in n
clusters/visual words, using an algorithm such as k-means. Afterwards, the fea-
ture encoding algorithm is applied. An extensive empirical study on encoding
methods can be found at [7]. We have implemented and tested three different
algorithms for encoding:

Hard Assignment: The local feature descriptors of the image are matched
with the visual words of the vocabulary. A histogram of the visual descriptors
is populated by adding ones to the corresponding bins.

Soft (kernel codebook) Assignment [31]: In this case instead of assigning a
descriptor to a single corresponding visual word we assign it to k bins in a soft
manner. More specifically, for every descriptor we add a quantity q to the bins
of the k top nearest visual words. This quantity q is the Gaussian kernel (Radial
Basis Function) distance of the descriptor and the visual word.

Vector of Locally Aggregated Descriptors (VLAD) [15]: In this case,
first each descriptor is assigned to its closest visual word. Then for each visual
word a vector is calculated by accumulating all the differences of the assigned
descriptors with the visual word. Finally, these vectors are concatenated into a
single vector representation.

In all the aforementioned cases, for each descriptor the nearest visual words
must be computed. The baseline method, brute force, searches for the near-
est neighbours amongst all possibilities in a greedy fashion. However, as this
can be computationally expensive, approximate indexing algorithms that are
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significantly faster are examined. One of the most popular libraries for approxi-
mate neighbour search is the Fast Approximate Nearest Neighbor Search library
(FLANN) [23], which is optimized for use in high dimensional spaces.

5 Machine Learning and Classification

The second part of a typical visual recognition system is to train a classifica-
tion model for every visual concept that will learn to assign unseen images to
concepts. In order to train a classification model for a specific concept we need
a set of positive and a set of negative images. Each image is described by a
feature vector which is extracted by the representation framework described in
the previous section. Then, an SVM model is trained on these data in order to
learn the properties that define the examined concept. The models are trained
using the one versus all (OVA) technique, i.e. all positive examples of the specific
concept versus all negative examples. The model is practically the hyperplane
that separates the space of the positive and negative samples. In the case of a
linear kernel, it can be represented by a vector w, i.e. the model parameters,
and a bias scalar b. For a concept c and a test image I, which corresponds to
a feature vector fI , a confidence score is extracted by computing its distance to
the hyperplane of the model for the concept c:

confidence(I, c) = wc ∗ fI + bc (1)

The distance of a vector from the hyperplane indicates our confidence that the
examined image depicts the concept of interest. High positive values of this score
increase our confidence that this image belongs to the positive class while high
negative values provide strong confidence that the image does not depict the
concept. The fact that each model can be represented by a single vector and a
scalar and that the testing process is essentially a vector multiplication, renders
SVMs the best solution for a real time classification framework. This allows for
storing the information about all the models in the phone memory, while testing
is computationally very efficient, making it possible for the image classification
algorithm to run entirely on a mobile phone.

6 Experimental Evaluation

Our intention in the experimental evaluation is to perform an extensive survey of
the state-of-the-art algorithms used in a typical pipeline for visual recognition. In
section 6.1 the dataset and the implementation details are explained. The strat-
egy adopted for our evaluation experiments is to examine how the performance
of each configuration is connected to the required extraction time, aiming to
simultaneously improve the recognition performance and computational cost of
the most prominent configurations and finally identifying the one that combines
these two aspects best (Sec. 6.2).
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6.1 Dataset and Implementation Details

For performing our experiments we have selected the benchmarking dataset of
the PASCAL VOC 2007 competition [10]. Ground truth for both the training
and the testing set of the 2007 dataset were released, while the datasets for the
next years’ competition lack ground truth annotations for the testing set, which
is the reason the dataset from 2007 was selected instead of the more recent
ones. It consists of 9.963 images collected from flickr, half of which are used
for training and half for evaluating the visual recognition setups. The dataset is
annotated with twenty concepts in a multi label manner (person, bird, cat, cow,
dog, horse, sheep, aeroplane, bicycle, boat, bus, car, motorbike, train, bottle,
chair, dining table, potted plant, sofa, tv/monitor). The split that was provided
with the dataset was used, i.e. divided into two equal subsets, one for training
and one for testing so that equal numbers of positive examples for each concept
exist in the two subsets. This dataset was used for the performance evaluation
of all different settings while the computational time estimation was performed
on an image with resolution 1024 x 768 was captured from the mobile phone.

OpenCV [5], one of the most popular libraries for computer vision that also
provides an interface for android cell phones was used with default parameters
for the detection and description algorithms. More specifically, OpenCV was
used to implement all possible combinations between the key-point detection
and feature extraction algorithms described in Section 4.1 and 4.2 resulting in
36 different configurations. The feature encoding algorithms described in 4.3 were
subsequently implemented using the indexing algorithms provided by FLANN.
K-means was used to cluster a set of descriptors into 2000 visual words for hard
and soft assignment. For the VLAD encoding method, the number of the cen-
ters was chosen so that the final feature vector was 2000-dimensional (i.e. 16
centers were extracted for the 128-dimensional SIFT and SURF, and 64 for the
32-dimensional BRIEF and ORB). For the classification part the LIBLINEAR
library was selected [12]. The computational costs were computed using a Sam-
sung Galaxy S3 device, which features a quad-core processor clocked at 1,4Ghz
and 1GB RAM. In order to evaluate the various pipelines we incorporate the
widely used performance measure of mean Average Precision (mAP). Average
precision takes into account both precision and recall, and measures the rank
quality of the retrieved images. It is calculated using Eq. 2, where P (k) is the
precision at rank k and rel(k) is an indicator function equaling 1 if the item
at rank k is a relevant document and zero otherwise. mAP is the mean of the
average precision over all concepts.

AP =

∑n
k=1 Pr(k) ∗ rel(k)

# of relevant images
, (2)

where rel(k) is an indicator function equaling 1 if the item at rank k is a relevant
document and zero otherwise.
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6.2 Classification Performance versus Computational Cost

In this section the classification performance with respect to the total compu-
tation cost of each configuration is reviewed. Initially, in Table 3, the cost for
each pair of key-point detection - feature description using hard binning and
brute force nearest neighbour search is shown side-by-side with the recognition
performance. In order to continue experimenting only with the most prominent
configurations in terms of balancing the performance-cost trade-off we apply the
following selection strategy. For every feature extraction approach we choose
the best performing key-point detection algorithm and dismiss the ones that
are more computationally expensive. Similarly, for every feature extraction ap-
proach, we choose the fastest algorithm and dismiss the ones that perform worse.
If we denote as T ime(k, f) the computational cost and Perf(k, f) the perfor-
mance of a configuration composed by key-point detection method k and feature
extraction method f we choose to dismiss the settings (k, f) for which:

∀fj = {BRIEF,ORB, SIFT, SURF}
T ime(ki, fj) > Time(argmax

ki

Perf(ki, fj))

or Perf(ki, fj) < Perf(argmax
ki

T ime(ki, fj))

In this way we manage to discard cases that are computationally expensive
without adding anything to performance. In the case of GFTT and HARRIS
we can see in Table 3 that they need approximately the same time to compute
while GFTT performs better in all cases. For this reason when choosing the
fastest algorithm, we choose the GFTT even in the cases that it is not strictly
the fastest (e.g. the configurations GFTT+SURF and HARRIS+SURF where
although HARRIS+SURF is faster by 10 ms we select GFTT as faster). The
pairs selected after applying the aforementioned selection strategy are written
in bold in Table 3. Additionally, all settings are visualized in a 2D plot, in Figure
3, where the x axis represents the computational cost in logarithmic scale and
the y axis the complement of the performance measure in mAP. The dismissed
settings are depicted as red squares and the selected as black stars. It is obvious
that the selection strategy we applied picked out the cases which have the best
combination of performance and computational cost, i.e. in the area closer to
the (0,0) origin.

For the remaining configurations we attempt to optimize both the computa-
tional cost and the performance. The first step is to replace the expensive brute
force search for the nearest neighbour in the hard binning setting with its faster
approximate version, FLANN. The results are shown in Table 4, from which we
can see that there is a significant gain in computational time, especially in the
DENSE, FAST and SURF configurations (shown in bold). This can be explained
by the fact that the these detectors tend to extract more key-points than the rest,
so the main processing load is in the encoding part of the algorithm. Moreover,
there are only slight variations in performance with respect to the brute force
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Table 3. Time versus Performance of hard binning using brute force. The configura-
tions that are shown in bold are the most prominent ones and are selected for further
experimentation.

Time (ms) Performance (mAP)

BRIEF ORB SIFT SURF BRIEF ORB SIFT SURF

DENSE 3130 2807 11546 10847 15,70% 15,17% 17,30% 13,16%

FAST 3862 3095 39055 13645 13,26% 12,91% 17,86% 17,59%

GFTT 555 564 2156 884 11,64% 11,39% 15,80% 13,27%

HARRIS 603 873 2146 874 10,49% 9,90% 13,61% 10,72%

MSER 3322 3298 34645 3843 9,71% 8,87% 14,86% 12,40%

SIFT 631 605 3865 1400 10,04% 9,66% 11,49% 12,16%

STAR 1857 1712 12558 2718 9,72% 9,66% 14,96% 13,68%

SURF 2081 1845 56651 5038 11,51% 10,42% 16,92% 15,75%

ORB 761 913 5528 1227 11,06% 10,72% 13,00% 14,15%

method, which verifies that the approximate nearest neighbour algorithm works
almost as good as in the brute force case. Considering that in other encoding
methods we will need to search for even more nearest neighbours, the use of the
approximate version is mandatory.

The next step is to increase the performance, and towards this goal we eval-
uate two popular substitutes to the hard encoding method, the soft assign-
ment and the VLAD encoding algorithms. Tables 5 and 6 depict the results for
each encoding algorithm. In the case of soft assignment, it is obvious that the
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Fig. 3. Time versus Performance of hard binning using brute force
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Table 4. Time versus Performance of hard binning using FLANN. The computational
cost is significantly decreased with minor changes in performance. In bold the config-
urations where the decrease in maximum.

Time (ms) Performance (mAP)

BRIEF ORB SIFT SURF BRIEF ORB SIFT SURF

DENSE 1948 1349 3026 15,51% 15,92% 18,02%

FAST 2506 1757 29767 4274 13,26% 12,90% 18,96% 17,18%

GFTT 576 573 1863 560 11,62% 11,23% 16,21% 12,63%

STAR 2063 11,14%

SURF 2279 17,09%

ORB 1025 13,73%

performance is significantly improved in all cases with a relatively low loss in
efficiency, especially in the cases where the number of detected key-points are
limited (e.g. GFTT, STAR, ORB). Using the VLAD encoding method, the per-
formance of all configurations increases, especially for the configurations with the
SURF descriptor, where the gain is notably higher. The best performing config-
uration is the FAST-SURF-VLAD, which yields 31.35% mAP and requires 6.4
seconds to execute. However, we can see that for the minor performance loss
of 0.25% we can use the SURF-SURF-VLAD combination in less than half the
time of the previous scheme. For this reason, we select the SURF-SURF-VLAD
scheme to continue with further enhancements.

An important note is that the time measurements were performed on a typical
image taken by the cell phone which by default has a resolution of 1024 × 728.
On the other hand, the performance measures were calculated on the PASCAL
dataset which consists mainly of smaller images, on the average scale of 300×500
resolution. Thus, for the SURF-SURF-VLAD configuration, we only need to
capture images at the scale of 300 × 500 in order to achieve the 31.1% mAP
which decreases the time to only 0.5 seconds per image. This reduced time
requirement renders the proposed configuration ideal for real-time mobile visual
recognition. In order to achieve better performance, we can tweak the default
values of OpenCV for the SURF detector. More specifically, if we change the
Hessian threshold from 100 to 50 and 10, the performance increases to 31.72%
and 32.6% mAP respectively, while the computational cost increases to 0.96
and 1.42 seconds respectively. Considering that our initial goal was to achieve
a computational time no more than 1 second, we choose the configuration with
the Hessian threshold set to 50, which yields 31.72% in 0.96 seconds. Finally, a
few images with the proposed annotations from the selected configuration are
shown in Table 7.
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Table 5. Time versus Performance of soft binning using FLANN. The most appealing
configuration is shown in bold.

Time (ms) Performance (mAP)

BRIEF ORB SIFT SURF BRIEF ORB SIFT SURF

DENSE 3285 2684 4629 21,54% 21,62% 23,72%

FAST 3990 3170 31278 5763 18,83% 19,01% 30,14% 26,01%

GFTT 602 613 1875 601 16,34% 15,85% 24,20% 18,58%

STAR 2134 15,06%

SURF 2669 25,99%

ORB 1050 19,49%

Table 6. Time versus Performance of VLAD encoding. The most appealing configu-
ration is shown in bold.

Time (ms) Performance (mAP) (%)

BRIEF ORB SIFT SURF BRIEF ORB SIFT SURF

DENSE 3381 2053 4949 20,53 20,42 27,98

FAST 32213 6492 29,63 31,35

GFTT 526 543 1920 632 16,58 16,33 17,52 20,97

STAR 2186 17,15

SURF 2954 31,10

ORB 1019 20,84

Table 7. Images with proposed annotations by our framework. In bold the correct
proposals. Some of the mistakes can be partly justified in the case of visually similar
concepts, e.g. aeroplane-bird, person-statue.

bicycle,
person

chair, tv-
monitor car

person,
dog person

aeroplane,
bird

person

chair,
person,
tv-monitor car
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7 Conclusions and Future Work

In this paper, we have reviewed state-of-the-art algorithms for image represen-
tation and compared their performance versus the computational cost when
applied in a mobile environment for image classification. The performance was
measured in a real world dataset originating from flickr, which renders the work
of visual recognition a very challenging task. The results show that close to
real time performance can be achieved with various configurations by sometimes
sacrificing performance for the gain of speed. The case of SURF+SURF+VLAD
seems the most appealing since for 300 × 500 resolution images it requires only
0.96 seconds to achieve 31.72% mAP.

Our plans for future work are mostly directed by our intention to increase the
performance of the mobile recognition framework. More specifically, they include
the testing of the FREAK descriptor [2] that was recently published and released
by OpenCV, the evaluation of the promising super vector encoding method
[34] and the enhancement of the performance by utilizing the popular spatial
pyramids [16]. Finally, the exploitation of the visual recognition framework in
real cases and the evaluation of the algorithm in more representative datasets
for the use cases is in our intensions as well.
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Abstract. Expectation-Maximization (EM) is well-known for its use in 
clustering. During operation, EM makes a “soft” assignment of each row to 
multiple clusters in proportion to the likelihood of each cluster. Classification 
EM (CEM) is a variant of EM that makes a “hard” assignment of each row to 
its most likely class. This paper presents a variant of CEM, which we call 
Accuracy-Based CEM (ABCEM), where the goal is prediction rather clustering. 
ABCEM first assigns each row to the most likely class based on the input 
columns, and then estimates performance of this assignment by evaluating the 
mean squared prediction error (MSPE) on the output columns, and proceeds as 
in CEM to update clusters and re-assign each row to the new clusters. Finally, 
the optimal clustering is selected to minimize the MSPE, selecting a local 
optimum from the left, and thus the procedure can also be viewed as a 
principled version of early stopping which uses only the training set. Our results 
show that ABCEM is nearly 40% more accurate than CEM. 

Keywords: Expectation-Maximization, Clustering, Prediction, Mixture Models. 

1 Introductxion and Motivation 

Expectation-Maximization (EM) is well-known for its use in clustering (see [1] for 
example). During operation, EM makes a “soft” assignment of each row to multiple 
clusters in proportion to the likelihood of each cluster. It makes this assignment based 
on the current set of parameters. Once all rows are soft-assigned, EM updates the 
current set of parameters and the process repeats. EM is attractive because each 
update of the parameters is guaranteed to increase the likelihood of the data given the 
parameters. This means that EM is guaranteed to converge to a local maxima of the 
likelihood. To increase the probability of finding global maxima of the likelihood, EM 
is typically run with multiple initial parameters. Classification EM (CEM) is a variant 
of EM that makes a “hard” assignment of each row to the most likely class (see [2] for 
example). CEM not only has similar convergence guarantees, but it tends to run faster 
than EM because the likelihood function is typically much faster to compute than in 
the EM. For example, in a multivariate normal distribution, the EM function requires 
exponentials, but the CEM function does not.  

In this paper, we explore the task of prediction rather than clustering. In a 
prediction task, each row includes an output variable; the task is to predict the output 



 Accuracy-Based Classification EM: Combining Clustering with Prediction 459 

 

based on the remaining variables. CEM (or EM) can be used to find the parameters 
for one or more subclasses.  

In particular, we evaluate a variant of CEM, which we call Accuracy-Based CEM 
(ABCEM), which operates as follows: like CEM, ABCEM assigns each row to the 
most likely class at each iteration, but unlike CEM, ABCEM evaluates the likelihood 
based on only the input columns, and selects the optimal clustering to minimize the 
squared difference between the actual output and the predicted output. The optimum 
is selected as the first local minima in the iteration sequence, and may thus be seen as 
a form of early stopping using only the training data. 

The rest of this paper is organized as follows. Section 2 describes the inputs for the 
task and how it differs from traditional clustering approaches, but can yet make use of 
clustering algorithms such as EM and CEM.  

2 Using Classification EM (CEM) Clustering for Prediction 

In the classical method of clustering, one column of the training data can be viewed as 
missing. This column of missing data corresponds to a variable with one of k classes. 
The task of clustering is to find a “soft” or “hard” assignment of each row to each of 
the k classes. Once the parameters associated the k classes are determined, each row 
can then be clustered (grouped) into the k subclasses based on the parameters that 
result from the assignment. As we mentioned, in CEM the assignment is “hard” in 
that each row is assigned to only one of the k classes. 

In a prediction task, the columns are partitioned into two sets of columns: input and 
output columns. The output columns are to be predicted from the input columns based 
on a model. Note that in traditional clustering, the output columns have no special 
significance. That is, all of the columns—both the input and output columns—are 
treated the same.  

One way to use the results of traditional clustering at prediction time is to find the 
most likely cluster and then predict the output columns from the input columns given 
the cluster and a model that relates the output columns to the input columns. For 
example, assuming a multivariate normal distribution model of the columns, the 
output columns can be expressed as function of the input columns and the most likely 
cluster. Assume that observations xi from a given class i are distributed multivariate 
normal with mean µi and covariance matrix Σi; where xi, µi, and Σi are comformably 
partitioned as: = , = , Σ = Σ ΣΣ Σ  (1) 

Then the output columns a within class i can be predicted from the input columns b as 
follows: ̂ = Σ Σ (x µ  (2) 

That is, the predicted mean of the output columns (i.e., the most likely output columns 
values) is the mean of the outcome columns of class i, plus an adjustment based on 
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the covariance between the input and output columns, the inverse of the covariance 
among the input columns, and the deviation between the input columns mean and the 
input column values xb—all for the class i.  

Computing the most likely cluster i based on the input column values xb and the 
multivariate normal model is straightforward, found by simply maximizing the 
likelihood over the i classes:  1(det(2 ( Σ (2  (3) 

Note that both the predicted mean and the most likely cluster involve computing an 
inversion, which is computationally expensive (between quadratic and cubic time, 
depending on the implementation). Computing the most likely cluster also involves 
computing a determinant, which is as computationally expensive as inversion.  

A simpler alternative, which we adopt for purposes of producing results for this 
paper, is to assume that, given the cluster i, all columns are probabilistically 
independent from each other (i.e., the Naïve Bayes assumption). Under this 
assumption, the predicted mean output is simply the mean of the output columns of 
class i. That is, the second part of the equation, involving computing the correlation 
between the input and output columns, is assumed to be zero, due to Σ  assumed to 
be a zero matrix.  Computing the likelihood of x belonging to class i also simplifies to 
the following product over the m input columns: 1√2 12  (4) 

Since the task is to choose a class which maximizes the above expression, we can 
equivalently minimize over the negative of the log of this expression, resulting in the 
following simplified expression (constants common to each class are removed): 

log  (5) 

Note that this expression does not involve any exponentials, determinants, or 
inversions. All that is required is to compute this expression over each class and 
choose the class that is associated with the lowest value. In short, this expression 
trades off between the weighted deviation from the mean and the standard deviation. 
That is, it tends to choose a class with input column means close to the observed input 
values (weighted by variance) and low standard deviation.  

Of course it is possible to predict with other models, but this is one of the simplest 
models—one that offers a low time computational complexity. It is also possible to 
predict with “soft” assignments, such as with EM, by weighting the resulting output 
from each class based on the probability of each class given the inputs.  
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3 Clustering with CEM 

Now that we have described how to predict an output once clusters have been formed, 
we need to describe in more detail how CEM operates during clustering to 
differentiate it from ABCEM. Recall that CEM makes a “hard” assignment during 
clustering: it chooses the most likely class for each row based on all the column 
values that are non-missing for that row. Under the Naïve Bayes assumption this 
amounts to computing for each row for each class the following expression (here n is 
the number of non-missing columns for a particular row being processed; note that n 
can vary from row to row): 

log  (6) 

Once this “hard” assignment is made for each row, the parameters are updated based 
on the assignment and the process repeats until convergence of the overall likelihood 
of the data. Note that all the columns—input and output columns—are treated 
equally.  

Under the Naïve Bayes assumption, missing columns are simply ignored because 
information from one column will not help to impute another column. The only 
proper inference under these conditions is to infer the mean value for a column, which 
essentially provides no additional information.  

Note that the Naïve Bayes assumption is the same as the multivariate assumption 
assuming a diagonal covariance matrix and zeros on the off-diagonal entries. The 
Naïve Bayes assumption is also more relevant for big data (i.e., data that involves 
thousands of columns). In experiments, we found that more than 1000 columns 
created a severe computational bottleneck with inversion of a multivariate model. 
Thus we believe that the Naïve Bayes assumption is really the only practical 
assumption for data that is both tall (millions of rows) and wide (thousands of 
columns) 

4 Clustering with ABCEM 

The critical difference between ABCEM and CEM is to treat the input and output 
columns differently. ABCEM begins similarly to CEM: it makes a “hard” assignment 
by choosing the most likely class for each row. However, unlike CEM, ABCEM uses 
only the input columns to select the most likely cluster. Next, again like CEM, once 
the assignments for each row are made, parameters are updated based on the 
assignment. Like CEM, the process is iterated. However, we do not decide when to 
stop based on convergence criteria using the overall likelihood of the data. Instead, we 
select when to stop based on the mean squared prediction error (MSPE) of the current 
clustering result. That is, at each iteration, after assigning each row to a cluster, we 
predict the output column values for each row based on its assigned cluster, and use 
this value to evaluate prediction error. The process is stopped when the MSPE of the 
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9current iteration is higher than that of the previous iteration, and select the optimal 
clustering as the one obtained in the next-to-last iteration.  

Note that ABCEM can also be viewed as a regularized form of CEM, using a 
principled and clever version of early stopping. Unlike standard early stopping 
procedures, ABCEM uses only the training data, and does not require splitting the 
training set to create a separate validation set. ABCEM is able avoid splitting the 
training set due to the fact that each clustering and parameter update step only use 
information from the input columns. Allowing the output columns to be used for valid 
performance evaluation. 

In short, ABCEM takes advantage of the fact that the task is prediction of the 
output columns whereas CEM does not. The next few sections evaluate how much 
this buys ABCEM over CEM in terms of accuracy in predicting the output columns. 

5 Experimental Results Comparing ABCEM with CEM 

We ran both ABCEM and CEM on three real-world domains. The real-world domains 
are as follows: 

• The UCI housing data (http://archive.ics.uci.edu/ml/datas/Housing). This 506 
row data contains housing values in suburbs of Boston and the following 
attributes (the last column is the output column): 
1. Crim: per capita crime rate by town  
2. Zn: proportion of residential land zoned for lots over 25,000 sq.ft.  
3. Indus: proportion of non-retail business acres per town  
4. Chas: Charles River dummy variable (= 1 if tract bounds river; 0 

otherwise)  
5. Nox: nitric oxides concentration (parts per 10 million)  
6. Rm: average number of rooms per dwelling  
7. Age: proportion of owner-occupied units built prior to 1940  
8. Dis: weighted distances to five Boston employment centres  
9. Rad: index of accessibility to radial highways  
10. Tax: full-value property-tax rate per $10,000  
11. Ptratio: pupil-teacher ratio by town  
12. B: 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town  
13. Lstat: % lower status of the population  
14. Medv: Median value of owner-occupied homes in $1000's.  

• The UCI concrete compressive strength data set 
(http://archive.ics.uci.edu/ml/datas/Concrete+Compressive+Strength). 
This 1030 row data contains concrete compressive strength values and 
the following attributes (the last column is the output column): 

1. Cement: kg in an m3 mixture  
2. Blast Furnace Slag: kg in a m3 mixture  
3. Fly Ash: kg in an m3 mixture  
4. Water: kg in an m3 mixture  
5. Superplasticizer: kg in an m3 mixture  
6. Coarse Aggregate: kg in an m3 mixture  
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7. Fine Aggregate: kg in an m3 mixture  
8. Age: Day (1-365)  
9. Concrete compressive strength: MPa 

• The UCI crime data 
(http://archive.ics.uci.edu/ml/datas/Communities+and+Crime). This 
1994 row data contains U.S. community socio-economic data from the 
1990 US Census, law enforcement data from the 1990 US LEMAS 
survey, and crime data from the 1995 FBI UCR and 128 attributes, a 
sample of which are shown below; the last column is the output column: 

o Householdsize: mean people per household   
o Racepctblack: percentage of population that is african 

american   
o RacePctWhite: percentage of population that is caucasian   
o RacePctAsian: percentage of population that is of asian 

heritage   
o RacePctHisp: percentage of population that is of hispanic 

heritage 
o AgePct12t21: percentage of population that is 12-21 in age   
o AgePct12t29: percentage of population that is 12-29 in age   
o AgePct16t24: percentage of population that is 16-24 in age   
o AgePct65up: percentage of population that is 65 and over in 

age   
o NumbUrban: number of people living in areas classified as 

urban   
o PctUnemployed: percentage of people 16 and over, in the labor 

force, and unemployed   
o PctEmploy: percentage of people 16 and over who are 

employed   
o NumIlleg: number of kids born to never married   
o PctIlleg: percentage of kids born to never married   
o LemasSwornFT: number of sworn full time police officers   
o LemasSwFTPerPop: sworn full time police officers per 100K 

population 
o LemasPctPolicOnPatr: percent of sworn full time police 

officers on patrol 
o LemasGangUnitDeploy: gang unit deployed (numeric - 

decimal - but really ordinal - 0 means NO, 1 means YES, 0.5 
means Part Time) 

o LemasPctOfficDrugUn: percent of officers assigned to drug 
units 

o PolicBudgPerPop: police operating budget per population 
o ViolentCrimesPerPop: total number of violent crimes per 

100K population  

We chose these datasets mainly for simplicity because they contain only real-valued 
columns, and are possible to scale up to multivariate models.  

For all datasets, we used 50 random restarts, 50 updates to the parameters for 
CEM, and maximally 50 updates to the parameters for ABCEM. We also varied the 
number of classes k from 2-6. To measure accuracy, we reserved 10% of the training 
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data for testing.  The tables below show the MSPE on the testing set for each method, 
as well as the percent improvement of ABCEM over CEM. 

Table 1. Housing Data Accuracy 

# Classes CEM ABCEM % Impr. 
2 72.6 55.6 23.4 
3 71.2 68.7 3.5 
4 59.4 57.5 3.1 
5 61.2 38.6 36.9 
6 72.0 39.2 45.5 

 

Table 2. Concrete Compressive Strength Accuracy 

# Classes CEM ABCEM % Impr. 
2 256.7 188.6 26.5 
3 258.4 196.8 23.8 
4 230.5 213.0 7.6 
5 209.9 195.6 6.8 
6 215.3 147.9 31.3 

 

Table 3. Crime Data Accuracy 

# Classes CEM ABCEM % Impr. 
2 0.061 0.055 8.9 
3 0.060 0.045 24.7 
4 0.057 0.050 12.9 
5 0.057 0.035 37.5 
6 0.043 0.039 7.6 

6 Summary and Conclusions 

The Housing Data showed the most improvement for ABCEM over CEM: a 
whopping 45% better than CEM for 6 classes. It’s unclear how many classes are 
optimal for this (or any other) dataset; the point of these experiments was not to 
determine an optimal number of classes, but to get some idea of how well ABCEM 
performs in comparison to CEM. For example, the Housing Data probably shows that 
over-fitting starts after 5 classes. The Housing Data also showed a 3% improvement 
of ABCEM over CEM with 4 classes, but we suspect this result was simply from a 
bad initial choice of parameters for ABCEM. We expect that additional random 
restarts should result in even more improvement of ABCEM over CEM. Overall, the 
average MSPE of CEM over the cluster sizes 2 to 6 classes was 67, while the average 
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MSPE of ABCEM over the cluster sizes 2 to 6 was 52, leading to ABCEM improving 
the MSPE over CEM by an average of 23%. 

The Concrete Strength Data showed a maximal 31% improvement of ABCEM 
over CEM at 6 classes. The average MSPE of CEM over the cluster sizes 2 to 6 was 
234, while the average MSPE of ABCEM over the cluster sizes 2 to 6 was 188. On 
average, ABCEM resulted in a 20% improvement in performance over CEM. 

Similarly, the Crime Data showed a maximal 38% improvement of ABCEM over 
CEM at 5 classes. The average MSPE of CEM over the cluster sizes 2 to 6 was 0.055, 
while the average MSPE of ABCEM over the cluster sizes 2 to 6 was 0.045. ABCEM 
resulted in a 19% average improvement in performance over CEM. 

In short, ABCEM resulted in substantially lower MSPE at nearly all cluster sizes 
from 2-6, as well as close to 20% average improvement over CEM across all the 
cluster sizes. We believe that ABCEM is the method of choice for combining 
clustering with prediction. 

7 Future Directions 

Note that, in ABCEM the creation of clusters is only based on input features, while 
the evaluation of clusters is only based on output columns. Since evaluation of 
clustering is only based on accuracy, different clustering procedures can be plugged 
in. In practice, this means that we do not need to restrict ourselves to a single 
clustering procedure when say, building a hierarchy of classes and subclasses. Instead, 
we can use a variety of clustering procedures at each node in the hierarchy, and 
simply chose the result that produces the lowest error for that split. 

We plan on exploring recently developed methods for improving the choice of 
initial parameters [3]. Although these methods refer to k-means clustering, we believe 
they will be applicable to ABCEM as well.  
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Abstract. In a typical machine learning classification task there are two phases: 
training and prediction. This paper focuses on improving the efficiency of the 
prediction phase. When the number of classes is low, linear search among  
the classes is an efficient way to find the most likely class. However, when the 
number of classes is high, linear search is inefficient. For example, some 
applications such as geolocation or time-based classification might require 
millions of subclasses to fit the data. Specifically, this paper describes a branch-
and-bound method to search for the most likely class where the training 
examples can be partitioned into thousands of subclasses. To get some idea of 
the performance of branch-and-bound classification, we generated a synthetic 
set of random trees comprising billions of classes and evaluated branch-and-
bound classification. Our results show that branch-and-bound classification is 
effective when the number of classes is large. Specifically, branch-and-bound 
improves search efficiency logarithmically. 

Keywords: Branch-and-bound, Bayesian Models, Classification. 

1 Introduction and Motivation 

In a typical machine learning classification task there are two phases: training and 
prediction. When the number of classes is low, linear search among the classes is an 
efficient way to find the most likely class. For example, consider a Bayesian 
Classifier, “where the task is to find the most likely class given an input example. 
More specifically, the task is to find a class c given input x such that P(c|x) is 
maximized. Using Bayes Theorem and removing the normalizing constant, the task is 
to find a class c such that P(x|c)P(c) is maximized. When the number of classes is 
low, linear search among the classes is an efficient way to find the most likely class. 
However, when the number of classes is high, linear search is inefficient. This paper 
focuses on improving the efficiency of the prediction phase when the number of 
classes is high (i.e. when the training data can be partitioned into thousands of 
subclasses) by using branch-and-bound. This paper presents preliminary results in 
artificial domains where we can directly control the number of subclasses. We are 
currently running experiments in several natural domains. The motivation for this 
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work is threefold. First, some applications might require millions of subclasses to fit 
the data. In particular, those applications involving geo-location and time can have an 
enormous number of subclasses. Note that the subclasses do not have to be explicitly 
labeled in the data—they can be discovered in the training data with methods such as 
Expectation-Maximization. Such methods are beyond the scope of this paper. Second, 
fast prediction time is important in domains where a real-time response in needed. For 
example, a customer at a website might not be willing to wait more than a second to 
receive a targeted advertising whose selection is based on a prediction. Finally and in 
general, the more subclasses the higher the accuracy. Of course, too many subclasses 
can result in overfitting.  

The rest of the paper is organized as follows. Section 2 presents our approach to 
branch-and-bound classification. Section 3 describes how to derive a lower-bound for 
branch-and-bound classification. Section 4 describes how to use the lower-bound 
function for pruning in branch-and-bound classification. Section 5 describes the 
particular learning method we used to build trees. Section 6 presents results of 
applying our approach. Section 7 describes a non-probabilistic approach to branch-
and-bound pruning. Section 8 discusses related work. Finally, Section 9 discusses the 
conclusions of this work and outlines several promising directions for future work. 

2 Branch and Bound in Tree-Structured Classification 

Simple models in machine learning are typically computationally efficient. For 
example, a probabilistic model where each of the attributes is independent of each 
other conditioned on the class is easy to compute. However, such a model, which is 
called the “Naïve Bayes” model, is sometimes inaccurate. If the training data could be 
grouped (i.e., clustered) into subclasses, the results are likely to be more accurate. Of 
course the number of subclasses depends on the desired fit of the model to the training 
data: too many subclasses and the model can overfit the training data, resulting in a 
low training error rate but a high test error rate; too few and model has both a high 
training error rate and a high test error rate. 

The classical method of finding subclasses is to assume that the data includes a 
column with k values, which correspond to each of the k subclasses and are missing 
for every row in the training data. (A row in the training data corresponds to an 
example pattern and a column corresponds to a feature of the rows.) The learning task 
is to find the probability of each of the k subclasses for each row in the training data. 
Once the parameters associated with each subclass are determined, each row can then 
be “clustered” into one of the k subclasses based on the parameters. Many different 
methods can be used to fit those subclasses including the k-means algorithm [1] and 
the EM algorithm [2].  

In order to exploit branch-and-bound’s efficiency, the classes described in this 
paper are assumed to be organized as a tree, which represents the training data at 
various levels of generality. For purposes of this paper, how the tree is built is 
unimportant; what is important is that there exists a method to find a most likely leaf 
node at a particular level. However, for reproducibility, we will describe the particular 
tree-building method that we used later.  
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The most important aspect of the tree is that there exists a way to evaluate degree 
of fit for an input test case and node. At prediction time, branch-and-bound finds a 
node in the tree that it believes to be the most likely node in the tree. Other methods 
are possible to determine degree of fit; we choose likelihood because our particular 
tree is a probabilistic one. Branch-and-bound then returns the prediction associated 
with that node. In general likelihood (or degree of fit) is correlated with the accuracy 
of the prediction generated from a test case. Indeed, this is one of the cornerstone 
assumptions in most machine learning: that nearness of inputs correlates to nearness 
of outputs. Note that if the learning was not structured as a tree, branch-and-bound 
would not make sense. For example, if the k subclasses were not in a hierarchy, the 
pruning as described here would not make sense. 

To understand how each leaf node in the tree corresponds to a subclass, consider a 
binary tree. For example, in a binary tree, the left child of the root might have 
subclass label “Root/Left” and the right child “Root/Right.” Assuming a tree with two 
levels, there are four subclasses, which correspond to the each of the leaf nodes and 
which can be identified by the following labels: “Root/Left/Left,” “Root/Left/Right,” 
“Root/Right/Left,” and “Root/Right/Right.”  

Note that the indexing scheme does not have to explicitly name each node using 
such hierarchical names. For example, in a binary tree, with root node having index 0, 
a node having index i can have as a left child the index 2i+1 and as a right child the 
index 2i+2. For ease of retrieval, we choose this method of numbering the tree’s 
nodes. Other number schemes are possible.  

We mentioned that each node is associated with a set of training examples. When 
we say “associated” we do not necessarily mean that any training examples are stored 
at a node. Instead, each node contains information that is summarizes the training 
examples at that node. Specifically, the nodes in the tree are probabilistic and each 
node is associated with:  

• The probability p(t|s) of a node t given the parent node s: the number of 
training examples at the node relative to the number of training 
examples at the parent of the node. 

• A mean vector µ: the average value of each column at the node. 
• A variance vector σ2: the variance of each column at the node. Note that 

the variance typically decreases along a path 
• A min vector: the minimum value of each column at the node. Note that 

the min value is non-decreasing along a path.  
• A max vector: the minimum value of each column at the node. Note that 

the max value is non-increasing along a path. 

For simplicity, we used a Naïve Bayes model to compute likelihood. Under the Naïve 
Bayes model, the columns are assumed to be conditionally independent from each 
other given the subclass. Other models are possible such as a multivariate normal; we 
chose the Naïve Bayes model because it has a prediction-time complexity that is 
linear in the number of columns.  

Using the Naïve Bayes assumption and assuming a Gaussian distribution, the 
likelihood at a node for a particular j length vector x is defined as: 
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( ; , =  1√2 exp { 12 } (1)

More specifically, to find the most likely node in the tree we need to find that node 
which maximizes the path probability to the node multiplied by the probability of the 
node given the input (the p function). The path probability is the product of the 
probability of the child given its parent, for each child node in the path. Note that the 
path probability to a node is the same as the probability of the subclass associated 
with node.  

Since we are interested in finding the most likely node, the p function can be 
simplified by taking the log and removing constants that are the same for any node: 

( ; , =  log(  (2)

The term “nlp” means negative of the log of the likelihood. This form is simpler to 
compute because it involves a sum rather than a product. Using the nlp function, the 
task of branch-and-bound is to find a leaf node in the tree that minimizes the nlp 
function plus the sum of the path costs, which are derived from the negative of the log 
of the likelihood of each node given the parent node, over all the ancestor nodes in the 
path to the node. Once the most likely node is found, its most likely output value is 
returned. Here again, a variety of methods exist to produce the most likely output. 
Under the Naïve Bayes assumption and a Gaussian distribution, the most likely output 
at a node is the node’s mean output, which is simply that part of the mean vector µ 
that pertains to the output. 

Note that the nlp function says that there’s a tradeoff at getting close to the mean of 
a leaf node (as weighted by the inverse of the standard deviation) and finding a leaf 
node with a low standard deviation.  

3 Deriving a Lower-Bound  

A lower-bound function is important in branch-and-bound algorithms because they 
guarantee never to prune a potential least cost solution. It’s possible to derive several 
different lower-bounds for the nlp function; here we describe a few that we derived. 
For a more general theory of how to derive lower-bound functions in search see [3]. 
One simple lower-bound is based on bounding boxes for each column. For example, 
if the value x for a particular column is outside of the bounding box for of the min and 
the max for that particular column, we know that the distance from x to the closest of 
min or max for that particular column is a lower-bound on the distance to the mean for 
that column. Therefore, we can substitute the closest of min or max for the mean in 
that case. If x is within the bounding box of min and max then return 0 for that 
particular column. 
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Another lower-bound is the minimum of the sum of the negative of the log of the 
p(t|s), where s is the parent and t from a node to any leaf node. For some applications, 
the combination of these lower-bounds might be tight. However, for the bounding-
box style of a lower-bound, when x is within the bounding box of min and max, no 
pruning occurs (at least none based on that particular column).  

A better lower-bound is based on the nlp function itself. Note that when we say 
“lower bound,” we mean that the function is a lower bound on the value returned by 
the most likely leaf node below that node. Note that a lower-bound on log (   is 
easy to derive simply by adding 1 to the standard deviation of each node. Therefore, a 
lower-bound on log (   is 0. That leaves the accuracy burden of the lower-bound l 
on the following expression: 

( ; , =  (3)

One way to guarantee that this expression produces a lower-bound is to ensure that 
the standard deviation along a path does not increase for each particular column. How 
reasonable is this assumption? Suppose that a node is associated with the following 
data set: {-5,-1,1,5}. The standard deviation at that node is 4.16333. Suppose further 
that we split this data set into two subsets. Taking into account mirror images, there 
are exactly three potential splits: 
 

Child 
Standard Deviation 

for Each Child 
1 2 1 2 

{-5,-1} {1,5} 2.82843 2.82843 
{-5,1} {-1,5} 4.24264 4.24264 
{-5,5} {-1,1} 7.07107 1.41421 

 
In at least two of these splits at least one child has a standard deviation that 

increases from the root node. In particular, the second split results in two children 
whose standard deviation increases for both children. For the third split, the standard 
deviation increases for one child and decreases for another. For the first split, the 
standard deviation decreases for both children. Intuitively, this split groups the 
negative values together and the positive values together, which makes sense from a 
clustering point of view. 

It may be that any reasonable machine learning algorithm will attempt to reduce 
the “disorder” at a node by choosing those splits that reduce the standard deviation for 
a column [4]. Therefore, any reasonable machine learning algorithm would prefer the 
first split, which does reduce the standard deviation. However, with multiple columns 
it may be that one column’s standard deviation goes up while another column’s 
standard deviation goes down. So, it is not reasonable to assume that the standard 
deviation will be reduced along a path for each particular column because the 
machine learning algorithm might attempt to “average” out the reduction of 
“disorder” among all the columns. 
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We believe that any reasonable machine learning algorithm will split a node into a 
set of child nodes (while building the tree) such that the function (3) is reduced from 
the node to any child. We haven’t proven this yet, but we believe that any node can be 
split into a set of nodes that is guaranteed to reduce this function from the node to any 
child. For want of a better name, let us call this function the “disorder” function. 
Intuitively, this is what a machine learning algorithm is supposed to do: reduce the 
“disorder” for the purposes of classification. We also believe that even if a reasonable 
machine learning algorithm can’t always reduce the “disorder,” it will come close. 
More specifically, the above expression can be viewed as the average “disorder” at a 
node. (Technically, the average is simply the above expression divided by j. Since j is 
a constant for all nodes, it doesn’t matter if we divide by j or not.)  

4 Using the Lower-Bound Function for Pruning 

The general branch-and-bound strategy is well-known; here we describe how to apply 
it in the context of prediction. More specifically, a lower-bound function can be 
plugged in standard branch-and-bound algorithms for effectively searching the tree. 
There are dozens of different branch-and-bound algorithms, developed as early as the 
1960’s [5]. The objective of each is to compute the function f(s) below: ( = ( (min{ ( , ( | ∈ ( }  (4)

Here, s corresponds to a node (or state), t(s) is a value for a leaf node s, T(s) is true if s 
is a leaf node; false otherwise, c(s,t) is the cost of reaching node t from node s, and 
d(s) returns the set of child nodes for node s. Note that the arc cost function c(s,t) is 
the negative of the log of the p(t|s), where s is the parent and t is the child. 

The basic idea behind a branch-and-bound algorithm is that if a lower-bound l(s) 
for a node s in the tree exceeds an upper-bound u(t) for some other node t, then the 
first node can be pruned. Typically, this is accomplished by recording the minimum 
upper-bound seen among all the paths explored so far, where a path corresponds to 
sequence of states generated by the child function d(s). For example, one can obtain 
an initial upper-bound for a node by randomly searching the tree below the node and 
returning the cost of the path (i.e., the sum of the c(s,t) values along the path) plus the 
leaf node value. When the upper bound is the same as the lower bound, the procedure 
halts; at that point the upper-bound = lower-bound = f(s). 

However, this method is inefficient as it will evaluate nodes whose path cost + 
lower-bound estimate exceeds f(s). That is, this type of search can go “deeper” than 
the leaf node associated with f(s). A more efficient method is to evaluate only those 
nodes whose path cost + lower-bound estimate does not exceed f(s). One way to 
compute the f(s) function with this idea is the classic A* algorithm [6]. However, this 
algorithm requires exponential space. Instead, we chose the IDA* algorithm [6], a 
well-known search algorithm, because it only requires linear space. This algorithm 
trades off memory for computation by repeating a series of ever deeper searches until 
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it finds a solution. At any depth of search, it prunes off all those nodes whose cost so 
far + underestimated cost exceeds the current bound. 

The IDA* algorithm is shown below. As input it takes in an index or pointer to a 
node.  

 

Algorithm 1.  
 
def f(s:node): 
bound = 0 
newbound = search(s,bound) 
while (newbound > bound): 
   bound = newbound 
   newbound = g(s,bound) 
return newbound 
 
def g(s:node,bound:real): 
if T(s) then return t(s) 
else 
   if l(s) > bound then return l(s) 
   else return min{g(t,bound-c(s,t))+c(s,t)|t in d(s)} 
 
The IDA* algorithm comprises two loops. The outer loop (embodied by the “f” 

function), incrementally increases the bound until a solution is found within the 
bound. The inner loop does the heavy lifting: it prunes all nodes whose cost so far 
plus estimate exceeds the bound. Once the most likely leaf node is found, its most 
likely output value (and node) can be returned. For simplicity, the algorithm shown 
above only shows return output value and not the node.  

5 The Particular Method that We Used to Build the Trees 

We mentioned that the particular method we used to build the tree is unimportant for 
purposes of branch-and-bound classification. For reproducibility, here we describe the 
particular method that we used to build the tree. More generally, the training 
procedure that builds the tree should be able to split the training data into k subclasses 
using any standard clustering method. Specifically, we used an EM-like procedure 
assuming two subclasses per node. Of course the number of subclasses depends on 
the desired fit of the model to the training data: too many subclasses and the model 
can overfit the training data, resulting in a low training error rate but a high test error 
rate; too few and model has both a high training error rate and a high test error rate. 
Two subclasses is the smallest number of subclasses with which a tree can be built. 
Moreover, a binary tree can “simulate” multiple subclasses by repeated division of 
each node into finer and finer subclasses. 

The EM-like procedure that we used to build the tree assumes that the data 
includes a column with k values, which correspond to each of the k subclasses.  
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This column’s data is missing for every row in the testing data. We built the tree by, 
at each split, finding k mean vectors, k variance vectors, and k subclass probabilities 
such that the probability of the data given the parameters is maximized under the 
assumed probability model. In our case, we used k=2 but k can be any integer. 

Once these parameters (mean, variance, and subclass probabilities) are determined, 
each row can then be “clustered” into one of the k subclasses based on the parameters 
and the process can be recursively repeated on each of the subclasses. By “recursively 
repeated,” we mean that each row is assigned to one of the k subclasses and the 
process repeats recursively for each of the rows associated with each of the k 
subclasses. 

Given a set of rows in a data set and a set of k subclasses, each of which is 
characterized by such a probability distribution function and a prior probability (i.e., 
frequency), the task is to find an assignment of each row to a single class.  

This task is accomplished by finding the subclass that minimizes the nlp function 
plus the negative of the log of the subclass. This functional form tells us that there is a 
tradeoff between finding a subclass whose mean is close to the row (as weighted by 
the inverse of the standard deviation), finding a subclass with a low standard 
deviation (due to the log of the standard deviation term), and finding a subclass with 
high path probability. We used a “hard” assignment tree-building procedure: once 
such a subclass is found, the assignment of the row to the subclass is “hard” in that 
each example is assigned to only one subclass, the most likely one. In contrast, in 
traditional EM, each row has a probability of belonging to each class. 

Other tree-building procedures exist in machine learning. For example, decision 
trees build a structure by splitting on attribute values or ranges. However, such 
resulting structures may not be amenable to pruning.  

6 Summary of Results with Random Trees  

With only a handful of subclasses, linear search for the most likely subclass will 
outperform branch-and-bound because there is little to structure into a tree. Thus the 
branch-and-bound algorithm is not meant for small data sets that yield only a few 
subclasses. Therefore, to get some idea of how well classification works, it is essential 
to test it on large trees, ones stemming from billions of training examples. 
Unfortunately data to build such trees is not easily available nor is it readily shareable.  

As a result, we built a random set of data selected from up to 60 billion mixtures 
(each mixture corresponds to a subclass) and then ran our algorithm and compared it 
to the results for linear search.  

The trees we used for the experiments here all have a uniform branching factor of 
k, where the k sibling nodes represent a split of the data into k subclasses. Each node 
of this tree is associated with a set of training examples and the children of a node 
represent a partition of those training examples from the parent. That is, the training 
examples at the parent node correspond to the union of those at the child nodes. In 
general, the trees do not have to have a uniform branching factor but it made 
experiment generation simpler. 
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Second, we implicitly generate the range of each column of each node given the 
column range of its parent node by the following process. The system: 

1) Determines the random seed based on the parent node index and unique 
prime number for division generation. 

2) Uniformly samples b-1 points between parent’s min-max range. Clearly 
these b-1 points can be again recreated as they are sampled 
deterministically based on the seed that we generated on 1). 

3) If the current node is ith child of parent node, the ith subdivision will 
have its own min-max range. 

Though we could not generate a min-max range for each node in one shot, we can 
create it by following the label path starting from the root. For example, in the binary 
tree, the label path such as “LEFT/RIGHT/RIGHT/LEFT” can uniquely indicate the 
range of given node in an efficient manner. 

Finally, the system generates the mean and variance vectors for each node given its 
range as follows: 

1) Determine the random seed for mean and variance based on the current 
node index and unique prime numbers for mean and variance 
respectively. 

2) Uniformly sample one point between its min-max range based on the 
mean seed. 

3) Compute a simple variance by averaging the sum of squared distances 
between min and sampled mean, and the max and sampled mean. 

4) Add a small normalized Gaussian noise based on the variance seed. 
5) Add 1 to the variance computed from 4) 

Here adding 1 in the step 5) prevents variance from being closer to 0, which causes a 
numerical problem.  

Put together, these steps enable the creation of implicit random trees that simulate 
billions of mixture distributions, each with their own mixture proportions, min-max 
ranges, mean vectors, and variance vectors as a function of the node index and a 
random seed. It is important to understand that is it not possible to explicitly store all 
of these parameters for billions of nodes. We believe that such implicit random trees 
are a good vehicle to evaluate machine learning algorithms on enormous training sets 
with millions of subclasses.  

Figure 1 shows the results of these experiments. As the figure shows, Branch-and-
Bound search significantly beats linear search. In particular for binary trees, it shows 
nearly two orders of magnitude speedup. In fact, as depth x increases the speedup is 
e1.37x for a binary tree: this means the deeper the tree, the more effective the Branch-
and-Bound. This means that with Branch-and-Bound search it is possible to do 
prediction with trees that are roughly 1.37 times deeper than for exhaustive (linear) 
search. This puts certain prediction problems within reach that were not possible 
before. Note that the comparison to linear search is not a strawman: this is the 
technique that is typically used in prediction and that fails with a large number of 
subclasses. 
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7 Branch-and-Bound Classification for Non-probabilistic 
Models 

Probabilistic models are attractive because they can automatically weight and 
normalize each attribute based on the variance. One non-probabilistic approach that 
we consider here is k-means clustering [1], a popular clustering method. In k-means 
clustering, a set of k initial means is generated, one per subclass. Each row is assigned 
to the subclass whose sum of distances squared to each attribute is minimized. Once 
the assignments are complete, the means are reset based on the assignments of rows to 
classes and the procedure repeats. Many different methods can be used to terminate 
this procedure, but one popular method is to terminate when the sum of the distances 
squared does not significantly change between iterations.  

Note that k-means can be applied hierarchically: each node can again be split into k 
subclasses. This hierarchy is essential for the type of branch-and-bound pruning 
described here because it produces a tree. Note also that k-means does not suffer from 
an exponential branching factor as the number of attributes increases. This is because 
k-means combines multiple attributes by considering their sum. 

To understand how to prune with k-means trees, consider that along any path the 
extrema (min and max) of an attribute tightens: the min increases and the max 
decreases. This means that the sum of the distances squared to the nearest extrema 
will decrease along a path. And that means that this sum can be used for pruning as a 
lower-bound in branch-and-bound algorithms such as IDA*. The downside of k-
means trees is that they treat each attribute as being equal (i.e., the distance measure is 
the same for each attribute). The attributes can be normalized by dividing each 
attribute’s deviation from the mean by the variance (just as in the nlp function). 
However, this normalization does not solve the problem of equal weighting. 

Note that clustering and classification are two different tasks: clustering involves 
grouping and classification involves prediction. However, clustering algorithms can 
be used to find subclasses for classification tasks. 

8 Related Work 

The Nearest Neighbor (NN) method is one of the oldest machine learning methods 
[8]. Instead of learning a classifier through training process, this method finds the 
nearest training example to an input query and then returns an output associated with 
that example. With a large number of training examples, this method often 
outperforms other machine learning methods such as neural nets, Bayesian nets, and 
decision trees, especially when many outputs are not strongly determined by one 
mathematical function of given input while they have weak correlations.  

One straightforward but inefficient way to find the nearest training example is 
through linear search: compare the input to every training example and evaluate the 
output based on the nearest. The average time complexity of the linear approach is n/2 
for n training examples. Linear search is instantly incremental because no processing 
is required to add a new training example. However this approach repeats the entire 
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search process again for each input query, becoming highly inefficient as n grows 
large.  

The training examples can be organized into an approximately balanced tree called 
a kd-tree for faster prediction through branch-and-bound methods [9]. More 
specifically, the tree can be built in O(nlog n) time through a linear time median-
finding algorithm. For example, one way is to sort the data on one dimension and then 
split the data at the median for that dimension. The process can then be repeated on 
each of the two parts. The fundamental concept in all of these ways is to split the data 
approximately in half for a particular dimension and then repeat the process on the 
two parts for the next dimension. Once all the dimensions have been split, this process 
repeats again from the first dimension. For k dimensions, this yields a tree with 
branching factor 2k. For example, for two dimensions, the data is cut into two sets  
for the first dimension and each of those sets into two more sets, thus yielding a  
quad tree. 

Assuming that n = Bd, where B is the average branching factor and d is the depth of 
the search for an input query can be completed in O(Bd/k) time, where k is a constant 
greater than 1. Although this method is not instantly incremental, standard tree 
rebalancing methods attempt to keep the tree balanced with adding new training 
examples efficiently (i.e., in O(log n) time).   

One shortcoming of the kd tree is that it does not scale up as the number of input 
dimensions grows: the tree’s branching factor is 2k, where k is the number of input 
dimensions (i.e., number of features or columns). This is because the kd trees are 
created by splitting on one dimension at a time. Therefore, the search complexity for a 
nearest neighbor in high-dimensional spaces can be worse than linear search. 

Once the kd tree has been built by whatever method, various branch-and-bound 
methods can be applied to find the nearest neighbor. These methods use lower-bounds 
that can be derived from bounding hyper-rectangles associated with each node. That 
is, the distance from a particular input to the bounding hyper-rectangle is a lower-
bound on the distance to any training example within the hyper-rectangle. This 
property is true for any node in the tree. For example, in two dimensions, there are 
nine cases for input location relative to a bounding rectangle, each having their own 
distance formula: within the rectangle (lower-bound is zero in that case), directly 
below, directly above, directly right, directly left, above-left, above-right, below-right, 
or below-left. The distance to this rectangle from an input is a lower-bound on the 
distance to any training example within the rectangle. This lower-bound property can 
be exploited by various branch-and-bound methods to dramatically reduce the search 
space for a nearest neighbor by pruning off branches of the tree that are guaranteed to 
be farther away than a given reasonable upper-bound. 

Moore describes an EM-based variant of the standard kd tree-building procedure 
[10]. This variant uses bounding boxes to determine how deep to build the tree—that 
is, it can prune off parts of the tree at training time, thus helping to control over-
fitting at prediction time. Note that the system described by Moore is focused on tree-
building rather than prediction with a particular input, which is the focus of this paper. 
For example the EM-based variant described by Moore does not search the tree for a 
particular input as described here. 
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Other tree-building procedures exist in machine learning. For example, decision 
trees build a structure by splitting on attribute values or ranges. For continuous values, 
the procedure is remarkably similar to that of building kd-trees: choose a dimension, 
determine a splitting point, and then split the data. However, not all of such trees are 
amendable to the branch-and-bound approach because it is not easy to derive lower-
bounds. 

The key insight with kd-trees and other learned structures is that more time spent 
during training to build easily searchable structures can pay off in less time at 
prediction. The purpose of this paper is to explore the application of those insights in 
a probabilistic context. Part of the question that drove this research is whether or not 
these methods are applicable in a probabilistic context and under what conditions? 

Even without a kd-tree, nearest neighbor (NN) methods suffer from other 
shortcomings. First, they do not generalize a classifier from training examples. That 
is, NN methods are likely to overfit the data if the training set has a relatively close 
example to an input query. In contrast, NN has no way to predict if none of training 
examples are closer or multiple training examples are exist in neighborhood close to a 
query.  

Intuitively, adding a simple training process such as averaging multiple nearest 
neighbors might improve accuracy. However, it is difficult to choose an appropriate k, 
the number of training examples for prediction and to define the ‘nearness’ 
appropriately to balance across multiple dimensions. (Note that when k=n, this 
method returns the mean of all training examples as the output.)  

Second and for the same reasons, nearest neighbor methods are sensitive to 
outliers. For example, a single nearest example from the training set could be an 
outlier, but the k-nearest neighbors might suggest a different output, smoothed away 
from that outlier. The problem is that it is hard to determine a proper k and ideally k 
should be varied for each prediction. Third, the standard distance metric in nearest 
neighbor weighs each input dimension equally, thus potentially exaggerating the 
importance of some insignificant dimensions. Locally weighted linear regression can 
help [11] in the sense that it generalizes based on relatively important examples, but 
still determining the neighborhood of locality is difficult and not feasible without 
structurally differentiating the weight of each dimension from the beginning. Finally, 
nearest neighbor methods cannot easily handle missing data, which frequently 
happens in real world data.  

The probabilistic method in this paper addresses these shortcomings in a 
statistically sound framework.  

9 Conclusions and Future Work 

This paper described a new method for efficient classification when the number of 
classes is large. We showed its application in the context of a probabilistic model. The 
results show that the deeper the tree, the more efficient this algorithm gets as 
compared to linear search. With Branch-and-Bound search it is possible to do 
prediction with trees that are roughly 1.37 times deeper than for linear search.  
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This puts certain prediction problems within reach that were not possible before. We 
believe algorithms such as classification might form the cornerstone of handling 
enormous data sets, which result in an enormous number of subclasses. 

We are currently exploring several promising avenues of future work. First, it is 
possible to apply lazy over-fitting control in the context of trees as described here. 
That is, it is possible to apply over-fitting control methods after training rather than 
during training. For example, the most likely leaf node might not be the most likely 
node in the entire tree. While exhaustively searching for the most likely node in the 
tree is not feasible, it might be possible to search a local neighborhood of the path 
leading to the most likely leaf node. The idea is that it might be more likely to find 
that node off the path than anywhere else. We are currently evaluating that 
hypothesis. It may also be that the most likely node at a lower depth is more likely 
than one at a deeper depth. This suggests the following iterative method of overfitting 
control: find the most likely node at level 1, continue iterating by level, replacing the 
most likely node if the likelihood is higher than the one being replaced, stop when the 
likelihood starts to decrease (this suggest overfitting). 

Second, such as sampling might be useful to search through the resulting tree 
instead of pruning. We are currently evaluating such methods. 

Third, it may be possible to derive better heuristics so that we can get a better 
lower-bound on the log of the standard deviation. It may also be possible to get more 
accurate heuristics through learning or caching searches in the tree. 

Finally, the artificial dataset on which we ran our experiments could be biased 
towards our strategy. To rule that out, we are currently running experiments on two 
natural domains: the Reuters-RCV1 text classification dataset [12] and the Gene 
Ontology dataset [13], both of which are large and with tree-structured classes. 
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Abstract. A machine learning model is said overfit the training data relative to 
a simpler model if the first model is more accurate on the training data but less 
accurate on the test data. Overfitting control—selecting an appropriate 
complexity fit—is a central problem in machine learning. Previous overfitting 
control methods include penalty methods, which penalize a model for 
complexity, cross-validation methods, which experimentally determine when 
overfitting occurs on the training data relative to the test data, and ensemble 
methods, which reduce overfitting risk by combining multiple models. These 
methods are all eager in that they attempt to control overfitting at training time, 
and they all attempt to improve the average accuracy, as computed over the test 
data. This paper presents an overfitting control method which is lazy—it 
attempts to control overfitting at prediction time for each test case. Our results 
suggest that lazy methods perform well because they exploit the particulars of 
each test case at prediction time rather than averaging over all possible test 
cases at training time. 

Keywords: Overfitting control, Bayesian Models. 

1 Introduction and Motivation 

A machine learning model is said overfit the training data relative to a simpler model if 
the first model is more accurate on the training data but less accurate on the test data. 
Intuitively, the more complex model is fitting itself to what could be called noise in the 
training data instead of to what could be called the signal in the test data.  The core 
problem is determining which parts of the data to ignore. Overfitting control—selecting 
an appropriate complexity fit to maximize the signal and minimize the noise—is a 
central problem in machine learning. For example, determining an appropriate number 
of hidden units in a neural net is overfitting control. Too few hidden units and accuracy 
on both the training and test data is low; too many hidden units and accuracy on the 
training data is high while accuracy on the test data is low. In short, the number of 
hidden units determines the number of parameters with which the data is fit and too 
many parameters is not necessarily good when it comes to accuracy on the test data. 

More generally, Figure 1 shows the error on the training data (i.e., the lower line, 
the blue line) decreasing as the model’s complexity increases. The figure also shows 
the error on the test data (i.e., the upper line, the red line) decreasing until the model’s  
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learning rate, number of hidden units, kernel parameters, penalty size, and features. 
One shortcoming of cross-validation is that if the second set of data is too small, the 
error estimates will be noisy. Another shortcoming of cross-validation methods is that 
they can be computationally expensive as they involve multiple error estimates on the 
second set of data.  

Ensemble methods don’t choose a single model. Instead, they spread the risk of 
error on the test set over multiple models. For example, an ensemble method can 
involve learning multiple models, one for each set of random samples of the training 
set. The intuition is that many of the multiple models will fit the test data well and 
hence lower the error on the test set more than using a single model. Other ensemble 
methods include Bayesian model averaging (sampling hypotheses based on their 
posterior probability), bagging (iteratively removing high accuracy predictors and 
their corresponding data from the training set and repeating the process; the set of 
predictors corresponds to the model), randomized committees (train several 
hypotheses using different initial starting conditions), and random forests (growing 
multiple decision trees from randomly sampled feature subsets). 

All of these previous overfitting control methods are eager in that they attempt to 
control overfitting at training time, and they all attempt to improve the average 
accuracy over the test data. This paper presents an overfitting control method which is 
lazy in that it attempts to control overfitting at prediction time for each test case.  

The rest of the paper is organized as follows. Section 2 presents our approach to 
overfitting control. Section 3 describes the particular method we used for learning. 
Section 4 presents the specific tree searching method that we use. Section 5 presents 
the results of applying our approach. Section 6 describes related work. Finally, 
Section 7 discusses the conclusions of this work and outlines promising directions for 
future work. 

2 Lazy Overfitting Control 

Our approach to lazy overfitting control (LOC) assumes that it is given a particular 
learned structure in the form of a tree that represents the training data at various levels 
of generality. For purposes of this paper, how the tree is built is unimportant; what is 
important is that the tree has certain properties that we describe below. However, for 
reproducibility, we describe the particular tree-building method that we used in the 
next section and describe other tree building methods that are possible.   

Property #1: the tree represents various levels of generality; a parent node in the tree 
is more general than a child node. By “generality” we mean that the parent of a node 
“covers” more training examples than a child and is hence “more general.”  We 
assume that each node in the tree comprises a set of parameters which summarize the 
data at that node (e.g., the mean and variance of each variable). The summary at each 
node forms the generalization hierarchy.  

The tree has a uniform branching factor of k, where the k sibling nodes represent a 
split of the data into k subclasses. Each node of this tree is associated with a set of 
training examples and the children of a node represent a partition of those training 



484 A. Prieditis and S.Sapp 

 

examples from the parent. That is, the training examples at the parent node 
correspond to the union of those at the child nodes. 

Property #2: there exists a way to evaluate degree of fit for an input test case and 
node. At prediction time, LOC finds a node in the tree that it believes to be the most 
likely node in the tree. Other methods are possible to determine degree of fit; we 
choose likelihood because our particular tree is a probabilistic one. LOC then returns 
the prediction associated with that node. Thus, LOC fits each test case at a flexible 
level of generality at prediction time.  

Property #3: degree of fit on a test case is correlated with the accuracy of the 
prediction generated from the test case. As the degree of fit, LOC uses likelihood, 
which is correlated with accuracy: the more likely the node the higher the accuracy. 
At prediction time, the most likely node in the tree is the one that is nearest based on 
the weighting for the input columns. Note that because the tree summarizes the 
training data, a node “higher” up in the tree may be more likely than one “lower” 
down in tree. Intuitively, this aspect is what controls overfitting at prediction time. An 
eager method of overfitting control builds the tree to a fixed level at training time and 
uses the tree as is at prediction time. In contrast, LOC chooses the level at prediction 
time, which is what makes LOC lazy. 

Property #4: the training data is grouped. Grouping the training data helps to smooth 
the predictions. For example, if the training data is grouped (i.e., clustered) into 
subclasses, the results are likely to be more accurate because a prediction can then be 
based on interpolating among multiple training examples.  

Note that if the learning was not structured as a tree, it would be difficult to fit a 
test case at flexible levels of generality. For example, if the k subclasses were labeled 
in a flat, non-hierarchical way with labels such as “Class0,” “Class1,” and “Class2,” it 
would be difficult to find sub-groupings of the classes helpful for lazy overfitting 
control. That is all possible subsets would need to be considered. While this is feasible 
with a small number of subclasses, it is clearly not feasible with hundreds of 
subclasses. 

To understand how each leaf node in the LOC tree corresponds to a subclass, 
consider a binary tree.  For example, in a binary tree the left child of the root might 
have subclass label “Root/Left” and the right child “Root/Right.” Assuming a tree 
with two levels, there are four subclasses, which correspond to the each of the leaf 
nodes and which can be identified by the following labels: “Root/Left/Left,” 
“Root/Left/Right,” “Root/Right/Left,” and “Root/Right/Right.”  

Note that the indexing scheme does not have to explicitly name each node using 
such hierarchical names. For example, in a binary tree, with root node having index 0, 
a node having index i can have as a left child the index 2i+1 and as a right child the 
index 2i+2.  For ease of retrieval, we choose this method of numbering the tree’s 
nodes. Other number schemes are possible.  

We mentioned that each node is associated with a set of training examples. When 
we say “associated” we do not necessarily mean that any training examples are stored 
at a node. Instead, each node contains information that is summarizes the training 
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examples at that node. Specifically, the nodes in the tree are probabilistic and each 
node is associated with:  

• The probability p(t|s) of a node t given the parent node s: the number of 
training examples at the node relative to the number of training 
examples at the parent of the node. 

• A mean vector µ: the average value of each column at the node. 
• A variance vector σ2: the variance of each column at the node.  

For simplicity, we used a Naïve Bayes model to compute likelihood. Under the Naïve 
Bayes model, the columns are assumed to be conditionally independent from each 
other given the subclass. Other models are possible such as a multivariate normal; we 
chose the Naïve Bayes model because it has a prediction-time complexity that is 
linear in the number of columns.  

Using the Naïve Bayes assumption and assuming a Gaussian distribution, the 
likelihood at a node for a particular j length vector x is defined as: 

( ; , =  1√2 exp { 12 } (1) 

Many techniques can be used to determine the “best” matching node to a given 
input. Since our tree is a probabilistic one (i.e., each node is defined by a set of 
parameters which determines a probability distribution function), it makes sense to 
find the most likely node for given input based on the p function above on an input x. 

More specifically, to find the most likely node in the tree we need to find that node 
which maximizes the path probability to the node multiplied by the probability of  
the node given the input (the p function). The path probability is the product of the 
probability of the child given its parent, for each child node in the path. Note that the 
path probability to a node is the same as the probability of the subclass associated 
with node.   

Since LOC finds the most likely node, the p function can be simplified by taking 
the log and removing constants that are the same for any node: 

( ; , =  log(  (2) 

The term “nlp” means negative of the log of the likelihood. This form is simpler to 
compute because it involves a sum rather than a product. Using the nlp function, the 
task of LOC is to find a node in the tree that minimizes the nlp function plus the sum 
of the path costs, which are derived from the negative of the log of the likelihood of 
each node given the parent node, over all the ancestor nodes in the path to the node.   

Once the most likely node is found, its most likely output value is returned. Here 
again, a variety of methods exist to produce the most likely output. Under the Naïve 
Bayes assumption and a Gaussian distribution, the most likely output at a node is the 
node’s mean output, which is simply that part of the mean vector µ that pertains to the 
output. 
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3 The Particular Method We Used to Build the Tree 

We mentioned that the particular method we used to build the tree is unimportant for 
purposes of LOC. For reproducibility, here we describe the particular method that we 
used to build the tree. More generally, the training procedure that builds the tree 
should be able to split the training data into k subclasses using any standard clustering 
method. Specifically, we used an EM-like procedure assuming two subclasses per 
node.  Of course the number of subclasses depends on the desired fit of the model to 
the training data: too many subclasses and the model can overfit the training data, 
resulting in a low training error rate but a high test error rate; too few and model has 
both a high training error rate and a high test error rate. Two subclasses is the smallest 
to build a tree, which in this case is a binary tree. Moreover, a binary tree can 
“simulate” multiple subclasses by repeated division of each node into finer and finer 
subclasses. 

LOC sidesteps the issue of finding an appropriate number of subclasses by 
recursively building as many binary subclasses as possible at training time (i.e. down 
to leaf nodes containing singleton examples) and then selecting an appropriate node in 
the tree of subclasses at prediction time. That is, LOC builds a deep tree during 
training time and then selects a node at an appropriate depth at prediction time to 
avoid overfitting.  

The EM-like procedure that we used to build the tree assumes that the data 
includes a column with k values, which correspond to each of the k subclasses. This 
column’s data is missing for every row in the testing data. We built the tree by, at 
each split, finding k mean vectors, k variance vectors, and k subclass probabilities 
such that the probability of the data given the parameters is maximized under the 
assumed probability model. In our case, we used k=2 but k can be any integer. 

Once these parameters (mean, variance, and subclass probabilities) are determined, 
each row can then be “clustered” into one of the k subclasses based on the parameters 
and the process can be recursively repeated on each of the subclasses. By “recursively 
repeated,” we mean that each row is assigned to one of the k subclasses and the 
process repeats recursively for each of the rows associated with each of the k 
subclasses. 

Given a set of rows in a data set and a set of k subclasses, each of which is 
characterized by such a probability distribution function and a prior probability (i.e., 
frequency), the task is to find an assignment of each row to a single class.  

This task is accomplished by finding the subclass that minimizes the nlp function 
plus the negative of the log of the subclass. This functional form tells us that there is a 
tradeoff between finding a subclass whose mean is close to the row (as weighted by 
the inverse of the standard deviation), finding a subclass with a low standard deviation 
(due to the log of the standard deviation term), and finding a subclass with high path 
probability.  We used a “hard” assignment tree-building procedure: once such a 
subclass is found, the assignment of the row to the subclass is “hard” in that each 
example is assigned to only one subclass, the most likely one. In contrast, in 
traditional EM, each row has a probability of belonging to each class. 
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Other tree-building procedures exist in machine learning. For example, decision 
trees build a structure by splitting on attribute values or ranges. However, such 
resulting structures cannot be used for lazy overfitting control. The basic idea is to 
build a tree to a fixed level of overfitting and then determine the appropriate level for 
an individual test case at prediction time. We’ve chosen one type of tree—a 
probabilistic tree—but other trees can yield similar results with lazy overfitting 
control. For example, a kd-tree could work just as well as the trees we have built 
because the kd-tree has all of the Properties #1-#4: it has a measure: each node 
represents a level of generality, distance to a bounding hyper-rectangle is the degree 
of fit measure,  and the training data is grouped by nearness. 

4 Likelihood Stopping 

Rather than search the entire tree for the most likely node, LOC stops searching when 
it decides that the likelihood will probably not increase. The procedure, which is run 
for each test case (i.e. unseen data that is to be predicted), comprises two iterative-
deepening steps. 

Step 1. Using the entire test set, iteratively increase the depth from 0 to d*+1 until the 
average likelihood, across all test cases, at the depth is worse than the previous depth. 
Here d* represents the depth associated with the best average likelihood.  Store the 
best likelihood (and node) for each test case. 

Step 2. For each individual test case, increase the depth past d* until the likelihood of 
the most likely node becomes worse than the previous depth’s likelihood of the most 
likely node. Return the mean output value associated with the node having the 
greatest likelihood among all the depths. 

5 Summary of Results 

We were interested in comparing LOC to an optimal (though exhaustive and 
expensive) procedure: namely searching the entire tree to find the best node. Since it 
is not possible to do better than searching the entire tree for the best node, we wanted 
to see whether LOC, by searching a fraction of the nodes, could do nearly as well as 
searching the entire tree. 

To get some idea of how LOC performs, we ran it on three domains, two real and 
one simulated. The two real ones involve predicting the geographic location of an IP 
address based on the round-trip transit time from a set of router locations on the 
internet. The geographic location (geo-location) is represented by three Cartesian 
coordinates (x, y, z). The procedure we used to infer the Cartesian coordinates involves 
making a prediction in terms of the x, y, z and then mapping it onto the surface of the 
earth.   The first geo-location set comprises the roundtrip transit times from 100 routers 
on the internet in a 50K row training set and a 10K row test set (randomly selected). 
The second geo-location set comprises 82 router roundtrip transit times (plus the 
decimal of the IP address) in an 8731 row training set and a 2494 row test set.  
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The simulated data set comprises a 100K training set and a 10K test set with a 
single output variable and 24 input variables as follows:  

 
x1 = Normal(0, 100) 
x2 = Normal(100, 1) 
x3 = Uniform(-1000, 1000) 
x4 = x1^2 + x2 
x5 = abs(x3) 
x6 = t_5 
x7 = t_20 
x8 = x6^2 + x7^2 
x9 = binomial(1000, 0.5) 
x10 = binomial(20000, 0.3) 
x11 = sqrt(x9) 
x12 = sqrt(x10) 
x13 = sqrt(x11) 
x14 = log(x9 + 1) 
x15 = log(x10 + 1) 
x16 = log(x11 + 1) 
x17 = log(abs(x1)) 
x18 = round(x1) 
x19 = round(x6) 
x20 = chisquare_1 
x21 = chisquare_10 
x22 = chisquare_100 
x23 = log(x20) 
x24 = sqrt(x22) 

The output variable (the one LOC is predicting) is log(abs(x1 + x2 + ... + x24)). 
Table 1 summarizes the results of these experiments. 

Table 1. Results on Three Data Sets 

Data Exhaustive LOC % Accuracy % Time 
1 254 290 88 20 
2 115 124 93 30 
3 98 107 92 23 

 
LOC enables us to obtain 88-92% of the accuracy of exhaustive search (where we 

find the most likely node in the entire tree) but at 20-30% of the time. In other words, 
by searching only a small fraction of the entire tree, LOC is able to obtain a result that 
is almost as good as what we would have found by searching the entire tree. 

Since LOC controls overfitting differently for each new example, it also 
customizes the prediction depth for each new example.  In the table below, we 
compare LOC to two less customized procedures:  nearest neighbor (NN) and best 
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average fixed depth. Best fixed depth uses an oracle procedure:  selecting the 
depth with the lowest average prediction error among all test cases. 

Table 2. LOC vs. Best Leaf node and Best Node at Fixed Depth 

Test Set NN Best fixed depth LOC 

1 412 359 290
2 170 149 124

 

LOC performs significantly better than both of these methods. 

6 Related Work  

Nearest neighbor methods, one of the oldest machine learning methods [12], can be 
viewed as a lazy overfitting control method.  Instead of learning a classifier through 
training process, this method finds the nearest training example to an input query and 
then returns an output associated with that example. Nearest neighbor is often called 
lazy machine learning because training time is zero and all of the complexity is 
pushed to prediction time in finding the nearest training example. With a large 
number of training examples, this method often outperforms other machine learning 
methods such as neural nets, Bayesian nets, and decision trees, especially when many 
outputs are not strongly determined by a single function.  

Nearest neighbor methods suffer from several shortcomings.  First, they do not 
generalize from training examples.  As a result, nearest neighbor method are likely to 
overfit the training data. Smoothing the results by considering the k nearest neighbors 
can help improve accuracy, but it is difficult to choose an appropriate k, which ideally 
should be varied for each prediction. Second and for the same reasons, nearest 
neighbor methods are sensitive to outliers. Third, the standard distance metric in 
nearest neighbor weighs each input dimension equally, thus potentially exaggerating 
the importance of some insignificant dimensions. Locally weighted linear regression 
can help [13] in the sense that it generalizes based on relatively important examples, 
but determining the neighborhood of locality is still difficult and not feasible without 
a priori structurally differentiating the weight of each dimension. Finally, nearest 
neighbor methods cannot easily handle missing data, which frequently occur in real 
world data. 

Note that the k-nearest neighbors method is not completely lazy because k is 
typically chosen at training time by cross-validation on the training set. This cross-
validation method can require significant computational resources and carries some 
risk of overfitting on unseen data. [14] proposes an alternative that does not cross-
validate at training time. Instead of choosing one neighborhood size, it averages the 
discriminants for multiple neighborhood sizes.  They found that this approach worked 
well with k-nearest neighbors, support vector machines, hyperplane distance nearest-
neighbor, and Bayesian quadratic discriminant analysis. They show that good 
classification performance can be attained without any training.  
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[15] considers the task of building decision trees at prediction time. Specifically, 
their motivation is similar to ours: 

Building a single classifier that is good for all predictions may not take 
advantage of special characteristics of the given test instance that may give rise 
to an extremely short explanation tailored to the specific instance at hand (page 
717) 

In other words, eager methods of controlling overfitting in decision trees can result in 
overly long “explanations,” which translates to a higher error rate on the test set. Our 
results reinforce what Friedman, et al say.   

7 Conclusions and Future Work 

This paper described a new approach to overfitting control: lazy overfitting control 
(LOC), which pushes overfitting control to prediction time. Using LOC to customize 
prediction enables it to perform significantly better than fixed depth methods. We 
are currently exploring lazy overfitting control methods that can combine multiple 
hypotheses. 
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Abstract. This paper investigates the usefulness of a part of speech lan-
guage model on the task of automatic speech recognition. The develped
model uses part of speech tags as categories in a category-based language
model. The constructed model is used to re-score the hypotheses gener-
ated by the HTK acoustic module. The probability of a given sequence
of words is estimated using n-grams with Witten-Bell backoff.

The experiments presented in this paper were carried out for Polish.
The best obtained results show that the part-of-speech-only language
model trained on a 1-million manually tagged corpus reduces the word
error rate by more than 10 percentage points.

1 Introduction

In the most of modern automatic speech recognition (ASR) systems the algo-
rithm of operation is as follows: the input signal is recognized using an acoustic
model (AM), i.e. a model that describes the relation between the sounds and
the phonemes from the chosen alphabet. In that way a language message hy-
pothesis is encoded using the sound. Since, typically that model is not analyzing
all possible data, the result of the AM module is not a single result, but a list
of hypotheses with probability estimations or a lattice. Then, a language model
(LM), i.e. a model that describes the relations between the words is used to
rescore the acoustic hypotheses in order to select the hypothesis that is the most
plausible according to the LM and AM.

Since a LM utilizing all the various relations between the words is very hard
to built, there are many approximations, word n-grams being the most popular
[1]. In the word n-gram LM the relations between the words are narrowed down
to the order in which the words appear. It is believed that the probability of the
next word in a sequence can be reasonably estimated, given the n-1 preceding
words. Given a large corpus it is possible to estimate these probabilities and
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use them to compute a probability of any given sequence of words. However, it
should be mentioned, that the efficiency of an n-gram LM is language dependent.
English, being the most important and common language for speech recognition
research, caused popularity of n-grams. But, it has to be stressed, that English
is positional, and as such, n-grams are very natural to be used and close to
the logics of the language. In case of Polish and other inflectional languages like
Finnish, Turkish and other (than Polish) Slavic languages, the order of the words
is not the main logics of the language. As a result, an n-gram LM taken directly
from ASR system designed for English is not necessarily the best choice.

For instance in Polish the expressions dom Adama and Adama dom (Adam’s
house) although not equally probable, express the same relation between these
words. What is more the number of tokens in Polish and other inflectional lan-
guages is larger than in English, since words have many inflectional forms (e.g.
Adam, Adama, Adamowi, Adamem, Adamie, Adamowie, . . . are all forms of
Adam).

The primary problem connected with n-gram based LMs is data sparsity – it
is impossible to collect a corpus that would allow to compute the probabilities
for any word sequence of a given length that might appear in the recognized
speech. As a result there are sequences that lack probability estimation. Due
to the fact that the number of tokens in inflectional languages is larger than in
positional languages, this problem is amplified in the case of the former. Partial
solution to this problem is usage of techniques such as smoothing, interpolation
and backoff [2].

The second important problems are parentheses which seriously both intro-
duce errors to LM if they appear in the training corpus, and can be very difficult
to be recognized if they appear in speech.

There are also approaches that do not assume that words are the best build-
ing blocks of the LM. There are models based on morphs, morphemes as well
as words clustered into categories (category-based models). The first two ap-
proaches are mostly used for agglutinative languages, where words are consti-
tuted from sub-word units having their own meaning and syntactic features [3,4].
The last approach might be applied to any language. Its idea is that several words
(or morphemes) having similar meaning and syntactic features (e.g. nouns rep-
resenting cities: Washington, New York, Boston) are substituted by a category,
i.e. a words-cluster. As a result the number of distinct n-gram units is reduced
and the LM is less sparse.

The advantage of such a language model is that it does not require a large
corpus to be generated and since the number of categories might be substantially
smaller than the number of words, it allows to use higher-order n-grams.

The method of building the LM presented in this paper follows the category-
based approach to language modeling. The grammatical classes of the words are
used as their categories. As a result, a sequence of words Mary killed the bug is
converted to a sequence of a noun followed by a verb, a determiner and another
noun.
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The problem associated with such a language model is that in order to com-
pute the estimated probabilities of n-grams we have to assign the grammatical
classes to the words. This is a well known task of part-of-speech (POS) tag-
ging. Although the POS tags might be assigned automatically, in our approach
to compute the n-gram probabilities we use a manually tagged training corpus.
Although it requires substantial amount of work, for many languages corpora
large enough for building the LM are available.

Even though we do not use a POS tagger to build the model, we use this
module for tagging the candidate sentences. This tagger is used to tag the n-
best candidates generated by the acoustic module in order to compute the POS-
sequence probability. In the conducted experiment we use an external component
to perform the POS tagging, which heavily incurs the speed of the system.
However, it is possible to integrate the POS tagger and optimize it for the ASR
task.

The presented experiments were carried out for Polish – an inflectional lan-
guage with a large number of distinct word-forms. As a result the data sparsity
problem of the word-based LMs is more apparent. Recently a large (1 million)
corpus of syntactically tagged texts was made available [5] which we used in our
experiment. We also used the state-of-the-art POS tagger for Polish [6], which
was trained on that corpus. The results for a testing corpus with 100 sentences
show that using this LM to rescore the results provided by HTK acoustic model
can reduce the word error rate (WER) by more than 10 percentage points.

2 Related Work

Generally, there is very little interest in using POS tags in ASR. Besides [7]
and [8], which report negative results on applying POS taggers in ASR, there is
little literature on this topic. In [8], a POS tagger [9] was tested as possible im-
provement in speech recognition of Polish [8]. However, the results were negative
because the output of the tagger was too ambiguous.

In the approach described here, we limited the ambiguity by reducing the
number of details considered in the model. Specifically we used only grammatical
classes of the words, discarding the values of other grammatical categories. A new
version of the tagger was applied which could have some impacts as well on the
results. However, the difference in efficiency of taggers is probably not big enough
to be the main source of the much better efficiency of LM. The tagger used in
the experiment from 2008 [8] had an accuracy of 93.44%. The tagger used in the
experiment described here [6] has a reported accuracy of 90.34%, which seems
to be lower. Still, these numbers are not directly comparable, especially since
the reference resources used to evaluate the taggers were different. In the past,
it was a frequency dictionary containing approx. 600 thousands of segments, at
present it is the rigorously tagged National Corpus of Polish, containing more
than 1 million segments [5]. Suffice it to say, that the successor of the tagger
used in [8] achieves 87.50% accuracy on that corpus.
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3 Resources

The algorithm used to re-score the acoustic hypotheses requires the following
resources:

– a corpus with POS tags assigned to words, which is used to generate the
LM,

– an inflectional dictionary, which generates possible grammatical categories
for the words,

– a POS tagger which selects the most probable grammatical category for each
word,

– a test set with the hypotheses provided by the acoustic model used to test
the performance of the algorithm.

In the experiment we use a 1-million subcorpus of the National Corpus of Pol-
ish (NKJP) [5], which, among other annotations, contains manually selected
grammatical classes for all the text segments. The annotations are available in
TEI (version 5) standard [10] in XML files. Each individual text is annotated
separately on several levels:

– sentence segmentation,
– morphosyntactic tagging,
– semantic tagging,
– shallow syntactic tagging,
– named entities tagging.

The morphosyntactic tagging is the one used to build the LM. The tagging
provided in NKJP covers the following phenomena:

– segmentation of the texts into sentences,
– segmentation of the sentences into segments (i.e. units with their own tags

attached),
– segment lemmatization,
– grammatical classes of the segments,
– values of grammatical categories of the segments.

In NKJP there are 35 grammatical classes used to classify the segments. These do
not correspond directly to the traditional parts-of-speech, such as nouns, verbs
and adjectives. Mostly due to the fact that verbs are split into several distinct
classes. These classes are described in Table 1.

Although it is easy to obtain the information about the grammatical classes
from a single file using XPath queries, there are two technical problems asso-
ciated with the corpus. The first is its structure – each text (3.9 thousands in
total) is annotated in several files and occupies a single directory. As a result the
files have to be processed individually, which is not very convenient. This is a bit
surprising, since the predecessor of NKJP, IPI PAN corpus [11] was distributed
in a binary form, with accompanying corpus server named Poliqarp [12]. The
server simplified the access to the data and offered competitive performance.
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The second problem is connected with the fact, that although the grammatical
classes for each segment are available separately, the decision made by the an-
notator, i.e. the proper grammatical class of the segment in the given context is
only available as a part of string containing the lemma, the class and the values of
the grammatical categories concatenated using a colon (:). E.g. for the word Za-
trzasnął the following tagging is provided: zatrzasnąć:praet:sg:m1:perf. In
most of the cases this works fine, but there are segments such as http://www.je-
ri.gwflota.com/main/, which become ambiguous when concatenated with the
tags. Although, it is possible to isolate the tags from the lemma by subtracting
the lemma, which is available separately, it would be much easier to do, if the
lemma and the tags were not concatenated.

In order to use the corpus to build the LM, all the grammatical classes found
in the corpus were extracted using XPath queries, preserving the sentence seg-
mentation. The sequences of the classes’ tags from the sentences were saved in
the following lines of a text file. As a result it was possible to use standard LM
building tools, such as SRILM [13]. The file consisted of more than 86 thousands
of lines and more than 1228 thousands of tokens. The statistic of the unigram
counts are given in Table 1 (cf. [5] for the description of the tags).

The second resource used in the experiment is an inflectional dictionary. We
use Morfeusz, which contains more than 200 thousands of lexemes and is dis-
tributed in the form of a finite state transducer [14]. The dictionary contains
very broad general Polish vocabulary, but lacks proper names. From the point of
view of speech processing, the most important feature of the dictionary is how
it segments the words in a running text.

Although Polish is an inflectional language with several agglutinative features,
the dictionary is quite conservative in identifying words as segments, with one
important exception: the first and the second person of the past forms of verbs are
split into two segments. E.g. the form jadłem ((I) ate) is divided into two separate
segments: the core jadł, indicating the gender and the number of the verb and the
agglutinative suffix em, indicating the first person. Although this is motivated
by the fact, that the suffix might be attached to almost any word in the sentence
and that there are several other such suffixes (mostly particles) this complicates
the integration of the inflectional dictionary into the ASR framework.

It contrasts with the fact that in most of the cases the agglutinative suffix
of the verb is attached to the verb. In the set of sentences used to test the
performance of the model containing more than 100 examples, there were only 3
sentences with the agglutinative suffix and all of them were attached to the verb.
Taking into account that the inclusion of this phenomenon would considerably
complicate the model and its relatively low probability, we decided to exclude
these sentences from the test set.

The third resource that was used in the experiment was the POS tagger. We
decided to use the state-of-the art tagger, namely WCRFT – a tiered conditional
random fields tagger [6]. This tagger is very flexible and might be used with
a number of tagsets, however, the preparation of the training data as well as
training of the model takes substantial amount of time, we decided to use the



Using POS N-Grams for Improving ASR of Polish 497

Table 1. Unigram statistic of Polish parts-of-speech

POS Grammatical class Tag Count P
Noun regular n. subst 306 236 0.24929
Punctuation interp 221 699 0.18048
Adjective regular adj. adj 125 559 0.10221
Preposition prep 91 928 0.07483
Conjunction coordinate conj. conj 75 513 0.06147
Verb finite form of v. fin 60 164 0.04898
Verb participle-like form of v. praet 53 759 0.04376
Adverb adv 51 960 0.04230
Kublik qub 38 169 0.03107
Unknown word ign 36 529 0.02974
Interjection interj 28 372 0.02310
Conjunction subordinate conj. comp 22 753 0.01852
Verb infinitive form of v. inf 19 606 0.01596
Verb passive participle ppas 13 387 0.01090
Verb gerund ger 11 842 0.00964
Pronoun 3rd-person personal pron. ppron3 11 476 0.00934
Pronoun non-3rd-person personal pron. ppron12 8 212 0.00669
Abbreviation brev 8 200 0.00668
Numeral cardinal num 8 082 0.00658
Verb agglutinative form of v. aglt 7 654 0.00623
Verb active participle pact 5 587 0.00455
Verb predicative form of v. pred 3 973 0.00323
Verb future form of the verb „to be” bedzie 2 804 0.00228
Verb present participle pcon 2 644 0.00215
Verb imperative form of v. impt 2 524 0.00205
Noun depreciative n. depr 2 456 0.00200
Pronoun reflexive pron. siebie 2 142 0.00174
Verb impersonal v. imps 2 138 0.00174
Verb „winien”-like verb winien 813 0.00066
Burkinostka burk 608 0.00049
Adjective post-preposition adj. adjp 580 0.00047
Adjective pre-adjective adj. adja 562 0.00046
Verb perfective participle pant 154 0.00013
Foreign form xxx 146 0.00012
Numeral collective num. numcol 125 0.00010
Adjective predicative adj. adjc 55 0.00004
Total 1228411 1
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model for Polish that is readily available for the tagger. It was trained on the
same 1-million subcorpus of NKJP, that we use to build our POS n-gram model
and it works well with the Morfeusz inflectional dictionary. It is reported that it
achieves a precision of 90.34%, which makes it the best performing POS tagger
for Polish1.

108 recorded sentences or phrases were used for tests. They were spoken by
one male, without any specially added noise, but in an office with working com-
puters etc. The content of the corpus is mixed. There are some sentences with
political context, like parts of parliament speeches (but not taken from Parlia-
ment transcripts). There are some lyrics of Kaczmarski song and speeches of
Piłsudski and Balcerowicz.

HTK [17,18] was used to provide n-best list (limited to 600 of items) of acoustic
hypotheses for sentences from the test corpus. The acoustic model was trained on
CORPORA [19], which means that different speakers, sentences and recording
devices were used than for the test set. The hypotheses were constructed as
combinations of any words from the corpus as ordered lists of words. This model
was trained in a way which allowed all possible combinations of all words in a
dictionary to have more variations and to give opportunity for a language model
to improve recognition.

4 Rescoring Algorithm

The general idea of the rescoring algorithm is as follows: when the acoustic
model generates the n-best list of candidates, each candidate sentence is tagged
with the POS tagger. Then the LM-based probability of the sequence of tags is
computed and the hypotheses are scored according to the following equation:

P (hi) = P (hi)
α
LM ∗ P (hi)

1−α
AM , (1)

where:

– P (hi) – the probability of the i-th hypothesis,
– P (hi)LM – the probability of the i-th hypothesis according to the language

model,
– P (hi)AM – the probability of the i-th hypothesis according to the acoustic

model,
– α – the weight of the LM component.

The weighting factor α is introduced, since the LM assigns much higher probabil-
ities to the sequences, because it picks only one class out of 38 (35 grammatical
classes + out-of-vocabulary words + start and end of a sentence), while the AM
module have thousands of words to consider.
1 In the past it was reported that several POS taggers of Polish achieve better POS

tagging performance. However Radziszewski uses a refined methodology for com-
puting the tagger performance so the results are not comparable as such. In the
paper cited the results are compared directly for WMBT [15], PANTERA [16] and
WCRFT.
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Table 2. Some sentences from the test corpus with tags provided by WCRFT and
their English translations

Platforma obywatelska wymaga funkcjonowania klubu w czasie obrad sejmu.
subst adj fin ger subst prep subst subst subst interp
Civic Platform expects the club to operate during parliament proceedings.
Łatwo skierować czynności do sa̧du.
adv inf subst prep subst interp
It is easy to move actions to court.
Wniosek rolniczego zwia̧zku znajduje siȩ w ministerstwie.
subs adj subst fin qub prep subst interp
The petition of the agricultural union is in the ministry.
Projekt samorza̧du ma wysokie oczekiwania finansowe.
subst subst fin adj subst adj interp
The municipality project has high financial expectations.
Fundusz społeczny podja̧ł działania w ramach obecnego prawa cywilnego.
subst adj praet subst prep subst adj subst adj interp
The communal foundation took steps according to existing civil law.
Uchwała rza̧dowa dotycza̧ca handlu i inwestycji przedsiȩbiorstw państwowych
w rynek nieruchomości.
subst adj pact subst conj subst subst adj prep subst subst interp
The government act on trade and investments of public enterprises in the estate
market.
Panie marszałku, wysoka izbo.
subst subst interp adj subst interp
Mr speaker, House. (common way to start a speech in the Polish Parliament)
Bezpieczeństwo jest bardzo ważne.
subst fin adv adj interp
The safety is very important.
Skrzydła im ścierpły w długiej niewoli.
subst ppron3 praet prep adj subst interp
Their wings went numb in a long captivity.
Chca̧ być przeklȩci pierwsi.
fin subst adj adj interp
They want to be cursed first.
Świat odkrywa na nowo wcia̧ż dramaty moje.
subst fin prep adv adj subst adj interp
The world discovers my drama all over from the beginning.
Spały wilczki dwa zupełnie ślepe jeszcze.
praet subst num adv adj qub interp
Two baby wolfs slept completely blind.
Zajmuja̧ ja̧ w imieniu władzy naczelnej rza̧du narodowego.
fin ppron3 prep subst subst adj subst adj interp
They take it with authority of the supreme authority of the national government.
Socjalizm zostawił w Polsce w owym roku spodlony pienia̧dz.
subst praet prep subst prep adj subst ppas subst interp
Socialism left in Poland that year degraded money.



500 A. Pohl and B. Ziółko

The probability assigned by the LM is computed using the part-of-speech
n-grams collected from the NKJP subcorpus. In general the probability of a
given sequence of tags using n-grams is computed as the maximum likelihood
estimation (MLE):

P (vi|vi−N+1...vi−1) =
c(vi−N+1...vi)

c(vi−N+1...vi−1)
, (2)

where:

– P (vi|vi−N+1...vi−1) – is the probability of the category vi assuming the se-
quence of vi−N+1...vi−1 previous categories,

– c(vi−N+1...vi) – is the number of sequences observed in the corpus, consisting
of categories from vi−N+1 to vi.

However, the direct application of MLE faces the problem of sequences that have
never been seen in the training data. Their count c(vi−N+1...vi) equals zero and
their probability is also 0. As a result, the whole sequence has 0 probability.
There are many methods used to overcome this problem, namely [20,21]:

– smoothing,
– interpolation,
– backoff.

Smoothing assigns the probability of unseen n-grams directly by estimating it
using the n-grams with low frequency (e.g. n-grams which occurred only once).
To compensate the mass of probability that was distributed to the unseen n-
grams it discounts the counts of the n-grams that have been seen in the corpora.
In interpolation lower order n-grams are combined linearly and the probability
is non-zero, at least if the token in question have ever been seen in the training
data. The last method – backoff – uses strategy similar to interpolation, but it
uses lower order n-gram only if the count for the given sequence of the length n
is 0.

Although Kneser-Ney discounting [22] is the most popular and the best per-
forming method used for large word dictionaries, it does not work if the dic-
tionary is very small, like in the POS-based n-grams2. That is why, we use
Witten-Bell discounting, namely the backoff version of this method.

To define the probability of a sequence of tags, we first define the discounted
frequency

F (vj−N+1...vj) =
c(vj−N+1...vj)

n(vj−N+1...∗) + c(vj−N+1...vj−1)
, (3)

where n(vj−N+1...∗) – the number of sequences of length n with the prefix
vj−N+1...vj−1 that appeared only once in the corpus.

Then the probability of a sequence of tags is estimated as

P (vj |vj−N+1...vj−1) =

{
F (vj−N+1...vj) c(vj−N+1...vj) > 0
βP (vj |vj−N+2...vj−1) otherwise

, (4)

2 Cf. http://www.speech.sri.com/projects/srilm/manpages/srilm-faq.7.html
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where β =
1−

∑
F (vj−N+1...vj)

1−
∑

F (vj−N+2...vj)
– the backoff weight.

The final probability of a sentence computed using the LM is

P (hi)LM =
∏

wj∈hi

P (V (wj)|V (wj−N+1)...V (wj−1)) , (5)

where V (wj) is the grammatical class assigned to the word wj .
It is assumed that the grammatical categories corresponding to the words

present in the sentence are fully determined. This assumption is accomplished
by incorporating the POS tagger into the system. Although many of the words
have several possible interpretations defined in the inflectional dictionary, only
one of them is selected according to the tagger. The remaining options are not
taken into account.

The ranking of the hypotheses is defined as follows

R(hi) = logP (hi) = αlog(P (hi)LM ) + (1 − α)log(P (hi)AM ) =
α
∑

wj∈hi
P (V (wj)|V (wj−N+1)...V (wj−1)) + (1 − α)

∑
wj∈hi

P (wj |s)AM ,
(6)

where P (wj |s)AM is the probability of the word wj conditioned on the speech
signal s, computed by the acoustic module. The ranking is computed in log-
space, since the acoustic probabilities are very low and are subject to underflow
errors.

The value of the parameter α might be optimized on the held out corpus.

5 Results

To measure the performance of the POS-based LM we used the following mea-
sures:

– word error rate reduction (WERR),
– correct sentence position improvement (CSPI) in the n-best list of hypothe-

ses.

Word error rate is defined as the minimum edit distance [21, p. 73-77] between
the correct sentence and the hypothesis with the highest probability. In our
setting each edition has the same cost. Word error rate reduction is the number
of percentage points the word error rate has reduced after applying the LM.

Table 3. The performance of the POS-based language model

N WERRbest % CSPIbest WERR1/2% CSPI1/2
1 12.55 20.28 2.42 1.25
3 12.61 38.61 5.12 30.93
5 12.69 40.03 5.14 31.57
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Table 4. The most popular 3-grams of POS tags in Polish

POS tag 3-gram % POS tag 3-gram %
subst interp </s> 3.02 subst interp subst 0.69
adj subst interp 1.58 adj subst subst 0.64
subst subst interp 1.26 subst subst subst 0.62
subst prep subst 1.13 subst conj subst 0.53
prep subst interp 1.12 interp interp </s> 0.53
prep adj subst 0.94 prep subst adj 0.51
subst adj interp 0.89 subst subst adj 0.50
prep subst subst 0.77 interp subst interp 0.49
subst adj subst 0.72 subst interp conj 0.46
adj interp </s> 0.69 subst interp adj 0.45

CSPI is defined as the improvement in position of the correct sentence between
the n-best list generated by the acoustic model and the list generated by the
combined language and acoustic models.

The results of the experiments carried out on the testing corpus are presented
in Table 3. They are reported for cases where AM and LM had the same weight
(after scaling the probability in order to compensate the difference in the size of
AM and LM): WERR1/2, CSPI1/2 and for the best cases (i.e. for the optimal
value of the parameter α): WERRbest, CSPIbest. The average WER achieved
by the sole AM was 37.23% and the average position of the correct hypothesis
was 50 (among 600 hypotheses).

The best WERR achieved for 1-grams, 3-grams and 5-grams is very similar,
but it should be noted, that it is obtained for the specifically selected parameter
α. The CSPI measure shows large differences in the performance between 1-
grams and 3-grams. It is especially apparent when the weight for the LM is the
same as for the AM. The difference between the 3-gram LM and 5-gram LM is
much smaller – both in the case of the LM with the best parameter and with
the parameter set to a predefined value.

Fig. 1. Word error rate reduction (WERR) for different values of the parameter α in
range 0-1.0
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Fig. 2. Word error rate reduction (WERR) for different values of the parameter α in
range 0-0.1

Figures 1 and 2 show the dependence of the performance of the rescoring
algorithm on the parameter α. The proper selection of the parameter is crucial
for the performance of the algorithm.

In Table 4 we also report the POS trigrams that are the most popular in Polish.

6 Conclusions

We conclude that the simplified POS tags are very good source of information for
statistical language models of Polish. Applied on 108 test sentences recognized
acoustically by HTK with a fixed weight they reduced WERR by 5% points and
with the optimal weight – over 12 % points.

Assuming that a manually tagged corpus is available, a POS-based LM is
much easier and cheaper to build than a word-base LM. This is particularly
important for the inflected languages like Polish.

In the following research we are planning on integrating the POS-based model
into a larger ASR system.

Acknowledgments. This work was supported by LIDER/37/69/L-3/11/
NCBR/2012 grant.
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Abstract. One-against-all and one-against-one are two popular methodologies for 
reducing multiclass classification problems into a set of binary classifications. In 
this paper, we are interested in the performance of both one-against-all and one-
against-one for basic classification algorithms, such as decision tree, naïve bayes, 
support vector machine, and logistic regression. Since both one-against-all and 
one-against-one work like creating a classification committee, they are expected 
to improve the performance of classification algorithms. However, our 
experimental results surprisingly show that one-against-all worsens the 
performance of the algorithms on most datasets. One-against-one helps, but 
performs worse than the same iterations of bagging these algorithms. Thus, we 
conclude that both one-against-all and one-against-one should not be used for the 
algorithms that can perform multiclass classifications directly. Bagging is an 
better approach for improving their performance.   

Keywords: One-Against-All, All-at-Once, One-Against-One, C4.5, SVM, 
Logistic Regression, Naive Bayes, multiclass classification. 

1 Introduction 

There exist two most well-known approaches of breaking multiclass classification 
issues into several binary classification ones: one-against-all (OAA in short) [2, 3, 9, 
15] and one-against-one (OAO in short) [3, 9, 15]. One-against-all converts multiclass 
problems into binary problems, by building a classifier for each class in the classes of 
a multiclass dataset. Before building each classifier for a specific class (positive), it 
converts all the rest classes into negative. That is, it builds n models for a dataset with 
n classes. One-against-one (also called pairwise coupling) decomposes the multiclass 
problem into binary class problems by taking any two classes as a pair and ignoring 
the remaining ones. For a multiclass classification problem with n classes, we have 

2

)1( −nn
class pairs, thus 

2

)1( −nn
 classifiers needed to be built. 

Previous research work [2, 9, 15, 23, 24, 25] made comparison between these two 
approaches (OAA and OAO). Few work [3, 5] made comparison for OAA and OAO 
against the multiclass classification algorithms directly (coined as all-at-once [2, 3], 
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AAO in short) to see how much improvement OAA or OAO can achieve. And they 
only made comparison using a specific learning algorithm, either SVM [5] or naïve 
Bayes [3]. Hsu and Lin [5] made comparison among the three approaches (OAA, 
OAO, and AAO) with least squares SVMs. They concluded that OAO performs the 
best, and OAA and AAO are almost the same. But fuzzy membership functions are 
introduced into OAA and OAO. Thus, we do not know which is better among the 
simplest versions of the approaches. It also attracts us to study why OAA does not 
perform better than AAO [3, 5]. Intuitively, OAA should perform better than AAO, 
because it implicitly uses the ensemble technique by building n models (n is the 
number of classes). In addition, some previous work [23] claimed that OAO does not 
perform better than AAO. This is completely against the common sense and other 

previous work [3, 5, 9, 24, 25]. We know that OAO builds 
2

)1( −nn
 models, normally 

more than the number (n) models built in OAA. Intuitively, it should perform better 
than OAA and AAO. This confliction work stimulates us to investigate the 
performance of them more comprehensively.  

Besides, previous research conducted experiments on a few datasets. We are going 
to make thorough comparisons on 25 datasets and further make fair comparisons by 
bagging AAO with the same number of iterations as its opponents. In addition, most 
previous research investigated the performance of OAA and OAO on SVM only [15] 
or naïve bayes only [23]. A few also investigated on multiple learning algorithms. 
However, they only make comparisons on either OAA or OAO [15], without 
comparing with AAO at all. Thus, we do not have the general knowledge whether 
OAA and OAO improve the performance of multiclass learning algorithms. We  
are going to make general comparisons among OAA, OAO, AAO and its variants on 
four basic representative learning algorithms (decision tree, naïve bayes, support 
vector machine, and logistic regression), which also used in [15]. Further, this study 
would provide some generalizations that could be useful for the multi-label 
classifications [22]. 

The rest of the paper is organized as follows: Section 2 introduces the two well-
known approaches (OAA and OAO), which convert multiclass classifications into a 
set of binary classifications. Besides, the baseline AAO and its variants are introduced 
in this section. Section 3 simply reviews the four basic learning algorithms (decision 
trees, naïve bayes, support vector machines, and logistic regression) used in our 
experiments. In Section 4, we describe the experiments we have made. They consist 
of the setting of the experiments, the experimental results, and the analysis of the 
experiments results. Section 5 concludes with a summary of our work and a 
discussion of future work. 

2 Methodology 

Two well-known approaches OAA and OAO reduce multiclass classifications into a 
set of binary classifications. In this section, we first review the two approaches. We 
will compare their performances under four chosen learning algorithms in Section 4. 
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After OAA and OAO reduce a multiclass classification into a set of binary 
classifications, a committee of binary classifiers will be built for these binary 
classifications. To make fair comparisons between AAO with either OAA or OAO, 
bagging is applied to AAO to build the same number of classifiers for AAO. This is 
called AAOvsOAA. Similarly, in order to make fair comparisons between AAO and 
OAO, we apply bagging to AAO to build the same number of classifiers for AAO as 
the number of classifiers built in OAO. This is called AAOvsOAO. The experiments 
are conducted in Section 4. 

2.1 One-Against-One (OAO) 

The fundamental principle of one-against-one (also called pairwise coupling) is to 
decompose the multiclass problem into binary class problems by taking any two 
classes as a pair and ignoring the remaining ones. For a multiclass classification 

problem with n classes, we have 
2

)1( −nn
class pairs, thus 

2

)1( −nn
 classifiers needed 

to be built. For example, for a classification problem with three classes, we will have 
three pairs (class 0 vs. class 1, class 1 vs. class 2, class 0 vs. class 2). For each pair, 
only the training examples belonging to the two classes are kept. The rest which do 
not belong to either of the two classes are removed. That is, we convert the three class 
problem (assuming 0, 1 and 2 are the classes) into three binary problems. For each 
binary problem, we need to build a classifier which only makes prediction for the test 
examples i.e. finding the probability of classifying each test example into these two 
classes. 

When creating a training dataset for a pair of classes, OAO parses through the 
training set and removes all other class values. Thus, this process leaves the training 
set with significantly fewer examples. The classifier is then built from the new 
smaller binary set and is used to analyze the test set. 

2.2 One-Against-All (OAA) 

One-against-all is another well-known standard approach used to convert multiclass 
problems into binary problems. Different from constructing pairs of classes in one-
against-one, One-against-all builds a classifier for each class in the class set. Before 
building each classifier for a specific class, it converts all the rest classes into one 
against class. For example, if we have a multiclass problem with n classes, we keep 
class X unchanged and change the remaining classes into another single class Y. 
Thus, we have a binary problem. For an n multiclass problem, we need to transform it 
into n binary problems. For each binary problem, we need to build a classifier for a 
specific class. This classifier only makes prediction for a test example whether it 
belongs to the specific class or not. After n predictions are available for a test 
example, the classifier classifies it into the class where it has the highest probability. 
Comparing with OAO, it builds fewer classifiers. 

OAA has an obvious drawback. When OAA creating the training set for a specific 
class, it converts all the rest examples belonging to other classes into an arbitrary  
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class Y. This converting will create the imbalanced issue, which makes the problem 
more complicated. Besides, this procedure also breaks the universal i.i.d assumption 
of learning.    

2.3 All-at-Once (AAO)  

All-at-once is the simplest way, which performs multiclass classifications directly. 
That is, it classifies a test example into anyone of the multiple classes using one 
decision function only. In fact, it is not a methodology approach at all. In order to 
investigate the performance of the above two approaches (OAA and OAO), it is 
coined to indicate that classification algorithms perform multiclass classifications 
without reducing multiclass classifications to binary ones. That is, AAO usually 
works as the baseline. In this paper, we also empirically compare the two well-known 
approaches (OAA and OAO) with the baseline AAO to investigate whether they do 
perform better than AAO [2, 3]. Note that AAO utilizes only one model to classify the 
test set. Thus, its time computation cost is the lowest, comparing to OAA and OAO.  

2.4 Bagging AAO 

As stated the above AAO is overly simplistic in that it predicts for every class value 
with only one model per dataset. The other two methods (OAO and OAA) utilize 
different data modification techniques in order to reduce multiclass classifications 
into binary ones. Thus, they have to build multiple models, instead of one. OAA has 
to build n models (again, n is the number of classes). OAO has to build 

2

)1( −nn
models. Multiple models give an unfair advantage to OAA and OAO over 

AAO. In order to make fair comparisons, we apply bagging to AAO to build multiple 
models. The number of models built using bagging is exactly the same as the number 
of models built by its opponent. That is, when comparing with OAA, we build n 
models. This version of AAO is noted as AAOvsOAA since then. When comparing 

with OAO, we build 
2

)1( −nn
models. This version of AAO is called AAOvsOAO 

since then.  It is interesting to investigate whether OAA and OAO perform better than 
bagging AAO. 

3 Learning Algorithms 

There exist more than 20 different learning algorithms, including the basic ones and 
improved variations. According to the categorization of WEKA [18], we choose a 
fundamental algorithm from each category. That is, we are going to investigate the 
performance of both one-against-all and one-against-one of four basic learning 
algorithms. They are decision tree, naïve bayes, support vector machine, and logistic  
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regression, following the previous research [15]. In addition, these algorithms are 
chosen to investigate the performance of OAA and OAO, because we can compare 
their performance with the direct multiclass classification approach all-at-once  
(AAO in short). 

A decision tree algorithm (DT in short) [17] partitions the input space into small 
sets, and labels them with one of the various output categories. That is, it iteratively 
selects a specific attribute to extend the learning model. According to the values of the 
specific attribute, a large group of cases are categorized into sub-groups. The essence 
of the algorithm is the criteria of selecting a specific attribute from the set of attributes 
available. There exist several criteria, such as accuracy improvement, entropy 
reduction, information gain, and gain ratio (details of these criteria can be found in 
[1]). Decision tree algorithms can perform multiclass classifications directly. 
However, it is also well-known that decision tree algorithms have a successful 
performance on binary classifications. It is interesting to investigate whether the two 
well-known approaches can further improve its performance on multiclass 
classifications.  

Naïve bayes (NB in short) [19] is based on bayes theorem. Specifically, it is based 
on the properties of estimating the frequency of each value of every attribute under a 
given class from the obtained dataset. Like decision tree algorithms, it can perform 
multiclass classifications directly. We are interested in comparing the performance of 
applying the two approaches OAA and OAO to naïve bayes for performing multiclass 
classifications, and further investigating whether these approaches improve the 
performance of naïve byes. Intuitively, naïve bayes is a based on statistics. The 
conditional probabilities inside its posterior probability calculation are the same, 
estimating either via OAO or via AAO.  

Support vector machine (SVM in short) [21] is one of the kernel approaches for 
classification. It constructs a hyperplane in high dimension space to classify cases into 
different classes. Its intuition is to find the hyperplane that has the largest distance to 
the nearest training cases. These nearest training cases are commonly referred as 
support vectors. According to the vectors on each side, a sub-hyperplane can be built 
for each side. The maximum margin between the two sub-hyperpanes is achieved to 
reduce the general classification errors. Support vector machines were originally 
proposed for binary classification. It has proved extremely successful for binary 
classification. Both OAA and OAO are the well-known approaches for extending 
SVM for multiclass classifications. It is interesting to make comparisons between the 
approaches.  

Logistic regression (logistic in short) [20], like naïve bayes discussed above, is part 
of a category of statistical models called generalized linear models. However, unlike 
the independent assumption among the variables in naïve bayes, logistic regression 
has no such assumption. In addition, it also makes no assumption about the 
distribution of the independent variables. Although both logistic regression and naïve 
bayes are statistical models, the basic ideas of them are different. Thus, it is also 
interesting to study the effect of OAA and OAO on logistic regression. 
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4 Experiments 

In this section, we will make thorough comparisons among the three approaches 
OAA, OAO, AAO and its two variants (AAOvsOAA and AAOvsOAO) using four 
representative basic learning algorithms: decision tree, naïve bayes, support vector 
machine, and logistic regression, which also used in [15].  

Table 1. Description of the datasets used in the experiments 

Dataset #Instances #Attributes #Classes 
Anneal 898 39 6 
anneal-orig 898 39 6 
arrhythmia 451 280 16 
audiology 226 70 24 
autos 205 26 7 
balance-scale 625 5 3 
cmc 1472 10 3 
dermatology 365 35 6 
glass 214 10 7 
heart-cleveland 303 14 5 
heart-hungarian 294 14 5 

hypothyroid 3772 30 4 

iris 150 5 3 

letter 20000 17 26 

lymph 148 19 4 

primary-tumor 339 18 22 

red-wine 1598 12 11 

segment 2310 20 7 

soybean 683 36 19 

splice 3190 62 3 

vehicle 846 19 4 

vowel 990 14 11 

waveform 5000 41 3 

white-wine 4897 12 11 

zoo 101 18 7 

4.1 Experimental Setup 

In this section, we conduct experiments to investigate the performance of one-against-
all and one-against-one by comparing with all-at-once directly. In our experiments, 
we use 25 multiclass classification datasets, listed in Table 1, downloading from the 
UCI Machine Learning Repository [4]. These datasets are chosen because they are the 
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multiclass classification datasets in the Repository. Besides, they have different 
number of classes, different number of attributes and different number of instances. 
Furthermore, the numbers of nominal and numeric attributes within these datasets are 
varied greatly. As naïve Bayes only can deal with nominal attributes, all continuous 
attributes in the datasets listed in Table 1 are discretized by Fayyad and Irani [14]’s 
entropy-based method.  

The experiments are conducted within WEKA [14]. The performance of the 
different approaches described in Section 2 is measured in prediction accuracy. The 
results are obtained from the implementation of WEKA for the four basic learning 
algorithms with default parameter settings. That is, we use J48 for decision tree, 
NaiveBayes for naïve bayes, SMO for support vector machine, and Logistic for 
logistic regression [18]. The objective of these experiments is to investigate the 
performance of the two well-known methodologies (OAA and OAO), comparing with 
the baseline (AAO). Thus, we do not perform any kind of optimization for each 
learning algorithm, such as adjusting the pruning parameters for J48, and tuning the 
regularization parameters for SMO.  

For each dataset, we repeat the experiment 10 runs. Every run randomizes the 
dataset, in an effort to produce variable results possible. The average results with 
standard deviation are reported for each methodology under each algorithm. In every 
run, 30% of examples were held out, as the test set from which we calculate the 
generalization performance of the approaches under different learning algorithms. 
The remaining 70% functioned as the training examples. 

4.2 Experimental Results 

Tables 2 through 5 show the experimental results of the reduction methodologies (OAA 
and OAO) and the baseline AAO with its bagging variants (AAOvsOAA and 
AAOvsOAO) on the 25 datasets. For each dataset, we show the average accuracy with 
its standard deviation of each methodology using different learning algorithms as the 
base learner to build the classification models. Table 2 shows the experimental results 
using J48 as the base learner. Table 3 shows the experimental results using NaivBayes 
as the base learner. Table 4 shows the experimental results using SMO as the base 
learner. Table 5 shows the experimental results using Logistic as the base learner.  

Table 2. Test accuracies (%) using J48 as the base learner 

 OAA OAO AAO AAOvsOAA AAOvsOAO 
anneal 98.40 ± 0.58 98.03 ± 0.74 97.85 ± 1.07 98.26 ± 0.52 98.00 ± 0.00 
Anneal-orig 93.94 ± 1.83 91.49 ± 2.47 90.93 ± 1.92 92.78 ± 1.57 92.85 ± 0.00 
arrhythmia 65.26 ± 3.69 71.11 ± 3.49 64.78 ± 2.93 74.19 ± 3.64 75.00 ± 1.56 
audiology 62.84 ± 5.99 72.69 ± 7.96 71.47 ± 5.42 77.06 ± 0.00 77.06 ± 0.00 
autos 71.31 ± 6.88 67.38 ± 7.90 72.74 ± 7.84 76.61 ± 0.00 76.29 ± 2.28 
Balance-scale 78.93 ± 2.35 78.29 ± 1.89 77.23 ± 2.59 80.59 ± 2.26 80.59 ± 2.26 
cmc 52.36 ± 3.03 51.88 ± 1.71 52.96 ± 2.22 52.13 ± 0.80 52.13 ± 0.80 
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Table 2. (Continued) 

 OAA OAO AAO AAOvsOAA AAOvsOAO 
dermatology 91.38 ± 2.53 96.15 ± 1.13 92.82 ± 4.25 95.27 ± 1.93 95.55 ± 1.29 
glass 65.47 ± 6.52 68.59 ± 6.27 66.77 ± 5.14 68.31 ± 4.35 72.46 ± 0.00 
Heart-c 78.56 ± 3.67 79.33 ± 3.60 78.68 ± 3.56 78.57 ± 3.89 79.56 ± 6.99 
Heart-h 78.64 ± 3.29 78.64 ± 2.97 78.65 ± 3.18 78.76 ± 1.59 79.66 ± 0.00 
hypothyroid 99.42 ± 0.18 99.48 ± 0.21 99.51 ± 0.22 99.45 ± 0.25 99.52 ± 0.25 
iris 93.18 ± 2.40 93.41 ± 3.11 94.22 ± 2.39 94.22 ± 1.57 94.22 ± 1.57 
letter 85.24 ± 0.63 92.92 ± 0.38 86.78 ± 0.39 92.77 ± 0.28 93.43 ± 0.08 
lymph 78.41 ± 4.45 76.59 ± 4.80 76.00 ± 3.44 77.56 ± 3.14 78.22 ± 1.57 
Primary-tumor 36.14 ± 5.12 42.38 ± 2.42 39.61 ± 2.86 42.45 ± 2.08 42.94 ± 0.69 
redWine 58.94 ± 2.27 61.02 ± 2.26 56.67 ± 1.94 64.77 ± 3.68 65.33 ± 4.42 
segment 95.23 ± 0.79 96.91 ± 0.79 96.45 ± 0.48 96.48 ± 1.22 96.93 ± 0.71 
soybean 89.75 ± 2.28 92.11 ± 1.98 90.00 ± 2.16 91.07 ± 3.10 92.10 ± 2.41 
splice 94.45 ± 0.74 94.41 ± 0.40 93.81 ± 0.57 93.32 ± 1.40 93.32 ± 1.40 
vehicle 70.04 ± 1.78 73.20 ± 2.16 71.57 ± 2.25 73.66 ± 0.84 73.27 ± 1.67 
vowel 72.67 ± 3.73 84.73 ± 3.10 76.06 ± 3.00 85.62 ± 2.14 88.42 ± 0.48 
waveform 72.81 ± 0.72 76.40 ± 1.75 75.11 ± 1.21 77.99 ± 0.14 77.99 ± 0.14 
whitewine 56.96 ± 1.04 61.08 ± 1.22 56.29 ± 1.21 63.03 ± 1.64 65.72 ± 1.54 
zoo 92.67 ± 4.10 93.00 ± 5.08 93.55 ± 4.81 92.26 ± 2.28 92.26 ± 4.56 

Average 77.32 ± 2.82 79.65 ± 2.79 78.02 ± 2.68 80.69 ± 1.77 81.31 ± 1.47 
 

Table 3. Test accuracies (%) using NaiveBayes as the base learner 

 OAA OAO AAO AAOvsOAA AAOvsOAO 
anneal 86.02 ± 3.31 86.95 ± 3.34 86.07 ± 3.17 88.70 ± 0.26 86.33 ± 0.79 
Anneal-orig 77.81 ± 2.97 80.93 ± 1.74 74.74 ± 1.30 78.74 ± 2.88 77.67 ± 3.14 
arrhythmia 63.41 ± 5.22 63.11 ± 3.73 60.29 ± 4.41 63.53 ± 4.68 63.38 ± 5.20 
audiology 64.33 ± 6.95 60.90 ± 6.09 64.85 ± 6.02 64.71 ± 3.12 65.00 ± 4.16 
autos 59.67 ± 5.14 57.54 ± 4.19 56.61 ± 3.91 59.68 ± 4.56 58.87 ± 1.14 
Balance-scale 88.77 ± 1.38 88.34 ± 0.83 88.83 ± 1.28 88.19 ± 1.13 88.72 ± 1.50 
cmc 48.37 ± 2.54 47.48 ± 2.82 47.53 ± 2.60 46.99 ± 2.56 48.05 ± 1.92 
dermatology 96.97 ± 1.62 96.97 ± 1.37 97.27 ± 1.48 96.91 ± 0.00 97.09 ± 0.64 
glass 52.50 ± 6.88 51.88 ± 7.93 48.00 ± 4.34 50.31 ± 1.09 50.46 ± 10.88 
Heart-c 82.67 ± 3.28 82.78 ± 2.88 82.86 ± 3.24 82.53 ± 6.99 83.30 ± 5.44 
Heart-h 84.55 ± 3.64 83.41 ± 4.29 84.49 ± 3.38 83.82 ± 2.38 83.93 ± 2.38 
hypothyroid 94.51 ± 0.60 95.34 ± 0.58 95.50 ± 0.60 95.54 ± 0.56 95.49 ± 0.31 
iris 93.41 ± 3.46 94.77 ± 2.84 95.11 ± 1.75 94.89 ± 1.57 95.33 ± 1.57 
letter 64.05 ± 0.58 64.31 ± 0.65 64.17 ± 0.57 64.30 ± 0.46 64.23 ± 0.31 
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Table 3. (Continued) 

 OAA OAO AAO AAOvsOAA AAOvsOAO 
lymph 85.23 ± 3.90 83.64 ± 4.65 85.78 ± 4.22 85.56 ± 6.29 85.11 ± 0.00 
Primary-tumor 49.01 ± 5.27 48.02 ± 4.65 48.24 ± 5.14 47.84 ± 6.93 48.33 ± 3.47 
redWine 54.84 ± 1.76 53.47 ± 2.56 54.00 ± 2.03 53.83 ± 2.36 54.06 ± 2.80 
segment 80.81 ± 1.15 81.29 ± 0.85 81.20 ± 1.04 81.31 ± 1.22 81.30 ± 1.94 
soybean 91.96 ± 2.11 91.72 ± 2.30 92.29 ± 2.25 91.90 ± 3.10 91.95 ± 2.76 
splice 94.82 ± 0.61 95.42 ± 0.38 95.43 ± 0.46 95.46 ± 0.00 95.34 ± 0.22 
vehicle 44.23 ± 3.04 44.58 ± 3.08 44.17 ± 3.00 45.28 ± 1.67 45.67 ± 2.78 
vowel 59.83 ± 3.32 61.59 ± 3.66 60.98 ± 3.11 61.38 ± 2.14 62.19 ± 0.95 
waveform 78.21 ± 1.24 79.80 ± 1.03 79.86 ± 0.97 79.68 ± 0.47 79.78 ± 0.61 
whitewine 46.85 ± 1.46 45.67 ± 1.34 44.95 ± 1.25 45.18 ± 0.10 45.28 ± 0.63 
zoo 94.33 ± 4.73 95.00 ± 2.36 94.84 ± 2.72 94.52 ± 0.00 94.52 ± 2.28 
Average 73.49 ± 3.04 73.40 ± 2.81 73.12 ± 2.57 73.63 ± 2.26 73.66 ± 2.31 
 

Table 4. Test accuracies (%) using SMO as the base learner 

 OAA OAO AAO AAOvsOAA AAOvsOAO 
anneal 96.77 ± 1.16 96.84 ± 0.79 96.96 ± 0.98 96.74 ± 1.05 96.78 ± 0.52 
Anneal-orig 85.20 ± 2.09 87.47 ± 1.57 87.37 ± 1.85 88.63 ± 0.79 87.85 ± 2.88 
arrhythmia 66.37 ± 4.98 64.96 ± 5.38 68.09 ± 4.26 68.68 ± 0.52 69.26 ± 1.56 
audiology 66.72 ± 5.97 59.85 ± 7.43 73.53 ± 5.00 70.15 ± 2.08 69.12 ± 2.08 
autos 52.95 ± 3.63 68.69 ± 2.38 66.77 ± 3.06 65.16 ± 1.14 66.77 ± 1.14 
Balance-scale 86.42 ± 1.52 86.47 ± 1.10 86.49 ± 1.26 87.39 ± 0.75 86.60 ± 1.50 
cmc 42.36 ± 2.42 50.29 ± 2.11 49.95 ± 2.14 49.82 ± 1.12 49.50 ± 1.12 
dermatology 95.23 ± 2.07 96.33 ± 1.67 96.27 ± 1.63 96.18 ± 1.93 96.82 ± 1.93 
glass 44.06 ± 6.20 48.28 ± 5.58 47.85 ± 5.30 48.15 ± 3.26 48.31 ± 5.44 
Heart-c 82.22 ± 2.82 81.78 ± 2.73 82.20 ± 2.78 82.64 ± 5.44 83.30 ± 3.11 
Heart-h 82.05 ± 2.56 81.59 ± 3.07 81.91 ± 2.34 82.02 ± 1.59 82.13 ± 2.38 
hypothyroid 93.28 ± 0.53 93.57 ± 0.48 93.53 ± 0.49 93.52 ± 1.00 93.52 ± 0.94 
iris 62.05 ± 4.55 95.68 ± 1.68 95.55 ± 1.81 95.33 ± 1.57 96.22 ± 4.71 
letter 31.84 ± 0.48 82.32 ± 0.32 81.90 ± 0.27 82.32 ± 0.34 82.34 ± 0.24 
lymph 86.14 ± 5.19 86.14 ± 4.07 87.11 ± 4.78 83.56 ± 4.71 85.78 ± 3.14 
Primary-tumor 39.70 ± 3.38 43.17 ± 4.18 45.88 ± 3.23 47.35 ± 2.77 47.35 ± 1.39 
redWine 30.75 ± 2.17 53.88 ± 5.95 57.02 ± 1.76 57.00 ± 2.06 56.83 ± 1.92 
segment 76.95 ± 1.34 92.59 ± 0.71 92.60 ± 0.71 92.37 ± 0.51 92.66 ± 0.61 
soybean 92.84 ± 1.85 93.33 ± 1.27 93.56 ± 1.64 93.17 ± 0.00 92.68 ± 0.00 
splice 91.94 ± 0.57 93.43 ± 0.48 92.87 ± 0.58 94.10 ± 0.96 93.98 ± 0.59 
vehicle 65.61 ± 3.57 72.96 ± 3.03 73.19 ± 2.78 73.35 ± 3.06 72.99 ± 5.57 
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Table 4. (Continued) 

 OAA OAO AAO AAOvsOAA AAOvsOAO 
vowel 16.96 ± 1.04 64.93 ± 3.30 64.61 ± 3.30 64.75 ± 0.95 64.01 ± 1.90 
waveform 80.11 ± 0.97 86.78 ± 1.00 86.71 ± 0.94 86.32 ± 0.52 86.53 ± 0.38 
whitewine 04.87 ± 1.42 50.91 ± 3.41 52.41 ± 1.15 52.37 ± 1.49 52.37 ± 1.83 
zoo 93.33 ± 5.21 95.33 ± 3.58 95.16 ± 3.80 92.26 ± 4.56 93.23 ± 4.56 
Average 77.1 ± 2.71 77.10 ± 2.69 77.98 ± 2.31 77.73 ± 1.77 77.88 ± 2.06 
 

Table 5. Test accuracies (%) using Logistic as the base learner 

 OAA OAO AAO AAOvsOAA AAOvsOAO 
anneal 98.59 ± 0.58 99.10 ± 0.56 98.81 ± 0.57 98.81 ± 0.52 98.96 ± 0.52 
Anneal-orig 88.88 ± 1.51 89.93 ± 2.11 88.26 ± 1.73 88.93 ± 0.52 89.04 ± 3.93 
arrhythmia 46.59 ± 3.19 57.93 ± 4.62 53.75 ± 4.52 61.69 ± 1.56 63.24 ± 1.04 
audiology 70.90 ± 5.28 74.33 ± 3.84 73.09 ± 3.61 75.00 ± 3.12 75.74 ± 3.12 
autos 63.28 ± 4.10 70.49 ± 6.18 64.03 ± 5.84 66.94 ± 0.00 69.19 ± 1.14 
Balance-scale 85.99 ± 1.12 87.86 ± 2.26 87.93 ± 2.29 88.03 ± 0.00 87.87 ± 0.75 
cmc 50.41 ± 2.07 50.34 ± 1.84 50.90 ± 1.92 51.00 ± 1.28 50.68 ± 1.28 
dermatology 92.75 ± 2.54 97.34 ± 1.64 96.45 ± 1.74 97.09 ± 1.93 97.55 ± 1.93 
glass 58.13 ± 5.45 59.22 ± 3.49 58.46 ± 4.10 60.31 ± 2.18 61.08 ± 4.35 
Heart-c 82.78 ± 2.24 82.33 ± 2.94 82.86 ± 2.33 83.19 ± 3.32 82.86 ± 3.89 
Heart-h 82.95 ± 2.98 81.82 ± 3.86 83.15 ± 2.95 81.69 ± 1.59 82.70 ± 1.59 
hypothyroid 95.31 ± 0.90 97.20 ± 0.62 96.64 ± 0.65 97.17 ± 1.25 97.04 ± 1.19 
iris 95.45 ± 2.83 94.09 ± 2.44 94.00 ± 3.15 93.56 ± 0.00 94.22 ± 1.57 
letter 72.38 ± 0.53 78.05 ± 0.33 77.45 ± 0.36 77.45 ± 0.13 77.48 ± 0.08 
lymph 78.41 ± 7.52 80.68 ± 5.49 77.33 ± 6.61 84.00 ± 3.14 83.78 ± 6.29 
Primary-tumor 41.29 ± 4.48 35.74 ± 4.61 37.16 ± 4.77 39.12 ± 1.39 38.73 ± 4.85 
redWine 58.02 ± 1.91 58.10 ± 1.48 58.42 ± 1.97 57.98 ± 2.21 58.15 ± 2.65 
segment 92.28 ± 0.43 95.58 ± 0.36 95.02 ± 0.73 95.47 ± 0.51 95.56 ± 0.71 
soybean 91.57 ± 2.18 92.21 ± 1.52 91.46 ± 2.69 92.39 ± 0.69 93.32 ± 0.34 
splice 90.76 ± 1.58 91.96 ± 0.74 89.62 ± 0.94 85.55 ± 2.36 85.24 ± 1.70 
vehicle 78.70 ± 2.69 79.88 ± 1.83 79.41 ± 2.18 79.45 ± 0.56 79.53 ± 2.23 
vowel 63.41 ± 3.20 83.07 ± 2.51 78.72 ± 2.79 78.82 ± 3.10 80.00 ± 5.24 
waveform 87.04 ± 1.14 86.78 ± 1.35 86.98 ± 1.18 86.61 ± 0.90 86.84 ± 0.66 
whitewine 53.89 ± 1.22 53.47 ± 0.95 53.82 ± 0.88 53.84 ± 0.87 53.68 ± 0.58 
zoo 94.00 ± 3.78 95.00 ± 3.24 90.00 ± 4.42 86.45 ± 6.84 87.42 ± 6.84 
Average 76.55 ± 2.60 78.90 ± 2.43 77.75 ± 2.60 78.42 ± 1.71 78.79 ± 2.34 
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In order to see clearly and to show the general knowledge of the performance of 
the methodologies, Table 6 integrated the average accuracy and standard deviation 
together from Tables 2 through 5 (the bottom row of each table).  

Table 7 summarizes the comparisons among the three methodologies (OAA, OAO, 
AAO, and its variants AAOvsOAA and AAOvsOAO) via two-tailed t-test with a 
confidence level 90%. Note that AAO has two variants (AAOvsOAA and 
AAOvsOAO). There is no difference between them, except the number of bagging 
iterations. This is because they are created for making fair comparisons for AAO 
against OAA and OAO respectively. Thus, we only summarized the comparisons for 
AAOvsOAA and its opponent OAA. We did the same for AAOvsOAO against its 
opponent OAO only.   

Table 6. Average accuracies (%) of all the approaches with the four algorithms over the 25 
datasets 

 OAA OAO AAO AAOvsOAA AAOvsOAO 
J48 77.32 ± 1.81 79.65 ± 2.79 78.02 ± 2.68 80.69 ± 1.77 81.31 ± 1.47 
NaiveBayes 73.49 ± 3.04 73.40 ± 2.81 73.12 ± 2.57 73.63 ± 2.26 73.66 ± 2.31 
SMO 66.67 ± 2.71 77.10 ± 2.69 77.98 ± 2.31 77.73 ± 1.77 77.88 ± 2.06 
Logistic 76.55 ± 2.60 78.90 ± 2.43 77.75 ± 2.60 78.42 ± 1.71 78.79 ± 2.34 

Table 7. Summary comparisons (#wins/#ties/#loses) among the methodologies with the four 
algorithms over the 25 datasets 

  OAO AAO AAOvsOAA AAOvsOAO 

J48 
OAA 1/12/12 3/16/6 1/11/13  
OAO  10/15/0  1/16/8 

NaiveBayes 
OAA 1/20/4 2/20/3 1/20/04  
OAO  1/24/0  1/24/0 

SMO 
OAA 1/11/13 0/11/14 0/12/13  
OAO  2/22/1  0/21/4 

Logistic 
OAA 1/14/10 3/15/7 2/14/9  
OAO  9/16/0  4/18/3 

Summation 
OAA 4/57/39 8/62/30 4/57/39  
OAO  22/77/1  6/79/15 

 
From Table 6, the average accuracy over the 25 multiclass datasets shows that 

OAA performs worse than AAO for J48, SMO, and Logistic, although it performs a 
tiny better than AAO for NaiveBayes.  

The statistic analysis of the experimental results on each dataset in Table 7 
completely supports this. From Table 7, we can see that the comparison result of 
OAA against AAO using J48 as the base learner is (3/16/6). That is, OAA only wins 
on three datasets, but loses on six datasets, ties on the rest datasets. When using 
NaiveBayes instead of J48, OAA only wins AAO on two datasets, loses to AAO on 
three datasets, ties on the rest. When using SMO instead, OAA has no wins, but loses 
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to AAO on 14 datasets, ties on the rest.  When using Logistic instead, OAA only wins 
AAO on three datasets, loses to AAO on seven datasets, ties on the rest. If we sum the 
#wins/#ties/#loses for OAA and AAO over the four base learners, we can see OAA 
only wins AAO eight times, but loses to AAO 30 times, and ties with AAO 62 times, 
in total.  

Note that OAA has the advantage in comparing with AAO directly. It creates n 
models (n is the number of classes in a dataset). If we further compare it with AAO 
with bagging n iterations, i.e., the variant AAOvsOAA, Table 6 shows the average 
accuracy of AAOvsOAA over the 25 datasets is 80.69%, much higher than 77.32% 
achieved by OAA, when using J48 as the base learner. Table 7 shows that when J48 is 
the base learner, OAA only wins AAOvsOAA on one dataset, but loses to 
AAOvsOAA on 13 datasets, and ties on the rest 16 datasets. When using NaiveBayes 
instead, both OAA and AAOvsOAA perform close to each other (73.49% vs. 
73.63%). Table 7 shows that OAA only wins AAO on one datasets, loses to 
AAOvsOAA on four datasets, ties on the rest. When using SMO instead, OAA has no 
wins, but loses to AAOvsOAA on 13 datasets, ties on the rest. When using Logistic 
instead, OAA only wins AAOvsOAA on two datasets, loses to AAO on nine datasets, 
ties on the rest. If we sum the #wins/#ties/#loses for OAA and AAOvsOAA over the 
four base learners, we can see OAA only wins AAOvsOAA four times, but loses to 
AAOvsOAA 39 times, and ties with AAOvsOAA 57 times, in total. 

All in all, our experimental results clearly show that OAA is not a good approach 
for multiclass classification algorithms. 

Now let us analyze the performance of OAO. From Table 6, the average accuracy 
over the 25 multiclass datasets shows that OAO performs better than AAO for J48 
and Logistic, although it performs a tiny better than AAO for NaiveBayes. But it loses 
to AAO for SMO.  

The statistic analysis of the experimental results on each dataset in Table 7 also 
completely supports this. From Table 7, when using J48 as the base learner, OAO 
wins AAO on ten datasets, and ties on the rest. When using Logistic instead, OAO 
still wins AAO on nine datasets, and ties on the rest. That is, OAO never loses to 
OAA when using J48 and Logistic as the base learners. However, using NaiveBayes 
or SMO instead, OAO almost always ties with AAO, only winning on one or two 
datasets. If we sum the #wins/#ties/#loses for OAO and AAO over the four base 
learners, we can see OAO wins AAO 22 times, but loses to AAO only once, and ties 
with AAO 77 times, in total.  

Again, note that OAO has the advantage in comparing with AAO. It creates 

2

)1( −nn
 models (n is the number of classes in a dataset). If we further compare it 

with AAO with bagging 
2

)1( −nn
 iterations, i.e., the variant AAOvsOAO, Table 6 

shows the average accuracy of AAOvsOAO over the 25 datasets is 81.31%, higher 
than 79.65% achieved by OAO, when using J48 as the base learner. When using other 
three algorithms (NaiveBayes, SMO, and Logistic) as the base learner respectively, 
both perform similarly, one’s a tiny higher than the other’s. Table 7 completely 
supports the analysis based on Table 6. From Table 7, we can see that OAO almost 
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always ties with AAOvsOAO, using either NaiveBayes or Logistic as the base 
learner. AAOvsOAO does perform better than OAO on eight datasets when using J48 
as the base learner, and perform better than OAO on four datasets when using SMO. 
If we sum the #wins/#ties/#loses for OAO and AAOvsOAO over the four base 
learners, we can see OAO only wins AAOvsOAO six times, but loses to AAOvsOAO 
15 times, and ties with AAOvsOAO 79 times, in total. 

In summary, our experimental results clearly show that OAO is a proper approach 
for improving the performance of multiclass classification algorithms. However, the 

benefit of OAO is from the ensemble, since it creates 
2

)1( −nn
 models. If we do 

bagging with the same number of iterations, OAO loses its advantage and even 
performs worse than AAO (i.e. AAOvsOAO).  

Besides, Table 6 also shows that both AAOvsOAA and AAOvsOAO perform 
much better than AAO. This proves that bagging does improve the performance of all 
four basic algorithms. Thus, it is the approach recommended for improve the 
performance of multiclass classification algorithms, neither OAA nor OAO.  

5 Conclusion and Future Work 

This paper investigates the performance of the two well-known methodologies (OAA 
and OAO) for multiclass classifications. We conducted the empirical study using a 
wide variety of datasets with a wide range of different number of classes. Our 
experimental results show that OAA is not a good approach for improving the 
performance of multiclass classification algorithms. OAO performs much better than 
OAA, and also improves the performance of multiclass classification learners. 

However, this is due to the 
2

)1( −nn
 models it builds, where n is the number of 

classes. When n is great, say 26 in the letter dataset, it has to build 325 models. If we 
apply bagging to these algorithms, our experimental results show that the bagging 
variants (AAOvsOAA and AAOvsOAO) of AAO perform better than its opponents 
(OAA and OAO) respectively. Thus, we can conclude that bagging is the better 
choice if we want to improve the performance of multiclass classifications.  

We will continue to evaluate the performance of the variants of OAA and OAO, 
such as weighted OAA and OAO. We also notice that OAA creates imbalanced 
training datasets since it merges the examples of the rest classes into one. It is a 
potential reason why OAA performs worse than AAO. It does not obtain the benefit 
from the n models it builds. Another interesting topic is to investigate the potential 
problems for OAA and OAO if the original datasets are imbalanced. Besides, we will 
further study the possibility of extending the existing approaches of reducing 
multiclass classifications into multi-label classifications. 

Acknowledgement. We thank the anonymous reviewers for the valuable comments. 
The work was supported by the National Science Foundation (IIS-1115417). 



518 R.K. Eichelberger and V.S. Sheng 

 

References 

1. Mitchell, T.M.: Machine Learning, pp. 52–77. McGraw-Hill (1997) 
2. Rifkin, R., Klautau, A.: In Defense of One-vs-All Classification. Journal of Machine 

Learning Research 5, 101–141 (2004) 
3. Tsujinishi, D., Koshiba, Y., Abe, S.: Why Pairwise is Better Than One-Against-All or  

All-at-Once. In: IEEE International Joint Conference, pp. 693–698 (2007) 
4. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, 

School of Information and Computer Science (2010), 
http://archive.ica.uci.edu/ml/datasets.html? 

5. Hsu, C.W., Lin, C.W.: A Comparison of Methods for Multiclass Support Vector 
Machines. IEEE Tran. on Neural Networks 13(2), 415–425 (2002) 

6. Moro, R.A., Auria, L.: Support Vector Machines (SVM) as a Technique for Solvency 
Analysis. German Institute for Economic Research (811) (2008) 

7. Huang, J., Lu, J., Ling, C.X.: Comparing naive Bayes, decision trees, and SVM with AUC 
and accuracy. In: Third IEEE International Conference on Data Mining, ICDM 2003, pp. 
553–556 (2003) 

8. Dimitoglou, G., Adams, J.A., Jim, C.M.: Comparison of the C4.5 and a Naive Bayes 
Classifier for the Prediction of Lung Cancer Survivability. Journal of Computing 4(8) (2012), 
http://www.journalofcomputing.org/valume-4-issue-8-august-2012 

9. Anthony, Gregg, Tshilidzi: Image Classification Using SVMs: One-Against-One vs  
One-Against-All. In: 28th Asian Conference on Remote Sensing (2007) 

10. Peng, C.J., Lee, K.L., Ingersoll, G.M.: An Introduction to Logistic Regression and 
Analysis Reporting. Journal of Educational Research (2002) 

11. Kotsiantis, S.B.: Supervised Machine Learning: A Review of Classification Techniques. 
Informatica 31, 249–268 (2007) 

12. Fletcher, T.: Support Vector Machines Explained (2009), 
http://www.tristanfletcher.co.uk 

13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA 
Data Mining Software: An Update. SIGKDD Explorations 11 (2009) 

14. Fayyad, U., Irani, K.: Multi-interval Discretization of Continuous-valued attributes for 
Classification Learning. In: Proceeding of Thirteenth International Joint Conference on 
Artificial Intelligence, pp. 1022–1027. Morgan Kaufmann (1993) 

15. Beygelzimer, A., Langford, J., Zadrozny, B.: Weighted One-Against-All. In: Proceeding of 
the 20th National Conference on Artificial Intelligence, pp. 720–725. AAAI Press (2005) 

16. Allwein, E., Schapire, R., Singer, Y.: Reducing Multiclass to Binary: A unifying approach 
for margin classifiers. Journal of Machine Learning Research, 113–141 (2000) 

17. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo 
(1993) 

18. Witten, I.H., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and 
Techniques, 3rd edn. Morgan Kaufmann Publishing (2011) 

19. John, G.H., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In: 
Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, pp. 338–345 
(1995) 

20. Hilbe, J.M.: Logistic Regression Models. Chapman & Hall/CRC Press (2009) 
21. Corinna, C., Vapnik, V.: Support-Vector Networks. Machine Learning (1995) 
22. Tsoumakas, G., Katakis, I.: Multi Label Classification: An Overview. International Journal 

of Data Warehousing and Mining 3, 1–13 (2007) 



 An Empirical Study of Reducing Multiclass Classification Methodologies 519 

 

23. Sulzmann, J.-N., Fürnkranz, J., Hüllermeier, E.: On Pairwise Naive Bayes Classifiers. In: 
Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. 
(eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 371–381. Springer, Heidelberg (2007) 

24. Zadrozny, B.: Reducing Multiclass to Binary by Coupling Probability Estimates. In: 
Advances in Neural Information Processing Systems (2002) 

25. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. The Annals of 
Statistics 26(2), 451–471 (1998) 



 

P. Perner (Ed.): MLDM 2013, LNAI 7988, pp. 520–527, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

EEG Feature Selection  
Based on Time Series Classification 

Michal Vavrečka1,2 and Lenka Lhotská1 

1 Biodat, Faculty of Electrical Engineering, Czech Technical University in Prague 

2 Faculty of Education, University of Southern Bohemia in Ceske Budejovice 
{vavrecka,lhotska}@fel.cvut.cz 

Abstract. We propose novel method of EEG signal analysis based on 
classification of feature time series. The algorithm classifies sequences of 
feature values and it calculates the error rate both for each time step and overall 
sequence. We compared the performance of the algorithm with a standard 
feature selection method based on forward inter-intra criterion. Both algorithms 
selected similar features. The algorithm was tested on the EEG data from 2 
experiments focused on of spatial navigation and orientation. Participants 
traversed through the virtual tunnels and they could adopt two different 
reference frames (allocenctric and egocentric) to solve the task. The EEG signal 
was recorded within both tasks and the methods of feature extraction and both 
standard and timeseries selection and classification were applied to it. We 
identified differences between the groups of participants adopting allocentric 
and egocentric frames of reference in the parietal and central electrodes in right 
hemisphere. The novel algorithm provided more detail analysis of the EEG 
features compared to classic feature classification.  

Keywords: frames of reference, spectral analysis, spatial navigation, EEG 
features. 

1 Introduction 

The human orientation in space is based on several frames of reference. Levinson 
(1996) postulated intrinsic, relative and absolute reference frames, but there are 
mostly two basic reference frames analyzed in the recent studies, namely allocentric 
and egocentric frame. The reference frame is considered as orthogonal system with 
the origin (deixis center) in retina, head, body or other points, objects, or array in 
space (McCloskey, 2001). In the egocentric frame of reference the position of objects 
is encoded with reference to the body of the observer or to relevant body parts. Spatial 
positions can also be coded in object-centered coordinates that are independent of the 
observer's current position. This frame of reference is referred to as allocentric and it 
is constituted by object-to-object relations (it refers to a framework that is 
independent from the subject's position). 

The recent EEG studies in this area are based on the simulation of the virtual 
environments and the measurement of the subjects (egocetric and allocentric) 
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navigation strategy. Gramann et al. (2006) recorded EEG signal and localized higher 
mean source activation in the BA 7 (parietal cortex) for subjects adopting egocentric 
frame of reference and BA 32 (anterior cyngulate gyrus) for subjects adopting 
allocentric frame of reference. Lin et al., (2008) found significantly different EEG 
frequency changes between the allocentric and egocentric users. Subjects who 
preferred allocentric frame of reference indicated stronger activation in occipital area 
(BA 17,18,19) and subjects using the egocentric reference frames showed stronger 
activation in parietal area (BA7). We extended this experiment to the 3D environment 
(horizontal and vertical navigation) in our last study (Vavrečka et al., 2012) and we 
identified intrahemispheric coherences in occipital-parietal and temporal-parietal 
areas as the most discriminative features.  

The analysis was based on the classical method of feature selection. The features 
were individually evaluated by inter/intra distance to select 50 best features for each 
method. The inter/intra distance criterion (van der Heijden et al., 2004) is a distance-
based class separability criterion that is a monotonically increasing function of the 
distance between the expectation vectors of different classes and a monotonically 
decreasing function of the scattering around the expectations. In the next step, we 
applied forward feature selection algorithms to the preselected features and we chose 
5 best features that discriminate between egocentric and allocentric strategies were 
selected. The selected feature set was tested by quadratic classifier (see Vavrečka et 
al., 2012 for details) and we reached 77 % accuracy.  

In this paper we would like to propose novel method of the EEG data analysis. It 
allows to study the signal in greater detail. We should represent experimental trials as 
a time series and analyze the changes of feature values within the time course. This 
method of analysis allows us to calculate trends in the data to compare, whether the 
error rates in the previous results were caused by the variance of the errors in each 
time step or there is constant error rate for the whole trials. The proposed classifier 
and its results are described in the following chapters.  

2 Materials and Methods 

2.1 Experiment Description 

We collect the EEG data from the experiment focused on spatial frames of reference 
(see Introduction). The experimental procedure is based on the tunnel task introduced 
in Schönebeck et al. (2001). There are traverse through a virtual tunnel presented to 
the participants and they were required to keep the track of their implied virtual 3D 
position with respect to their starting position. They were asked to point to the origin 
of the traverse after each trial. The subject's homing vector corresponds to the 
reference frame (egocetric and allocentric) he/she adopts as the navigation system 
(see Fig.1). 

The experimental sample consisted of 30 participants. The mean age was 28.2 
years. All subjects had normal or corrected-to-normal vision. They were under no 
medication that affects the EEG signal and were neurologically intact. After the 
introduction, each participant sat comfortably in front of a computer screen in a sound 
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attenuated room and the EEG cap was applied. The EEG signal was recorded from 64 
unipolar sintered Ag/AgCl EEG electrodes. There were animations of passages 
through a 3D virtual tunnel consisted of 3 (straight,turned and straight) segments 
presented to the participants. The bend of the turned passage varied between 30 and 
90 degrees at interval of 30 degrees. The length of the two straight segments and the 
turned segment was constant. The tunnels were administered pseudo-randomly to the 
participants, and there were not 2 tunnels in the same direction presented to the 
participant consecutively.  

2.1.1  Dataset 
The dataset contains data from 10 subjects The participants were instructed to adopt 
their native strategy in 2 block of trials. We selected participants who spontaneously 
adopted allocetric strategy in the first block of trials. The second block consisted of 
similar trials but with opposite direction of movement (backward). This change 
resulted in spontaneous change of the strategy and some participants adopted 
egocentric reference frame. We selected 10 out of 30 participants that adopt natively ( 
(above 80% of all trials) allocetric strategy in the first block of trials and egocentric 
strategy in second block of trials. 

 

 

Fig. 1. Allocentric and egocentric navigation within the horizontal navigation in the virtual 
tunnel. The different reference frames are represented as a different head postion at the end of 
the tunnel (gray and white head). 

2.2 EEG Preprocessing 

We performed a visual inspection of each EEG signal prior to the data analysis in 
order to detect obvious technical and biological artifacts, and subsequently rejected 
these parts from further processing. We also rejected all the trials with the 
inconsistent strategy. Then we applied low pass, high pass and notch filter to the raw 
EEG data to suppress the frequencies bellow 2 Hz and above 45 Hz. 
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2.3 Feature Extraction 

The signal was divided into the segments of constant length (1s) to calculate statistical 
parameters (minimum value, maximum value, mean value, standard deviation, 
skewness, kurtosis), mean and maximum values of the first and second derivation of 
the samples in the segment, wavelet and Fourier transform. The output of the last 
method is absolute/relative power for five EEG frequency bands, namely for delta ( 2 
to 3 Hz), theta (3 to 7 Hz), alpha (7 to 12 Hz), beta (12 Hz to 30 Hz) and gamma (30 
to 40 Hz) activities. The data were processed in PSGLab Toolbox, which was 
developed in our laboratory (Gerla et al., 2010).  

2.4 Feature Selection and Classification 

We employed PRTools (Heijdin et al., 2004) for the feature selection. First, we 
applied basic transforms to the data. We removed outliers and we also normalized the 
data. The further process of feature selection was divided into a number of steps. In 
the first stage two algorithms were applied for the preselection. The features were 
individually evaluated by inter/intra distance to select 50 best features for each 
method. In the next step we applied forward feature selection algorithms to the 
preselected features to identify a 10 best features that discriminate between particular 
reference frames (classes). The selected feature set was tested by a quadratic classifier 
to calculate error rates. 

2.5 Timeseries Classification 

The second type of analysis was based on the classification of time series. Feature 
vectors were ordered according to their time course. Then we calculate mean values 
for classes (reference frames) at each timestep that resulted in the mean vector for 
allocetric and egocentric reference frame. The size of the vector was similar to 
number of feature values per trial (10 timepoints standing for 10 seconds of trial). At 
the next stage we compared time series of specific trials with the mean vector and 
calculate minimum distance to the mean vectors at each time step. This allows us to 
identify membership of each timepoint to particular (egocentric or allocentric) class. 
Then we calculate the error rates for specific time points (each second of a trial is 
calculated separately) and mean error for whole trials. The mean error represent error 
rate of time series and we should compare them with the results obtained from 
classical feature selection described in 2.3. The pseudocode for described algorithm is 
as follows:  

1. Calculate mean values for classes at each timestep 

2. Find min between feature value and mean class values 

3. Classify features according to minimum function 

4. Compare expected and obtained classification  

5. Calculate error rates for each timestep 

6. Calculate mean error for whole time series  
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After this calculation we ordered the features in increasing order according their error 
rate and we chose the best 10 features. The both feature sets (2.4 and 2.5) were 
compared to identify differences between algorithms. 

3 Results 

In the first step we did the mathematical analysis of the EEG signal based on feature 
selection and classification mentioned in previous section. The analysis of allocentric 
and egocentric native class revealed mean error 42.6 % of the quadratic classifier for 
the 10 best features. The results of the classic feature selection method are 
summarized in Tab 1. There are mostly electrodes in parietal and central area, namely 
PO7 and Cz. The best features were mostly spectral bands and few statistical features. 
From the anatomic point of view, the best features were mostly situated in left 
hemisphere. 

Table 1. Error rates for 10 best features based on quadratic classifier and forward feature 
selection 

 
 
The analysis based on the proposed time series classification revealed similar 

features. The most discriminative electrodes were PO7 and Cz again. The mean error 
rate for all features were lower (40.9 %). The spectral features were the most 
discriminative features again. They were situated in left parietal and central area 
similar to previous algorithm. The detail analysis of the time series uncovered stable 
error rates for the time course of the experiment trials (see Tab.2). There are stable 
errors ranging from 36-46 %.  

Table 2. Error rates for 10 best features in specific time points (1-10 seconds) and mean error 
of time series 
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We did also basic visualization of the time series in Fig.2. The thick lines stand for 
mean vectors for specific classes (reference frames), namely red for egocentric and 
blue for allocentric strategy. The dots represents feature values at specific time and 
the color of dot stands for allocentric or egocentric strategy (class) based on 
participant responses. Although we visualized the best feature, there is a overlap 
between classes, that results in high error rate (40% in average).  

 

 
Fig. 2. Mean feature vectors for allocentric (blue) and egocetric (red) reference frame 

The high error rates in the group analysis are often caused by interindividual 
differences in EEG signal that result in high error of its features. Hence, we did also 
the analysis of the separate subjects. The errors for specific subject were lower and 
ranged from 15-25%. We visualized the best feature of the subject n.23 with the 18.3 
% mean error.  

 
Fig. 3. Mean feature vectors (thick lines) for both reference frames (classes) in sub n.23. The 
thin lines stand for specific trials. 
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4 Discussion 

4.1 Behavioral Data 

We are going to briefly interpret behavioral results. The previous studies were mostly 
focused on the group difference between allocentric and egocentric strategy in one 
condition. The previous studies proved the interindividual difference in the EEG 
signal for allocentric and egocentric strategy but there is not study focused on 
intraindividual EEG differences of mentioned strategies based on group analysis. 

The behavioral results uncovered the switch between forward and backward 
navigation in the native conditions. Previous studies (Vavrečka et al., 2012; Gramann 
et al., 2012) revealed also the alteration between reference frames in horizontal and 
vertical navigation. Hence the concept of reference frame nativeness has to be 
investigated in greater detail. The native reference frames are context dependent, as we 
are able to change participants navigation strategy based on the way of stimuli 
presentation (horizontal vs. vertical, forward vs. backward). 

4.2 Classifier Comparison 

The comparison of classical and novel algorithm led us to the conclusion, that our 
method suitable for EEG data analysis. There were similar results for both classic 
method of feature selection and proposed classifier. Moreover the novel method 
offers the ability to analyze EEG features in greater detail. It allows us to study the 
trends in the feature changes and to determine, whether the feature value changes over 
time or it is stable within whole trial. This is desirable especially for the experiment 
design with high variability in the participant's responses. We are able to detect inter 
trial variability and also localize important time points within the wime course. There 
are more detail results that should foster the interpretation and identify possible errors 
caused by variance in feature changes over time. The extension of the algorithms 
offers ability to compare and quantify trends in the data.  

5 Conclusion 

The novel algorithm for the analysis of feature time series was applied to the EEG 
data in the area of spatial cognition. The comparison with classic algorithm resulted in 
similar results. Moreover the novel classifier is able to calculate errors for specific 
time points and to capture trends in the data.  
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Abstract. In this paper, we develop an efficient method for feature se-
lection in Semi-Supervised Support Vector Machine (S3VM). Using an
appropriate continuous approximation of the l0 − norm, we reformu-
late the feature selection S3VM problem as a DC (Difference of Convex
functions) program. DCA (DC Algorithm), an innovative approach in
nonconvex programming is then developed to solve the resulting prob-
lem. Computational experiments on several real-world datasets show the
efficiency and the scalability of our method.

Keywords: Feature Selection, S3VM, DC Programming, DCA.

1 Introduction

One of the most critical problems in supervised learning is the size of training
sets. If the used training dataset is small, one may face the problem of over-
fitting. While the collection of data can be cheap, the manual labeling for the
purpose of training process is usually slow, expensive and error-prone process.
To overcome this difficulty, recently, in the machine learning community, there
has been an attracting increasing attention in using semi-supervised learning
methods. The goal of semi-supervised classification is to build a classifier using
both labeled and unlabeled data. Furthermore, it has been shown that using
unlabeled data for learning improves the accuracy of classifier ([2]). In [2], the
authors report that a trained SVM on a well-chosen subset performs often better
than on all available instances.

On another hand, feature selection is one of the fundamental problems in
machine learning. In many areas of application such as text classification, web
mining, gene expression, micro-array analysis, combinatorial chemistry, image
analysis, etc, data sets contain a large number of features, many of which are
irrelevant or redundant. Feature selection is often applied to high dimensional
data prior to classification learning. The main goal is to select a subset of features
of a given data set while preserving or improving the discriminative ability of a
classifier. Several feature-selection methods for SVMs have been proposed in the
literature (see e.g. [3,16,19,21]).

In this work, we are interested in feature selection in the context of S3VM
that can be stated as follows. Given a training set which consists of m labeled
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c© Springer-Verlag Berlin Heidelberg 2013



DCA Based Algorithms for Feature Selection in S3VM 529

points {(xi, yi) ∈ IRn × {−1, 1}, i = 1, . . . ,m} and p unlabeled points {xi ∈
IRn, i = (m+ 1), . . . , (m+ p)}. We are to find a separating hyperplane P = {x |
x ∈ IRn, xTw = b}, far away from both the labeled and unlabeled points, that
uses the least number of features. Naturally, using the zero-norm (l0-norm) is the
best way for feature selection. Hence, replacing the l2 norm by the l0-norm in the
classical S3VM model, the feature selection S3VM problem can be formulated
as follow:

min
w,b

α

m∑
i=1

L (yi(〈w, xi〉 + b)) + β

m+p∑
i=m+1

L (|〈w, xi〉 + b|) + ‖w‖0. (1)

Here, the first two terms correspond to, respectively, the hingle loss function of
labeled and unlabeled data points (which are weighted by penalty parameters
α > 0 and β > 0), while the third term deals with the sparsity. Usually, in classi-
cal SVM one uses the hingle loss function L(u) = max{0, 1−u} which is convex.
On contrary, the problem (1) is nonconvex, due to, firstly, the nonconvexity of
the second term. A variety of optimization approaches have been recently devel-
oped for the S3VM (see e.g. [2,4,5,6,7,9,24]). There are two broad strategies for
solving S3VM: the exact methods via Mixed Integer Programming ([2]), branch
and Bound algorithm ([5]), deterministic annealing ([24]) and the approximate
methods such as self-labeling heuristic S3VM light ([9]), gradient descent ([4]),
DCA-S3VM ([7]). For a more complete review of S3VM methods, the reader is
referred to [6] and the references therein. Exact methods are not available for
massive data sets in real applications (high dimension and large data set). The
scalability is a great challenge in semi supervised learning. Thus, major efforts
have focused on efficient local algorithms.

While S3VM has been widely studied, there exist few methods in the liter-
ature for feature selection in S3VM. Due to the discontinuity of the l0 term
that represents the sparsity of the vector w, we are faced with ”double” diffi-
culties in (1) (it is well known that the problem of minimizing the zero-norm is
NP-Hard ([1])).

We investigate in this work an efficient nonconvex programming approach
to solve the feature selection S3VM problem (1). Our method is based on
DC (Difference of Convex functions) programming and DCA (DC Algorithms)
that were introduced by Pham Dinh Tao in a preliminary form in 1985. They
have been extensively developed since 1994 by Le Thi Hoai An and Pham
Dinh Tao (see [11,13] and the references therein). In the last decade, a vari-
ety of works in Machine Learning based on DCA have been developed. The
efficiency and the scalability of DCA have been proved by various papers (see
e.g. [7,10,14,15,16,20,18,22] and the list of reference in [17]). These successes of
DCA motived us to investigate it for solving the hard problem (1).

The remainder of the paper is organized as follows. DC programming and
DCA are briefly presented in Section 2 while Section 3 is devoted to the de-
velopment of DCA for solving the feature selection S3VM problem (1). Finally,
computational results are reported in the last section.
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2 Outline of DC Programming and DCA

DC programming and DCA constitute the backbone of smooth/nonsmooth non-
convex programming and global optimization. They address the problem of min-
imizing a function f which is the difference of two convex functions on the whole
space IRd or on a convex set C ⊂ IRd. Generally speaking, a DC program is an
optimisation problem of the form :

α = inf{f(x) := g(x) − h(x) : x ∈ IRd} (Pdc)

where g, h are lower semi-continuous proper convex functions on IRd. Such a
function f is called a DC function, and g − h a DC decomposition of f while
g and h are the DC components of f. The convex constraint x ∈ C can be
incorporated in the objective function of (Pdc) by using the indicator function
on C denoted by χC which is defined by χC(x) = 0 if x ∈ C, and +∞ otherwise:

inf{f(x) := g(x) − h(x) : x ∈ C } = inf{χC(x) + g(x) − h(x) : x ∈ IRd}.

A convex function θ is called convex polyhedral if it is the maximum of a finite
family of affine functions, i.e.

θ(x) = max{〈ai, x〉 + b : i = 1, ...p}, ai ∈ R
d.

Polyhedral DC optimization occurs when either g or h is polyhedral convex. This
class of DC optimization problems, which is frequently encountered in practice,
enjoys interesting properties (from both theoretical and practical viewpoints)
concerning local optimality and the convergence of DCA ([13]).

Let
g∗(y) := sup{〈x, y〉 − g(x) : x ∈ IRd}

be the conjugate function of a convex function g. Then, the following program
is called the dual program of (Pdc):

αD = inf{h∗(y) − g∗(y) : y ∈ IRd}. (Ddc)

One can prove that α = αD, and there is the perfect symmetry between primal
and dual DC programs: the dual to (Ddc) is exactly (Pdc).

For a convex function θ, the subdifferential of θ at x0 ∈ dom θ := {x ∈ IRd :
θ(x0) < +∞}, denoted by ∂θ(x0), is defined by

∂θ(x0) := {y ∈ IRd : θ(x) ≥ θ(x0) + 〈x − x0, y〉, ∀x ∈ IRd}. (2)

The subdifferential ∂θ(x0) generalizes the derivative in the sense that θ is differ-
entiable at x0 if and only if ∂θ(x0) ≡ {�xθ(x0)}. Recall the well-known property
related to subdifferential calculus of a convex function θ:

y0 ∈ ∂θ(x0) ⇐⇒ x0 ∈ ∂θ∗(y0) ⇐⇒ 〈x0, y0〉 = θ(x0) + θ∗(y0). (3)

The complexity of DC programs resides, in the lack of practical optimal globality
conditions. Local optimality conditions are then useful in DC programming.
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A point x∗ is said to be a local minimizer of g − h if g(x∗) − h(x∗) is finite
and there exists a neighbourhood U of x∗ such that

g(x∗) − h(x∗) ≤ g(x) − h(x), ∀x ∈ U . (4)

The necessary local optimality condition for (primal) DC program (Pdc) is
given by

∅ �= ∂h(x∗) ⊂ ∂g(x∗). (5)

The condition (5) is also sufficient (for local optimality) in many important
classes of DC programs, for example, when (Pdc) is a polyhedral DC program
with h being polyhedral convex function, or when f is locally convex at x∗

(see [13]).
A point x∗ is said to be a critical point of g − h if

∂h(x∗) ∩ ∂g(x∗) �= ∅. (6)

The relation (6) is in fact the generalized KKT condition for (Pdc) and x∗ is also
called a generalized KKT point.

Based on local optimality conditions and duality in DC programming, the
DCA consists in constructing of two sequences {xl} and {yl} of trial solutions
of the primal and dual programs respectively, such that the sequences {g(xl) −
h(xl)} and {h∗(yl) − g∗(yl)} are decreasing, and {xl} (resp. {yl}) converges to
a primal feasible solution x∗ (resp. a dual feasible solution y∗) satisfying local
optimality conditions:

x∗ ∈ ∂g∗(y∗), y∗ ∈ ∂h(x∗). (7)

It implies, according to (3) that x∗and y∗ are critical points (KKT points) of
g − h and h∗ − g∗ respectively.

The main idea behind DCA is to replace in the primal DC program (Pdc),
at the current point xl of iteration l, the second component h with its affine
minorization defined by

hl(x) := h(xl) + 〈x − xl, yl〉, yl ∈ ∂h(xl)

to give birth to the primal convex program of the form

(Pl) inf{g(x) − hl(x) : x ∈ IRn} ⇐⇒ inf{g(x) − 〈x, yl〉 : x ∈ IRd}

whose an optimal solution is taken as xl+1.
Dually, a solution xl+1 of (Pl) is then used to define the dual convex program

(Dl+1) by replacing in (Ddc) g
∗ with its affine minorization defined by

(g∗)l(y) := g∗(yl) + 〈y − yl, xl+1〉, xl+1 ∈ ∂g∗(yl)

to obtain

(Dl+1) inf{h∗(y) − [g∗(yl) + 〈y − yl, xl+1〉]y ∈ IRd}
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whose an optimal solution is taken as yl+1. The process is repeated until con-
vergence.

DCA performs so a double linearization with the help of the subgradients of
h and g∗. According to relation (3) it is easy to see that the optimal solution set
of (Pl) (resp. (Dl+1)) is nothing but ∂g∗(yl) (resp. ∂h(xl+1)). Hence, we can say
that DCA is an iterative primal-dual subgradient method that yields the next
scheme: (starting from given x0 ∈ dom ∂h)

yl ∈ ∂h(xl); xl+1 ∈ ∂g∗(yl), ∀l ≥ 0. (8)

The generic DCA scheme is shown below.
DCA scheme
Initialization: Let x0 ∈ IRd be a best guess, l = 0.
Repeat

– Calculate yl ∈ ∂h(xl)
– Calculate xl+1 ∈ argmin{g(x) − h(xl) − 〈x − xl, yl〉 : x ∈ IRd} (Pl)
– l = l + 1

Until convergence of
{
xl
}
.

A deeper insight into DCA has been described in [13]. For instant it is worth
to mention the main feature of DCA: DCA is constructed from DC components
and their conjugates but not the DC function f itself which has infinitely many
DC decompositions, there are as many DCA as there are DC decompositions.
Such decompositions play an extremely critical role in determining the speed of
convergence, stability, robustness, and globality of sought solutions. It is impor-
tant to study various equivalent DC forms of a DC problem. This flexibility of
DC programming and DCA is of particular interest from both a theoretical and
an algorithmical point of view.

For a complete study of DC programming and DCA the reader is referred to
[11,13].

The solution of a nonconvex program (Pdc) by DCA must be composed of two
stages: the search of an appropriate DC decomposition of f and that of a good
initial point.

We note that the convex concave procedure (CCCP) for constructing discrete
time dynamical systems mentioned in [23] is nothing else than an instant of
DCA reduced to smooth optimization. Likewise, the SLA (Successive Linear
Approximation) algorithm developed in [3] is a version of DCA for concave
minimization program.

3 Feature Selection in S3VM by DCA

3.1 DC Formulation of the Problem (1)

Assume that the m labeled points and p unlabeled points are represented by the
matrix A ∈ IRm×n and B ∈ IRp×n, respectively. D is a m × m diagonal matrix
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where Di,i = yi, ∀i = 1, . . . ,m. For each labeled point xi (i = 1, . . . ,m), we
introduce a new variable ξi which represents the misclassification error. By the
same way, for each unlabeled point xi (i = (m + 1), . . . , (m + p)), we define ri
and si for two possible misclassification errors. Then, the final class of unlabeled
xi corresponds to the one that has minimal misclassification. Hence, the feature
election in S3VM problem (1) can be formulated as follows:

min {F0(w, b, ξ, r, s) := α〈e, ξ〉 + β〈e,min{r, s}〉 + ‖w‖0 : (w, b, ξ, r, s) ∈ K}
(9)

where K is polyhedral convex set defined by

{(w, b, ξ, r, s) : D(Aw − eb) + ξ ≥ e,
Bw − eb+ r ≥ e,−Bw + eb+ s ≥ e,
ξ, r, s ≥ 0}.

(10)

In the literature, some approximations of the step vector w∗ (w∗i = 1 if wi �= 0,
0 otherwise) have been proposed in the context of feature selection in SVM. The
first is the concave exponential function developed by Bradley and Mangasarian
in [3] where the step function w∗ is approximated by:

w∗ � e − ε−λw, λ > 0, (11)

and then the zero-norm ‖w‖0 is approximated by ‖w‖0 � eT (e − ε−λw). The
method, called SLA (Successive Linear Approximation), proposed in [3], for
solving the resulting Feature Selection concaVe minimization problem (FSV),
consists of solving at each iteration one linear program (recall that SLA is a
special DCA scheme applied to FSV).

In [16], another DC formulation has been investigated. The computational
experiments on real-wold datasets indicate that the proposed method performs
consistently well on these datasets: while it suppresses up to more than 99% of
features, it can give a good classification. Moreover, the comparative results show
the superiority of this approach over the two standard methods: SLA studied
in [3] (this shows the nice effect of DC decompositions for DCA) as well as
SVMs using l1-norm. Motivated by the success of the approach proposed in [16],
we investigate a similar DC formulation for (9). The difference here is that the
second term in the objective function of (1) is nonconvex, more precisely it is
concave. Expressing this term as a DC function and then combining it with the
DC decomposition of the approximate term of the l0-norm proposed in [16], we
get an appropriate DC decomposition of F0.

For x ∈ IR, let η be the function defined by (λ > 0)

η(x, λ) = 1 − e−λ|x|. (12)

In what follows, for a given λ, we will use η(x) instead of η(x, λ). It is clear that
for moderate values of λ, one can obtain a very adequate approximation of w∗.
Then the approximation of zero-norm ‖w‖0 is given by: ‖w‖0 �

∑n
i=1 η(wi). We

first express η(x) as a DC function as follows: η(x) = g(x) − h(x), where

g(x) := λ|x| and h(x) := λ|x| − 1 + ε−λ|x|. (13)
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The objective function of (9) can be written as

F0(w, b, ξ, r, s) = G0(w, b, ξ, r, s) − H0(w, b, ξ, r, s)

where G0(w, b, ξ, r, s) = α〈e, ξ〉 +
∑n

i=1 g(wi) and H0(w, b, ξ, r, s) = −β〈e,min

{r, s}〉+
n∑

i=1

h(wi) are convex functions (G0 is polyhedral convex). Hence, we can

recast (9) as a polyhedral DC program:

min {G0(w, b, ξ, r, s) − H0(w, b, ξ, r, s) : (w, b, ξ, r, s) ∈ K} . (14)

According to Section 2, determining the DCA scheme applied to (14) amounts
to computing the two sequences {(wl, bl, ξl, rl, sl)} and {(w̄l, b̄l, ξ̄l, r̄l, s̄l)} such
that

(w̄l, b̄l, ξ̄l, r̄l, s̄l) ∈ ∂H0(w
l, bl, ξl, rl, sl)

and (wl+1, bl+1, ξl+1, rl+1, sl+1) is an solution of following convex problem

min

⎧⎨⎩
n∑

i=1

max{λwi,−λwi} + α〈e, ξ〉− 〈(w̄l, b̄l, ξ̄l, r̄l, s̄l), (w, b, ξ, r, s)〉

: (w, b, ξ, r, s) ∈ K

⎫⎬⎭ . (15)

A subgradient of H0 can be computed as follows: ∂H0(w, b, ξ, r, s) = (w̄, 0, 0, r̄, s̄)
where

w̄i = λ(1 − ε−λwi) if wi ≥ 0, −λ(1 − ελwi) if wi < 0, ∀i = 1, . . . , n, (16)

r̄i = −β if ri < si, 0 if ri > si, −βμ if ri = si, ∀i = 1, . . . , p, (17)

and

s̄i = 0 if ri < si, −β if ri > si, −β(1 − μ) if ri = si, ∀i = 1, . . . , p. (18)

with (μ ∈ [0, 1]). Furthermore, solving (15) amounts to solving the following
linear program:⎧⎨⎩

min 〈e, t〉 + α〈e, ξ〉 − 〈(w̄l, b̄l, ξ̄l, r̄l, s̄l), (w, b, ξ, r, s)〉,
s.t. (w, b, ξ, r, s) ∈ K

ti ≥ λwi, ti ≥ −λwi, ∀i = 1, . . . , n,
(19)

Therefor, DCA applied to (14) can be described as follows:
S3VM-l0-DCA
Initialization Let τ be a tolerance sufficiently small, set l = 0.
Choose (w0, b0, ξ0, r0, s0) ∈ IRn × IR × IRm × IRp × IRp.
Repeat

– Compute ∂H0(w
l, bl, ξl, rl, sl) via (16), (17) and (18).

– Solve the linear program (19) to obtain (wl+1, bl+1, ξl+1, rl+1, sl+1).
– l = l + 1.
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Until ‖(wl+1, bl+1, ξl+1, rl+1, sl+1)−(wl, bl, ξl, rl, sl)‖ ≤ τ(‖(wl, bl, ξl, rl, sl)‖+1).

Theorem 1. (Convergence properties of Algorithm S3VM-l0-DCA)

(i) S3VM-l0-DCA generates a sequence {(wl, bl, ξl, rl, sl)} such that the se-
quence {F0(w

l, bl, ξl, rl, sl)} is monotonously decreasing.

(ii) The sequence {(wl, bl, ξl, rl, sl)} converges to (w∗, b∗, ξ∗, r∗, s∗) after a finite
number of iterations.

(iii) The point (w∗, b∗, ξ∗, r∗, s∗) is a critical point of the objective function F0

in Problem (14).

(iv) The point (w∗, b∗, ξ∗, r∗, s∗) is almost always a local minimizer of Problem
(14).

Proof: (i) and (iii) are direct consequences of the convergence properties of
general DC programs while (ii) is a convergence property of a DC polyhedral
program. Only (iv) needs a proof.

We first note that since G0 is a polyhedral convex function, so is G∗
0. Hence

the dual DC program of (14) is a polyhedral DC program and the relation

∅ �= G∗
0(w̄

∗, b̄∗, ξ̄∗, r̄∗, s̄∗) ∩ H∗
0 (w̄

∗, b̄∗, ξ̄∗, r̄∗, s̄∗)

is a sufficient local optimality condition. This relation is verified at
(w̄∗, b̄∗, ξ̄∗, r̄∗, s̄∗), the limit point of the sequence (w̄k, b̄k, ξ̄k, r̄k, s̄k) generated
by DCA, when G∗

0 is differentiable at (w̄∗, b̄∗, ξ̄∗, r̄∗, s̄∗). Since G∗
0 is a polyhedral

function, it is almost always differentiable. Therefore, (w̄∗, b̄∗, ξ̄∗, r̄∗, s̄∗) is almost
always a local solution to the dual DC program of (14).

On another hand, according to the property of transportation of local minimiz-
ers in DC programming we have the following (see [13]): let (w̄∗, b̄∗, ξ̄∗, r̄∗, s̄∗) be a
local solution to the dual program of (14) and (w∗, b∗, ξ∗, r∗, s∗) ∈ ∂G∗

0(w̄
∗, b̄∗, ξ̄∗,

r̄∗, s̄∗). IfH0 is differentiable at (w
∗, b∗, ξ∗, r∗, s∗) then (w∗, b∗, ξ∗, r∗, s∗) is a local

solution of (14). Combining this property with the facts that (w̄∗, b̄∗, ξ̄∗, r̄∗, s̄∗)
is almost always a local solution to the dual DC program of (14) and H0

is differentiable almost everywhere (except when r∗i = s∗i ), we conclude that
(w∗, b∗, ξ∗, r∗, s∗) is almost always a local minimizer to Problem (14). The proof
is then complete. �

4 Computational Experiments

4.1 Datasets

Numerical experiments were performed on several real-world datasets taken from
UCI Machine Learning Repository and NIPS 2003 Feature Selection Challenge.
The information about data sets is summarized in Table 1 (#Att is the number
of features while #Train(resp. #Test) stands for the number of points in training
set (resp. test set).
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Table 1. Datasets

Dataset #Att #Train #Test

W60 32 380 189
Ionos 34 234 117
Spam 57 1725 576
Advert 1558 2458 821
Gisette 5000 6000 1000
Leukem 7129 38 34
Arcene 10000 100 100

4.2 Concurrent Algorithms

We compare S3VM-l0-DCA with the feature selection S3VM using l1 −norm,
namely

min {F1(w, b, ξ, r, s) := α〈e, ξ〉 + β〈e,min{r, s}〉 + ‖w‖1 : (w, b, ξ, r, s) ∈ K} .
(20)

Once again, problem (20) can be formulated as a DC program and then solved
by DC programming and DCA. Let

G1(w, b, ξ, r, s) = α〈e, ξ〉 + ‖w‖1 and H1(w, b, ξ, r, s) = −β〈e,min{r, s}〉.
The objective function of (20) can be written as:

F1(w, b, ξ, r, s) = G1(w, b, ξ, r, s) − H1(w, b, ξ, r, s).

Obviously, G1(w, b, ξ, r, s) and H1(w, b, ξ, r, s) are convex polyhedral functions.
Therefore (20) is a polyhedral DC program. DCA applied to (20) can be de-
scribed as follows:
S3VM-l1-DCA
Initialization Let τ be a tolerance sufficiently small, set l = 0.
Choose (w0, b0, ξ0, r0, s0) ∈ IRn × IR × IRm × IRp × IRp.
Repeat

– Compute ∂H1(w
l, bl, ξl, rl, sl) = (0, 0, 0, r̄, s̄) with r̄ (resp. s̄) given as in (17)

(resp. (18)).
– Solve the linear following program to obtain (wl+1, bl+1, ξl+1, rl+1, sl+1):⎧⎨⎩

min 〈e, t〉 + α〈e, ξ〉 − 〈(w̄l, b̄l, ξ̄l, r̄l, s̄l), (w, b, ξ, r, s)〉,
s.t. (w, b, ξ, r, s) ∈ K,

ti ≥ wi, ti ≥ −wi ∀i = 1, . . . , n.
(21)

– l = l + 1.

Until ‖(wl+1, bl+1, ξl+1, rl+1, sl+1) − (wl, bl, ξl, rl, sl)‖ ≤ τ(‖(wl, bl, ξl, rl,
sl)‖ + 1).

For studying the nice effect of DC decomposition we also compare our algo-
rithm S3VM-l0-DCA with DCA applied on the same problem (9) but with
another DC formulation ([3]). By introducing a non-negative variable v ≥ 0 and
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the constraint relation −v ≤ w ≤ v ([3]), the problem (9) can be reformulated
as follow:

min

{
F2(w, b, ξ, r, s, v) := α〈e, ξ〉 +β〈e,min{r, s}〉 + eT (e − ε−λv)

: (w, b, ξ, r, s) ∈ K ′

}
. (22)

where K ′ = K ∩ {−v ≤ w ≤ v}. The objective function of (22) can be
written as:

F2(w, b, ξ, r, s, v) = G2(w, b, ξ, r, s, v) − H2(w, b, ξ, r, s, v)

where
G2(w, b, ξ, r, s, v) = χK′ and H2(w, b, ξ, r, s, v) = −F2(w, b, ξ, r, s, v).
It is clear that G2(w, b, ξ, r, s, v) and H2(w, b, ξ, r, s, v) are convex functions.

Therefore (22) is a DC program. Below is the description of DCA applied
to (22):
S3VM-l0-DCA-2
Initialization Let τ be a tolerance sufficiently small, set l = 0.
Choose (w0, b0, ξ0, r0, s0, v0) ∈ IRn × IR × IRm × IRp × IRp × IRn.
Repeat

– Compute ∂H2(w
l, bl, ξl, rl, sl, vl) = (0, 0, ξ̄, r̄, s̄, v̄) with r̄ (resp. s̄) given as

in (17) (resp. (18)) and

ξ̄ = −αe, v̄i = λε−λvi ∀i = 1, . . . , n.

– Solve the linear following program to obtain (wl+1, bl+1, ξl+1, rl+1, sl+1, vl+1):

min
{

−〈(w̄l, b̄l, ξ̄l, r̄l, s̄l, v̄l), (w, b, ξ, r, s, v)〉 : (w, b, ξ, r, s, v) ∈ K ′} . (23)

– l = l + 1.

Until ‖(wl+1, bl+1, ξl+1, rl+1, sl+1, vl+1) − (wl, bl, ξl, rl, sl, vl)‖ ≤
τ(‖(wl, bl, ξl, rl, sl, vl)‖ + 1).

4.3 Experimental Results

All algorithms clustering was implemented in the Visual C++ 2008, and per-
formed on a PC Intel i5 CPU650, 3.2 GHz of 4GB RAM. The starting point of
DCA is chosen as follows: ξ0, r0, s0 are set to zero and w0 and b0 are randomly
chosen. We stop DCA with the tolerance τ = 10−6. The non-zero elements of w
are determined according to whether |wi| exceeds a small threshold (10−6). λ is
set to 5 as proposed in [16]. For all experiments, we perform each algorithm 10
times from 10 random starting points and then report the average result of 10
executions.

We are interested in the classification error and the sparsity of obtained so-
lution as well as the rapidity of the algorithms. We measure the classification
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error via two criteria : the maximum sum (MS) and the accuracy (ACC) which
are defined as follows:

MS = (SE + SP )/2, ACC = (TP + TN)/(TP + TN + FP + FN).

where TP and TN denote true positives and true negatives while FP and
FN represent false positives and false negatives. SE = TP/(TP + FN) (resp.
SP = TN/(TN + FP )) is the correctness rate of positive class (resp. negative
class). The sparsity of solution is determined by the number of selected features
(SF ) while the rapidity of algorithms is measured by the CPU time in seconds.

Experiment 1: In this experiment, we compare the effectiveness of three algo-
rithms with a fixed percentage of unlabeled points (60% of training set will be
set to be unlabeled points). The comparative results are reported in Table 2 and
Figure 1 - 3.

Fig. 1. Accuracy (ACC) of three algorithms on training (right) and test (left) set

Fig. 2. Maximum sum (MS) of three algorithms on training (right) and test (left) set

From the computational results we observe that:

– S3VM-l0-DCA reduces considerably the number of selected features (from
65% to 99%) while the classifier is quite good (from 65% to 95%).

– In comparison with S3VM-l1-DCA, naturally S3VM-l0-DCA and
S3VM-l0-DCA-2 suppress much more features while always furnishes bet-
ter accuracy (MS/ACC). The gain on number of selected features (SF ) of
S3VM-l0-DCA with respect to S3VM-l1-DCA is up to 33 times.
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Fig. 3. Percentage of selected features of three algorithms

– As for the comparison of the effect of DC decomposition, S3VM-l0-DCA
always suppresses more features than S3VM-l0-DCA-2 (the gain is up to
27 times) while giving better accuracy for 6 out of 7 datasets.

Experiment 2: In this experiment, we are interested in the effectiveness of the
three algorithms when the numbers of unlabeled points varies. For this purpose,
we arbitrarily choose a data set (Advert) and then change the percentage of
unlabeled points in training set from 20% to 80%. We report in Figure 4 (resp.
Figure 5), the MS (resp. SF ) of three algorithms on training and test set .

Fig. 4. Maximum sum (MS) on training (right) and test (left) of Advert dataset with
different number of unlabeled points

We observe that:

– For most of case, S3VM-l0-DCA gives better accuracy while choosing much
less features than the two others algorithms (the gain on number of selected
features of S3VM-l0-DCA with respect to S3VM-l1-DCA(resp. S3VM-
l0-DCA-2 is up to 12 times (resp. 10 times)).

– When the numbers of unlabeled points varies, the percentage of selected
features given by S3VM-l0-DCA is stable (it varies between 1% and 4%), on
contrary with S3VM-l0-DCA-2 (resp. S3VM-l1-DCA) whose the interval
is [2%, 45%] (resp. [23%, 53%]).
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Fig. 5. Percentage of selected features on dataset Advert with different number of
unlabeled points

– When the number of unlabeled points exceeds 70%, the accuracy of three
algorithms decrease dramatically, especially for S3VM-l0-DCA-2 and
S3VM-l1-DCA.

Then, we can conclude that S3VM-l0-DCA is more robust than other algo-
rithms when the numbers of unlabeled points varies.

5 Conclusion

In this paper, we have proposed an efficient continuous nonconvex optimization
approach based on DC programming and DCA for the combined feature selection
and S3VM. Using an appropriate approximation function of zero-norm, we have
obtained a DC polyhedral program. It fortunately turns out that the correspond-
ing DCA consists in solving, at each iteration, one linear program. Furthermore,
S3VM-l0-DCA converges, after a finite number of iteration, almost always to a
local solution. Numerical results on several real datasets showed the robustness,
the effectiveness of the DCA based schemes. We are convinced that DCA is a
promising approach for the combined feature selection and S3VMs applications.
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Abstract. The objective of evidence-based medicine is to come to well
reasoned and justified clinical decisions regarding an individual patient’s
case based on the integration of case-specific knowledge, medical exper-
tise, and the best available clinical evidence. One significant challenge
implicated in this pursuit stems from the volume of relevant information
that can easily exceed what can reasonably be assessed. Thus intelligent
systems that can mine and synthesize vast amounts of information would
be invaluable. The reconciliation of such systems with the complexity and
subtlety of decision support in medicine requires specialized capabilities.
One untapped capability is furnished through the gap in information be-
tween what is known and what needs to be known to justify a decision. In
this paper, we explore the value of an information gap analysis for robust
decision-making in the context of evidence-based medicine with an eye
to the potential role in automated evidence-based reasoning systems.

Keywords: evidence-based medicine, robust decision making, informa-
tion gap theory, deep question answering systems.

1 Introduction

The philosophy behind evidence-based medicine is to come to well reasoned and
justified clinical decisions regarding an individual patient’s case based on the
integration of case-specific knowledge, medical expertise, and the best available
clinical evidence. This is often defined referencing the well known editorial by
Sackett et al. [8]:

Evidence-based medicine is the conscientious, explicit, and judicious use
of current best evidence in making decisions about the care of individ-
ual patients. The practice of evidence-based medicine means integrat-
ing individual clinical expertise with the best available external clinical
evidence from systematic research.

This definition is formalized through a five-step process for evidence-based
medicine, as excerpted from [3]:

1. Translation of uncertainty to an answerable question
2. Systematic retrieval of best evidence available

P. Perner (Ed.): MLDM 2013, LNAI 7988, pp. 543–554, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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3. Critical appraisal of evidence for validity, clinical relevance, and applicability
4. Application of results in practice
5. Evaluation of performance

One of the critical challenges that attends the practical application of this five
step process is a consequence of the prodigious volume of medical publications.
The number of medical papers published doubles every ten to fifteen years. [6]
The majority of these publications are available electronically. While in principle
this ready access should facilitate the incorporation of current best evidence into
the clinical decision-making context, the onerous investment required to acquire
(Step 2) and fully appraise vast quantities of evidence (Step 3) hampers its
meaningful inclusion.

Clearly medical practitioners could be greatly advantaged by an automated
way of obtaining and synthesizing useful evidence from an immense medical
corpus. In particular, what is needed is an intelligent system that can mine
and synthesize vast amounts of available information to provide accurate and
meaningful answers to questions posed by human users. Such intelligent systems
are called deep Question Answering (QA) systems. In particular, a deep QA
system seeks to understand the relevance of evidence to a query, provide an
answer based on this evidence, and communicate a level of confidence in possible
answers to the query.

The current state-of-the-art of deep QA systems was demonstrated with the
remarkable success of IBM’s Watson in the high profile human versus machine
Jeopardy! challenge that aired in 2011. Since the Jeopardy! challenge, IBM has
focused on developing and applying this technology in evidence-based medicine.
[4] Unlike the Jeopardy! case where there is a uniquely correct answer, the an-
swers in the medical domain are more complex and ambiguous. As a consequence,
the evolved deep QA system requires additional capabilities customized to cope
with the subtlety of decision support in the medical domain. One such capabil-
ity is afforded through the quantification of the informational disparity between
what is known and what needs to be known in order to justify a decision. In this
paper, we build on a previous example from deep QA in evidence-based medicine
[4] and explore the value of this informational disparity for robust decision mak-
ing in the context of a differential diagnosis with uncertain evidence.

1.1 Information Gap Analysis

The informational disparity described above is more commonly known as an
information gap or info-gap. The best way to motivate the idea of an info-gap
in the context of a decision is: If you had perfect information, what information
would change the decision?. By answering this question, we identify the cruces
of a decision. Then the current state of information can be viewed in terms of
its distance from the perfect information case where the outcome of the decision
changes. This distance between the current state of information and perfect
information is the information gap. An info-gap provides a way to characterize
the robustness of a model to the uncertainty in the decision space. In other
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words, this type of analysis can identify the outcomes that are most immune to
failure due to uncertainty. [1] This idea originated by Yakov Ben-Haim has been
used in wide variety of applications such as finance, conservation management,
infectious disease detection, and structural dynamics. [1,7,9,5]

There are three components to an information gap analysis:

1. The process model
2. The performance requirement
3. The uncertainty model

The process model is the mathematical representation of the system or decision-
making process. The performance requirement is assessed through a performance
measure computed using the process model. The uncertainty model character-
izes what is unknown about the parameters of the process model. [7] An info-gap
model constitutes an unbounded family of consonant sets of uncertain events.
The membership in the set is controlled by a horizon-of-uncertainty parameter,
α. So info-gap theory proposes a structure for the uncertainty space and char-
acterizes the clustering of uncertain events in sets. Importantly, info-gap does
not assume a particular measure function for these uncertain events. As such, an
info-gap model can admit any mathematical representation of uncertainty such
as probability distributions, random sets, imprecise probabilities, etc. so long as
it is consistent with the specified process model and the horizon-of-uncertainty
parameter, α. [5,2] Info-gap provides an indicator of robustness to uncertainty
rather than a measure of the uncertainty itself.

2 Example: Info-Gap Analysis for a Differential Diagnosis
under Uncertain Evidence

One potential contribution that info-gap analysis can provide to decision mak-
ing in evidence-based medicine is with the determination of the robustness of
the models from which decision alternatives are obtained. As an illustration,
we explore two alternative hypothetical models for aggregating evidence with
respect to two disease alternatives. The current example is based on recent de-
velopments from Ferrucci et al. [4] for the extension of the Watson deep QA
technology as a diagnostic support tool for differential diagnosis in evidence-
based medicine. In this application of deep QA, a particular case can be mined
wherein the patient’s electronic medical record can be contextualized with other
large volumes of structured and unstructured information. From this, a ranked
list of potential diagnoses is generated which can then be evaluated along dif-
ferent dimensions of evidence the system determined to be relevant. Examples
of evidential dimensions include: Symptoms, Findings, Patient History, etc.. So
each ranked diagnosis is associated with a confidence score justified through a
linked support of evidence broken out by dimension. [4] The connection is clear
between the description of the first three steps of the evidence-based medicine
process with the description of the evolution of the deep QA system to decision
support system, namely: translate uncertainty to a question; retrieve the best
evidence; and appraise it for validity, relevance, and applicability.
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2.1 Process Model

There are many potential opportunities for an info-gap analysis in this con-
text. For this example, we are interested in investigating the robustness of the
evidence dimensions to uncertainty. The fact that these confidence scores are
non-probabilistic uncertainty measures does not pose a problem for an info-gap
analysis. As info-gap is a meta-analytic tool for quantifying robustness to un-
certainty, it is agnostic as to the method used to quantify the uncertainty itself.
In Figure 3 from [4] there is an evidential profile for the differential diagnosis
between Lyme Disease and Sarcoidosis 2. There are four evidence dimensions:
Findings, Demographics, Symptoms, and Family History. We estimated the val-
ues for these dimensions summarized in Table 1 and reconstructed a bar chart
that is consistent with the IBM deep QA Evidence Profile visual display in
Figure 1.

The most significant evidence dimensions are Findings and Symptoms. It is
easy to show that diagnoses can change as a function of different process mod-
els. Suppose the following notional weights for two different weighted averages
as summarized in Table 2. (Note that these are purely notional values in order
to construct a simplified and illusory process model for the purposes of demon-
strating the info-gap. These should not be mistaken as candidates for the real
process models for combining evidential findings.) Utilizing these weights, we
can construct a weighted average of each, as summarized in Table 3. As we can

Table 1. Strength of evidence

Lyme Disease Sarcoidosis 2

Findings 0.4 -0.08

Demographics 0.053 -0.027

Symptoms 0.04 0.347

Family History -0.013 -0.173

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Findings Demographics Symptoms Family History

Lyme Disease

Sarcoidosis 2

Fig. 1. Strength of evidence in favor of the two candidate diagnoses, as in [4]
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Table 2. Weighting vectors for decision algorithms

Weights

Weight I Weight II

Findings 2 5

Demographics 1 1

Symptoms 5 5

Family History 1 1

Table 3. Different resulting diagnoses as a consequence of weighting

Lyme Disease Sarcoidosis 2

Findings 0.4 -0.08

Demographics 0.053 -0.027

Symptoms 0.04 0.347

Family History -0.013 -0.173

Sum 0.48 0.067

Average 0.12 0.02

Weighted Average 1 0.26 0.34

Weighted Average 2 0.56 0.28

see in bold face in the last two rows of Table 3, the relative confidence based on
these weighted averages change as a function of the weighting on the evidence
dimension, Findings. The consequence of this is a change in the diagnosis from
Sarcoidosis 2 to Lyme disease based on the weight of a single parameter. This
contrast between results for two models based a single parametric change moti-
vates the further examination of the two models with respect to robustness to
uncertainty in the evidential dimensions.

2.2 Performance Function

We define the second component of the information gap analysis the performance
function Y in terms of weights and the four evidential dimensions:

Y = w1Findings+ w2Demographics+ w3Symptoms+ w4FamilyHistory
(1)

written symbolically as:

Y = w1X1 + w2X2 + w3X3 + w4X4 (2)

where the weights wk are those listed in Table 2 only scaled for convenience that
the weights sum to unity:

w1 + w2 + w3 + w4 = 1 (3)

The performance function is evaluated for the two diagnoses, labeled A for
the Lyme disease and B for the Sarcoidosis 2 disease. A large value of the
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performance function indicates the strength of the evidence that supports the
corresponding hypothesis. Then, a ratio between the two values of the
performance function (Yr) is calculated:

Yr = Y (B)
Y (A) (4)

A ratio Yr ≥ 1 greater than one indicates that there is more evidence in support
of diagnosis B, that is, the Sarcoidosis 2 disease. Likewise, a value Yr ≤ 1
indicates that the evidence in favor of selecting the Lyme disease diagnosis A
is stronger. The info-gap analysis of robustness presented next is applied to the
ratio metric (Eqn 4).

The columns of Table 2 define different combinations of weights that make
up the two notional decision algorithms. We refer to these as Algorithm A and
Algorithm B, respectively. We will explore these two algorithms more closely with
respect to their robustness to uncertainty and compare them for the purposes of
decision-making.

2.3 Uncertainty Model

The final requirement of an info-gap analysis is to identify the uncertainty model
which we define relative to the values of the evidential dimensions describes in
Table 1. We consider these to be “true-but-unknown” values that can be from
different the values listed in the table. Further, we assume that no additional
information is available to determine where the “true-but-unknown” values may
be located relative to these values (or stated equivalently that no information is
available to describe the uncertainty of the values of the evidential dimensions).
The uncertainty model, therefore, is defined as a model of fractional change. The
“true” value of one of the four evidence dimensions, denoted as a variable Xk

in Eqn 2, deviates from the nominal value XNominal
k listed in Table 1 up to a

percentage α:

−α ≤ (XTruth
k −XNominal

k )

XNominal
k

≤ +α (5)

Eqn 5 defines α as a fractional change of variable Xk. It has no physical unit.
Equally important, the magnitude of α is unknown, which expresses that the
“true” value of the evidence dimension variable Xk is unknown.

2.4 Information Gap Analysis of Decision Algorithm A

The info-gap analysis of robustness searches for the minimum and maximum
values of the ratio metric, Yr (Eqn 4) given that the four evidence dimensions
are allowed to vary away, and up to α, from the nominal values defined in Table 1.
At a given level of robustness α, two optimization problems are solved to search
for the minimum and maximum values of the ratio metric (Eqn 4) given that
the four evidence dimension variables Xk can vary within the bounds defined in
Eqn 5.
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In the numerical implementation illustrated next, the value α = 1 corresponds
to ±50% variation of the nominal values of Table 1. This choice is arbitrary
and requires justification. This formulation of the info-gap analysis is an eight-
dimensional optimization problem since the four evidence dimension variables
Xk are optimized for the first diagnosis A (Lyme disease) and the same four
variables are optimized a second time, but independently, for the second diagno-
sis B (Sarcoidosis 2 disease). This implementation implies the assumption that
the way the “true” values deviate from the nominal values for diagnosis A is
uncorrelated from the way the “true” values deviate from the nominal values for
Sarcoidosis 2.

The analysis of info-gap robustness is summarized in Figure 2 that shows
the minimum and maximum values of the ratio metric (Eqn 4) for increasing
levels of robustness α. The dotted line at Yr = 1 separates the region where
the evidence supports diagnosis A (Lyme) from the region where the evidence
supports diagnosis B (Sarcoidosis 2). From the region defined by the maximum
and minimum performance curves, it is clear that the decision algorithm favors
the diagnosis B (Sarcoidosis 2) up to a level of robustness of α = 0.2 as both
curves lie to the right of the Yr = 1 dotted line. (Recall that the level α = 0.2
corresponds to ±10% variation of the values for the evidential dimensions). This
means that the decision in favor of Sarcoidosis 2 as the diagnosis is best supported
by the evidence profile, and this decision remains unchanged even if the evidence
dimensions are incorrect up to ±10% away from the nominal values listed in

Sarcoidosis 2 is the 
preferred diagnosis if >

Fig. 2. Robustness of medical diagnosis with Algorithm A
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Table 1. If it is plausible that the true values of the evidence dimensions can
deviate from the nominal values by more than ±10%, or α ≥ 0.2, then the
evidential support in favor of Sarcoidosis 2 is more questionable because the
minimum ratio (indicated by the solid line in Figure 2) decreases below one.
In practical terms, this means that confidence in the diagnostic decision distills
to the the question of confidence in the evidence used to support it is correct
to ±10%.

To illustrate how much evidence there is to support one diagnosis versus the
other one, at a given level of robustness α, this can be quantified in terms of
the relative percentages of support. The difference between the maximum and
minimum values of the ratio metric (Eqn 4), represents the entire range of possi-
bilities supported by the evidence profiles and the associated uncertainty. These
maximum and minimum values are shown as the robustness or performance
curves in Figure 3 (same as Figure 2). A simple approach to quantifying relative
support is to measure how much of this range falls below the critical value for
the Performance Ratio, Yr = 1 and how much is above it. The values that fall
below Yr = 1 are in favor of Lyme disease (A) while the values greater than one
are in favor of Sarcoidosis 2 (B). These values on either side of Yr = 1 are shown
on Figure 3 and summarized in Table 4 as a percentage of the total range.

Table 4. Strength of evidence in support of the two diagnoses

Level of Minimum Maximum Strength of Strength of
Robustness Percent of Percent of evidence in evidence in

α Perturbation Perturbation support of support of
Lyme Disease Sarcoidosis 2

0.0 -0.0% 0.0% 0.0% 100.0%

0.2 -10.0% 10.0% 0.0% 100.0%

0.4 -20.0% 20.0% 16.86% 83.14%

0.6 -30.0% 30.0% 20.20% 79.80%

0.8 -40.0% 40.0% 19.56% 80.44%

1.0 -50.0% 50.0% 17.33% 82.67%

Figure 4 illustrates the “strength” of evidence in support of diagnosisA (Lyme
disease), which is the fourth column of Table 4, as a function of the level of
robustness α on the vertical axis. Clearly, there is no evidence in support of
diagnosing the Lyme disease even if the evidence dimensions deviate from their
nominal values by ±10%, which is α = 0.2. Beyond this value of α, there is more
uncertainty in the resulting diagnosis. This uncertainty peaks where the nominal
values of the evidence dimensions are incorrect by up to ±30% (α = 0.6), then
there is a 20.20% “chance”1, at most, that the correct diagnosis is Lyme disease.

1 This “chance” is not “chance” in the sense of a probability; it may be more correct
to call this metric a “strength” of the evidence collected in favor of one diagnosis or
another.
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Strength of Evidence in 
Support of Lyme Disease 

Minimum Performance 

Strength of Evidence in 
Support of Sarcoidosis 2 

Maximum Performance 

100% 

83.14% 

79.8% 

80.44% 

82.67% 17.33% 

19.56% 

20.2% 

16.86% 

Fig. 3. Strength of evidence interpretation of robustness curves

Fig. 4. Strength of evidence in support of diagnosis of Lyme disease
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2.5 Information Gap Analysis of Decision Algorithm B

The info-gap analysis is repeated using Algorithm B. This second decision algo-
rithm uses the weights wk listed in the second column of Table 2. The definition
of the uncertainty model is identical to the previous analysis as defined by Eqn
4 where the robustness level α = 1 allows up to ±50% variability of the nominal
evidence dimensions.

Sarcoidosis 2 is the 
preferred diagnosis if >

Fig. 5. Robustness of medical diagnosis with Algorithm B

Figure 5 summarizes the analysis of info-gap robustness by showing the min-
imum and maximum values of the ratio metric (Eqn 4) for increasing levels of
robustness α. The decision to select the Lyme disease is maintained to the level
of robustness α = 0.5, approximately, where the maximum of the ratio metric,
Eqn 4 starts to admit values that are greater than 1. Crossing the critical value
of 1 means that the decision algorithm starts to support the possibility of the
alternate diagnosis of Sarcoidosis 2.

2.6 Comparison of Robustness of the Two Decision Algorithms to
Uncertainty

The info-gap analysis permits another perspective on these two different decision
algorithms, namely, their relative robustness to uncertainty. When we compare
Figures 2 and 5, we observe the similarity of the two plots in structural terms.
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However, because the difference in location with respect to the threshold perfor-
mance ratio, we find that the decision reached by Algorithm B contrasts with the
previous one. Algorithm B prefers the diagnosis of Lyme disease at α = 0 (where
the nominal values of the evidence dimensions are used without variation). This
difference in decision at the nominal values (α = 0) corresponds to the findings
initially discussed in Section 2.1 where a single parametric difference produced a
different diagnosis. Interestingly, by looking at the relative degree of support in
favor of the diagnoses and the robustness of the decision to uncertainty, we find
that Algorithm B is more robust than Algorithm A because its initial decision
remains unchanged up to ±25% (or α = 0.5) variability of the nominal evidence
dimensions as compared to ±10% only (or α = 0.2) in the case of Algorithm A .
From this comparison, one can say that the decision from Algorithm B is more
robust to uncertainty than the decision from Algorithm A given the evidence.

3 Conclusions

In this paper, we introduce the prospect of an information gap analysis to sup-
port decision-making in the context of evidence-based medicine. In particular,
an info-gap analysis provides a means of qualifying a decision based on a quan-
tifiable measure between what is known (the nominal values) and what is not
known (the amount of uncertainty). In the decision space, this furnishes the
ability to specify where the decision could change as a result of uncertainty. As
corresponds to intuition: if there is a low tolerance for uncertainty, then the re-
sulting decision is not robust and could easily change. Analogously, if there is a
high tolerance for uncertainty then the resulting decision is more robust and less
likely to change. We demonstrate this idea with a differential diagnosis example
where we studied the info-gaps of two notional decision algorithms and demon-
strated the robustness of each to the uncertainty potential in the supporting
evidence. As was illustrated, the info-gap could be used as a means of qualify-
ing individual diagnoses in the context of a single process model, performance
function, and uncertainty model. Moreover, the information gap could be used
to compare models for their relative robustness to uncertainty.

While info-gap can be used as an independent analytic method for gauging the
robustness of medical decisions under uncertainty, we imagine it could also be
used as one additional unique capability in an intelligent evidence-based decision
support system for clinical medicine. In the context of the five step process for
evidence-based medicine, the role of an automated evidence-based decision sup-
port system would be in the gathering and synthesizing evidence from a massive
corpus (Step 2-3). The role of an information gap analysis would be in the appli-
cation of results and evaluation of performance of the decision themselves with
respect to the uncertainty of the evidence used to support the diagnosis (Steps
4 and 5). These computational tools are intended as the complement to the
evidence gathering, synthesis, and decision-making of the medical practitioner
toward a collaboration that endeavors to leverage the unique and exceptional
capabilities of each partner. Info-gap analysis serves as a useful method that can
transit human decision-making and automated decision support.
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Abstract. Textual analysis using machine learning is in high demand
for a wide range of applications including recommender systems, busi-
ness intelligence tools, and electronic personal assistants. Some of these
applications need to operate over a wide and unpredictable array of topic
areas, but current in-domain, domain adaptation, and multi-domain ap-
proaches cannot adequately support this need, due to their low accuracy
on topic areas that they are not trained for, slow adaptation speed, or
high implementation and maintenance costs.

To create a true domain-independent solution, we introduce the Topic
Independence Scoring Algorithm (TISA) and demonstrate how to build
a domain-independent bag-of-words model for sentiment analysis. This
model is the best preforming sentiment model published on the popular
25 category Amazon product reviews dataset. The model is on aver-
age 89.6% accurate as measured on 20 held-out test topic areas. This
compares very favorably with the 82.28% average accuracy of the 20
baseline in-domain models. Moreover, the TISA model is highly uni-
formly accurate, with a variance of 5 percentage points, which provides
strong assurance that the model will be just as accurate on new topic
areas. Consequently, TISAs models are truly domain independent. In
other words, they require no changes or human intervention to
accurately classify documents in never before seen topic areas.

1 Introduction

Text analysis techniques, such as sentiment analysis, are valuable tools for
business intelligence, predicting market trends, and targeting advertisements.
This technology is especially salient because written works include tweets, Face-
book posts, blog posts, news articles, forum comments, or any other sample of
electronic text that has become prevalent due to the grow of the web.

Textual analysis applications need to operate over a wide and unpredictable
array of topic areas, often in real-time. However, current approaches are unable
to reliably and accurately operate in real-time for new domains.

Text analysis on a wide array of topic areas is difficult because word meaning
is context sensitive. Word sense disambiguation issues are one reason why clas-
sifiers trained for one topic area do poorly in other topic areas. The linguistic
community has spent a great deal of effort trying to understand the differences
between word senses by build linguistic resources such as WordNet [5], WordNet
Affect [12] and Senti-WordNet [1]. Word sense disambiguation is still challenging.
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Fortunately, word sense disambiguation issues can be side stepped for specific
problems. Consider sentiment polarity classification, which is the binary classi-
fication task where either the author approves of, or the author disapproves of
the specific topic of interest. For sentiment polarity classification knowing word
meaning is irrelevant, but knowing word connotation is crucial. In the following
example, “I proudly wore my new shirt to the bank.” It is irrelevant whether
the bank is a financial institution or a river bank because both senses of the
word bank have no sentimental connotation for apparel. Thus, the word sense
disambiguation problem can be simplified into a word connotation calculation.
By extension to text classification: knowing the word’s sense is irrelevant, but
knowing it’s class bias for a topic area is sufficient.

We introduce a method to determine topic independent class bias scores for
words. These words can be used to build bag-of-words models that operate well
in a wide area of diverse topics. Creating topic independent word scores is simple
when there exists labeled data from multiple domains. Bias scores for a word can
be calculated in each topic area using your machine learning algorithm of choice.
A function can then be applied to these scores to determine a topic independent
class bias score for the word. Intuitively, to measure topic independence, it makes
sense to observe the variance of a word’s class bias in multiple topic areas. We
introduce our Topic Independence Scoring Algorithm as a method to calculate
topic independent class bias scores from a set of existing topic area specific class
bias scores.

Since our Topic Independence Scoring Algorithm uses only bias scores pro-
duced by another supporting machine learning algorithm, it has several useful
properties. First, the supporting machine learning can be swapped out. Machine
learning experts can use our algorithm with the most appropriate algorithm for
the task at hand. Second, our algorithm works on models not training data.
This is very valuable in industrial settings when the training data may be lost
or inaccessible due to business reasons. Alternatively, this is useful when the ex-
pertise to tune the original algorithm may no longer be available, but the model
still remains. Finally, the topic independence scoring algorithm can be evaluated
against the algorithm that produced the topic area specific scores. This allows
us to more effectively evaluate the value of topic independence scoring.

As a use case and for evaluation purposes we build a topic independent model
for sentiment analysis that is highly accurate across 20 never before seen test
topic areas. Our topic independent model is even more accurate than the sup-
porting machine learning algorithm in the test domains using 10 fold CV. Using
our algorithm, we built a domain-independent sentiment model from five prod-
uct review categories in the Amazon product reviews dataset [2] and evaluated
it upon 20 additional product categories. Our classifier significantly outperforms
the classifiers built specifically for each of the 20 product review categories. The
baseline classifiers built specifically for the 20 test domains were almost twice as
likely to make an error as our domain independent model.
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Fig. 1. Distribution of topic independence by positive vs. negative bias across 25 topic
areas

2 Understanding Topic Independence

Our approach introduces the ground breaking concept of term level topic inde-
pendence, which is the degree to which a terms orientation to a class remains
the same when measured across multiple topics [7]. Poly-synonymous words are
one reason why classifiers trained in a single domain do poorly in other do-
mains. However, even when the sense of the word remains the same, the usage of
that word implies different things in different topic areas. These problems lack
a clear mathematical definition upon which machines can compute. Our Topic
Independence Scoring Algorithm provides a clearly defined mathematical count-
ing problem to eliminate word sense disambiguation issues when doing textual
machine learning. The afore mentioned counting problem counts the different
orientations a term has across multiple topic areas. This concept enables simple
and fast computation for topic independent text analysis, and is therefore a very
useful and important new concept.

We shall further explain topic independence using sentiment analysis as an
example. A term can have either a positive, a negative, or a neutral connotation
when it is used in context. Framed as a binary classification problem, the presence
of any term is either an indicator of positive sentiment, an indicator of negative
sentiment, or it has no class bias. This bias can be determined in context by
determining if documents in that context (aka domain or topic area) are more
likely to be positive or negative when that term is present. Given a set of different
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contexts we can count the number of contexts where the term is positive and
the number of contexts where the term is negative. In Figure 1 we chart these
values along the x and y axis for every term in the popular 25 category Amazon
Product Reviews Dataset [2]. This chart shows why our Topic Independence
Scoring Algorithm is so important.

Sentimental topic independence is a matter of degree: there is almost always
some situation where a normally positive word or phrase will have a negative
connotation. The topic independent sentiment bias of a term should be based not
only upon its sentimental strength in most situations, it must also be weighted
by it‘s reliability and uniformity. Put another way, the exceptions are so frequent
that they must be accounted for in the general rule.

Figure 1 shows that there are only 11 terms that have a positive sentimental
orientation in all 25 product review categories, while 16 terms have a nega-
tive sentiment orientation. For example, the 11 most topic independent positive
terms: “excellent”, “highly recommend” ”, “the best”, “best”, “an excellent”,
“I love”, “love”, “wonderful”, “a great”, “always”, and “recommend” occur at.
For example, the 11 most domain independent positive terms: excellent, highly
recommend , the best, best, an excellent, I love, love, wonderful, a great, always,
and recommend. The most topic independent negative terms include: “don’t
waste”, “ your money”, “waste”, “waste your”, “would not”, “money”, “disap-
pointed”, “worse”. These terms are very revealing, but are not enough to cover
a representative sample of any given text document.

The vast majority of all terms, over two million, are unique to exactly one
product category in our dataset. From that peak, the total volume of terms
falls off very rapidly according to the degree of topic independence. This implies
that we need to properly scale the sentiment strength scores for terms with
their degree of sentimental topic independence in-order to use the less topic
independent terms without overpowering the more topic independent terms.

3 Approach

The unique idea of our approach is to build a topic independent model by scor-
ing terms based upon how much their class bias shifts as observed across many
topics. By doing this irrespective of the target topic area where the model will
be applied we can be reasonably confident that the model will work well for any
topic area. This contrasts quite sharply with domain adaptation methods that
seek to adapt a model build for one domain into a model that will better fit
another specific domain. Using domain adaptation thus ensures that you will
need to domain adaptation again for the next domain. Furthermore, this kind
of custom fitting to a single dataset is more likely to overfit artifacts in those
datasets than a model that must fit multiple different domains since artifacts
can be cross-checked with other domains. Domain independent models are much
more useful than single domain models because they are more broadly applicable
and less susceptible to artifacts and other noise.
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Training a classifier with out-of-domain data can be accurately preformed if
you can answer two key questions:

1. For any term, what is that term’s class bias in the source domain(s)?
2. From this bias what can be concluded about its bias in the target domain?

The first question is fairly straight forward and easy to answer using standard
techniques for supervised machine learning. Delta TFIDF [8] weights works par-
ticularly well for this task [9], but they can easily be replaced as the state-of-
the-art advances.

Answering the second question is difficult for current domain adaptation ap-
proaches because they model the situation as a relationship between a prede-
termined training topic area and the target topic area. This setup assumes a
different relationship between each pair of topics.

Question two is very difficult to answer with that assumption, so let us in-
stead assume that the class bias of a term is equally likely to shift between any
randomly selected pair of topics. This implies that we can predict how likely any
given term’s class bias is to shift when applied to another arbitrary topic area
simply by observing how frequently it actually shifts class bias between multiple
topic areas. Similarly, we can observe the magnitude of these class bias shifts to
determine the likely magnitude of the class bias for other arbitrary topic areas.

Term level topic independence class bias scores need to measure and unify the
following semantics:

– Sensible orientation : A term’s class orientation should agree with its overall
orientation in the set of topic areas.

– Strength : Terms with higher scores in the topic areas should have higher
scores.

– Broad applicability : Terms that are used in more topic areas should have
higher scores.

– Uniform meaning : Terms with more uniform topic area scores should have
higher scores.

To measure these semantics we introduce our Topic Independence Scoring func-
tion in Equation 1. Strength can be measured with a simple average. This average
should also give us a sensible orientation. A strongly oriented term is more valu-
able as it becomes more broadly applicable so multiplying the strength score and
the applicability score makes sense. The uniform meaning metric is difficult.
Variance is not a good choice since variance scores increase with dis-uniformity,
have an undefined range, and when all the values are multiplied by a constant
the variance goes up by the square of the constant. Attempting to address the
dis-uniformity problem by dividing the other scores by the variance is not a
good solution because this can cause divide by zero problems and because of
the rate at which the variance score changes. A good way to score uniformity
is to use the geometric mean of the topic area scores. The geometric mean is
a good choice because it has a predefined range with a maximum equal to the
arithmetic mean when the values are totally uniform and with scores dropping
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as uniformity decreases. This final uniformity term should be multiplied with the
earlier calculations because, a strong broadly applicable term is more valuable
when the strong scores are more uniform.

Given that:

Dt is the number of topics that term t occurs in.
Sd,t is the class bias score for term t in topic area d.
TIS(t) is the feature value for term t.
We calculate Topic Independence Scores with the following formula:

TIS(t) =

Dt∑
d

Sd,t

(
Dt∏
d

|Sd,t|
)1/Dt

(1)

The Topic Independence Scoring Algorithm creates a topic independent model
from a set of existing topic dependent models using the TIS function on each
term. Algorithms, such as SVMs and Logistic Regression use weight vectors to
produce judgments. With a set of topic area specific models built by such algo-
rithms TISA can produce a new topic independent weight vector covering all the
terms in the source models. This new weight vector can be used to do topic inde-
pendent classification using the same classification algorithm that produced the
original topic area specific weight vectors. Our topic independent classification
can be easily used with a wide variety of popular machine learning algorithms:
There is a very low adoption barrier.

4 Evaluation

In this evaluation we demonstrate how to build topic independent sentiment
models using our topic independence scoring algorithm. We demonstrate that:

1. Topic independent sentiment models outperform in-topic models.
2. Topic independent models use additional out-of-topic training data more

effectively than alternative techniques including:
(a) Weighted voting with multiple models.
(b) Building a single model on the union of multiple topic area datasets.

3. Topic independent sentiment models can be used to find revealing and in-
formative topic specific vocabulary.

Our topic independent sentiment model is 89.6% accurate when measured over
20 additional held-out test topic areas with a low variance of 5.05 percentage
points. Our approach is the most accurate approach published on this dataset.
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4.1 Test 1: TISA vs. In-topic Models

This test evaluates our topic independence scoring algorithm as a method for
domain independent sentiment classification using 20 different held-out test topic
areas.

For our baseline we used the standard 10-fold cross-validation methodology in
each of the 20 test topic areas. For this baseline we choose to use the Delta IDF
[7] classification algorithm, which is a slight modification on the Delta TFIDF
document feature weighting algorithm [8]. To train a Delta IDF model calculate
each feature in the bag-of-words as shown below and add them to a weight
vector. Given that:

|Pt| is the number of positively labeled training documents with term t.
|P | is the number of positively labeled training documents.
|Nt| is the number of negatively labeled training documents with term t.
|N | is the number of negatively labeled training documents.
Vt is the feature value for term t.

Vt = log2

(
(|N | + 1) (|Pt| + 1)

(|Nt| + 1) (|P | + 1)

)
(2)

We need to balance the positive vs. the negative bias because we know that the
datasets have been class balanced by the original author of the dataset. Follow
the procedure described below.

Bias Balancing Procedure:

1. Create a copy of the weight vector and call it the positive vector. Call the
original vector the negative vector.

2. For every feature in the positive vector, if the feature value is less than zero
set the value to zero.

3. For every feature in the negative vector, if the feature value is greater than
zero set the value to zero.

4. L2 normalize the positive vector
5. L2 normalize the negative vector
6. Add the positive and negative vectors together and return the answer.

For our classification function we use the dot product of the document with the
weight vector. Data points with a dot product greater than or equal to zero are
positive, otherwise the point is negative.

To keep our comparison uniform and meaningful we apply the same bias
balancing procedure and use the same classification function for both TISA
and Delta IDF. Bias balancing is a good idea for TISA because the overall class
balance is topic area dependent. For example, while most people love their digital
cameras they absolutely hate their anti-virus software.
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To further eliminate external factors we use the Delta IDF algorithm to pro-
duce the set of domain specific feature scores used by TISA in equation 1. Since
Delta IDF does not have any tunable parameters, no one can claim that the input
models for TISA were better tuned that the baseline models. These choices re-
move potential confounding factors that could have been responsible for TISA’s
better performance.

We built our topic independent model from a set of five topic dependent
models using TISA as described in our approach. The five source models were
built using Delta IDF on a different set of topic areas than the 20 held out test
topic areas. The five source models were built on the books, dvds, electronics,
kitchen appliances, and music topic areas because these are the most popular
domains. This matches real world situations where there exists more labeled
data for popular topic areas and far less labeled data for other areas.

Table 1. A general model built form using TISA to combine Delta IDF scores on data
about books, DVDs, electronics, kitchen appliances, and music does very well on 20
different product categories when compared to in-domain models built using Delta IDF
on each of the categories

Target In-Dom TISA
Category Model Model
Apparel 89.17 89.90
Automotive 80.92 85.99
Baby 89.41 90.32
Beauty 85.38 90.62
Camera 86.54 91.56
Cell Phone 83.66 83.82
Comp Games 72.77 88.04
Food 76.41 88.86
Grocery 84.25 89.14
Health 87.36 89.31
Instruments 84.28 90.32
Jewelry 85.32 89.44
Magazines 85.40 89.68
Office 76.32 89.91
Outdoor 84.13 92.41
Software 79.44 87.43
Sports 87.09 90.24
Tools 56.67 94.74
Toys 86.87 90.40
Video 84.19 89.46

Average 82.28 89.60
Variance 55.70 5.05

On average our topic area independent model is 89.60% accurate, which is
a statistically significant improvement over the 82.28% accurate product area
specific Delta IDF baselines to the 99.9% confidence interval. Table 1 shows the
accuracy of our TISA model compared to the baseline for each of our 20 test
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product review categories. Please note that the low accuracy of the tools baseline
is not a mistake. We will discuss it in greater detail in the next section.

Unlike other algorithms, TISA is highly accurate on every topic area with
very low variance. Even though many of the topic areas are substantially different
from TISA’s training data our TISA model is more accurate and nearly 11 times
more stable in terms of variance than the domain specific models. While domain
adaptation algorithms try to exploit the relationship between topic areas, TISA
attempts to minimize the effects of these relationships. This decouples TISA’s
training topic areas with its testing topic areas. This has the added benefit of
allowing researchers working with TISA to use labeled data from any topic area.
This can allow researchers to avoid using low quality topic area datasets, such
as topic areas with very little data, harder data points to classify, or low inter-
annotator label agreement.

Table 2 illustrates the difference between topic independent term scores pro-
duced by TISA and topic dependent scores that were used as input to TISA.
This table shows the top 50 most negative and most positive words or pairs of
words for TISA and the baseline models. The terms highlighted in the figure
show that TISA’s most important terms are very general purpose, while the
terms in the input books model are very specific to the books topic area. These
example terms support our argument that TISA favors topic independent bias
terms.

The product specific baselines built using Delta IDF make for an excellent
comparison. These product specific baselines are not straw men; they have been
shown to outperform Support Vector Machines on this dataset [7]. By correctly
setting up our experiment we have eliminated confounding factors and can con-
clude that the quality of the models is responsible for the difference between the
two algorithms. By evaluating TISA against the Delta IDF algorithm used to
create its constituent sub-models we negate any potential objections that our
improvement was due to the difference between the baseline algorithm and the
algorithm used to create the sub-models. Thus the difference between the two
models comes from either the intelligent combination of models using TISA, or
the amount and quality of the training data. Both of these are good points for
TISA, since TISA allows the researcher to freely select dataset without respect
to the topic area that the model will be used on.

4.2 Test 2: TISA vs. Ensemble Methods

Skeptical readers might object to comparing TISA against in-domain Delta IDF
because TISA is using more total labeled data. In machine learning, it is well
known that using more training data will improve accuracy, but it is also well
known that using training data that is not similar to the test data will hurt
accuracy. One of TISA’s main benefits is that it allows machine learning prac-
titioners to leverage large amounts of dis-similar data by reducing the impact
of the dis-similarity. The tools entry in Table 1 is a clear example of why this
approach is so important: using more training data is the entire point of domain
adaptation.
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Table 2. Top 50 most positive and negative terms for the Books domain as determined
by in-domain Delta IDF vs. Top Most positive and negative terms as determined by
TISA using Books, DVDs, and Electronics. All terms shown have the correct senti-
mental orientation and are strongly oriented. However, in-domain Delta IDF identifies
many features, shown in bold and highlighted in red , that will not generalize well to
non-book data. Instead, TISA placed more importance on terms, shown in italics and
highlighted in green , that should generalize very well to other domains.

TISA Identifies General Terms by Decreasing the Score of Topic Specific Terms
Positive Terms Positive Terms Negative Terms Negative Terms
Books Domain TISA Books Domain TISA
must for highly recommended waste your waste your
magnificent only complaint not worth very disappointed
only complaint must for two stars two stars
worth every worth every very disappointing a refund
excellent read great addition worst book refund
a must delighted uninteresting don’t waste
wonderful book a must very disappointed waste of
delighted great buy sorry but not recommend
definitely worth every penny don’t waste your money
great resource excellent for a joke not worth
excellent overview an outstanding waste of zero stars
excellent reference must-have not waste very disappointing
a delight well worth very poorly complete waste
essential reading another great is poorly save your
must-have for definitely worth save your very poorly
my clients a must-have a disappointment avoid this
weaves and allows poor quality not waste
great addition my only no new waste
detailed account great way refund a waste
a magnificent highly recommend a poorly buyer beware
great fun are amazing excuse for total waste
offers an is superb wasted my wasted my
pleasantly surprised excellent condition complete waste big disappointment
every penny exceeded my skip this a disappointment
great introduction superb big disappointment of junk
pleasure to pleasantly surprised zero stars hard earned
and accessible is awesome terrible book really disappointed
be required great condition worst books a joke
really helped great product poorly organized don’t buy
be missed not disappoint good reviews stinks
not disappoint i highly your money money back
top notch excellent choice disappointing a poorly
terrific book best ever boring book poor quality
beautifully written excellent i a refund returned this
excellent resource loves this unfortunately this insult to
transcends outstanding poorly written or money
renewed delighted with factual errors extremely disappointed
great collection recomend it glowing reviews is terrible
fabulous book gem new here disappointment
must-have loves it disappointment i not buy
first rate very pleased total waste not recommended
an outstanding definitely recommend am disappointed stay away
refreshing and no nonsense was boring don’t bother
you wanting also great irritated worthless
a pleasure can’t beat even finish i regret
developing a the raw disappointing i huge disappointment
teaches us great look had hoped never buy
from home thumbs up disappointment dud
poems and she loves drivel disappointing
very comprehensive love this a waste the trash
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One reason why TISA is very accurate is that it preserves and intelligently
uses the information captured by splitting the document pool into different do-
mains or topic areas. Consider building a Delta IDF dot product classifier using
the union of all the data that the topic independent model was trained on. That
process ignores the information provided by the subdivision in the dataset be-
tween different domains. Table 3 shows that the TISA model is more accurate
than a Delta IDF classifier created from the union of the same set of documents
at an accuracy of 89.6% to 86.3%. This difference is significant to the 99.5%
confidence level. Clearly it is better to use the information provided by domain
membership than to ignore it.

Table 3. General TISA “BDEKM” model built from the Books, DVDs, Electronics,
Kitchen Appliances, and Music Delta IDF models vs. Weighted Voting with these
models vs. a single Delta IDF model built on the union of all the Books, DVDs,
Electronics, Kitchen Appliances, and Music data. Results have been sorted by size.
The 10-fold in-domain accuracies for each test domain are displayed for reference.

Target Dom In-Dom TISA Union Weighted
Category Size Model Model Model Voting
Tools 19 56.67 94.74 73.68 84.21
Instruments 93 84.28 90.32 88.17 87.10
Office 109 76.32 89.91 88.07 87.16
Automotive 314 80.92 85.99 81.85 80.57
Food 377 76.41 88.86 86.21 87.27
Computer Games 485 72.77 88.04 85.98 84.33
Outdoor 593 84.13 92.41 90.22 89.71
Jewelry 606 85.32 89.44 88.45 88.61
Grocery 654 84.25 89.14 88.23 88.69
Cell Phone 692 83.66 83.82 78.90 79.05
Beauty 821 85.38 90.62 87.33 88.67
Magazines 1124 85.40 89.70 86.39 87.82
Software 1551 79.44 87.43 84.53 83.75
Camera 1718 86.54 91.56 88.07 88.53
Baby 1756 89.41 90.32 89.07 89.46
Sports 2029 87.09 90.24 87.83 88.37
Apparel 2603 89.16 89.90 88.21 89.44
Health 2713 87.36 89.31 85.51 86.10
Video 4726 84.19 89.46 90.12 88.30
Toys 4929 86.87 90.40 89.06 89.53

Average 2317 82.28 89.60 86.30 86.83

A popular alternative technique to leverage more out of domain data is to use
multiple classifiers under a weighted voting approach. Delta IDF dot product
classification is particularly well suited to this approach because, when both the
documents and the weight vectors are normalized to unit length, the magnitude
of the dot product can serve as the vote’s weight. Weighted voting using the
books, DVDs, electronics, kitchen appliances, and music domains over the test
domains is 86.83% accurate. The difference between weighted voting and the
TISA method using the same training and test points is significant to the 99.9%
confidence level. The weighted voting approach is statistically no different than
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the union model as indicated by a p-value of .3555 . These results are displayed
in detail in Table 3.

4.3 Sentiment Feature Mining

In many case it is valuable to know what the important domain specific bias
features are. For example, someone who is shopping for clothes may want to
know why a specific article of clothing was rated poorly by users. While reporting
to the shopper the highest scoring topic independent features for the product
will clearly show that people did not like the product, it will not do a good job of
showing why people did not like the article of clothing because topic independent
features are very generic. To solve this sentiment mining problem we must report
to the shopper the topic specific reasons why people did not like the article of
clothing.

Fortunately, the topic-independent model can be used to automatically gen-
erate topic-specific sentiment models. These topic specific models can then be
used to report specific reasons why people liked or disliked the topic.

Table 4. Top 50 most positive and negative terms mined for the apparel topic area
using the topic independent model built by TISA on books, DVDs, electronics, kitchen
appliances, and music data. The terms are strongly sentimental and are correctly ori-
ented for apparel. The terms tend to be very specific to the apparel topic area.

Positive Terms Negative Terms
compliments on toe is returned them poor customer
great quality hubby holes received a
is comfortable thick as defective credited
are soft so soft cheaply made disappointed when
great item wanted a the return recieved the
confortable tons of policy post
great shoes best bra make sure return shipping
ones and locally charged cancelled
and comfortable monday the photo i emailed
with jeans great to remove never order
great bag really great sent the ears
fit very definitely buy so thin wont
them very best shoes send the item back
khaki are exactly the ankle top and
were exactly sleek off my tore
comfortable they walking shoe ordered <num> too wide
is slightly good shoe known i see
he really ride up times and the seam
love em last forever holes in just about
feels great things and shrunk pay to
reasonable price under jeans so tight pants were
many different very confortable <num> sizes thin that
bra ever as thick big and opened
comfortable from wanted something thin and ordered a
even in tons torn uncomfortable the

This takes 3 steps: (1) gather a set of documents about the topic the user
is interested in, (2) classify every document using the topic-independent model
and label them as positive or negative with the classifiers decision, (3) compute



TISA: Topic Independence Scoring Algorithm 567

ΔIDF(t) scores for terms in the set of documents that were mechanically labeled
in the previous step. The top most features of this model are the strongest reasons
why people liked or disliked the product. Table 4 shows the top 50 strongest
sentimental terms for the clothing topic computed using this method.

The words and phrases shown in Table 4 are good apparel specific indicators
of sentiment that help explain why a user liked or disliked the piece of apparel
under review. Many of these phrases express an opinion about an apparel specific
product feature. For example, “Feels great” indicates a positive opinion about
the feel of the clothing. Likewise, “Great quality” expresses a positive opinion
about the item’s quality. Other phrases assert a good, or bad, property of ap-
parel for the item under review. Examples include “Is comfortable” and “Are
soft” both of which are desirable aspects of many apparel items. Other stop
words, or near stop words, are informative components of strong apparel specific
sentiment indicators. Sentiment amplifiers such as “So” ,“Very” , and “Really”
are important stop words because they amplify the strength of the rest of the
phrase. The presence of these phrases can indicate why a user gave a positive or
negative rating to a piece of apparel.

5 Related Work

Supervised machine learning is a common approach for sentiment analysis. Nor-
mally, a classifier is trained on a hand labeled dataset for the specific topic area
of interest. Training these classifiers generally takes a long time, but once they
are trained they can rapidly make accurate judgments of the type they were
trained to make, on the type of things they were exposed to during the training
process. Using Support Vector Machines [6] with a bag-of-words feature space is
one of the most popular examples of this approach, including the seminal work
on sentiment analysis for movies [11].

While these in-domain methods work well in a predefined topic area with a
sufficient amount of labeled data they do not work well when used outside of the
predefined topic area. As a result these methods do not work well for important
applications, such as personal assistants, that need to provide answers for any
domain, or topic area, that the user is interested in at the moment.

Current domain-adaptation approaches such as CODA [4], SCL-MI [2], SFA
[10], and Couple Spaces [3] build a model for a domain, which has no labeled
data, using labeled data from a different domain. This is unacceptable because
it is infeasible to train a new model in real-time whenever an electronic personal
assistant encounters a question about a new domain.

To address these challenges and enable personal assistants to succeed in unex-
pected topic areas we took a strikingly different approach to re-score sentiment
features using their domain-independence. Our work alone has been designed to
build models that remain highly accurate even when they are used on unfamiliar
topics that may be vastly different.

In a business setting it is highly desirable to be able to deploy trained models
on new topic areas that they were not designed for. Training these models should
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not require any special changes for the topic area. Furthermore, these models
should be highly accurate in every topic area that they will be used upon even if
the list of topic areas they will be used upon is unknown. Unlike state-of-the-art
Domain Adaptation approaches, our TISA fulfills these demands as summarized
in Table 5.

Our approach is highly accurate across 20 never before seen test domains.
Surprisingly, our algorithm is even more accurate than models that were custom
tailored to the test domains.

Table 5. TISA has the easiest to satisfy training data requirements, is simple, fast,
highly accurate, and reliable. Caution should be taken when directly comparing the
average accuracy and variance numbers of TISA and our ΔIDF baseline to other pub-
lished approaches due to the different training environments described.

Comparison Criteria TISA In-Dom SCL-MI SFA-DI CODA with CODA with
ΔIDF 0 Target 1600 Target

Situations Modeled 20� 20�� 12��� 12��� 12��� 12���

Requires Labeled Data
from Other Domains

Yes No Yes Yes Yes Yes

Requires In-domain
Labeled Data

No Yes No No No Yes

Requires Unlabeled
In-domain Data

No No Yes Yes Yes Yes

Average Accuracy 89.6 82.28 77.97 78.66 83.23 86.46
Variance 5.05 55.70 25.38 17.29 11.54 2.89

6 Conclusion

In this paper we showed that topic-independent sentiment analysis is highly
important for a wide array of applications. We pointed out how state-of-the-art
domain-adaptation approaches do not address these problems. To address these
problems, we designed our approach with the core goal of accurate sentiment
classification for unforeseen topic areas.

Our algorithm has several advantages over other approaches because it does
not require any information about the topic area, including labeled or unlabeled

� Each modeled situation corresponds to a product review category since each is a
held-out test set.

�� Each product review category is a topic area and is treated as a test situation.
Although 10-fold cross-validation is used in each product review category folds are
not counted as a test situation. Average and variance scores are computed over
test situations. Please note that the average and variance reported in this table for
Δ IDF includes domains that TISA was trained on.

��� Each unique source/target product review category pair is being treated as a mod-
eled situation. Every domain adaptation source/target pair for the Books, DVDs,
Electronics, and Kitchen product review categories were modeled.
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data from the topic area. First, machine learning experts can use our scoring
algorithm with the most appropriate algorithm for the task at hand. Second,
even if the training data has been lost, is inaccessible due to business reasons,
or the expertise to tune the original algorithm is no longer available, existing
models can still be used with TISA to produce topic independent models. Third,
training time is substantially reduced for super-linear training algorithms by
cutting the number of documents down into multiple smaller pools. Fourth, TISA
can leverage existing labeled data in any number of topic areas. We speculate
that this reduces overfitting and leads to our demonstrated better results.

TISA is the only true scalable topic-independent sentiment analysis solution
for real world problems. A single topic-independent model built using TISA
is vastly preferable to using multiple models domain specific models for the
following reasons: One, a single model is much easier and less costly to create
and maintain. Two, topic independent models do not require topic detection to
determine which domain specific model to use. Three, topic-independent models
created using TISA are even more accurate than topic-specific models due to
their ability to leverage more data and reduce the affects of noisy features. Four,
our topic-independent models are 11 times more reliable than domain specific
models. Five, TISA models require no changes to work well on a new topic
area. These factors make TISA the best choice for practical real world sentiment
analysis.
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Abstract. In the recent past, machine learning algorithms have been
used effectively to identify interesting patterns from volumes of data,
and aid the decision making process in business environments. In this
paper, we aim to use the power of such algorithms to predict the pre-
release box-office success of motion pictures. The problem of forecasting
the box-office collection for a movie is reduced to the problem of classi-
fying the movie into one of several categories based on its revenue. We
propose a novel approach to constructing and using a graph network be-
tween movies, thus alleviating the movie independence assumption that
traditional learning algorithms make. Specifically, the movie network is
first used with a transductive algorithm to construct features for clas-
sification. Subsequently, a classifier is learned and used to classify new
movies with respect to their predicted box-office collection. Experimen-
tal results show that the proposed approach improves the classification
accuracy as compared to a fully independent setting.

Keywords: Transductive Approach, Classification, Motion Pictures,
Business Intelligence, Features.

1 Introduction

Movies have become an integral part of our lives as a means of relaxation and
entertainment. Movies have also been a significant medium for culture exchange
between different countries and regions and are thus an indispensable asset to
the world. Given this, the movie industry has become a business and it has huge
market profit and potential [9]. As a consequence, the knowledge and research
about the movie industry is becoming deeper. Ability to accurately predict the
box-office returns for a movie will help the cinema line determine the propaganda
cost and period of showing the movie to maximize the profit.

The problem of predicting the box-office gross of a pre-release motion picture
has been widely tackled in the past from a statistical point of view. There are
many factors influencing the box-office of a movie, for example, number of screens
for the movie, advertising, time of the year, number of movies that are released
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and so on, making the problem challenging. Some of the prior work on this
problem was aimed at identifying features that influence the outcome of a movie
and finding if they are positively or negatively correlated to the outcome [3].

With the success of machine learning algorithms in improving managerial
decision making, researches have started using techniques to build predictive
models when addressing the problem of predicting the box-office gross of a
movie. Sharda et al. [1] have reviewed the past research on this problem and
re-introduced the problem from a machine learning perspective. In their work,
Sharda et al. [1] addressed the gross prediction problem by converting it to a
classification problem and building a predictive model based on artificial neural
networks. They analyzed 7 different features that influence a movie’s gross and
used them as inputs to a multilayer perceptron neural network. The output from
the model is one of 9 classes (selected based on outcome range) to which the
movie might belong. In their approach, the authors make the assumption that
each movie is independent of the other movies - a basic assumption made by
traditional classification algorithms.

However, in the case of movie gross prediction problem, movies are generally
not independent. In fact, there is an underlying graph structure that we could
identify among movies. For example, a movie can be connected to another movie
if they share actors and/or directors, if they have the same genre, if one is a sequel
to the other, or if they are released around the same time. If we consider common
actors or directors, the intuition is that the reputation of an actor or a director
who worked in a movie can be transferred to a different movie in which the
actor or the director took part. Thus, we believe that the reputation of Steven
Spielberg as the director of a yet to be released movie will have positive effect on
the success of that movie compared to the success of a yet to be released movie
directed by a rookie director.

Traditional classification models assume data instances are independent and
identically distributed (i.i.d.) and fail to capture dependencies among instances,
in our case movies. To address this limitation, there has been some prior work
in the area of link-based classification. Getoor et al. [10] emphasized the impor-
tance of link information for classification and proposed a framework to model
link distributions. Neville et al. [11] presented a relational Bayesian classifier
with different estimation techniques to learn from linked data. Parimi et al. [12]
addressed the link prediction problem in LiveJournal social network by combin-
ing link information with user interest features. Zhu et al. [5] proposed a matrix
factorization technique to capture the structure of the graph for web-page classi-
fication. The success of the prior work in using link information for classification
motivated us to construct a movie dependency network when addressing the
gross prediction problem. We use the matrix factorization approach proposed by
Zhu et al. [5] to generate network-based features for classification.

The main contributions of our work are as follows: a) an approach to create a
graph network that captures dependency relations among movies; b) a custom
weighting scheme to compute the weights on the edges; c) generation of features
from the network; d) experimental results on a movie dataset showing that the
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best performance is obtained when movie independent features are combined
with dependency features extracted from the network.

The rest of the paper is organized as follows: Section 2 describes prior work in
the areas of movie gross prediction and link-based classification. We provide the
details of the data used in this work and its categorization in Section 3. Section
4 presents the details of our methodology, specifically the relational setting, the
baseline approach and the experimental design. In Section 6, we explain the
results of the experiments. Finally, Section 7 discusses the overall contribution
of this study and future research directions.

2 Related Work

Much better marketing strategies can be designed and better choices can be
made by the cinema production companies in the presence of a strong estimator
of a movie’s anticipated success. With this in mind, researchers in the past have
tried to identify factors that influence the success of a movie and computed
correlations between those variables and a movie’s box-office gross. Moon et al.
[3] used the information from the entire lifetime of a movie to improve their gross
predictions over time. One factor that they considered was the word-of-mouth,
as it can be indicative of the demand associated with a movie. In addition, they
identified correlations between critic ratings and advertisement, and the movie
revenue. Their results show that the opening weekend collections for a movie are
the strongest estimators for the lifetime gross of the movie. However, it is worth
noting that the problem of predicting the gross before a movie’s release, that we
address, is harder than extrapolating the gross based on first week collections.

Sharda et al. [1] approached the movie gross prediction problem from a
machine learning perspective. They reviewed past research on the variables in-
fluencing the success of a movie and used seven of those in their work. They
converted the problem of predicting the revenue of a movie into the problem of
classifying a movie based on revenue ranges. For example, a movie can be con-
sidered a flop if its revenue is in the range 100,000 to 200,000 and a blockbuster
if its revenue is in the range 5 million to 10 million. A multilayer perceptron
network is used to classify a movie’s gross in one of 9 possible classes. However,
a drawback of this approach is that it assumes movies to be independent from
each other.

The work by Zhang et al. [4] addressed the box-office prediction problem using
a multilayer back-propagation neural network. Similar to the work by Sharda
et al. [1], Zhang et al. [4] identified 11 input variables to the neural network
based on market survey. The weights for the neural network model are selected
using statistical methods to maximize the accuracy of the model. Even though
the accuracy of the proposed model is better than the accuracy of the model
proposed by Sharda et al. [1], the dataset used in this work is rather small,
consisting of only 241 movies classified according to 6 classes.

Recent research in link-based classification has focused on ways in which
inherent dependency relations between instances can be used to improve results
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of traditional learning algorithms, which assume instances to be independent.
Many techniques have been proposed in the past to exploit the graph structure
of particular problems. Getoor et al. [10] have proposed a framework to cap-
ture correlations among links using link distributions. They used an iterative
classification algorithm, which combines both link information and information
intrinsic to instances (e.g., web-page content) for classification. The authors have
applied this approach to web and citation collections and reported that using
link distribution improved accuracy in both cases. The work by Parimi et al. [12]
combined content features, obtained by modeling user interests using LDA, with
graph features to predict friendship links in LiveJournal social network. Zhou
et al. [8] proposed a framework that uses the adjacency matrix of the graph for
propagating labels in the graph. However, this technique like other techniques
outlined above, cannot be used to propagate labels in a directed graph.

Zhou et al. [6], [7] have studied techniques, which aim at exploiting the
structure of the graph globally rather than locally, thus ensuring that the classifi-
cation is consistent across the whole graph. The approach proposed in [6] is moti-
vated by the framework of hubs and authorities, while the work proposed in [7] is
inspired by the PageRank algorithm used by Google search engine. Although
the techniques proposed in [6] and [7] are applicable for classification in di-
rected graphs, they rely solely on link structure and ignore content information
(e.g., content of a web-page). To address this limitation, Zhu et al. [5] proposed
an algorithm to jointly factorize the content information and link information
(represented as weighted edges in a directed graph) in a supervised setting,
and showed that this joint factorization improves the classification accuracy
compared to just using link information.

We plan to take advantage of the approach proposed in [5] to factorize the link
information from the movie graph that we construct, and hypothesize that the
factors obtained as a result of this model capture the similarity between movies
better than measures that use only the content. In addition, the dimensionality
of the problem is reduced when representing each instances by its factors.

3 Data

The dataset that we used in this work consists of 977 movies released as ‘wide
releases’ between the years 2006 and 2011. There are approximately 150 movies
in each year and for each movie we collected features such as actor and director
profiles (to compute star value), genre, release date, sequel information, budget,
runtime, number of theaters and MPAA rating. All these features, from movie
information to actor and director profiles are collected from a well-known site:
Box Office Mojo. We selected these features based on the work by Sharda et al.
[1], and grouped them into two categories based on how we use them in our
proposed approach. Specifically, we use the budget, runtime, number of theaters
and MPAA rating as features intrinsic to a movie (i.e., content features), while
actors, directors, genre, release date and sequel information features are used
to construct dependency relations between movies, or more precisely weighted
edges in the movie graph (i.e., link features).

http://www.boxofficemojo.com
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Intuitively, the budget, runtime, number of theaters and MPAA rating features
represent information particular to a movie and directly contribute to the rev-
enue of the movie, independent of other movies. These features can be seen as
content features and are directly used when training the model (without addi-
tional processing or transformation). As opposed to these features, link features
capture dependencies between features and are used to form a directed graph
(precisely, weighted edges) between movies. They influence the movie gross indi-
rectly, by the means of graph features extracted from the graph. More intuition
behind using the dependency features is provided in what follow.

The actors and directors of a movie, in general, have a popularity index associ-
ated with them. The popularity that an actor or a director achieves through the
success of their movies creates a positive sentiment for their up-coming movies,
affecting the revenue of that movie. This is precisely what we want to capture
when using actors and directors to construct dependencies between movies, i.e.
weighted edges in the movie graph. Other dependency features like genre and
sequel are meant to capture the percentage of audience that are loyal to that
genre or franchise, respectively, when used in the graph network. For example, a
person who is mostly inclined towards movies with genre ‘thriller’, would most
likely watch the awaited thriller movies rather than dramas or comedies. Simi-
larly, a person who likes movies like Sherlock Homles-1 and Sherlock Holmes-2
would most likely watch the upcoming movie Sherlock Holmes-3. The feature
release date captures the competition that a movie might have to face when it
is released. It is said by the industry experts that revenue, in general, is likely
to be divided among the movies released at the same time. We should note that
the feature MPAA rating can also be categorized as a dependency feature, but
the presence of only 4 different kinds of ratings (G, PG, PG-13, R) will result
in too many links in the graph network. Also, we believe that, unlike genre,
MPAA rating will not be useful in capturing the interest of audience towards a
particular rating. Hence, it is just used as a movie content feature.

4 Approach

As mentioned above, our objective is to design an approach that can take ad-
vantage of link features (capturing dependencies between movies), in addition to
content features, for the task of predicting box-office revenues of movies before
their theatrical release. In this section, we will describe in detail the construc-
tion of a dependency graph between movies, several weighting schemes used for
computing weights on the edges of the graph and an algorithm to capture the
structure of the graph. We will also present the baseline model against which
our approach will be compared.

4.1 Relational Setting

Graph Construction and Weighting Schemes: In Section 3, we catego-
rized features as link features (constructed based on the dependency graph) and
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independent features. Here, we explain how the movie graph is constructed using
link features. Two movies in the dataset are connected if they:

1. have a common actor
2. have a common director
3. have the same genre
4. are sequels
5. are released around the same time (e.g., two weeks apart )

Fig. 1. Example of a movie graph created using dependency features

Figure 1 depicts an example movie graph that can be constructed using the
dependency features. As seen in Figure 1, each link has a weight term which can
be seen as the similarity between the two connected movies. In this work, we
experiment with three different weighting schemes to see which one represents
our data better. We only use dependency features in weighting schemes 2 and 3.
The three schemes are described as follows:

1. A Constant Weight ‘1’: In this weighting scheme each link in the graph
is assigned a constant weight value ‘1’ without considering how similar the
nodes connected by the edge are. This is a simple weighting scheme but has
the disadvantage of not capturing the similarity between the nodes.

2. Radial Basis Function (RBF) Kernel: The weight corresponding to an
edge in the graph is given by the following kernel function:

k(x, x′) = exp(− ‖x − x′‖2 /2σ2) (1)

where x and x′ are the feature representations of the nodes connected by
the edge and the features are computed in a way similar to those in the
independent setting (Section 4.2). Equation 2 captures the similarity between
the two nodes.
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3. Custom Weighting Scheme: Even though weights from RBF kernel cap-
ture the similarity between the nodes, they cannot be used to capture the
negative effect from the feature ‘Competition’ or the positive effect of ‘Se-
quel’. We shall consider two examples to understand the disadvantage of
using an RBF kernel. The headers ‘1’, ‘2’, ‘3’ and ‘4’ in Tables 1 and 2 cor-
respond to the features: ‘Star Value’, ‘Genre’, ‘Sequel’ and ‘Competition’,
respectively. In the example in Table 1, the two movies are clearly connected
as they are sequels and hence are very similar to each other. However, we
will have a weight value less than 1 for the edge connecting these two movies
because of the difference in the values for feature ‘sequel’. Consider the ex-
ample in Table 2 and assume that the two movies are connected based on
release date. The edge connecting these two movies will have a weight value
of ‘1’ if RBF kernel is used because of identical values for all the features.
Even though the movies in Table 2 are less similar than those in Table 1,
the weight values from RBF kernel suggest otherwise. Because of this disad-
vantage, we designed a custom weighting scheme for the movie domain.

In this weighting scheme, the weight for a link between two movies is
determined by linearly combining the dependency features with coefficients
as shown in Equation 2. The intuition of weights on the graph in weighting
schemes 1 and 2 is that they represent similarity between the two nodes con-
nected by the edge. However, in this weighting scheme, the intuition of weight
has changed from similarity between the nodes to the positive/negative effect
that can be transferred from one node to other node. The feature Release-
Date in Equation 2 takes a value ‘1’ if the two movies are connected based
on release date and ‘0’ if not. Other features in Equation 2 are computed in
a way similar to those in independent setting (Section 4.2). Optimal values
for the coefficients can be obtained either by using a validation set or by trial
and error based on domain knowledge. Because of small number of movies
in our dataset, we determined the coefficients by trial and error.

Table 1. Example 1, depicting the dis-
advantage of RBF Kernel

Title 1 2 3 4
Batman Begins High Action 0 A

The Dark Knight High Action 1 A

Table 2. Example 2, depicting the dis-
advantage of RBF Kernel

Title 1 2 3 4
IronMan II High Action 1 A

The Dark Knight High Action 1 A

w12 = a1 ∗ (ActorV alue) + a2 ∗ (DirectorV alue) + a3 ∗ (Genre)

+ a4 ∗ (Sequel) − a5 ∗ (ReleaseDate) (2)

Classification in Directed Graphs: Given a network graph with nodes and
weights on edges, the objective is to find the class label for the nodes which do
not have any class label. For example, in Figure 1, if we know the revenues for
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the movies m1 through m7, we would want to find out the revenue for the movie
mp. As explained in Section 2, there has been some work in the past to solve
problems that match the above criterion. In this work, we use the algorithm
proposed by Zhu et al. [5] because of its ability to combine content information
into the model, and at the same time, reduce the dimensionality of the problem.
This algorithm falls into the category of transductive algorithms in machine
learning. Transductive algorithms are algorithms which are trained on specific
training instances to reason on specific test instances. Suppose we add a new
node to the graph, we would have to run the algorithm again to predict the
revenue for the newly added node. The algorithm that we use in this work uses
the matrix factorization technique to factorize the adjacency matrix in a graph
network. The factors generated as a result of this factorization can be seen as link
features and can be further used as features for classification. The factorization
is given by the following equation:

min
Z,U

∥∥A − ZUZ�∥∥2
F
+ γ ‖U‖2F (3)

where,

– ‘A’ is the adjacency matrix represented by weights
– ‘Z’ is an n × l feature matrix, n = #instances, l = #features
– ‘U’ is an l × l matrix
– ‖.‖F is the Frobenius norm.

Equation 3 can be solved using optimization techniques such as gradient de-
scent. The intuition behind Equation 3 is to approximate the ‘A’ matrix using
the product ZUZ� and as a result, we obtain link features in the ‘Z’ matrix
which can be used to represent each instance (movie in our case).

The pseudo-code to obtain features using the above technique is as follows:

1. Construct the graph using the link features.
2. Use one of the weighting schemes to fill the adjacency matrix with weights.
3. Run the above matrix factorization algorithm to get ‘Z’ matrix.
4. Use the ‘Z’ matrix to represent each movie for classification.

Movie Representation: As explained earlier, each movie in the dataset is
represented using the features obtained by factorizing the adjacency matrix.
These features are henceforth referred to as link or graph features. The number
of link features used to represent a movie (i.e., the number of factors) is decided
using a validation set. Other features such as movie independent features can
also be appended to the link features. Once all the movies in the dataset are
represented either using just link features or link + movie independent features,
we build predictive models to test our hypotheses. An example representation
for the movie ‘The Dark Knight’ is shown in Equation 4. The movie independent
features are appended to the graph features in this example.

TheDarkKnight = f1 · · · fl, Budget,#Theaters, T ime,MPAA,Class (4)
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4.2 Baseline: Independent Setting

Many researchers in the past have assumed that movies are independent when
addressing the gross prediction problem. In this setting, we use this indepen-
dence assumption between the movies, construct features and build predictive
models to classify movies into gross ranges. This approach is identical to the one
described in Sharda et al. [1] and thus serves as a baseline for our approach.

Feature Construction: The features that are used to build predictive models
in the independent setting are the following:

1. Star Value: The star value for a movie is contributed by the actors and
directors of that movie. We collected information about top 5 actors and all
the directors for a movie and crawled the actor/director profile from the site
Box Office Mojo. The value an actor or a director contributes is determined
by averaging the gross for all the movies (released) the actor or director took
part in. The overall value from the actors/directors for a movie is the average
of values for the actors/directors. The star value for a movie is obtained by
taking a weighted average of the values contributed by all the actors and the
directors (depicted in Equation 5). The coefficients are set as 0.7 for actor
value and 0.3 for director value based on past research which indicates that
the director value for a movie is not as significant as the actor value for that
movie. We used three independent binary variables to represent the degree of
star value in our model: ‘High’, ‘Medium’, and ‘Low’ values, by discretizing
the star value computed. Based on our calculations, a movie is assigned a
star value ‘High’ if the value from Equation 5 is greater than 65 million,
‘Medium’ if the value is between 25 million and 65 million and ‘Low’ if the
value is less than 25 million.

StarV alue(m) = 0.7 ∗ ((a1 + a2 + a3)/3) + 0.3 ∗ ((d1 + d2)/2) (5)

2. Sequel: Similar to other prior studies, we used a binary variable to determine
whether a movie is a sequel or not. Our intuition is that the sequels are
positively correlated with the success of a movie as they are filmed, because
of the success of the previous versions of that movie. The feature takes the
value ‘1’ if the movie is a sequel and ‘0’ if the movie is not.

3. Competition: We used this feature to capture the competition that a movie
faces from other movies that are released around the same time. In a study by
Moon et al. [3], it is reported that the pool of entertainment dollars is shared
between the movies that are released around the same time. Many studies in
the past have found release date to be an important contributor to a movie’s
box-office success and it can be used to capture the level of competition. The
feature competition is expected to negatively influence the success of a movie.
We represented competition using the following values: ‘High’, ‘Medium’ and
‘Low’. A value ‘High’ indicates high competition, a value ‘Medium’ indicates
medium and a value ‘Low’ indicates low competition for a movie. Based on

http://www.boxofficemojo.com
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the release dates of the movies in our dataset, we assign ‘High’ to the movies
released in ‘January’, ‘August’, ‘September’ or ‘October’; ‘Medium’ to the
movies released in ‘February’, ‘March’, ‘April’, ‘November’, or ‘December’
and ‘Low’ to the movies released in ‘May’, ‘June’ or ‘July’.

4. Genre: Most of the past work has identified genre as a content category
determiner and used it in their work even though it is rarely found to be
significant. We followed the convention and used it as a feature. Eighteen
different genres are used to tag a movie and we allowed a movie to be tagged
with more than one genre value. The tags we used are shown in Table 3.

5. Budget: In the recent past, budget for a movie seems to be one of the
features highlighted in the promotions for a movie with the objective of
attracting more people to watch the movie. We believe that this feature
contributes to the success of a movie and is positively correlated with it. We
used a positive integer to represent this feature.

6. Run Time: This feature is represented as a continuous variable and captures
the length of the movie.

7. Number of Theaters: Previous work for solving this problem showed cor-
relations between a movies’ financial success and the number of screens it is
released in. We represent this feature as a continuous variable indicating the
number of screens a movie is scheduled to be shown at its opening.

8. MPAA Rating: A commonly used variable in predicting the gross for a
movie, which takes the values ‘G’, ‘PG’, ‘PG-13’ and ‘R’.

Table 3 summarizes all the features used in the independent setting and the
possible values that each feature may take. An example of how the movie ‘The
Dark Knight’ is represented in the independent setting is shown in Table 4.
Table 5 depicts the gross ranges for each of the classes used in this work. This
is the same for both independent setting and dependent setting.

Table 3. Summary of features and the values they take in the independent setting

Competition StarValue Sequel Genre RunTime Budget Theaters MPAA
High High 1 Period, Crime, RunTime Budget Positive G

Medium Medium 0 Action, Romance, for the for the integer PG
Low Low Thriller, Family, movie in movie in PG-13

Historical, Sci-Fi, minutes dollars R
Horror, Drama,
Comedy, Sports
Fantasy, Music,
War, Animation
Documentary

Adventure
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Table 4. Representation of ‘The Dark Knight’ in independent setting

Competition StarValue Sequel Genre RunTime Budget # Theaters MPAA Class
C High 1 Action 150 185000000 4366 PG-13 9

Table 5. Discretization of the movie gross into 9 classes

Class No 1 2 3 4 5 6 7 8 9

Range < 10 > 10 > 20 > 30 > 45 > 70 > 100 > 150 > 200
(in Millions) (flop) < 20 < 30 < 45 < 70 < 100 < 150 < 225 (blockbuster)

5 Experimental Design

As explained in Section 3, the dataset that we used in our experiments consists of
977 movies released as ‘wide releases’ between the years 2006 and 2011. Movies
released between the years 2006 and 2010 are considered as training instances
and movies released in the year 2011 are considered as test instances. This will
ensure that we use information from the past to predict the gross for future
movies. Features are constructed for the movies in the training set and test set
for the relational setting and independent setting, as described in Section 4.1
and Section 4.2, respectively. Model parameters and number of graph features,
in case of the relational setting are tuned using a validation set constructed using
movies between the years 2006 and 2010.

5.1 Research Questions

Our experiments have been designed to address two main research questions:

– Which weighting schemes is better in terms of prediction accuracy?
– How does the relational setting compare with the independent setting?

5.2 Experiments

To answer the above questions, we have designed the following experiments:

1. Experiment 1: In this experiment, we test the performance of predictive
models trained on features constructed using the independent setting (Sec-
tion 4.2). This experiment will be referred to as exp_1 henceforth.

2. Experiment 2: We ran two variants of this experiment in which we test pre-
dictive models trained on graph features constructed using weighting scheme
1 (Section 4.1). In the first variant which will be called exp_2_0 hence-
forth, we use just the graph features to build the models. In the second
variant which will be called exp_2_1, we add the movie independent fea-
tures (Budget, MPAA Rating, No. Theaters and Runtime) to the features
used in exp_2_0.
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3. Experiment 3: In this experiment, we build models using graph features
constructed using weighting scheme 2. Similar to experiment 2, we have
exp_3_0 and exp_3_1.

4. Experiment 4: The graph features in this experiment are constructed us-
ing the weighting scheme 3. Similar to the above two experiments, we have
exp_4_0 which uses just graph features and exp_4_1 which uses graph fea-
tures along with movie independent features. The values for the coefficients
in Equation 2 are: a1=0.55, a2=0.25, a3=0.2, a4=1, a5=1.

For all the experiments, we used Weka implementations of the Logistic Regres-
sion and Random Forest algorithms.

5.3 Evaluation Criteria:

To evaluate the results of the experiments outlined above, we have used the
following metrics:

1. Bingo Accuracy: Also known as BINGO or simply accuracy, it is defined
as the ratio between the number of instances correctly classified and the
total number of instances.

2. AUC: Area under the ROC curve, or AUC, is one of the popular metrics used
to evaluate prediction models. For each experiment, we report the weighted
average AUC value, as output by Weka.

6 Results and Discussion

6.1 Comparison between Different Weighting Schemes

As mentioned earlier, experiments have been conducted to test which of the
weighting schemes better capture the information from the features used in the
dependency setting. As expected, weights generated using the custom weighting
scheme produced better results for the evaluation metrics in most of the cases.
This can be seen from Tables 6 and 7. Custom weighting scheme has better
AUC and accuracy values compared to the AUC and accuracy values from the
other two weighting schemes for the random forest classifier when using just the
graph features (Table 6) or when the movie independent features are appended
to the graph features (Table 7). For the logistic regression classifier, both AUC
and accuracy values are better compared to the AUC and accuracy values from
the other two weighting schemes when we append the graph features to the
movie independent features. Hence, it is evident from Tables 6 and 7 that the
classification accuracies of the predictive models built using the custom weighting
scheme are better than those built using a constant weighting scheme or weights
generated using an RBF kernel.
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Table 6. AUC and accuracy values
for logistic regression and random for-
est classifiers trained on graph features
constructed using different weighting
schemes. Best AUC and accuracy val-
ues, across all the experiments, for each
classifier are highlighted.

Exp Metrics Logistic Random
Regression Forest

AUC 0.538 0.536
exp_2_0 ACC 15.07 15.75

AUC 0.596 0.559
exp_3_0 ACC 21.23 16.44

AUC 0.585 0.598
exp_4_0 ACC 24.66 21.92

Table 7. Similar to Table 6, AUC and
accuracy values for classifiers trained
on movie independent features ap-
pended to the graph features. Best
AUC and accuracy value across all
the experiments, for each classifier are
highlighted.

Exp Metrics Logistic Random
Regression Forest

AUC 0.702 0.667
exp_2_1 ACC 26.03 20.55

AUC 0.673 0.729
exp_3_1 ACC 21.92 27.4

AUC 0.735 0.732
exp_4_1 ACC 33.56 32.88

6.2 Comparison between Independent and Relational Settings

Table 8 depicts the comparison between the results for the independent setting
and the dependent setting for logistic regression and random forest classifiers.
The proposed approach of using a dependency relation between the movies was
able to improve the accuracy of the predictive models and is very close in-terms
of the AUC metric compared to the independent setting. The reason for a lower
AUC value in relational setting for the predictive models compared to those in
independent setting might be because we have optimized the accuracy metric
during the validation experiments to get the number of graph features to use and
to tune the model parameters, ridge in case of logistic regression and number of
trees for the random forest classifier.

Table 8. AUC and accuracy values for logistic regression and random forest classifiers
in the independent and relational settings, using the three weighting schemes. Best AUC
and accuracy values across all the experiments, for each classifier, are highlighted.

Exp Metrics Logistic Regression Random Forest
AUC 0.748 0.745

exp_1 ACC 29.45 26.71

AUC 0.702 0.667
exp_2_1 ACC 26.03 20.55

AUC 0.673 0.729
exp_3_1 ACC 21.92 27.4

AUC 0.735 0.732
exp_4_1 ACC 33.56 32.88
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As expected, better results for the accuracy are achieved using the custom
weighting scheme and we hypothesize that tuning the coefficients a1, a2, a3, a4
and a5 from Equation 2 might improve the results further. It is also evident that
the results shown in Table 8 are much better that the results from a random
classifier which will have an accuracy of 11.11% (1/9).

7 Conclusions and Future Work

We analyzed the problem of predicting the revenue of a movie before its theatri-
cal release and identified several factors influencing the same. We designed an
approach to construct a dependency network for the movies in the dataset and
worked on the application of a transductive algorithm to predict the missing
labels for the nodes in the graph. We have designed three different weighting
schemes to represent the network using the adjacency matrix and experiments
are conducted using all the weighting schemes to determine which is effective.
It is evident from Tables 6 and 7 that the custom way of generating weights
produced better results compared to the other two weighting schemes. Our hy-
pothesis that considering a dependency relation between movies helps improve
the prediction accuracy is confirmed by the results in Table 8. The results also
show that the AUC and accuracy values of the predictive models are improved
when the movie independent features are appended to the graph features.

As an extension to the work described in this paper, we would like to study
the influence of social media on a movie’s success. Our intention is to capture
the word-of-mouth effect or the demand for the movie using social media. There
has been some work in the recent past along the lines of using social media
data to predict movie ratings and box-office gains. Asur et al. [13] used ‘Twitter’
social media to collect tweets related to movies and analyzed their influence on
a movie’s revenue. They concluded that the rate of tweets on a movie has a
positive influence on the movie’s success. Moreover, sentiments extracted from
tweets further improved the predictions. Wong et.al. [14] also used ‘Twitter’ data
to predict the rating as well as box-office gains for a movie, by doing sentiment
analysis on the tweets. Encouraged by the results published in [13] and [14], we
plan to test how informative will the data from ‘Twitter’ be, for the movies in
our dataset. To accomplish this, we developed a framework to query and retrieve
tweets about movies from a popular search engine for Twitter called Topsy. The
number of unique users and total tweets can be used to capture the percentage
of audience interested in the gossip about the movie and the sentiment of a tweet
can be used to know if a user likes or dislikes the movie. We hypothesize that
the features constructed from the social media data will further improve the
classification accuracy and be useful in answering the question: ‘How predictive
are the features from different data sources?’

Acknowledgements. We would like to thank Dr. Shenghuo Zhu for sharing
the code of his algorithm.

http://www.topsy.com
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Abstract. This paper presents a pair of formal concept search proce-
dures to find associative connection of concepts via bridge concepts. A
bridge is a generalization of a sub-concept of an initial concept. The ini-
tial concept is then shifted to other target concepts which are condition-
ally similar to the initial one within the extent of bridge. A procedure for
mining target concepts under the conditional similarity with respect to
the bridge is presented based on an object-feature incident relation. Such
a bridge concept is constructed in the concept lattice of person-feature
incident relation. The latter incident relation is defined by aggregating
the former document-feature relation to have more condensed relation,
while keeping the variation of possible candidate bridges. Some heuris-
tic rule, named Mediator Heuristics, is furthermore introduced to reflect
user’s interests and intention. The pair of these two procedures provides
an efficient method for shifting initial concepts to target ones via some
bridges. We show their usefulness by applying them to Twitter data .

Keywords: associative search, bridge concept, mediator, conditional
similarity.

1 Introduction

In the studies of Information Retrieval, a kind of technique, called “Associative
Search” [1], is sometimes used to shift queries during the search processes for
documents or messages. The purpose of shifting queries is to suggest feature
terms and documents not being properly expressed by the initial query, remind-
ing users of other features which may be related to user’s interests or intention.
This paper aims at formalizing those processes in terms of formal concepts [5]
and to provide an efficient mining procedure to enumerate target concepts asso-
ciative with the initial one, enjoying the structures of formal concept lattices.

P. Perner (Ed.): MLDM 2013, LNAI 7988, pp. 586–600, 2013.
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Fig. 1. Example of Associative Connection of Concepts

Fig. 1 illustrates an example of associative connection between two concepts,
“travel” and “festival”, where the former is considered as the initial one, and
ovals in the figure denote sets of documents with the feature terms as “travel”.
At least some documents about “travel” involve another feature term, “experi-
ence” for instance, that may play a role of bridge for “travel” and “festival”. In
other words, the associative connection is supported by such documents about
“travel” with the term “experience” that form a sub-concept of “travel”. A bridge
concept “experience” guiding us to “festival” can be constructed by dropping
“travel” from the sub-concept of “travel” with “experience”. The dropping oper-
ation is performing generalization of concepts. As is well known, the framework
of formal concepts is suited to perform such a construction based on Galois
connection between feature terms as attributes and documents as objects. Par-
ticularly, specialization (generalization) to obtain sub-concepts (super-concepts)
is naturally represented in concept lattices.

In the problem of Web navigation [13], a similar idea for navigating concept
search in a concept lattice is presented, guiding related concepts along a lattice
structure. Namely the basic operations are those for generalization, specializa-
tion and for taking sibling concepts in the lattice. On the other hand in this
paper, under a bridge concept, which is also constructed by specialization and
generalization but is much more constrained as we see later, target concepts
reachable from the initial one are never our solution as long as they are not
related to some bridge concept. Thus we make stronger structural constraint for
the targets.
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Major issues we have to solve in making bride concepts and associative
connections based on them are listed as follows.

Selection of Candidate Bridges (SCB) :
There exist many sub-concepts of initial one. Even if we choose some of them,
we have many ways to generalize those sub-concepts to get more general
super-concepts as bridges.

Selection of Target Concepts (STC) :
Suppose some bridge concept is successfully constructed from the initial one.
Even under such an assumption, several possible concepts associated with
the initial one via the bridge are there. Some criterion or condition checking
which target concepts are potentially associative under the presence of bridge
will be needed.

The STC problem can be solved more directly than SCB by enumerating can-
didate concepts meeting a similarity constraint that they must be similar to
the initial concept w.r.t. a given bridge. Thus we regard STC as a mining task
instead of selection task. In the case of Fig 1, although “travel” and “festival”
may not be similar so much, their extents (the document sets) would become
closer when we restrict documents to those of “experience”. Thus we evaluate
how object sets are overlapping each other within the extent of bridge. Our sim-
ilarity is conditioned by bridge concepts. Several similarity measures for formal
concepts are proposed in the literatures. For instance, in [12], similarity between
concepts is defined by considering the overlappingness of their feature sets and
object sets at the same time. However, we need only similarity showing how
the object sets are overlapping. For this reason, we use bond [4], an extended
Jaccard coefficient, to calculate the degree of overlappingness for object sets.
In Section 6, we present a procedure to solve STC based on the bond measure
conditioned by bridges.

On the other hand, SCB is more critical, since STC search completely
depends on solutions of SCB. As is already discussed, bridges are constructed
from document objects of some sub-concept of initial one. Some clustering meth-
ods, [9,10] for instances, may be applicable to have a family of object sets. From
each object set, we would form an intent of bridge by examining and by select-
ing some of its characteristic feature terms. However, almost clustering methods
disregard clusters not meeting their own clustering criterion. Consequently,
possible candidate bridges are restricted.

To the contrary, in this paper, we regard the variation of possible clusters of
document objects. As we have more candidate object sets from which bridges are
constructed, users have more chances to become aware of them and to change
their initial concepts based on them. It is however computationally hard to keep
all of them because of a huge number of object subsets or sub-concepts of initial
one.

In order to relax this kind of dilemma, we here propose to use other informa-
tion about documents or messages, the information of writers or senders. With
each object (document or message), we suppose just one person is associated.
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Then we can build a person-feature relation from the object-feature relation by
merging objects each person has. The variation of features possessed by objects is
aggregated to those persons have. As the number of persons is much smaller than
the number of document objects, we examine person sets, instead of document
sets, from which some bridge concepts are drawn more efficiently.

The extraction of bridges from person sets is performed in the corresponding
concept lattice for the person-feature incident relation. In order to make the
process more efficient, we introduce the following heuristic:

Mediator Heuristics:
When we wonder which direction of associative connection is better to be
developed, we normally ask some persons who talk about various areas of
documents and feature terms. We call here such persons mediators. As more
number of features or topics they are talking about, we regard them as better
mediators.

Using a membership function of fuzzy k-means clustering [3], we define a prob-
ability distribution on features showing how a person is related to the features,
and then calculate its entropy as the degree of mediator. Then, every person
is ranked according to the entropy, and the relevance to the initial concept is
tested by user. Some persons may be inadequate from the user’s viewpoint, while
another may be good conversely. We assign negative or positive signs to the
former and the latter types of mediators, respectively. Then the target bridge
concepts are required to cover positive mediators and not to cover negative
ones. Consequently, the possible bridges are to be placed in a sub-lattice with
the initial concept as its top and the least common generalization of positive
mediators as its bottom. Using the search strategy presented in [2], we show in
Section 6 a very efficient search procedure to find candidate bridge concepts in
the sub-lattice.

The reminder of this paper is organized as follows. In the next section, we
introduce some terminologies. Section 3 discusses a pair of incident relations
as datasets we assume. Our user ranking method is presented in Section 4. In
Section 5 and 6, we formalize our associative search and present its computa-
tion procedure, respectively. In our experimentation in Section 7, we apply our
method to data of 500, 000 tweets, where features are compressed as 155 clusters
of 912 original feature terms (nouns) to avoid the problem of very sparseness
of the data. Such compressed features are also used to build message-feature
incident relation. As an instance, we show an associative connections between
“smartphone” and “digital book” via “mobile” actually extracted. The paper is
concluded in Section 8 with a summary and some future directions.

2 Preliminaries

In this paper, we are concerned with a notion of concepts in Formal Concept
Analysis (FCA) [5]. Let O be a set of objects (or individuals) and A a set of
attributes (or features). For a binary relation R ⊆ O × A, A triple (O,A, R) is
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called a formal context. If (x, y) ∈ R, we say that the object x has the attribute
y. Then, for a set of objects X ⊆ O, the set of attributes associated with X is
denoted by X ′, that is, X ′ = {y ∈ A | ∀x ∈ X, (x, y) ∈ R}, where “′” is called
a derivation operator. Similarly, for a set of attributes Y ⊆ A, the set of objects
sharing Y is denoted by Y ′, that is, Y ′ = {x ∈ O | ∀y ∈ Y, (x, y) ∈ R}.

For a pair of X ⊆ O and Y ⊆ A, (X,Y ) is called a formal concept (FC) under
the formal context iff X ′ = Y and Y ′ = X , where X and Y are called the extent
and the intent of the concept, respectively. For concepts (Xi, Yi) and (Xj , Yj),
if Xi ⊆ Xj (or Yi ⊇ Yj), then we say (Xi, Yi) is a sub-concept of (Xj , Yj).

Since we are concerned with concepts in different formal contexts, the
derivation operator in a context C is often explicitly denoted by ′(C) or ′′(C).

3 Person-Term Relation and Document-Term Relation

In order to formalize our associative search, we assume a person-term relation
and a document-term relation as formal contexts.

Let P be a set of persons and V a set of terms or words as a vocabulary. It is
assumed that a document is written at the vocabulary V by a person in P . For
a document d, the set of terms appeared in d is referred to as terms(d) and the
person by whom d is written as person(d).

Given a set of documents D, we can define a document-term relation RD ⊆
D ×V , where (d, t) ∈ RD if and only if t ∈ terms(d). It is clearly represented as
a formal context D = (D,V,RD).

In addition, a person-term relation RP ⊆ P × V can also be defined from
D. For the document set D, the set of documents written by a person p ∈ P is
denoted by Dp, that is, Dp = {d ∈ D | person(d) = p}. Then, for a person p,
the set of terms used by p in some document is given by Tp = ∪d∈Dpterms(d).
Based on Tp, we can define RP ⊆ P × V as (p, t) ∈ RP if and only if t ∈ Tp.
Thus we have a corresponding formal context P = (P, V,RP ).

4 Ranking Persons Based on Mediator Level

Let P be a set of persons. We assume that each person in P is assigned a
mediator level. Intuitively speaking, if a person is related to various kinds of
topics, it seems possible for us to associatively access to several topics via the
person. In this sense, it would be reasonable to consider that such a person is
a good mediator for associative search and given a higher mediator level. On
the other hand, if a person is concerned with some particular topic, he/she is
assigned a lower mediator level.

4.1 Mediator Level

We consider a person to be a good mediator, if he/she is related to a more
number of topics than the others. In order to find such a person, assuming a
cluster of terms (words) to be a topic, we evaluate a user’s mediator level based
on how closely related to topics the user is.
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For a person-term context P = (P, V,RP ) and a document-term context D =
(D,V,RD), the mediator level of a person in P is computed as follows:

1. The person context P is projected by preserving all terms with TF -IDF
values greater than (max+min) ∗ α, where alpha is a control parameter,
and max and min are the maximum and minimum values of TF -IDF . The
projected context is denoted by P̃ = (P, Ṽ , R̃P ).

2. Based on Ṽ ⊆ V , the document context is also projected. The projected
context is denoted by D̃ and defined as D̃ = (D, Ṽ , R̃D = (RD ∩ (D × Ṽ ))).
Then we consider its corresponding matrix MD̃ = (w1, . . . ,w|Ṽ |), where

wi
T = (di1, . . . , di|D|) and for each j, if (j, i) ∈ R̃D, then dij = 1 and

otherwise dij = 0.

3. The vectors wi (1 ≤ i ≤ |Ṽ |) are clustered into several groups of terms.
Each cluster is regarded as a topic and is represented by its central vector.

4. For the (projected) person context P̃ , we consider its corresponding matrix
MP̃ = (pT

1 , . . . ,p
T
|P |)

T , where pi
T = (di1, . . . , di|D|) and for each j, if (i, j) ∈

R̃P , then dij = 1 and otherwise dij = 0.
5. In order to transform each person vector pi

T into those in the document
space, we apply Singular Value Decomposition (SVD) to MD̃.

6. Degree of relatedness of a person p to a topic t is given by the distance
measure used in fuzzy K-means in [3],

R(p, t) =
1∑

ti∈T (
dist(p,t)
dist(p,ti)

)
2

m−1

where T is the set of topics, m is a control parameter for fuzzy level and
dist(pi, tj) is Euclidean Distance in the document space between a person pi
and a topic tj .

7. Regarding the vector of R(p, ti)-value for each topic ti as a probability dis-
tribution, the mediator level of the person p is given as the entropy of the
distribution.

For each cluster i and j, we believe that < ci, cj >→ 0 by using the center
of similar words. In other words, each topic has no relation with others. If one
user has a more general interest, he/she will get involved into a more number of
separated topics. Entropy will help us to judge the variance of a user’s interest.

By sorting the persons in P in descending order of their mediator levels, we
can define a ranked list of persons in P . For each person p ∈ P , the mediator rank
and the mediator level of p are referred to as rank(p) and level(p), respectively.

4.2 Clustering Terms

In our clustering step, we use Laplacian Eigenmaps described in [6] to get closely
related terms into one cluster. Moreover, for each topic, the document distribu-
tion is assumed to be Gaussian and the Gaussian kernel is used to make this
points linear. Our clustering algorithm is performed as follows:
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1. Calculate the matrix A as

Aij =

{
exp(−disi, j/σ2), if r �= j

0, otherwise

2. Calculate the matrix D as Dij =
∑

j(Aij), where D is a diagonal matrix.

3. L is defined as L = D− 1
2AD− 1

2 .
4. Find x1,x2,...,xk, the k largest eigenvectors of L (chosen to be orthogonal

to each other in the case of repeated eigenvalue), and form the matrix X =
[x1x2...xk] ∈ "n×k by stacking the eigenvectors in columns.

5. Form the matrix Y from X by renormalizing each of X ’s rows to have unit
length (i.e. Yij = Xij/(

∑
j X

2
ij)

1/2).

6. Treating each row of Y as a point in "K , cluster them into k clusters via an
extended k-means.

7. Finally, assign the original point sj to cluster j if and only if row i of the
matrix Y was assigned to cluster j.

In this procedure, σ2 is a parameter for how rapidly the affinity Aij falls off with
the distance between si and sj . In fact, however, a fixed parameter may lead to
problems when topics’ documents number and variance various, because if we
have topics A and B, where topic A has a larger variance and more documents
than B, then we get a document d which talks about A and B at the same time
and assume that topics A and B in d have the same importance. If creating a new
cluster is not allowed, we may prefer clustering d into A because it has a larger
variance and it seems containing more property. So we introduce a auto-adaptive
parameter selection.

To make the parameter σ adaptive, we use the following method to select a
σ parameter for point i and j, which is similar to the work in [8].

The affinity between points si and sj is defined as

Aij = exp

(
−|si − sj |2

σiσj

)
,

where the σi and σj are in a local scale σi =
√

1
n

∑
n |si − sj |2. This method

allows σ to be automatically adjusted according to local variance, that is, no
parameter setting is required. Our preliminary experimental results show
effectiveness of this parameter selection method.

4.3 Extended k-Means Algorithm

For twitter data, it is usually hard to set a reasonable cluster number, and at
most time, adjusting this parameter is a hard work for us. In actual experiment,
we usually tend to select a lesser cluster number to avoid the classes which only
contain one item. So we would like to adapt a simple clustering method which
is able to adjust the number of clusters automatically.
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As mentioned above, we use an extended k-means which allows to make new
clusters in our clustering process by adjusting inner variances of clusters under
a threshold so that we can obtain a good result with smaller distortion. The
algorithm is summarized as follows:

1. Given k as an initial cluster number, k centers are randomly selected.
2. We calculate the squared errors with

J =
∑

Ck∈CLS

∑
∀xi∈Ck

(|ck − xi|2),

where CLS is the family of clusters, ck is the center of cluster Ck.
3. For each point, a cluster with the smallest distance to the point is identified.
4. The variance of the cluster with this point added is calculated. If the vari-

ance is larger than a threshold, a (singleton) cluster with the point is newly
created. If otherwise, the point is merged into to the cluster.

5. When all of the points are processed, all empty clusters are deleted.
6. For each cluster Ci, its center vector (point) ci is re-calculated by

ci =
1
n

∑
x∈Ci

x, where n is the number of points in Ci.
7. If the change of squared error is smaller than a given threshold, the clusters

are output and the process is terminated. If otherwise, return to 2.

In order to verify the ability of extended k-means, we have tested it on a dataset
with several centers and noise. Figure 2 shows our preliminary experimental
results. It is clear that a traditional k-means cannot handle this situation as is
shown in Fig. 2(a). On the other hand, our algorithm results in a good separation
(Fig. 2(b)). In the method of k-means++ [7], although a set of good initial k
seeds can be identified to get a better performance, we cannot change the initial
k value which is inadequately given. However, in our method, it is no matter
what the preset k is. Especially, if we provide a k smaller than the actual number
of clusters, we can expect a relatively good result, which can allow us to select
the cluster number more easily.

5 Method of Associative Search by Mediators

In this section, we formalize our method of associative search.
We are given a pair of relations, a person-term relation and a document-term

relation, each of which is represented as a formal context, P = (P, V,RP ) and
D = (D,V,RD), respectively. As has been discussed in the previous section, it
is assumed that the set of persons P is sorted (ranked) in descending order of
their mediator levels.

Our associative search is performed by the following five steps.

1) Identifying Query Concept:
Given a set of keywords K ⊆ V as a query, a query concept QP = (PQ =

K ′(P)

, TQ = K ′′(P)

) in P is computed.
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(a) Traditional k-Means (b) Extended k-Means

Fig. 2. Clustering Results by Traditional k-Means and Extended k-Means

2) Getting User Interest:
For each person p ∈ PQ with Top-N higher mediator level, the user is asked
to assign a mark “+”, “−” or “∗” according to his/her interest.

3) Extracting Maximal Concepts Consistent with User Interest:
We try to extract maximal sub-concepts of QP , CB = (PB , TB), which is
consistent with the user interest.

4) Identifying User Aspects as Concepts:

Based on CB in P , a user aspect is identified as a concept CA = (A′(D)

, A)
in D, where A = TB \ TQ.

5) Extracting δ-Similar Concepts w.r.t. User Aspect:
Regarding CA as a bridge concept, we try to extract concepts in D, Ctarget,

each of which is δ-similar to the query concept QD = (K ′(D)

,K ′′(D)

)
w.r.t. A.

5.1 Identifying Query Concepts

Let us assume that a query Q a user interested in is given as a set of keywords
(terms) K ⊆ V . We can consider a query concept in each context. They are

defined as CP
Q = (K ′(P)

,K ′′(P)

) in P and CD
Q = (K ′(D)

,K ′′(D)

) in D, respectively.

K ′(P)

is a set of persons related to the query and K ′(D)

a set of documents
matching the query.

5.2 Getting User Interest

We try to associatively search concepts of documents which are similar to CD
Q

with respect to some user’s interest in persons. In order to get such a user’s
interest, we interactively ask the user to express his/her preference on the persons

related to the query, that is, the persons in K ′(P)

. Since the number of persons

in K ′(P)

is large, the burden of such a user interaction would be a bit heavy
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for the user. Therefore, the user is asked his/her preference only on the Top-N
ranked persons with higher mediator levels.

More precisely speaking, let M ⊆ P be the list of Top-N ranked mediators in
P , that is, M = {p ∈ P | rank(p) is in the top-N}. For the query concept in P ,
QP = (PQ, TQ), according to the user interest, for each person p ∈ (PQ ∩ M),
the user assigns a sign +, − or ∗ to p for “favorite”, “dislike”, and “don’t care”,
respectively, where the sign given to p is referred to as sign(p).

Assuming ∗ as default sign to each p ∈ PQ \ M , we can divide PQ into
three groups, POS, NEG and DC defined as POS = {p ∈ PQ | sing(p) =
+}, NEG = {p ∈ PQ | sing(p) = −} and DC = {p ∈ PQ | sing(p) = ∗}.

5.3 Finding Concepts Consistent with User Interest

Based on the user interest, we try to find a concept in P which is consistent with
the user interest. The consistency of concept is formally defined as follows.

Definition 1. (Consistent Concept)
Let QP = (PQ, TQ) be a query concept in P , where PQ is divided into POS,
NEG and DC based on the user interest. Then, a concept B = (PB, TB) in P is
said to be consistent with the user interest if and only if PB ⊆ PQ, PB ⊇ POS
and PB ∩ NEG = ∅.

A consistent concept B is a sub-concept of the query concept whose extent must
subsume POS and whose intent must completely exclude NEG. Since there are
in general several concepts satisfying the constraints, we try to extract maximally
general ones among them.

5.4 Identifying User Aspect as Concept

Roughly speaking, an associative search of concepts can be realized by finding a
concept C which is similar to a query concept Q with respect to some aspect user
interested in. If we can observe a concept which corresponds to the user aspect
and bridges Q and C in some sense, it would be reasonable to accept similarity
between Q and C under the aspect. In order to realize this kind of associative
search, we here formalize a user aspect as a concept reflecting the user interest.

Let B = (PB , TB) be a (maximal) concept in P which is consistent with the
user interest. From the definition, since B is a sub-concept of QP = (PQ, TQ),
TQ ⊆ TB holds. Therefore, A = TB \ TQ can be viewed as the set of attributes
(terms) which can implicitly characterize the user interest. In other words, A
can be considered to represent a preferable aspect of the user.

In order to find similarity of concepts in D under the aspect reflecting the
user interest in persons, we consider a concept in D which is defined based on A.

Formally speaking, if A is a closure in D, that is, (A′(D)

, A′′(D)

= A) is a concept

in D, then we regard the concept CA = (A′(D)

, A) as an aspect reflecting the
user interest in persons.
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5.5 Extracting Conditionally Similarity Concepts w.r.t. User
Aspect

Intuitively speaking, our associative search is realized by finding a concept C
which is similar to a query concept Q with respect to some user aspect. Before
presenting such a conditional similarity between concepts, we define a similarity
between concepts without any conditioning. Our similarity can be defined based
on the notion of bond [4] which is regarded as an extension of Jaccard Coefficient
and can easily be calculated in our concept search.

Definition 2. (Concept Similarity Based on Bond Measure)
Let C1 = (X1, Y1) and C2 = (X2, Y2) be a pair of concepts. Then a similarity
between C1 and C2, denoted by sim(C1, C2), is defined as

sim(C1, C2) = bond(Y1 ∪Y2) = |X1 ∩ X2|/|X1 ∪ X2|.

The measure is extended for conditional similarity between concepts.

Definition 3. (Concept Similarity Based on Conditional Bond)
Let C1 = (X1, Y1) and C2 = (X2, Y2) be a pair of concepts. For a set of attributes
R as some aspect, a similarity between C1 and C2 with respect to the aspect R,
denoted by sim(C1, C2|R), is defined as

sim(C1, C2|R) = bond(Y1∪Y2|R) = |
⋂

y∈Y1∪Y2

(R′ ∩ y′)|/|
⋃

y∈Y1∪Y2

(R′ ∩ y′)|.

Let δ be a given threshold for the minimum bond value. For a pair of concepts C1

and C2, if sim(C1, C2) ≥ δ holds, then C1 and C2 are said to be δ-similar. More-
over, sim(C1, C2|R) ≥ δ for an aspect R, C1 and C2 are said to be conditionally
δ-similar with respect to R.

For a query concept Q and the user aspect CA, if CA bridges Q and a concept
C in some sense, then it would be natural to find similarity between Q and C
under the aspect. Here, CA is an essential concept which corresponds to the user
aspect and can work as the basis of the similarity between Q and C. We call
such a CA a bridge concept for Q and C.

Definition 4. (δ-Bridge Concept)
Let CR = (XR, YR) and CL = (XL, YL) be a pair of concepts. For a given similar-
ity threshold δ, if a concept CW = (XW , YW ) satisfies the following conditions,
then CW is called a δ-bridge concept between CR and CL w.r.t. the aspect YW .

Structural Constraint: XR ∩ XW �= ∅ and XL ∩ XW �= ∅.
Conditional Similarity Constraint: CR and CL are conditionally δ-similar

with respect to YW , that is, sim(CR, CL|YW ) ≥ δ.

The structural constraint requires that the concept CW properly bridges
(overlaps) with both CR and CL at their extents. Moreover, by the conditional
similarity constraint, CR and CL must be δ-similar under the conditioning with
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the intent of CW , YW . It should be emphasized here that CR and CL are not
always δ-similar in the original context (without conditioning).

Regarding the user aspect CA = (A′(D)

, A) as a bridge concept, for the query

concept QD = (K ′(D)

,K ′′(D)

) in D, we try to find a target concept Ctarget which
is conditionally δ-similar to QD with respect to A.

6 Extracting Target Concepts for Associative Search

As has been discussed in the previous section, our computation procedure of
associative search consists of five steps. In the procedure, the primary tasks
are “finding maximal consistent concepts” and “finding conditionally δ-similar
concepts”. For each of the tasks, we can design a simple depth-first algorithm.

6.1 Extracting Concepts Consistent with User Interest

Our task here is to find every maximal concept CB in P which is a sub-concept
of the query concept QP = (PQ, TQ) and whose extent must subsume POS and
exclude NEG.

Assume PQ can be divided into POS, NEG and DC. In order to find CB

satisfying the constraints, we can basically expand POS by adding a person in
DC step by step in a depth-first manner. More precisely, for the closure of person
set Xi such that (POS ∪ DC) ⊇ Xi ⊇ POS, we expand Xi by adding a person

xin(DC \ Xi) and compute the closure Xi+1 = (X ∪ {x})′′(P)

. Then we check
whether Xi+1 ⊆ (POS ∪ DC) or not. If yes, Xi+1 is tried to further expand by
adding a person in DC\Xi+1. If otherwise,Xi+1 is discarded andXi is expanded
with another person by backtrack because Xi+1 includes some person in NEG

or (X ′(P)

i+1 , Xi+1) is not a sub-concept of QP . If a closure Xi cannot be expanded,
thenXi is stored into a list of maximal concepts as a tentative candidate. Such an
expansion process recursively iterated until no closure remains to be expanded.
Details of the algorithm can be found in [2].

6.2 Extracting Conditionally Similar Concepts w.r.t. User Aspect

The task here is to find concepts each of which is conditionally δ-similar to
the query concept and can be connected with the query concept by a concept
corresponding to the user aspect.

Let QD = (K ′(D)

,K ′′(D)

) be a query concept and CA = (A′(D)

, A) a user

aspect (as a concept). A target we try to find is a concept CTarget = (T ′′(D)

, T )

such that (1) T ∩ A = ∅, (2) K ′′(D) ∩ T = ∅, (3) K ′(D) ∩ T ′(D) �= ∅ and (4)

bond(K ′′(D) ∪ T |A) ≥ δ. Particularly, we try to extract maximal ones satisfying
the constraints. It should be noted here that the constraints (1) and (2) are not
included in our original definition of δ-bridge concepts. They are assumed to
obtain more interesting associations of terms. Moreover, from a computational
view point, they can restrict our search space for efficient computation.
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In order to find such a concept, we try to recursively expand a closure of terms
in depth-first manner. Let Xi ⊆ V be the closure of a set of terms such that

Xi ∩ (K ′′(D) ∪ A) = ∅. For a term x ∈ V \ (K ′′(D) ∪ A ∪ Xi), we check whether

Xi+1 = (Xi ∪ {x})′′(D)

as T satisfies all of the four constraints. If Xi+1 does not
satisfy (1) or (2),Xi+1 can be discarded because any expansion ofXi+1 can never

satisfy the constraints. If Xi+1 does not satisfy (3), that is, K ′(D) ∩ X ′(D)

i+1 = ∅,
then any expansion of Xi+1 also violates the constraint. Therefore we can stop
expanding Xi+1. If the constraint (4) cannot be satisfied for Xi+1, any expansion
of Xi+1 can be pruned. This is because the bond measure is monotonically
decreasing as a set of attributes (terms) becomes larger. Therefore, (4) cannot
be satisfied for any expansion of Xi+1. If Xi+1 is discarded, Xi is tried to expand

with another term in V \ (K ′′(D) ∪ A ∪ Xi) by backtrack.
On the other hand, all of the constraints are satisfied for Xi+1, then

(X ′(D)

i+1 , Xi+1) becomes a candidate of our target. Then Xi+1 is further tried

to expand with a term in V \ (K ′′(D) ∪ A ∪ Xi+1). Such an expansion process is
recursively iterated until no closure remains to be examined.

7 Experimental Results

In this section, we present our experimental results. Our system coded in C has

been executed on a PC with IntelR© Core
TM

-i3 M380 (2.53GHz) CPU .

7.1 Person-Topic Relation and Tweet-Topic Relation

We have created our datasets from a set of tweets gathered with Twitter search
API1. We have collected Japanese tweets including a keyword “Soccer”2 in
November, 2012. The number of collected tweets is about 600, 000.

As a preprocess, we have first applied Morphological Analysis, and then
extracted nouns as feature terms. Then, too frequent and too infrequent nouns
have been removed. Since each tweet consists of at most 140 characters, a num-
ber of tweets have become empty after the preprocess. We have exclude those
empty ones and obtained 538, 355 tweets. The number of terms in the remaining
tweets is 51, 927 and the number of persons by whom those are tweeted 238.

In our mediator ranking process, the tweets are first concatenated into a single
document for each people. Then, all terms with lower TF -IDF values have been
further removed. With our extended k-means, the remaining 912 terms have been
clustered into 155 topics. The persons have been assigned mediator levels based
on the distances to the topics and ranked according to the levels.

It is noted here that after the ranking, the original tweets have been com-
pressed into ones represented in corresponding topics. This is because each of
the original tweets consists of a small number of nouns and it is hence difficult

1 https://dev.twitter.com
2 In practice, each keyword is in Japanese.

https://dev.twitter.com
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[Business] Amazon (USA) has opened
 a digital book store ...

topic-55

topic-73 topic-62

Mobile Phone Ranking in Sep. 2012,
iPhone top-ranked: After the latest
model of Apple smartphone, iPhone5, 
was announced, ... 

Mobile phone novel:
a title has been released ...
#digital book

Fig. 3. Example of Associative Connection of Concepts for “Smartphone”

to extract concepts without the compression. For example, if a tweet consists
of a set of (original) terms a, b, c belonging to topics A, B and C, respectively,
then it is compressed into one with A, B and C. By the compression, our chance
to obtain concepts can be enhanced because several distinct terms are identified
as the same topic. Thus, sharing 155 topics, we have prepared a person-topic
relation with 238 persons and a tweet-topic relation with 538, 355 tweets.

7.2 Example of Target Concept by Associative Search

We show here an example we have actually extracted from the above relations.
Given a keyword “smartphone” as a query, we first convert it into its corre-

sponding topic, topic-73. The extent of the query concept in the person-topic
relation consists of 200 persons. For a user interest setting the highest ranked
person as NEG, we have obtained 21 maximal consistent concepts. Then, those
concepts provides 21 candidate aspects. Some of them correspond to concepts in
the tweet-topic relation and can work as δ-bridge concepts each of which connects
the query concept and a target concept. An example of associative connection
of concepts is presented in Figure 3.

In the figure, topic-55 of the bridge concept includes “mobile” and topic-62

of the target concept “digital book”. This means that we can associatively
access to “digital book” from “smartphone” via “mobile”. More concretely
speaking, the following tweet which is an instance of the bridge concept can
connect “smartphone” and “digital book”:

Amazon (USA) has opened a digital book store “Kindle Store” in Japan.
Although Kindle Paperwhite will be shipped in November, users can ac-
cess to the store with their smartphones (multi-function mobile phones).

Needless to say, such a flexible access cannot be obtained by standard search
engines. Thus, our associative search provides us a chance to get various useful
information which might be interesting for us.

The total computation time has been 5.0 seconds, including 0.24 sec. for
extracting 21 maximal consistent concepts. Thus, our associative search can be
performed efficiently.
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8 Concluding Remarks

In this paper, we have discussed a framework of associative search. A remarkable
point of the framework is that our search is dependent on user interests in good
mediators. We have presented a computational procedure for our associative
search and designed depth-first algorithms for extracting our target concepts.
Some experimental results have showed effectiveness of our search method.

As has been mentioned, it would be difficult to extract useful concepts from
too sparse datasets like twitter data without compressing or abstracting original
terms. The result of our associative search is strongly affected by how the terms
are compressed (clustered) into topics. Therefore, it would be worth further
investigating a method for detecting adequate topics. Some additional knowledge
such as a thesaurus would be helpful in improving quality of topic detection.
Our framework, however, does not necessarily require such a term compression
if we are concerned with datasets with denser contents like News article, Blog
articles, Web documents and so forth. Some experimentations are also currently
in progress for such denser datasets.
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Abstract. With scientific data growing to unprecedented volumes and the needs 
to share such massive amounts of data by increasing numbers of geographically 
distributed collaborators, the best possible network performance is required for 
efficient data access. Estimating the network traffic performance for a given 
time window with a probabilistic tolerance enables better data routing and 
transfers that is particularly important for large scientific data movements, 
which can be found in almost every scientific domain. In this paper, we develop 
a network performance estimation model based on statistical time series  
approach, to improve the efficiency of network resource utilization and data 
transfer scheduling and management over networks. Seasonal adjustment  
procedures are developed for identification of the cycling period and patterns, 
seasonal adjustment and diagnostics. Compared to the traditional time series 
models, we show a better forecast performance in our seasonal adjustment 
model with narrow confidence intervals. 

Keywords: Time series, Seasonal Adjustment, Network Traffic Forecast, STL, 
X12-ARIMA. 

1 Introduction 

The analysis of network traffic is getting more and more important today to efficiently 
utilize the limited resources offered by network infrastructure and wisely plan the 
large data transfers. Estimating the network traffic for a given time window with a 
given probabilistic tolerance error enables better data routing and transfers, which is 
particularly important for large scientific data movements. Short-term prediction of 
network traffic guides the several immediate scientific data placement. Long-term 
forecast of network traffic evaluates the performance of network and enables the  
capacity planning of the network infrastructure up to the future needs.  

The problem of analysis of network traffic has received attention over the years. 
Previous researches about network traffic can be distinguished in two catego-
ries:  frequency-domain methods including spectral analysis and wavelet analysis 
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[23] and time-domain methods including auto-correlation and cross-correlation  
analysis [5]. Besides the main stream models such as time-domain models ARIMA, 
FARIMA or frequency-domain methods wavelet analysis, there are also learning 
approach methods [1,18]. 

However, one very important feature in the time series is the periodicity or  
seasonality [10]. The seasonal variation is a component of a time series and occurs as 
a repetitive and predictable movement around the trend line in one time cycle. Organ-
izations such as manufacturing industry with quarterly assignment adjust their  
performance relative to normal seasonal variation. In the census data released by U.S. 
Census Bureau, many indexes are seasonally adjusted to monitor the general trend 
without the influence of periodical changes. For example, the unemployment rate is 
expected to increase in every June because of the recent graduates entering the job 
market. However, the overall unemployment rate should be evaluated after removing 
the expected seasonality for this June effect. Seasonal movements are often large 
enough to mask other characteristics of the data such as current trends. For example, 
if each month has a different seasonal tendency toward high or low values, it could be 
difficult to detect the general direction of a recent monthly movement in the time 
series (increase, decrease, turning point, no change, consistency with another econom-
ic indicator, etc.). With seasonal adjustment removing seasonal component from the 
original series, seasonally adjusted series would reveal the recent trend without obscu-
ration from the seasonality, and its relationship with other different series can be easi-
ly measured. However, the periodicity in the network traffic has never been explored 
in our knowledge, and the modeling based on periodicity has never been applied to 
the analysis and forecast of network traffic. From our analysis, the network traffic 
measurement data, SNMP shows significant periodical behavior. In Figure 1, the 
periodicity of network traffic within a day is shown, based on the seasonality of the  
1-year SNMP data, and the trend component shows the general change in the original 
series while the irregular component shows the collection of the random behavior in 
network usage. 

 

Fig. 1. Periodicity in network traffic data. Original series, seasonal component, trend compo-
nent and irregular/remainder component from the top to the bottom. 

Figure 1 is the result of seasonal adjustment, which decomposes the original series 
into three components: S (Seasonal Component), I (Irregular Component), and T 
(Trend Component). The seasonal component is the second plot in Figure 1 which 
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models the undergoing specific variations at certain moments during one cycling pe-
riod. It usually combines features of regular behavior of network usage and routine 
data transfer. The third plot is trend component which shows the long-term change 
from general phenomena, and it fits our interest in estimating the current situation and 
predicting future condition. We could find the illustrated series has a general trend 
that involves high volume network traffic at the beginning and the end of the observa-
tion range. The last plot is irregular component which models the unexpected beha-
vior from the statistical errors or from the nonrecurring accidental or fortuitous 
events. It is usually assumed to follow a normal distribution and outliers can be de-
tected by p-values.  

In this paper, we will address two challenges in the network performance modeling 
with STL and seasonal adjustment: 1. Seasonality in the network measurement data 
has not been addressed before in our knowledge, and we will show our findings from 
the evaluation results from three criterion indexes and diagnostic results supporting 
the existence of seasonality in the network measurement data. 2. The periodicity in 
the network measurement data is unknown. STL and seasonal adjustment methods 
cannot be used without the periodicity of the time series. We studied three criterions 
to select the best periodicity to generate the prediction with the least forecast error and 
the full extraction of the seasonal/periodical pattern in the measurement data.  

In this paper, we focus on finding and modeling the periodical patterns in the net-
work traffic, and discuss the procedure of seasonal adjustment methods on network 
traffic measurement data. Unlike general social data, the cycling period is unknown in 
the network traffic data. In section 2, we discuss the identification of the significant 
cycling period of the network traffic measurement data, two seasonal adjustment me-
thods, X12-ARIMA and STL, and the validation methods with seasonal adjustment. 
In section 3, we discuss the results of analysis, and evaluate the performance of the 
prediction model. In section 4, we conclude our results with comparison of our mod-
els to the results from two methods, ARIMA and wavelet-based methods.  

2 Periodicity and Seasonal Adjustment 

2.1 Criterion to Identify Periodicity 

Most social data shows seasonal periodical patterns. In agricultural industry, we can 
find a seasonality of sowing and harvesting in a yearly cycle. In banking industry, we 
can find a seasonality of savings amount increasing at the beginning and decreasing at 
the end in a monthly cycle. In highway transportation traffic, you can find a seasonali-
ty of rush hours in a daily period. However, periodicity of network traffic is unknown, 
and network measurement data is collected more frequently, compared to other social 
data, in about every 30 seconds for SNMP measurements. In order to apply seasonal 
adjustment, the cycling period needs to be determined.  

We evaluate the data based on different cycling period according to three  
criterions: 
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1. Identified seasonality: A cycling period is determined within the period that can be 
identified with significant seasonality. This feature in our model is used to provide 
better prediction. 

2. Residual seasonality: The seasonally adjusted data series is the residual data that 
seasonal components are subtracted from the original data series. Residual seaso-
nality is not expected in the seasonally adjusted data series.  

3. Log transformation: Log transformation was applied to provide stationary data 
over time, for old data, recent historical data as well as newly acquired data. 

Seasonality detection methods were used for the first two criterions. Log transforma-
tion was determined by how the data is stationary. 

Seasonality Detection 
The seasonality detection methods are divided into two groups: graphical techniques 
and statistics based on Seasonal Index measures. The graphical techniques include run 
sequence plot, seasonal subseries plot, multiple box plots and autocorrelation plot. 
The significance of seasonality is determined based on the plot by the human eyes, 
and it is often subjective. For an automated procedure of the seasonal adjustment, the 
statistical method based on seasonal index measures is selected in our model. Our 
analysis used two diagnostic methods, the F-test for the presence of seasonality [12] 
and M7 for X11-ARIMA [17]. 

Log-Transformation 
The log transformation based on the log-likelihood test is to stabilize the variance, so 
that the data can be modeled with the Box-Jenkins methodology [2]. The model is 
derived with the log-transformed data and the original data to obtain the maximum 
likelihood. Log transformation is applied when the model has larger likelihood based 
on the transformed data. 

After evaluating periodicity for the network traffic measurement data, the network 
traffic data is organized into a time frame with the determined cycle. 

2.2 Seasonal Adjustment 

Missing Value Treatment 
Before the seasonal adjustment methods are applied, any missing values and identify-
ing outliers in network traffic measurement data are treated. Some of the network 
traffic data are lost due to failures on the collection device. The rate of the missing 
values in our data is around 0.7%, but missing values may cause an increase in the 
forecast error, especially when recent records are missing. The recent activities of 
nearby data points and the feature of its cycling period are considered for the re-
placement methods for missing values, and they are estimated by a weighted average 
of the recent data points and the points falling into the same cyclic spots within every 
period.  x = ∑ α x ∑ β xC     
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For a seasonal-trend decomposition procedure based on Loess (STL) [3], the ex-
treme values are modified to be robust in the iteration of STL algorithm. The distor-
tion of extreme values would be limited in the modeling and forecasting, but its influ-
ence would remain in the data series for hidden information. 

Seasonal Adjustment Methods 
Two seasonal adjustment methods are applied to the network traffic measurement 
data, a seasonal-trend decomposition procedure based on Loess (STL) and the X12-
ARIMA [21,22].  

X12-ARIMA includes a group of calendar effects that the network traffic mea-
surement data does not show, and the regressors that only fit the characteristics of 
network traffic must be selected. The network traffic measurement data fluctuates 
frequently, compared to the social data, due to the dynamic network data transfer 
features, and the outliers that are represented by large data transfers are likely to occur 
in random. The special characteristics of network traffic should be considered in the 
X12-ARIMA regression model for the frequent changing patterns and more aberrant 
events.  

After the seasonal adjustment on the network traffic measurement data, the data 
will be decomposed into three components: trend, seasonal and irregular components. 
The performance of the seasonal adjustment model will be evaluated, and assessed 
with two diagnostic methods.  

2.3 Seasonal Adjustment Diagnostics 

The diagnostics of seasonal adjustment examine the stability of adjusted data series 
with a persistent model for new data feeds, which enables better prediction of network 
traffic performance. New measurement is collected for the network traffic data, and 
the model must not be changed frequently causing the computational costs and time. 
To assess the stability, two diagnostics results are considered from the revisions histo-
ry diagnostics and the sliding spans diagnostics.   

Revision History Diagnostics 
The revision history diagnostics [19] create many seasonal adjustments on a sequence 
of increasing data spans, at a new time point each time. The assessment of stability is 
based on the evaluation of the magnitude of revisions over time, which parameterizes 
the model characteristics such as transformation type, performance parameters such as 
forecast errors, and model evaluation values such as AIC and log-likelihood. Take the 
adjusted series A  as an example, we illustrate how we measure the revision over a 
period lag. 

For a given series y  where t=1,…,T, we define A |  to be the seasonal  
adjustment of y  calculated from the series y , y ,…, y , where t n T. The 
concurrent seasonal adjustment of observation t is A |  and final adjustment is A |T. 
The concurrent target captures the lagged revision history where the target is assumed 
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to be the concurrent estimate. Concurrent target = A | A |A | . If the revision (abso-

lute value of concurrent target) is very large, we consider the model is unstable when 
we add more data. The final target concurrent gives the lagged revision history where 

the target is assumed to be the final estimate. Final target = A |T A |A | . If the revi-

sion (the absolute value of final target) is too large, we consider the model is unstable 
when we go back into different time points in history. 

Sliding Spans Diagnostics 
The sliding spans diagnostics [9] compare the adjusted results to the overlapping sub 
spans of the time series, for the stability of the seasonal adjustment. Each span with a 
length H starts one cycling period after the previous span, where H depends on the 
choice of seasonal adjustment filters. Seasonal adjustment is applied on each span, 
and their adjusted results are compared. When the adjusted results would be changed 
too much across spans, the seasonal adjustment must not have a stable model. 

Let A  denote its seasonally adjusted value obtained from the complete series, and 
let A  denote the adjusted value obtained from the j-th span. Then, the seasonal  
adjustment A  is called unacceptably unstable, if  max A min Amin A 0.03 

3 Seasonal Adjustment on SNMP Data 

The SNMP data provides aggregated link usage data, collected every 30 seconds, on 
the network connections. We have access to publicly available ESnet SNMP data 
[15], and the time span of these SNMP data is from May 6 18:49:00 PDT 2011 to the 
present time. In our current studies, we retrieved data up to Jul 25 15:56:30 PDT 
2012.  

3.1 Periodicity of SNMP Data 

The potential periodicity for SNMP data can be from as small as one minute to a few 
months. Figure 2 shows the decomposed series based on periodicity of a week, a day, 
an hour and a minute. In each plot, four subplots show, in order, original series,  
seasonal component, trend component and irregular component from the top to the 
bottom. With a longer periodicity, clearer pattern of seasonality is observed, and the 
trend component shows smooth curves. The irregular component shows very large 
variations, and we suspect that many routine events cannot be counted as seasonal 
component with the large rough cycling period. With a shorter periodicity, the sea-
sonal pattern is not clear, and the trend component changes frequently. However, the 
irregular component shows a small portion. Seasonal adjustment with a longer peri-
odicity such as a week does not identify a clear seasonality, and a shorter periodicity  
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Fig. 2. Seasonal adjustment based on the periodicity of a week, a day, an hour and a minute, 
from the top to the bottom. Each plot shows four subplots of original series, seasonal compo-
nent, trend component and irregular component. 

such as a minute causes the seasonality distorted easily by random events. Table 2 
shows the portion of seasonally adjusted components, compared to the original data 
series.  

Table 2 show that the seasonal and irregular components decrease with a shorter 
periodicity, and the trend component increases with a shorter periodicity. The season-
al and trend components have the deterministic model for forecasting, and the irregu-
lar component has the distribution information on the forecast with a certain level of 
error, which can be modeled as a normal distribution with a zero mean and a variance. 
The non-deterministic behavior of irregular component causes the uncertainty in the 
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forecast. For more deterministic information and less randomness, portions of season-
al and trend components should be higher, and the portion of irregular component 
should be lower. As a trade-off during the periodicity selection, a significant seasonal-
ity should be identified while controlling the irregular portion in the model. From 
Table 2, the best periodicity would be observed between a day and an hour.  

Table 2. Portion of seasonally adjusted components 

Periodicity Seasonal Trend Irregular 

Week 43.2% 44.6% 78.3% 

Day 28.1% 69.1% 53.0% 

Hour 5.7% 88.5% 29.8% 

Minute 0.1% 98.5% 6.8% 

 

 

Fig. 3. Seasonal adjustment criterions for different periodicity 

Figure 3 shows the seasonal adjustment criterion defined in section 2.1 to evaluate 
the performance of model with different periodicity. The significant seasonality is 
observed when the index of the identified seasonality is close to 1. The residual sea-
sonality is close to 0 when the seasonality is fully extracted from the original series 
and modeled. The log transformation shows stability when the value is close to either 
0 or 1. From Figure 3, the optimal period would be based on a day, since the identi-
fied seasonality is exactly equal to 1 and the residual seasonality is equal to 0. The 
model identifies and extracts a significant seasonality effectively. The stability of the 
seasonal adjustment based on the daily period is strong with the index of “log  
transformation” as 1. Figure 3 also shows that 12 hours of periodicity indicates low 
residual seasonality with the relatively higher identified seasonality at 0.4. The log 
transformation does not indicate the stability as high as the daily periodicity, but the 
residual seasonality is 0 indicating the model can fully extract the seasonality. This 
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may corresponds to the network activity based on the daily working schedule. Anoth-
er significant seasonality is shown in Figure 3 at 2 hours of the periodicity with the 
identified value at 0.5 and the remaining seasonality close to 0, although the log trans-
formation is valued at 0.8 indicating the model is not stable. From these observations, 
the optimal cycling period would be determined as a day with significant identified 
seasonality, zero remaining seasonality in the residuals and stable transformation all 
the time. When we test the cycling period for different series, the daily period holds 
best cycling period for 90% series.   

3.2 Seasonal Adjustment 

Based on the periodicity of a day, the seasonal adjustment is applied on the organized 
time frame of SNMP data.  

Figure 4 shows the results from seasonal adjustment based on STL and X12-
ARIMA respectively with plots of original series, seasonal, trend and irregular  
components from the top to the bottom.  

 

 

Fig. 4. Seasonally adjusted series based on STL and X12-ARIMA 

The STL model derived with 15 outer loops. The span used for “s” (seasonal), “t” 
(trend) and “l” (loess) is respectively 12841361,4321 and 2881. The weights for ob-
servation fall into 1st quantile at 0.7703182 and 3rd quantile at 0.9887374 with median 
to be 0.9452160. Extreme value in the original series is detected with weight equal to 
0. In the final decomposition, the IQR (interquartile range) of seasonal component 
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accounts for 40.5% of the IQR of original series and IQR of trend component is 
75.9% of the IQR of original series.  

The X12-ARIMA model choice is ARIMA (3 0 0)(0 1 1) with log transformation 
with regression on identified outliers and an intercept as 0.02.  F-test for seasonality 
has significant F-value 30.383 and suggests seasonality present at 0.1 percent level. 
The residual seasonality is tested to be no presence at the 1 percent level. The IQR of 
seasonal component decomposed in X12-ARIMA is 42.5% of the IQR of original 
series and IQR of trend component is 73.2% of the IQR of original series.  

The results obtained from X12-ARIMA and STL show similar decomposed com-
ponents. The trend component indicates that there are more level shifting occurred at 
the end of the time series. At the end of time series, more additive outliers are identi-
fied. A few temporary changes are observed in the series, and 3 significant ones are 
identified which is circled red in Figure 4 with a sudden large jump as steep cliff and 
a single peak last for a while and then a sudden drop back to normal level.  

3.3 Diagnostics 

The diagnostic tests would validate and examine stability of the model based on the 
seasonal adjustment. The revision histories diagnostics test the model performance 
parameters for different time spans, as shown in Figure 5. Plots are shown from Q 
statistics q/q2, M statistics, log-likelihood and AIC. The dashed lines in each plot 
indicate the boundary of 20% threshold, as the changes of either performance parame-
ters or forecast error would be limited within 20% of changing interval. Almost all 
values across time spans stay within the boundary, indicating the stability of the mod-
el. Only 1 out of 20 time spans has a value of log-likelihood out of the boundary, and 
2 out of 20 time spans have a value of m statistics touching the limit. The diagnostics 
tests show the stable seasonal adjustment in the model performance evaluation para-
meters. 

 

Fig. 5. Diagnostics: model performance 
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4 Forecast Errors 

The forecast error can be explored in the model based on X12-ARIMA by estimating 
the last data cycle from the model based on the data without the last cycle. Similarly, 
the last two cycles can be estimated by the model based on the data without the last 
two cycles.  Forecast Error = Forecast True TrafficTrue Traffic 100% 

Figure 6 shows that the forecast errors are less than 20% in most cases, and around 
10% in some cases. The forecast error is smaller in the next day prediction, and in-
creases over time because of the uncertainty into the future with less information.  
The extreme events may cause a spike in the forecast errors, but the forecast errors are 
still within a good acceptance range.   

 

Fig. 6. Forecast error based on X12-ARIMA (%) 

In comparison of the forecast performance among 6 different methods: ARIMA 
model, ETS model, Holt-Winters method, STL model, linear regression model and 
local level structural model, time series fluctuation is considered in three methods; 
Holtwinters by minimizing the squared prediction error using Holt-Winters Filtering 
[13,20], STL and linear regression fit model with explanatory variables as trend and 
seasonality components. Other methods include ARIMA based on the AIC (Akaike 
information criterion), Exponential smoothing state space model (ETS) [4,16] based 
on AIC determine its triplet (E,T,S) which denote additive or multiplicative model for 
error and trend and the presence of seasonality, and local level structural methods 
with state-space models [11] fitted by maximum likelihood.  

Figure 7 shows the prediction with point estimator and two confidence interval 
forecasts. The orange shades indicate the 90% confidence interval, and the yellow 
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shared represents the 95% of confidence interval. The forecast by the seasonal ad-
justment method based on STL offers predictions for seasonal variation, while the 
traditional ARIMA, ETS and local structure models only give estimators being same 
all the time without considering fluctuation. The ARIMA, ETS and local structure 
models do not provide forecasts without using full periodic information in the original 
data series, when the data show a periodicity. The method based on STL provides the 
smallest confidence interval among the 6 methods, and the accuracy of the prediction 
with the seasonal adjustment is better than the rest of the traditional methods. The 
improvement in the forecast error is mainly because of the new variables in the time 
series model to explain the original series. The newly added variables include three 
seasonal components, seasonality, trend and residual, as well as variables of outliers 
and missing values. These new additions capture more features of the data and gener-
ate better prediction for the time series.  

 

Fig. 7. Compare with other models 
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5 Conclusion and Future Work 

In this paper, we presented statistical models for estimating and forecasting network 
traffic based on the statistical patterns found in the network measurement SNMP data. 
The three steps Seasonal Adjustment procedure will enable us to analyze the seaso-
nality existed in scientific data such as network traffic. We first determine the cycling 
period with significant seasonality is daily and with application X12-ARIMA and 
STL we decompose the original series into three components: seasonal component, 
trend component and irregular component. The diagnostics test is adopted to assess 
the credibility of our model. The prediction error derived from our model is on aver-
age within 20% and it shows superior results in terms of narrower confidence interval 
with less prediction interval when compared with 6 traditional time series models on 
network traffic. Our ongoing work includes further explored the usage of the three 
components resulted from Seasonal Adjustment procedure. To list a few, we will use 
trend component to trace the data flow over the whole network map and use seasonal 
component to plan routine data transfer. With combination of all three components, 
we can plan the future data transfer based on the prediction of network traffic condi-
tion. Long-term prediction of future network traffic development could also enable us 
to wisely allocate the infrastructure and links within the network. 
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Abstract. With the increasing importance of producing large-scale la-
beled datasets for training, testing and validation, services such as Ama-
zon Mechanical Turk (MTurk) are becoming more and more popular to
replace the tedious task of manual labeling finished by hand. However,
annotators in these crowdsourcing services are known to exhibit different
levels of skills, consistencies and even biases, making it difficult to esti-
mate the ground truth class label from the imperfect labels provided by
these annotators. To solve this problem, we present a discriminative ap-
proach to infer the ground truth class labels by mapping both annotators
and the tasks into a low-dimensional space. Our proposed model is inher-
ently combinatorial and therefore does not require any prior knowledge
about the annotators or the examples, thereby providing more simplicity
and computational efficiency than the state-of-the-art Bayesian methods.
We also show that our lightweight approach is, experimentally on real
datasets, more accurate than either majority voting or weighted majority
voting.

Keywords: Crowdsouring, Annotator-Task Model, Weighted Majority
Voting, Combinatorial Model, Social Computing.

1 Introduction

In many machine learning application areas, it is vital to obtain large-scale
labeled datasets for training, testing and validation. However, consider labeling
tasks such as annotating millions of documents for natural language processing
[1] or describing thousands of pictures for computer vision research [2]. The
tediousness of these kinds of tasks make it difficult for researchers to obtain
large-scale labeled datasets, which is becoming more and more a bottleneck that
impedes the application of new learning algorithms.

To tackle the scarcity of such large-scale labeled datasets, crowdsourcing ser-
vices such as Amazon Mechanical Turk(MTurk) [3] has been introduced. Crowd-
sourcing has now greatly changed the way with which the large-scale datasets

P. Perner (Ed.): MLDM 2013, LNAI 7988, pp. 616–628, 2013.
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are being created. Rather than being produced “by hand”, it is now possible
to distribute the task of labeling large-scale datasets into the crowd. Using
these crowdsouring services, one can expect labelers in the crowd to annotate a
large number of examples in short time, usually with a relatively small financial
cost. However, such collected wisdom does not necessarily reveal the underlying
ground-truth class labels. And the quality of these labels varies as the labelers
in the crowd are heterogeneous in terms of skill, expertise and even consistency.
Therefore, rather than solving the problem, crowdsourcing alleviates the scarcity
of large-scale labeled datasets, where the problem of inferring ground-truth
labels from the crowd still remains.

One common strategy for obtaining an estimate of the ground truth is major-
ity voting. However, as majority voting assumes that each annotator is equally
good, the quality of the majority label is effected by individual annotator’s bi-
ases. In extreme cases, if there is only one expert who gives the correct label while
all the others give incorrect labels, then the majority voting method would al-
ways prefer the incorrect label. To address these problems, we assume that each
labeling task corresponds to a point x in some low dimensional space, and that
each annotator labels point x according to a linear threshold rule. By mapping
the tasks and annotators onto a low dimensional space, we aim to minimize the
number of errors introduced in each step.

In this paper, we propose a discriminative approach to learn the underlying
ground truth labels using only information of labels provided by multiple anno-
tators in the crowd. Our algorithm handles the fact that the labels from these
crowdsourcing annotators are noisy and provides a local optimal estimate of the
underlying golden ground-truth. More specifically, our contributions are:

1. Instead of using a generative model to restrict the annotation process, we for-
malize the problem as a combinatorial problem and solve it using a discrim-
inative approach. As our approach is non-parametric and does not require
any prior knowledge or tuning any parameters as a priori, it can serve as
a complimentary approach to other Bayesian generative approaches, which
are usually more complicated by attempting to model the entire subjective
process of labeling an object.

2. This approach incurs no training complexity and the estimated ground truth
can be obtained almost directly. Thus, it provides more simplicity and com-
putational efficiency than state-of-the-art Baysian methods.

3. Even though our algorithm is lightweight, simple and efficient, we show that,
by experiments on multiple datasets, it performs consistently and signifi-
cantly better than majority voting and simple weighted majority voting.
Therefore, our algorithm could be an competing alternative approach to
majority voting, as well as a complimentary lightweight method for other
more sophisticated Bayesian algorithms.

The rest of this paper is organized as follows. In Section 2 we discuss related work
on modeling heterogenous annotators and annotation process. Then we describe
our approach in details in Section 3 and Section 4 and present the experimental
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results in Section 5. We conclude in Section 6 and discuss the limitations and
future work.

2 Related Work

Recent research interests in learning from crowdsourcing arise from areas like nat-
ural language processing [1] and computer vision [2]. Crowdsourcing is used to col-
lect labels for machine learning [11] [12] [13].Previous work has mainly focused on
obtaining more reliable labels. The measures for evaluating these obtained labels
rely on either comparing with the gold ground-truth (if they exist) or optimizing
certain utility metrics for these labels [4] [5] [6]. The most common method for
using crowdsourcing to label data is to obtain multiple labels for each object from
labelers and label the object as the majority label [7].

In [8], the authors propose to model heterogeneous annotators by their sen-
sitivity and specificity. The labeling process is modeled as linear threshold deci-
sions with different levels of biases specified by each annotator’s sensitivity and
specificity. [9] and [10] proposed Bayesian probabilistic models for the annotation
process. [10]’s approach also models the annotation process as a linear threshold
decision process, where the model is built on a number of parametric distribu-
tions: Mixture of Gaussians for the images, Gaussian on the weight vectors for
the annotators, and Gaussian on the thresholds. The authors use an iterative
process to find the optimal parameters by MAP estimation. Given that these
models achieve decent performances, to accurately estimate the posterior dis-
tributions, all these Bayesian generative models require certain prior knowledge
(on either the annotators or the tasks). Also the complexities for training and
prediction are usually non-trivial. The work of Dawid and Skene [14] assumes
that each worker is associated with a probabilistic confusion matrix that gener-
ates his labels. Each entry of the matrix indicates the probability that items in
one class are labeled as another. Given the observed labels, the true labels for
each item and the confusion matrices for each worker can be jointly estimated by
a maximum likelihood method. Zhou’s paper [15] proposed a minimax entropy
principle to jointly estimate the distributions and the ground truth given the
observed labels by workers.

Rather than adopting any probabilistic model, by drawing inspiration from
[16], who mapped the viewing region of each feature onto a circle in 2D space,
we propose an approach to model the annotators and labeling tasks onto 1D and
2D euclidian spaces. We use a two-phase algorithm to search for the “optimal”
annotator-task arrangement. Both steps work in greedy fashion. Our approach
achieves better performance on real datasets than majority voting and weighted
majority voting and provides a complimentary method to estimate the underly-
ing labels without priori knowledge.

3 Modeling Annotators and Tasks

In each binary labeling task, an annotator j, looks at task i and assigns it label
lij (0 or 1) according to the his expertise to the specific task. The labels collected
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from m tasks and n labelers form a sign matrix with each row representing a
task and each column representing an annotator. We assume that each annotator
labels a task according to a linear threshold rule in some low dimensional space
(1D, 2D and 3D) and each task is represented by a single point in that space.
Suppose the sign matrix is the only information we have, without knowing any
prior knowledge or defining any parameter, in the situation of d ∈ {1, 2, 3}, we
can model the annotators and tasks as follows.

Let F = {f1, ..., fn} be the collection of half-spaces for annotators given by
a normal direction and threshold; fi = {hi, ti}, where hi ∈ {x = (x1, ..., xd) :
‖x‖ = 1} and ti ∈ R. Let V = {v1, . . . , vm} be a finite set of points on the space.
If d = 1, vi ∈ R while in the cases of d = 2, 3, vi = {(x1, ..., xd : ‖x‖ = 1)} ∈ R

d.
We are interested in finding a sign matrix M that satisfies:

Mij = {1 if vT
i hj>tj ,

0 if vT
i hj<tj

.

Any sign matrix arising from a collection of points and half-spaces in this way
will be called a “corrected” matrix. The Fundamental problems we consider in
this work are: Given a sign matrix M , can we find a set of half-spaces F and a
set of defining points V leads to the closest “corrected” matrix M∗ ? With the
“corrected” matrix M∗, how to label each row in M∗ ?

The problem of deciding if M is a “corrected” matrix in three-dimensions is
NP-hard [16]. Thus we only provide efficient algorithms for d ∈ {1, 2}.

3.1 1D Mapping Method

In the case of 1D mapping algorithm, by the definition of V , the tasks are
mapped to points in 1D space(a line more specifically), where each row is a sign
vector representing the set of labels given to a particular task. The input of the
algorithm is an m × n sign matrix M , we would like to:

1. Find a set of linear functions F = {f1, ..., fn} that intersect the line and
divide the line into n+ 1 cells C = {C1, ..., Cn+1} such that by introducing
this arrangement, the accumulated error is minimized. Here error is the
number of rows in M that do not satisfy the definition of “corrected” matrix
by any chance of placement. Cell Ci = (p1, ..., pn), pj = 1 if Ci is in the
positive half space defined by fj ; pi = 0 otherwise. For example, if annotators
i and j intersect the line and divide it into three cells with patterns 11, 10,
and 01. Then task t = (0, 0) could not be placed, thus an error arises.

2. Arrange the set of points V = {V1, ..., Vm} into the cells that we have defined.
Vi is placed into cell Ct if and only if Ct has the least number of contradiction
with the i-th row of the sign matrix (Mi1,Mi2, ...,Min) among all cells in C.

3. Now we have the half-spaces F that lead to the closest “corrected” matrix
of the original sign matrix.

3.2 2D Mapping Method

Now we consider the case of 2D mapping arrangement. For simplicity, by the
definition of V , the tasks are mapped to points on a circle. Recall the definition of
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annotators, f = (hi, ti), where hi ∈ Sd−1, and ti ∈ R. If ti = 0 the half-space fi is
called central arrangement. We assume that the half-spaces F = {f1, f2, ..., fn}
are of non-central arrangements, which means the linear functions in F are not
necessarily cross the center of the circle. The input of the algorithm is an m×n
sign matrix M , we would like to:

1. Find a set of linear functions F = {f1, ..., fn} that intersect the circle and
divide the circle into t(4 ≤ t ≤ 2n) cells C = {C1, ..., Ct} such that in this
arrangement, the accumulated error is minimized. Here error is defined in
the same way as in 1D mapping method, which the number of rows in M
that do not satisfy the definition of “corrected” matrix by any chance of cell
placement.

2. Arrange the set of points V = {V1, ..., Vm} into the cells that we have defined.
Vi falls into the cell Ct if and only if Ct has the least number of contradiction
with (Mi1,Mi2, ...,Min) among all cells in C.

3. Finally we have the points V and half-spaces F that leads to the closest
“corrected” matrix of the original sign matrix.

The difference between 1D and 2D mapping approaches lies in that in each step
of annotators mapping, the number of cells are increased by 1 and 2 respectively,
as shown in Fig 1.

Fig. 1. Examples of half spaces separate the 1D, 2D and 3D spaces according to some
linear threshold functions. It is showed that with an increasing number of half spaces
which correspond to annotators, the space is divided into {2, 3, 4}, {2, 4, 6}, and {2, 4, 8}
different cells in 1D, 2D and 2D arrangements respectively. However, there should be 2n

possible combinations given the binary labels provided by n annotators. The missing
number of cells introduces errors into the mapping arrangements.



A Lightweight Combinatorial Approach for Inferring the Ground Truth 621

4 Mapping Algorithms and Label Estimation

We will introduce in this section the two-phase mapping algorithms to obtain
the annotator-task “corrected” sign matrix. We will introduce the details of 2D
mapping algorithm and omit the process for 1D mapping. Both phases work in
greedy fashion.

4.1 Mapping Annotators

As the errors introduced by intersecting lines(annotators) into the circle increase
exponentially, the order of annotators to map is vital. We first construct a graph
G where each node represents a column of the original sign matrix. There is
an edge (i, j) between node i and node j if and only if column i and column j
cross each other. Two columns must cross exactly when we see all four possible
sign patterns on columns i and j of M. Let S = {s1, ..., su} be the connected
components of G, |s1| > |s2| > . . . > |su|. There is an ordering of the columns
in si such that each column must cross a column that appears before it. Then
list all the columns in such order: s1, . . . , su.

The input of the algorithm is the sign matrix M and the ordering of the
columns. We would like to obtain a cyclic order A that captures the relative
ordering of intersection points of F with the circle. Initially, we insert the 1st
column and the 2nd column which cross each other obviously, after the insertion,
A = {{l1}{l2}{l1′ }{l2′}} or {{l1}{l2′}{l1′ }{l2}}. Then from the third to the nth

column, we greedy search for all the possibilities(the possibilities that line fi’s
two ends intersect with two different cells are: fi’s two ends intersect with one
cell; fi’s two ends intersect with two existing intersection points; fi’s one end
intersects with a cell, and the other end intersects with an existing intersection
point. And fi, fi′ can switch their orders.) that line fi could intersects the circle,
and choose the optimized arrangement that introduces the least number of rows
not satisfying the definition of “corrected” matrix for the first i columns in S,
Fi = {f1, . . . , fi}.

4.2 Mapping Tasks

This phase still works in a greedy search. For each task item i, we place Vi into
cell Ct if and only if the placement introduces the least number of contradiction
with the i-th row of original sign matrix, (Mi1, Mi2,..., Min), among all cells in
C. If there are more than one cell’s placement obtain the least error number,
just randomly choose one cell among them.

4.3 Label Estimation

As shown in the first figure in Fig 2, we have the closest “corrected” matrix to
the original sign matrix by using annotator-task model. Then we propose two
methods to infer the ground truth for each task. One simple idea is to apply
majority voting on the “corrected” matrix and receive the estimated labels.
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Another approach is to estimate the labels by modeling annotators’ behavior
based on the annotator-task placement.

As shown in the second figure in Fig 2, each annotator corresponds to a line
that separates the circle into two cells and intersects the circle with two points.
Since each annotator has different levels of annotation skills, consistency or bias,
we want to assign each annotator a weight that measures how reliable he is.
We provides the weight for annotators by first grouping the adjacent intersected
points of lines and the circle into one group if they have the same normal vector
direction, hi. We assume that each point within the same group has same weight,
which is in proportion to the number of points in that group. The weight of each
annotator is the sum of its two intersected points with the circle. Then the label
of task v is obtained by:

w =
∑

fi·v>ti

wi −
∑

fj ·v<tj

wj .

If w ≥ 0, we label it as positive, otherwise, label it as negative. For example, if we
have a cyclic orderA = {1, 3, 5′, 4′, 2, 3′, 5, 1′, 4, 2′}, then we group the intersected
points into 8 groups: {1, 3}, {5′, 4′}, {2}, {3′}, {5}, {1′}, {4}, {2′}. The weights for
each group are 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1.

Fig. 2. How 2D mapping method works on a specific sign matrix in the joy dataset.
The arrangements of annotators and tasks are shown in the left figure. The annotators’
behavior can be modeled according to the right figure.

5 Experiment

In this section, we present experimental results, and compare our proposed
method with the baselines, majority voting method and weighted majority
voting method.
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5.1 Datasets

SNOW datasets [1] is one of popular emotion datasets including seven task-
annotator matrices, including ANGER, DISGUST, FEAR, JOY, SADNESS,
Temporal Event Recognition (RTE) and Temporal Event Recognition (TEMP).
The first five matrices are numeric matrices but not sign matrices. For simplic-
ity, we applied Weka [18] unsupervised NumerictoBinary filter for attributes to
transform them into sign matrices.

RTE and TEMP are sign matrices shown in Fig 3. Each RTE instance in the
dataset is a pair of sentences. Annotators are asked to label whether the second

Fig. 3. Examples of binary labels of RTE and TEMP obtained from Amazon Mechan-
ical Turk. The boxes show the binary labels provided by four annotators 1, 4, 5, 9.
Green box indicates the second sentence (the Hypothesis) can be implied from the first
sentence (the Text), i.e., the Hypothesis can be determined to be true given that the
Text is true. Red box means that the second sentence can not be inferred from the
first sentence. It is assumed that annotators do not have any prior knowledge before
the Text is shown.

Fig. 4. RTE label matrix. The x-axis is tasks ID from 1 to 800. The y-axis is annotators
ID from 1 to 165. Blue cells indicate the according task is labeled by the corresponding
annotator. White cells denote tasks with missing values. It is shown that the matrix is
sparse with 94% values missing in total.



624 X. Liu, L. Li, and N. Memon

sentence can be inferred from the first sentense. RTE has 800 instances with 165
annotators. Each task is labeled by 10 annotators and every group of 20 tasks
are shared among the same group of annotators, resulting in 94% of items’ value
missing in the matrix, as shown in Fig 4. Each TEMP instance is a short article
including two events. The annotators need to judge which of the two events
happen first. The original data set has 462 instances and 76 annotators. Each
task in TEMP is labeled by 10 annotators and every 10 tasks are shared among
the same group of annotators.

Table 1 shows the summary of the seven parts of the dataset.

Table 1. Summary of the SNOW datasets collected from Amazon Mechanical Turk
showing the number of tasks per dataset, the number of labels per task and the total
number of annotators that provided labels

Dataset Tasks Assignments Annotators

RTE 800 10 165

TEMP 462 10 76

Anger 100 10 38

Disgust 100 10 30

Fear 100 10 32

Sadness 100 10 38

Joy 100 10 38

5.2 Experimental Results and Discussions

As introduced in section 3 and 4, we implemented our algorithms according
to the two phases and estimated the labels using the simple method(perform
majority voting on the “corrected” matrix). With the ground truth, we compared
the prediction accuracy of our proposed method with the other two baselines,
majority voting method and weighted majority voting method.

RTE Dataset. Although the RTE dataset contains 800 tasks and 165 annota-
tors, each task is only labeled by 10 annotators, and every 20 tasks are shared
by the same annotator group. Thus we first divided the whole sign matrix into
forty 20-by-20 sign matrices.

As shown in Fig 6, our model on 2D space performs better estimation of
the ground truth than majority voting while the majority voting beats the 1D
mapping method. By the default scenario of majority voting method, if half or
more than half of the annotators label a task as positive(5 or more annotators in
our experiment), then the task is labeled as positive. If a strategy is considered as
“t voting strategy” when labeling a task as positive if t or more than t annotators
label it as positive, then we can conclude from Fig 6 that if t ≥ 5, both “t voting
strategy” on “corrected” matrices processed by 1D and 2D mappings achieve
better performance than “t voting strategy” itself.
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Fig. 5. The left figure shows the accumulated errors for 1D and 2D arrangements on
RTE dataset. The right figure shows the accumulated errors for 1D and 2D arrange-
ments on TEMP dataset. The x-axis corresponds to the number of linear separators
mapped into the space.

Fig. 6. The performance of 1D approach, 2D approach and majority voting on both
RTE dataset and TEMP dataset

TEMP Dataset. TEMP contains 462 tasks and 76 annotators. Each task
is only labeled by 10 annotators and every 10 tasks are shared by the same
annotator group. Similar to RTE, we first divide the whole sign matrix into
forty-six 10-by-10 sign matrices.

The TEMP experiment(right picture in Fig 6) shows that our model on 2D
space performs slightly better than the majority voting method while the 1D
approach performs no better than majority voting. In this experiment, both
“t voting strategy” on “corrected” matrices achieved by 1D and 2D methods
perform nearly the same with “t voting strategy”. This can be explained by
the fact that the number of accumulated errors introduced to TEMP by the
algorithm is far less than the one in RTE shown in Fig 5, which implies that the
original sign matrix of TEMP dataset is close to the “corrected” matrix.

The Other Datasets. For the other 5 datasets, we obtain similar result as in
RTE and TEMP datasets that the mapping method on 2D space performs better
than majority voting method while majority voting method performs better than
1D approach.

If more “priori information”(the number of positive labels in a given sign
matrix) is introduced, we can obtain further improvement on estimation for
both 1D and 2D approaches compared with majority voting method shown in
Fig 7.
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Fig. 7. The overall performance of majority voting, 1D approach with priori knowledge
and 2D approach with priori knowledge for the five datasets.

Weighted Majority Voting. To further prove the effectiveness of our meth-
ods, we also compared our proposed method with the other baseline, weighted
majority voting [17], which the weights for annotators are learned iteratively
with a penalty parameter beta. Experimental results on precisions are shown in
the bar graph in Fig 8.

From the graph, it could be seen that our 2D Weight-based Estimation on
“corrected” matrix performs significantly better than the other baselines on RTE
dataset while it performs slightly better than the other three baselines on TEMP
dataset.

Fig. 8. The performance of majority voting, 2D simple approach and 2D weight-based
estimation on corrected matrix for the RTE and TEMP datasets
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Issue with Errors. As shown in Fig 1, the number of cells increases by 1 and
2 for 1D and 2D mapping approaches in each step while all the possibilities
for annotator-label increases exponentially. Such mismatch produce errors. The
experimental result shows how errors increase, which is demonstrated in Fig 5.
It can be inferred from the figures that the 2D arrangement introduces half less
errors than the 1D arrangements, which intuitively makes sense as we discussed.

6 Conclusions

In this paper, we propose a model to map an annotator-task sign matrix M onto
a line/circle in 1D/2D spaces respectively. Each annotator corresponds to a line
that crosses the line/circle in 1D/2D space and each task corresponds to a point
that fall onto the line/circle. Given the original matrix M, the closest “corrected”
matrix to M and is computed and the binary label for each task is learned. Then
we compare it with the majority voting and weighted majority voting on the
initial sign matrix to see the prediction accuracy for the two approaches.

Our method achieves better result than the majority voting and weighted
majority voting in most of the datasets that we tested. The proposed algorithm
can handle noisy data and provide a method to model the behavior of each
annotator. Our findings reveal that annotators can be clustered into different
groups. And for certain tasks, there are expert annotators that give “better”
labels according to their skills, consistencies and biases. However, our model can
only deal with binary labels. Applying our model to continuous annotator labels
will be explored in the future.
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Abstract. The usual frameworks for visual classification involve three steps: ex-
tracting features, building codebook and encoding features, and training classi-
fiers. The current release of ImageNet dataset [1] with more than 14M images
and 21K classes makes the problem of visual classification become more diffi-
cult to deal with. One of the most difficult tasks is to train a fast and accurate
classifier. In this paper, we address this challenge by extending the state-of-the-
art large scale classifier Power Mean SVM (PmSVM) proposed by Jianxin Wu
[2] in two ways: (1) The first one is to build the balanced bagging classifiers
with under-sampling strategy. Our algorithm avoids training on full data and the
training process of PmSVM rapidly converges to the optimal solution, (2) The
second one is to parallelize the training process of all classifiers with multi-core
computers. We have developed the parallel versions of PmSVM based on high
performance computing models. The evaluation on 1000 classes of ImageNet
(ILSVRC 1000 [3]) shows that our approach is 90 times faster than the original
implementation of PmSVM and 240 times faster than the state-of-the-art linear
classifier (LIBLINEAR [4]).

Keywords: Large Scale Visual Classification, High Performance Computing,
Sampling Strategy, Parallel Support Vector Machines.

1 Introduction

Visual classification is one of the important research topics in the area of computer
vision and machine learning. Low-level local features and bag-of-words model (BoW)
are the core of state-of-the-art visual classification systems. The usual frameworks for
visual classification involve three steps: 1) extracting features, 2) building codebook
and encoding features, and 3) training classifiers. All these frameworks were evaluated
on small datasets, e.g. Caltech 101 [5], Caltech 256 [6], and PASCAL VOC [7] that can
fit into desktop memory. In step 3, most researchers choose either linear or non-linear
SVM classifiers that can be trained in a few minutes.

However, ImageNet with very large number of classes poses more challenges in
training classifiers. ImageNet is much larger in scale and diversity than the other bench-
mark datasets. The current release ImageNet has grown a big step in terms of the num-
ber of images and the number of classes, as shown in Fig. 1 - it has 21,841 classes with
more than 1000 images for each class on average.

P. Perner (Ed.): MLDM 2013, LNAI 7988, pp. 629–643, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



630 T.-N. Doan, T.-N. Do, and F. Poulet

With millions of images, training an accurate classifier may take weeks or even years
[8], [9]. The recent works in large scale learning classifiers converge on building lin-
ear SVM classifiers. We are able to train linear classifiers (e.g. LIBLINEAR) in order
of seconds, even with millions of training examples. However, in the context of visual
classification, linear classifier is inferior in terms of accuracy, compared to non-linear
classifiers [10], [11], [2]. Wu [2] proposes Power Mean SVM classifier that outper-
forms LIBLINEAR and other additive kernel classifiers in terms of training time and
classification accuracy. Nevertheless, the current version of PmSVM does not take into
account the benefits of high performance computing (HPC). On ILSVRC 1000, it takes
very long time to train all binary classifiers. Therefore, it motivates us to study how to
speed-up PmSVM for large scale visual classification. In this paper, we have developed
the extended versions of PmSVM in two ways:

1. Propose a balanced bagging algorithm for training binary classifiers. Our algo-
rithm avoids training on full data and the training process of PmSVM rapidly converges
to the optimal solution.

2. Parallelize the training process of all binary classifiers based on HPC models. In
the training step of classifiers, we apply our balanced bagging algorithm to achieve the
best performance.

Our approach is evaluated on the 10 and 100 largest classes of ImageNet and ILSVRC
1000. The result shows that our approach is 90 times faster than the original imple-
mentation of PmSVM and 240 times faster than LIBLINEAR without (or very few)
compromising classification accuracy.

The remainder of this paper is organized as follows. Section 2 briefly reviews the re-
lated work on large scale visual classification. Section 3 introduces Power Mean SVM.
In section 4, we present its improvement for large number of classes and describe how
to speed-up the training process of PmSVM by using our balanced bagging algorithm
and take into account the benefits of HPC. Section 5 presents numerical results before
the conclusion and future work.

Fig. 1. A comparison of ImageNet with other benchmark datasets
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2 Related Work

Many previous works on image classification rely on bag-of-words model (BoW) [12],
local feature quantization and support vector machines. These models may be enhanced
by multi-scale spatial pyramids [13] on BoWs or histogram of oriented gradient [14]
features. Some recent works consider exploiting the hierarchical structure of dataset
for image recognition and achieve impressive improvements in accuracy and efficiency
[15]. Related to classification is the problem of detection, often treated as repeated one-
versus-all classification in sliding windows [7], [16]. In many cases, such localization
of objects might be useful for improving classification accuracy performance. However,
in the context of large scale visual classification with hundreds or thousands of classes,
these common approaches become computationally intractable.

To address this problem, Fergus et al. [17] study semi-supervised learning on 126
hand labeled Tiny Images categories, Wang et al. [18] show classification experiments
on a maximum of 315 categories. Li et al. [19] do research with landmark classifica-
tion on a collection of 500 landmarks and 2 million images. On a small subset of 10
classes, they have improved BoW classification by increasing the visual vocabulary up
to 80K visual words. Furthermore, the current released ImageNet makes the complex-
ity of large scale visual classification become a big challenge. To tackle this challenge,
many researchers are beginning to study strategies on how to improve the accuracy per-
formance and avoid using high cost non-linear kernel SVMs for training classifiers. The
recent prominent works for these strategies are proposed in [8] [9], [20], [21] where the
data is first transformed by a nonlinear mapping induced by a particular kernel and then
efficient linear classifiers are trained in the resulting space. They argue that the clas-
sification accuracy of linear classifiers with high dimensional image representations is
similar to low dimensional BoW with non-linear kernel classifiers. In [9], each local
descriptor is coded either using Local Coordinate Coding [22] or Supper-vector Cod-
ing [23], after performing spatial pyramid pooling the resulting image representation
is a vector in approximately 262K dimensions. To train classifiers, they propose a par-
allel averaging stochastic gradient descent (ASGD) algorithm. With 1000 classes from
ILSVRC 1000, it takes 4 days to train 1000 binary SVM classifiers (one-versus-all) for
one feature channel on three 8-core computers. Sánchez and Perronin [21] study the im-
pact of high dimensional Fisher vectors on large dataset. They show that the larger the
training dataset, the higher the impact of the dimensionality on the classification accu-
racy. To get the state-of-the-art result on ILSVRC 1000, they use the spatial pyramids to
increase the dimensionality of their Fisher vectors to approximately 524K dimensions
and then exploit Product Quantizier [24] to compress the data before training classifiers.
With this approach, training 1000 SGD SVM classifiers (one-versus-all) for one feature
channel takes 1.5 days on a 16-core computer.

In contrast with the approaches using the efficient linear SVMs, some recent works
show that in the context of training classifiers for computer vision tasks, linear SVMs
are inferior in terms of accuracy, compared to the kernel versions of SVM. In many
cases of visual classification, learning SVMs with additive kernels give significantly
higher rate in accuracy performance than dot product kernel [10] [11]. The main draw-
back of these approaches is the high cost of training non-linear kernel classifiers. It
may be thousands times higher than linear classifiers. However, some recent solutions
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are proposed to solve this limitation [10], [11]. Additive kernel SVMs now use only
few times more training time, compared to the state-of-the-art linear SVM classifiers.
To design a fast and accurate non-linear kernel classifier for large scale dataset, Wu
[2] proposes an efficient algorithm for PmSVM. They show empirically that PmSVM
outperforms LIBLINEAR and the state-of-the-art additive kernel classifiers in terms
of both training time and classification accuracy. For instance, with 1000 classes from
ILSVRC 1000, PmSVM is 3 times faster than LIBLINEAR and 2 times faster than the
state-of-the-art additive kernel implementations while getting a significant improve-
ment in classification accuracy from +4.6% to +7.1%. However, the current version
of PmSVM does not take the benefits of the modern chip manufacturing. On one
core of our computer, it takes more than 18 hours to train 1000 binary classifiers on
ILSVRC 1000.

In the multi-core era, computers with multi-cores or multiprocessors are becoming
more and more popular and affordable. So it motivates us to investigate parallel solu-
tions and demonstrate how PmSVM can benefit from modern platforms. Furthermore,
in the case of large number of classes, we show that our balanced bagging algorithm is
very useful to speed-up the training process of classifiers without (or very few) com-
promising classification accuracy. Our experiments show very good results and confirm
that the balanced bagging algorithm and parallel solutions are very essential for large
scale visual classification in terms of training time.

3 Power Mean Support Vector Machines

Let us consider a binary linear classification task with m datapoints in a n-dimensional
input space x1,x2, . . . ,xm having corresponding labels yi =±1. SVM classification al-
gorithm [25] aims to find the best separating surface as being furthest from both classes.
It can simultaneously maximize the margin between the support planes for each class
and minimize the error. This can be accomplished through the quadratic program (1).

minα(1/2)
m

∑
i=1

m

∑
j=1

yiy jαiα jK〈xi,x j〉 −
m

∑
i=1

αi

s.t.

⎧⎨⎩
m

∑
i=1

yiαi = 0

0 ≤ αi ≤ C ∀i = 1,2, ...,m

(1)

where K〈xi,x j〉 is a kernel function of xi and x j, C is a positive constant used to tune the
margin and the error.

The support vectors (for which αi > 0) are given by the solution of the quadratic
program (1), and then, the separating surface and the scalar b are determined by the
support vectors. The classification of a new data point x is based on:

sign(
#SV

∑
i=1

yiαiK〈x,xi〉− b) (2)

Variations on SVM algorithms use different classification functions. No algorithmic
changes are required from the usual kernel function K as a linear inner product other
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than the modification of the kernel evaluation, including a polynomial function of de-
gree d, a RBF (Radial Basis Function) or a sigmoid function. We can get different
support vector classification models.

PmSVM proposed by Wu [2] replaces the kernel function K〈xi,x j〉 in (1) and (2)
with the power mean kernel M〈xi,x j〉 (xi and x j ∈ Rn

+), which is well-known as a gen-
eral form of many additive kernels (e.g. χ2 kernel, histogram intersection kernel or
Hellinger’s kernel).

Mp〈xi,x j〉 =
n

∑
d=1

(xp
id + xp

jd)
1
p (3)

where p ∈ R is a constant.

PmSVM uses the coordinate descent method [26] for dealing with training tasks.
Furthermore, the gradient computation step of the coordinate descent algorithm can
be estimated approximately with the polynomial regression with a very low cost [2].
Therefore, PmSVM is very efficient in both training and testing tasks, compared to
LIBLINEAR and other additive kernel SVMs.

4 Extensions of PmSVM to Large Number of Classes

Most SVM algorithms are only able to deal with a two-class problem. There are several
extensions of a binary classification SVM solver to multi-class (k classes, k ≥ 3) classi-
fication tasks. The state-of-the-art multi-class SVMs are categorized into two types of
approaches. The first one is to consider the multi-class case in an optimization problem
[27], [28]. The second one is to decompose multi-class into a series of binary SVMs, in-
cluding one-versus-all [25], one-versus-one [29] and Decision Directed Acyclic Graph
[30]. Recently, hierarchical methods for multi-class SVM [31], [32] start from the whole
data set, hierarchically divide the data into two subsets until every subset consists of
only one class.

In practice, one-versus-all, one-versus-one are the most popular methods due to
their simplicity. Let us consider k classes (k > 2). The one-versus-all strategy builds k
different classifiers where the ith classifier separates the ith class from the rest. The
one-versus-one strategy constructs k(k − 1)/2 classifiers, using all the binary pairwise
combinations of the k classes. The class is then predicted with a majority vote.

When dealing with very large number of classes, e.g. hundreds of classes, the one-
versus-one strategy is too expensive because it needs to train many thousands classifiers.
Therefore, the one-versus-all strategy becomes popular in this case. PmSVM algorithm
also uses the one-versus-all approach to train independently k binary classifiers. How-
ever, the current PmSVM takes very long time to classify very large number of classes.

Due to this problem, we propose two ways for speed-up learning tasks of PmSVM.
The first one is to build the balanced bagging classifiers with sampling strategy. The
second one is to parallelize the training task of all classifiers with multi-core computers.

4.1 Balanced Bagging PmSVM

In the one-versus-all approach, the learning task of PmSVM is to try to separate the
ith class (positive class) from the k − 1 others classes (negative class). For very large
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number of classes, e.g. 1000 classes, this leads to the extreme imbalance between the
positive class and the negative class. The problem is well-known as the class imbal-
ance. As summarized by the review papers of [33], [34], [35] and the very compre-
hensive papers of [36], [37], solutions to the class imbalance problems were proposed
both at the data and algorithmic level. At the data level, these algorithms change the
class distribution, including over-sampling the minority class [38] or under-sampling
the majority class [39], [40]. At the algorithmic level, the solution is to re-balance the
error rate by weighting each type of error with the corresponding cost. Our balanced
bagging PmSVM belongs to the first approach (forms of re-sampling). Furthermore,
the class prior probabilities in this context are highly unequal (e.g. the distribution of
the positive class is 0.1% in the 1000 classes classification problem), and over-sampling
the minority class is very expensive. We propose the balanced bagging PmSVM using
under-sampling the majority class (negative class).

For separating the ith class (positive class) from the rest (negative class), the balanced
bagging PmSVM trains T models as shown in algorithm 1.

Algorithm 1. Balanced bagging PmSVM
input :

Dp the training data of the positive class
Dn the training data of the negative class
T the number of base learners

output:
PmSV Mmodel

Learn:
for k ← 1 to T do

1. The subset D′
n is created by sampling without replacement |D′

n| negative
datapoints from Dn (with |D′

n| = |Dp|)
2. Build a PmSVM model using the training set (including Dp and D′

n)
end
combine T models (averaging) into the aggregated PmSV Mmodel

We remark that the margin can be seen as the minimum distance between two convex
hulls, Hp of the positive class and Hn of the negative class (the farthest distance between
the two classes). Under-sampling the negative class (D′

n) done by balanced bagging
provides the reduced convex hull of Hn, called H ′

n. And then, the minimum distance
between Hp and H ′

n is larger than Hp and Hn (full dataset). It is easier to achieve the
largest margin than learning on the full dataset. Therefore, the training task of PmSVM

is fast to converge to the solution. According to our experiments, by setting T =
√

|Dn|
|Dp| ,

the balanced bagging PmSVM achieves good results in very fast training speed.

4.2 Parallel PmSVM Training

Although PmSVM and balanced bagging PmSVM deal with very large dataset with
high speed, they do not take into account the benefits of HPC, e.g. multi-core
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computers or grids. Furthermore, both PmSVM and balanced bagging PmSVM train
independently k binary classifiers for k classes problems. This is a nice property for par-
allel learning. Our investigation aims at speed-up training tasks of multi-class PmSVM,
balanced bagging PmSVM with multi-processor computers or grids. The idea is to learn
k binary classifiers in parallel.

Algorithm 2. Hybrid MPI/OpenMP parallel PmSVM
input :

D the training dataset with k classes
T the number of MPI processes

output:
PmSV Mmodel

Learn:
MPI − PROC1
#pragma omp parallel for
for i1 ← 1 to k1 do /* class i1 */

Build a binary PmSVM model using the training set D to separate the positive
class i1 from the rest.

end

.̇

MPI − PROCT
#pragma omp parallel for
for iT ← 1 to kT do /* class iT */

Build a binary PmSVM model using the training set D to separate the positive
class iT from the rest.

end

The parallel programming is currently based on two major models, Message Passing
Interface (MPI) [41] and Open Multiprocessing (OpenMP) [42]. MPI is a standard-
ized and portable message-passing mechanism for distributed memory systems. MPI
remains the dominant model (high performance, scalability, and portability) used in
high-performance computing today. However, a MPI process loads the whole dataset
(∼ 25GB) into memory during learning tasks, making it intractable. The simplest devel-
opment of parallel PmSVM algorithms is based on the shared memory multiprocessing
programming model OpenMP. However OpenMP is not guaranteed to make the most
efficient computing. Finally, we present a hybrid approach that combines the benefits
from both OpenMP and MPI models. The parallel PmSVM algorithm is described in
algorithm 2. The number of MPI processes depends on the memory capacity of high
performance computing systems.

5 Experiments

In this section we compare the extended versions of PmSVM with the original imple-
mentation and LIBLINEAR in terms of training time and classification accuracy. Our
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experiments are run on machine Intel(R) Xeon(R), CPU X5650, 2.67GHz, 24 cores,
and 144GB main memory.

We have implemented four parallel versions of PmSVM: 1) OpenMP version of
PmSVM (omp-PmSVM), 2) balanced bagging version of omp-PmSVM (omp-
iPmSVM), 3) hybrid MPI/OpenMP version of PmSVM (mpi-omp-PmSVM), and 4)
balanced bagging version of mpi-omp-PmSVM (mpi-omp-iPmSVM).

PmSVM. We set the parameters of PmSVM as follow: p = −1 (equivalent to χ2 ker-
nel) and C = 0.01.

LIBLINEAR. This is the linear SVM from [4] with default parameters (C = 1).

iPmSVM. This is the balanced bagging PmSVM with the same SVM parameters as
PmSVM.

5.1 Dataset

The parallel versions of PmSVM are designed for large scale datasets, so we have eval-
uated the performance of our approach on the three following datasets.

ImageNet 10. This dataset contains the 10 largest classes from ImageNet (24,807 im-
ages with data size 2.4GB). There are more than 2000 diversified images per class. In
each class, we sample 90% images for training and 10% images for testing. First, we
construct bag-of-words histogram of every image by using dense SIFT descriptor (ex-
tracting SIFT on a dense grid of locations at a fixed scale and orientation), and 5000
codewords. Then, we use feature mapping from [10] to get the high-dimensional image
representation in 15,000 dimensions. This feature mapping has been proven to give a
good image classification performance [10]. We end up with 2.6GB of training data.

ImageNet 100. This dataset contains the 100 largest classes from ImageNet (183,116
images with data size 23.6GB). In each class, we sample 50% images for training and
50% images for testing. We also construct bag-of-words histogram of every image by
using dense SIFT descriptor and 5000 codewords. For feature mapping, we use the
same method as we do with ImageNet 10. The final size of training data is 8GB.

ILSVRC 1000. This dataset contains 1000 classes from ImageNet with 1.2M images
(126GB) for training, 50K images (5.3GB) for validation and 150K images (16GB) for
testing. To compare with the results reported in [2], we use the same method to encode
every image as a vector in 21,000 dimensions. We also take ≤ 900 images per class for
training dataset. Therefore, the total number of training images is 887,816 and the size
of training data is 12.5GB. All testing samples are used to test SVM models.

5.2 Training Time

We have only evaluated the training time of SVM classifiers excluding the time needed
to load data from disk. As shown in Fig. 2 and 3, on small and medium datasets as
ImageNet 10, ImageNet 100, our four parallel versions show a very good speed-up in
training process, compared to the original implementation of PmSVM and LIBLINEAR
(Table 1 and 2).
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Fig. 2. SVMs training time with respect to the number of threads for ImageNet 10

Fig. 3. SVMs training time with respect to the number of threads for ImageNet 100
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Fig. 4. SVMs training time with respect to the number of threads for ILSVRC 1000

Fig. 5. Overall accuracy of SVM classifiers (%)
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Table 1. SVMs training time (minutes) on ImageNet 10

# OpenMP threads 1 5 10

LIBLINEAR 2.02
PmSVM 6.23
omp-PmSVM 6.23 1.75 0.98
omp-iPmSVM 4.66 1.34 0.77
2 mpi-omp-PmSVM 3.29 0.78 0.76
2 mpi-omp-iPmSVM 2.44 0.67 0.65

Table 2. SVMs training time (minutes) on ImageNet 100

# OpenMP threads 1 5 10 15 20

LIBLINEAR 30.41
PmSVM 165.45
omp-PmSVM 165.45 21.12 14.52 11.67 10.92
omp-iPmSVM 47.67 12.97 9.09 5.05 4.44
2 mpi-omp-PmSVM 62.18 10.63 8.85 8.25 8.06
2 mpi-omp-iPmSVM 21.56 5.68 4.16 3.79 3.58

Table 3. SVMs training time (minutes) on ILSVRC 1000

# OpenMP threads 1 5 10 15 20

LIBLINEAR 3106.48
PmSVM 1132.03
omp-PmSVM 1132.03 231.00 152.87 140.72 135.63
omp-iPmSVM 173.26 39.55 23.63 19.43 18.12
2 mpi-omp-PmSVM 550.04 119.17 102.81 103.62 103.12
2 mpi-omp-iPmSVM 72.07 16.69 13.08 13.37 13.25

Table 4. SVMs overall classification accuracy (%)

dataset ImageNet 10 ImageNet 100 ILSVRC 1000

LIBLINEAR 75.09 54.07 21.11
PmSVM 73.16 50.17 25.64
omp-PmSVM 73.16 50.17 25.64
omp-iPmSVM 72.79 49.42 25.35
2 mpi-omp-PmSVM 73.16 50.17 25.64
2 mpi-omp-iPmSVM 72.79 49.42 25.35
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ILSVRC 1000. Our implementations achieve a significant speed-up in training process
when performing on large dataset ILSVRC 1000.

Balanced Bagging PmSVM. As shown in Fig. 4, the balanced bagging version of
PmSVM (omp-iPmSVM running with 1 thread) has a very fast convergence speed
in training process, it is more than 6 times faster than the original implementation of
PmSVM (Table 3).

OpenMP PmSVM. On a multi-core machine, OpenMP version of PmSVM (omp-
PmSVM) achieves a significant speed-up in training process with 20 OpenMP threads.
As shown in Fig. 4, our implementation is 8 times faster than the original PmSVM and
23 times faster than LIBLINEAR (Table 3). Due to the restriction of our computer (24
cores), we set the maximum number of OpenMP threads to 20. We can set more than 20
OpenMP threads, but according to our observation there is very few significant speed-
up in training process because there is no more available core.

OpenMP and Balanced Bagging PmSVM. With balanced bagging algorithm applied
to OpenMP version of PmSVM (omp-iPmSVM), we significantly speed-up the training
process on this training data. For instance, with the number of OpenMP threads set to
20, omp-iPmSVM is 62 times faster than the original PmSVM and 171 times faster than
LIBLINEAR.

MPI/OpenMP PmSVM. As show in Fig. 4, our hybrid MPI/OpenMP version of
PmSVM (mpi-omp-PmSVM) achieves a significant speed-up in training process with 2
MPI processes and 10 OpenMP threads. Our implementation is 11 times faster than the
original PmSVM and 30 times faster than LIBLINEAR (Table 3). Due to the large size
of this training data, each MPI process of PmSVM needs to use ∼ 25GB main memory
to train classifiers. With the memory restrictions of our computer, we can only evaluate
mpi-omp-PmSVM by setting the number of MPI processes to 2. In this case, we vary
the number of OpenMP threads running in each MPI process. Again, with 24 cores of
our computer we set the maximum number of OpenMP threads to 10.

MPI/OpenMP and Balanced Bagging PmSVM. The most significant parallelization
performance of PmSVM we achieve is the combination of MPI/OpenMP and bal-
anced bagging PmSVM (mpi-omp-iPmSVM). As shown in Fig. 4, our implementation
achieves a significant performance in training process with 2 MPI processes and 10
OpenMP threads. It is 90 times faster than the original PmSVM and 240 times faster
than LIBLINEAR. On ILSVRC 1000, we need only 13 minutes to finish training 1000
binary classifiers, compared to the original PmSVM (∼ 19 hours) and LIBLINEAR
(∼ 2 days and 4 hours), as shown in Table 3. This result confirms that our approach has
a great ability to scaleup to full ImageNet dataset with more than 21,000 classes.

5.3 Classification Accuracy

As shown in Fig. 5, on the small datasets like ImageNet 10 and ImageNet 100,
LIBLINEAR outperforms PmSVM and iPmSVM in terms of classification accuracy.

However, when we perform classification on the dataset with very large number
of classes like ILSVRC 1000, the picture of accuracy performance is quite different.
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PmSVM and iPmSVM achieve better results than LIBLINEAR (from +4.24% to
+4.53%, ie. a relative increase of 20.1%).

Note that iPmSVM runs much faster than PmSVM without (or very few) compro-
mising classification accuracy (Table 4).

6 Conclusion and Future Work

We have developed the extended versions of PmSVM to efficiently deal with large scale
datasets with very large number of classes like ImageNet. To speed-up the training pro-
cess of the binary classifiers, we have extended PmSVM in two ways. The first one is
to build the balanced bagging classifiers with under-sampling strategy. Our algorithm
avoids training on full training data, so the training process of PmSVM rapidly con-
verges to the optimal solution. The second one is to parallelize the training process of
all classifiers with multi-core computers. We have developed the parallel versions of
PmSVM based on HPC models (OpenMP, MPI, and hybrid MPI/OpenMP). In each
parallel version of PmSVM we apply our balanced bagging algorithm to obtain the best
performance in the training process.

We have evaluated the performance in terms of training time on the large scale
dataset like ImageNet. On ILSVRC 1000, our implementation is 90 times faster than
the original implementation of PmSVM and 240 times faster than LIBLINEAR. To
obtain this performance we set the number of threads to 20 on our computer. There-
fore, with our approach we can get higher performances by using more resources (CPU
cores, computer, etc.). Furthermore, with the balanced bagging approach we signifi-
cantly speed-up the training process of the classifiers without (or very few) compromis-
ing the overall classification accuracy. We need only 13 minutes to train 1000 binary
classifiers on ILSVRC 1000. Obviously, this is a roadmap towards very large scale vi-
sual classification. However, when the training data is larger, PmSVM requires a large
amount of main memory. In the near future, we may study the approach that avoids
loading the whole training data to main memory as in [43]. Another possibility could
be to compress the training data and handle the compressed data on the fly, as in [21].
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Abstract. Evaluation for probabilistic multiclass systems has predominately 
been done by converting data into binary classes. While effective in quantifying 
the classifier performance, binary evaluation causes a loss in ability to distin-
guish between individual classes. We report that the evaluation of multiclass 
probabilistic classifiers can be quantified by using the area under the distance 
threshold curve for multiple distance metrics. We construct our classifiers for 
evaluation with data from the National Cancer Institute (NCI) Lung Image  
Database Consortium (LIDC) for the semantic characteristic of malignancy. We 
conclude that the area under the distance threshold curve can provide a measure 
of the classifier performance when the classifier has more than two classes and 
probabilistic predictions. 

Keywords: Machine learning, medical informatics, probabilistic classifier, 
ROC curve, K-Nearest neighbor. 

1 Introduction 

In the advent of classifiers as key diagnostic tools within medical imaging, rigorous 
exploration of evaluation measures has begun in order to assess their performance. In 
particular, accuracy and the receiver operator characteristic curve (ROC) have been 
well-accepted within the machine learning community [1]. In more recent analyses, 
cost curves have also been reviewed because of the ability to assess different severi-
ties of misclassifications [2]. Nevertheless, previous discussions have been limited to 
binary labeling systems, where classifiers identify the probability of either a positive 
or negative label only. 

While a binary label is often the preferred output of a computer aided diagnosis 
system (e.g., telling a doctor “healthy” or “sick”), sometimes an output that has more 
details is required.  Multiple label classifiers can produce an output that gives a range 
of information to a physician, such as a rating on a 1-5 scale, or the structure of the 
tissue sample as a type (fat, fluid, soft tissue, air, etc).  In contrast to ordinal regres-
sion where the relationship between labels 1-5 is significant, multiclass classifiers 
focus on class distinction, regardless of the label given. These types of classifiers are 
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also useful outside the medical field for purposes such as image labeling, identifying 
genre’s in music, recommender systems, and any other problem where the desired 
output is to identify which of several types the input belongs to.   

By using a multiclass probabilistic input, a classifier will learn using a range of in-
formation. For example, in this paper we see that multiple radiologists annotate charac-
teristics lung nodules uniquely, and a multiclass input accounts for these differences in 
training. Furthermore, by combining probability with a multiclass output, one can as-
sess how similar an object is to more than one class. For example, in showing the 
probabilities for the most likely cases a doctor would have more information than if 
simply provided a single class, further increasing the data available when compared to 
binary classification.  Because classifiers are not perfect, having an effective way to 
show the most likely possibilities for the object in question is useful: a medical expert 
may agree with the classifiers second-most probable choice instead of the first choice.  

In order to evaluate a probabilistic and multi-class classifier, a new evaluation 
measure has been introduced by Zinovev, Furst, and Raicu in 2011, the Area Under 
the Distance Threshold Curve (AUCdt) using relative differences measured by the 
Jeffrey Divergence [3]. Expanding upon the various evaluation functions described by 
Amor, Benferhat, and Elouedi in 2006 [4] the distance threshold curve helps visualize 
and quantify multiclass probabilistic performance. In this paper, we will expand upon 
the previously used AUCdt by incorporating additional distance measures as well as 
attempting to weight the difference across multiple class labels in regards to their 
relative “costs” for our application. The evaluation difference metrics that we are 
investigating are the City Block Difference (CB), the Jeffrey Divergence (JD), and 
Earth Movers Distance (EMD). Our goal is to show that these new quantities will help 
evaluate multiclass probabilistic classifiers just as has been done previously in the 
binary class case with area under the ROC curve (AUC). 

2 Background 

There are several challenges in evaluating probabilistic multiclass classifiers. One of 
these is that there is not always a correct answer, as a sample may belong to multiple 
classes, or there is disagreement between experts as to which class the sample belongs 
to. Many of the evaluation methods that are used for binary classifiers simply do not 
work very well when applied to multi-class output, or do not provide an accurate  
picture of how close the predicted output is to the expected output. 

Accuracy is simply defined as the correct number of classifications over the total 
number of instances, or also 1-ERROR [1]: =   (1)

where TP and TN indicate the true (correctly-classified) positives and negatives,  
and CP and CN , the total number of positives and negatives. While this measure is 
readily-available with most classifiers, its simplistic nature cannot distinguish  
between false positives or negatives nor generate a visual graph to define classifier 
performance over varying conditions, such as a threshold. Consequentially, it has 
been suggested that the ROC curve will allow for a more percipient yet still-consistent 
evaluation [5]. 
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Discussed by Provost and Fawcett in 1997 for machine learning, the ROC curve 
has been a major evaluation tool for classifiers [6]. The ROC curve is constructed by 
plotting sensitivity vs. 1-specificity as defined using terminology from the confusion 
matrix seen in Table 1: 

Table 1. Confusion matrix for constructing ROC curve, where labeled values come from 
known labels and predicted values from the classifier 

 
 

With sensitivity being equivalent to the true positive rate: = =  (2)

and specificity, 1 minus the false positive rate [7]:  = 1 = . (3)

A range of false positive probability thresholds is then created from 0 to 1. For each 
new threshold, if the probability of a positive label is equal or above the threshold, it 
is added to the value of the true positive rate and plotted as the ROC curve. Figure 1 
shows an example of an ROC curve generated using artificial data with varying per-
centages of perfect agreement and random labels. Along with the benefit of providing 
an important visualization to a classifier’s performance, the ROC curve also can easi-
ly be compared to “random” classifications (diagonal line with slope of 1 through 
curve) and is not susceptible to the bias of skewed distributions as is accuracy [8]. 

 

Fig. 1. Example of ROC curve— solid: artificial data with 90% agreement between predicted 
and labeled classes, dotted: data with 50% agreement, dashed: data with 10% agreement,  
diagonal: completely random performance (no classification) 
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Due to the benefits noted by the ROC curve, the Area Under the ROC Curve was 
explored by Bradley in 1997. It is calculated by taking the area enclosed beneath the 
ROC plot which has a range of 0 to 1. An area of 0 indicates no classification, 0.5 
random classification, and 1, perfect classification [1]. The more similarity or  
agreement between predicted and labeled classes, the more area enclosed by the 
AUC. The AUC provides a quantifiable measure in order to differentiate and rank the 
effectiveness of different classifiers [8]. 

Despite the strength that ROC and AUC have given to the machine learning com-
munity, there are still several cases in which they fail as an evaluation measure. One 
example is cost, as explained by Drummond and Holte in 2006. The ROC curve does 
not take into effect the relative “costs” of misclassifications (i.e., the difference be-
tween a false positive and a false negative for the application). A cost curve evaluates 
the normalized cost of misclassification for a particular classifier using a varying 
range of percent positive example. Positive slopes on the cost curve graph are equiva-
lent to when false positive rate is less than the false negative rate, and negative slopes, 
when false positive rate is greater. Depending on the application and whether or not 
false positives or false negatives “cost” more, one can assess the effect of misclassifi-
cations for a given classifier. Likewise, the convex hull beneath the cost curve can be 
made minimal to minimize cost [2]. In recent research, the Brier Curve has been of 
particular interest as a cost curve that works explicitly with probabilistic labels and 
has an area underneath, the Brier Score, analogous to AUC [9]. Despite the possibility 
of incorporating cost curves with ROC to further develop understanding of a classifi-
ers performance, another key issue that arises is that these measures are only limited 
to a binary class system [2]. Furthermore, a previous expansion of the ROC to multic-
lass systems was done by Hand and Till in 2001 [10]. Nevertheless this was done in 
pairwise comparison, with only one class compared to all others.  

3 Methodology 

3.1 Probabilistic Distributions 

Objects classified by a group of people may end up with some disagreement in the 
class or ranking assigned.  This is most pronounced when the experts don’t have 
access to what the others decided, as for example, getting a second opinion from 
another doctor, or a panel of Olympic judges each providing a different score for a 
gymnast, based on their own internal scoring metric.  Because each opinion is valid 
and useful, even though different, by assigning probabilities based on the number of 
experts in agreement, we can produce a probability distribution showing the most 
likely true case.  The goal of a classifier is then to attempt to match this varied  
response, so as to simulate a panel of experts, and to show multiple possibilities in 
addition to the highest one. An example of two distinct, multiclass probabilistic dis-
tributions can be seen in Figure 2 below. The distance threshold curve that we are 
proposing in this paper will allow us to evaluate and quantify the differences between 
such distributions. 
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Fig. 2. Example of two distinct probabilistic distributions 

3.2 Data 

The Lung Image Database Consortium (LIDC) dataset consists of lung nodules rated 
by up to four radiologists for a variety of semantic characteristics; 64 image features 
were extracted plus the z-position from the nodule slice images [3]. We then used the 
data for each image slice, and grouped them by nodule. We filtered by selecting no-
dules that had been labeled by four radiologists, and then selected two slices, that 
were located at roughly 33% and 67% through the nodule based on the Z-position 
value. The slice selection was done programmatically, so as to be able to select mul-
tiple images evenly distributed throughout the nodule.  We tried different values for 
the number of slices, and found that two provided a good mix of accuracy and speed. 
By concatenating the features from the second selected slice to the first, we doubled 
the number of features from 65 to 130. Two additional features were added based on 
the entire set of slices for the nodule, Height, and Volume, where height is the dis-
tance from the smallest Z-value to the largest, and Volume is the area of each slice 
multiplied by the thickness, and then summed across all slices.  Using this, we were 
able to produce a data set of 830 out of 2660 total nodules, each with 132 features and 
characteristic labels from all four radiologists. For our paper, we focused on the se-
mantic characteristic of malignancy, which is scaled on an ordinal range of 1-5, with 
1 being the “most-likely benign” and 5 being the “most-likely malignant”. 

3.3 Classifiers 

This data set was then run through a K-Nearest Neighbor classifier, using different 
values of K.  We used a 90%-10% split, where every 10th nodule was set aside for 
testing purposes, and the other nine were used for training.  We varied our number of 
nearest neighbors from K=2 to K=9 and found that using 5 nearest neighbors  
was optimum by using the City Block Distance to compare the output results to the 
radiologist labels and find the difference. From there, we proceeded to use more  
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sophisticated analysis methods to study the results.  The classifier took in multiple 
labels for each nodule, and produced multiple probabilities as the output. An example 
is found in Table 2: 

Table 2. Sample distribution of radiologist and classifier-predicted probabilistic distributions. 
In this case, the nodule had been labeled “2” by one radiologist, “3” by two radiologists, and 
“4” by one radiologist. 

Label 1 2 3 4 5 

Radiologists 
Values (Ai) 

0% 25% 50% 25% 0% 

Predicted   
Values (Bi) 

0% 21.4% 50.0% 25.0% 3.6% 

 
The K-nearest neighbor algorithm sums the Radiologists’ Values, Ai, of the K-

nearest neighbors (found using the K smallest values of the L1 norm), and divides by 
K, to produce the Predicted Values, Bi.  The results of the training set are artificially 
higher than expected due to the fact that for a nodule in the training set, there is a 
guarantee that one of the nearest neighbors will be the exact nodule being examined, 
so the results from the testing set are much more useful for determining how well the 
classifier performed.   

In a binary K-NN classifier, the last step is to select the class that is the most fre-
quent, and declare the test case to be of that type.  In our case, we take the average 
probabilities for each type, thus resulting in a distribution similar to Bi in Table 2. A 
case for probabilistic inputs for multiclass K-NN Classifiers has previously been 
made in 2009 by Jain and Kapoor [11]. 

3.4 Evaluation Measures 

Accuracy. In order to determine the accuracy of each slice prediction, each probabil-
istic distribution of values needed to be converted into a single, discrete label. To do 
so, each distribution by radiologists and predictions were viewed separately and the 
largest probability was found. The class label index at this case (i.e. 1,2,3,4 or 5), was 
then assigned as the single label for the slice. In the case that there were two or more 
probabilities that were equally high, the higher index value was chosen as the label. 
This was done to err on the side of caution for our malignancy classifier, where a 
label of “5” is considered the “most-likely malignant”. 
 
ROC and AUC. To perform the ROC analysis of the data, a separate conversion of 
the probabilistic distributions was required from a multiclass to binary array. In order 
to do so, the five labels had to be isolated into positive and negative classes. Labels 1 
and 2 were assigned to the negative class and labels 4 and 5 to the positive. Label 3 is 
defined as “unknown” malignancy by the LIDC, so was subjected to three conditions: 
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3 in the positive class (AUC 3+), 3 in the negative class (AUC 3-), or 3 removed from 
classification evaluation (AUC 3out). It is important to acknowledge that it is con-
servative to place 3 in the positive class label due to clinical relevancy of the data: in 
terms of malignancy, it is more appropriate to overestimate than underestimate.  

Next positive and negative class probabilities were summed into a binary array of 
distributions for both radiologists’ and predicted label. In both cases, the larger of the 
two probabilities received the label for that particular slice. The positive class was 
selected in the case that the two probabilities were 0.5. From there, a simple ROC 
curve was constructed using the radiologists’ labels and the positive probabilities of 
the predicted labels with a threshold range of 0 to 1 in 0.05 increments. The area un-
der the curve was then extracted using a trapezoidal approximation of the integral. 

 
AUCdt. The Area Under the Distance Threshold Curve was constructed using a variety 
of distance metrics, including the City Block, Jeffrey Divergence, and Earth Mover’s 
Distance. For any distance measure (d), the AUCdt for instances (S) is given by [3]:  = ∑ (| | | |    (4)

City Block Distance. The City Block Distance, a member of the Minkowski Dis-
tances for p=1 [12]: 

( , = (| |   (5)

was calculated between each radiologist’s probability (Ai) and predicted probability 
(Bi) for a given label (i=1:5), summed across all labels, and then stored into a vector 
(dCB) of distances for all nodules. 
 

Jeffrey Divergence. The Jeffrey Divergence was calculated and stored into a similar 
vector of distances (dJD) with the following algorithm [12]: ( , = ∑ log log ]   (6)

Earth Mover’s Distance. Earth mover’s distance is a measure of the amount of 
change required to move between two different sets of data, assuming that there is a 
value to each location as well as the value stored in that location [3].  With the pre-
vious distance metrics, there is no difference between a nodule that should be a 5 
being incorrectly rated as a 1, and being incorrectly as a 4.  In many cases, where the 
classes are part of a scale, such as a five star rating for restaurants, or the severity of a 
tumor, there is a large difference between those two types of errors.  This method 
takes that into account, so that a rating of 1 is seen as much worse than a rating of 4, 
in the case that the real value is 5. 
  = 0                               (7)  =  (                      (8) 
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  ( , = | |  (9)

Weighted Distance. In terms of the clinical application of our classifier, the relative 
cost between labels was explored through the idea of “weighting” each label. It has 
already been mentioned that as the label for a nodule’s malignancy increases, so does 
the clinical severity of that label. Therefore, weighted distances for the City Block and 
Jeffrey Divergence distance metrics were introduced as well. The weighting used was 
to multiply the difference for each rating by the value of the rating. In other words, for 
formulas 5 and 6, each probability (Ai and Bi) was multiplied by the label (i). This 
algorithm puts additional cost weight on the higher malignancy labels, with each label 
increasing in severity by a factor of one. Nevertheless, this is only a modest weighting 
assumption as such levels of clinical severity are difficult to quantify. 
 
Construction of the Distance Threshold Curve. After all distance distributions 
vectors were created, their values were normalized between 0 to 1 for that particular 
distance metric. For each distance measure, a cumulative histogram was created of the 
varying distance values for threshold values of 0 to 1 with 0.05 increments and re-
ported the percent frequency of instances for each threshold value (Figure 3). After 
the curve was plotted, the area beneath the curve was calculated using the trapezoidal 
integral approximation.  
 

 

Fig. 3. Example of distance threshold curve constructed with data having 90% agreement. The 
AUCdt is 0.9059. 

In the ideal case of perfect classification the two distributions would be identical 
and have no difference, producing an AUCdt with 100% frequency of cases for all 
distance thresholds and an area of 1, similar to the perfect classification instance of 
ROC curve for the binary case. Similarly, the worst classification gives an area of 0. 

3.5 Random Classification of Evaluation Measures 

One of the strengths in using accuracy and AUC for ROC evaluation measures is  
that they have known theoretical behaviors for random classification—that is to  
say, when a classifier arbitrarily assigns information. In our 5 label multiclass  
case, accuracy should be roughly 20% for random performance. Likewise, the binary 
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positive/negative case induced with traditional ROC produces a diagonal line of slope 
1 and has an AUC of 0.5 with random classification. However, in the new AUCdt for 
the multiclass probabilistic case, the random performance was unknown and unique 
for the various distance metrics.  

In order to quantify AUCdt for the arbitrary case, random data was created to test 
this new measure as well as AUC and accuracy. First, we generated a set of 5000 
random probability distributions for Labels 1-5 with a total sum across each distribu-
tion of 1. Then we simulated random radiologists for 5000 distributions. The proba-
bilities available in the radiologists’ distributions were limited to 0, 0.25, 0.5, 0.75, 
and 1 (as they would when given deterministic labels). The values of accuracy, AUC, 
and AUCdt mean and standard deviation of the 50 random radiologist sets with the 
random predictions are show in Table 3. 

Table 3. Mean and standard deviation of evaluation measures with sets of 4 random 
radiologists and random predictions for 5000 values 

Evaluation Measure Mean Standard Deviation 
Accuracy 0.1999 0.0059 
AUC (3+) 0.5080 0.0063 
AUC (3-) 0.5055 0.0055 
AUC (3out) 0.5054 0.0049 
AUCdt CB 0.5391 0.0023 
AUCdt JD 0.6891 0.0022 
AUCdt EMD 0.7948 0.0015 
AUCdt Wtd. CB 0.8374 0.0019 
AUCdt Wtd. JD 0.6891 0.0022 

 
It is important to notice that the values for AUCdt with random performance are not 

only different for a given distance metric (CB, JD, EMD, Wtd. CB, or Wtd. JD), they 
are all higher than 0.5 in the binary case with AUC for ROC. These values are impor-
tant to have in evaluating with AUCdt in order to ensure that the classifier is perform-
ing better than random in the probabilistic multiclass case. 

Next, in order to better understand how to quantify AUCdt, the random classifica-
tion data was iteratively changed to have varying amounts of agreement between the 
predictions and the actual radiologists’ labels. As there were 5000 random predictions 
labels and only 747 actual nodules in the training set that were labeled, 4 samples of 
the 5000 random predictions were taken for each agreement level and the average 
values were reported. The agreement was increased by 10% from 0 to 90% and then 
also calculated at 95% and 99%. The evaluation metric values are shown in Table 4. 

The information provided regarding random performance in Table 4 allows a cer-
tain value of AUCdt to be assessed in terms of similarity between the classified predic-
tions and the actual label values. It is a baseline for which our classifier’s performance 
can be assessed. For example, if our classifier returns an AUCdt value of 0.93 using 
Jeffrey Divergence, we know that our classifier would be classifying with between 
80% and 90% agreement to the radiologists’ labels.   
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Table 4. Performance of AUCdt for all distance metrics comparing actual radiologists’ label 
distributions and random predictions. The random prediction distributions were incrementally 
changed to have various percentages of agreement with the actual radiologists’ labels. 

% 
Agreement 

AUCdt 
CB 

AUCdt JD AUCdt 
EMD 

AUCdt 
Wtd. CB 

AUCdt 
Wtd. JD 

0 0.5225 0.6725 0.7789 0.8220 0.6759 

10 0.4769 0.6251 0.7530 0.8130 0.6290 

20 0.5484 0.6750 0.7856 0.8410 0.6794 

30 0.5805 0.6974 0.7967 0.8443 0.7012 

40 0.6336 0.7379 0.8256 0.8683 0.7422 

50 0.7350 0.8111 0.8745 0.9061 0.8139 

60 0.7563 0.8256 0.8843 0.9087 0.8270 

70 0.8269 0.8737 0.9172 0.9383 0.8783 

80 0.8684 0.9031 0.9357 0.9497 0.9035 

90 0.9433 0.9592 0.9713 0.9771 0.9601 

95 0.9699 0.9793 0.9866 0.9909 0.9788 

99 0.9946 0.9957 0.9976 0.9984 0.9962 

4 Results 

The classifiers developed for the semantic characteristic of malignancy were initially 
evaluated with binary evaluation metrics: accuracy and AUC (3 positive). The same 
classifier was also evaluated using the newly-introduced metrics for the area under the 
distance threshold curve: City Block Difference (simple and weighted), Jeffrey  
Divergence (simple and weighted), and Earth Mover’s Distance. For all evaluation 
measures, a value as close to 1 is desirable. The results of the binary and multiclass 
measures for the best K-Nearest Neighbor classifier  (K=5) are show in Table 5. 
Figures 4-5 provide the visual representation of all binary and multiclass evaluation 
metrics. 

Table 5. Accuracy, AUC, and Area under the distance threshold curve (AUCdt) for three 
distance metrics: City Block Distance, Jeffrey Divergence, and Earth Mover’s Distance, 
unweighted and weighted; 5NN Classifier of Malignancy. 

Classifier Accuracy AUC 
(3+) 

AUCdt  
CB 

AUCdt
JD 

AUCdt
EMD 

AUCdt 
Wtd. 
CB 

AUCdt 
Wtd. 
JD 

5-NN    
Training  

0.6760 0.9438 0.7321 0.8620 0.8974 0.9187 0.8625 

5-NN    
Testing  

0.5542 0.9286 0.6753 0.8141 0.8694 0.8935 0.8144 
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Fig. 4. ROC Curve for 5NN Test Set 

 

Fig. 5. Distance threshold curve for 5NN Test set—black solid: CBD, black thick dash: JD, 
black thin dash: EMD, grey solid: weighted CBD, and grey thick dash: weighted JD 

5 Discussion 

From Table 5 find that the accuracy achieved by the 5NN classifier was 67.60% for 
training and 55.42% for testing sets. In comparing to the random performance of  
accuracy in Table 3 (~20%) This low accuracy can namely be attributed to the  
conversion of our 5-class probabilistic distributions to a single, deterministic label. 
These results attest that accuracy is not an appropriate measure for evaluating a  
multiclass case. 



 Area under the Distance Threshold Curve as an Evaluation Measure 655 

 

The results for the area under the ROC curve in Table 5 show clearly that the 5-
Nearest Neighbor classifier is performing well for the binary case: for all definitions 
of label “3”, the AUC has an area above 0.9. However, these values of AUC are dif-
ferent which confirms that AUC is dependent on how the two classes are defined. 
While our classifier can correctly distinguishing between two distinct classes, we still 
don’t receive information about how well the classifier discriminates single labels. 

In regards to our various distance measures for the areas under the distance thre-
shold curve found in Table 5, we find that all of our measures exceed their random 
performance values from Table 3. Furthermore we note that the weighted JD value of 
the AUCdt only increased by 0.0003 from its normal JD value. Jeffrey Divergence 
likely had very little change because the algorithm that calculates the distance is 
created using a logarithm, where single digit degrees contribute to fewer changes. 
This suggests that weighting JD is probably not necessary for future applications. 

We also can use the values obtained in Table 4 to quantify at about which  
percentage level of agreement our classifier predicted compared to radiologists’ la-
bels. This is done for the different distances used in AUCdt testing sets as follows: for 
CB, 40-50%, for JD, 50-60%, for EMD, 40-50%, for Wtd. Cb, 40-50%, and for Wtd. 
JD 50-60%. It is important to note that the range of agreement for all distance meas-
ures is around 40-60%. This allows us to argue that our 5-NN classifier is able to 
match the radiologists’ distributions at about 40-60% similarity. Furthermore, the 
consistency within the AUCdt validates it as a viable measure for the probabilistic, 
multiclass case. 

6 Conclusion 

Throughout this paper we have discussed the use and meaning behind traditional, 
binary measures for evaluation of classifier performance. Our results using a K-
Nearest Neighbor classifier with K=5 for malignancy from lung nodule image data 
from the LIDC database confirm that AUC is a more-effective evaluation tool com-
pared to accuracy. We have also emphasized the need for an evaluation metric for 
probabilistic, multiclass cases, examining the area under the distance threshold curve. 
We constructed AUCdt using three distance metrics: City Block Distance, Jeffrey 
Divergence, and Earth Mover’s Distance along with Weighted JD and CB. We have 
found the random performance values for all distance metrics and showed that Jeffrey 
Divergence will produce a similar AUCdt when it is weighted and when it is not. This 
also gives us a comparison to AUC and AUCdt in that they both have known random 
classification and a perfect classification value of 1.00.  We also found that regard-
less of the distance measure, the AUCdt consistently evaluated our classifier perfor-
mance as matching the radiologists’ labels to about 40-50%. This confirms that AUCdt 

can be used as an evaluation measure. Furthermore, AUCdt presents an advantage for 
the multiclass case: ability to distinguish between misclassification of higher or lower 
labels by using weighted differences. 

The use of the AUCdt is especially valuable for the case of medical image annota-
tion. Distinguishing between five distinct semantic classes is essential in radiology, 
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where the difference between a malignancy ranking of “3” and “4” could be whether 
to do a lung tissue biopsy or not [14]. Because AUCdt maintains the integrity of each 
distinct class, it is directly applicable to multiclass classification problems such as 
those presented within the LIDC. 

In the future we will investigate how different distribution metrics can be selected 
based on the application purposes of the classifier itself; that there is no “perfect” 
evaluation measure for all cases. We will also explore how viewing this problem as an 
ordinal regression problem (instead of discrete, deterministic labels) will affect the 
area under the distance threshold curve. In this case, Earth Mover’s Distance will 
likely be an appropriate measure as it looks at distance amongst classes which is also 
important in ordinal regression. 
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Zió�lko, Bartosz 492


	Preface
	Organization
	Table of Contents
	The Gapped Spectrum Kernel for Support Vector Machines
	1 Introduction
	1.1 Background
	1.2 Problem
	1.3 Our Solution
	1.4 Our Contributions

	2 Preliminaries
	2.1 Support Vector Machines and the Kernel Method
	2.2 Spectrum Kernel
	2.3 Wildcard Kernel

	3 Gapped Spectrum Kernel
	3.1 Definition and Computation
	3.2 Multiple Gapped Spectrum Kernel

	4 Experiments
	4.1 Protein Classification
	4.2 Experimental Design
	4.3 Results

	5 Related Works
	References
	Appendix: Full Results of the Experiment

	Typhoon Damage Scale Forecasting with Self-Organizing Maps Trained by Selective Presentation Learning
	1 Introduction
	2 Previous Work and Its Problem
	2.1 Forecasting Damage Data Using Typhoon Data
	2.2 Two-Class
	2.3 Three-Class (small, middle or large scale) Damage Forecasting
	2.4 Problem

	3 Typhoon Damage Scale Forecasting with Equal Presentation and Its Problem
	4 Selective Presentation Learning for Typhoon Damage Scale Forecasting
	5 Typhoon Damage Scale Forecasting with Selective Presentation and Its Effectiveness
	6 Conclusion
	References

	Dynamic-Radius Species-Conserving Genetic Algorithm for the Financial Forecasting of Dow Jones Index Stocks
	1 Introduction
	2 Literature Review
	2.1 Genetic Algorithms
	2.2 Genetic Algorithms as Classifiers
	2.3 Genetic Algorithms as Financial Forecasters
	2.4 Niche Genetic Algorithms

	3 DSGA and Financial Forecasting
	3.1 Algorithm Overview
	3.2 Individuals and Genes
	3.3 Distance
	3.4 Fitness Function
	3.5 Parameters
	3.6 DSGA Algorithm

	4 Results
	4.1 Parameter Settings
	4.2 Selected Stocks
	4.3 Rates of Return
	4.4 Discussion of Results

	5 Conclusion and Future Work
	References

	Multi Model Transfer Learning with RULES Family
	1 Introduction
	2 Background
	2.1 RULe Extraction System - RULES
	2.2 Transfer Learning

	3 Related Work
	4 RULES with Multi-Model Transfer Learning
	5 Experiment
	5.1 Dataset
	5.2 Predecessors
	5.3 Postprocessor
	5.4 Evaluation Results

	6 Conclusion
	References

	3D Geovisualisation Techniques Applied in Spatial Data Mining
	1 Introduction
	2 Theoretical Substantiation
	3 Developed Work
	4 Experimental Results
	4.1 Experiment 1: Cluster of 2009 Data
	4.2 Experiment 2: Clus ster of Year 2010 Data

	5 Conclusions
	References

	Improving the Efficiency of Distributed DataMining Using an Adjustment Work Flow
	1 Introduction
	2 Data Mining Basics
	3 CoLe2
	3.1 The CoLe2 Model: Overview
	3.2 The Cooperative Work Flow
	3.3 The Adjustment Work Flow

	4 Case Studies with CoLe2
	4.1 Mining Medical Databases
	4.2 Instantiating CoLe2
	4.3 Experimental Results

	5 Related Work
	6 Conclusion and Future Work
	References

	Sign Language Recognition with Support Vector Machines and Hidden Conditional Random Fields: Going from Fingerspelling to Natural Articulated Words
	1 Introduction
	2 Related Works
	3 Sign Languages and the Brazilian Sign Language
	4 Methods and Tools
	4.1 Artificial Neural Networks
	4.2 Support Vector Machines
	4.3 Hidden Markov Models
	4.4 Hidden Conditional Random Fields

	5 A Two-Layered Approach for Sign Recognition
	5.1 Static Gesture Recognition Layer
	5.2 Dynamic Gesture Recognition Layer

	6 Experiments
	6.1 Datasets
	6.2 Static Gesture Classifiers
	6.3 Dynamic Gesture Classifiers

	7 Results
	8 Conclusion
	References

	Classification and Outlier Detection Based on Topic Based Pattern Synthesis
	1 Introduction
	2 Related Work
	3 Novel Pattern Synthesis (NPS)
	3.1 Add Patterns to Minority Class
	3.2 Replace Data by Synthesized Data

	4 Problems Associated with Classifiers
	4.1 Class Imbalance
	4.2 Outliers
	4.3 High Dimensional Space

	5 Experiments
	5.1 Performance Evaluation

	6 Conclusion
	References

	Decremental Learning of Evolving Fuzzy Inference Systems: Application to Handwritten Gesture Recognition
	1 Introduction
	2 System Architecture
	2.1 Premise Structure
	2.2 Inference Process
	2.3 Conclusion Structure
	2.4 Incremental Learning Process

	3 Decremental Learning
	4 A First Approach: Downdating Least Square Solutions
	5 A Second Approach: Differed Directional Forgetting
	6 Experimental Results
	6.1 Evaluation on Gesture Recognition Tasks
	6.2 Evaluation on UCI Benchmark Datasets
	6.3 Results Discussion

	7 Conclusion
	A Appendix: Proof of De-recursive Least Squares
	References

	Unsupervised Tagging of Spanish Lyrics Dataset Using Clustering
	1 Introduction
	2 Related Work
	2.1 Genre of Music
	2.2 Mood of Music
	2.3 Data Mining Task in Music
	2.4 Supervised Learning in Music
	2.5 Unsupervised Learning in Music
	2.6 Music Annotation

	3 Lyrics Clustering Process
	3.1 Pre-processing
	3.2 Clustering and Evaluation

	4 Topic Detection
	5 Conclusion and Future Work
	References

	Feature Learning for Detection and Prediction of Freezing of Gait in Parkinson’s Disease
	1 Introduction
	2 Related Work
	3 Feature Extraction for FoG Detection and Prediction
	3.1 Feature Extraction Schemes
	3.2 Assumptions about pre-FoG Events: From FoG Detection to

	4 Dataset
	5 Experiments and Evaluation
	6 Results
	6.1 Time-Domain and Statistical Features
	6.2 FoG Detection
	6.3 Towards FoG Prediction
	6.4 Discussion

	7 Conclusion
	References

	Multi-document Text Summarization Using Topic Model and Fuzzy Logic
	1 Introduction
	2 Topic Summary System Design
	2.1 Pre-processing
	2.2 Topic Scoring
	2.3 Feature Scoring
	2.4 Fuzzy System

	3 Evaluation
	3.1 Data Sets
	3.2 Results

	4 Conclusion
	References

	A Pattern Based Two-Stage Text Classifier
	1 Introduction
	2 Related Work
	3 A Pattern Based Two-Stage Text Classifier
	3.1 Pattern-Based Scoring Model
	3.2 Thresholding Model

	4 Evaluation
	5 Results and Discussion
	6 Conclusions
	References

	Applying a Lightweight Iterative Merging Chinese Segmentation in Web Image Annotation
	1 Introduction
	2 Related Work
	2.1 Automatic Image Annotation
	2.2 Text Processing
	2.3 Lexical Semantics

	3 Research Design
	3.1 Research Model Overview
	3.2 Iterative Merging Chinese Segmentation, IMCS
	3.3 Term Weighting

	4 Evaluation
	4.1 Evaluation of Primary Annotation
	4.2 Evaluation of Secondary Annotation by Experts
	4.3 Evaluation of Secondary Annotation by Users
	4.4 Performance Testing

	5 Conclusion
	References

	Relevance as a Metric for Evaluating Machine Learning Algorithms
	1 Introduction
	2 Problem Definition
	3 Proposed Metric
	3.1 Probability Computation Phase
	3.2 Evaluation Phase

	4 Experimentation and Results
	4.1 Comparison of RS and CA Metrics
	4.2 Significance of α and β
	4.3 Lower and Upper Bounds of RS with changing α and β
	4.4 Testing of RS on Random Output Data

	5 Conclusion
	References

	Preceding Rule Induction with Instance Reduction Methods
	1 Introduction
	2 Rule Pruning
	3 Instance Reduction Technique
	3.1 The Edited Nearest Neighbor Algorithm
	3.2 AllKnn
	3.3 DROP5

	4 Empirical Results for CN2 Using the Reduced Set
	4.1 Method
	4.2 Results

	5 Conclusion
	References

	Analytic Feature Selection for Support Vector Machines
	1 Introduction
	2 Related Work
	3 Identifying the Relevant Geometric Properties of a Data Set
	4 Geometric Properties-Based Feature Selection Algorithm
	5 Algorithm Evaluation
	5.1 Algorithm Performance
	5.2 Limitations

	6 Conclusion
	References

	Evaluation of Hyperspectral Image Classification Using Random Forest and Fukunaga-Koontz Transform
	1 Introduction
	2 Feature Selection Using Random Forest
	3 Classification using Kernel Fukunaga-Koontz Transform
	3.1 Training Stage
	3.2 Testing Stage

	4 Experimental Results
	5 Conclusion
	References

	SOM++: Integration of Self-Organizing Map and K-Means++ Algorithms
	1 Introduction
	2 K-Means++ & SOM
	3 Methodology
	3.1 Description of SOM++ Algorithm

	4 Experimental Studies
	4.1 Visual Compares at the Beginning Maps
	4.2 Visual Compares at the Beginning Maps
	4.3 The Error Rates
	4.4 Training Times

	5 Comparison Results
	6 Summary, Conclusion and Future Work
	References

	Satellite Image Mining for Census Collection: A Comparative Study with Respectto the Ethiopian Hinterland
	1 Introduction
	2 Previous Work
	3 Case Study Application Domain
	4 Census Mining Framework
	5 Color Histogram
	6 Local Binary Pattern
	7 Evaluation
	7.1 Colour Histograms v. LBPs
	7.2 Number of Attributes
	7.3 Learning Methods

	8 Conclusion
	References

	Density Ratio Estimation in Support Vector Machine for Better Generalization: Study on Direct Marketing Prediction
	1 Introduction
	2 Support Vector Machine
	3 Unconstrained Least Square Importance Fitting
	4 Experiment Results
	4.1 Data Analysis and Preprocessing
	4.2 Result

	5 Conclusion and Future Research
	References

	Pacc - A Discriminative and Accuracy  Correlated Measure for Assessment of Classification Results
	1 Introduction
	2 Multiclass Performance Measures
	2.1 Confusion Entropy
	2.2 K-Category Correlation Coefficient
	2.3 F-Measure for Multiclass Problems
	2.4 Kappa Statistic

	3 Qualities of Good Performance Measure
	4 Proposed Pacc Measure
	5 A Comparative Study of Performance Measures
	5.1 Analysis of Measures for 2-class Classification
	5.2 Analysis of Measures for 3-class Classification
	5.3 Comparative Evaluation of Performance Measures

	6 Conclusion
	References

	A Single-Domain, Representation-Learning Model for Big Data Classification of Network Intrusion
	1 Introduction
	2 Background
	3 Unit-Circle Algorithm
	4 Unit Ring Machine
	5 Simulation and Results
	6 Conclusion
	References

	Relation Decomposition: The Theory
	1 Introduction
	2 Preliminary Concepts
	2.1 Index Sets and Indexed Relations
	2.2 Projection
	2.3 Relation Join

	3 No Influence
	4 Factoring
	5 Forming the Decomposition
	6 Concluding Discussion
	References

	Using Turning Point Detection to Obtain Better Regression Trees
	1 Introduction
	2 The Tprti Approach
	2.1 Illustrating the Limitations of the Variance Based-Approaches
	2.2 Centroids and Turning Points Computation
	2.3 Node Evaluation
	2.4 Runtime Complexity
	2.5 Stopping Criteria

	3 Empirical Evaluation
	3.1 Datasets
	3.2 Experimental Methodology
	3.3 Results

	4 Conclusion
	References

	Automatic Classification of Web Databases Using Domain-Dictionaries
	1 Introduction
	2 Related Work
	3 Proposed Strategy for Automatic Classification of WQIs
	3.1 Automatic Term Extractor
	3.2 Pre-processing
	3.3 Domain-Dictionary Generator
	3.4 Comparison of Terms

	4 Experimental Results
	5 Conclusions
	References

	An Efficient and Scalable Algorithm for Mining Maximal
	1 Introduction
	2 Mining Association Rules
	3 Related Works
	3.1 MAXCONF (Free Support-Based Pruning)

	4 Mining Maximal High Confidence Rules Algorithm
	4.1 Discretization
	4.2 Build Tree
	4.3 Mining Maximal High Confidence Rules
	4.4 The MMHCR Algorithm Overall Structure

	5 Experimental R Results
	6 Conclusion
	References

	Partial Discharge Analysis and Inspection Alert Generation in High Power Transformers: A Case Study of an Autotransformer Bank at Eletrobrás-ELETRONORTE Vila do Conde Station
	1 Introduction
	2 Materials and Methods
	2.1 Study Area
	2.2 Exploratory Analysis of the Data
	2.3 Cluster Analysis
	2.4 Correpondence Analysis
	2.5 Fuzzy System

	3 Data analysis and Results Discussion
	3.1 Knowledge Acquired Through the Statistical Techniques
	3.2 Fuzzy System

	4 Conclusion
	References

	Smart Meter Data Analysis for Power Theft Detection
	1 Introduction
	2 Power Theft Detection Based on a Technical Loss Model
	3 Experimental Set-up
	4 Experimental Results
	4.1 Resistance Estimates
	4.2 Non-technical Loss Estimates

	5 Conclusion
	References

	Discovering Frequent Itemsets on Uncertain Data: A Systematic Review
	1 Introduction
	2 Systematic Review
	2.1 The Protocol

	3 Systematic Mapping
	3.1 Search Engine
	3.2 Year
	3.3 Publishing Type
	3.4 Authors

	4 Findings on the Area
	4.1 Representation of the Uncertain Data
	4.2 The Algorithms and Its Classes
	4.3 Availability of the Algorithms
	4.4 Dataset Types
	4.5 Comparisons between Algorithms

	5 Discussion and Conclusion
	5.1 Limitations and Future Work

	References

	Mining Groups of Common Interest: Discovering Topical Communities with Network Flows
	1 Introduction
	2 Related Work
	3 Topic Modeling on Web-Access Data from NetFlow
	3.1 User-Web Access Graph
	3.2 The Intuition of Applying LDA for Clustering
	3.3 Applying LDA to Mine Topical Communities

	4 Experimental Results
	4.1 Evaluation Metric and Labeled Dataset from DHCP Log
	4.2 Performance of the Mined Topical Communities
	4.3 Expected and Unexpected Communities

	5 Conclusion, Limitations and Future Work
	References

	Optimal Time Segments for Stress Detection
	1 Introduction
	2 Data Collection: Reading Experiment
	3 A Genetic Algorithm for Feature and Time Segment Selection
	4 A Genetic Algorithm and Support Vector Machine Hybrid Stress Classifier
	5 Results and Discussion
	6 Conclusion and Future Work
	References

	Personalized Expert-Based Recommender System: Training C-SVM for Personalized Expert Identification
	1 Introduction
	2 Related Work
	2.1 Expert-Based Recommender Systems
	2.2 Recommender Systems Using SVM

	3 Personalized Expert Identification
	3.1 Problem Statement
	3.2 Random Search Algorithm for Personalized Experts
	3.3 SVM for Personalized Experts
	3.4 Expertise

	4 Experimental Results
	4.1 Dataset
	4.2 k-Nearest Neighborhood
	4.3 Personalized Expert
	4.4 SVM for Personalized Expert

	5 Conclusion
	References

	A Comparative Studyon Mobile Visual Recognition
	1 Introduction
	2 Related Work
	3 Framework Overview
	4 Image Representation
	4.1 Key-Point Detection
	4.2 Feature Extraction
	4.3 Feature Encoding

	5 Machine Learning and Classification
	6 Experimental Evaluation
	6.1 Dataset and Implementation Details
	6.2 Classification Performance versus Computational Cost

	7 Conclusions and Future Work
	References

	Accuracy-Based Classification EM: Combining Clustering with Prediction
	1 Introductxion and Motivation
	2 Using Classification EM (CEM) Clustering for Prediction
	3 Clustering with CEM
	4 Clustering with ABCEM
	5 Experimental Results Comparing ABCEM with CEM
	6 Summary and Conclusions
	7 Future Directions
	References

	When Classification becomes a Problem: Using Branch-and-Bound to Improve Classification Efficiency
	1 Introduction and Motivation
	2 Branch and Bound in Tree-Structured Classification
	3 Deriving a Lower-Bound
	4 Using the Lower-Bound Function for Pruning
	5 The Particular Method that We Used to Build the Trees
	6 Summary of Results with Random Trees
	7 Branch-and-Bound Classification for Non-probabilistic Models
	8 Related Work
	9 Conclusions and Future Work
	References

	Lazy Overfitting Control
	1 Introduction and Motivation
	2 Lazy Overfitting Control
	3 The Particular Method We Used to Build the Tree
	4 Likelihood Stopping
	5 Summary of Results
	6 Related Work
	7 Conclusions and Future Work
	References

	Using Part of Speech N-Grams for Improving Automatic Speech Recognition of Polish
	1 Introduction
	2 Related Work
	3 Resources
	4 Rescoring Algorithm
	5 Results
	6 Conclusions
	References

	An Empirical Study of Reducing Multiclass Classification Methodologies
	1 Introduction
	2 Methodology
	2.1 One-Against-One (OAO)
	2.2 One-Against-All (OAA)
	2.3 All-at-Once (AAO)
	2.4 Bagging AAO

	3 Learning Algorithms
	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusion and Future Work
	References

	EEG Feature Selection Based on Time Series Classification
	1 Introduction
	2 Materials and Methods
	2.1 Experiment Description
	2.2 EEG Preprocessing
	2.3 Feature Extraction
	2.4 Feature Selection and Classification
	2.5 Timeseries Classification

	3 Results
	4 Discussion
	4.1 Behavioral Data
	4.2 Classifier Comparison

	5 Conclusion
	References

	DCA Based Algorithms for Feature Selection in Semi-supervised Support Vector Machines
	1 Introduction
	2 Outline of DC Programming and DCA
	3 Feature Selection in S3VM by DCA
	3.1 DC Formulation of the Problem (1)

	4 Computational Experiments
	4.1 Datasets
	4.2 Concurrent Algorithms
	4.3 Experimental Results

	5 Conclusion
	References

	Information Gap Analysis for Decision SupportSystems in Evidence-Based Medicine
	1 Introduction
	1.1 Information Gap Analysis

	2 Example: Info-Gap Analysis for a Differential Diagnosis under Uncertain Evidence
	2.1 Process Model
	2.2 Performance Function
	2.3 Uncertainty Model
	2.4 Information Gap Analysis of Decision Algorithm
	2.5 Information Gap Analysis of Decision Algorithm
	2.6 Comparison of Robustness of the Two Decision Algorithms to

	3 Conclusions
	References

	TISA: Topic Independence Scoring Algorithm
	1 Introduction
	2 Understanding Topic Independence
	3 Approach
	4 Evaluation
	4.1 Test 1: TISA vs. In-topic Models
	4.2 Test 2: TISA vs. Ensemble Methods
	4.3 Sentiment Feature Mining

	5 Related Work
	6 Conclusion
	References

	Pre-release Box-Office Success Prediction for Motion Pictures
	1 Introduction
	2 Related Work
	3 Data
	4 Approach
	4.1 Relational Setting
	4.2 Baseline: Independent Setting

	5 Experimental Design
	5.1 Research Questions
	5.2 Experiments
	5.3 Evaluation Criteria

	6 Results and Discussion
	6.1 Comparison between Different Weighting Schemes
	6.2 Comparison between Independent and Relational Settings

	7 Conclusions and Future Work
	References

	Shifting Concepts to Their Associative Concepts via Bridges
	1 Introduction
	2 Preliminaries
	3 Person-Term Relation and Document-Term Relation
	4 Ranking Persons Based on Mediator Level
	4.1 Mediator Level
	4.2 Clustering Terms
	4.3 Extended

	5 Method of Associative Search by Mediators
	5.1 Identifying Query Concepts
	5.2 Getting User Interest
	5.3 Finding Concepts Consistent with User Interest
	5.4 Identifying User Aspect as Concept
	5.5 Extracting Conditionally Similarity Concepts w.r.t. User

	6 Extracting Target Concepts for Associative Search
	6.1 Extracting Concepts Consistent with User Interest
	6.2 Extracting Conditionally Similar Concepts w.r.t. User Aspect

	7 Experimental Results
	7.1 Person-Topic Relation and Tweet-Topic Relation
	7.2 Example of Target Concept by Associative Search

	8 Concluding Remarks
	References

	Estimating and Forecasting Network Traffic Performance Based on Statistical Patterns Observed in SNMP Data
	1 Introduction
	2 Periodicity and Seasonal Adjustment
	2.1 Criterion to Identify Periodicity
	2.2 Seasonal Adjustment
	2.3 Seasonal Adjustment Diagnostics

	3 Seasonal Adjustment on SNMP Data
	3.1 Periodicity of SNMP Data
	3.2 Seasonal Adjustment
	3.3 Diagnostics

	4 Forecast Errors
	5 Conclusion and Future Work
	References

	A Lightweight Combinatorial Approach for Inferring the Ground Truthfrom Multiple Annotators
	1 Introduction
	2 Related Work
	3 Modeling Annotators and Tasks
	3.1 1D Mapping Method
	3.2 2D Mapping Method

	4 Mapping Algorithms and Label Estimation
	4.1 Mapping Annotators
	4.2 Mapping Tasks
	4.3 Label Estimation

	5 Experiment
	5.1 Datasets
	5.2 Experimental Results and Discussions

	6 Conclusions
	References

	Large Scale Visual Classification with Many Classes
	1 Introduction
	2 Related Work
	3 Power Mean Support Vector Machines
	4 Extensions of PmSVM to Large Number of Classes
	4.1 Balanced Bagging PmSVM
	4.2 Parallel PmSVM Training

	5 Experiments
	5.1 Dataset
	5.2 Training Time
	5.3 Classification Accuracy

	6 Conclusion and Future Work
	References

	Area under the Distance Threshold Curve as an Evaluation Measure for Probabilistic Classifiers
	1 Introduction
	2 Background
	3 Methodology
	3.1 Probabilistic Distributions
	3.2 Data
	3.3 Classifiers
	3.4 Evaluation Measures
	3.5 Random Classification of Evaluation Measures

	4 Results
	5 Discussion
	6 Conclusion
	References

	Author Index



