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Abstract. Simulink is widely used by engineers to provide graphical
specifications of control laws; its frequent use to specify safety-critical
systems has motivated work on formal modelling and analysis of Simulink
diagrams. The work that we present here is complementary: it targets
verification of implementations by providing a refinement-based model.
We use CircusTime, a timed version of the Circus notation that com-
bines Z, CSP, and Morgan’s refinement calculus with a time model, and
which is firmly based on Hoare & He’s Unifying Theories of Program-
ming. We present a modelling approach that formalises the simulation
time model that is routinely used for analysis. It is distinctive in that we
use a refinement-based notation and capture functionality, concurrency,
and time. The models produced in this way, however, are not useful for
program verification, due to an idealised simulation time model; there-
fore, we describe how such models can be used to construct more realistic
models. This novel modelling approach caters for assumptions about the
programming environment, and clearly establishes the relationship be-
tween the simulation and implementation models.
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1 Introduction

The use of Simulink diagrams [17] for the specification of control laws is per-
vasive in industry. Various approaches enrich the current Simulink facilities for
analysis of diagrams with techniques based on formal methods [15,2,6]. Denney
& Fischer [7], for example, propose the use of the AutoCert verification sys-
tem to construct a natural language report explaining where code uses specified
assumptions and why and how it complies with requirements (though, signifi-
cantly, not for timing aspects). In contrast, our work recognises the need to verify
implementations. Automatic code generation does not usually provide enough
assurance: even when generators are reliable, restrictions on performance or re-
sources often require changes to the code.

In previous work [4,3], we covered functional and behavioural aspects of dia-
grams and implementations. We cater for the inherent parallelism in diagrams
and the verification of complete programs, including their scheduling compo-
nents. For modelling and reasoning, we use Circus [20], a flexible integration of
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Z [30], CSP [23], and Morgan’s refinement calculus [18], with formal foundations
underpinned by Hoare & He’s Unifying Theories of Programming (UTP) [13].
Circus is a mature notation with a sound semantics implemented in tools: it was
first introduced in 2001 in [28], given a formal semantics in 2002 [29], and sub-
sequently mechanised in ProofPowerZ, a HOL-based theorem prover, in [20,21],
and in Isabelle/HOL [8,9].

We generate formal models automatically, and apply a refinement tactic in
ProofPowerZ to prove that the model of the program conforms to (refines) the
model of the diagram. Automation is enabled by knowledge of the structure of
the automatically generated models, and of the correspondence between diagram
and program components.

What we have not covered before is the time model embedded in the diagrams.
In [4,3], we use synchronisation to model the cycles of the diagram, which are in
fact defined by simulation time parameters. In this approach, we cannot cater
for multi-rate diagrams and, most importantly, have to consider partial program
models that do not capture the use of timing primitives (like delay commands).
To produce a model of a program, we consider a slice that removes all variables
related to time control; this can potentially mask an error.

In this paper we present a novel modelling approach to cover the time prop-
erties of diagrams. Our approach uses CircusTime [27], a timed version of Cir-
cus with both timeout and deadline operators. CircusTime was first introduced
in 2002 in [25], and given a complete formal semantics in UTP in [26,27].

In our new approach, we capture the idealised-time model adopted in the
Simulink simulator as well as its data-flow model, which embeds some calcula-
tions (functional properties) and concurrent behaviour. Since we are interested
in software implementations, we consider only diagrams with a discrete-time
model; but we can cover multi-rate diagrams as well.

The idealised-time model of the simulation is not implementable, since it
involves infinitely fast computations. So we also provide a realistic model used
by typical implementations that run on real-time computers. This programming
model embeds assumptions about the environment; in particular, we consider the
assumptions adopted in the standard Simulink code generator, but our approach
can be adapted for different real-time computers. The timed programming model
is the appropriate starting point for the verification of programs.

The programming model is written in terms of the simulation model, so that
we formalise the way in which the assumptions made about the programming
environment affect the simulation model. Engineers use the simulation model in
the analysis and validation of diagrams and corresponding control laws, so it is
important to understand the way in which it is reflected in programs. Addition-
ally, the CircusTime model that captures the Simulink idealised-time model is in
direct correspondence with the informal description of the simulator. Its use to
define the programming model increases our confidence in its validity.

With the use of CircusTime, we can provide very faithful models of the diagram
and of the assumptions about the environment; it is also possible to model
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programs in a direct way. All this reduces the risk of introducing modelling
errors that compromise verification.

Ultimately, the simulation time model is defined by the solver, a component of
the simulator that determines the simulation steps. For simplicity, we consider
a fixed-step solver, where the step size is constant; this is the solver used to
generate code for a real-time computer. It is not difficult to generalise our model
for a variable-step solver. In this case, the step size changes with time, so that
steps that do not present any changes to the output are omitted.

In the next section we give a brief overview of Simulink diagrams, Circus, and
CircusTime. In Section 3, we present our approach to construct timed simula-
tion models. The programming models are discussed in Section 4. Finally, in
Section 5, we draw our conclusions and discuss related and future work.

2 Simulink, Circus, and CircusTime

This section describes the modelling notations used in our work.

2.1 Simulink

A control law diagram is a graph whose nodes are blocks that embed an input,
an output, or some computation, and whose edges are wires that connect the
input and output ports of the blocks to define data flow. The behavioural model
embedded in a diagram is a cyclic execution, where in each iteration inputs are
read and outputs are calculated and produced.

At the top of Figure 1, we present the Simulink diagram for a PID controller.
(This is the same example used in [4,3].) The rounded boxes are input and
output blocks that represent the inputs and outputs of the system. Inputs are
represented by outputs of input blocks, which work in the same way as any other
block. Outputs are the inputs of the output blocks. In Figure 1, we have inputs
E, Kp, Ki, and Kd, and output Y. The rectangles and circles are blocks that define
particular calculations. The Sp block, for instance, is a simple multiplication.

Subsystem blocks are defined by other diagrams. In Figure 1, the blocks Diff
and Int are defined by the diagrams at the bottom of Figure 1. A control law for
a real system may reach hundreds of pages of hierarchical diagrams.

Blocks can have state. A Unit Delay, used in the diagrams in Figure 1, for
instance, records in its state the value of its last input.

A block also has a sample time, characterised by a sampling period and an
offset, which indicates when, during simulation, it produces outputs and updates
its state, if any. Additionally, each port can have a different sample time. If the
blocks do not all have the same sample time, we have a multi-rate diagram.

A simulation is described by a series of steps; a solver determines the time
of the next simulation step. We assume that the default step size and offset
determined by the fixed-step solver are used, since they guarantee that all sample
times are covered. The default step size is the greatest common divisor of all
sample times. A block’s state is updated and a new output is generated only
when the time of a step is a multiple of the sample time of the block.
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Fig. 1. PID (Proportional Integral Derivative) controller

In Section 3, we formalise this simulation time model using our novel approach
based on CircusTime, which we describe next.

2.2 Circus and CircusTime

A Circus model is a sequence of definitions: Z paragraphs, channel declarations,
and process definitions. Several examples are presented in the next section (see
Figures 5, 6, 8, 2, and 3). After a simple example in this section, we explain
details of the notation as it is used.

PIDTSpec =̂⎛⎝Wait 1 ; (PID [E ,Kp,Ki ,Kd ,Y := Ed ,Kpd ,Kid ,Kdd ,Yd ]) \ {|step|}
|[Internal ]|

Interface(1)

⎞⎠ \ Internal

Fig. 2. Programming model of the PID

Just like in CSP, systems and their components are described by processes
that communicate with each other and the environment using channels. In Circus
and CircusTime, however, a process encapsulates some state (defined just like in
Z). More precisely, in an explicit process definition, we define state components
and invariants using a Z schema and define behaviour using actions. To specify
an action, we use a mixture of CSP constructs, Z data operations, and guarded
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process Interface =̂ stepSize : R • begin

state IS =̂ [Ev ,Kpv ,Kiv ,Kdv ,Et ,Kpt ,Kit ,Kdt ,Yv : R ]

EInp =̂

(
(� d : 0 . . stepSize • Wait d ; (E?x → Ev ,Et := x , d) deadline 0) ;
(μX • E?x → Ev := x ;X )

stepSize−Et
� Skip

)
. . .
Input =̂ EInp ||| KpInp ||| KiInp ||| KdInp

YOut =̂ (� d : 0 . . stepSize • Wait d ; (⊔ v : R • Y !v → Yv := v) deadline 0)

Output =̂ YOut
InputD =̂ Ed !Ev → Skip ||| Kpd !Kpv → Skip ||| Kid !Kiv → Skip ||| Kdd !Kdv → Skip
OutputD =̂ Yd?x → {Yv = x}
• (μX • (Input ||| Output) ; (InputD ||| OutputD) ;X )

end

Fig. 3. Interface process for the PID

commands. In the case of CircusTime, we additionally use wait, timeout, and
deadline operators in the style of Timed CSP [22].

To compose processes, we use CSP operators (for parallelism, choice, and
hiding, for instance). Here, we use the alphabetised parallel operator [23], where
the set of channels used by each process is defined and they are required to
synchronise on the intersection of these sets. We also use hiding, which, just like
in CSP, removes a channel, or set of channels, from the interface of a process.

The semantic model for Circus has been chosen to support a simple and in-
tuitive notion of refinement: one process Q refines another P , providing that
every behaviour of Q is also a behaviour of P . In this way, if specification P is
refined by implementation Q , then there is nothing that Q could do that would
be forbidden by P , and all its behaviours are specified behaviours. The semantics
of Circus is a timed extension of the failures-divergences semantics of CSP [12]
in the spirit of [22], and so the notion of refinement includes subtle testing of
nondeterminism and timing properties.

To illustrate CircusTime, we use a timed version of a small example that
first appeared in [28], where we used the untimed version of Circus to specify a
Fibonacci series generator. This is a simple process that generates the Fibonacci
series on a channel named “out ”; the process is described in full in Figure 4.
Circus processes have encapsulated state that is defined in Z; in the process Fib,
the state is defined using the schema named FibState, which introduces two
natural numbers, x and y.

The state is initialised in InitFibState to give both state components the initial
value of 1. InitFib is an action, defined using CSP with embedded references to
the state defined in Z. This action first initialises the state using InitFibState,
then it outputs the first two numbers in the Fibonacci series. It does this with a
deadline of 0, which makes the outputs occur instantaneously; after each output,
the action pauses for one time interval.
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The main work in generating the series is done in the action OutFib. First, we
define OutFibState, which updates the state components: this operation changes
the state (ΔFibState) and has one output, defined in the Z convention as next !.
The effect of this state operation is to set the output to be the same as y ′, the
newest member of the series, which is merely the sum x + y, and to copy the
value of y to x ′.

OutFib itself updates the state using OutFibState and then outputs the value
of next punctually, as before, and it does this repeatedly: the fixed-point operator
“μ” introduces tail-recursive iteration. A local-variable block scopes the value of
next .

After all these schema and action definitions, the real business begins: the
main behaviour of the process Fib is defined as the composition InitFib; OutFib.

processFib =̂
begin

state FibState == [ x , y : N ]
InitFibState == [FibState ′ | x ′ = y ′ = 1 ]
InitFib =̂

InitFibState;
(out !1 → Skip) deadline 0; Wait 1;
(out !1 → Skip) deadline 0; Wait 1

OutFibState == [ΔFibState; next ! : N | next ! = y ′ = x + y ∧ x ′ = y ]
OutFib =̂

μX •
var next : N •

OutFibState; (out !next → Skip) deadline 0; Wait 1; X
• InitFib; OutFib
end

Fig. 4. A timed Fibonacci series generator

3 Simulation Models

In this section, we propose a novel approach to construct CircusTime simulation
models of Simulink diagrams. Like the Circus-based strategy, it can be used to
generate models automatically [31]. As already said, it produces richer models
that cater also for the timing aspects of a larger set of diagrams. We have more
faithful models, which we have demonstrated to be in direct correspondence with
the simulator behaviour, and as a side effect we also get more compact models.

Our input is a diagram compiled using the fixed-step discrete solver. This
means that there is no connection between blocks with incompatible sample
times and the discrete sample time of all blocks used for simulation has been
defined. (It is possible to leave the sample time of a block to be determined from
the context; compilation determines all values.) This is the approach taken, for
example, by the MATLAB code generator (Real-time Workshop).
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The output of our modelling strategy is a CircusTime specification. Its first
paragraphs declare channels. Inputs and outputs of the diagram and of the blocks
are represented by channels. For the PID, we have the following declaration.

channel E ,Kp,Ki ,Kd ,Y ,Si out ,Diff out , Int out ,Sd out ,Sp out : U

Basically, the channels that represent the inputs and outputs of the diagram
are named after the corresponding blocks. The internal wires are represented
by channels named after the block that has an output port connected to it. For
instance, the wire that connects Diff to Sd in Figure 1 is represented by a channel
Diff out . (As explained in [31], a few special cases need to be considered in the
naming rules, but for the purpose of the discussion here, this view is enough.)

The blocks, the solver, and the diagram itself, are modelled by processes. The
solver process synchronises with the block processes on a channel step. It is used
to indicate the occurrence of a simulation step.

channel step : R

We have a discrete-time model, but the sample times and offset can be real
numbers, so the type of step is R. It is available in the HOL-based theorem
prover ProofPower-Z.

The third paragraph of the model declares a type SampleTime.

SampleTime == [ sP , o : R ]

It contains records whose components sP and o define a sample period and an
offset. Each block process has a constant of this type to represent its sample time.
Below, we explain how the diagram, block, and solver processes are defined.

3.1 Diagram

The processes that model the blocks and the process that models the solver are
all composed in parallel to define the process that models the diagram. For our
example, this process is sketched below; its name is that of the diagram.

process PID =̂⎛
⎜⎜⎜⎜⎝

Si {|E ,Ki ,Si out , step |}
‖

Diff {|E ,Diff out , step |}
‖ . . . ‖

FixedStepDiscreteSolver(1, 0) {|step|}

⎞
⎟⎟⎟⎟⎠ \ {|Si out ,Diff out , . . . |}

The alphabet of each process that models a block includes the channels that are
used to represent its inputs and outputs, besides step. This reflects the fact that
the behaviour of each block is independent, but the way in which their inputs
and outputs are connected defines a data flow. In the model, synchronisation on
the shared channels between block processes establishes data flow.
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process Diff =̂ begin

st : SampleTime

st .sP = 1 ∧ st .o = 0

state Diff State == [ pid Diff UnitDelay state : R; ; Out1 : R ]

Init
pid Diff State ′

pid Diff UnitDelay state ′ = 0

Calculate pid Diff == . . .

•

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Init ;⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μX •⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

step?cT →⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

var In1 : U •
E ?x → In1 := x ;
if (cT − st .o ≥ 0) ∧ ((cT − st .o)mod st .sP = 0) →

Calculate pid Diff
[] (cT − st .o < 0) ∨ ((cT − st .o)mod st .sP �= 0) → Skip
fi ;
Diff out !Out1 → Skip

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
deadline 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
end

Fig. 5. CircusTime model of the block Diff

The process FixedStepDiscreteSolver models the solver; it takes the step size
and offset of the diagram as parameters. In our simple example, all blocks have
sampling period 1 and offset 0, so the solver uses step size 1 and offset 0.

The channels that represent internal wires (in our example, Si out , Diff out ,
and so on) are hidden. In this way, the channels in the interface of the diagram
process are only those that represent inputs and outputs of the system, and step.

3.2 The Blocks

A block process is defined explicitly, independently of whether the block is sim-
ple, like Sd in our example, or a subsystem, like Diff. We consider here blocks
with a single sample time; port-based sample time is addressed in Section 3.4.

Figure 5 sketches the model for Diff, a process named Diff . An explicit process
definition is composed of a sequence of paragraphs. In a block process, we first
declare a constant st of type SampleTime and define the value of its fields. This is
defined in the diagram: although it does not (necessarily) appear in its graphical
representation, it appears in its textual representation produced by Simulink.

A distinguished paragraph declares the state of the process using a schema
named after it; in our example, Diff State. The state components record the
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state of the block, and the last calculated output value(s). In our example, we
have pid Diff UnitDelay state, which records the state of the Unit Delay block
used in the Diff diagram, and Out1, corresponding to the single output of Diff.

A schema Init defines the state initialisation in the standard Z way. A dec-
laration like pid Diff State ′ introduces dashed versions of the state compo-
nents to represent their values after initialisation. The components that represent
the block state are initialised as determined in the block definition (included in
the textual representation of the diagram). In our example, the initial value of
the Unit Delay state, represented by pid Diff State ′, is 0. The components that
correspond to block outputs, like Out1 in our example, are not initialised.

The action at the end of a process definition (after the •) is the main action
that specifies its behaviour. In a block process, we have a call to Init , followed
by a recursion (introduced by the μ operator). Each of its iterations models a
simulation step. It starts with a communication step?cT on the channel step to
input the current time cT , followed by an interleaving of the inputs, which are
recorded in local variables In1, In2, and so on. In our example, we have just one
input E?x , and the associated assignment of the input value x to In1.

A conditional compares the current and sampling times. If the block offset is
over (cT − st .o ≥ 0) and we have a sample time hit ((cT − st .o) mod st .sP = 0),
we calculate the outputs and update the state. Otherwise, nothing happens; the
Skip action terminates immediately without changing the state.

The required calculations and updates are determined by the functionality of
the block (or its diagram, in the case of a subsystem block like Diff). We rely
on an industrial tool, namely ClawZ [1], to produce a Z specification for that.1
(This is the same approach that we take in [3,4].) ClawZ deals with sequential
behaviour; we have extended this to deal with concurrency and timing aspects.
For each block, ClawZ produces a Z schema, which we use to define the Circus-
Time process. In our example, we have the Calculate pid Diff schema, whose
definition is constructed using ClawZ. We omit it here, since these details are not
relevant for our discussion. In the main action of Diff , when there is a sample
time hit, we call Calculate pid Diff .

In any case, the (last calculated) outputs are communicated in interleaving.
These are either the outputs that have just been calculated, or those calculated
in the previous sample time hit. In our example, we have a single output: we
communicate Out1 through the channel Diff out .

All this is carried out instantaneously, that is, with deadline 0. This captures
the idealised-time model of the simulation, where the system is quiescent between
the simulation steps, but all the inputs, calculations, updates, and outputs are
performed instantaneously (and infinitely fast), when there is a time hit. This
is, of course, not an approach that can be taken by a program.

As explained previously, the state components that correspond to an output,
like Out1, are not initialised. If the solver takes a simulation step before the first

1 See www.lemma-one.com/clawz_docs/ for more information about the ClawZ tool,
including a user guide to the tool with a simple complete worked example of a
Simulink model file, its corresponding Ada code, and a proof of correctness.

www.lemma-one.com/clawz_docs/
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sample time hit of the block, the value of the output is arbitrary. For Simulink
diagrams whose simulation does not generate any errors, however, such a sit-
uation does not arise. Here, as also already said, we are only concerned with
compiled diagrams that do not produce simulation errors.

In Section 4, we discuss how the model presented here can be used to construct
a model compatible with the restrictions of a real-time computer.

3.3 Solver

To ensure correct timing, the solver process uses the channel step to communicate
the current time to all blocks in each simulation step. The model of the solver
embeds a clock that is indirectly used by all the blocks.

The model of the solver is the same for all diagrams; it is presented in Figure 6.
The step size sS and offset o are taken as parameters, which are instantiated
appropriately for each diagram. The state, defined by the schema Clock contains
a single component cT to record the current time.

process FixedStepDiscreteSolver =̂ sS , o : R • begin

state Clock == [ cT : R ]

•
(
cT := o ;Wait o ;
(μX • (step!cT → Skip) deadline 0 ; cT := cT + sS ;Wait sS ;X )

)
end

Fig. 6. CircusTime model of a fixed-step discrete solver

In the main action, cT is initialised to o, since nothing happens in the simu-
lation before the diagram offset time. Next, after a wait period of o time units,
there is an iteration corresponding to simulation steps. In each iteration, an in-
stantaneous communication (with deadline 0) over the channel step outputs the
current time cT . Afterwards, cT is increased by the step size sS , and there is a
waiting period of sS time units.

3.4 Multi-rate Diagrams

Our modelling approach caters for multi-rate diagrams. As already explained,
if the blocks have different sample times, the step size and offset of the solver
guarantee that they are covered. In the model, at each simulation step, all block
processes read inputs and produce outputs, but output calculations and state
updates occur only when there is a hit. For blocks with port-based sample times,
however, we need to define the block processes differently.

Port-based sample times occur in rate-transition blocks, which have one input
and one output port with different sample times, and custom blocks defined by
programs. In what follows, we explain our treatment of rate-transition blocks.
Custom blocks can be handled in a similar way, but the behaviour when there
is a sample-time hit is defined programmatically. Modelling such blocks requires
modelling, for example, a C program instead of using a ClawZ schema.
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Fig. 7. Multi-rate diagram: rate transition block

process Rate Transition =̂ begin

st1, st2 : SampleTime

st1.sP = 0.1 ∧ st1.o = 0 ∧ st2.sP = 0.2 ∧ st1.o = 0

state rt Rate Transition State = [ In1,Out1 : U ]
. . .

•

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μX •⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

step?cT →⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sine Wave out?x →⎛⎜⎜⎜⎜⎝
if (cT − st1.o ≥ 0) ∧ ((cT − st1.o)mod st1.sP = 0) →

In1 := x
[] (cT − st1.o < 0) ∨ ((cT − st1.o)mod st1.sP �= 0) →

Skip
fi

⎞⎟⎟⎟⎟⎠ ;

⎛⎜⎜⎝
if (cT − st2.o ≥ 0) ∧ ((cT − st2.o)mod st2.sP = 0) →

rt Rate Transition
[] (cT − st2.o < 0) ∨ ((cT − st2.o)mod st2.sP �= 0) → Skip
fi

⎞⎟⎟⎠ ;

One out !Out1 → Skip

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
deadline 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
end

Fig. 8. CircusTime model of a rate-transition block: zero-order hold

For rate-transition blocks, we need to consider whether its input port is
slower (has a longer sampling period) or faster than the output port, as this
determines its behaviour when there is a hit. If the input is faster, then the
behaviour is that of a zero holder: the block holds its input until there is a hit
for the output port. If the input is slower, then the behaviour is that of a unit
delay: it outputs the input from a previous hit.

A diagram involving a rate-transition block is provided in Figure 7. In this
example, all offsets are 0, but the period of the input port of the rate-transition
block (and of the Sine-Wave block) is 0.2, and that of the output port (and of
the Gain and Out blocks) is 0.1. The diagram step size is therefore 0.1.

The construction of the model of this diagram can proceed much as before, the
only difference concerning the rate-transition block process, which is described in
Figure 8. First, it records two sample times st1 and st2, one for each of its ports.

Just as before, in each simulation step, the input is taken and the output is
produced. Due to the lack of synchrony between inputs and outputs, we do not
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Init ;⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μX •⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

step?cT →⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sine Wave out?x →⎛⎜⎜⎜⎜⎝
if (cT − st1.o ≥ 0) ∧ ((cT − st1.o)mod st1.sP = 0) →

rt Rate Transition
[] (cT − st1.o < 0) ∨ ((cT − st1.o)mod st1.sP �= 0) →

Skip
fi

⎞⎟⎟⎟⎟⎠ ;

One out !Out1 → Skip

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
deadline 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 9. CircusTime model of a rate-transition block: unit delay (main action)

keep only the most recently output value from one step to the next, but also the
most recent input. We have both In1 and Out1 as state components.

If a simulation step is a hit for the sample time of the input, In1 is updated,
otherwise the input taken is ignored. If there is a hit for the sample time of
the output, then it is calculated. In the case of a zero-order hold block, the
calculation, as defined by ClawZ, updates Out1 to the value of the most recent
input In1. This is defined in the (omitted) schema rt Rate Transition.

For a rate-transition block with a slower input we have a block process whose
main action is shown in Figure 9. In this case, we have an additional state
component state as indicated by ClawZ, and the Init action initialises the state
as defined in the block properties, and also captured by ClawZ.

The output calculations and state updates are determined by the sample-time
hit of the slow port. Here, it is the input, so we do not need to check for hits of
the output nor record the inputs in the state. The rt Rate Transition schema
defines that Out1 is assigned the current value of the state, which becomes the
freshly input value x . This is the standard definition of a unit delay.

In the following section, we describe how these simulation models can be used
to define models appropriate for program verification.

4 Programming Models

The idealised simulation model requires the calculations and communications
to take place infinitely fast. For program verification, we need a model that
captures the assumptions that allow us to conclude that an implementation is
correct, from the timing as well as the functional point of view, even though it
is restricted by the performance of the real-time computer on which it runs.

All calculations and communications take place instantaneously at each sim-
ulation time step. For programs, we expect a time line where all calculations
and communications take place during the intervals defined by the hits. This is,
for example, the view adopted by the MATLAB code generator. The (implicit)
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assumption adopted in the default configuration of this code generator is that
the simulation steps define execution cycles. Additionally, the environment keeps
the inputs constant and available during each cycle, and is ready to accept an
output at any point during the cycle.

Here, we explain how the simulation model can be used to construct a model
for program verification. The result is a new CircusTime process; for our PID
example, this is PIDTSpec, presented in Figure 2. Roughly, it is defined by
composing the simulation model of the diagram, in our case, PID , in parallel
with a process Interface that handles the inputs and outputs of the system to
capture the assumptions about the environment.

We need to adapt the simulation model of the diagram in three ways. First, we
need to address the fact that the simulation provides outputs already at the first
hit, even if it is at time 0, while the program needs to take some time before it
can produce results. In the program verification model, therefore, the simulation
model is used after a wait period. In this way, the simulation time line is shifted,
and during that initial period the computations can start. We use the step size
as the wait period; in our example, this is 1. The assumption is that, for all
blocks, one step is enough to calculate the outputs and make the state updates.
This is again the view taken by the MATLAB code generator.

A second, most important observation is that the inputs and outputs of the
simulation model correspond to those of the system. It is, however, the Interface
process that needs to handle these communications. For this reason, we use the
simulation diagram process obtained by renaming the input and output channels.
The new channels are used for internal communication with Interface. For the
PID , we declare the channels Ed , Kpd , Kid , Kdd , and Yd , and in the definition
of PIDTSpec, we use PID [E ,Kp,Ki ,Kd ,Y := Ed ,Kpd ,Kid ,Kdd ,Yd ]. We also
define a channel set Internal to include all the new channels, which are hidden
in the programming model (see Figure 2).

A final observation is that the step channel is used to mark the simulation
steps, and has no role in the program. So, it is hidden as well.

Figure 3 sketches the definition of the Interface process used in the speci-
fication of PIDTSpec. In all cases, Interface takes the diagram step size as a
parameter. If the offset of the diagram is not 0, then it is preceded by a corre-
sponding wait in the programming model. For the PID, this is not necessary.

The state of Interface includes two components for each input of the diagram,
and one for each output. For an input E , for instance, the component Ev records
the last value input, and Et records the time the input was first read in the
current cycle. The output components hold the values output by the program.
For the PID, the inputs give rise to state components Ev , Kpv , Kiv , and Kdv ,
and Et , Kpt , Kit and Kdt , and the output to a component Yv .

The behaviour of Interface is characterised by iterations that correspond to
the simulation steps of the diagram. During each of them, Interface interacts
with the environment; it reads the inputs one or more times, and produces the
outputs as required. At the end of each step, it interacts with the simulation
process to provide its inputs and take its outputs.
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Correspondingly, in the specification of Interface, the main action’s iterations
correspond to the simulation steps. A sequence ( ; ) splits each iteration into
two parts, corresponding to the period before the simulation step and to its end,
which is the exact moment of a simulation time step. During each iteration,
the behaviour is defined by the interleaving (|||) of actions Input and Output ,
which interact with the environment. At the simulation time step, the behaviour
is given by the interleaving of InputD and OutputD , which interact with the
simulation diagram model.

As detailed later on in this section, the values of the state components Ov
that are output to the environment in Output are chosen angelically. In our
example, we have a single component Yv corresponding to an output, and its
value is chosen angelically. An angelic choice is resolved in a way that ensures,
if at all possible, that the program does not abort. In programming terms, it
provides a backtracking mechanism. In OutputD , the value x provided by the
simulation model for the output is compared to that of the corresponding state
component Ov in an assumption {Ov = x}. In our example, we have {Yv = x}.
An assumption {Ov = x} is an action that aborts if Ov is different from x , but
otherwise skips. Since the value of Ov is angelically chosen, the assumption is
guaranteed to hold; effectively, it forces the value Ov to be chosen correctly.

Angelic nondeterminism is typically used as a specification construct. This is
certainly the case here. Refinement of our models to feasible programs leads to
implementations that make the appropriate calculations to determine the value
to be output. Use of backtracking is not really practical or necessary.

Since we have an assumption that the values of the inputs are constant during
a cycle, each input can be read any number of times during each iteration, but
at least once. For each input, we define an action that specifies this behaviour.

For the input E of the PID model, for instance, we have the action EInp.
The internal choice (�) over a delay d allows the first input to happen at any
time during the iteration. More precisely, the wait of d time units followed by
the instantaneous communication over E specifies that the input occurs exactly
after d time units. Additionally, the internal choice of d in the specification model
means that a program can choose a value for d freely: it can carry out the input
at any time, whenever needed, during the iteration. In the specification model,
that time is recorded in the state component Et . The value input itself is recorded
in Ev . After that first communication, additional inputs on E can happen any
number of times, during the rest of the iteration. After stepSize−Et time units,
however, the iteration finishes, and so does the input action. A timeout (operator
d
�) interrupts its recursive execution in favour of Skip.

The inputs are all independent, so the action Input that specifies the program
inputting behaviour is defined by the interleaving (|||) of the actions that handle
each of the diagram inputs. In Figure 3, we omit the definitions of KpInp, KiInp,
and KdInp, which are similar to that of EInp.

Each output is produced just once, but at any time, during the iteration. For
each output, we have an action in Interface. In our example, we have just YOut ,
because we have only one output. Like in an input action such as EInp, in an
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output action we use an internal choice to leave open the choice of when the
output is produced. As already mentioned, an angelic choice (

⊔
) determines the

value v to be output and recorded in the corresponding state component.
If there are several outputs, the Output action is defined as their interleaving.

In the case of the PID, we have just one output, so Output is just YOut .
In the interaction between Interface and the simulation process, the inputs are

produced in interleaving; this is defined by the action InputD . Similarly, OutputD
takes all outputs in interleaving. The values received from the simulation model,
however, are compared to those previously output. In Figure 3, after reading the
value x through the internal channel Yd , we have the assumption {Yv = x}. As
explained above, it determines the angelic choice in Output .

The action OutputD interleaves all communications to receive outputs from
the simulation process and their associated assumptions. For the PID, which has
just one output, no interleaving is needed. The deadlines in the simulation model
guarantee that all communications in InputD and OutputD are instantaneous.

The step size of the simulation diagram process, as defined in the instantiation
of the solver process, and that of the Interface process should be the same. This
can be easily ensured when the models are generated automatically.

The external channels of PID and PIDTSpec are the same. This holds in
general for simulation and programming models constructed as described here.

5 Conclusions

In this paper, we propose a modelling strategy to use CircusTime to capture both
timing properties embedded in the simulation model of a Simulink diagram and
the timing assumptions embedded in a typical programming environment. The
models produced capture functional, behavioural, and timing aspects of dia-
grams. The use of a refinement notation, and the consideration of programming
concerns, make the models useful for program verification.

The simulation model is in direct correspondence with the description of the
Simulink simulator. Using CircusTime and angelic nondeterminism, we construct
a programming model that records the environment assumptions, but uses the
simulation model to specify functionality and data flow. We overcome three chal-
lenges in establishing the connection between the two models: in the simulation
model, outputs can be produced immediately at time 0, infinitely fast at each
time hit, and simulation steps do not have a role in a programming model.

We do not take into account the possibility of overflow of timers. Run-time
exceptions need to be handled separately.

For validation, we have checked classical properties (deadlock and livelock
freedom, and absence of nondeterminism) and analysed timing aspects. The
validation has consisted in initially converting CircusTime to CSP to use the
FDR2 model checker, following a strategy similar to [19], where timing aspects
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are captured according to [24].2 Using the CSP animator, we have observed that
at time 0 all inputs are performed in any possible order. After that, internal
calculations take place generating the observable output through channel Y . At
this point, time (represented by a tock event) has to pass before the previous
input and output behaviour occurs again. This pattern repeats itself as expected.

As far as we know, there is no report in the literature of support for formal
program verification that takes into account the way in which the time model
of Simulink diagrams are adapted. Moreover, we are not aware of any formali-
sation of the typical assumptions embedded in the programming timing model
of implementations of control law diagrams.

Timed models of Simulink diagrams are also considered in [14], where a nota-
tion called SPI is used to capture control flow. SPI is based on communicating
processes; it does not incorporate data operations, but supports the specification
of timing restrictions. Since the idealised model of Simulink is not relevant to im-
plementations, the proposed approach is the formalisation of timing requirements
after the translation to SPI. It allows the specification of (mode-dependent) data
rates and latency times. Using the timed model, it is possible to use static anal-
ysis to tackle scheduling. Here, we propose the automatic generation of models.

The approach in [16] uses an extension of Simulink to specify real-time in-
teractions. It is based on a programming language called Giotto. The extended
model is translated to Simulink, and then to a program that combines the result
of the Simulink code generator with a Giotto program that handles the schedul-
ing. This program runs in an embedded machine that is platform dependent.
In our approach, assumptions related to real-time programming are captured
using CircusTime constructs, and they are uniformly specified (by an Interface
process) for all applications to be deployed in a particular platform.

The combined use of UML and Simulink is supported by the work in [10], a
technique to verify real-time properties of a distributed design compositionally
using model checking. It is also part of the trend to verify models and designs,
and rely on code generators for the automatic production of programs [11].

The work in [6] also proposes the characterisation of timing requirements
based on a calculated model of Simulink diagrams. In that case, the modelling
language is TIC (Timed Interval Calculus), a Z-based notation that supports
the definition of total functions of continuous time, and (sets of) time intervals.
Blocks are specified by schemas, like in ClawZ, but their components include
functions from time that define how inputs vary with time, and how outputs
are related to inputs over time intervals. Both continuous and discrete times are
considered, but not concurrency. The objective of the work is the analysis of
diagrams; tool support based on PVS is provided.

A first important piece of future work is the extension of the tool in [31] to
automate the generation of our CircusTime models and enable significant case
studies. For refinement, we will investigate a strategy that transforms the timed

2 FDR2 is a refinement-checking software tool that can check whether one CSP process
refines another, or that a process is free from deadlock, livelock, or nondeterminism.
More details about the tool are available from www.fsel.com/.

www.fsel.com/
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models described here into synchronisation-based models similar to those used
in [4]. In that way, we can reuse the verification approach in that work.

A more foundational piece of future work is related to our use of angelic
nondeterminism. The semantics of Circus and CircusTime is defined using Hoare
and He’s Unifying Theories of Programming (UTP) [13]. In [5], we describe a
UTP model for angelic nondeterminism. It remains for us to investigate the
consequences of the integration of that model with the CircusTime model with
deadlines, and to propose and prove laws to support a refinement strategy.
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