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Abstract. We are happy to contribute to this volume of essays in honor
of He Jifeng on the occasion of his 70th birthday. This work combines
and extends two recent pieces of work that He Jifeng has made significant
contributions: the rCOS Relational Semantics of Object-Oriented Pro-
grams [4] and the Trace Model for Pointers and Objects [7]. It presents
a graph-based Hoare Logic that deals with most general constructs of
object-oriented (oo) programs such as assignment, object creation, lo-
cal variable declaration and (possibly recursive) method invocation. The
logic is built on a graph-based operational semantics of oo programs so
that assertions are formalized as properties on graphs of execution states.
We believe the logic is simple because 1) the use of graphs provides an in-
tuitive visualization of states and executions of oo programs and thus it
is helpful in thinking of and formulating clear specifications, 2) the logic
follows almost the whole traditional Hoare Logic and the only exception
is the backward substitution law which is not valid for oo programs,
and 3) the mechanical implementation of the logic would not be much
more difficult than traditional Hoare Logic. Despite the simplicity, the
logic is powerful enough to reason about important oo properties such
as aliasing and reachability.
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1 Introduction

Correct design of an oo program from a specification is difficult. A main reason
is that the execution states of an oo program are complex, due to the complex
relation among the objects, aliasing, dynamic binding and polymorphism. This
makes it hard to understand, to formulate and to reason about properties on
behaviors of the program. Complexity is in general the cause of breakdowns of
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a system and oo programs are typically prone to errors of a null pointer (or
reference), an inaccessible object and aliases [7].

A formal semantic model must first contribute to conceptual clarification for
better understanding so as to master the complexity better, and then help the
thinking, formulating and reasoning about assertions of programs. To support
the development of techniques and tools for analyzing and reasoning about pro-
grams, a logic is needed which should be defined based on the semantics. Ob-
viously, a simple semantic model is essential for the definition of a logic that is
easy to use for writing specifications and doing formal reasoning, and for imple-
menting mechanical assistance.

In our earlier work [9], a graph-based operational semantics is defined and
implemented for an oo programming language that is originally defined with a
denotational semantics and a refinement calculus [4,18] for the rCOS method of
component-based model-driven design [2,12]. In this semantics, objects of a class
and execution states of a program are defined as directed and labeled graphs.
A node represents an object or a simple datum. However, in the former case,
the node is not labeled by an explicit reference value, but by the name of its
runtime type that is a name of a class of the program. An edge is labeled by the
name of a field of the source object referring to the target object. The advantage
of the semantics lies in its naturalness in characterizing oo features, including
the stack, heap, garbage, polymorphism and aliasing, and its intuitiveness for
thinking and formulating properties of the execution of a program. Another good
nature of the semantics is that it is location independent.

In this paper, we use the graph-based semantics to define a modest Hoare
Logic for oo programs. There are mainly three oo features that make it difficult
for Hoare Logic to be directly applied for specifying and reasoning about oo
programs.

1. Side effects in assignment due to reference aliasing cause the invalidity of
the (syntactic) backward substitution law

{p[e/x]} x := e {p}.

For example, {(y.a = 4)[3/x.a]} x.a := 3 {y.a = 4} does not hold if x and y
are aliasing, i.e. referring to the same object. There is a need of a rule for
object creation which has side effects due to aliasing, too.

2. Dynamic method binding and recursions of methods make the specification
of method invocations delicate.

3. Rules are needed for reasoning about dynamic typing.

In classical Hoare Logic [5], a specification or Hoare triple {p} c {q} is defined
in the way that p is a weakest precondition of the command c with respect to
the postcondition q, e.g. the backward substitution law for assignment. How-
ever, the existence of aliasing makes it not so natural to propose a specifica-
tion for oo commands in this way. Especially, it is very difficult to calculate a
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precondition of an object creation given a postcondition that refers to the newly
created object. This motivates us to take a pre-to-post approach, i.e. to calculate
a postcondition from a precondition. Considering the example above, a correct
specification should be

{y.a = 4 ∧ x.a = V } x.a := 3 {(y.a = 4)[V/x.a] ∧ x.a = 3},

where we use a logic variable V to record the initial value of x.a. To deal with
the problem of aliasing, we introduce a special substitution [V/x.a] in the post-
condition which intuitively means to substitute every term e.a by V where e is
an alias of x. Syntactically, (y.a = 4)[V/x.a] is defined as (V � y = x � y.a) = 4,
which involves a conditional term V � y = x � y.a. The meaning of the term is
clear: it behaves as V if y is an alias of x, or as y.a otherwise. If needed, we can
further eliminate the auxiliary logic variable V and arrive at a more intuitive
specification {y.a = 4} x.a := 3 {(y.a = 3 � y = x � y.a = 4) ∧ x.a = 3}. Notice
that y.a = 3 is implied from y = x and x.a = 3. This is actually due to a property
of aliasing: if x and y are aliasing and a value 3 is reachable from x through a
navigation path a, the value 3 is reachable from y through the same navigation
path a. In general, aliasing terms are identical concerning reachability.

In our pre-to-post approach, the specification of an object creation is straight-
forward. Consider a precondition p and a command C.new(x.a) which creates
an object of a class C and makes x.a refer to the object. The specification can
be of the form

{p ∧ x.a = V }C.new(x.a) {p[V/x.a] ∧ ∃U · (x.a = U ∧ U : C ∧ q)}.

Like in the specification of an assignment, we make use of the special substi-
tution [V/x.a] so that p[V/x.a] holds in the postcondition for any precondition
p. Besides, we use a fresh logic variable U to refer to the newly created object,
thus U is reachable from x through the navigation path a, i.e. x.a = U , and the
runtime type of U is C, i.e. U : C. The rest part q of the postcondition says
attributes of U have been initialized to their default values and U can only be
accessed through the navigation path a from x in this state.

The specification of a method invocation e.m(x; y) is more delicate than that
of an assignment or object creation. To realize the oo mechanism of dynamic
method binding, we choose the method m according to the runtime type C of
e, i.e. e : C, instead of the type of e declared. To deal with mutually recursive
methods, we take the general approach that is to assume a set of specifications
of method invocations and to prove the specification of bodies of these methods
based on these assumptions, e.g. in [6,1,14]. However, the assumptions made in
these work often rely on actual parameters of the method invocations, which
makes the proof complicated as multiple assumptions with different parameters
are needed for the invocation of one method. For simplicity and also efficiency,
we introduce an auxiliary command C :: m() which means the general execution
of a method C :: m, i.e. m of class C. The auxiliary command enables the
assumption of method invariants of the form {p}C :: m() {q}. Such an invariant
is general and capable of deriving the specification of an invocation of C :: m



Graph-Based Object-Oriented Hoare Logic 377

with any actual parameters. On the other hand, the invariant itself is free of
actual parameters, so only one invariant is needed for each method.

As for the problem of typing, there are two solutions. The first is to define
a type system along with the logic, and the second is, similar to Lamport’s
TLA [11], to state correct typing as assertion and provide the rules for type
checking too. To keep the simplicity of the presentation, we leave the problem
of typing out of this paper, but the type system defined with the graph-based
operational semantics in [10] shows that either solution could work with the logic.
Another restriction in this logic is that we do not deal with attribute shadowing.

The rest of the paper is organized as follows. Section 2 briefs our notations of
graphs for oo programs. Sections 3 and 4 then present the underlying assertion
language and the proof system, respectively. The soundness of the logic is dis-
cussed in Section 5. Finally, conclusions are drawn with discussions on related
and future work.

2 Graph Representation of oo Programs

This section summarizes the graph notations of class structures and execution
states of oo programs. Details can be found in our previous work [9,10].

2.1 An oo Language

We adopt the formal language of the rCOS method [4] as the basis of our dis-
cussion. It is a general oo language with essential oo features such as object
creation, inheritance, dynamic method binding, and so on.

The language is equipped with a set of primitive data types, such as Int
and Bool , and a set of built-in operations f, · · · on these types. Besides, let
C,D, · · · range over classes C; S, T, · · · range over types T , including classes and
data types; a, x, y, · · · range over attributes and variables A; m, · · · range over
methods M; and l, · · · range over literals L, including the null reference null . The
syntax of the language is given in Fig. 1, where text occurring in square brackets
is optional and overlined text u denotes a sequence u1, u2, . . . , uk(k ≥ 0).

A program prog is a sequence of class declarations cdecls followed by a main
method Main which defines the execution of the whole program. A class C
is declared optionally as a direct subclass of another class D, thus there is no
multiple inheritance. An attribute declaration adecl consists of its type, name
and default initial value, which is a literal. An attribute declared in a class cannot
be re-declared in its subclasses, i.e., we do not consider attribute shadowing. A
method declaration mdecl consists of the method name m, its value parameters
S x, result parameters T y, and body command c. Notice that a method has
result parameters instead of returning values directly. This is to make sure that
expressions have no side effects. As a key feature of oo, a method is allowed to
be overridden in a subclass, but its signature m(S;T ) must be preserved.
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program prog ::= cdecls •Main
class declarations cdecls ::= cdecl | cdecl ; cdecls
class declaration cdecl ::= class C [extends D] {adecl ;mdecl }
attribute definition adecl ::= T a = l

method definition mdecl ::= m(S x;T y){c}
command c ::= skip | le := e | C.new(le) | var T x [= e] | end x

| e.m(e; le) | C :: m() | c; c | c � b � c | b ∗ c
expression e ::= le | self | l | f(e)
l-expression le ::= x | e.a
boolean expression b ::= e | e = e | ¬b | b ∧ b
main method Main ::= (ext ; c)
external variable ext ::= T x = l

Fig. 1. Syntax of rCOS language

A command can be simply skip that does not do anything; le := e that
assigns e to le; C.new(le) that creates an object of class C and attaches it to
le; var T x = e that declares a local variable x of type T with initial value e,
where e is by default the zero value zero(T ) of T ; end x that ends the scope of
x; or e.m(e; le) that invokes the method m of the object e refers to, with actual
value parameters e and actual result parameters le. Commands for sequential
composition c1; c2, conditional choice c1 � b � c2 and loop b ∗ c are also allowed.
In addition, we introduce an auxiliary command C :: m() to represent the general
execution of the method C :: m, i.e. m defined in class C. Such a command will
be used for the specification of method invariants.

Expressions include assignable expressions le, or simply l-expressions; the spe-
cial self variable that represents the currently active object; literals l; and expres-
sions f(e) constructed with operations f of data types. Notice that expressions
of the language have no side effects.

2.2 Class Graph and State Graph

The class declarations of a program can be represented as a directed and labeled
graph, called a class graph [9]. In a class graph, a node represents a type T ,
which is either a class or a data type. There are two kinds of edges. An attribute
edge C

a−→ T , which is labeled by an attribute name a, represents that C has an
attribute a of type T , while an inheritance edge C

�−→ D, which is labeled by a
designated symbol �, represents that C is a direct subclass of D. Notice that
the source of an edge and the target of an inheritance edge must be nodes of
classes. An example of class graph is shown in Fig. 2(1).

Given a class graph, we use C � D to denote C is a direct subclass of D,
and � the subclass relation that is the reflexive and transitive closure of �.
We also use Attr(C) to denote the set of attributes of C, including those inher-
ited from C’s superclasses. For an attribute a ∈ Attr(C), we use init(C, a) to
denote its initial value. Besides, we introduce two partial functions mtype(C :: m)



Graph-Based Object-Oriented Hoare Logic 379

C

D

J

K

Int

� �

x

y

a
next

D

3 5

K

J null

x y

a

next

next

$ $

s

t

tu

(1) A class graph (2) A state graph

Fig. 2. Class graph and state graph

and mbody(C :: m) for looking up the signature and the body of a method m of
a class C, respectively.

mtype(C :: m) =̂

{

(S;T ) if m(S x;T y){c} is defined in C

mtype(D :: m) otherwise, if C �D

mbody(C :: m) =̂

{

(x; y; c) if m(S x;T y){c} is defined in C

mbody(D :: m) otherwise, if C �D

With these functions, a class graph is used for type checking [10]. In addition,
the class graph of an oo program is regarded as an abstract type whose instances
are graphs representing executions states of the program, called state graphs.

Let N be an infinite set of node names and consider A+ =̂ A∪{self, $} as the
set of edge labels.

Definition 1 (State graph). A state graph is a rooted, directed and labeled
graph G = 〈N,E, ρt, ρv, r〉, where

– N ⊆ N is the set of nodes, denoted by G.node ,
– E ⊆ N ×A+ ×N is the set of edges, denoted by G.edge,
– ρt : N ⇀ C is a partial function from nodes to types, denoted by G.type,
– ρv : N ⇀ L is a partial function from nodes to values, denoted by G.value ,
– r ∈ N is the root of the graph, i.e. without incoming edges, denoted by G.root ,
– starting from r, the $-edges, if there are any, form a path such that except

for r each node on the path has only one incoming edge.

A state graph is a snapshot of the state at one time of the program execution,
consisting of the existing objects, their attributes, as well as variables of different
scopes that refer to these objects. Specifically, a state graph G has three kinds of
nodes: object nodes, value nodes and scope nodes, representing objects, values and
scopes, respectively. Object nodes are the domain of G.type so that each object
node is labeled by its class with outgoing edges representing its attributes. Value
nodes are the domain of G.value so that each value node is labeled by a value.
We assume a value node is in the state graph when needed, as otherwise it
can always be added. A scope node has outgoing edges representing variables
declared in the scope. In addition, scope nodes are associated with a $-labeled
path and they constitute the stack of the state graph. The first (scope) node of
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the stack, i.e. the source of the $-labeled path, represents the scope of the current
execution. It is the root node of the graph through which variables and objects
of the state can be accessed. An example state graph is shown in Fig. 2(2).

To represent a sound state, a state graph G should satisfy a few conditions
of well-formedness [9], e.g. outgoing edges of each node have distinct labels. In
addition, a state graph should be correctly typed with respect to the class graph
of a program. Intuitively, the class of each object node is defined in the class
graph and each attribute is correctly typed according to the class graph. For
example, the state graph in Fig. 2(2) is correctly typed with respect to the class
graph in Fig. 2(1).

Trace and evaluation. We use the term trace, or navigation path, to denote a
sequence of edge labels. In a state graph, every path G.root

x1−→ n1
x2−→ · · · xk−→ nk

from the root is uniquely determined by its trace x1.x2. · · · .xk. We thus allow
the interchange between a root-originating path and its trace. Besides, we do
not distinguish state graphs different only in the choice of their node names, and
this is formalized by the notion of graph isomorphism [9]. Notice that isomorphic
state graphs have the same set of traces.

Given a state graph G that represents a state, the evaluation of an expression
e returns its value eval(e) and runtime type rtype(e) in the state [9]. For most
expressions e, the evaluation is simply the calculation of their traces trace(e). If
the trace of e targets at an object node o, eval(e) =̂ o and rtype(e) =̂ G.type(o).
Otherwise, eval (e) =̂ G.value(v) which is a literal and rtype(e) =̂ T(G.value(v)).
Here, T(l) denotes the type of a literal l. Notice that the trace of an expression
e may not exist. In this case, the evaluation fails and we denote both eval (e)
and rtype(e) as ⊥. To sum up, every expression evaluates to an element in
V =̂ N ∪ L ∪ {⊥}. Thus we call V the value space.

2.3 Graph Operation

We defined an operational semantics of the oo language in terms of transitions
con → con between configurations [9]. Here, a configuration con is either 〈c,G〉
representing a command c to be executed and a state G, or G representing the
state that the execution terminates at. The semantics is simple in the sense that
it is defined by a few basic operations on state graphs.

Swing. The most frequent operation on a state graph is an edge swing. Specif-
ically, for an edge d = v1

a−→ v2 and a node v of G, swing(G, d, v) is the graph ob-
tained from G by making d target at v (instead of v2). The swing swing(G,α, v) of
a trace α is the swing of its last edge, see Fig. 3. The swing operation is used to de-
fine the semantics of an assignment: 〈le := e,G〉 → swing(G, trace(le), eval (e)).

New. Given a state graph G, a class C and a trace α in G, the operation
new(G,C, α) creates an object node of class C with attributes initialized by
default values and then swings α to the new object node, see Fig. 4. This
operation is used to define the semantics of object creation: 〈C.new(le), G〉
→ new(G,C, trace(le)).

Push and pop. Let G be a state graph, x a variable and v a node of G. The
operation push(G, x, v) adds a new scope node r, with an outgoing edge labeled
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by x and targeting at v, to the top of the stack so that r becomes the root
of the result graph. In contrast, the operation pop(G) removes the root node
together with its outgoing edges from the graph, while the next scope node
becomes the root. They are shown in Fig. 5. The push operation is used to
define the declaration of a local variable: 〈var T x = e,G〉 → push(G, x, eval (e)),
as well as the switch of the execution into the method body at the beginning of
a method invocation. Correspondingly, the pop operation is used to define the
un-declaration of a local variable: 〈end x,G〉 → pop(G), as well as the switch of
the execution out of the method body at the end of a method invocation.

3 Assertion Language

The advantage of our graph notations lies in both the intuitive understanding
and the theoretical maturity of graphs. They are thus helpful to formulate clear
and precise assertions on the execution of oo programs. In this section, we
propose an assertion language as the basis of our Hoare Logic. It is a first-order
language with equality characterizing the aliasing property.
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assertion p ::= P (t) | t = t | t ↑ | t : C
| true | false | ¬p | p ∧ p | ∃U · p

term t ::= x | t.a | self | l | f(t)
| U | t � t = t � t

Fig. 6. Syntax of the assertion language

Let O be the vocabulary of logic variables U, V, · · · and let P, . . . range over
predicates. The syntax of the assertion language is given in Fig. 6. Assertions
include P (t) that applies a k-ary predicate P on a sequence of k terms t; t1 = t2
that says terms t1 and t2 are aliasing; t ↑ that claims t successfully evaluates
to a value not ⊥; and t : C that asserts the runtime type of t is class type C.
General constructs of a first-order language are also allowed, such as negation
¬p, conjunction p1∧p2 and (existential) quantification ∃U ·p. We regard p1 ⇒ p2,
p1∨p2, p1 ⇔ p2, ∀U ·p as shorthands for ¬(p1∧¬p2), ¬p1 ⇒ p2, (p1 ⇒ p2)∧(p2 ⇒
p1), ¬∃U · ¬p, respectively.

The syntax of terms is simply an extension of that of expressions (see Fig. 1)
with logic variables and conditional terms. A logic variable U is introduced
to record a constant value. This value cannot be changed by the execution of
commands since U never occurs in a command. A conditional term t1 � t = t′ � t2
behaves as t1 or t2, depending on whether t and t′ are aliasing or not. We use
lv(t) to denote the set of logic variables that occur in a term t, and flv(p) the set
of logic variables that occur free, i.e. not bound by quantifiers, in an assertion p.

3.1 Satisfaction of Assertion

As for the semantics of the assertion language, we characterize whether an as-
sertion p is satisfied by a state graph G. Since assertions contain logic variables,
we extend the notion of state graph with logic variables correspondingly.

Definition 2 (Extended state graph). An extended state graph is a rooted,
directed and labeled graph G = 〈N,E, ρc, ρv, r, v〉, where

– N , ρc, ρv and r are defined as in Definition 1,
– E ⊆ N × (A+ ∪ O)×N is the set of edges, denoted by G.edge,
– v ∈ N is a special node without incoming edges, denoted by G.lvar , such that

each outgoing edge of v is labeled by a logic variable, and furthermore, each
edge labeled by a logic variable is an outgoing edge of v.

The extension to an original state graph G is mainly a special node G.lvar

with outgoing edges G.lvar
U1−−→ n1, . . . , G.lvar

Uk−−→ nk recording a set of logic
variables. We use lv(G) to denote the set of logic variables {U1, . . . , Uk} of G.

Notice that all the graph operations provided in Section 2.3, and thus the
operational semantics, are applicable to extended state graphs. In fact, the exe-
cution of a command never changes the existence and values of logic variables.
In the rest of the paper, a state graph always means an extended one.

Given a term t and a state graph G with lv (t) ⊆ lv(G), the evaluation of t
calculates the value eval (t) and the runtime type rtype(t) of t in G. For a logic
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variable U ∈ lv (G), there must be an edge G.lvar
U−→ n in G. If n is an object

node, eval (U) =̂ n and rtype(U) =̂ G.type(n). If n is a value node, eval(U) =̂
G.value(n) and rtype(U) =̂ T(G.value(n)). The evaluation of a conditional term
t ≡ t1 � t′ = t′′ � t2 is the same as that of t1 or t2, depending on whether
eval(t′) = eval(t′′) or not. Other constructs of terms evaluate in the same way
as those of expressions.

To reason about the satisfaction of predicates, we consider the notion of in-
terpretation. An interpretation I of the assertion language interprets every k-ary
predicate P as a k-ary relation on the value space V , i.e. I(P ) ⊆ Vk. To calculate
the satisfaction of a quantified assertion ∃U · p, we introduce an operation that
adds a logic variable U into a state graph G and makes it refer to a node n of G:

addv (G,U, n) =̂ G′ provided U �∈ lv (G),

where G′ is the same as G except that G′.edge = G.edge ∪ {G.lvar
U−→ n}.

Intuitively, ∃U · p is satisfied by G if there is an object node or value node n of
G such that p is satisfied by addv (G,U, n). The satisfaction of other assertions
can be defined straightforwardly. For example, t1 = t2 is satisfied if t1 and t2
evaluate to the same value, t ↑ is satisfied if t evaluates to a value other than ⊥,
while t : C is satisfied if the runtime type of t is C.

Definition 3 (Satisfaction of assertion). For an assertion p, an interpreta-
tion I and a state graph G with flv(p) ⊆ lv (G), we use G |=I p to denote that p
is satisfied by G under I. It is defined inductively on the structure of p.

– For p ≡ P (t1, . . . , tk), G |=I p if (eval (t1), . . . , eval (tk)) ∈ I(P ).
– For p ≡ t1 = t2, G |=I p if eval (t1) = eval (t2).
– For p ≡ t ↑, G |=I p if eval (t) �= ⊥.
– For p ≡ t : C, G |=I p if rtype(t) = C.
– For p ≡ true, G |=I p always holds; for p ≡ false, G |=I p never holds.
– For p ≡ ¬p1, G |=I p if G |=I p1 does not hold.
– For p ≡ p1 ∧ p2, G |=I p if G |=I p1 and G |=I p2,
– For p ≡ ∃U ·p1, assume U �∈ lv (G) as U can be renamed by alpha-conversion.

G |=I p if addv (G,U, n) |=I p1 for some object node or value node n of G.

We say p is true under I, denoted as |=I p, if G |=I p for any state graph G with
flv(p) ⊆ lv(G). In addition, we say p is valid, denoted as |= p, if |=I p under
any interpretation I.

Notice that we use ≡ to denote the equivalence in syntax. For example, p ≡ t : C
means p and t : C represent the same syntactic assertion, i.e., p is exactly t : C.

It is straightforward to verify that the satisfaction of an assertion does not
rely on the naming of nodes of the underlying state graph, i.e., G |=I p if and
only if G′ |=I p for isomorphic state graphs G and G′. This indicates that our
oo assertion model, and further the proof system, is location independent.

The semantics of assertions provided in the above definition is consistent with
the semantics of first-order logic. As a result, every valid formula of first-order
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logic, e.g. ¬¬p ⇔ p, is a valid assertion. In addition, it is straightforward to
prove the validity of the following oo assertions, where t �= t′ is a shorthand for
¬t = t′.

1. t = t′ ⇒ t1 = t′1, provided t′1 is obtained from t1 by replacing one or more
occurrence of t by t′. This assertion says that aliasing terms share the same
properties.

2. t.a ↑⇒ t ↑ ∧ t �= null . This assertion says that the evaluation of t.a successes
only if t evaluates to a non-null object.

3. t : C ⇒ t ↑ ∧ t �= null . This assertion says that only objects can have runtime
class types.

4. t ↑⇔ ∃U ·U = t provided U is fresh. This assertion reflects the intuition that
a logic variable is used to record a value.

4 Proof System

The assertion language enables us to define program specifications. A specifi-
cation takes the form {p} c {q}, where p, q are assertions and c is a command.
We call p and q the precondition and postcondition of the specification, respec-
tively. Intuitively, such a specification means that if p holds before c executes,
and when the execution of c terminates, then q holds after the execution. We
will formally define the semantics of specifications in the next section. For a
specification {p} c {q}, we always assume flv(q) ⊆ flv(p). In fact, a specifica-
tion that generates new free logic variables in the postcondition is not nec-
essary. For example, by {x = y} skip{x = V ∧ V = y}, we actually mean
{x = y} skip{∃V · x = V ∧ V = y}.

In this section, we present the Hoare proof system that consists of a set of
logic rules for specifications of all constructs of the oo language presented in
Section 2.1. Each logic rule defines a one-step proof (or derivation) of a conclusion
from zero or more hypotheses. The conclusion takes the form of a specification,
while each hypothesis can be either an assertion, a specification, or a specification
sequent Φ � Ψ , where Φ and Ψ are sets of specifications. The specification sequent
means Ψ can be proved (or derived) from Φ by applying the logic rules.

For natural specification of commands such as assignment and object creation,
we define the proof system in a pre-to-post way. That is, each logic rule calculates
the postcondition of a specification from an arbitrary precondition.

4.1 Assignment

For specification of an assignment le := e, we introduce two logic variables V0

and V to record the values of le and e before the assignment, respectively. The
l-expression le can be either a variable x or a navigation expression e0.a.

In the former case le ≡ x, the specification is straightforward and x = V holds
in the postcondition.

{p ∧ x = V0 ∧ e = V } x := e {p[V0/x] ∧ x = V } (1)
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If the precondition p does not contain x, p also holds in the postcondition because
the assignment only modifies the value of x. Otherwise, we can replace each x
in p by its original value V0, so that p[V0/x] holds in the postcondition.

In the latter case le ≡ e0.a, we use an extra logic variable U to record the
value of e0, so that U.a = V holds in the postcondition.

{p ∧ e0 = U ∧ U.a = V0 ∧ e = V } e0.a := e {p[V0/U.a] ∧ U.a = V } (2)

For the rest of the postcondition, we introduce a special substitution [V/U.a].
Intuitively, p[V/U.a] is obtained from p by replacing every (sub-)term of the form
t′.a, where t′ is an alias of U , by the logic variable V . As a result, the satisfaction
of p[V/U.a] is not compromised by the assignment. This substitution is formally
defined according to the structure of assertions p, as well as terms t.

p[V/U.a] =̂

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

P (t1[V/U.a], . . . , tk[V/U.a]) if p ≡ P (t1, . . . , tk)

t1[V/U.a] = t2[V/U.a] if p ≡ t1 = t2

t[V/U.a] ↑ if p ≡ t ↑
t[V/U.a] : C if p ≡ t : C

p if p ≡ true or false

¬p1[V/U.a] if p ≡ ¬p1
p1[V/U.a] ∧ p2[V/U.a] if p ≡ p1 ∧ p2

∃V ′ · p1[V/U.a] if p ≡ ∃V ′ · p1 where V ′ is not U or V

t[V/U.a] =̂

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

t if t ≡ x, self , l or V

t1[V/U.a].a1 if t ≡ t1.a1, a1 �≡ a

V � t1[V/U.a] = U � t1[V/U.a].a if t ≡ t1.a

f(t1[V/U.a], . . . , tk[V/U.a]) if t ≡ f(t1, . . . , tk)

t1[V/U.a] � t′[V/U.a] = t′′[V/U.a] � t2[V/U.a] if t ≡ t1 � t′ = t′′ � t2

4.2 Object Creation

For specification of an object creation C.new(le), we use a logic variables V0 to
record the original value of le. Like in the specification of assignment, we need
to consider two cases of le: a variable x, or a navigation expression e0.a.

For le ≡ x, the logic rule is given as follows.

provided V is fresh
{p ∧ x = V0}C.new(x)
{p[V0/x] ∧ ∃V · x = V ∧ V : C ∧ V = Cinit ∧ V �= p[V0/x]}

(3)

Similar to Rule (1), p[V0/x] holds in the postcondition given any precondition
p. In addition, we introduce a fresh logic variable V , which is existentially quan-
tified, in the postcondition to record the reference to the new object of class C,
thus x = V and V : C hold. For the rest of the postcondition, V = Cinit says
that the attributes of the new object are initialized, while V �= p[V0/x] indicates
that the new object can only be accessed from x but not p[V0/x].
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Formally, V = Cinit is a shorthand for V.a1 = init(C, a1) ∧ . . . ∧ V.ak =
init(C, ak), provided Attr(C) = {a1, . . . , ak}. V �= p is a shorthand for V �=
t1 ∧ . . . ∧ V �= tk, where t1, . . . , tk are the free maximum terms occurring in p.
A term is free if it does not contain a quantified logic variable, while a term is
maximum if it does not occur as a sub-term of another term.

For le ≡ e0.a, we use a logic variable U to record the original value of e0.

provided V is fresh
{p ∧ e0 = U ∧ U.a = V0}C.new(e0.a)
{p[V0/U.a] ∧ ∃V · U.a = V ∧ V : C ∧ V = Cinit ∧ V �= p[V0/U.a]}

(4)

This rule is similar to Rule (3), while p[V0/U.a] holds in the postcondition.

4.3 Local Variable Declaration

We only consider the specification of var T x = e; c; end x where x is initialized
by e, because var T x; c; end x is a shorthand for var T x = zero(T ); c; end x. We
use a logic variable V to record the original value of e, so that the specification
of var T x = e; c; end x depends on a specification of c with x = V in the
precondition.

If x does not occur in a precondition p or the expression e, we can simply use p
as a precondition of c which will lead to a postcondition q. To obtain the overall
postcondition that holds after the execution of end x, we hide all occurrences of
x in q by existential quantification.

provided U is fresh
{p ∧ x = V } c {q}

{p ∧ e = V } var T x = e; c; end x {∃U · q[U/x]}

If x occurs in p or e, we need to record the value of x by a logic variable W so
as to recover x after the execution of var T x = e; c; end x. Of course, p cannot
be used as a precondition of c until we replace each occurrence of x by W .

provided U is fresh
{p[W/x] ∧ x = V } c {q}

{p ∧ e = V ∧ x = W} var T x = e; c; end x {(∃U · q[U/x]) ∧ x = W}

For conciseness, we unify the above two cases into a single logic rule.

provided U is fresh; let p∗ be p ∧ e = V

{p[W/x] ∧ x = V } c {q}
{p∗ ∧ (?p∗)x = W} var T x = e; c; end x {(∃U · q[U/x]) ∧ (?p∗)x = W}

(5)

Here, (?p)w = t is a designated assertion defined as follows, in which w is either
a variable or self. We will also use it in the specification of method invocations.

(?p)w = t =̂

{

w = t if w occurs in p

true otherwise
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4.4 Method Invocation

A key feature of oo programs is the dynamic binding of method invocation.
That is, a method invocation e.m(ve; re) is an invocation of the method C :: m
where C is the runtime type of e. In our logic, the condition “C is the runtime
type of e” is naturally characterized by an assertion e : C.

For specification of an invocation of C :: m, we make use of a method invariant
{p}C :: m() {q} that is a specification of the general execution of the method
C :: m(). Specifically, the semantics of C :: m() is defined the same as that of
the body command of C :: m. Therefore, if a method C :: m is non-recursive, its
invariant is directly proved from the specification of its body command.

provided mbody(C :: m) = (x; y; c)

{p} c {q}
{p}C :: m() {q}

(6)

Once a method invariant is proved, it is used to derive specifications of invoca-
tions e.m(ve; re) of the method C :: m with any (well-typed) actual parameters
(ve; re), where e : C.

provided mtype(C ::m) = (S;T ); mbody(C ::m) = (x; y; c); W4,W5,W6,W7 fresh;
let p∗ be p ∧ e = U ∧ ve = V ∧ re ↑
{p[W1,W2,W3/self, x, y] ∧ self = U ∧ x = V ∧ y = zero(T )}C :: m() {q}
{p∗ ∧ U : C ∧ re? = V0 ∧ (?p∗)self = W1 ∧ (?p∗)x = W2 ∧ (?p∗)y = W3}
e.m(ve; re) {(∃W4,W5,W6,W7 · q[W4,W5,W6,W7/self, x, y, re[V0/ ?]]
∧re[V0/ ?] = W6) ∧ (?p∗)self = W1 ∧ (?p∗)x = W2 ∧ (?p∗)y = W3}

(7)

Given a precondition p of the method invocation, we use logic variables U and
V to record respectively the values of e and the value parameter ve in p, so that
U and V are respectively the values of self and x in the precondition of C :: m().
Besides, the result parameter re must have a value to receive the result of the
invocation, thus p∗ ≡ p∧ e = U ∧ ve = V ∧ re ↑ is part of the precondition of the
invocation. If p∗ contains self, x and y, we record their values by logic variables
W1, W2 and W3, respectively, and recover them after the invocation. However,
p∗ may not contain all of them. In the case p∗ contains self and y but not x, for
example, we only need to introduce the corresponding logic variables W1 and
W3. To unify different cases, we make use of the notation (?p∗)w = t defined in
Section 4.3. This is similar to Rule (5) for local variable declaration. The rest of
the postcondition is obtained from that of C :: m() by hiding self, x and y that
are local to C :: m(). For this, we first replace them by fresh logic variables W4,
W5 and W6, respectively, thus W6 actually records the result of the invocation.
Then, we hide these logic variables with existential quantification.

The rest of the rule is the return of result of the invocation W6 to the result
parameter re. There are two cases of re: a variable x or a navigation expression
e0.a. In the former case, we simply return W6 to x. In the latter case, we introduce
an extra logic variable V0 to record the parent object e0 of re before the invocation
and return W6 to V0.a after the invocation. This is the so-called early binding
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of result parameters. For unification of the two cases, we introduce a designated
assertion le? = V and a designated term le[V/ ?] for l-expressions le and logic
variables V .

le? = V =̂

{

e = V if le ≡ e.a

true if le ≡ x
le[V/ ?] =̂

{

V.a if le ≡ e.a

x if le ≡ x

Of course, we need to hide the value of re[V0/ ?] before returning W6 to re[V0/ ?].
To avoid unnecessary name conflicts, we always assume that the result param-

eter re of a method invocation e.m(ve; re) has a different name from a formal
parameter x of a method declaration. Otherwise, e.g. re ≡ x, we can replace
e.m(ve;x) by an equivalent command var T z; e.m(ve; z);x := z; end z, where T
is the type of the result parameter of m and z is a fresh name.

Recursive method invocation. Rule (6) is not strong enough to prove the in-
variants of recursive methods. For example, if the body c of a method C :: m
involves an invocation of C :: m itself, the hypothesis {. . .} c {. . .} of the rule
would in turn rely on the conclusion {. . .}C :: m() {. . .} of the rule and thus
cannot be proved.

We take the general approach to dealing with recursion [6,1]. Assume a group
of mutually recursive methods C1 :: m1, . . . , Ck :: mk, each of which may
call the whole group in its body. If the specifications of the method bodies
{p1} c1 {q1}; . . . ; {pk} ck {qk} can be proved under assumptions of the invariants
{p1}C1 :: m1() {q1}; . . . ; {pk}Ck :: mk() {qk}, these assumptions are established.

provided mbody(Ci :: mi) = (xi; yi; ci) for i = 1, . . . , k

{pi}Ci :: mi() {qi} i=1,...,k � {pi} ci {qi} i=1,...,k

{pj}Cj :: mj() {qj} 1≤j≤k

(8)

4.5 Other Constructs

Logic rules of sequential composition, conditional choice and while loop simply
follow the traditional Hoare Logic [5].

{p} c1 {p1} {p1} c2 {q}
{p} c1; c2 {q}

(9)

{p ∧ b} c1 {q} {p ∧ ¬b} c2 {q}
{p} c1 � b � c2 {q}

(10)

{p ∧ b} c {p}
{p} b ∗ c {p ∧ ¬b}

(11)

4.6 Auxiliary Rules

Besides rules for deriving specifications of various oo constructs, we have aux-
iliary rules that are useful to transform the precondition and postcondition of
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a specification. First, we can make the precondition of a specification “stronger”
and the postcondition “weaker”. And this is the so-called consequence rule.

provided flv(p) ⊆ flv(p′); flv(q′) ⊆ flv(q)

p′ ⇒ p {p} c {q} q ⇒ q′

{p′} c {q′}
(12)

Another rule is about constant assertions. An assertion p is called constant if it
does not contain any variable x, self or navigation expression e.a. The satisfaction
of a constant assertion cannot be changed by the execution of commands.

provided p is constant
{p} c {p} (13)

In addition, we can combine specifications of the same command by conjunction.
We can also hide, by existential quantification, and rename logic variables.

{p1} c {q1} {p2} c {q2}
{p1 ∧ p2} c {q1 ∧ q2}

(14)

{p} c {q}
{∃U · p} c {∃U · q}

(15)

provided U never occurs in the scope of ∃V
{p} c {q}

{p[V/U ]} c {q[V/U ]}
(16)

4.7 Example

We use an example to show the application of the proof system. Consider the fol-
lowing class declaration, with a recursive method fact(Int x; Int y) to calculate
the factorial of x and to return it to y.

class C{ . . . ;
fact(Int x; Int y){

(var Int z; self.fact(x− 1; z); y := z ∗ x; end z) � x > 1 � y := 1
}

}

We are going to prove the method is correctly defined:

{e : C ∧ z ↑} e.fact(5; z) {z = 5!}.
For this, we need to prove an invariant (INV) of the method:

{x = V ∧ V ≥ 0 ∧ self = U ∧ U : C ∧ y ↑}C :: fact() {x = V ∧ V ≥ 0 ∧ y = V !}.

This invariant is strong enough to derive the above conclusion using Rule (7) of
method invocation, as well as auxiliary rules (12), (13), (14) and (15).
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We use Rule (8) of recursion to prove (INV). That is, assuming (INV), we
prove the following specification of the method body, denoted as (BOD).

{x = V ∧ V ≥ 0 ∧ self = U ∧ U : C ∧ y ↑}
c1 � x > 1 � y := 1 {x = V ∧ V ≥ 0 ∧ y = V !}

where c1 is var Int z; self.fact(x− 1; z); y := z ∗ x; end z.
From (INV) and Rule (7) of method invocation, as well as auxiliary rules (12),

(13), (14), (15) and (16), we have

{x = V ∧ V ≥ 0 ∧ self = U ∧ U : C ∧ y ↑ ∧x > 1 ∧ z = V0}
self.fact(x− 1; z) {V ≥ 1 ∧ z = (V − 1)! ∧ x = V ∧ y ↑}.

From Rule (1) of assignment, as well as Rule (15), we have

{V ≥ 1 ∧ z = (V − 1)! ∧ x = V ∧ y ↑}
y := z ∗ x {x = V ∧ V ≥ 1 ∧ y = V ! ∧ z = (V − 1)!}.

By Rule (9) of sequential composition, the above two specifications lead to

{x = V ∧ V ≥ 0 ∧ self = U ∧ U : C ∧ y ↑ ∧x > 1 ∧ z = V0}
self .fact(x− 1; z); y := z ∗ x {x = V ∧ V ≥ 1 ∧ y = V ! ∧ z = (V − 1)!}.

Then, using Rule (5) of local variable declaration, as well as auxiliary rules (12)
and (15), we arrive at the following specification.

{x = V ∧ V ≥ 0 ∧ self = U ∧ U : C ∧ y ↑ ∧x > 1} c1{x = V ∧ V ≥ 0 ∧ y = V !}
On the other hand, we use Rule (1) of assignment, as well as auxiliary rules (12)
and (15), and arrive at the following specification.

{x = V ∧ V ≥ 0 ∧ self = U ∧ U : C ∧ y ↑ ∧¬(x > 1)} y := 1{x = V ∧ V ≥ 0 ∧ y = V !}

Finally, (BOD) is proved from the above two specifications using Rule (10) of
conditional choice.

5 Soundness of the Logic

We have provided a Hoare proof system for specification of oo programs, denoted
as H, which consists of a set of logic rules (1) to (16). In this section, we show
that H is sound. For this, we need to define the semantics of specifications.

Let {p} c {q} be a specification and I be an interpretation of assertions. We
say {p} c {q} is true under I, denoted as |=I {p} c {q}, if for any state graphs G,
G′, G |=I p and 〈c,G〉 →∗ G′ imply G′ |=I q. We call {p} c {q} valid, denoted as
|= {p} c {q}, if |=I {p} c {q} under any interpretation I.

We say a specification sequent Φ � Ψ is true under an interpretation I, if Φ
is true under I implies Ψ is true under I. Naturally, a set of specifications Φ is
true under I means each specification of Φ is true under I.

Recall that a hypothesis of a logic rule is either an assertion, a specification
or a specification sequent. We establish the soundness of logic rules of H by the
following theorem.
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Theorem 1 (Soundness of Logic Rules). Rules (1) to (16) are sound. Here,
a logic rule is sound means: for any interpretation I, the hypotheses of the rule
are true under I implies the conclusion of the rule is true under I.

Notice that the soundness of a logic rule with no hypothesis simply means the va-
lidity of the specification as the conclusion of the rule. The proof of this theorem
can be found in our technical report [19].

As a natural deduction of Theorem 1, the proof system H is sound. That is,
every specification proved by H is valid.

Theorem 2 (Soundness). � {p} c {q} implies |= {p} c {q}.

6 Conclusions

We propose a graph-based Hoare Logic for reasoning about oo programs. Specif-
ically, the Hoare proof system consists of a set of logic rules that covers most
oo constructs such as object creation, local variable declaration and recursive
method invocation. We have proved the soundness of the logic that every speci-
fication proved by the system is valid.

A distinct feature of the logic is its underlying graph-based operational se-
mantics where execution states of oo programs are visualized as directed and
labeled graphs [9]. The simplicity and intuitiveness of graphs improve people’s
understanding of oo concepts and are thus helpful in thinking of and formulat-
ing clear assertions. On the other hand, the graph model is expressive enough
to characterize important oo properties such as aliasing and reachability.

As for graph models of oo programs, there is some work that proposes an oo
execution semantics [8,3]. However, a graph in their model is a mixture of class
structure, object configuration together with commands to be executed and thus
difficult to comprehend. It is not clear either how assertions can be formulated
and reasoned about. The notion of trace in our graph model comes from [7], a
trace model for pointers and objects. But the main concern of their work is to
maintain the aliasing information.

There is some work on Hoare logic for reasoning about oo programs. In par-
ticular, Pierik and De Boer’s logic [14] based on term substitution is close to our
work. But different from our approach, they calculate the weakest precondition
for both assignment and object creation, and a complicated form of substitution
for dynamic allocation of objects is needed. Von Oheimb and Nipkow [17] present
a machine-checked Hoare logic for a Java-like language in Isabelle. They use a
semantic representation of assertions to manipulate the program state explicitly
instead of syntactic term substitution. Similarly, Poetzsch-Heffter and Müller [15]
use an explicit object store in their logic and present axioms for manipulating
the store. Recently, separation logic [16] has been applied for reasoning about
oo languages [13]. By heap separation, aliasing can be handled in a natural way
and modularity of reasoning is achieved. But meanwhile, users should be careful
of information on separation of heaps for writing correct assertions.
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Future work includes the proof of the completeness of the logic, i.e., every valid
specification can be proved by the system. In fact, we are quite confident that it
is complete, because the logic rules are indeed provided to deal with every kind
of program constructs and the only difficult case is recursive method invocation.
Besides the development of the theory, it is also important to apply the logic
to a more substantial case study and further to investigate tool support for
application of automated techniques of verification and analysis of oo programs.
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