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Abstract. In Propositional Projection Temporal Logic (PPTL), a well-formed
formula is generally formed by applying rules of its syntax finitely many times.
However, under some circumstances, although formulas such as ones expressed
by index set expressions, are constructed via applying rules of the syntax in-
finitely many times, they are possibly still well-formed. With this motivation,
this paper investigates the relationship between formulas specified by index set
expressions and concise syntax expressions by means of fixed-point induction
approach. Firstly, we present two kinds of formulas, namely

∨
i∈N0

©iP and
∨

i∈N0
P i, and prove they are indeed well-formed by demonstrating their equiv-

alence to formulas �P and P+ respectively. Further, we generalize
∨

i∈N0
©iQ

to
∨

i∈N0
P (i) ∧ ©iQ and explore solutions of an abstract equation X ≡ Q ∨

P ∧©X . Moreover, we equivalently represent ‘U’ (strong until) and ‘W’ (weak
until) constructs in Propositional Linear Temporal Logic within PPTL using the
index set expression techniques.

1 Introduction

Temporal Logic (TL) [11] is a useful formalism for specifying properties of concur-
rent systems. Variants of TL have been proposed, such as Linear Temporal logic (LTL)
[13], Computational Tree Logic (CTL) [1], Interval Temporal Logic (ITL) [12], and
Projection Temporal Logic (PTL) [3,4] etc. Propositional PTL (PPTL) [3] is a propo-
sitional subset of PTL with a usual next construct ©P and a new projection construct
(P1, . . . , Pm) prj Q as its basic constructs. At present, a decision procedure [6] and an
axiomatic system [7] for PPTL are available, which enables PPTL to be utilized in both
model checking [2] and theorem proving [9,8].

In general, a well-formed formula in PPTL is obtained through applying rules of
its syntax finitely many times. However, under some circumstances, although formu-
las such as

∨
i∈N0

©iP with N0 the set of non-negative integers (called index set ex-
pression), are formed via applying rules of the syntax countably infinitely many times,
they are actually well-formed since their equivalent well-formed PPTL formulas can
be found. Thus, we are motivated to identify some such formulas and prove they are
indeed well-formed.
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Our contributions are three-fold: (1) We present two kinds of formulas with index
set expressions, namely

∨
i∈N0

©iP and
∨

i∈N0
P i, and prove they are indeed well-

formed by means of demonstrating their equivalence to �P and P+ respectively with
fixed-point induction method [15]. (2) We generalize

∨
i∈N0

©iQ to
∨

i∈N0
P (i)∧©iQ

and explore the least and great fixed-points of the abstract equation X ≡ Q∨P ∧©X .
(3) We equivalently represent the operator ‘U’ (strong until) and ‘W’ (weak until) of
Propositional LTL (PLTL) within PPTL using the index set expression technique.

This paper is organized as follows. Section 2 briefly introduces PPTL. In Section 3,
some fixed-point issues concerning

∨
i∈N0

©iP,
∨

i∈N0
P i and

∨
i∈N0

P (i) ∧©iQ are
given. Moreover, Section 4 is devoted to equivalently denoting ‘U’ and ‘W’ constructs
of PLTL within PPTL. Finally, conclusions are drawn in Section 5.

2 Propositional Projection Temporal Logic

Propositional Projection Temporal Logic (PPTL) [3,4] is an extension of Propositional
ITL (PITL) [12] with a new projection construct [5]. Let Prop be a countable set of
atomic propositions and B = {true, false} the boolean domain. Usually, we use small
letters, possibly with subscripts, like p,q,r to denote atomic propositions and capital
letters, possibly with subscripts, like P, Q, R to represent general PPTL formulas. Then
the formulas of PPTL are defined by the following grammar:

P ::= p | ¬P | P1 ∧ P2 | © P | (P1, . . . , Pm) prj P | P+

where p ∈ Prop, © (next),+ (chop-plus) and prj (projection) are temporal operators,
and ¬,∧ are similar as that in classical propositional logic.

We define a state s over Prop to be a mapping from Prop to B, s : Prop → B.
We write s[p] to denote the valuation of p at state s. An interval σ = 〈s0, s1, ...〉 is a
non-empty sequence of states, which can be finite or infinite. The length of σ, |σ|, is
the number of states in σ minus one if σ is finite; otherwise it is ω. To have a uniform
notation for both finite and infinite intervals, we will use extended integers as indices,
that is, Nω = N0 ∪ {ω} and extend the comparison operators, =, <,≤, to Nω by
considering ω = ω and for all i ∈ N0, i < ω. Moreover, we write � as ≤ −{(ω, ω)}.
Let σ = 〈s0, s1, . . .〉 be an interval and r1, . . . , rh be integers (h ≥ 1) such that 0 ≤
r1 ≤ . . . ≤ rh � |σ|. The projection of σ onto r1, . . . , rh is the projected interval,

σ ↓ (r1, . . . , rh)
def
= 〈st1 , st2 , . . . , stl〉, where t1, . . . , tl are attained from r1, . . . , rh

by deleting all duplicates. In other words, t1, . . . , tl is the longest strictly increasing
subsequence of r1, . . . , rh. The concatenation(·) of an interval σ with another interval
σ′ is represented by σ · σ′ (not sharing any states).

An interpretation is a tuple I = (σ, k, j), where σ = 〈s0, s1, . . .〉 is an interval, k
is a non-negative integer, and j is an integer or ω, such that 0 ≤ k � j ≤ |σ|. We
write (σ, k, j) to mean that a formula is interpreted over a subinterval σk,...,j with the
current state being sk. We utilize Ikprop to stand for the state interpretation at state sk.
The satisfaction relation |= for formulas is given as follows:

I |= p iff sk[p] = Ikprop[p] = true
I |= ¬P iff I �|= P
I |= P1 ∧ P2 iff I |= P1 and I |= P2
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I |= ©P iff k < j and (σ, k + 1, j) |= P
I |= (P1, . . . , Pm) prj P iff there exist integers r0, . . . , rm, and k = r0 ≤ . . .
≤ rm−1 � rm ≤ j such that (σ, rl−1, rl) |= Pl for all 1 ≤ l ≤ m and
(σ′, 0, |σ′|) |= P for σ′ given by :
(1) rm < j and σ′ = σ ↓ (r0, . . . , rm) · σ(rm+1,...,j)

(2) rm = j and σ′ = σ ↓ (r0, . . . , rh) for some 0 ≤ h ≤ m
I |= P+ iff there are finitely many integers r0, . . . , rn and k = r0 ≤ r1 ≤ . . .
≤ rn−1 � rn = j (n ≥ 1) such that (σ, rl−1, rl) |= P for all 1 ≤ l ≤ n;
or j = ω and there are infinitely many integers k = r0 ≤ r1 ≤ r2 ≤ . . .
such that lim

i→∞
ri = ω and (σ, rl−1, rl) |= P and for all l ≥ 1.

A formula P is satisfied by an interval σ, signified by σ |= P if (σ, 0, |σ|) |= P . A
formula P is called satisfiable if σ |= P for some σ. Furthermore, P is said to be valid,
denoted by |= P , if σ |= P for all intervals σ.

Some derived formulas of PPTL are shown below, which are explained in [4,3]. The
abbreviations true, false,∨,→ and ↔ are defined as usual.

ε
def
= ¬© true P ∗ def

= P+ ∨ ε

�P
def
= (true, P ) prj ε more

def
= ¬ ε

�P
def
= ¬ �¬ P fin(P )

def
= �(ε → P )

halt(P )
def
= �(ε ↔ P ) keep(P )

def
= �(¬ε → P )

P ;Q def
= (P,Q) prj ε P ;wQ

def
= (P ;Q) ∨ (P ∧ �more)

fin def
= �ε len(n)

def
=

{
ε if n = 0
©len(n− 1) if n > 1

inf def
= �more P ‖ Q def

= (P ∧ (Q ; true)) ∨ (Q ∧ (P ; true))

Commonly, |= �(P ↔ Q) is represented by P ≡ Q (strong equivalence), meaning
that P and Q have the same truth values at all states in every model.

3 Fixed-Point Issues

A well-formed formula in PPTL is generally constructed by applying rules of the syn-
tax finitely many times. However, although some formulas are formed via applying
rules of the syntax countably infinitely many times, such as index set expressions (e.g.∨

i∈N0
©iP ), they are still well-formed due to the existence of their equivalent well-

formed formulas. In this section, we identify two types of such formulas and prove
they are indeed well-formed by means of the fixed-point induction approach [15]. Be-
sides, we generalize one of them to a more generic form and investigate some related
properties of an abstract equation X ≡ Q ∨ P ∧©X .

3.1 Two Kinds of Index Set Expressions

(1)
∨

i∈N0
©iP

On one hand,
∨

i∈N0
©iP ≡ P ∨ ©P ∨ ©2P ∨ ©3P ∨ . . ., is a disjunction of

countably infinitely many ©iP , where ©0P ≡ P . Intuitively, this formula means P
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necessarily holds at some state from now on over an interval, which might be specified
by the operator �. On the other hand, �P indeed can be rewritten as:

�P ≡ P ∨©�P
≡ P ∨©(P ∨©�P )
≡ P ∨©P ∨©2�P

. . .
≡ P ∨©P ∨©2P ∨©3P ∨ . . . (�)

From the above, we observe that
∨

i∈N0
©iP seems to be equivalent to �P , which will

be affirmed in Theorem 1.

(2)
∨

i∈N0
P i

For a chop formula P1 ; . . . ;Pm, if all Pi ≡ P (1 ≤ i ≤ m), we can acquire:

P ; . . . ;P
︸ ︷︷ ︸
m times

which is briefly represented as Pm. For instance,P 1 ≡ P, P 2 ≡ P ;P , and particularly
P 0 ≡ false. Thus,

∨
i∈N0

P i denotes P ∨ (P ;P )∨ (P ;P ;P )∨ . . .. Further, we have
the equation about P+:

P+ ≡ P ∨ (P ;P+)
≡ P ∨ (P ; (P ∨ (P ;P+)))
≡ P ∨ P ;P ∨ P ; (P ;P+))

. . .
≡ P ∨ (P ;P ) ∨ (P ;P ;P ) ∨ . . .

Hence, we can declare that
∨

i∈N0
P i ≡ P+ in Theorem 1.

Theorem 1. The following logical laws hold:

1.
∨

i∈N0
©iP ≡ �P

2.
∨

i∈N0
P i ≡ P+

Proof. The two laws can be proved in an analogous way and we only prove
∨

i∈N0
©iP

≡ �P . The proof proceeds by fixed-point induction approach.
We firstly defineD = {d−1, d0, . . . , dn, . . . , dω}, where d−1 = ©−1P = false, di =

©0P ∨ . . . ∨ ©iP (i ∈ N0), dω =
∨

i∈N0
©iP . Let Nω = N0 ∪ {ω} with ω =

ω, ω + c = ω (c is an integer) and for all i ∈ N0, i < ω. Further, a binary relation �
over D is formalized as

di � dj iff i ≤ j (i, j ∈ Nω ∪ {−1})

Moreover, let f : D → D be a function given by

f(di) = P ∨©di
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Then f(di) = P ∨ ©(P ∨ . . . ∨ ©iP ) = di+1 for i ∈ {−1} ∪ N0, and f(dω) =
P ∨©(

∨
i∈N0

©iP ) = P ∨∨
i∈N0

©i+1P =
∨

i∈N0
©iP = dω. Obviously, we have

di � dj = di ∨ dj = dj if di � dj .

1.
∨

i∈N0
©iP is the least fixed-point of f

(1) (D,�) is a complete partial order
(D,�) is a partial order, since it satisfies the properties below:

- reflexivity: for all di ∈ D, clearly we have di � di due to i ≤ i.
- anti-symmetry: if di � dj and dj � di, then we obtain i ≤ j and j ≤ i, leading to
i = j. Hence di = dj .

- transitivity: if di � dj , dj � dk, then i ≤ j ≤ k. Thus, di � dk.

Furthermore, for any non-empty subset S = {di1 , . . . , din} of D, where −1 ≤ i1 ≤
. . . ≤ in−1 � in ≤ ω, if S is finite, as di � dj = dj , we obtain the least upper bound
din ∈ D, where in is the biggest index in S; otherwise, S is infinite, there exists a least
upper bound

⊔
in∈N0

din =
∨

in∈N0
din = (P ∨ ©P ∨ . . . ∨©i1P ) ∨ (P ∨ ©P ∨

. . . ∨ ©i2P ) ∨ . . . = dω, which obviously belongs to D. Thus, (D,�) is a complete
partial order.

(2) f is a continuous function
Suppose that di � dj , then i ≤ j, so i+ 1 ≤ j + 1. As a result,

f(di) = di+1 � dj+1 = f(dj)

Hence, f is monotonic. Moreover, for an arbitrary ω-chain in D, di1 � di2 � . . . �
din � . . ., if there exists an element din such that din � din � . . ., it is apparent that
din is the least upper bound of this ω-chain. Thus, we have

f(
⊔

in∈N0

din) = f(din) = din+1 = din � din+1 =
⊔

in∈N0

din � din+1

= d0 �
⊔

in∈N0

din+1

=
⊔

in∈N0

din+1 =
⊔

in∈N0

f(din)

Otherwise, we can obtain the following:
⊔

in∈N0

f(din) =
⊔

in∈N0

din+1 = d0 �
⊔

in∈N0

din+1 =
⊔

in∈N0

din

= dω = f(dω) = f(
⊔

in∈N0

din)

Therefore, f is a continuous function. Hence, by Kleene Fixed-point Theorem [15,10],
there exists a least fixed-point:

fixμ(f) =
⊔

n∈N0

fn(d−1) =
⊔

n∈N0

dn−1 = d−1 �
⊔

n∈N0

dn

=
⊔

n∈N0

dn = dω =
∨

i∈N0

©iP

2.
∨

i∈N0
©iP is equivalent to �P
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By the equation (�), each P ∨ ©P ∨ . . . ∨ ©iP (i ∈ N0) is called a prefix of �P .
Particularly, false is also a prefix of �P . Then we construct a subset B of D as follows:

B = {di| di ∈ D and di is a prefix of the formula �P}
For any ω-chain di1 � di2 � . . . � din � . . . in D, suppose each din = P ∨©P ∨
. . . ∨ ©inP (in ∈ N0) is a prefix of �P , i.e. din ∈ B. Then as di � di+1 = di+1,⊔

in∈N0
din = P ∨ ©P ∨ . . . ∨ ©iP ∨ . . . is also a prefix of �P and belongs to B.

Thus, we can obtain that B is an inclusive subset of D.
Moreover, the bottom element false is obviously a prefix of �P , thus false ∈ B.

With the assumption of di ∈ B, when i ∈ N0 ∪ {−1}, since f(di) = P ∨ ©(di) =
P ∨©(P ∨ . . . ∨©iP ) = P ∨©P ∨ . . . ∨©i+1P , f(di) is also a prefix of �P and
f(di) ∈ B; when i = ω, f(dω) = dω ∈ B. According to Scott’s fixed-point induction
[15], fixμ(f) =

∨
i∈N0

©iP belongs to B and is a prefix of �P . Besides, as fixμ(f)
is the upper bound of all the elements in D and B, fixμ(f) is the longest prefix of �P .
Therefore,

∨
i∈N0

©iP ≡ �P . ��
It is clear that �P and P+ are well-formed formulas in accordance to the syntax of
PPTL. Further, by Theorem 1, index set expressions

∨
i∈N0

©iP and
∨

i∈N0
P i are

equivalent to �P and P+ respectively. Hence, we can assert that
∨

i∈N0
©iP and

∨
i∈N0

P i are well-formed formulas.

Corollary 1.
∨

i∈N0
©iP and

∨
i∈N0

P i are well-formed formulas.

Proof. This is the direct consequence of Theorem 1. ��
According to Theorem 1, we can also infer that P+ can be represented by the projection
construct prj since P+ is equivalent to

∨
i∈N0

P i and P i is an abbreviation of

P ; . . . ;P
︸ ︷︷ ︸

i times

≡ (P, . . . , P )
︸ ︷︷ ︸

i times

prj ε

Thus, with techniques in this paper, + can be regarded as a derived operator within
PPTL.

In order to show the practical use of such index set expressions, we give an example.

Example 1. Let P
def
= ε in

∨
i∈N0

©iP . Then
∨

i∈N0

©iε ≡ �ε ≡ fin

which claims the interval is finite and will terminate at some point. Further, we can
obtain

∨
i∈N0

©iε ∨ inf ≡ �ε ∨ �more ≡ true.

It is interesting to consider Theorem 1 from another viewpoint. Since �P can be rewrit-
ten as P ∨©�P , namely �P ≡ P ∨©�P , we can abstract it as a recursive equation
X ≡ P ∨ ©X with the equality ‘≡’ and one solution �P . Then

∨
i∈N0

©iP can
also be treated as a solution of the recursive equation due to its equivalence to �P . It is
similar for the recursive equation X ≡ P ∨P ;X , whose solution is P+, i.e.

∨
i∈N0

P i.
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3.2 Generalization of
∨

i∈N0
©iQ

In this subsection, we generalize
∨

i∈N0
©iQ to

∨
i∈N0

P (i) ∧ ©iQ, where P (0) =

true, P (1) = P, P (2) = P ∧©P, . . . and P (n) = P ∧©P ∧ . . .∧©n−1P (n ∈ N0). In
particular, whenP ≡ true,

∨
i∈N0

true(i)∧©iQ can be exactly reduced to
∨

i∈N0
©iQ.

Further, for the recursive equation X ≡ Q ∨ P ∧©X , we have:

X ≡ Q ∨ P ∧©X
≡ Q ∨ P ∧©(Q ∨ P ∧©X)
≡ Q ∨ P ∧©Q ∨ P ∧©P ∧©2X

. . .
≡ Q ∨ P ∧©Q ∨ P ∧©P ∧©2Q ∨ P ∧©P ∧©2P ∧©3Q ∨ . . .

We can see that
∨

i∈N0
P (i)∧©iQ might have something to do with the above equation,

which is declared in Theorem 2.

Theorem 2. For a recursive equation X ≡ Q ∨ P ∧ ©X , where X,P and Q are
PPTL formulas, its least fixed-point is

∨
i∈N0

P (i) ∧ ©iQ and its greatest fixed-point

is
∨

i∈N0
P (i) ∧©iQ ∨ �(P ∧more).

Proof. At first, we prove that
∨

i∈N0
P (i)∧©iQ and

∨
i∈N0

P (i)∧©iQ∨�(P ∧more)
are two fixed-points of the equationX ≡ Q∨P ∧©X by means of simple replacement:

(a) Q ∨ P ∧©(
∨

i∈N0
P (i) ∧©iQ)

= Q ∨∨
i∈N0

P (i+1) ∧©i+1Q

=
∨

i∈N0
P (i) ∧©iQ

(b) Q ∨ P ∧©(
∨

i∈N0
P (i) ∧©iQ ∨ �(P ∧more))

= Q ∨ P ∧©(
∨

i∈N0
P (i) ∧©iQ) ∨ P ∧©�(P ∧more)

=
∨

i∈N0
P (i) ∧©iQ ∨�(P ∧more) (P ∧©�(P ∧more) ≡ �(P ∧more))

Then we respectively employ Kleene Fixed-point Theorem [15,10] and Knaster-Tarski
Fixed-point Theorem [15,14] to prove

∨
i∈N0

P (i) ∧ ©iQ and
∨

i∈N0
P (i) ∧ ©iQ ∨

�(P ∧more) are the least and greatest fixed-points.
Let d−1 = false, d0 = Q, dn = Q ∨ P ∧©Q ∨ P ∧©P ∧©2Q ∨ . . . ∨ P (n) ∧

©nQ (n ∈ N0), dω1 =
∨

i∈N0
P (i) ∧©iQ and dω2 =

∨
i∈N0

P (i) ∧©iQ ∨ �(P ∧
more). Then we define a set D = {d−1, d0, . . . , dn, . . .}∪{dω1 , dω2}. Further, a binary
relation � over D is formalized as

di � dj if

⎧
⎪⎪⎨

⎪⎪⎩

(1) i ≤ j and i, j ∈ N0 ∪ {−1}
(2) i ∈ N0 ∪ {−1} and j = ω1 or ω2

(3) i = ω1 and j = ω1 or ω2

(4) i = ω2 and j = ω2

Moreover, let g : D → D be a function given below

g(di) = Q ∨ P ∧©di

Then, for i ∈ N0 ∪ {−1}, g(di) = Q ∨ P ∧©(Q ∨ P ∧©Q ∨ . . . ∨ P (i) ∧©iQ) =
Q ∨ P ∧ ©Q ∨ P ∧ ©P ∧ ©2Q ∨ . . . ∨ P (i+1) ∧ ©i+1Q = di+1; further, for
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i = ω1 or ω2, by (a)(b), we know that dω1 and dω2 are fixed-points of g, that is,
g(dω1) = dω1 , g(dω2) = dω2 . Obviously, we have di � dj = di ∨ dj = dj if di � dj .
As a result, we can obtain the following two facts:

(1) (D,�) is a complete partial order and a complete lattice
(D,�) is a partial order, since it satisfies the properties given below:

- reflexivity: for i ∈ N0 ∪ {−1}, we have di � di due to i ≤ i. Further, by the
definition of �, we obtain dω1 � dω1 , dω2 � dω2 .

- anti-symmetry: for i, j ∈ N0 ∪ {−1}, if di � dj and dj � di, then we obtain
i ≤ j and j ≤ i, leading to i = j. Hence di = dj . For other cases, according to the
definition of �, di � dj �=⇒ dj � di.

- transitivity: if di � dj , dj � dk, (a) i, j, k ∈ N0∪{−1}: by assumption, i ≤ j ≤ k,
so di � dk; (b) i ∈ N0 ∪ {−1}, j ∈ N0 ∪ {−1, ω1, ω2}, k ∈ {ω1, ω2}: according
to case (2) in the definition of �, we can acquire di � dk; (c) i, j, k ∈ {ω1, ω2}, it
is clear that di � dk by the cases (3) and (4) in the definition of �.

Furthermore, for any non-empty subset S = {di1 , . . . , din} of D, we consider the
following cases:

(a) S includes neither dω1 nor dω2 :
In this case, if S is finite, as di � dj = dj (i ≤ j), we obtain the least upper bound

din ∈ D with in the biggest index in S; otherwise, S is infinite, there exists a least
upper bound

⊔
in∈N0

din =
∨

in∈N0
din = (Q ∨ P ∧ ©Q ∨ . . . ∨ P (i1) ∧ ©i1Q) ∨

(Q∨P ∧©Q∨ . . .∨P (i2) ∧©i2Q)∨ . . . = Q∨P ∧©Q∨P ∧©P ∧©2Q∨ . . . =∨
i∈N0

P (i) ∧©iQ = dω1 , which evidently belongs to D.
(b) S involves dω1 or dω2 :
If dω2 is contained in S, it is the least upper bound in S; otherwise, dω1 is the least

upper bound in S.
Thus, (D,�) is a complete lattice, which is also a complete partial order.

(2) g is a continuous function
Suppose that di � dj , then (a) when i, j ∈ N0 ∪ {−1}: i ≤ j, so i+ 1 ≤ j + 1. As

a result, g(di) = di+1 � dj+1 = g(dj); (b) when i ∈ N0 ∪ {−1} and j = ω1 or ω2,
g(di) = di+1 � dωt = g(dωt) (t = 1, 2); (c) when i, j ∈ {ω1, ω2}, g(di) = di � dj =
g(dj). Hence, g is monotonic.

Further, for an arbitrary ω-chain in D, di1 � di2 � . . . � din � . . ., if there exists
an element din such that din � din � . . ., it is obvious that din is the least upper bound
of this ω-chain. Thus, we acquire

g(
⊔

in∈N0

din) = g(din) = din+1 = din � din+1 = (
⊔

in∈N0

din) � din+1

=
⊔

in∈N0

din+1 =
⊔

in∈N0

g(din)

Otherwise,
⊔

in∈N0

g(din) =
⊔

in∈N0

din+1 = d0 �
⊔

in∈N0

din+1 =
⊔

in∈N0

din

= dω1 = g(dω1) = g(
⊔

in∈N0

din)
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Therefore, g is a continuous function. Based on these, we can prove:

1.
∨

i∈N0
P (i) ∧©iQ is the least fixed-point

Since (D,�) is a complete partial order, whose bottom element is false, and g is a
continuous function, by Kleene fixed-point theorem, there exists a least fixed-point:

fixμ(g) =
⊔

n∈N0

gn(d−1) =
⊔

n∈N0

dn−1 = d−1 �
⊔

n∈N0

dn

=
⊔

n∈N0

dn

= dω1 =
∨

i∈N0
P (i) ∧©iQ

2.
∨

i∈N0
P (i) ∧©iQ ∨�(P ∧more) is the greatest fixed-point

Let {x ∈ D|x � g(x)} be the set of post fixed-points of g. As di � di+1 =
g(di) (i ∈ N0 ∪ {−1}) and dωj � dωj = g(dωj ) (j = 1, 2), we obtain {x ∈ D|x �
g(x)} = D. In other words, all the elements in D are post fixed-points of g. Further,
(D,�) is a complete lattice, whose bottom element is false, and g is monotonic. Ac-
cording to Knaster-Tarski fixed-point theorem, the greatest fixed-point is:

fixν(g) =
⊔{x ∈ D|x � g(x)} =

⊔
D

= dω2

=
∨

i∈N0
P (i) ∧©iQ ∨�(P ∧more)

��
Corollary 2. For a recursive equation X ≡ Q ∨ ©X , where X and Q are PPTL
formulas, its least fixed-point is �Q and its greatest fixed-point is �Q ∨ �more.

Proof. In Theorem 2, let P ≡ true. Then for the equationX ≡ Q∨©X , its least fixed-
point is

∨
i∈N0

(true)(i)∧©iQ ≡ ∨
i∈N0

©iQ. Further, by Theorem 1,
∨

i∈N0
©iQ ≡

�Q, so �Q is the least fixed-point of the equationX ≡ Q∨©X . Moreover, its greatest
fixed-point is

∨
i∈N0

(true)(i) ∧©iQ ∨�(true ∧more) ≡ �Q ∨ �more. ��
In fact, Corollary 2 is a special case of Theorem 2 as well as the equation X ≡ Q∨©X
is an instance of X ≡ Q ∨ P ∧©X with P ≡ true but has well-formed formulas as
its least and greatest fixed-points. In addition, Theorem 2 also tells us that there are at
least two fixed-points for the equation X ≡ Q∨P ∧©X . Actually, X ≡ Q∨P ∧©X
has and only has two fixed-points, namely the least and greatest fixed-points, which is
confirmed by Theorem 3.

Theorem 3. The recursive equationX ≡ Q∨P ∧©X has and only has two solutions,
i.e.

∨
i∈N0

P (i) ∧©iQ and
∨

i∈N0
P (i) ∧©iQ ∨ �(P ∧more).

Proof. It is clear that
∨

i∈N0
P (i) ∧©iQ and

∨
i∈N0

P (i) ∧©iQ ∨ �(P ∧more) are
two fixed-points of X ≡ Q ∨ P ∧©X by Theorem 2. Further, we prove the equation
only has two fixed-points. We assume that there exists a third solution R such that R ≡
Q∨P ∧©R. Since

∨
i∈N0

P (i)∧©iQ is the least fixed-point,
∨

i∈N0
P (i)∧©iQ � R.

Further, according to the proof of Theorem 2, we can acquire
∨

i∈N0
P (i)∧©iQ�R =
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∨
i∈N0

P (i) ∧©iQ∨R = R. Thus, R must be in the form of
∨

i∈N0
P (i) ∧©iQ∨R′.

Therefore, we have,
∨

i∈N0
P (i) ∧©iQ ∨R′

≡ Q ∨ P ∧©(
∨

i∈N0
P (i) ∧©iQ ∨R′)

≡ Q ∨ P ∧©(
∨

i∈N0
P (i) ∧©iQ) ∨ P ∧©R′

≡ ∨
i∈N0

P (i) ∧©iQ ∨ P ∧©R′

Accordingly, we can infer R′ ≡ P ∧©R′, which can only be satisfied when R′ ≡ false
or R′ ≡ �(P ∧more) within PPTL. As a result, if R′ ≡ false, R ≡ ∨

i∈N0
P (i)∧©iQ

while if R′ ≡ �(P ∧ more), R ≡ ∨
i∈N0

P (i) ∧ ©iQ ∨ �(P ∧ more). Hence, the
equation only has two fixed-points. ��

3.3 Examples

To intuitively understand the above theorems, we present some examples below.

Example 2. Let P
def
= R and Q

def
= R∧ ε. Then X ≡ Q∨P ∧©X can be instantiated

as
X ≡ R ∧ ε ∨R ∧©X (3.3.1)

According to Theorem 2, we can respectively obtain the least and greatest fixed-points
of the equation (3.3.1) as

∨

i∈N0

R(i) ∧©i(R ∧ ε) and
∨

i∈N0

R(i) ∧©i(R ∧ ε) ∨ �(R ∧more)

where the greatest fixed-point claims that R always holds either over an interval with
the length i or over an infinite interval. On the other hand, since the logical law

�R ≡ R ∧ ε ∨R ∧©�R

can be satisfied, we can infer that �R is one solution of the equation (3.3.1), and must
be equivalent to either the least or the greatest fixed-points by Theorem 3. In accordance
with the meaning of �R, we can see that the greatest fixed-point exactly characterizes
�R and acquire the following:

∨

i∈N0

R(i) ∧©i(R ∧ ε) ∨�(R ∧more) ≡ �R

which convinces us
∨

i∈N0
R(i) ∧©i(R ∧ ε) is well-formed.

Example 3. Let P
def
= true and Q

def
= R∧ε. Then X ≡ Q∨P ∧©X can be instantiated

as
X ≡ R ∧ ε ∨©X (3.3.2)

whose least and greatest fixed-points respectively are:
∨

i∈N0

©i(R ∧ ε) ≡ �(R ∧ ε) and
∨

i∈N0

©i(R ∧ ε) ∨ �more ≡ �(R ∧ ε) ∨ �more
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Particularly, the greatest fixed-point states that R will hold and terminate at some point
over a finite interval or the interval is infinite. Further, we have the logical law

fin(R) ≡ R ∧ ε ∨©fin(R)

so fin(R) is one solution of the equation (3.3.2) and equivalent to the greatest fixed-
point by its meaning. Thus, we can obtain:

fin(R) ≡
∨

i∈N0

©i(R ∧ ε) ∨�more ≡ �(R ∧ ε) ∨ �more

Example 4. Let P
def
= R and Q

def
= ε. Then X ≡ Q ∨ P ∧©X can be instantiated as

X ≡ ε ∨R ∧©X (3.3.3)

whose least and greatest fixed-points can be attained as:
∨

i∈N0

R(i) ∧©iε and
∨

i∈N0

R(i) ∧©iε ∨�(R ∧more)

In particular, the greatest fixed-point tells us that R is true at every state over an infinite
interval or over a finite interval with ignoring the final state. Further, the logical law

keep(R) ≡ ε ∨R ∧©keep(R)

holds and implies keep(R) is one solution of the equation (3.3.3). Since keep(R) pre-
cisely specifies the meaning of the greatest fixed-point, we have:

keep(R) ≡
∨

i∈N0

R(i) ∧©iε ∨�(R ∧more)

which makes
∨

i∈N0
R(i) ∧©iε well-formed.

Example 5. Let P
def
= ¬R and Q

def
= R∧ε. Then X ≡ Q∨P ∧©X can be instantiated

as
X ≡ R ∧ ε ∨ ¬R ∧©X (3.3.4)

By Theorem 2, its least and greatest fixed-points respectively are:
∨

i∈N0

(¬R)(i) ∧©i(R ∧ ε) and
∨

i∈N0

(¬R)(i) ∧©i(R ∧ ε) ∨�(¬R ∧more)

where the greatest fixed-point asserts that R is only true at the final state over a finite
interval or ¬R always holds over an infinite interval. Moreover, we have known that

halt(R) ≡ R ∧ ε ∨ ¬R ∧©halt(R)

which indicates halt(R) is one solution of the equation (3.3.4). As halt(R) exactly
expresses the greatest fixed-point, we can get:

halt(R) ≡
∨

i∈N0

(¬R)(i) ∧©i(R ∧ ε) ∨ �(¬R ∧more)

which further convinces us
∨

i∈N0
(¬R)(i) ∧©i(R ∧ ε) is well-formed.
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Example 6. Let P
def
= true and Q

def
= ε. Then X ≡ Q∨P ∧©X can be instantiated as

X ≡ ε ∨©X (3.3.5)

Further, the least and greatest fixed-points can be acquired as
∨

i∈N0

true(i)∧©iε ≡
∨

i∈N0

©iε and
∨

i∈N0

true(i)∧©iε∨�more ≡
∨

i∈N0

©iε∨�more

which respectively says that the interval is finite and the interval is finite or infinite. On
the other hand, we have:

fin ≡ �ε ≡ ε ∨©�ε and true ≡ ε ∨©true

which suggests that �ε and true are the solutions of the equation (3.3.5). Hence, ac-
cording to their meanings, we can attain:

∨

i∈N0

©iε ≡ �ε ≡ fin and
∨

i∈N0

©iε ∨ �more ≡ true

which is consistent with Example 1.

4 Representation of ‘U’ and ‘W’ of PLTL within PPTL

Linear Temporal Logic (LTL) [13] is a well-known temporal logic, which is based on
a linear-time perspective and often defined over an infinite path (i.e. an infinite inter-
val). Propositional LTL (PLTL) is a propositional subset of LTL and has been widely
used in practice. In PLTL, the most prominent operators are ‘U’ (strong until) and ‘W’
(weak until), where ‘W’ is a weak version of ‘U’. Their intuitive semantics are shown in
Figure 1(a) and (b) respectively and more details can be found in [2]. Except U and W
operators, other operators of PLTL can be directly formalized over an infinite interval
in PPTL. In this section, we employ techniques proposed in Section 3 to equivalently
express ‘U’ and ‘W’ constructs within PPTL.

In PLTL, the following laws have been proved:

P U Q ≡ (P ∧ ¬Q) U Q P U Q ≡ Q ∨ P ∧©(P U Q)
P W Q ≡ (P ∧ ¬Q) W Q P W Q ≡ Q ∨ P ∧©(P W Q)
P W Q ≡ (P U Q) ∨ �P ¬© P ≡ ©¬P

Hence, P U Q can be reduced as follows:

P U Q ≡ (P ∧ ¬Q) U Q
≡ Q ∨ (P ∧ ¬Q) ∧©((P ∧ ¬Q) U Q)
≡ Q ∨ (P ∧ ¬Q) ∧©(Q ∨ (P ∧ ¬Q) ∧©((P ∧ ¬Q) U Q))
≡ Q ∨ (P ∧ ¬Q) ∧©Q ∨ (P ∧ ¬Q) ∧©(P ∧ ¬Q) ∧©2((P ∧ ¬Q) U Q)
≡ Q ∨ (P ∧ ¬Q) ∧©Q ∨ (P ∧ ¬Q) ∧©(P ∧ ¬Q) ∧©2Q ∨ . . .

From the above, we find that the recursive equation of P UQ can be treated as the form
of X ≡ Q∨P ∧¬Q∧©X (��) with one solution P U Q. Further, by Theorem 2 and
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the semantics of P U Q, we can obtain the least fixed-point
∨

i∈N0
(P ∧¬Q)(i) ∧©iQ

of the equation (��), which corresponds to P U Q. In other words, P U Q is equivalent
to
∨

i∈N0
(P ∧¬Q)(i) ∧©iQ. However, formulas in PPTL can be interpreted over both

infinite and finite intervals whereas formulas in PLTL can only be satisfied by infinite
paths. Therefore, in order to force a PPTL formula to hold just over an infinite interval,
an additionally PPTL formula �more is needed. Thus, we can equivalently represent
P U Q within PPTL as follows:

P U Q
def
= (

∨

i∈N0

(P ∧ ¬Q)(i) ∧©iQ) ∧ �more (� � �)

Similar to P U Q, the recursive equation of P W Q is P W Q ≡ (P ∧ ¬Q) W Q ≡
Q∨ (P ∧¬Q)∧©((P ∧¬Q)W Q) and also in the form of the equation (��). Further,
according to the semantics of P W Q and by Theorem 2, P W Q is equivalent to the
greatest fixed-point

∨
i∈N0

(P ∧ ¬Q)(i) ∧©iQ ∨ �(P ∧ ¬Q ∧ more) of the equation
(��). Therefore, with the requirement of an infinite interval, we have the following:

P W Q
def
= (

∨

i∈N0

(P ∧ ¬Q)(i) ∧©iQ ∨�(P ∧ ¬Q ∧more)) ∧�more

≡ (
∨

i∈N0

(P ∧ ¬Q)(i) ∧©iQ) ∧ �more ∨�(P ∧ ¬Q ∧more)

≡ P U Q ∨�(P ∧ ¬Q ∧more)

With techniques presented in this paper, we can see that P U Q is the least fixed-point
while P W Q is the greatest fixed-point of the equation (��), which is coherent with
that in [2].

Example 7. We consider a LTL formula©3pU©q, where p, q are atomic propositions.
Three possible paths are shown in Figure 1(c)(1-3). Further, according to the equation
(���), an equivalent PPTL formula can be acquired as (

∨
i∈N0

(©3p∧¬©q)(i)∧©i©
q) ∧ �more. Next we reduce the PPTL formula to obtain the three paths for showing
the correctness of the equation (� � �).

Firstly, we know that

(
∨

i∈N0

(©3p ∧ ¬© q)(i) ∧©i © q) ∧ �more

≡ (
∨

i∈N0

(©3p ∧©¬ q)(i) ∧©i © q) ∧ �more

≡ ©q ∧ �more ∨ (©3p ∧©¬q) ∧©© q ∧�more∨
(©3p ∧©¬q) ∧©(©3p ∧©¬q) ∧©2 © q ∧ �more ∨ . . .

Then ©q ∧ �more characterizes path (1), (©3p ∧ ©¬q) ∧ ©2q ∧ �more describes
path (2) and (©3p∧©¬q) ∧©(©3p∧©¬q) ∧©3q ∧�more specifies path (3). We
merely reduce (©3p ∧©¬q) ∧©(©3p ∧©¬q) ∧©3q ∧ �more to illustrate how to
get the relevant path and others can be obtained in a similar manner.

(©3p ∧©¬q) ∧©(©3p ∧©¬q) ∧©3q ∧ �more
≡ ©(©2p ∧ ¬q ∧©3p ∧©¬q ∧©2q ∧ �more)
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p ∧ ¬q

S4 S5S3S2S1S0

(a) : p U q

qp ∧ ¬q p ∧ ¬q
. . .

S2S1S0

(1)

q
. . .

(c) : ©3 p U © q

S4S3S2S1S0

(2)

p¬q q
. . .

S4 S5S3S2S1S0

(3)

q ∧ p¬q ¬q
. . .

p

p ∧ ¬q

S4 S5S3S2S1S0

(b) : p W q

p ∧ ¬q p ∧ ¬q
. . .

p ∧ ¬q p ∧ ¬q p ∧ ¬q

Fig. 1. Intuitive meaning of p U q and pW q and some models of ©3p U © q

Thus true holds at state s0. Next, at state s1, we continue to reduce

©2p∧¬q ∧©3p∧©¬q∧©2q∧�more ≡ ¬q∧©(©p∧©2p∧¬q∧©q∧�more)

From this, we can see ¬q holds at state s1. Further, at state s2,

©p ∧©2p ∧ ¬q ∧©q ∧ �more ≡ ¬q ∧©(p ∧©p ∧ q ∧ �more)

Therefore, ¬q is satisfied by state s2. At state s3, we go on reducing and get below:

p ∧©p ∧ q ∧ �more ≡ p ∧ q ∧©(p ∧�more)

Then p ∧ q holds at state s3. Subsequently, at state s4,

p ∧ �more ≡ p ∧©(�more)

which makes p hold at state s4 and all the successive states over an infinite path be
satisfied by true (i.e arbitrary propositions). Hence, we attain the path (3).

5 Conclusion

This paper investigated some fixed-point issues within PPTL. Particularly, we give two
kinds of index set expressions

∨
i∈N0

©iP and
∨

i∈N0
P i, which are formed by apply-

ing rules of the PPTL syntax infinitely many times. Further, we proved that these formu-
las expressed by index set expressions are still well-formed PPTL formulas. Moreover,∨

i∈N0
©iQ is generalized to

∨
i∈N0

P (i)∧©iQ and the least and greatest fixed-points
of the equation X ≡ Q∨P ∧©X are explored. In addition, the operators ‘U’ and ‘W’
in PLTL are equivalently represented within PPTL in terms of

∨
i∈N0

P (i) ∧©iQ.
In this paper, we only demonstrate some instances of the index set expression

∨
i∈N0

P (i) ∧©iQ with specific formulas as P and Q are well-formed PPTL formulas but do
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not give its equivalent generic well-formed formulas. As a challenge, we will attempt to
find out its concrete well-formed formula in the near future. Further, we will work out
the conditions for the solutions of X ≡ Q∨P∧©X , so that we know when X takes the
least fixed-point and when X takes the greatest fixed-point. Moreover, formulas under
investigation possess a common feature that during their recursive rewriting, only one or
two formulas appear repeatedly. For example, in

∨
i∈N0

©iP , P occurs iteratively for
infinite number of times, and so do P and Q in

∨
i∈N0

P (i) ∧©iQ. However, for these
formulas such as

∨
i∈N0

©iPi, where Pi’s might be different for distinct i, whether or
not they are well-formed is an open question. We will study the problem in the future.
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