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Jifeng He



Foreword

Jifeng He is an outstanding computer scientist. He was born on August 5, 1943,
in Shanghai, China. In his long academic career, he has made significant and
wide-ranging contributions to the theories of programming and formal software
engineering methods. To celebrate his 70th birthday, we present three LNCS
volumes in his honor.

• Theories of Programming and Formal Methods. Essays Dedicated to Jifeng
He on the Occasion of His 70th Birthday. Papers presented at a symposium
held in Shanghai, September 1–3, 2013. LNCS volume 8051, Springer 2013.

• Unifying Theories of Programming and Formal Engineering Methods. Inter-
national Training School on Software Engineering, Shanghai, China, August
26–30, 2013. Advanced Lectures, LNCS volume 8050, Springer 2013.

• Theoretical Aspects of Computing – ICTAC 2013. The 10th International
Colloquium, Shanghai, China, September 4–6, 2013. Proceedings, LNCS vol-
ume 8049, Springer 2013.

He Jifeng is known for his seminal work in the theories of programming and
formal methods for software engineering. He is particularly associated with Uni-
fying Theories of Programming (UTP), the theory of data refinement and the
laws of programming, and the rCOS formal method for object and component
system construction. His book on UTP with Tony Hoare has been widely read
and followed by a large number of researchers, and it has been used in many
postgraduate courses. He was a senior researcher at Oxford during 1984-1998,
and then a senior research fellow at the United Nations University Interna-
tional Institute for Software Technology (UNU-IIST) in Macau during 1998-
2005. He has been a professor and is currently the Dean of the Institute of
Software Engineering at East China Normal University, Shanghai, China. He
was a founder of the International Conference of Formal Engineering Methods
(ICEFM), the International Colloquium on Theoretical Aspects of Computing
(ICTAC), and the International Symposium on Theoretical Aspects of Software
Engineering (TASE). In 2005, He Jifeng was elected as an academician of the
Chinese Academy of Sciences. He also received an honorary doctorate from the
University of York. He has won a number of prestigious science and technology
awards, including the second prize of the Natural Science Award from the State
Council of China, the first prize of the Natural Science Award from the Ministry
of Education of China, the first prize of Technology Innovation from the Ministry
of Electronic Industry, and a number awards from Shanghai government.



VIII Foreword

We, the three organizers of the celebration events, have all worked with He
Jifeng. We thank him for his years of generous, wise advice to us and to his
many other colleagues, students, and friends. He has been constantly energetic,
inspiring, enthusiastic, and encouraging.

We wish him a happy birthday.

June 2013 Zhiming Liu
Jim Woodcock
Huibiao Zhu
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Set-Theoretic Models of Computations

Jean-Raymond Abrial

Marseille, France
jrabrial@neuf.fr

Abstract. The purpose of this paper is to present some set-theoreticmod-
els of computation. This topic and its usefulness are clearly related to those
presented in the book by Hoare and He: “Unifying Theories of Program-
ming” [12]. However, we prefer to use here the term “computation” to that
of “programming” as our purpose is not so much to unify various ways of
programming (using different programming languages) but rather to see
how various mechanical computation paradigms (be they sequential, dis-
tributed, parallel, and so on) can be given a unified mathematical theory.
Our purpose is also to study how these computations can be specified and
then developed by means of refinements and proofs.

1 Introduction

This study is clearly not immediately related to any application. Instead we
definitely and only consider the fundamental mathematical structure modeling
mechanical computations. As pointed out in [12] and in other scientific disciplines
as well, it appears to be very important to develop some mathematical models
for our main concept, that is in our case that of computation. In doing so, we
intend to be able to understand not only the well known existing mechanisms
at work in computations today but also those we might encounter in the future.

This topic is by no means new. In fact, a variety of computational models have
been proposed in the literature. This is carefully reviewed by Nelson in [19]. He
made a clear distinction between models dealing with relations on predicate [13],
relations on states [14], predicate transformers [5], or simply predicates [12].

The approach presented here deals with relations on states and with set trans-
formers (the set-theoretic equivalent to predicate transformers). For this, I use
set theory rather than predicate calculus. To the best of my knowledge, it has
not been done so far systematically in this way. The reason why I favor set the-
ory over predicate calculus as a medium for such a theoretical development is
certainly one of personal taste: I prefer to quantify over sets (or better, over all
subsets of a certain set) than over predicates, and I think that set complemen-
tation is more convenient than predicate negation for theoretical developments
and in mechanized proofs as well.

The paper is organized as follows. In section 2, two equivalent models of finite
computations are recalled: the forward model and the backward model. Then a
number of elementary combinators are proposed. In section 3 we study infinite
computations and iterations. This will give us enough material to develop the

Z. Liu, J. Woodcock, and H. Zhu (Eds.): He Festschrift, LNCS 8051, pp. 1–22, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 J.-R. Abrial

notion of modalities. We introduce then hiding and projection in section 4 and
refinement in section 5. The last section is entirely devoted to the mapping of
these approaches to several specific practical computation paradigms. Finally,
two appendices are proposed to help the reader remembering some well known
mathematical results that are use throughout this paper. As a consequence, no
complicated prerequisites, besides elementary predicate logic and set theory, are
required to read this paper.

2 Finite Computations

To formalize these approaches, we start by defining a set A (supposed to be non-
empty) corresponding to the possible values of all the variables of a computation:
it is usually a cartesian product together with some additional properties.

2.1 The Forward Approach

We abstract a computation as a relation r built on the set A:

r ⊆ A × A (1)

In order to take account of the requirement of a finite computation, we consider
a set p representing the set of states on which an execution of the future com-
putation can be started with the full guarantee to terminate in a finite time:

p ⊆ A (2)

Note that the set p is by no means the domain of the relation r. In order to
emphasize that we do not care what the computation does if started outside p
(it can give some strange results or loop for ever), we simply state that each
point lying within p (the complement of p with respect to A, that is A \ p) is
connected to any point of A through r. This yields the following characteristic
property:

p × A ⊆ r (3)

2.2 The Backward Approach

We now follow the famous backward approach of Dijkstra [5] [6]: we suppose that
the computation has successfully taken place and terminates in an “after” state
belonging to a certain subset q of A. We wonder then what the corresponding
largest “before” set F (q) is. According to this point of view, a computation can
thus be modeled by the set function F transforming the after set q into the
before set F (q). This yields the following:

F ∈ P(A)→ P(A) (4)
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We call the set function F a set transformer. If we terminate in the set q1 ∩ q2
then we must have started in the intersection of the corresponding before sets,
that is:

F (q1 ∩ q2) = F (q1) ∩ F (q2) (5)

This characteristic property of F , the conjunctivity property, can be generalized
to a set of sets. The conjunctivity property has the easy consequence that the
set transformer F is monotonic:

q1 ⊆ q2 ⇒ F (q1) ⊆ F (q2) (6)

2.3 Equivalence of the Two Approaches

It can be shown that the two previous approaches are equivalent. In other words,
it is possible to deduce one from the other and vice-versa. Given a relation r and
set p as in section 2.1, one can define the set transformer F as follows:

F (q) = p ∩ r−1[q] (7)

This result can be made a little more precise as follows:

F (q) =

⎧⎨⎩ r−1[q] if q �= A

p if q = A
(8)

From this, it is easy to prove the conjunctivity property (5). Conversely, given
a set transformer F as in section 2.2, one can define a set p and a relation r as
follows:⎧⎨⎩

p = F (A)

r = {x �→ x′ |x ∈ F ({x′})}
(9)

From this, it is easy to prove the characteristic property (3).

2.4 Combinators

From the previous forward and backward models associated with a finite compu-
tation, we now introduce a number of elementary combinators in the following
table. Note that some of these combinators do not exist as such in program-
ming languages but they can be put together to form more elaborate classical
combinators (this will be done in Section 6). Here is a short description of these
elementary combinators:

1. The deterministic assignment (x := E(x)) is present in all imperative pro-
gramming languages.

2. The non-deterministic assignment (x :∈ B(x)) and the post-conditioning
(x : | a(x, x′)) are not present in programming languages. They are specifica-
tion concepts that owe to be refined later during the design of a program.



4 J.-R. Abrial

3. The sequence (S1 ;S2)) is present in all imperative programming languages.
We consider that such computations are not specification concepts since they
define the way things are arranged in order to achieve a certain goal.

4. The bounded choice (S1	S2) and the unbounded choice (	z∈uSz) allow us to
define a non-deterministic choice between two or more computations. It does
not exist as such in programming languages. This is rather a specification
concept allowing us to express that our future computation should behave in
one way or another, the choice being made by refinement during the design
of the computation.

5. The conjunct (S1
 S2) allows us to specify a computation by means of two
or more properties. It does not exist in programming languages . Notice that
the same purpose can be obtained by using post-conditioning.

6. The parallelism (S1||S2) allows us to define the simultaneous execution of
two or more computations. During a program design it will be replaced by
a sequencing statement.

7. The guarding (b(x) =⇒ S) has the effect of restricting the relation associated
with a computation. It does not exist as such in programming languages but
it is used to express more classical statements such as conditional and loop
(see Sections 6.1 and 6.2).

8. The pre-conditioning (b(x) |S) has the effect of forcing a pre-condition to
hold before executing the associated computation. If it is not the case, then
the overall computation aborts.

9. The skip computation does not do anything. It is used implicitly in program-
ming languages.

10. The magic computation, the any choice computation, and the abort compu-
tation are artificial concepts used in theoretical developments.

In the following table, S, S1, and S2 are computations. Then (r, p), (r1, p1), and
(r2, p2) are the corresponding forward models. Finally F , F1, and F2 are the
corresponding backward models.

Combinator
Relation

Pre-condition
Set Transformer

Value at q

Deterministic
Assignment
x := E(x)

{x �→ x′ |x′ = E(x)}

A
{x |E(x) ∈ q}

Non deterministic
Assignment
x :∈ B(x)

{x �→ x′ |x′ ∈ B(x)}

A
{x |B(x) ⊆ q}

Post-Conditioning
x :| a(x, x′)

{x �→ x′ | a(x, x′)}
A

{x | ∀x′ · a(x, x′)⇒ x′ ∈ q}
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Sequence
S1;S2

(p1× A) ∪ (r2 ◦ r1)

p1 ∩ r1−1[p2]

F1(F2(q))

Bounded Choice
S1 	 S2

r1 ∪ r2

p1 ∩ p2
F1(q) ∩ F2(q)

Unbounded Choice
	z∈uSz

⋃
z∈u rz⋂
z∈u pz

⋂
z∈u Fz(q)

Conjunct
S1 
 S2

r1 ∩ r2

p1 ∪ p2
(11)

Parallelism
S1||S2

(10)

p1× p2
(12)

Guarding
b(x) =⇒ S

({x | b(x)} × A) ∩ r

{x | b(x)} ∪ p
{x | b(x)} ∪ F (q)

Pre-conditioning
b(x) |S

({x | b(x)} × A) ∪ r

{x | b(x)} ∩ p
{x | b(x)} ∩ F (q)

skip
id

A
q

magic
∅

A
A

choice
A × A

A

{
∅ if q �= A

A if q = A

abort
A × A

∅
∅

((p1× p2)× (A1 × A2)) ∪ (r1 || r2) (10)

⎧⎨⎩
⋂

x′∈q F1({x′}) ∪ F2({x′}) if q �= A

F1(A) ∪ F2(A) if q = A

(11)
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⋂

x′ �→y′∈q F1({x′}) ∪ F2({y′}) if q �= A1× A2

F1(A1)× F2(A2) if q = A1× A2

(12)

It is not difficult to verify that all combinators presented in the above table
result in conjunctive set transformers and also that the forward models obey
their characteristic property.

3 Iteration and Infinite Computations

In this section1, we study iteration, in the backward and then in the forward
approach. Usually, iteration is studied under the most classical form of a while
loop:

while G do S end

where G is a boolean expression (the guard of the loop) and S is a non-guarded
computation (the body of the loop).The unfolding of the while loop yields:

while G do S end =

if G then
S;while G do S end

else
skip

end

(13)

In what follows, we do not formalize iteration like this because it is too com-
plicated, we rather use a more abstract form, S �, called the abstract iteration,
unfolded as follows:

S � = skip 	 (S ; S �) (14)

The while loop can then be defined with various combinators of section 2.4:

while G do S end =̂ (G =⇒ S)� ; (¬G =⇒ skip)

3.1 Abstract Iteration in the Backward Approach

As we have just seen, abstract iteration obeys the following equation:

S � = skip 	 (S ; S �) (15)

Translating this to the backward set transformer by means of the combinators
of section 2.4, yields the following where F is the conjunctive set transformer
corresponding to S and F � is that corresponding to S �:

F �(q) = q ∩ F (F �(q)) (16)

1 All proofs mentioned, but not necessarily proven, in this section have been mechan-
ically verified by the theorem prover of the Rodin Platform [20].
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Given a set transformer G, let p |G be the set transformer where:

(p |G)(k) =̂ p ∩ G(k) (17)

Then equality (16) yields:

F �(q) = (q |F )(F �(q))

As can be seen, F �(q) appears to be a fixpoint of the set function q |F . We can
then define F �(q) as follows by means of a least fixpoint:

F �(q) =̂ fix(q |F ) (18)

We also define another combinator corresponding to the greatest fixpoint2:

F �(q) =̂ FIX(q |F ) (19)

Of course, we have to prove that these combinators are conjunctive. But, before
that, we present the relationship between the two. More precisely, we prove the
following:

F� = fix(F ) |F � (20)

We first prove F �(q) ⊆ fix(F ) ∩ F �(q)

Proof

F �(q) ⊆ fix(F ) ∩ F �(q)
⇔ According to Definition (18)
fix(q |F ) ⊆ fix(F ) ∩ F �(q)

⇐ According to Theorem 1 of Appendix 1
(q |F )(fix(F ) ∩ F �(q)) ⊆ fix(F ) ∩ F �(q)

⇔ According to (5) and Definition (17)
q ∩ F (fix(F )) ∩ F (F �(q)) ⊆ fix(F ) ∩ F �(q)

⇔ According to Definition (17)
F (fix(F )) ∩ (q |F )(F �(q)) ⊆ fix(F ) ∩ F �(q)

⇔ According to (18) and (19)
F (fix(F )) ∩ (q |F )(FIX(q|F )) ⊆ fix(F ) ∩ FIX(q|F )

⇔ According to Theorem 3 of Appendix 1
fix(F ) ∩ FIX(q|F ) ⊆ fix(F ) ∩ FIX(q|F )

End of Proof

We then prove the reverse containment, that is fix(F ) ∩ F �(q) ⊆ F �(q)

2 Least and greatest fixpoints definitions and properties are recalled in Appendix 1.
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Proof

fix(F ) ∩ F �(q) ⊆ F �(q)
⇔
fix(F ) ⊆ F �(q) ∪ F �(q)

⇐ According to Theorem 1 of Appendix 1

F (F �(q) ∪ F �(q)) ⊆ F �(q) ∪ F �(q)
⇔
F (F

�
(q) ∪ F �(q)) ∩ F

�
(q) ⊆ F

�
(q)

⇔ According to Definition (19)

F (F �(q) ∪ F �(q)) ∩ FIX(q |F ) ⊆ F �(q)
⇔ According to Theorem 2 of Appendix 1

F (F �(q) ∪ F �(q)) ∩ (q |F )(FIX(q |F )) ⊆ F �(q)
⇔ According to Definitions (18) and (19)

F (F
�
(q) ∪ F �(q)) ∩ q ∩ F (F

�
(q)) ⊆ F

�
(q)

⇔ According to (5)

q ∩ F (F �(q) ∩ F �(q)) ⊆ F �(q)
⇔ According to (18), (19), and Theorem 5 of Appendix 1

(q|F )(F �(q)) ⊆ F �(q)
⇔ According to (18) and Theorem 6 of Appendix 1

F
�
(q) ⊆ F

�
(q)

End of Proof

It remains now for us to prove conjunctivity. It is obviously sufficient to prove
that of F � since that of F � can then be easily deduced. This proof is left to
the reader.

3.2 Abstract Iteration in the Forward Approach

As for the backward approach in the previous section, we start from the following:

S � = skip 	 (S ; S �) (21)

We want to define the pre-condition set, p�, and the relation, r�, associated with
S�. We suppose that the set p and relation r correspond to the computation S.

Pre-condition Set of the Abstract Iteration. From (21) and section 2.4,
we deduce:

p� = p ∩ r−1[p�] (22)

We can then define p� as follows:

p� =̂ fix(λq ·p ∩ r−1[q]) (23)

Note that this definition is coherent with (9), (18), and (7), since we have:

p� = F�(A) = fix(A |F ) = fix(F ) = fix(λq ·p ∩ r−1[q]) (24)
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Taking the complement of both sides in (22) yields:

p� = p ∪ r−1[p�] (25)

This interesting result (25) can be given the following operational explanation:
when a point x belongs to p�, the abstract iteration aborts because either the
body of the abstract iteration aborts (x ∈ p) or there exists a point x′, also in p�,
such that x �→ x′ ∈ r (x ∈ r−1[p�]). In this case, we clearly loop for ever. Now
we would like to prove that the relation r restricted to p� is well-founded. For
this, according to the definition of a well-founded relation recalled in Appendix
2, we have to prove the following:

∀l · l ⊆ (p� � r)−1[l] ⇒ l = ∅ (26)

According to the definition (23), that is:

p� =̂ fix(λq ·p ∩ r−1[q])

We can thus replace p� in what follows by expanding its definition, yielding;

p� =
⋂

{q | p ∩ r−1[q] ⊆ q}

We assume l ⊆ (p�� r)−1[l] and we have to prove l = ∅. The proof is by contra-
diction. We assume thus x ∈ l for some x and we want to derive a contradiction.
The proof is left to the reader.

Relation of the Abstract Iteration. By translating equation (21) in terms
of the relations r and r� we obtain the following fixpoint equation:

r� = id ∪ (r ; r�) (27)

We define then r� as follows:

r� =̂ FIX(λs· id ∪ (r ; s)) (28)

As for p�, we can prove that this definition of r� is coherent with that of F� in
section 3.1. More precisely, according to (9), we must have:

r� = {x �→ x′ |x ∈ F�({x′})} (29)

So, according to (28) and (18), we must prove the following:

FIX(λs· id ∪ (r ; s)) = {x �→ x′ |x ∈ fix({x′} |F )} (30)

We first decompose the two members of (30). First the left hand side:

x �→ y ∈ FIX(λs· id∪(r ; s))
⇔
x �→ y ∈

⋃
{s | s ⊆ id ∪(r ; s)}

⇔
∃s · s ⊆ id ∪(r ; s) ∧ x �→ y ∈ s
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Then the right hand side:

x �→ y ∈ {x �→ x′ |x ∈ fix({x′} |F )}
⇔
x ∈ fix({y} |F )
⇔ According to Theorem 6 of Appendix 1

x ∈ FIX( ˜{y} |F )
⇔ According to Theorem 7 of Appendix 1

x ∈ FIX(λq · {y} ∪ F (q))
⇔
x ∈ FIX(λq · {y} ∪ r−1[q])
⇔
x ∈

⋃
{q | q ⊆ {y} ∪ r−1[q]}

⇔
∃q · q ⊆ {y} ∪ r−1[q] ∧ x ∈ q

We have thus to prove the following:

(∃s · s ⊆ id ∪(r ; s) ∧ x �→ y ∈ s) ⇔ (∃q · q ⊆ {y} ∪ r−1[q] ∧ x ∈ q)

The proof is left to the reader. By using the property (20) (that is F� =
fix(F ) |F �), we can also prove the following:

r� = (p� × A) ∪ r∗ (31)

where r� is the reflexive and transitive closure of r. This proof is done in a similar
manner as that of (30), keeping in mind that r� is defined as follows:

r� =̂ fix(λs· id∪(r ; s))

3.3 Modalities

In this section, we show how the two main basic modality operators, namely �
and ♦, can be given a formal set theoretic definition. We assume that we have an
infinite process formalized by means of a total relation r (without pre-condition).
To this forward relation there corresponds a backward set transformer F .

Always. Given a predicate P (x), the predicate �P (x) holds when P (x) always
holds as we move following the relation r. The set, {x |�P (x)}, is the set where
the iterate
({x |P (x)} =⇒ F )� runs for ever, formally (according to (24)):

{x |�P (x)} = fix({x |P (x)} =⇒ F ) (32)
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Eventually. Given a predicate P (x), the predicate ♦P (x) holds when P (x)
will hold eventually. In fact, ♦P (x) can be defined as follows in terms of the �
operator

♦P (x) =̂ ¬�¬P (x)

According to (32), we obtain the following:

{x |♦P (x)} = fix({x |P (x)} =⇒ F ) (33)

This is very intuitive: in order to be sure that P (x) holds eventually, we must
be in the set guaranteeing that the iterate ({x |P (x)} =⇒ F )� does terminate

4 Hiding

4.1 Non-homogenous Computations

So far, we supposed that computations defined transitions from a set A to itself.
In this section, we generalize this by supposing that computations define tran-
sitions from a set A to a set B that is different from A. This generalization is
straightforward, we have:

r ⊆ A × B

p ⊆ A

F ∈ P(B)→ P(A)

(34)

The translation from one approach to the other is not modified, we have:

r = {x �→ y |x ∈ F ({y})}

p = F (B)

F (q) =

⎧⎨⎩ r−1[q] if q �= B

p if q = B

(35)

A special case is one where r is a total surjection from A to B and p is A:

r ∈ A � B

p = A
(36)

We have then

F (q) =

⎧⎨⎩ r−1[q] if q �= B

A if q = B
(37)
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4.2 Projection

Given a computation S1 from A1 to A1 (with backward conjunctive set trans-
former F1 and forward model (p1, r1)), we can project it to a computation S2
from A2 to A2 (with backward set transformer F2 and forward model (p2, r2))
by means of a projection function from A1 to A2. The latter is a total surjection
pr:

pr ∈ A1� A2 (38)

According to (37), this function pr defines a set transformer P R with

P R(q) =

⎧⎨⎩
pr−1[q] if q �= A2

A if q = A2
(39)

The converse pr−1 of pr defines a set transformer RP . The set transformer F2
is defined as follows:

F2(q) = RP (F1(P R(q))) =

⎧⎪⎨⎪⎩
pr[F1(pr−1[q])] if q �= A2

pr[F1(A1)] if q = A2

(40)

One can prove that F2 is conjunctive if F1 is (proof left to the reader. Hint:
p−1(q1 ∩ q2) = p−1(q1) ∩ p−1(q2) since p is functional) :

F2(q1 ∩ q2) = F2(q1) ∩ F2(q2) (41)

One can also prove (proof left to the reader. Hint: remember that F is conjunc-
tive) that the forward model is the following:

r2 = pr−1 ; r1 ; pr

p2 = pr[p1]
(42)

5 Refinement

Refinement is the process by which we can replace a, possibly abstract, computa-
tion by another one that behaves like the former but is, nevertheless, more con-
crete. As usual, we shall consider two kinds of refinement: algorithmic and data
refinement respectively. An algorithmic refinement (section 5.1) is one where the
abstract and refined computations are working within the same state space. A
data refinement (section 5.2) is one where the abstract and refined computations
are not working within the same state space.

5.1 Algorithmic Refinement

Let S1 and S2 be two computations. We say that S1 is refined to S2, if using S2
instead of S1 does not make any difference. In other words, in using S2, and as
far as the results are concerned, we cannot detect that the computation is made
by S2 rather than by S1.



Set-Theoretic Models of Computations 13

Backward Approach. Let F1 and F2 be two set transformers working with
the same carrier set A. They correspond to two computations S1 and S2. S1 is
said to be refined to S2 when F1(q) is included in F2(q) for each subset q of A.

S1 � S2 =̂ ∀q · F1(q) ⊆ F2(q) (43)

The explanation is simple: in order to be in the after set q after an execution of
the computation S1, we must, by definition, start in the before set F1(q). Now,
if F1(q) ⊆ F2(q) then using S2 instead of S1, and starting again in the before-
set F1(q) implies that we are also in the before set F2(q), hence the execution
of S2 shall end up in q, as if we were using S1. Thus using S2 instead of S1 is
safe with regard to our goal of ending up in q. Finally, if this is the case for any
subset q of A then we can always use S2 safely instead of S1. In other words,
S2 refines S1.

Forward Approach. For defining the refinement in the forward model, we
simply translate the previous definition (43) into the (r, p) forward model. We
can prove the following:

S1 � S2 =̂ p1 ⊆ p2 ∧ r2 ⊆ r1 (44)

Properties of Algorithmic Refinement. We define these properties for the
backward model only. They can easily be transfered to the forward model. The
first property says that refining a part implies refining the all. It has to be proved
for all combinators introduced in Section 2.4. All corresponding easy proofs are
left to the reader. We only give here the proof for the iteration combinator:

S1 � S2 ⇒ S1� � S2� (45)

Let F1 and F2 be the set transformers of S1 and S2. We have to prove:

∀q · F1(q) ⊆ F2(q) ⇒ (∀q · fix(q |F1) ⊆ fix(q |F2))

Proof

∀q · F1(q) ⊆ F2(q) HYP1

fix(q |F1) ⊆ fix(q |F2)
⇐ According to Theorem 1 of Appendix 1
(q |F1)(fix(q |F2)) ⊆ fix(q |F2)

⇔ According to Theorem 2 of Appendix 1
q ∩ F1(fix(q |F2)) ⊆ q ∩ F2(fix(q |F2))

⇐
F1(fix(q |F2)) ⊆ F2(fix(q |F2))

⇔ According to HYP1
TRUE

End of Proof
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Here are obvious properties of algorithmic refinement. Transitivity:

S1 � S2 ∧ S2 � S3 ⇒ S1 � S3 (46)

Extreme refinements:

abort � S � magic (47)

Structure of refinement:

S1 	 S2 �
S1

S2
� S1 
 S2 (48)

5.2 Data Refinement

Informal Definition. Let S1 be a computation working with the set A1. Data-
refinement may occur when we replace the computation S1 by a computation
S2 working now with the set A2 different from A1. In the case of algorithmic
refinement of Section 5.1 we could compare S1 and S2 because they worked
with the same space set A. This is not any more possible in the present case.
However, we suppose that the set A1 can be projected into a set A3 by means
of a surjective function pr as explained in Section 4. Likewise, we suppose that
the set A2 can also be projected into the same set A3 by means of a surjective
function qr. The set A3 is said to be the one that can be observed from outside
for both S1 and S2. The idea is then to compare the behaviors of S1 and S2 on
their common observable set space A3.

Formal Definitions. Let P R, F1, RP, QR, F2, RQ be set transformers cor-
responding to the relations and computations pr, S1, pr−1, qr, S2, qr−1 respec-
tively. They are typed as follows:

P R ∈ P(A3)→ P(A1) F1 ∈ P(A1)→ P(A1) RP ∈ P(A1)→ P(A3)

QR ∈ P(A3)→ P(A2) F2 ∈ P(A2)→ P(A2) RQ ∈ P(A2)→ P(A3)

According to (43), we have thus the following for the backward model of the
date-refinement operator �d:

S1 �d S2 =̂ ∀q · RP (F1(P R(q)))⇒ RQ(F2(QR(q))) (49)

Sufficient Conditions for Data-refinement. As condition (49) is not very
easy to use in practice, we now introduce some sufficient conditions implying
(49). For this, we introduce a relation w from A2 to A1 whose domain is exactly
A2:

w ⊆ A2× A1 dom(w) = A2 (50)
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This relation w must be compatible with projection functions pr and qr. In other
words, w must link points y and x that are projected to the same point on A3,
formally:

∀x, y · x �→ y ∈ w−1 ⇒ pr(x) = qr(y) (51)

We prove now that it is equivalent to the following

w−1; qr ⊆ pr (52)

Let W be the set transformer corresponding to the relation w. It is typed as
follows:

W ∈ P(A1)→ P(A2)

As a consequence, (52) can be put under the following form:

∀q · RP (q) ⇒ RQ(W (q)) (53)

We thus prove the following:

(∀x, y · x �→ y ∈ w−1 ⇒ pr(x) = qr(y)) ⇔ w−1; qr ⊆ pr (54)

Proof

∀x, y · x �→ y ∈ w−1 ⇒ pr(x) = qr(y)
⇔
∀x, y, z · z = qr(y) ∧ x �→ y ∈ w−1 ⇒ z = pr(x)

⇔
∀x, z · (∃y · z = qr(y) ∧ x �→ y ∈ w−1 ) ⇒ z = pr(x)

⇔
∀x, z · (∃y ·x �→ y ∈ w−1 ∧ y �→ z ∈ qr ) ⇒ z = pr(x)

⇔
∀x, z · x �→ z ∈ (w−1 ; qr) ⇒ x �→ z ∈ pr

⇔
w−1 ; qr ⊆ pr

End of Proof

From (52), we can deduce the following

qr ⊆ w ; pr (55)

This can be put under the following form:

∀q · W (P R(q))⇒ QR(q) (56)

Proof

w−1 ; qr ⊆ pr
⇒

w ; w−1 ; qr ⊆ w ; pr
⇒ id ⊆ w ; w−1 since dom(w) = A2 (50)

qr ⊆ w ; pr
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End of Proof
Finally, we propose the following:

∀q · W (F1(q))⇒ F2(W (q)) (57)

We have then to prove that the newly introduced conditions (53), (56), and (57)
are sufficient to imply data-refinement as expressed in (49):

∀q · RP (F1(P R(q)))⇒ RQ(F2(QR(q))) (58)

Proof

RP (F1(P R(q)))
⇒ According to (53)

RQ(W (F1(P R(q)))
⇒ According to (57)

RQ(F2(W (P R(q)))
⇒ According to (56)

RQ(F2(QR(q)))

End of Proof
To summarize at this point, the definition of w in (50), together with constraints
(53) and (56), allows one to prove that the condition (57) is sufficient to obtain
data-refinement as expressed by (49). Note that the condition (57) is independent
from the projection functions pr and qr. The proofs have been done for the
backward model: it can be done in a similar manner for the forward model
(although a little more complicated).

6 Analysis

In this section, we study how the general framework developed in previous sec-
tions can be mapped into several computation paradigms. More precisely, in
Section 2.4 we defined some elementary combinators, in this section we see how
these combinators are used in different computation paradigms: some of them
will not be used and some new combinators will be defined: we shall see that
these new combinators are in fact not so new since they will be defined in terms
of more elementary ones defined in Section 2.4.

For each computation paradigm we present a table explaining which combina-
tors are used directly (column DIRECT) or indirectly (column INDIRECT). The
definition of the indirect combinators are given at the end of each corresponding
subsection. A third column (REASONING) indicates which model (forward or
backward) is preferably taken to reason within the paradigm.

6.1 Sequential Programming Language

The model of formal sequential programming is clearly that indicated in the
famous seminal paper of Hoare [13].
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DIRECT INDIRECT REASONING

deterministic
assignment

sequence

conditional

loop

forward
(Hoare triple)

Conditional and loop combinators, can be defined in terms of more elementary
combinators as follows3:

if b then S1 else S2 end (b =⇒ S1) 	 (¬ b =⇒ S2)

while b do S end (b =⇒ S) � ; (¬ b =⇒ skip)

6.2 Dijkstra’s Guarded Command Language

The guarded command language is presented in the famous paper [5] and book
[6] written by E.W. Dijkstra. It is a very simple, yet quite powerful, programming
notation.

DIRECT INDIRECT REASONING

deterministic
assignment

sequence

conditional
(if . . .fi)

loop
(do . . .od)

backward

As previously in Section 6.1, here are definitions of the main constructs of Dijk-
stra’s guarded command language4:

if b1 =⇒ S1 � . . .� bn =⇒ Sn fi
b1 =⇒ S1 	 . . . 	 bn =⇒ Sn 	
¬ (b1 ∨ . . . ∨ bn) =⇒ abort

do b1 =⇒ S1 � . . .� bn =⇒ Sn od
(b1 =⇒ S1 	 . . . 	 bn =⇒ Sn) �;
¬ (b1 ∨ . . . ∨ bn) =⇒ skip

3 In the case of the loop, the computation S is supposed to be non-guarded.
4 In the case of the loop, the statements S1, . . . , Sn are supposed to be non-guarded.
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6.3 The Specification Statement

Several people, among which Back [3], Morgan [15], [16], and Morris [18] pro-
posed to introduce in programs some “specification” statements dealing directly
with a post-condition and also possibly together with a pre-condition (in [15],
[16]). The term “Specification Statement” was coined by Morgan. We extend the
Dijkstra’s guarded command language with such a statement:

Specification
statement

[b(x), a(x, x′)] b(x) | a(x, x′)

6.4 Action System

Action System is presented in [4]. An Action System model is defined by means
of some actions, each of which being made up of a guard (a predicate) and a
possible sequence of assignments. There exists also a special non-guarded ini-
tialising action. The operational description of an action system execution is as
follows: after the initialisation, any action with a true guard is executed (and so
on) until no guard action is true (in this case, the system stops: it is said to be
deadlocked) or for ever if there always exists an action with a true guard. In other
words, an action system is just made of a unique (always implicit) outermost do
. . . od loop as defined in Section 6.2.

DIRECT INDIRECT REASONING

deterministic
assignment

sequence

guarding

bounded choice

backward

6.5 Event-B

Event-B is presented in [2] and [20]. It has been strongly influenced by Action
System. In fact, the operational “execution” of an Event-B model is similar to
that of an Action System. What characterizes Event-B (and simplify things a
lot) is the removal of pre-conditioning (as in Action System) and also that of
sequencing. In other words all assignments done in an action (called an event in
Event-B) are “executed” in parallel. Notice that this does not preclude to use
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Event-B to develop sequential programs dealing with the classical conditional
and loop: see chapter 15 of [2].

DIRECT INDIRECT REASONING

deterministic
assignment

non-deterministic
assignment

post-conditioning

skipping

guarding

parallelism

bounded choice

unbounded choice

forward

Discussion. Quite often, a model described with Action System or with Event-
B never stops. In this case there is no point in defining any result as well as a
notion of termination. However, interesting outcomes requiring proofs are given
by the modalities described in Section 3.3, namely invariance and reachability.

7 Conclusion

This paper presented some set-theoretical models of computations. Two main
equivalent approaches were proposed in section 2: forward and backward. A
special emphasis was put on the notion of finite or infinite iterations in section 3:
for this an abstract notion of iteration was proposed and developed. Refinement
was reminded and put into this set-theoretical setting in section 5. Finally, an
analysis of various computation paradigms were reviewed in section 6.

More developments could have been proposed but was not possible due to the
limitation of size for such a paper: more proofs (notice again that all important
mentioned proofs were mechanically checked with the prover of the Rodin Plat-
form [20]), more appendices could have been written in order to ease the reading
and make the paper self-contained, more results concerning infinite iterations
and modalities, more explanations on the various combinators of section 2.4,
and so on.
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Appendix 1: Definition and Properties of Fixpoints

Definition. Given a set S and a set function H defined as follows:

H ∈ P(S)→ P(S)

We define fix(H) and FIX(H) to be the following:

fix(H) =̂
⋂
{k |H(k) ⊆ k}

FIX(H) =̂
⋃
{k | k ⊆ H(k)}

Definition 1

We notice that the expression
⋂
{k |H(k) ⊆ k} is well defined since the set

{k |H(k) ⊆ k} is not empty (it contains S).

Lower and Upper Bounds. The first properties of fix(H) and FIX(H) is that
they are respectively lower and upper bounds, formally:

∀k · H(k) ⊆ k ⇒ fix(H) ⊆ k

∀k · k ⊆ H(k) ⇒ k ⊆ FIX(H)
Theorem 1

http://event-b.org
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Greatest Lower and Least Upper Bounds. The second properties of fix(H)
and FIX(H) is that they are respectively greatest lower and least upper bounds,
formally:

∀l · (∀k · H(k) ⊆ k ⇒ l ⊆ k) ⇒ l ⊆ fix(H)

∀l · (∀k · k ⊆ H(k) ⇒ k ⊆ l) ⇒ FIX(H) ⊆ l
Theorem 2

The Fixpoint Theorems. The third property is the important Knaster-Tarski
theorem. It suppose that the function H is monotonic, that is

∀k1, k2 · k1 ⊆ k2 ⇒ H(k1) ⊆ H(k2) Monotonicity

Here are the theorems saying that fix(H) and FIX(H) are fixpoints of H :

fix(H) = H(fix(H))

FIX(H) = H(FIX(H))
Theorem 3

Least and Greatest Fixpoints. Assuming again the Monotonicity of H , the
next property says that fix(H) and FIX(H) are respectively the least and the
greatest fixpoints:

∀k · k = H(k) ⇒ fix(H) ⊆ k ⊆ FIX(H) Theorem 4

As a consequence, we have:

fix(H) ⊆ FIX(H) Theorem 5

Relationship Between the Least and Greatest Fixpoints. Finally, we
relate fix(H) and FIX(H). For this, we define a function ˜ 5 as follows:˜ ∈ (P(S)→ P(S)) → (P(S)→ P(S))

together with the following for all set k:

H̃(k) =̂ H(k) Definition 2

We have then the following results:

fix(H) = FIX(H̃)

FIX(H) = fix(H̃)

Theorem 6

An interesting property of the function ˜ together with guarding and
pre-conditioning is the following:

g̃ |F = g =⇒ F̃ (Notice: (p =⇒ G)(k) =̂ p ∪ G(k))

Thus we have the following for all subset q:

(g̃ |F )(q) = g ∪ F (q) Theorem 7

5 This function is called the “conjugate” in [17].
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Appendix 2: Definition of Well-Founded Relations

We are given a set S and a binary relation r built on S:

r ⊆ S × S

The relation r is said to be well-founded, denoted by wfd(r), if all paths built
on r from any point x of S are finite. A relation r that is not well-founded thus
contains infinite paths built on r. A subset l of S contains infinite paths if for any
point x in l there exist a point y, also in l, related to x by means of r, formally:

∀x · x ∈ l ⇒ (∃y · y ∈ l ∧ x �→ y ∈ r)

that is

l ⊆ r−1[l]

Since the empty set trivially enjoys this property, we can define a well-founded
relation as one where the only set l with this property is the empty set, hence
the formal definition of wfd(r):

wfd(r) =̂ ∀l · l ⊆ r−1[l] ⇒ l = ∅ Definition 3
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Abstract. In this paper we give an overview of our work on combin-
ing model-based testing and mutation testing. Model-based testing is a
black-box testing technique that avoids the labour of manually writing
hundreds of test cases, but instead advocates the capturing of the ex-
pected behaviour in a model of the system-under-test. The test cases
are automatically generated from this model. The technique is receiving
growing interest in the embedded-systems domain, where models are the
rule rather than the exception.

Mutation testing is a technique for assessing and improving a test
suite. A number of faulty versions of a program-under-test are produced
by injecting bugs into its source code. These faulty programs are called
mutants. A tester analyses if his test suite can ”kill” all mutants. We say
that a test kills a mutant if it is able to distinguish it from the original.
The tester improves his test suite until all faulty mutants get killed.

In model-based mutation testing, we combine the central ideas of
model-based testing and mutation testing: we inject bugs in a model and
generate a test suite that will kill these bugs. In this paper, we discuss
its scientific foundations and tools. The foundations include semantics
and conformance relations; the supporting tools involve model checkers,
constraint solvers and SMT solvers.

1 Introduction

Is testing able to show the absence of bugs? The most prominent negative answer
was given by the late Edsger Dijkstra: “Program testing can be a very effective
way to show the presence of bugs, but it is hopelessly inadequate for showing
their absence.” [15]. Dijkstra was always motivating the need for formally verified
software. Of course, in general Dijkstra is right, in the same way as Popper was
right, when he stated that we can never verify that a theory is correct by a finite
set of experiments. In principle, only refutation (falsification) is possible [20].
However, this should not lead to an over-pessimistic judgement rejecting testing
completely. This would be futile, since testing is the only way of building trust
in a running system embedded in a complex environment. Testing is needed to
check our assumptions. With wrong assumptions, even formally verified software
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may fail. A famous example of such a rare and subtle software bug was found
in the binary search algorithm implemented in the Java JDK 1.5 library in 2006
[13].

As mentioned, Sir Karl Popper proposed the process of falsification. The idea
is to build up trust by trying to disprove a theory. Translated to computer-based
systems, we form a theory by modelling the system that is under investigation.
We call these models test models. By testing, we try to disprove that the con-
structed system conforms to the test model. The tests are guided by educated
guesses of possible faults that have been made during the construction.

If these falsification attempts fail, we build up trust. More important, this
trust is measurable since we know what kind of challenges the system survived,
i.e. what kind of faults are absent. In this paper we present our work on model-
based mutation testing that follows this fault-oriented strategy. The main ad-
vantage of this testing technique is that it can guarantee the absence of specific
faults.

Our goal is to generate a small set of test cases that cover these anticipated
faults. This is in contrast to more traditional model-based testing approaches
that often aim for structural model coverage, like e.g., state coverage or transition
coverage.

The remainder of this paper is structured as follows. Next, in Section 2 we
introduce mutation testing. Then, in Section 3 we explain the process of model-
based mutation testing. In Section 4 we develop its general theory. In Section 5
the general theory is instantiated for transformational systems. In Section 6
we show how to handle reactive systems. Finally, in Section 7 we draw our
conclusions.

2 Mutation Testing

Mutation testing is a way of assessing and improving a test suite by checking
if its test cases can detect a number of injected faults in a program. The faults
are introduced by syntactically changing the source code following patterns of
typical programming errors. These deviations in the code are called mutations.
The resulting faulty versions of the program are called mutants. Usually, each
mutant includes only one mutation. Examples of typical mutations include re-
naming of variables, replacing operators, e.g., an assignment for an equivalence
operator, and slightly changing Boolean and arithmetic expressions. Note that
we only consider mutations that are syntactically correct. The number and kind
of mutations depend on the programming language and are defined as so-called
mutation operators.

A mutation operator is a rewrite rule that defines how certain terms in the
programming language are replaced by mutations. For every occurrence of the
term the mutation operator rewrites the original program into a new mutant.
After a set of mutants has been generated, the test cases are run on the original
and on each mutant. If a test case can distinguish a mutant from the original
program, i.e. a test case passes the original, but fails on a mutant, we say that
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1 object triangle {
2
3 def tritype (a : Int , b : Int, c: Int) = (a,b,c) match {
4 case _ if (a <= c-b) => "no triangle "
5 case _ if (a <= b-c) => "no triangle "
6 case _ if (b <= a-c) => "no triangle "
7 case _ if (a == b && b == c) => "equilateral"
8 case _ if (a == b) => "isosceles"
9 case _ if (b == c) => "isosceles"

10 case _ if (a == c) => "isosceles"
11 case _ => "scalene "
12 }
13 }

Fig. 1. Scala function returning the type of a triangle

this test case kills a mutant. The goal is to develop a test suite that kills all
mutants.

Mutation testing can also be lifted to a test case generation technique. The
aim is to automatically search for test cases that kill the mutants, i.e. the faults.
However, this is still research as was recently pointed out in a survey on mutation
testing: “There is a pressing need to address the, currently unresolved, problem
of test case generation.” [17]. It is the objective of our research to solve this
problem.

Example 1 (Mutation of Programs). Consider the Scala program in Figure 1.
The function tritype takes three lengths of a triangle and returns the resulting
type of triangle. An example mutation operator could rewrite every equality
into a greater-equal operator (== ⇒ >=) . This would produce five mutants, each
containing exactly one mutation. For example, in the first mutant (Mutant 1),
Line 7 would be replaced by case _ if (a >= b && b == c) => "equilateral". �

Mutation can also be applied on the modelling level, as the following example
illustrates.

Example 2 (Mutation of Models). Consider the UML diagram of a car alarm
system in Figure 2. From the initial state OpenAndUnlocked one can traverse
to ClosedAndLocked by closing all doors and locking the car. Actions of closing,
opening, locking, and unlocking are modelled by corresponding signals Close,
Open, Lock, and Unlock. The alarm system is armed after 20 seconds in Closed-
AndLocked. Upon entry of the Armed state, the model calls the method Alar-
mArmed.SetOn. Upon leaving the state, which can be done by either unlocking
the car or opening a door, AlarmArmed.SetOff is called. Similarly, when enter-
ing the Alarm state, the optical and acoustic alarms are enabled. When leaving
the alarm state, either via a timeout or via unlocking the car, both acoustic and
optical alarm is turned off. When leaving the alarm state after a timeout the sys-
tem returns to an armed state only in case it receives a close signal. Turning off
the acoustic alarm after 30 seconds is reflected in the time-triggered transition
leading to the Flash sub-state of the Alarm state.
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AlarmSystem_StateMachine

Alarm

Activate Alarms /entry 
Deactivate Alarms /exit

Flash

FlashAndSound

Armed

Show Armed /entry 
Show Unarmed /exit

ClosedAndLocked

OpenAndUnlocked

ClosedAndUnlocked OpenAndLocked

SilentAndOpen

Unlock

30 / Deactivate Sound

300

Open

Unlock

20

Close

Unlock OpenLock Close

Close LockOpen Unlock

Fig. 2. State machine model of a car alarm system in UML

Let us consider a mutation operator for state machines that turns every tran-
sition into a reflexive transition ( ⇒ ). This operator produces 17 mu-
tants of the car alarm system’s UML diagram, one for each transition. For
example, applying this mutation operator to the Lock-transition at the state
OpenAndUnlocked results in a faulty behaviour staying in the state after a
Lock-event. �
Our project partner, the Austrian Institute of Technology (AIT), has developed
a large set of mutation operators for UML state machines, including removing
trigger events on transitions, mutating transition signal events, mutating transi-
tion time trigger events, mutating transition OCL expressions, mutating transi-
tion effects, mutating transition guards, and removing entry and exit actions in
states. We have recently studied the effectiveness of this mutation operators for
different modelling styles [21]. This study shows that the number of generated
mutants per mutation operator heavily depends on the style of the UML models.

After generating the mutants, we try to kill them. A test case kills a mutant,
if its execution on the mutant shows a different behaviour than on the original.
We say that a mutant survives a test case if it is not killed.

Example 3. Let us consider a set of test cases for the triangle example of Figure 1:
tritype(0,1,1), tritype(1,0,1), tritype(1,1,0), tritype(1,1,1), tritype(2,3,3),
tritype(3,2,3), tritype(3,3,2), tritype(2,3,4). These test cases cover all states,
all branches, all paths of the program. They even satisfy the MC/DC coverage cri-
terion and yet our mutant of Example 1 survives this test suite. For killing the
mutant, we need an isosceles test case with a > b, e.g., tritype(3,2,2). This test
case kills the mutant by returning equilateral instead of isosceles. �

It is our goal to generate such test cases. This is not only possible for programs,
but also for models.

Example 4. Let us return to the transition-mutation discussed in Example 2.
This mutant may survive function coverage, state coverage and even transition
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coverage, because the fault of staying in the state is only observable after waiting
for 20 seconds and checking if the alarm system has been armed. Hence, a test
sequence Lock(); Close(); Wait(20) is needed to kill this mutant. The expected
behaviour of this test case is that the red flashing light indicating the arming will
be switched on. In contrast, the mutant will show quiescence, i.e. the absence of
any observation. �
In recent years, mutation testing has received a growing interest in academia
[17]. Today, it is most frequently used as a technique to analyse the quality of a
given test suite. The quality is measured in terms of the mutation score which
is the ratio of killed mutants to the total number of mutants — the higher the
mutation score, the better the test suite. Test suites can also be minimised, by
reducing the number of test cases while keeping the mutation score. Obviously,
the aim is to have a test suite with a maximal mutation score.

Our research aims at automatically generating the test cases that maximise
the mutation score. Hence, rather than analysing a given test suite, we are in-
terested in its synthesis. Our idea is to use and develop model checkers that
analyse the equivalence between the original and a mutant. These tools produce
a counter-example to equivalence which can be turned into a test case. However,
there are some challenges.

Challenges. Unfortunately, achieving a mutation score of 1 (100%) is often im-
possible. The problem is that some mutants show an equivalent behaviour and,
therefore, cannot be killed by any test case. The reason is that some syntactic
changes do not have an effect on the semantics, e.g. mutations in code fragments
that are never executed (dead code). Hence, these equivalent mutants have to
be identified in order to normalise the mutation score1. For model checkers this
means that in case of equivalence, the full state-space has to be explored, which
may lead to the well-known state-space explosion. In general, equivalence check-
ing is undecidable and NP-complete for bounded models. Therefore, we apply
the technique to abstract models of the system-under-test (SUT). This leads
to a combination of model-based testing and mutation testing, which we call
model-based mutation testing.

3 Model-Based Mutation Testing

Figure 3 summarises the process of model-based mutation testing. Like in clas-
sical model-based testing, the user creates a test model out of the given require-
ments. A test case generator then analyses the model and generates an abstract
test case (or a test suite). This test case is on the same abstraction level as the
test model and includes expected outputs. A test driver maps the abstract test
case to the concrete test interface of the SUT and executes the test case. The
test driver compares the expected outputs with the actual outputs of the SUT
and issues a verdict (pass or fail).

1 Therefore, originally, the mutation score is defined as the ratio of killed mutants to
the total number of non-equivalent mutants.
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Model
Mutation

Tool
Model Mutant

Test Case
Generator

Abstract Test Case

SUT
Test
Driver then fail

if ¬conforms

if conforms

Fig. 3. Model-Based Mutation Testing

If the SUT conforms to the model, i.e. the SUT implements the model cor-
rectly, the verdict will always be pass (assuming that the tool chain generates
sound test cases). In case of non-conformance (¬ conforms), i.e. a bug exists, we
may issue a fail verdict. However, due to the incompleteness of testing, we may
miss the bug and issue a pass verdict. Dijkstra was referring to these incom-
pleteness of testing when he pointed out that testing cannot show the absence of
bugs. However, in model-based mutation testing, we can improve this situation
considerably.

In model-based mutation testing, we mutate the models automatically and
then generate an abstract test case that will cover this mutation. What this
coverage means will be defined later, when we define the conformance relation.
For now we want to point out an important difference to other testing techniques:
if a bug exists and this bug is represented by the generated mutant, then the
test case will find this bug. This important property is illustrated in Figure 3
by the two conformance arrows: if the SUT does not conform to the model, but
conforms to the mutant, the execution of the generated test case will result in
a fail verdict. Here we are assuming a deterministic implementation. For non-
deterministic SUTs, we have to repeat the test cases a given number of times.

4 General Theory

In this section we present the general theory of our model-based mutation testing
approach. The theory is general in the sense that it does not define what kind of
conformance relation is used. It can be any suitable order-relation. In the next
sections, we will instantiate the conformance relation for transformational and
reactive systems. The first property follows directly from Figure 3.
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Theorem 1. Given a transitive conformance relation �, then

(Model �� SUT ) ∧ (Mutant � SUT ) ⇒ (Model �� Mutant)

Proof. Proof by contradiction: let us assume Model � Mutant, then by transitiv-
ity it follows from Mutant � SUT that Model � SUT . This is a contradiction
to the assumption Model �� SUT , hence Model �� Mutant. �
The theorem expresses the fact that if a SUT has a fault and this fault is captured
in the mutant, then the mutant is non-conforming to the model, i.e. the mutant
is non-equivalent. Our test case generation algorithm is looking for the cases of
non-conformance in Model �� Mutant. These cases are then turned into test
cases and executed on the SUT . Such a test case will detect, if the SUT is an
implementation of its Mutant.

Next, we characterize the test cases we are looking for. In general, a test case
can be interpreted as a partial specification (model). It defines the expected
output for one input and the rest is undefined. In this sense, a test case is highly
abstract, because every behaviour different to its input-output is underspecified.
This view causes sometimes confusion since the syntax of a test case is very
concrete, but its semantics as a specification is very abstract. Consequently, if
a SUT (always) passes a test case, we have conformance between the test case
and the SUT:

T est case � SUT

If we generate a test case from a model, we have selected a partial behaviour
such that the model conforms to this test case:

T est case � Model

If the SUT conforms to this model, we can relate all three:

T est case � Model � SUT

We can now define fault detecting test cases:

Definition 1. Given a model and a mutant, its fault-detecting test case is (1)
generated from the model and (2) kills the mutant, i.e.

T est case � Model ∧ T est case �� Mutant

Such a test case only exists for non-equivalent mutants:

Theorem 2

Model �� Mutant iff ∃T est case : (T est case � Model∧T est case �� Mutant)

The theorem shows that the fault-detecting test case is the counter-example
to conformance. We presented the specification-view on test cases first in the
weakest-precondition semantics of the refinement calculus [1,2]. The definition
of fault-detecting test cases and their existence was developed in our mutation
testing theory formulated in the relational semantics of the Unifying Theory of
Programming (UTP) [6]. Next, we instantiate the general theory for transfor-
mational systems.
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5 Transformational Systems

Transformational systems transform inputs and a pre-state to some output and
post-state, then they terminate. Hence, the model and mutant of a transforma-
tional system can be interpreted as predicates Model(s, s′) and Mutant(s, s′)
describing their state transformations (s → s′). For such relational models, con-
formance is defined via implication in the standard way [16]:

Definition 2 (Conformance as Implication)

Model � Mutant =df ∀s, s′ : Mutant(s, s′) ⇒ Model(s, s′)

Here conformance between a mutant and a model means that all behaviour of
the mutant is allowed by the model. Consequently, non-conformance is expressed
via the existence of a behaviour of the mutant that is not allowed by the model:

Theorem 3

Model �� Mutant = ∃s, s′ : Mutant(s, s′) ∧ ¬Model(s, s′)

Note that this is a constraint satisfaction problem. Hence, a constraint solver
can be used to search for a pre-state (input) s leading to the fault.

Example 5. Contract languages, like e.g. the Java Modelling Language (JML),
support the specification of the transition relation of a method. A contract of
our triangle example would look very similar to the Scala code in Figure 1. Their
predicative semantics would be equivalent. Let us consider the semantics of our
triangle example and its mutant.

Mutant(a, b, c, res′) ∧ ¬Model(a, b, c, res′) =df

(. . .¬(a ≤ c − b ∨ a ≤ b − c ∨ b ≤ a − c) ∧ (a ≥ b ∧ b = c ∧ res′ = equilateral))

∧
¬(. . .¬(a ≤ c − b ∨ a ≤ b − c ∨ b ≤ a − c) ∧ (a = b ∧ b = c ∧ res′ = equilateral))

The arrow indicates the difference in the semantics due to the mutation. Simpli-
fying the formula results in the condition that all fault-detecting test cases must
satisfy: a > b ∧ b = c ∧ res′ = equilateral. A constraint solver would produce,
e.g., the solution a = 3, b = 2, c = 2, res′ = equilateral. This input together
with the expected output of the original comprises the fault-detecting test case
a = 3, b = 2, c = 2, res′ = isosceles. �

We developed this theory for transformational systems together with He Jifeng
[6]. The technique was implemented with different solvers for different specifi-
cation languages, e.g. OCL [11], Spec# [18], and the Reo connector language
[19].
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Fig. 4. An abstract test case for the car alarm system

6 Reactive Systems

Reactive systems continuously react to their environment and do not necessarily
terminate. Common examples of such systems are controllers and servers. The
points of observations from a tester’s perspective are controllable (input) and
observable (output) events. A test case for such systems is a sequence of con-
trollable and observable events in the deterministic case. For non-deterministic
systems, test cases have to branch over all possible observations. Such tree-like
test cases are known as adaptive test cases.

The operational semantics of such systems is usually given in terms of Labelled
Transition Systems (LTS) and the abstract test cases are LTS, too. Hence, in
the deterministic case an abstract test case is a sequence of (input and output)
labels.

Example 6. The car alarm system of Example 2 is a reactive system. Figure 4
shows a generated abstract test case for this system.

A prominent testing theory for this kind of semantics was developed by Tretmans
[22]. Its conformance relation ioco is defined as follows.

Definition 3

SUT iocoModel =df ∀σ ∈ traces(Model) : out(SUT afterσ) ⊆ out(Model after σ)

Here after denotes the set of reachable states after a trace σ, and out denotes
the set of all observable events in a set of states. The observable events are all
output events plus one additional quiescence event for indicating the absence of
any output.

This input-output conformance relation ioco supports non-deterministic models
(see the subset relation) as well as partial models (only traces of the Model are
tested). For input-complete models ioco is equivalent to trace-inclusion (language
inclusion).

Example 7. The left-hand side of Figure 5 shows the LTS semantics of switching
on both kind of alarms non-deterministically. Exclamation marks denote observ-
able events, question marks controllable events. In this model either the flash,
or the sound is switched on first. An implementer may decide for one of the two
interleavings according to ioco. He might even add additional controllable events
at any point, like the ?unlock-event in the LTS at the centre. However, the sub-
set relation of output events has to be respected. Therefore, it is the !soundOff
event in the mutant in the centre causing non-conformance. �
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!flashOn

!soundOn

!soundOn!flashOn

!flashOn

!soundOff

?unlock

!flashOn

!soundOn

!soundOn

!soundOff

?unlock

pass

fail
pass
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Fig. 5. Labelled transition systems of a part of a non-deterministic model of the car
alarm system (left), a mutant (centre), and their synchronous product graph (right)

6.1 Explicit Conformance Checking

The conformance between a model and its mutant can be checked by building
the synchronous product of their LTSs modulo ioco. The right-hand side of
Figure 5 shows this product graph for our example. Product modulo ioco means
that we limit the standard product construction if the mutant has either (1)
an additional (unexpected) output event (here !soundOff ), or (2) an additional
input event (here ?unlock). In the first case, we have detected non-conformance
and add a fail state after the unexpected event. Furthermore, we add all expected
observables of the model. In the second case we stop the exploration, because
we have reached an unspecified input behaviour.

Different strategies for extracting a test case from such a product graph exist.
We can select a linear or adaptive test case, the shortest path or a random path
to a fail-state, cover each fail-state or only one. Our experiments have shown
that a combination of random and lazy shortest path strategies works well [3].
Lazy refers to the strategy of generating new test cases only, if the existing test
cases do not kill a mutant.

We have applied this explicit conformance checking technique to generate test
cases to several case studies, including testing an HTTP server using LOTOS
models [5], SIP servers [23] using LOTOSmodels, controllers [3] using UML mod-
els, and most challenging, hybrid systems [14] using Action Systems extended
with qualitative reasoning models [4].

Explicit checking works well with event-oriented systems, but we ran into scal-
ability issues with parametrised events. Therefore, we have developed a second
line of tools using symbolic conformance checkers.

6.2 Symbolic Conformance Checking

The idea is to use a similar approach as for transformational systems. Therefore,
we have decided to use Back’s Action Systems [12] as our input language. Ac-
tion systems are a kind of guarded command language for modelling concurrent
reactive systems. They are similar to Dijkstra’s iterative statement.

Example 8. Figure 6 shows an Action System model of our car alarm system
example. First, the model variables and their initial values are declared. Next,
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var closed : Bool := false;
locked : Bool := false;
armed : Bool := false;
sound : Bool := false;
flash : Bool := false;

actions
Close :: ¬closed → closed := true;

Open :: closed → closed := false;

SoundOn :: armed ∧ ¬closed ∧ ¬sound → sound := true;

FlashOn :: armed ∧ ¬closed ∧ ¬flash → flash := true;
. . .

. . .
do Close

�
Open
�
SoundOn;FlashOn
�
FlashOn; SoundOn
. . .

od

Fig. 6. Action System model of the car alarm system

the actions in the form of guarded commands are listed. Note that each action is
labelled establishing the link to the LTS semantics. On the right-hand side is the
protocol layer of actions which further restricts the possible order of actions. The
standard composition operator for actions is non-deterministic choice (A�B),
however also sequential (A;B) or prioritised compositions (A//B) are possible.
The protocol layer establishes a loop that iterates while any action is enabled.
Action Systems terminate if all actions are disabled. �

Originally, Actions Systems are defined in weakest-precondition semantics. How-
ever, for our purposes a relational semantics suffices. Therefore, we have given
Action Systems a predicative semantics in the style of UTP as shown in Figure 7
[7].

The state-changes of actions are defined via predicates relating the pre-state
of variables s and their post-state s′. Furthermore, the labels form a visible trace
of events tr that is updated to tr′ whenever an action runs through. Hence, a
guarded action’s transition relation is defined as the conjunction of its guard g,
the body of the action B and the adding of the action label l to the previously
observed trace. In case of parameters x, these are added as local variables to the
predicate. An assignment updates one variable x with the value of an expression
e and leaves the rest unchanged. Sequential composition is standard: there must
exist an intermediate state s0 that can be reached from the first body predicate
and from which the second body predicate can lead to its final state. Finally,
non-deterministic choice is defined as disjunction. The semantics of the do-od
block is as already mentioned: while actions are enabled in the current state, one
of the enabled actions is chosen non-deterministically and executed. An action
is enabled in a state if it can run through, i.e. if a post-state exists such that the
semantic predicate can be satisfied.

This semantics is already close to a constraint satisfaction problem. However,
the existential quantifiers need to be eliminated first, before we can negate the
formula. For further details see [8].

With this predicative semantics conformance can be defined via implication,
too. However, we also have to take the reachability via a trace of actions into
account. For mutation testing, we are interested in non-conformance which can
be defined as follows.
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l :: g → B =df g ∧ B ∧ tr′ = tr ̂ [l]

l(x) :: g → B =df ∃ x : g ∧ B ∧ tr′ = tr ̂ [l(x)]

x := e =df x′ = e ∧ y′ = y ∧ ... ∧ z′ = z

g → B =df g ∧ B

B(s, s′);B(s, s′) =df ∃ s0 : B(s, s0) ∧ B(s0, s
′)

B1 � B2 =df B1 ∨ B2

Fig. 7. Predicative UTP semantics of Action System

Definition 4. Given two Action Systems, a model and its mutant, then non-
conformance is given iff

∃ s, s′, tr, tr′ : reachable(s, tr) ∧ Mutant(s, s′, tr, tr′) ∧ ¬Model(s, s′, tr, tr′)

The predicate reachable(s, tr) holds if a state s is reachable via trace tr from the
initial state of the Action System.

This definition of non-conformance is much stronger than non-ioco, since any
difference in the state s′ causes non-conformance. Here, we also do not distinguish
between input and output labels. However, it is very efficient to search for, since
reachability can be done on the model only.

We have recently implemented two symbolic conformance checkers using this
formula. One is implemented in Sicstus Prolog and uses Constraint Logic Pro-
gramming. The other is implemented in Scala and uses the SMT solver Z3. In
our first experiments both show similar performance [9].

For an ioco check of input-complete models, non-conformance amounts to a
language-inclusion check:

∃ s1, s′1, s2, s′2, tr, !a : reachable(Mutant, tr, s1) ∧ reachable(Model, tr, s2)

∧
Mutant(s1, s1′, tr, tr ̂ !a) ∧ ¬Model(s2, s2′, tr, tr ̂ !a)

Here non-conformance is only due to a common trace leading to an output-
label (output-action) in the mutant that is not allowed by the model. Note that
this ioco formula holds for deterministic models only. In the non-deterministic
case we have to check that none of the reachable states leads to an unexpected
observation.

Most recently, we have implemented a similar formula in a test-case generator
for timed automata (TA). The tool reads TA models and checks for tioco, a
timed version of ioco. Here Scala and the Z3 solver are used [10].

7 Conclusions

We have shown how model-based testing and mutation testing can be combined
into model-based mutation testing. We started with transformational systems
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and then developed explicit and symbolic techniques for reactive systems. Several
tools have been implemented that show that the approach is feasible.

The underlying test-case generation techniques are closely related to formal
semantics. With a precise semantics we can define our notion of conformance.
Non-conformance is the basis for our fault-models and test-case generation al-
gorithms. Test cases are derived from counter-examples of a conformance check.
With a predicative semantics such counter-examples may be found using con-
straint or SMT solvers.

The novelty in this research is the general theory and the test-case generators
that can deal with non-deterministic models. For related work we refer to the
recent survey on mutation testing, where also model-based mutation testing is
covered [17].

The presented work shows that model-based mutation testing involves a va-
riety of research directions and is far from being a closed case. As of today, no
commercial tool has adopted this technique yet. Scalability is certainly an issue,
but we firmly believe that advances are possible.
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Abstract. Hybrid Event-B includes provision for continuously varying
behaviour as well as the usual discrete changes of state in the context of Event-
B. As well as being able to specify hybrid behaviour in the usual way, using
differential equations or continuous assignments for the continuous parts of the
behaviour, looser ways of specifying behaviour at higher levels of abstraction are
extremely useful. Although the need for such looser specification can be met us-
ing the logic of the formalism, certain metaphors (or patterns) occur so often, and
are so useful in practice, that it is valuable to introduce special machinery into the
specification language, to allow these frequently occurring patterns to be readily
referred to. This paper introduces such machinery into Hybrid Event-B.

1 Introduction

In today’s ever-increasing interaction between digital devices and the physical world,
formalisms are needed to express the more complex behaviours that this allows. Fur-
thermore, these days, it is no longer sufficient to focus on isolated systems, as it is more
and more the case that families of such systems are coupled together using communi-
cation networks, and can thus influence each others’ working. So today Cyber-Physical
Systems [19, 22, 1, 11] are the primary focus of attention. It is gratifying to note on
the occasion of Jifeng He’s festschrift, that the present author’s own interest in such
systems was sparked during cooperation with Prof. He’s group at ECNU.

These new kinds of system throw up novel challenges in terms of design technique,
as it is proving more and more difficult to ignore the continuous characteristics in their
behaviours. Specifically, such technical challenges are being increasingly felt in the
context of the B-Method [2, 3], where an increasing number of applications involve
continuous behaviour of some sort in an essential way. Hybrid Event-B [10] has been
introduced to bring new capabilities to traditional discrete Event-B [3], in order to ad-
dress the challenges referred to.

Hybrid Event-B is a formalism that aims to provide a ‘minimally invasive’ extension
of traditional discrete Event-B, capable of dealing with continuous behaviour as a first
class citizen. As described in the next section, traditional discrete Event-B events serve
as the ‘mode events’ that interleave the ‘pliant events’ of Hybrid Event-B. The latter
express the continuously varying behaviour of a hybrid formalism including both kinds
of event. In this manner, a rigorous link can be made between continuous and discrete
update, as needed in these contemporary applications.

Z. Liu, J. Woodcock, and H. Zhu (Eds.): He Festschrift, LNCS 8051, pp. 37–53, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Since Event-B may be seen as related to the Action Systems formalism of Back and
co-workers [5, 6], so Hybrid Event-B may be seen as related to the Hybrid Action Sys-
tems that extend the Action Systems formalism [7, 9, 8]. However, there are some cru-
cial differences. The most important of these is the fact that in Hybrid Action Systems,
(pieces of) continuous behviours are packaged up into lambda abstractions (with time
as the lambda variable), whereas discrete updates are handled as usual (i.e. by manipu-
lating free variables). Although the approach is mathematically feasible, it introduces a
discrepancy between the way that discrete and continuous updates are handled — and
in fact, continuous updates are processed in discrete lumps, at occurrences of discrete
updates, where the lambda abstractions are updated monolithically.1

From an applications perspective, it can be argued that this distinction is aestheti-
cally jarring, but it also has technical repercussions. Most importantly, the mechanical
processing of lambda abstractions, in practice, typically has much less power (in terms
of the inferences that can be made automatically) than the mechanical processing of ex-
pressions predominantly featuring free variables. So automation will typically be less
effective using such an approach. Hybrid Event-B treats the continuous behaviours via
free variables, which does not in itself dilute the potential for mechanical processing.

Although Hybrid Event-B is a fully expressive formalism, based on the general the-
ory of first order ordinary differential equations (ODEs) for the continuous part of the
formalism and thus is capable of describing all the kinds of behaviour needed for arbi-
trary hybrid systems, it is nevertheless the case that in the continuous context there are
metaphors that arise so commonly, that it is worth optimising the formalism to enable
their even more convenient use. It is the aim of this paper to describe a representative
selection of such optimisations, called here pliant modalities, and to show how their use
can be integrated into the existing formalism of Hybrid Event-B.

The rest of the paper is as follows. Section 2 gives a brief description of Hybrid
Event-B that is sufficient for the remainder. Section 3 discusses pliant modalities in gen-
eral. The subsequent sections discuss specific pliant modalities in detail. Section 4 dis-
cusses the CONTINUOUS and similar modalities. Section 5 discusses the CONSTant
modality. Section 6 discusses the PLiant ENVelope modality and related modalities.
Sections 7 and 8 discuss monotonic modalities and convexity and concavity. Section 9
covers a small case study. Section 10 concludes.

2 Hybrid Event-B, a Sketch

In Fig. 1 we see a bare bones Hybrid Event-B machine, HyEvBMch. It starts with dec-
larations of time and of a clock. In Hybrid Event-B time is a first class citizen in that
all variables are functions of time, whether explicitly or implicitly. However time is
special, being read-only, never being assigned, since time cannot be controlled by any
human-designed engineering process. Clocks allow a bit more flexibility, since they are
assumed to increase their value at the same rate that time does, but may be (re)set during
mode events (see below).

1 The discrete analogue of this would be to express every variable in conventional Event-B as a
lambda function of the (normally implicit) indexing variable of a runtime trace of the system.
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MACHINE HyEvBMch
TIME t
CLOCK clk
PLIANT x, y
VARIABLES u
INVARIANTS

x ∈ R

y ∈ R

u ∈ N

EVENTS
INITIALISATION

STATUS ordinary
WHEN

t = 0
THEN

clk := 1
x := x0
y := y0
u := u0

END
. . . . . .

. . . . . .
MoEv

STATUS ordinary
ANY i?, l, o!
WHERE grd(x, y, u, i?, l, t, clk)
THEN

x, y, u, clk, o! :| BApred(x, y, u,
i?, l, o!, t, clk, x′, y′, u′, clk′)

END
PliEv

STATUS pliant
INIT iv(x, y, t, clk)
WHERE grd(u)
ANY i?, l, o!
COMPLY

BDApred(x, y, u, i?, l, o!, t, clk)
SOLVE
D x = φ(x, y, u, i?, l, o!, t, clk)
y, o! := E(x, u, i?, l, t, clk)

END
END

Fig. 1. A schematic Hybrid Event-B machine

Variables are of two kinds. There are mode variables (like u, declared as usual) which
take their values in discrete sets and change their values via discontinuous assignment in
mode events. There are also pliant variables (such as x, y), declared in the PLIANT clause,
which take their values in topologically dense sets (normally R) and which are allowed
to change continuously, such change being specified via pliant events (see below).

Next are the invariants. These resemble invariants in discrete Event-B, in that the
types of the variables are asserted to be the sets from which the variables’ values at any
given moment of time are drawn. More complex invariants are similarly predicates that
are required to hold at all moments of time during a run.

Then we get to the events. The INITIALISATION has a guard that synchronises time
with the start of any run, while all other variables are assigned their initial values in the
usual way. As hinted above, in Hybrid Event-B, there are two kinds of event: mode
events and pliant events.

Mode events are direct analogues of events in discrete Event-B. They can assign all
machine variables (except time itself). In the schematic MoEv of Fig. 1, we see three
parameters i?, l, o!, (an input, a local parameter, and an output respectively), and a guard
grd which can depend on all the machine variables. We also see the generic after-value
assignment specified by the before-after predicate BApred, which can specify how the
after-values of all variables (except time, inputs and locals) are to be determined.

Pliant events are new. They specify the continuous evolution of the pliant variables
over an interval of time. The schematic pliant event PliEv of Fig. 1 shows the struc-
ture. There are two guards: there is iv, for specifying enabling conditions on the pliant
variables, clocks, and time; and there is grd, for specifying enabling conditions on the
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mode variables. The separation between the two is motivated by considerations con-
nected with refinement.

The body of a pliant event contains three parameters i?, l, o!, (once more an input,
a local parameter, and an output respectively) which are functions of time, defined over
the duration of the pliant event. The behviour of the event is defined by the COMPLY
and SOLVE clauses. The SOLVE clause specifies behaviour fairly directly. For exam-
ple the behaviour of pliant variable y and output o! is given by a direct assignment to
the (time dependent) value of the expression E(. . .). Alternatively, the behaviour of pli-
ant variable x is given by the solution of the first order ordinary differential equation
(ODE) D x = φ(. . .), where D indicates differentiation with respect to time. (In fact
the sematics of the y, o! = E case is given in terms of the ODE D y,D o! = DE, so that
x, y and o! satisfy the same regularity properties.) The COMPLY clause can be used to
express any additional constraints that are required to hold during the pliant event via
its before-during-and-after predicate BDApred. Typically, constraints on the permitted
range of values for the pliant variables, and similar restrictions, can be placed here.

The COMPLY clause has another purpose. When specifying at an abstract level,
we do not necessarily want to be concerned with all the details of the dynamics — it
is often sufficient to require some global constraints to hold which express the needed
safety properties of the system. The COMPLY clauses of the machine’s pliant events
can house such constraints directly, leaving it to lower level refinements to add the
necessary details of the dynamics. The kind of pliant modalities that are the main focus
of this paper are frequently to be found in the COMPLY clauses of pliant events.

The semantics of a Hybrid Event-B machine is as follows. It consists of a set of
system traces, each of which is a collection of functions of time, expressing the value
of each machine variable over the duration of a system run. (In the case of HyEvBMch,
in a given system trace, there would be functions for clk, x, y, u, each defined over the
duration of the run.)

Time is modelled as an interval T of the reals. A run starts at some initial mo-
ment of time, t0 say, and lasts either for a finite time, or indefinitely. The duration
of the run T , breaks up into a succession of left-closed right-open subintervals: T =
[t0 . . . t1), [t1 . . . t2), [t2 . . . t3), . . .. The idea is that mode events (with their discontinu-
ous updates) take place at the isolated times corresponding to the common endpoints
of these subintervals ti, and in between, the mode variables are constant and the pliant
events stipulate continuous change in the pliant variables.

Although pliant variables change continuously (except perhaps at the ti), continu-
ity alone still allows for a wide range of mathematically pathological behaviours. To
eliminate these, we make the following restrictions which apply individually to every
subinterval [ti . . . ti+1):

I Zeno: there is a constant δZeno, such that for all i needed, ti+1 − ti ≥ δZeno.

II Limits: for every variable x, and for every time t ∈ T , the left limit limδ→0 x(t− δ)

written
−→
x(t) and right limit limδ→0 x(t + δ), written

←−
x(t) (with δ > 0) exist, and for

every t, x(t) =
←−
x(t). [N. B. At the endpoint(s) of T , any missing limit is defined to

equal its counterpart.]
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III Differentiability: The behaviour of every pliant variable x in the interval [ti . . . ti+1)
is given by the solution of a well posed initial value problem D xs = φ(xs . . .)
(where xs is a relevant tuple of pliant variables and D is the time derivative). “Well
posed” means that φ(xs . . .) has Lipschitz constants which are uniformly bounded
over [ti . . . ti+1) bounding its variation with respect to xs, and that φ(xs . . .) is mea-
surable in t.

Regarding the above, the Zeno condition is certainly a sensible restriction to demand of
any acceptable system, but in general, its truth or falsehood can depend on the system’s
full reachability relation, and is thus very frequently undecidable.

The stipulation on limits, with the left limit value at a time ti being not necessarily
the same as the right limit at ti, makes for an easy interpretation of mode events that
happen at ti. For such mode events, the before-values are interpreted as the left limit
values, and the after-values are interpreted as the right limit values.

The differentiability condition guarantees that from a specific starting point, ti say,
there is a maximal right open interval, specified by tMAX say, such that a solution to the
ODE system exists in [ti . . . tMAX). Within this interval, we seek the earliest time ti+1

at which a mode event becomes enabled, and this time becomes the preemption point
beyond which the solution to the ODE system is abandoned, and the next solution is
sought after the completion of the mode event.

In this manner, assuming that the INITIALISATION event has achieved a suitable
intial assignment to variables, a system run is well formed, and thus belongs to the
semantics of the machine, provided that at runtime:

• Every enabled mode event is feasible, i.e. has an after-state, and on its comple-
tion enables a pliant event (but does not enable any mode event).

(1)

• Every enabled pliant event is feasible, i.e. has a time-indexed family of after-
states, and EITHER:

(i) During the run of the pliant event a mode event becomes enabled. It pre-
empts the pliant event, defining its end. ORELSE

(ii) During the run of the pliant event it becomes infeasible: finite termination.
ORELSE

(iii) The pliant event continues indefinitely: nontermination.

(2)

Thus in a well formed run mode events alternate with pliant events.2 The last event (if
there is one) is a pliant event (whose duration may be finite or infinite).

2 Many formalisms for hybrid systems permit a succession of mode events to execute before
the next pliant event runs (to use our terminology). We avoid this for a number of reasons.
Firstly, it spoils the simple picture that at each time, each variable has a unique value, and the
runtime semantics of a variable is a straightforward function of time. Secondly, it avoids having
to define the final value of a succession of mode events via a fixpoint calculation. Thirdly,
and perhaps most importantly, it maintains the discrete Event-B picture in which events are
(implicilty) seen as taking place at isolated points of real time, insofar as Event-B behaviours
are seen as relating to the real world. We regard the overturning of such unstated assumptions
as particularly dangerous in an engineering context — c.f. the Mars Lander incident, in which
the U.S. and European teams interpreted measurements according to different units, without
ever thinking to check which units were actually intended.
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We note that this framework is quite close to the modern formulation of hybrid sys-
tems. (See eg. [20, 14] for representative formulations, or the large literature in the
Hybrid Systems: Computation and Control series of international conferences, and the
further literature cited therein.)

In reality, there are a number of semantic issues that we have glossed over in the
framework just sketched. We refer to [10] for a more detailed presentation. As well as
these, in line with the normal B-Method approach, there is a full suite of proof obliga-
tions that statically guarantees conformance with the semantics (see [10] again). We do
not have space to quote them all, but we overview the ones that are most relevant to the
remainder of the paper. First we quote pliant event feasibility:

I(u(�L)) ∧ ivPliEvA(u(�L)) ∧ grdPliEvA(u(�L))

⇒ (∃ �R > �L • [[[ (�R − �L > δZenoPliEvA) ∧ ]]]

(∀ �L < t < �R • (∃ u(t) • BDApredPliEvA(u(t), t) ∧ SOLPliEvA(u(t), t)))) (3)

In (3), I is the machine invariant, iv and grd are guards, PliEv is the pliant event in
question, u refers to all the machine’s variables as needed, SOL is the solution to the
SOLVE clause of PliEv, �L and �R define the endopints of the interval in which the so-
lution holds, and δZenoPliEv is the relevant Zeno constant — the term containing it can be
omitted if it is too difficult to establish Zeno-freeness statically. Note that both BDApred
and SOL have to hold throughout the interval. If either fails to do so, it signals the end
of the feasible interval for PliEv. Next we quote pliant event invariant preservation:

I(u(�L)) ∧ ivPliEvA(u(�L)) ∧ grdPliEvA(u(�L)) ∧
(∃ �R > �L • (∀ �L < t < �R • BDApredPliEvA(u(t), t) ∧ SOLPliEvA(u(t), t)))

⇒ (∀ �L < t < �R • I(u(t))) (4)

The last PO we quote is the correctness PO for pliant event refinement:

I(u(�L)) ∧ K(u(�L),w(�L)) ∧ ivPliEvC(w(�L)) ∧ grdPliEvC(w(�L))⇒
((( ∃ �R > �L • (∀ �L < t < �R • BDApredPliEvC(w(t), t) ∧ SOLPliEvC(w(t), t))

⇒ (∀ �L < t < �R • (∃ u(t) •
BDApredPliEvA(u(t), t) ∧ SOLPliEvA(u(t), t) ∧ K(u(t),w(t))))))) (5)

In (5), PliEvA and PliEvC are the abstract and concrete pliant events. Furthermore, the
form of (5) implies that time progresses in the same way in the abstract and concrete
systems. This is a consequence of the single outer level quantification over time ∀ �L <
t < �R, indicated by the heavy parentheses. The uniform parameterisation over time
implies that (5) demands that the joint invariant K(u(t), w(t)) holds throughout the two
pliant events.

3 Pliant Modalities and Requirements in Hybrid Event-B

The framework described above, when elaborated in full detail, is certainly expressive
enough to subsume the range of problems tackled in the hybrid and cyber-physical sys-
tems domain. However it does so by reducing all aspects of system behaviour to their
descriptions in a language that is essentially first order logic with real and integer arith-
metic, real functions and set theory, supplemented by differential equations. Any such
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language is, of course, rich enough to be highly undecidable. Despite this, many simple
and intuitive properties of system behaviour nevertheless have descriptions in such a
language that obscures their simplicity. This has two negative consequences. Firstly, it
obscures readability and perspicuity for the user or designer, when straightforward ideas
have to be written in a convoluted way. Secondly, it may make it relatively more difficult
for a mechanised reasoning system to reach the most frequently intended consequences
of these simple properties, when they are needed in verification.

The aim of this paper is to introduce a range of syntactic primitives for properties of
real functions that occur commonly in hybrid applications, along with their definitions.
Not only can this make system models more readable, but it can also be exploited by
reasoning systems in order to optimise verification.

The primitives we introduce are in many ways really rather simple: constancy, bound-
edness, monotonicity, and so on. While easy to grasp, their defnitions in terms of base
logical primitives are always more complicated than one feels they ought to be. As well
as that though, and in stark contrast to the situation for purely discrete applications,
there are not-so-obvious connotations with requirements that are worth exploring.

In a purely discrete application, when we write an oversimplified abstract model (as
we are strongly encouraged to do at the outset of system development in Event-B), we
are never in any doubt that what we define (as long as it is not patently ridiculous), is
ultimately implementable. The basic reason for this is that the discrete data types we use
in such early models are clearly implementable on the discrete hardware that we ulti-
mately target them to. The case with continuously varying quantities is subtly different.
Usually, we build continuous models to reflect the capabilities of real physical phenom-
ena or real physical equipment. In such cases, the modelling flexibility that we have is
severely curtailed, because the physical behaviour that we want to model is normally
confined within quite tightly constrained parameters. Postulating a behaviour, no mat-
ter how desirable, is pointless unless we are confident about ultimate implementabiliy.
In practice this usually means that we have to start modelling at a level considerably
closer to the physical level than we might like. Only when we know that we are work-
ing within realistic parameters, can we permit ourselves to abstract from the details, to
create a simplified model that deals just with the coarsest aspects of the dynamics.

Having pursued a strategy as just described, it would be reasonable at this point to
question the purpose of the simplified model, given that a more precise description is
already available. The response to that would be, that there could easily be properties
of the system that are much more convenient to deal with when cast in in terms of the
simplified model than they would be if cast in in terms of the more precise model. In
extremis, some properties might only be tractable in the simplified model.

We infer that consideration of the continuous sphere can bring with it an inversion of
the usual Event-B relationship between requirements and refinement. Usually in Event-
B, once having incorporated a requirement into a system model, further models of the
development are refinements of it. In the continuous case though, we have argued that
a subsequent model might be an abstraction instead.

Technically, a pliant modality is a property of a pliant variable that is given a spe-
cific name. Such modalities may occur in two places in a Hybrid Event-B machine.
One possibility is in the INVARIANTs of the machine. The properties defined by such
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modalities must hold throughout any run of the machine. The other possibility is in the
COMPLY clause of a pliant event. In this case, the relevant property is only required
to hold during the execution of the pliant event, and indeed, if at some point during the
execution of the pliant event, the modality contradicts other properties in the event’s
definition, it merely serves to define the limit of feasibility of the pliant event (i.e. PO
(3) fails), signalling termination. We now discuss some modalities in more detail.

4 The CONTINUOUS Modality and Its Relatives

Our first, and simplest, modality is the continuous modality, which declares that a pliant
variable’s behaviour is (globally) continuous throughout the duration of any run of the
system. Such a restriction is appropriate for a model of a physical variable which is
not expected to undergo impulses during the dynamics, and would be written amongst
the INVARIANTS. Since the semantics of Hybrid Event-B ensures that the behaviour
of any pliant variable is absolutely continuous during any pliant event, the continuous
modality just prevents the variable’s value from being discontinuously reassigned by
a mode event, a condition that is particularly easy to enforce statically. We write the
continuous modality thus:

CONTINUOUS(f ) ≡ . . . (6)

where the ellipsis stands for one of a number of equivalent definitions of absolute con-
tinuity. (See e.g., [21] for details.) Related to the CONTINUOUS modality, and a little
harder to enforce, are modalities that assert the derivative, or n-th derivative of f are
globally continuous:

DIFFERENTIABLE(f ) ≡ CONTINUOUS(D f ) (7)

n-DIFFERENTIABLE(f ) ≡ CONTINUOUS(Dn f ) (8)

5 The CONST Modality

Our next modality is the constant modality, which declares that a pliant variable remains
constant. At this point, the reader may well question the need for such a modality.
Surely, if a variable is to be constant, aside from the possibility of declaring a constant
instead, we could declare a mode variable, and declare it as CONTINUOUS. And there
are other, similar possibilities. Pursuing such reasoning, the case we cannot cover by
existing means is when we need to introduce a quantified variable, which we require to
remain constant within the scope of the COMPLY clause of a pliant event, but whose
value is not determinable statically. The definition of the constant modality for a variable
f is thus:

CONST(f ) ≡ (∀ t • �L ≤ t < �R ⇒ f (�L) = f (t)) (9)

The form of the CONST modality that we show in (9) is the one that is appropriate for
a COMPLY clause. This is characterised by the presence of �L and �R in (9). These
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identifiers are free in (9) and bind to the intial and final times repectively of the duration
of the pliant event at runtime. (The former fact follows from the assumption of the pliant
event’s guards as properties of �L in POs featuring �L, and the latter from the assump-
tion that �R > �L in these POs (which is usually sufficient) — as is done in (3)-(5).)
The form of (9) appropriate for an INVARIANT follows by removing the references to
�R and replacing references to �L by references to the initial time t0, leaving:

CONST(f ) ≡ (∀ t • t0 ≤ t ⇒ f (t0) = f (t)) (10)

The CONST modality has an associated form (in which E is an expression) for cases
when we can determine the value that f is to have during the relevant interval:

CONST(f , E) ≡ (∀ t • �L ≤ t < �R ⇒ f (�L) = f (t) = E(�L)) (11)

In future, we will just show the COMPLY form of any modality, as the INVARIANT
form follows readily, by simply removing references to �R, and replacing values at �L
with intial values where necessary.

6 The PLENV Modality and Its Relatives

The PLENV modality is at the opposite end of the expressivity spectrum to CONST.
It constrains its argument f to remain within a PLiant ENVelope specified by a lower
bound function and/or an upper bound function. It is easiest to build up from the sim-
plest cases, so we start with dynamic lower and dynamic upper bounds alone:

PLENVL(f , lb) ≡ (∀ t • �L ≤ t < �R ⇒ lb(t) ≤ f (t)) (12)

PLENVU(f , ub) ≡ (∀ t • �L ≤ t < �R ⇒ f (t) ≤ ub(t)) (13)

The general dynamically bounded PLENV modality now follows:

PLENV(f , lb, ub) ≡ PLENVL(f , lb) ∧ PLENVU(f , ub) (14)

From these forms, several useful forms follow by restricting the various bounds in-
volved to constants. We can easily define these by combining our existing definitions
with the CONST modality, which is actually the most transparent way to do it.

The first two modalities just restrict PLENVL and PLENVU, giving conventional
notions of lower and upper bounds:

LBND(f , E) ≡ (∃ lb • PLENVL(f , lb) ∧ CONST(lb, E)) (15)

UBND(f , E) ≡ (∃ ub • PLENVU(f , ub) ∧ CONST(ub, E)) (16)

Associated with these is the BND modality, combining the two of them:

BND(f , EL, EU) ≡ LBND(f , EL) ∧ UBND(f , EU) (17)

Finally we have versions of PLENV in which one bound but not the other is held con-
stant:

PLENVLC(f , EL, ub) ≡ LBND(f , EL) ∧ PLENVU(f , ub) (18)

PLENVUC(f , lb, EU) ≡ PLENVL(f , lb) ∧ UBND(f , E) (19)
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The above pliant modalities give us a selection of primitives that can capture high level
aspects of pliant variable behaviour in a concise and perspicuous way. Of course the
aspects thus captured are not the only ones that can be exhibited by pliant variables,
but they are typical of the relatively simple properties favoured in many engineering
designs. We can thus expect them to have wide applicability, especially when they are
combined with the possibility of making f a real-valued function of several variables
(each depending on t). Moreover, we have to be sure that particular constants or bounds
used are actually achievable, so design of these high level properties usually goes hand
in hand with the lower level design that refines/implements it.

7 Monotonic Modalities

In this section we consider modalities connected with monotonicity. For functions of
time delivering a single real value, the following are the evident possibilities.

MONINC(f ) ≡ (∀ t1, t2 • �L ≤ t1 ≤ t2 < �R ⇒ f (t1) ≤ f (t2)) (20)

MONDEC(f ) ≡ (∀ t1, t2 • �L ≤ t1 ≤ t2 < �R ⇒ f (t1) ≥ f (t2)) (21)

Compared with the modalities of Section 6, the above modalities can be used more
freely at an abstract level, since they do not assert specific numerical measures for the
rate of increase/decrease, making it relatively easier to postpone the determination of
these rates during the development.

8 Convex and Concave Modalities

In the last section, the key properties depended on comparing the function under consid-
eration at two points. Convexity and concavity depend on a comparison at three points,
and are essentially concerned with capturing liberal notions of a function increasing or
decreasing in an “accelerating” manner (bending upwards — convexity), or in a “decel-
erating” manner (bending downwards — concavity):

CVEX(f ) ≡ (∀ t1, t2, λ • �L ≤ t1 ≤ t2 < �R ∧ 0 < λ < 1 ⇒
f (λ t1 + (1− λ)t2) ≤ λ f (t1) + (1− λ)f (t2)) (22)

CCAVE(f ) ≡ (∀ t1, t2, λ • �L ≤ t1 ≤ t2 < �R ∧ 0 < λ < 1 ⇒
f (λ t1 + (1− λ)t2) ≥ λ f (t1) + (1− λ)f (t2)) (23)

These modalities evidently have similar levels of flexibility for abstract use as we saw
in the previous section. Equally evidently, we can imagine more and more complex
properties built along similar lines.

9 A Simple Case Study

In this section we give a simple case study, based on examples in [9, 7, 8, 17, 18, 4],
and simplified for a briefer description. The case study is based on a nuclear power
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station, where the reactor naturally tends to heat up despite heat being extracted for
steam generation. To keep the temperature θ under control, a control rod, which absorbs
neutrons, is inserted into the reactor, and the resulting lower neutron flux slows down
the nuclear reaction, lowering the temperature. To prevent the reaction from stopping
completely, the control rod is withdrawn after a period, and must cool down before it can
be used again. In the works cited, more than one rod is used, leading to an interesting
interplay between heating and cooling periods, and the recovery time of the rods.

For our purposes we simplify matters by having only one control rod, by assuming
that the heating and cooling periods are equal, both lasting 3 time units, and that the
3 time units of the reactor heating period are sufficient for the control rod (which was
extracted at the start of the reactor heating period) to itself have cooled down enough
for rod reuse at the start of the next reactor cooling period.

In Fig. 2 we show a number of Hybrid Event-B machines that address this scenario.
We postpone discussion of the NucSkip machine for now, and start with the NucMon
machine. The NucMon machine models the behaviour just described at an abstract level.
At initialisation time, the temperature θ is assumed to be θ0 and a heating period is about
to start (i.e. the rod is out). The INITIALISATION enables the WaitRodOut pliant event
which lasts for the duration of the heating period. This specifies that the temperature
is to increase in a monotonic fashion, using the MONINC modality, and furthermore
states that the initial and final temperature values over the heating period differ by Δ.3

The significance of the latter is that, on the basis of monotonicity, we can deduce that
the temperature throughout the heating period remains less than the final value attained
during the period, θ(�L) + Δ. This in turn is sufficient to guarantee that the invariant
θ ≤ ΘTOL is satisfied throughout the heating period provided that θ0+Δ ≤ ΘTOL holds,
where ΘTOL is the maximum tolerable reactor temperature that still assures safety. Since
we have not included this last condition in the model, it would emerge as a missing
hypothesis in any attempt to prove the pliant event invariant preservation PO (4) for
WaitRodOut.

Similar arguments apply for the remainder of the behaviour of the NucMon ma-
chine. Thus, after 3 time units, mode event RodIn is enabled and preempts pliant event
WaitRodOut. RodIn changes the rod variable from out to in, which enables WaitRodIn.
In line with our simple modelling, the WaitRodIn pliant event exactly reverses the ef-
fect of WaitRodOut. The behaviour of WaitRodIn is also specified using a modality. This
time it is the MONDEC modality, and it is again stated that the initial and final tem-
pertaure values over the heating period differ by Δ. This time monotonicity guarantees

3 In the WaitRodOut event, the final temperature value is referred to as θ(�R). This is slightly
incorrect technically, since the actual value of θ at the time point referred to by �R falls outside
the left closed right open interval [�L . . . �R) which is the actual period during which any ex-
ecution of WaitRodOut is active. A more technically correct reference to the final temperature
reached would be LLIM(θ(�R)), where LLIM is an additional modality that refers to the left
limit of the expression enclosed. Instead of using such machinery, we have implicitly used a
convention stipulating that any reference to a value at �R is in fact a reference to the relevant
left limit value. This convention is to be understood as applying throughout Fig. 2. (Actually,
since the temperature θ is always continuous in the behaviour specified in the NucMon ma-
chine, there is no difference between the actual �R value, and the corresponding left limit value
at �R, since no mode event of NucMon alters θ discontinuously.)



48 R. Banach

MACHINE NucSkip
CLOCK clk
PLIANT θ
VARIABLES rod
INVARIANTS
θ ∈ R ∧ θ ≤ ΘTOL

rod ∈ {in, out}
EVENTS

INITIALISATION
STATUS ordinary
BEGIN

clk := 0
θ := θ0
rod := out

END
Wait

STATUS pliant
INIT clk = 0
COMPLY skip
END

RodIn
STATUS ordinary
WHEN clk = 3 ∧

rod = out
THEN rod := in

θ := θ +Δ
clk := 0

END
RodOut

STATUS ordinary
WHEN clk = 3 ∧

rod = in
THEN rod := out

θ := θ −Δ
clk := 0

END
END

MACHINE NucMon

CLOCK clk
PLIANT θ
VARIABLES rod
INVARIANTS
θ ∈ R ∧ θ ≤ ΘTOL

rod ∈ {in, out}
EVENTS

INITIALISATION
STATUS ordinary
BEGIN

clk := 0
θ := θ0
rod := out

END
WaitRodOut

STATUS pliant
INIT clk = 0
WHERE rod = out
COMPLY

MONINC(θ) ∧
θ(�R) = θ(�L)+Δ

END
RodIn

STATUS ordinary
WHEN clk = 3 ∧

rod = out
THEN rod := in

clk := 0
END

WaitRodIn
STATUS pliant
INIT clk = 0
WHERE rod = in
COMPLY

MONDEC(θ) ∧
θ(�R) = θ(�L)−Δ

END
RodOut

STATUS ordinary
WHEN clk = 3 ∧

rod = in
THEN rod := out

clk := 0
END

END

MACHINE NucLinear
REFINES NucMon
CLOCK clk
PLIANT θ
VARIABLES rod
INVARIANTS
θ ∈ R ∧ θ ≤ ΘTOL

rod ∈ {in, out}
EVENTS

INITIALISATION
STATUS ordinary
BEGIN

clk := 0
θ := θ0
rod := out

END
WaitRodOut

STATUS pliant
INIT clk = 0
WHERE rod = out
SOLVE
D θ = Δ/3

END

RodIn
STATUS ordinary
WHEN clk = 3 ∧

rod = out
THEN rod := in

clk := 0
END

WaitRodIn
STATUS pliant
INIT clk = 0
WHERE rod = in
SOLVE
D θ = −Δ/3

END

RodOut
STATUS ordinary
WHEN clk = 3 ∧

rod = in
THEN rod := out

clk := 0
END

END

Fig. 2. Hybrid Event-B machines for the nuclear reactor case study
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that the temperature throughout the cooling period remains less than the initial value at
the beginning of the period, θ(�L).

After 3 time units, mode event RodOut is enabled and preempts WaitRodOut. Be-
cause of our particularly simple modelling, RodOut returns the machine to exactly the
state at intialisation, and the whole cycle of behaviour repeats indefinitely.

We now turn to machine NucLinear. This machine refines NucMon. Mostly it is
identical to NucMon. To save space, we have not included the REFINES clauses for the
individual events — it is to be assumed that each event of NucLinear refines the sim-
ilarly named event in NucMon. The only differences between the two machines are in
the WaitRodOut and WaitRodIn pliant events. While these events are specified loosely
in the NucMon machine via modalities that admit an uncountable infinity of realisa-
tions, in the NucLinear machine, their behaviours are defined deterministically, via
the differential equations D θ = ±Δ/3. Since the solutions of these, θ(t − �L) =
θ(�L) ± (Δ/3)(t−�L) are obviously monotonic, and also satisfy the properties needed
at �R = �L + 3, they satisfy the specifications of WaitRodOut and WaitRodIn in
NucMon, and hence we will be able to discharge the correctness PO for pliant event
refinement (5) for these events, which is the only non-identity part of the refinement.

Reexamining the preceding from a requirements perspective, it is reasonable to pre-
sume that the crucial elements of the two machines NucMon and NucLinear were de-
signed at least partly in tandem. The abstract specifications of pliant events WaitRodOut
and WaitRodIn in NucMon must have been designed with at least a good degree of con-
fidence that the rate of increase/decrease of temperature that they demanded was fea-
sible, i.e. that realisations via the detailed behaviours of WaitRodOut and WaitRodIn in
the NucLinear machine were achievable using the physical apparatus available.

Now we turn to the NucSkip machine. Its aim is to capture as much as possible of the
system behaviour within mode events. We see this in the fact that the counterparts of
the two pliant events WaitRodOut and WaitRodIn in the other two machines are required
merely to skip in this one (over an extended time period), something which warrants
the two events being combined into a single Wait event (whose somewhat superfluous
nature is highlighted by the box surrounding it). Along with Wait just skipping, the two
mode events RodIn and RodOut take on the additional job of recording the movements
in temperature via increments of ±Δ.

In fact, with a suitably designed (and nontrivial) retrieve relation, the NucSkip and
NucMon machines are interrefinable. To see this, we would have to rename the vari-
ables in the two machines in order to properly define the retrieve relation. While we
do not pursue this in full detail, we can point out the essentials as follows. The retrieve
relation R(θNucSkip, θNucMon) (which is oriented so that NucSkip is the abstract model and
NucMon is the concrete model) has to take θNucMon and relate it to either θ0 or to θ0+Δ
according to the value of rod, thus:

K(θNucSkip, θNucMon) ≡
(rod = out ∧ θ0 ≤ θNucMon < θ0 + Δ ∧ θNucSkip = θ0) ∨
(rod = in ∧ θ0 + Δ ≥ θNucMon > θ0 ∧ θNucSkip = θ0 + Δ) (24)

The technically most interesting points regarding the refinement concern how the joint
invariant K(θNucSkip, θNucMon) is preserved across the discontinuities at the mode events.
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However, it is not hard to see that it all works out as required. For example, as an
occurrence of RodIn approaches, θNucMon is slightly less than θ0 + Δ, while θNucSkip

is still θ0, satisfying K(θNucSkip, θNucMon). Then, as soon as RodIn completes, θNucMon

immediately starts to decrease from θ0+Δ, while θNucSkip is now θ0+Δ, again satisfying
K(θNucSkip, θNucMon) because of the altered value of rod. Event RodOut is similar, and,
filling in the remaining details, the claimed interrefinability of NucSkip and NucMon
can be established.

The interrefinability allows us to regard NucSkip as either an abstraction or a re-
finement of NucMon. The mathematics of the refinement is in fact typical of digital
implementation techniques, whereby continuous behaviours are implemented by dis-
cretized means, under benign enough conditions. However, in this case, the relatively
long duration of the pliant events, makes viewing NucSkip as an implementation rather
unconvincing.

The view that NucSkip is an abstraction is more productive. Besides allowing for
the passage of time, the pliant events of NucSkip do nothing. Nevertheless, despite this
relative triviality, whether or not the crucial invariant θ ≤ ΘTOL is preserved can still
be determined from such a model. Note that the determination of this requires discrete
computation exclusively, in contrast to making the same determination more directly
from the NucMon or NucLinear machines, a potentially important simplification in the
context of mechanical reasoning.

The NucSkip machine is a whisker away from a conventional Event-B machine. In
fact, noting that the passage of time has no significance in this model, we could dis-
pense with the pliant events completely, and be left with a genuine Event-B machine. In
[17, 18, 4] the authors pursue a very similar approach in comparable examples. There,
the abstract Event-B models just alluded to, are refined to more concrete Event-B mod-
els which handle the continuous behavours by packaging up pieces of continuous be-
havour in lambda abstractions, and assembling the overall behaviour as a succession
of modifications that take place at the discrete transitions that correspond to our mode
events. (This is patterned after the manner in which hybrid systems are modelled in the
action systems framework [9, 7, 8].)

On the one hand, there is little difference between the approach we have developed
here and the works of these other authors, if the aim is to explore the system’s reacha-
bility relation and invariant preservation properties through the extreme values attained
during the system’s runs, these being computed using the discrete versions of the mod-
els. On the other hand, one consequence of using a (pure) discrete Event-B model for
the management of these extreme values, is that the joint invariant defining its refine-
ment to a more detailed model (taking real time and continuous behaviour into account)
is typically restricted to holding only at the moments that the discrete events take place,
i.e. pointwise at a few isolated moments of time, despite the fact that the continuous
behaviour is active all the time. This observation severely weakens the connection be-
tween the models used, and the actual real world requirements that ought to be captured
in the invariants.

To caricature the above in the context of our case study, it is no good (from the
viewpoint of the real world requirements) if we are sure that the reactor temperature
is safe at 3pm and at 4pm (because these are the times at which the discrete Event-B
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model’s events take place and so the invariant can be asserted) and yet the reactor core
is able to suffer a meltdown at 3.30pm (because no event took place then, and so the
invariant could not be asserted at this time).

In our approach, the modalities we have introduced earlier enable us to conveniently
package up useful properties of the continuous behaviors of interest, in a way that al-
lows us to reduce the maintenance of the invariants that we are concerned with to dis-
crete computations very similar to those of the previous approaches, while nevertheless
retaining fully the ability to rigorously assert the invariants needed at all times rele-
vant to the requirements, and not just at those times when discrete events take place.
In this sense we regard our approach as an improvement on the pure discrete Event-B
approach, beyond simply offering a more direct treatment of hybrid behaviour.

The above discussion also highlights the fact that mere (inter)refinability alone can
be a very weak relationship between system models, unless the refinement relationship
is appropriately validated against the application requirements. This is particularly im-
portant when purely discrete models are being related to models which treat real time
as an indispensable element. Therefore it is crucial that the content of any such refine-
ment relationship is critically evaluated. Our case study illustrates this particularly well
since the to-all-intents-and-purposes discrete model NucSkip bears almost no visible re-
lationship to the more ‘realistic’ NucLinear model that purports to reflect the behaviour
of the physical system in a recognisable way. After all, the physical temperature does
not undergo discontinuous changes when the control rod is inserted or withdrawn; and
the physical temperature does not remain invariant in the time intervals between inser-
tions/withdrawals. So if we are to use such a discrete model, it is vital that we can relate
its behaviour to more realistic models via strong and convincing invariants.

10 Conclusions

In the previous sections we briefly reviewed Hybrid Event-B, and then discussed the
motivations for introducing pliant modalities into the user level language. Basically,
these included readability for application designers, so that intuitively straightforward
properties would not be masked by convoluted low level descriptions. Furthermore,
the possibility of simplifying the challenge for mechanised reasoning systems when
dealing with large applications, by raising the level of reasoning abstraction via these
modalities, provided an additional motivating factor. The motivating discussion went
on to consider the interesting issue of where and how in a refinement hierarchy, the
requirements concerning continuously varying entities were to be addressed, given that
these are invariably strongly linked to real world properties of physical apparatus.

We then introduced a selection of simple modalities for functions of time returning
a single real value, illustrating one of them in a case study based on rising and falling
temperature in a nuclear reactor. The intention was not to give an exhaustive list of all
modalities that might ever possibly be useful, but to give a representative selection.

In general, we would expect that an automated environment for supporting Hybrid
Event-B application development would have the capability of incorporating user de-
fined modalities introduced to support specific application.

The connection with automated environments and mechanised reasoning systems
deserves further consideration. One aspect that we have not described in detail in this
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relatively brief paper, is that along with its definition, each modality needs a selection
of properties that a verification environment for some application can readily make use
of. In other words each modality needs to be supplied as a theory containing not only
its definition, but also relevant properties.

Such properties need to be true of course. For very simple modalities such as those
discussed in this paper, the properties of interest have been well known in the mathemat-
ics literature for around two centuries (see for example [16, 13, 12]). So full scale me-
chanical verification for these is perhaps superfluous. On the other hand, as the modali-
ties introduced by users become more sophisticated and less conventional, the need for
mechanical corroboration of their claimed properties becomes more pressing.

The mechanical corroboration issue raises an interesting challenge not present in
the verification of purely discrete systems. This is that, whereas the proof of the prop-
erties of typical pliant modalities requires low level reasoning typical of arguments in
mathematical analysis, usually needing a considerable number of interleavings of quan-
tifications over higher order structures to be considered, the use of such properties in
an application context is overwhelmingly symbolic and algebraic, needing perceptive
strategies for equational substitution of equals for equals, and similar techniques. These
are conflicting requirements for a verification system. The best proposal would therefore
be to use different tools to address these different requirements: a system specifically
geared to higher order reasoning and multiple nested quantifications at the low level,
and a system more geared to decomposition and algebraic reasoning at the applications
level. Such considerations pose an interesting challenge for any tool (eg. the Rodin Tool,
[15]) that contemplates an extension to deal with the capabilities of Hybrid Event-B.
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Abstract. Scholarly advance depends on the interaction of researchers in a large
number of overlapping communities in different disciplines (mathematics, com-
puter science, etc.) and fields within these disciplines (e.g., algebra, formal meth-
ods, etc.). Now that academic publications are largely accessible on the Internet,
these connections are directly available through a number of resources and visual-
ization tools that are available online. Academic links are typically in the form of
co-authors, citations, supervisor/student, etc., forming different types of relations
between pairs of researchers. This paper explores these links with some specific
examples, including visualization of these relationships and their formalization
using the Z notation.

1 Introduction

The development and transmission of scientific knowledge has always relied on collab-
oration [18]. A scientific theory can be considered as a network (or graph) of questions
(vertices) and answers (arcs) [15]. Logic underlies the correct reasoning needed for the
valid development of scientific theories [6]. A Community of Practice (CoP) is a social
science model that can be used as a framework to study the process of producing a Body
of Knowledge (BoK) for a particular field, such as formal methods [3].

In recent years, the speed of transmission and the quantity of knowledge available
has accelerated dramatically, especially with the advent of the Internet and specifically
the World Wide Web. Whereas previously academic papers were published on paper
in journals, conference proceedings, technical reports, books, etc., now all these means
of communication can and often are done largely electronically online. The plethora of
information is becoming indexed more and more effectively.

For example, Google, as well as indexing the Web in general, also has specific facili-
ties for indexing academic publications through Google Scholar (http://scholar.
google.com) and books in general though the more widely known Google Books fa-
cility (http://books.google.com). It has a very complete and up-to-date corpus
of data available compared to other sources. Google also allows users to provide a per-
sonalized presentation of their publications, hand-corrected as needed. The automated
trawling of publications and citations done by Google Scholar works well in general for
publications with a reasonable number of citations, where multiple copies of citations
allows automated refinement of the information. Typically, there is also a “long tail” of
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data on uncited or lesser cited publications, some of which can be spurious. For exam-
ple, it often trawls programme committee data for conferences where all the programme
committee members are considered to be authors.

2 Publication Metrics

With the increasing fashion of attempting to measure research output by governments,
fuelled by limited resources for research funding, a number of metrics have been de-
veloped that aim to provide a measure of the importance of a researcher in their field.
The simplest measure is a citation count, but this has a number of drawbacks. There
is often a significant number of publications with small citation counts that have little
influence in practice. Most researchers have a smaller number of key publications that
have been more highly cited by their peers. Typically, it is these that are most signif-
icant. Some attempts to provide a better indication of an author’s influence based on
their cited publications are presented in this section.

Despite the drawbacks of Google Scholar, it provides one of the best online indica-
tors of an author’s “h-index” [12], which provides one of the most popular indications
of an author’s influence on other researchers. This measures the maximum number of
publications by an author that have citations greater than or equal to that number. This
can be modelled on any given set using the Z notation [16] as follows, using a bag (or
multiset) to record the citation count for each item:

[X ]
h-index : bagX → N

h-index [[ ]] = 0

∀ b : bagX ; x : X | x ∈ dom b ∧ b(x ) = max (ran b) •
h-indexb =

if b(x ) < #b
then

#b − 1
else

h-index({x} −� b) + 1

Note that in Z, bags are defined as bagX == X �→ N1, a partial function from any
set X to non-zero natural numbers. X can be used to represent cited publications, for
example, mapped to the number of citations associated with each of these publications.

It should be noted that this measure needs to be treated with some caution since
different academic fields have significant variation in their publication patterns. For
example, computer scientists tend to have a much lower number of co-authors than
some physicists, who may play a very small role in a highly cited paper.

The number of citations for each individual publication and the total for an author
are also automatically calculated and displayed on an author’s personalized Google
Scholar page (if set up by the author). As well as the h-index, the simpler “i10-index”
is provided, which is just the number of publications of an author that have at least 10
citations. This can be generalized to an arbitrary number of publications as follows:
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[X ]
i-index : N → (bagX → N)

∀n : N; b : bagX •
i-index n b = #(b −� (1 . . n − 1))

The −� operator represents range anti-restriction of a relation above, resulting the the
number of items in b with a count of n or more.

Microsoft Academic Search(http://academic.research.microsoft
.com) provides a competing database of academic publications online, started at Mi-
crosoft’s research laboratory in Beijing, China. While it is not as complete or up to date
as Google Scholar, it does provide better visualization facilities and also allows any in-
dividual to submit corrections for the entire database. These are checked before that are
incorporated, so there is a delay ranging from days to weeks in any submitted updates.
Academic Search also calculates the “g-index” [5] for an individual, a refinement of the
h-index that provides as arguably better indication of an author’s influence. With this
metric, very highly cited publications (perhaps a very significant book for example) are
given more weight than is the case with the h-index. The most cited g papers must have
at least g2 citations in total:

[X ]
g-index : bagX → N

g-index [[ ]] = 0

∀ b : bagX ; x : X | x ∈ dom b ∧ b(x ) = max (ran b) •
g-indexb =

if Σb < #b ∗#b
then

#b − 1
else

g-index({x} −� b) + 1

The Σ summation function can be defined as follows:

[X ]
Σ : bagX → Z

Σ [[ ]] = 0

∀ x : X ; n : Z • Σ{x �→ n} = n

∀ b, c : bagX | dom b ∩ dom c = ∅ • Σ(b ∪ c) = Σb + Σc

3 An Example

In this paper, we take as an example, the leading Chinese computer scientist He Jifeng
[7,14] (see Figure 1) of East China Normal University in Shanghai (see Figure 2),
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illustrating some of the visualization facilities of Academic Search and formalizing
some of the aspects and measures of the relationships of authors and papers through
co-authorship and citations. These links form mathematical graphs [15] that can be
modelled as mathematical relations. The Z notation [11,16] is convenient for present-
ing relations in a structured manner using “schemas”.

Fig. 1. Publication and citation statistics for He Jifeng on Academic Search

Academic Search also lists the conferences and journals for each author in reverse
order of publication count and the main keywords associated with the publications of
an author (see Figure 3). For example, He Jifeng is particularly active in the Software
Engineering Workshop (SEW), the oldest software engineering event in the world (see
Figure 4).

4 Formal Model in Z

The data available in facilities link Google Scholar and Microsoft Academic Search
can be formalized mathematically at an abstract level. Here, a formal model of some
aspects is presented using the Z notation [16]. Z has a convenient schema notation that
allows a model to be gradually built up based on previous mathematical descriptions
and underlying given sets, here representing people and publications such as academic
papers.

[PEOPLE ,PAPERS ]

Authors are people who write publications such as papers. These papers can cite a
number of other papers as references, but not normally themselves. Papers that refer-
ence each other or even cycles of references are possible, although are not the normal
case. Typically references are in the form of a list at the end of the document that can
be extracted reasonably accurately and automatically by software. A given paper may
have citations from other papers in their list of references.
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Fig. 2. Top computer science authors from East China Normal University on Academic Search

Relationships
authors : PEOPLE ↔ PAPERS
references , citations : PAPERS ↔ PAPERS

references ∩ idPAPERS = ∅

dom references ⊆ ranauthors

citations = references∼

An author has a number of co-authors from all the publications that they have writ-
ten and also a number of associated authors who have cited that author’s publications
in their own publications. An author cannot be their own co-author, but they can cite
themselves.
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Fig. 3. Top conferences, journals and keywords associated with He Jifeng’s publications on Aca-
demic Search

Fig. 4. Top authors and publication/citation statistics for the Software Engineering Workshop on
Academic Search
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Authors
Relationships
coauthors , citingauthors : PEOPLE ↔ PEOPLE

coauthors = (authors o
9 authors

∼) \ idPEOPLE

citingauthors = authors o
9 citations o

9 authors
∼

Academic search allows the visualization of the main co-authors (see Figure 5) and
the main citing authors (see Figure 6) for anyone in the database. Figure 5 represents a
graphical view of a subset of the relation {author}�related�coauthors(| {author} |)
for a particular author in the centre. Connections between co-authors are shown, as well
as with the main author under consideration. Figure 6 shows a similar graphical view
of a subset of the relation {author} � citingauthors , again for a particular author at
the top left of the diagram.

If an author is a co-author of a particular author, then the reverse is also true.

� coauthors = coauthors∼

Authors can be related to other authors transitively via co-authorship of a number of
papers.

Related
Authors
related : PEOPLE ↔ PEOPLE

related = coauthors+ \ idPEOPLE

It can be of interest to find the links transitively through co-authors for a pair of au-
thors. The two author’s collaborative distance can be measured as the minimum num-
ber of links needed to connect them through co-authorship. For direct co-authors, this
is 1. This has led to the concept of a collaborative distance between two authors, via
co-authorship of publications. For example, the 20th-century Hungarian mathematician
Paul Erdős co-authored papers with over 500 people [4], probably making him the most
prolific mathematical collaborator ever. The collaborative distance from Erdős is a mea-
sure of the level of involvement of a researcher in the field of mathematics. Since com-
puter science is a related field, computer scientists, especially those working in more
theoretical areas, are often quite closely related to Erdős through co-authorship too. The
concept of the “Erdős number”, the collaborative distance from Erdős, has emerged as
a metric of involvement in mathematical research and also related disciplines like com-
puter science [4]. Paul Erdős himself is deemed to have an Erdős number of 0. Other
authors can be assigned a number that is the minimum length of the co-authorship path
that links them with Erdős, assuming they are related by such a path of course.

erdos : PEOPLE
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Fig. 5. Main co-authors of He Jifeng on Academic Search

ErdosNumber
Related
erdosnumber : PEOPLE � �→ N

erdosnumber(erdos) = 0

∀ author : PEOPLE | author ∈ related(| {erdos} |) •
erdosnumber(author) =

min(erdosnumber(| coauthors(| {author} |) |)) + 1

All co-authors of Erdős have an Erdős number of 1.

� erdosnumber(| coauthors(| {erdos} |) |) = {1}
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Fig. 6. Main citing authors for He Jifeng on Academic Search

Authors who have written publications with co-authors of Erdős have an Erdős number
of 2. This can be repeated iteratively, following the path of minimum length when there
is more that one path.

Academic Search provides a visualization of a selecton of the shortest paths between
any two co-authors, with Paul Erdős as the default second author. See Figure 7 for an
example. Here the minimum distance between the selected author and Erdős via author
nodes in the graph is three, so the author has an Erdős number of 3.

Only some people are published authors. These people and the publications they
have produced are of special interest academically:

PublishedPapers
ErdosNumber
published : FPEOPLE
papers : FPAPERS

published = dom authors
papers = ran authors
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Fig. 7. Connections with Paul Erdős for He Jifeng on Academic Search

The publications of a specific author can be of particular interest too:

PapersBy
PublishedPapers
papersby : PEOPLE � �→ FPAPERS

∀ author : PEOPLE | author ∈ published •
papersby(author) = authors(| {author} |)

The number of citations that a paper has received is also of interest as a rough metric
for the importance of that paper.

NoOfCitations
PapersBy
noofcitations : PAPERS � �→ N

∀ p : PAPERS | p ∈ dom citations •
noofcitations(p) = #(citations(| {p} |))

Papers with a non-zero citation count for a particular author are of special interest.
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Fig. 8. Top co-authors with He Jifeng as listed on Academic Search

AuthorsCitedPapers
NoOfCitations
authorscitedpapers : PEOPLE � �→ bagPAPERS

∀ author : PEOPLE | author ∈ published •
authorscitedpapers(author) = papersby(author) � noofcitations −� {0}
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The h-index, g-index, and i10-index are all metrics for an author’s influence in their
field, although interpretation of their significance depends on various factors, including
the nature of publishing patterns in the author’s discipline, the length of time the au-
thor has been active, etc. These can be derived for a given author from the previously
presented generic definitions:

Indexes
AuthorsCitedPapers
Hindex ,Gindex : PEOPLE � �→ N

Iindex : N → (PEOPLE � �→ N)

Hindex = authorscitedpapers o
9 h-index

Gindex = authorscitedpapers o
9 g-index

∀ i : N • Iindex i = authorscitedpapers o
9 i-index i

5 Conclusions

This paper has presented visualization and formalization of academic collaboration on
publications, using the online Academic Search facility and the Z notation respectively.
A number of metrics have been covered including the Erdős number, h-index, g-index,
and i10-index. Other metrics could easily be formalized if desired.

Z has proved to be an elegant formalism for capturing precise descriptions of various
aspects of academic collaboration through co-authorship and citation of publications.
This information is increasingly readily available online, allowing convenient explo-
ration and visualization of these relationships and publication metrics. The formaliza-
tion could easily be augmented if required to capture further details such as temporal
information using the year of publication of papers, supervisor relationships for doctoral
students, etc.
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Abstract. The Rodin tool for Event-B supports formal modelling and
proof using a mathematical language that is based on predicate logic and
set theory. Although Rodin has in-built support for a rich set of operators
and proof rules, for some application areas there may be a need to extend
the set of operators and proof rules supported by the tool. This paper
outlines a new feature of the Rodin tool, the theory component, that
allows users to extend the mathematical language supported by the tool.
Using theories, Rodin users may define new data types and polymorphic
operators in a systematic and practical way. Theories also allow users to
extend the proof capabilities of Rodin by defining new proof rules that
get incorporated into the proof mechanisms. Soundness of new definitions
and rules is provided through validity proof obligations.

1 Introduction

Abrial’s Event-B is a formalism for refinement-based development of discrete
event systems [1]. Its deployment is supported by the Rodin toolset which in-
cludes proof obligation generation and verification through a collection of me-
chanical provers [2]. An Event-B machine consists of a collection of variables,
invariants on those variables and a collection of guarded events that may update
the machine variables. An Event-B development consists of a collection of ma-
chines linked by refinement and refinement is verified through proof obligations
for preservation of gluing invariants between abstract and concrete variables.
Abrial’s book [1] contains a range of refinement case studies in Event-B and many
other Event-B case studies have been undertaken by academic researchers (e.g.,
wiki.event-b.org/index.php/Event-B_Examples) and by industry (e.g.[17]).

In Event-B, types, axioms, invariants, guards and actions may be defined using
a set-theoretic mathematical language. While the mathematical language sup-
ported by the Rodin tool is rich (including operators on integers, sets, relations
and functions), there is always a need to extend the mathematical language
to broaden further the expressivity of the modelling notation. Because proof
plays such a central role in the Event-B approach, hand-in-hand with any new
mathematical operator definitions, there is a need to support proofs involving
those operators. The need for an extensible mathematical language and theories
in Event-B was envisaged by Abrial [3] where the need for a generic extension
mechanisms, as found in languages such as PVS [15] and Isabelle [14], was iden-
tified. We refer to the process of defining new mathematical types and operators,
together with associated proof rules, as theory extension.
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As well as supporting a rich mathematical language, the Rodin tool provides
a range of automatic and interactive mechanical provers for proving obligations
expressed in that language. In the earlier releases of Rodin, there were no mech-
anisms available for users to define new operators nor to extend the mechani-
cal provers with new proof rules. Such extensions could only be undertaken by
modifying the tool itself. This paper outlines recent work that overcomes this
limitation, making theory extension part of the modelling process that can be
undertaken in a systematic way without having to modify the Rodin tool. This
has been achieved by adding a major new construct, the Theory component, to
Event-B. This feature dis available in Rodin as a plug-in1.

This paper outlines the theory component, how it enables the process of the-
ory extension in the Event-B language and how it is supported in the Rodin tool.
By allowing commonly-occurring structures to be captured as generic types, op-
erators and proof rules, we allow these structures to be reused, thus reducing
modelling and proof effort in the longer term. Genericity is achieved by support-
ing the definition of polymorphic operators and proof rules. These polymorphic
operators and rules are instantiated with more specific types in modelling and
proof, e.g., an operator with an argument of type P(α) is instantiated with an
argument of type P(Z).

In the earlier releases of Rodin, types were defined using set theory (power set
and cartesian product) and there was no support for inductive data types (such
as lists or trees). The new theory component supports the definition of inductive
data types, along with recursive operator definitions and proof by induction.

It is important that any theory extensions are sound. Verifying soundness of
theories is achieved through the definition of soundness proof obligations. When
a modeller defines a new theory, soundness proof obligations are generated and
then proved with the existing Rodin framework. This follows the standard Event-
B approach where consistency of models and correctness of refinement between
models is verified by discharging standard proof obligations.

This paper is structured around the main elements that may be contained
in a theory, namely, operator definitions, datatype definitions, rewrite rules and
inference rules. After presenting the theory component, we address important
related work on proof in Event-B and mechanised theorem proving in general
(Section 10). We start with a brief overview of the core Event-B mathematical
language.

2 Event-B Mathematical Language

In the Event-B mathematical language, expressions and predicates are separate
syntactic categories. Expressions are defined using literals (e.g., 1), constants,
variables and polymorphic operators (e.g., set union). Expression operators can
have expressions as arguments – such an operator op with arguments x1 to
xn is written in the form op(x1, . . . , xn). Operators can also have predicates as

1 wiki.event-b.org/index.php/Theory_Plug-in
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arguments, e.g., (λx · P (x) | E(x)) where P (x) is a predicate and E(x) is a
expression.

Predicates, on the other hand, are built from predicate operators (e.g., ∈
,⊆), logical connectives and quantifiers. Predicate operators take expressions as
arguments e.g., x ∈ S has x and S as arguments.

Expressions have a type and we use α to denote types. Types are constructed
as follows:

1. a basic set such as Z or a carrier set defined in an Event-B context,
2. a power set of a type, written P(α),
3. a cartesian product of two types, written α1 × α2.

The type of a expression operator op with arguments x1 . . . xn is defined using
typing rules of the form:

type(x1) = α1 ... type(xn) = αn

type(op(x1, ..., xn)) = α
.

Arguments of a basic predicate must satisfy typing rules, e.g., the typing rule
for the basic predicate finite(R) is:

type(R) = P(α).

Note that types can be used as set expressions within the Event-B mathematical
language, e.g., Z is both a type and a set expression. Furthermore, the type
operators (P and×) have a second role as operators on sets. For example, suppose
T is a basic type and S is a subset of T , then the expression P(S) is a valid
expression. For set expressions S and R, we have

R ∈ P(S) ⇔ R ⊆ S

o1 �→ o2 ∈ S × R ⇔ o1 ∈ S ∧ o2 ∈ R

Alongside typing rules, expression operators have well-definedness conditions.
WD(E) is used to denote the well-definedness predicate of expression E. Proof
obligations are generated (if necessary) to establish the well-definedness of ex-
pressions appearing in models. To illustrate, we consider the expression card(E)
for which we have:

WD(card(E)) ⇔ WD(E) ∧ finite(E).

Functions versus operators. It is instructive to consider the relationship between
operators and function application in Event-B. An Event-B function f ∈ A �→B
is a special case of a set of pairs so the type of f is P(type(A)× type(B)). The
functionality of f is an additional property defined by a predicate specifying a
uniqueness condition:

∀x, y, y′ · x �→ y ∈ f ∧ x �→ y′ ∈ f ⇒ y = y′
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The domain of f , written dom(f), is the set { x | ∃y · x �→ y ∈ f }. Application
of f to x is written f(x) which is well-defined provided x ∈ dom(f).

It is important to note that f is not itself an operator, it is simply a set ex-
pression. The operator involved here is implicit – it is the function application
operator that takes two arguments, f and x. To make the operator explicit,
function application could have been written as apply(f, x), where apply is the
operator and f and x are the arguments. However, in the Rodin tool, the short-
hand f(x) must be used.

Variables in the mathematical language are typed by set expressions. This
means, for example, that a variable may represent a function since a function is a
special case of a set (of pairs). Variables may not represent expression operators
or predicates in the mathematical language. This means that, while we can
quantify over sets (including functions), we cannot quantify over operators or
predicates in Event-B.

3 Theory Component

Models in Event-B are specified by means of contexts (static properties of a
model) and machines (dynamic properties of a model). A theory is a new kind
of Event-B component for defining theories that may be independent of any
particular models. A theory is the means by which the mathematical language
and mechanical provers may be extended.

We describe the overall structure of Event-B theories. A theory component
has a name, a list of global type parameters (global to the theory), and an arbi-
trary number of definitions and rules:

theory name
type parameters T1, . . . , Tn

{ 〈 Predicate Operator Definition 〉
| 〈 Expression Operator Definition 〉
| 〈 Data Type Definition 〉
| 〈 Rewrite Rule 〉
| 〈 Inference Rule 〉 }

An Event-B theory has a name which identifies it. A theory can have an arbitrary
number of type parameters which are pair-wise distinct, in which case the theory
is said to be polymorphic on its type parameters. In the following it is important
to recall that the mathematical language has two syntactic categories, predicates
and expressions. We look at each form of definition and rule in turn in the
following sections.

4 Defining New Predicate Operators

A new Event-B polymorphic operator can be defined by providing the following
information:
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1. Parser Information: this includes the syntax, the notation (infix or prefix),
and the syntactic class (expression or predicate).

2. Type Checker Information: this includes the types of the child arguments,
and the resultant type if the operator is a expression operator.

3. Prover Information: this includes the well-definedness of the operator as well
as its definition which may be used to reason about it.

A predicate operator defines a property on one or more expressions. For example,
the predicate x divides y holds when x is an integer divisor of y. This predicate
is defined in the following way:

predicate divides
infix
args x : Z, y : Z
condition x ∈ N ∧ y ∈ N

definition ∃a · y = a × x

This declares a new operator divides. It is declared as infix with two arguments
x and y both of type Z. This declaration makes the predicate E divides F
syntactically valid for integer expressions E and F . The condition specifies a
well-definedness condition – in this case that x and y must be naturals (N ⊆ Z).
The final clause provides the definition of x divides y. That is, we have

x divides y ⇔ ∃a · y = a × x

A new predicate operator may be infix or prefix. For example, if divides had
been declared as prefix, then divides(E, F ) would become syntactically valid.
An infix predicate must have exactly two arguments.

Though in the above case the arguments are typed with the predefined type
Z, in general arguments may be typed using some of the type parameters defined
for the theory which makes the predicate polymorphic on those type parameters.

The general structure of a basic predicate definition is as follows:

predicate Identifier
( prefix | infix )
args x1 : α1, . . . , xn : αn

condition P (x1, . . . , xn)
definition Q(x1, . . . , xn)

5 Defining New Expression Operators

While a predicate operator forms a predicate from a number of expressions,
an operator forms an expression from a number of expressions. We consider an
example involving the representation of sequences as functions whose domains
are contiguous ranges of naturals starting at 1, i.e., functions from (1..n)→ T .
The seq operator takes a set s and yields all sequences whose members are in s:
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operator seq
prefix
args s : P(T )
definition { f, n · f ∈ (1..n)→ s | f }

Here seq is declared to be a prefix operator with a single argument represented by
s of type P(T ). Since T is a type parameter, this means that seq is polymorphic
on type T . The final clause defines the expression seq(T ) in terms of the existing
expression language. The definition means we have that:

seq(s) = { f, n · f ∈ (1..n)→ s | f }

Note that the result type of an operator is inferred from the definition. In this
case, the type of seq(s) is P(Z↔ T ), that is, a set of relations2 between integers
and the polymorphic type T . The following is an example of another prefix
operator size that yields the size of a sequence:

operator size
prefix
args m : Z↔ T
condition m ∈ seq(T )
definition card(m)

Here, the well-definedness condition is stronger than the type declaration on m,
requiring that m is an element of seq(T ).

Proof obligations are generated to verify the well-definedness of definitions.
The validity proof obligation for operator definitions ensures that expressions
involving that operator are well-defined. The proof obligation specifies that, as-
suming the arguments are well-defined and the explicit well-definedness condition
for the operator holds, then the definition itself is well-defined. An important
aspect of defining an operator is the well-definedness condition to be used. A
simple strategy may use the well-definedness of the operator’s direct definition.
An advantage of a user-supplied condition is the possibility of strengthening
well-definedness conditions to simplify proofs. In order to ensure that a supplied
condition is in fact stronger than the default (i.e., the one inferred from the
direct definition), proof obligations are generated.

For example, the definition of size leads to a proof obligation requiring that
card(m) is well-defined whenever m ∈ seq(T ). This is provable from the condi-
tion that m is a sequence since any element of seq(T ) has a finite domain and
card(m) is well-defined when m is finite (in Section 8 this is expressed as an
inference rule).

Operators may be infix in which case they may be declared to be associative
and commutative. For example, the concatenation operator on sequences, de-
clared as follows, is associative:

2 α1 ↔ α2 is shorthand for P(α1 × α2)
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operator �

infix assoc
args m : Z↔ T , n : Z↔ T
condition m ∈ seq(T ) ∧ n ∈ seq(T )
definition m ∪ { i, x · i �→ x ∈ n | size(m) + i �→ x }

The general form of an operator definition is as follows:

operator Identifier
( prefix | infix ) [assoc] [commut]
args x1 : α1, . . . , xn : αn

condition P (x1, . . . , xn)
definition E(x1, . . . , xn)

A conditional expression of the form, COND(p, e1, e2), may be used to define
operators (p is a predicate while e1 and e2 are expressions). For example, the max
operator, that yields the maximum of two integers, is defined using a conditional
expression as follows:

operator max
infix assoc commut // declare max to be associative and commutative
type parameters T
args x : Z, y : Z
definition COND( x ≥ y , x , y )

Declaring an operator to be associative and commutative gives rise to proof
obligations to verify these properties. Since the Rodin provers automatically
make use of commutativity and associativity properties of operators, to avoid
circular proofs, the proof obligations must be specified in terms of the operator
definition rather than the operator itself, e.g., the above declaration of max will
give rise to the following commutativity proof obligation:

COND( x ≥ y , x , y ) = COND( y ≥ x , y , x )

6 Defining New Datatypes

A new datatype declaration defines a new type constructor together with con-
structor and destructor functions for elements of the new type. For example the
usual inductive list type constructor is defined as follows:

datatype List
type args T
constructors

nil
cons( head : T, tail : List(T ) )
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This defines

– A new type constructor List. List(T ) becomes a type for any type T .
– A set operator List. List(s) is a set expression – the set of lists whose mem-

bers are in set s
– Two constructors nil and cons
– Two destructors head and tail
– An induction principle on List

The general form of an inductive data definition is as follows:

datatype Ident
type args T1 . . . Tn

constructors

c1( d1
1 : α1

1, · · · , dj
1 : αj

1 )
...
cm( d1

m : α1
m, · · · , dk

m : αk
m )

Constructor and destructor names must be distinct. Types in Event-B are as-
sumed to be non-empty, and this must hold for datatypes. As such, each newly
defined datatype must have a base constructor, i.e., a constructor that does not
refer to the datatype being defined. Here each αi

j is a type that may include

occurrences of the type being defined Ident(T1 . . . Tn). If αi
j does include occur-

rences of Ident(T1 . . . Tn), then αi
j must be admissible, i.e., αi

j is Ident(T1 . . . Tn)
or is formed from a cartesian product or an existing inductive data type. With-
out the admissibility check, the datatype cannot be constructed. In the context
of Event-B, the admissibility check rules out the following datatype definition

t(α) ::= C1 | C2(P(t))

since there is no injective function of type P(t)→ t by Cantor’s theorem.
Proof by induction is supported in Rodin though a special reasoner that gen-

erates an induction scheme for any particular hypothesis or goal of a proof.

6.1 Pattern Matching with Datatypes

When defining basic predicates and operators on inductive types, the usual pat-
tern matching may be used. For example the size function on inductive lists is
defined as follows:

operator size
prefix
args a : List(T )
definition

match a
nil 0

cons(x, b) 1 + size(b)
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Since a is of type List(T ) the argument a may be matched against each of the
constructors for List.

predicate member
prefix
args x : T, a : List(T )
definition

match a
nil false

cons(y, b) x �= y ⇒ member(x, b)

Pattern matching and conditional expressions can be used together. Here is an
example of an operator definition that removes duplicates in a list and uses a
conditional expression:

operator remdup
prefix
args a
condition a ∈ List(T )
definition

match a
nil nil

cons(x, b) COND( member(x, b) , remdup(b) , cons(x, remdup(b)) )

Type constructors as set operators. In Section 2 we stated that type constructors
(P and ×) also serve as set expression operators. Data type constructors can
also be used as set operators. For example, suppose S is a set expression of type
P(T ), then List(S) is a set expression specifying the set of inductive lists whose
elements all come from S. List(S) satisfies the following properties:

nil ∈ List(S)

cons(x, t) ∈ List(S) ⇔ x ∈ S ∧ t ∈ List(S)

7 Rewrite Rules

A rewrite rule is used in automatic or interactive proof to rewrite an expression
or predicate in order to faciliate proof. A rewrite involves a left hand pattern and
one or more right hands. Each right hand may be guarded by some condition. For
example, the following rewrite rule defines two ways of rewriting the expression
card(i..j) depending on a condition on i and j (i..j is the set of integers between
i and j):

rewrite CardIntegerRange
auto manual complete
vars i : Z, j : Z
lhs card(i..j)
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rhs
i ≤ j j − i + 1
i > j 0

This rule states that card(i..j) may be rewritten to j−i+1 if i ≤ j and rewritten
to 0 if i > j. The above declaration means that the rewrite rule can be used
in automatic and interactive proof modes. The ‘complete’ declaration means
that the disjunction of the guards must be true. The variables of the rule (i
and j) serve as meta variables that can be matched with any expression of the
appropriate type.

The general form of a rewrite rule for expressions is as follows (where the lhs
and rhs are expressions):

rewrite Name
[auto] [manual] [complete]
vars x1 : α1, . . . , xn : αn

condition P (x1, . . . , xn)
lhs E(x1, . . . , xn)
rhs

Q1(x1, . . . , xn) E1(x1, . . . , xn)
...

...
Qm(x1, . . . , xn) Em(x1, . . . , xn)

A number of validity obligations are required to ensure the soundness of a rewrite
rule:

– The conditions must be well-defined: P ∧ W D(E) ⇒ W D(Qi)
– Each rhs must be well-defined: P ∧ W D(E) ∧ Qi ⇒ W D(Ei)
– Each rhs must equal the lhs: P ∧ Qi ⇒ E = Ei

In addition, if the rule is declared to be case complete, then a completeness
condition is required (P ⇒ Q1 ∨ · · · ∨ Qm).

The general form of a rewite for predicates is similar (with the lhs and rhs
being predicates). The validity obligations are similar to those for expression
rewrites.

8 Inference Rules

An inference rule has a list of hypothesis and a consequent. It is parameterised
by one or more variables. For example, the following inference rule has two
hypotheses and a consequent that may be inferred from the hypotheses:

rule FiniteSeq
vars s : P(T ), m : Z↔ T
given

m ∈ seq(s)
infer

finite(m)
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Here is another inference rule showing that sequence concatenation is closed
for elements of seq(s):

rule Concat1
vars s, m, n
given s ⊆ T

m ∈ seq(s)
n ∈ seq(s)

infer m � n ∈ seq(s)

The general form of an inference rule is as follows:

rule Name
vars x1, . . . , xn

given
P1(x1, . . . , xn), . . . , Pm(x1, . . . , xn)

infer
Q(x1, . . . , xn)

A number of validity obligations are required to ensure the soundness of an
inference rule:

– The rule must be well-defined: W D(P1 ∧ · · · ∧ Pm) ⇒ W D(Q)
– The rule must be provable: P1 ∧ · · · ∧ Pm ⇒ Q

Using Inference Rules. Inference rules can be used in a backward style as well
forward style. If used in backward style, the prover discharges or splits the goal.
If applied in a forward style, more hypotheses get generated.

9 Axiomatic Definitions

The constructs we have outlined so far in this paper allow for direct definitions
of new operators, inductive data types and recursive definitions of new oper-
ators over inductive types. For some types and operators this is not enough.
For example, theories of integers and reals are typically defined axiomatically.
That is, the types are not inductive data types, rather they are assumed to exist
axiomatically and are supplied with a set of basic operators whose properties
are defined axiomatically. In the case of integers and reals, these operators are
arithmetic operators that satisfy algebraic properties such as commutativity, as-
sociativity, distribution and simplification properties. We are currently adding
support for axiomatic types and operators to the theory extension mechanism
in Rodin3. One difference with the direct and recursive definitions is that we do
not define full soundness obligations for the axiomatic definitions. For now, we
assume that the theory modeller has ensured the soundness of a collection of ax-
ioms externally. We can define basic well-definedness obligations on the axioms
however.

3 http://wiki.event-b.org/index.php/Theory_Plug-in

http://wiki.event-b.org/index.php/Theory_Plug-in
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Event-B already supports lambda expressions of the form (λx · P (x) | E(x))
where P is a constraint on x and the lambda function yields E(x) for x satisfying
P . Axiomatic definitions in theories also allow us to mimic other binder operators
by defining operators on lambda expressions. For example, consider summation
over a collection of integers that sums each expression E(x) for every x satisfying
predicate P :

Σx · P (x) | E(x)

This can be represented by defining a SIGMA operator on functions with the
form

SIGMA(λx · P (x) | E(x))

SIGMA is defined as a new operator on functions satisfying the following axioms:

SIGMA(∅) = 0

SIGMA({x �→ y}) = y

SIGMA(s ∪ t) = SIGMA(s) + SIGMA(t) provided s ∩ t = ∅

10 Related Work

Event-B theories are similar in principle to Isabelle [13] and PVS [15], though
Isabelle and PVS theories are wider in scope. Theories in Isabelle and PVS can
be used to carry significant modelling and reasoning activities. We argue that
combining modelling and theory development in Event-B provides a comparable
level of sophistication to that of Isabelle and PVS theories. Event-B modelling
uses set theory which can provide powerful expressive power that is close to
higher order logic [4]. The addition of the theory component ensures that poly-
morphism can be exploited to enhance the expressive power of the Event-B
mathematical language.

The architecture of proof tools continues to stir up much heated debate. One
of the main talking points is how to strike a reasonable balance between three
important attributes of the prover: efficiency, extensibility and soundness. In [8],
Harrison outlines three options to achieve prover extensibility:

1. If a new rule is considered to be useful, simply extend the basic primitives
of the prover to include it.

2. Use a full programming language to specify new rules using the basic prim-
itives. The new rules ultimately decompose to these primitives.

3. Incorporate the reflection principle, so that the user can add and verify new
rules within the existing infrastructure.

Many theorem provers including Isabelle [13] and HOL [6] employ the LCF
(Logic of Computable Functions) approach of Milner [11]. The functional lan-
guage ML [12] is used to implement these systems, and acts as their meta-
language. The approach taken by such systems is to use ML to define data types
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corresponding to logical entities such as expressions and theorems. A number of
ML functions are provided that can generate theorems; these functions imple-
ment the basic inference rules of the logic. The ML type system ensures that
theorems are only constructed by the aforementioned functions. Therefore, the
LCF approach offers both “reliability” and “controllability” of a low level proof
checker combined with the power and flexibility of a sophisticated prover [8]. On
the flip side, however, a major drawback for this approach is that each newly
developed proof procedure must decompose into the basic inference rules. There
are cases where this may not be possible or indeed an efficient solution, e.g., the
truth table method for propositional logic [5].

The PVS [15] system follows a similar approach to LCF with more liberal
support for adding external provers. This liberality comes at a risk of intro-
ducing soundness bugs. It, however, presents the user with several choices of
automated provers which may ease the proving experience. A comparison be-
tween Isabelle/HOL and PVS from a user’s point of view is presented in [7].
Interestingly, it mentions that “soundness bugs are hardly ever unintentionally
explored” during proof, and that “most mistakes in a system to be verified are
detected in the process of making a formal specification”. A similar experience
is reported when using the Rodin platform [10].

Schmalz [18] defines the Event-B logic using a shallow embedding in Isabelle/
HOL [14]. Schmalz provides a comprehensive specification of the logic of Event-
B. He gives semantics, devises soundness preserving extension methods, develops
a proof calculus similar to [9], and proves its soundness. He presents a formal
language for expressing rules (including non-freeness conditions) and shows how
to reason about the soundness of Event-B rules. The Event-B type operators
such as P and × are defined by means of their Isabelle/HOL counterparts. Type
substitutions are central to a logic that supports polymorphism, and are also
introduced. Binders, expressions and predicates are introduced and are assigned
Isabelle/HOL semantics by means of a number of higher-order logic constructs.
Note that Schmalz considers predicates to be HOL terms with a boolean type B.
Ways of conservatively extending the Event-B logic are outlined and the proof
system of Event-B is shown to be sound [18].

11 Concluding

Polymorphic structures such as sequences, bags and stacks are very useful and
common modelling elements, but they are absent from the core syntax of Event-
B. Prior to our work, functions could be used to mimic operators through ax-
iomatic definitions in Event-B contexts (e.g. see [16]) – but these functions are
not polymorphic. Furthermore, from our experience of using the Rodin tool, if a
new proof rule is required, a bureaucratic process has to be initiated where re-
sources have to be allocated depending on the urgency of the request. We argue
that the practical contributions of the work outlined here are that it:

– complements the Event-B methodology and make it a more rounded formal-
ism,



80 M. Butler and I. Maamria

– provides an appealing platform to end users because it has facilities for meta-
reasoning to complement reasoning and modelling in Event-B,

– reduces the dependency on the Java programming language and specialised
knowledge of Rodin architecture in order to extend the language and proof
mechanisms.

Significant effort is required to develop sound theories. Theory hierarchies are
a useful structuring mechanism to create operator taxonomies as is the prac-
tice in Isabelle [13]. The effort required to create and validate theories can be
decomposed into two large phases:

1. Theory specification phase: new datatypes, operators and proof rules are
specified. In this phase, particular attention should be paid to specifying
any auxiliary operators that facilitate the use of the main newly introduced
structures. In the case of the sequence theory, the seq operator is the main
structure of the theory, and a number of auxiliary operators, e.g., emptySeq,
seqHead and seqT ail, are also defined.

2. Theory validation phase: in this phase, proof obligations are considered and
discharged by the user. This phase helps with uncovering errors in the spec-
ification of operators and proof rules, in the same way that interactive proof
can reveal errors in models.

Therefore, theory development is an iterative process. It is a recurring observa-
tion that developing sound theories may take at least the same amount of effort
as when developing consistent models. However, the major advantage of using
theories is the reusability of definitions thanks to their polymorphic nature. Fi-
nally, the familiarity of our approach to users (reactive development, the use of
proof obligations and the use of the existing Rodin user interface for specifying
and validating theories) ensures that the theory component provides a practical
way to extend the Event-B language and proof infrastructure.
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Abstract. Simulink is widely used by engineers to provide graphical
specifications of control laws; its frequent use to specify safety-critical
systems has motivated work on formal modelling and analysis of Simulink
diagrams. The work that we present here is complementary: it targets
verification of implementations by providing a refinement-based model.
We use CircusTime, a timed version of the Circus notation that com-
bines Z, CSP, and Morgan’s refinement calculus with a time model, and
which is firmly based on Hoare & He’s Unifying Theories of Program-
ming. We present a modelling approach that formalises the simulation
time model that is routinely used for analysis. It is distinctive in that we
use a refinement-based notation and capture functionality, concurrency,
and time. The models produced in this way, however, are not useful for
program verification, due to an idealised simulation time model; there-
fore, we describe how such models can be used to construct more realistic
models. This novel modelling approach caters for assumptions about the
programming environment, and clearly establishes the relationship be-
tween the simulation and implementation models.

Keywords: Simulink, Z, CSP, Circus, time, refinement, modelling.
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1 Introduction

The use of Simulink diagrams [17] for the specification of control laws is per-
vasive in industry. Various approaches enrich the current Simulink facilities for
analysis of diagrams with techniques based on formal methods [15,2,6]. Denney
& Fischer [7], for example, propose the use of the AutoCert verification sys-
tem to construct a natural language report explaining where code uses specified
assumptions and why and how it complies with requirements (though, signifi-
cantly, not for timing aspects). In contrast, our work recognises the need to verify
implementations. Automatic code generation does not usually provide enough
assurance: even when generators are reliable, restrictions on performance or re-
sources often require changes to the code.

In previous work [4,3], we covered functional and behavioural aspects of dia-
grams and implementations. We cater for the inherent parallelism in diagrams
and the verification of complete programs, including their scheduling compo-
nents. For modelling and reasoning, we use Circus [20], a flexible integration of
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Z [30], CSP [23], and Morgan’s refinement calculus [18], with formal foundations
underpinned by Hoare & He’s Unifying Theories of Programming (UTP) [13].
Circus is a mature notation with a sound semantics implemented in tools: it was
first introduced in 2001 in [28], given a formal semantics in 2002 [29], and sub-
sequently mechanised in ProofPowerZ, a HOL-based theorem prover, in [20,21],
and in Isabelle/HOL [8,9].

We generate formal models automatically, and apply a refinement tactic in
ProofPowerZ to prove that the model of the program conforms to (refines) the
model of the diagram. Automation is enabled by knowledge of the structure of
the automatically generated models, and of the correspondence between diagram
and program components.

What we have not covered before is the time model embedded in the diagrams.
In [4,3], we use synchronisation to model the cycles of the diagram, which are in
fact defined by simulation time parameters. In this approach, we cannot cater
for multi-rate diagrams and, most importantly, have to consider partial program
models that do not capture the use of timing primitives (like delay commands).
To produce a model of a program, we consider a slice that removes all variables
related to time control; this can potentially mask an error.

In this paper we present a novel modelling approach to cover the time prop-
erties of diagrams. Our approach uses CircusTime [27], a timed version of Cir-
cus with both timeout and deadline operators. CircusTime was first introduced
in 2002 in [25], and given a complete formal semantics in UTP in [26,27].

In our new approach, we capture the idealised-time model adopted in the
Simulink simulator as well as its data-flow model, which embeds some calcula-
tions (functional properties) and concurrent behaviour. Since we are interested
in software implementations, we consider only diagrams with a discrete-time
model; but we can cover multi-rate diagrams as well.

The idealised-time model of the simulation is not implementable, since it
involves infinitely fast computations. So we also provide a realistic model used
by typical implementations that run on real-time computers. This programming
model embeds assumptions about the environment; in particular, we consider the
assumptions adopted in the standard Simulink code generator, but our approach
can be adapted for different real-time computers. The timed programming model
is the appropriate starting point for the verification of programs.

The programming model is written in terms of the simulation model, so that
we formalise the way in which the assumptions made about the programming
environment affect the simulation model. Engineers use the simulation model in
the analysis and validation of diagrams and corresponding control laws, so it is
important to understand the way in which it is reflected in programs. Addition-
ally, the CircusTime model that captures the Simulink idealised-time model is in
direct correspondence with the informal description of the simulator. Its use to
define the programming model increases our confidence in its validity.

With the use of CircusTime, we can provide very faithful models of the diagram
and of the assumptions about the environment; it is also possible to model
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programs in a direct way. All this reduces the risk of introducing modelling
errors that compromise verification.

Ultimately, the simulation time model is defined by the solver, a component of
the simulator that determines the simulation steps. For simplicity, we consider
a fixed-step solver, where the step size is constant; this is the solver used to
generate code for a real-time computer. It is not difficult to generalise our model
for a variable-step solver. In this case, the step size changes with time, so that
steps that do not present any changes to the output are omitted.

In the next section we give a brief overview of Simulink diagrams, Circus, and
CircusTime. In Section 3, we present our approach to construct timed simula-
tion models. The programming models are discussed in Section 4. Finally, in
Section 5, we draw our conclusions and discuss related and future work.

2 Simulink, Circus, and CircusTime

This section describes the modelling notations used in our work.

2.1 Simulink

A control law diagram is a graph whose nodes are blocks that embed an input,
an output, or some computation, and whose edges are wires that connect the
input and output ports of the blocks to define data flow. The behavioural model
embedded in a diagram is a cyclic execution, where in each iteration inputs are
read and outputs are calculated and produced.

At the top of Figure 1, we present the Simulink diagram for a PID controller.
(This is the same example used in [4,3].) The rounded boxes are input and
output blocks that represent the inputs and outputs of the system. Inputs are
represented by outputs of input blocks, which work in the same way as any other
block. Outputs are the inputs of the output blocks. In Figure 1, we have inputs
E, Kp, Ki, and Kd, and output Y. The rectangles and circles are blocks that define
particular calculations. The Sp block, for instance, is a simple multiplication.

Subsystem blocks are defined by other diagrams. In Figure 1, the blocks Diff
and Int are defined by the diagrams at the bottom of Figure 1. A control law for
a real system may reach hundreds of pages of hierarchical diagrams.

Blocks can have state. A Unit Delay, used in the diagrams in Figure 1, for
instance, records in its state the value of its last input.

A block also has a sample time, characterised by a sampling period and an
offset, which indicates when, during simulation, it produces outputs and updates
its state, if any. Additionally, each port can have a different sample time. If the
blocks do not all have the same sample time, we have a multi-rate diagram.

A simulation is described by a series of steps; a solver determines the time
of the next simulation step. We assume that the default step size and offset
determined by the fixed-step solver are used, since they guarantee that all sample
times are covered. The default step size is the greatest common divisor of all
sample times. A block’s state is updated and a new output is generated only
when the time of a step is a multiple of the sample time of the block.
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Fig. 1. PID (Proportional Integral Derivative) controller

In Section 3, we formalise this simulation time model using our novel approach
based on CircusTime, which we describe next.

2.2 Circus and CircusTime

A Circus model is a sequence of definitions: Z paragraphs, channel declarations,
and process definitions. Several examples are presented in the next section (see
Figures 5, 6, 8, 2, and 3). After a simple example in this section, we explain
details of the notation as it is used.

PIDTSpec =̂⎛⎝Wait 1 ; (PID [E ,Kp,Ki ,Kd ,Y := Ed ,Kpd ,Kid ,Kdd ,Yd ]) \ {|step|}
|[Internal ]|

Interface(1)

⎞⎠ \ Internal

Fig. 2. Programming model of the PID

Just like in CSP, systems and their components are described by processes
that communicate with each other and the environment using channels. In Circus
and CircusTime, however, a process encapsulates some state (defined just like in
Z). More precisely, in an explicit process definition, we define state components
and invariants using a Z schema and define behaviour using actions. To specify
an action, we use a mixture of CSP constructs, Z data operations, and guarded
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process Interface =̂ stepSize : R • begin

state IS =̂ [Ev ,Kpv ,Kiv ,Kdv ,Et ,Kpt ,Kit ,Kdt ,Yv : R ]

EInp =̂

(
(	 d : 0 . . stepSize • Wait d ; (E?x → Ev ,Et := x , d) deadline 0) ;
(μX • E?x → Ev := x ;X )

stepSize−Et
� Skip

)
. . .
Input =̂ EInp ||| KpInp ||| KiInp ||| KdInp

YOut =̂ (	 d : 0 . . stepSize • Wait d ; (⊔ v : R • Y !v → Yv := v) deadline 0)

Output =̂ YOut
InputD =̂ Ed !Ev → Skip ||| Kpd !Kpv → Skip ||| Kid !Kiv → Skip ||| Kdd !Kdv → Skip
OutputD =̂ Yd?x → {Yv = x}

• (μX • (Input ||| Output) ; (InputD ||| OutputD) ;X )

end

Fig. 3. Interface process for the PID

commands. In the case of CircusTime, we additionally use wait, timeout, and
deadline operators in the style of Timed CSP [22].

To compose processes, we use CSP operators (for parallelism, choice, and
hiding, for instance). Here, we use the alphabetised parallel operator [23], where
the set of channels used by each process is defined and they are required to
synchronise on the intersection of these sets. We also use hiding, which, just like
in CSP, removes a channel, or set of channels, from the interface of a process.

The semantic model for Circus has been chosen to support a simple and in-
tuitive notion of refinement: one process Q refines another P , providing that
every behaviour of Q is also a behaviour of P . In this way, if specification P is
refined by implementation Q , then there is nothing that Q could do that would
be forbidden by P , and all its behaviours are specified behaviours. The semantics
of Circus is a timed extension of the failures-divergences semantics of CSP [12]
in the spirit of [22], and so the notion of refinement includes subtle testing of
nondeterminism and timing properties.

To illustrate CircusTime, we use a timed version of a small example that
first appeared in [28], where we used the untimed version of Circus to specify a
Fibonacci series generator. This is a simple process that generates the Fibonacci
series on a channel named “out ”; the process is described in full in Figure 4.
Circus processes have encapsulated state that is defined in Z; in the process Fib,
the state is defined using the schema named FibState, which introduces two
natural numbers, x and y.

The state is initialised in InitFibState to give both state components the initial
value of 1. InitFib is an action, defined using CSP with embedded references to
the state defined in Z. This action first initialises the state using InitFibState,
then it outputs the first two numbers in the Fibonacci series. It does this with a
deadline of 0, which makes the outputs occur instantaneously; after each output,
the action pauses for one time interval.
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The main work in generating the series is done in the action OutFib. First, we
define OutFibState, which updates the state components: this operation changes
the state (ΔFibState) and has one output, defined in the Z convention as next !.
The effect of this state operation is to set the output to be the same as y ′, the
newest member of the series, which is merely the sum x + y, and to copy the
value of y to x ′.

OutFib itself updates the state using OutFibState and then outputs the value
of next punctually, as before, and it does this repeatedly: the fixed-point operator
“μ” introduces tail-recursive iteration. A local-variable block scopes the value of
next .

After all these schema and action definitions, the real business begins: the
main behaviour of the process Fib is defined as the composition InitFib; OutFib.

processFib =̂
begin

state FibState == [ x , y : N ]
InitFibState == [FibState ′ | x ′ = y ′ = 1 ]
InitFib =̂

InitFibState;
(out !1→ Skip) deadline 0; Wait 1;
(out !1→ Skip) deadline 0; Wait 1

OutFibState == [ΔFibState; next ! : N | next ! = y ′ = x + y ∧ x ′ = y ]
OutFib =̂

μX •
var next : N •

OutFibState; (out !next → Skip) deadline 0; Wait 1; X
• InitFib; OutFib
end

Fig. 4. A timed Fibonacci series generator

3 Simulation Models

In this section, we propose a novel approach to construct CircusTime simulation
models of Simulink diagrams. Like the Circus-based strategy, it can be used to
generate models automatically [31]. As already said, it produces richer models
that cater also for the timing aspects of a larger set of diagrams. We have more
faithful models, which we have demonstrated to be in direct correspondence with
the simulator behaviour, and as a side effect we also get more compact models.

Our input is a diagram compiled using the fixed-step discrete solver. This
means that there is no connection between blocks with incompatible sample
times and the discrete sample time of all blocks used for simulation has been
defined. (It is possible to leave the sample time of a block to be determined from
the context; compilation determines all values.) This is the approach taken, for
example, by the MATLAB code generator (Real-time Workshop).
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The output of our modelling strategy is a CircusTime specification. Its first
paragraphs declare channels. Inputs and outputs of the diagram and of the blocks
are represented by channels. For the PID, we have the following declaration.

channel E ,Kp,Ki ,Kd ,Y ,Si out ,Diff out , Int out ,Sd out ,Sp out : U

Basically, the channels that represent the inputs and outputs of the diagram
are named after the corresponding blocks. The internal wires are represented
by channels named after the block that has an output port connected to it. For
instance, the wire that connects Diff to Sd in Figure 1 is represented by a channel
Diff out . (As explained in [31], a few special cases need to be considered in the
naming rules, but for the purpose of the discussion here, this view is enough.)

The blocks, the solver, and the diagram itself, are modelled by processes. The
solver process synchronises with the block processes on a channel step. It is used
to indicate the occurrence of a simulation step.

channel step : R

We have a discrete-time model, but the sample times and offset can be real
numbers, so the type of step is R. It is available in the HOL-based theorem
prover ProofPower-Z.

The third paragraph of the model declares a type SampleTime.

SampleTime == [ sP , o : R ]

It contains records whose components sP and o define a sample period and an
offset. Each block process has a constant of this type to represent its sample time.
Below, we explain how the diagram, block, and solver processes are defined.

3.1 Diagram

The processes that model the blocks and the process that models the solver are
all composed in parallel to define the process that models the diagram. For our
example, this process is sketched below; its name is that of the diagram.

process PID =̂⎛⎜⎜⎜⎜⎝
Si {|E ,Ki ,Si out , step |}

‖
Diff {|E ,Diff out , step |}

‖ . . . ‖
FixedStepDiscreteSolver(1, 0) {|step|}

⎞⎟⎟⎟⎟⎠ \ {|Si out ,Diff out , . . . |}

The alphabet of each process that models a block includes the channels that are
used to represent its inputs and outputs, besides step. This reflects the fact that
the behaviour of each block is independent, but the way in which their inputs
and outputs are connected defines a data flow. In the model, synchronisation on
the shared channels between block processes establishes data flow.
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process Diff =̂ begin

st : SampleTime

st .sP = 1 ∧ st .o = 0

state Diff State == [ pid Diff UnitDelay state : R; ; Out1 : R ]

Init
pid Diff State ′

pid Diff UnitDelay state ′ = 0

Calculate pid Diff == . . .

•

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Init ;⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μX •⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

step?cT →⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

var In1 : U •
E ?x → In1 := x ;
if (cT − st .o ≥ 0) ∧ ((cT − st .o)mod st .sP = 0)→

Calculate pid Diff
[] (cT − st .o < 0) ∨ ((cT − st .o)mod st .sP �= 0)→ Skip
fi ;
Diff out !Out1→ Skip

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
deadline 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
end

Fig. 5. CircusTime model of the block Diff

The process FixedStepDiscreteSolver models the solver; it takes the step size
and offset of the diagram as parameters. In our simple example, all blocks have
sampling period 1 and offset 0, so the solver uses step size 1 and offset 0.

The channels that represent internal wires (in our example, Si out , Diff out ,
and so on) are hidden. In this way, the channels in the interface of the diagram
process are only those that represent inputs and outputs of the system, and step.

3.2 The Blocks

A block process is defined explicitly, independently of whether the block is sim-
ple, like Sd in our example, or a subsystem, like Diff. We consider here blocks
with a single sample time; port-based sample time is addressed in Section 3.4.

Figure 5 sketches the model for Diff, a process named Diff . An explicit process
definition is composed of a sequence of paragraphs. In a block process, we first
declare a constant st of type SampleTime and define the value of its fields. This is
defined in the diagram: although it does not (necessarily) appear in its graphical
representation, it appears in its textual representation produced by Simulink.

A distinguished paragraph declares the state of the process using a schema
named after it; in our example, Diff State. The state components record the
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state of the block, and the last calculated output value(s). In our example, we
have pid Diff UnitDelay state, which records the state of the Unit Delay block
used in the Diff diagram, and Out1, corresponding to the single output of Diff.

A schema Init defines the state initialisation in the standard Z way. A dec-
laration like pid Diff State ′ introduces dashed versions of the state compo-
nents to represent their values after initialisation. The components that represent
the block state are initialised as determined in the block definition (included in
the textual representation of the diagram). In our example, the initial value of
the Unit Delay state, represented by pid Diff State ′, is 0. The components that
correspond to block outputs, like Out1 in our example, are not initialised.

The action at the end of a process definition (after the •) is the main action
that specifies its behaviour. In a block process, we have a call to Init , followed
by a recursion (introduced by the μ operator). Each of its iterations models a
simulation step. It starts with a communication step?cT on the channel step to
input the current time cT , followed by an interleaving of the inputs, which are
recorded in local variables In1, In2, and so on. In our example, we have just one
input E?x , and the associated assignment of the input value x to In1.

A conditional compares the current and sampling times. If the block offset is
over (cT − st .o ≥ 0) and we have a sample time hit ((cT − st .o) mod st .sP = 0),
we calculate the outputs and update the state. Otherwise, nothing happens; the
Skip action terminates immediately without changing the state.

The required calculations and updates are determined by the functionality of
the block (or its diagram, in the case of a subsystem block like Diff). We rely
on an industrial tool, namely ClawZ [1], to produce a Z specification for that.1
(This is the same approach that we take in [3,4].) ClawZ deals with sequential
behaviour; we have extended this to deal with concurrency and timing aspects.
For each block, ClawZ produces a Z schema, which we use to define the Circus-
Time process. In our example, we have the Calculate pid Diff schema, whose
definition is constructed using ClawZ. We omit it here, since these details are not
relevant for our discussion. In the main action of Diff , when there is a sample
time hit, we call Calculate pid Diff .

In any case, the (last calculated) outputs are communicated in interleaving.
These are either the outputs that have just been calculated, or those calculated
in the previous sample time hit. In our example, we have a single output: we
communicate Out1 through the channel Diff out .

All this is carried out instantaneously, that is, with deadline 0. This captures
the idealised-time model of the simulation, where the system is quiescent between
the simulation steps, but all the inputs, calculations, updates, and outputs are
performed instantaneously (and infinitely fast), when there is a time hit. This
is, of course, not an approach that can be taken by a program.

As explained previously, the state components that correspond to an output,
like Out1, are not initialised. If the solver takes a simulation step before the first

1 See www.lemma-one.com/clawz_docs/ for more information about the ClawZ tool,
including a user guide to the tool with a simple complete worked example of a
Simulink model file, its corresponding Ada code, and a proof of correctness.

www.lemma-one.com/clawz_docs/
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sample time hit of the block, the value of the output is arbitrary. For Simulink
diagrams whose simulation does not generate any errors, however, such a sit-
uation does not arise. Here, as also already said, we are only concerned with
compiled diagrams that do not produce simulation errors.

In Section 4, we discuss how the model presented here can be used to construct
a model compatible with the restrictions of a real-time computer.

3.3 Solver

To ensure correct timing, the solver process uses the channel step to communicate
the current time to all blocks in each simulation step. The model of the solver
embeds a clock that is indirectly used by all the blocks.

The model of the solver is the same for all diagrams; it is presented in Figure 6.
The step size sS and offset o are taken as parameters, which are instantiated
appropriately for each diagram. The state, defined by the schema Clock contains
a single component cT to record the current time.

process FixedStepDiscreteSolver =̂ sS , o : R • begin

state Clock == [ cT : R ]

•
(
cT := o ;Wait o ;
(μX • (step!cT → Skip) deadline 0 ; cT := cT + sS ;Wait sS ;X )

)
end

Fig. 6. CircusTime model of a fixed-step discrete solver

In the main action, cT is initialised to o, since nothing happens in the simu-
lation before the diagram offset time. Next, after a wait period of o time units,
there is an iteration corresponding to simulation steps. In each iteration, an in-
stantaneous communication (with deadline 0) over the channel step outputs the
current time cT . Afterwards, cT is increased by the step size sS , and there is a
waiting period of sS time units.

3.4 Multi-rate Diagrams

Our modelling approach caters for multi-rate diagrams. As already explained,
if the blocks have different sample times, the step size and offset of the solver
guarantee that they are covered. In the model, at each simulation step, all block
processes read inputs and produce outputs, but output calculations and state
updates occur only when there is a hit. For blocks with port-based sample times,
however, we need to define the block processes differently.

Port-based sample times occur in rate-transition blocks, which have one input
and one output port with different sample times, and custom blocks defined by
programs. In what follows, we explain our treatment of rate-transition blocks.
Custom blocks can be handled in a similar way, but the behaviour when there
is a sample-time hit is defined programmatically. Modelling such blocks requires
modelling, for example, a C program instead of using a ClawZ schema.
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Fig. 7. Multi-rate diagram: rate transition block

process Rate Transition =̂ begin

st1, st2 : SampleTime

st1.sP = 0.1 ∧ st1.o = 0 ∧ st2.sP = 0.2 ∧ st1.o = 0

state rt Rate Transition State = [ In1,Out1 : U ]
. . .

•

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μX •⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

step?cT →⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sine Wave out?x →⎛⎜⎜⎜⎜⎝
if (cT − st1.o ≥ 0) ∧ ((cT − st1.o)mod st1.sP = 0)→

In1 := x
[] (cT − st1.o < 0) ∨ ((cT − st1.o)mod st1.sP �= 0)→

Skip
fi

⎞⎟⎟⎟⎟⎠ ;

⎛⎜⎜⎝
if (cT − st2.o ≥ 0) ∧ ((cT − st2.o)mod st2.sP = 0)→

rt Rate Transition
[] (cT − st2.o < 0) ∨ ((cT − st2.o)mod st2.sP �= 0)→ Skip
fi

⎞⎟⎟⎠ ;

One out !Out1→ Skip

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
deadline 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
end

Fig. 8. CircusTime model of a rate-transition block: zero-order hold

For rate-transition blocks, we need to consider whether its input port is
slower (has a longer sampling period) or faster than the output port, as this
determines its behaviour when there is a hit. If the input is faster, then the
behaviour is that of a zero holder: the block holds its input until there is a hit
for the output port. If the input is slower, then the behaviour is that of a unit
delay: it outputs the input from a previous hit.

A diagram involving a rate-transition block is provided in Figure 7. In this
example, all offsets are 0, but the period of the input port of the rate-transition
block (and of the Sine-Wave block) is 0.2, and that of the output port (and of
the Gain and Out blocks) is 0.1. The diagram step size is therefore 0.1.

The construction of the model of this diagram can proceed much as before, the
only difference concerning the rate-transition block process, which is described in
Figure 8. First, it records two sample times st1 and st2, one for each of its ports.

Just as before, in each simulation step, the input is taken and the output is
produced. Due to the lack of synchrony between inputs and outputs, we do not
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Init ;⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μX •⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

step?cT →⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Sine Wave out?x →⎛⎜⎜⎜⎜⎝
if (cT − st1.o ≥ 0) ∧ ((cT − st1.o)mod st1.sP = 0)→

rt Rate Transition
[] (cT − st1.o < 0) ∨ ((cT − st1.o)mod st1.sP �= 0)→

Skip
fi

⎞⎟⎟⎟⎟⎠ ;

One out !Out1→ Skip

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
deadline 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 9. CircusTime model of a rate-transition block: unit delay (main action)

keep only the most recently output value from one step to the next, but also the
most recent input. We have both In1 and Out1 as state components.

If a simulation step is a hit for the sample time of the input, In1 is updated,
otherwise the input taken is ignored. If there is a hit for the sample time of
the output, then it is calculated. In the case of a zero-order hold block, the
calculation, as defined by ClawZ, updates Out1 to the value of the most recent
input In1. This is defined in the (omitted) schema rt Rate Transition.

For a rate-transition block with a slower input we have a block process whose
main action is shown in Figure 9. In this case, we have an additional state
component state as indicated by ClawZ, and the Init action initialises the state
as defined in the block properties, and also captured by ClawZ.

The output calculations and state updates are determined by the sample-time
hit of the slow port. Here, it is the input, so we do not need to check for hits of
the output nor record the inputs in the state. The rt Rate Transition schema
defines that Out1 is assigned the current value of the state, which becomes the
freshly input value x . This is the standard definition of a unit delay.

In the following section, we describe how these simulation models can be used
to define models appropriate for program verification.

4 Programming Models

The idealised simulation model requires the calculations and communications
to take place infinitely fast. For program verification, we need a model that
captures the assumptions that allow us to conclude that an implementation is
correct, from the timing as well as the functional point of view, even though it
is restricted by the performance of the real-time computer on which it runs.

All calculations and communications take place instantaneously at each sim-
ulation time step. For programs, we expect a time line where all calculations
and communications take place during the intervals defined by the hits. This is,
for example, the view adopted by the MATLAB code generator. The (implicit)
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assumption adopted in the default configuration of this code generator is that
the simulation steps define execution cycles. Additionally, the environment keeps
the inputs constant and available during each cycle, and is ready to accept an
output at any point during the cycle.

Here, we explain how the simulation model can be used to construct a model
for program verification. The result is a new CircusTime process; for our PID
example, this is PIDTSpec, presented in Figure 2. Roughly, it is defined by
composing the simulation model of the diagram, in our case, PID , in parallel
with a process Interface that handles the inputs and outputs of the system to
capture the assumptions about the environment.

We need to adapt the simulation model of the diagram in three ways. First, we
need to address the fact that the simulation provides outputs already at the first
hit, even if it is at time 0, while the program needs to take some time before it
can produce results. In the program verification model, therefore, the simulation
model is used after a wait period. In this way, the simulation time line is shifted,
and during that initial period the computations can start. We use the step size
as the wait period; in our example, this is 1. The assumption is that, for all
blocks, one step is enough to calculate the outputs and make the state updates.
This is again the view taken by the MATLAB code generator.

A second, most important observation is that the inputs and outputs of the
simulation model correspond to those of the system. It is, however, the Interface
process that needs to handle these communications. For this reason, we use the
simulation diagram process obtained by renaming the input and output channels.
The new channels are used for internal communication with Interface. For the
PID , we declare the channels Ed , Kpd , Kid , Kdd , and Yd , and in the definition
of PIDTSpec, we use PID [E ,Kp,Ki ,Kd ,Y := Ed ,Kpd ,Kid ,Kdd ,Yd ]. We also
define a channel set Internal to include all the new channels, which are hidden
in the programming model (see Figure 2).

A final observation is that the step channel is used to mark the simulation
steps, and has no role in the program. So, it is hidden as well.

Figure 3 sketches the definition of the Interface process used in the speci-
fication of PIDTSpec. In all cases, Interface takes the diagram step size as a
parameter. If the offset of the diagram is not 0, then it is preceded by a corre-
sponding wait in the programming model. For the PID, this is not necessary.

The state of Interface includes two components for each input of the diagram,
and one for each output. For an input E , for instance, the component Ev records
the last value input, and Et records the time the input was first read in the
current cycle. The output components hold the values output by the program.
For the PID, the inputs give rise to state components Ev , Kpv , Kiv , and Kdv ,
and Et , Kpt , Kit and Kdt , and the output to a component Yv .

The behaviour of Interface is characterised by iterations that correspond to
the simulation steps of the diagram. During each of them, Interface interacts
with the environment; it reads the inputs one or more times, and produces the
outputs as required. At the end of each step, it interacts with the simulation
process to provide its inputs and take its outputs.
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Correspondingly, in the specification of Interface, the main action’s iterations
correspond to the simulation steps. A sequence ( ; ) splits each iteration into
two parts, corresponding to the period before the simulation step and to its end,
which is the exact moment of a simulation time step. During each iteration,
the behaviour is defined by the interleaving (|||) of actions Input and Output ,
which interact with the environment. At the simulation time step, the behaviour
is given by the interleaving of InputD and OutputD , which interact with the
simulation diagram model.

As detailed later on in this section, the values of the state components Ov
that are output to the environment in Output are chosen angelically. In our
example, we have a single component Yv corresponding to an output, and its
value is chosen angelically. An angelic choice is resolved in a way that ensures,
if at all possible, that the program does not abort. In programming terms, it
provides a backtracking mechanism. In OutputD , the value x provided by the
simulation model for the output is compared to that of the corresponding state
component Ov in an assumption {Ov = x}. In our example, we have {Yv = x}.
An assumption {Ov = x} is an action that aborts if Ov is different from x , but
otherwise skips. Since the value of Ov is angelically chosen, the assumption is
guaranteed to hold; effectively, it forces the value Ov to be chosen correctly.

Angelic nondeterminism is typically used as a specification construct. This is
certainly the case here. Refinement of our models to feasible programs leads to
implementations that make the appropriate calculations to determine the value
to be output. Use of backtracking is not really practical or necessary.

Since we have an assumption that the values of the inputs are constant during
a cycle, each input can be read any number of times during each iteration, but
at least once. For each input, we define an action that specifies this behaviour.

For the input E of the PID model, for instance, we have the action EInp.
The internal choice (	) over a delay d allows the first input to happen at any
time during the iteration. More precisely, the wait of d time units followed by
the instantaneous communication over E specifies that the input occurs exactly
after d time units. Additionally, the internal choice of d in the specification model
means that a program can choose a value for d freely: it can carry out the input
at any time, whenever needed, during the iteration. In the specification model,
that time is recorded in the state component Et . The value input itself is recorded
in Ev . After that first communication, additional inputs on E can happen any
number of times, during the rest of the iteration. After stepSize−Et time units,
however, the iteration finishes, and so does the input action. A timeout (operator
d
�) interrupts its recursive execution in favour of Skip.

The inputs are all independent, so the action Input that specifies the program
inputting behaviour is defined by the interleaving (|||) of the actions that handle
each of the diagram inputs. In Figure 3, we omit the definitions of KpInp, KiInp,
and KdInp, which are similar to that of EInp.

Each output is produced just once, but at any time, during the iteration. For
each output, we have an action in Interface. In our example, we have just YOut ,
because we have only one output. Like in an input action such as EInp, in an
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output action we use an internal choice to leave open the choice of when the
output is produced. As already mentioned, an angelic choice (

⊔
) determines the

value v to be output and recorded in the corresponding state component.
If there are several outputs, the Output action is defined as their interleaving.

In the case of the PID, we have just one output, so Output is just YOut .
In the interaction between Interface and the simulation process, the inputs are

produced in interleaving; this is defined by the action InputD . Similarly, OutputD
takes all outputs in interleaving. The values received from the simulation model,
however, are compared to those previously output. In Figure 3, after reading the
value x through the internal channel Yd , we have the assumption {Yv = x}. As
explained above, it determines the angelic choice in Output .

The action OutputD interleaves all communications to receive outputs from
the simulation process and their associated assumptions. For the PID, which has
just one output, no interleaving is needed. The deadlines in the simulation model
guarantee that all communications in InputD and OutputD are instantaneous.

The step size of the simulation diagram process, as defined in the instantiation
of the solver process, and that of the Interface process should be the same. This
can be easily ensured when the models are generated automatically.

The external channels of PID and PIDTSpec are the same. This holds in
general for simulation and programming models constructed as described here.

5 Conclusions

In this paper, we propose a modelling strategy to use CircusTime to capture both
timing properties embedded in the simulation model of a Simulink diagram and
the timing assumptions embedded in a typical programming environment. The
models produced capture functional, behavioural, and timing aspects of dia-
grams. The use of a refinement notation, and the consideration of programming
concerns, make the models useful for program verification.

The simulation model is in direct correspondence with the description of the
Simulink simulator. Using CircusTime and angelic nondeterminism, we construct
a programming model that records the environment assumptions, but uses the
simulation model to specify functionality and data flow. We overcome three chal-
lenges in establishing the connection between the two models: in the simulation
model, outputs can be produced immediately at time 0, infinitely fast at each
time hit, and simulation steps do not have a role in a programming model.

We do not take into account the possibility of overflow of timers. Run-time
exceptions need to be handled separately.

For validation, we have checked classical properties (deadlock and livelock
freedom, and absence of nondeterminism) and analysed timing aspects. The
validation has consisted in initially converting CircusTime to CSP to use the
FDR2 model checker, following a strategy similar to [19], where timing aspects
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are captured according to [24].2 Using the CSP animator, we have observed that
at time 0 all inputs are performed in any possible order. After that, internal
calculations take place generating the observable output through channel Y . At
this point, time (represented by a tock event) has to pass before the previous
input and output behaviour occurs again. This pattern repeats itself as expected.

As far as we know, there is no report in the literature of support for formal
program verification that takes into account the way in which the time model
of Simulink diagrams are adapted. Moreover, we are not aware of any formali-
sation of the typical assumptions embedded in the programming timing model
of implementations of control law diagrams.

Timed models of Simulink diagrams are also considered in [14], where a nota-
tion called SPI is used to capture control flow. SPI is based on communicating
processes; it does not incorporate data operations, but supports the specification
of timing restrictions. Since the idealised model of Simulink is not relevant to im-
plementations, the proposed approach is the formalisation of timing requirements
after the translation to SPI. It allows the specification of (mode-dependent) data
rates and latency times. Using the timed model, it is possible to use static anal-
ysis to tackle scheduling. Here, we propose the automatic generation of models.

The approach in [16] uses an extension of Simulink to specify real-time in-
teractions. It is based on a programming language called Giotto. The extended
model is translated to Simulink, and then to a program that combines the result
of the Simulink code generator with a Giotto program that handles the schedul-
ing. This program runs in an embedded machine that is platform dependent.
In our approach, assumptions related to real-time programming are captured
using CircusTime constructs, and they are uniformly specified (by an Interface
process) for all applications to be deployed in a particular platform.

The combined use of UML and Simulink is supported by the work in [10], a
technique to verify real-time properties of a distributed design compositionally
using model checking. It is also part of the trend to verify models and designs,
and rely on code generators for the automatic production of programs [11].

The work in [6] also proposes the characterisation of timing requirements
based on a calculated model of Simulink diagrams. In that case, the modelling
language is TIC (Timed Interval Calculus), a Z-based notation that supports
the definition of total functions of continuous time, and (sets of) time intervals.
Blocks are specified by schemas, like in ClawZ, but their components include
functions from time that define how inputs vary with time, and how outputs
are related to inputs over time intervals. Both continuous and discrete times are
considered, but not concurrency. The objective of the work is the analysis of
diagrams; tool support based on PVS is provided.

A first important piece of future work is the extension of the tool in [31] to
automate the generation of our CircusTime models and enable significant case
studies. For refinement, we will investigate a strategy that transforms the timed

2 FDR2 is a refinement-checking software tool that can check whether one CSP process
refines another, or that a process is free from deadlock, livelock, or nondeterminism.
More details about the tool are available from www.fsel.com/.

www.fsel.com/
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models described here into synchronisation-based models similar to those used
in [4]. In that way, we can reuse the verification approach in that work.

A more foundational piece of future work is related to our use of angelic
nondeterminism. The semantics of Circus and CircusTime is defined using Hoare
and He’s Unifying Theories of Programming (UTP) [13]. In [5], we describe a
UTP model for angelic nondeterminism. It remains for us to investigate the
consequences of the integration of that model with the CircusTime model with
deadlines, and to propose and prove laws to support a refinement strategy.

Acknowledgements. Ana Cavalcanti is grateful for the support of EPSRC
(grant EP/E025366/1). The work of Alexandre Mota was partially supported
by INES11, funded by CNPq and FACEPE, grants 573964/2008-4 and APQ-
1037-1.03/08, by CNPq grant 482462/2009-4 and by the Brazilian Space Agency
(UNIESPACO 2009).

References

1. Arthan, R., Caseley, P., O’Halloran, C.M., Smith, A.: ClawZ: Control laws in Z.
In: Proceedings of the 3rd IEEE International Conference on Formal Engineer-
ing Methods, ICFEM 2000, York, September 4-7, pp. 169–176. IEEE Computer
Society, IEEE Press (2000)

2. Boström, P., Morel, L., Waldén, M.: Stepwise development of simulink models using
the refinement calculus framework. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.)
ICTAC 2007. LNCS, vol. 4711, pp. 79–93. Springer, Heidelberg (2007)

3. Cavalcanti, A., Clayton, P., O’Halloran, C.: Control law diagrams in Circus. In:
Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
253–268. Springer, Heidelberg (2005)

4. Cavalcanti, A.L.C., Clayton, P., O’Halloran, C.: From control law diagrams to Ada
via Circus. Formal Aspects of Computing 23(4), 465–512 (2011)

5. Cavalcanti, A.L.C., Woodcock, J.C.P., Dunne, S.: Angelic nondeterminism in the
Unifying Theories of Programming. Formal Aspects of Computing 18(3), 288–307
(2006)

6. Chen, C., Dong, J.S., Sun, J.: A formal framework for modeling and validating
Simulink diagrams. Formal Aspects of Computing 21(5), 451–484 (2009)

7. Denney, E., Fischer, B.: Generating customized verifiers for automatically gen-
erated code. In: Smaragdakis, Y., Siek, J.G. (eds.) Proceedings of the 7th In-
ternational Conference on Generative Programming and Component Engineering,
GPCE 2008, Nashville, October 19-23, pp. 77–88. ACM (2008)

8. Feliachi, A., Gaudel, M.-C., Wolff, B.: Isabelle/Circus: A process specification and
verification environment. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012.
LNCS, vol. 7152, pp. 243–260. Springer, Heidelberg (2012)

9. Feliachi, A., Wolff, B., Gaudel, M.-C.: Isabelle/Circus. Archive of Formal Proofs
(2012), http://afp.sourceforge.net/entries/Circus.shtml

10. Giese, H., Hirsch, M.: Modular verification of safe online-reconfiguration for proac-
tive components in mechatronic UML. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS,
vol. 3844, pp. 67–78. Springer, Heidelberg (2006)

11. Graf, S., Gérard, S., Haugen, Ø., Ober, I., Selic, B.: Modelling and analysis of real
time and embedded systems – Using UML. In: Kühne, T. (ed.) MoDELS 2006.
LNCS, vol. 4364, pp. 126–130. Springer, Heidelberg (2007)

http://afp.sourceforge.net/entries/Circus.shtml


Simulink Timed Models for Program Verification 99

12. Hoare, C.A.R.: Communicating Sequential Processes. Series in Computer Science.
Prentice Hall International (1986)

13. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Series in Computer
Science. Prentice Hall (1998)

14. Jersak, M., Ziegenbein, D., Wolf, F., Richter, K., Ernst, R., Cieslog, F., Teich,
J., Strehl, K., Thiele, L.: Embedded system design using the SPI Workbench. In:
Proceedings of the 3rd International Forum on Design Languages (2000)

15. Joshi, A., Heimdahl, M.P.E.: Model-based safety analysis of Simulink models using
SCADE Design Verifier. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP
2005. LNCS, vol. 3688, pp. 122–135. Springer, Heidelberg (2005)

16. Kirsch, C.M., Sanvido, M.A.A., Henzinger, T.A., Pree, W.: A Giotto-based heli-
copter control system. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT
2002. LNCS, vol. 2491, pp. 46–60. Springer, Heidelberg (2002)

17. The MathWorks, Inc., Simulink, http://www.mathworks.com/products/simulink
18. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice Hall (1994)
19. Mota, A.C., Sampaio, A.C.A.: Model-checking CSP-Z: strategy, tool support and

industrial application. Science of Computer Programming 40, 59–96 (2001)
20. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: A UTP semantics for

Circus. Formal Aspects of Computing 21(1-2), 3–32 (2009)
21. Oliveira, M., Cavalcanti, A., Woodcock, J.: Unifying theories in ProofPower-Z.

Formal Aspects of Computing 25(1), 133–158 (2013)
22. Reed, G.M., Roscoe, A.W.: A timed model for communicating sequential processes.

Theoretical Computer Science 58, 249–261 (1988)
23. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall Series in

Computer Science (1998)
24. Schneider, S.: Concurrent and Real-time Systems: The CSP Approach. Wiley

(2000)
25. Sherif, A., He, J.: Towards a time model for Circus. In: George, C., Miao, H. (eds.)

ICFEM 2002. LNCS, vol. 2495, pp. 613–624. Springer, Heidelberg (2002)
26. Sherif, A., He, J., Cavalcanti, A., Sampaio, A.: A framework for specification and

validation of real-time systems using Circusactions. In: Liu, Z., Araki, K. (eds.)
ICTAC 2004. LNCS, vol. 3407, pp. 478–493. Springer, Heidelberg (2005)

27. Sherif, A., Cavalcanti, A.L.C., He, J., Sampaio, A.C.A.: A process algebraic frame-
work for specification and validation of real-time systems. Formal Aspects of Com-
puting 22(2), 153–191 (2010)

28. Woodcock, J., Cavalcanti, A.: A concurrent language for refinement. In: Butterfield,
A., Strong, G., Pahl, C. (eds.) 5th Irish Workshop on Formal Methods, IWFM 2001,
Dublin, July 16-17, BCS, Workshops in Computing (2001)

29. Woodcock, J., Cavalcanti, A.: The semantics of Circus. In: Bert, D., Bowen, J.P.,
Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp.
184–203. Springer, Heidelberg (2002)

30. Woodcock, J.C.P., Davies, J.: Using Z—Specification, Refinement, and Proof.
Prentice-Hall (1996)

31. Zeyda, F., Cavalcanti, A.: Mechanised Translation of Control Law Diagrams into
Circus. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp.
151–166. Springer, Heidelberg (2009)

http://www.mathworks.com/products/simulink


Concept Analysis Based Approach
to Statistical Web Testing

Chao Chen1,2, Huaikou Miao1,2, and Yihai Chen1,2

1 School of Computer Engineering and Science, Shanghai University
200072, Shanghai, China

2 Shanghai Key Laboratory of Computer Software Evaluating and Testing
201112, Shanghai, China

{kingsochen,hkmiao,yhchen}@shu.edu.cn

Abstract. In recent years, the increased complexity of Web applications gives re-
searchers an enormous challenge in ensuring their reliability. A statistical testing
approach has been proved to be appropriate to test Web applications and to esti-
mate their reliability. Based on a Markov usage model built from user sessions,
testers can generate abstract test cases randomly. In order to execute the test cases,
researchers proposed an approach to building a data model from user sessions to
provide test data for abstract test cases. However, just building a data model from
all the user sessions may cause unauthorized access to restricted pages by testers.
In this paper, we propose a concept analysis based approach to statistical Web
testing and present a tool to support our approach. We have designed three al-
gorithms to implement our concept analysis based approach that can provide the
concrete test data for abstract test cases. In addition, a case study is introduced to
demonstrate the effectiveness of our approach to statistical Web testing.

Keywords: statistical testing, Markov usage model, reliability measurement, con-
cept analysis.

1 Introduction

A Web application is a software application that is accessible via a thin client (i.e., Web
browser) over a network such as the Internet or an Intranet [1]. Nowadays, Web appli-
cations have been widely used to support a variety of activities in our daily lives, such
as e-business, online education, online banking, etc. In order to improve the reliability
of Web applications, several testing approaches have been proposed by the researchers
in the recent years. Coverage based testing and fault based testing are the two strategies
of the existing testing approaches. Coverage based testing is to cover a specification to
a certain degree [2]. Fault based testing is to design test data to demonstrate the absence
of a set of pre-specified faults [2]. Web applications have some characteristics such as
massive user population, diverse usage environments, document and information focus
[3]. Because of these characteristics, the cost of testing a Web application is too high.
Different from the coverage based testing and fault based testing, statistical testing al-
lows testers to focus on the parts of the Web application under test that are frequently
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accessed [3]. Using statistical testing approaches to test those components that are uti-
lized frequently by the huge number of users is cost-effective. The usual strategy of
statistical Web testing has three main steps [3]:

– Step 1. Construct a usage model by analyzing the usage information of a Web
application.

– Step 2. Generate test cases from the usage model and execute them.
– Step 3. Collect and analyze the test results to estimate the reliability of the Web

application.

To execute the test cases generated in Step 2, testers need to design test data. To reduce
the efforts of testers, researchers have proposed some practical approaches. Elbaum et
al. [4,5] proposed an approach to obtaining name-value pairs as test input data from user
sessions. Elbaum’s user session based approach uses a user session as a test case directly
or combines multiple user sessions to form a new test case. In their approach, massive
user sessions are required to cover the test requirements. Reusing session data as test
data is a sensible way, but they did not apply this technique to statistical Web testing.
Sant et al. [6] proposed the statistical model for Web testing. In their approach, a control
model is built to generate abstract test cases. To provide the test data for abstract test
cases, two types of data models are built from user sessions.

The massive user population and increased diversity of Web users result in different
usage or multiple roles for a Web application. Distinguishing different roles and their
accessible Web pages is a major challenge for the testers if the specification or design
documents are not available, but we found testers are still required to log into the Web
application to access Web pages. We have attempted to use Sant’s approach to providing
test data for abstract test cases, but we found testers are always denied access to some
restricted pages. The main reason for this issue is that testers use an inappropriate user-
name and password to log into the Web application. In this paper, we propose a concept
analysis based approach that combines the data model technique with concept analysis
to provide concrete test data for the generated test cases. In particular, a real username
and password are included in these test data for testers to log in with an appropriate user
role.

The rest of the paper is organized as follows: Section 2 discusses the related work on
statistical Web testing. Section 3 presents our concept analysis based approach to gen-
erating test data in detail. Section 4 presents the approach to estimating the reliability of
a Web application. Section 5 gives a case study of an online bookstore to demonstrate
the effectiveness of our approach. Section 6 concludes and proposes further work.

2 Related Work

Many Web testing approaches, such as data flow testing [7], user session based testing
[4,5] and URL-based testing [8], have been proposed to support improving the reliabil-
ity of Web Applications. Statistical Web testing is more cost-effective than traditional
approaches to estimate the reliability of a Web application according to some reliability
models. In the recent years, many works have been done on statistical Web testing.

Tian et al. [3,9,10] first proposed a statistical testing approach to testing Web ap-
plications. In their approach, they analyzed the access log file and constructed UMMs
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(Unified Markov Models) as a usage model, which described all the possible usage sce-
narios of a Web application. Test cases were generated randomly from UMMs, selected
and executed according to the threshold probability. The results of testing were stored
in the server error log file. By analyzing the access log file and the error log file, they
utilized Nelson model [11] and G-O model [12] to estimate the overall reliability of a
Web application.

Hao et al. [13] undertook two experiments to confirm the effectiveness of UMMs.
Different from Tian’s experiment, they used multiple set of UMMs in their experiments
because the entries of a Web application were always more than one. As the experi-
ments’ results shown, UMMs are suitable and adequate to be used as usage models for
statistical Web application.

Tonella and Ricca [14,15] proposed a dynamic analysis approach to extract Web ap-
plication model for an existing Web application. The node of their model represents a
static Web page, server program or dynamic page, and the edge represents the inter-
action behaviors between two nodes. In their approach, the Web pages were regarded
as states, and the hyperlinks of states were regarded as transitions. They built Markov
chain as the usage model in order to support statistical Web testing. The nodes and edges
were same as the Web application model extracted by dynamic analysis. The probabili-
ties of transitions could be obtained by analyzing the access log file. They executed the
test cases generated from usage model to estimate the reliability of a Web application.
Although the purpose of their work was same as Tian’s work and Hao’s work, the defi-
nitions of Web failures were different from Tian’s work and Hao’s work. In both Tian’s
work and Hao’s work, they estimated the operation reliability of a Web application, and
the failures were stored in the error log file. Tonella and Ricca defined the Web failures
as the output pages that are different from the expected pages, and these failures could
not be stored in the error log files.

Sant et al. [6] proposed an approach to building statistical models of user sessions
and generating test cases from these models automatically. In order to model the Web
applications, they designed a control model and a data model. The control model was
represented by the possible sequences of URLs, and the data model was represented by
the possible sets of parameter values.

Sprenkle et al. [16] did a study of constructing the navigation model directly from
user sessions. In their work, the abstract test cases, represented by the sequences of
states, are generated automatically. The states of navigation models can be represented
by RR (Request Type + Resource), RRN (Request Type + Resource + Parameter Names)
and RRNV (Request Type + Resource + Parameter Names + Values). The different rep-
resentations have an effect on the numbers of states and transitions of the navigation
model.

For the given abstract test cases, our concept analysis based approach can provide
concrete test data including the real username and password for testers to log in with an
appropriate user role. In our approach, a concept lattice is constructed from all the user
sessions and a data model is built for each concept. The test data can be generated from
its data model according to the condition probability. Moreover, we have developed a
tool to support our approach.
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Web Access Log

User Sessions

Concept Lattice Usage Model

Abstract Test
Cases

Data Model

Test Cases

Reliability of a Web applica-
tion evaluation

Step 1 Log preprocessing

Step 3 Concept lattice construction Step 2 Usage model construction

Step 4 Abstract test case generationStep 5 Data model
construction

Step 6 Test case execution and relia-
bility measurement

Fig. 1. Complete Process of Our Approach

3 Concept Analysis Based Statistical Web Testing

Using data model represented by the possible sets of name-value pairs is an effective
approach to providing test data for the abstract test cases. The access log file consists of
huge a number of user sessions, and reflects the navigation patterns of different roles.
As a result, the data model, built from all the user sessions, may provide inappropriate
username and password for testers to log into the Web application. By analyzing one
user’s sessions, we can know the pages which have been accessed successfully by the
user. Therefore, Web users are allowed to access the pages which are included in their
user sessions. We assume that ui is the user of the ith user session USi, and Rui denotes
the set of the Web pages which are allowed to be accessed by ui. Rusi is used to denote
the set which consists of the Web pages of session usi, and Rt is used to denote the
set which consists of the Web pages of the given abstract test case tc. The property we
found can be described as follow.

∀usi ∈ USi, ∀rt ∈ Rt (Rusi ⊇ Rt ⇒ rt ∈ Rui)

Based on the above property, we propose a concept analysis based statistical Web testing
approach. In our approach, concept analysis is used to cluster the user sessions into a
concept which contains all the Web pages of one generated test case. The complete
process of our approach is shown in Fig. 1. Step 1 is to identify the user sessions from
the access log file. In Step 2, these user sessions are used to construct the Markov usage
model which describes all the users’ navigation patterns. The user sessions can also
be used to build a concept lattice in Step 3. The concept lattice depicts the relationship
between user session and Web pages. The abstract test cases are generated from Markov
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usage model in Step 4, but these test cases are represented by state sequences and cannot
be executed directly. In Step 5, we build one data model for each concept, and the data
model is built from the user sessions of the corresponding concept. In each data model,
the name-value pairs have the condition probabilities, and they can be used as the test
data for the abstract test cases. In Step 6, these test cases are executed by the replay tool
Httpclient [17]. After executing test cases, we analyze the test result using the reliability
models to estimate the reliability of a Web application.

3.1 Access Log Preprocessing

Web access log is a file which has stored all the users’ requests via GET or POST
method. An example of a log entry is shown as follows.

192.168.0.102 - - [06/Jan/2013:15:03:23 +0800] "GET /books
tore2/MyInfo.jsp HTTP/1.1" 200 7037 "http://192.168.0.101:
8080/bookstore2/ShoppingCart.jsp" "Mozilla/4.0 (compatible;
MSIE 8.0; Windows NT 6.1)"

In above example, “192.168.0.102” is the IP address of requesting computer. “06/Jan/
2013:15:03:23 +0800” is the Date and Time of the request. “MyInfo.jsp” is the Re-
source which Web users request. “ShoppingCart.jsp” is the Referrer URL. “Mozilla/4.0”
is the information of User-Agent.

We define the access log entry as an 8-tuple 〈ip, time, preSt, nextSt, agent,
formName, formAction, userName〉. In this tuple, ip denotes user’s ip address;
time denotes the date and time when user request the Web application; preSt denotes
the state before Web users request the Web application; nextSt denotes the next state.
agent denote the browser information of users. formName and formAction denote
the name and the action of a form. userName denotes the username of a Web user.
If a log entry does not contain the value of username, the userName will be set to
“NULL”. The user session can be regarded as several log entries for one user in the
period of time. We assume that LS denotes the set which include all the log entries
and U denotes the set which includes all the Web users, then each user session can be
defined as:

US = 〈u, ls〉
u denotes the Web user, u ∈ U .
u = 〈ip, agent, userName〉. ip is the IP address of a Web user,
agent denotes the User Agent.
userName is the username when a user signs in the Web application.
ls is the set of log entries, ls ⊆ LS.

The goal of log preprocessing is to identify the Web users and the user sessions. The
method of user identification and session identification is same as Sant’s work [6]. The
implementation of their method can be described as algorithm 1. In algorithm 1, Step
1 is used to identify the user from huge numbers of Web users. By user identification,
we have known all the users and the corresponding set of log entries, denoted as Lu.
One user’s log entries within a period of time can be regarded as a user session. Step 2
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is used to identify the user sessions for one user. After session identification, we obtain
the user sessions of the user u. We group these sessions of user u into a set USu. Step
3 is used to assign the username to a user of each user session.

Algorithm 1. Preprocessing the access log file.
Step 1. Finding out the log entries for a given user u and grouping them into a set of

log entries Lu.
For each log entry li in the log file

If (li.ip == u.ip ∧ li.agent == u.agent)
Lu = Lu ∪ {li}

End if
End for

Step 2. Session identification
For two consecutive log entries li and li+1 in Lu

If (li+1.time − li.time < interval time)
ls = ls ∪ {li, li+1}

Else
ls = ls ∪ {li}
us = 〈u, ls〉

End if
End for

Step 3. Assigning the username to each session user.
For each usi in USu,
(we assume lsi denotes the set of log entries of usi, and ui is the user of usi)

If (∃li ∈ lsi (li.userName �= NULL))
ui.username = li.userName

End if
End for

3.2 Building Usage Model

Both flat operation profile [18] and Markov usage model [19] can be used to represent
the complete usage patterns of Web users. Markov usage model is a flexible, easily
understandable descriptions of the operational profiles, and it provides both a wide
range of applications and a potential for deep formal analysis [19]. Building Markov
usage model is an important step of the statistical Web testing because the abstract test
cases are generated from the Markov usage model. In our approach, each Web page is
regarded as a state of Markov usage model. Two types of transitions, hyperlink tran-
sitions and form data submission transitions, are included in our Markov chain. The
form data submission transitions can be distinguished from the hyperlink transitions by
formName and formAction. A Markov usage model can be defined as [20]:

MC = 〈S, Γ, δ, s0, f〉
S is the set of states,
Γ is the set of transition labels,
δ: S × Γ → S is next state function,
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s0 is the initial state,
f is the final state.

The transition label t ∈ Γ is defined as a tuple 〈preSt, nextSt, count, prob,
formName, formAction〉. preSt is the present states of a transition, and nextSt is
the next state of a transition. The probability of the label t is denoted by prob, the vari-
able count denotes the execution counts. The variables formName and formAction
denote the name and the action of a form.

A Markov chain can be represented by a direct graph which contains several nodes
and edges. The nodes represent the states (i.e., Web pages) of the Web application, and
the edges represent the transitions of states (i.e., links). Each edge has a transition prob-
ability ranging from zero to one. The construction method of a Markov usage model
is same as Sant’s control model [6] and Sprenkle’s navigation model [16]. We design
an algorithm to implement the method. This algorithm builds the Markov usage model
from a Web access log file.

Algorithm 2. Building the Markov usage model.
Step 1. Scan all the user sessions and get the set of states S.
For each log entry li,

If ( � ∃s ∈ S(s == li.preSt) )
S = S ∪ {preSt}

End if
If ( � ∃s ∈ S(s == li.nextSt) )

S = S ∪ {nextSt}
End if

End for
Step 2. Get the set of transition labels.
For each log entry li,

If ( � ∃t ∈ Γ (t.preSt == li.preSt ∧ t.nextSt = li.nextSt ∧
t.formName == li.formName ∧ t.formAction == li.formAction ))

create a new transition label t′ ∧ t′.preSt = li.preSt ∧
t′.nextSt = li.nextSt ∧ t′.count = 1 ∧
t′.formName = li.formName ∧
t′.formAction = li.formAction ∧
Γ = Γ ∪ {t′}

Else
t.count = t.count + 1;

End if
End for
Step 3. Calculate the probability of each transition label ti.
For each transition label tj ,

If (ti.preSt == tj .preSt)
counttotal = counttotal + tj .count

End if
End for
ti.prob = ti.count/counttotal
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3.3 Concept Lattice Construction

Concept analysis is a mathematical technique for clustering objects that have common
discrete attributes [21]. The input of concept analysis consists of a set of objects, a set
of attributes and the relationship between the objects and the attributes. A concept is
defined as a tuple C = 〈Oi, Aj〉, and it means all and only objects in Oi share all and
only attributes in Aj [21]. The relationship between two concepts has been called partial
order. The partial order of two concepts can be defined as: (O1, A1) ⊆ (O2, A2) ⇐⇒
O1 ⊆ O2. Being different from Sampath’s work [21], we apply concept analysis to
support statistical Web testing rather than reduce the size of a test suite. In our statistical
Web testing approach, we use concept analysis to find the user sessions which contain
all the states of abstract test cases, and extract the name-value pairs as the test data
for the abstract test cases. The user sessions can be regarded as the objects, and the
states (i.e., Web pages) of the abstract test cases can be regarded as the attributes of the
objects.

The concepts and their partial ordering constitute a concept lattice. We adapt the
Chein’s algorithm [19] to construct a concept lattice which has multiple layers, and
each layer has several different concepts. The process of Chein’s algorithm is creating
new concepts for a higher layer by the intersection of two concepts in the same lower
layer, and removing the redundant concepts in the lower layer. A concept lattice can be
represented by a Hasse diagram. In a Hasse diagram [21], the concept in the top node
is most general. All the attributes of this concept are shared by all the objects in the
whole concept lattice [21]. Similarly, the concept in the bottom node is most special,
and all the objects of this concept have all the attributes in the whole concept lattice
[21]. A sample of Hasse diagram, which represents the relationship between objects and
attributes in Table 1, is shown in Fig. 2. Concept1 is a concept in the top node, and all
the sessions have all the states (i.e., us1, us2, ..., us7) in the attribute set (i.e., {Login})
of Concept1. Concept7 is a concept in the bottom node, and the object (i.e., us7) in its
object set has all the attributes (i.e., Login, ShoppingCart, ShoppingCartRecord,
BookDetail, Default).

Table 1. A Sample of User Sessions and Their States

Sessions/States Login ShoppingCart Default ShoppingCartRecord BookDetail
User Session 1 1 0 1 1 1
User Session 2 1 1 0 1 0
User Session 3 1 0 1 0 0
User Session 4 1 1 0 1 0
User Session 5 1 0 1 0 1
User Session 6 1 1 1 0 0
User Session 7 1 1 1 1 1

3.4 Abstract Test Cases Generation

The test cases generation phase of statistical Web testing is different from traditional
Web coverage-based testing [22]. In statistical Web testing, abstract test cases [16] can
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Concept1

Concept2

Concept3

Concept4

Concept5

Concept6

Concept7

Concept1: ({us1, us2, us3, us4, us5, us6, us7}, {Login})
Concept2: ({us2, us4, us6, us7}, {Login, ShoppingCart})
Concept3: ({us1, us3, us5, us6, us7}, {Login,Default})
Concept4: ({us2, us4, us7}, {Login, ShoppingCart, ShoppingCartRecord})
Concept5: ({us1, us5, us7}, {Login, BookDetail, Default})
Concept6: ({us6, us7}, {Login, ShoppingCart,Default})
Concept7: ({us7}, {Login, ShoppingCart, ShoppingCartRecord,BookDetail,

Default})

Fig. 2. A Sample of Hasse Diagram

be generated from the Markov usage model by a random traverse. The generated ab-
stract test cases are represented by state sequences, which cannot be executed directly.
Each abstract test case has its probability, and the abstract test case probability ptci can
be calculated by the following equation which is proposed by Walt J [19]:

ptci =

k∏
j=1

ptj (1)

In Equation (1), the abstract test case tci has k transitions and the variable ptj is the
probability of the jth transition. For example, the probability of the abstract test case
“Start → Login → Registration → Default → Exit”, according to the Markov usage
model shown in Fig. 3, can be calculated as 1 × 0.476 × 0.692 × 0.087 = 0.0286.

The threshold probability is set for the process of abstract test cases selection. If the
probability of one abstract test case is larger than the threshold probability, this abstract
test case will be added into the test suite. In the process of generating the abstract
test cases, the threshold probability is adjusted dynamically to control the numbers of
abstract test cases.

3.5 Data Model Construction and Obtaining Test Data

The purpose of data model construction is to provide the test data for the abstract test
cases when testers execute these test cases. A data model is built for each concept in
the concept lattice constructed previously. The user sessions of a concept are extracted,
and a data model can be built based on these user sessions. In our approach, the data
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model, shown as follow, can be represented by the conditional probability of the given
userName, lastP age, visitingP age, formName and formAction.

P (name values | userName, lastP age, visitingP age + formName+
formAction)

When providing the test data for one abstract test case, we need to search the concept
whose attribute set (i.e., the set of states) contains all the states of the given test case. We
obtain the name-value pairs as the test data according to their condition probabilities.

Different from Sant’s work, we build one data model for each concept from this
concept’s user sessions. Our approach makes testers log into the Web application with
an appropriate role to execute one test case. Because the test data, including the user-
name and password, is obtained by the sessions whose users are allowed to access all
the pages of this test case. In addition, the username is taken into account in our data
model. This ensures that the test data is obtained from one user’s session.

We design algorithm 3 to describe finding the suitable concept for the given abstract
test case from the concept lattice. In algorithm 3, the set of the states of one abstract test
case is denoted as St. We assume the concept lattice has n layers, and the nth layer is
the top layer.

Algorithm 3. Searching the suitable concept for the given abstract test case.
Step 1. Current layer k = n.

Step 2. For each Ci in layer k
The attribute set of Ci is denoted as Si

If (St ⊆ Si)
Ci is the suitable concept.
Stop algorithm.

End for

Step 3. If no suitable concept has been found in layer k
k = k − 1.
Goto Step 2.

End if

4 Reliability Measurement

The reliability of Web applications can be defined as the probability of failure-free
Web operation completions [23]. Nelson model [11] is one of the classic reliability
models which can be used to measure the reliability of Web applications. To apply
Nelson model, usage information and failure information are required. The usage data
and error data are stored by Web server automatically. When a Web page or any other
Web resource, such as a sound file, a video file, an image file, etc, is requested by Web
user, a “hit” will be registered in the access log file. When a failure occur, the failure
information is stored in the error log file. After executing the test cases, we can analyze
the error log file to obtain the failure information. Some errors stored in the error log
file are shown as follows.
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[ERROR] http-8080-3 org.apache.catalina.core.ContainerBase.
[Catalina].[localhost].[/bookstore2].[jsp] -
{Servlet.service () for servlet jsp threw exception}
java.sql.SQLException: Access denied for user ’root1’@
’localhost’ (using password: YES)

[ERROR] http-8080-1 org.apache.catalina.core.ContainerBase.
[Catalina].[localhost].[/bookstore2].[jsp] -
{Servlet.service () for servlet jsp threw exception}
com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException:
Unknown database ’bookstore’

We can detect the existent errors of a Web application by analyzing the error infor-
mation. The first error results from using incorrect username or password to connect
the database. The crucial reason for second error is to connect the unknown database.
These errors can be regarded as the failures of a Web application. In order to estimate
the overall reliability of a Web application, we need to count the total number of errors,
denoted as f . According to Nelson model [11], for total hits n, the estimated reliability
R can be calculated as the following equation:

R = 1− f

n
(2)

According to Tian’s work [3], MTBF (Mean Time between Failures) can be calculated
as:

MT BF =
n

f
(3)

5 Case Study

In this section, we present and discuss statistical testing of a bookstore Web application,
which is downloaded from gotocode.com as an empirical study. Our experiment is de-
ployed in a LAN, and we use Tomcat 6.0 as our Web Server. We invite our classmates
and Ph.D students as volunteers to be the Web users. All the users’ requests will be
stored automatically in the access log.

5.1 Access Log Preprocessing

The access log file we analyzed contains 2,035 log entries. We remove the image, video
and sound request log entries from this access log file. We identify the Web users by the
step 1 of algorithm 1. The log entries belongs to a user with the same IP address and
the same User Agent. We implement the session identification by step 2 of algorithm
1 to discover the user sessions. The interval time in session identification is fixed to 10
minutes. As a result, we obtain 35 user sessions from session identification.



Concept Analysis Based Approach to Statistical Web Testing 111

5.2 Usage Model Construction

As mentioned in Section 3.2, Markov usage model is more appropriate than flat op-
eration profile to represent the whole navigation patterns. Therefore, we use Markov
chain as the usage model for the Web application. The Markov usage model can be
constructed by algorithm 2. In this case study, the Markov usage model has 25 states
and 78 transitions. Fig. 3 shows part of the Markov usage model of our Web application
under test (i.e, some transitions and states are not shown in Fig. 3, and the summation
of transition probabilities from one state may not equal to one).

S1start S2

S3

S4 S5

S6End

0.476 0.308

0.476

0.059

0.012 0.042 0.007

0.111

0.087

0.077

0.33

0.307

0.692

S1: Login
S2: Registration
S3: BookDetail
S4: Default
S5: AdminMenu
S6: MembersGrid

Fig. 3. Part of the Markov chain usage model in our experiment

5.3 Abstract Test Cases Generation

The abstract test cases can be generated from the Markov chain by random traverse
(i.e., choosing the next state randomly). We set 0.1 as the initial threshold probability
to control the numbers of abstract test cases. This threshold probability will be adjusted
dynamically during the test case generation process. Finally, we generate 500 unique
abstract test cases. As shown in the following, the abstract test case No. 448 is an ex-
ample in our experiment.

Abstract Test Case No. 448:
Start
→ /bookstore2/Login.jsp → /bookstore2/Login.jsp Form Login login
→ /bookstore2/BookDetail.jsp → /bookstore2/AdminMenu.jsp
→ /bookstore2/MembersGrid.jsp→ /bookstore2/MembersRecord.jsp
→ /bookstore2/MembersRecord.jsp Form Members insert
→ /bookstore2/MembersGrid.jsp→ /bookstore2/MembersRecord.jsp
→ /bookstore2/MembersRecord.jsp Form Members insert
→ /bookstore2/MembersGrid.jsp→ /bookstore2/Default.jsp
→ End
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As shown above, abstract test case No. 448 contains some restricted operations such as
visiting an administrator’s menu, adding members, etc. In “MembersRecord.jsp F
orm Members insert”, “Form” means the transition from “MembersRecord.j
sp” to “MembersGrid.jsp” need to submit the form data. “Members” is the name
of the form, and “insert” is the action of this form.

5.4 Providing Test Data for Abstract Test Case by Concept Analysis

We use concept analysis to cluster the user sessions which has the same Web pages
(i.e., states of Web application) into a group. In concept analysis, each concept has a
set of objects and these objects share common attributes. In our experiment, the user
sessions are treated as objects, and the Web pages are the attributes of these objects.
A concept lattice describes the relationship of concepts, and it can be represented by a
Hasse diagram. In our experiment, 35 user sessions found in session identification can
be treated as 35 objects, and these sessions contain 25 states. These states are treated
as 25 attributes. We construct the concept lattice using Chein’s algorithm [24]. The
concept lattice in our experiment contains 41 concepts and 8 layers.

In order to obtain the session data (i.e., name-value pairs) for an abstract test case,
we search the concept, which contains all the states of this abstract test case, from the
concept lattice. We use the name-value pairs as the test data according to their condition
probability in the data model of this concept. The test case No. 448, including test data,
is shown as follows.

Test Case No. 448:
Start
→ /bookstore2/Login.jsp
→ /bookstore2/Login.jsp?FormName=Login&Login=admin&Password=admin&
FormAction=login&ret page=&querystring=
→ /bookstore2/BookDetail.jsp → /bookstore2/AdminMenu.jsp
→ /bookstore2/MembersGrid.jsp→ /bookstore2/MembersRecord.jsp?name=&
→ /bookstore2/MembersRecord.jsp?member login=robert 123
&member password=robert pswd ...
→ /bookstore2/MembersGrid.jsp?member login=
→ /bookstore2/MembersRecord.jsp?name=&
→ /bookstore2/MembersRecord.jsp?member login=creator
&member password=creatorpswd ...
→ /bookstore2/MembersGrid.jsp?member login= → /bookstore2/Default.jsp
→ End

We have developed a Web statistical test prototype tool to support our approach. It can
identify user sessions, construct concept lattice, build Markov usage model, generate
abstract test cases and test cases, and estimate the reliability of a Web application auto-
matically. As shown in Fig. 4, the test case No. 448 is one of the test cases generated by
our testing tool. In this test case, “AdminMenu.jsp”, “MembersGrid.jsp” and
“MembersRecord.jsp” are accessible only by the administrators (i.e., testers must
log into the Web application with an administrator rather than a customer). In order
to testify the effectiveness of our approach, we have attempted to use Sant’s approach
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Table 2. The username and password produced by Sant’s data model and by our approach

Abstract Test Case No. 448 Sant’s approach
Login.jsp username password isAdmin percentage
Login.jsp Form Login login solar3 sunna88 false 18%
BookDetail.jsp admin2 admin2 true 15%
AdminMenu.jsp guest guest false 14%
MembersGrid.jsp admin1 admin1 true 12%
MembersRecord.jsp admin admin true 11%
MembersRecord Form Members insert lunna vison false 10%
MembersGrid.jsp user2 123456 false 2%
MembersRecord.jsp ... ... ... ...
MembersRecord Form Members insert
MembersGrid.jsp

Abstract Test Case No. 448 Our approach
Login.jsp username password isAdmin percentage
Login.jsp Form Login login admin1 admin1 true 36%
BookDetail.jsp admin admin true 31%
AdminMenu.jsp admin2 admin2 true 33%
MembersGrid.jsp
MembersRecord.jsp
MembersRecord Form Members insert
MembersGrid.jsp
MembersRecord.jsp
MembersRecord Form Members insert
MembersGrid.jsp

and our approach for 100 times to provide the test data for the given abstract test case
No. 448. We can conclude form Table 2 that “admin”, “admin1” and “admin2” are the
administrators, testers must use their username and password to log into the Web appli-
cation. If we obtain the test data from the data model built from all the user sessions,
the correctness rate is only about 38%. Compared with the results of this approach, the
performance of our approach is remarkable better.

The executable test cases generated in our experiment can be executed directly by
replay tool, such as Httpclient.

5.5 Reliability Measurement

After the test cases being executed, the failures information is stored in the error log file.
We analyze the error log file and count the failures f . For total hits n, the relationship
between total hits n and failures f has been shown as Fig. 5. When every 50 test cases
being executed, the test results will be analyzed. The reliability of Web application can
be estimated according to Equation (2) and (3). Fig. 6 and Fig. 7 show the reliability R
and MTBF of this Web application.

Fig. 5 shows the relationship between the cumulative errors and cumulative hits. The
slope of curve depicts the frequency of the failures occur. We can conclude from Fig. 6
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Fig. 4. Statistical Web test cases generator
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that the reliability is from 88.9% to 90.7%, and Fig. 7 shows that the MTBF of the Web
application is from 9.045 hits to 10.759 hits. This means one failure will occur in about
10 hits.

6 Conclusion and Future Work

Statistical testing is a cost-effective testing and appropriate approach to testing Web
applications. By statistical testing, the overall reliability of Web applications can be
estimated by reliability models. However, most researchers focus on how to build the
Markov usage model and generate the abstract test cases from it. It is also important
for us to provide the concrete test data, especially the real username and password for
testers to log in with an appropriate role, for the abstract test cases.

Through further study, we found that the approach proposed by Sant [6], building the
data model to provide test data for the abstract test cases, cannot ensure that the testers
have the authority to access to the pages. For example, testers may use a customer’s
username and password to log in before they try to access to the administrator’s menu
page. The main reason for this problem is that the data model built from all the user
sessions, with users of these user sessions having different levels authority. In our ap-
proach, the test data are obtained from the user sessions which include all the pages of
a test case. As a result, our approach provides an appropriate username and password
for testers to log in, and it ensures that they have the authority to access the pages of a
given test case.

The main contribution of this paper has been to propose an approach combining
concept analysis with a data model to provide the concrete test data in statistical Web
testing. The test data generation is different from existing approaches; we utilize con-
cept analysis to cluster the user sessions which have the same Web pages and construct
a data model for each concept. When proving test data, for an abstract test case, we
analyze the name-value pairs from the user sessions in one concept and extract some
of them as test data according to their condition probabilities. The reliability can be
estimated using the Nelson model and MTBF after the test cases are executed by the
replay tool. Moreover, a tool has been developed to support our approach to statistical
Web testing. The tool allows testing of the Web application and gives an estimate of its
reliability.

In our approach, we utilize Chein’s algorithm [24] to construct the concept lattice,
which describes the relationship of different concepts. However, Chein’s algorithm is
one of batch algorithms, which costs much time and space. To test a large scale Web
application statistically, testers are required to analyze a huge number of user sessions.
Therefore, it is necessary for us to use a more efficient algorithm, such as Godin’s
incremental algorithm [25], to construct the concept lattice. In addition, the Web users’
specific operations, such as “back”, “refresh”, “forward” and entering URL to browse
Web application directly, will affect the accuracy of our usage model. In our future
work, we will utilize related data mining techniques to improve the accuracy of the
Markov usage model. Moreover, only server exceptions and errors can be stored in the
error log file. Being similar to Tian’s work [3], we estimate the operation reliability of
the Web application according to the errors (stored in the error log) and hits. However,
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the error log file cannot store some errors of Web applications (e.g., the output page
is different from the expected page). In fact, confirming whether the output pages are
same as the expected pages is also important and meaningful. In our future work, we
will take these errors into account and estimate the reliability of Web applications.
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Abstract. The competition for higher performance/price ratio is push-
ing processor chip design into the manycore age. Existing multicore tech-
nologies such as caching no longer scale up to dozens of processor cores.
Even moderate level of performance optimisation requires direct han-
dling of data locality and distribution. Such architectural complexity
inevitably introduces challenges to programming. A better approach for
abstraction than completely relying on compiler optimization is to ex-
pose some performance-critical features of the system and expect the
programmer to handle them explicitly. This paper studies an algebra-
semantic programming theory for a performance-transparent level of par-
allel programming of array-based data layout, distribution, transfer and
their affinity with threads. The programming model contributes to the
simplification of system-level complexities and the answering of crucial
engineering questions through rigorous reasoning.

1 Introduction

Driven by the demand for higher performance and lower hardware and energy
costs, hardware systems are increasingly heterogeneous and massively parallel.
A typical large hybrid system may include thousands of computing nodes, each
with a small number of complex CPU cores and a large number of simpler GPU
cores for acceleration. Such hybrid solution is power-efficient if massively parallel
tasks are properly delegated to the accelerators.

The architectural complexity inevitably introduces challenges to programming.
As achieving uniform sequential consistency for hundreds of cores is often too ex-
pensive, practical design solutions either expose the on-chip memory hierarchy
e.g. in NVidia GT200 and 48-core Intel Single-Chip Cloud Computer (SCCC) or
implement a non-uniform coherent cache along a ring bus e.g. in Larrabee and
Knights Corner. A non-uniform cache is transparent for consistency but opaque
for performance, which heavily depends on the distances between cores on the ring
bus. That means, to achieve reasonable cache performance, the locality of data-
thread mapping as well as many other architectural factors must be taken into
account by either the user program or the compiler. There has been intensive aca-
demic research on unifying memory models that are more relaxed than sequential
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consistency but provide better performance, although the hardware industry has
currently not been pursuing these directions.

A common misperception is that the user program need not handle any
system-level features and should leave them to the compiler for optimization —
by conceding a fraction of performance, the productivity is improved. New ar-
chitectural technologies, however, can be much more sensitive to suboptimal im-
plementation. The performance penalty for slight mismanagement of threads or
memory can be orders of magnitude. For general-purpose applications, compile-
time and runtime optimization alleviates the issues but it remains to be seen
to what extent the lost source information about system-level control is recov-
erable automatically. Experiences also show that engineers often prefer those
parallel-programming tools with predictable performance over automated opti-
mizers with unreliable effectiveness.

A more utile approach for abstraction is to expose some performance-critical
features of the system and expect the programmer to handle them explicitly.
Then the question is how to identify and organize such features in a unified
representation that is easy for the programmer to comprehend and control. De-
signing new language features is a central concern of the programming-language
community, although the initial motivation here is performance rather than cor-
rectness (which, of course, naturally arises too).

The mission of this paper is to “convert” these emerging engineering challenges
to the realm of programming-language theory. We will motivate and show how
formalization can contribute to the simplification of system-level complexities
and how crucial engineering questions are answered through rigorous reasoning.

Parallel programming has been one of the main themes of theoretical com-
puter science for decades. Existing parallel programming theories are thorough
for specific kinds of parallelism, but heterogeneous parallelism often simulta-
neously involves several forms of parallelism including manycore parallelism
without uniform cache coherence and large-scale clustering that relies on asyn-
chronous message-passing to hide communication latencies.

This paper studies various parallelism in a unified programming model and
reveals their essential commonality. As formalizing the entire dynamic behavior
of all forms of parallelism is too demanding, we instead focus on patterns of data
layout, distribution, transfer and their association with threads. These factors are
often the most important aspects of compiler design and parallel-programming
practice.

To achieve a performance-transparent level for programming, the represen-
tation must be expressive enough so as to convey enough source-level control
information to the system level. Lack of expressiveness would force a program-
ming tool to keep adding ad hoc commands for originally unforeseen applica-
tion scenarios (see Section 6), or it deprives the system level of enough source
information and must rely on an unpredictable optimizer to second-guess the
programmer’s intention. These approaches could be useful for some types of
applications, but they do not offer the general solution that we are pursuing
here.
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Our approach instead extends traditional array types with locational infor-
mation that describes how data are laid out in memory and distributed over
multiple memory devices. Parray [9,28] is a parallel extension of C with gen-
eralised array types containing information about how the array elements are
located in each memory device and distributed over multiple memory devices.

The focus of this paper is parallel programming for computing tasks with
regular structures. Applications with irregular structures often have underlying
regularity. For example a typical oil reservoir simulation has a largely three-
dimensional mesh with a few irregular wells that connect some adjacent cells.
Another common tactic is to use multiple regular mesh structures to represent an
irregular mesh. Even for completely irregular computing tasks such as Breadth-
First Search (BFS) of a large map graph, when the solution is mapped to a
GPGPU, the regularity of the GPGPU structure becomes the main concern of
optimisation.

Algebra have been used in parallelism for decades. Process algebra [26,11,30]
focus on message-passing, while temporal logics [2,10] (which have equivalent al-
gebraic representation [23]) are mostly used for shared-memory communications.
Both forms of communication appear on a modern HPC system. For example,
the communications among computing nodes include all kinds (synchronous,
asynchronous, buffered or non-buffered) of message-passing, so does that of the
network-on-chip of Kepler and Tilera and the PCI connection between each com-
puting node and the manycore accelerators on it. Shared memory, on the other
hand, appears on each computing node and among subset of cores. It is always
possible to build a software-based virtual global address space for all memory
devices. Such a protocol may be transparent for correctness, but whenever per-
formance is concerned, the actual memory hierarchy becomes explicit to the
programmer. Creative design of algorithms and programs is often necessary.

We follow the style of algebraic semantics [19,20]. The idea is to identify
equational laws between programs and use program notation itself to define the
meaning of programs. An equation goes either way, but if we stick to the con-
vention of putting the transformed program on the left-hand side and the target
program on the right-hand side, then such laws provide a transformation process
and can form the foundation for compiler code generation. Algebraic techniques
are introduced to describe index expressions generated from generalised array
types. Such indexing is useful in computing address offsets of data elements as
well as the thread/process id numbering involved in communications.

Section 2 introduces some simple examples of Parray programming. Section 3
describes the algebraic semantics of array types. Section 4 illustrates the versa-
tile application of the algebraic techniques in code generation. In Section 5 the
techniques are applied to a case study. Section 6 summarizes the related works.

2 Parallel Programming with Parray Types

Parray is a parallel extension to C that generates code for different manycore
accelerators as well as multicore and cluster systems. Before studying the un-
derlying theory, we first have a look at the syntax of an array-type example:
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#parray {paged float[n][n]} A. (1)

The syntax resembles C macros and is compiled by the Parray preprocessor to
generate various index expressions. When using Parray, the symbols for array
types such as A are separate from the actual array objects (or pointers such as a).
For example,

float* a; #malloc A(a)

will use the information from the definition of A to allocate n*n floats in row-
major paged memory (i.e. paging virtual memory) and assign the starting ad-
dress to the pointer a. Just like C macros, the symbol n here can be a variable
or an expression whose value is determined in runtime. The index expression
$A[i][j]$ generates a C expression i*n+j for in-scope indices i and j, and
the corresponding element can be accessed by the expression a[$A[i][j]$]. An
array type may take other shapes. For example, a type

#parray {[#A 1][#A 0]} B (2)

is the column-major variant of A in which the column dimension named A 0 and
the row dimension named A 1 are swaped. We then have $ A[i][j]$ to coincide
with $ B[j][i]$. By checking the locality information of the type definitions,
the Parray compiler is aware of all the information necessary for generating fast
communication codes. For example, the command

#copy A(a) to B(b)

copies n*n data from address a to address b with columns and rows transposed.
Threads also form arrays. For example, a type

#parray {mpi[n]} P

indicates an array of n processes. A type may contain a mixture of thread di-
mensions and data dimensions:

#parray {[#P][#A 1]} C,

which describes a two-dimensional array distributed over n processes.
A more sophisticated type may have nested dimensions in a tree-like structure

of sizes (n*n)*m with another memory type dmem for device memory on GPGPU
accelerators and other dimension references in the tree:

#parray {dmem float [[n][n# B] # A 0] [m]} D. (3)

The row sub-dimension D 0 0 of the column dimension D 0 of E satisfies the
equation: $D 0 0[i]$ = $A 0[i*n]$* m for in-scope indices i. The advantage of
having a dimension tree is to keep a program mostly unchanged when a large
dimension is further partitioned for deeper parallelisation and performance opti-
misation. Further abstraction that makes the memory or thread types
invisible is possible, but the basic style of Parray programming assumes ex-
plicitness to allow control of data locality directly.
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3 Syntax and Semantics

To study the most basic mathematical properties of Parray types, for now, we
focus on dimension trees and their role in generating index expressions. Memory
and thread types will be investigated in Section 4. In this paper the terms “array
type” and “dimension” are interchangeable.

3.1 Syntax

The syntax of dimension trees is as follows:

T ::= n | disp(n) | [T][T] | T h | T # T | abs(T). (4)

Any positively integer-valued expression n can be the size of a dimension; a
displacement disp(n) describes a dimension of size 1 with constant offset n;
we consider two-dimensional constructor [T][T] of two sub-dimensions (multi-
dimensions allowable as a simple syntactical extension); T 0 or T 1 indicates the
column or row sub-dimension of T, respectively; type reference T # T describes a
dimension whose size follows the left and indexing follows the right; the operator
abs(T) forces a dimension’s entire index expressions to be independent of its
position in a larger dimension tree, respectively. We assume that every type
defined with #parray is absolute. The real Parray specification also allows
an arbitrary function func(x) exp as a user-defined index-expression macro.
Since the definition (4) is already general, func is rarely needed in practice.
All discussions in this paper are also applicable to multiple (more-than-two)
dimensions at each level of a dimension tree.

We use T[α] to denote the index expression where each index α can be an in-
teger expression k or further nested with sub-dimensions like [α0][α1]. We may
simply write T[i][j] instead of T[[i][j]]. Not that if T is one-dimensional,
then T[i][j], T 0 and T 1 are syntactically invalid. For example, D[[i][j]][k]
is a valid index expression, but A 0[i][j] is not.

For convenience, we simply write A[k] for the index expression $A[k]$. The
equality between expressions is “=” instead of the C convention “==”.

3.2 Some Ideas about Index Expressions

The semantic definitions of index expressions derive from common sense and
programming intuition. For example, type A has a contiguous row dimension
A 1 and a discontiguous column dimension A 0 with a constant gap n between
adjacent offsets. We stipulate that

A[k] = (k % n*n), A 0[j] = (j % n)*n, and A 1[i] = (i % n).

Each index is taken modulo against the dimension size to ensure the index to be
in-scope, though the actual compiler may not always generate the modulo
operator if the programmer is expected to manage the scoping. Note that the
indexing of a relative dimension such as A 0 has a constant gap of n positions
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between adjacent indices. The gap is related to the dimension’s location in the
entire dimension tree. We also have A[i][j] = A 0[i] + A 1[j] for combined
indices. A straightforward equation is identified:

A[k] = A 0[k/n] + A 1[k%n]. (5)

Unlike the relative dimensions of A, the dimensions of B are absolute on
references to A 0 and A 1 such that B 0[i] = A 1[i] and B 1[j] = A 0[j]. The
indexing of a absolute dimension does not depend on the sizes of other dimen-
sions. The definition of B[k] follows the programmer’s intuition:

B[k] = B 0[k/n] + B 1[k%n]. (6)

In general, a type like D may contain a mixture of relative and absolute dimen-
sions. What is D 0[i] going to be? Again common sense prevails:

D 0[i] = A 0[i/n*n] + B[i % n].

From this example, we see that the semantics must keep track separately the
relative (e.g. i/n *n) and absolute (e.g. B[i % n]) indexing of the sub-dimensions
so that an external type reference only affects the relative part.

3.3 Dimension Sizes

The dimension sizes size(T) of array types satisfy some simple algebraic laws.
The size of displacement is always 1; the size of a type reference T#S is that of
the left-hand side; the operator abs does not change the dimension size.

Law 1. (1) size(n) = n

(2) size(disp(n)) = 1

(3) size([T][S]) = size(T)* size(S)

(4) size([T][S] 0) = size(T)

(5) size([T][S] 1) = size(S)

(6) size((T# S) h) = size(T h) (h = 0,1)

(7) size(abs(T)) = size(T)

As a convention, #A is shorthand for size(A)#A.

3.4 Algebraic Semantics

The advantage of algebraic semantics is to use program notation itself to il-
lustrate the meaning of the programs. Consider the special type 1 whose all
indices are 0: 1[k] = (k%1) = 0. Any dimension referring to 1 loses its relative
indexing and exposes its absolute indexing. We shall use |T| to denote the
relative part of a type. As the index expression T[k] provides both relative and
absolute indexing while T#1[k] identifies only the absolute part, the relative part
becomes their difference. We thus have the following defining decomposition:
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T[k] = |T|[k] + T #1[k].

The relative index expression of a dimension of size n is a modulo operator, while
any displacement is added to the index. Both absolute parts are empty:

Law 2. (1) |n|[k] = k % n

(2) |disp(n)|[k] = k + n

(3) n #1[k] = disp(n)#1[k] = 0.

To compute the indexing of a two-dimensional array, a one-dimensional index k

must be divided by the size of the row dimension to get the column sub-index.
The relative column dimension is multiplied with the row size, while the absolute
column dimension is not affected by the sizes of any other dimensions:

Law 3. (1) |[T][S]|[k] = |T|[k/m]* m + |S|[k]

(2) ([T][S]#1)[k] = T #1[k/m] + S #1[k]

where m = size(S).

The dimensions of a two-dimensional array are applied to two-dimensional indices
respectively. Note that each α is either an index k or has two sub-dimensional
indices [α0][α1]. Again, the relative column index expression is multiplied with
the row size, while the absolute index expression is not:

Law 4. (1) |[T][S]|[[α0][α1]] = |T|[α0] * size(S) + |S|[α1]

(2) ([T][S]#1)[[α0][α1]] = T #1[α0] + S #1[α1].

The laws of sub-dimensions h reflect Law 4:

Law 5. (1) |[T][S] 0|[α] = |T|[α] * size(S)

(2) |[T][S] 1|[α] = |S|[α]

(3) ([T][S] 0 #1)[α] = T #1[α]

(4) ([T][S] 1 #1)[α] = S #1[α].

The relative part of a type reference is the relative referred index expression
applied to the relative referring index expression, while the absolute part is
the absolute referring index expression added to the absolute referred index
expression applied to the relative referring index expression. This indicates that
the absolute indexing of the referring type is not affected by any further type
reference:

Law 6. (1) |T # S|[α] = |S|[ |T|[α] ]

(2) T # S #1[α] = T #1[α] + S #1[ |T|[α] ].

The operator abs forces the relative indexing to become absolute:

Law 7. (1) |abs(T)|[α] = 0

(2) abs(T)#1[α] = T[α].
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3.5 Soundness and Completeness

The previous sub-section has laid out the axiomatic rules for index expressions.
To study the consistency of the laws, it suffices to show that every type corre-
sponds to a unique index expression. We first define the C-like syntax of normal-
form integer expressions (with index k) as follows:

E(k) ::= n | k + n | k * n | k / n | k % n | E(k) + E(k) | E(E(k)). (7)

Theorem 1 (Soundness). The Law 2–7 uniquely transforms every array type’s
index expression into a normal-form integer expression.

Proof. Induction on the syntactical complexity of of array types. Pure integer
expressions without typed index expressions have 0 complexity. Arithmetic op-
erators do not add complexity. The complexity of normal dimension n is assigned
to 0. That of disp(n) is assigned to 1. The complexity of |T| and T#1 is assumed
to be equal to that of T. Two-dimensional constructor [T][S] and type reference
T # S adds 1 to the max complexity between T and S. abs(T) adds complexity
1 to T. Then every Law 2–7 reduces the complexity from LHS to the RHS until
reaching 0 free of typed index expressions. As the law applicable to each typed
index expression is unique, the transformation is unique. �

We have focused on index expressions T[k] with one-dimensional indices. Two
dimensional indices in T[i][j] are similar. In fact, not only every type corre-
sponds to a unique normal-form integer expression, but also the design of Parray
types ensures that every such integer expression is equal to the index expression
of some array type (though not necessarily unique). The following laws show
that every syntactical term in (7) has a Parray-type encoding:

Law 8. (1) 1 # disp(n)[k] = n

(2) disp(n)[k] = k + n

(3) ([disp(0)][n] 0)[k] = k * n

(4) ([disp(0)][n# 1])[k] = k / n

(5) n[k] = k % n

(6) ([T][disp(0)# S])[k] = T[k] + S[k]

(7) |T| # S[k] = S[ |T|[k]].

Theorem 2 (Completeness). According to Law 2–7, for every pair of normal-
form integer expressions E and E’, there exists a Parray type T such that

|T|[k]= E, T # 1 = E’ and T[k] = E+E’.

Proof. The LHS of Law 8(1)-(5) have empty absolute part. If both T and S have
0 as their absolute parts (i.e. T #1[k]=0 and S #1[k]=0), so are [T][disp(0)# S]
and T # S. That means any normal-form integer expression E corresponds to some
array type X such that |X|[k]=E and X#1[k]=0. Thus any normal-form integer
expression E’ corresponds to some array type Y such that |abs(Y)|[k]=0 and
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abs(Y)#1[k]=E’. According to Law 8(6), [X][disp(0)# Y] is the array type
satisfying the requirement. �

The soundness and completeness theorems have characterised the representa-
tional power of Parray types and ensure that more sophisticated array patterns
become derivable from the basic notation.

This will help avoid the undesirable engineering practice(e.g. in HPF [29]
and MPI [13]) that keeps adding fresh ad hoc notations (such as the CYCLIC
distribution in HPF and various collectives in MPI) for unforeseen application
scenarios. If deeply nested type references reduces readability, renaming with
multiple type definitions easily simplifies it.

4 Versatile Applications of Algebraic Semantics

The algebra-semantic studies on array types also give rise to a variety of con-
ditional-compilation techniques.

4.1 Contiguity

On real systems bandwidth often depends on the granularity of communication.
For example, transferring data across the PCI between the main memory and
the device memory of GPGPU requires a minimum of 8MB contiguous data
block to achieve the peak bandwidth (between 3GB to 8GB). Discontiguous
data transfers of smaller data segments will severely reduce the bandwidth. The
following table indicates the estimated least segment size for peak bandwidth
(granularity) of different channels.

main mem dev mem shared mem registers infiniband
main mem 16KB 8MB 64KB
dev mem 8MB 64B 32B 32B

shared mem 32B 4B 4B
registers 32B 4B 4B
infiniband 64KB

We may use the compiler to generate code that checks (conservatively) the con-
tiguity of any array type. Let the contiguity range expression ran(T) denote the
contiguous range of a dimension and the step expression stp(T) denote the gap
of offset between adjacent indices. If a dimension like B in (2) is discontiguous,
the contiguity range is 0 and the step is arbitrary.

In a two-dimensional type, if the contiguity range of the row dimension fits
the step of the column dimension, then the overall step equals that of the row
dimension; the contiguity range is 0 for a discontiguous type.

Law 9. (1) ran([T][S]) = ran(T) * size(S)

(2) stp([T][S]) = stp(S)

if ran(S)>=size(S) and stp(T) = size(S) * stp(S); otherwise, ran([T][S])=0.
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The contiguity ranges or steps of sub-dimensions are identified as follows:

Law 10

(1) ran([|T|][S] 0) = ran(T)

(3) ran([T#1][S] 0) = ran(T)

(5) ran([T][S] 1) = ran(S)

(2) stp([|T|][S] 0) = stp(T)* size(S)

(4) stp([T #1][S] 0) = stp(T)

(6) stp([T][S] 1) = stp(S).

The contiguity range of a referring type is also the contiguity range of a type-
reference composition if it is bounded by the contiguity range of the referred
type:

Law 11. (1) ran(T# S) = ran(T)

(2) stp(T# S) = stp(T)* stp(S)

if ran(T)* stp(T)<ran(S).

When the range of S is exceeded, the range and step become as follows:

Law 12. (1) ran(|T|# S) = ran(S)/ stp(|T|)

(2) stp(|T|# S) = stp(|T|)* stp(S)

(3) ran(T#1 # S) = ran(T # 1)

(4) stp(T#1 # S) = stp(T # 1)

if ran(|T|)* stp(|T|)>=ran(S).

The operator abs does not affect contiguity range and step:

Law 13. (1) ran(abs(T)) = ran(T)

(2) stp(abs(T)) = stp(T).

The following theorem shows that the index expression T[k] is linear with respect
to the indices within the contiguity range ran(T), though it is not true vice versa.
That means the linearity checking is conservative.

Theorem 3 (Effectiveness I). Law 9-13 uniquely transform the contiguity
range and step expressions to normal-form integer expressions. The contigu-
ity range and step expressions satisfy that for all indices k < ran(T), we have
T[k] = k * m + T[0].

Proof. The proof of the first half uses the same technique of Theorem 1. By
routinely checking Law 2-7 and Law 9-13. �

A dimension T is “contiguous” if the contiguity range ran(T) is no-smaller-than
size(T) and the step is 1. The contiguity boolean expression is defined:

cnt(T) = (ran(T)>=size(T) && stp(T)=1).

Data movement between arrays of contiguous types can be performed as a single
large data block or message.
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4.2 Range Estimation

In practice, it is often useful to estimate the range of a dimension’s index ex-
pression. For example, when duplicating data from the host’s main memory to
GPGPU accelerator’s device memory via PCI, it is possible to adjust the order
of the elements so that the GPGPU may use a different memory layout for the
same array to better coalesce memory accesses. As PCI’s bandwidth requires
nearly 8MB granularity to achieve the peak bandwidth, such order adjustment
cannot be performed during PCI transfer. If the estimated size of the memory
region (potentially with small gaps) does not exceed the size of the array, an
effective approach is to copy the entire region (or as segments, depending on the
particular strategy) to a buffer on GPGPU and call a GPGPU kernel to re-copy
the elements to the destination addresses. Order adjustment within a GPGPU’s
device memory can benefit from its high memory bandwidth.

From the the syntax of normal-form inter expressions (7), it is obvious that
T[0] is always the starting offset of the memory layout, but the modulo operator
complicates the estimation of the upper bound (denoted as sup(T)). Algebraic
laws again become helpful in this regard.

Law 14. (1) sup(n) = n-1

(2) sup(disp(n)) = ∞

The upper bound of a relative column dimension is multiplied with the row size,
but that of the absolute column dimension is not:

Law 15. (1) sup([|T|][S]) = sup(|T|)* size(S)+ sup(S)

(2) sup([T#1][S]) = sup(T#1) + sup(S).

The same rule applies to sub-dimensions:

Law 16. (1) sup([|T|][S] 0) = sup(|T|)* size(S)

(2) sup([T#1][S] 0) = sup(T#1)

(3) sup([T][S] 1) = sup(S).

The upper bound of a type reference is that of the referred type. The operator
abs does not affect the upper bound:

Law 17. (1) sup(T# S) = sup(S)

(2) sup(abs(T)) = sup(T).

The following theorem states the range of an index expression.

Theorem 4 (Effectiveness II). Law 14-17 uniquely transform the contiguity
range and step expressions to normal-form integer expressions. For any T and
index k, we have T[k]>=T[0] and T[k]<=sup(T).

Proof. By routinely checking Law 2-7 and Law 14-17. �

We shall use dense(T) to denote the boolean expression sup(T)<=size(T).
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4.3 Sub-programming and Conditional Compilation

In Parray, array types can be passed as parameters to a sub-program, which
works very much like a general C macro or compile-time lambda calculus. The
following Parray code declares a sub-program DataTransfer (sketch) that im-
plements the command #copy SRC(src) to DST(dst) in which SRC and DST

are type arguments.

#subprog DataTransfer(dst, DST, src, SRC)

#paif (cnt(SRC) && cnt(DST)) {

#insert ContTransfer(dst, DST, src, SRC) {}}

#elseif (SRC:pinned && DST:dmem && dense(SRC)) {

#parray {dmem elm(DST)[size(DST)] BUF

{#create BUF(buf)

#insert ContTransfer(buf, BUF, src, pinned BUF) {}

#insert DMEMTransfer(dst, DST, buf, dmem SRC) {}

#destroy BUF(buf)}}

#else {...}

#end

Theconditional-compilation command#paif..#elseif..#else.. checks thepat-
terns of the input types and generate optimised code according to the type infor-
mation. If both SRC and DST are contiguous, then the sub-program ContTransfer

for contiguous data transfer is inserted. If the source array type and the destina-
tion type are paged, the contiguous data transfer between them becomes a single
memcpy command; the data transfer from pinnedmemory to dmem on GPGPU, on
the other hand, generates a cudaMemcpy command.

#subprog ContTransfer(dst, DST, src, SRC)

#paif (SRC:paged && DST:paged) {memcpy(...);}

#elseif (SRC<=pinned && DST<=dmem) {

cudaMemcpy(...,cudaMemcpyHostToDevice);}

......

#end

If the data transfer from pinned memory to dmem is discontiguous and SRC

is dense, then an image array buf of SRC is created in device memory. The
data are first copied to the image buffer and then transferred to the destination
using DMEMTransfer, which is a one-liner Parray code that performs any data
movement within GPGPU device memory.

#subprog DMEMTransfer(dst, DST, src, SRC)

#forall cuda[size(SRC)](dst,src) as (y,x) {

y[DST[tid]] = x[SRC[tid]];}

#end

The code creates an array of size(SRC) GPGPU threads, each copies one ele-
ment from the position SRC[tid] of array src to the position DST[tid] of array
dst.
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pinned mem device mem

src

buf

ContTransfer

DMEMTransferdst

Note that this implementation is only a sketch of the actual Parray system
library, but from the examples, we get a glimpse of how the memory-type infor-
mation helps a sub-program in the system library to generate hardware-related
code on behalf of the compiler. This approach of using sub-programs for code
generation is particularly convenient as new manycore hardware devices and
models are constantly introduced in every few months.

5 Case Study: Large-Scale FFT

For small-scale FFTs whose data are held entirely on a GPU device, their com-
putation benefits from the high device-memory bandwidth [1]. This conforms to
an application scenario where the main data are located on dmem, and FFT is
performed many times. Then the overheads of PCI transfers between hmem and
dmem are overwhelmed by the computation time.

If the data size is too large for a GPU device or must be transferred from/to
dmem every time that FFT is performed, then the PCI bandwidth becomes a
bottleneck. The time to compute FFT on a GPU will likely be overwhelmed
by data transfers via PCIs. This is the scenario for large-scale FFTs on a GPU
cluster where all the data are moved around the entire cluster and between hmem
and dmem on every node. The performance bottleneck for a GPU cluster will
likely be either the PCI between hmem and dmem or the network between nodes
— whichever has the narrower bandwidth.

In our previous work [8], we proposed an FFT algorithm called PKUFFT for
GPU clusters. The original implementation uses CUDA, Pthread, MPI and even
the low-level infiniband library IB/verbs for performance optimization. That im-
plementation is unportable and specific to a 16-node cluster with dual infiniband
cards and dual Tesla C1060 GPUs on each node. To port that code to a large
CPU-GPU cluster Tianhe-1A, we first rewrite the code in Parray and then re-
compile it on the target machine, drastically reducing its length (from 400 lines
to 30 lines) while preserving the same depth of optimization. The code has been
deployed to support large-scale turbulence simulation.
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Our 3D FFT algorithm first distributes a 3D array with dimensions Z, Y and
X along (the left-most) dimension Z. Every computing node holds N/P 2D planes
for Y and X dimensions (in which X is contiguous). Every 2D plane is transferred
to the GPU for 2D FFT computation (using the existing library CUFFT) and
then transferred back to the main memory. All computing nodes then perform
an Alltoall-like collective communication to aggregate the Z dimension on each
computing node and redistribute the array along dimension Y. Data are then
computed for 1D FFT ad sent back to the main memory.

A major operation of the algorithm requires transposing the entire array,
which usually involves main-memory transposition within every node and All-
toall cluster communication. The main optimization of the algorithm [8] is to
re-arrange and decompose the operation into small-scale GPU-accelerated trans-
position, large-scale Alltoall communication and middle-scale data-displacement
adjustment that is performed during communications. Then the main-memory
transposition is no longer needed! The price paid is to use a non-standard Alltoall
with discontiguous process-to-process communications.

#parray {mpi[K]} L

#detour L{

#parray {pinned float2 [N/K][[K][N/K]][N]} G

#parray {pinned float2 [disp i][N][N]} F

#parray {dmem float2 [N][N]} Q

#parray {dmem float2 [#Q_1][#Q_0]} R

#parray {[[#L][#G_0][#G_1_0][#G_1_1]][#G_2]} S

#parray {[[#G_1_0][#G_1_1][#L][#G_0]][#G_2]} T

float2* g; #create G(g)

float2* gbuf; #create G(gbuf)

float2* q; #create Q(q)

float2* qbuf; #create Q(qbuf)

cufftHandle plan2d;

cufftPlan2d(&plan2d,N,N,CUFFT_C2C);

for(int i=0; i<N/K; i++) {

#insert DataTransfer(q,Q, g,F){}

cufftExecC2C(plan2d,q,q,CUFFT_FORWARD);

#insert DataTransfer(gbuf,F, q,Q){}

}

#insert DataTransfer(g,T, gbuf,S){}

cufftHandle plan1d;

cufftPlan1d(&plan1d,N,CUFFT_C2C,N);

for(int i=0; i<N/K; i++) {

#insert DataTransfer(q,Q, g,F){}

#insert DataTransfer(qbuf,R, q,Q){}

cufftExecC2C(plan1d,qbuf,qbuf,CUFFT_FORWARD);

#insert DataTransfer(q,Q, qbuf,R){}

#insert DataTransfer(gbuf,F, q,Q){}

}
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#insert DataTransfer(g,S, gbuf,T){}

cufftDestroy(plan2d);

cufftDestroy(plan1d);

#destroy G(g) #destroy G(gbuf)

#destroy Q(q) #destroy Q(qbuf)

}

This code consists of a series of data-transfer operations that we already studied
in previous sections. The main 3D complex data are stored in array g of type
G. Another array gbuf acts as a buffer. The inner dimension G 2 is contiguous;
G 1 is the middle dimension; the outer dimension is a combination of thread
dimension L and G 0. Each MPI processes in L contains N/K pages of size N*N.
In the first step, every page (with middle and inner dimensions) is transferred
to the dmem array q for 2D FFT computation (by calling CUDA library) with
results transferred back into qbuf. The following communication over the entire
network is the non-standard discontiguous Alltoall communication pattern. The
communication effectively swaps the outer and middle dimensions, so that the
middle dimension is aggregated on each MPI process. Every 2D page of the
middle and inner dimensions is transferred to dmem again. Before performing
batched 1D FFT on the new middle dimension, we use GPU transposition to
swap the middle and inner dimensions to make the middle dimension contiguous.
The original positions of the data are restored after FFT by GPU transposition
and communication.

Fig. 1. PKUFFT vs. Intel Cluster MKL on Tianhe-1A

The above FFT code is tested on Tianhe-1A using up to 7168 nodes, each with
24GB main memory, two 6-core Intel Processors and one Tesla Fermi 448-core
GPU. The special customized network has 80Gb/s bandwidth for each node and
a fat tree structure for switching. CUDA version is 3.0; CUFFT version is 3.1. For
comparison, Intel Cluster MKL (or CMKL) 10.3.1.048 is used on the same cluster
but does not use GPU. CMKL is already highly optimized because of the heavy
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communication load of very-large FFTs. The tests are performed for 3D FFT of
different sizes for single-precision C2C forward (with returning communication
that restores the data to their original positions). Double-precision FFTs perform
at the half speed of single precision (on Fermi as well as data transfers). GPU-
accelerated FFT also scales better than CPU-based FFT. We mainly develop
R2C and C2R single-precision 3D FFTs, which are used for large direct numerical
simulation of turbulent flows up to the scale of 14336 3D on Tianhe-1A. .

6 Literature Survey

The programming interfaces considered for comparisons include Chapel [5], Co-
Array Fortran (CAF) [27], HPF [29] HMPP [15], Hierarchically Tiled Arrays
(HTA) [16], Titanium [31], Stanford PPL [3], UPC [32], X10 [7,17], ZPL [6,12],
Global Arrays [22] and Sequoia [14].

Among the existing language designs, HTA is perhaps the closest. The di-
mension tree, type references, and thread arrays are not supported by HTA.
The array representation in Parray is more expressive. The theory part shows
the algebraic completeness of the representation. Hierarchical tiles arrays assume
several default levels (for multicore/cluster parallelism). Parray’s dimension trees
are logical and not tied to a specific memory structure.

A large class of languages are PGAS languages. If there exists a well-optimised
PGAS library such as Global Arrays (gamem), Parray can generate code to invoke
that library. The programmer needs to specify the memory type explicitly to calls
the communication library.

Arrays and the associated operations are considered in category theory in [25],
but data layout in memory and distribution over different memory devices are
not on their agenda. In functional programming and type theory [18,24,4] as well
as works centered on APL [21] the focus is the types and shapes of operations
on arrays. Array partitioning is considered for the operations. Memory-related
data layout and parallelism-related distribution are not considered.

7 Conclusion

The reality of heterogeneous parallel programming indicates that using one sim-
ple programming notation or a single theory to handle all forms of parallelism
is unrealistic. A more realistic view is to introduce a number of programming
tools.

The current engineering solution by the manufacturers is to provide a vari-
ety of tools for different hardware devices, e.g. Pthread/OpenMP for multicore,
CUDA for manycore and MPI for clustering. We would like to see a change
from this hardware-based distinction into more application-based distinction for
programming tools. For example, the programmer can choose a programming
tool to convert problems such as finite elements with irregular structures into
a regular structure, a different tool to handle runtime scheduling of computing
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tasks in the entire system, or a tool like Parray that is specialized in handling
regularity in numerical applications.

Parray only provides abstraction for regular data structures like arrays. Ir-
regular data structures such as trees and graphs must be encoded as arrays to
benefit from Parray’s integrated code generation. The encoding is left to the
user or any higher-level software layers/libraries. Parray’s performance trans-
parency makes sure that any higher-level layers implemented on top of Parray
will not be performance-wise penalized because of using Parray instead of the
low-generated-code-level libraries.

The mission of this paper is to convert the engineering challenges of program-
ming emerging architecture into the realm of programming theories. There are
a number of ways to generalize the formal models. For example, the type refer-
ence as well as sub-programming may allow recursion and fixpoints. It will be
interesting to see whether further exploration in these theoretical directions lead
to results that are relevant in practice.

The design of Parray is also influenced by the desire to have a complete rep-
resentation. Such unprecedented expressiveness and completeness compared to
various previous array notations is crucial: it makes sure that 1. a wide range of
heterogenous parallel applications are supported; 2. it offers an easy-to-understand
intuition about what are and are not representable with the array types; and 3. it
forms a flexible interface between the programmer and the hardware system and
conveys enough source-level information to the implementation level for perfor-
mance optimization.
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Abstract. Interface modeling and specification are central issues of
component-based software engineering. How a component will be used is
specified in its interface. Real-time interfaces are interfaces with timing
constraints relating the time of outputs with the time of inputs. The tim-
ing constraint of an interface may depend on the resource availability for
the component. In this paper, we propose a general model for real-time
interfaces. At a time during execution, an interface behaves according
to a contract made with environment about its functionality as well as
execution time to fulfill the contract. This contract is specified as a timed
design using the UTP notations, and depends on the computation histo-
ries of the interface. We model this dependence as a partial function from
computation histories of the interface to real-time contracts. How inter-
faces are composed to form new interfaces, how interfaces are refined,
and how to represent interfaces finitely are also considered in this paper.
We show that checking the consistency between an environment and an
interface and checking the refinement between two interfaces when they
are represented by an automaton can be done effectively.

1 Introduction

Component-based design has been an efficient divide-and-conquer technique for
the development of complex real-time embedded systems. A key role for this
technique is interface modeling and specification. There has been a lot of sig-
nificant progress towards a comprehensive theory for interfaces, see for example
[1–6]. In those works different aspects of interfaces have been modeled and spec-
ified: interaction protocols, contracts, concurrency, timing, input-output rela-
tions, synchrony and asynchrony, etc. However, none among them can integrate
all those aspects which help to analyze the relation between different aspects of
the interfaces and find out conditions on which different aspects can be separated
to simplify the analysis and verification. For untimed component interfaces, a
recent work by Tripakis [7] has proposed a nice and comprehensive theory.

In this work, we extend that theory for real-time interfaces with the use of
UTP developed by He and Hoare [8]. In this framework, we consider a component
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as to provide a set of services, each service is specified by a “timed design”. A
timed design consists of a precondition on the input variables, and a relation
between input variables and output variables together with the time constraint
for the availability of the output. This time constraint is of the form c ≤  ≤
d where c is the best case execution time and d is the worst case execution
time to fulfill the computation, and  is a special temporal variable representing
excution time. Which service is offered at a time depends on the current state
of the component. The current state of the component expresses much more
information than a protocol. From the current state, we can see not only how the
environment interacted with the component so far, but also how the component
has evolved. A state is a timed sequence of rounds, each round consists of an input
value together with the time the input is given, and output value responding to
that input value together with the actual execution time. So, the set of all states
of a component is infinite. We then consider how an interface interacts with
its environment, and derive the set of all reachable real-time behaviors for the
system which can help to estimate the worst case execution time and to analyze
the schedulability for multithreaded environments. We use the plugability as
the condition for interface refinement and find that this condition can also be
verified syntactically. In practice, an interface can only provide a finite number of
services, and since a service is related with a subset of states, we can introduce
an equivalence relation to partition the set of states into a finite number of
subsets and use a labeled automaton to represent an interface. With that kind of
representation, we can easily perform some operations on interfaces like interface
compositions and refinement, and the verification of some properties. Note that
when timing constraints are ignored, and specified as the interval [0, 0] our model
becomes an untimed synchronous interface one.

The paper is organized as follows. The next section presents our general real-
time interface model. Section 3 considers some operations on interfaces. The
representation of interfaces as automata and checking the plugability is presented
in Sec 4. Related work and discussion is presented in Section 5. The last section
is the conclusion of our paper.

2 Timed Relational Interface

A static service provided by a real-time component C can be specified as a
contract on a signature (X, Y ), where X and Y respectively are disjoint sets of
input and output variables of the component. The contract can be represented by
a so-called “timed design” which was introduced by us in [3] as a timed extension
of a design developed by He and Hoare [8]. Let  be a specific temporal variable
for execution time,  �∈ X ∪ Y .

Definition 1. (Timed design)

1. A timed design on signature (X, Y ) is of the form:

ρ = p � (R, c ≤  ≤ d)



138 H. Dang Van and H. Truong

where p is a predicate on variables in X called precondition of ρ, R is a
relation from X to Y called post-condition of ρ, and c, d are non-negative
real numbers satisfying c ≤ d. Let us denote R as ρf and c ≤  ≤ d as ρt

for timed design ρ. We call ρt the time constraint of ρ1. Timed design ρ
simply says that if it is called with the value of inputs satisfying p then it
will terminate and give values for output variables after at least c time units
and at most d time units, and R is satisfied at the termination.

2. For timed designs ρ = p � (R, c ≤  ≤ d) and ρ′ = p′ � (R′, c′ ≤  ≤ d′), ρ
is said to be a refinement of ρ′, denoted as ρ � ρ′ iff p′ ⇒ p, R ⇒ R′ and
[c, d] ⊆ [c′, d′]. When ρ � ρ′ and ρ′ � ρ we say ρ and ρ′ are equivalent.

Let R+ denote the set of non-negative real numbers. A computation round (or
simply a round) is a pair (V , I), where V is a value assignment for variables in
X ∪ Y , and I is a time interval [b, e], b, e ∈ R+, b ≤ e. A round r = (V , I) is
said to satisfy a timed design ρ = p � (R, c ≤  ≤ d), denoted as (V , I) |= ρ,
iff V|X |= p, V |= R and c ≤ length(I) ≤ d, where V|X is the restriction of V
on the set of variables X , and length(I) is the length of interval I. So, when
p ≡ false, no round can satisfy ρ. In this definition of satisfiability, only the
length of the interval of a round (not the interval itself) and the value assignment
play role. Therefore, we says that rounds (V , I) and (V , I ′) are equivalent if
length(I) = length(I ′). For any equivalent rounds r, r′ and a timed design ρ it
holds that r |= ρ if and only if r′ |= ρ. A round r = (V , [b, e]) is said to be before
(right before) a round r′ = (V ′, [b′, e′]), or equivalently, r′ is after r, if e ≤ b′

(resp. e = b′). A sequence of rounds r1r2 . . . rn such that ri+1 is after ri for all
1 ≤ i < n is called a state. A sequence of consecutive rounds is a state r1r2 . . . rn
such that ri+1 is right after ri for all 1 ≤ i < n.

Let S(X, Y ) denote the set of all states, D(X, Y ) denote the set of all timed
designs over signature (X, Y ). We give the following definition to real-time in-
terfaces.

Definition 2. (Real-time Interface) A real-time interface is a tuple I = (X, Y, ξ),
where (X, Y ) is a signature, ξ is a partial function from S(X, Y ) to D(X, Y ) sat-
isfying:

– ξ(ε) = ρ0 is defined, where ε is the empty sequence.
– If ξ(r1r2 . . . rn) is defined, then ξ(r1r2 . . . rn−1) = ρn−1 is also defined, and

rn |= ρn−1.

When ξ(r1r2 . . . rn) is defined, we call r1r2 . . . rn a reachable state of (X, Y, ξ).

So, the set of all reachable states of a real-time interface I = (X, Y, ξ) forms a
prefix-closed subset of S(X, Y ). A reachable state s for which there is no round r
such that sr is reachable is called a deadlock state of I. Deadlock states are those
reachable states that cannot be expanded. There are two reasons that a given

1 ρ could be written as a formula p  ρf ∧ ρt. However, for the purpose of this paper
it is more convenient to write ρ as p  (ρf , ρt).
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state s is not expandable: either the function ξ is undefined for any extension of
the state s, or the timed design ξ(s) is not satisfiable. In the sequence, we will
assume that for any state s, if ξ(s) is defined then it is a satisfiable timed design.
Hence, deadlock states are those reachable states for which the function ξ is not
defined for any extension of them.

Example 1. Consider an interface that takes x as its unique input, and outputs
y as the average of the values of x that it has received so far. Only the values of x
that are in between two thresholds low and high are permitted to calculate the
average. The interface is specified as ({x}, {y}, ξ), where ξ((V1, I1) . . . (Vn, In)) =
((x ≤ high ∧ low ≤ x) � ((

∑n
j=1 Vj(x) + x)/(n + 1) = y, 0 ≤  ≤ 1)) for any

state (V1, I1) . . . (Vn, In) such that Vi(x) ∈ [low, high], Vi(y) =
∑i

j=1 Vj(x) and
length(Ii) ≤ 1.

There are two interesting properties for this interface: it does not have dead-
lock state, and the range of the function ξ is infinite.
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Fig. 1. A state as a timed execution of an interface

Let R(I) denote the set of reachable states of interface I. In a reachable state,
the time interval of a round represents an execution of a service provided by the
component of the interface. When the environment invokes a service, it starts a
round. So, it is the environment who decides the time to start a round, and the
component decides when a round ends. Therefore, it is more practical, if for two
states s = r1 . . . rk and s′ = r′1 . . . r′k for which ri and r′i are equivalent for all
1 ≤ i ≤ k, we have ξ(s) = ξ(s′). This gives right to the following definition. We
say two states s = r1 . . . rk and s′ = r′1 . . . r′n are equivalent iff k = n and for all
1 ≤ i ≤ k the rounds ri and r′i are equivalent.

Definition 3. (Timeless Interface) A real-time interface (X, Y, ξ) is timeless
(or input-time independent) iff ξ(s) = ξ(s′) for any reachable equivalent states
s, s′. (X, Y, ξ) is completely timeless (or input/output-time independent) iff ξ(s) =
ξ(s′) for any reachable states s = (V1, I1) . . . (Vn, In) and s′ = (V1, I ′

1) . . . (Vn, I ′
n)

So, the real-time services provided by an interface do not depend on the time
of inputs if the interface is timeless, and do not depend on the time of inputs
and outputs if the interface is completely timeless. From now on in this paper,
we consider only timeless interfaces, and the reachable states with consecutive
rounds will be selected to be the representatives of equivalence classes. Those
representatives are states that represent the busiest behavior of components, and
are used to analyze the real-time capacity of interfaces like for which arrival rate
and which deadline can be met for the worst case.
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The range of ξ in an interface I could be infinite like in the example given
above, and this makes it difficult to represent interfaces. As we have mentioned
in the introduction, in practice, a component can only provide a finite number
of services. The interface of this kind of components is called finite.

Definition 4. A real-time interface (X, Y, ξ) is

– finite iff range(ξ) is finite,
– stateless iff range(ξ) has only one element, i.e. ξ is a constant mapping.

Now we give a definition of interface environments and study how an interface
will be used by an environment. Let us define a timed behavior to be a sequence
(V1, t1)(V2, t2) . . . (Vm, tm), where Vi is a value assignment for variables in X∪Y ,
ti ∈ R+, ti ≤ ti+1, i = 1, . . . , m − 1, t1 = 0. Let W(X, Y ) be the set of all timed
behaviors over (X, Y ). For a set of variables V , let F(V ) denote the set of all
predicates with free variables in V .

Definition 5. (Environment) An environment over the signature (X, Y ) is a
tuple E = (X, Y, h), where h is a partial function from W(X, Y ) to D(X, Y ),
respectively, satisfying:

– h(ε) = f0 � (g0, l0 ≤  ≤ u0) is always defined.
– If h(w1w2 . . . wn) = fn � (gn, ln ≤  ≤ un) is defined then

h(w1w2 . . . wn−1) = fn−1 � (gn−1, ln−1 ≤  ≤ un−1)

is also defined for which Vn |= fn−1∧gn−1 and tn− tn−1 ≥ un−1 hold, where
wi = (Vi, ti), i ≤ n.

When h(w1w2 . . . wn) is defined, we call w1w2 . . . wn a reachable timed behavior
of environment E. Let B(E) denote the set of all reachable timed behaviors of
environment E.

As for the function ξ of interfaces, we assume also that h(w) is satisfiable
whenever it is defined.

Note that an environment E = (X, Y, h) is not an interface since h is a partial
function onW(X, Y ), while in an interface I = (X, Y, ξ), the partial function ξ is
on S(X, Y ). Intuitively, a reachable timed behavior w1w2 . . . wn of E represents
an interaction between E and an interface. For any i = 1, . . . , n, at time ti, E
issues an input X that satisfies fi−1 to the interface, and expects an output Y
at some time in the time interval [ti + li−1, ti + ui−1] from the interface, and
that output is related with the issued input by relation gi−1. This is described
by Vi |= fi−1∧ gi−1. The time ti+1 at which it issues the next input will be after
ti + ui−1.

In order for an interface I to be plugable to the environment E, the contracts
specified by I should fit the requirement of E at any time during the interaction.
This means that ti+1 is the time to start a computation round ri = (Vi, Ii)
for I with a service specified by a timed design ρi = pi � (Ri, ci ≤  ≤ di)
such that fi ⇒ pi (i.e. the input received by I satisfies the precondition of the
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service), and fi ∧ Ri ⇒ gi (the result from the service is expected by E), and
[ti+1 + ci, ti+1 + di] ⊆ [ti+1 + li, ti+1 + ui] (the computation time meets the
time constraint of E). The interaction between environment E and interface I
is depicted in Fig. 2.
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Fig. 2. Environment and interface interaction, contract ξi meets requirement hi at ti

Definition 6. (Plugability) An interface I = (X ′, Y ′, ξ) is plugable to environ-
ment E = (X, Y, h), denoted by E#I iff X ′ = X, Y ′ = Y and the following
conditions are satisfied.

1. Let h(ε) = f0 � (g0, l0 ≤  ≤ u0), and ξ(ε) = ρ0 = p0 � (R0, c0 ≤  ≤ d0).
Then, f0 ⇒ p0, f0∧R0 ⇒ g0, and t0 = 0, [t0+ c0, t0+d0] ⊆ [t0+ l0, t0+u0].
For any V1 such that V1 |= f0 ∧ R0 and interval I1 = [t0, t′0] with c0 ≤
length(I1) ≤ d0, for any t1 ≥ t0 + u0 the pair (V1, t1) is called reachable
timed behavior of E w.r.t. I, and (V1, I1) is called reachable state of I w.r.t.
(V1, t1).

2. Let wn = (V1, t1) . . . (Vn, tn) be reachable timed behavior of E w.r.t. I such
that h(wn) is defined, and sn = (V1, I1) . . . (Vn, In) be reachable state of
I w.r.t. wn. Then, ξ(sn) is also defined. Furthermore, let h(wn) = fn �
(gn, ln ≤  ≤ un), and ξ(sn) = ρn = pn � (Rn, cn ≤  ≤ dn). Then,
fn ⇒ pn, fn ∧ Rn ⇒ gn, and [tn + cn, tn + dn] ⊆ [tn + ln−1, tn + un−1].
For any Vn+1 such that Vn+1 |= fn ∧ Rn, for any interval In = [tn, t′n]
with cn ≤ length(In) ≤ dn, and for any tn+1 such that tn + un ≤ tn+1,
(V1, t1) . . . (Vn, tn)(Vn+1, tn+1) is called reachable timed behavior of E w.r.t.
I, and (V1, I1) . . . (Vn, In)(Vn+1, In+1) is called reachable state of I w.r.t.
(V1, t1) . . . (Vn, tn)(Vn+1, tn+1).

Note that in this definition, for a pair (Vi, ti) in a reachable behavior w.r.t. I,
ti−1 is the starting time of a round for which both input and output are given
by value assignment Vi. A necessary condition for the plugability is that for any
reachable timed behavior w of E w.r.t. I, and reachable state s of I w.r.t. w, if
w is expandable, then s must not be a deadlock state of I.
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Given E#I, let B(E#I) be the set of all reachable timed behaviors of E
w.r.t. I, and S(E#I) be the set of all reachable states of I w.r.t. E. It is then
S(E#I) ⊆ R(I) and B(E#I) ⊆ B(E). So, not all services from I are used by
E, and the outputs from I may restrict the behaviors of E.

Lemma 1. Let I be a real-time interface. There exists an environment EI such
that EI#I and S(EI#I) = R(I).

Proof. Let I = (X, Y, ξ). For a reachable state sn ∈ R(I) and
sn = (V1, I1)(V2, I2) . . . (Vn, In), we call the sequence (V1, t1)(V2, t2) . . . (Vn, tn)
a possible timed behavior w.r.t. sn, where t0 = 0, and for i ≥ 0, ti+1 satisfy the
following condition: let ξ(V1, I1)(V2, I2) . . . (Vi−1, Ii−1) = pi−1 � (Ri−1, ci−1 ≤
 ≤ di−1), then, ti+1 is any time point that satisfies ti+1 ≥ ti + di−1, where
V1, I1)(V2, I2) . . . (Vi−1, Ii−1) = ε when i = 1. The partial function h is defined
as: if w is a possible behavior w.r.t. s, and ξ(s) = ρ = p � (R, c ≤  ≤ d) then
h(w) = p � (R, c ≤  ≤ d). Let EI = (X, Y, h). It is trivial to verify that EI#I
and S(EI#I) = R(I).

It is the plugability that helps to give a more natural definition for the refinement
of interfaces. An interface I is said to be “better” than an interface I ′ iff I can
replace I ′ in all cases of use of I ′.

Definition 7. (Interface Refinement) An interface I is said to be a refinement
of an interface I ′, denoted by I � I ′, iff for all environment E, if I ′ is plugable
to E then I is also plugable to E.

It turns out that this natural definition is equivalent to the classical one.

Theorem 1. Let I = (X, Y, ξ) and I ′ = (X ′, Y ′, ξ′) be real time interfaces.
I � I ′ holds if and only if for all s ∈ R(I ′) ∩R(I) either ξ(s) � ξ′(s) holds or
s is a deadlock state of I ′.

Proof. The “only if” part of the theorem follows directly from Lemma 1. Since
EI′ is also plugable to I, if ξ′(s) is defined, ξ(s) must be defined and ξ(s) � ξ′(s)
according to the definition of plugability.

The “if part” of the theorem is proved by induction on the length of common
reachable states based on the definition of plugability. If E = (X, Y, h) is plugable
to I ′, the first item of Definition 6 is verified for I ′. Let h(ε) = f0 � (g0, l0 ≤  ≤
u0), and ξ′(ε) = ρ′

0 = p′0 � (R′
0, c′0 ≤  ≤ d′

0). Then, f0 ⇒ p′0, f0 ∧ R′
0 ⇒ g0, and

t0 = 0, [t0+c′0, t0+d′
0] ⊆ [t0+ l0, t0+u0]. Let ξ(ε) = ρ0 = p0 � (R0, c0 ≤  ≤ d0).

From the assumption ξ(ε) � ξ′(ε), it follows that f0 ⇒ p0, f0 ∧ R0 ⇒ g0,
[t0+c0, t0+d0] ⊆ [t0+ l0, t0+u0. For any V1 such that V1 |= f0∧R0 and interval
I1 = [t0, t′0] with c0 ≤ length(I1) ≤ d0 and for any t1 ≥ t0 + u0, (V1, t1) is a
reachable timed behavior of E w.r.t. I and I ′, and (V1, I1) is a reachable state
of both interfaces I and I ′ w.r.t. (V1, t1).

The second item of Definition 6 for E and I is verified exactly in the same
way with the induction hypothesis.
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It follows immediately from this theorem that:

Corollary 1. Let I and I ′ be real time interfaces and I � I ′. Then, for any
environment E such that E#I ′ we have R(E#I) ⊆ R(E#I ′)

Two interfaces I and I ′ are equivalent, denoted as I ≡ I ′ iff I � I ′ and I � I ′.

Corollary 2. Let I = (X, Y, ξ) and I ′ = (X ′, Y ′, ξ′) be real time interfaces.

1. I ≡ I ′ if and only if for any environment E, E#I iff E#I ′.
2. I ≡ I ′ if and only if for all s ∈ R(I) ∩R(I ′), ξ(s) ≡ ξ′(s).

3 Interface Composition

The most important operations on interfaces are composition operations. We
consider two kinds of composition: parallel and sequential. Two interfaces I and
I ′ can be put together either in parallel or in sequence to achieve a new interface
that provide compound services. However, the execution time for the compound
services need to considered carefully. From our intention, the time constraint
in a timed design serves for the estimation of the execution time. The outputs
from a component are supposed to be synchronous, and given at the end of the
computation round. Therefore, the computation result coming out earlier must
wait for those that have not been available yet. As soon as all the outputs are
available, the computation round terminates. This consideration leads to the
following definition of parallel and sequential composition of interfaces. Let us
denote for a value assignment V and a set of variables V the restriction of V on
V by V|V .

Definition 8. (Parallel Composition)
Let I = (X, Y, ξ) and I ′ = (X ′, Y ′, ξ′) be two completely timeless interfaces
such that (X ∪Y )∩ (X ′∪Y ′) = ∅. The parallel composition I||I ′ is the interface
(X∪X ′, Y ∪Y ′, ξ′′) where ξ′′ : S(X∪X ′, Y ∪Y ′) → D(X∪X ′, Y ∪Y ′) defined as
follows. For s = (V1, I ′′

1 ) . . . (Vn, I ′′
n) ∈ S(X ∪X ′, Y ∪Y ′), ξ′′(s) is defined iff it is

defined for all proper prefixes of s, and there exist time intervals I1, I ′
1, . . . In, I ′

n

such that both

ξ((V1|X∪Y , I1) . . . (Vn|X∪Y , In)) = p � (R, c ≤  ≤ d), and
ξ′((V1|X′∪Y ′ , I ′

1) . . . (Vn|X′∪Y ′ , I ′
n)) = p′ � (R′, c′ ≤  ≤ d′)

are defined, and then

ξ′′(s) = p ∧ p′ � (R ∧ R′,min{c, c′} ≤  ≤ max{d, d′})

and I ′′
n satisfies that min{c, c′} ≤ length(I ′′

n) ≤ max{d, d′} and I ′′
n is after I ′′

n−1.

Note that the definition is well-formed (i.e. ξ′′ is well defined) because I and I ′

are completely timeless. It also follows that I||I ′ is also completely timeless.
By sequential composition of two interfaces, we mean that some inputs of

the second are connected to some outputs of the first interface. To be defined,
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an input can be connected to at most one output although several inputs may
be connected to the same output. Given two interfaces I = (X, Y, ξ) and I ′ =
(X ′, Y ′, ξ′) such that (X ∪ Y ) ∩ (X ′ ∪ Y ′) = ∅. A connection from I to I ′ is a
set of pairs θ ⊆ Y × X ′ that satisfy ∀(y, x), (y′, x′) ∈ θ.(x = x′ ⇒ y = y′). Let
Xθ = {x ∈ X ′|∃y ∈ Y.(y, x) ∈ θ}. A connection θ converses an assignment a
over ((X ∪ X ′) \ Xθ) ∪ Y ∪ Y ′ to an assignment aθ over (X ∪ X ′ ∪ Y ∪ Y ′) as:
aθ|((X∪X′)\Xθ)∪Y ∪Y ′ = a|((X∪X′)\Xθ)∪Y ∪Y ′ , and for x ∈ Xθ we define aθ(x) =
a(y) where y is the unique element in Y such that (y, x) ∈ θ. Let us denote
νθ =

∧
(y,x)∈θ x = y.

Definition 9. (Sequential Composition)
Let I = (X, Y, ξ) and I ′ = (X ′, Y ′, ξ′) be two completely timeless interfaces. Se-
quential composition of I and I ′ w.r.t connection θ, denoted by I.θI ′ is interface
I ′′ = (X ′′, Y ′′, ξ′′), where

– X ′′ = (X ∪ X ′) \ Xθ, Y ′′ = Y ∪ Y ′.
– For s = (V1, I ′′

1 ) . . . (Vn, I ′′
n) ∈ S(X ′′, Y ′′), ξ′′(s) is defined iff it is defined for

all proper prefix of s, and there exist time intervals I1, I ′
1, . . . In, I ′

n such that
both

ξ((aθ
1|X∪Y , I1) . . . (aθ

n|X∪Y , In)) = p � (R, c ≤  ≤ d), and
ξ′((aθ

1|X′∪Y ′ , I ′
1) . . . (aθ

n|X′∪Y ′ , I ′
n)) = p′ � (R′, c′ ≤  ≤ d′)

are defined, and then

ξ′′(s) = p ∧ ∃Y.(R ∧ p′ ∧ νθ) � (R ∧ R′ ∧ νθ ∧ p′, c + c′ ≤  ≤ d + d′)

and I ′′
n satisfies that c + c′ ≤ length(I ′′

n) ≤ d + d′ and I ′′
n is after I ′′

n−1.

In this definition, we assume that the second interface takes the outputs from
the first as soon as they are available, and for those outputs that are not in
use by the second as inputs the availability is delayed to be the same as the
availability of the outputs from the second. Also, only the outputs from the first
that satisfy the precondition for the second are produced as outputs. As for
parallel composition, I.θI ′ is also a completely timeless interface.

Parallel composition and sequential composition of two interfaces I and I ′

are depicted in Fig. 3.
The following theorem follows immediately from Definitions 8 and 9.

Theorem 2. Let I, I ′ and I ′′ be interfaces, θ and θ′ be connections between I
and I ′ and between I ′ and I ′′ respectively. Then, the following hold: (1) I||I ′ ≡
I ′||I, (2) (I||I ′)||I ′′ ≡ I||(I ′||I ′′), and (3) (I.θI ′).θ′I ′′ ≡ I.θ(I ′.θ′I ′′)

4 Automata Interfaces

There are two issues for general real-time interfaces: how to represent interfaces
finitely, and how to check if an interface is plugable to an environment.

In general, a real-time interface I = (X, Y, ξ) cannot be finitely representable
since ξ is a function from an infinite set to an infinite set. When I = (X, Y, ξ)
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Fig. 3. Parallel and sequential composition

is finite, the range of ξ is finite. Therefore the coimage of ξ forms a finite par-
tition π = {S1, . . . , Sk} of dom(ξ). If we can decide if a state is a member of
Si then ξ is finitely representable. For the simplicity of presentation and in or-
der to be practical, we will consider in this section only finite and completely
timeless interfaces. With this restriction, automata seem to be among the best
representations for finite interfaces.

Definition 10. (Labeled Automata)
A labeled automaton M is a tuple M = (Q, X, Y, q0, T, ls, lt), where Q is a finite
set of locations, X and Y are sets of input and output variables respectively,
q0 ∈ Q is an initial state of M , T ⊆ Q × Q is a set of transitions, and ls : Q →
D(X, Y ) and lt : T → F(X∪Y ) are labeling functions. ls associates each location
in M with a timed design, and lt associates each transition in T with a guard
formula. To make M deterministic, we assume that lt(q, q′′) ∧ lt(q, q′) ⇒ false
for any two different transitions (q, q′) and (q, q′′) with the same source state.

Let V (X ∪ Y ) be the set of all valuations over the set of variables X ∪ Y . A
labeled automaton M can describe a partial function g : V ∗(X ∪ Y ) → D(X, Y )
in the following way:

1. g(ε) = ls(q0), and ε is said to lead M to q0.
2. For any sequence of valuation s ∈ V ∗(X ∪ Y ), if g(s) = p � (R, c ≤  ≤ d),

and s leads M to location q, for any computation round (V , I ′) and transition
(q, q′) such that (V , I ′) |= g(s) and V |= lt(q, q′), we have g(sV) = ls(q

′) and
sV is said to lead M to location q′.

The function described by a labeled automaton M is denoted by gM . It is the
definition of gM that makes the dom(gM ) prefix closed.
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Definition 11. (Automata Interface)

1. Interface I = (X, Y, ξ) is said to be an automata interface iff there is a labeled
automaton M such that for any state (V1, I1) . . . (Vk, Ik) (k ≥ 0, and the case
k = 0 corresponds to the state ε), the ξ function value ξ((V1, I1) . . . (Vk, Ik))
is defined exactly when gM (Vi . . .Vk) is defined and ξ((V1, I1) . . . (Vk, Ik)) =
gM (V1 . . .Vk) provided that ci ≤ length(Ii) ≤ di, where gM (V1, . . .Vi) =
pi � (Ri, ci ≤  ≤ di), i = 1, . . . , n. Such an automaton M is said to be a
description of I.

2. Environment E = (X, Y, h) is said to be an automaton environment iff there is
a label automaton M such that for any timed behavior (V1, t1) . . . (Vk, tk), the
h function value h((V1, t1) . . . (Vk, tk)) is defined exactly when gM (Vi . . .Vk) is
defined and h((V1, t1) . . . (Vk, tk)) = gM (Vi . . .Vk) provided that ti+1 ≥ ti+di,
t1 = 0, where gM (V1, . . .Vi) = pi � (Ri, ci ≤  ≤ di), i = 1, . . . , n. Such an
automaton M is said to be a description of E.

Example 2. Let us consider a GPS as a real-time interface I, and its user as an
environment E. The interface has the input variable set {usage, destination}, and
the output variable set {display}. The automata representation of I and E are
depicted in Fig 4. The label of states of the interface I automaton are: ls(s1) =
true � (display = idle, 0 ≤  ≤ 1), ls(s2) = true � (display = current position,
0 ≤  ≤ 1), and ls(s3) = legal(destination) � (display = route to destination, 1 ≤
 ≤ 2). The label of states of the environment E automaton are: ls(r1) =
(usage = 1) � (display = idle, 0 ≤  ≤ 1), ls(r2) = (usage = 1) � (display =
current position, 0 ≤  ≤ 1), and ls(s3) = (legal(destination)∧ usage = 0 �
(display = route to destination, 0 ≤  ≤ 3). The user gives the input “usage = 1”
to the interface to turn on the system, then again gives the input “usage = 1” to
the interface to get “current position”, and then gives the input “usage = 1” and
a “destination” to the interface to get a “route to destination” to the destination,
and finally an input “usage = 0” to turn off the system.

usage = 0

usage !=0

usage !=0 usage !=0

s1 s2 s3
usage !=0

usage = 0

r1 r2 r3

Fig. 4. An automata interface and an automata environment

In the interface theory, it is important that the plugability of an interface
to an environment is decidable. This is possible for automata interfaces and
environments.



Modeling and Specification of Real-Time Interfaces with UTP 147

Theorem 3. Let I = (X, Y, ξ) be an automaton interface described by automa-
ton M = (Q, X, Y, q0, T, ls, lt) and E = (X, Y, h) be an automata environment
described by automaton M ′ = (Q′, X, Y, q′0, T ′, l′s, l′t). E#I if and only if there is
a correspondence f from Q′ to Q (one may correspond to many) that satisfies:

1. f(q′0) = {q0}
2. For any q ∈ f(q′), ls(q) � l′s(q

′)
3. Let q ∈ f(q′) and ls(q) = p � (R, c ≤  ≤ d) and l′s(q) = p′ � (R′, c′ ≤  ≤

d′). For any r′ ∈ Q′ such that F(q′,r′)=̂(p′ ∧ R ∧ l′t(q
′, r′)) is satisfiable, let

φ(q) = {r | (q, r) ∈ T and lt(q, r) ∧ F(q′,r′) is satisfiable}. Then F(q′,r′) ⇒∨
r∈φ(q) lt(q, r) and φ(q) ⊆ f(r′).

Proof. The “if part” is proved by induction on reachable behavior of E and
direct check of the definition of plugability. The “only if” part follows from an
inductive construction of a correspondence f from the inductive definition of
plugability between E and I. We omit the proof details here.

In Example 2, the correspondence f defined as f(ri) = si, i = 1, 2, 3. f satisfies
the conditions in Theorem 3. Therefore, I#E.

As a special case of Theorem 3, let Q′ ⊆ Q, and let π ∈ X be a special distinct
input variable, π does not occur in any timed design in the labels of automata
M and M ′, and dom(π) = Q′. Let lt(q

′, q) = l′t(q
′, q)=̂(π = q), ls(q) = l′s(q) for

all q′, q ∈ Q′, let f be the identifying mapping on Q′. Then, by Theorem 3, if
the set of all transition sequences (paths) starting from initial state of M ′ is a
subset of the set of all transition sequences starting from initial state of M , E#I
holds. In this case, the set of all transition sequences starting from initial state
of M play the rôle of interaction protocols. If the behavior of E represented by
M ′ “obeys” these protocols, E is plugable to I.

It is easy to design an algorithm for checking the conditions of Theorem 3 to
decide the plugability of a given automata interface to a given automata envi-
ronment E.

Algorithm. Checking plugability

Input: Automata interface I described by automaton
M = (Q, X, Y, q0, T, ls, lt), and an automata environment E = (X, Y, h)
described by automaton M ′ = (Q′, X, Y, q′0, T ′, l′s, l′t).

Output: “Yes” if E#I, and “no” otherwise.
Method: Let f ⊆ Q′ × Q. f is initialized as f = {(q′0, q0)} and (q′0, q0) is

unmarked. Carry out following steps.
1. If no unmarked element is found in f , stop with the output “yes”. Oth-

erwise, take an unmarked element (q′, q) ∈ f and mark it.
2. If ls(q) �� l′s(q

′), stop with the output “no”. Otherwise, let ls(q) = p �
(R, c ≤  ≤ d) and l′s(q

′) = p′ � (R′, c′ ≤  ≤ d′). For any r′ ∈ Q′

such that F(q′,r′)=̂p′ ∧ R ∧ l′t(q
′, r′) is satisfiable, let φ(q)=̂{r | (q, r) ∈

T and lt(q, r) ∧ F(q′,r′) is satisfiable}. If F(q′,r′) ⇒
∨

r∈φ(q) lt(q, r) is false,

stop with the output “no”. Otherwise, add unmarked pairs (r′, r) to f
for any r ∈ φ(q).

3. Goto Step 1.
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In this algorithm we have to check the satisfiability of some logic formulas. When
the domain of the variables in the formula are finite, satisfiability can be checked
with SAT solvers.

As a corollary of Theorem 1, we have:

Theorem 4. Let I = (X, Y, ξ) be an automata interface described by automaton
M = (Q, X, Y, q0, T, ls, lt) and I ′ = (X, Y, ξ′) be an automata interface described
by automaton M ′ = (Q′, X, Y, q′0, T ′, l′s, l′t). I � I ′ if and only if there is a
correspondence f from Q′ to Q (one may correspond to many) that satisfies:

1. f(q′0) = {q0}
2. For any q ∈ f(q′), ls(q) � l′s(q

′)
3. Let q ∈ f(q′) and ls(q) = p � (R, c ≤  ≤ d) and l′s(q) = p′ � (R′, c′ ≤

 ≤ d′). For any r′ ∈ Q′ such that F(q′,r′) = p′ ∧ R ∧ l′t(q
′, r′) is satisfiable,

let φ(q) = {r | (q, r) ∈ T and lt(q, r) ∧ F(q′r′) is satisfiable}. Then F(q′,r′) ⇒∨
r∈φ(q) lt(q, r) and φ(q) ⊆ f(r′).

Proof. It follows from Theorem 1 that I � I ′ if and only if the environment EI′

is plugable to I. Hence, Theorem 4 follows immediately Theorem 3.

5 Discussion and Related Work

As it is said in the introduction of this paper, the model presented in this paper
is an extension of the model presented in [7] for real-time interfaces. The main
difference is, here we use UTP timed designs to specify services, and services are
defined only on reachable states. In addition to time extension, we found that
using UTP is much more convenient than using other notations. We focus in
this paper on checking the refinement and plugability and finite representations
instead of providing a theory of real-time interfaces.

In the literature, there have been several studies on real-time interfaces such as
[9–12]. In those papers, the authors have a focus on the analysis of schedulability
from the task arrival rates. Our focus in this paper is different. We aim to provide
a formal model that can help to do the shedulability analysis. Compared to
our previous work [13, 3, 5], the model in this paper can capture the relation
between interaction protocols and services. However, in this paper we ignored the
relationship between resources and worst case execution times for the simplicity.
This model can be easily extended to capture that relation. In our previous work
[14], we checked at runtime if an environment follows the interaction protocol
specified by a component. In this paper, we provide an algorithm to check at
compile time the conformance between an environment and a component in term
of both interaction protocols and their related services. Though the complexity
of our checking algorithm is a bit high, we believe that it can be implemented
with the help of advanced SAT solvers.
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6 Conclusion

We have presented a real-time interface model using UTP. The services of an
interface are specified as a timed design in UTP, and depend on the current
states of the interface. The model is general enough to capture all aspects of
interface specification such as functionality, non-functionality, interaction proto-
col and the relation between them. We have also considered some operations on
real-time interfaces. The operations are used in the incremental development of
component-based embedded systems. We have also considered a finite represen-
tation of interfaces by labeled automata. We showed that the syntactical defi-
nition of interface refinement is consistent to the semantic one. We have shown
that when interfaces and environments can be represented by automata, check-
ing the plugability between interfaces and environments can be done effectively
using SAT solvers. We believe that for finite interfaces that are not completely
timeless, labeled time automata will be a good candidate for representing them,
and similar results for checking the plugability can be obtained.

What we have left out in this paper is the analysis of the timed behaviors of
environments when a component is plugged to, and to carry out verification of
some real-time properties and the schedulability when there are several threads
running in parallel in environments. This will be our future consideration.
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Abstract. In Propositional Projection Temporal Logic (PPTL), a well-formed
formula is generally formed by applying rules of its syntax finitely many times.
However, under some circumstances, although formulas such as ones expressed
by index set expressions, are constructed via applying rules of the syntax in-
finitely many times, they are possibly still well-formed. With this motivation,
this paper investigates the relationship between formulas specified by index set
expressions and concise syntax expressions by means of fixed-point induction
approach. Firstly, we present two kinds of formulas, namely

∨
i∈N0

©iP and∨
i∈N0

P i, and prove they are indeed well-formed by demonstrating their equiv-

alence to formulas �P and P+ respectively. Further, we generalize
∨

i∈N0
©iQ

to
∨

i∈N0
P (i) ∧ ©iQ and explore solutions of an abstract equation X ≡ Q ∨

P ∧©X . Moreover, we equivalently represent ‘U’ (strong until) and ‘W’ (weak
until) constructs in Propositional Linear Temporal Logic within PPTL using the
index set expression techniques.

1 Introduction

Temporal Logic (TL) [11] is a useful formalism for specifying properties of concur-
rent systems. Variants of TL have been proposed, such as Linear Temporal logic (LTL)
[13], Computational Tree Logic (CTL) [1], Interval Temporal Logic (ITL) [12], and
Projection Temporal Logic (PTL) [3,4] etc. Propositional PTL (PPTL) [3] is a propo-
sitional subset of PTL with a usual next construct ©P and a new projection construct
(P1, . . . , Pm) prj Q as its basic constructs. At present, a decision procedure [6] and an
axiomatic system [7] for PPTL are available, which enables PPTL to be utilized in both
model checking [2] and theorem proving [9,8].

In general, a well-formed formula in PPTL is obtained through applying rules of
its syntax finitely many times. However, under some circumstances, although formu-
las such as

∨
i∈N0

©iP with N0 the set of non-negative integers (called index set ex-
pression), are formed via applying rules of the syntax countably infinitely many times,
they are actually well-formed since their equivalent well-formed PPTL formulas can
be found. Thus, we are motivated to identify some such formulas and prove they are
indeed well-formed.
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Our contributions are three-fold: (1) We present two kinds of formulas with index
set expressions, namely

∨
i∈N0

©iP and
∨

i∈N0
P i, and prove they are indeed well-

formed by means of demonstrating their equivalence to �P and P+ respectively with
fixed-point induction method [15]. (2) We generalize

∨
i∈N0

©iQ to
∨

i∈N0
P (i)∧©iQ

and explore the least and great fixed-points of the abstract equation X ≡ Q∨P ∧©X .
(3) We equivalently represent the operator ‘U’ (strong until) and ‘W’ (weak until) of
Propositional LTL (PLTL) within PPTL using the index set expression technique.

This paper is organized as follows. Section 2 briefly introduces PPTL. In Section 3,
some fixed-point issues concerning

∨
i∈N0

©iP,
∨

i∈N0
P i and

∨
i∈N0

P (i) ∧©iQ are
given. Moreover, Section 4 is devoted to equivalently denoting ‘U’ and ‘W’ constructs
of PLTL within PPTL. Finally, conclusions are drawn in Section 5.

2 Propositional Projection Temporal Logic

Propositional Projection Temporal Logic (PPTL) [3,4] is an extension of Propositional
ITL (PITL) [12] with a new projection construct [5]. Let Prop be a countable set of
atomic propositions and B = {true, false} the boolean domain. Usually, we use small
letters, possibly with subscripts, like p,q,r to denote atomic propositions and capital
letters, possibly with subscripts, like P, Q, R to represent general PPTL formulas. Then
the formulas of PPTL are defined by the following grammar:

P ::= p | ¬P | P1 ∧ P2 | © P | (P1, . . . , Pm) prj P | P+

where p ∈ P rop, © (next),+ (chop-plus) and prj (projection) are temporal operators,
and ¬,∧ are similar as that in classical propositional logic.

We define a state s over Prop to be a mapping from Prop to B, s : P rop → B.
We write s[p] to denote the valuation of p at state s. An interval σ = 〈s0, s1, ...〉 is a
non-empty sequence of states, which can be finite or infinite. The length of σ, |σ|, is
the number of states in σ minus one if σ is finite; otherwise it is ω. To have a uniform
notation for both finite and infinite intervals, we will use extended integers as indices,
that is, Nω = N0 ∪ {ω} and extend the comparison operators, =, <,≤, to Nω by
considering ω = ω and for all i ∈ N0, i < ω. Moreover, we write " as ≤ −{(ω, ω)}.
Let σ = 〈s0, s1, . . .〉 be an interval and r1, . . . , rh be integers (h ≥ 1) such that 0 ≤
r1 ≤ . . . ≤ rh " |σ|. The projection of σ onto r1, . . . , rh is the projected interval,

σ ↓ (r1, . . . , rh)
def
= 〈st1 , st2 , . . . , stl〉, where t1, . . . , tl are attained from r1, . . . , rh

by deleting all duplicates. In other words, t1, . . . , tl is the longest strictly increasing
subsequence of r1, . . . , rh. The concatenation(·) of an interval σ with another interval
σ′ is represented by σ · σ′ (not sharing any states).

An interpretation is a tuple I = (σ, k, j), where σ = 〈s0, s1, . . .〉 is an interval, k
is a non-negative integer, and j is an integer or ω, such that 0 ≤ k " j ≤ |σ|. We
write (σ, k, j) to mean that a formula is interpreted over a subinterval σk,...,j with the
current state being sk. We utilize Ik

prop to stand for the state interpretation at state sk.
The satisfaction relation |= for formulas is given as follows:

I |= p iff sk[p] = Ik
prop[p] = true

I |= ¬P iff I �|= P
I |= P1 ∧ P2 iff I |= P1 and I |= P2
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I |= ©P iff k < j and (σ, k + 1, j) |= P
I |= (P1, . . . , Pm) prj P iff there exist integers r0, . . . , rm, and k = r0 ≤ . . .
≤ rm−1 " rm ≤ j such that (σ, rl−1, rl) |= Pl for all 1 ≤ l ≤ m and
(σ′, 0, |σ′|) |= P for σ′ given by :
(1) rm < j and σ′ = σ ↓ (r0, . . . , rm) · σ(rm+1,...,j)

(2) rm = j and σ′ = σ ↓ (r0, . . . , rh) for some 0 ≤ h ≤ m
I |= P+ iff there are finitely many integers r0, . . . , rn and k = r0 ≤ r1 ≤ . . .
≤ rn−1 " rn = j (n ≥ 1) such that (σ, rl−1, rl) |= P for all 1 ≤ l ≤ n;
or j = ω and there are infinitely many integers k = r0 ≤ r1 ≤ r2 ≤ . . .
such that lim

i→∞
ri = ω and (σ, rl−1, rl) |= P and for all l ≥ 1.

A formula P is satisfied by an interval σ, signified by σ |= P if (σ, 0, |σ|) |= P . A
formula P is called satisfiable if σ |= P for some σ. Furthermore, P is said to be valid,
denoted by |= P , if σ |= P for all intervals σ.

Some derived formulas of PPTL are shown below, which are explained in [4,3]. The
abbreviations true, false,∨,→ and ↔ are defined as usual.

ε
def
= ¬© true P ∗ def

= P+ ∨ ε

�P
def
= (true, P ) prj ε more

def
= ¬ ε

�P
def
= ¬ �¬ P fin(P )

def
= �(ε → P )

halt(P )
def
= �(ε ↔ P ) keep(P )

def
= �(¬ε → P )

P ; Q
def
= (P, Q) prj ε P ;wQ

def
= (P ; Q) ∨ (P ∧ �more)

fin def
= �ε len(n)

def
=

{
ε if n = 0
©len(n − 1) if n > 1

inf def
= �more P ‖ Q

def
= (P ∧ (Q ; true)) ∨ (Q ∧ (P ; true))

Commonly, |= �(P ↔ Q) is represented by P ≡ Q (strong equivalence), meaning
that P and Q have the same truth values at all states in every model.

3 Fixed-Point Issues

A well-formed formula in PPTL is generally constructed by applying rules of the syn-
tax finitely many times. However, although some formulas are formed via applying
rules of the syntax countably infinitely many times, such as index set expressions (e.g.∨

i∈N0
©iP ), they are still well-formed due to the existence of their equivalent well-

formed formulas. In this section, we identify two types of such formulas and prove
they are indeed well-formed by means of the fixed-point induction approach [15]. Be-
sides, we generalize one of them to a more generic form and investigate some related
properties of an abstract equation X ≡ Q ∨ P ∧©X .

3.1 Two Kinds of Index Set Expressions

(1)
∨

i∈N0
©iP

On one hand,
∨

i∈N0
©iP ≡ P ∨ ©P ∨ ©2P ∨ ©3P ∨ . . ., is a disjunction of

countably infinitely many ©iP , where ©0P ≡ P . Intuitively, this formula means P
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necessarily holds at some state from now on over an interval, which might be specified
by the operator �. On the other hand, �P indeed can be rewritten as:

�P ≡ P ∨©�P
≡ P ∨©(P ∨©�P )
≡ P ∨©P ∨©2�P

. . .
≡ P ∨©P ∨©2P ∨©3P ∨ . . . (�)

From the above, we observe that
∨

i∈N0
©iP seems to be equivalent to �P , which will

be affirmed in Theorem 1.

(2)
∨

i∈N0
P i

For a chop formula P1 ; . . . ; Pm, if all Pi ≡ P (1 ≤ i ≤ m), we can acquire:

P ; . . . ; P︸ ︷︷ ︸
m times

which is briefly represented as Pm. For instance, P 1 ≡ P, P 2 ≡ P ; P , and particularly
P 0 ≡ false. Thus,

∨
i∈N0

P i denotes P ∨ (P ; P )∨ (P ; P ; P )∨ . . .. Further, we have
the equation about P+:

P+ ≡ P ∨ (P ; P+)
≡ P ∨ (P ; (P ∨ (P ; P+)))
≡ P ∨ P ; P ∨ P ; (P ; P+))

. . .
≡ P ∨ (P ; P ) ∨ (P ; P ; P ) ∨ . . .

Hence, we can declare that
∨

i∈N0
P i ≡ P+ in Theorem 1.

Theorem 1. The following logical laws hold:

1.
∨

i∈N0
©iP ≡ �P

2.
∨

i∈N0
P i ≡ P+

Proof. The two laws can be proved in an analogous way and we only prove
∨

i∈N0
©iP

≡ �P . The proof proceeds by fixed-point induction approach.
We firstly define D = {d−1, d0, . . . , dn, . . . , dω}, where d−1 = ©−1P = false, di =

©0P ∨ . . . ∨ ©iP (i ∈ N0), dω =
∨

i∈N0
©iP . Let Nω = N0 ∪ {ω} with ω =

ω, ω + c = ω (c is an integer) and for all i ∈ N0, i < ω. Further, a binary relation �
over D is formalized as

di � dj iff i ≤ j (i, j ∈ Nω ∪ {−1})

Moreover, let f : D → D be a function given by

f(di) = P ∨©di
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Then f(di) = P ∨ ©(P ∨ . . . ∨ ©iP ) = di+1 for i ∈ {−1} ∪ N0, and f(dω) =
P ∨©(

∨
i∈N0

©iP ) = P ∨
∨

i∈N0
©i+1P =

∨
i∈N0

©iP = dω. Obviously, we have
di 
 dj = di ∨ dj = dj if di � dj .

1.
∨

i∈N0
©iP is the least fixed-point of f

(1) (D,�) is a complete partial order
(D,�) is a partial order, since it satisfies the properties below:

- reflexivity: for all di ∈ D, clearly we have di � di due to i ≤ i.
- anti-symmetry: if di � dj and dj � di, then we obtain i ≤ j and j ≤ i, leading to

i = j. Hence di = dj .
- transitivity: if di � dj , dj � dk, then i ≤ j ≤ k. Thus, di � dk.

Furthermore, for any non-empty subset S = {di1 , . . . , din} of D, where −1 ≤ i1 ≤
. . . ≤ in−1 " in ≤ ω, if S is finite, as di 
 dj = dj , we obtain the least upper bound
din ∈ D, where in is the biggest index in S; otherwise, S is infinite, there exists a least
upper bound

⊔
in∈N0

din =
∨

in∈N0
din = (P ∨ ©P ∨ . . . ∨©i1P ) ∨ (P ∨ ©P ∨

. . . ∨ ©i2P ) ∨ . . . = dω, which obviously belongs to D. Thus, (D,�) is a complete
partial order.

(2) f is a continuous function
Suppose that di � dj , then i ≤ j, so i + 1 ≤ j + 1. As a result,

f(di) = di+1 � dj+1 = f(dj)

Hence, f is monotonic. Moreover, for an arbitrary ω-chain in D, di1 � di2 � . . . �
din � . . ., if there exists an element din such that din � din � . . ., it is apparent that
din is the least upper bound of this ω-chain. Thus, we have

f(
⊔

in∈N0

din) = f(din) = din+1 = din 
 din+1 =
⊔

in∈N0

din 
 din+1

= d0 

⊔

in∈N0

din+1

=
⊔

in∈N0

din+1 =
⊔

in∈N0

f(din)

Otherwise, we can obtain the following:⊔
in∈N0

f(din) =
⊔

in∈N0

din+1 = d0 

⊔

in∈N0

din+1 =
⊔

in∈N0

din

= dω = f(dω) = f(
⊔

in∈N0

din)

Therefore, f is a continuous function. Hence, by Kleene Fixed-point Theorem [15,10],
there exists a least fixed-point:

fixμ(f) =
⊔

n∈N0

fn(d−1) =
⊔

n∈N0

dn−1 = d−1 

⊔

n∈N0

dn

=
⊔

n∈N0

dn = dω =
∨

i∈N0

©iP

2.
∨

i∈N0
©iP is equivalent to �P
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By the equation (�), each P ∨ ©P ∨ . . . ∨ ©iP (i ∈ N0) is called a prefix of �P .
Particularly, false is also a prefix of �P . Then we construct a subset B of D as follows:

B = {di| di ∈ D and di is a prefix of the formula �P}

For any ω-chain di1 � di2 � . . . � din � . . . in D, suppose each din = P ∨©P ∨
. . . ∨ ©inP (in ∈ N0) is a prefix of �P , i.e. din ∈ B. Then as di 
 di+1 = di+1,⊔

in∈N0
din = P ∨ ©P ∨ . . . ∨ ©iP ∨ . . . is also a prefix of �P and belongs to B.

Thus, we can obtain that B is an inclusive subset of D.
Moreover, the bottom element false is obviously a prefix of �P , thus false ∈ B.

With the assumption of di ∈ B, when i ∈ N0 ∪ {−1}, since f(di) = P ∨ ©(di) =
P ∨©(P ∨ . . . ∨©iP ) = P ∨©P ∨ . . . ∨©i+1P , f(di) is also a prefix of �P and
f(di) ∈ B; when i = ω, f(dω) = dω ∈ B. According to Scott’s fixed-point induction
[15], fixμ(f) =

∨
i∈N0

©iP belongs to B and is a prefix of �P . Besides, as fixμ(f)
is the upper bound of all the elements in D and B, fixμ(f) is the longest prefix of �P .
Therefore,

∨
i∈N0

©iP ≡ �P . 	


It is clear that �P and P+ are well-formed formulas in accordance to the syntax of
PPTL. Further, by Theorem 1, index set expressions

∨
i∈N0

©iP and
∨

i∈N0
P i are

equivalent to �P and P+ respectively. Hence, we can assert that
∨

i∈N0
©iP and∨

i∈N0
P i are well-formed formulas.

Corollary 1.
∨

i∈N0
©iP and

∨
i∈N0

P i are well-formed formulas.

Proof. This is the direct consequence of Theorem 1. 	


According to Theorem 1, we can also infer that P+ can be represented by the projection
construct prj since P+ is equivalent to

∨
i∈N0

P i and P i is an abbreviation of

P ; . . . ; P︸ ︷︷ ︸
i times

≡ (P, . . . , P )︸ ︷︷ ︸
i times

prj ε

Thus, with techniques in this paper, + can be regarded as a derived operator within
PPTL.

In order to show the practical use of such index set expressions, we give an example.

Example 1. Let P
def
= ε in

∨
i∈N0

©iP . Then∨
i∈N0

©iε ≡ �ε ≡ fin

which claims the interval is finite and will terminate at some point. Further, we can
obtain

∨
i∈N0

©iε ∨ inf ≡ �ε ∨ �more ≡ true.

It is interesting to consider Theorem 1 from another viewpoint. Since �P can be rewrit-
ten as P ∨©�P , namely �P ≡ P ∨©�P , we can abstract it as a recursive equation
X ≡ P ∨ ©X with the equality ‘≡’ and one solution �P . Then

∨
i∈N0

©iP can
also be treated as a solution of the recursive equation due to its equivalence to �P . It is
similar for the recursive equation X ≡ P ∨P ; X , whose solution is P+, i.e.

∨
i∈N0

P i.
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3.2 Generalization of
∨

i∈N0
©iQ

In this subsection, we generalize
∨

i∈N0
©iQ to

∨
i∈N0

P (i) ∧ ©iQ, where P (0) =

true, P (1) = P, P (2) = P ∧©P, . . . and P (n) = P ∧©P ∧ . . .∧©n−1P (n ∈ N0). In
particular, when P ≡ true,

∨
i∈N0

true(i)∧©iQ can be exactly reduced to
∨

i∈N0
©iQ.

Further, for the recursive equation X ≡ Q ∨ P ∧©X , we have:

X ≡ Q ∨ P ∧©X
≡ Q ∨ P ∧©(Q ∨ P ∧©X)
≡ Q ∨ P ∧©Q ∨ P ∧©P ∧©2X

. . .
≡ Q ∨ P ∧©Q ∨ P ∧©P ∧©2Q ∨ P ∧©P ∧©2P ∧©3Q ∨ . . .

We can see that
∨

i∈N0
P (i)∧©iQ might have something to do with the above equation,

which is declared in Theorem 2.

Theorem 2. For a recursive equation X ≡ Q ∨ P ∧ ©X , where X, P and Q are
PPTL formulas, its least fixed-point is

∨
i∈N0

P (i) ∧ ©iQ and its greatest fixed-point

is
∨

i∈N0
P (i) ∧©iQ ∨ �(P ∧more).

Proof. At first, we prove that
∨

i∈N0
P (i)∧©iQ and

∨
i∈N0

P (i)∧©iQ∨�(P ∧more)
are two fixed-points of the equation X ≡ Q∨P ∧©X by means of simple replacement:

(a) Q ∨ P ∧©(
∨

i∈N0
P (i) ∧©iQ)

= Q ∨
∨

i∈N0
P (i+1) ∧©i+1Q

=
∨

i∈N0
P (i) ∧©iQ

(b) Q ∨ P ∧©(
∨

i∈N0
P (i) ∧©iQ ∨ �(P ∧more))

= Q ∨ P ∧©(
∨

i∈N0
P (i) ∧©iQ) ∨ P ∧©�(P ∧more)

=
∨

i∈N0
P (i) ∧©iQ ∨�(P ∧more) (P ∧©�(P ∧more) ≡ �(P ∧more))

Then we respectively employ Kleene Fixed-point Theorem [15,10] and Knaster-Tarski
Fixed-point Theorem [15,14] to prove

∨
i∈N0

P (i) ∧ ©iQ and
∨

i∈N0
P (i) ∧ ©iQ ∨

�(P ∧more) are the least and greatest fixed-points.
Let d−1 = false, d0 = Q, dn = Q ∨ P ∧©Q ∨ P ∧©P ∧©2Q ∨ . . . ∨ P (n) ∧

©nQ (n ∈ N0), dω1 =
∨

i∈N0
P (i) ∧©iQ and dω2 =

∨
i∈N0

P (i) ∧©iQ ∨ �(P ∧
more). Then we define a set D = {d−1, d0, . . . , dn, . . .}∪{dω1 , dω2}. Further, a binary
relation � over D is formalized as

di � dj if

⎧⎪⎪⎨⎪⎪⎩
(1) i ≤ j and i, j ∈ N0 ∪ {−1}
(2) i ∈ N0 ∪ {−1} and j = ω1 or ω2

(3) i = ω1 and j = ω1 or ω2

(4) i = ω2 and j = ω2

Moreover, let g : D → D be a function given below

g(di) = Q ∨ P ∧©di

Then, for i ∈ N0 ∪ {−1}, g(di) = Q ∨ P ∧©(Q ∨ P ∧©Q ∨ . . . ∨ P (i) ∧©iQ) =
Q ∨ P ∧ ©Q ∨ P ∧ ©P ∧ ©2Q ∨ . . . ∨ P (i+1) ∧ ©i+1Q = di+1; further, for
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i = ω1 or ω2, by (a)(b), we know that dω1 and dω2 are fixed-points of g, that is,
g(dω1) = dω1 , g(dω2) = dω2 . Obviously, we have di 
 dj = di ∨ dj = dj if di � dj .
As a result, we can obtain the following two facts:

(1) (D,�) is a complete partial order and a complete lattice
(D,�) is a partial order, since it satisfies the properties given below:

- reflexivity: for i ∈ N0 ∪ {−1}, we have di � di due to i ≤ i. Further, by the
definition of �, we obtain dω1 � dω1 , dω2 � dω2 .

- anti-symmetry: for i, j ∈ N0 ∪ {−1}, if di � dj and dj � di, then we obtain
i ≤ j and j ≤ i, leading to i = j. Hence di = dj . For other cases, according to the
definition of �, di � dj �=⇒ dj � di.

- transitivity: if di � dj , dj � dk, (a) i, j, k ∈ N0∪{−1}: by assumption, i ≤ j ≤ k,
so di � dk; (b) i ∈ N0 ∪ {−1}, j ∈ N0 ∪ {−1, ω1, ω2}, k ∈ {ω1, ω2}: according
to case (2) in the definition of �, we can acquire di � dk; (c) i, j, k ∈ {ω1, ω2}, it
is clear that di � dk by the cases (3) and (4) in the definition of �.

Furthermore, for any non-empty subset S = {di1 , . . . , din} of D, we consider the
following cases:

(a) S includes neither dω1 nor dω2 :
In this case, if S is finite, as di 
 dj = dj (i ≤ j), we obtain the least upper bound

din ∈ D with in the biggest index in S; otherwise, S is infinite, there exists a least
upper bound

⊔
in∈N0

din =
∨

in∈N0
din = (Q ∨ P ∧ ©Q ∨ . . . ∨ P (i1) ∧ ©i1Q) ∨

(Q∨P ∧©Q∨ . . .∨P (i2) ∧©i2Q)∨ . . . = Q∨P ∧©Q∨P ∧©P ∧©2Q∨ . . . =∨
i∈N0

P (i) ∧©iQ = dω1 , which evidently belongs to D.
(b) S involves dω1 or dω2 :
If dω2 is contained in S, it is the least upper bound in S; otherwise, dω1 is the least

upper bound in S.
Thus, (D,�) is a complete lattice, which is also a complete partial order.

(2) g is a continuous function
Suppose that di � dj , then (a) when i, j ∈ N0 ∪ {−1}: i ≤ j, so i + 1 ≤ j + 1. As

a result, g(di) = di+1 � dj+1 = g(dj); (b) when i ∈ N0 ∪ {−1} and j = ω1 or ω2,
g(di) = di+1 � dωt = g(dωt) (t = 1, 2); (c) when i, j ∈ {ω1, ω2}, g(di) = di � dj =
g(dj). Hence, g is monotonic.

Further, for an arbitrary ω-chain in D, di1 � di2 � . . . � din � . . ., if there exists
an element din such that din � din � . . ., it is obvious that din is the least upper bound
of this ω-chain. Thus, we acquire

g(
⊔

in∈N0

din) = g(din) = din+1 = din 
 din+1 = (
⊔

in∈N0

din) 
 din+1

=
⊔

in∈N0

din+1 =
⊔

in∈N0

g(din)

Otherwise,⊔
in∈N0

g(din) =
⊔

in∈N0

din+1 = d0 

⊔

in∈N0

din+1 =
⊔

in∈N0

din

= dω1 = g(dω1) = g(
⊔

in∈N0

din)
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Therefore, g is a continuous function. Based on these, we can prove:

1.
∨

i∈N0
P (i) ∧©iQ is the least fixed-point

Since (D,�) is a complete partial order, whose bottom element is false, and g is a
continuous function, by Kleene fixed-point theorem, there exists a least fixed-point:

fixμ(g) =
⊔

n∈N0

gn(d−1) =
⊔

n∈N0

dn−1 = d−1 

⊔

n∈N0

dn

=
⊔

n∈N0

dn

= dω1 =
∨

i∈N0
P (i) ∧©iQ

2.
∨

i∈N0
P (i) ∧©iQ ∨�(P ∧more) is the greatest fixed-point

Let {x ∈ D|x � g(x)} be the set of post fixed-points of g. As di � di+1 =
g(di) (i ∈ N0 ∪ {−1}) and dωj � dωj = g(dωj ) (j = 1, 2), we obtain {x ∈ D|x �
g(x)} = D. In other words, all the elements in D are post fixed-points of g. Further,
(D,�) is a complete lattice, whose bottom element is false, and g is monotonic. Ac-
cording to Knaster-Tarski fixed-point theorem, the greatest fixed-point is:

fixν(g) =
⊔
{x ∈ D|x � g(x)} =

⊔
D

= dω2

=
∨

i∈N0
P (i) ∧©iQ ∨�(P ∧more)

	


Corollary 2. For a recursive equation X ≡ Q ∨ ©X , where X and Q are PPTL
formulas, its least fixed-point is �Q and its greatest fixed-point is �Q ∨ �more.

Proof. In Theorem 2, let P ≡ true. Then for the equation X ≡ Q∨©X , its least fixed-
point is

∨
i∈N0

(true)(i)∧©iQ ≡
∨

i∈N0
©iQ. Further, by Theorem 1,

∨
i∈N0

©iQ ≡
�Q, so �Q is the least fixed-point of the equation X ≡ Q∨©X . Moreover, its greatest
fixed-point is

∨
i∈N0

(true)(i) ∧©iQ ∨�(true ∧more) ≡ �Q ∨ �more. 	


In fact, Corollary 2 is a special case of Theorem 2 as well as the equation X ≡ Q∨©X
is an instance of X ≡ Q ∨ P ∧©X with P ≡ true but has well-formed formulas as
its least and greatest fixed-points. In addition, Theorem 2 also tells us that there are at
least two fixed-points for the equation X ≡ Q∨P ∧©X . Actually, X ≡ Q∨P ∧©X
has and only has two fixed-points, namely the least and greatest fixed-points, which is
confirmed by Theorem 3.

Theorem 3. The recursive equation X ≡ Q∨P ∧©X has and only has two solutions,
i.e.
∨

i∈N0
P (i) ∧©iQ and

∨
i∈N0

P (i) ∧©iQ ∨ �(P ∧more).

Proof. It is clear that
∨

i∈N0
P (i) ∧©iQ and

∨
i∈N0

P (i) ∧©iQ ∨ �(P ∧more) are
two fixed-points of X ≡ Q ∨ P ∧©X by Theorem 2. Further, we prove the equation
only has two fixed-points. We assume that there exists a third solution R such that R ≡
Q∨P ∧©R. Since

∨
i∈N0

P (i)∧©iQ is the least fixed-point,
∨

i∈N0
P (i)∧©iQ � R.

Further, according to the proof of Theorem 2, we can acquire
∨

i∈N0
P (i)∧©iQ
R =
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i∈N0

P (i) ∧©iQ∨R = R. Thus, R must be in the form of
∨

i∈N0
P (i) ∧©iQ∨R′.

Therefore, we have, ∨
i∈N0

P (i) ∧©iQ ∨ R′

≡ Q ∨ P ∧©(
∨

i∈N0
P (i) ∧©iQ ∨ R′)

≡ Q ∨ P ∧©(
∨

i∈N0
P (i) ∧©iQ) ∨ P ∧©R′

≡
∨

i∈N0
P (i) ∧©iQ ∨ P ∧©R′

Accordingly, we can infer R′ ≡ P ∧©R′, which can only be satisfied when R′ ≡ false
or R′ ≡ �(P ∧more) within PPTL. As a result, if R′ ≡ false, R ≡

∨
i∈N0

P (i)∧©iQ

while if R′ ≡ �(P ∧ more), R ≡
∨

i∈N0
P (i) ∧ ©iQ ∨ �(P ∧ more). Hence, the

equation only has two fixed-points. 	


3.3 Examples

To intuitively understand the above theorems, we present some examples below.

Example 2. Let P
def
= R and Q

def
= R∧ ε. Then X ≡ Q ∨P ∧©X can be instantiated

as
X ≡ R ∧ ε ∨ R ∧©X (3.3.1)

According to Theorem 2, we can respectively obtain the least and greatest fixed-points
of the equation (3.3.1) as∨

i∈N0

R(i) ∧©i(R ∧ ε) and
∨

i∈N0

R(i) ∧©i(R ∧ ε) ∨ �(R ∧more)

where the greatest fixed-point claims that R always holds either over an interval with
the length i or over an infinite interval. On the other hand, since the logical law

�R ≡ R ∧ ε ∨ R ∧©�R

can be satisfied, we can infer that �R is one solution of the equation (3.3.1), and must
be equivalent to either the least or the greatest fixed-points by Theorem 3. In accordance
with the meaning of �R, we can see that the greatest fixed-point exactly characterizes
�R and acquire the following:∨

i∈N0

R(i) ∧©i(R ∧ ε) ∨�(R ∧more) ≡ �R

which convinces us
∨

i∈N0
R(i) ∧©i(R ∧ ε) is well-formed.

Example 3. Let P
def
= true and Q

def
= R∧ε. Then X ≡ Q∨P ∧©X can be instantiated

as
X ≡ R ∧ ε ∨©X (3.3.2)

whose least and greatest fixed-points respectively are:∨
i∈N0

©i(R ∧ ε) ≡ �(R ∧ ε) and
∨

i∈N0

©i(R ∧ ε) ∨ �more ≡ �(R ∧ ε) ∨ �more
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Particularly, the greatest fixed-point states that R will hold and terminate at some point
over a finite interval or the interval is infinite. Further, we have the logical law

fin(R) ≡ R ∧ ε ∨©fin(R)

so fin(R) is one solution of the equation (3.3.2) and equivalent to the greatest fixed-
point by its meaning. Thus, we can obtain:

fin(R) ≡
∨

i∈N0

©i(R ∧ ε) ∨�more ≡ �(R ∧ ε) ∨ �more

Example 4. Let P
def
= R and Q

def
= ε. Then X ≡ Q ∨ P ∧©X can be instantiated as

X ≡ ε ∨ R ∧©X (3.3.3)

whose least and greatest fixed-points can be attained as:∨
i∈N0

R(i) ∧©iε and
∨

i∈N0

R(i) ∧©iε ∨�(R ∧more)

In particular, the greatest fixed-point tells us that R is true at every state over an infinite
interval or over a finite interval with ignoring the final state. Further, the logical law

keep(R) ≡ ε ∨ R ∧©keep(R)

holds and implies keep(R) is one solution of the equation (3.3.3). Since keep(R) pre-
cisely specifies the meaning of the greatest fixed-point, we have:

keep(R) ≡
∨

i∈N0

R(i) ∧©iε ∨�(R ∧more)

which makes
∨

i∈N0
R(i) ∧©iε well-formed.

Example 5. Let P
def
= ¬R and Q

def
= R∧ε. Then X ≡ Q∨P ∧©X can be instantiated

as
X ≡ R ∧ ε ∨ ¬R ∧©X (3.3.4)

By Theorem 2, its least and greatest fixed-points respectively are:∨
i∈N0

(¬R)(i) ∧©i(R ∧ ε) and
∨

i∈N0

(¬R)(i) ∧©i(R ∧ ε) ∨�(¬R ∧more)

where the greatest fixed-point asserts that R is only true at the final state over a finite
interval or ¬R always holds over an infinite interval. Moreover, we have known that

halt(R) ≡ R ∧ ε ∨ ¬R ∧©halt(R)

which indicates halt(R) is one solution of the equation (3.3.4). As halt(R) exactly
expresses the greatest fixed-point, we can get:

halt(R) ≡
∨

i∈N0

(¬R)(i) ∧©i(R ∧ ε) ∨ �(¬R ∧more)

which further convinces us
∨

i∈N0
(¬R)(i) ∧©i(R ∧ ε) is well-formed.
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Example 6. Let P
def
= true and Q

def
= ε. Then X ≡ Q∨P ∧©X can be instantiated as

X ≡ ε ∨©X (3.3.5)

Further, the least and greatest fixed-points can be acquired as∨
i∈N0

true(i)∧©iε ≡
∨

i∈N0

©iε and
∨

i∈N0

true(i)∧©iε∨�more ≡
∨

i∈N0

©iε∨�more

which respectively says that the interval is finite and the interval is finite or infinite. On
the other hand, we have:

fin ≡ �ε ≡ ε ∨©�ε and true ≡ ε ∨©true

which suggests that �ε and true are the solutions of the equation (3.3.5). Hence, ac-
cording to their meanings, we can attain:∨

i∈N0

©iε ≡ �ε ≡ fin and
∨

i∈N0

©iε ∨ �more ≡ true

which is consistent with Example 1.

4 Representation of ‘U’ and ‘W’ of PLTL within PPTL

Linear Temporal Logic (LTL) [13] is a well-known temporal logic, which is based on
a linear-time perspective and often defined over an infinite path (i.e. an infinite inter-
val). Propositional LTL (PLTL) is a propositional subset of LTL and has been widely
used in practice. In PLTL, the most prominent operators are ‘U’ (strong until) and ‘W’
(weak until), where ‘W’ is a weak version of ‘U’. Their intuitive semantics are shown in
Figure 1(a) and (b) respectively and more details can be found in [2]. Except U and W
operators, other operators of PLTL can be directly formalized over an infinite interval
in PPTL. In this section, we employ techniques proposed in Section 3 to equivalently
express ‘U’ and ‘W’ constructs within PPTL.

In PLTL, the following laws have been proved:

P U Q ≡ (P ∧ ¬Q) U Q P U Q ≡ Q ∨ P ∧©(P U Q)
P W Q ≡ (P ∧ ¬Q) W Q P W Q ≡ Q ∨ P ∧©(P W Q)
P W Q ≡ (P U Q) ∨ �P ¬© P ≡ ©¬P

Hence, P U Q can be reduced as follows:

P U Q ≡ (P ∧ ¬Q) U Q
≡ Q ∨ (P ∧ ¬Q) ∧©((P ∧ ¬Q) U Q)
≡ Q ∨ (P ∧ ¬Q) ∧©(Q ∨ (P ∧ ¬Q) ∧©((P ∧ ¬Q) U Q))
≡ Q ∨ (P ∧ ¬Q) ∧©Q ∨ (P ∧ ¬Q) ∧©(P ∧ ¬Q) ∧©2((P ∧ ¬Q) U Q)
≡ Q ∨ (P ∧ ¬Q) ∧©Q ∨ (P ∧ ¬Q) ∧©(P ∧ ¬Q) ∧©2Q ∨ . . .

From the above, we find that the recursive equation of P U Q can be treated as the form
of X ≡ Q∨P ∧¬Q∧©X (��) with one solution P U Q. Further, by Theorem 2 and
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the semantics of P U Q, we can obtain the least fixed-point
∨

i∈N0
(P ∧¬Q)(i) ∧©iQ

of the equation (��), which corresponds to P U Q. In other words, P U Q is equivalent
to
∨

i∈N0
(P ∧¬Q)(i) ∧©iQ. However, formulas in PPTL can be interpreted over both

infinite and finite intervals whereas formulas in PLTL can only be satisfied by infinite
paths. Therefore, in order to force a PPTL formula to hold just over an infinite interval,
an additionally PPTL formula �more is needed. Thus, we can equivalently represent
P U Q within PPTL as follows:

P U Q
def
= (

∨
i∈N0

(P ∧ ¬Q)(i) ∧©iQ) ∧ �more (� � �)

Similar to P U Q, the recursive equation of P W Q is P W Q ≡ (P ∧ ¬Q) W Q ≡
Q∨ (P ∧¬Q)∧©((P ∧¬Q)W Q) and also in the form of the equation (��). Further,
according to the semantics of P W Q and by Theorem 2, P W Q is equivalent to the
greatest fixed-point

∨
i∈N0

(P ∧ ¬Q)(i) ∧©iQ ∨ �(P ∧ ¬Q ∧ more) of the equation
(��). Therefore, with the requirement of an infinite interval, we have the following:

P W Q
def
= (

∨
i∈N0

(P ∧ ¬Q)(i) ∧©iQ ∨�(P ∧ ¬Q ∧more)) ∧�more

≡ (
∨

i∈N0

(P ∧ ¬Q)(i) ∧©iQ) ∧ �more ∨�(P ∧ ¬Q ∧more)

≡ P U Q ∨�(P ∧ ¬Q ∧more)

With techniques presented in this paper, we can see that P U Q is the least fixed-point
while P W Q is the greatest fixed-point of the equation (��), which is coherent with
that in [2].

Example 7. We consider a LTL formula©3p U©q, where p, q are atomic propositions.
Three possible paths are shown in Figure 1(c)(1-3). Further, according to the equation
(���), an equivalent PPTL formula can be acquired as (

∨
i∈N0

(©3p∧¬©q)(i)∧©i©
q) ∧ �more. Next we reduce the PPTL formula to obtain the three paths for showing
the correctness of the equation (� � �).

Firstly, we know that

(
∨

i∈N0

(©3p ∧ ¬© q)(i) ∧©i © q) ∧ �more

≡ (
∨

i∈N0

(©3p ∧©¬ q)(i) ∧©i © q) ∧ �more

≡ ©q ∧ �more ∨ (©3p ∧©¬q) ∧©© q ∧�more∨
(©3p ∧©¬q) ∧©(©3p ∧©¬q) ∧©2 © q ∧ �more ∨ . . .

Then ©q ∧ �more characterizes path (1), (©3p ∧ ©¬q) ∧ ©2q ∧ �more describes
path (2) and (©3p ∧©¬q) ∧©(©3p ∧©¬q) ∧©3q ∧�more specifies path (3). We
merely reduce (©3p ∧©¬q) ∧©(©3p ∧©¬q) ∧©3q ∧ �more to illustrate how to
get the relevant path and others can be obtained in a similar manner.

(©3p ∧©¬q) ∧©(©3p ∧©¬q) ∧©3q ∧ �more
≡ ©(©2p ∧ ¬q ∧©3p ∧©¬q ∧©2q ∧ �more)
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p ∧ ¬q

S4 S5S3S2S1S0

(a) : p U q

qp ∧ ¬q p ∧ ¬q
. . .

S2S1S0

(1)

q
. . .

(c) : ©3 p U © q

S4S3S2S1S0

(2)

p¬q q
. . .

S4 S5S3S2S1S0

(3)

q ∧ p¬q ¬q
. . .

p

p ∧ ¬q

S4 S5S3S2S1S0

(b) : p W q

p ∧ ¬q p ∧ ¬q
. . .

p ∧ ¬q p ∧ ¬q p ∧ ¬q

Fig. 1. Intuitive meaning of p U q and pW q and some models of ©3p U © q

Thus true holds at state s0. Next, at state s1, we continue to reduce

©2p∧¬q ∧©3p∧©¬q∧©2q∧�more ≡ ¬q∧©(©p∧©2p∧¬q∧©q∧�more)

From this, we can see ¬q holds at state s1. Further, at state s2,

©p ∧©2p ∧ ¬q ∧©q ∧ �more ≡ ¬q ∧©(p ∧©p ∧ q ∧ �more)

Therefore, ¬q is satisfied by state s2. At state s3, we go on reducing and get below:

p ∧©p ∧ q ∧ �more ≡ p ∧ q ∧©(p ∧�more)

Then p ∧ q holds at state s3. Subsequently, at state s4,

p ∧ �more ≡ p ∧©(�more)

which makes p hold at state s4 and all the successive states over an infinite path be
satisfied by true (i.e arbitrary propositions). Hence, we attain the path (3).

5 Conclusion

This paper investigated some fixed-point issues within PPTL. Particularly, we give two
kinds of index set expressions

∨
i∈N0

©iP and
∨

i∈N0
P i, which are formed by apply-

ing rules of the PPTL syntax infinitely many times. Further, we proved that these formu-
las expressed by index set expressions are still well-formed PPTL formulas. Moreover,∨

i∈N0
©iQ is generalized to

∨
i∈N0

P (i)∧©iQ and the least and greatest fixed-points
of the equation X ≡ Q∨P ∧©X are explored. In addition, the operators ‘U’ and ‘W’
in PLTL are equivalently represented within PPTL in terms of

∨
i∈N0

P (i) ∧©iQ.
In this paper, we only demonstrate some instances of the index set expression

∨
i∈N0

P (i) ∧©iQ with specific formulas as P and Q are well-formed PPTL formulas but do
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not give its equivalent generic well-formed formulas. As a challenge, we will attempt to
find out its concrete well-formed formula in the near future. Further, we will work out
the conditions for the solutions of X ≡ Q∨P∧©X , so that we know when X takes the
least fixed-point and when X takes the greatest fixed-point. Moreover, formulas under
investigation possess a common feature that during their recursive rewriting, only one or
two formulas appear repeatedly. For example, in

∨
i∈N0

©iP , P occurs iteratively for
infinite number of times, and so do P and Q in

∨
i∈N0

P (i) ∧©iQ. However, for these
formulas such as

∨
i∈N0

©iPi, where Pi’s might be different for distinct i, whether or
not they are well-formed is an open question. We will study the problem in the future.
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The Value-Passing Calculus
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Abstract. A value-passing calculus is a process calculus in which the
contents of communications are values chosen from some data domain,
and the propositions appearing in the conditionals are formulas con-
structed from a logic. Previous studies treat the domain models, as well
as the logic theories, as unspecified oracles. The open-ended approach
leaves open some fundamental issues unanswered. The paper provides
a more formal account of the value-passing calculi. The new treatment
is self-contained in that the logic theory a value-passing calculus refers
to is formally defined. A value-passing calculus consists of a complete
first order theory with an operational model that makes use of the terms
and the boolean expressions of the theory. A systematic investigation
into the theory of the value-passing calculi is carried out. A particular
value-passing calculus, VPC, is shown to be the least expressive among
all Turing complete value-passing calculi.

1 Introduction

Process calculus offers one approach to study interactions between computing ob-
jects. The process models can be classified by the type of the entities exchanged
over interactions. The pioneering process calculus, the CCS of Milner [Mil89a],
abstracts away the contents of communications. For this reason, it serves as a
benchmark model for process. Although the pure CCS falls short of being a
very interesting model from the point of view of expressiveness [Fu12b], the ba-
sic theory of CCS does generalize to many process calculi. The value-passing
CCS [Mil89a] adds to CCS the capacity to pass data values between processes.
In addition to the simple mechanism of synchronization, communications of val-
ues render it possible to control the interaction flow by testing the received data
values. This additional control power significantly enhances the expressive power
of the value-passing calculi. The name-passing calculus of Milner, Parrow and
Walker [MPW92], the π-calculus, adopts the policy that the messages sent and
received in communications can only be channel names. The exclusive focus on
the names has achieved both simplicity and expressiveness. It is difficult to ex-
tend the name-passing mechanism to get a strictly stronger model. The process-
passing calculi, or the higher order calculi [San93, Tho89, Tho93, Tho95], have
typically processes as the contents of communications. This seemingly power-
ful communication mechanism turns out to be much less expressive than the
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c© Springer-Verlag Berlin Heidelberg 2013
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π-calculus [Fu12b]. To make use of what have been received through communi-
cations, variables (value variables, name variables, process variables) have to be
introduced to act as placeholders.

From a logic point of view, the name-passing calculi and the process-passing
calculi are preferable since they are closed models in the sense that the syntax
and the semantics of these calculi are independent of any models or logics. In
contrary the value-passing calculi, with strong motivation from practice, are
distinguished by the fact that they must refer to an ‘oracle’, be it a domain
model or a logic theory. The traditional treatment to the value-passing calculi
are not self-contained. The attentions have largely been on the process aspect of
the story. The oracles have never been formally defined. The under-specification
of the value domain is not welcome from a foundational viewpoint, nor is it really
useful in practice.

The lightweight treatment of the oracle models/logics is an obstacle to both
theoretical study and application. We mention three immediate consequences.

1. Deep theoretical investigations are inevitably hindered by the open-ended
approach. For example it is not always possible to compare the expressiveness
of a value-passing calculus to another concurrent model. An encoding of
the former into the latter would require that the value terms and the logic
expressions be fully specified.

2. For the same reason there is no way to implement a value-passing calculus,
no matter what is meant by an implementation.

3. An equivalence checking algorithm is out of the question since the existence
of such an algorithm depends on the algorithmic aspect of the oracle model
and/or the oracle logic, which is not available in the open-ended framework.

Apart from these problems, there are also a number of related subtleties that
have to be taken into account when designing a value-passing calculus. Let’s
illustrate these points by scrutinizing the process M(x) defined by the following
recursive equality.

M(x) = if ϕ(x) then a(f(t)) else M(x + 1). (1)

There are at least five questions one may ask about the process defined in (1).
The first is concerned with the nature of the oracle. Where are ϕ(x) and t coming
from? There are basically two answers.

1. The first answer is model theoretical. The value term t and the logical ex-
pression ϕ(x) are constructed from the elements of the universe of a model,
the functions and the relations on the universe, and the variables that range
over the universe. The logical expression ϕ must be evaluated in the model
before process (1) fires an action. If ϕ contains free variables, the evaluation
is done with respect to an assignment. Under the model theoretical interpre-
tation, one expects that the process expression if y = y then P else Q can be
immediately put into action. On the other hand the behavior of the process
expression if y = z then P else Q depends on particular assignments.
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2. The second answer is proof theoretical. The value term t is defined induc-
tively from a vocabulary and the logical expression ϕ is legitimate in a first
order theory on top of the vocabulary. The process expression in (1) can fire
if ϕ is a theorem of the theory.

In principle, a proof theoretical approach to oracle design should definitely be
preferred. The point is that all implementations of an oracle are proof theoretical
in nature. As the Incompleteness Theorem of Gödel [G3̈1] tells us, the set of
the statements true in a model is far from being recursively enumerable. But an
implemented system can only generate a recursively enumerable set of theorems.
The proof theoretical approach fits very well with the operational nature of
process calculi.

The second question is about the expressiveness of the logical expressions
appearing in the value-passing processes. Since the set of the theorems of a
first order theory is typically creative [Cut80], there is in general no effective
procedure to decide the theoremhood of a formula. If a theory is reasonably
expressive, there exists some first order logical expression ψ such that neither ψ
nor ¬ψ is provable. This is definitely unacceptable from a programming point
of view. To avoid the embarrassment caused by the Incompleteness Theorem,
one looks for decidable theories in which a sentence is either provably true or
provably false. In implementation one actually asks for more than decidability.
It has been shown that validity checking for a decidable theory could be super
exponential in complexity [FR74, Opp78]. So normally the logical expressions
admitted in a value-passing calculus are confined to the quantifier free formulas.
But this restriction does not entirely eliminate the problem. If ϕ contains the free
variables x1, . . . , xn, then proving ϕ is equivalent to proving ∀x1. . . . ∀xn.ϕ. There
are situations, for example in equivalence checking algorithm, where formulas
with free variables must be dealt with. This suggests to look for first order
theories that are considerably weaker than say Peano Arithmetic.

The third question is about the expressive power of the value terms admitted
in a value-passing calculus. Our value-passing calculus would be too strong if
the f appearing in (1) could be a non-computable function. The Church-Turing
Thesis asserts that all the functions definable in a value-passing calculus are
computable functions if the functions produced by the oracles are computable.
It would be reasonable to disown those oracles that are capable of delivering non-
computable functions. Now here is the twist, if all the recursive functions can
be defined within a value-passing calculus, is it necessary to have an oracle that
produces functions short-cutting the role of the definable functions? A negative
answer would imply that the oracle should only supply constructors for the value
terms; it should not introduce any functions that compute on the value terms.

The fourth question is about the functional separation between the calculi and
the oracles. The standard semantics of the value-passing calculi demands that the
value term f(t) must be calculated to a canonical value before it is exported at
the name a. This additional calculating machinery is not very appealing from the
point of view of an interaction model. In process calculi all calculations should
be achieved by interactions. In other words, the procedure of the calculation
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should be explicitly specified in a process, not implicitly done by an oracle. It
is interesting to notice that the negative answer to the previous question is also
an answer to the present question since it trivializes the issue.

The fifth question is about the level of abstraction of the value-passing calculi.
If n is the least natural number such that ϕ(n) holds according to an oracle,
then M(0) emits f(t) at the channel named a; otherwise M(0) is inactive. If
M(0) ever interacts, it need to consult the oracle for a finite number of times. If
M(0) never interacts, it must consult the oracle to evaluate ϕ(0), ϕ(1), ϕ(2), . . .
consecutively in a non-stop fashion. This phenomenon is familiar to higher order
programming languages, it is however alien to process calculi. The process M(0)
has abstracted away too many computational and interactional activities, the
explicit descriptions of which are precisely what is expected of a process calculus.
If M(0) never interacts, the execution of M(0) in a higher order programming
language would result in a loop, a computational behaviour that is quite different
from that of the command skip. However in the standard semantics of the value-
passing calculi M(0) is strongly bisimilar to 0. In a basic model processes like
(1) should be banned.

The above discussions lead to the following design principle. A value-passing
calculus consists of a first order theory and a labeled transition system. The
former provides both the value terms and the boolean expressions. The latter
defines the semantics of the value-passing processes. The calculus is designed by
taking the following into consideration.

1. To make sure that the first order theory provides a right support to the
operational semantics, the theory is supposed to be complete for the set of
the quantifier free theorems.

2. To guarantee that the first order theory does not interfere with the compu-
tations/interactions defined by the labeled transition system, the formulas
admissible in a value-passing calculus should only contain constructors that
generate the universe of values; they should not contain any functions that
compute on the elements of the universe.

3. To keep the value-passing calculi at the right level of abstraction, it would
be better not to define recursions by recursive definitions parameterized over
value variables. The replication operator is sufficient.

The aim of this paper is to develop a rigid theory of the value-passing calculi
designed with the above remarks in mind. The theory is general enough so that
it can be readily applied to any particular value-passing calculus. It is also formal
enough so that many questions about the value-passing calculi can be addressed.

The paper is structured as follows. Section 2 reviews the relevant terminologies
in mathematical logic. Section 3 studies the operational and the observational
semantics of the value-passing calculi. Section 4 takes a look at symbolic approx-
imation to the absolute equality. Section 5 provides a proof system for the finite
terms. Section 6 discusses the expressiveness requirement for the value-passing
calculi. Section 7 applies the methodology to the value-passing calculus VPC de-
fined over the Peano Arithmetics. Section 8 concludes with discussions on future
research.
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BA P{P1/X1, . . . , Pn/Xn} P is a tautology

EQ1 t = t
EQ2 s = t ⇒ t = s
EQ3 r = s ∧ s = t ⇒ r = t

CG1
∧k

i=1 ti = t′i ⇒ f(t1, . . . , tk) = f(t′1, . . . , t
′
k) f is a k-ary function

CG2
∧k

i=1 ti = t′i ⇒ r(t1, . . . , tk) ⇒ r(t′1, . . . , t
′
k) r is a k-ary relation

FO1 ∀x.φ⇒ φ{t/x}
FO2 φ⇒ ∀x.φ x not in φ
FO3 (∀x.(ϕ⇒ ψ))⇒ (∀x.ϕ⇒ ∀x.ψ)

Fig. 1. Logical Axioms of Σ

2 Decidable Theory

Let N be the set of natural numbers. A vocabulary Σ = (F,R, a) consists of two
disjoint nonempty countable sets and one function: F is a finite set of function
symbols; R is a finite set of relation symbols; and a : F ∪ R → N is an arity
function that maps an element of F onto a natural number and an element of R
onto a nonzero natural number. A symbol in F ∪ R is k-ary if it is mapped onto
k under a. A constant is a 0-ary function symbol. It is always assumed that F
contains at least one constant and that R contains the equality relation =.

For each vocabulary Σ there is a countable set VΣ = {x, y, z, . . .} of Σ-
variables. The set TΣ of Σ-terms, ranged over by r, s, t, is defined as follows:

– VΣ ⊆ TΣ .
– If f is a k-ary function symbol and t1, . . . , tk are Σ-terms, then f(t1, . . . , tk)

is a Σ-term.

A Σ-term is closed if it does not contain any Σ-variable, it is open otherwise.
The set of closed Σ-terms is denoted by T0

Σ .
The set EΣ of Σ-expressions, ranged over by φ, ϕ, ψ, is defined as follows:

– The logical false ⊥ is a Σ-expression.
– If r is a k-ary relation symbol and t1, . . . , tk are Σ-terms, then r(t1, . . . , tk)

is an atomic Σ-expression.
– If ϕ, ψ are Σ-expressions, then ϕ ⇒ ψ is a Σ-expression.
– If φ is a Σ-expression and x is a Σ-variable, then ∀x.φ is a Σ-expression,

where ∀ is the universal quantifier.

The Σ-variable x in ∀x.φ is bound. A Σ-variable is free if it is not bound. A
Σ-sentence is a Σ-expression that does not contain any free Σ-variables. The
set of Σ-sentences is denoted by E0

Σ . A boolean Σ-expression is a quantifier
free Σ-expression. In sequel we shall freely use the derived logical connectives
%,¬,∧,∨,⇔, ∃.

The first order logic over Σ is the recursive set of the first order logical axioms
defined in Fig. 1. The axiom schema BA actually stands for a recursive set of
boolean axioms, each obtained from a boolean tautology by instantiating all the
propositional variables. The EQ-axioms are about the equivalence property, and
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PA1 ∀x.(s(x) �= 0)
PA2 ∀xy.(s(x) = s(y)⇒ x = y)
PA3 ∀x.(x = 0 ∨ ∃y.s(y) = x)
PA4 ∀x.(x < s(x))
PA5 ∀xy.(x < y ⇒ s(x) ≤ y)
PA6 ∀xy.(¬(x < y)⇔ y ≤ x)
PA7 ∀xy.((x < y) ∧ (y < z)⇒ x < z)

Fig. 2. First Order Theory PA

the CG-axioms formalize the congruence property. The FO-axioms state the
provability of the universally quantified Σ-expressions. In both BA and FO1 the
meta operation substitution is used.

Given a recursive set Γ of Σ-expressions, a proof of ψ from Γ is a finite
sequence (φ1, . . . , φn) of Σ-expressions such that φn is ψ and one of the following
properties holds for each i ≤ n:

– φi is a logical axiom;
– φi ∈ Γ ;
– There are two Σ-expressions ϕ and ϕ ⇒ φi in the proof (φ1, . . . , φi−1).

A Σ-expression ψ is a Γ -theorem, notation Γ � ψ, if there is a proof of ψ from Γ ,
and it is a theorem, notation � ψ, if Γ is the empty set. A set Γ of Σ-expressions
is inconsistent if Γ � ⊥; it is consistent otherwise. We sometimes write s =Γ t
for Γ � s = t.

A first order theory over Σ is a consistent recursive set Th of Σ-sentences, the
elements of Th are called nonlogical axioms.

In the context of present paper the most useful first order theory is Presburger
Arithmatic [Pre29]. This is what one gets if the multiplication operator ‘×’ is
removed from the Peano Arithmetic. For the reasons explained in Section 1 we
shall also leave out the addition operator ‘+’. The axioms of our theory PA are
given in Fig. 2, in which x �= y stands for ¬(x = y) and x ≤ y for x = y ∨ x < y.
For a natural number i, let i denote the numeral

s(s(. . . s︸ ︷︷ ︸
i times

(0) . . .)).

Similarly we write si(x) for the open ΣPA-term

s(s(. . . s︸ ︷︷ ︸
i times

(x) . . .)).

Presburger [Pre29] proved that remarkably his arithmetic, and consequently the
theory PA defined in Fig. 2, is decidable. This is the foundation for the value-
passing calculi studied in the rest of the paper.

Theorem 1. PA is decidable.
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3 Value-Passing Calculus

According to our discussions in Section 1, we shall focus on the value-passing
calculi defined in terms of decidable first order theories. Throughout this paper
we assume that Th is a decidable first order theory of type Σ. The value-passing
calculus defined on top of Th is denoted by VPCTh. If Th is PA, the subscript in
VPCTh is omitted. The abbreviation will be justified in Section 7.

All process calculi are defined in terms of names. The set N of names is
ranged over by a, b, c, d, e, f, g, h. The set N of conames is {a | a ∈ N}. A
substitution is a partial map σ : VΣ ⇀ TΣ whose domain of definition is finite.
An assignment is a partial map ρ : VΣ ⇀ T0

Σ whose domain of definition is
cofinite. A substitution is often denoted explicitly by {t1/x1, . . . , tn/xn}. The
notations ρ[x←t] and σ[x←t] are understood in the standard interpretation.

The set TVPCTh
of the VPCTh-terms, ranged over by R, S, T and their decorated

forms, is defined by the following BNF:

T :=
∑
i∈I

ϕia(x).Ti |
∑
i∈I

ϕia(ti).Ti | T |T ′ | (c)T | ϕT | !a(x).T | !a(t).T,

where ϕi is a boolean Σ-expression, and I is a finite indexing set. The nota-
tion

∑
i∈{1,...,n} ϕiλi.Ti stands for either

∑
i∈I ϕia(x).Ti or

∑
i∈I ϕia(ti).Ti. The

prefix a(x) is an input primitive that binds the Σ-variable (henceforth just vari-
able) x, and the prefix a(t) is an output primitive. We write fv( ), respectively
bv( ), for the function that returns the set of the free variables, respectively the
bound variables; and let v( ) be fv( ) ∪ bv( ). A VPCTh-term is closed if it does
not contain any free variables. Otherwise it is called an open VPCTh-term. A
closed VPCTh-term is also called a VPCTh-process. We write PVPCTh

for the set of
the VPCTh-processes, ranged over by L, M, N, O, P, Q. For clarity we shall write

A(x, y)
def
= T for instance to indicate that A(x, y) is a shorthand for T with x, y

as the only free variables. The notation A(s, t) denotes T {s/x, t/y}. The com-
position T |T ′ and the localization (c)T are standard constructions. We write∏

1≤i≤n Ti for the composition T1 |T2 | . . . |Tn. The VPCTh-term
∑

i∈I ϕiλi.Ti

is a conditional guarded choice, and for each i ∈ I the component ϕiλi.Ti is
a summand. The condition ϕi is often omitted if it is %. There is essentially a
unique guarded choice, noted 0, whose index set is the empty set. Often we write
ϕ1λ1.T1 + . . . + ϕnλn.Tn for

∑
i∈{1,...,n} ϕiλi.Ti. It should be remarked that in∑

i∈I ϕiλi.Ti the constructor is
∑

i∈I ϕiλi. . The conditional ϕT is often written
as if ϕ then T . The two leg conditional if ϕ then S else T can be defined by
ϕS | ¬ϕT . The VPCTh-term !ν.T is a guarded replication. We shall freely use the
guarded fixpoint terms of the form μX.E where X is a process variable whose
occurrences in E are all under some prefixes. The fixpoint construction μX.E
can be encoded by (c)(E{c(z).0/X} | !c(r).E{c(z).0/X}), where c is fresh and
r is a closed term. So the guarded fixpoint operator does not introduce extra
expressive power [FL10]. A VPCTh-term is finite if it does not contain any oc-
currences of the replication operator; it is a finite control term if it contains only
the conditional guarded choice operator and the fixpoint operator.



The Value-Passing Calculus 173

Action

∑
i∈I ϕia(x).Ti

a(t)−→ Ti{t/x}

i ∈ I,
t ∈ T0

Σ ,
Th  ϕi.

∑
i∈I ϕia(ti).Ti

a(ti)−→ Ti

i ∈ I,
ti ∈ T0

Σ ,
Th  ϕi.

Composition

S
λ−→ S′

S |T λ−→ S′ |T
S

a(t)−→ S′ T
a(t)−→ T ′

S |T τ−→ S′ |T ′

Localization

T
λ−→ T ′

(c)T
λ−→ (c)T ′

c is not in λ.

Condition

T
λ−→ T ′

ϕT
λ−→ T ′

Th  ϕ.

Recursion

!a(x).T
a(t)−→ T{t/x} | !a(x).T

t ∈ T0
Σ .

!a(t).T
a(t)−→ T | !a(t).T

t ∈ T0
Σ .

Fig. 3. Concrete Semantics

3.1 Concrete Semantics

In this section we define the so-called concrete semantics, which is given by the
labeled transition system in Fig. 3, where the symmetric versions of two compo-
sition rules have been omitted. Although the semantics is defined for all VPCTh-
terms, only the behaviors of the VPCTh-processes are completely characterized.
If Th is the Peano Arithmetic PA, then under our semantics the VPCTh-term
if 0 ≤ x then a(0) can perform an action, but the obviously equivalent VPCTh-
term if x = 0 then a(0) else a(0) cannot do anything.

The reader must have noticed that the rule for the output prefix in our con-
crete semantics appears different from the standard treatment. In the value-
passing calculi defined in terms of a model [Mil89a], the term in an output prefix
must be calculated to a value, an element of the universe, before it is exported.
In our approach however the Σ-term is exported as it is. There are two reasons.
One is that at our abstract model, there is no way to talk about calculation of
terms. But the much more important reason, alluded in Section 1, is that the
functional power of the oracle is undesirable. The first order theory provides a
universe of values, whereas the value-passing calculus does the calculation. If we
maintain a separation between the Σ-terms and the calculations of the Σ-terms,
there is no need to calculate any closed Σ-terms since every closed Σ-term is
already a ‘value’.
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Let us see two examples. Let A be (a)(a(0) |μX.a(x).(a(s(x)) | (τ.X + b(x)))).

A typical action sequence of A is A
τ−→ τ−→ . . .

τ−→ τ−→︸ ︷︷ ︸
2n+1 times

b(n)−→ 0, where n ≥ 0. As

this example shows, the calculation of the numeral is explicitly demonstrated.
The second example is about the encoding of the minimization operator. It is
given by (a)(a(0) |μX.a(x).(a(s(x)) | if ϕ then b(x) else τ.X)). Notice that if no
numerals satisfy ϕ then the process diverges.

We write =⇒ for the reflexive and transitive closure of
τ−→, and

λ
=⇒ for the

composition =⇒ λ−→=⇒.

3.2 Absolute Equality

A first attempt to define the bisimulations for VPCTh is to reiterate the definition

from the theory of CCS for all VPCTh-terms. This would require that S
λ−→ S′

should be bisimulated by T
λ̂

=⇒ T ′ whenever S is bisimilar to T . Consider
however the VPC-terms a(0).S and if x = 0 then a(0).S else a(0).S. Intuitively

these two VPC-terms are equivalent. But the action a(0).S
a(0)−→ S cannot be

simulated by any action of if x = 0 then a(0).S else a(0).S. There are two ways
to bypass the problem. One is to confine our attention to processes. This would
be a reasonable choice if the operational semantics is formulated in a concrete
manner. The other is to apply a symbolic approach, which would of course fit
very well with the symbolic operational semantics. Before we take a look at
these two solutions, we shall apply to VPCTh the model independent approach
developed in [Fu12b]. The equality so obtained provides not only the intuition,
but also a standard to compare against.

Process equivalences are observational. A process is observable if it may in-
teract with another process.

Definition 1. A process P is observable, notation P⇓, if ∃λ, P ′. P =⇒ λ−→ P ′.

Now whatever an observational equivalence is, it must not identify an observable
process with an unobservable process. Hence the next definition.

Definition 2. A binary relation R is equipollent if P⇓ ⇔ Q⇓ whenever PRQ.

Now suppose two processes P, Q are observationally equivalent. A third process,
say O, cannot detect any difference between P, Q by interacting with them. If
we think of it, the fact that O cannot tell P, Q apart is best interpreted as
saying that P |O and Q |O are observationally equivalent. Now trivially, P and
Q cannot be distinguished by any process that does not interact at a particular
channel name, say c. If one looks at the same thing from another angle, one
easily sees that (c)P must be observationally equivalent to (c)Q as well.

Definition 3. A relation R is extensional if the following hold: (i) If LRM and
PRQ then (L |P ) R (M |Q). (ii) If PRQ then (c)P R (c)Q for all c ∈ N .
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If two processes are equivalent, they should be able to maintain the equivalence
after one thousand years. The minimal condition making sure that this can
be achieved is the bisimulation property of Milner [Mil89a] and Park [Par81].
Following the idea of Fu [Fu12b], we actually will use a stronger version of
the bisimulation introduced by van Glabbeek and Weijland [vGW89]. In the
following definition, the notation R−1 stands for the inverse of R.

Definition 4. A binary relation is a bisimulation if the following hold:

1. If QR−1P
τ−→ P ′ then one of the following statements is valid.

(a) Q =⇒ Q′R−1P ′ and Q′R−1P for some Q′.

(b) Q =⇒ Q′′R−1P for some Q′′ such that Q′′ τ−→ Q′R−1P ′ for some Q′.

2. If PRQ
τ−→ Q′ then one of the following statements is valid.

(a) P =⇒ P ′RQ′ and P ′RQ for some P ′.

(b) P =⇒ P ′′RQ for some P ′′ such that P ′′ τ−→ P ′RQ′ for some P ′.

A basic assumption in the theory of computation is that a divergent computation
is different from a computation that terminates. Often time the probability for
a real program to diverge is zero. For such a program, divergence is a potential,
not an inevitability. A condition that takes into account of this potentiality while
upholding the bisimulation property is what we call codivergence requirement.
It was first proposed by Priese [Pri78].

Definition 5. A relation R is codivergent if the following statements are valid:

– If PRQ
τ−→ Q1

τ−→ · · · τ−→ Qn
τ−→ · · · is an infinite internal action

sequence, then there must be some k ≥ 1 and P ′ such that P
τ

=⇒ P ′ R Qk.
– If QR−1P

τ−→ P1
τ−→ · · · τ−→ Pn

τ−→ · · · is an infinite internal action
sequence, then there must be some k ≥ 1 and Q′ such that Q

τ
=⇒ Q′ R Pk.

We have introduced four conditions for the equivalences on evolving processes,
which are minimal from the point of view of interaction and computation. We
turn these minimal conditions into defining properties of process equality.

Definition 6. The absolute equality =Th is the largest reflexive, equipollent,
extensional, codivergent bisimulation on PVPCTh

.

The well-definedness of Definition 6 is due to the fact that its defining proper-
ties are stable under set unions. The definition is completely model independent
as long as we only consider those models that have the composition and local-
ization operators and enjoy a dichotomy between the internal actions and the
external interactions. From the point of view of equality reasoning, the absolute
equality is too abstract. It would be very helpful to work out an external char-
acterization of the absolute equality. This is what we are going to do next for
VPCTh. Before that, we state a useful lemma about computation, the Bisimula-
tion Lemma [Fu12b]. The property stated in the lemma is called X-property by
De Nicola, Montanari and Vaandrager [DNMV90].

Lemma 1. If P =⇒ P ′ =Th Q and Q =⇒ Q′ =Th P , then P =Th Q.
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Once the equality relation has been defined, a formal classification of the internal
actions can be given. We say that S evolves to T in a computation step, notation
S → T , if S

τ−→ T and S =Th T , and that S evolves to T in a change-of-state
internal action, notation S

ι−→ T , if S
τ−→ T and S �=Th T . The reflexive and

transitive closure of → will be denoted by →∗.
The bisimulation property can now be defined in a more informative way.

If P =Th Q
τ−→ Q′, then the simulation by P could be vacuous if Q =Th Q′;

otherwise it must take the form P →∗ P ′′ ι−→ P ′ such that P ′′ =Th Q and

P ′ =Th Q′. Similarly if P =Th Q
a(t)−→ Q′, then the simulation of the output

action must take the form P →∗ P ′′ a(t)−→ P ′ such that P ′′ =Th Q and P ′ =Th Q′.
This is the external bisimulation property we shall define in the next section.

3.3 External Bisimulation

External bisimulations are meant to give an alternative characterization of the
absolute equality in terms of explicit simulation of every action. In addition
to the property of Definition 4, external bisimulations must explain how the
external actions are bisimulated.

Definition 7. A codivergent bisimulation R on PVPCTh
is a VPCTh-bisimulation

if the following statements are valid for every λ �= τ .

1. If QR−1P
λ−→ P ′ then Q =⇒ Q′′ λ−→ Q′R−1P ′ and PRQ′′ for some Q′, Q′′.

2. If PRQ
λ−→ Q′ then P =⇒ P ′′ λ−→ P ′RQ′ and P ′′RQ for some P ′, P ′′.

The VPCTh-bisimilarity 'Th is the largest VPCTh-bisimulation.

By constructing the relation inductively from 'Th that closes up under compo-
sition and localization, one can easily prove the following lemma.

Lemma 2. The external bisimilarity 'Th is extensional.

The above lemma and the Bisimulation Lemma is the only thing we need to
establish Proposition 1, which proves the correctness of Definition 7.

Proposition 1. The relation 'Th coincides with the absolute equality =Th.

Proof. The inclusion 'Th⊆=Th is immediate from Lemma 2. The proof of the
reverse inclusion is standard using Bisimulation Lemma. Processes of the form
a(x).if x = then c( ) else d( ) and of the form a( ) + a( ).c( ), with the names
c, d chosen properly, are crucial to deriving the external bisimulation property.
A detailed proof of a similar result in π-calculus is given in [FZ11]. 	

Both the absolute equality and the external bisimilarity are relations on the
processes. They can be extended to the VPCTh-terms in the standard manner.

Definition 8. S 'Th T if and only if Sρ 'Th T ρ for every assignment ρ whose
domain of definition is disjoint from bv(S |T ).

A standard argument suffices to show that the relation 'Th, and consequently
the relation =Th as well, is closed under all the process operations.

Proposition 2. The absolute equality is equivalent and congruent.



The Value-Passing Calculus 177

Action ∑
i∈I ϕiλi.Ti

λi−→ϕi Ti

i ∈ I.

Composition

S
λ−→ϕ S′

S |T λ−→ϕ S′ |T

S
a(x)−→ϕ S′ T

a(t)−→ψ T ′

S |T τ−→ϕψ S′{t/x} |T ′

Localization

T
λ−→ϕ T ′

(c)T
λ−→ϕ (c)T ′

c is not in λ.

Condition

T
λ−→ϕ T ′

φT
λ−→φϕ T ′

Recursion

!a(x).T
a(x)−→� T | !a(x).T !a(t).T

a(t)−→� T | !a(t).T

Fig. 4. Symbolic Semantics

4 Symbolic Semantics

The absolute equality is not very convenient. Hennessy and Lin [HL95] address
the issue by introducing symbolic bisimulations. The advantage of the symbolic
approach is that it allows one to make full use of the decidable fragments of
the logics of the value-passing calculi when constructing equivalence checking
algorithms. In [HL95] the symbolic bisimilarity is defined as general as possible
so that a coincidence result could be achieved. We shall be less ambitious in this
paper. Symbolic bisimilarity is in our opinion a decidable approximation of the
absolute equality. Our motivation for the symbolic bisimilarity is two folds: (i)
the symbolic bisimilarity should be sound, meaning that it should be a subset
of the absolute equality; (ii) ideally the symbolic bisimilarity is complete on the
decidable subsets of the absolute equality. The latter is much more difficult to
come by than the former.

To define the symbolic bisimulations, we need to introduce the symbolic op-
erational semantics. This would not be a big issue had we dropped the con-
ditionals. So the key is to define for instance the semantics of the VPCTh-term
if ϕ then a(0) else b(0) where the boolean Σ-expression ϕ contains free variables.
The symbolic semantics [HL95, HL96] solves the problem by introducing condi-
tional actions. The syntax of a transition in the symbolic semantics is a tuple

of the form T
λ−→ϕ T ′, formalizing the idea that T may perform the action λ
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under the condition that the boolean Σ-expression ϕ is a Th-theorem. The set
of the action labels for the symbolic semantics is

{a(x), a(t) | a ∈ N , x ∈ VΣ , t ∈ TΣ} ∪ {τ},

also ranged over by λ. The labeled transition system is defined in Fig. 4. Again
the symmetric versions of the composition rules have been omitted. The treat-
ment of the input prefix is in a late style, which is better suited for algorithmic
investigations. The symbolic semantics is stable under substitution in the sense
of the following lemma.

Lemma 3. If S
λ−→ϕ T then Sσ

λσ−→ϕσ T σ for every substitution σ. On the

other hand, if Sσ
λ′
−→ϕ′ T ′ for some substitution σ, then there must exist some

λ, ϕ, T such that λ′ = λσ, ϕ′ = ϕσ, T ′ ≡ T σ and S
λ−→ϕ T .

We will abbreviate
τ−→ϕ1 . . .

τ−→ϕn to =⇒ϕ1...ϕn , and =⇒ϕ
λ−→ϕ′=⇒ϕ′′ to

λ
=⇒ϕϕ′ϕ′′ . We remark that T =⇒� T .

It’s time to look at some examples. The following three terms are in VPC:

L(y)
def
= if 0 ≤ y then b(0),

M(y)
def
= (a)(a(0) |μX.a(x).(a(s(x)) | (τ.X + if y = x then b(0)))),

N(y)
def
= (a)(a(0) |μX.a(x).(a(s(x)) | (τ.X + if y = x then b(y)))).

The process L(y) may perform only one action L(y)
b(0)−→0≤y 0. The process M(y)

has an interesting action sequence M(y)
τ

=⇒�
b(0)−→y=n 0. Similarly N(y) has a

similar action sequence N(y)
τ

=⇒�
b(y)−→y=n 0. In the second and third examples

the set of possible conditions is {y=0, y=1, y=2, . . . , y=n, . . .}. What the second
example tells us is that even with a finite description and a finite set of potential
external actions, the set of the conditions that enable an action of a VPC-term,
like b(0), could be infinite.

The symbolic semantics is a correct extension of the concrete semantics. This
is established in the next two lemmas whose proofs are simple induction on
derivation.

Lemma 4. The symbolic semantics is sound with respect to the concrete seman-
tics in the following sense:
(i) If S

τ−→ϕ T for some Th-theorem ϕ then S
τ−→ T .

(ii) If S
a(t)−→ϕ T for some Th-theorem ϕ and some t ∈ T0

Σ then S
a(t)−→ T .

(iii) If S
a(x)−→ϕ T for some Th-theorem ϕ then S

a(t)−→ T {t/x} for every t ∈ T0
Σ.

Lemma 5. The symbolic semantics is complete with respect to the concrete se-
mantics in the following sense:
(i) If S

τ−→ T then S
τ−→ϕ T for some Th-theorem ϕ.
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(ii) If S
a(t)−→ T then S

a(t)−→ϕ T for some Th-theorem ϕ.

(iii) If S
a(t)−→ T then S

a(x)−→ϕ T ′ for some Th-theorem ϕ and some x, T ′ such
that T ≡ T ′{t/x}.

4.1 Symbolic Bisimulation

In the symbolic approach, is it reasonable to require that S
τ−→ϕ S′ be simulated

by T =⇒ϕ′ T ′ for bisimilar S and T such that Th � ϕ ⇒ ϕ′? Again let’s take a
look at the VPC-terms ϕτ.S and if x = 0 then ϕτ.S else ϕτ.S, where x �∈ fv(ϕ).

The two VPC-terms are equivalent by all reasonable criteria. But ϕτ.S
τ−→ϕ S

cannot be simulated by if x = 0 then ϕτ.S else ϕτ.S in the above required
manner since in the latter term the τ -action can only be fired under a condition
strictly stronger than ϕ. But notice that (x = 0) ∧ ϕ ∨ (x �= 0) ∧ ϕ ⇔ ϕ is a
PA-theorem. Under either (x = 0) ∧ ϕ or (x �= 0) ∧ ϕ the VPC-term if x =
0 then ϕτ.S else ϕτ.S may evolve into S. This leads to the idea of finding a
collection of boolean expressions such that the disjunction of the collection is
weaker than ϕ. If under each of the conditions the simulation can be done, then
there is a simulation. A first attempt to define a symbolic counterpart of the
Milner-Park bisimilarity could be as follows:

A symmetric relation R on TVPCTh
is a ?-bisimulation if the following

condition is met whenever SRT :

If S
λ−→ϕ S′ then there is a class {T

λ̂i=⇒ϕi T ′
i}i∈I such that

Th � ϕϕi ⇒ λ = λi and (ϕϕiS
′, ϕϕiT

′
i ) ∈ R for every i ∈ I.

Let '? be the largest ?-bisimulation.

In the above definition, λ = λi stands for % if λ, λi are syntactically the same;
it is t = t′ if λ ≡ a(t) and λi ≡ a(t′) for some name a; otherwise λ = λi

stands for ⊥. The relation '? is not very useful. Consider the VPC-processes
R(y), S(y), T (y) defined as follows:

R(y)
def
= (b)(b(y) |μX.b(z).r(z).if 0 < z then (b(p(z)) |X)),

S(y)
def
= τ.T (y) + if 0 ≤ y then τ.R(y),

T (y)
def
= (a)(a(0) |μX.a(x).(a(s(x))

| (τ.X + if 0 ≤ y ≤ x then τ.(if y = x then τ.R(y) else e(0))))).

In the definition of R(y) the term p(z) is the predecessor of z. The predecessor
function can be implemented in VPC. The details can be found in Section 6.
The behavior of R(y) is captured by the following action sequence:

R(n)
τ−→�

r(n)−→�
τ

=⇒0<n
r(n−1)
−→ �

τ
=⇒0<n−1 . . .

τ
=⇒0<1

r(1)−→� . . . .

It is obvious that R(n) and R(n′) are inequivalent whenever n �= n′. The pro-

cesses S(y) and T (y) are bisimilar since the action S(y)
τ−→0≤y R(y) can be
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U(y)
def
= τ.W (y) + if 0 ≤ y ≤ m then τ.R(y),

V (y)
def
= τ.W (y) + if y = 0 then τ.R(y) + . . .+ if y = m then τ.R(y),

W (y)
def
= if 0 = y then τ.(if y = 0 then τ.R(y) else e(0))

+ if 0 ≤ y ≤ 1 then τ.(if y = 1 then τ.R(y) else e(0))

+ . . .

+ if 0 ≤ y ≤ m then τ.(if y = m then τ.R(y) else e(0)).

Fig. 5. Non-transitivity of �?

simulated by T (y) as long as y is instantiated by a numeral. On the other hand
it is easy to see that S(y) �'? T (y). The only way to simulate the action is by

the collection {T (y)
τ

=⇒0≤y≤n if y = n then τ.R(y) else e(0)}n∈N. But notice
that if 0 ≤ y ≤ n then R(y) is not bisimilar to if 0 ≤ y ≤ n then (if y =
n then τ.R(y) else e(0)). The relation '? has to be abandoned because it is
not transitive! Fig. 5 offers a counter example. One has U(y) '? V (y) and
V (y) '? W (y) but not U(y) '? W (y). It follows that U(y) �'? W (y).

The symbolic bisimulations need be defined in a more subtle way. The key idea
of Hennessy and his collaborators is that the partition of the condition under
which the simulated action is fired should not depend on the conditions under
which the simulations are done. In their definition a partition of ψ is a collection
{ψi}i∈I such that ψ ⇔

∨
i∈I ψi, where the indexing set I could be as large as the

size of the model. The reason that they may resort to the all-powerful operator∨
is that they are using a meta logic about the oracle model. We will use a more

restricted approach. We insist that the symbolic semantics of a value-passing
calculus should only make use of the first order logic by which the logical theory
of the calculus is defined.

Definition 9. Suppose Th is a theory over Σ, V is a finite set of variables,
and fv(ϕ) ⊆ V . A boolean Th-partition of ϕ on V is a finite set of boolean
Σ-expressions {ϕi}i∈I such that fv(

∨
i∈I ϕi) ⊆ V , Th � ϕi ∧ ϕj ⇒ ⊥ if i �= j,

and Th � ϕ ⇔
∨

i∈I ϕi.

LetK(y) = (a)(a(0) |μX.a(x).(X | if x ≤ y then a(s(x)))). It admits the following

infinite sequence K(y)
τ−→�

τ−→0≤y
τ−→1≤y . . .

τ−→n≤y . . .. Although every finite
subset of {%, 0 ≤ y, 1 ≤ y, . . . , n ≤ y, . . .} is consistent, the infinite sequence is a
fake. For every numeral n the process K(n) terminates. From the point of view of
the model N, no assignment can satisfy all the ΣPA-expressions in {%, 0 ≤ y, 1 ≤
y, . . . , n ≤ y, . . .}. From the point of view of the first order logic, no satisfiableΣPA-
expression implies all the ΣPA-expressions in {%, 0 ≤ y, 1 ≤ y, . . . , n ≤ y, . . .}.
A faithful symbolic interpretation of divergence would make use of the infinite
conjunction, which as we have argued, is not in line with the philosophy of the
symbolic approach. To get a glimpse of the complication of codivergence, take a
look at H(y) = (a)(a(0) |μX.a(x).(X | if y ≤ x then a(s(x)))), which is a slight
modification of the previous VPC-term. This term also admit an infinite sequence
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of τ -actions H(y)
τ−→�

τ−→y≤0
τ−→y≤1 . . .

τ−→y≤n . . .. The infinite sequence is not
real forH(1),H(2),H(3), . . . . But it is real forH(0). These examples suggest that
it is difficult to give a nice symbolic description of the codivergence property at
a general level. It should be remarked though that divergence is intrinsically
an undecidable property. If our interest in symbolic semantics is confined to
automatic verification, the codivergence condition has to be dropped.

Definition 10. A symmetric relation R on TVPCTh
is a symbolic bisimulation if

the following hold whenever SRT and V = fv(S |T ):

1. If S
τ−→ϕ S′ and Th∪{ϕ} is consistent, then there are a boolean Th-partition

{ϕi}i∈I of ϕ on V and a collection {T =⇒ψi Ti}i∈I such that, for each i ∈ I,
Th � ϕi ⇒ ψi and ϕiS R ϕiTi, and one of the following properties holds:
(a) ϕiS

′ R ϕiTi;

(b) Ti
τ−→ψ′

i
T ′
i for some ψ′

i, T ′
i such that Th � ϕi ⇒ ψ′

i, and ϕiS
′ R ϕiT

′
i .

2. If S
a(t)−→ϕ S′ and Th∪{ϕ} is consistent, then there are a boolean Th-partition

{ϕi}i∈I of ϕ on V and a collection {T =⇒ψi Ti
a(ti)−→ψ′

i
T ′
i}i∈I such that

Th � (ϕi ⇒ ψiψ
′
i) ∧ (ϕi ⇒ t = ti), and moreover ϕiSRϕiTi and ϕiS

′RϕiT
′
i

for every i ∈ I.

3. If S
a(x)−→ϕ S′ and Th∪{ϕ} is consistent, then there are a boolean Th-partition

{ϕi}i∈I of ϕ on V ∪{x} and a collection

{
T =⇒ψi Ti

a(x)−→ψ′
i

T ′
i

}
i∈I

such that

Th � ϕi ⇒ ψiψ
′
i, ϕiSRϕiTi and ϕiS

′RϕiT
′
i for all i ∈ I.

The symbolic bisimilarity 's
Th is the largest symbolic bisimulation.

In the above definition the requirement that Th ∪ {ϕ} being consistent is im-
portant. Without the condition the VPC-term if x �= x then a(0) would be
wrongfully distinguished from 0.

The main algebraic properties of 's
Th are summarized in the next proposition.

Proposition 3. The following statements about 's
Th are valid.

1. The relation 's
Th is an equivalence.

2. The relation 's
Th is a congruence.

3. If S 's
Th T then Sσ 's

Th T σ for every substitution σ.

Proof. (1) The proof of transitivity is routine and tedious. (2) The proof of the
congruence property is standard after demonstrating that, for every boolean
expression ϕ, S 's

Th T implies ϕS 's
Th ϕT . (3) Using Lemma 3 it is easy to

show that {(Sσ, T σ) | S 's
Th T } is a symbolic bisimulation. We need to make

use of a meta theoretical result asserting that Th � ϕσ for every substitution σ
whenever Th � ϕ, which is an easy consequence of FO1 and FO2. 	


The next technical lemma, whose simple proof is omitted, helps understand
the above definition. It is the symbolic version of the Stuttering Lemma of van
Glabbeek and Weijland [vGW89].
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Lemma 6. Suppose T
τ−→ϕ1 T1

τ−→ϕ2 T2 . . .
τ−→ϕn Tn and ϕ ⇒ ϕ1 . . . ϕn.

Then ϕT 's
Th ϕTn implies ϕT1 's

Th ϕT2 's
Th . . . 's

Th ϕTn.

Now let’s take a look at some examples. Consider the following VPC-terms:

E(y)
def
= μX.if y = 0 ∨ y = 1 then b(y).X,

A(y)
def
= E(y) | if y = 0 then b(y),

B(y)
def
= E(y) | if y = 1 then b(y).

It is clear that A(y) 's
Th B(y). The action A(y)

b(y)−→y=0 E(y) is simulated by

the single action B(y)
b(y)−→y=0∨y=1 E(y) | if y = 1 then b(y). This example shows

that the condition Th � ϕi ⇒ ψi in say (1) of Definition 10 should not be
strengthened to Th � ϕi ⇔ ψi.

The finiteness of partition is a genuine restriction. Let’s see a counter example.
Consider the following VPC-terms:

F (y)
def
= μX.a(x).(a(s(x)) | if y=x then b(x) else X),

C(y)
def
= if 0 ≤ y then b(y),

D(y)
def
= (a)(a(0) |F (y)).

Typically D has the action sequence D(y)
τ

=⇒y �=0∧...∧y �=n−1
b(n)−→y=n. It is not

difficult to see that C(y) =Th D(y). The action C(y)
b(y)−→0≤y 0 is simulated by

the infinite collection {D(y)
τ

=⇒y �=0∧...∧y �=n−1
b(n)−→y=n}n∈N. There is no finite

collection that can simulate C(y)
b(y)−→0≤y 0. So the symbolic bisimilarity 's

Th

cannot coincide with the absolute equality =Th even if divergence is ignored. It
is however a correct approximation of the absolute equality.

Theorem 2. Let S, T be finite VPCTh-terms. Then S =Th T if S 's
Th T .

Proof. Let R be the following binary relation{
(Sρ, T ρ)

∣∣∣∣S, T are finite, S 's
Th T and

ρ is an assignment such that bv(S |T ) ∩ dom(ρ) = ∅

}
.

Suppose S 's
Th T and Sρ

a(t)−→ P for some t ∈ T0
Σ and some assignment ρ such

that bv(S |T ) ∩ dom(ρ) = ∅. Let V be fv(S |T ). By Lemma 5, Sρ
a(x)−→ϕ′ S′

for some Th-theorem ϕ′ and some x, S′ such that P ≡ S′{t/x}. By Lemma 3,

there exist some ϕ, S1 such that ϕ′ ≡ ϕρ, S′ ≡ S1ρ and S
a(x)−→ϕ S1. By the

definition of symbolic bisimulation there are a boolean Th-partition {ϕi}i∈I of ϕ

on V ∪{x} and a collection

{
T =⇒ψi Ti

a(x)−→ψ′
i

T ′
i

}
i∈I

such that Th � ϕi ⇒ ψiψ
′
i,
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ϕiSRϕiTi and ϕiS
′RϕiT

′
i for all i ∈ I. Now Th � ϕiρ[x ← t] for some i ∈ I,

which in turn implies Th � ψiψ
′
iρ[x ← t], SρRTiρ and S′ρ[x ← t] R T ′

iρ[x ← t].

At the meantime notice that T ρ =⇒ Tiρ
a(t)−→ T ′

iρ[x ← t] by Lemma 3 and
Lemma 4. Conclude that R is a bisimulation. The relation is also extensional by
Proposition 3. It is equipollent since the external actions are bisimulated. 	


5 Proof System

When confined to the finite VPCTh-processes, one expects that the equality
can be mechanically checked. Often such an algorithm is based on a complete
equational system. For most value-passing calculi defined in literature a self-
contained decidable procedure for equivalence checking is out of the question
since the logics/models are undecidable. For example, to check if ϕa(t).S =
ϕa(t′).S holds, one has to check if ϕ ⇒ t = t′ is valid. An algorithm for checking
the equivalence of finite processes has to make use of an oracle that answers
every question on the validity of a logical formula. For a value-passing calculus
VPCTh studied in this paper, equivalence checking algorithms do exist.

In studying proof systems, a standard treatment is to remove the composition
operator using expansion law [HM85, Mil89a]. This is done at the expense of
introducing the unguarded choice operator ‘+’ whose semantics is defined by

S
λ−→ϕ S′

S + T
λ−→ϕ S′

T
λ−→ϕ T ′

S + T
λ−→ϕ T ′

The operator destroys the congruence property of process equalities. As a con-
sequence additional complication is introduced to produce a congruence. We
avoid the complication by not using the congruence relation. In this section the
notation

∑
i∈I ϕiλi.Si stands for a mixed choice [Pal03, FL10].

Suppose S ≡
∑

i∈I ϕiλi.Si and T ≡
∑

j∈J ψjλj .Tj. The expansion law is
formulated by the following equality:

S |T =
∑
i∈I

ϕiλi.(Si |T ) +

λi=a(x)∑
λj=a(tj)

ϕiψjτ.(Si{tj/x} |Tj)

+
∑
j∈J

ψjλj .(S |Tj) +

λj=b(y)∑
λi=b(ti)

ϕiψjτ.(Si |Tj{ti/y}).

Our equational system ASTh consists of the first order logic axioms defined in
Fig. 1, the nonlogical axioms of Th, the equational axioms defined in Fig. 6 and
the expansion law. We write ASTh � S = T if the equality S = T can be derived

within ASTh, and S
R
= T if R is the major law used to derive the equality S = T .

Most of the laws are variants of the axioms proposed in previous studies on
the value-passing calculi [IL01] and the name-passing calculi [PS95]. The law S6
is a generalization of the following law proposed by Parrow and Sangiorgi [PS95]:

a(x).S + a(x).T = a(x).S + a(x).T + a(x).(ϕS + ¬ϕT ). (2)
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S1 T + 0 = T
S2 S + T = T + S
S3 R+ (S + T ) = (R + S) + T
S4 T + T = T
S5 ϕT + ϕ′T = (ϕ ∨ ϕ′)T
S6

∑
i∈I φia(x).(¬ϕiTi + ϕiτ.T ) = ϕa(x).T +

∑
i∈I φia(x).(¬ϕiTi + ϕiτ.T )

if Th  ϕi ⇒ φi for all i ∈ I and
Th  ϕ⇔

∨
i∈I ϕi.

C1 [⊥]T = 0
C2 [�]T = T
C3 ϕa(t).T = ϕa(t′).T , if Th  ϕ⇒ t = t′

C4 ϕλ.T = ϕλ.ϕT
C5 φ(T + T ′) = φT + φT ′,
C6 ϕT = ψT , if Th  ϕ⇔ ψ
C7 ϕ(ψT ) = (ϕψ)T

L1 (c)0 = 0
L2 (c)λ.T = 0, if c is in λ
L3 (c)λ.T = λ.(c)T , if c is not in λ
L4 (c)(T + T ′) = (c)T + (c)T ′

L5 (c)ϕT = ϕ(c)T

B λ.(S + T ) = λ.(τ.(S + T ) + T )

Fig. 6. Axiom for Finite VPCTh-Term

As pointed out in [PS95], this is the law that tells apart the early equivalence
and the late equivalence [MPW92]. The combination of the S-laws has powerful
consequences, two of which are given by the following lemmas.

Lemma 7. ASTh � ψλ.T = ϕλ.T+ψλ.T if Th � ϕ ⇒ ψ.

Lemma 8. ASTh � ϕ(λ.T ){t/x} = ϕ(λ.T ){t′/x} if Th � ϕ ⇒ t = t′.

The B-law is due to van Glabbeek and Weijland [vGW89]. It implies Milner’s
first tau law λ.τ.T = λ.T and a weaker form τ.(T + ϕτ.T ) = τ.T of Milner’s
second tau law [Mil89a].

The verification of soundness property of ASTh is routine.

Lemma 9. If ASTh � S = T then S 's
Th T .

A nice property of a proof system is that it allows one to focus on terms in some
special form.

Definition 11. A finite VPCTh-term is a normal form if it is either 0 or of the
form

∑
i∈I ϕiλi.Ti such that Ti is a normal form for every i ∈ I.

Using L4 and L5 one can pull all the localization operations in a term to the
very front. Then one may remove all the composition operations by applying
the expansion law. And finally one removes the localization operations using the
L-axioms. What one gets is a normal form term. Hence the following lemma.
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Lemma 10. For each finite VPCTh-term T there is some normal form T ′ such
that ASTh � T = T ′.

In the rest of the section the following Completeness Theorem is proved.

Theorem 3. S 's
Th T if and only if ASTh � τ.S = τ.T .

Proof. A sequence T
τ

=⇒ϕ T ′ is maximal with regards to φ if (i) Th � φ ⇒ ϕ,

(ii) φT 's
Th φT ′′, and (iii) there does not exist any T ′′ such that T ′ τ−→ϕ′ T ′′,

Th � φ ⇒ ϕ′ and φT 's
Th φT ′′. Intuitively T

τ
=⇒ϕ T ′ is maximal if T ′ cannot

evolve to another state that stays equal to T under the condition φ.
We confine our attention to the normal forms. Suppose S 's

Th T and S, T are
the normal forms

∑
i∈I ϕiλi.Si and

∑
j∈J ψjλj .Tj respectively. We shall prove

that the following properties hold for the normal forms:

(S) If Th � φ ⇒ ϕ, φT 's
Th φT ′ and T

τ
=⇒ϕ T ′ is maximal with regards to φ,

then ASTh � τ.T = τ.(T + φT ′).
(P) If φT 's

Th φS, then ASTh � φτ.T = φτ.(T + S) = φτ.S.

Let’s write dep(T ) for the maximal nested depth of prefixing operation of T .
Our proof strategy will be as follows:

1. Prove (S) assuming that (S) and (P) hold for terms with depths less than i.
2. Prove (P) assuming that (P) holds for terms whose depths are less than i

and that (S) holds for terms whose depths are less than or equal to i.

The inductive proof of (S) is given as follows: Suppose T is a normal form of

depth i and T
τ−→ϕ1 T1

τ−→ϕ2 . . . Tn−1
τ−→ϕn Tn is maximal with regards to

ϕ with ϕT1 's
Th ϕTn and ϕ = ϕ1 . . . ϕn. Then ϕT1 's

Th ϕT2 's
Th . . . 's

Th ϕTn

by Lemma 6. By the induction hypothesis on (P), ASTh � ϕτ.T1 = ϕτ.Tn. By
Lemma 7, ASTh � τ.T = τ.(T + ϕ1τ.T1) = τ.(T + ϕτ.T1) = τ.(T + ϕτ.Tn). Since

T
τ−→ϕ1 T1

τ−→ϕ2 . . . Tn−1
τ−→ϕn Tn is maximal, the action of each summand

ψjλj .Tj of T can be simulated by a set of summands of Tn using induction
hypothesis, and consequently ψjλj .Tj can be assimilated by Tn. We conclude
that ASTh � ϕτ.Tn = ϕτ.(Tn + T ). Consequently

ASTh � τ.T = τ.(T + ϕτ.(Tn + T ))
S5
= ϕτ.(T + ϕτ.(Tn + T )) + ¬ϕτ.(T + ϕτ.(Tn + T ))

C laws
= ϕτ.(T + τ.(Tn + T )) + ¬ϕτ.T
B
= ϕτ.(T + Tn) + ¬ϕτ.(T + ϕTn)
S5
= ϕτ.(T + ϕTn) + ¬ϕτ.(T + ϕTn)
S5
= τ.(T + ϕTn).

We turn to the inductive proof of (P). By the C-laws we only have to prove
the special case when φ = %. Consider a summand ϕiλi.Si of S. The action
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∑
i∈I ϕiλi.Si

λi−→ϕi Si must be simulated by the term
∑

j∈J ψjλj .Tj. There are
three cases according to the shape of λi. We only consider the case λi = a(x).
By definition there are a boolean Th-partition {ϕk

i }k∈K of ϕi on fv(S |T )∪{x}
and a collection {T =⇒ψk

Tk
a(x)−→ψ′

k
T ′
k}k∈K such that Th � ϕk

i ⇒ ψkψ′
k for all

k ∈ K, and ϕk
i S 's

Th ϕk
i Tk, ϕk

i Si 's
Th ϕk

i T ′
k for every k ∈ K. We assume that for

each k ∈ K, T =⇒ψk
Tk is maximal with regards to ϕk

i . By induction on (P),

ASTh � ϕk
i τ.S = ϕk

i τ.Tk, (3)

ASTh � ϕk
i τ.Si = ϕk

i τ.T ′
k (4)

for every k ∈ K. Since {T + S =⇒ψk
Tk

a(x)−→ψ′
k

T ′
k}k∈K , we could have the

following rewriting that makes use of the inductive hypothesis on (S).

τ.(T + S)
I.H.
= τ.

⎛
⎝T + S +

∑
k∈K

ψkTk

⎞
⎠

= τ.

⎛
⎝T + S +

∑
k∈K

ψk(Tk + ψ′
ka(x).T

′
k)

⎞
⎠

C5
= τ.

⎛
⎝T + S +

∑
k∈K

ψkTk +
∑
k∈K

ψkψ
′
ka(x).T

′
k

⎞
⎠

B
= τ.

⎛
⎝T + S +

∑
k∈K

ψkTk +
∑
k∈K

ψkψ
′
ka(x).τ.T

′
k

⎞
⎠

S5
= τ.

⎛
⎝T + S +

∑
k∈K

ψkTk +
∑
k∈K

ψkψ
′
ka(x).(¬ϕk

i τ.T
′
k + ϕk

i τ.T
′
k)

⎞
⎠

(4)
= τ.

⎛
⎝T + S +

∑
k∈K

ψkTk +
∑
k∈K

ψkψ
′
ka(x).(¬ϕ

k
i τ.T

′
k + ϕ

k
i τ.Si)

⎞
⎠

S6
= τ.

⎛
⎝T +

∑
i′∈I\{i}

ϕi′λi′ .Si′ +
∑
k∈K

ψkTk +
∑
k∈K

ψkψ
′
ka(x).(¬ϕk

i τ.T
′
k + ϕk

i τ.Si)

⎞
⎠

= τ.

⎛
⎝T +

∑
i′∈I\{i}

ϕi′λi′ .Si′ +
∑
k∈K

ψkTk

⎞
⎠

I.H.
= τ.

⎛
⎝T +

∑
i′∈I\{i}

ϕi′λi′ .Si′

⎞
⎠ .

It follows from induction that τ.(T +S) = τ.
(
T +

∑
i∈I′ φiτ.T

)
for some I ′ ⊆ I

and soem {φi}i∈I′ . Let φ =
∨

i∈I′ φi. Then

τ.(T + S)
S5
= τ. (T + φτ.T )

S5,C2
= φτ. (T + φτ.T ) + ¬φτ. (T + φτ.T )

C laws,B
= φτ.T + ¬φτ.T

S5,C2
= τ.T.

Symmetrically ASTh � τ.(S + T ) = τ.S. We are done. 	
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6 Turing Completeness

The value-passing calculi are rudimentary process models. The question con-
cerning their expressiveness has to be settled. Which value-passing calculi are
for instance complete in the sense that all recursive functions [Rog87] are defin-
able? To answer the question we need to make it clear how the natural numbers
are defined in a value-passing calculus. From the operational point of view, a nat-
ural number system is not just an infinite set of pairwise distinct closed Σ-terms,
but also an effective way of generating these Σ-terms.

Definition 12. A numeric system for VPCTh consists of a countable subset
{0̂, 1̂, 2̂, . . . , n̂, . . .} of T0

Σ and a VPCTh-term Sd(x) that satisfy the followings:

1. The variable x is the only free variable appearing in Sd(x).
2. Th � p̂ �= q̂ for all p, q ∈ N such that p �= q.

3. Every action sequence of Sd(n̂) is of the form Sd(n̂) =⇒
d(n̂+1)−→ =Th 0.

It is clear from (3) of Definition 12 that every action sequence of Sd(n̂) is actually

of the form Sd(n̂) →∗d(n̂+1)−→ =Th 0 and Sd(n̂) =Th d(n̂ + 1).
Using a numeric system, we may talk about functions in a value-passing cal-

culus. The predecessor function p for instance can be defined in such a calculus.
Suppose we would like to have the VPC-process a(x).b(p(x)). It can be defined
by a(x).(c)(c(0) | !c(y).if x = s(y) then b(y) else c(s(y))). The process diverges
when given the input 0. As is demonstrated by this example, each application of
the predecessor function is implemented by an additional VPC-term. In sequel
we shall make use of the predecessor function without worrying about how a
particular occurrence of the function is implemented.

An n-ary partial function f(x1, . . . , xn) is definable in VPCTh with respect to
the numeric system 〈{0̂, 1̂, 2̂, . . . , n̂, . . .}, Sd(x)〉 if, for all names a1, . . . , an, b, there
is a process I(a1, . . . , an, b) of the form a1(x1)....an(xn).T such that (i) if f(p1, . . . ,
pn) is defined, then all the action sequences of T {p̂1/x1, . . . , p̂n/xn} are finite and
are of the following form T {p̂1/x1, . . . , p̂n/xn} =⇒ b(p̂)−→ T ′ =Th 0, where p =
f(p1, . . . , pn); and (ii) if f(p1, . . . , pn) is undefined, then T {p̂1/x1, . . . , p̂n/xn} can
only perform τ -action sequences and all its τ -action sequences are divergent. We
say that f(x1, . . . , xn) is defined by I(a1, . . . , an, b) at a1, . . . , an, b. A set of partial
functions is definable with respect to a numeric system if every member of the set
is definable with respect to the numeric system. A set of partial functions is de-
finable in VPCTh if it is definable with respect to some numeric system of VPCTh.

If a function is definable in VPCTh with respect to 〈{0̂, 1̂, 2̂, . . . , n̂, . . .}, Sd(x)〉,
we can design a procedure that, upon receiving the natural numbers p1, . . . , pn,
traverses the derivation tree of T {p̂1/x1, . . . , p̂n/xn}. This is well defined since
every VPCTh-term is finite branching. The procedure terminates with the result
p if T {p̂1/x1, . . . , p̂n/xn} export p̂ at some b. It diverges otherwise. According
to the Church-Turing Thesis, this procedure defines a recursive function. We
conclude that all functions definable in a value-passing calculus are recursive.
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The opposite question asks if all the recursive functions can be defined in a
value-passing calculus. This amounts to asking if the value-passing calculus is
Turing complete.

Definition 13. A value-passing calculus VPCTh is Turing complete if all the
recursive functions are definable in VPCTh.

The next proposition provides a basic fact about the expressiveness of the value-
passing calculi.

Proposition 4. A value-passing calculus VPCTh is Turing complete if and only
if it has a numeric system.

Proof. The implication in one direction is clear. Now suppose VPCTh has a
numeric system 〈{0̂, 1̂, 2̂, . . . , n̂, . . .}, Sd(x)〉. We show that the recursive func-
tions [Rog87] are definable in VPCTh. We consider only two cases.

– Suppose G(c1, . . . , cn, d, e, b)) and H(c1, . . . , cn, b) are the interpretations of
two recursive functions. The interpretation F (a1, . . . , an+1, b) of the recur-
sion function at a1, .., an, an+1, b is

a1(x1). · · · .an+1(xn+1).(f)(f (0̂, 1̂, xn+1, 0̂) | (c̃)(!c1(x1) | · · · | !cn(xn) |Rec)),

where Rec stands for the following process

!f(y, y′, z, v).if 0̂ = y = z then H(c1, . . . , cn, b)

else if 0̂ = y ∧ y′ ≤ z then (e)(H(c1, . . . , cn, e) | e(v).f(0̂, 1̂, z, v))

else if 0̂ < y ∧ y′ = z then (d)(d′)(G(c1, . . . , cn, d, d′, b) | d(y) | d′(v))

else if 0̂ < y ∧ y′ < z then (d)(d′)(e)(G(c1, . . . , cn, d, d′, e) | d(y) | d′(v)

| e(v).f(Sd(y), Sd(y
′), z, v).

– Suppose G(a1, · · · , an+1, b) is the interpretation of a recursive function. The
minimalization function is interpreted at a1, .., an, an+1, b by the process

a1(x1). · · · .an+1(xn+1).(a1 . . . an+1)(!a1(x1) | · · · | !an(xn) | f(0̂) | !f(z).Mu),

where Mu is the following process

an+1(z) | (c)(G(a1, · · · , an+1, c) | c(v).if v = 0̂ then b(z) else f(Sd(z))).

We are done. 	


Proposition 4 adds weight to Definition 12 since a numeric system is intuitively
a minimal requirement for a value-passing calculus to simulate all the recur-
sive functions. The VPCTh-term Sd(x) is nothing but an implementation of the
successor function.

7 VPC and Recursion Theory

The previous three sections have developed a rigorous theory for the value-
passing calculi. When applied to a particular decidable first order theory, this
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general theory immediately generates an operational semantics and an obser-
vation theory for that calculus. We have studied only one decidable first order
theory, the theory PA defined in Fig. 2. So in this section we take a closer look
at the value-passing calculus defined on top of PA. We will write =VPC for the
absolute equality of VPC and 's

VPC
for the symbolic bisimilarity of VPC.

According to our general setting, VPC should have a number of virtues. Let’s
summarize its key features:

– VPC is Turing complete. So it is among the good value-passing calculi.
– The validity of the boolean propositions is known to be decidable. This is

the reason for us to see VPC as a programming language. Our familiarity
with the standard model N helps confidence in programming with VPC.

– The simplicity of our Peano theory offers a nice algebraic theory of VPC.
Formal comparison of VPC against other well known process calculi is not
only possible, but also instructive.

It is difficult to think of a value-passing calculus that is weaker than VPC but
is still expressive enough. We now elaborate on this point.

To start with observe that the binary relation < is not absolutely necessary
for VPC. The following proposition explains why.

Proposition 5. For each VPC-process P there is some VPC-process P ′ such
that P =VPC P ′ and that P ′ contains no occurrence of the relation symbol <.

Proof. The basic idea is that the boolean value of a closed atomic ΣPA-expression
t < t′ can be calculated within VPC. Given a VPC-process P , we can translate
it into an equal VPC-process P ′. The encoding is structural on composition,
localization and replication operators. The interpretation of the guarded choice
and the conditional are similar. We take a look at how the latter is translated.
Consider the VPC-term S

def
= if ϕ then T . The interpretation of S is given by

the following term
(c)(�ϕ�c | c(z).if z = 1 then T ′)

where T ′ is the interpretation of T and �ϕ�c is structurally defined as follows:

– If ϕ is t = t′, then �ϕ�c is if t = t′ then c(1) else c(0).
– If ϕ is t < t′, then �ϕ�c is the following term

d(t).e(t′) | !d(x).e(y).if y = 0 then c(0) else if x = 0 then c(1) else d(p(x)).e(p(y)).

– If ϕ is ϕ′ ∧ ϕ′′, then �ϕ�c is

(de)(�ϕ′�d | �ϕ′′�e | d(y).e(z).if y = 1 ∧ z = 1 then c(1) else c(0)).

– If ϕ is ϕ′ ∨ ϕ′′, then �ϕ�c is

(de)(�ϕ′�d | �ϕ′′�e | d(y).e(z).if y = 1 ∨ z = 1 then c(1) else c(0)).

The equality P =VPC P ′ holds in an obvious way. 	
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7.1 Minimality of VPC

In this section we prove that VPC plays an authentic role in all the Turing
complete value-passing calculi. Suppose 〈{0̂, 1̂, 2̂, . . . , n̂, . . .}, Sd(x)〉 is a numeric
system of a Turing complete model VPCTh. One could define a translation � �Th
from VPC to VPCTh using the ideas described in Fig. 7. The translation of the
action labels �λ�Th can be defined by

�λ�Th
def
=

⎧⎨⎩ τ, if λ = τ,
a(n̂), if λ = a(n),
a(n̂), if λ = a(n).

Three aspects of the encoding call for explanation.

– One is that we have identified the set of the term variables of VPCPA with
the term variables of VPCTh.

– The second is that the operation Dc( ) is defined as follows: for a term
t ≡ sk(x) with k > 0, Dc(t) is the following term

(c0)(c0(x) | c0(z0).(c1)(Sc1(z0) | c1(z1).(. . . ck−1(zk−1).Sc(zk−1) . . .))).

The idea is that the term sk(x), for k > 0, is translated to an element
of the numeric system 〈{0̂, 1̂, 2̂, . . . , n̂, . . .}, Sd(x)〉, achieved by counting the

elements from x up to k̂ + x using Sd(x).
– The third is that we have not given the encoding of choice term

∑
i∈I ϕiλi.Ti.

The reader can readily give it by himself/herself. It is simply a combination of
the encodings for the prefix terms and the conditional terms. The translation
of
∑

1≤i≤k ϕiλi.Ti takes the following form

(c̃)(
∏

1≤i≤n1

Dc1i
(t1i ) | . . . |

∏
1≤i≤nk

Dcki
(tki ) | c11(z11) . . . cknk (z

k
nk).

∑
1≤i≤k

�ϕiλi.Ti�Th),

where c̃ = c11 . . . cknk .

It is easy to see that the translation is sound and complete with respect to the
operational semantics in the sense of the next proposition.

Proposition 6. Suppose P is a VPC-process that does not contain any occur-
rences of <. The following correspondences hold:

(i) If P
λ−→ P ′ then �P �Th →∗�λ�Th−→ P1 =VPCTh

�P ′�Th for some VPCTh-process
P1;

(ii) If �P �Th
λ−→ P1 then P

λ′
−→ P ′ for some VPC-process P ′ and some λ′ such

that P1 =VPCTh
�P ′�Th and �λ′�Th = λ.

It is possible to strengthen Proposition 6. In fact the composition of the
relation

{(P, �P �Th) | P is a VPC process}
with =Th is a subbisimilarity. A subbisimilarity is a generalization of the absolute
equality from a binary relation on one model to a binary relation from one
calculus to another. See [Fu12b] for details.
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�0�Th
def
= 0,

�τ.T �Th
def
= τ.�T �Th,

�a(x).T �Th
def
= a(x).�T �Th,

�a(t).T �Th
def
=

⎧⎨⎩
a(n̂).�T �Th, if t ≡ n,
a(x).�T �Th, if t ≡ x,
(c)(Dc(t) | c(z).a(z).�T �Th), if t ≡ sl(x) for some l > 0;

�S |T �Th
def
= �S�Th | �T �Th,

�(a)T �Th
def
= (a)�T �Th,

�if ϕ then T �Th
def
= (c1 . . . ck)

⎛⎝ ∏
1≤i≤k

Dci(ti) | c1(z1). · · · ck(zk).if ϕ
′ then �T �Th

⎞⎠ ,

where ϕ′ ≡ ϕ′′{n̂1/n1, . . . , n̂j/nj}, ϕ ≡ ϕ′′{t1/z1, . . . , tk/zk},
n1, . . . , nj are the numerals in ϕ, and t1, . . . , tk are the terms

in ϕ that are of the form sl(x) for some l > 0; we may regard

if ϕ′ then �T �Th as �if ϕ then T �Th;

�!a(x).T �Th
def
= !a(x).�T �Th,

�!a(t).T �Th
def
=

⎧⎨⎩
!a(n̂).�T �Th, if t ≡ n,
!a(x).�T �Th, if t ≡ x,

(c)(Dc(t) | c(z).!a(z).�T �Th), if t ≡ sl(x) for some l > 0.

Fig. 7. Encoding of VPC into Turing Complete VPCTh

Theorem 4. Suppose P, Q are VPC-processes that do not contain any occur-
rences of <. Then P =VPC Q if and only if �P �Th =VPCTh

�Q�Th.

Proof. In view of Proposition 1, we only have to prove the theorem for the
external bisimilarities. Let R be the following relation⎧⎪⎪⎨⎪⎪⎩((c̃)(P1 | . . . |Pk), (c̃)(Q1 | . . . |Qk))

∣∣∣∣∣∣∣∣
c is c1, . . . , cj for some j; Pi is neither
a composition nor a localization; and
�Pi�Th →∗ Qi, where Qi is obtained
from �Pi�Th by resolving the Dc

′s.

⎫⎪⎪⎬⎪⎪⎭.

Now R is a VPCTh-bisimulation up to strong bisimilarity [Mil89a]. Notice that
every VPC-process is equal to a process of the form (c̃)(P1 | . . . |Pk), where for
each i ∈ {1, . . . , k}, the process Pi is neither a composition nor a localization. 	


So the translation � �Th is correct for the VPC-processes that do not refer to
the relation ‘<’. The restriction can be removed according to Proposition 5. We
conclude that VPC is a submodel of every Turing complete VPCTh. In other
words it is the least expressive among all Turing complete value-passing calculi.



192 Y. Fu

8 Conclusion

The present approach emphasizes that a value-passing calculus should be a self-
contained model of computation and interaction. The formal treatment of the
logic of the model comes with the decidability requirement. It has taken some
time to reach this level of formality. The study of Milner [Mil89a] was conducted
at an ad hoc manner. The semantics of his value-passing CCS is defined by
translating the model into the pure CCS with arbitrary choice operator. Hoare’s
definition of his famous CSP [Hoa78, Hoa85], which is a value-passing calculus,
is essentially algebraic. The operational semantics for CSP a la pure CCS is
introduced in [Bro83, BHR84, Ros97]. The labeled transition semantics for the
value-passing CCS appears in [HI93a, HI93b]. A more serious attempt to study
the operational semantics of the value-passing calculi is reported in the seminal
paper by Hennessy and Lin [HL95]. The significance of their work is that it
points out the indispensable role the first order logic may play in the study of
the semantics of the value-passing calculi. The present work can be seen as a
further step that completes the picture outlined by Hennessy and Lin [HL95].

The observational equality of this paper is an application of the universal
equality of Fu [Fu12b] to the value-passing calculi. This is an equality that dif-
fers from any equalities that have been proposed for the value-passing calculi.
The algebraic theory of CSP has been extensively studied [BHR84, Ros97], with
particular emphasis on the trace and failure semantics. In the literature on CSP,
it is popular to see a set of algebraic laws as providing an axiomatic seman-
tics. The algebraic theory of the value-passing calculi has been studied with
motivation from the denotational semantics [Hen91, HI93a, HI93b]. The obser-
vational equivalence, the weak bisimilarity, and its symbolic characterization
is systematically studied in [HL95]. Proof systems for these equivalences have
also been studied in [Hen91, HI93a, HI93b, HL96]. These systems are param-
eterized over proof systems for the logics of data domains. The decidability of
our equation system ASTh compares favorably to these systems. The algorith-
mic aspect of the equivalence checking for the value-passing calculi is elaborated
in [Lin93, Lin96, Lin98]. Our treatment to the value-passing calculi may cast new
light on the equivalence checking algorithms for the value-passing processes. A
survey of the symbolic approach is given by Ingolfsdottir and Lin [IL01].

Our formalization of the value-passing calculi makes it possible to carry out a
refined study on the expressiveness of these models. There have been early efforts
that attack the expressiveness issue. See for example [Pal03, FL10]. However it is
fair to say that none of the results obtained so far is conclusive. In this paper we
have studied the absolute expressiveness of the value-passing calculi by character-
izing the Turing complete value-passing calculi in terms of the numeric systems.
We have also studied the relative expressiveness of the value-passing calculi. It
is shown in this paper that VPC is the least expressive value-passing calculus.
The minimality result sheds new light on the value-passing calculi studied by
previous researchers, all of those models being informal variants of VPC. It is
worth remarking that VPC is strictly less expressive than the π-calculus [Fu12b]
and is strictly more expressive than the Interactive Machine Model [Fu12b].
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We have emphasized the importance of confining our attention to the decid-
able fragment of the first order logic. The tradeoff is that 's

Th is much stronger
than =Th. A challenging task is to prove or disprove that 's

Th and =Th coincide
on the finite control VPCTh-terms. But a more urgent problem is the following.

Problem 1. Does 's
VPC

coincide with =VPC on the finite VPC-terms?

The symbolic bisimilarity studied in this paper is the simplest of its kind. It is too

strong for the infinite state processes. Consider for example the process A0
def
=

a(x).if x is even then b(x) + a(x).if x is odd then b(x) and the process A1
def
=

a(x).b(x) + a(x).if x is even then b(x) + a(x).if x is odd then b(x). An implemen-
tation of if x is even then b(x) is (c)(c(0) | !c(y).if x = y then b(x) else c(s(s(y)))).
The term if x is odd then b(x) is defined similarly. It is clear that A0 =VPC A1.

On the other hand A0 �'s
VPC

A1. The transition A1
a(x)−→� b(x) can be simu-

lated by A0. There is however no boolean PA-partition on {x} that witnesses
the simulation. If we relax on the boolean restriction, then intuitively the set
{∃z.x = 2∗z, ∃z.x = 2∗z+1} forms a ‘partition’. In order to carry out investiga-
tion along this line, the symbolic approach must be modified in a couple of ways.
Firstly the proper power of the Peano system should be retained. Specifically
the addition operator ‘+’ and the multiplication operator ‘∗’ are necessary to
produce much more powerful specifications. Secondly the symbolic bisimilarity
should be defined by a family of relations indexed by the first order formu-
las [HL95, IL01]. The introduction of the arithmetic operators does not change
the grammar of VPC. No VPC-terms would contain any arithmetic operators.
So the logic expressions of VPC are still decidable. The extra expressive power
is only exploited in verification. We may ask the following question.

Problem 2. What is the symbolic theory that exploits the richer Peano theory?

The equation system ASTh provides an effective method to check the symbolic
bisimilarity of two finite VPCTh-terms. A natural question to ask is how to extend
ASTh to a complete system for the finite control VPCTh-terms. Hennessy, Lin and
Rathke have discussed the issue in [HL97, Rat97a, Rat97b, HLR97]. It should
be routine to adapt their approach and Milner’s original approach [Mil89b] to
VPCTh. Additional care should be taken to divergence [LDH02, LDH05, Fu12a].
The details are yet to be worked out.

There are other aspects of the value-passing calculi that are worth investigat-
ing. One could for example take a look at the box equality introduced by Fu
and Zhu [FZ11]. One could also take a look at the algorithm complexities for
a number of decidability problems. The general methodology proposed in this
paper has laid down a firm foundation for the solutions to these problems.
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Abstract. We adapt the Multi-lane Spatial Logic MLSL, introduced
in [1] for proving the safety (collision freedom) of traffic manoeuvres on
multi-lane motorways, where all cars drive in one direction, to the setting
of country roads with two-way traffic. To this end, we need suitably
refined sensor functions and length measurement in MLSL. Our main
contribution is to show that also here we can separate the purely spatial
reasoning from the underlying car dynamics in the safety proof.

1 Introduction

The safety of road traffic can be increased by new assistance systems that are
based on suitable sensors and communications between cars. Reasoning about
car safety (collision freedom) is reasoning about hybrid systems involving car
dynamics and spatial considerations. To simplify this reasoning, we proposed in
[1] to separate the purely spatial reasoning from the car dynamics. To formalise
this idea, we introduced a dedicated Multi-lane Spatial Logic (MLSL) for ex-
pressing spatial properties on multi-lane motorways, where the traffic is flowing
on several lanes, but in one direction. We focused on the lane-change manoeuvre.

MLSL is inspired by Moszkowski’s interval temporal logic [2], Zhou, Hoare
and Ravn’s Duration Calculus [3], and Schäfer’s Shape Calculus [4]. MLSL is a
two-dimensional extension of interval temporal logic, where one dimension has
a continuous space (the position in each lane) and the other has a discrete space
(the number of the lane). In MLSL we can, for example, express that a car has
reserved a certain space on its lane. Safety then amounts to proving that under
certain assumptions the reservation of different cars are always disjoint.

In this paper we turn to the more intricate setting of (multi-lane) country
roads, with two-way traffic. We investigate the safety of an overtaking manoeu-
vre in the presence of opposing traffic. The original definition of MLSL only
allowed for qualtitative reasoning, which is not aedequate for the definition of
the overtaking protocol. Whenever a car changes into opposing traffic, it has
to check beforehand whether the free space is sufficiently large for completing
the manoeuvre. Hence we extend MLSL with the possibility to measure lengths.

� This research was partially supported by the German Research Council (DFG) in
the Transregional Collaborative Research Center SFB/TR 14 AVACS.
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Our findings are that modulo these small extensions, the setting of MLSL is well
suited to cover this setting and manoeuvre.

Related Work. Safety on multi-lane motorways was investigated extensively
in the context of the California PATH project, where manoeuvres of car pla-
toons including lane change have been studied [5]. Here the car dynamics was an
integral part of the safety reasoning. Safety in urban traffic scenarios has been
studied in [6]. The manoeuvres include lane change, double lane change with
opposing traffic, right and left turns. The analysis is based on an abstract graph
representing two possibly conflicting car trajectories and on some simplifying
assumptions like a constant speed of the cars involved.

The idea of separating the dynamics from the control layer is pursued in the
controller design for hybrid systems. In [7] the authors introduce abstraction
and refinement in a hierarchical design of hybrid control systems. In [8] the syn-
thesis of control laws for piecewise-affine hybrid systems is introduced. In [9]
controller patterns were proposed to simplify safety proofs for two cooperating
traffic agents. Proving system correctness across a number of different abstrac-
tion layers continues a line pioneered in the ProCoS (Provably Correct Systems)
project [10], in which He Jifeng made significant contributions.

The novelty of our approach is that the control layer is given by spatial prop-
erties formalised in MLSL. In this paper we extend this approach to country
roads with two-way traffic. To this end, we refine the abstract traffic model of [1]
by taking traffic directions into account, by defining new sensor functions, and
by adding length measurement in the logic MLSL.

2 Abstract Model

Throughout this paper we work with an abstract model of (multi-lane) coun-
try roads with two-way traffic that emphasises spatial properties, but hides the
car dynamic as much as possible. In this model a country road has an infinite
extension with positions represented by the real numbers, and lanes are repre-
sented by natural numbers 0, 1, . . . , n. At each moment of time each car, with a
unique identity denoted by letters A, B, . . . , has its position pos, speed spd, and
acceleration acc. On country roads cars can move in two directions, one with
increasing position values, in pictures shown from left to right, and one with
decreasing position values, in pictures shown from right to left.

The abstract model is introduced by allowing for each car only local views of
this traffic. A view of a car E comprises a contiguous subset of lanes, and has a
bounded extension. A view containing all lanes with an extension up to a given
constant, the horizon, is called standard view.

What a car “knows” of its view is expressed by formulas in the multi-lane
spatial logic MLSL introduced in [1]. It extends interval temporal logic [2] to
two dimensions, one with a continuous space (the position in each lane) and the
other with a discrete space (the number of the lane). Such a formula consists
of a finite list of lanes, where each lane is characterized by a finite sequence of
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Fig. 1. View of car E covering a bounded extension of lanes 0, 1, and 2. Car E sees its
own reservation and claim for preparing a change from lane 1 into the opposing traffic
of car A on lane 2 to overtake car C ahead in lane 1. In this view, E does not see the
cars B and F .

segments. A segment is either occupied by a car, say E, or it is empty (free). For
instance, in the view of car E shown in Fig. 1, the following formula φ holds:

φ ≡
�

free � cl(E) � (free)d � A
free � re(E) � free � C � free

�
,

where � is the chop operator of interval temporal logic; it serves to separate
adjacent segments in a lane. In the logic we can distinguish whether a car E has
reserved a space in a lane (re(E)) or only claimed a space (cl(E)) for a planned
lane change manoeuvre. We stipulate that reserved and claimed spaces have the
extension of the safety envelopes of the cars, which include at each moment the
speed dependent braking distances. The formula φ expresses also that there is a
distance d between the claim of car E and the opposing car A.

We shall use such formulas as guards and location invariants of abstract con-
trollers for car manoeuvres. In a technical realisation of such controllers, the
properties that may appear in the formulae stipulate suitable sensors of the
cars, for instance distance sensors.

2.1 Traffic Snapshot

We recall definitions from [1], extending them where needed. Let L = {0, . . . , N},
for some fixed N ≥ 1, denote the set of lanes, with typical elements l, m, n. We
assume a globally unique identifier for each car and take I as the set of all such
car identifiers, with typical elements A, B, . . . . To formalise two-way traffic, we
refine the setting of [1] in two ways. First, we assume a border b ∈ L such that
traffic on the lanes l ≤ b normally drives in the direction of increasing values
of R (from left to right), and traffic on the lanes l > b normally drives in the
direction of decreasing values of R (from right to left). Only on the lanes b and
b + 1 cars may temporarily drive in opposite direction to perform an overtaking
manoeuvre. Second, we partition I into the sets I→ and I←, i.e., I→∪ I← = I and
I→ ∩ I← = ∅. The subscripts indicate the driving direction of the cars. Cars in
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I→ drive from left to right, and cars in I← drive from right to left. For simplicity
we assume I→ and I← to be countably infinite.

Definition 1 (Traffic snapshot). A traffic snapshot T S is a structure T S =
(res, clm, pos , spd , acc), where res, clm, pos , spd , acc are functions

– res : I → P(L) such that res(C) is the set of lanes that car C reserves,
– clm : I → P(L) such that clm(C) is the set of lanes that car C claims,
– pos : I → R such that pos(C) is the position of the rear of car C on its lane,
– spd : I → R such that spd(C) is the current speed of car C,
– acc : I → R such that acc(C) is the current acceleration of car C.

Let TS denote the set of all traffic snapshots.

Definition 2 (Transitions). The following transitions describe the changes
that may occur at a traffic snapshot T S = (res, clm, pos , spd , acc). We use the
overriding notation ⊕ of Z for function updates [11].

T S t−→T S ′ ⇔ T S ′ = (res, clm, pos ′, spd ′, acc)

∧∀C ∈ I : pos ′(C) = pos(C) + spd(C) · t + 1
2acc(C) · t2

∧∀C ∈ I : spd ′(C) = spd(C) + acc(C) · t (1)

T S acc(C,a)−−−−−→T S ′ ⇔ T S ′ = (res, clm, pos , spd , acc′)

∧ acc′ = acc ⊕ {C �→ a} (2)

T S c(C,n)−−−−→T S ′ ⇔ T S ′ = (res, clm′, pos , spd , acc)

∧ |clm(C)| = 0 ∧ |res(C)| = 1

∧ {n + 1, n − 1} ∩ res(C) �= ∅
∧ clm′ = clm ⊕ {C �→ {n}} (3)

T S wd c(C)−−−−−→T S ′ ⇔ T S ′ = (res, clm′, pos , spd , acc)

∧ clm′ = clm ⊕ {C �→ ∅} (4)

T S r(C)−−−→T S ′ ⇔ T S ′ = (res′, clm′, pos , spd , acc)

∧ clm′ = clm ⊕ {C �→ ∅}
∧ res′ = res ⊕ {C �→ res(C) ∪ clm(C)} (5)

T S wd r(C,n)−−−−−−→T S ′ ⇔ T S ′ = (res′, clm, pos , spd , acc)

∧ res′ = res ⊕ {C �→ {n}}
∧n ∈ res(C) ∧ |res(C)| = 2 (6)

The transitions allow for the passage of time (1), with cars moving along the
road, and a change of acceleration (2). These two transitions model abstractly
the dynamic aspects of cars. To prepare for a lane change, a car may claim a
neighbouring lane, which can be thought of as setting the turn signal, while it is
not already in progress of changing lanes or has set the turn signal already (3). A
car may reserve a previously claimed lane (5). Also, it may withdraw claims (4)
and reservations (6), as long as at least one lane remains reserved by a car.
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2.2 View

In our safety proof we will restrict ourselves to finite parts of a traffic snapshot
T S called views, the intuition being that the safety of manoeuvres can be shown
using local information only.

Definition 3 (View). A view V is defined as a structure V = (L, X, E), where

– L = [l, n] ⊆ L is an interval of lanes that are visible in the view,
– X = [r, t] ⊆ R is the extension that is visible in the view,
– E ∈ I is the identifier of the car under consideration.

A subview of V is obtained by restricting the lanes and extension we observe.
For this we use sub- and superscript notation: V L′

= (L′, X, E) and VX′ =
(L, X ′, E), where L′ and X ′ are subintervals of L and X, respectively.

For a car E and a traffic snapshot T S = (res, clm, pos , spd , acc) we define
the standard view of E as

Vs(E, T S) = (L, [pos(E) − h, pos(E) + h], E),

where the horizon h is chosen such that a car driving at maximum speed can,
with lowest deceleration, come to a standstill within the horizon h plus twice
the distance it maximally takes to perform the overtake, i.e., the worst distance
needed to pass a car and for changing lanes into the opposing traffic and back
again. This way a car can be perceived early enough when planning an overtaking
manoeuvre.

We can give a rough estimate for the horizon h. Let us assume that a car E
driving at 100 km/h wants to overtake a slower car travelling at 80 km/h.
Passing the slower car will then take about 17 seconds. In this time the car
travels approximatly 500 m. Furthermore, we assume an overapproximation for
the braking distance of 50 m for driving at 100 km/h and 40 m for 80 km/h. Then
we can safely overapproximate h with 1.5 kilometers, i.e., twice the travelling
distance plus 500m. Thus h exceeds both braking distances plus the distance
needed for two lane changes.

Sensor Function. In [1] we introduced a sensor function ΩE : I × TS → R+

for each car E which, given a car identifier C and a traffic snapshot, provides
the length of the car C, as perceived by E. For country roads we need to change
this definition taking the opposing driving directions of cars into account.

Definition 4 (New sensor function). We define the new sensor function
Ωnew

E : I× TS → R as:

Ωnew
E (C, T S) =

�
ΩE(C, T S) for C ∈ I→

−ΩE(C, T S) for C ∈ I←
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For a view V = (L, X, E) and a traffic snapshot T S = (res, clm, pos , spd , acc)
we introduce the following abbreviations:

resV : I → P(L) with resV (C) = res(C) ∩ L (7)

clmV : I → P(L) with clmV (C) = clm(C) ∩ L (8)

lenV : I → P(X) with lenV (C) =
[min(pos(C), pos(C) + Ωnew

E (C, T S)),
max(pos(C), pos(C) + Ωnew

E (C, T S))] ∩ X

(9)

The functions (7) and (8) are restrictions of their counterparts in T S to the
sets of lanes considered in this view. The function (9) gives us the part of the
road that car E perceives as occupied by a car C, cut at the edges of the view’s
extension. We changed the corresponding definitions of [1]. The new definition
of lenV is due to the opposing traffic. The changes of resV and clmV correct a
technical mistake in the original paper. We note that the results from [1] remain
valid even under the modified model given above.

2.3 Multi-Lane Spatial Logic with Length Measurement

We define the multi-lane spatial logic MLSL extended by length measurement
for road segments. We start from two kinds of variables. The set of car variables
ranging over car identificators is denoted by CVar, with typical elements c, d. To
refer to the car owning the current view, we use a special variable ego ∈ CVar.
The set of real variables ranging over real numbers is RVar, with CVar∩RVar = ∅
and typical elements x, y. The set of all variables is Var = CVar ∪ RVar, with
typical element u, v. For the length measurement we need real-valued terms.

Definition 5 (Terms). Real-valued terms θ of MLSL are given by the syntax

θ ::= r | x | f(c1, . . . , cn) | g(θ1, . . . , θn),

where r ∈ R, x ∈ RVar, c1, . . . , cn ∈ CVar, and f, g are n-ary function symbols
with R as result type. We denote the set of all terms with Θ.

Formulae of MLSL are built up from six atoms, boolean connectors and first-
order quantification. Furthermore, we use two chop operations. The first chop is
denoted by � like for interval logics, while the second chop operation is given
only by the vertical arrangement of formulae. Intuitively, a formula φ1 �φ2 is
satisfied by a view V with the extension [r, t], if V can be divided at a point
s into two subviews V1 and V2, where V1 has the extension [r, s] and satisfies
φ1 and V2 has the extension [s, t] and satisfies φ2, respectively. A formula φ2

φ1
is

satisfied by V with the lanes l to n, if V can be split along a lane m into two
subviews, V1 with the lanes l to m and V2 with the lanes m + 1 to n, where Vi

satisfies φi for i = 1, 2.
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Definition 6 (Syntax). Formulae φ of MLSL with length measurement are
given by the syntax

φ ::=true | u = v |  = θ | free | re(γ) | cl(γ)

| φ1 ∧ φ2 | ¬φ1 | ∃v : φ1 | φ1 �φ2 | φ2

φ1

where γ is a variable or a car identifier, u and v are variables, and θ is a term.
We denote the set of all MLSL formulae by Φ.

In a length measurement  = θ the letter  stands for length as in [3], We use φθ

as an abbreviation for the formula φ ∧  = θ .

Definition 7 (Valuation and Modification). A valuation is a function
ν : Var → I∪R that respect types (maps car variables to car identifiers and real
variables to real values). Inductively we lift ν to a function valT S,ν : Θ → I ∪R:

valT S,ν(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r if θ = r ∈ R

ν(x) if θ = x ∈ R

f̂T S(ν(c1), . . . , ν(cn)) if θ = f(c1, . . . , cn)

ĝ(valT S,ν(θ1), . . . , valT S,ν(θn)) if θ = g(θ1, . . . , θn),

where f̂T S , ĝ are the interpretations of f, g, with subscript T S indicating a possi-
ble dependency on a traffic snapshot T S. For a valuation ν we use the overriding
notation ν ⊕ {v �→ α} to denote the modified valuation, where the value of v is
modified to α. We assume that this modification respects types.

We define partitioning of discrete intervals. We need this notion to have a clearly
defined chopping operation, even on the empty set of lanes.

Definition 8 (Chopping discrete intervals). Let I be a discrete interval,
i.e., I = [l, n] for some l, n ∈ L or I = ∅. Then I = I1 ) I2 if and only if
I1 ∪ I2 = I, I1 ∩ I2 = ∅, and both I1 and I2 are discrete intervals such that
max(I1) + 1 = min(I2), or I1 = ∅ or I2 = ∅ holds.

Since the semantics of formulae depends on both views and valuations, we will
only consider valuations ν which are consistent with the current view V =
(L, X, E), which means that we require ν(ego) = E. In the following defini-
tion, we require that the spatial atoms hold only on a view with exactly one lane
and an extension greater than zero. In the semantics of free, we abstract from
cars visible only at the endpoints of the view.

Definition 9 (Semantics). The satisfaction |= of formulae with respect to a
traffic snapshot T S, a view V = (L, X, E) with L = [l, n] and X = [r, t], and a
valuation ν consistent with V is defined inductively as follows:

T S, V, ν |= true for all T S, V, ν

T S, V, ν |= u = v ⇔ ν(u) = ν(v)
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T S, V, ν |=  = θ ⇔ |X | = valT S,ν(θ)

T S, V, ν |= free ⇔ |L| = 1 and |X | > 0 and

∀C ∈ I : lenV (C) ∩ (r, t) = ∅
T S, V, ν |= re(γ) ⇔ |L| = 1 and |X | > 0 and ν(γ) ∈ I and

resV (ν(γ)) = L and X = lenV (ν(γ))

T S, V, ν |= cl(γ) ⇔ |L| = 1 and |X | > 0 and ν(γ) ∈ I and

clmV (ν(γ)) = L and X = lenV (ν(γ))

T S, V, ν |= φ1 ∧ φ2 ⇔ T S, V, ν |= φ1 and T S, V, ν |= φ2

T S, V, ν |= ¬φ ⇔ not T S, V, ν |= φ

T S, V, ν |= ∃v : φ ⇔ ∃α ∈ I ∪ R : T S, V, ν ⊕ {v �→ α} |= φ

T S, V, ν |= φ1 �φ2 ⇔ ∃ s : r ≤ s ≤ t and

T S, V[r,s], ν |= φ1 and T S, V[s,t], ν |= φ2

T S, V, ν |= φ2

φ1
⇔ ∃L1, L2 : L = L1 ) L2 and

T S, V L1 , ν |= φ1 and T S, V L2 , ν |= φ2

We write T S |= φ if T S, V, ν |= φ for all views V and consistent valuations ν.

We remark that both chop modalities are associative. For the definition of the
controller we employ some abbreviations. In addition to the usual definitions of
∨,→,↔ and ∀, we use a single variable or car identifier γ as an abbreviation
for re(γ) ∨ cl(γ). Furthermore, we use the notation 〈φ〉 for the two-dimensional
modality somewhere φ, defined in terms of both chop operations:

〈φ〉 ≡ true �

�
true

φ
true

�
� true.

In the following, the main application of the somewhere modality is to abstract
the exact positions on the road from formulae, e.g., to identify overlaps of claims
and safety envelopes. If a view V satisfies the formula ∃c : 〈cl(ego) ∧ re(c)〉, then
there is a part on some lane in V occupied by both the claim of the car under
consideration and the safety envelope of some car c.

3 Controllers for Overtaking with Perfect Knowledge

We now present a protocol realised by several controllers for the overtaking
manoeuvre. The complexity of the controllers depends on the knowledge available
for each car about the surrounding cars. For simplicity, we assume here perfect
knowledge, i.e., all cars know the extension of all safety envelopes within their
view. This assumption can be formalised by instantiating the sensor function ΩE

(see Sec. 2.2) as ΩE(I, T S) = se(I, T S), where se is a function returning the
safety envelope, an overapproximation of the braking distance. This implies that
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the car E can perceive a car C entering its view as soon as part of the safety
envelope enters E’s view. Clearly, this is an idealization that in reality would
require very powerful sensors for each car. For the setting of motorways we have
considered also more realistic sensor functions in [1], but for country roads we
leave this for future work.

We extend the lane-change automaton LCP of [1] to take the new situation
at the border lanes into account. On the rest of the country road the automaton
works as before, with slight modifications described in Sec. 3.3. We assume that
ego ∈ I→, i.e., ego is driving in direction of increasing values of R. For the border
lanes, we need to employ communication with the surrounding cars to guarantee
safety, even though we assume perfect knowledge. Otherwise cars from the lanes
next to the border b, i.e., from b − 1 and b + 2, could move into the free space
either in front of the car C, which E wants to overtake, or into the lane that
E needs for overtaking C. For example, in Fig. 1 car D could move into lane 1
and then block the space E needs to move back. Similarly, the car B would be
allowed to move into lane 2 and block the space E needs to pass C. To prohibit
this behaviour, we use a helper automaton as described in Sec. 3.2.

To simplify the safety proof in Sec. 4 we structure the overtaking manoeuvre
into the following three phases, also shown in Fig. 2.

1. Change lanes into opposing traffic.
2. Pass the car driving in front.
3. Change lanes back into the original driving lane.

idle 1. change lane 2. pass 3. change back

Fig. 2. Protocol for overtaking

For phase 1 and 3 we will present controllers as timed automata [12] with data
variables ranging over I and L. We allow for MLSL formulae as transition guards
and invariants and evaluate them over the standard view Vs (see Sec. 2.2) of the
car the controller is implemented in. Furthermore we use the labels of the tran-
sition system of T S as actions. Finally, communication is modelled via broadcast
messages, similar to UPPAAL [13]. The notation we use for communication is
inspired by CSP [14]. For phase 2 we will omit the presentation of an automaton
due to its simplicity but give a detailed description.

Our controllers rely on a spatial decomposition of the overtaking manoeuvre.
To formalise this, we assume function symbols interpreted as functions yielding
certain distances for cars travelling at speeds determined by the current traffic
snapshot T S (cf. Def. 7):

– d(t) yields the maximal distance a car can travel within a given time t;
– dlc(E) yields the distance needed for a lane change of a car E driving at a

speed determined by T S;
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– dpass(E, C) yields the distance needed for a car E to pass a car C in front,
given their speeds determined by T S;

– dlcb(E, C) yields the distance needed for a lane change back of a car E after
passing car C with speeds determined by T S;

– dmax = d(tmax), where the time tmax is large enough for a car to safely
change lanes twice and pass another car.

3.1 Overtaking Protocol

Overall we want to maintain the property that all reservations are disjoint. We
formalise the unwanted situations in MLSL by the formula collision check :

cc ≡ ∃c : c �= ego ∧ 〈re(ego) ∧ re(c)〉 .

Now we will present controllers for the three phases of the manoeuvre that
will maintain this property in a setting with opposing traffic. To construct the
complete controller for the overtaking protocol we fuse the locations without any
outgoing arcs, named q4 in Fig. 4 and Fig. 5, with the initial locations of the
next phase of the protocol.

Changing Lanes into Opposing Traffic. Intuitively, we can describe this
phase of the manoeuvre as follows. The car ego drives on lane n (its original
lane) and wants to change into the target lane n + 1 next to n. Then ego first
sets a claim on the target lane and checks the following three properties:

1. Does the claim intersect with the reservation or claim of any other car?
2. Is there enough space on the original lane to change back during the com-

pletion of the manoeuvre?
3. Is there enough space for the overtaking manoeuvre on the target lane?

Should one of these conditions be violated, withdraws ego its claim and therefore
aborts the manoeuvre. Otherwise, ego proceeds by sending a message that it
starts an overtaking manoeuvre, turning the claim into a reservation and starting
moving over to the target lane. Furthermore, this message obliges the overtaken
car to keep its velocity constant.

We formalise the first property, the potential collision, i.e., car ego’s claim
intersects with another car’s claim or reservation, in the following MLSL formula:

pc ≡ ∃c : c �= ego ∧ 〈cl(ego) ∧ c〉 .

For checking that there is enough space on the target lane and on the original
driving lane, we need two functions k1 and k2 (see Fig. 3):

k1 : I× I → R+ with (E, C) �→ dlc(E) + dpass(E, C)
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cl(ego)

re(ego) re(c)

dlc(ego) dpass(ego, c) dlcb(ego, c) dmax

k1

k2

Fig. 3. Lengths referenced to during overtaking manoeuvre

is the distance needed by car E for a lane change with its current speed and for
passing the car C, during which E may accelerate to a higher speed.

k2 : I× I → R+ with (E, C) �→ k1(E, C) + dlcb(E, C) + dmax

adds the distance it takes E to change back into the original lane (with the speed
assumed while passing car C in front plus the maximal distance dmax a car on
the opposing lane can travel in the time it takes to overtake C. With these two
functions we can now formulate the remaining two properties.

esol(c) ≡
�
re(ego)� (free� re(c)� free)k1(ego,c) � freedlcb(ego,c)

�
states that there is enough space on the original lane. Since ego is currently
holding a claim, it can reserve only one lane, and hence esol refers to ego’s
original lane. In front of the reservation there has to be enough space such that
ego can safely pass the car c and then fit in front of c (cf. Fig. 3).

estl(c) ≡
�
cl(ego)� freek2(ego,c)

�
states that there is enough space on the target lane. We fix the target lane by
checking for ego’s claim. In front of the claim there has to be enough space to
complete the overtaking manoeuvre plus the maximal distance travelled by an
opposing car during the time of the manoeuvre (cf. Fig. 3).

Figure 4 shows the controller part for this phase of the manoeuvre. We start
in q0 which we assume to be safe, i.e., satisfying ¬cc. We hold ego’s original
driving lane in the variable n and make use of the additional variable l saving
the target lane. We use the constant tlc for the time that is needed to change
lanes. Note that due to the guard n = b this controller only takes effect if ego is
driving on the border and ego’s target lane is the lane with opposing traffic.

Passing the Car Ahead. The controller for the car ego to pass by car c of
the manoeuvre is rather simple. The car ego accelerates to a higher speed, re-
mains at that speed until it has passed car c, and initiates the next phase of
the manoeuvre. Furthermore, whenever ego receives a request for a lane change
from a car c, i.e., the message req?c, ego checks whether c wants to occupy space
needed for the overtaking manoeuvre, i.e., whether 〈re(ego)� true� cl(c)〉 holds.
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q0 : ¬cc

q4

q1 q2 :
¬pc

∧∃c : estl(c) ∧ esol(c)

q3 : x ≤ tlc

n = b

/c(ego, n+ 1);

l := n+ 1

pc∨
¬(∃c : estl(c) ∧ esol(c))

/wd c(ego)
¬pc∧

∃c : estl(c)∧
esol(c)

pc ∨ ¬(∃c : estl(c) ∧ esol(c))/wd c(ego)

¬pc∧
∃c : estl(c)∧

esol(c)

/r(ego);x := 0;

att!egox ≥ tlc/wd r(ego, l);n := l

Fig. 4. Controller for the lane-change manoeuvre into opposing traffic

If this is the case, ego denies c’s request by sending the message no!c. We omit
the presentation of the described controller.

Changing Lanes Back into Original Driving Lane. The controller for
changing the lane back into the original driving lane (see Fig. 5) is a drasti-
cally simplified version of the controller in Sec. 3.1. We already established with
esol that there is enough space to change lanes back into the original lane. We
only need to set the variable l to the original lane n − 1, then we can claim it
(c(ego, n − 1)), reserve the lane (r(ego)), and change over within tlc time.

q0 q2 q3 : x ≤ tlc q4
n− 1 = b

/c(ego, n− 1);

l := n− 1

r(ego);x := 0 x ≥ tlc/

wd r(ego, l);n := l

Fig. 5. Controller LCP for the lane-change manoeuvre with perfect knowledge back
into orignal lane

3.2 Helper Controller

The automaton in Fig. 6 is glued to the helper controller from [1], to prohibit cars
from moving to space used during the overtaking manoeuvre. As soon as a car
starts to overtake another car C, it calls for attention by sending its identity on
channel att (see Fig. 4). After receiving the message att?c, the car C can realise
that it is being overtaken, by checking whether 〈re(c)� free � re(ego)〉 holds.
Then C reacts to each request req?d of other cars to move into the free space in
front of it with a negative reply no!d. The end of the overtaking manoeuvre can
be perceived by C by means of the formula 〈re(ego)� free � re(h)〉. Combined
with the lane change controller from [1] this maintains that no other car moves
into the free space in front of the car which is being overtaken.



208 M. Hilscher, S. Linker, and E.-R. Olderog

q0 q1 q2 : U

att?c ∧ 〈re(c)� free � re(ego)〉
/h := c

〈re(ego)� free � re(h)〉

req?c ∧ 〈re(ego)� free� cl(c)〉
/d := c

no!d

Fig. 6. Additional automaton for helper controller

3.3 Changing Lanes for Non-border Lane Manoeuvres

In Fig. 7 we present the slightly modifed controller from [1], which in cooperation
with the previous controllers ensures safety of the complete manoeuvre. This
controller is responsible for the lane change if the car is not moving into opposing
traffic during the lane change.

q0 : cc q1 q2 :
¬∃c : pc(c)
x ≤ to

q3 : x ≤ tlc

n+ 1 ≤ b

/c(ego, n+ 1);

l := n+ 1

0 ≤ n− 1

/c(ego, n− 1);

l := n− 1

∃c : pc(c)
/wd c(ego) ¬∃c : pc(c)/

req !ego;x := 0

∃c : pc(c) ∨ no?c : ego = c

/wd c(ego)

¬∃c : pc(c) ∧ x ≥ to

/r(ego);x := 0

x ≥ tlc/

wd r(ego, l);n := l

Fig. 7. Controller LCP for the lane-change manoeuvre with perfect knowledge on non-
border lanes

Similar to the controller in Sec. 3.1 it maintains the current driving lane in
the variable n and the target lane in the variable l. Upon attempting a lane
change ego sets its claim on the target lane and brodcasts a request req!ego
awaiting an answer for the next to time units. If no abort message no?c : ego = c
arrives within this time-out, ego turns its claim into a reservation and starts to
move over. After tlc the manoeuvre is completed and ego withdraws the original
reservation. We assume the time-out to to be large enough such that a car which
previously moved into opposing traffic can answer within this time bound.

Note that ego receives a no message in the following two situations:

1. The car C behind ego is currently being overtaken.
2. ego wants to change into a lane a car D is currently using to overtake.
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In the first case C sends a no to ensure that the space ego perceives free is
maintained free for the overtaking car behind C. In the second case D sends a
no message to ego to maintain that the space it currently uses to complete the
overtake manoeuvre remains free.

4 Safety of Overtaking Manoeuvre

In this section, we will give an informal safety proof of the controllers shown in
Sec. 3. Since the reservations of the model are overapproximations of the braking
distance of cars together with their physical size, we understand safety as the
non-overlapping of any reservations. Claims however may overlap, since they
represent only intentions of future car positions.

We make the following assumptions on the country road traffic. The assump-
tions are slight extensions to the assumptions for our proof of motorway situa-
tions [1], to take the opposing traffic into account.

Assumption A1. There is an initial safe traffic snapshot T S0.

Assumption A2. Every car C is equipped with a distance controller that keeps
the safety property invariant with respect to all cars driving in the same direction

as C under time and acceleration transitions, i.e., for every transition T S t−→T S ′

and T S acc(C,a)−−−−−→T S ′ if T S is safe also T S ′ is safe.

Informally, this means that the distance controller admits a positive acceler-
ation of C only if the space ahead permits this. Also, if the car ahead is slowing
down, the distance controller has to initiate braking (with negative acceleration)
of C to reduce the extension of its reservation (the safety envelope).

Assumption A3. Every car is equipped with a controller implementing the
protocol in Sec. 3.1.

Finally, we assume the horizon h to be of appropriate size, as stated in Sec. 2.

Assumption A4. The horizon h is h = semax + 2 · dmax. This length stems
from the distance we need for the overtaking manoeuvre to take place, as shown
in the controllers, as well as the maximal length of the safety envelope semax.

Theorem 1 (Safety). Under the assumptions A1 to A4, the protocol specifying
the overtaking procedure of Section 3 is safe.

Proof. We sketch the safety proof by analysing the three phases of the protocol.
Let V = (L, X, E) be the view of the car E ∈ I→ performing the overtaking of
a car C and T S0 the initial safe snapshot (A1).

The first phase is essentially the lane change procedure of our previous work
[1], under different assumptions. However, the new assumptions are stronger in
the following sense. First, we only allow for the lane change in one direction,
i.e., if E is driving on lane b, it may only change to lane b + 1. Furthermore, in
the proof for motorway situations, the horizon was at least of the length of the
safety envelope. Since by A4 the horizon is still large enough, the lane change
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manoeuvre can take place in a safe manner. In this phase, the controller has
to ensure that in the third phase, there is still enough space in front of C to
change back to lane b. Therefore, at the instant, when E extends its reservation,
it broadcasts its ID on the channel att . Now C is the only car, where the guard
in the helper automaton (Fig. 6) is satisfied. Any car attempting to change to b
in front of C, i.e., where C would serve as a helper car, will receive the denial
to change lanes, until E has changed back to b, as stated in the guard on the
transition back to the initial location of the helper automaton. Hence, there will
be still free space for E on lane b in the third phase of the protocol. Similarly, a
car D ∈ I← trying to perform a lane change to lane b + 1 will receive a denial
directly from ego.

Now assume that phase one was successful, i.e., E started its lane change at
snapshot T S0 and successfully changed to lane b + 1 on a subsequent snapshot
T S1. Then the free space in front of E on b + 1 is still at least dpass(E, C) +
dlcb(E, C)+(dmax−d(tlc)). The car E needs dpass(E, C) space during this phase.
Due to the definition of dmax an opposing car may cover at most a distance of
dmax−2·d(tlc) in the passing phase. Hence in the worst case after this phase, there
is still at least dlcb(E, C)+(dmax−d(tlc)−(dmax−2 ·d(tlc)) = dlcb(E, C)+d(tlc)
free space left. Similarly to the description of the first phase, E denies all cars
wanting to change to its current lane the permission to do so.

For the last phase of the protocol, observe that dlcb(E, C) is the space needed
by E to change back to lane b, while d(tlc) is the largest distance an opposing car
may cover when driving at maximal velocity. Hence after the final lane change,
i.e., before E removes its reservation from lane b +1, in the worst case the start
of the envelope of the opposing traffic is directly in front of E’s reservation, but
they are not yet overlapping. Since the removal of reservations is instantaneous,
there is no point in time where the these reservations can overlap.

Now assume that a car D ∈ I← on lane b + 1 with a view V ′ = (L, X ′, D)
outside the horizon of E is also planning an overtaking manoeuvre of a car
A. Observe that this also implies that E is outside the horizon of D, i.e.,
max(lenV (E)) < pos(D) − h. An unsafe situation may only occur, when the
spaces used to change back on the original lanes overlap, i.e., when

max(lenV (E)) + dlc(E) + dpass(E, C) + dlcb(E, C)

> min(lenV ′(D))− (dlc(D) + dpass(D, A) + dlcb(D, A))

⇐⇒ max(lenV (E)) + dlc(E) + dpass(E, C) + dlcb(E, C) − dmax

> min(lenV ′(D))− (dlc(D) + dpass(D, A) + dlcb(D, A))− dmax (10)

Now by definition dmax ≥ dlc(E) + dpass(E, C) + dlcb(E, C). Hence we get

max(lenV (E)) ≥ max(lenV (E)) + dlc(E) + dpass(E, C) + dlcb(E, C)− dmax

(11)

By definition, we have |lenV ′(D)| ≤ semax, and hence min(lenV ′(D)) = pos(D)−
|lenV ′(D)| ≥ pos(D)−semax. Since also dlc(D)+dpass(D, A)+dlcb(D, A) ≤ dmax,
we have that
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min(lenV ′(D)) − (dlc(D) + dpass(D, A) + dlcb(D, A)) − dmax

= pos(D)− |lenV ′(D)| − (dlc(D) + dpass(D, A) + dlcb(D, A))− dmax

≥ pos(D)− semax − (dlc(D) + dpass(D, A) + dlcb(D, A))− dmax.

≥ pos(D)− (semax + 2 · dmax) (12)

By putting (10), (11) and (12) together and using h = semax + 2 · dmax, we get
max(lenV (E)) > pos(D)− h, which means that E is visible within the standard
view of D, and hence contradicts our assumption. 	


5 Conclusion

The novelty in our approach is the identification of a level of abstraction that
enables a purely spatial reasoning on safety. In [1] this was demonstrated for
motorways. In this paper we showed that with small extensions to the previously
developed setting, in particular explicit length measurement, we can also deal
with the two-way traffic of country roads. We proved safety for arbitrarily many
cars on country roads locally, by considering a limited amount of space.

In our future work, we would like to study variations of the assumptions made
in our safety proofs. First of all, we will lift the assumption of perfect knowledge.
In [1] we have already done this for the case of one-way motorway traffic. There
the more realistic sensor function assumes that each car knows only the physical
size of all other cars in its view; the safety envelope it knows only of itself.
Further, we intend to study the scenarios of urban traffic as in [6]. Also, we plan
to link our work to hybrid systems: a refinement of the spatial reasoning in this
paper to the car dynamics is of interest. There we could benefit from the work
of [7,8,9].

So far, our proof of the Safety Theorem 1 is by hand. We show that the
transitions between traffic snapshots obeying our controllers preserve a suitable
safety invariant. It is our aim to ultimately provide automatic support for such
proofs. In [15] steps in this direction are presented. There a proof system for
an extended version of the logic called EMLSL is introduced. EMLSL embraces
temporal operators, so reasoning about the transitions can be conducted within
this logic. However, mechanic support for the proofs remains a topic of future
research.
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Abstract. The laws of programming are a collection of judgments about
the equality and ordering of computer programs. A model of the laws is a
mathematical description of the execution of programs, where the model
has been proved to satisfy the laws. A generic model is one that has
parameters that can be adjusted to the properties of a range of different
programming languages and their differing implementations and differing
applications. In this way, a generic model serves as the basis of a unifying
theory of programming.

1 Introduction

The purpose of the laws of programming [8] is to specify and reason about the
correctness of programs and of their implementations. The laws are also used
directly to transform a program into an equivalent or better one, perhaps one
that is more efficient in execution, or expressed in a useful normal form, or even
expressed in a different language which obeys the same laws. The laws provide a
common theoretical framework for the specification and use of a range of software
engineering tools. Such tools include program analysers, generators, interpreters,
compilers, optimisers and verifiers; also test case generators and tools for error
detection, diagnosis and correction. It is obviously important that all of the tools
provided should be based on the same laws of programming; otherwise there is
a danger of mismatch across the interfaces between the tools.

The purpose of a mathematical model is to describe some aspect of physical
reality, and give mathematical proof that it satisfies the laws which are used
to reason about it. For the laws of programming, the reality described is the
behaviour of a computer system while executing a program. The behaviour can
be recorded as a trace of all actions performed inside and in the vicinity of a
network of computers during program execution. The model specifies the corre-
spondence between a program and the set of all its possible behaviours, in every
possible environment of use. The model described in this essay is based firmly
on the pomset model of [6].

The intricate details of the model clearly must depend on choice of a particular
programming language, and on a particular notion and notation for program cor-
rectness. In some cases, it is desirable to extend the model to a larger language,
or to simplify it for a particular special-purpose subset of the language. The sub-
set may require a program to conform to a particular program design pattern,
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or to the use of a particular class library. Many successful tools, which have ap-
plied formal methods to practical programming problems, have only succeeded
by exploiting a serendipitous combination of such particular circumstances.

The purpose of a generic model is to control and co-ordinate an inevitable pro-
liferation of tools for software engineering. A generic model accepts parameters
whose variations define the details of a wide range of more specialised models.
For example, the model described in this essay allows variation in the definitions
of the basic actions of the programming language, the primitive predicates of the
specification language, and the basic types of object provided. It is even possi-
ble to vary the definitions of sequential and concurrent composition, and of the
behaviour of computer memory. The resulting generic model is proved to satisfy
the full set of laws of programming, no matter what the choice of parameters.
Thus it is always valid to use in combination any set of tools that are based on
the same laws.

Our strategy is to model a program as the set of traces of all its possible
behaviours, in all possible circumstances of its use. Each trace is modelled as
the set of all atomic actions that have occurred as a result of execution of the
program. Let A be the set of all possible actions that need to be considered:
it is the basic parameter of the model. The laws and models are developed in
three stages, each of which builds upon its predecessor: (1) a model of traces, in
which the carrier set is the set of all subsets of A, plus the element ⊥ standing
for undefined; it defines on traces the basic partial operations of sequential and
concurrent composition. (2) a model of programs in which the carrier set is the
powerset of all traces. It adds set union to its operators to represent choice (either
non-deterministic, or controlled by condition, and a least fixed point operator
to provide iteration/recursion to the programming language. (3) a model of
program specifications (or other descriptions of program behaviour). It adds
conjunction and a greatest fixed point to the operators, and provides Galois
adjoints for the two programming operators. This essay concentrates on (1); for
a fuller treatment of (2) and (3), see [8].

2 The Laws

The laws of programming constitute a mathematical structure with several al-
gebraic components. The basic component is a partial order, (C, �, ⊥). In the
trace model, ⊥ represents an undefined element, and � is Scott’s refinement or-
dering. For programs, the ordering � is refinement: it holds between a program
and one that is more determinate than it. ⊥ is a program which has no execu-
tions, perhaps because the compiler has found a serious programming error in it.
Between specifications, the relation � means logical implication. Between a pro-
gram and a specification it means correctness. The familiar concept of refinement
covers all these cases.

The next algebraic component is a monoid (C, |, 1) . The operator | represents
concurrent composition of traces. Applied to programs, it defines a program, all
of whose traces are the concurrent composition of a trace of its first operand
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with a trace of its second operand. Applied to specifications, it is a description
of the concurrent composition of two programs, each of which is described one
of the two specifications. The concurrency monoid is combined with the partial
order in an ordered monoid, which requires also that | be monotonic wrto the
ordering �.

The next component is another ordered monoid, with the same ordering as
before. The operator | is replaced by ; (standing for sequential composition).
Furthermore, | and ; interact through an exchange law

(p | q) ; (p′ | q′) � (q ; q′) | (p ; p′) .

Because ; and | share the same unit, four simpler corollaries emerge

(1) p ; (q | r) � (p ; q) | r (2) (p | q) ; r � p | (q ; r)

(3) p ; q � p | q (4) | commutes

The final step is to add lattice operations ∪ and ∩ to the partial order. The ∪
operator represents choice between programs: only one of its operands is exe-
cuted. It represents simple disjunction between specifications. The ∩ operator
represents conjunction of program specifications. It provides the simplest and
most useful way of combining many requirements for programs that have not
yet been written. The operators | and ; are required to distribute through ∪,
but not through ∩. In the model the operators also distribute through unions of
arbitrary sets of operands.

3 The Trace Model

In the trace model, the carrier set is the set of all traces, where a trace is a subset
of the set A of all actions; to this is adjoined a distinct undefined element ⊥.
The lattice structure is the discrete semilattice as defined by Scott, which has
⊥ as its bottom, and all distinct elements of A are incomparable. The relational
judgement p � q means that p is equal either to q or to ⊥.

(1) Concurrency. The first and simplest operator to define is the parallel com-
position operator |.

p | q = p ∪ q, if p and q differ from ⊥.

= ⊥, otherwise

This says that the trace of concurrent composition of two commands, when
defined, consists exactly of the all the actions of each of its operands. Nothing
is added, and nothing is taken away. The unit 1 of this operator is clearly the
empty set of actions. This is an extremely weak definition of an operator: in fact,
all other operators will be defined as special cases of it. There is no constraint
whatever on the sequencing or simultaneity of the individual actions of the union.
It even allows the CCS and CSP [4] style of concurrency, in which a successful
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communication is a simultaneous occurrence of an action from p with an action
from q, provided that one of them is an input and the other is an output of the
same message on the same channel.

To give a generic model of concurrency, we introduce a parameter P , and use
it to define the domain of the concurrency operator. P is assumed to be a sym-
metric relation between actions. In order for the generic concurrency operator
to be defined, it is necessary that every action in the first operand p is related
by P to every action in the second operand q.

p |′ q = p ∪ q if p × q is contained in P

Here, × is Cartesian product of sets. For brevity, the line which explicitly defines
the undefined case is omitted. The associativity of this operator depends only on
the fact that Cartesian product distributes through union. It does not depend
on any particular properties of the parameter P . However, symmetry of the |
operator depends on the symmetry of P .

(2) Sequential Composition. To define sequential composition of traces, we in-
troduce another parameter S to restrict its domain to a subset of P . For exam-
ple, S may be a relation between actions expressing a notion of dependency or
causality, which prevents one action being performed before another. A strong
but simple definition of sequential composition states that none of the actions
of the second operand q can occur before any of the actions of the first operand p:

p ; q = p |′ q, if (p × q) is contained in S.

This definition is strong because it requires that all actions of p should be com-
pleted before q begins. Note that it is not required that S be transitive.

Satisfaction of the exchange law between ; and | depends solely on the form
of the definition of sequential composition. It depends in no way on properties
of the parameter S.

(3) Programs and specifications. The carrier set for the model of programs is the
powerset of all subsets of subsets of A. The undefined element ⊥ of the trace
model is simply omitted.

Composition of commands, both sequential and concurrent, is defined by ‘lift-
ing to sets’. Following a common mathematical practice, if the formula for the
typical member of a set is undefined, it is excluded from the set. For example,
the clause ‘(p ; q) �= ⊥’ is omitted from the set-builder in the definition

pp ; qq = {p ; q | p in pp and q in qq}

Distribution through union follows directly from the form of the above definition.
Preservation of the other algebraic properties of the trace model follows from the
following observation. Every algebraic equation and inequality in the statement
of the laws has exactly two occurrences of each of its variables, one on each side
of the equality or inequality symbol.
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The new operator ∪ on programs is just set union. Distribution of | and ;
through union follows directly from the lifting equation shown above.

The carrier set for specifications is the same as that for programs. The new
operation ∩ on specifications is just intersection of sets. Consequently, a program
satisfies the conjunction of two specifications just if it satisfies each of the specifi-
cations separately. There are no new interaction laws which relate intersection to
; or |. This reflects the fact that there is no way of implementing conjunction of
requirements in a modular way, by implementing programs for each component
separately.

4 Programming Language Semantics

Our laws are strongly related to three of the traditional methods of defining
the semantics of programming languages, (1) denotational semantics, (2) sepa-
ration logic, and (3) operational semantics. The relationship is easy to express:
the structural rules of (2) and (3) can be simply derived from the laws that are
satisfied by (1) [19,20]. In the other direction, many of the laws can be derived
both from (2) and from (3), particularly the last and least obvious of them, the
exchange law. This gives encouraging evidence that the laws are faithful to a
widely held understanding of the meaning of programs. It also gives evidence of
the usefulness of the laws for all the applications for which (2) and (3) have been
used in the past.

(1) The model itself is a denotational semantics, because it maps each pro-
gram to a well-known mathematical structure, namely a set of traces, which are
themselves defined as sets of actions. Reasoning about programs can now be
conducted in terms of the model, using only pure mathematical reasoning. The
reasoning is greatly assisted by the algebraic laws.

To simplify mathematical reasoning, early presentations of denotational se-
mantics abstracted as far as possible away from the details of implementation of
the language. For example, Scott represented deterministic sequential programs
as partial functions, mapping the initial state in which the program is started
onto the final state in which it ends; and everything else which happens during
the process of execution is omitted.

Our goal is rather different from Scott’s. It is to prove that the laws are valid
for all possible abstractions from the execution of the program, including no ab-
straction at all. As a result, the model can be used directly to support program
testing. A tool for program testing must make accessible to the programmer the
entire set of actions that occurred on a test run of a program. Preferably this
should take a form that explains the causes and consequences of each action,
and so assist in the discovery of what went wrong and when.

(2) The purpose of a deductive semantics (originally called an axiomatic se-
mantics by [7]) is to provide a valid pattern of proof that there are no errors
in a program. The derivation of the structural proof rules for Hoare logic from
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the laws of programming proceeds as follows. First, the primitive judgement of
Hoare logic is defined in algebraic notation:

p {q} r = p ; q � r

This enables the Hoare rule of consequence to be derived from associativity
and monotonicity of ;. The rule for sequential composition is similarly derived.
The rule for non-determinism follows from the distribution of ; through ∪. The
modular concurrency rule of concurrent separation logic [10] is derived from the
exchange law, and his frame rule is derived from its first corollary. Surprisingly,
this direction of derivation can be reversed: the exchange law can be proved
directly from O’Hearn’s rule.

(3) The purpose of an operational semantics [11] is to show an abstract method
of executing a program step by step, which generates just a single trace of it
at a time. It has been widely used to guide the design of language implemen-
tations by interpreters or compilers. One of the original goals of an operational
semantics was to discover a minimal set of concepts, operators and principles for
programming. All other concepts are then shown to be implementable in terms
of these primitives. Our goal is rather different from this. It is to give a reason-
ably simple and well-structured model, together with a set of parameters that
enable it to be adapted directly to a wide range of likely variations. Thus there
is no need to prove the correctness of the implementation of each variation.

The derivation of an operational semantics from the laws of programming
starts by defining Milner’s transition [12], in very much the same way as the
Hoare triple:

p
q−−→ r = q ; r � p

This is interpreted as saying that one of the ways of executing p is to execute
q first and then continue with r. As a result, the CCS rule for prefixing is a

tautology: (p; q)
p−−→ q. It is suggestive also to use a traditional notation for the

‘silent’ transition: p → r = r � p . Then the obvious rules of an operational
semantics can be derived for ;. The exchange law gives a general (big-step)
version of one of Milner’s rules for concurrency in CCS, the one which describes a
successful communication by synchronised input and output between concurrent
processes. The first corollary of the exchange law gives the other concurrency
law, which describes the effect of an unmatched input or output. Again the last
two derivations can be reversed, giving a further support for the exchange law.

The associativity and distributivity laws for ; can be derived from the combi-
nation of the Hoare rules and the Milner rules for ; and ∪. However, there are
many laws of programming that cannot be derived from either of these tradi-
tional forms of semantics. The commutation of | is an example. The traditional
semantics are further weakened by placing syntactic restrictions on the parame-
ters of the basic judgements. For example, the p and the r of the Hoare judgement
must be assertions, and the q of the Milner transition must be an atomic action.
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Our more general algebraic laws can be re-established by introducing an equiv-
alence relation between programs. This can be defined by so-called structural
equivalence laws, by contextual equivalence, by bisimulation, or by a combina-
tion of these. An equivalence relation provides an excellent way of raising the
level of abstraction of a model; and it also provides additional laws. However,
in this essay, we can get all the laws we want directly form a concrete model,
without using an equivalence.

5 Variations

Introduction of the parameters P and S allows easy definition of several interest-
ing variants of the operators of the trace model. They satisfy the same laws, and
their satisfaction can be proved by the same proofs. In this section, we introduce
a single new parameter D, standing for a dependency relation between actions.
In terms of D we define a range of different values for S and P , giving different
versions of the operators.

The concept of dependency is quite prevalent in Computer Science, as in other
branches of Science. If x and y are actions in the same trace, the dependency
xDy means that y could not have happened before x, or equivalently that x
could not have happened after y. In a diagram of a trace, the actions are often
drawn as points or circles or boxes, and the dependency xDy is drawn an arrow
from the point for x to the point for y. In a Message Sequence Chart, events
in the same service or thread are connected by downward-pointing arrows, and
communications between services are drawn as horizontal arrows. In a hardware
wave-form diagram, the events are the rising and falling edges of the voltage on
a wire. Actions occurring on the same wire are connected by a horizontal line,
with the direction of the arrow understood to be from left to right. Dependencies
between events are represented by sloping arrows between actions on different
lines.

1. p |′ q = p ∪ q, if p×q is contained in the inequality relation between actions.

This is nothing but the disjoint union of sets p and q. It means that no action
of the combined trace requires simultaneous participation of both components
of the concurrent combination. This is a common feature of most programming
languages and of many process algebras–but not CCS or CSP, where input and
output of the same message are regarded as the same atomic event.

2. p ‖ q = p | q, if p × q is contained in the negation of (D∗ ∩ converse(D∗))

This version of concurrency is undefined if there is a mutual dependency cycle
that contains actions of both the two operands. In implementation, such a cycle
would manifest itself as a deadlock between the concurrent components, which
would prevent the combined trace from completing. The above definition pre-
vents such a trace from even starting.

3. p ||| q = p | q, if p × q is contained in the negation of (D∗ ∪ converse(D∗))
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This definition requires there to be no dependency at all between any actions of
p and any actions of q. In CSP, ||| is the interleaving operator, which uses the
same notation. With this operator deadlock is impossible, and so is interference
(a.k.a. race condition) between the operands.

4. p ; q = p | q, if p × q is contained in the negation of the converse of D∗

The stronger version of sequential composition defined earlier uses D∗ in place
of S. This weaker definition is the one actually implemented by the compilers
and hardware instruction pipelines on most modern computers. The weakening
allows some of the actions of q to occur before some of the actions of p. But this
only happens when the overtaking p-action does not depend on the overtaken
q-action. As a consequence, the stronger strictly sequential definition still gives
a trace that satisfies the weaker definition given above.

5. The above definitions still satisfy all the laws when | on the right hand side
is replaced by |′ or by ‖ or by |||. (Unfortunately, this last case is vacuous. The
resulting ; certainly satisfies the exchange law with |||, but only because these
two operators are equal. Effectively, no interaction is possible between any com-
ponents of a program).

6. Let us introduce another parameter H to the model. It is a set of traces that
are considered Healthy, in the sense that they are free of certain generic errors
which can afflict a program. Typical errors are division by zero, null pointer
dereference, a false assertion, a race condition, etc. Let (p; q) in H imply that p
in H and q in H . This reflects the fact that a sequential composition is healthy
only if both its components are healthy. Define a new operator to deliver only
healthy results:

(p ;′ q) = (p ; q) if (p ; q) in H

This is the range-restriction of ; with respect to H . It preserves the algebraic
properties of ;.

7. Some errors occurring in a trace can be attributed not as a fault in the pro-
gram, but rather in some other program in its environment. Typically, the error
is violation by the other program of a contract between the two programs, for
example a false precondition or other assumption. Let us introduce another pa-
rameter F to denote the set of all traces containing a symptom of a failure which
is actually the fault of its environment. Let (p | q) in F imply that p is in F and
that q is in F . Then we define

(p |′ q) = (p | q) if (p | q) in F.

Restricting the model to traces in F will now satisfy all the laws. The restriction
embodies the assumption that the environment satisfies all its contracts.

The distinction between F and H defines the roles of particular components of
a software engineering toolset, and of the form of semantic presentation on which
they are based. For example, a program verifier and its deductive semantics
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should check by proof that all traces in F are also in H . A test case generator
should generate only traces in F that are not in H , with no false positives.

6 Objects and Behavioural Types

The actions provided by a conventional programming language usually inspect or
update various objects that have been originally declared or otherwise allocated
by the program. An object may be a simple variable of some built-in type,
or a structured variable (eg., an array or structure), built from many simple
variables. Concurrent languages often provide a range of different types of object,
with different behaviours. Examples are: threads, semaphores, communication
channels and messages sent on them. An object-oriented language provides class
declarations, which enable the programmer to define the behaviour of new types
of object.

Each action in a trace of a program may involve simultaneous participation
of one or more objects. For example, an output action involves the outputting
thread, the communication channel, and the message itself. For each trace and
for each object, we identify the subset of actions of the trace which have involved
that object. It is called the slice (or projection) of the object within the trace. We
define the behaviour of a type (or class) of object like that of a program, as the
set of all possible slices of that object in the traces of all possible programs which
use an object of that type. We define an object as atomic if all its possible slices
are totally ordered by D∗. Thus the first action of every object is its allocation,
and each subsequent action has a unique D-predecessor. Similarly the last action
of the object is its disposal, and all previous actions have a unique D-successor.
Let Obj be the set of all atomic objects. We take this as an additional parameter
of our model.

We illustrate the possible content of the Obj parameter by some examples.
They are taken from [16], where they are diagrammed by simple graphs. Each
example is an informal description of the behaviour of a particular class of con-
current object: semaphores, threads, communication channels, and variables. In
some cases, variants are given.

(1) A thread is an atomic object, whose slice is a non-deterministic linearization
of a trace generated by execution of the sequential program that runs on the
thread. Except for the main thread, the first action involving a thread is a fork,
which is a simultaneous action of its ‘parent’ thread. The last action is often a
join, which is also shared by the parent or by another thread.

(2) The behaviour of a binary semaphore is a sequence of actions. The first ac-
tion is a P . Subsequent executions of P alternate with executions of V , and the
last action is a V .

(3) The behaviour of a channel is a structure consisting of the behaviour of
atomic objects of three different types: an output port, an input port, and a set
of messages. The behaviour of an output port is a sequence of output actions,
and an input port is a sequence of input actions. A message engages in only two
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actions. Its first action is participation in one of the outputs on the channel, and
its last action is participation in one of the inputs. If no further constraints are
placed on the messages, the above account describes the behaviour of a highly
unreliable postal service, which can lose or duplicate or reorder messages. A
more reliable service can be specified by adding constraints on the behaviour of
the channel, as in the following variants.

(3a) A reliable fully-buffered channel is one in which for each output action (say
the nth) there is a single message starting there and ending at the nth input. As
a result, all output messages are delivered exactly once, and in the right order.

(3b) In a single-buffered channel, the life of the nth message is extended: its
third (and last) action is the (n + 1)st output (or disposal of the port itself).
This ensures that every read of the nth output happens before the (n + 1)st
output, so a single buffer is sufficient to implement it.

(4) The behaviour of a variable (in strong memory) consists of a sequence of
assignments and a set of messages carrying the assigned value to a read of it.
Each assignment may be the start of many messages, or of none. Each message
starts with an assignment (say the nth), and this is followed by a read of the
value assigned. The third and final action of the message is the (n + 1)st as-
signment (or the disposal of the variable). The third action ensures that each
assignment happens after all reads of the previous assignment, even if they occur
in a different thread.

(4a) In a weak memory, this third action of each message is missing. Any neces-
sary synchronisations must be performed explicitly by the user program, using
fences.

7 Locality

The simple models of object behaviour given in the previous section permit
arbitrary sharing of objects between the components of a concurrent program,
each of which can at any time perform any one of the available updates upon it.
However, if all objects are shared, it is impossible to write useful programs. For
this reason, the hardware and intimate firmware of modern processors provide
separate registers local to each thread, and they cannot be updated by any other
thread. This section shows how the trace model can describe the general concept
of locality, as applied to objects allocated by program, and not just to a fixed
set of hardware registers.

The problem posed to the programmer by shared objects is called interference:
the non-deterministic occurrence of interference from another thread leads to a
race condition. The phenomenon is modelled as follows. Let x, y, and z be
actions occurring (in that order) in the slice of an object l. Let t be a trace
which contains x and z, but not y. Interference arises because y may be an
arbitrary action occurring absolutely anywhere in the environment of t. This
makes it impossible to reason about t in a modular fashion, that is in terms only
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of those actions that occur inside t itself. We define the object l to be local to t
if the phenomenon described above does not occur.

To introduce locality into our model, we split the dependency parameter D
into two parts: D = L+R, where L stands for local dependency (between actions
typically within the same thread), and R stands for remote dependency (typically
between actions in different threads). We define an object as purely local if all
its slices are totally ordered by L∗, and volatile if they are all totally ordered
by R∗. But many objects have both kinds of dependence, with phases in which
they are local to one trace, separated by actions which can transfer ownership.
For example, consider a binary exclusion semaphore. The dependency of a P
action on the immediately preceding V action is remote, because the V and
the immediately following P can occur in different threads. However, if a thread
contains a critical region surrounded by P and V , it is known that only the same
thread can perform the next V operation on the semaphore. So this dependency
of V on P is local.

It is important to emphasise that L is a parameter of the model, and it is
often necessary to define the parameter in accordance with the ownership strat-
egy adopted by a particular program. For example, a program may specify that
ownership of an output port should be changeable after every third output, and
an input port after every input of a prime number. This flexibility makes it im-
possible to give a complete and definitive semantics for concurrent programming.
Fortunately, validity of the laws of programming is independent of the choice of
the parameter L.

The formal definition of locality to a trace is the negation of a formal state-
ment of the phenomenon which it is desired to avoid

l is local to t iff for all x, y, z in l, if xL∗yL∗z & x, z are in t, then y is in t.

Note that if (l ∩ t) is empty, then this definition is trivially satisfied, and also if
(l∩ t) contains only one action. Furthermore, if an object is local to (p ; q) then
it is also local to p and to q. This enables us to use the technique of variation
6 of the previous section to define a stronger version ;′ of our earlier sequential
composition:

p ;′ q = p ; q, if for all l in Obj, l is local to (p ; q).

Volatile objects are local to every trace, so for them the effect of sequential com-
position is unchanged. For a purely local object, the new definition ensures that
the last action in (p ∩ l) is related by L to the first action in (q ∩ l) , when-
ever they both exist. This is what enables an assignment to a local variable to
communicate the assigned value directly to the next assignment to that same
variable in the same sequential piece of code. It is also what validates the simple
laws of assignment like

v := 5 ; v := 3xv = v := 5 ; v := 15 if v is a local variable.
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8 Related Work

This essay explains and summarises results that were obtained in collaboration
with many colleagues named as co-authors in the references. Some ideas of the
last section may be so far unpublished.

9 Tribute

This essay honours my old friend and colleague He Jifeng. He first joined the
Programming Research Group in Oxford in the mid-1980s, as a visitor sponsored
by the Chinese Academy of Sciences, of which he is now a distinguished Member.
He had a desk in an office shared with Jeff Sanders, a visitor from Australia. We
published our first joint articles in 1986.

At that time, Jifeng spoke English with an accent which we found hard to
understand. As a result, we thought that he too would find our English and
Australian accents hard to interpret. From the first, we used to engage him
in frequent conversations about our research. Whenever we explained something
that we thought intricate, he would immediately respond gently with a soft ‘Yes’.
Naturally, we thought he must have misinterpreted our accents, so we explained
the same idea again more slowly. Again he instantly responded ‘Yes’. It did not
take us long to realise that even the first ‘Yes’ meant that he had understood
perfectly, not only our accents, but also the full intricacies of what we were trying
to say.

In a short time, he had read the draft of my book ‘Communicating Sequential
Processes’. In it, I had claimed that nearly all the laws of the deterministic
model of CSP were preserved by the non-deterministic model. At some stage he
plucked up courage to send me a long list of these laws which were in fact invalid
in the non-deterministic model. As a result, I deleted the claim from my book
draft. He was always extremely polite, and never directly pointed out the many
later mistakes that I made in my manuscript drafts of joint articles. However,
his type-set version of the article quietly omitted or corrected each mistake.

Early in my career as an academic Computer Scientist, I read Tarski’s article
on the Calculus of Relations. I very much admired its style and content. Jifeng
told me that just before coming to Oxford he had conducted a study group
reading the same article, and had reached the same appreciation of it as me. But
his group came to the reluctant conclusion that Tarski’s ideas had no application
in Computer Science. Little did we know what was to come!

In 1987, Jifeng and I decided that we should direct our future research towards
the goal of unifying theories of programming. Our motive was to bring order and
structure into the profusion of previously published theories, each of which was
claimed by its author to be a successful rival to all the others. It was rare for any
new theory to be further developed by others, or even by its author. We hoped
that a unifying theory would be generic, so that a wide range of existing theories
could be shown to be special cases. We hoped that it would provide a framework
permitting further collaborative development among researchers, both on theory
and on practical implementation.
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At the basis of our unifying theory of sequential programming, we took Tarski’s
relational model and algebra. Everything worked well until we came to Chapter
8 on Concurrency. I wrote and rewrote that chapter around ten times, and none
of the versions had anything like the elegance of Tarski’s work. Jifeng checked
the mathematics and uncomplainingly typeset each version, — in those days he
used Postscript, not Latex. Eventually he reported that the length of the latest
draft chapter stood at twenty pages, and that he had typed all two hundred of
them. I took the hint that it was time to move on; we then dealt with process
algebras, including CSP. Our book was eventually published in 1998 [9]. It never
achieved a wide circulation, and is now freely available on the web.

I now believe that the basic mistake that I made was in 1969. At that time,
I was inspired by the axiomatic method as used by algebraists to define con-
cepts like groups and rings. The first half of [7] used algebraic axioms to define
computer arithmetic in a way that permitted various treatments of overflow. It
would have been natural to use the same kind of axioms to define the semantics
of a programming language. But unthinkingly I chose to introduce an unneces-
sary new notation (later becoming widely known as the Hoare triple), and to
present the logic of programming as a set of proof rules rather than as algebraic
axioms. What a shame!

In [8] I followed my original inspiration to present programming as a form of
algebra. My objective in writing the paper was to unify various theories that were
then current, for example, those due to [5,22,2]. But I did not think of including
in the unification my own theory of Hoare logic, or the algebraic laws used
for concurrent programming, for example in [1,13] or the operational semantics
based on [11].

This essay has been written to rectify these three omissions. It is offered not
as an apology for my past mistakes, because in science mistakes are always a
necessary prelude to success. It is offered rather as a key to the correction of
the mistakes, and perhaps also as a pointer to a broad and attractive direction
of future research, leading eventually to beneficial application in professional
programming practice.
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Abstract. It is now widely understood how to write formal specifi-
cations so as to be able to justify designs (and thus implementations)
against such specifications. In many formal approaches, a “posit and
prove” approach allows a designer to record an engineering design deci-
sion from which a collection of “proof obligations” are generated; their
discharge justifies the design step. Modern theorem proving tools greatly
simplify the discharge of such proof obligations. In typical industrial ap-
plications, however, there remain sufficiently many proof obligations that
require manual intervention that an engineer finds them a hurdle to the
deployment of formal proofs. This problem is exacerbated by the need to
repeat proofs when changes are made to specifications or designs. This
paper outlines how a key additional resource can be brought to bear
on the discharge of proof obligations: the central idea is to “learn” new
ways of discharging families of proof obligations by tracking one inter-
active proof performed by an expert. Since what blocks any fixed set
of heuristics from automatically discharging proof obligations is issues
around data structures and/or functions, it is expected that what the
system can learn from one interactive proof will facilitate the discharge
of significant “families” of recalcitrant proof tasks.

1 The Challenge

The stimulus for this research has been observing engineers in industry using
“formal methods”. For example, in the DEPLOY project [24,19], engineers from
six companies attempted to use theorem proving tools. It became clear that the
number of proof obligations that were not discharged automatically presented a
disincentive for deploying formal specifications and design verification.

In a UK project known as AI4FM [23,4,6,5,13] we have set ourselves the
challenge of improving the effectiveness of formal methods by using Artificial In-
telligence (AI) approaches to remove some of the bottlenecks in the construction
of formal proofs.1 More specifically, we see scope for learning proof strategies
from experts.

1 The title of this paper plays on the jingoistic poem The Charge of the Light Brigade
by Tennyson which includes:

Theirs not to reason why,
Theirs but to do and die

Z. Liu, J. Woodcock, and H. Zhu (Eds.): He Festschrift, LNCS 8051, pp. 227–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The target of the project is the sort of proofs needed in typical justifications
of the design and implementation of software systems; it does not aspire to learn
how mathematicians prove deep theorems. This section explains the desirability
of meeting this challenge and our approach thereto; the body of the paper (Sec-
tions 2 and 3) presents an architecture for a system under construction and the
rationale for that model. Section 4 discusses the status of this ongoing research.

1.1 Setting Out the Challenge

Increasingly, organisations are recognising that formal descriptions of systems are
a useful intermediate step between informal requirements and detailed design.2

A crucial advantage of a system description in a tractable formal notation is that
it provides a basis for the construction of a correctness argument for design. A
stepwise process can therefore provide a chain of argument which shows that
an implementation (under assumptions about adherence to the semantics of the
implementation language) satisfies the initial specification.

“Posit and prove” development methods such as VDM [9] or Event-B [1] al-
low engineers to make intuitive design steps from which are generated “proof
obligations” (POs) whose discharge justifies the posited design choices. Tai-
lored automatic theorem proving tools such as those available in the “Rodin
Tools” [18], or general purpose theorem provers (TPs) such as Isabelle [16,17],
can automatically discharge a high percentage of proof obligations for industrial
scale problems; but a small percentage of a large number still leaves an unwel-
come interactive theorem proving load for industrial engineers who are neither
specifically trained as logicians nor do they obtain the same enjoyment that an
academic might from polishing off proofs. In an example from the EU-funded
DEPLOY project [24], around 500 POs were generated just to show that a model
was consistent; 80% of these were discharged automatically by the Rodin Tools
but this left the engineers facing about a hundred interactive proofs. There is
little point in arguing whether some other TP tool would discharge a larger
proportion of such POs — with a fixed set of heuristics, some POs will always
remain undischarged. This issue is delaying –and will continue to limit– wider
use of “formal methods”.

Further investigation of the hundred remaining POs does, however, offer some
more encouraging news: on examination, there were no more than five ideas
which made it easy to discharge all of the residual POs. It is this observation
–which is echoed in many other examples– that leads us to the approach being
followed in the AI4FM project. It is clear that major research progress has
been made in discovering general purpose TP heuristics; on the other hand,
undecidability results limit hubris and experience suggests that it is properties
that are specific to the data structures and functions of an application that make

2 This paper does not address the transition from requirements to formal specifi-
cations: the issues around understanding requirements are addressed in Jackson’s
“Problem Frame Approach” [8]; ways of determining specifications of control sys-
tems from requirements on overall system behaviour are considered in [14].
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proofs go through. The resource that our project hopes to tap is the ability of an
expert to spot these specific properties. Having once identified them, the system
should then absorb them and use them to discharge further similar proofs. This
has two major payoffs: not only is the expert’s time not wasted performing
encores with proofs that are somehow “in the same family”; but there is also
a higher probability that proofs will be found automatically after (inevitable)
minor changes to specifications or designs.

The hypothesis of the AI4FM project is:

Enough information can be automatically extracted from an interactive
proof that examples of the same class can be proved automatically

As discussed below, this information might either be high level strategies or be
captured as lemmas.

Before moving on to our approach and a model of the proposed system, there
are a few issues worth putting to rest lest they are of concern to readers. First and
foremost, we are fully aware of the considerable power of modern TP systems
and their tactic languages: as indicated below and in a companion technical
report [22],3 the initial action with any PO is to pass it to at least one TP system.
A particularly encouraging experiment is described in Matthias Schmalz’s ETH
PhD thesis [20] where he shows that a tailored version of Isabelle manages to
discharge a higher percentage of the POs than the built-in TP tools of the
Rodin Toolset. (The case study is of significant size and is taken from a different
DEPLOY partner than the example discussed above.)

It is also worth noting some factors that must qualify reported figures about
“automatically” discharging POs. One such factor is alluded to in reporting
Schmalz’s experiment: he was very careful to split the collection of POs into
training and evaluation sets but the fact remains that Isabelle was hand tailored
to the training set. A useful view of the AI4FM hypothesis is that we are aiming
to automate that tailoring based on monitoring the activities of an expert in
discharging a small number of intransigent POs.

Another significant caveat to any claimed figures on “percentages of automati-
cally discharged POs” concerns reformulations of the models. To take one source,
in [1] there are some beautifully staged developments that are split into many
steps with the effect that the POs are relatively easy to discharge. Even were
it the case that the published developments actually represent the author’s first
attempts, it must be remembered that the author is both an expert and under-
stood thoroughly the strengths/weaknesses of the TPs in the Rodin Tools. An
engineer hoping to deploy the same tools is neither likely to be so expert nor wish
to reformulate rather larger (than in any textbook) models to make the task of
the TP system easier. Abrial’s book is chosen for comparison because his proofs
have been, laudably, discharged using tools. One of the current authors also ex-
tols the advantages of stepwise development (see for example, [9,10,12]) so the

3 Although frequent references are made to this technical report, the current paper
should be self-contained. The longer report contains details of an example that is
large enough that it cannot be covered in a paper of this length.
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question of how much reformulation is in order is clearly one of degree. Without
being able to provide precise metrics, the position taken in the AI4FM project
is that “posit and prove” developments should split a design so that each step
reflects a clear design decision. If –as often happens– that leaves undischarged
POs, the problem should be tackled by introducing concepts during theorem
proving rather than by interposing extra steps of development. (This issue is
discussed further –and illustrated– in the companion technical report [22].)

One final comment is in order: the current authors are (painfully) aware that
many POs actually represent unprovable conjectures. The role of model-checking
approaches such as “ProB” [26] in detecting mistakes is invaluable.

1.2 Tackling the Challenge

The objectives of the AI4FM project were recognised by its proposers and re-
viewers alike as being “ambitious”. Of course, the objectives might not just be
ambitious — they might be unachievable. At a minimum, the project has to
design an unusual way of describing high-level strategies. Here, our experience
suggests that the design of such a “language” is more likely to succeed if it is
driven from the “state” of the language (rather than its syntax).4

A relevant experience for the current project is that which created mural [11].
A prime objective of the earlier project was to devise a style of interacting with a
TP system that kept the user fully aware of the status of a proof and able to make
any sort of forward, backward or intermediate (“cut”) step that he or she wished.
For its time, this was also considered to be ambitious. In the project that built the
mural system, we spent a long time iterating versions of its formal description; in
fact, project members role-played many versions before any thought was given
to actual implementation. The ratio of design time to (initial) implementation
was more than four to one.5 The Newcastle AI4FM team is taking a similar
approach. What follows is the n’th iteration of a model of the architecture of
a system that we are only now beginning to implement. The following sections
(2 and 3) represent an attempt to provide a readable introduction to the model
that is summarised in Appendix A — Section 4 includes a discussion of some
alternatives.

2 Organising Theories

The project will only succeed if a way is found of expressing high-level strategies;
moreover, such strategies need to be generalised from instances of lower-level
steps. We expect to use a strongly declarative “language” rather than strings of
instructions to a TP system. It is argued in Section 3.1 that this will only be
possible if a “top-down” hierarchical view of proofs is taken. We anticipate that

4 Christopher Strachey argued for working out what you want to say before worrying
about how to say it.

5 An additional bonus was that the model was kept up-to-date during the evolution
of the system — it is published as [11, Appendix C].
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the system will be able to track the overall process by which a user constructs
an interactive proof and that “parsing” the detail against the user’s “intent” will
be possible.

Thus we intend that our proposed system notes the intent of an expert user so
as to match this against other tasks. These ideas are described in Section 3. The
current section builds up an understanding of the architecture of the AI4FM
system in which information about proofs themselves is stored.

The ideas have been tested on a number of examples and the companion
technical report [22] contains a non-trivial development (the discussion there
and the fact that we made mistakes that were uncovered whilst discharging the
POs support the view that, although the example is smaller than the industrial
examples that are our final target, it is significantly more challenging than any
that would fit in a paper of this length).

2.1 Bodies of Knowledge

The accumulated knowledge in AI4FM is stored in a collection of named bodies
(in the sense of “body of knowledge”).6

Σ :: bdm : BdId
m−→ Body

· · ·
These bodies can be related to each other in various ways — this topic is dis-
cussed in Section 3.2. There will be bodies of knowledge about general mathe-
matical theories such as set theory (cf. Section 2.2); there will also be bodies that
relate to a specific application (cf. Section 2.3). Thus far, this is a conventional
structure but it is one into which more novel concepts are embedded.

2.2 Base Theories (as Body Objects)

Consider, say, the Body for sequences of “locations”7 as in the model in [22,
Appendix B]. The BdId will be some memorable name such as LocSeq. It will
“use” both the theory for Loc and that for N (for indexing and the result of
len s). Within the theory, there will be a series of functions such as s(i), s1

� s2,
hd s , tl s (operators are viewed as functions written in an infix –or even mixfix–
notation). A FnDefn will contain the signature of the function and, optionally,
an explicit definition in terms of more basic operators. So, “append” might be an
operator characterised by axioms; whereas rev might be defined by a recursive
definition. Thus far:

Body :: uses : BdId -set
· · ·
functions : FnId

m−→ FnDefn
· · ·

6 Records, mappings, sets etc. are defined in VDM notation — this should present no
real hurdle but readers who want to check details are referred to [10].

7 Obviously, we intend to handle polymorphism — but this is not covered in the
current paper. The approach will almost certainly follow that worked out in [11].
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FnDefn :: type : Signature
defn :

[
Definition

]
2.3 Specifications Give Rise to Bodies

As well as general theories, we also expect each user specification to be linked
to a Body corresponding to its “state”. Something like the Overture tool [25]
will generate a Body for each specification (cf. Appendices of [22] that include
a top-level specification and two refinement steps). It is often useful to know
the problem domain to which a specification relates — for example, in the Rail

domain, frequent use is made of relations to record track layouts.
Body :: · · ·

domain : {Rail,Auto, . . .}
· · ·

In most industrial cases, the state will be defined as a record. In examples such
as those from the industrial partners in the DEPLOY project, states of 20 fields
were not unusual — and these states also tended to have lengthy invariants. It
might be worth generating theories for any separable sub-states in the sense that
data type invariants and/or operations force some fields to be grouped together
— other than these constraints, models should be split as far as is possible —
each distinct record type will be translated into a body.

Within a body for a specification, a proof obligation generator (POG) will
place a Conjecture for each PO about the consistency (e.g. invariant preserva-
tion) of that single specification. Proof obligations will also be generated corre-
sponding to the claim that one model reifies another (obviously this has to be
triggered by the claimed reification link).

2.4 Conjectures

The information in a Body that is of use in proofs is the collection of formal
results that are built up over the lifetime of that body.

Body :: · · ·
theory : ConjId

m−→ Conjecture
· · ·

When first generated, a Conjecture is actually a proof task. Each such conjecture
has hypotheses and a goal both containing judgements. A Judgement can be a
sequent or an (in-)equation. In addition there can be any number of (attempts
at) justifications. Thus:

Conjecture :: · · ·
hyps : Judgement∗

goal : Judgement

justifs : JusId
m−→ Justification

· · ·
Judgement = Sequent | Equation | Ordering | · · ·
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So, for example, s ∈ LocSeq � rev(rev(s)) = s is likely to be a judgement
accompanied by a proof; other judgements will be axioms.

2.5 Justifications

Turning to Justification, notice that it is explicitly envisaged that there can be
multiple attempts to justify a proof task. When a conjecture is first generated,
it will have no justifications. A user might start one proof Attempt , leave it aside
and try another, then come back and complete the first proof.

Many conjectures will not contain proofs as such. There might for example be
an axiom that hd ([a]� s) = a and a proof of rev(rev(s)) = s . Unsurprisingly,
a flag Axiom will be used to mark axioms. Another way in which a justification
need not be (a graph of) a logical proof is that it might be copied from some
separate Trusted source.

In practice, TP tools such as Isabelle and Z/EVES are powerful enough that
a user will hardly ever interact at the level of the (natural deduction) laws of
the logic itself. So, in fact, the most prevalent examples of Justification ought
come from the underlying theorem prover. Automatic use of a TP system will
be recorded as an instance of Tool (and might include the configuration used).
Other obvious examples of Tool might record the use of a SAT/SMT tool (which
could also be used to look for counter examples if the first attempt at proof fails).

Justification = Axiom | Trusted | Tool | Attempt

The idea of Attempt is to be able to accommodate (manual) proof steps.

Attempt :: rule : ConjId
hyps : ConjId∗

subst : Term
m−→ Term

sub-probs : ConjId -set

Notice an attempt corresponds to one step in a proof: collecting a whole proof
requires tracing the attempts at the sub-conjectures. Thus the notion of whether
a proof is complete (in the sense of (transitively) relying only on axioms) is a
complex recursive predicate. A low-level instance of Attempt might record that
the (rule) on which it is based is “or elimination”. More interesting would be
the use lemmas.

3 Strategies

As indicated, the aim of the AI4FM project is to support users with the dis-
charge of industrial scale POs. The way in which we expect to extract strategic
insight from proofs –possibly undertaken by experts– is described in Section 3.1;
selection and replay (with modifications) is covered in Section 3.2. First, the
data structures are described.
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Strategies reside in the relevant Body:
Body :: · · ·

strats : StrId
m−→ Strategy

A low level strategy might split a problem into sub-cases; another could reduce
an expression to a normal form; an important collection of strategies will be for
induction; an interesting strategy might shift the representation of an object of
interest to a different body of knowledge.

We have for a long time within the AI4FM project referred to the “why” of
strategies and conjectures (and this is the reason for the use of this word in the
title of the paper). The point is that it is easier to achieve a high level of strategy
re-use if the intent is captured rather than if only a transcript is recorded. The
initial conjectures come from POG and their source will contain the name of the
kind of proof obligation. Conjectures that are generated as sub-problems by a
strategy will be marked with the Why value of the strategy.

Conjecture :: source : Origin | Why
· · ·

Examples of values for Why are given in Section 3.1 (and more are listed in [22]).
The set will never be closed so that a user can always add a new concept.

Strategic information needs to represent both “and” and “or” situations. The
“or” function is represented by having alternative strategies. For example, we
do not explicitly say that three strategies whose StrIds are StructuralIndn,
NPeanoIndn and NCompleteIndn are options — it’s just that their intent
fields are all likely to be marked as something like HandleUniversal. The
selection between alternatives is, in a sense, underneath the covers for the user
(it might give rise to limited parallelism).

An “and” split in a Strategy records that, in order to justify a conjecture,
certain other conjectures must be discharged (although in some cases it will
just be a reformulation and generate only one sub-task — e.g. contrapositives
of implications, use of an isomorphic model — at the leaves of a strategy there
are no sub-tasks). Just as in LCF-like systems, the flip side of split is the justif
which proves that the sub-goals (when discharged) justify the original goal.

Strategy :: intent : [Why]
split : Conjecture → Conjecture-set
justif : JusId
· · ·

Notice that split is a general function, not a mapping. One possibility for the
split field is that it could contain a text in a language that is interpreted. In
contrast, it fits our top-down view better to have high-level derived rules — see
the discussion of lemmas in the next sub-section.

After a split is made, the theorem prover of choice will be triggered on each
of the generated sub-goals. If they are all discharged, this reinforces the strategy
used; if the user hits a dead-end, the likelihood of trying that strategy in similar
circumstances is reduced. Furthermore, the expert has to backtrack to some
other decision in the proof process.
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3.1 Extracting Strategies

As indicated in Section 1.1, over and above general purpose heuristics, the key
resource that AI4FM hopes to exploit is to garner information from interactive
proofs. It is convenient to talk about this in terms of the interactive proof being
undertaken by an expert but it might also be the case that an engineer who is
working on PO discharge behaves as the expert — perhaps after some reflection.

The following diagram shows how AI4FM is intended to snoop on the inter-
action of the expert with the theorem proving system. The symbols stand for
the expert (depicted by a lightbulb for inspiration), the TP system (a cogwheel
around the turnstile symbol) and at the top of the diagram AI4FM (marked by
our trademark for recycling deductions). The basic two way interaction between
the expert and the TP system is marked by the horizontal arrows.

(1)

(2)

(3)(4)

The numbered arcs showing interactions with AI4FM are explained as follows:

1. Having a record of why a conjecture is being tackled, the system can attempt
to “parse” any interactions initiated by the expert against existing strategies.

2. The expert will be asked to name any new strategies and be invited to mark
identifying features.

3. The system can note undischarged goals, record success/failure of strategies;
and record the lemmas that are used.

4. The system can suggest strategies to the expert.

This illustrates the primary way in which AI4FM will accrete information. Notice
that the aim is to mine the proof process which we feel has far more information
than just finished –and possibly polished– proofs.

One point that we feel is crucial is the importance of starting the analysis of
what the user (expert) is doing from the initial goal (the “top” of the proof):
knowing why a conjecture arose is the key to getting an appropriate “parse” of
the steps made; looking at the steps alone is a much harder way of determining
an expert’s intent.8

8 Hearing a seminar on programs that “understand” music prompted the analogy of
trying to guess the form of a piece of music a bar at a time versus trying to “parse”
it against some expected structure(s).
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A failure to discharge a PO will be apparent when one or more conjectures
cannot be proved either by the underlying theorem proving systems or any of the
available strategies. When such an impasse is reached, an expert might introduce
a lemma. Alternatively, the expert might respond by making a different choice
in some step of the proof. For now, we assume that this step is captured without
immediate generalisation (cf. Section 3.2). The expert is prompted to provide a
name (Why) for the new idea. In some cases, it will be possible for AI4FM to
track that a new strategy specialises an existing one but in the worst case it is
certainly worth having the option to add this relationship by hand.

It is also useful to organise a “taxonomy” of strategies. The idea is perhaps
best illustrated by an example:

NPeanoIndn specialises NIndn
NCompleteIndn specialises NIndn
NIndn specialises Indn
StructuralIndn specialises Indn

So the final field of Strategy is:
Strategy :: · · ·

specialises : [StrId ]

There are also what might be thought of as “meta-strategies”. One of these is
referred to by the second author as “zooming”. Given, for example (in tech-
nical report [22, B.1]), a proof obligation that involves expressions such as
pre-NEW 0(s , σ) there are three levels at which the PO can be passed to a the-
orem prover: as is (with nothing expanded); expansion of the specific predicate
pre-NEW 0 (about which there are likely to be no lemmas) to terms/operators
of set theory; or even an expansion of everything down to predicate calculus.
In general, proofs are clearest to a user if they can be conducted with least ex-
pansion. In fact, a genuine expert will often “anti-zoom” and prove results at a
more general level than their original expression.

A frequent contribution from an expert is to spot that a lemma will provide the
clue that makes automatic theorem proving succeed. This approach is seen most
clearly in the “waterfall” of ACL2 [15] but it also applies to LCF-style theorem
provers such as Isabelle. Lemmas essentially bundle up steps in an argument so
that one application of a strategy moves a proof many steps towards its goal.
In this section, we assume that lemmas are captured in exactly the form in
which they are used; Section 3.2 indicates one source of generalisation. We are
also investigating other ways of spotting generalisations at the point of lemma
capture. A way of relating bodies of knowledge is described in the next section
and this is one technique by which patterns between lemmas can be utilised.

3.2 Replaying Strategies

For some specific Conjecture, a user might wish to provide a justification. There
is, in fact, rather more behind this comment than someone schooled in say Is-
abelle might expect. First of all, AI4FM will provide many ways of viewing the
outstanding proof tasks so that, for example, a user can see all of the unjustified
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leaves of the tree from some specific PO. It is also envisaged that a user can
opt to provide new proofs for already justified results — this is why Conjecture
contains a map (justifs) to any number of justifications.

The description that follows, however, assumes a single point of focus: a
Conjecture. If the theorem prover of choice can discharge the conjecture auto-
matically, the justification is recorded as a Tool transcript. The more interesting
case for AI4FM is where automatic proof fails.

The following diagram shows how AI4FM can assist the interaction of an
engineer (marked by a hardhat) with a TP system.

(1)(3)

(2)(4)

?

Here again, the extra indexed arcs are explained:

1. The system can replay (possibly modified versions of) strategies that fit the
context and have been previously generated in expert mode. As explained
below, an attempt is made to order the use of options based on previous
success/failure.

2. Success/failure of strategies is noted both to trigger a move to the next
option and to adjust weights that will affect future choices. If necessary,
failure of the final option will cause the system to backtrack to an earlier
point in the proof tree.

3. The system must keep the user informed (especially about backtracks); it
might also ask about lemmas.

4. The engineer might be able to assist if automatic attempts (just) fail; alter-
natively, there might be a need to bring an expert on line.

Given a collection of strategies, we need a way of selecting the one that is most
likely to succeed. There are two sources of information. The provenance infor-
mation in the source field of Conjecture is discussed above; in addition to the
fields listed at the beginning of Section 2.4, a Conjecture will contain information
about its features:

Conjecture :: · · ·
match : Features

A putative shape of Features is given in Appendix A — the final list will be
chosen after experimentation. The order in which strategies are tried is governed
by its Score and this is an area where we hope to use some form of “machine
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learning”. It is therefore crucial that the success or failure of strategies is recorded
to adjust the weights in the rank function

Strategy :: · · ·
rank : Conjecture → Score
· · ·

Another way of ordering strategies is based on the assumption that the most
specific strategy should be tried first and a specialises field is added to Strategy
to locate the next more general strategy:

Strategy :: · · ·
specialises : [StrId ]

In this case, failure prompts trying the next more general strategy.
A stored strategy might well rely on a lemma and the exact form of the

lemma used in the situation from which the strategy was extracted might not
fit the context where the strategy is being replayed. So far, we have considered
two ways of evolving (“educing”) lemmas: one involves looking in related bodies
of knowledge; the other attempts to infer a modified lemma from contextual
information.

With regard to relationships between bodies of knowledge, Σ contains:
Σ :: · · ·

bdrels : (BdId × Relationship × BdId)-set

which stores relationships between bodies of knowledge. Like Why itself, this
will have to be expandable by the user. Some examples include:

Relationship = Specialisation | Morphism | Isomorphism |
Inherits | Sub | Similarity | Difference | · · ·

AI4FM might, for example, have some abstract items in Body such as Larch’s
“collector” [7]; sets, sequences and maps would all then be specialisations of
collector. Another abstract item might be “inductable” where the more gen-
eral knowledge about setting up inductive proofs would reside. Morphism and
Isomorphism will be used for precise mathematical relationships — the latter
where results can be used in either direction. Similarity will be for less precise
connections (fuzzy matches).

To begin with a low-level example of how the relationships between bodies
can be used, suppose a strategy for rearranging operators was applied on set
operators and the associativity of union was used, then application of the same
strategy on sequence operators might generate the need for a lemma for the
associativity of concatenation. In this case, one would expect that such a lemma
would already be in the appropriate Body. A more interesting example might be
ways of creating witnesses for existential quantifiers.

The approach of evolving a lemma from the originating proof to match a new
context looks to be feasible. Comparing the hypothesis and goals of the original
proof task with the lemma that was generated in expert mode ought to provide
enough information to tailor a new lemma that fits the context in which the
containing strategy is replayed.
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If all options for a strategy have proved fruitless, AI4FM will be able to locate
a higher point in the “proof tree” and try alternatives from there. The balance of
exploring breadth versus resorting to backtrackingwill have to await experiments.

4 Status and Way Forward

As indicated in Section 1.2, we have already spent a lot of time discussing the
architecture of our proposed system in terms of a model whose current version is
in Appendix A. Some of the issues already resolved are outlined in Section 4.2;
Section 4.3 sketches our immediate priorities; the first sub-section outlines our
experiments with case studies.

4.1 Outline of Case Studies

As has been made clear above, the model of the architecture described in the
preceding sections and summarised in Appendix A has evolved over experiments
with case studies. Experience has shown that relatively little can be learnt from
small examples and that many issues only become clear when non-trivial case
studies are considered. The specification and development in [22] is not as large
as those met –for example– in the DEPLOY project (see [19]) and it has been
important that such industrial applications are kept in mind. Apart from the
experience of working closely with industrial teams, the authors have direct
writing experience of specifications and developments for applications like cash
cards, file stores and systems that control access to secure sites.

The management of a free storage “heap” is a well understood computing
problem and the development in [12, §7] provided a good starting point for a
useful case study.9 The heap example is too large to cover in detail in a paper of
this length which is why a companion technical report [22] is being made available
along with all of the formal material in machine readable form.10 Deviations from
the original development of [12, §7] are discussed in [22, Appendix B.3.6]. That
report also contains additional observations that come from other case studies.

One thing that has come as a surprise is the degree of difficulty in handling
partial terms efficiently in Isabelle. Our surprise might puzzle a reader who
knows that the first author has long argued for the use of a “Logic of Partial
Functions” [2]; this is clearly an area for more investigation and Schmalz’s [20]
might offer the approach that fits most closely with Isabelle.

4.2 Alternatives Already Considered

There are some ideas that we have considered but have yet to build into the
model. Two such issues are mentioned here: “analysing proof failures” and

9 In fact, most of the chapters in [12] are non-trivial and usable as case study material.
10 We have actually undertaken the proofs in both Z/EVES and Isabelle/HOL and the

differences are discussed in [22].
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“recording negative results”. Our project colleagues in Edinburgh have pioneered
general ideas about analysing proof failures and more specifically about “rip-
pling” [3]. Superficially, it would be easy to include one or more indicators such
as StuckInduction among the values of Why but further investigation and
experimentation is required to check that this provides a convenient bridge to
established –and new– ways of analysing failure.

Prompted by an interesting discussion with Aaron Sloman, we experimented
with the idea of recording in the model what might be termed “negative re-
sults”. The point being that knowing –for example– that, while set union and
list concatenation both enjoy properties such as associativity, the latter is not
commutative (in general) might provide important clues when trying to replay
a strategy from one context in a different body. This idea remains under consid-
eration but for now it is assumed that such negative information is stored as a
Difference relationship in bdrels .

Probably the biggest issue in our discussion on the architecture has been the
ways in which one can view the design of a “strategy language”. To oversimplify,
one can contrast “bottom up” approaches that try to extend the vocabulary of
existing tactic languages with the “top down” approach followed in this paper.
Of course, the ideal is that these approaches converge and it is clear that the
split field of Strategy in Appendix A could contain texts of an extended tactic
language. As indicated in Section 3.1, a strong argument for the top-down ap-
proach is that making sense of (“parsing”) interactions in expert mode is only
possible if the system can track the user’s overall objective. It must however be
conceded that it would be simpler to capture the tactic-level steps that an expert
makes than it will be to parse these against high-level goals. The idea of taking
the lower-level approach and adding annotations to such scripts is viewed as a
fall-back position; our immediate plan is to tackle the high-level objective.

The model in Appendix A does not order sub-goals in the split field of Strategy.
This assumes that only graph shape matters but we accept that there are cases
where order might be important. In fact, we have considered the idea of time
stamping each Conjecture. We have yet to build this into the model (one can
always write a function that drops this information where not needed).

Another option in the model is to be able to locate instances of the use of strate-
gies — but, for the time being at least, the pointers are in the other direction.

As was found in the mural project, records (in the VDM sense) can be dif-
ficult in that there is really a different theory of selectors and constructors for
each record shape. Records are so ubiquitous that we have to do something
for them and we do not favour expanding out “axioms” for all of the construc-
tors/selectors. One reason for preferring some built-in handling of records is that
theorem provers can actually suffer from an excess of lemmas: the irrelevant clut-
ter makes searching inefficient or even useless.

4.3 Next Steps

Our immediate activity is to tension the model in Appendix A against more non-
trivial examples. A trade-off then has to be made as to the point in time when
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greater productivity can be achieved by building the model into our on-going
tool support activities. The balance here is that it takes almost no time to revise
the model on paper but somewhat longer to revise the Eclipse-based tools that
are the current work of (mainly) the third author. The first version of an Eclipse
interface to Isabelle has been released [21] and it provides an integration platform
for our tools and experiments which gather information from interactive proofs.

Even once we switch to slightly slower revision iterations involving the tools,
it is our intention to follow the good practice in the mural project and to keep
the formal model up to date.
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A Summary of “Model”

Σ :: bdm : BdId
m−→ Body

bdrels : (BdId × Relationship × BdId)-set

Body :: uses : BdId -set
domain : {Rail,Auto, . . .}
functions : FnId

m−→ FnDefn

theory : ConjId
m−→ Conjecture

strats : StrId
m−→ Strategy

FnDefn :: type : Signature
defn :

[
Definition

]
Conjecture :: source : Origin | Why

hyps : Judgement∗

goal : Judgement

justifs : JusId
m−→ Justification

match : Features

Judgement = Sequent | Equation | Ordering | · · ·
Justification = Axiom | Trusted | Attempt | Tool
Attempt :: rule : ConjId

hyps : ConjId∗

subst : Term
m−→ Term

sub-probs : ConjId -set

Tool = · · ·
Could include info about blocks :ConjId -set

Strategy :: intent : [Why]
split : Conjecture → Conjecture-set
justif : ConjId
rank : Conjecture → Score
specialises : [StrId ]

Features :: mainTps : BdId -set
mainFns : FnId -set
other : · · ·

Origin = Token

Why = Token

Relationship = Specialisation | Morphism | Isomorphism |
Inherits | Sub | Similarity | Difference | · · ·
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Abstract. Multiweighted energy games are two-player multiweighted
games that concern the existence of infinite runs subject to a vector of
lower and upper bounds on the accumulated weights along the run. We
assume an unknown upper bound and calculate the set of vectors of
upper bounds that allow an infinite run to exist. For both a strict and
a weak upper bound we show how to construct this set by employing
results from previous works, including an algorithm given by Valk and
Jantzen for finding the set of minimal elements of an upward closed
set. Additionally, we consider energy games where the weight of some
transitions is unknown, and show how to find the set of suitable weights
using the same algorithm.

1 Introduction

Energy games have recently attracted considerable attention [1–9]. An energy
game is played by two players on a weighted game automaton. Player 1 wins if she
has a strategy such that all infinite runs respecting this strategy has nonnegative
accumulated weight at all times. A variant of energy games furthermore requires
an upper bound that the accumulated weight must stay below at all times in
order for Player 1 to win. The upper bound can also be weak, implying that all
accumulated weights going above are simply truncated. As embedded systems
are often resource-constrained systems exhibiting a reactive behaviour, energy
games are relevant for ensuring that the resource of the system never becomes
unavailable no matter the choices of the environment. Multiweighted energy
games, where the weights of the automaton are vectors, are useful for modelling
systems that depend on more than one resource.

In this paper we consider multiweighted energy games with unknown upper
bound (both strict and weak) and fixed initial value. When considering the
existence of a vector of upper bounds such that Player 1 is winning, it is from an
engineering viewpoint relevant to construct the actual vector instead of giving
a boolean answer to the problem. We therefore seek to construct the exact set
of upper bounds that make Player 1 win the energy game. We will denote such
upper bounds as winning. For both types of upper bounds it is clear that if some
vector of upper bounds is winning, then also coordinate-wise larger vectors are
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winning. In order to characterise the set of winning upper bounds, it is thus
sufficient only to find the smallest vector of winning upper bounds. However, ≤
is not a total order on �k for k > 1, so instead of a unique smallest vector we
search for the set of smallest incomparable vectors winning for Player 1.

To motivate the study, let us consider a small example of an automatic vacuum
cleaner. The machine has a rechargeable battery and a container for the dust
it collects. As we are interested in a behaviour that never empties the battery
nor completely fills the dust container, it can be modelled using a 2-weighted
energy game as seen in Fig. 1a. The vector attached to each transition denotes
the change in battery (first coordinate) and container level (second coordinate).
The diamond state is controlled by Player 1 while the square state is controlled
by the environment, as the vacuum cleaner does not control how dirty the floor
is when vacuuming.

The lower bound of the two resources are naturally 0, while the upper bound
corresponds to the size of the battery and container, respectively. For a manu-
facturer it is useful to know what size she can possible make the battery and the
container in order to ensure an infinite run. The set of minimal winning upper
bounds consists in this case of the vectors (6, 2) and (5, 3). The upper bound
vector (6, 2) keeps the container as small as possible, while the upper bound
vector (5, 3) keeps the battery as small as possible. Surely, the first coordinate
of an upper bound cannot be smaller than 5, as charging adds 5 to the accu-
mulated weight in the first coordinate. Similarly, the second coordinate cannot
be smaller than 2, as a very dirty floor adds 2 to the accumulated weight in the
second coordinate. The winning strategy for Player 1 can be seen in Fig. 1b for
(6, 2) and Fig. 1c for (5, 3). Any vector larger than one of the minimal vectors
will also serve as a winning upper bound.

Contributions. For multiweighted energy games with an unknown upper bound
(both strict and weak) and fixed initial value we calculate the set of minimal
upper bounds such that the energy game is winning. For a strict upper bound
we make use of results from [3] and [9] in order to construct the set, yielding an
algorithm running in 2k-exponential time. In the case of a weak upper bound
we utilise an algorithm given by Valk and Jantzen in [10], that constructs the
set of minimal elements of an upward-closed set (the so-called Pareto frontier),
by showing that the preconditions for applying the algorithm are fulfilled. The
relevant definitions are given in Section 2, while Section 3 and Section 4 treat
the cases of a weak and a strict upper bound, respectively.

Furthermore we study a related problem in Section 5, where we consider
multiweighted energy games where both the initial value and the upper bound
(if any) are known, but where some weights of the transitions are unknown.
We call these parametrised transitions. We here seek to characterise the set of
possible evaluations for the parameters such that Player 1 can win the energy
game. For a weak upper bound, it is again sufficient to construct the set of
minimal evaluations such that Player 1 is winning, and we are once again able
to apply the algorithm from [10] to construct the set.
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(−
1
,0
)

va
cu

u
m(−1, 2)

very dirty
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(a) A vacuum cleaner 2-weighted game

if battery ≥ 1 and container ≥ 1

then empty

else if battery ≥ 2 and container = 0

then vacuum

else charge

(b) A winning strategy for Player 1
with upper bound (6, 2)

if battery = 0

then charge

else if battery ≥ 2 and container ≤ 1

then vacuum

else empty

(c) A winning strategy for Player 1
with upper bound (5, 3)

Fig. 1. A vacuum cleaner example

Related Work. Previously energy games have been considered in different set-
tings. One-weighted energy games with both upper and lower bounds were de-
fined in [2]. Here they study the existence of a winning strategy for Player 1 for
a fixed initial value and fixed upper and lower bound and provide bounds on
the complexity for the identified problems both in a timed and untimed setting.
The paper [9] extends the results from [2] to the multiweighted case. The work
of [7] treats multiweighted energy games with only a lower bound and show
that deciding whether there exists a vector of initial values for the resources
such that Player 1 can win the energy game is coNP-complete and that only
finite-memory strategies are sufficient. In [3] they give a procedure running in
(k − 1)-exponential time that calculates the Pareto frontier of winning initial
vectors in multiweighted energy games with k weights, a lower bound and unary
weights on transitions (vector addition systems with states). For energy games
with imperfect information and fixed initial value, the paper [8] proves decid-
ability of the problem, but undecidability in case the initial value is not fixed.

2 Multiweighted Energy Games

In this paper, we let � and � denote the sets of all integers and all nonnegative
integers, respectively. We define �ω as � ∪ {ω}, where ω is a new element
modelling an arbitrary nonnegative integer. Thus ω > m for any m ∈ �.

For two k-dimensional vectors v̄, v̄′ ∈ �k
ω we use the notation v̄[i] to denote

the ith coordinate of the vector v̄ (1 ≤ i ≤ k) and write v̄ ≤ v̄′ if v̄[i] ≤ v̄′[i] for
all i ∈ {1, . . . , k}. We define the sum of two vectors as the coordinate-wise sum,
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i.e. v̄ + v̄′ = (v̄[1] + v̄′[1], . . . , v̄[k] + v̄′[k]). The notation 0̄ = (0, . . . , 0) is used to
denote the vector of all zeros and ∞ = (∞, . . . ,∞) as the ditto for ∞.

A set K ⊆ �k is said to be upward closed if x̄ ∈ K and x̄ ≤ ȳ implies ȳ ∈ K.
Furthermore we define min(K) as the set of smallest incomparable vectors of
K,

min(K) = {x̄ ∈ K | ∀ ȳ(�= x̄) ∈ K : ȳ �≤ x̄} .

We call such a min(K) the minimal generating set of K.
It it well-known that such a set of incomparable vectors of natural numbers

will be finite (as stated in Dickson’s lemma) and unique.
We now define a game with multiple weights as an automaton with dedicated

state sets for each player and a transition function decorated with a vector of
integers.

Definition 1. A k-weighted game is a four-tuple G = (S1, S2, s0,−→), where
S1 and S2 are finite, disjoint sets of existential and universal states, respectively,
s0 ∈ S1 ∪ S2 is the start state and −→ ⊆ (S1 ∪ S2) × �k × (S1 ∪ S2) is a finite
multiweighted transition relation.

We write s
w̄−→ s′ whenever (s, w̄, s′) ∈ −→. In the following we consider only

non-blocking automata, i.e. for every s ∈ S1 ∪ S2 we have s
w̄−→ s′ for some

w̄ ∈ �k and s′ ∈ S1 ∪ S2.

Definition 2. A configuration in a k-weighted game G = (S1, S2, s0,−→) is a
pair (s, v̄) such that s ∈ S1 ∪ S2 and v̄ ∈ �k.

A weighted run π in G restricted to a weak upper bound b̄ ∈ (�∪{∞})k is an
infinite sequence of configurations (s0, v̄0), (s1, v̄1), . . . such that for all i ≥ 0 we

have si
w̄i−→ si+1 and v̄i+1[j] = min{b̄[j], v̄i[j] + w̄i[j]} for all j ∈ {1, . . . , k}.

By WRb̄(G) we denote all weighted runs in G with weak upper bound b̄ starting
from the initial state. Let πi denote the ith configuration of a weighted run π.

As we are concerned with games we need a notion of a strategy for a player.

Definition 3. A strategy for Player i ∈ {1, 2} in a k-weighted game G =
(S1, S2, s0,−→) restricted to some weak upper bound b̄ is a mapping σ assigning
a configuration (s, v̄) to any finite prefix of a weighted run in WRb̄(G) of the
form (s0, v̄0), . . . , (sj , v̄j) where sj ∈ Si such that (s0, v̄0), . . . , (sj , v̄j), (s, v̄) is a
prefix of a weighted run in WRb̄(G).

We say that a weighted run (s0, v̄0), (s1, v̄1), . . . respects a strategy σ of Player
i if σ((s0, v̄0), . . . , (sj , v̄j)) = (sj+1, v̄j+1) for all sj ∈ Si.

We can now define the following three notions of winning vectors.

GL: Given a k-weighted game G, a vector v̄0 ∈ �k wins the (multiweighted)
energy game with lower bound (GL) if there exists a winning strategy σ
for Player 1 such that any weighted run (s0, v̄0), (s1, v̄1), . . . ∈ WR∞(G)
respecting σ satisfies 0̄ ≤ v̄i for all i ≥ 0.
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GLW: Given a k-weighted game G, a vector b̄ ∈ �k wins the (multiweighted)
energy game with lower and weak upper bound (GLW) if there exists a win-
ning strategy σ for Player 1 such that any weighted run (s0, 0̄), (s1, v̄1), . . . ∈
WRb̄(G) respecting σ satisfies 0̄ ≤ v̄i for all i ≥ 0.

GLU: Given a k-weighted game G, a vector b̄ ∈ �k wins the (multiweighted)
energy game with lower and upper bound (GLU) if there exists a winning
strategy σ for Player 1 such that any weighted run (s0, 0̄), (s1, v̄1), . . . ∈
WR∞(G) respecting σ satisfies 0̄ ≤ v̄i ≤ b̄ for all i ≥ 0.

Notice that we may allow an initial weight vector v̄0 different from 0̄. This is
evident by adding a new start state with one transition labelled with v̄0 pointing
to the old start state.

Define I = {v̄0 ∈ �
k | v̄0 wins GL}, W = {b̄ ∈ �

k | b̄ wins GLW} and
U = {b̄ ∈ �k | b̄ wins GLU} as the winning vectors for GL, GLW and GLU,
respectively. The paper [3] constructs the set min(I) using (k − 1)-exponential
time for k-weighted energy games with unary weights.

This paper aims to construct the minimal generating sets of winning weak
and strict upper bounds, min(W ) and min(U).

Membership Problem. Another interesting question besides constructing the sets
of winning vectors for a given game, is the question of membership; given a
k-weighted game G and a vector b̄ ∈ �

k decide whether b̄ ∈ W (or b̄ ∈ I
or b̄ ∈ U). The membership problem has been addressed in [9] among others.
Table 1 (also found in [9]) gives a full overview of the so far obtained decidability
and complexity results for the membership problem. In the table two further
classifications of a k-weighted game G = {S1, S2, s0,−→} are made. We say that
a game G is existential if S2 = ∅ (Player 1 controls all the states) and that G
is universal if S1 = ∅ (Player 2 controls all the states). The other subdivision
concerns the number of weights, namely whether k is 1, fixed (and k > 1), or
arbitrary.

Note that the complexity increases as more weights are added, apart from the
universal case, where all problems lie in P. This is evident since any membership
problem on a universal game with k weights can be solved by solving the same
problem for each coordinate independently. Another thing to observe is that
deciding membership in I is computationally easier than deciding membership
in U in the 1-weighted case, even though membership in I is harder than U for
an arbitrary number of weights. This stems from the fact that the configuration
space for the problems concerning U (and W ) is bounded due to the upper
bounds, whereas the same a priori does not hold for the problems concerning
I. The computational complexity of the problems concerning membership in W
seems to follow the computationally easiest of the two other problems.

3 Weak Upper Bound

In this section we study the problem of finding the set min(W ) as defined in
Section 2.
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Table 1. Complexity bounds for the membership problem

Weights Type Existential Universal Game

One ∈ I ∈ P [2] ∈ P [2] ∈ UP ∩ coUP [2]

∈ W ∈ P [2] ∈ P [2] ∈ NP ∩ coNP [2]

∈ U NP-hard [2], ∈ PSPACE [2] ∈ P [2] EXPTIME-complete [2]

Fixed
(k>1)

∈ I NP-hard [9],
∈ k-EXPTIME [3]

∈ P [9] EXPTIME-hard [9],
∈ k-EXPTIME [3]

∈ W NP-hard [9], ∈ PSPACE [9]
PSPACE-complete for k ≥ 4 [9]

∈ P [9] EXPTIME-complete [9]

∈ U PSPACE-complete [9] ∈ P [9] EXPTIME-complete [9]

Arbitrary ∈ I EXPSPACE-complete [9] ∈ P [9] EXPSPACE-hard [9],
decidable [3]

∈ W PSPACE-complete [9] ∈ P [9] EXPTIME-complete [9]

∈ U PSPACE-complete [9] ∈ P [9] EXPTIME-complete [9]

The paper [10] by Valk and Jantzen contains an algorithm for computing the
minimal generating set of an upward closed set K ⊆ �k provided that K satisfies
a certain decidability criterion.

The decidability question is defined for a set K ⊆ �
k as a predicate pK :

�
k
ω → {true, false} by pK(d̄) = ({d̄′ ∈ �k | d̄′ ≤ d̄} ∩ K �= ∅). Thus pK(d̄)

decides whether or not the set K has any elements in common with the set of
vectors smaller than or equal to d̄. If pK(d̄) is decidable for any d̄ ∈ �k

ω, the
algorithm can be applied to compute the minimal generating of K.

We will now argue that the algorithm proposed in [10] is useful for constructing
min(W ). The set W is upward closed since a weak upper bound b̄ ∈ �k that
wins GLW ensures that any b̄′ ≥ b̄ will also win GLW. As min(W ) is exactly
the minimal generating set of W , min(W ) can be found using the algorithm in
case pW is decidable.

Lemma 1. The predicate pW (d̄) is decidable for any d̄ ∈ �k
ω.

Proof. Given a vector d̄ ∈ �k
ω the following procedure will either construct b̄ ∈ W

such that b̄ ≤ d̄ or report that no such b̄ exists. Let d̄′ be the vector d̄ where all
ω-entries are substituted by ∞.

Starting from the configuration (s0, 0̄) we construct a self-covering tree con-
taining prefixes of all weighted runs. Any configuration (s, v̄) induces the child

(s′, v̄′) for any s
w̄−→ s′ such that v̄′[] = min{d̄′[], w̄[] + v̄[]} for all  ∈

{1, . . . , k}. The unfolding of the game graph stops for each branch (i.e. weighted
run (s0, 0̄), (s1, v̄1), . . . ∈ WRd̄′(G)) when reaching an i such that either

A. v̄i[] < 0 for some  ∈ {1, . . . , k} or
B. si = sj and v̄i ≥ v̄j for some j < i.



250 L. Juhl, K. Guldstrand Larsen, and J.-F. Raskin

(s0, 0̄)

(sj , v̄i)

(sj , v̄j)

(s0, v̄m)(sk, v̄k)

(s	, v̄	)

· · ·

· · ·

· · ·

· · ·

Fig. 2. Self-covering tree

Figure 2 illustrates such a self-covering tree. Here v̄i ≥ v̄j and v̄m ≥ 0̄. Any
leaf satisfies either A or B.

Notice that since the state set is finite and (�k,≤) is a wqo, such an i exists for
all branches and we thus construct a finite tree. In the case of A we mark a leaf
configuration (si, v̄i) as losing and in case of B we mark (si, v̄i) as winning. We
propagate the marking of the leaves to the configuration (s0, 0̄) in the following
way, starting with configurations having only leaves as children. If the state of the
configuration belongs to Player 1 and at least one child is winning, we mark the
configuration as winning. Otherwise it is losing. If the state of the configuration
belongs to Player 2 and all children are winning we mark the configuration as
winning. Otherwise it is losing. In case (s0, 0̄) is losing, pW (d̄) = false, as any
weighted run is forced to a losing leaf if Player 2 consistently picks losing children.
If (s0, 0̄) is winning, we set pW (d̄) = true, as we can construct b̄ and a winning
strategy σ for Player 1, proving the existence of a winning vector b̄ for GLW.

The strategy σ is determined by the tree. For each prefix of each branch

π↓n = (s0, 0̄), . . . , (sn, v̄n), where sn ∈ S1, we let σ(π↓n) = (s, v̄), where sn
w̄−→ s

for some w̄ such that v̄ = v̄n+ w̄ and (s, v̄) is a winning child of (sn, v̄n). For any
branch π↓m = (s0, 0̄), . . . , (sn, v̄n), . . . , (sm, v̄m), where sm = sn and v̄m ≥ v̄n (a
winning leaf) we let σ(π↓m) = σ(π↓n). Notice that if (sn, v̄n) does not have any
winning children (or is a losing leaf) a winning strategy will never lead us to this
state (and thus any next state can be picked).

It is easy to see that any weighted run respecting σ keeps all accumulated
weights nonnegative, since all transitions taken by Player 1 and 2 leads to states
marked as winning by the definition of σ. At some point the weighted run will
enter a loop that has a nonnegative accumulated weight in all coordinates. Fur-
thermore σ is finitely representable.

The weak upper bound b̄ that satisfies b̄ ≤ d̄ and is contained in W can be
found by examining the self-covering tree and pruning the tree by removing
the branches not respecting σ. For the entries of d̄ that are not ω we reuse
these entries in b̄ and for any remaining ω-entry in dimension  we find the largest
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accumulated weight max� seen in any configuration of the tree in dimension .
Formally

b̄[] =

{
max� if d̄[] = ω ,

d̄[] otherwise

for all  ∈ {1, . . . , k}. This bound is safe to apply as a weak upper bound,
since truncating all weights at this upper bound will not cause the accumulated
weights to be negative at any point. 	


As Lemma 1 allows us to use the algorithm presented in [10] we get the following
corollary.

Corollary 1. The set min(W ) is computable.

Notice that we can apply the procedure seen in the proof of Lemma 1 for the
special case of d̄ = (ω, . . . , ω) if we are interested in whether there exists some
weak upper bound that wins GLW (e.g. determine whether W is empty or not).

4 Strict Upper Bound

For the case of a strict upper bound we see that U is also an upward closed set,
but for deciding pU (d̄) for any d̄ ∈ �k

ω we cannot use the approach presented in
the proof of Lemma 1. This is due to the construction of the self-covering tree,
where we here cannot stop when reaching a cycle with positive accumulated
weight in one of the coordinates, since looping forever (as indicated in Fig. 2
by dashed arrows) will eventually cause one of the strict upper bounds to be
violated. For constructing min(U) we instead make use of energy games with no
upper bound.

Theorem 1. The set min(U) is computable in 2k-exponential time.

Proof. The paper [9] provides the following useful reduction. Determining
whether a given upper bound b̄ wins GLU with k weights is polynomial time
reducible to determining whether the initial vector (0̄[1], . . . , 0̄[k], b̄[1], . . . , b̄[k])
wins GL with 2k weights.

Given a k-weighted game Gk the reduction works by constructing a 2k-
weighted game G2k by doubling the number of weights on each transition of
Gk, adding a new start state and letting each new transition have the weight
(w̄[1], . . . , w̄[k],−w̄[1], . . . ,−w̄[k]) for any old transition with weight w̄. The re-
duction is seen in Fig. 3, where the circular states denote either a Player 1 or
Player 2 state. Now if one of the first k weights goes above b̄, one of the last k
weights will go below 0.

The paper [3] provides an algorithm running in (k − 1)-exponential time
for constructing the set min(I) for any k-weighted game with only unary up-

dates, that is a game G = {S1, S2, s0,−→}, where each s
w̄−→ s′ satisfies

w̄ ∈ {−1, 0,−1}k.
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(−3, 1)

(4,−4)(1, 5)

(−2, 1)

	

(−3, 1, 3,−1)

(4,−4,−4, 4)(1, 5,−1,−5)

(−2, 1, 2,−1)

Fig. 3. Example of a reduction from Gk to G2k

We can reduce G2k with arbitrary updates to the unary setting by introducing
intermediate transitions that repeatedly add or subtract 1 (causing an exponen-
tial blowup in the size of the automaton) and obtain the finite set min(I) by
applying the algorithm presented in [3].

Now we can easily construct min(U) for Gk from min(I) for G2k as “subvec-
tors” of the vectors in min(I) with all 0’s in the first k coordinates,

min(U) = {b̄ ∈ �k | (0̄[1], . . . , 0̄[k], b̄[1], . . . , b̄[k]) ∈ min(I)} .

This procedure presented in [3] runs in (k−1)-exponential time for en k-weighted
game with unary updates on transitions. Since we in our setting double the
number of weights and reduce the arbitrary weights to unary weights, we achieve
a procedure running in 2k-exponential time. 	


In case of an energy game with both unknown strict upper bound and unknown
initial value, the above proof can as well be applied for finding the set of all pairs
of initial values and upper bounds that will win the energy game (this set corre-
sponds to the set min(I) for G2k). The problem of simultaneous synthesis with
initial value and strict upper bound can therefore be solved in 2k-exponential
time.

5 Parametrised Transitions

A variant of the problem of parametrised bounds is parametrised transitions.
Instead of letting the upper bound or initial value be unknown, we may also
consider multiweighted energy games where not all weights of the transitions
that gain resources are known. As in the case of an unknown upper bound, we
are interested in not only knowing whether there exists an assignment of weights
such that Player 1 has a winning strategy in the various energy games, but
in constructing the actual set of assignments such that Player has a winning
strategy. For no upper bound or a weak upper bound this set is upward closed
and can thus be characterised by its minimal generating set. For a strict upper
bound this is not the case and we must to represent the set otherwise.

Consider the automatic vacuum cleaner in Fig. 4, where the first coordinate
of the weight of the charge transition is unknown (the parameter p). For a strict
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(p, 0)
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Fig. 4. A parametrised vacuum cleaner example

upper bound of (5, 3) we now seek to compute the set of possible weight as-
signments to p such that Player 1 has a winning strategy. The smallest possible
weight assigned to p is 2 (using the strategy from Fig. 1c). As it turns out, both
3, 4 and 5 as the value of p give rise to a winning strategy for Player 1 (again
as seen in Fig. 1c). Surely p cannot be assigned a larger weight than the upper
bound in the first coordinate, as this would enable us from charging at any time.
The full set of suitable values of p is therefore {2, 3, 4, 5}.

Formally we let a parametrised k-weighted game G = {S1, S2, s0,−→} over
a set of parameters P = {p1, . . . , p�} be a game where −→ ⊆ (S1 ∪ S2) × (� ∪
P )k × (S1 ∪ S2). Given an evaluation function e : P → �, we let −→e be the
set −→ where any parameter pi ∈ P is substituted with its evaluation e(pi). In
case there exists an evaluation function e for a parametrised game G with upper
bound b̄ such that b̄ wins GLU given the game Ge = (S1, S2, s0,−→e), we say
that e wins GLU with parametrised transitions. The same winning notion can be
defined for GLW and GL with parametrised transitions. Given two evaluations
e, e′, we say that e ≤ e′ if e(pi) ≤ e′(pi) for all i ∈ {1, . . . , }. We denote the set
of winning evaluations for GLU, GLW and GL with parametrised transitions by
UT , WT and IT , respectively. Notice that the sets WT and IT are upward closed,
implying that these sets can be characterised by their minimal generating set of
evaluations, min(WT ) and min(IT ).

For min(WT ) and min(IT ) we as in Section 3 seek to use the algorithm
presented in [10] to construct the two sets. The predicates pWT and pIT must
decide for any parametrised game G whether there exists an evaluation for G in
WT or IT , respectively.

Lemma 2. The predicates pWT (d̄) and pIT (d̄) are decidable for any d̄ ∈ ��
ω.

Proof. Given a k-weighted game G with parametrised transitions and either a
weak upper bound b̄ or no upper bound, the existence of a winning evaluation
implies the existence of a winning evaluation e that for all i ∈ {1, . . . , } satisfies
e(pi) ≤ M , where M is the largest sum obtained by adding all negative weight

updates in one coordinate, i.e. M = maxj∈{1,...,k}

(∑
s

w̄−→s′
max(0,−w̄[j])

)
. To

see this we note that between each subsequent visit to any state we only need to
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visit all other states at most once (otherwise we could remove a loop or Player
2 could force an arbitrary low accumulated weight), and thus we subtract at
most M in each coordinate between subsequent visits. Setting e(pi) = M for
all i ∈ {1, . . . , } we can apply the decidability results from [9] on the game
Ge (either with or without b̄ as weak upper bound). Thus pWT and pIT can be
answered. 	


Using the algorithm presented in [10], this leads to the following corollary.

Corollary 2. The sets min(WT ) and min(IT ) are computable.

In the case of GLU with parametrised transitions and b̄ as the upper bound
the set UT is not upward closed. However, the set of useful evaluations is finite,
since any winning evaluation must satisfy −b̄[i] ≤ e(t)[i] ≤ b̄[i] for all transitions
t and all i ∈ {1, . . . , k}. This set min(UT ) can therefore be constructed by an ex-
haustive search of the possible winning evaluations (again using the decidability
results from [9]).

6 Conclusion and Future Work

Using the algorithm of Valk and Jantzen [10] we have shown how to characterise
the set of winning upper bounds for multiweighted energy games with fixed initial
value and a weak upper bound. For a strict upper bound the problem is solvable
using 2k-exponential time. Furthermore we have studied multiweighted energy
games with parametrised transitions. For a fixed initial value and either a weak
upper bound or no upper bound the same algorithm is applied to construct the
set of winning evaluations. For a strict upper bound the set is shown computable
as well.

Future work should include an investigation of the complexity of the above
problems. As there is no upper bound on the complexity of the Valk and Jantzen
algorithm, we have so far no complexity results for the results relying on the al-
gorithm. Another future work regards parametrised transitions, where we so far
are able to synthesise only nonnegative weights, and thus require that weights
known to be negative are not parametrised. A likely expansion is therefore to
synthesising the set of winning evaluations for energy games where any weight
coordinate can be unknown. Furthermore the subject of simultaneous synthesis
should be explored, where we consider games with combinations of parametrised
values, this may be initial value, upper bound (strict or weak) or weight coor-
dinates of transitions. Another direction of research is to study the problems in
connection with imperfect information.

References

1. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed Automata with Ob-
servers under Energy Constraints. In: 13th ACM International Conference on Hy-
brid Systems: Computation and Control (HSCC 2010), pp. 61–70. ACM (2010)



Optimal Bounds for Multiweighted and Parametrised Energy Games 255

2. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite Runs in
Weighted Timed Automata with Energy Constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)
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Abstract. In this paper, we revisit the problem of translating LTL formulas to
Büchi automata. We first translate the given LTL formula into a special disjuctive-
normal form (DNF). The formula will be part of the state, and its DNF nor-
mal form specifies the atomic properties that should hold immediately (labels of
the transitions) and the formula that should hold afterwards (the corresponding
successor state). If the given formula is Until-free or Release-free, the Büchi
automaton can be obtained directly in this manner. For a general formula, the
construction is more involved: an additional component will be needed for each
formula that helps us to identify the set of accepting states. Notably, our con-
struction is an on-the-fly construction, which starts with the given formula and
explores successor states according to the normal forms. We implement our con-
struction and compare the tool with SPOT [3]. The comparision results are very
encouraging and show our construction is quite innovative.

1 Introduction

Translating Linear Temporal Logic (LTL) formulas to their equivalent automata (usu-
ally Büchi automata) has been studied for nearly thirty years. This translation plays a
key role in the automata-based model checking [14]: here the automaton of the negation
of the LTL property is first constructed, then the verification process is reduced to the
emptiness problem of the product automaton (from the property automaton and the sys-
tem model). Gerth et al. [6] proposed an on-the-fly construction approach to generating
Büchi automata from LTL formulas, in which counterexamples can be detected even
only a part of the property automaton is generated. They called it a tableau construc-
tion approach, which became widely used and many subsequent works [11,7,2,4,1] for
optimizing the automata under construction are based on it.

In this paper, we propose a novel construction by making use of the notion of
disjuctive-normal forms (DNF). For an LTL formula ϕ, our DNF normal form is an
equivalent formula of the form

∨
i(αi ∧ Xϕi) where αi is a finite conjunction of liter-

als (atomic propositions or their negations), and ϕi is a conjunctive LTL formula such
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that the root operator of it is not a disjunction. We show that any LTL formula can be
transformed into an equivalent DNF normal form, and refer to αi ∧ Xϕi as a clause
of ϕ. In this way any given LTL formula induces a labelled transition system (LTS):
states correspond to formulas, and we assign a transition from ϕ to ϕi labelled with αi,
if αi ∧ Xϕi is a clause of ϕ.

aUb True

s1

s2

a

b

True

Fig. 1. The Büchi automaton for aUb

This LTS is the starting point of our construction. Firsly, for Until-free (or Release-
free) formulas, the Büchi automaton can be obtained directly by equipping the above
LTS with the set of accepting states, which is illustrated as follows. Consider the for-
mula aUb, whose DNF form is (b ∧ X(True)) ∨ (a ∧ X(aUb)). The corresponding
Büchi automaton for aUb is shown in Figure 1 where nodes aUb and True represent
formulas aUb and True respectively. The transitions are self-explained. By semantics,
we know that if the run ξ satisfies a Release-free formula ϕ, then there must be a finite
satisfying prefix η of ξ such that any paths starting with η satisfy ϕ as well. Thus, for
this class of formulas, the state corresponding to the formula True is considered as the
single accepting state. The Until-free formulas can be treated in a similar way by taking
the set of all states as accepting.

The main contribution of the paper is to extend the above construction to general
formulas. As an example we consider the formula ψ = G(aUb), which has the normal
form (b ∧ Xψ) ∨ (a ∧ X(aUb ∧ ψ)). Note here the formula True will be even not
reachable. The most challenging part of the construction will then be identification of
the set of accepting states. For this purpose, we identify first subformulas that will be
reached infinitely often, which we call looping formulas. Only some of the looping
formulas contribute to the set of accepting states. These formulas will be the key to our
construction: we characterize a set of atomic propositions for each formula, referred
to as the obligation set. The set contains various obligations, each represented as a set
of literals, that must occur infinitely often to make the given formula satisfiable. In
our construction, we add an additional component to the states to keep track of the
obligations, and then define accepting states based on it – an illustrating example can
be found in Section 2.

Our construction for general formula works on-the-fly: it starts with the given for-
mula and explore successor states according to the normal forms. We implement our
construction and compare the tool with SPOT [3]. The results show our tool competes
with, and sometimes outperforms SPOT under the benchmarks tested, which is encour-
aging as SPOT is the state-of-the-art tool that has been highly optimized.
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Related Work. As we know, there are two main approaches of Büchi automata con-
struction from LTL formulas. The first approach generates the alternating automaton
from the LTL formula and then translates it to the equivalent Büchi automaton [13].
Gastin et al. [5] proposed a variant of this construction in 2001, which first translates
the very weak alternating co-Büchi automaton to generalised automaton with accepting
transitions which is then translated into Büchi automaton. In particular, the experiments
show that their algorithm outperforms the others if the formulas under construction are
restricted on fairness conditions. Recently Babiak et al. [1] proposed some optimization
strategies based on the work [5].

The second approach was proposed in 1995 by Gerth et al. [6], which is called the
tableau construction. This approach can generate the automata from LTL on-the-fly,
which is widely used in the verification tools for acceleration of the automata-based ver-
ification process. Introducing the (state-based) Generalized Büchi Automata (GBA) is
the important feature for the tableau construction. Daniele et al. [2] improved the tableau
construction by some simple syntactic techniques. Giannakopoulou and Lerda [7] pro-
posed another construction approach that uses the transition-based Generalized Büchi
automaton (TGBA). Some optimization techniques [4,11] have been proposed to reduce
the size of the generated automata. For instance, Etessami and Holzmann [4] described
the optimization techniques including proof theoretic reductions (formulas rewritten),
core algorithm tightening and the automata theoretic reductions (simulation based).

Organization of the paper. Section 2 illustrates our approach by a running example.
Section 3 introduces preliminaries of Büchi automata and LTL formulas; Section 4
specifies the proposed DNF-based construction; Section 5 compares the experimental
results from our tool and SPOT. Section 6 discusses how our approach is related to
the tableau construction. Section 7 concludes the paper. Proofs can be found in the
report [8].

2 A Running Example

We consider the formula ϕ1 = G(bUc∧ dUe) as our running example. The DNF form
of ϕ1 is given by:

ϕ1 = (c ∧ e ∧ X(ϕ1)) ∨ (b ∧ e ∧ X(ϕ2)) ∨ (c ∧ d ∧ X(ϕ3)) ∨ (b ∧ d ∧ X(ϕ4)

where ϕ2 = bUc ∧ G(bUc ∧ dUe), ϕ3 = dUe ∧ G(bUc ∧ dUe), ϕ4 = bUc ∧ dUe ∧
G(bUc ∧ dUe). It is easy to check that the above DNF form is indeed equivalent to
formula ϕ1. Interestingly, we note that ϕ1, ϕ2, ϕ3, ϕ4 all have the same DNF form
above.

The corresponding Büchi automaton for ϕ1 is depicted in Fig. 2. We can see that
there are four states in the generated automata, corresponding to the four formulas
ϕi(i = 1 , 2 , 3 , 4 ). The state corresponding to the formula ϕ1 is also the initial state.
The transition relation is obtained by observing the DNF forms: for instance we have a
self-loop for state s1 with label c ∧ e. If we observe the normal form of ϕ1, we can see
that there is a term (c∧ e∧X(ϕ1)), where there is a conjunction of two terms c∧ e and
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ϕ1, {}

ϕ2, {e}

ϕ3, {c}

ϕ4, {true}

s1

s2

s3

s4

b∧e

c∧e, c∧d

c∧d

c∧e, b∧e

b∧d

c∧e

b∧e

c∧d

c∧e

b∧e, b∧d

c∧d, b∧d

b∧d

Fig. 2. The Büchi automaton for the formula ϕ1

X(ϕ1), and ϕ1 in X operator corresponds to the node s1 and c ∧ e corresponds to the
loop edge for s1.

Thus, the disjunctive-normal form of the formula has a very close relation with the
generated automaton. The most difficult part is to determine the set of accepting states
of the automaton. We give thus here a brief description of several notions introduced
for this purpose in our running example. The four of all the formulas ϕi(i = 1 , 2 , 3 , 4 )
have the same obligation set, i.e. OSϕi = {{c, e}}, which may vary for different formu-
las. In our construction, every obligation in the obligation set of each formula identities
the properties needed to be satisfied infinitely if the formula is satisfiable. For example,
the formulas ϕi(i = 1 , 2 , 3 , 4 ) are satisfied if and only if all properties in the obli-
gation {c, e} are met infinitely according to our framework. Then, a state consists of
a formula and the process set, which records all the properties that have been met so
far. For simplicity, we initialize the process set P1 of the initial state s1 with the empty
set. For the state s2, the corresponding process set P2 = {e} is obtained by taking
the union of P1 and the label {b, e} from s1. The label b will be omitted as it is not
contained in the obligation. Similarly one can conclude P3 = {c} and P4 = {true}:
here the property true implies no property has been met so far. When there is more
than one property in the process set, the {true} can be erased, such as that in state s3.
Moreover, the process set in a state will be reset to empty if it includes one obligation

in the formula’s obligation set. For instance, the transition in the figure s2
c∧d−−→ s1 is

due to that P ′
1 = P2 ∪ {c} = {c, e}, which is actually in OSϕ1 . So P ′

1 is reset to the

empty set. One can also see the same rule when the transitions s2
c∧e−−→ s1, s4

c∧e−−→ s1,

s3
b∧e−−→ s1 occur.

Through the paper, we will go back to this example again when we explain our
construction approach.
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3 Büchi Automaton, LTL Formulas

3.1 Büchi Automaton

A Büchi automaton is a tuple A = (S, Σ, δ, S0, F ), where S is a finite set of states, Σ
is a finite set of alphabet symbols , δ : S ×Σ → 2S is the transition relation, S0 is a set
of initial states, and F ⊆ S is a set of accepting states of A.

We use w, w0 ∈ Σ to denote alphabets in Σ, and η, η0 ∈ Σ∗ to denote finite se-
quences. A run ξ = w0w1w2 . . . is an infinite sequence over Σω. For ξ and k ≥ 1 we
use ξk = w0w1 . . . wk−1 to denote the prefix of ξ up to its kth element (the k+1th ele-
ment is not included) as well as ξk to denote the suffix of wkwk+1 . . . from its (k+1)th
element (the k + 1th element is included). Thus, ξ = ξkξk . For notational convenience
we write ξ0 = ξ and ξ0 = ε (ε is the empty string). The run ξ is accepting if it runs
across one of the states in F infinitely often.

3.2 Linear Temporal Logic

We recall the linear temporal logic (LTL) which is widely used as a specification lan-
guage to describe the properties of reactive systems. Assume AP is a set of atomic
properties, then the syntax of LTL formulas is defined by:

ϕ ::= True | False | a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ Uϕ | ϕ R ϕ | X ϕ

where a ∈ AP , ϕ is an LTL formula. We say ϕ is a literal if it is a proposition or its
negation. In this paper we use lower case letters to denote atomic properties and α, β,
γ to denote propositional formulas (without temporal operators), and use ϕ, ψ, ϑ, μ, ν
and λ to denote LTL formulas.

Note that w.l.o.g. we are considering LTL formulas in negative normal form (NNF)
– all negations are pushed down to literal level. LTL formulas are interpreted on infinite
sequences (correspond to runs of the automata) ξ ∈ Σω with Σ = 2AP . The Boolean
connective case is trivial, and the semantics of temporal operators is given by:

– ξ |= ϕ1 U ϕ2 iff there exists i 
 0 such that ξi |= ϕ2 and for all 0 � j < i, ξj |=
ϕ1;

– ξ |= ϕ1 R ϕ2 iff either ξi |= ϕ2 for all i ≥ 0, or there exists i ≥ 0 with ξi |= ϕ1∧ϕ2

and ξj |= ϕ2 for all 0 ≤ j < i;
– ξ |= X ϕ iff ξi |= ϕ.

According to the LTL semantics, it holds ϕRψ = ¬(¬ϕU¬ϕ). We use the usual abbre-
viations True = a ∨ ¬a, F a = TrueUa and Ga = FalseRa.

Notations. Let ϕ be a formula written in conjunctive form ϕ =
∧

i∈I ϕi such that the
root operator of ϕi is not a conjunctive: then we define the conjunctive formula set as
CF (ϕ) := {ϕi | i ∈ I}. When ϕ does not include a conjunctive as a root operator,
CF (ϕ) only includes ϕ itself. For technical reasons, we assume that CF (True) = ∅.
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4 DNF-Based Büchi Automaton Construction

Our goal of this section is to construct the Büchi automaton Aλ for λ. We first present
the disjunctive normal forms, and then establish a few simple properties of general
formulas that shall shed insights on the construction for the Release-free (Until-free)
formulas. We then define the labelled transition system for a formula. In the following
three subsections we present the construction for Release-free (Until-free) and general
formulas, respectively.

In the remaining of the paper, we fix λ as the input LTL formula. All formulas being
considered will vary over the set EF (λ), and AP will denote the set of all literals
appearing in λ, and Σ = 2AP . Moreover, we assume all atomic propositions in λ are
syntactically different, but maintain their semantically equivalence. For example, the
formula aU(a∧ b) will be identified by a1U(a2 ∧ b), where a1 ≡ a2. This will be used
to track whether the atomic proposition are from the left part or right part of the until
operator.

4.1 Disjunctive Normal Form

We introduce the notion of disjunctive-normal form for LTL formulas in the following.

Definition 1 (disjunctive-normal form). A formula ϕ is in disjunctive-normal form
(DNF) if it can be represented as ϕ :=

∨
i(αi ∧ Xϕi), where αi is a finite conjunction

of literals, and ϕi =
∧

ϕij where ϕij is either a literal, or an Until, Next or Release
formula.

We say αi ∧ Xϕi is a clause of ϕ, and write DNF (ϕ) to denote all of the clauses.

As seen in the introduction and motivating example, DNF form plays a central role in
our construction. Thus, we first discuss that any LTL formula ϕ can be transformed into
an equivalent formula in DNF form. The transformation is done in two steps. The first
step is according to the following rules:

Lemma 1. 1. DNF (α) = {α ∧ X(True)} where α is a literal;
2. DNF (Xϕ) = {True ∧ X(ϕ)};
3. DNF (ϕ1Uϕ2) = DNF (ϕ2) ∪ DNF (ϕ1 ∧ X(ϕ1Uϕ2));
4. DNF (ϕ1Rϕ2) = DNF (ϕ1 ∧ ϕ2) ∪ DNF (ϕ2 ∧ X(ϕ1Rϕ2));
5. DNF (ϕ1 ∨ ϕ2) = DNF (ϕ1) ∪ DNF (ϕ2);
6. DNF (ϕ1∧ϕ2) = {(α1∧α2)∧X(ψ1∧ψ2) | ∀i = 1 , 2 . αi∧X(ψi) ∈ DNF (ϕi)};

All of the rules above are self explained, following by the definition of DNF, distribu-
tive and the expansion laws. What remains is how to deal with the formulas in the Next
operator: by definition, in a clause αi ∧ X(ϕi) the root operators in ϕi cannot be dis-
junctions. The equivalence X(ϕ1 ∨ ϕ2) = Xϕ1 ∨ Xϕ2 can be applied repeatedly to
move the disjunctions out of the Next operator. The distributive law of disjunction over
conjunctions allows us to bring any formula into an equivalent DNF form:

Theorem 1. Any LTL formula ϕ can be transformed into an equivalent formula in
disjunctive-normal form.
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In our running example, we have DNF (ϕ1) = DNF (ϕ2) = DNF (ϕ3) = DNF
(ϕ4) = {c ∧ e ∧ X(ϕ1), b ∧ e ∧ X(ϕ2), c ∧ d ∧ X(ϕ3), b ∧ d ∧ X(ϕ4)}. Below we
discuss the set of formulas that can be reached from a given formula.

Definition 2 (Formula Expansion). We write ϕ
α−→ ψ iff there exists α ∧ X(ψ) ∈

DNF (ϕ). We say ψ is expandable from ϕ, written as ϕ ↪→ ψ, if there exists a finite
expansion ϕ

α1−→ ψ1
α2−→ ψ2

α3−→ . . . ψn = ψ. Let EF (ϕ) denote the set of all formulas
that can be expanded from ϕ.

The following theorem points out that |EF (λ)| is bounded:

Theorem 2. For any formula λ, |EF (λ)| ≤ 2n + 1 where n denotes the number of
subformulas of λ.

4.2 Transition Systems for LTL Formulas

We first extend formula expansions to subset in Σ:

Definition 3. For ω ∈ Σ and propositional formula α, ω |= α is defined in the standard
way: if α is a literal, ω |= α iff α ∈ ω, and ω |= α1 ∧ α2 iff ω |= α1 and ω |= α2, and
ω |= α1 ∨ α2 iff ω |= α1 or ω |= α2.

We write ϕ
ω−→ ψ if ϕ

α−→ ψ and w |= α. For a word η = ω0ω1..ωk, we write ϕ
η−→ ψ

iff ϕ
ω0−→ ψ1

ω1−→ ψ2
ω2−→ ..ψk+1 = ψ.

For a run ξ ∈ Σω, we write ϕ
ξ−→ ϕ iff ξ can be written as ξ = η0η1η2 . . . such that

ηi is a finite sequence, and ϕ
ηi−→ ϕ for all i ≥ 0.

Below we provide a few interesting properties derived from our DNF normal forms.

Lemma 2. Let ξ be a run and λ a formula. Then, for all n ≥ 1, ξ |= λ ⇔ λ
ξn−→

ϕ ∧ ξn |= ϕ.

Essentially, ξ |= λ is equivalent to that we can reach a formula ϕ along the prefix ξn

such that the suffix ξn satisfies ϕ. The following corollary is a direct consequence of
Lemma 2 and the fact that we have only finitely many formulas in EF (λ):

Corollary 1. If ξ |= λ, then there exists n ≥ 1 such that λ
ξn−→ ϕ∧ ξn |= ϕ∧ϕ

ξn−→ ϕ.

On the other side, if λ
ξn−→ ϕ ∧ ξn |= ϕ ∧ ϕ

ξn−→ ϕ, then ξ |= λ.

This corollary gives the hint that after a finite prefix we can focus on whether the suffix
satisfies the looping formula ϕ, i.e,. those ϕ with ϕ ↪→ ϕ. From Definition 2 and the
expansion rules for LTL formulas, we have the following corollary:

Corollary 2. If λ ↪→ λ holds and λ �= True, then there is at least one Until or Release
formula in CF (λ).

As we described in previous, the elements in EF (λ) and its corresponding DNF-normal
forms naturally induce a labelled transition system, which can be defined as follows:

Definition 4 (LTS for λ). The labelled transition system T Sλ generated from the for-
mula λ is a tuple 〈Σ, S, δ, S0〉: where Σ = 2AP , S = EF (λ), S0 = {λ} and δ is
defined as follows: ψ ∈ δ(ϕ, ω) iff ϕ

ω−→ ψ holds, where ϕ, ψ ∈ EF (λ) and ω ∈ Σ.
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4.3 Büchi Automata for Release/Until-Free Formulas

The following lemma is a special instance of our central theorem 4. It states properties
of accepting runs with respect to Release/Until-free formulas:

Lemma 3. 1. Assume λ is Release-free. Then, ξ |= λ ⇔ ∃n · λ
ξn−→ True.

2. Assume λ is Until-free. Then ξ |= λ ⇔ ∃n, ϕ · λ
ξn−→ ϕ ∧ ϕ

ξn−→ ϕ.

Essentially, If λ is Release-free, we will reach True after finitely many steps; If λ is
Until-free we will reach a looping formula after finitely many steps. The Büchi automa-
ton for Release-free or Until-free formulas will be directly obtained by equipping the
LTS with the set of accepting states:

Definition 5 (Aλ for Release/Until-free formulas). For a Release/Until-free formula
λ, we define the Büchi automaton Aλ = (S, Σ, δ, S0, F ) where T Sλ = 〈Σ, S, δ, S0〉.
The set F is defined by: F = {True} if λ is Release-free while F = S if λ is Until-free.

Notably, True is the only accepting state for Aλ when λ is Release-free while all the
states are accepting ones if it is Until-free.

Theorem 3 (Correctness and Complexity). Assume λ is Until-free or Release-free.
Then, for any sequence ξ ∈ Σω, it holds ξ |= λ iff ξ is accepted by Aλ. Moreover, Aλ

has at most 2n + 1 states, where n is the number of subformulas in λ.

Proof. The proof of the correctness is trivial according to Lemma 3: 1) if λ is Release-
free, then every run ξ of Aλ can run across the True-state1 infinitely often iff it satisfies

∃n ≥ 0 · λ
ξn−→ True, that is, ξ |= λ; 2) if λ is Until-free, then ξ |= λ iff ∃n, ϕ · λ

ξn−→
ϕ ∧ ϕ

ξn−→ ϕ, which will run across ϕ-state infinitely often so that is accepted by Aλ

according to the construction.
The upper bound is a direct consequence of Theorem 2.

4.4 Central Theorem for General Formulas

In the previous section we have constructed Büchi automaton for Release-free or Until-
free formulas, which is obtained by equipping the defined LTS with appropriate accept-
ing states. For general formulas, this is however slightly involved. For instance, consider
the LTS of the formula ϕ = G(bUc∧ dUe) in our running example: there are infinitely
many runs starting from the initial state s1, but which of them should be accepting?
Indeed, it is not obvious how to identify the set of accepting states. In this section we
present our central theorem for general formulas aiming at identifying the accepting
runs.

Assume the run ξ = ω0ω1 . . . satisfies the formula λ. We refer to λ(= ϕ0)
α0−→

ϕ1
α1−→ ϕ2 . . . as an expansion path from λ, which corresponds to a path in the LTS

T Sλ, but labelled with propositional formulas. Obviously, ξ |= λ implies that there
exists an expansion path in T Sλ such that ωi |= αi for all i ≥ 0. As the set EF (λ) is

1 In this paper we use ϕ-state to denote the state representing the formula ϕ.
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Fig. 3. A snapshot illustrating the relation ξ |= λ

finite, we can find a looping formula ϕ = ϕi that occurs infinitely often along this ex-
pansion path. On the other side, we can partition the run ξ into sequences ξ = η0η1 . . .
such each finite sequence ηi is consistent with respect to one loop ϕ ↪→ ϕ along the ex-
pansion path. This is illustrated in Figure 3. The definition below formalizes the notion
of consistency for finite sequence:

Definition 6. Let η = ω0ω1 . . . ωn (n ≥ 0) be a finite sequence. Then, we say that
η satisfies the LTL formula ϕ, denoted by η |=f ϕ, if the following conditions are
satisfied:

– there exists ϕ0 = ϕ
α0−→ ϕ1

α1−→ . . .
αn−−→ ϕn+1 = ψ such that ωi |= αi for

0 ≤ i ≤ n, and with S :=
⋃

0≤j≤n CF (αj), it holds
1. if ϕ is a literal then ϕ ∈ S holds;
2. if ϕ is ϕ1Uϕ2 or ϕ1Rϕ2 then S |=f ϕ2 holds;
3. if ϕ is ϕ1 ∧ ϕ2 then S |=f ϕ1 ∧ S |=f ϕ2 holds;
4. if ϕ is ϕ1 ∨ ϕ2 then S |=f ϕ1 ∨ S |=f ϕ2 holds;
5. if ϕ is Xϕ2 then S |=f ϕ2 holds;

This predicate specifies whether the given finite sequence η is consistent with respect
to the finite expansion ϕ0 = ϕ

α0−→ ϕ1
α1−→ . . .

αn−−→ ϕn+1 = ψ. The condition ωi |= αi

requires that the finite sequence η is consistent with respect to the labels along the finite
expansion from ϕ0. The rules for literals and Boolean connections are intuitive. For
Until operator ϕ1Uϕ2, it is defined recursively by S |=f ϕ2: as to make the Until
subformula being satisfied, we should make sure that ϕ2 holds under S. Similar, for
release operator ϕ1Rϕ2, we know that ϕ1 ∧ ϕ2 or ϕ2 plays a key role in an accepting
run of ϕ1Rϕ2. Because ϕ1 ∧ ϕ2 implies ϕ2, and with the rule (4) in the definition, we
have S |=f ϕ1Rϕ2 ≡ S |=f ϕ2. Assume ϕ = Xϕ2. As CF (True) is defined as ∅, we
have η |=f ϕ iff η′ |=f ϕ2 with η′ = ω1ω2 . . . ωn.

The predicate |=f characterizes whether the prefix of an accepting run contributes to
the satisfiability of λ. The idea comes from Corollary 1: Once ϕ is expanded from itself
infinitely by a run ξ as well as ξ |= ϕ, there must be some common feature each time
ϕ loops back to itself. This common feature is what we defined in |=f . In our running
example, consider the finite sequence η = {b, d}{b, d}{c, e} corresponding to the path
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s1s4s4s1: according to the definition η |=f ϕ1 holds. For η = {b, d}{b, d}{b, d},
however, η �|=f ϕ1.

With the notation |=f , we study below properties for the looping formulas, that will
lead to our central theorem.

Lemma 4 (Soundness). Given a looping formula ϕ and an infinite word ξ, let ξ =

η1η2 . . .. If ∀i ≥ 1 · ϕ
ηi−→ ϕ ∧ ηi |=f ϕ, then ξ |= ϕ.

The soundness property of the looping formula says that if there exists a partitioning
ξ = η1η2... such that ϕ expends to itself by each ηi and ηi |=f ϕ holds, then ξ |= ϕ.

Lemma 5 (Completeness). Given a looping formula ϕ and an infinite word ξ, if ϕ
ξ−→

ϕ and ξ |= ϕ holds, then there exists a partitioning η1η2 . . . for ξ, i.e. ξ = η1η2 . . .,
such that for all i ≥ 0, ϕ

ηi−→ ϕ ∧ ηi |=f ϕ holds.

The completeness property of the looping formula states the other direction. If ϕ
ξ−→ ϕ

as well as ξ |= ϕ, we can find a partitioning η1η2 . . . that makes ϕ expending to itself
by each ηi and ηi |=f ϕ holds. Combining Lemma 6, Lemma 7 and Corollary 1, we
have our central theorem:

Theorem 4 (Central Theorem). Given a formula λ and an infinite word ξ, we have

ξ |= λ ⇔ ∃ϕ, n · λ
ξn−→ ϕ ∧ ∃ξn = η1η2 . . . · ∀i ≥ 1 · ϕ

ηi−→ ϕ ∧ ηi |=f ϕ

The central theorem states that given a formula λ, we can always extend it to a looping
formula which satisfies the soundness and completeness properties. Reconsider Fig-
ure 3: formula λ extends to the looping formula ϕ by ξn, and ξn can be partitioned
into sequences η1η2 . . .. The loops from ϕ correspond to these finite sequences ηi in the
sense ηi |=f ϕ.

4.5 Büchi Automata for General Formulas

Our central theorem sheds insights about the correspondence between the accepting run
and the expansion path from λ. However, how can we guarantee the predicate |=f for
looping formulas in the theorem? We need the last ingredient for starting our automaton
construction: we extract the obligation sets from LTL formulas that will enable us to
characterize |=f .

Definition 7. Given a formula ϕ, we define its obligation set, i.e. OSϕ, as follows:

1. If ϕ = True then OSϕ = {∅}; and if ϕ = False then OSϕ = {{False}};
2. If ϕ = p, OSϕ = {{p}};
3. If ϕ = Xψ, OSϕ = OSψ;
4. If ϕ = ψ1 ∨ ψ2, OSϕ = OSψ1 ∪ OSψ2 ;
5. If ϕ = ψ1 ∧ ψ2, OSϕ = {S1 ∪ S2 | S1 ∈ OSψ1 ∧ S2 ∈ OSψ2};
6. If ϕ = ψ1Uψ2 or ψ1Rψ2, OSϕ = OSψ2 ;

For every element set O ∈ OSϕ, we call it the obligation of ϕ.
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The obligation set provides all obligations (elements in obligation set) the given formula
is supposed to have. Intuitively, a run ξ is accepted a formula ϕ if ξ can eliminate the
obligations of ϕ. Take the example of G(aRb), the run (b)ω is accepted by aRb, and
the run eliminates the obligation {b} infinitely often.

Notice the similarity of the definition of the obligation set and the predicate |=f . For
instance, the obligation set of ϕ1Rϕ2 is the obligation set of ϕ2, which is similar in the
definition of |=f . The interesting rule is the conjunctive one. For obligation set OSϕ,
there may be more than one element in OSϕ. However, from the view of satisfiability,
if one obligation in OSϕ is satisfied, we can say the obligations of ϕ is fulfilled. This
view leads to the definition of the conjunctive rule. For ψ1 ∧ ψ2, we need to fulfill the
obligations from both ψ1 and ψ2, which means we have to trace all possible unions from
the elements of OSψ1 and OSψ2 . For instance, the obligation set of G(aUb∧cU(d∨e))
is {{b, d}, {b, e}}. The following lemmas gives the relationship of |=f and obligation
set.

Lemma 6. For all O ∈ OSϕ, it holds O |=f ϕ. On the other side, S |=f ϕ implies that
∃O ∈ OSϕ · O ⊆ S.

For our input formula λ, now we discuss how to construct the Büchi automaton Aλ.
We first describe the states of the automaton. A state will be consisting of the formula
ϕ and a process set that keeps track of properties have been satisfied so far. Formally:

Definition 8 (States of the automaton for λ). A state is a tuple 〈ϕ, P 〉 where ϕ is a
formula from EF (λ), and P ⊆ AP is a process set.

Refer again to Figure 3: reading the input finite sequence η1, each element in the process
set Pi corresponds to a property set belonging to AP , which will be used to keep track
whether all elements in an obligation are met upon returning back to a ϕ-state. If we
have Pi = ∅, we have successfully returned to the accepting states. Now we have all
ingredients for constructing our Büchi automaton Aλ:

Definition 9 (Büchi Automaton Aλ). The Büchi automaton for the formula λ is de-
fined as Aλ = (Σ, S, δ, S0,F), where Σ = 2AP and:

– S = {〈ϕ, P 〉 | ϕ ∈ EF (λ)} is the set of states;
– S0 = {〈λ, ∅〉} is the set of initial states;
– F = {〈ϕ, ∅〉 | ϕ ∈ EF (λ)} is the set of accepting states;
– Let states s1, s2 with s1 = 〈ϕ1, P1〉, s2 = 〈ϕ2, P2〉 and w ⊆ 2AP . Then, s2 ∈

δ(s1, ω) iff there exists ϕ1
α−→ ϕ2 with ω |= α such that the corresponding P2 is

updated by:
1. P2 = ∅ if ∃O ∈ OSϕ2 · O ⊆ P1 ∪ CF (α),
2. P2 = P1 ∪ CF (α) otherwise.

The transition is determined by the expansion relation ϕ1
α−→ ϕ2 such that ω |= α. The

process set P2 is updated by P1∪CF (α) unless there is no element set O ∈ OSϕ2 such
that P1 ∪ CF (α) ⊇ O. In that case P2 will be set to ∅ and the corresponding state will
be recognized as an accepting one.
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Now we state the correctness of our construction:

Theorem 5 (Correctness of Automata Generation). Let λ be the input formula. Then,
for any sequence ξ ∈ Σω, it holds ξ |= λ iff ξ is accepted by Aλ.

The correctness follows mainly from the fact that our construction strictly adheres to
our central theorem (Theorem 4).

We note that two very simple optimizations can be identified for our construction:

– If two states have the same DNF normal form and the same process set P , they
are identical. Precisely, we merge states s1 = 〈ϕ1, P1〉 and s2 = 〈ϕ2, P2〉 if
DNF (ϕ1) = DNF (ϕ2), and P1 = P2;

– The elements in the process set P can be restricted into those atomic propositions
appearing in OSϕ: Recall here ϕ ∈ EF (λ). One can observe directly that only
those properties are used for checking the obligation conditions, while others will
not be used so that it can be omitted in the process set P .

Now we can finally explain a final detail of our running example:

Example 1. In our running example state s1 is the accepting state of the automaton. It
should be mentioned that the state s2 = 〈ϕ2, {e}〉 originally has an edge labeling c ∧ d
to the state 〈ϕ3, ∅〉 according to our construction, which is a new state. However, this
state is equivalent with s1 = 〈ϕ1, ∅〉, as ϕ1 and ϕ3 have the same DNF normal form. So
these two states are merged. The same cases occur on state s3 to state s1 with the edge
labeling b ∧ e, state s2 to state s2 with the edge labeling b ∧ d and etc. After merging
these states, we have the automaton as depicted in Figure 2.

Theorem 6 (Complexity). Let λ be the input formula. Then the Büchi automaton Aλ

has the upper bound 22n + 1, where n is the number of subformulas in λ.

Proof. The number of states is bounded by (2n + 1) · 2|AP |. As the first part contains
the particular True, the bound is restricted to 22n + 1. 	


Recall in our construction in the paper we assume all atomic propositions in λ are syn-
tactically different, but maintain their semantically equivalence. Thus, n referes to the
number of subformulas after tagging the literals appearing in λ. Details please refer to [8].

5 Experiments

In order to show the efficiency of our construction, we implement the algorithms in
our tool Aalta2 and compare it with the SPOT tool [3], which is a state-of-the-art LTL-
to-Büchi translator. SPOT follows the tableau framework [15] but uses BDDs [16] to
make the translation more efficient. We compare the results between Aalta and SPOT’s
newest 1.0.2 version when this paper is written. Since SPOT has integrated several
translations and the results vary on what the user demands so we here choose its default
configuration (with flags “-l -t”).

2 http://www.lab205.org/Aalta/

http://www.lab205.org/Aalta/
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Table 1. Comparison results between SPOT and Aalta. In each formula group (with the same
length) the first line displays the results from SPOT while the second from Aalta.

Formula
Length

States Transitions Nondet-States Nondet Time Product
States

10 4.32
3.44

17.99
18.22

2.69
1.77

0.75
0.74

0.14
0.03

706
538

20 23.30
6.67

146.73
56.22

4.43
2.84

0.82
0.76

0.14
0.05

4467
1145

30 41.90
10.52

259.15
113.27

16.32
7.62

0.85
0.78

0.14
0.10

8183
1857

40 45.76
20.55

296.05
323.20

20.26
16.84

0.83
0.80

0.06
0.27

8909
3857

50 167.13
43.34

1161.11
744.53

69.52
36.87

0.91
0.86

0.12
2.80

33225
8420

SPOT also integrates the “randltl”3 and “ltlcross”4 scripts which are used to generate
random formulas required and check the correctness as well as provide statistics. As a
result we can test the correctness of Aalta together with obtaining comparing results by
using the combination of the two scripts. We set the “randltl” script to generate random
formulas with 2 variables with lengths varying from 10 to 50. In the experiments Aalta
and SPOT are run for around 10,000 formulas, and no errors are detected by the “ltl-
cross” script. In this paper we assume the results from SPOT are absolutely true, so the
testing affirms Aalta’s correctness.

In practice, it is not always true that the smaller generated automata are, the better
model checking performance is. Etessami et al. [4] pointed out that the model checking
performance depends on the size of the product automaton (from the property automa-
ton and the system model) rather than that of property automata. After that Sebastiani
and Tonetta [10] conclude the property automata must be “as deterministic as possi-
ble”. To sum up there are five criteria for evaluating the generated automata: states,
transitions, non-deterministic states, non-determinism and the generation time. Among
them the transitions are countered deterministically, and the non-deterministic states are
those whose outedges are not deterministic. Moreover, since the “ltlcross” script com-
pletes simple checking based on the generated automata and a universal model, so we
can also gather the size of product states as an important criteria. As a result, we list the
comparing results on these criteria in Table 1.

The statistics in Table 1 are arranged as follows. We first set the flags of “randltl”
script to fix the alphabet with two variables as well as the probabilities of appearance
for temporal operators during formula generation. Then we generate the formulas with
length varying from 10 to 50 — 200 formulas for each. The table shows only the average

3 http://spot.lip6.fr/userdoc/randltl.html
4 http://spot.lip6.fr/userdoc/ltlcross.html

http://spot.lip6.fr/userdoc/randltl.html
http://spot.lip6.fr/userdoc/ltlcross.html
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results in five groups divided by the formula length. Note in each group there are two
lines of results in the table, in which the first one corresponds to SPOT and the second
corresponds to Aalta.

Generally speaking, the smaller the number in the table the better the generated au-
tomata are. So one can see that Aalta can perform as well as – or even better than –
SPOT under the benchmarks we tested. This is very encouraging, as SPOT has been
optimized and maintained for more than ten years. The statistics in the table affirm that
Aalta has better model checking performance than SPOT under some formulas tested.
Note the results when the formula length is 50, in which Aalta spends more time on
automata generation. Thus SPOT has a better scalability, and this is also what need to
be improved in Aalta in future.

6 Discussion

In this section, we discuss the relationship and differences between our proposed ap-
proach and the tableau construction.

Generally speaking, our approach is essentially a tableau one that is based on the
expansion laws of Until and Release operators. The interesting aspect of our approach
is the finding of a special normal formal with its DNF-based labeled transition sys-
tem, which is closely related to the Büchi automaton under construction. The tableau
approach explicitly expands the formula recursively based on the semantics of LTL for-
mulas while the nodes of the potential automaton are split until no new node can be
generated. However, our approach first studies the LTL normal forms to discover the
obligations the automaton has to fulfil, and then presents a simple mapping between
LTL formulas into Büchi automata.

The insight behind our approach is adopting a different view on the accepting con-
ditions. The tableau approach focuses on the Until-operator. For instance, to decide the
accepting states, the tableau approach needs to trace all the Until-subformulas and records
the “eventuality” of ψ in ϕUψ, which leads to the introduction of the Generalized Büchi
Automata (GBA) in the tableau approach. However, our approach focuses on the loop-
ing formulas, which potentially consist of the accepting states. Intuitively, an infinite
sequence (word) will satisfy the formula λ iff λ can expand to some looping formula ϕ
which can be satisfied by the suffix of the word removing the finite sequence arriving at
ϕ. The key point of our approach is to introduce the static obligation set for each formula
in the DNF-based labeled transition system, which indicates that an accepting run is sup-
posed to infinitely fulfil one of the obligations in the obligation set. Thus, the obligation
set gives the “invariability” for general formulas instead of the “eventuality” for Until-
formulas. In the approach, we use a process set to record the obligation that formula ϕ
has been satisfied from its last appearance. Then, we would decide the accepting states
easily when the process set fulfills one obligation in the obligation set of ϕ (We reset it
empty afterwards). One can also notice our approach is on-the-fly: the successors of the
current state can be obtained as soon as its DNF normal form is acquired.

7 Conclusion

In this paper, we propose the disjunctive-normal forms for LTL formulas. Based on
that, we introduce the DNF-based labeled transition system for the input formula λ
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and study the relationship between the transition system and the Büchi automata for λ.
The construction makes use of the notion of obligation set, and we reach a simple but
on-the-fly algorithm. When the formula under construction is Release/Until-free, our
construction is very straightforward in theory.

Acknowledgement. The work is supported by IDEA4CPS, MT-LAB (a VKR Centre of
Excellence), Shanghai Knowledge Service Platform for Trustworthy Internet of Things
No. ZF1213 and NSFC Project No.91118007. The work of Lijun Zhang was done while
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Abstract. Internetware is receiving increasing attention. It envisions a
new, yet promising software engineering paradigm for constructing com-
plex systems that are situated in open and dynamic networked environ-
ments. Typical examples of Internetware systems include Internet-based
and cyber-physical systems. These systems, although having addressed
some practical needs, may still be subject to various environment and
adaptation risks at runtime. In this paper, we highlight the necessity
and challenges of managing these risks. We overview existing work and
present our efforts in identifying and controlling the risks. We argue
that by managing these risks, the Internetware paradigm proceeds in a
quality-assured direction.

1 Introduction

Nowadays more and more software systems are situated in open and dynamic en-
vironments such as the Internet or some cyber-physical scenarios. These systems
are often characterized with autonomy, coordination, context-awareness and self-
adaptability [1,2]. They pose new challenges for software developers and re-
searchers, as conventional software engineering paradigms, including structured
methods and Object-Oriented methods, fall short in managing the complexity
of dealing with these new characteristics.

To this end, a new software paradigm, named Internetware, has been con-
ceptualized and developed by a group of Chinese researchers including us in
the past decade [1,2,3]. Behind the various new architecture models, develop-
ment methods, enabling techniques and operating platforms of the Internetware
paradigm, there is an old principle of Separation-of-Concerns, i.e., the separa-
tion of coordination logic from autonomous computing entities, adaptation rules
from business behavior and environment perception from system function.
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While the Internetware paradigm does help in managing the complexity, there
are still important risks to be understood and controlled during the construction
and execution of these adaptive systems situated in open environments. Some of
these risks are caused by the inherent unpredictability of the environments and
the limitation of environment sensing mechanisms. Misunderstanding of envi-
ronment changes could cause faulty system reactions. Other risks arise from the
aggressive separations of concerns. Over-simplified view of interactions among
the environment sensing, system adaptation and business logic would lead to
non-optimal or even erroneous behavior.

In this paper, we try to identify and eliminate some of the most significant
risks. Especially, we will discuss the temporal disorder risk and the context in-
consistency risk in the perception of environmental changes, as well as the faulty
adaptation risk and the dynamic update risk in the adaptation to the changes.
Although we have explored some of the concrete techniques and algorithms else-
where [4,5,6,7,8,9], this paper is our first attempt on the integral study of risk
management for the Internetware paradigm.

In the rest of this paper, we first introduce the Internetware paradigm and
identify related risks in Section 2, then overview existing work and present our
efforts in Section 3, and conclude the paper with a brief summary in Section 4.

2 Environment-Driven Internetware Model and Its Risks

2.1 Environment-Driven Architecture for Internetware

While complexity is in the essence of software [10,11], software application sys-
tems situated in open environments are more complex than traditional ones
because: 1) they must dynamically discover and coordinate with autonomous
external systems and resources, and 2) they have to deal with at runtime con-
stant changes in their environment and in the requirements they must satisfy.

Developing such a system with conventional software engineering methods
would suffer from this complexity because those methods normally assume, ex-
plicitly or implicitly, that during the execution of a system its environment and
requirements remain stable and that the system can control, or at least safely
assume about, the behavior of all resources it uses. If there were any dynamic
environment/requirement changes to be handled at runtime, the system’s devel-
oper should have fully predicted the changes, taken them as part of system inputs
and hard-coded the change handling logic together with functional logic. Unfor-
tunately, due to the ever changing nature of open environments, this approach
would make the system over-complicated, even infeasible at all.

We need a new software paradigm to address this complexity directly. The
basic idea of our approach to Internetware so far is two-fold. First, we separate
coordination logic from business logic and reify it as a runtime model object,
so that the coordination logic becomes programmable, and is also dynamically
adaptable to the autonomous coordination entities. Second, we make the sens-
ing of and adaptation to the environmental changes an explicit and integral
part of the system, so that these concerns can be separately addressed while
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Fig. 1. Risks in the environment-driven Internetware architecture

their impacts on system functionalities can be systematically managed. These
two treatments mutually premise each other. By the former the system becomes
loosely-coupled and dynamically adjustable, which makes the adaptation to en-
vironment changes possible. By the latter the system as a whole can be viewed
as an autonomous entity subject to further coordination.

For simplicity, in this paper we focus on the perception of environment changes
and the dynamic system adaptation to these changes, as we have extensively dis-
cussed the architecture models and enabling techniques for the realization of the
idea [12,13,2,14]. Fig. 1, which is adapted from [14], shows an environment-driven
view of the Internetware architecture. In this view, an Internetware application
system consists of two major parts:

Explicit Environment Constructs. This part is responsible for the model-
ing, sensing and understanding of environmental context, and reports in-
terested environment change events to the evolving system part. Statically
there is a domain-specific environment model that defines the scope and the
laws of the environment to be sensed, and an application-specific environ-
ment specification that defines the contexts/events of interest to the current
application. At runtime the concrete information about the environment is
sensed and processed according to the environment model and specification,
normally using some middleware infrastructure.

Dynamically Evolving System. This part provides the business functional-
ity of the application. Different from conventional systems, it must be able
to work with different configurations corresponding to different environment
settings, and the switching between these configurations must be carried
out smoothly at runtime. At runtime the system reacts to the reported en-
vironment changes by dynamically changing its structure and behavior as
specified by the adaptation logic.
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Here, the adaptation logic can be a set of rules or strategies [15,16] that decide
whether or not the current configuration is still feasible, as well as if not feasible,
how to evolve from one configuration to another. As this part is flexible and
customizable by developers, it may be subject to risks as we explain later.

2.2 Identifying Risks

Conceptually, the architecture in Fig. 1 covers all major building blocks and op-
eration steps of Internetware systems. However, things may not work exactly as
expected when we zoom into the details. To prevent the system from deviating
from its goal and to assure user satisfaction, some new risks beyond the consid-
eration of conventional software engineering methods must be carefully handled.
Among them there are:

Environment Risks. This category of risks can happen during the environment
sensing and context processing steps. They come from the nature of dynamic
and unpredictable physical environment, the noise and inaccuracy of sensing
mechanisms used and the incorrect interpretation of sensed data. For example,

– Temporal disorder risk. Open computing environments are distributed in na-
ture. To obtain a correct understanding of the environment from a collection
of locally observed and partially ordered events cannot succeed unless these
events are sufficiently ordered. This is non-trivial because global time is not
always available in open environments.

– Context inconsistency risk. During the sensing step, environment data (a.k.a.
contexts) are often sensed with different devices, on different time and at dif-
ferent locations. They also go through processing steps with possibly different
algorithms. They are thus subject to various inconsistencies when they arrive
at applications.

Adaptation Risks. This category of risks can happen during the adaptation
decision and execution steps. Dynamic system adaptations must guarantee some
level of robustness, stability and system consistency, despite the fact that the
dynamics of the environment is not fully predictable. Adaptation risks threaten
these guarantees. For example,

– Faulty adaptation risk. This risk is caused by developers’ inadequate consid-
eration of environmental dynamics. Although one can always reduce the risk
by considering more cases that could happen, one cannot fully eliminate it
because not everything can be predicted. Some sort of "safe nets" must be
provided to control this risk.

– Dynamic update risk. This risk happens when the system is actually modified
at runtime. We have learned a lot about the difficulties of (offline) software
evolution, but dynamic update poses more challenges such as how to migrate
the legacy state and how to ensure the system consistency and the correctness
of on-going activities, not to mention the disruption caused by the update.
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Here we should mention that in this paper we use the term risk in a rather casual
way. It means potential threats to software systems that may lead to failures or
degradation of service quality. There are more formal treatments of risks in the
software engineering community. For example, Cailliau and van Lamsweerde pro-
posed a probabilistic framework for risk assessment in the requirement analysis
phase [17]. More generally, Ishimatsu et al. advocated that the risk analysis pro-
cess should be weaved into the whole lifecycle of system engineering in STPA [18].
However, we believe that the efforts presented below provide a first step to the
full-fledged risk management for Internetware systems.

2.3 An Illustrating Scenario

Let us motivate our risk discussions with a scenario as illustrated in Fig. 2.
Consider an auto-pilot application that controls a vehicle to travel in a smart
city [19]. The vehicle is supported by a variety of sensing devices, either installed
on the vehicle or deployed all over the city. The auto-pilot application aims to
provide a safe and comfortable ride for passengers. It automatically avoids nearby
vehicles to prevent collisions, and plans shortest routes without traffic jams to its
destinations. All these can be done by collecting sensory data about the vehicle’s
surroundings, as well as measuring traffic conditions along its planned routes.

Software development for such kind of cyber-physical systems is a typical tar-
get domain of the Internetware paradigm because the constituting entities are
autonomous, the environment is open and constantly changing, the system is
built with the coordination of these autonomous entities and needs to automat-
ically adapt to the changing environment.

For this scenario, the auto-pilot application can own the following adaptation
logic. The vehicle takes its normal functionality of calculating a shortest route
to its destination. If the traffic conditions on its calculated route deteriorate
greatly as the vehicle travels, the application would adapt to new application
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logic that recalculates a more efficient route based on actual traffic conditions.
Later, during its journey, if some other vehicles on highways get too close to this
vehicle, the application would again adapt to new adaptation logic that protects
this vehicle by automatically avoiding potential collisions with nearby vehicles.
As such, environmental changes would trigger the adaptation of this application
in right time and keep guaranteeing its service quality.

However, the reality is not smooth. Sensing devices are distributed all over the
city. They are not fully synchronized. The transmission of sensory data may also
take unpredictable time before they arrive at a central server for processing. As
such, collected sensory data are subject to varying delays, causing natural asyn-
chrony. The asynchrony can easily incur temporal disorder of contexts derived
from these sensory data. This can further mislead the vehicle to make wrong
plans on travelling routes. This is one example of our discussed temporal disor-
der risk. Another context inconsistency risk may arise due to a similar concern.
Contexts derived from sensory data are from different sensing devices. They
work in an independent way, using different processing modules and adopting
different local views to understand their environments. Their understanding can
be incomplete, inaccurate, or even conflict with each other. Thus resulting con-
text inconsistency would cause the vehicle to wrongly estimate its surrounding
traffic conditions. Then preventing vehicle collisions cannot be fully or effectively
ensured, when such context inconsistency risk is present.

More risks can arise when new adaptation logics are designed to cope with
such environmental dynamics and risks. Adaptation logics can be faulty if ex-
ceptional cases are not adequately or properly considered. The faults are hard
to detect by traditional model checking or testing approaches. Thus, adaptation
allows an application to address environmental dynamics in a systematic way,
but at the same time also makes the application error-prone. For the auto-pilot
application, its route planning may work individually, but can be affected or even
ruined by its adaptive collision avoidance strategy. Even if the application works
for one vehicle, it may become unpredictable in effectiveness when deployed to
thousands of vehicles. This is one example of our discussed faulty adaptation
risk. Another dynamic update risk closely relates to the same concern. If the
auto-pilot application is found to be faulty, it is impractical to reclaim all vehi-
cles and reinstall a new version of this application manually. A better way is to
automatically download the new version, and dynamically upgrade to it. Thus,
dynamic update risk may arise, and guaranteeing safety for the update process
when the vehicle is running is challenging.

3 Managing Risks

3.1 Temporal Disorder Risk

The contexts are distributed by nature. They are often collected by distributed
but coordinating devices. Observe that context collecting devices may not have
global clocks and may run at different speeds. They heavily rely on wireless
communications, which suffer from finite but arbitrary delay. Moreover, context
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collecting devices may postpone the dissemination of context data due to re-
source constraints, which also results in asynchrony. Some existing schemes for
context processing implicitly assume that context collecting devices share the
same notion of time [20,9]. This assumption does not necessarily hold in open
environments. In some schemes, time is considered a very important type of
context. In order to accurately compare and combine context arriving from dis-
tributed context collecting devices, these devices must share the same notion of
time and be synchronized to the greatest extent possible [21]. In these schemes,
the context collecting devices are simply assumed to have the same notion of
time, or synchronization is conducted in a best-effort manner. This makes the
environment-driven Internetware systems prone to the risk of perceiving tempo-
rally disordered contexts.

In order to control the temporal disorder risk resulting from the intrinsic
asynchrony among context collecting devices, two complementary approaches
can be be adopted. We can conduct synchronization among context collecting
devices, and explicitly model and control the inaccuracy of time synchronization.
Meanwhile, in case that only temporal order among contextual events is suffi-
cient, we can also use logical time to explicitly record and maintain the temporal
happen-before relation among contextual events.

For example, clock synchronization in TrueTime [22] is implemented by a set
of time master machines per data center and a time slave daemon per machine.
All masters’ time references are regularly compared against each other. Every
daemon polls a variety of masters to reduce vulnerability to errors from any one
master. Between synchronizations, both masters and slaves advertise a slowly
increasing time uncertainty that is derived from conservatively applied worst-
case clock drift.

In [4,5], the message exchange among context collecting devices is used to
establish the happen-before relation among contextual events. Logical vector
clocks are employed to encode and decode this happen-before relation. Based on
the happen-before relation, the applications’ concerns on the temporal patterns
of contextual events occurrences can be delineated by logic predicates. Online
detection of such predicates enables the applications to be aware of the temporal
properties of the contexts, despite the asynchrony.

Take the intersection management in the auto-pilot application as an example.
Vehicles heading the same direction should pass the intersection one by one,
while vehicles from directions cannot pass the intersection at the same time.
Here each vehicle must sense the contextual events around it. More importantly,
each vehicle must be guaranteed correct perception of the temporal order among
contextual events. Or, the risk of temporal disorder of contexts may lead to traffic
accidents.

3.2 Context Inconsistency Risk

The second environment risk concerns the inconsistency of contexts Internet-
ware applications collect from environments. These contexts are firstly perceived
by different sensing devices, and then composed by different software modules.
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As mentioned earlier, these sensing devices have different local views of their
environments, and software modules also have different built-in processing mod-
ules. As a result, the contexts finally collected by applications are subject to
various inconsistencies. They would, if left unattended, drive these applications
to behave abnormally.

Let us first consider the situation where context inconsistencies are not de-
tected. Applications would use contexts from environments directly. They would
use as many contexts as possible, aiming to understand their environments bet-
ter. However, these contexts have inherent inconsistency problems, behaving as
being incomplete, inaccurate, or even conflicting with each other [23,9]. This
would affect application functionalities unexpectedly. Many existing context-
aware applications [24,25] and middleware infrastructures [26,27,28,29] suffer
from this problem.

To detect this risk, applications need to check collected contexts against con-
sistency constraints [30,31,9], and use them only if no problems are found. Tradi-
tional inconsistency detection techniques [32,33,34,30] may apply here, but there
is no guarantee that all contexts would be checked, or could be checked in time.
This is because contexts are much more dynamic than traditional software arti-
facts like UML diagrams or XML documents. Without an efficient and effective
methodology, contexts cannot be thoroughly checked for potential inconsistency
problems at runtime. Therefore, we propose incremental or partial constraint
checking techniques [35,9] for this purpose. They address two necessary require-
ments and corresponding challenges: 1) efficient, such that applications can have
good responsiveness to dynamic contexts, and 2) effective, such that context in-
consistency would not be missed and could be detected in time. By doing so,
applications run with the enhanced ability of detecting context inconsistency
risk at runtime.

A follow-up issue is that when the inconsistency risk is detected, it should
be handled. This corresponds to resolution activities for detected context incon-
sistency. We note that these activities should be performed automatically and
timely due to the massive and dynamic nature of contexts.

Let us also first consider the situation where context inconsistency risk is not
handled. Contexts would be used by applications directly, or even if checked for
inconsistency problems, the problems are simply recorded without any resolu-
tion. As a result, applications would run with inconsistent contexts, subject to
various failures. For example, location-aware applications are very popular nowa-
days [36,37,38], but they are commonly suffering from the context inconsistency
risk.

To handle this risk, context inconsistency should be resolved automatically
and timely, such that resulting contexts fed to applications are guaranteed to
be inconsistency-free. However, since resolution activities alter contexts, they
inevitably affect application behaviors. Thus incurred side effect [39,40] may not
have been considered or controlled. As a result, applications can still behave
unexpectedly due to such uncontrolled resolution activities, leading to new chal-
lenges to protecting application functionalities. Therefore, we propose to resolve
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context inconsistency, and at the same time measure and control the side effect
of doing so. Then application-specific needs on context use are modeled and
customized in resolution activities, such that a balance between inconsistency
resolution and its incurred side effect can be achieved and optimized for each
application [39,40]. This practice imposes new requirements and corresponding
challenges in efficiently estimating and deciding potential side effect for different
resolution activities at runtime. By doing so, applications run with the enhanced
ability of handling inconsistency risk at runtime. Together with the earlier in-
consistency detection ability, we are able to control context inconsistency risk
for Internetware applications in a defensive way.

3.3 Faulty Adaptation Risk

The second adaptation risk concerns potential faults that may be experienced
by Internetware applications during their runtime adaptation. Even with con-
texts free of inconsistency (i.e., inconsistency risk is controlled), applications can
still be subject to various runtime failures, which only manifest in context-aware
adaptation. These failures are due to their responsible faults in applications,
which are caused by developers’ inadequate consideration of environmental dy-
namics. Studies [16,41,8] show that these faults (named adaptation faults) differ
from those that can be easily exposed by traditional software testing and anal-
ysis techniques. They would, if left unattended, drive applications to behave in
an unpredictable or unstable way.

Let us first consider the situation where the faulty adaptation risk is not
controlled. Applications are examined by traditional software testing and analy-
sis techniques for simulated environments. Detected faults are then fixed. After
that, these applications are released to real environments, where new adaptation
faults can be encountered at runtime. This is because real environments are sub-
ject to various sensing noises, which cannot be completely predicted or precisely
modeled in advance.

To protect application functionalities and prevent applications from suffering
unexpected failures at runtime, the faulty adaptation risk needs to be controlled.
Efforts can be made to exhaustively search an application’s state space. Then all
adaptation faults can be detected as long as they fall in this space [16]. However,
such a state space is typically large or even infinite. Then the space is usually
incompletely modeled or searched. As such, false negatives (i.e., missing adapta-
tion faults) naturally result. On the other hand, since environmental dynamics is
not fully predictable, application modeling can easily overlook or violate physical
laws or domain rules. Then the modeling would fail to isolate infeasible scenarios
and mistakenly include them into the fault analysis. This leads to numerous false
positives (i.e., unreal adaptation faults) [42,8].

Based on these existing efforts, we propose to strengthen both dynamic anal-
ysis and static analysis to better detect adaptation faults. Dynamic analysis can
incorporate runtime information, such that false negatives can be avoided [42,8].
Static analysis can prune infeasible scenarios by learned environment models, such
that false positives can be alleviated [15]. Both analysis techniques contribute
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to controlled adaptation risk for Internetware applications. Furthermore, even if
missed adaptation faults manifest at runtime, they can also be restricted on their
impact by automated application recovery [43]. This further strengthens an ap-
plication’s ability to control its experienced faulty adaptation risk.

3.4 Dynamic Update Risk

Once it is decided that runtime adaption is necessary to deal with detected
changes in the environment, two issues arise. First, we need to decide the new
configuration (or version) of the system that is suitable for the changed environ-
ment. Second, we need to figure out how to transfer the running system from
the current configuration to the new one without shutting down the system or
sacrificing ongoing activities. While the former can be addressed more or less by
conventional techniques, the latter is more challenging and prone to risks.

The most severe risk here is that the correctness of the running system could
be damaged if the dynamic update were not well coordinated with ongoing
activities, even though the new configuration were guaranteed to be correct
by itself [44,45]. For a simple instance, one may want to upgrade an encryp-
tion/decryption module with a new algorithm to prevent a security vulnerability
just revealed. Dynamically replacing the old module with the new version could
leave some of the tokens encrypted with the old algorithm to be decrypted by
the new algorithm. This kind of problems would not happen at all if the update
were carried out offline.

The second risk is that a naive solution to the above problem, which simply
blocks all parts of the system that might be affected during the update, would
introduce significant disruption to the service of the running system and diminish
the benefits of dynamic update.

To strike a reasonable balance between system consistency and update disrup-
tion without introducing significant complexity for developers/administrators is
far from trivial. Quiescence [44] and Tranquility [46] are two major existing pro-
posals. Unfortunately, with the quiescence approach the disruption of dynamic
update could still be too high; and with the tranquility approach global consis-
tency of the system could still be compromised.

We proposed a new approach, named Version-Consistency, which ensures that
distributed transactions be served as if they were operating either entirely on the
old version or entirely on the new version, despite possible dynamic update that
may happen meanwhile [6]. This approach provides better timeliness and lower
disruption of dynamic update than Quiescence without sacrificing global system
consistency. In addition to this component-level approach, we also developed a
code-level dynamic update supporting system named Javelus [7]. It can support
the dynamic update of Java programs running on industry-strength JVMs.

3.5 Towards an Integral Solution

To support the development, deployment, execution and adaptation of Internet-
ware applications, and especially to help manage the environment and adaptation
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Fig. 3. Auto-piloting scenario supported by Artemis platform

risks, we have developed a set of tools and systems collectively branded with the
name ARTEMIS. Among them, corresponding to the aforementioned four kinds of
risks, there are

– MIPA the tool for distributed predicate detection,
– CABOT the middleware for context inconsistency detection and resolution,
– ADAM the framework re-synchronizing faultily adapted system to the current

environment, and
– ConUp the support system for consistent and low-disruptive dynamic update.

Returning to the scenario discussed in §2.3, one can thus manage its contained
risks with the support of our ARTEMIS platform. For example, MIPA evaluates
global contextual predicates over partially ordered contextual events, which elim-
inates the risks of faulty interpretation of surrounding traffic conditions due to
temporal disorder. CABOT deploys an efficient partial constraint checking engine
to detect inconsistencies from location, obstacle and traffic condition contexts
and resolve them automatically. ADAM identifies collision avoidance faults in
context-aware adaptation, and recovers the vehicle from runtime adaptation er-
rors. ConUp realizes dynamic upgrading of software on the vehicles in a seamless
and safe way.

4 Summary

In this paper, we discussed the management of environment and adaptation risks
for the Internetware paradigm. In particular, we studied the identification and
controlling of temporal disorder and context inconsistency risks in the percep-
tion of environment changes, as well as faulty adaptation and dynamic update
risks in the adaptation to perceived environment changes. We showed that man-
aging these risks is important and necessary for guaranteeing functional and
non-functional qualities for Internetware applications.
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A solid software engineering paradigm must be built upon not only practical
technology but also formal theory. In our work, we have exploited some formal
models and mathematical tools to support the management of environment and
adaptation risks. However they are used in a somewhat ad hoc manner. We plan
to investigate some unified formal theory to help manage the risks and build
high quality Internetware systems, following the style of the seminal work by
Professor Jifeng He [47,48].
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Abstract. Safety and security are both needed for ensuring that cyber-
physical systems live up to expectations, but often an intelligent trade-
off is called for, because sometimes it is impossible to obtain optimal
safety at the same time as optimal security. In the context of the Quality
Calculus we develop a type system for checking the extent to which safety
and security goals have been met.

Safety goals include showing that certain error configurations are in
fact not reachable and hence do not require intelligent error handling.

Security goals include showing that highly trusted communications
can only be performed in highly trusted contexts. This is potentially
too demanding and the Quality Calculus is therefore extended with a
primitive for endorsing data to a higher trust level (accepting violations
of the explicit flow) and for temporarily asserting a higher trust in the
context (accepting violations of the implicit flow).

This is illustrated on a worked example taken from the automotive
sector and we conclude with a discussion of the theoretical properties of
the type system.

1 Introduction

Motivation. One of the challenges of cyber-physical systems [8] is to reconcile
the often conflicting demands of security and safety. Safety concerns making
sure that no harm can arise from using the systems; as an example an airplane
should continue flying, and a car should continue to react to braking and steering.
Security concerns making sure that nobody can pretend to be somebody else;
as an example, steering directions should originate from the steering wheel and
not from a car game played by the children on the back seat. These demands
often conflict because safety requires very fast reaction to alerts whereas security
requires that sufficient time is taken to ensure the authenticity (or integrity) of
the alert. Yet both demands need to be addressed in order for the overall cyber-
physical system to live up to expectations and hence intelligent trade-offs are
called for.

The design of cyber-physical systems grows out of the design of embedded
systems and is often performed by companies having a strong safety culture.
They are often well trained in using general safety standards as well as more
specialised safety standards for automotive, aeronautic, or health care applica-
tions. As communications increasingly become wireless or are multiplexed over
optical fibres or electrical wires, there is a clearly identified need to incorporate
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security in order to prevent cyber attacks on systems. While it is recognized that
both safety and security are important, one often hears the slogan that in the
time of crisis safety takes precedence over security.

We believe that this slogan reflects an unclear understanding of the many-
faceted nature of security. We might agree that in the time of crisis safety takes
precedence over confidentiality; it would be imprudent not to communicate warn-
ings about safety problems merely because these warnings can be overheard by
others. However, to challenge the slogan of the safety community, we would like
to suggest that authenticity (and integrity) takes precedence over safety; it would
be imprudent not to check that orders to change course do in fact originate from
authorised sources rather than (unaware or malicious) intruders.

Another maxim of the safety culture is that systems should be fail-safe; this
means that systems either do not fail or that they fail in a particularly graceful
manner having as few safety implications as possible. Taking the unreliability of
communication into account this means that entire systems are designed around
instructions of the form “please feel free to continue reversing (at the current
or lower speed) for the next 3 seconds” rather than “please feel free to continue
reversing (at the current or lower speed) until instructed otherwise”, because if
communication breaks down the former would lead to much fewer safety inci-
dents than the latter; the design of the European Railway Train Management
System (ERTMS) is a case in point.

This directly relates to the risk of denial of service as considered in security.
While attacks on the confidentiality, integrity and authenticity of messages can
be averted through the proper use of cryptographic communication protocols,
there is hardly any feasible way to guarantee against denial of service attacks in
cyber-physical systems. The reason is that cyber-physical systems are by their
very nature open and hence wireless communication can be jammed and optical
fibers and electrical cables can be cut. This suggests that the proper way to
deal with denial of service attacks is to ensure that systems are developed in
such a way that the consequences of communication break-down are as benign
as possible.

Contribution. In a previous paper [12] we proposed a process calculus, the
Quality Calculus, that allows to express due care in always having default or
substitute data available in case the real data cannot be obtained due to un-
reliable communication. The development was facilitated by a SAT-based [9,4]
robustness analysis to determine whether or not undesirable error configurations
could in fact be avoided by always choosing alternative configurations possibly
using default or substitute data. This addresses the issue of how best to secure
systems against denial of service and to obtain overall fail-safe behaviour.

In this paper we extend the Quality Calculus with trust levels indicating the
degree of trust we can have in the authenticity and integrity of communications.
In the interest of simplicity (and in accordance with our slogan that authenticity
takes precedence over safety) we shall ignore all issues relating to confidentiality
of communications. Instead we shall develop analyses to identify the extent to
which a system is robust against the following two types of attacks:
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– denial of service attacks due to other processes experiencing faults of their
own or due to an attacker disrupting the communication, for example by
jamming, and

– integrity attacks due to an attacker breaking part of the cryptographic com-
munication protocol, for example by a brute force attack on a weak crypto-
system or through the recovery of current session keys by physically disman-
tling and inspecting devices in the cyber-physical system.

Our aim is to identify those points in systems where decisions are made to
increase the integrity level, either through

(i) the endorsement of data (so as to allow an explicit flow of information
otherwise prohibited), or through

(ii) the temporary assertion of a higher trust-level for the context (the“program
counter” so as to allow an implicit flow of information otherwise prohibited),

and to identify those points where the proper use of default or substitute data
succeeds in

(iii) establishing the non-reachability of certain “error” configurations.

We do so by introducing language primitives to indicate the three points of
consideration and a safety and security type system enforcing that points of
type (i) and (ii) have not been forgotten and that points of type (iii) have not
be introduced without due care. The safety and security system amalgamates
an adaptation of the SAT-based robustness analysis of [12] with type systems
for integrity, which are dual to type systems for confidentiality (e.g. [16]).

Overview. Section 2 defines the syntax of the Quality Calculus, Section 3
defines the semantics in both closed and open environments, Section 4 defines the
safety and security type system, Section 5 contains a worked example, Section 6
discusses the theoretical properties of the system, and finally Section 7 concludes.

2 Syntax of the Quality Calculus

Our starting point is the Quality Calculus introduced in [12]. It is a calculus
in the π-calculus family [11] but extended with constructs allowing one to take
appropriate measures in case of unreliable communications. It shares this aim
with a number of other calculi studying how to model faults in the underly-
ing communication network (as for example [1,2,5,6,14]) but is doing so at a
somewhat higher abstraction level. The main novelty of the Quality Calculus
is a binder construct simultaneously waiting for a number of inputs and using
a quality predicate to determine when sufficient inputs have been received and
thereby when to continue with the computations.

We now extend the Quality Calculus [12] with notation for both safety and
security. We shall be based on a lattice L of trust levels indicating the level
of integrity or authenticity of the communications; we shall sometimes use L�

where L is extended with a new greatest element % and L�
⊥ where L� is extended



288 H.R. Nielson and F. Nielson

Table 1. Terms t, expressions e, binders b, processes P , and configurations Q

t ::= y | c | f(t1, · · · , tn) | endorse	2	1(t)

e ::= x | some(t) | none
b ::= t1!

	t2{x} | t1?
	x{t2} | &q(b1, · · · , bn) | assert	2	1(b)

P ::= (νc)P | P1 |P2 | 0 | b.P | A(e)

| case	 e of some(y) : P1 else P2 | dummy(P )

Q ::= (νc)Q | Q1 |Q2 | 0 | 〈�, P 〉

with a new least element ⊥. As a simple example, L might be {h, l} with l � h

indicating that h is trusted more than l; more complex examples can be designed
using Mandatory Access Controls systems focusing on integrity levels (e.g. [7]).

A system S consists of a number of process definitions, a main configuration
Q∗ and a number of global constants ci:

define A1(x1) � P1

...

An(xn) � Pn

in Q∗
using c1, · · · , ck

Terms, expressions, binders, processes and configurations are defined in Table
1. Terms t are used to construct data elements and consists of variables y,
constants c, function applications f(t1, · · · , tn), and the ability to increase the
trust level of terms endorse�2�1(t) thereby accepting violations of the explicit flow
of information; here 1, 2 ∈ L. Expressions e are used to construct optional data
and consists of variables x, optional data that is available some(t), and optional
data that is not available none.

Binders b express potentially unreliable communication. Output t1!
�t2{x} in-

dicates that data t2 is sent over channel t1 with x being the acknowledgement of
failure or success of the communication (none means failure and some(t) means
success). Input t1?

�x{t2} indicates that x is the result of receiving from the
channel t1 and t2 denoting the data to be sent as acknowledgement in case com-
munication succeeds; a communication will result in x being bound to optional
data (none in case of failure of communication and some(t) for the successful com-
munication of the data t). For both output and input the trust level  indicates
the intended level of trust in the communication. The quality predicate q used
in &q(b1, · · · , bn) expresses the overall criterion for an aggregate communication
to be successful. Example quality predicates include ∀ and ∃ requiring that all
components, resp. at least one component, must be successful. Finally, the con-
struct assert�2�1(b) is the analogue of endorse

�2
�1
(t) for raising the trust level in case

of binders and thereby accepting violations of the implicit flow of information.
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Processes P allow to create new fresh constants (νc)P , the parallel combina-
tion of processes P1 | P2, the empty process 0, communication b.P , and calling
defined processes A(e). The construct case� e of some(y) : P1 else P2 allows to
inspect the availability of the optional data e, choosing P1 with y denoting t in
case e yields some(t), and choosing P2 in case e yields none. Finally, the con-
struct dummy(P ) indicates that the error handling expressed by P is in fact
not necessary (due to the careful use of default and substitute data in case the
real data is not available) and hence choosing a simple-minded P = 0 will be
adequate.

Configurations Q allow to annotate processes with the trust level where they
are expected to operate; this will correspond to the trust level of the context
or “program counter”. The basic construct is that of 〈, P 〉 indicating that the
process P is intended to operate at trust level . The main configuration Q∗
typically takes the form 〈∗, P∗〉 where ∗ is the highest trust level in the lat-
tice L and P∗ is the main process of interest. On top of this we can combine
configurations using some of the operators available for processes.

The syntax generalises that of [12] in the consideration of trust levels, the use
of notation endorse�2�1(· · ·), assert

�2
�1
(· · ·) and dummy(· · ·), the extension of commu-

nication to include acknowledgements, and the ability to use quality predicates
not only on inputs but also on outputs. The latter is exploited in the simple
example below.

Example 1. Let L be the lattice {h, l} with l � h and consider the system

define A1(x) � (νd1)&∀(c!
hd1{z1}, c′?lx1{}).A1(x)

A2(x) � (νd2)&∃(c?
hx2{}, c′!ld2{z2}).A2(x)

in 〈h, A1(none) | A2(none)〉
using c, c′,

declaring two processes communicating over the channels c and c′ and exchang-
ing the constant  as an acknowledgement. Both processes are ready to input
and output over the two channels; the channel c is used for highly trusted com-
munications while c′ is used for communications at a lower trust level. The
process A1 requires that both actions are performed before recursing while A2

only requires that one of them are successful before recursing. 	


3 Semantics in Open and Closed Environments

Communication is intended to be point to point between one sender and one
receiver. In a closed environment both the sender and receiver will be part of
the given system whereas in an open environment only one needs to be part
of the specified system. We mostly follow the classical approach and define the
semantics by a structural congruence expressing when two configurations are
congruent to one another and a transition relation describing when one config-
uration evolves into another. The process definitions remain fixed throughout.

The structural congruence Q1 ≡ Q2 is specified in Table 2; it enforces that
configurations constitute a monoid with respect to parallel composition and the
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Table 2. The structural congruence

Q ≡ Q Q1 ≡ Q2 ⇒ Q2 ≡ Q1 Q1 ≡ Q2 ∧Q2 ≡ Q3 ⇒ Q1 ≡ Q3

Q |0 ≡ Q Q1 |Q2 ≡ Q2 |Q1 Q1 |(Q2 |Q3) ≡ (Q1 |Q2) |Q3

(νc)Q ≡ Q
if c /∈ fc(Q)

(νc1) (νc2)Q
≡ (νc2) (νc1)Q

(νc) (Q1 | Q2) ≡ ((νc)Q1) | Q2

if c /∈ fc(Q2)

Q1 ≡ Q2 ⇒
Q1 | Q ≡ Q2 | Q

Q1 ≡ Q2 ⇒
(νc)Q1 ≡ (νc)Q2

〈�, 0〉 ≡ 0 〈�, (νc)P 〉 ≡ (νc) 〈�, P 〉 〈�, P1 |P2〉 ≡ 〈�, P1〉 | 〈�, P2〉

Table 3. The transition relation for processes and systems

b1
c1!

�c2{c}−→ b′1 b2
c1?

�c2{c}−→ b′2

〈�1, b1.P1〉 | 〈�2, b2.P2〉
c1†�c2{c}−→ 〈�1, P ′

1〉 | 〈�2, P ′
2〉

where P ′
i =

{
b′i.Pi if b

′
i ::ff θi

Piθi if b′i ::tt θi

b
c1!

�c2{c}−→ b′

〈�′, b.P 〉 c1!
�c2{c}−→ 〈�′, P ′〉

where P ′ =

{
b′.P if b′ ::ff θ
Pθ if b′ ::tt θ

b
c1?

�c2{c}−→ b′

〈�′, b.P 〉 c1?
�c2{c}−→ 〈�′, P ′〉

where P ′ =

{
b′.P if b′ ::ff θ
Pθ if b′ ::tt θ

e � some(c)

〈�′, case	 e of some(y) : P1 else P2〉 τ−→ 〈�, P1[c/y]〉
e � none

〈�′, case	 e of some(y) : P1 else P2〉 τ−→ 〈�, P2〉
e � w

〈�, A(e)〉 τ−→ 〈�, P [w/x]〉
where A(x) � P
and w = some(c) or w = none

〈�, dummy(P )〉 τ−→ P

Q1 ≡ Q2 Q2
α−→ Q3 Q3 ≡ Q4

Q1
α−→ Q4

Q1
α−→ Q2

Q1 | Q α−→ Q2 | Q

Q
α−→ Q′

define · · · in (νc̄′)Q using c̄
α−→ define · · · in Q′ using c̄c̄′c̄′′

where {c̄′} ∩ {c̄} = ∅ and fn(α) ⊆ {c̄c̄′} and {c̄′′} = bn(α) \ {c̄c̄′}

empty process and it takes care of the scopes for constants; here fc(Q) is the set
of constants occurring free in Q.

The transition relation Q1
α−→ Q2 is defined in Table 3; here α will either

be τ indicating that the transition does not involve any communication, or it
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Table 4. The transition relation for binders

t1 � c1 t2 � c2

t1!
	t2{x}

c1!
�c2{c}−→ [some(c)/x : �]

t1 � c1 t � c

t1?
	x{t} c1?

�c2{c}−→ [some(c2)/x : �]

bi
β−→ b′i

&q(b1, · · · , bi, · · · , bn)
β−→ &q(b1, · · · , b′i, · · · , bn)

b
β−→ b′

assert	2	1(b)
β−→ assert	2	1(b

′)

t1!
	t2{x} ::ff [none/x] t1?

	x{t2} ::ff [none/x] [some(c)/x : �] ::tt [some(c)/x]

b1 ::v1 θ1 · · · bn ::vn θn

&q(b1, · · · , bn) ::v θn · · · θ1
where v = [{q}](v1 , · · · , vn)

b ::v θ

assert	2	1(b) ::v θ

will be c1†�c2{c} indicating an internal communication of c2 over the channel c1
and with acknowledgement c, or it will be c1?

�c2{c} or c1!
�c2{c} indicating an

external communication. The definition makes use of a relation t � c describing
when a term t evaluates to a constant c and a similar relation describing when
an expression e evaluates to a constant that either has the form some(c) or is
none. The definitions of these relations are straightforward and will therefore be
omitted; we shall only notice that the semantics is oblivious to the effect of the
endorse construct as the trust levels are not part of the semantic values.

To handle the binders we make use of a transition relation b
α−→ b′ (defined

in Table 4) recording that the binder b evolves into b′ while performing the
action α. Here α can be an output action c1!

�c2{c} or an input action c1?
�c2{c}.

The result b′ will be a binder containing substitutions and we formalise this by
extending the syntax of binders to

b ::= · · · | [some(c)/x : ]

where [some(c)/x : ] denotes that x is to be replaced by some(c); we retain
the trust level of the communication for the purposes of establishing a subject
reduction result (in Section 6) for our type system (defined in Section 4). Oc-

casionally, we shall allow to write b
α,x−→ b′ to indicate that by inspection of the

inference tree b
α−→ b′ one may observe that the step is due to the variable x

being bound to a constant.
We also make use of the relation b ::v θ; it records (in v ∈ {tt,ff}) whether or

not all required inputs of b have been performed and it records the corresponding
substitution (θ). It is here the quality predicates q are used to check whether
sufficient actions have been performed and we shall write [{q}] for the semantics
of quality predicates; as an example we have [{∀}](v1, · · · , vn) = v1 ∧· · · ∧vn and
[{∃}](v1, · · · , vn) = v1 ∨ · · · ∨ vn. We shall write id for the identity substitution
and θ2θ1 for the composition of two substitutions, so (θ2θ1)(x) = θ2(θ1(x)) for
all x.
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Finally, returning to Table 3, the transition relation S1
α−→ S2 for systems is

defined from the one for processes. It takes care of extending the list of known
constants c̄, with those that are extruded from the internals of the system c̄′,
as well as those that are extruded from the environment c̄′′. To express this we
make use of bn(α) to express those names in α that might be created by the
environment; it is given by bn(τ) = ∅, bn(c1†�c2{c}) = ∅, bn(c1!�c2{c}) = {c},
and bn(c1?

�c2{c}) = {c2}. The renaming names of α are denoted fn(α); they
are given by fn(τ) = ∅, fn(c1†�c2{c}) = {c1, c2, c}, fn(c1!�c2{c}) = {c1, c2}, and
fn(c1?

�c2{c}) = {c1, c}.

Example 2. Returning to Example 1 let us assume that the processes first engage
in an internal highly trusted communication over the channel c; the action is
c†hd1{} and the resulting configuration is:

define A1(x) � · · ·
A2(x) � · · ·

in 〈h,&∀([some()/z1 : h], c′?lx1{}).A1(none)
| A2(none)[some(d1)/x1; none/z2]〉

using c, c′,, d1, d2

Thus the first process records the result of the first communication in its binder
whereas the second process is ready to continue.

In the next step the system can interact with the external environment (for
example an attacker) using the channel c′. Assuming that the action is c′?ld3{},
meaning that a new constant d3 is injected in the system, we arrive at the
configuration

define A1(x) � · · ·
A2(x) � · · ·

in 〈h, A1(none)[some()/z1; some(d3)/x1]
| A2(none)[some(d1)/x1; none/z2]〉

using c, c′,, d1, d2, d3

so now both processes are ready to unfold. 	


In summary, if we admit only steps of the form

S
τ−→ S′ or S

c1†�c2{c}−→ S′

we obtain a semantics corresponding to a closed environment, whereas if we also
admit steps of the form

S
c1!

�c2{c}−→ S′ or S
c1?

�c2{c}−→ S′

we obtain a semantics corresponding to an open environment.

4 Safety and Security Type System

The aim of the type systems is to propagate information about the trust levels
in order not only to validate that the constraints imposed on trust levels are sat-
isfied but also that the subprocesses that are considered unreachable are indeed
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Table 5. Type system for terms, expressions and (extended) binders

Γ  y : Γ (y)
Γ  t : �

Γ  endorse	2	1(t) : �2
if � � �1

Γ  c : �
Γ  t1 : �1 · · · Γ  tn : �n

Γ  f(t1, · · · , tn) : �1 � · · · � �n

Γ  x � Γ (x), x
Γ  t : �

Γ  some(t) � �, tt
Γ  none ��,ff

Γ  t1 : �1 Γ  t2 : �2

�′, Γ  t1!
	t2{x} � [x �→ �], x

if �2 � � and �1 � � and �′ � �

Γ  t1 : �1 Γ  t2 : �2

�′, Γ  t1?
	x{t2} � [x �→ �], x

if �2 � � and �1 � � and �′ � �

�′, Γ  b1 � Γ1, ϕ1 · · · �′, Γ  bn � Γn, ϕn

�′, Γ  &q(b1, · · · , bn) � Γ1 ◦ · · · ◦ Γn, [{q}](ϕ1 , · · · , ϕn)

if bv(bi) ∩ bv(bj) = ∅ for i �= j and bv(bi) ∩ fv(bj) = ∅ for all i, j

�2, Γ  b � Γb, ϕb

�′, Γ  assert	2	1(b) � Γb, ϕb

if �′ � �1

Γ  t : �′′

�′, Γ  [some(t)/x : �] � [x �→ �], tt
if �′ � � and �′′ � �

unreachable. To do that we shall make use of a type environment Γ assigning
trust levels to variables (denoted x and y above) and process names (denoted
A above). In Table 5 we specify typing judgements for terms, expressions and
binders and in Table 6 we specify the judgements for processes and configura-
tions.

The typing judgement for terms takes the form Γ � t :  and indicates the
well-typedness of the term t in the type environment Γ and states that t has the
trust level  ∈ L�. The trust level % is assigned to all constants as they are not
affected by the communications and for function application we use the greatest
lower bound operation to determine the trust level of the composite construct.
For the endorse�2�1(·) construct we insist that the data being endorsed is at least
at the trust level of 1 and it is then lifted to that of 2.

The typing judgement for expressions takes the form Γ � e � , ϕ. As for
the terms, this judgement indicates the well-typedness of the expression e in the
type environment Γ and states that e has trust level  ∈ L�. Furthermore, the
logical formula ϕ indicates whether or not e is actually containing data; here
we assume that the status of a free expression variable x is given by a boolean
variable (that for the sake of simplicity also is named x).
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Table 6. Type system for processes, configurations and systems

ϕ, �′, Γ  P

ϕ, �′, Γ  (νc)P

ϕ, �′, Γ  P1 ϕ, �′, Γ  P2

ϕ, �′, Γ  P1 | P2

ϕ, �′, Γ  0

�′, Γ  b � Γb, ϕb ϕ′, �′, Γ [Γb]  P

ϕ, �′, Γ  b.P
if (∃bv(b).ϕ) ∧ ϕb ⇒ ϕ′

Γ  e � �e, ϕe ϕ∧ϕe, �, Γ [y �→ �]  P1 ϕ∧¬ϕe, �, Γ  P2

ϕ, �′, Γ  case	 e of some(y) : P1 else P2

if �e � � and �′ � �

Γ  e � �e, ϕe

ϕ, �′, Γ  A(e)
if (�x, �

′) ∈ Γ (A) and �e � �x ϕ, �′, Γ  dummy(P ) if unsat(ϕ)

Γ  Q

Γ  (νc)Q

Γ  Q1 Γ  Q2

Γ  Q1 | Q2

tt, �, Γ  P

Γ  〈�, P 〉
Γ  0

∀(�′, �) ∈ Γ (A1) : tt, �, Γ [x1 �→ �′]  P1

...
∀(�′, �) ∈ Γ (An) : tt, �, Γ [xn �→ �′]  Pn

Γ  Q∗

Γ  define A1(x1) � P1 · · · An(xn) � Pn in Q∗ using c1, · · · , ck

ifdom(Γ ) = {A1, · · · , An}

The typing judgement for binders takes the form , Γ � b � Γ ′, ϕ′ and in-
dicates the well-typedness of the binder b in the type environment Γ and in a
context specified by the trust level  ∈ L. Furthermore the judgement expresses
that the binder produces the new environment Γ ′ and the logical formula ϕ′

indicates whether or not the binder has been fully evaluated. The clauses for
output and input binders impose constraints on the trust levels: for output we
require that the data being sent is at least at the intended trust level, that the
trust level of the channel is at least at the intended trust level, and we also
require that the action happens in a sufficiently high context. Similar conditions
are imposed by the clause for input. In both cases the bound variable is assigned
the intended trust level. In the clause for composite binders the side condition
ensures that type environments constructed by the subbinders have disjoint do-
mains and hence can be composed and we use the semantics [{q}] of the quality
predicate q to compose the logical formulae obtained from the subbinders. Fi-
nally, in the clause for the construct assert�2�1(·) we require that the trust level
′ of the context is at least 1 and the subbinder is then type checked in the
context 2.

The typing judgement for processes is specified in Table 6 and takes the
form ϕ, , Γ � P and indicates the well-typedness of the process P in the type
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environment Γ , at trust level  ∈ L, and under the assumption that data is
available as specified by the logical formula ϕ. The clause for prefixing will
determine a local type environment Γb and an availability formula ϕb for the
binder and then use that to describe the context in which the continuation
process has to be type checked. The reachability formula for the continuation is
(∃bv(b).ϕ) ∧ ϕb which means existentially quantifying over all bound variables
of b in the formula ϕ and taking the conjunction with ϕb. It is always safe to
replace a reachability formula by a logical consequence (since ϕ1 ⇒ ϕ2 ensures
unsat(ϕ2) ⇒ unsat(ϕ1)) and we do so in Table 6 in order to ensure that well-
typedness is preserved under evaluation (see Theorem 1 below).

For the case construct we use the intended trust level to type check the two
subprocesses; in both cases the availability formula is modified to take care of
the expression; finally, we check that the trust level of the expression and of the
context both dominate the intended trust level. In the clause for process calls
we use that the type environment additionally maps a process names A to sets
of pairs (x, ′) indicating that for an actual parameter of trust level e such that
e * x, the body of the process definition is typable at trust level ′. Finally, the
construct dummy(P ) is typable if it is not reachable, that is, if the availability
formula is unsatisfiable.

The typing judgement for configurations takes the form Γ � Q and indicates
the well-typedness of the configuration Q in the type environment Γ obtained
from the overall system. Its definition follows largely the pattern of processes.
The final clause in Table 6 expresses when a system is well-typed; it implicitly
expresses a fixed point property defining the type environment Γ for the process
names.

Example 3. It is easy to check that the system of Example 1 is well-typed using
the initial type environment Γ given by Γ (A1) = {(h,h)} and Γ (A2) = {(l,h)}.
In particular we obtain

h, Γ [x �→ h] � &∀(c!
hd1{z1}, c′?lx1{}) � [z1 �→ h;x1 �→ l], z1 ∧ x1

h, Γ [x �→ l] � &∃(c?
hx2{}, c′!ld2{z2}) � [x2 �→ h; z2 �→ l], x1 ∨ z2

for the two binders of the processes. 	


5 Worked Example

We shall consider a scenario where the cd-player of a car is used not only for
playing music but also for updating the functionality of the car. The overall
functionality of the controller of the cd-player is as following:

– It will accept input from the driver of the car (on channel driver) and the cd
(on channel cd) and will then play the music on the cd (modelled as output
on channel play).

– It will also accept input from the service center (on channel service) and the
cd and will then start updating the software of the car (modelled as output
on the channel update); the controller holds information about the current
version of the software and it will also be updated.
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Table 7. The controller

ctrl(xv) � &∀(cd?
lxc{},&∃(driver?

mxd{}, service?hxs{})) (1)
caseh xs of some(ys) : (2)

casem xd of some(yd) : (3)
casel xc of some(yc) : (4)

&∃(assert
h

l (update!
hf(ys, endorse

h

l (yc)){zu}), (5)
play!lg(yd, yc){zp}). (6)

caseh zu of some(yu) : (7)
ctrl(some(n(endorsehl (yc)))) (8)

else ctrl(xv)) (9)
else dummy(0) (10)

else casel xc of some(yc) : (11)
asserthl(update!

hf(ys, endorse
h

l(yc)){zu}). (12)
ctrl(some(n(endorsehl(yc)))) (13)

else dummy(0) (14)
else casem xd of some(yd) : (15)

casel xc of some(yc) : (16)
play!lg(yd, yc){zp}. (17)

ctrl(xv) (18)
else dummy(0) (19)

else dummy(0) (20)

Table 7 gives a model of the controller of the cd-player in the Quality Calculus.
We assume that we have a lattice with three trust levels, h, m and l ordered so
that l � m � h. The binder in line (1) requires that input must be received from
the cd-player and either the driver or the service center. Actually it is possible
that all three inputs are received and lines (5-9) takes care of this situation;
lines (12-13) handle the case where input is received from the service center and
the cd-player whereas lines (17-18) take care of the case where input is received
from the driver and the cd-player. A number of nested case constructs are used to
identify these situations; this also identifies a number of possibilities that indeed
cannot arrise, given the choice of binder in line (1), and they are all written as
dummy(0).

The simplest case is when input has been received from the driver and the
cd-player; this case is handled in line (17-18) and simply amounts to issuing an
output on the channel play and a recursive call of the controller with unchanged
parameter. The value being output on play is g(yd, yc); here yd will have trust
level m while yc will have trust level l so the composite expression will have the
trust level l and since the communication has trust level l the type checking
will succeed.

Let us next consider the situation where input is received from the service
center and the cd-player but not from the driver; this is handled in lines (12-13).
In this case we issue an output on the channel update but we cannot just write
update!hf(ys, yc){zu} as it will not type check. The reason is that the trust level
of the composite expression f(ys, yc) is l (as ys has trust level h and yc has trust
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level l) and the communication must happen at the trust level h. By using the
argument endorseh

l
(yc) we lift the trust level of yc from l to h and the output

action will then type check. However, the output occurs as a branch of a case
construct that is governed by the variable xc that has trust level l; therefore we
use the asserth

l
(·) construct to signal that we can pretend to be in a high context

and now this part of the process will type check.
Finally let us return to the case where all three inputs are available; this

situation is handled in lines (5-9). Here the binder in line (5) captures that we
are ready to communicate over the update as well as play channel; the use of the
quality predicate ∃ means that we continue as soon as one of the outputs have
been accepted. In line (7) we then check the acknowledgement from the update
channel; if successful we will recurse with an updated parameter and otherwise
we recurse with the old parameter.

As already noticed a number of dummy annotations have been inserted re-
flecting that these parts of the process are unreachable. As an example our type
system will generate the following formula for the process in line (10):

xc ∧ (xd ∨ xs) ∧ xs ∧ xd ∧ ¬xc

and it is easy to see that it is unsatisfiable. On the other hand for the process
in line (9) we obtain the formula

xc ∧ (xd ∨ xs) ∧ xs ∧ xd ∧ xc ∧ (zu ∨ zp) ∧ ¬zu

and clearly it is satisfiable so it would not be correct to replace line (9) with
dummy(0).

6 Theoretical Properties

We are going to establish three theorems for showing the well-behavedness of
the type system with respect to the semantics.

Subject reduction. The first correctness statement for the type system is to estab-
lish a subject reduction result. Since we have not given the detailed definitions
of the semantic relations t � c, e � some(c) and e � none we will have to as-
sume that they behave in a benign manner in order to establish the results for
configurations.

We shall also use that b is well-typed and and hence does not define the same

variable twice in order to write b
α,x−→ b′ to indicate that in the proof of b

α−→ b′

the variable x was instantiated to some constant of the form some(c).

Theorem 1. Assume that

Γ � t :  ∧ t � c ⇒ ∃′ *  : Γ � c : ′

Γ � e � , ϕ ∧ e � some(c) ⇒ ∃′ *  : Γ � some(c) � ′, ϕ ∧ ϕ ⇔ tt

Γ � e � , ϕ ∧ e � none ⇒ ∃′ *  : Γ � none � ′, ϕ ∧ ϕ ⇔ ff
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Then
, Γ � b � Γ ′, ϕ′ ∧ b

α,x−→ b′ ⇒ , Γ � b′ � Γ ′, ϕ′[tt/x]

, Γ � b � Γ ′, ϕ′ ∧ b ::v θ ⇒ ϕ′θ ⇔ v

Γ � Q1 ∧ Q1
α−→ Q2 ⇒ Γ � Q2

Γ � S1 ∧ S1
α−→ S2 ⇒ Γ � S2

Here θ is obtained from θ by taking θ(x) = tt if θ(x) = some(c) for some constant
c and θ(x) = ff if θ(x) = none.

Sketch of proof. The need to replace  by a possibly larger ′ is due to the
fact that functions are allowed to have arguments that is greater than or equal
to the trust level promised as a result; due to evaluation we will typically select
or combine a subset of the arguments and hence the greatest lower bound of the
result is possibly larger. We refer to Appendix A for more details. 	


Safety. It follows from Theorem 1 that any configuration reachable from a well-
typed configuration by means of well-typed communications with the environ-
ment will itself be well-typed. Hence for the safety result it suffices to show that
subprocesses of the form dummy(P ) can never become available for execution
and this can be expressed clearly by saying that no well-typed configuration
contains a sub-configuration of the form 〈, dummy(P )〉. This guarantees that
the type system is correct in stating that the details of P are of no consequence
because dummy(P ) is not reachable.

Theorem 2. If Γ � S then S does not contain a sub-configuration of the form
〈, dummy(P )〉.

Proof. We proceed by contradiction and suppose that Γ � S and that S contains
a sub-configuration of the form 〈, dummy(P )〉. By the syntax of configurations
given in Table 1 and the typing rules for configurations given in Table 6 it
is immediate that Γ ′ � 〈, dummy(P )〉 for some Γ ′. Using the typing rules for
configurations once more it is immediate that tt, , Γ ′ � 〈, dummy(P )〉 and hence
that unsat(tt). This establishes the desired contradiction. 	


Security. To express the security result we shall fix a given system S of the form

define A1(x1) � P1 · · · An(xn) � Pn in Q∗ using c1, · · · , ck (1)

as well as the environment Γ . We shall next develop a non-interference result for
showing the correctness of the trust annotations [15,3,10]. It will formalise an
attack model where attackers are unknown but well-typed processes that could
execute in parallel with the given system.

Let us write level(c1?
�c2{c}) = , level(c1!

�c2{c}) = , level(c1 †� c2{c}) = ,
and level(τ) = ⊥ for the level of trust called upon in a given step. Here we
are considering L�

⊥ that is the lattice L� extended with a new least element ⊥
merely in order to assign a trust level to τ actions that always satisfies tests of
the form level(τ) �  for  ∈ L�.
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Define S
�λ−→ S′ to mean S

α−→ S′ and level(α) � λ and write S
�λ
=⇒ S′ for the

reflexive transitive closure of this relation. Define S
α, ��λ−→ S′ to mean S

α−→ S′

and level(α) �� λ and write S
α, ��λ
=⇒ S′ for ∃S′′ : S

�λ
=⇒ S′′ ∧ S′′ α, ��λ−→ S′.

Definition 1. A relation R is a λ-bisimulation provided that it is symmetric
and that whenever S1 R S2 we have that

1. Γ � S1

2. (a) if S1
�λ
=⇒ S′

1 and S2
�λ
=⇒ S′

2

(b) and S′
1

α, ��λ−→ S′′
1

(c) then it possible to find S′
2

α, ��λ
=⇒ S′′

2 such that S′′
1 R S′′

2 .

The notion of λ-bisimulation (in particular λ-bisimilarity defined below) embod-
ies the following idea. Consider two systems S1 and S2 that are related by some
λ-bisimulation. We can let them execute freely with the environment as long
as we stay at a trust level that is dominated by λ ∈ L. If one of the resulting
systems (say S′

1) can then perform an action at a trust level not dominated
by λ then so can the other system (say S′

2) — possibly after having performed
additional steps at a trust level dominated by λ in order to reach the step of
interest. The fact that the resulting systems (S′′

1 and S′′
2 ) are also related by

the λ-bisimulation means that the above process can be repeated as often as
possible.

It is immediate to show that the union of all λ-bisimulations is itself a λ-
bisimulation; this motivates the following definition.

Definition 2. λ-bisimilarity ≈
λ
is defined as the largest λ-bisimulation.

We can now express the non-interference result that communications at trust
level dominated by λ cannot influence communications at trust levels not dom-
inated by λ.

Theorem 3. If the system S of (1) satisfies Γ � S and has no occurrences of
endorse··(·) or assert··(·) then S ≈

λ
S for all λ ∈ L.

Sketch of proof. It is crucial for the proof that the Quality Calculus does not
contain any nondeterministic choices and that these cannot be encoded because
of our consideration of an open system semantics. We refer to Appendix B for
more details. 	


7 Conclusion

Safety is the traditional concern when designing embedded systems but when
embedded systems become parts of cyber-physical systems the open nature of
communications necessitates that security becomes an equal player. The secu-
rity concerns of highest importance are trust (or integrity or authenticity) and
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availability. It is then up to the developer to design a system that strikes the
proper balance between safety and security.

To assist in the design of such systems we have devised the Quality Calculus.
At the outset [12] this is a calculus in the π-calculus family of languages [11] that
allows to express quality predicates on the inputs that must have succeeded in
order for computation to progress. In this paper the Quality Calculus has been
extended in a number of ways:

– We performed a symmetric treatment (also see [13]) of input and output as
regards the quality predicates.

– We incorporated trust levels to indicate that some communications may
be more trustworthy than others, for example because of the strength of
cryptography used in securing them.

– We introduced language primitives for temporarily allowing to violate the de-
mands on the explicit flow of information (by means of explicit endorsement)
as well as the implicit flow of information (by means of explict assertions);
in both cases it is incumbent upon the designer to take responsibility for the
resulting violations of the information flow.

– We included a language primitive for expressing that certain parts of the pro-
cesses are not reachable and that therefore the one can dispense with proper
“error” handling; the mechanism to be used by the designer for achieving this
goal amounts to having default or substitute data available in case expected
data is not received from other distributed components.

The main technical contribution of the present paper was the development of
a type system that simultanously enforced the safety and security policies. The
safety component was realised by a logical formula indicating the reachability
of the various subprocesses; a subprocesses is deemed to be unreachable if the
logical formula is unsatisfiable and this is a correct over-approximation of reach-
ability. The security component was realised by a type environment mapping
entities to trust levels and ensuring that (in the absence of endorsement and as-
sertion) that highly trusted communication cannot be influenced by less trusted
communication and thereby securing communication at the the higher levels
against any attacker able to penetrate the cryptographic defences at lower lev-
els. This was illustrated on a worked example taken from the automotive sector
and we concluded by stating the formal results expressing the correctness of the
type system.

In future work we would like to extend the present approach with more quan-
titative considerations of lack of availability perhaps based on stochastic models
of the robustness of communication.
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A Proof of Theorem 1

From the assumptions of Theorem 1 we shall now establish a series of lemmata
from which the four results of Theorem 1 follows.

The first two results focus on the binders; in both cases the proofs are by
structural induction:

Lemma 1. Assume ′, Γ � b � Γ ′, ϕ and b
α,x−→ b′. Then ′, Γ � b′ � Γ ′, ϕ[tt/x].

Lemma 2. Assume ′, Γ � b � Γ ′, ϕ and b ::v θ. Then v ⇔ ϕθ.

To prove the third part of the Subject Reduction result we shall first establish
three classical lemmata. The first is a substitution result and for this we define
Γ � θ to mean that Γ (θ(x)) * Γ (x) for all x in the domain of θ. Then we have:

Lemma 3. Assume that ϕ, , Γ � P and that Γ � θ. Then ϕθ, , Γ � P θ .

The proof is by a straightforward structural induction. It relies on substitution
results for expressions and binders stating that if Γ � e � , ϕ then Γ � eθ � , ϕθ
and if , Γ � b � Γb, ϕb then , Γ � bθ � Γb, ϕb; in the latter case we assume that
bv(b) ∩ dom(θ) = ∅ (this can easily be satisfied by alpha renaming the bound
variables).
The next lemma allows us to restrict the type environment to the variables
of interest and this is followed by a lemma stating that structural congruent
configurations have the same typing properties; in the first case the proof is by
a straightforward structural induction and in the second case it follows from an
induction on the definition of the congruence relation.

Lemma 4. Assume that ϕ, , Γ � P and that Γ ′(x) = Γ (x) for all x ∈ fv(P ).
Then ϕ, , Γ ′ � P .

Lemma 5. Assume Q1 ≡ Q2. Then Γ � Q1 if and only if Γ � Q2.

Now the remaining results of Theorem 1 follow from the following subject re-
duction result for configurations:

Lemma 6. Assume Γ � Q1 and Q1
α−→ Q2. Then Γ � Q2.

The proof is by induction on the inference of the semantics and relies on the
results established above. The most interesting cases are those of communication
and here the results of Lemma 1, 2 and 3 are combined to give the result. To
handle the case construct we rely on Lemma 3 and 4 and Lemma 5 is used in the
case where the congruence is embedded in the semantics. We omit the details.

B Proof of Theorem 3

From the assumptions of Theorem 3 we have that the system S of the form

define A1(x1) � P1 · · · An(xn) � Pn in Q∗ using c1, · · · , ck
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satisfies Γ � S and has no occurrences of endorse··(·) or assert··(·). We next fix
λ ∈ L and need to show that S ≈

λ
S. To do so it suffices to construct a relation

R such that S R S and R is a λ-bisimulation.
For the construction we shall make use of an auxiliary function closeλ(· · · )

defined as follows:

closeλ(R) = { (S′
1, S′

2) | S1
�λ
=⇒ S′

1 ∧ S2
�λ
=⇒ S′

2 ∧ (S1, S2) ∈ R }

We next define R0 = {(S, S)} and

Ri+1 = { (S′′
1 , S′′

2 ) | S′
1

α, ��λ−→ S′′
1 ∧ S′

2
α, ��λ−→ S′′

2 ∧ (S′
1, S′

2) ∈ closeλ(Ri) }
= { (S′′

1 , S′′
2 ) | S′

1
α, ��λ−→ S′′

1 ∧ S′
2

α, ��λ
=⇒ S′′

2 ∧ (S′
1, S′

2) ∈ closeλ(Ri) }

It is now immediate that R =
⋃

i Ri is a relation such that S R S.
It remains to show that R is a λ-bisimulation. It is immediate that R is a

symmetric relation and the condition that Γ � S1 whenever S1 R S2 follows
from Theorem 1 and the assumption that Γ � S. The remaining condition is
a consequence of a few lemmas that are expressed in terms of two auxiliary
functions.

Define

Expλ(S
′) = {α | ∃S′′ : S′ α, ��λ−→ S′′}

and

Reachλ(S
′) = {α | ∃S′′ : S′ α, ��λ

=⇒ S′′}

Lemma 7. For all S′ we have Expλ(S
′) ⊆ Reachλ(S

′′).

Lemma 8. IfS′ �λ
=⇒ S′′ thenExpλ(S

′)⊆Expλ(S
′′)andReachλ(S

′) = Reachλ(S
′′).

The proof relies on the absence of nondeterministic choices in the Quality Cal-
culus and that any attempts to encode them using the open semantics would
influence the trust level.

Lemma 9. For all S′ there exists S′′ such that S′ �λ
=⇒ S′′ and Expλ(S

′) ⊆
Reachλ(S

′) = Expλ(S
′′) = Reachλ(S

′′).
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Abstract. Program invariants such as loop invariants and method spec-
ifications ( a.k.a. procedural summaries) are key components in program
verification. Such invariants are usually manually specified by users be-
fore passed as inputs to a program verifier. The process of manually
annotating programs with such invariants is tedious and error-prone
and can significantly hinder the level of automation in program veri-
fication. Although invariant synthesis techniques have made noticeable
progress in reducing the burden of user annotations; when it comes to
automated verification of memory safety and functional correctness for
heap-manipulating programs, it remains a rather challenging task to dis-
cover program specifications and invariants automatically, due to the
complexity of aliasing and mutability of data structures.

In this paper, we present invariant synthesis algorithms for the fol-
lowing scenarios: i) to synthesise a missing loop invariant, ii) to refine
given pre/post shape templates to complete pre/post-conditions, iii) to
infer a missing precondition, iv) to calculate a missing postcondition,
given a precondition. The proposed analyses are based on abstract inter-
pretation and are built over an abstract domain combining separation,
numerical and multi-set (bag) information. Our inference mechanisms are
equipped with newly designed abstraction, join, widening and abduction
operations. Initial prototypical experiments have shown that they are
viable and powerful enough to discover interesting useful invariants for
non-trivial programs.

1 Introduction

Due to the complexity of software, program errors/bugs may be hidden deeply
and may not be exposed solely by testing. Formal verification, on the other hand,
can guarantee a higher level correctness. Although research on formal verification
has a long history, dating back to the 1960s, it remains a challenging problem
to automatically verify (sizeable) programs written in mainstream imperative
languages such as C, C++, C# and Java.

Over the last two decades, many verification tools have been developed to help
programmers to verify their programs. A common observation made for most of
these verification tools [3,2,26,1,21,15] is that they often rely critically on users
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to manually supply program invariants such as method pre/post-conditions and
loop invariants, which can be error-prone, cumbersome, and can significantly
hinder the level of automation and the applicability of the tools. Static analysis
techniques that can help synthesise program invariants are crucial for the via-
bility and scalability of many verification tools and have been well sought after.
Nevertheless, it has been a challenging problem to construct effective program
analyses to synthesise program invariants automatically. This is especially so
when it comes to automated verification of memory safety and functional cor-
rectness for heap-manipulating programs, due to the complexity of aliasing and
mutability of data structures under manipulation.

In automatic program invariant synthesis, certain kinds of program properties
have been well explored over the last decades, such as numerical properties in
linear abstract domains, and structural (shape) properties for list-manipulating
programs in separation (shape) domains. However, previous works have not yet
automatically analysedprogramproperties involving complexmixed domains, par-
ticularly for programs with sophisticated data structures and strong invariants
involving both structural and pure (numerical and content) information. For ex-
ample, it is still non-trivial to discover programproperties, such as a list becoming
sorted during the execution of a program, a binary search tree remaining balanced
before and after the execution of a procedure, or the elements of a list remain-
ing unchanged after reversing the list. This difficulty is not only due to sharing
and mutability of data structures under manipulation, but is also due to closely
intertwined program properties, such as structure-aligned numerical information
(length of lists and height of trees), symbolic contents of data structures (bag of
values), and relational numerical information (sortedness and balancedness).

In addition to classical shape analyses for invariants synthesis (e.g. [7,13,22,41]),
separation logic [20,37] has been applied to analyse shape properties of heap-
manipulating programs in recent years [8,14,42,32,35]. These works can auto-
matically infer method specifications in the shape domain. Some other works
such as [27,28] also incorporate simple numerical information into their shape
domain to allow automated synthesis of properties like data structure size infor-
mation. However, these previous analyses mainly deal with predesignated data
structure properties (such as pointer safety for list segments) with fixed numer-
ical templates (such as list length information).

In our previous work [11], we have developed a verification framework catering
for a wider range of properties of heap-manipulating programs, covering mem-
ory safety and functional correctness. Our verification system offers an expressive
specification mechanism where users can supply their own shape predicates to
specify properties involving structural (shape) and pure (numerical and bag)
information over the above-mentioned combined domain. In this work, we make
another step forward by developing advanced static analyses that can help au-
tomatically synthesise program invariants over the complex combined domain.
Our proposed invariant synthesis algorithms cover the following different scenar-
ios: i) to synthesise a missing loop invariant, ii) to refine given pre/post shape
templates (for a procedure) to complete pre/post-conditions, iii) to synthesise a
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missing postcondition, given a precondition; iv) to infer a missing precondition.
The proposed analyses are based on abstract interpretation and are built over an
abstract domain combining separation, numerical and multi-set (bag) informa-
tion. Our inference mechanisms are equipped with newly designed abstraction,
join, widening and abduction operations. We have implemented the proposed
analyses in a prototype system. Initial experiments have shown that our analy-
ses are viable and powerful enough to discover interesting useful invariants for
non-trivial programs.

2 Preliminaries

2.1 Separation Logic

Separation logic [37] extends Hoare logic to support reasoning about shared
mutable data structures. It provides separation conjunction (∗) to form formulae
like p1 ∗ p2 to assert that two heaps described by p1 and p2 are domain-disjoint.
In our framework, we allow users to define inductive predicates in separation
logic to specify both separation and pure (size and bag) properties of recursive
data structures. For example, with a data structure definition for a node in a
list data Node { int val; Node next; }, one can define a predicate for a list with
its content as

llB(root, n, S) ≡ (root=null∧n=0∧S=∅)∨
(∃v, q, n1, S1 · root�→Node(v, q)∗llB(q, n1, S1)∧n1=n−1∧S=S1
{v})

The parameter root for the predicate llB is the root pointer referring to the
list. The length and content of the list are denoted resp. by n and the bag S, and

 indicates multi-set (bag) union.

If one wants to verify a sorting algorithm, they can specify a non-empty sorted
list segment as follows:

slsB(root, mi, mx, S, p) ≡ (root�→Node(mi, p)∧mi=mx∧S={mi})∨
(root�→Node(v, q)∗slsB(q, m1, mx, S1, p)∧v=mi∧v≤m1∧m1≤mx∧S=S1
{v})

where it keeps track of the minimum (mi) and maximum (mx) values in the list
as well as the bag of all values (S). p is the tail of list segment. Note that we
use a shortened notation that unbound variables, such as q, v, m1 and S1, are
implicitly existentially quantified.

Such predicates play an important role in our analysis as (1) they are used
to help specify desired properties about data structures, and (2) they serve as a
guide for our analysis to discover desired program specifications.

In our work we make use of the separation logic prover Sleek [29,11] to prove
whether one formula Δ′ in the combined abstract domain entails another one Δ:
Δ′�Δ∗ΔR. Along with the proof, Sleek also computes the frame ΔR which is useful
for our analysis. For instance, by entailment proof

∃y·x �→node(vx, y)∗llB(y, n, S) � llB(x, m, S1)∗ΔR
We can generate the frame ΔR as m=n+1∧S1=S
{vx}.
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In an earlier work [8,9], a bi-abductive entailment is proposed for the shape
domain: given two shape formulae G, H,

G ∗ [A]� H ∗ [F]
infers the anti-frame A and the frame F along the entailment proof. An example
taken from [9] is

x �→null∗z �→null∗[list(y)]� list(x)∗list(y) ∗ [z �→null]

where the list(·) predicate describes acyclic, null-terminated singly-linked lists.
In the current work, we will generalise such bi-abductive reasoning to the com-
bined domain (involving shape, user-defined predicates, numerical and bag in-
formation). A simple example of the generalised bi-abductive reasoning is

∃y·x �→node(vx, y)∗y �→node(vy, null)∗[A]� sllB(x, mi, mx, S)∗[F]
where A ≡ (vx≤vy) and F ≡ (mi=vx∧mx=vy∧S={vx, vy}).

2.2 Language and Abstract Domain

To simplify presentation, we employ a strongly-typed C-like imperative language
in Fig. 1 to demonstrate our approach. A program Prog written in this language
consists of declarations tdecl, which can be data type declarations datat (e.g.
Node in Section 2.1), predicate definitions spred (e.g. llB and slsB), as well as
method declarations meth with method specification mspec. The definitions for
spred andmspec are given later in Fig. 2. kτ is a constant of type τ . Our language
is expression-oriented, and thus the body of a method (e) is an expression formed
by program constructors. d and d[v] represent respectively heap-insensitive and
heap sensitive commands. The language allows both call-by-value and call-by-
reference method parameters, separated with a semicolon (;).

Prog ::= tdecl∗ meth∗ tdecl ::= datat | spred
datat ::= data c { field∗ } field ::= t v t ::= c | τ
meth ::= t mn ((t v)∗; (t v)∗) mspec∗ {e} τ ::= int | bool | void
e ::= d | d[v] | v:=e | e1; e2 | t v; e | if (v) e1 else e2 | while v {e}
d ::= null | kτ | v | new c(v∗) | mn(u∗; v∗)
d[v] ::= v.f | v1.f :=v2 | free(v)

Fig. 1. A Core (C-like) Imperative Language

Our specification language (in Fig. 2) allows (user-defined) shape predicates
spred to specify program properties in our combined domain. Note that such
predicates are constructed with disjunctive constraints Φ. We require that the
predicates be well-formed [11]. The first parameter of a predicate is the pointer
referring to the data structures itself. A conjunctive abstract program state σ has
mainly two parts: the heap (shape) part κ in the separation domain and the pure
part π in convex polyhedra domain and bag (multi-set) domains, where π consists
of γ, φ and ϕ as aliasing, numerical and multi-set information, respectively. kint

is an integer constant. The square symbols like �, �, 
 and 	 are multi-set



308 S. Qin et al.

spred ::= p(root, v∗) ≡ Φ Φ ::=
∨

σ∗ σ ::= ∃v∗·κ∧π
mspec ::= requires Φpr ensures Φpo

Δ ::= Φ | Δ1∨Δ2 | Δ∧π | Δ1∗Δ2 | ∃v·Δ
κ ::= emp | v �→c(v∗) | p(v∗) | κ1 ∗ κ2 π ::= γ ∧ φ
γ ::= v1=v2 | v=null | v1 �=v2 | v �=null | γ1∧γ2
φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1=b2 a ::=s1=s2 | s1≤s2
s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2) | |B|
ϕ ::= v∈B | B1=B2 | B1�B2 | B1�B2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1�B2 | B1�B2 | B1−B2 | ∅ | {v}

Fig. 2. The Specification Language

operators. The set of all σ formulae is denoted as SH (symbolic heap). During
the symbolic execution, the abstract program state at each program point will
be a disjunction of σ’s, denoted by Δ. Its set is defined as PSH. An abstract state
Δ can be normalised to the Φ form [11].

Using entailment [11], we define a partial order over these abstract states:

Δ " Δ′ =df Δ′ � Δ ∗ ΔR

where ΔR is the (computed) residue part. We also have an induced lattice over
these states as the base of fixpoint calculation for our analysis.

The memory model of our specification formulae can be found in [11]. In our
analysis, variables include both program and logical variables.

3 Loop Invariant Synthesis

Loop invariant is the key to prove the correctness of loops. Discovering invariant
of loops automatically has been viewed as a challenged task. In this section, we
present a solution for synthesising loop invariant in the combined shape and pure
domain. Our analysis is based on the framework of abstract interpretation [12]
with specifically designed operations (abs, join and widen) over this combined
domain.

Our analysis algorithm LoopInv is given in Fig. 3. The algorithm takes four
input parameters: T as the program environment with all the method speci-
fications in the program, Δpre as the precondition for the while loop (i.e. the
abstract state before the loop starts), the while loop itself while b {e}, and an
upper bound n on the number of shared logical variables we keep during anal-
ysis. A shared logical variable (a.k.a. cutpoint) indicates a location which can
be reached by two or more program point variables. For example, in formula
sllB(x, m1, x1, S1, z

′)∗sllB(y, m2, x2, S2, z
′), z′ is a cutpoint shared by x and y. In

our analysis, we need the cutpoint to trace the shape of program data structures.
At the beginning of the algorithm, we initialise the iteration variable (i) and

two states to begin with (Δi and Δ′
i). The starting state of the calculation is

Δpre. Among the two states here, the unprimed version Δi denotes the ini-
tial state before the ith execution of the loop body, and the primed one Δ′

i
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LoopInv(T , Δpre, while b {e}, n)

Local: i := 0; Δi := Δpre; Δ′
i := Δi;

1 repeat

2 i := i+ 1;

3 Δi := widen†(Δi−1, join
†(Δi−1,Δ

′
i−1));

4 Δ′
i := abs†(|[e]|T (Δi ∧ b));

5 if Δ′
i = false ∨ cp no(Δ′

i) > n then return fail end if

6 until Δ′
i = Δ′

i−1;

7 return Δ′
i

Fig. 3. Loop invariant synthesis algorithm

represents the result state after. At each iteration, the algorithm first joins to-
gether the initial state Δi−1 of the previous iteration with the result state Δ′

i−1

obtained in the previous iteration, and widen it against the state Δi−1 (line 3).
Note that this step sets Δ1 to be Δpre for the very first iteration. The algorithm
then symbolically executes the loop body with the abstract semantics defined
in Section 3.1 (line 4), and applies the abstraction operation to the obtained
abstract state. If the symbolic execution cannot continue due to a program bug,
or if we find our abstraction cannot keep the number of shared logical vari-
ables/cutpoints (counted by cp no) within a specified bound (n), then a failure
is reported (line 5). Otherwise we judge whether a fixpoint is already reached by
comparing the current abstract state with the one from the previous iteration
(line 6). The fixpoint Δ′

i is returned as the loop invariant. We apply entailment
checker to judge whether two formulae are equivalent. If Δ1 � Δ2 and Δ2 � Δ1,
we say Δ1 = Δ2.

Since the number of program variables and the set of user-defined predicates
are finite, and with a bounded number of cutpoints, our abstract shape domain
is finite. This guarantees the termination of our analysis.

In what follows, we elaborate the key techniques of our analysis: the abstract
semantics |[e]|T Δ, the abstraction function abs, and the join and widen operators.

3.1 Abstract Semantics

The abstract semantics is used to execute the loop body symbolically to obtain
its post-state during the loop invariant synthesis. Its type is defined as

|[e]| : AllSpec → PSH → PSH

where AllSpec contains all the specifications of all methods (extracted from the
program Prog). For some expression e, given its precondition, the semantics will
calculate the postcondition.
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The foundation of the semantics is the basic transition functions from a con-
junctive abstract state to a conjunctive or disjunctive abstract state below:

unfold(x) : SH → PSH[x] Rearrangement

exec(d[x]) : AllSpec → SH[x] → SH Heap-sensitive execution

exec(d) : AllSpec → SH → SH Heap-insensitive execution

where SH[x] denotes the set of conjunctive abstract states in which each element
has x exposed as the head of a data node (c(x, v∗)), and PSH[x] contains all
the (disjunctive) abstract states, each of which is composed by such conjunctive
states. Here unfold(x) rearranges the symbolic heap so that the cell referred to
by x is exposed for access by heap sensitive commands d[x] via the second tran-
sition function exec(d[x]). The third function defined for other (heap insensitive)
commands d does not require such exposure of x.

isdatat(c) σ � c(x, v∗) ∗ σ′

unfold(x)σ =df σ

isspred(c) σ � c(x, u∗) ∗ σ′ c(root, v∗)≡Φ

unfold(x)σ =df σ′ ∗ [x/root, u∗/v∗]Φ

The test isdatat(c) returns true only if c is a data node and isspred(c) returns
true only if c is a shape predicate.

The symbolic execution of heap-sensitive commands d[x] (i.e. x.fi, x.fi := w,
or free(x)) assumes that the rearrangement unfold(x) has been done previously:

isdatat(c) σ � c(x, v1, .., vn) ∗ σ′

exec(x.fi)(T )σ =df σ′ ∗ c(x, v1, .., vn) ∧ res=vi

isdatat(c) σ � c(x, v1, .., vn) ∗ σ′

exec(x.fi := w)(T )σ =df σ′ ∗ c(x, v1, .., vi−1, w, vi+1, .., vn)

isdatat(c) σ � c(x, u∗) ∗ σ′

exec(free(x))(T )σ =df σ′

The symbolic execution rules for heap-insensitive commands are as follows:

exec(k)(T )σ =df σ ∧ res=k

exec(x)(T )σ =df σ ∧ res=x

isdatat(c)

exec(new c(v∗))(T )σ =df σ ∗ c(res, v∗)

t mn ((ti ui)
n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [xi/ui]
n
i=1 σ � ρΦpr ∗ σfr σpo = ρΦpo

exec(mn(x1, .., xn))(T )σ =df σpo ∗ σfr

The first three rules deal with constant (k), variable (x) and data node creation
(new c(v∗)), respectively. The keyword res indicates the value of the expression.
The last rule handles method invocation, and the call site is ensured to meet
the precondition of mn, as signified by σ � ρΦpr ∗ σfr , where σfr is the frame
part. In this case, the execution succeeds and the postcondition of mn (ρΦpo) is
added into the post-state.
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A lifting function † is defined to lift unfold’s domain to PSH:

unfold†(x)
∨

σi =df

∨
(unfold(x)σi)

and this function is overloaded for exec to lift both its domain and range to PSH:

exec†(d)(T )
∨

σi =df

∨
(exec(d)(T )σi)

Based on the transition functions above, we can define the abstract semantics
for a program command e as follows:

|[d[x]]|T Δ =df exec†(d[x])(T ) ◦ unfold†(x)Δ
|[d]|T Δ =df exec†(d)(T )Δ
|[e1; e2]|T Δ =df |[e2]|T ◦ |[e1]|T Δ
|[x := e]|T Δ =df [x′/x, r′/res](|[e]|T Δ) ∧ x=r′ fresh logical x′, r′

|[if (v) e1 else e2]|T Δ =df (|[e1]|T (v∧Δ)) ∨ (|[e2]|T (¬v∧Δ))

which form the foundation for us to analyse the loop body.

3.2 The Abstraction Mechanism

During symbolic execution, wemay be confronted with infinitely many “concrete”
program states and we need appropriate abstraction mechanisms to ensure the
convergence of the fixed-point analysis. We design an abstraction function abs to
abstract the (potentially infinite) concrete situations into finitely many abstract
ones, aiming to obtain finiteness in the abstract domain. Our rationale of design
is to keep only program variables and shared cutpoints; all other logical vari-
ables will be abstracted away. For example, abs(x �→Node(v1, z0)∗llB(z0, n1, S1))
= llB(x, n, S)∧n=n1+1 ∧ S=S1
{v1}.

As illustrated, the abstraction transition function abs eliminates unimportant
logic variable (during analysis) to ensure termination. Its type is defined as
follows:

abs : SH → SH Abstraction

which indicates that it takes in a conjunctive abstract state σ and abstracts it
as another conjunctive state σ′. Its rules are given below.

abs(σ ∧ x0=e) =df σ[e/x0]

abs(σ ∧ e=x0) =df σ[e/x0]

x0 /∈ Reach(σ)

abs(H(c)(x0, v
∗) ∗ σ) =df σ ∗ true

p2(u
∗
2) ≡ Φ H(c1)(x, v

∗
1) ∗ σ1  p2(x, v

∗
2) ∧ π2

Reach(p2(x, v
∗
2) ∗ σ3 ∧ π2) ∩ {v∗1} = ∅

abs(H(c1)(x, v
∗
1) ∗ σ1 ∗ σ3) =df p2(x, v

∗
2) ∗ σ3 ∧ π2

where H(c)(x, v∗) denotes x�→c(v∗) if c is a data node or c(x, v∗) if c is a predicate.
The function Reach(σ) returns all pointer variables which are reachable from
program variables in the abstract state σ.

The first two rules eliminate logical variables (x0) by replacing them with
their equivalent expressions (e). The third rule is used to eliminate any garbage
(heap part led by a logical variable x0 unreachable from the other part of the
heap) that may exist in the heap. The last rule of abs intends to eliminate shape
formulae led by logical variables (all logical variables in v∗

1). It tries to fold some
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data nodes (H(c1)(x, v∗
1)∗σ1) up to one shape predicate (p2(x, v∗

2)), and π2 is the
pure only residue. The predicate p2 is selected from the user-defined predicates
environments and it is the target shape to be abstracted against with. The rule
ensures that the latter is a sound abstraction of the former by entailment proof,
and the pointer logical parameters of c1 are not reachable from the other part
of the heap (so that the abstraction does not lose necessary information).

Then the lifting function is applied for abs to lift both its domain and range
to disjunctive abstract states PSH:

abs†
∨

σi =df

∨
abs(σi)

3.3 Join and Widening

Join Operator. The operator join is applied over two conjunctive abstract
states, trying to find a common shape as a sound abstraction for both:

join(σ1, σ2) =df

let σ′
1,σ

′
2=rename(σ1,σ2) in

match σ′
1,σ

′
2 with (∃x∗

1·κ1∧π1),(∃x∗
2·κ2∧π2) in

if σ1  σ2 ∗ true then ∃x∗
1, x

∗
2 · κ2 ∧ (joinπ(π1, π2))

else if σ2  σ1 ∗ true then ∃x∗
1, x

∗
2 · κ1 ∧ (joinπ(π1, π2))

else σ1 ∨ σ2

where the rename function avoids naming clashes among logical variables of
σ1 and σ2, by renaming logical variables of same name in the two states with
fresh names. For example, it will renew x0’s name in both states ∃x0 · x0=0 and
∃x0 ·x0=1 to make them ∃x1 ·x1=0 and ∃x2 ·x2=1. After this procedure it judges
whether σ2 is an abstraction of σ1, or the other way round. If either case holds,
it regards the shape of the weaker state as the shape of the joined states, and
performs joining for pure formulae with joinπ(π1, π2), the join operator over pure
domains [30,31]. Otherwise it keeps a disjunction of the two states (as it would
be unsound to join their shapes together in this case).

For example, if we try

join(x �→Node(xmi0,xp0), slsB(x, xmi0,xmx0,xS0,xp0)) ,

since x �→Node(xmi0,xp0) can be viewed as slsB(x, xmi0,xmi0,{xmi0},xp0), the
two arguments then can be joined as

slsB(x, xmi0, xmx0, xS0, xp0)∧xmi0≤xmx0∧{xmi0}�xS0.
We lift this operator for abstract state Δ as follows:

join†(Δ1,Δ2) =df match Δ1,Δ2 with (
∨

i σ
1
i ), (

∨
j σ

2
j ) in

∨
i,j join(σ

1
i , σ

2
j )

which essentially joins all pairs of disjunctions from the two abstract states, and
makes a disjunction of them.

Widening Operator. The finiteness of the shape domain is confirmed by the
abstraction function. To ensure the termination of the whole analysis, we still
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need to guarantee the convergence of the analysis over the pure domain. This
task is accomplished by the widening operator, which is defined as:

widen(σ1, σ2) =df

let σ′
1, σ

′
2 = rename(σ1, σ2) in

match σ′
1, σ

′
2 with (∃x∗

1 · κ1 ∧ π1), (∃x∗
2 · κ2 ∧ π2) in

if σ1  σ2 ∗ true then ∃x∗
1, x

∗
2 · κ2 ∧ (widenπ(π1, π2))

else σ1 ∨ σ2

In the widen operator, we expect that the second operand σ2 to be weaker than
the first σ1, such that the widening reflects the trend of such weakening from
σ1 to σ2. In this case, it returns the shape of σ2 with pure part by applying
widening operation widenπ(π1, π2) to the pure domain [30,31]. For example,

widen(∃xmx1,xS1·slsB(x, xmi0,xmx1,xS1,xp0)∧xv=xmx0∧xS=xS1,
∃xmx2,xS2·slsB(x, xmi0,xmx2,xS2,xp0)∧xv≤xmx2∧xS�xS2):=

∃xmx0, xS0·slsB(x, xmi0, xmx0, xS0, xp0)∧xv≤xmx0∧xS�xS0.

We also lift the operator over (disjunctive) abstract states:
widen†(Δ1, Δ2) =df match Δ1,Δ2 with (

∨
i σ

1
i ), (

∨
j σ

2
j ) in

∨
i,j widen(σ

1
i , σ

2
j )

4 Specification Completion

From this section onwards, we present our invariant synthesis techniques for
method pre/post-conditions. In this section, we focus on the scenario where
pre/post shape templates are already supplied by users. Our proposed analysis
will automatically refine such templates to complete specifications. We believe
by allowing users to supply pre/post (shape) templates and letting the synthesis
algorithm to compute the missing information (which is often tedious and error-
prone), we offer a good way to harness the synergy between a human’s insights
and a machine’s capability at automated program analysis.

The proposed specification synthesis algorithm (SPComplete) is given in Fig 4.
The analysis proceeds in two steps for a method where the pre/post shape in-
formation is given in the specification, namely (1) forward analysis (at lines 1-2)
and (2) pure constraint abstraction generation and solving (at lines 3-10).

The forward analysis Symb Exec is shown in the right of Fig 4. Starting from
a given pre-shape Φpr, it analyses the method body e (via symbolic execution;
line 13) to compute the post-state in constraint abstraction form. The symbolic
execution rules are similar to the rules shown in Section 3.1, except that a bi-
abduction mechanism is used when the symbolic execution fails, and the failure
location is recorded.

When symbolic execution fails to prove memory safety based on the current
pre-state, the abduction mechanism is invoked. For example, if the current state
is llB(x, n, S) (a list that is possibly empty), but x �→node( , p) is required by
the next program instruction, our abduction mechanism will infer n≥1 to add
to the current state to satisfy the requirement.The variable errLbls (initialised
at line 11) is to record the program locations in which abductions had occurred
previously. Whenever the symbolic execution fails, it returns a state Δ that
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Algorithm SPComplete(T ,mn, e, Φpr,Φpo,u
∗,v∗)

1 Δ := Symb Exec(T , mn, e,Φpr)

2 if Δ = fail then return fail end if

3 Normalise Δ to DNF, and denote as
∨m

i=1 Δi

4 w∗:={u∗,v∗,v′∗}∪ pureV({u∗,v∗,v′∗}, Φpr∨Φpo)

5 ΔP := Pure CA Gen(Φpo, Q(w
∗)::=

∨m
i=1 Δi)

6 if ΔP = fail then return fail end if

7 π := Pure CA Solve(P(w∗)::=ΔP)

8 R := t mn ((t u)∗; (t v)∗) requires
! ex quan(Φpr, π) ensures ex quan(Φpo, π)

9 if Verify(T ,mn,R) then return T ∪ {R} \
! { tmn ((t u)∗; (t v)∗) requiresΦpr ensuresΦpo }

10 else return fail end if

end Algorithm

Algorithm Symb Exec
! (T ,mn, e, Φpr)

11 errLbls := ∅
12 do

13 (Δ, l) := |[e]|T mn(Φpr, 0)

14 if l>0∧l /∈errLbls then

15 Φpr:=ex quan(Φpr,Δ);

16 errLbls := errLbls∪{l}
17 else if l>0 ∧ l∈errLbls

! then return fail

18 end if

19 while l > 0

20 return Δ

end Algorithm

Fig. 4. Specification Completion Algorithm

contains the abduction result and the location l where failure was detected, as
shown in line 13. If the current abduction location l is not recorded in errLbls,
it indicates that this is a new failure. The abduction result is added to the
precondition of the current method to obtain a stronger Φpr, before the algorithm
enters the symbolic execution loop with variable errLbls updated to add in the
new failure location l. This loop is repeated until symbolic execution succeeds
with no memory error, or a previous failure point was re-encountered. The latter
may indicate a program bug or a specification error, or may be due to the possible
incompleteness of the underlying Sleek prover we use.

Back to the main algorithm SPComplete, the analysis next builds a heap-based
constraint abstraction, named Q(w∗), for the post-state in line 3. This constraint
abstraction is possibly recursive. We then make use of another algorithm in
Fig 5, named Pure CA Gen, to extract a pure constraint abstraction, named
P(w∗), without any heap property. This algorithm tries to derive a branch Pi for
each branch Δi of Q. For every Δi it proceeds in two steps. In the first step (lines
2-4), it replaces the recursive occurrence of Q in Δi with σ ∗ P(w∗). In the second
step (lines 5-6) it tries to derive Pi via the entailment. If the entailment fails,
then abduction is used to discover any missing constraint σ′

i for ρΔi to allow the
entailment to succeed. In this case, σ′

i is incorporated into σi (and eventually
Pi). Once this is done, we use some existing fixpoint analysis (e.g. [31]) inside
SPComplete to derive non-recursive constraint π, as a simplification of P(w∗).
This result is then incorporated into the pre/post specifications in line 8, before
we perform a post verification in line 9 using the Hip verifier [29], to ensure the
strengthened precondition is strong enough for memory safety.

The function pureV(V, Δ) retrieves from Δ the shapes referred to by all pointer
variables from V , and returns the set of logical variables used to record numer-
ical (size and bag) properties in these shapes, e.g. pureV({x}, ll(x, n)) returns
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Algorithm Pure CA Gen(σ, Q(w∗)::=
∨m

i=1 Δi)

1 for i = 1 to m

2 Denote all appearances of Q(w∗) in Δi as Qj(w
∗
j ), j = 1, ..., p

3 Denote substitutions ρj = [([w∗
j /w

∗]σ ∗ P(w∗
j ))/Qj(w

∗
j )]

4 Let substitution ρ := ρ1 ◦ ρ2 ◦ ... ◦ ρp as applying all substitutions
! defined above in sequence

5 if (ρΔi  σ ∗ σi or ρΔi ∧ [σ′
i]� σ ∗ σi) and ispure(σi) then Pi := σi

6 else return fail end if

7 end for

8 return
∨m

i=1 Pi

end Algorithm

Fig. 5. Pure constraint abstraction generation algorithm

{n}. This function is used in the algorithm to ensure that all free variables in
Φpr and Φpo are added into the parameter list of the constraint abstraction Q.
The function ex quan(Δ, π) is to strengthen the state Δ with the abduction re-
sult π: ex quan(Δ, π) =df Δ ∧ ∃(fv(π) \ fv(Δ)) · π. It is used to incorporate the
discovered missing pure constraints into the original specification. For example,
ex quan(ll(x, n), 0<m∧m≤n) returns ll(x, n)∧0<n. The bi-abduction mechanism
is defined in Section 4.1.

4.1 The Bi-abduction

We present a bi-abduction procedure over our combined domain as a generali-
sation to the shape bi-abduction [8] which caters for only the shape domain.

The bi-abduction procedure σ ∗ [σm] � σ1 ∗ σf aims to find the anti-frame
part σm (the missing part) and the frame part σf such that σ ∗ σm � σ1 ∗
σf with given σ and σ1. Our abduction procedure can handle more than one
predicates in the analysis, while the shape abduction [8] caters for only one
specified shape predicate domain. Another advance is that we can infer numerical
and bag properties together with the shape formulae for the anti-frame part to
improve the precision of the analysis. The bi-abduction procedure is calculated
by BiAbd(σ, σ1) = (σm, σf ) function (shown in Fig. 6).

The Entail(σ, σ1) function returns σf if the Sleek entailment σ � σ1 ∗ σf

succeeds with σf , or false if the entailment σ � σ1 ∗ true fails.
The BiAbd(σ, σ1) function checks whether σ � σ1 ∗ σ′

1 for some σ′
1 first. If

the entailment proof succeeds, we do not need abduction, and return emp as the
anti-frame and σ′

1 as the frame.
The function BiAbd1 triggers when the LHS (σ) does not entail the RHS (σ1)

but the RHS entails the LHS with some formula (σ′
1) as the residue. This function

is quite general and applies in many cases. For instance, for the formula emp �

x �→Node(xv, xp), the RHS can entail the LHS with residue x �→Node(xv, xp). The
abduction then checks whether σ plus the frame information σ′

1 implies σ1 ∗ σ′
2
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BiAbd(σ, σ1) =df

let σ′
1 = Entail(σ, σ1) in

if σ′
1 �= false then (emp, σ′

1) else BiAbd1(σ, σ1)

BiAbd1(σ, σ1) =df

let σ′
1 = Entail(σ1, σ) and σ′

2 = Entail(σ ∗ σ′
1, σ1) in

if σ′
1 �= false ∧ σ′

2 �= false then (σ′
1, σ

′
2) else BiAbd2(σ, σ1)

BiAbd2(σ, σ1) =df

let σ′
u ∈ unroll(σ) and (σ′

0, σ
′
1) = BiAbd(σ′

u, σ1) and σ′
2 = Entail(σ ∗ σ′

1, σ1) in
if data no(σ′

u) ≤ data no(σ1) ∧ σ′
1 �= false ∧ σ′

2 �= false

then (σ′
1, σ

′
2) else BiAbd3(σ, σ1)

BiAbd3(σ, σ1) =df

if the caller is not BiAbd3 then
let (σ′

0, σ
′
1) = BiAbd(σ1, σ) and σ′

2 = Entail(σ ∗ σ′
1, σ1) in

if σ′
1 �= false ∧ σ′

2 �= false then (σ′
1, σ

′
2) else BiAbd4(σ, σ1)

else BiAbd4(σ, σ1)

BiAbd4(σ, σ1) =df

let σ′
2 = Entail(σ ∗ σ1, σ1) in

if σ′
2 �= false then (σ1, σ

′
2) else (false, false)

Fig. 6. Bi-Abduction Algorithm

for some σ′
2 (emp in this example), and returns x �→Node(xv, xp) as the anti-frame.

If the function is not applicable, we use the function BiAbd2.
The function BiAbd2 deals with the case where neither side entails the other, e.g.

for slsB(x, xmi, xmx, xS, null) as σ and ∃p, u, v·x �→Node(u, p) ∗ p �→Node(v, null)
as σ1. As the shape predicates in the antecedent σ are formed by disjunctions ac-
cording to their definitions (like slsB), its certain disjunctive branches may imply
σ1. In this function, we first unfold σ (σ′

u ∈ unroll(σ)) and try further abduction
with the results (σ′

u) against σ1. If it succeeds with a frame σ′
1, then we confirm

the abduction by ensuring that Entail(σ ∗ σ′
1, σ1) succeeds. For the example

above, the abduction returns ∃u, v·xS={u, v} as the anti-frame σ′
1 and discovers

the nontrivial frame u=xmi∧v=xmx∧u≤v as σ′
2. The function data no returns the

number of data nodes in a state, e.g. it returns 1 for x �→Node(v, p) ∗ llB(p, n, T).
This syntactic check prevents unlimited number of times of unrolling from hap-
pening when the abduction procedure invokes this function recursively. The
unroll unfolds all shape predicates once in σ, normalises the result to a disjunctive
form (

∨n
i=1 σi), and returns the result as a set of formulae ({σ1, ..., σn}).

The function BiAbd3 is applied when BiAbd2 does not work, e.g. ∃p, u, v, q ·
x �→Node(u, p) ∗ p �→Node(v, q) as σ and ∃xS · slsB(x, xmi, xmx, xS, xp) as σ1. In
this case the antecedent σ cannot be unfolded as it contains only data nodes.
As the function defines, it reverses two sides of the entailment and applies the
BiAbd to uncover the constraints σ′

0 and σ′
1. Then it checks that whether σ with

σ′
1 conjoined, does entail σ1 before it returns σ′

2. For the example above, the
anti-frame (σ′

1) is inferred as u≤v. The caller of this function is not allowed to
be BiAbd3, in order to prevent infinite number of applications of this function.

If the first four functions do not succeed in finding a solution, the last function
BiAbd4 is invoked to add the consequence σ1 to the antecedent σ, provided that
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they are consistent. It is effective for situations like x �→Node( , ) � y �→Node( , ),
where we should add y �→node( , ) to the LHS directly (as the other four func-
tions do not apply here). In our analysis, we assume that different variables refer
to different nodes unless aliasing is suggested in the program code. For example,
the if-statement if (x == y){c} suggests that x and y are aliased in code c.

5 Postcondition Synthesis

In this section, we work on the scenario where the precondition for a method is
given but not the postcondition. We propose an invariant synthesis algorithm
to compute the missing postcondition starting from a given precondition. As
shown in Fig. 7, the algorithm has three inputs: T is the set of methods with
their specifications, the procedure to be analysed with its precondition Pre, and
a pre-set upper bound n (the maximal number of cutpoints to keep track of).

PostInfer(T , t mn ((t x)∗; (t y)∗) requires Pre {e}, n)

Local: i := 0; Posti := false;
1 T ′ := T ∪ {t mn ((t x)∗; (t y)∗) requires Pre ensures Posti {e}};
2 repeat

3 i := i+ 1;

4 Posti := abs†(|[e]|T ′(Pre));

5 Posti := widen†(Posti−1, join
†(Posti−1,Posti));

6 if Posti=false or cp no(Posti)>n then return fail end if

7 T ′ := T ∪ {t mn ((t x)∗; (t y)∗) requires Pre ensures Posti {e}};
8 until Posti = Posti−1

9 return Posti

Fig. 7. Postcondition synthesis algorithm

As we see before, the algorithm is similar to the loop invariant synthesis
algorithm. One difference is we set the initial postcondition of the method t to be
the strongest condition false, which will be used as the initial environment for
recursive method calls. In the following process, the postcondition is weakened
until a fixed-point is achieved. For each iteration, we symbolically execute the
method body by using the current specification, and generate a postcondition
for the current method body (line 4). After applying the abstraction, join and
widening operations to the current condition, a new postcondition is updated as
the method specification (line 5-7), and will be used in the next iteration. After
each iteration, we test whether a fixpoint is reached (line 8), if so, we return
the current postcondition as the finial result. During the analysis, if the number
of logical variables maintained oversteps the specified bound n, the algorithm is
stopped and a failure is reported (line 6).

The operations used in the algorithm, such as the abstract semantics |[e]|T Δ,

the abstraction function abs†, and join† and widen† are defined in Section 3.
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6 Precondition Synthesis

Writing preconditions is also a cumbersome and error-prone task. In this section,
we discuss an approach to synthesise preconditions in the combined domain. Our
proposed analysis algorithm is given in Fig. 8. It takes three input parameters: T
as the set of method specifications that are already inferred, the procedure to be
analysed t mn ((t x)∗; (t y)∗) {e}, and a pre-set upper bound n on the number
of shared logical variables that we keep during the analysis.

To infer the preconditions in the combined shape and pure domain, we ap-
ply the bi-abduction technique in the abstract interpretation framework over
the combined domain. During the analysis, we keep track of a pair of formulae
(Δ1, Δ2) representing the inferred precondition and the current state respec-
tively. As in a standard abstract interpretation framework, our analysis carries
out the fixed-point iteration until a fixed-point is reached.

PreInfer(T , t mn ((t x)∗; (t y)∗) {e}, n)

Local: i := 0; Prei := emp,Posti := false;
1 T ′ := T ∪ {t mn ((t x)∗; (t y)∗) requires Pre0 ensures Post0 {e}};
2 repeat

3 i := i+ 1;

4 (Prei,Posti) := |[e]|AT ′(Prei−1,Prei−1);

5 (Prei,Posti) := (abs†(Prei), abs
†(Posti));

6 (Prei,Posti) := (join†(Prei−1,Prei), join
†(Posti−1,Posti));

7 (Prei,Posti) := (widen†(Prei−1,Prei),widen
†(Posti−1,Posti));

8 if Prei=false or Posti=false or cp no(Prei)>n or cp no(Posti)>n
· then return fail end if

9 T ′ := T ∪ {t mn ((t x)∗; (t y)∗) requires Prei ensures Posti {e}};
10 until Prei=Prei−1 does not change

11 Post = |[e]|T ′Prei;

12 if Post = false then return fail else return Prei
13 end if

Fig. 8. Precondition synthesis algorithm

We first set the method precondition as emp and postcondition as false which
signifies that we know nothing about the method (line 1). Then for each iteration,
a forward abductive analysis is employed to compute a new pre-/post-condition
(line 4) based on the current specification. The analysis performs abstraction
on both obtained pre-/post-conditions to maintain the finiteness of the shape
domain. The obtained results are joined with the results from the previous iter-
ation (line 6), and a widening is conducted over both to ensure termination of
the analysis (line 7). If the analysis cannot continue due to a program bug, or
cannot keep the number of shared logical variables/cutpoints (counted by cp no)
within a specified bound (n), then a failure is reported (line 8). At the end of
each iteration, the inferred specification is used to update the specification of mn
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(line 9), which will be used for recursive calls (if any) of mn in next iteration.
Finally we judge whether a fixed-point is already reached (line 10). The last few
lines (from line 11) ensure that inferred precondition are indeed sound using a
standard abstract semantics (without abduction). Any unsound specifications
will be ruled out.

6.1 Abstract Semantics with Abduction

As shown in the algorithm, we use two kinds of abstract semantics to analyse
the program: an abstract semantics with abduction to derive the specification
for the program (line 4), and another underlying semantics to ensure soundness
for the analysis result (line 11) which is defined in Section 3.1.

We shall now define the abstract semantics with abduction, which is of the
form

|[e]|A : AllSpec → P(SH× SH) → P(SH× SH)

It takes a piece of program and a specification table, and maps a (disjunctive)
set of pairs of symbolic heaps to another such set (where the first in the pair is
the accumulated precondition and the second is the current state).

This semantics also consists of the basic transition functions which compose
the atomic instructions’ semantics and then the program constructors’ semantics.
Here the basic transition functions are lifted as

Unfold(x)(σ′, σ) =df

let Δ=unfold(x)σ and S={(σ′, σ1) | σ1 ∈ Δ}
in if (false /∈ Δ) then S

else if (Δ � x=a for some a∈SVar) and
(σ′ � c(a, y∗) ∗ true for fresh {y∗}⊆LVar)

then S ∪ {(σ′ ∗ c(x, y∗), Δ ∗ c(x, y∗))}
else S ∪ {(σ′, false)}

Exec(ds)(σ′, σ) =df let σ1=exec(ds)σ in {(σ′, σ1) | σ1 ∈ Δ}
where ds is either d[x] or d, excluding procedure call

t mn ((ti ui)
m
i=1; (ti vi)

n
i=1) requires Φpr ensures Φpo ∈ T

ρ = [x′
i/ui]

m
i=1 ◦ [y′

i/vi]
n
i=1 σ ∗ [σ′

1]� ρΦpr ∗ σ1

ρo = [ri/vi]
n
i=1 ◦ [x′

i/u′
i]
m
i=1 ◦ [y′

i/v′
i]
n
i=1 ρl = [ri/y′

i]
n
i=1 fresh logical ri

Exec(mn(x1, .., xm; y1, .., yn))(T )(σ, σ′) =df

{(σ2, ρo(σ
′ ∗ σ′

1)) |σ2 ∈ (ρlσ1)∗(ρoΦpo)}

A similar lifting function † is defined to lift Unfold’s and Exec’s domains:

Unfold†(x)
∨
(σ′

i, σi) =df

∨
(Unfold(x)(σ′

i, σi))

Exec†(ds)(T )
∨
(σ′

i, σi) =df

∨
(Exec(ds)(T )(σ′

i, σi))

Based on the above transition functions, the abstract semantics with abduction
is as follows:
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|[d[x]]|AT (Δ′, Δ) =df Exec†(d[x])(T ) ◦ Unfold†(x)(Δ′, Δ)

|[d]|AT (Δ′, Δ) =df Exec†(d)(T )(Δ′, Δ)

|[e1; e2]|AT (Δ′, Δ) =df |[e2]|AT ◦ |[e1]|AT (Δ′, Δ)

|[x := e]|AT (Δ′, Δ) =df [x′/x, r′/res](|[e]|AT (Δ′, Δ)) ∧ x=r′

fresh logical x′, r′

|[if (v) e1 else e2]|AT (Δ′, Δ) =df (|[e1]|AT (Δ′, v∧Δ)) ∨ (|[e2]|AT (Δ′,¬v∧Δ))

For assignment we apply the substitution on both abstract states in the pair.

7 Experiments and Evaluation

We have implemented a prototype system and evaluated it over a number of
heap-manipulating programs to test the viability and precision of our approaches
in different scenarios. Our experimental results were achieved with an Intel Core
i7 CPU 2.66GHz with 8GB RAM. We have also defined a library of predicates
covering popular data structures and a variety of properties. The predicates re-
quired as input by our tool can be selected from the library or can be supplied
by users, according to the input program data structures and the properties
of interest. Usually, the upper bound of cutpoints is set to be twice the num-
ber of input program variables to improve the precision. Some of our results
are presented in Table 1. The tables shows the analysed methods and the anal-
ysis time (in seconds) for different scenarios, such as loop invariant synthesis
(LoopInv), pre/post-condition completion (SPComplt), postcondition infer-
ence (PostInfer) and precondition inference (PreInfer). Some methods in the
table, like height that calculates the height of the input tree, and count that
returns the number of nodes in the input tree are not tail recursive function,
and such methods cannot be written as loops. We leave the time slots empty.

Comparing our approach to the previous approaches the first observation
concerns the precision of our analysis. Our tool uses a combined domain, it can
discover more expressive specifications to guarantee memory safety and func-
tional correctness. For example in case of the take program which traverses the
list down for a user-specified number n of nodes, we can find that the input list
length must be no less than n. However the previous tools based on a shape
domain (like [9]) can only discover the memory safety properties of given pro-
grams. Since our shape domain includes tree data structures, our tool is able
to discover complex functional specifications for binary search trees in contrast
to the previous approaches [10,27]. For example in case of the flatten method,
our tool is able to discover that the input data structure is a binary search tree
while the output data structure is a sorted doubly linked list having the same
data content (values stored inside the nodes) as that of the input.

The second observation regarding our experimental results is that the specifi-
cation completion algorithm uses less time than other three algorithms in general.
This is because the SPComplt algorithm does not need fixed-point computa-
tion in the combined domain. The time usage of loop invariant synthesis and
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Table 1. Selected Experimental Results

Prog. LoopInv SPComplt PostInfer PreInfer

Singly Linked List

create 0.45 0.22 0.47 0.82

delete 0.72 0.42 0.78 1.12

traverse 0.63 0.29 0.67 0.92

length 0.77 0.42 0.75 0.86

append 0.31 0.44 0.43 1.02

take 0.85 0.52 0.81 0.86

insert 0.84 0.57 0.88 0.84

reverse 1.03 0.56 1.07 1.16

filter 1.18 0.72 1.12 1.56

Sorting algorithm

sort insert 0.82 0.47 0.84 1.92

merge 1.97 1.12 1.83 2.78

sort select 0.69 0.47 0.67 1.06

Doubly Linked List

create 0.56 0.33 0.53 0.94

append 0.76 0.47 0.72 1.72

insert 0.68 0.42 0.62 1.42

Binary Search Tree

create - 0.71 1.42 1.68

insert 1.36 0.87 1.32 1.41

search 1.29 0.98 1.22 1.72

height - 0.62 0.98 1.03

count - 0.77 0.94 1.05

flatten - 1.09 1.72 2.92

postcondition inference are almost the same, it is because the both algorithms
have the same computation strategy. The precondition inference algorithm need
most time over all the others, since it requires both bi-abduction and fixed-point
computation in the combine domain. From the comparison, we can conclude
that, if users want the verification to be faster, more information need to be
given. If the level of automation of verification is the first concern, then the
verification system will need more time to check and compute.

8 Related Work and Conclusion

Dramatic advances have been made in synthesising heap-manipulating programs’
specifications. The local shape analysis [14] infers loop invariants for
list-processing programs, followed by the SpaceInvader/Abductor tool to infer
full method specifications over the separation domain, so as to verify pointer
safety for larger industrial codes [9,42]. The SLAyer tool [16] implements an
inter-procedural analysis for programs with shape information. Compared with
them, our abstraction is more general since it is driven by predicates and is
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not restricted to linked lists. To deal with size information (such as number of
nodes in lists/trees), THOR [28] derives a numerical program from the original
heap-processing one, such that the size properties can be obtained by numerical
analysis. A similar approach [17] combines a set domain (for shape) with its
cardinality domain (for corresponding numerical information) in a more general
framework. Compared with these works, our approach can discover specifica-
tions with stronger invariants such as sortedness and bag-related properties,
which have not been addressed in the previous works. One more work to be
mentioned is the relational inductive shape analysis [10,25] and our previous in-
ference works [33,34]. These works can handle shape and numerical information
over a combined domain. However they still require user given preconditions for
the program and only deal with specific scenarios, whereas we can also com-
pute the preconditions. Rival and Chang [38] propose an inductive predicate
to summarize call stacks along with heap structures in a context of a whole-
program analysis. In contrast our analysis is modular, inferring an abstraction
of a procedure heap effect.

There are also other approaches that can synthesise shape-related program
invariants other than those based on separation logic. The shape analysis frame-
work TVLA [41] is based on three-valued logic. It is capable of handling compli-
cated data structures and properties, such as sortedness. Guo et al. [18] report
a global shape analysis that discovers inductive structural shape invariants from
the code. Kuncak et al. [23] develop a role system to express and track referenc-
ing relationships among objects, where an object’s role (type) depends on, and
changes according to, the mutation of its referencing. Hackett and Rugina [19]
can deal with AVL-trees but it is customised to handle only tree-like structures
with height property. Bouajjani et al. [5,6] propose a program analysis in an
abstract domain with SL3 (Singly-Linked List Logic) and size, sortedness and
multi-set properties. However, their heap domain is restricted to singly-linked
list only, and their shape analysis is separated from numerical and mutli-set anal-
yses. Type-based approaches [39,40] are also used to infer numerical constraints
for given type templates, but limited to capture flow sensitive constraints. Com-
pared with these works, separation logic based approaches benefit from the frame
rule with support for local reasoning.

There are other approaches which unify reasoning over shape and data us-
ing either a combination of appropriate decision procedures inside Satisfiability-
Modulo-Theories (SMT) solvers (e.g. [36,24]) or a combination of appropriate
abstract interpreters inside a software model checker (e.g. [4]). Compared with
our work, their heap domains are mainly restricted to linked lists.

Concluding Remarks. We have reported in this paper program analysis tech-
niques that help synthesise automatically program invariants over a combined
separation and pure(numerical+bag) domain. Our inference mechanisms include
a loop invariant synthesis, a static analysis that refines (partial) pre/post shape
templates to (complete) specifications, a postcondition inference and a precon-
dition synthesis. The key components of the proposed analyses include novel
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abstraction and abduction mechanisms, join and widening operators. We have
built a prototype system and the initial experimental results are encouraging.

Acknowledgement. This work was supported by EPSRC project EP/G042322.
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Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Software and
System Modeling 4 (2005)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

3. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)
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Abstract. CSP treats internal τ actions as urgent, so that an infinite
sequence of them is the misbehaviour known as divergence, and states
with them available make no offer that we can rely on. While it has
been possible to formulate a number of forms of abstraction in these
models where the abstracted actions become τ s, it has sometimes been
necessary to be careful about the interpretation of τ s and divergence. In
this paper, inspired by an industrial problem, we demonstrate how this
range of abstractions can be extended to encompass the offers made by
processes during a run of “slow τ s”, namely abstractions of interactions
with an external agent that does not usually respond urgently to an offer,
but always eventually does respond. This extension requires the prioritise
operator recently introduced into CSP and its refinement checker FDR.
We demonstrate its use in the modelling used in Verum’s ASD:Suite.

1 Introduction

Hoare’s CSP [7, 12, 13] treats the actions a process can perform alike, except that
while ordinary visible communications in the alphabet Σ require the agreement
of the external environment to occur, the special action τ does not.

The CSP hiding operator P \ X makes the assumption that the hidden X
actions (now τs) happen as soon as they can. However, hiding is also a means
of abstracting part of the external interface of a process, and this has meant
that in formulating concepts such as LA(P) (lazy abstraction [12]) we have
had to allow for abstracted actions not being urgent. Lazy abstraction assumes
that abstracted events may occur inside LA(P) whenever P can do them, or
may not, but will never happen so fast as to exclude the rest of P ’s interface
and cause divergence. The abstracted user may even behave like STOP and
never do anything. Lazy abstraction has proved a powerful tool for formulating
specifications such as security and fault tolerance. It is used in the CSP models
of embedded systems created by Verum (see Section 6). Hiding corresponds to
eager abstraction, as abstracted actions are always on offer to the process.

Some of Verum’s modelling needed an abstraction that was somewhere be-
tween the two. They needed a model where the owner of A could still delay
the process P , and still did not prevent other users getting to use P , but which
would not refuse events in A for ever. So we might characterise these agents as
non-urgent (as in lazy abstraction) but ultimately compliant. One class of actions
that fits well into this model are ones (like the tock action described in [12, 13])
that represent the regular passage of time.
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We characterise slow abstraction SA(P) by looking at limiting behaviour along
infinite execution paths of P . While this abstraction proves impossible to express
directly using CSP operators, we discover a method using priority for deciding
whether SA(P) refines a chosen specification. Beginning with a background sec-
tion on CSP and its models, the rest of this paper develops the above ideas and
ends with a case study showing how our methods have been used in Verum’s
ASD:Suite, a tool for creating correct-by-design embedded software.

We make two simplifying assumptions. Firstly we do not consider abstractions
of processes able to terminate (), avoiding some special cases. Secondly we only
consider the case where the alphabet Σ is finite, though we will feel free to extend
it, for modelling and analytic purposes, to a larger finite set.

2 Background

2.1 CSP and Its Semantics

CSP is based on instantaneous actions handshaken between a process and its
environment, whether that environment consists of processes it is interacting
with or some notional external observer. It enables the modelling and analysis
of patterns of interaction. The books [7, 12, 13, 15] all provide thorough intro-
ductions to CSP. The main constructs that we will be using in this paper are
set out below.

– The processes STOP , SKIP and div respectively do nothing, terminate
immediately with the signal  and diverge by repeating the internal action
τ . RunA and ChaosA can each perform any sequence of events from A,
but while RunA always offers the environment every member of A, ChaosA
can nondeterministically choose to offer just those members of A it selects,
including none at all.

– a → P prefixes P with the single communication a which belongs to the
set Σ of normal visible communications. Similarly ?x : A → P(x ) offers the
choice A and then behaves accordingly.

– CSP has several choice operators. P � Q and P 	 Q respectively offer
the environment the first visible events of P and Q , and make an internal
decision via τ actions whether to behave like P or Q .
The asymmetric choice operator P �Q offers the initial visible choices of P
until it performs a τ action and opts to behave like Q . In the cases of P � Q
and P �Q , the subsequent behaviour depends on what initial action occurs.

– P \ X (hiding) behaves like P except that actions in X become τs.
– P [[R]] (renaming) behaves like P except that when P performs an action a,

the new process performs some b that is related to a under the relation R.
– P ‖

A
Q is a parallel operator under which P and Q act independently except

that they have to agree (i.e. synchronise or handshake) on all communications
in A. A number of other parallel operators can be defined in terms of this,
including P ||| Q = P ‖

∅
Q in which no synchronisation happens at all.
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Other CSP operators such as P ; Q (sequential composition), P , Q (interrupt)
and P Θa Q (throw an exception) do not play a direct role in this paper.

We understand a CSP process in terms of its pattern of externally visible
communications. CSP has several styles of semantics that can be shown to be
appropriately consistent with one another [12, 13]. The two styles that will con-
cern us are operational semantics, in which rules are given that interpret any
closed process term as a labelled transition system (LTS), and behavioural mod-
els, in which processes are identified with sets of observations that might be
made from the outside.

An LTS models a process as a set of states that it moves between via actions
in Στ , where τ cannot be seen or controlled by the environment. There may be
many actions with the same label from a single state, in which case the environ-
ment has no control over which is followed. The best known behavioural models
of CSP are based on the following. Traces are sequences of visible communica-
tions a process can perform. Failures are combinations (s ,X ) of a finite trace s
and a set of actions that the process can refuse in a stable state reachable on
s . A state is stable if it cannot perform τ . Divergences are traces after which
the process can perform an infinite uninterrupted sequence of τ actions, in other
words diverge. The models are then

– T in which a process is identified with its set of finite traces;
– F in which it is modelled by its (stable) failures and finite traces;
– N in which it is modelled by its sets of failures and divergences, both ex-

tended by all extensions of divergences: it is divergence strict.

Traces, failures and divergences are all observations that can be made of a process
in linear time. As described in [13], there is a range of other models based on
richer forms of linear observation. An example is refusal testing, in which we
record not just one stable refusal at the end of a trace, but have the option to
record one before each event of the trace as well as at the end. Refusal testing
models have long (see [10]) been recognised as being relevant to priority. However,
we show in this paper that (unexpectedly) refusal-testing models are not always
sufficient to encapsulate priority, and that sometimes one needs to look at the
yet more refined models in which the refusal information during and at the end
of traces is replaced by acceptance or ready sets: the actual sets of events made
available from stable states. The latter are sometimes called acceptance traces
models.

2.2 Lazy Abstraction

Lazy abstraction LA(P) captures what a process looks like to an observer unable
to see the events A, assuming that there is another user who can, and can accept
or refuse them. See [12] for a full discussion.

The traces of LA(P), like any way of abstracting A, are those of P \ A. As
the abstracted user can at any time refuse or accept events in A, its failures are
those of

(P ‖
A
ChaosA) \ A
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whose traces are again correct. We assume that the abstracted user cannot con-
sume so much of P ’s resources as to make it diverge, so we assert that the
abstraction (unlike the above CSP expression) never diverges.

2.3 FDR

FDR[11–13] is a refinement checker between finite-state processes defined in CSP.
First created in the early 1990’s it has been regularly updated since, and indeed
a completely new version FDR3 will be released late in 2013.1

It uses CSPM , namely CSP extended by Haskell-like functional programming.
Thus one can define complex networks and data operations succinctly, and cre-
ate functions that, given abstract representations of structures or systems, can
automatically generate CSP networks to implement and check them. The FDR
is at the heart of the verification functionality of ASD:Suite [3, 4]: the tool cap-
tures state machine models of proposed embedded systems, and then builds CSP
models of how it will implement these so that they can be checked for correct-
ness properties. This is only one of several major uses of FDR in government
and industry, almost all of which start by translating some other notation to
CSP.

FDR checks refinements of the form Spec �X Impl , where Spec is a process
representing a specification in one of the standard CSP models X , usually traces,
stable failures or failures-divergences. Impl is a CSP representation of the system
being checked. Typically this sort of check scales better in Impl than Spec, the
latter of which has to be normalised as part of the decision process. FDR supports
a number of techniques for attacking the state explosion problem, including
hierarchical compression. The algorithms underpinning FDR are set out in [12–
14]. A number of recent additions to FDR including priority were summarised
in [1].

3 A Priority Operator

There have been a number of proposals, for example [5, 8, 9], for the introduction
of priority into CSP. These usually proposed ways in which a process could prefer
one action to another, even though both remained available. An approach like
that would automatically invalidate not only CSP’s existing semantic models,
which would have to be redeveloped to accommodate these preferences, but also
the use of FDR in anything close to its usual form, since FDR supports transition
systems without preferences. However, [13] introduced a priority that does make
sense over ordinary labelled transition systems. The one we discuss here is a
slightly more expressive version of that.

1 The initial release of FDR3 will, functionally, be similar to FDR2.94 except that it
will support multi-core execution of some functions, will have a new GUI, and will
have an integrated type-checker for CSPM . Further functionality is planned for later
versions.
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Our operator Pri≤(P) is parameterised by a partial order ≤ on Στ , the set of
action labels. τ is constrained to be maximal in ≤, but not necessarily maximum.
(So there may be visible actions less than τ and ones incomparable to τ , but
not ones greater than τ .) Further, we do not permit non-maximal elements of
Σ to be incomparable to τ . These conditions are both required to preserve the
property that CSP treats the processes P and τ.P (one that can perform a τ
before acting like P) as equivalent.

The operational semantics of Pri≤(·) are easier to understand than its ab-
stract behavioural semantics. They do not, however, fit into the framework de-
scribed as “CSP-like” in [13], because they require negative premises: an action
cannot occur unless all actions of higher priority are impossible. The only oper-
ational rule needed for the new operator is

P
x−→ P ′ ∧ ∀ y �= x .x ≤ y.P � y−→ · · ·

Pri≤(P)
x−→ Pri≤(P ′)

The fact that τ is maximal means it is never blocked by this rule.
Since the operational semantics for Pri≤(P) fall outside the “CSP-like” class

that guarantees a semantics in every CSP model, it is not a surprise that not
all such models are congruences for it. We cannot expect it to respect a model
that does not tell us which events a process performs happen from stable states,
and whether all Σ-events less than a given event are then refused. The traces
model certainly does not tell us this because its observations are completely
independent of whether the process is stable or not. While failures-based models
would seem to satisfy this requirement – as failures occur in stable states and
tell us what these states refuse – they do not give enough information. Consider
the pair of processes (a → b → STOP)�(a → STOP) and (a → STOP)�(a →
b → STOP). These divergence-free processes have identical failures, but imagine
applying a priority operator to them where a < b. In each case, the a → ·
that appears to the left of � is prevented because τ (necessarily, given our
assumptions, of higher priority than a) is an alternative. So only the other a
is allowed, meaning that the results of the prioritisation are different: one can
perform b and one cannot. We conclude that it is not enough to know information
about stable states only at the ends of traces; we also need to know about
stability and the refusal of high-priority events earlier in traces.

The refusal-testing models do distinguish these two processes, because they
have different behaviours after the refusal of all events other than a, followed
by the action a have both been observed (which is written 〈Σ \ {a}, a〉 in the
notation below). Several variations on the refusal-testing model, and a richer
one in which exact ready or acceptance sets are recorded on the stable states in
a trace, are detailed in Chapters 11 and 12 of [13]. In the simplest of these, the
stable refusal-testing model RT , the behaviours recorded of a process are all of
the form

– 〈X0, a1,X1, . . . ,Xn−1, an ,Xn〉
where n ≥ 0 and each Xi is either a refusal set (subset of Σ) or • (indicating
that no refusal was observed).
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The refusal-testing value of a process P can tell us what traces are possible
for Pri≤(P): P can only perform an action a that is not maximal in ≤ when all
greater actions (including τ) are impossible. In other words the trace 〈a1, . . . , an〉
is possible for Pri≤(P) if and only if

〈X0, a1,X1, . . . ,Xn−1, an , •〉

is a refusal-testing behaviour, where Xi is • if ai−1 is maximal, and {a ∈ Σ |
a > ai−1} if not (even if that set is empty so an−1 is less than only τ).

It came as a surprise to us, however (particularly given what one of us wrote
in [13]), to discover that there are cases where the refusal components of refusal-
testing behaviours of Pri≤(P) can not be computed accurately from the corre-
sponding behaviour of P . This is because Pri≤(P) can refuse larger sets than
P : notice that if P offers all visible events, then the prioritised process refuses
all that are not maximal in ≤. Consider the processes

DF1(X ) =	{a → DF1(X ) | a ∈ X }

DF2(X ) =	{?x : A → DF2(X ) | A ⊆ X ,A �= ∅}

These are equivalent in the refusal-testing models: each has all possible be-
haviours with traces in Σ∗ that never refuse the whole alphabet Σ.

Now consider Q1 = DF1({a, b}) ||| CS and Q2 = DF2({a, b}) ||| CS where
CS = c → CS . Clearly Q1 and Q2 are refusal-testing equivalent. Let ≤ be the
order in which b > c and a is incomparable to each of b and c. We ask the
question: is 〈{c}, a, •〉 a refusal-testing behaviour of Pri≤(Qi)?

When i = 1 the answer is “no”, since whenever Q1 performs the event a the
set of events it offers is precisely {a, c}. It can also offer {b, c}, but in neither
case can it perform a after the refusal of {c}. However, Q2 can choose to offer
{a, b, c}: in this state the priority operator prevents c from being offered to the
outside, meaning that Pri≤(P2) can be in a stable state where a is possible but
c is not: so in this case the answer is “yes”. Thus we need more information than
refusal testing of Qi to calculate the refusal-testing behaviours of Pri≤(Qi).

This example tells us that Pri≤(·) can only be compositional for refusal test-
ing when the structure of ≤ is such that whenever a and b are incomparable
events in Σ and c < b then also c < a. This is because we could reproduce an
isomorphic example in any such order. It is, however, possible to give a compo-
sitional semantics for refusal testing when there is no such triple. This means
that the order has to take one of two forms:

– A list of sets of equally prioritised events, the first of which contains τ .
– A list of sets of equally prioritised events, the first of which is exactly {τ},

together with a further set of events that are incomparable to the members
of the first two sets in the list and greater than those in the rest.

The priority order used in enforcing maximal progress in timed models does
satisfy the above, but the ≤s we will use in analysing slow abstraction below do
not satisfy it.
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These issues disappear for the acceptance traces model FL and its variants,
which are therefore the only CSP models with respect to which our priority
operator can be defined in general. With respect to FL, the semantics ofPri≤(P)
are the behaviours (the Ai being stable acceptances or •):

{〈A0, a1,A1, . . . ,An−1, an ,An〉 | 〈Z0, a1,Z1, . . . ,Zn−1, an ,Zn〉 ∈ P}

where for each i one of the following holds:

– ai is maximal under ≤ and Ai = • (so there is no condition on Zi except
that it exists).

– ai is not maximal under ≤ and Ai = • and Zi is not • and neither does Zi

contain any b > ai .
– Neither Ai nor Zi is •, and Ai = {a ∈ Zi | ¬ ∃ b ∈ Zi .b > a},
– and in each case where Ai−1 �= •, ai ∈ Ai−1.

3.1 FDR Implementation of Priority

The nature of the operational semantics of Pri≤(·), in particular its use of nega-
tive premises, means that this operator cannot be folded into the supercombina-
tor structures (see [13]) that lie at the heart of FDR’s state machine implemen-
tation. It has therefore been implemented as a stand-alone operator that both
inputs and outputs an LTS.

We decided that the practical version would have an easier-to-use input format
rather than making all users construct a representation of a partial order with
the constraints stated earlier. The implemented version therefore restricts the
orders to ones that can be represented as a list of sets of visible events, where
the first (the events incomparable to τ) may be empty:

prioritise(P,As)

where As = <A0,A1...,An> is a list of subsets of Σ.
These sets of events have lower priority as the index increases, so An are the

ones of lowest priority. Importantly, there is no need for the Ai to cover all the
visible events of P: those not in one of the Ai are incomparable to all other events
including τ and neither exclude nor are excluded by any other.

3.2 Priority and Compression

FDR implements a number of operators that take an LTS and attempt to con-
struct a smaller LTS or Generalised LTS (GLTS) with the same semantic value.
A GLTS is like an LTS except that information such as divergence, refusals and
acceptances may be included as explicit annotations to nodes rather than being
deduced only from transitions.

With the exception of strong bisimulation, none of the compressions described
in [14] is guaranteed to preserve the refusal-testing and acceptance traces mod-
els of CSP. In consequence, they cannot be reliably used inside a prioritise

operator.
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In part as a remedy for this problem, we have recently implemented the com-
pression divergence-respecting weak bisimulation as defined in [13]. (This factors
an LTS by the maximum weak bisimulation relation that does not identify any
pair of states, one of which is immediately divergent and the other one not).
This respects all CSP models and has the added advantage that, unlike some
other compressions, it turns an LTS into another LTS rather than a GLTS. We
will report separately on this implementation and weak bisimulation’s place in
the family of CSP compression functions.

4 Slow Abstraction

In the introduction we set out, informally, the problem of formulating the correct
abstraction of a process P relative to an unseen user who is assumed to be lazy
but eventually compliant with requests from the process, and who controls some
subset A of P ’s events. We do not want these events to be visible to the external
observer, as represented by our specification, which is expressed in the failures
model F – a choice we will justify shortly. We will assume that P itself is free
from divergence.

The abstracted events do not happen quickly enough for them to exclude
offers of other events being accepted by the process indefinitely. Our model,
therefore, is that the abstracted process has the stable failure (s ,X ) if and only
if (s ,X ∪ A) is a failure of P for some s ′ with s ′ \ A = s . We say it has the
unstable failure (s ,X ) if and only if P has an infinite behaviour

P = P0
x0−→ P1

x1−→ P2 . . .

where, if u is the necessarily infinite trace consisting of all the non-τ xi , u \ A = s
and there is some k such that (i) xi ∈ A ∪ {τ} for i > k , (ii) sufficient of the Pi

are stable, an issue we will discuss below, and (iii) all but finitely many of these
stable Pi refuse X . In other words it ultimately performs an infinite number of
A events from stable states, all of which refuse X . We characterise the second
sort as unstable failures because the abstraction is turning A actions into a sort
of slow internal action, meaning that the refusals are occurring over a series of
states linked by these actions.

The stable failure case, of course, corresponds to the regular definition of
P \ A over F . The unstable case comes when the trace s in P \ A is followed
by an infinite sequence of events in {τ} ∪A. Infinitely many of these must be in
A because P is divergence-free.

Our idea that the abstracted user is lazy has to be made a little more specific
here. It should not be too hard to see that this is closely related to the question
of how many of the A actions in the trace above happen from stable states. Since
P is divergence-free, it will always reach a stable state if left alone and so it is
reasonable (though perhaps debatable if long finite sequences of τs can occur) to
describe an A action that occurs from an unstable state as eager: our imaginary
user has performed it before P ’s available τs had completed.
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If all of these stable states, beyond a certain point, refuse X then we want
(s ,X ) to be a failure of our abstraction.

– If all but finitely many of the As were eager, then it would neither make sense
to describe our user as lazy, nor to detect any infinite pattern of refusals from
the sequence of states: refusals will only happen from stable Pi . We assume
that our user is too lazy for this to happen.

– If we insisted that all As happened in stable states, then this is quite a
strong assumption about the user. States of P reachable only using eager
occurrences of A would not be reached at all.

– The remaining two possibilities are that we insist (i) that only finitely many
As are eager or (ii) less restrictively, that an infinite number of them are not
eager. Each of these is a reasonable view, but we adopt (i) in part because
we have a solution to the problem of automating it in FDR, but not (ii). So
what we are saying is that the abstracted A-user is eventually sufficiently
lazy not to take an event from an unstable state. The difference between (i)
and (ii) shows up in the process

Q = (a → a → Q)� ((a → a → Q) � b → STOP)

If we abstract {a} under assumption (i) then the result cannot refuse {b}
on 〈〉. However, under (ii) it can, because it would consider the behaviour in
which every odd-numbered a occurs from Q ’s unstable initial state.

If an infinite, non-divergent behaviour of P has only finitely many visible actions
outside A, and satisfies (i) we will call it ∗A-stable. We will spend much of this
paper analysing such behaviours. For the process Q defined above, only finitely
many as can occur from the initial state in a ∗A-stable behaviour.

An unstable failure only manifests itself over an infinite behaviour of P , which
means that it would not make sense to ask what the process did after it. It
would not, therefore, make sense to try to work out how our abstraction looks in
a refusal-testing model. That is why in considering this type of abstraction we
consider only failures specifications, given that for traces specifications we can
just use Spec �T P \ A.

The value of SA(P) is then the union of both its stable and unstable failures,
paired with the traces of P \ A. This a member of F , the “stable” failures model.

We have thus characterised what the behaviours of our new abstraction are,
and so know what it means for it to refine some failures specification. This,
however, gives us no clue about how to check properties of them in FDR.

It is interesting to compare LA(P) and SA(P). There is one direct relation
that holds.

Lemma 1. If P is a divergence-free process then LA(P) �F SA(P).

Proof. These two processes have the same set of traces by definition, so all
we must do is show that every failure (stable or unstable) of SA(P) belongs
to LA(P). This is trivially true for the stable ones, which are just those of
P \ A = (P ‖

A
RunA) \ A and RunA * ChaosA.
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If (s ,X ) is an unstable failure of SA(P) then, from definitions above it follows
that there is an infinite series of traces t0 < t1 < t2 < . . . where P has the
failure (ti ,X ) for each of them, and ti \ A = s for all i . Any one of them,
combined with the failure (ti � A,A) of ChaosA, yields the (stable) failure (s ,X )
in (P ‖

A
ChaosA) \ A.

Consider the process P = a → P � b → a → P . Because P \ {a} can diverge,
eager abstraction P \ {a} does not make sense. L{a}(P) = b → Chaos{b} since
if the abstracted user stops performing as at any stage then bs are forced to
stop also. S{a}(P), on the other hand, is just Run{b} as the abstracted user will
always eventually perform a, enabling another b if that is necessary.

5 Unstable Failures Checking via Priority

We want to find a way of checking whether Spec �F SA(P). That this holds
for the traces and stable failures of the right-hand side can be established by
checking Spec �F P \ A. We will assume this has been done, meaning that we
want to check that the unstable failures of SA(P) also satisfy Spec. Doing this
on FDR will mean that any counterexample will manifest itself as a divergence,
since this is the only sort of infinite counterexample that FDR can produce.

This tells us immediately that this type of behaviour cannot be checked in
the usual CSP language without priority, since in that language the divergences
of any context F (P) depend only on the traces and divergences of P , not on its
failures.

It also tells us we cannot find a context GA[·] such that GA[P ] has the same
failures in F (the stable failures model) as SA(P). It will therefore not be possible
to test that this abstraction refines a failures specification Spec by checking a
refinement with Spec itself on the left-hand side.

We can conclude that checking the unstable failures aspect of Spec �F SA(P),
at least without extending the functionality of FDR, must take the form

LHS (Spec,P ,A) �M RHS (Spec,P ,A)

in which M represents a model sensitive to divergence, and where an operator
such as Pri≤(·) that falls outside traditional CSP is used. We will see later that
we can take LHS (independent of Spec, P and A), to be ChaosΣ , the most
nondeterministic divergence-free process, and M to be failures-divergences.

Before handling general Spec we will first show how to deal with the case that
Spec is the failures specification of deadlock freedom:

DF =	{a → DF | a ∈ Σ}

SA(P) meets this specification provided both the following hold:

– P is deadlock free.
– There is no ∗A-stable behaviour of P such that eventually no action outside

A is ever offered from a stable state.
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SA(P) will satisfy this provided (i) P is deadlock free in the usual sense and
(ii) P has no state from which there is an infinite sequence of events in A ∪ {τ}
where all the A’s are from states offering only subsets of A.

Priority can tell us if there is such a sequence starting from P ’s initial state.
Prioritise all events outside A over those in A. Then Pri≤(Q) can perform an
infinite sequence of A events if and only if none of them is offered from the
same state as a higher priority, non-A event in Σ ∪ {τ}. Thus Pri≤(P) \ A has
divergence 〈〉 if and only if P can perform an infinite trace of A events where
none of them is from a state where a non-A event is offered.

Proving divergence freedom of this process does not, however, prove that
SA(P) can never unstably refuse the whole alphabet. If a ∈ A and b �∈ A then,
for any n, the process SA(NB(n)) can unstably refuse Σ, where

NB(0) = a → NB(0)
NB(n) = (b → STOP) � (a → NB(n − 1)) (n > 0)

is the process that performs an infinite sequence of as with b offered as an
alternative to the first n. Clearly, for n > 0, Pri≤(NB(n)) is equivalent to
b → STOP , so hiding a will leave it divergence free.

We can solve this problem and find the unstable refusal in SA(NB(n)) if we
introduce a second copy of a by renaming it, say to a′, and make it incomparable
with both a and b in the priority order. So in particular it can happen even when
a is prevented by priority.

Pri≤(NB(n)[[a, a
′
/a,a]]) can now perform any number of a′ events whatever

the value of n After a trace of n or more a′ events, this prioritised process
will also be able to perform a, which is excluded in the initial states. Therefore

Pri≤(NB(n)[[a, a
′
/a, a]]) \ {a} can diverge after sufficiently long traces of a′s.

These divergences simply reflect NB(n)’s ability to perform an infinite trace
of a’s with only finitely many offers of b along the way: by the time a particular
divergence appears there are no further offers available.

The construction Pri≤(NB(n)[[a, a
′
/a, a]]) \ {a} does not in itself represent

the abstraction SA(NB(n)), both because it has the ability to perform a′ actions,
and because deadlocks in the abstraction have become divergences. It does, how-
ever, show us how to use FDR to check for the abstraction being deadlock free.
This method generalises as follows.

Theorem 1. For the divergence-free process P, the abstraction SA(P) contains

no unstable failure of the form (s , Σ) if and only if ((P [[a, a
′
/a, a | a ∈ A]]) \ A is

divergence free. Here it is immaterial whether a ′ is a single event disjoint from2

αP ∪A or a separate such event for every member a of A.

Note that the process checked here has the same number of states as P : every
state of P is reachable because of the role of a′, but there is only one state of
this construct for each of P .

We now seek to generalise the above to a method for deciding whether Spec �F

SA(P) for arbitrary divergence-free P and failures specification Spec.

2 αP is the set of events used by P .
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Suppose Spec is a specification process that P \ A trace refines. We are trying
to decide if S �F SA(P). We can assume that no event of αSpec belongs to A,
because if there were such events we could rename A to achieve this.

If S is any process such that αS ⊆ αSpec and (〈〉, Σ) �∈ failures(S ), we can
define NR(S ) to be the set of those X that are subset minimal with respect to
(〈〉,X ) �∈ failures(S ). NR(S ) is nonempty because Σ is finite and (〈〉, Σ) �∈ S .

If S is a process that can deadlock immediately, let NR(S ) = ∅.
Choose a new d that is outside αSpec ∪A. (Note that αP ⊆ αSpec ∪A because

we are assuming that Spec �T P \ A.) For a set of refusals R �= ∅, let
T (R) =�

X∈R
d → (?x : X → DS )

and T (∅) = DS , where DS = d → DS . Note that T (R) ‖
αSpec

Q , for Q a process

such thatS �T Q , can deadlock if and only if, when one of the setsX ∈ R is offered
to P when it has performed 〈〉, P refuses it. This parallel composition is therefore
deadlock free if no member of R is an initial (stable) refusal of P . Now let

Test(S ) = (?x : S 0 → Test(S/〈x 〉)) � T (NR(S ))

For Q such that Spec �T Q , the parallel composition Test(Spec) ‖
αSpec

Q is then

deadlock free if and only if Spec �F Q , given that we know that S �T P : the
composition can deadlock if and only if, after one of its traces s , P can refuse
a set that S does not permit. In understanding this it is crucial to note that
the ds of T (NR(S )), including the one in the initial state of Test(S ), can occur
unfettered in the parallel composition because they are not synchronised with Q .
The first d that occurs fixes the present trace as the one after which Test(Spec)
checks to see that a disallowed refusal set (if any) does not appear in Q .

Our construction turns any case where Q fails Spec into a deadlock. It is very
similar to the “watchdog” transformation for the usual failures model set out
in [6]. The main difference is that ours is constructed with no τ actions: the
visible action d replaces τ .

Consider the case where Q is replaced by P . This has the additional events A
which are not synchronised with Test(Spec), so the combination Test(Spec) ‖

αSpec

P can only deadlock in states where P \ A has a stable failure illegal for Spec.
We would similarly like unstable failures of SA(P) to turn into unstable “dead-

locks”, namely unstable refusals of Σ, in SA(Test(Spec) ‖
αSpec

P). This is con-

firmed by the following result.

Theorem 2. Under the assumptions above, including the one that P is divergence-
free and Spec �F P \ A, SA(P) has an unstable failure that violates Spec if and
only if SA(Test(Spec) ‖

αSpec
P) has an unstable failure of the form (s , Σ). Fur-

thermore SA(P) *F Spec if and only if

(Pri≤((Test(Spec) ‖
αSpec

(P [[a, a
′
/a, a | a ∈ A]])))) \ A

is divergence-free.
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Proof. The second equivalence follows from what we know once we observe
that, since Test never performs any member of A and αSpec ∩ (A ∪ {a′}) = ∅,

Test(Spec) ‖
αSpec

(P [[a, a
′
/a,a | a ∈ A]]) = (Test(Spec) ‖

αSpec
P)[[a, a

′
/a, a | a ∈ A]]

So we need just to establish the first equivalence. Any unstable failure of the
form (s , Σ) in Test(Spec) ‖

αSpec
P arises from a ∗A-stable behaviour of this

combination such that eventually no action outside A is ever offered, and nec-
essarily where eventually no event, other than members of A and τ , occurs.
Since Test(Spec) has no τ or A actions, there is a point in the infinite behaviour
beyond which this process performs no action, so all the subsequent actions of
the parallel composition are performed by P alone, with Test(Spec) left in some
“terminal” state. Since the resulting unstable refusal is Σ, this terminal state
must be one refusing the unsynchronised d . Therefore the state is one offering
some X such that (s ′,X ) �∈ failures(Spec), where s is the trace up to any point
in the infinite behaviour beyond the one at which Test(Spec) first reaches its
terminal state and s ′ = s \ (A ∪ {d}). It should be clear that from this point
extra events may add to s but will not change s ′.

Since the infinite behaviour witnesses the unstable refusal of Σ in the parallel
combination, we can assume that the infinite tail of states in which all the stable
ones refuse Σ \A starts beyond the point where Test(Spec) reaches its terminal
state. The sequence of corresponding states in P must all refuse the X that
this terminal state is offering. P \ A has by that point performed s ′, recalling
that (s ′,X ) �∈ Spec. P ’s behaviour thus witnesses the unstable failure (s ,′ X ),
meaning that SA(P) does not satisfy Spec.

It should not be difficult to see that the reverse also holds: if there is a ∗A-
stable behaviour of P witnessing an unstable failure (s ,X ) of SA(P) that violates
Spec, we can assume that X is ⊆-minimal with respect to this. The trace s 〈̂d〉
therefore leads Test(Spec) to a state that offers exactly X . The combination
Test(Spec) ‖

αSpec
P then has a ∗A-stable behaviour in which, after a finite trace

s ′ such that s ′ \ (A ∪ {d}) = s , Test(Spec) permanently offers X and all stable
states of P refuse it, linked only by τ and A actions. This behaviour clearly
witnesses an unstable failure with refusal Σ.

We therefore have a general technique for deciding whether, for divergence-
free P , SA(P) meets an arbitrary failures specification with respect to unstable
failures.

6 Availability Checking in Verum’s ASD:Suite

This example inspired the formulation of slow abstraction and the creation of
the decision procedure in terms of priority.
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6.1 Background on ASD:Suite

Analytical Software Design (ASD) [3] is a software design automation platform
developed by Verum3 that provides software developers with fully automated
formal verification tools that can be applied to industrial scale designs without
requiring specialised formal methods knowledge of the user. ASD was developed
for industrial use and is being increasingly deployed by customers in a broad
spectrum of domains, such as medical systems, electron microscopes, semi con-
ductor equipment, telecoms and light bulbs. Industrial examples using ASD,
such as the development of a digital pathology scanner, can be found in [4].

ASD is a component-based technology: systems contain both ASD compo-
nents and foreign components. An ASD component is a software component
specified, designed, verified and implemented using ASD and is specified by:

1) An ASD interface model specifying the externally visible behaviour of a
component and

2) an ASD design model specifying its inner working and how it interacts with
other components.

Corresponding CSP models are generated automatically from design and inter-
face models, and the ASD component designs are formally verified using FDR,
though the CSP is not visible to the end user. While design models are complete
and deterministic, interface models are abstract and frequently nondeterministic.

Component A

Interface B Interface C

Interface A

Sync StimuliSyn
c S
tim
uli

Syn
c R
esp
ons
es

FD

FD FD

Component B Component C

Queue

Sync Responses

Asynchronous
Notifications

Visible Client Stimuli Visible Client Responses and Notifications

Boundary for Component A verification

Fig. 1. ASD architecture

Figure 1 gives an overview of the standard ASD architecture which is based
on the client-server model. Within an ASD model, system behaviour is specified
in terms of stimuli and responses. A stimulus in Component A represents either

3 www.verum.com
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a synchronous procedure call initiated from a Client above or an asynchronous
notification event received from its queue. A response in Component A will either
be a response to its Client above or a synchronous procedure call downwards to
Interfaces B or C .

The CSP model generated by ASD not only captures the behaviour in the
models specified by the user, but also reflects the properties of the ASD run-
time environment in which the generated code will be executed. This includes
the externally visible behaviour of the foreign components and ASD components
that form the environment in which the ASD design runs. Clients can initiate
synchronous procedure calls to servers, with servers communicating in the other
direction by return events and non-blocking queues.

The CSP models are verified for errors such as deadlocks, livelocks, interface
non-compliance, illegal behaviour, illegal nondeterminism, data range violations,
and refinement of the design and its interfaces with respect to a given specifica-
tion. In Figure 1, the implemented interface is that Component A must satisfy
is Interface A. As an example, a simplified version of the standard ASD timer
interface specification is defined in Figure 2.

Fig. 2. ASD interface model

There are 2 canonical states defined in this interface model, namely Inac-
tive and Active. In the Inactive state, this interface offers 2 synchronous pro-
cedure calls to its client represented by the stimuli ITimer.CreateTimer and
ITimer.CancelTimer. If its client calls ITimer.CreateTimer then the interface im-
mediately returns with the synchronous return event ITimer.VoidReply, thereby
passing the thread of control back to its client; the client is now free to carry
on executing its own instructions and the interface is now in state Active. In
state Active, there is a modelling event called IHwClock that represents the in-
ternal clock triggering an asynchronous notification event, ITimerCB.Timeout,
to be put on its client’s queue. This modelling event is hidden from its client
reflecting the fact that the client cannot see the internal workings of the timer
component and therefore doesn’t know when it has occurred. Since the client’s
queue is non-blocking, from its client’s point of view the interface might still be
in Active or have moved to Inactive with a notification being placed on its queue.
The modelling events can also be used to capture a nondeterministic choice over
a range of response sequences that depend on internal behaviour abstracted from



Slow Abstraction via Priority 341

the interface specification. Typically, a user will select whether modelling events
are eager, namely that they will always occur if the system waits long enough
for them, or lazy capturing the case where they nondeterministically might or
might not occur. These correspond to the two main modes of abstraction for
CSP described earlier, which play an important role in formulating ASD’s CSP
specifications.

A design model with its used interface models and appropriate plumbing,
referred to as the complete implementation, is refined against its corresponding
implemented interface specification, which specifies the design’s expected visible
behaviour by its client. In turn, this implemented interface becomes the used
interface when designing and verifying the client component using it. In this
refinement, the communication between the design model and its used interface
models is hidden, since it is not visible to a client in this design. One of the
properties that the complete implementation must satisfy is livelock freedom.
For example, if a design can invoke an infinite cycle of communication with one
or more of its used interfaces without any visible communication being offered to
its client, we say the client is starved: this erroneous behaviour must be flagged
and corrected. Within CSP such behaviour is captured as divergence.

6.2 Benign and Malign Divergence

There are divergences that arise during the verification of ASD models that are
not regarded as erroneous behaviour in practice due to assumptions of fairness
in the notion of ‘time passing’ at run-time. These are referred to as benign
divergences.

An example of how a benign divergence arises in ASD is with the implementa-
tion of a timer driven polling loop as follows. An ASD component A is designed
to monitor the state of some device by periodically polling it to request its status.
In the event that the returned status is satisfactory, component A merely sets a
timer, the expiry of which will cause the behaviour to be repeated. In the event
that the returned status is not satisfactory, an asynchronous notification is sent
to A’s client and the polling loop terminates. Thus, A is not interested in normal
results; it only communicates visibly to its client if the polled data is abnormal.
Whenever component A is in a state in which it is waiting for the timeout event
to occur, it is also willing to accept client API stimuli, one of which may be
an instruction to stop the polling loop. The design of component A has at least
2 used interfaces, one of them being the Timer interface described above, and
the other being the interface, PolledUC, for the used component whose status is
being polled. This is summarised in Figure 3.

A subset of the behaviour of the design of component A relevant to this
discussion can be summarised by the state transition diagram in Figure 4. The
events prefixed with CLIENT represent the communication that is shared with the
specification on the left-hand side of the refinement and therefore remains visible;
all the other events become hidden. The labelled states represent the states of
interest for the purposes of describing the divergence in question. All event labels
are prefixed with the component name that shares the communication with the
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design. Events with labels ending in CB are asynchronous notification events that
are taken from the design’s queue. The divergence occurs in state Y , where the
system can perform an infinite cycle of hidden events via state Z , repeating the
action of timing out, discovering that the polled component is fine and setting
the timer again.

In the CSP model and at run-time, A could carry on polling device PolledUC
indefinitely. However, at run-time a distinction is made between τ loops where
a client API call is available as an alternative and τ loops that offer no alter-
native and therefore genuinely starve the client. In the former case, the design’s
client is able to intervene and perform a procedure call that breaks this loop.
Provided such a client API stimulus is available, this divergence is not regarded
as an error in the design; it will not diverge at run-time because in the real
environment time passes between creating a new timer and the corresponding
timeout notification event, during which the client is able to perform an API
call. The design is correct under that assumption which can be safely made due
to the implementation of the Timer component. In the example design in the
diagram above, the visible event CLIENT.STOP is available in state Y as an
option for breaking the diverging cycle of τ events. The assumption at run-time
is that the internal clock does not timeout instantaneously, assuming that the
create timer procedure call did not set the timer to 0. It is also assumed that it
will eventually occur. Therefore a client using the timer process can rely on its
occurrence as well as there being some time that passes within which the client
may legitimately communicate with components above it in the stack (i.e. the
client’s client).

For this we use our new slow abstraction for the modelling event Me.Clock
rather than eager or lazy, which would not be correct. Prior to the discover of
this technique, the only option was to place artificial assumptions in for form
of restraints upon the occurrence of such modelling events. This both increased
the state space and carried the risk of missing erroneous behaviours during ver-
ification.

One can describe divergences composed of abstracted events, during which
the slow abstraction makes an offer, as being benign, whereas ones where the
offers end, or which are composed of other hidden events, as being malign and
genuinely erroneous. Our new methods allow this distinction to be made.

The analysis in ASD uses the priority-based techniques described in Section 5.
The set of modelling events M is partitioned into two sets. The first set MSE

comprises the slow eager modelling events that are controlled by the external
used components and are assumed to occur eventually, but not so fast that
their speed starves their client, for example ME.Clock in the timer polling loop
example described above. The second set ML comprises the modelling events
that might or might not occur and are therefore accurately modelled by lazy
abstraction.

If P is the system model with all these modelling events left visible, a diver-
gence in P \ MSE can take three forms:
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– The infinite sequence of τs may only contain finitely many hidden MSE

actions. This clearly represents a form of malign divergence.
– There might be infinitely many hidden MSE actions, only finitely many of

which have the alternative of a client API event. This is another form of
malign divergence since there is the possibility of client starvation.

– Finally, infinitely many of the MSE events might have a client API event as
an alternative. As discussed above, this is a benign divergence.

You can think of there being a distinction between “slow τs” formed by hiding
MSE – these give the client time to force an API – and ordinary “fast τs”,
which do not. This is just the view formed by the slow abstraction of the events
mapping to the slow τs after conventional hiding (eager abstraction) of the ones
mapping to the fast ones.

Checking the divergence-freedom of

Pri≤(P [[m,m ′
/m,m | m ∈ MSE ]]) \ MSE

gives precisely the check for malign divergence that we want: it does not find
benign ones. If we needed to check more precisely what API offers were made
along sequences of MSE events, we could use the machinery of unstable failures
checking discussed earlier in this paper.

After establishing that all divergences are benign, and if necessary make cor-
rect offers, the rest of the system properties can be checked in the stable failures
model of CSP, as is conventional for checks involving lazy abstraction. The ASD
use of slow abstraction described here corresponds exactly to the case of checking
for deadlock freedom which was the core case earlier.

7 Conclusions

We have explained the CSP priority operator in terms of operational semantics
and shown that, depending on the form of the partial order used, it requires
either CSP’s refusal-testing or acceptance traces model for compositionality.

We have also studied the problem of abstracting an interface that is neither
eager nor is allowed to be completely idle, capturing refusal information from
infinite traces. The reason for studying this alongside priority is that priority
was the key to automating checks of the slow abstraction we developed against
failures specifications.

Our industrial case study was satisfying because this was an example in which
a practical problem inspired the creation of a piece of theory (i.e. slow abstraction
and the priority technique for checking properties of it) that would not have been
discovered without it. Beyond the scope of the present paper, we have had to
bring further fairness considerations into our models to handle further nuances
of the ASD models. That will be the subject of a future paper.

The techniques developed in this paper are applicable wherever one models a
system which has events that, either because of their assumed internal control or
the way they are assumed to be controlled by an unseen external agent, progress
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in a measured rather than eager manner. It would be interesting to investigate
the relationship with Schneider’s theory of timewise refinement [15], which shows
how Timed CSP processes can be seen to satisfy untimed specifications: at least
in discretely timed versions of CSP, this appears to be closely related to the slow
abstraction of time. Clock and time signals, in general, appear to be excellent
candidates for this form of abstraction.
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Abstract. Symbolic execution is a useful technique in formal verifica-
tion and testing. In this paper, we propose to use it to estimate the
performance of programs. We first extract a set of paths (either ran-
domly or systematically) from the program, and then obtain a weighted
average of the performance of the paths. The weight of a path is the
number of input data that drive the program to execute along the path,
or the size of the input space that corresponds to the path. As compared
with traditional benchmarking, the proposed approach has the benefit
that it uses more points in the input space. Thus it is more representative
in some sense. We illustrate the new approach with a sorting algorithm
and a selection algorithm.

1 Introduction

For an algorithm (or program), its efficiency is very important. This is often
characterized by the worst-case or average-case complexity. But we may not know
the exact complexity for every program we write. Sometimes the complexity of
algorithms is difficult to analyze, even for experts. For example, the Boyer-Moore
string matching algorithm was published in 1977 [1]. More than 10 years later,
Richard Cole [2] showed that the algorithm performs roughly 3n comparisons.

Even when we know the complexity, the actual performance may be different.
As a matter of fact, some polynomial-time algorithms do not have good perfor-
mance in practice. For two algorithms, even though they both have polynomial-
time complexity, their execution times may be different due to the difference
in constant factors. Thus benchmarking or empirical evaluation is still neces-
sary in most cases. We run the program for a certain number of times, usually
with random input data; and analyze the results (e.g., execution times of the
program).

In this paper, we propose a symbolic benchmarking approach, in which the
program/algorithm is executed symbolically. A benefit of this approach is that
one symbolic execution corresponds to many actual executions. The performance
is measured in terms of execution times or some performance indicators (e.g.,
the number of comparisons of array elements).

Z. Liu, J. Woodcock, and H. Zhu (Eds.): He Festschrift, LNCS 8051, pp. 346–353, 2013.
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2 Basic Concepts and Related Works

A program (algorithm) can be represented by its flow graph, which is a directed
graph. From the graph, one may generate many (or infinite number of) paths.
Given a path, it is called feasible or executable if there is some input vector which
makes the program execute along the path. Otherwise, it is called infeasible or
non-executable. For a feasible path, there may be many different input data which
make the program execute along the path. The input data can be characterized
by a set of constraints, called the path condition. The path is feasible if and only
if the path condition is satisfiable. Each solution of the path condition, when
given as the initial input to the program, will make the program execute along
the path.

Let us look at a simple example. The following C program computes the
greatest common divisor (gcd) of two positive integers (m and n).

int GCD(int m, int n)

{

x = m; /* 1 */

y = n; /* 2 */

while (x != y) { /* 3 */

if (x > y) /* 4 */

x = x-y; /* 5 */

else y = y-x; /* 6 */

} /* 7 */

gcd = x; /* 8 */

}

The following are three paths:

P1: 1-2-3-8

P2: 1-2-3-4-5-7-3-8

P3: 1-2-3-4-6-7-3-8

The first path can be represented as follows:

x = m;

y = n;

@ !(x != y);

gcd = x;

Here @ denotes a condition (e.g., loop condition or assertion); and ‘!’ means the
negation of a condition.

The path conditions for the three paths are: (1) m = n; (2) m = 2n; (3)
n = 2m, respectively. Obviously, given any pair of integers satisfying the equation
m = n as the initial input data, the program will run along path P1. And, if we
provide any pair of positive integers m, n satisfying the second equation as the
input to the program, the program will execute along path P2.

How can we obtain the path condition, given a path in the program? This can
be done via symbolic execution [5]. In contrast to concrete execution, symbolic
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execution takes symbolic values as input, e.g., m = m0, n = n0; and then
simulates the behavior of the program. During the process, each variable can
take an expression as its value, e.g., x = m0 + 2n0.

Combined with constraint solving, symbolic execution can be very helpful in
static analysis (bug finding) and test case generation [10]. For such purposes,
usually we need to find just one solution to each path condition. That solution
may correspond to a test case, or the input vector which shows a bug in the
program.

More generally, we may consider the number of solutions to a path condition.
In [9], we proposed a measure δ(P ) for a path P in a program. Informally, it
denotes the number of input vectors (when the input domain is discrete) which
drive the program to be executed along path P . In other words, it denotes the
volume of the subspace in the input space of the program that corresponds to
the execution of path P , or equivalently, the size of the solution space of the
path condition.

For the GCD example, suppose that each of the input variables m and n can
take values from the domain [1..100]. So there are 10,000 different input vectors
(i.e., pairs 〈m, n〉). It is easy to see that

δ(P1) = 100, δ(P2) = 50, δ(P3) = 50.

In [8], we studied how to compute the size of the solution space, given a set of
constraints (where each constraint is formed from Boolean variables and linear
inequalities using logical operators like negation, disjunction, conjunction). We
developed a prototype tool for doing this [11]. For example, suppose the input
formula is (x �= 0)∨b. Here x is an integer variable and b is a Boolean variable. If
we use the command-line option -v3 which specifies the word length of integer
variables to be 3, the result is 15. The reason is that, when b is TRUE, any
value of x can satisfy the formula; and when b is FALSE, any non-zero value of
x satisfies the formula. So, there are 8 + 7 = 15 solutions in total.

In [8], we also introduced a measurement called execution probability. Given
a path P , its execution probability is δ(P ) divided by the total volume of the
involved data space. For path P1 in the GCD example, its execution probability
is 0.01; For each of the other two paths, the execution probability is 0.005.

In [7], we proposed to move from qualitative analysis to quantitative analysis,
which combines symbolic execution with volume computation to compute the
exact execution frequency of program paths and branches. We argue that it
is worthwhile to generate certain test cases which are related to the execution
frequency, e.g., those covering cold paths.

Recently, Geldenhuys et al. [3] also discussed how the calculation of path
probabilities may help program analysis (esp. bug finding). They implemented
a prototype tool which can analyze Java programs.

The above works focus on finding bugs in programs, while the main purpose
of the approach presented here is to estimate the performance of programs.
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3 Performance Estimation

In practice, the performance of a program/algorithm is often measured by the
running times on some machine, with respect to a set of benchmarks. This is
useful. But the result often depends on the choice of machines and benchmarks.

Rather than using running times, we may also use some performance indica-
tors or performance indices (PINDs in short) which can describe a program’s
performance on a family of machines. For instance, we may choose the number
of memory accesses as a PIND, or the number of multiplication operations as a
PIND. When studying sorting algorithms, we may choose the number of com-
parisons, or the number of swaps (i.e., element exchanges). Actually, Don Knuth
[6] proposed to use the number of memory operations (mems) rather than ex-
ecution times on some particular machine, when reporting the performance of
some algorithm/program.

Given a program, we can estimate its performance by generating a set of
program paths, denoted by {Pi}. For each path Pi, usually it is not difficult to
determine the PIND value pindi. The performance of the whole program can be
computed by taking an average over the set of paths. The contribution of path
Pi is weighted by its δ value δi, or its execution probability. More formally, the
program’s performance is estimated to be

∑
i(δi ∗ pindi)/

∑
i δi.

Of course, we can also extend the old-fashioned way. We may execute the pro-
gram for a number of times (with different input data), remembering its actual
performance (e.g., time1 = 5 ms, time2 = 8 ms), as with ordinary empirical
evaluation. And then, for each concrete execution, we

– extract the path;
– get the path condition;
– compute the delta value of the path.

Finally, we get an estimation of the program’s performance using the formula∑
i(δi ∗ timei)/

∑
i δi.

Let us illustrate the approach/methodology using the following picture:

�

�

�
�
�
�
�

�
�
�

�
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Here we assume that the input space is 2-dimensional (i.e., there are two input
variables for the program, as in the case of GCD).

The above picture compares traditional benchmarking (examining the pro-
gram’s behavior at three points) with our approach (examining the program’s
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behavior with respect to three sets of input data: one line, one triangle, and one
rectangle). If some set is too small (as compared with others), its contribution
can almost be neglected.

4 Examples

4.1 Sorting

Sorting algorithms are very important in computer science, and they have been
studied extensively. For many basic sorting algorithms, we can choose the number
of comparisons (or the number of swaps) as a PIND.

Let us consider the following bubble sort algorithm.

for(i = 0; i < N-1; i++)

for(j = N-1; j > i; j--) {

if (a[j-1] > a[j])

swap(a[j-1], a[j]);

}

We assume that the input array a is of size 4. Then there are 24 feasible paths.
For each path Pi, we can get the path condition and the value of δ(Pi).

Assume that the value of each array element is between 0 and 10 (i.e., 0 ≤
a[i] < 10). Using symbolic execution and our volume computation tool [8,11],
we can find that the δ value of each path is almost the same (a little more than
416.66). In this sense, the example is a bit special.

For each path, the number of comparisons is the same, i.e., 6. However, the
number of swaps is different, ranging from 0 to 6. The total number of swaps
for all the 24 paths is 72. So, on average, the number of swaps performed by
the bubble sort algorithm is 3 (when N = 4). In summary, when N = 4, the
average performance of the above program is like the following: 3 swaps of array
elements and 6 comparisons between array elements.

Note that the domain [0..10) is arbitrary. We can replace 10 by 100, for in-
stance.

4.2 Selection

Now we consider the selection algorithm FIND [4]. It can be described in C-like
language, as follows:

m = 0;

n = N-1;

while (m < n) {

r = A[f];

i = m; j = n;

while (i <= j) {

while (A[i] < r)
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i = i+1;

while (r < A[j])

j = j-1;

if (i<=j) {

w = A[i]; A[i] = A[j]; A[j] = w;

i = i+1;

j = j-1;

}

}

if (f<=j) n = j;

else if (i<=f) m = i;

else {

m = 1; n = 0;

}

}

Given an array of size N (denoted by A[N]) and a non-negative integer f , the
algorithm tries to find the element whose value is the f ’th in the array; and
rearranges the array such that this element is placed in A[f]. At the end of the
algorithm, the elements of the array should satisfy the following relationship:

A[0], A[1], . . . , A[f − 1] ≤ A[f ] ≤ A[f + 1], . . . , A[N − 1].

From the above source code, we can extract a number of paths from its flow
graph. The following are several short paths:

Table 1. Paths in the FIND Program

pathID nComp nSwap δ

w11 9 3 16303680
w16 9 2 12191040
w18 9 3 16303680
w20 9 2 12191040

Here nComp means the number of comparisons of array elements; and nSwap

means the number of swaps of array elements. We assume that f = 3, and the
size of the array is 8, i.e., N = 8. We also assume that each element of the array
A is an integer, and it takes its value from a finite domain: −8 ≤ A[i] < 8.

We note that the size of the whole input space is 168 = 232. And the δ values
in the above table are still very small, as compared with this size. But we believe
that it is better to use these subspaces than a small set of single points (as with
traditional empirical evaluation).

It is not true that all the paths are similar. For instance, we randomly gener-
ated the following two input vectors:

A[8] = { -2, 5, 6, 3, 1, 0, -7, 6 };

A[8] = { 2, 0, -2, -8, 4, -4, 5, 1 };
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For the former, the execution path has 4 swap operations; but for the latter, the
execution path has 6 swap operations.

We may execute the program for 2 times, with the above data as input. Then
we track the execution traces and obtain two program paths. From each path,
we can get the path condition using symbolic execution.

The path condition for the first case is the following:

(A[0] < A[3]); !(A[1] < A[3]); (A[3] < A[7]);

!(A[3] < A[6]); !(A[2] < A[3]); !(A[3] < A[5]);

!(A[3] < A[4]); (A[0] < A[4]); (A[6] < A[4]);

(A[5] < A[4]).

And the δ value is 4075920. On the other hand, the δ value for the second case is
just 87516. The corresponding path condition is the following set of constraints.

!(A[0] < A[3]); (A[3] < A[7]); (A[3] < A[6]);

(A[3] < A[5]); (A[3] < A[4]); !(A[1] < A[3]);

(A[3] < A[2]); (A[3] < A[1]); (A[1] < A[0]);

(A[2] < A[0]); !(A[0] < A[7]); !(A[4] < A[0]);

(A[0] < A[6]); !(A[0] < A[5]); (A[1] < A[7]);

(A[2] < A[7]); !(A[7] < A[5]); !(A[1] < A[5]);

!(A[2] < A[5]); (A[5] < A[2]); (A[2] < A[1]);

If we take an average over the paths using the traditional method, the number
of swaps will be (4 + 6) = 5. But if we take a weighted average, the number of
swaps will be (4075920 ∗ 4 + 87516 ∗ 6)/(4075920+ 87516), which is about 4.04.

5 Discussion on the Limitations

One obvious difficulty with the approach is the combinatorial explosion problem.
In general, a program has many (or an infinite number of) execution paths. For
most programs, it is impossible to examine all the paths. We can just randomly
choose a small subset of them, or choose as many as we can. Thus the result is
only an estimation of the overall performance of the program.

Currently symbolic execution and volume computation are still expensive.
But we think that the approach is practical when applied to kernel algorithms
(which are not too long in terms of lines of code) or models of software systems.

One assumption that we take is that all the points in the input data space
are evenly distributed. This may not be the case in certain applications. In the
future, we will consider other distributions.

Sorting and selection algorithms are special in that the major operations are
comparison and object movements. For a sorting algorithm like bubble sort, its
behavior can often be determined by considering all possible permutations of the
input vector. When the size of the input array is a small fixed positive integer,
we can exhaustively examine all the paths of the algorithm, and then obtain the
accurate average PIND value. But in most cases, it is not easy (if not impossible)
to do this.
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6 Concluding Remarks

In this paper, we propose to calculate or estimate the average performance of
algorithms (programs) automatically, by analyzing their feasible paths and us-
ing volume computation techniques. We report some experiments with several
common algorithms.

It should be emphasized that the approach is general, in that it is not re-
stricted to a particular algorithm (or some class of algorithms). The approach
can be automated. In fact, there are already some automatic tools available. As
compared with traditional benchmarking, the approach can be more complete
(i.e., covering a larger part of the input space).

As mentioned in the previous section, there are still some challenges for the
new approach. But we believe it offers a better way to estimate the performance
of programs. In the future, we will tackle the challenges, so that the approach is
more practical and applicable to many algorithms.

Acknowledgements. The author would like to thank Peng Zhang for his com-
ments on an earlier version of this paper.
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Abstract. We extend a template-based approach for synthesizing
switching controllers for semi-algebraic hybrid systems, in which all ex-
pressions are polynomials. This is achieved by combining a QE (quantifier
elimination)-based method for generating invariants with a qualitative
approach for predefining templates. Our synthesis method is relatively
complete with regard to a given family of predefined templates. Using
qualitative analysis, we discuss heuristics to reduce the numbers of pa-
rameters appearing in the templates. To avoid too much human interac-
tion in choosing templates as well as the high computational complexity
caused by QE, we further investigate applications of the SOS (sum-of-
squares) relaxation approach and the template polyhedra approach in
invariant generation, which are both supported by modern numerical
solvers.

1 Introduction

Hybrid systems, in which computations proceed by continuous evolutions as well
as discrete jumps simulating transitions from one mode to another mode, are
often used to model devices controlled by computers in many application do-
mains [1]. Combining ideas from state machines in computer science and control
theory, formal analysis, verification and synthesis of hybrid systems have been
an important area of active research. In verification problems, a given hybrid
system is required to satisfy a desired safety property e.g. that the temperature
of a nuclear reactor will never go beyond a maximum threshold, as it may cause
serious economic, human and/or environmental damage, thus implying that the
system will never enter any unsafe state. A synthesis problem is harder given
that the focus is on designing a controller that ensures the given system will
satisfy a safety requirement, reach a given set of states, or meet an optimality
criterion, or a desired combination of these requirements.

Automata-theoretic and logical approaches have been primarily used for ver-
ification and synthesis of hybrid systems [2,4,45]. In [4,45], a general framework
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Science and Technology Major Project of China (Grant No. 2012ZX01039-004), NSF
CCF 1248069 and NSF DMS 1217054.
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for controller synthesis based on hybrid automata was proposed. This approach
relies on backward reachable set computation and fixed point iteration, and thus
has two main restrictions: (i) the computation of backward reachable set is hard
for most continuous dynamics, and (ii) termination of the fixed point iteration
process cannot be guaranteed, even for those hybrid systems whose backward
reachable sets are effectively computable. Therefore most of the research, e.g.
[14], focuses on overcoming the above two restrictions.

Recently, a deductive approach for verification and synthesis based on con-
straint solving was proposed in [11,28,27,41,21,40]. The central idea is to reduce
verification and synthesis problems of hybrid systems to invariant generation
problems, much like verification of programs. As proposed in [16,15,34], if in-
variants are hypothesized to be of certain shapes, then corresponding templates
with associated parameters can be used and the invariant generation problem
can be reduced to constraint solving over parameters by quantifier elimination.
This methodology is used in [41] for synthesizing switching controllers meeting
safety requirements, while in [43], the approach is extended for satisfying both
safety and reachability requirements. A common problem with template-based
method is that it heavily relies on a user specifying the shape of invariants
that are of interest, thus making it interactive and user driven, raising doubts
about its scalability and automation. Besides, the inference rules for inductive
invariants in [42,41,43] are sound and complete for several classes of invariants,
e.g. smooth, quadratic and convex invariants, but are not complete for generic
semi-algebraic sets1.

Inspired by [17,4,41] and [22], we extend in this paper the template-based
invariant generation approach for synthesizing switching controllers of hybrid
systems to meet given safety requirements. The paper makes the following con-
tributions:

– We propose a method for synthesizing switching controllers for hybrid sys-
tems using a family of invariants, which could be different for different modes
of a hybrid system. We use templates for invariant generation based on
quantifier-elimination (QE) techniques combined with numerical methods.

– In the QE-based synthesis approach, we adopt the invariant generation
method proposed in [22], which is proved to be sound and relatively complete
with respect to a given shape of semi-algebraic invariants (i.e. a given family
of predefined semi-algebraic templates). The advantage is that, compared to
the invariant generation methods used in [42,41,43], there is more possibility
of discovering invariants of the given shape.

– Using the qualitative approach proposed in [17] for analyzing continuous
evolution in each mode of a hybrid system, we can identify those continu-
ous states at which even small perturbation would lead to continuous evo-
lution violating the safety requirement. Such continuous states are called
critical control points, using which we can determine a more precise shape of

1 A subset A ⊆ Rn is called semi-algebraic if there is a quantifier-free polynomial
formula ϕ s.t. A = {x ∈ Rn | ϕ(x) is true} .
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templates to be used as invariants, thus reducing the number of parameters
appearing in templates.

– Quantifier elimination techniques have high complexity especially for cases
when templates have lots of parameters. Even though qualitative analysis is
helpful in bringing down the number of parameters and thus the complexity
of QE, the paper also explores two kinds of predefined templates where nu-
merical techniques can be exploited to improve the degree of automation and
scalability. In particular, (i) for polynomial templates, using sum-of-squares
(SOS) relaxation, the constraint on parameters appearing in templates is
transformed into a semi-definite program(SDP), which is convex and can be
solved efficiently; (ii) for linear systems and a special type of templates—
template polyhedra, the invariant generation problem can be reduced to a
BMI (bilinear matrix inequality) feasibility problem, which is also easier to
solve (numerically) than QE.

Paper Structure. The rest of this paper is structured as follows. In Section 2
we formally define the switching controller synthesis problem for safety of hybrid
automata. In Section 3 we introduce the notion of invariant in the context of
hybrid system, and formulate an abstract solution to the controller synthesis
problem using invariants; then we extend a template-based method for invariant
generation to solve the controller synthesis problem, by combining quantifier
elimination (QE) techniques and qualitative analysis. In Section 4 we investigate
the application of two numerical approaches in switching controller synthesis
by generating invariants numerically. We finally conclude the paper with some
discussions by Section 5.

1.1 Related Work

Our work in this paper resembles [41] but differs in that: i) our method is cast
in the setting of hybrid automata, and therefore rather than generating a single
global controlled invariant, we searches for a family of invariants that refine the
domain of each mode of the original hybrid automata; ii) a sound and complete
criterion is used in invariant generation; iii) various techniques are applied for
scalability.

The SOS relaxation approach has been successfully used in safety verifica-
tion of hybrid systems. In [31,32], the authors used the SOSTOOLS software
package [33] to compute barrier certificates for polynomial hybrid systems. In
[20,48], the authors proposed a hybrid symbolic-numeric approach to compute
exact inequality invariants of hybrid systems, by first solving (bilinear) SOS pro-
gramming numerically and then applying rational vector recovery techniques.

A necessary and sufficient condition for positive invariance of convex polyhe-
dra for linear continuous systems was provided in [7]. This condition is extended
to linear systems with open polyhedral domain for our need in this paper. Tem-
plate polyhedra were used in [36,35] to compute positive invariants of hybrid
systems by policy iteration, which differs from our treatment of the problem us-
ing BMI; besides, unlike [35], we do not require the polyhedral invariant to be
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generated to have the same shape as the domain. Recently, a method for com-
puting polytopic invariants for polynomial dynamical systems using template
polyhedra and linear programming was proposed [38].

Mathematical programming techniques and relevant numerical solvers have
also been widely applied to static program analysis. Actually, the template poly-
hedra abstract domain was first proposed in [37] to generate linear program in-
variants using linear programming. In [8], to verify invariance and termination
of semi-algebraic programs, verification conditions are abstracted into numeri-
cal constraints using Lagrangian relaxation or SOS relaxation, which are then
resolved by efficient SDP solvers.

In our recent work [49], we studied an optimal switching controller synthesis
problem arising from an industrial oil pump system with piece-wise constant
continuous dynamics. A hybrid approach combining symbolic computation with
numerical computation was developed to synthesize safe controllers with better
optimal values.

2 Hybrid Systems and Switching Controller Synthesis
Problem

We use hybrid automata to model hybrid systems.

Definition 1 (Hybrid Automaton). A hybrid automaton (HA) is a system
H �= (Q, X, f, D, E, G), where

• Q = {q1, . . . , qm} is a finite set of modes;
• X = {x1, . . . , xn} is a finite set of continuous state variables, with x =

(x1, . . . , xn) ranging over Rn; Q × Rn is the state space of H;
• f : Q → (Rn → Rn) assigns to each mode q ∈ Q a vector field fq;
• D : Q → 2R

n

assigns to each mode q ∈ Q a domain Dq ⊆ Rn;
• E ⊆ Q × Q is a set of discrete transitions;
• G : E → 2R

n

assigns to each transition e ∈ E a switching guard Ge ⊆ Rn .

Compared with the conventional versions of HA as in [2], in Definition 1 we
make the following assumptions:

– for all q ∈ Q, fq is a polynomial vector function, and thus the existence and
uniqueness of solutions to ẋ = fq is guaranteed; besides, fq is required to be
a complete2 vector field, that is, for any x0 ∈ Rn, the solution x(t) to ẋ = fq
exists for all t ∈ [0,∞); however, unlike [17], no assumption is made about
whether a closed form solution to ẋ = fq exists;

– for all q ∈ Q and all e ∈ E, Dq and Ge are closed semi-algebraic sets;
– the initial set of each mode is identical with the domain, and thus omitted;
– all resets are assumed to be identity mappings for ease of presentation, but

can also be generalized to polynomial functions.

2 This assumption is used in the proof of Theorem 1, to exclude the possibility that a
hybrid system is blocked due to the inextensibility of trajectories defined by f .
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We use a nuclear reactor system discussed in [3,12,17] as a running example
throughout this paper.

Example 1. The nuclear reactor system consists of a reactor core and a cooling
rod which is immersed into and removed out of the core periodically to keep the
temperature of the core, denoted by x, in a certain range. Denote the fraction
of the rod immersed into the reactor by θ. Then the initial specification of this
system can be represented using the hybrid automaton in Fig. 1.

�

�

�

�

G12 =̂ θ =0

G34 =̂ θ =1

G41 =̂ θ =0 G23 =̂ θ =1

q1: no rod q2: being immersed

q4: being removed q3: immersed

ẋ= x/10−6θ−50

θ̇ =0
D1 =̂ θ =0

ẋ= x/10−6θ−50

θ̇ =1
D2 =̂ 0≤θ ≤1

ẋ= x/10−6θ−50

θ̇ =0
D3 =̂ θ =1

ẋ= x/10−6θ−50

θ̇ =−1

D4 =̂ 0≤θ ≤1

Fig. 1. Nuclear reactor temperature control

The semantics of a hybrid automaton H can be defined by the set of trajecto-
ries it accepts. For the formal definitions of hybrid time set and hybrid trajectory
the readers are referred to [45].

The domain of a hybrid automaton H is defined as DH �= �
q∈Q({q} × Dq).

We call H non-blocking if for any (q,x) ∈ DH, there is a hybrid trajectory from
(q,x) which can either be extended to infinite time t = ∞ or execute infinitely
many discrete transitions; otherwise H is called blocking.

A safety requirement S assigns to each mode q ∈ Q a safe region Sq ⊆ Rn, i.e.
S =

�
q∈Q({q} × Sq). Alternatively, there could be a global safe region S which

all modes are required to satisfy, i.e. Sq = S for all q ∈ Q.
One way of formulating a switching controller synthesis problem for meeting

a safety requirement can be precisely defined as follows [4].

Problem 1 (Controller Synthesis for Safety). Given a hybrid automaton H and
a safety property S, find a hybrid automaton H′ = (Q, X, f, D′, E, G′) such that

(r1) Refinement: for any q ∈ Q, D′
q ⊆ Dq, and for any e ∈ E, G′

e ⊆ Ge;
(r2) Safety: for any trajectory ω that H′ accepts, if (q,x) is on ω, then x ∈ Sq;
(r3) Non-blocking: H′ is non-blocking.

If such H′ exists, then SC �= {G′
e ⊆ Rn | e ∈ E} is a safe switching controller

associated with the set of transitions E, and DH′ �= �
q∈Q({q} × D′

q) is the
controlled invariant set rendered by SC.

Informally, the switching controller synthesis problem reduces to identifying a
set of continuous states for each transition, only at which the system is allowed
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to switch from one mode to another, guaranteeing that the system satisfies the
safety requirements imposed on every mode as well as can run forever.

3 A QE-Based Approach

In this section, we propose a quantifier elimination (QE) based approach for syn-
thesizing a switching controller for a hybrid automaton by integrating heuristics
based on qualitative analysis [17] for predefining templates of invariants, into a
relatively complete method for generating semi-algebraic invariants for polyno-
mial continuous dynamical systems with domain [22]. Below we first review the
concept of invariant used in [22] based on a related concept in [28].

3.1 Invariants for Continuous Dynamical System with Domain

The notion of positively invariant set plays a very important role in the study
of continuous dynamical systems [5].

Definition 2. A subset P ⊆ Rn is called a positively invariant set for a system
ẋ = f(x), if for all x0 ∈ P , the solution x(t) to ẋ = f(x) starting from x0

satisfies x(t) ∈ P for all t > 0.

However, the above concept of invariant is not suitable for the study of hybrid
systems. The reason is that each mode of a hybrid automaton H can be ab-
stracted as a pair (D, f), where D and f are the domain and vector field of a
certain mode of H; for any trajectory x(t) of f , only the part of x(t) that lies
in D is meaningful to the behavior of H, rather than the complete trajectory
with all t > 0 as in Definition 2. Therefore the following concept of invariant is
proposed for systems like (D, f).

Definition 3. A subset P ⊆ Rn is called an invariant of (D, f), if for all x0 ∈ P
and all T ≥ 0, the solution x(t) of ẋ = f(x) over [0, T ] with x(0) = x0 satisfies

(∀t ∈ [0, T ].x(t) ∈ D) −→ (∀t ∈ [0, T ].x(t) ∈ P ) .

Intuitively, P is an invariant of (D, f) if any continuous evolution starting from
P stays in P as long as it stays in D. If D = Rn, then an invariant of (D, f) is a
positively invariant set of ẋ = f(x) as defined in Definition 2; otherwise if D is
a proper subset of Rn, then generally the notion of invariant in Definition 3 is
weaker, and thus allows a broader class of sets to be invariants.

Example 2. Suppose D �= x > 0 and f = (−y, x). It can be shown (please to the
full version [18]) that P �= y ≥ 0 is not a positively invariant set of ẋ = f(x),
but is an invariant of (D, f).

The above arguments show that when dealing with continuous evolutions in
the context of hybrid system, it is necessary to study invariants for augmented
systems (D, f), rather than pure continuous dynamical systems ẋ = f(x).
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3.2 The Abstract Synthesis Procedure

Solving Problem 1 amounts to refining the domains and guards of H by removing
so-called bad states. A state (q,x) ∈ DH is bad if the hybrid trajectory starting
from (q,x) either blocksH or violates S; otherwise, it is called a good state. From
Definition 3, we observe that the set of good states of H can be approximated
using invariants, which results in the following solution to Problem 1.

Theorem 1. Let H and S be as in Problem 1. Further, for each q ∈ Q, let D′
q

be a closed subset of Rn such that
�

q∈Q D′
q is non-empty (to imply at least one

D′
q is non-empty). If we have

(c1) for all q ∈ Q, D′
q ⊆ Dq ∩ Sq;

(c2) for all q ∈ Q, D′
q is an invariant of (Hq, fq) with

Hq �=
� �
e=(q,q′)∈E

G′
e

�c
,

where G′
e �= Ge ∩ D′

q′ for e = (q, q′), and Ac denotes the complement of A in
Rn, then the HA H′ = (Q, X, f, D′, E, G′) is a solution to Problem 1.

Proof. Please refer to the full version of this paper [18]. 	


In Theorem 1, condition (c1) ensures that D′
q is a refinement of Dq and mode

q satisfies its safety condition, thus guaranteeing (r1) and (r2) of Problem 1;
condition (c2) requires that any trajectory starting in mode q will either remain
in mode q or jump to another mode q′ when the associated guard is satisfied,
thus guaranteeing (r3) of Problem 1.

Based on Theorem 1, we give below the steps of a template-based method for
synthesizing a switching controller.

(s1) Template assignment: assign to each q ∈ Q a template parametrically
specifying D′

q, which will be required (see step (s3)) to be a refinement of
Dq, as well as the invariant to be generated at mode q ;

(s2) Guard refinement: refine guard Ge for each e = (q, q′) ∈ E by setting
G′

e �= Ge ∩ D′
q′ ;

(s3) Deriving synthesis conditions: encode (c1) and (c2) in Theorem 1 into
constraints on parameters appearing in the templates;

(s4) Constraint solving: solve the constraints derived from (s3) in terms of
the parameters;

(s5) Parameters instantiation: find an appropriate instantiation of D′
q and

G′
e such that D′

q are closed3 sets for all q ∈ Q, and D′
q is non-empty4 for

at least one q ∈ Q; if such an instantiation is not found, we choose a new
set of templates and go back to (s1).

3 This can be enforced by restricting to ≥,≤,= and ∨,∧ symbols in templates.
4 To avoid trivially generating an empty set, some additional constraints can be en-
coded in step (s3).
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We have assumed the hybrid automata to be specified by polynomial expres-
sions. If in addition we restrict the form of safety requirements and templates
to polynomial formulas, then computability of the above abstract procedure is
guaranteed by Tarski’s result [44].

In (s3), condition (c1) can be encoded into a first-order polynomial formula
straightforwardly; encoding of (c2) into first-order polynomial constraints is
based on our previous work in [22] on a relatively complete method for gen-
erating invariants (see Section 3.3). We use quantifier elimination (QE) to solve
the first-order polynomial constraints obtained in (s4).

The shape of chosen templates in (s1) determines the likelihood of success of
the above procedure, as well as the complexity of QE in (s4). In Section 3.5,
we discuss heuristics for choosing appropriate templates using the qualitative
analysis discussed in [17].

3.3 A Relatively Complete Method for Generating Invariants

In [22] we presented a sound and relatively complete approach for generating
semi-algebraic invariants for (D, f) with semi-algebraic domain D and polyno-
mial vector function f . For self-containedness, we introduce below the main result
in the simplest case. For details the readers can consult [22].

Given a polynomial p(x) and a polynomial vector field f(x), define the Lie
derivatives of p along f , Lk

f p : Rn −→ R for k ∈ N, as follows:

• L0
f p(x) = p(x) ;

• Lk
f p(x) = 〈∇Lk−1

f p(x), f(x)〉, for n > 0,

where ∇g(x) denotes the gradient vector of a scalar function g(x), and 〈·, ·〉 is
the inner product of two vectors.

Example 3. Suppose f = (1, 1) and p(x, y) = −x2+y. Then L0
f p(x, y) = −x2+y,

L1
f p(x, y) = −2x + 1, L2

f p(x, y) = −2, and Lk
f p(x, y) = 0 for all k ≥ 3.

The importance of Lie derivatives is that they can be used to predict continuous
evolutions of f in terms of a polynomial p. To illustrate this, look at Fig. 2
showing the vector field f (small arrows) and the semi-algebraic set P �= p ≥ 0
(grey area), with f and p defined in Example 3. At point A0(−1, 1) on the
boundary of P , the first-order Lie derivative L1

f p(−1, 1) = 3 > 0, indicating
that the angle between the vector field (1, 1) (arrow −−→

A0A1), and the gradient
∇p(−1, 1) = (2, 1) (arrow −−→

A0A2) is less that π
2 , which further indicates that the

trajectory of f from A0 (arrow −−→
A0A3) would move towards the p > 0 side.

At point B0(
1
2 , 1

4 ), L1
f p(12 , 1

4 ) = 0 indicates that the vector field −−→
B0B1 is or-

thogonal to the gradient −−→
B0B2, from which we cannot tell how the trajectory

from B0 (arrow −−→
B0B3) evolves with respect to P . However, if we resort to higher

order Lie derivatives, then from L2
f p(12 , 1

4 ) = −2 < 0 we assert that −−→B0B3 would
go out of P into the p < 0 side immediately.

Generally, given p and f , to make predictions as above at a point x ∈ Rn,
we need to compute L0

f p(x), L1
f p(x), . . . to get the first k ∈ N s.t. Lk

f p(x) �= 0.
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Fig. 2. Using Lie derivatives to predict continuous evolution

Furthermore, we can compute an integer Np,f from p and f such that if all Lie
derivatives with order ≤ Np,f evaluate to 0 at x, then Lk

f (x) = 0 for all k ∈ N.
As a result, it suffices to compute Lie derivatives up to the Np,f -th order.

Formally, we have

Theorem 2. Given a system (D, f) with D �= h(x) > 0, it has an invariant of

the form P �= p(x) ≥ 0 if and only if ∀x.
�
p(x) = 0 ∧ h(x) > 0 −→ ψ(p, f)

�
,

where

ψ(p, f) �=
L1
f p(x) > 0

∨ L1
f p(x) = 0 ∧ L2

f p(x) > 0
∨ · · ·
∨ L1

f p(x) = 0 ∧ · · · ∧ L
Np,f−1
f p(x) = 0 ∧ L

Np,f

f p(x) > 0

∨ L1
f p(x) = 0 ∧ · · · ∧ L

Np,f−1
f p(x) = 0 ∧ L

Np,f

f p(x) = 0

.

Proof. Please refer to [22]. 	


The above theorem can be generalized for parametric polynomials p(u,x), thus
enabling us to use polynomial templates and QE to automatically discover in-
variants. Such a method for invariant generation is relatively complete, that is,
if there exists invariants in the form of the predefined template, then we are able
to find one.

3.4 Comparison with Other Invariant Generation Approaches

In Platzer et al’s work [28,27,30,29] and Tiwari et al’s work [11,42,41], various
criteria are proposed for checking invariants for systems ẋ = f(x) or (D, f).
We will show the strength of our criterion due to its completeness through the
following comparison.

Consider the system (R2, f) from [42] with f �= (1−y, x). It can be shown that
this system has an invariant p ≥ 0 with p �= − (−x2 − y2 +2y)2. Geometrically,
the trajectories of f are all circles centered at (0, 1). The set p ≥ 0, or equivalently
p = 0 is actually one of these circles with radius 1, thus an invariant.
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In [42], sound and complete inference rules are given for invariants that
are linear, quadratic, smooth or convex. However, it was also pointed out in
[42] that all these rules failed to prove the invariance property of p ≥ 0, for
in this example p ≥ 0 is not linear or quadratic, nor is it smooth or con-
vex. Furthermore, by a simple computation we get Lk

f p ≡ 0 for all k ≥ 1, so
the sound but incomplete rule in [42,41] which involves only strict inequalities
over finite-order Lie derivatives is also inapplicable. However, from L1

f p ≡ 0 we
get5 Np,f = 0, and then according to Theorem 2, p ≥ 0 can be verified since
∀x∀y.

�
−(−x2 − y2 + 2y)2 = 0 −→ true

�
holds trivially.

Although the rule in [28] can also be used to check the invariant p ≥ 0,
generally it only works on very restricted invariants. Even for linear systems like
(R, ẋ = x), it cannot prove the invariant x ≥ 0 because the verification condition
∀x.x ≥ 0 is obviously false; whereas our approach requires ∀x.(x = 0 → true)
(for this example Np,f=0 so ψ(p, f) in Theorem 2 is true), which is trivially true.

Intuitively, to prove that p ≥ 0 is an invariant of (D, f), the rule in [28] requires
L1
f p ≥ 0 over the whole domain D, while the rule in [42,41] requires that on the

boundary of p ≥ 0 inside D, the first non-zero high order Lie derivative, say Lk
f p,

is strictly positive. Completeness is lost either because non-boundary points are
unnecessarily examined, or an upper bound on the order of Lie derivatives to be
considered (the number Np,f in our rule) is not given.

The above analysis shows the generality of our approach, using which it is
possible to generate invariants in many general cases, and hence gives more
possibility to synthesize a controller based on our understandings of the kind of
controllers that can be synthesized using methods in [41,43,40].

3.5 Heuristics for Predefining Templates

The key steps of the qualitative analysis used in [17] are as follows.

1. Infer the evolution behavior (increasing or decreasing) of continuous variables
in each mode from the differential equations (using first or second order
derivatives).

2. Identify modes at which the evolution behavior (increasing or decreasing)
of a continuous variable changes, and thus the maximal (or minimal) value
of this continuous variable can be achieved. Such modes are called control
critical modes.

3. At a control critical mode, equate the maximal (or minimal) value of a
continuous variable to the corresponding safety upper (or lower) bound to
obtain a specific continuous state, called a critical point.

4. At a control critical mode, use the critical point as the initial value to com-
pute a closed form solution of the differential equation at that mode; then
backtrack along this solution to compute a switching point which evokes a
transition leading to the control critical mode.

5. The above obtained switching point is chosen as a new critical point, which
is then backward propagated to other modes in a similar way.

5 How to compute Np,f for polynomial functions p and f can be found in [22].
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Next, we illustrate how such an analysis helps in predefining templates for the
running example.

Example 4 (Nuclear Reactor Temperature Control). Our goal is to synthesize a
switching controller for the system in Example 1 with the global safety require-
ment that the temperature of the core lies between 510 and 550, i.e. Si �= 510 ≤
x ≤ 550 for i = 1, 2, 3, 4. Please refer to Fig. 3 to get a better understanding of
following discussions.

1) Refine domains. Using the safety requirement, domains Di for i = 1, 2, 3, 4
are refined by Ds

i �= Di ∩ Si, e.g. Ds
1 �= θ = 0 ∧ 510 ≤ x ≤ 550 .

2) Infer continuous evolutions. Let l1 �= x/10−6θ−50 = 0 be the zero-level
set of ẋ and check how x and θ evolve in each mode. For example, in Ds

2,
ẋ > 0 on the left of l1 and ẋ < 0 on the right; since θ increases from 0 to 1, x
first increases then decreases and achieves maximal value when crossing l1.

3) Identify control critical modes. By 2), q2 and q4 are control critical
modes at which the evolution direction of x changes and the maximal (or
minimal) value of x is achieved.

4) Generate critical points. By 3), we can get a critical point E(5/6, 550)
at q2 by taking the intersection of l1 and the safety upper bound x = 550;
and F (1/6, 510) can be obtained similarly at q4.

5) Propagate critical points. E is backward propagated to A(0, a) using
the trajectory �AE through E defined by fq2 , and then to C(1, c) using the
trajectory�CA through A defined by fq4 ; similarly, by propagating F we get
D and B.

6) Construct templates. For brevity, we only show how to construct D′
2. In-

tuitively, θ = 0, θ = 1,�AE and�BD form the boundaries of D′
2. In order to get

a semi-algebraic template, we need to fit�AE and�BD (which are generally not
polynomial curves) by polynomials using points A, E and B, D respectively.
By the inference of 2), �AE has only one extreme point (also the maximum
point) E in Ds

2, and is tangential to x = 550 at E. A simple algebraic curve
that can exhibit a shape similar to�AE is the parabola through A, E opening
downward with l2 �= θ = 5

6 the axis of symmetry. Therefore to minimize the
degree of terms appearing in templates, we do not resort to polynomials with
degree greater than 2. This parabola can be computed using the coordinates
of A, E as: x − 550− 36

25 (a − 550)(θ − 5
6 )

2 = 0 , with a the parameter to be
determined.

Through the above analysis, we generate the following templates:

• D′
1 �= θ = 0 ∧ 510 ≤ x ≤ a ;

• D′
2 �= 0 ≤ θ ≤ 1 ∧ x − b ≥ θ(d − b) ∧ x − 550− 36

25 (a − 550)(θ − 5
6 )

2 ≤ 0 ;
• D′

3 �= θ = 1 ∧ d ≤ x ≤ 550 ;
• D′

4 �= 0 ≤ θ ≤ 1 ∧ x − a ≤ θ(c − a) ∧ x − 510− 36
25 (d − 510)(θ − 1

6 )
2 ≥ 0 ,

in which a, b, c, d are parameters satisfying

510 ≤ b ≤ a ≤ 550 ∧ 510 ≤ d ≤ c ≤ 550 .
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Fig. 3. Predefining templates via qualitative analysis

Note that without qualitative analysis, a single generic quadratic polynomial
over θ and x would require

�2+2
2

�
= 6 parameters.

Based on the framework presented in Section 3.2, we show below how to
synthesize a switching controller for the system in Example 4 step by step.

Example 5 (Nuclear Reactor Temperature Control Contd.).

(s1) The four templates are defined in Example 4.
(s2) The four guards are refined by G′

ij �= Gij ∩ D′
j and then simplified to :

• G′
12 �= θ = 0 ∧ b ≤ x ≤ a ;

• G′
23 �= θ = 1 ∧ d ≤ x ≤ 550 ;

• G′
34 �= θ = 1 ∧ d ≤ x ≤ c ;

• G′
41 �= θ = 0 ∧ 510 ≤ x ≤ a .

(s3) Based on Theorem 1 and a general version of Theorem 2 [22], we can
derive the synthesis condition, which is a first-order polynomial formula in
the form of φ �= ∀x∀θ.ϕ(a, b, c, d, x, θ). We do not include φ here due to its
big size.

(s4) By applying QE to φ, we get the following solution to the parameters:6

a =
6575

12
∧ b =

4135

8
∧ c =

4345

8
∧ d =

6145

12
. (1)

(s5) Instantiate D′
i and G′

ij by (1). It is obvious that all D′
i are nonempty

closed sets. According to Theorem 1, we get a safe switching controller for
the nuclear reactor system, i.e.

• G′
12 �= θ = 0 ∧ 4135/8 ≤ x ≤ 6575/12 ;

• G′
23 �= θ = 1 ∧ 6145/12 ≤ x ≤ 550 ;

• G′
34 �= θ = 1 ∧ 6145/12 ≤ x ≤ 4345/8 ;

• G′
41 �= θ = 0 ∧ 510 ≤ x ≤ 6575/12 .

In [17], an upper bound x = 547.97 for G12 and a lower bound x = 512.03 for G34

are obtained by solving the differential equations at mode q2 and q4 respectively.

6 The process of applying QE and selecting a sample solution demands some human
effort which can be found in the full version of this paper [18].
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By (1), the corresponding bounds generated here are x ≤ 6575
12 = 547.92 and

x ≥ 6145
12 = 512.08.

As should be evident from the above results, in contrast to [17], where dif-
ferential equations are solved to get closed-form solutions, we are able to get
good results without requiring closed-form solutions. This indicates that our ap-
proach should work well for hybrid automata where differential equations for
modes need not have closed form solutions.

4 Speeding Computations Using Numerical Methods on
Specialized Templates

The QE-based approach crucially depends upon quantifier elimination tech-
niques. It is well known that the complexity of a general purpose QE method
over the full theory of real-closed fields is doubly exponential in the number
of variables [9]. Therefore it is desirable to develop heuristics to do QE more
efficiently. As shown in Section 3.5, qualitative analysis helps in reducing the
number of parameters in templates. Another possible way to address the issue
of high computational cost is resorting to numerical methods. In this section, we
will discuss the application of two such approaches on specialized templates.

4.1 The SOS Relaxation Approach

Let R[x1, x2, . . . , xn], or R[x] for short, denote the polynomial ring over variables
x1, x2, . . . , xn with real coefficients. A monomial is an expression in the form of
xα1
1 xα2

2 · · ·xαn
n with (α1, α2, . . . , αn) ∈ Nn. A polynomial p(x) ∈ R[x] of degree

d can be written as a linear combination of
�n+d

d

�
monomials, i.e.

p(x) =
	

α1+α2+···+αn≤d

c(α1,α2,...,αn) · xα1
1 xα2

2 · · ·xαn
n .

We call p an SOS (sum-of-squares) if there exist s polynomials q1, q2, . . . , qs s.t.

p =
	

1≤i≤s

q2i .

It is obvious that any SOS p is non-negative, i.e. ∀x ∈ Rn. p(x) ≥ 0 .
The basic idea of SOS relaxation is as follows: to prove that a polynomial p is

nonnegative, it suffices to show that p can be decomposed into a sum of squares,
a trivially sufficient condition for non-negativity (but generally not necessary);
similarly, to prove p ≥ 0 on the semi-algebraic set q ≥ 0, it is sufficient to find
two SOS r1, r2 such that p = r1 + r2 · q.

SOS relaxation is attractive because SOS decomposition can be reduced to
a semi-definite programming (SDP) problem according to the following equiva-
lence [26]:

A polynomial p of degree 2d is an SOS if and only if there exists a semi-
definite matrix Q such that p = q ·Q·qT , where q is a

�n+d
d

�
-dimensional

row vector of monomials with degree ≤ d.
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SDP is a convex programming that is solvable in polynomial time using numerical
methods such as the interior point method [47]. Therefore the searching for SOS
is a tractable problem.

We now show how SOS can be related to invariant generation. Let p ≥ 0 be a
parametric template defined for the system (h > 0, f). By Theorem 2, a sufficient
condition for p ≥ 0 to be an invariant of (h > 0, f) is

∀x.
�
p(x) = 0 ∧ h(x) > 0 −→ L1

f p(x) > 0
�

,

of which a sufficient condition is

∀x.
�
h(x) > 0 −→ L1

f p(x) > 0
�

,

and again of which a sufficient condition given by SOS relaxation is

L1
f p = s1 + s2 · h + ε , (2)

where s1, s2 are SOS and ε is a positive constant. By expressing s1, s2 via un-
known semi-definite matrices and equating the parametric coefficients of mono-
mials on both sides of (2), we can obtain an SDP problem, the solution of which
gives an invariant p ≥ 0.

As shown above, in general, a constraint that possesses easy SOS relaxation
encoding has the form ∀x.(


m
i=1 gi � 0 −→ gm+1 � 0), where all gi’s are poly-

nomials in x and � ∈ {≥, >}. Handling arbitrary Boolean combinations, which
is common case in Theorem 1 and 2, is not the strength of the SOS approach.
For the particular purpose of facilitating SOS encodings of controller synthesis
conditions, we propose specialized use of both Theorem 1 and 2, which can be
found in the full version of this paper [18].

For the nuclear reactor example, we define two general quartic templates in
the form of

θ ≥ 0 ∧ θ ≤ 1 ∧
	

α1+α2≤4

c(α1,α2) · θα1xα2 ≤ 0

for mode q2 and q4. The idea is to fit the two boundaries of D′
2 (or D′

4), i.e.�AE and �BD in Fig. 3 simultaneously by one quartic polynomial, rather than two
polynomials with lower degrees. The high efficiency of SOS solvers gives such
possibility of using generic templates with higher degrees. Using the SOS relax-
ation techniques discussed above, the following switching controller is obtained:

– G′
12 �= θ = 0 ∧ 519.10 ≤ x ≤ 547.86 ;

– G′
23 �= θ = 1 ∧ 512.09 ≤ x ≤ 550.00 ;

– G′
34 �= θ = 1 ∧ 512.09 ≤ x ≤ 546.15 ;

– G′
41 �= θ = 0 ∧ 510.00 ≤ x ≤ 547.86 .

For more details on the issues of defining templates, encoding constraints, ap-
plying numerical solvers etc, please refer to the full version [18].
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4.2 The Template Polyhedra Approach

Convex polyhedra are a popular class of (positive) invariant sets of linear (con-
tinuous or discrete) systems [5]. A convex polyhedron in Rn can be represented
using linear inequality constraints as Qx ≤ ρ, where Q ∈ Rr×n is an r×n matrix,
and x ∈ Rn×1, ρ ∈ Rr×1 are column vectors.

Given a linear continuous dynamical system ẋ = Ax with A ∈ Rn×n, the
following result on (positive) polyhedral invariant set is established in [7].

Proposition 1. The polyhedron Qx ≤ ρ is a positive invariant set of ẋ = Ax if
and only if there exists an essentially non-negative7 matrix H ∈ Rr×r satisfying
HQ = QA and Hρ ≤ 0.

By simply applying the famous Farkas’ lemma [11], we can generalize Proposi-
tion 1 and give a sufficient condition for polyhedral invariants of linear dynamics
with open polyhedral domain (below we use a simple domain for ease of presen-
tation).

Proposition 2. Let f �= Ax+ b and D �= cx < a, where a ∈ R, b ∈ Rn×1 is a
column vector, and c ∈ R1×n is a row vector. Then the polyhedron Qx ≤ ρ is an
invariant of the system (D, f), if there exists an essentially non-negative matrix
H ∈ Rr×r and a non-negative column vector λ ≥ 0 in Rr×1 s.t.

(1) HQ = diag(λ)QA − ones(r,1)c ; and
(2) Hρ ≤ −diag(λ)Qb− ones(r,1)a ,

where diag(λ) denotes the r×r diagonal matrix whose main diagonal corresponds
to the vector λ, and ones(r,1) denotes the r × 1 column vector with all entries 1.

Proof. Please refer to the full version of this paper [18]. 	


Proposition 2 serves as the basis of automatic generation of polyhedral invariants
for linear systems. To reduce the number of parameters in a polyhedral template,
we propose the use of template polyhedra. The idea is to partly fix the shape
of the invariant polyhedra by fixing the orientation of their facets. Formally, a
template polyhedron is of the form Qx ≤ ρ where Q is fixed a priori and ρ is to be
determined. Any instantiation of ρ from Rr×1 produces a concrete polyhedron.
In this paper, since the system is planar, we choose Q in such a way that its row
vectors form a set of uniformly distributed directions on a unit circle, i.e.

qi =
�
cos(

i − 1

r
2π), sin(

i − 1

r
2π)
�

for 1 ≤ i ≤ r, where qi denotes the i-th row of Q. It is easy to see that Qx ≤ ρ
is just a rectangle when r = 4, and an octagon when r = 8.

To determine ρ, we need to find such matrices H and λ satisfying Proposi-
tion 2. Note that since both H and ρ are indeterminate, the constraint (2) in

7 A square matrix is essentially non-negative if all its entries are non-negative except
for those on the diagonal. Besides, given a matrix M , in this paper the inequalities
or equations M ≥ 0, M > 0, M = 0 should be interpreted entry-wise.



Synthesizing Switching Controllers for Hybrid Systems 369

Proposition 2 becomes bilinear, making the problem NP-hard [46] to solve. It is
however still tractable using modern BMI solvers.

Using octagonal templates8 for mode q2 and q4 in the nuclear reactor example,
we obtain the following switching controller:

– G′
12 �= θ = 0 ∧ 519.90 ≤ x ≤ 545.70 ;

– G′
23 �= θ = 1 ∧ 514.40 ≤ x ≤ 550.00 ;

– G′
34 �= θ = 1 ∧ 514.40 ≤ x ≤ 538.24 ;

– G′
41 �= θ = 0 ∧ 510.00 ≤ x ≤ 545.70 .

As in Section 4.1, the readers are referred to [18] for more details about the
application of the template polyhedra approach.

5 Conclusion and Discussion

We have extended a template-based approach for synthesizing switching
controllers for semi-algebraic hybrid systems by combining symbolic invariant
generation methods using quantifier elimination with qualitative methods to
determine the likely shape of invariants. We have also investigated the applica-
tion of numerical methods to gain more scalability and automation. A summary
comparison of the three proposed approaches, as well as their advantages and
problems, are given in the following aspects based on our experience.

– Applicability. The QE-based and SOS relaxation approaches can be ap-
plied to semi-algebraic systems which do not have closed-form solutions,
while the template-polyhedra approach is only applicable to linear systems.

– Design of Templates. The QE-based approach demands much heuristics,
which currently works well only on systems with low dimension, in deter-
mining templates, while the other two require less human effort.

– Derivation of Synthesis Conditions. For the QE-based method, deriva-
tion of synthesis conditions is a routine work because of the power of first-
order formulas in formulating problems; the other two approaches are not
good at handling complex logical structures and require the problems to be
of specific forms, which usually demands some human work in practice.

– Quality of Results.The QE-based and SOS relaxation approaches can gen-
erate (non-convex) semi-algebraic invariants, while the template-polyhedra
approach can only generate convex polyhedral invariants. Figure 4 demon-
strates the synthesized D′

2 for the nuclear reactor example by the three
approaches in turn: the first one is formed by straight lines and a parabola,
the second one by straight lines and a quartic polynomial curve, and the
third one is an octagon. For the switching controller synthesis problem, it’s
desirable to generate as large as possible invariants to gain more possibil-
ity of further refinement of the controllers based on other criteria. In this
sense it’s difficult to judge the merits of three approaches (e.g. in Fig. 4 the
synthesized invariants have similar sizes).

8 We search for polyhedral invariants using templates with 4, 8, 12, . . . facets, and could
not get a solution using templates with 4 facets.
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Fig. 4. Shapes of synthesized invariants by three approaches

– Computational Issues. For the QE-based approach, we have used the al-
gebraic tool Redlog [10] to perform QE, and run several rounds of QEPCAD
[6] (the slfq function) with human interactions to simplify the output of
Redlog. For the numerical approaches, we use the MATLAB optimization
toolbox YALMIP [24,25] as a high-level modeling environment and the in-
terfaced external solvers SeDuMi [39] and PENBMI [19] (the TOMLAB [13]
version) to solve the underlying SDP and BMI problems respectively. In our
experiments, the SDP solver exhibits consistently good performances, but
the BMI solver frequently runs into numerical problems. To make the BMI
solver work we have to adjust the input constraints and the solver options a
lot with trials and errors9. Table 1 shows the time cost of three approaches

Table 1. Templates and time cost of three controller synthesis approaches

Approach QE-based SOS-relaxation template-polyhedra

Tool Redlog + slfq YALMIP + SeDuMi YALMIP + PENBMI

Template
NR quadratic, #PARMS= 4 generic quartic 8 facets
TS quadratic, #PARMS= 2 generic quartic 12 facets

Time NR 12.663 1.969 0.578
(sec) TS 7.092 1.609 1.703

on the nuclear reactor (NR) example as well as a thermostat (TS) example
from [14]. All computations are done on a desktop with the Intel Q9400
2.66GHz CPU and 4GB RAM running Ubuntu Linux. We can see that for
these two examples the QE-based approach is more expensive in time com-
pared to numerical approaches. However, according to our experience, the
template-polyhedra approach does not scale well due to the NP-hardness of
BMI problems, so its superiority to QE-based approach may not always be
the case. For a detailed explanation of Table 1 as well as the description of
the TS example please refer to [18].

9 Another way is to use the global nonlinear optimization solver BMIBNB in YALMIP,
which would cause an increase of time cost by dozens (even hundreds) of times for
the same two examples.
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– Soundness.The QE-based approach is exact while the other two approaches
suffer from numerical errors which would cause the synthesis of unsafe con-
trollers. To partly address this problem, we have directly encoded some tol-
erance of numerical errors into the synthesis conditions to increase robust-
ness and reduce the risk of synthesizing bad controllers. The justification for
adopting numerical methods is that verification is much easier than synthe-
sis. For example, for the nuclear reactor example, we have verified posteriorly
and symbolically the controllers synthesized by both numerical approaches,
and the verification process is very efficient.

Our preliminary analysis suggests the effectiveness of the three proposed ap-
proaches. We are currently experimenting with these methods on more examples,
especially nonlinear ones which do not possess closed-form solutions. We plan
to extend these approaches for reachability and/or optimality requirements as
well, by incorporating our previous results on asymptotic stability analysis [23]
and a case study in optimal control [49].

Acknowledgements. We thank Dr. Jiang Liu for his great contribution to
our previous joint work on invariant generation. We also thank Dr. Matthias
Horbach, Mr. ThanhVu Nguyen, and the anonymous reviewers for their valuable
comments, which help to improve the quality of our paper greatly.
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25. Löfberg, J.: Pre- and post-processing sum-of-squares programs in practice. IEEE
Trans. Autom. Control 54(5), 1007–1011 (2009)

26. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic GeometryMeth-
ods inRobustness andOptimization.Ph.D. thesis,California Institute ofTechnology,
Pasadena, CA (May 2000), http://thesis.library.caltech.edu/1647/

27. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. and Comput. 20(1), 309–352 (2010)

28. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as
fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–
189. Springer, Heidelberg (2008)

29. Platzer, A.: A differential operator approach to equational differential invariants.
In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 28–48. Springer,
Heidelberg (2012)

http://tomopt.com/docs/TOMLAB_PENOPT.pdf
http://arxiv.org/abs/1304.0825
http://www.penopt.com/doc/penbmi2_1.pdf
http://arxiv.org/abs/1112.2328
http://users.isy.liu.se/johanl/yalmip
http://thesis.library.caltech.edu/1647/


Synthesizing Switching Controllers for Hybrid Systems 373

30. Platzer, A.: The structure of differential invariants and differential cut elimination.
Logical Methods in Computer Science 8(4), 1–38 (2012)

31. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004)

32. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic
safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8),
1415–1428 (2007)

33. Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.: SOSTOOLS and its con-
trol applications. In: Henrion, D., Garulli, A. (eds.) Positive Polynomials in Control.
LNCIS, vol. 312, pp. 273–292. Springer, Heidelberg (2005)

34. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
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Abstract. We are happy to contribute to this volume of essays in honor
of He Jifeng on the occasion of his 70th birthday. This work combines
and extends two recent pieces of work that He Jifeng has made significant
contributions: the rCOS Relational Semantics of Object-Oriented Pro-
grams [4] and the Trace Model for Pointers and Objects [7]. It presents
a graph-based Hoare Logic that deals with most general constructs of
object-oriented (oo) programs such as assignment, object creation, lo-
cal variable declaration and (possibly recursive) method invocation. The
logic is built on a graph-based operational semantics of oo programs so
that assertions are formalized as properties on graphs of execution states.
We believe the logic is simple because 1) the use of graphs provides an in-
tuitive visualization of states and executions of oo programs and thus it
is helpful in thinking of and formulating clear specifications, 2) the logic
follows almost the whole traditional Hoare Logic and the only exception
is the backward substitution law which is not valid for oo programs,
and 3) the mechanical implementation of the logic would not be much
more difficult than traditional Hoare Logic. Despite the simplicity, the
logic is powerful enough to reason about important oo properties such
as aliasing and reachability.
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1 Introduction

Correct design of an oo program from a specification is difficult. A main reason
is that the execution states of an oo program are complex, due to the complex
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a system and oo programs are typically prone to errors of a null pointer (or
reference), an inaccessible object and aliases [7].

A formal semantic model must first contribute to conceptual clarification for
better understanding so as to master the complexity better, and then help the
thinking, formulating and reasoning about assertions of programs. To support
the development of techniques and tools for analyzing and reasoning about pro-
grams, a logic is needed which should be defined based on the semantics. Ob-
viously, a simple semantic model is essential for the definition of a logic that is
easy to use for writing specifications and doing formal reasoning, and for imple-
menting mechanical assistance.

In our earlier work [9], a graph-based operational semantics is defined and
implemented for an oo programming language that is originally defined with a
denotational semantics and a refinement calculus [4,18] for the rCOS method of
component-based model-driven design [2,12]. In this semantics, objects of a class
and execution states of a program are defined as directed and labeled graphs.
A node represents an object or a simple datum. However, in the former case,
the node is not labeled by an explicit reference value, but by the name of its
runtime type that is a name of a class of the program. An edge is labeled by the
name of a field of the source object referring to the target object. The advantage
of the semantics lies in its naturalness in characterizing oo features, including
the stack, heap, garbage, polymorphism and aliasing, and its intuitiveness for
thinking and formulating properties of the execution of a program. Another good
nature of the semantics is that it is location independent.

In this paper, we use the graph-based semantics to define a modest Hoare
Logic for oo programs. There are mainly three oo features that make it difficult
for Hoare Logic to be directly applied for specifying and reasoning about oo
programs.

1. Side effects in assignment due to reference aliasing cause the invalidity of
the (syntactic) backward substitution law

{p[e/x]} x := e {p}.

For example, {(y.a = 4)[3/x.a]} x.a := 3 {y.a = 4} does not hold if x and y
are aliasing, i.e. referring to the same object. There is a need of a rule for
object creation which has side effects due to aliasing, too.

2. Dynamic method binding and recursions of methods make the specification
of method invocations delicate.

3. Rules are needed for reasoning about dynamic typing.

In classical Hoare Logic [5], a specification or Hoare triple {p} c {q} is defined
in the way that p is a weakest precondition of the command c with respect to
the postcondition q, e.g. the backward substitution law for assignment. How-
ever, the existence of aliasing makes it not so natural to propose a specifica-
tion for oo commands in this way. Especially, it is very difficult to calculate a
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precondition of an object creation given a postcondition that refers to the newly
created object. This motivates us to take a pre-to-post approach, i.e. to calculate
a postcondition from a precondition. Considering the example above, a correct
specification should be

{y.a = 4 ∧ x.a = V } x.a := 3 {(y.a = 4)[V/x.a] ∧ x.a = 3},

where we use a logic variable V to record the initial value of x.a. To deal with
the problem of aliasing, we introduce a special substitution [V/x.a] in the post-
condition which intuitively means to substitute every term e.a by V where e is
an alias of x. Syntactically, (y.a = 4)[V/x.a] is defined as (V " y = x � y.a) = 4,
which involves a conditional term V " y = x � y.a. The meaning of the term is
clear: it behaves as V if y is an alias of x, or as y.a otherwise. If needed, we can
further eliminate the auxiliary logic variable V and arrive at a more intuitive
specification {y.a = 4} x.a := 3 {(y.a = 3 " y = x � y.a = 4) ∧ x.a = 3}. Notice
that y.a = 3 is implied from y = x and x.a = 3. This is actually due to a property
of aliasing: if x and y are aliasing and a value 3 is reachable from x through a
navigation path a, the value 3 is reachable from y through the same navigation
path a. In general, aliasing terms are identical concerning reachability.

In our pre-to-post approach, the specification of an object creation is straight-
forward. Consider a precondition p and a command C.new(x.a) which creates
an object of a class C and makes x.a refer to the object. The specification can
be of the form

{p ∧ x.a = V }C.new(x.a) {p[V/x.a] ∧ ∃U · (x.a = U ∧ U : C ∧ q)}.

Like in the specification of an assignment, we make use of the special substi-
tution [V/x.a] so that p[V/x.a] holds in the postcondition for any precondition
p. Besides, we use a fresh logic variable U to refer to the newly created object,
thus U is reachable from x through the navigation path a, i.e. x.a = U , and the
runtime type of U is C, i.e. U : C. The rest part q of the postcondition says
attributes of U have been initialized to their default values and U can only be
accessed through the navigation path a from x in this state.

The specification of a method invocation e.m(x; y) is more delicate than that
of an assignment or object creation. To realize the oo mechanism of dynamic
method binding, we choose the method m according to the runtime type C of
e, i.e. e : C, instead of the type of e declared. To deal with mutually recursive
methods, we take the general approach that is to assume a set of specifications
of method invocations and to prove the specification of bodies of these methods
based on these assumptions, e.g. in [6,1,14]. However, the assumptions made in
these work often rely on actual parameters of the method invocations, which
makes the proof complicated as multiple assumptions with different parameters
are needed for the invocation of one method. For simplicity and also efficiency,
we introduce an auxiliary command C :: m() which means the general execution
of a method C :: m, i.e. m of class C. The auxiliary command enables the
assumption of method invariants of the form {p}C :: m() {q}. Such an invariant
is general and capable of deriving the specification of an invocation of C :: m
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with any actual parameters. On the other hand, the invariant itself is free of
actual parameters, so only one invariant is needed for each method.

As for the problem of typing, there are two solutions. The first is to define
a type system along with the logic, and the second is, similar to Lamport’s
TLA [11], to state correct typing as assertion and provide the rules for type
checking too. To keep the simplicity of the presentation, we leave the problem
of typing out of this paper, but the type system defined with the graph-based
operational semantics in [10] shows that either solution could work with the logic.
Another restriction in this logic is that we do not deal with attribute shadowing.

The rest of the paper is organized as follows. Section 2 briefs our notations of
graphs for oo programs. Sections 3 and 4 then present the underlying assertion
language and the proof system, respectively. The soundness of the logic is dis-
cussed in Section 5. Finally, conclusions are drawn with discussions on related
and future work.

2 Graph Representation of oo Programs

This section summarizes the graph notations of class structures and execution
states of oo programs. Details can be found in our previous work [9,10].

2.1 An oo Language

We adopt the formal language of the rCOS method [4] as the basis of our dis-
cussion. It is a general oo language with essential oo features such as object
creation, inheritance, dynamic method binding, and so on.

The language is equipped with a set of primitive data types, such as Int
and Bool , and a set of built-in operations f, · · · on these types. Besides, let
C, D, · · · range over classes C; S, T, · · · range over types T , including classes and
data types; a, x, y, · · · range over attributes and variables A; m, · · · range over
methods M; and l, · · · range over literals L, including the null reference null . The
syntax of the language is given in Fig. 1, where text occurring in square brackets
is optional and overlined text u denotes a sequence u1, u2, . . . , uk(k ≥ 0).

A program prog is a sequence of class declarations cdecls followed by a main
method Main which defines the execution of the whole program. A class C
is declared optionally as a direct subclass of another class D, thus there is no
multiple inheritance. An attribute declaration adecl consists of its type, name
and default initial value, which is a literal. An attribute declared in a class cannot
be re-declared in its subclasses, i.e., we do not consider attribute shadowing. A
method declaration mdecl consists of the method name m, its value parameters
S x, result parameters T y, and body command c. Notice that a method has
result parameters instead of returning values directly. This is to make sure that
expressions have no side effects. As a key feature of oo, a method is allowed to
be overridden in a subclass, but its signature m(S;T ) must be preserved.
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program prog ::= cdecls •Main
class declarations cdecls ::= cdecl | cdecl ; cdecls
class declaration cdecl ::= class C [extends D] {adecl ;mdecl }
attribute definition adecl ::= T a = l

method definition mdecl ::= m(S x;T y){c}
command c ::= skip | le := e | C.new(le) | var T x [= e] | end x

| e.m(e; le) | C :: m() | c; c | c � b � c | b ∗ c
expression e ::= le | self | l | f(e)
l-expression le ::= x | e.a
boolean expression b ::= e | e = e | ¬b | b ∧ b
main method Main ::= (ext ; c)
external variable ext ::= T x = l

Fig. 1. Syntax of rCOS language

A command can be simply skip that does not do anything; le := e that
assigns e to le; C.new(le) that creates an object of class C and attaches it to
le; var T x = e that declares a local variable x of type T with initial value e,
where e is by default the zero value zero(T ) of T ; end x that ends the scope of
x; or e.m(e; le) that invokes the method m of the object e refers to, with actual
value parameters e and actual result parameters le. Commands for sequential
composition c1; c2, conditional choice c1 " b � c2 and loop b ∗ c are also allowed.
In addition, we introduce an auxiliary command C :: m() to represent the general
execution of the method C :: m, i.e. m defined in class C. Such a command will
be used for the specification of method invariants.

Expressions include assignable expressions le, or simply l-expressions; the spe-
cial self variable that represents the currently active object; literals l; and expres-
sions f(e) constructed with operations f of data types. Notice that expressions
of the language have no side effects.

2.2 Class Graph and State Graph

The class declarations of a program can be represented as a directed and labeled
graph, called a class graph [9]. In a class graph, a node represents a type T ,
which is either a class or a data type. There are two kinds of edges. An attribute
edge C

a−→ T , which is labeled by an attribute name a, represents that C has an
attribute a of type T , while an inheritance edge C

�−→ D, which is labeled by a
designated symbol �, represents that C is a direct subclass of D. Notice that
the source of an edge and the target of an inheritance edge must be nodes of
classes. An example of class graph is shown in Fig. 2(1).

Given a class graph, we use C � D to denote C is a direct subclass of D,
and � the subclass relation that is the reflexive and transitive closure of �.
We also use Attr(C) to denote the set of attributes of C, including those inher-
ited from C’s superclasses. For an attribute a ∈ Attr(C), we use init(C, a) to
denote its initial value. Besides, we introduce two partial functions mtype(C :: m)
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Fig. 2. Class graph and state graph

and mbody(C :: m) for looking up the signature and the body of a method m of
a class C, respectively.

mtype(C :: m) =̂

{
(S;T ) if m(S x;T y){c} is defined in C

mtype(D :: m) otherwise, if C �D

mbody(C :: m) =̂

{
(x; y; c) if m(S x;T y){c} is defined in C

mbody(D :: m) otherwise, if C �D

With these functions, a class graph is used for type checking [10]. In addition,
the class graph of an oo program is regarded as an abstract type whose instances
are graphs representing executions states of the program, called state graphs.

Let N be an infinite set of node names and consider A+ =̂ A∪{self, $} as the
set of edge labels.

Definition 1 (State graph). A state graph is a rooted, directed and labeled
graph G = 〈N, E, ρt, ρv, r〉, where

– N ⊆ N is the set of nodes, denoted by G.node ,
– E ⊆ N ×A+ × N is the set of edges, denoted by G.edge,
– ρt : N ⇀ C is a partial function from nodes to types, denoted by G.type,
– ρv : N ⇀ L is a partial function from nodes to values, denoted by G.value ,
– r ∈ N is the root of the graph, i.e. without incoming edges, denoted by G.root ,
– starting from r, the $-edges, if there are any, form a path such that except

for r each node on the path has only one incoming edge.

A state graph is a snapshot of the state at one time of the program execution,
consisting of the existing objects, their attributes, as well as variables of different
scopes that refer to these objects. Specifically, a state graph G has three kinds of
nodes: object nodes, value nodes and scope nodes, representing objects, values and
scopes, respectively. Object nodes are the domain of G.type so that each object
node is labeled by its class with outgoing edges representing its attributes. Value
nodes are the domain of G.value so that each value node is labeled by a value.
We assume a value node is in the state graph when needed, as otherwise it
can always be added. A scope node has outgoing edges representing variables
declared in the scope. In addition, scope nodes are associated with a $-labeled
path and they constitute the stack of the state graph. The first (scope) node of
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the stack, i.e. the source of the $-labeled path, represents the scope of the current
execution. It is the root node of the graph through which variables and objects
of the state can be accessed. An example state graph is shown in Fig. 2(2).

To represent a sound state, a state graph G should satisfy a few conditions
of well-formedness [9], e.g. outgoing edges of each node have distinct labels. In
addition, a state graph should be correctly typed with respect to the class graph
of a program. Intuitively, the class of each object node is defined in the class
graph and each attribute is correctly typed according to the class graph. For
example, the state graph in Fig. 2(2) is correctly typed with respect to the class
graph in Fig. 2(1).

Trace and evaluation. We use the term trace, or navigation path, to denote a
sequence of edge labels. In a state graph, every path G.root

x1−→ n1
x2−→ · · · xk−→ nk

from the root is uniquely determined by its trace x1.x2. · · · .xk. We thus allow
the interchange between a root-originating path and its trace. Besides, we do
not distinguish state graphs different only in the choice of their node names, and
this is formalized by the notion of graph isomorphism [9]. Notice that isomorphic
state graphs have the same set of traces.

Given a state graph G that represents a state, the evaluation of an expression
e returns its value eval(e) and runtime type rtype(e) in the state [9]. For most
expressions e, the evaluation is simply the calculation of their traces trace(e). If
the trace of e targets at an object node o, eval(e) =̂ o and rtype(e) =̂ G.type(o).
Otherwise, eval (e) =̂ G.value(v) which is a literal and rtype(e) =̂ T(G.value(v)).
Here, T(l) denotes the type of a literal l. Notice that the trace of an expression
e may not exist. In this case, the evaluation fails and we denote both eval (e)
and rtype(e) as ⊥. To sum up, every expression evaluates to an element in
V =̂ N ∪ L ∪ {⊥}. Thus we call V the value space.

2.3 Graph Operation

We defined an operational semantics of the oo language in terms of transitions
con → con between configurations [9]. Here, a configuration con is either 〈c, G〉
representing a command c to be executed and a state G, or G representing the
state that the execution terminates at. The semantics is simple in the sense that
it is defined by a few basic operations on state graphs.

Swing. The most frequent operation on a state graph is an edge swing. Specif-
ically, for an edge d = v1

a−→ v2 and a node v of G, swing(G, d, v) is the graph ob-
tained from G by making d target at v (instead of v2). The swing swing(G, α, v) of
a trace α is the swing of its last edge, see Fig. 3. The swing operation is used to de-
fine the semantics of an assignment: 〈le := e, G〉 → swing(G, trace(le), eval (e)).

New. Given a state graph G, a class C and a trace α in G, the operation
new(G, C, α) creates an object node of class C with attributes initialized by
default values and then swings α to the new object node, see Fig. 4. This
operation is used to define the semantics of object creation: 〈C.new(le), G〉
→ new(G, C, trace(le)).

Push and pop. Let G be a state graph, x a variable and v a node of G. The
operation push(G, x, v) adds a new scope node r, with an outgoing edge labeled
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by x and targeting at v, to the top of the stack so that r becomes the root
of the result graph. In contrast, the operation pop(G) removes the root node
together with its outgoing edges from the graph, while the next scope node
becomes the root. They are shown in Fig. 5. The push operation is used to
define the declaration of a local variable: 〈var T x = e, G〉 → push(G, x, eval (e)),
as well as the switch of the execution into the method body at the beginning of
a method invocation. Correspondingly, the pop operation is used to define the
un-declaration of a local variable: 〈end x, G〉 → pop(G), as well as the switch of
the execution out of the method body at the end of a method invocation.

3 Assertion Language

The advantage of our graph notations lies in both the intuitive understanding
and the theoretical maturity of graphs. They are thus helpful to formulate clear
and precise assertions on the execution of oo programs. In this section, we
propose an assertion language as the basis of our Hoare Logic. It is a first-order
language with equality characterizing the aliasing property.
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assertion p ::= P (t) | t = t | t ↑ | t : C
| true | false | ¬p | p ∧ p | ∃U · p

term t ::= x | t.a | self | l | f(t)
| U | t � t = t � t

Fig. 6. Syntax of the assertion language

Let O be the vocabulary of logic variables U, V, · · · and let P, . . . range over
predicates. The syntax of the assertion language is given in Fig. 6. Assertions
include P (t) that applies a k-ary predicate P on a sequence of k terms t; t1 = t2
that says terms t1 and t2 are aliasing; t ↑ that claims t successfully evaluates
to a value not ⊥; and t : C that asserts the runtime type of t is class type C.
General constructs of a first-order language are also allowed, such as negation
¬p, conjunction p1∧p2 and (existential) quantification ∃U ·p. We regard p1 ⇒ p2,
p1∨p2, p1 ⇔ p2, ∀U ·p as shorthands for ¬(p1∧¬p2), ¬p1 ⇒ p2, (p1 ⇒ p2)∧(p2 ⇒
p1), ¬∃U · ¬p, respectively.

The syntax of terms is simply an extension of that of expressions (see Fig. 1)
with logic variables and conditional terms. A logic variable U is introduced
to record a constant value. This value cannot be changed by the execution of
commands since U never occurs in a command. A conditional term t1 " t = t′ � t2
behaves as t1 or t2, depending on whether t and t′ are aliasing or not. We use
lv(t) to denote the set of logic variables that occur in a term t, and flv(p) the set
of logic variables that occur free, i.e. not bound by quantifiers, in an assertion p.

3.1 Satisfaction of Assertion

As for the semantics of the assertion language, we characterize whether an as-
sertion p is satisfied by a state graph G. Since assertions contain logic variables,
we extend the notion of state graph with logic variables correspondingly.

Definition 2 (Extended state graph). An extended state graph is a rooted,
directed and labeled graph G = 〈N, E, ρc, ρv, r, v〉, where

– N , ρc, ρv and r are defined as in Definition 1,
– E ⊆ N × (A+ ∪ O)× N is the set of edges, denoted by G.edge,
– v ∈ N is a special node without incoming edges, denoted by G.lvar , such that

each outgoing edge of v is labeled by a logic variable, and furthermore, each
edge labeled by a logic variable is an outgoing edge of v.

The extension to an original state graph G is mainly a special node G.lvar

with outgoing edges G.lvar
U1−−→ n1, . . . , G.lvar

Uk−−→ nk recording a set of logic
variables. We use lv(G) to denote the set of logic variables {U1, . . . , Uk} of G.

Notice that all the graph operations provided in Section 2.3, and thus the
operational semantics, are applicable to extended state graphs. In fact, the exe-
cution of a command never changes the existence and values of logic variables.
In the rest of the paper, a state graph always means an extended one.

Given a term t and a state graph G with lv (t) ⊆ lv(G), the evaluation of t
calculates the value eval (t) and the runtime type rtype(t) of t in G. For a logic
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variable U ∈ lv (G), there must be an edge G.lvar
U−→ n in G. If n is an object

node, eval (U) =̂ n and rtype(U) =̂ G.type(n). If n is a value node, eval(U) =̂
G.value(n) and rtype(U) =̂ T(G.value(n)). The evaluation of a conditional term
t ≡ t1 " t′ = t′′ � t2 is the same as that of t1 or t2, depending on whether
eval(t′) = eval(t′′) or not. Other constructs of terms evaluate in the same way
as those of expressions.

To reason about the satisfaction of predicates, we consider the notion of in-
terpretation. An interpretation I of the assertion language interprets every k-ary
predicate P as a k-ary relation on the value space V , i.e. I(P ) ⊆ Vk. To calculate
the satisfaction of a quantified assertion ∃U · p, we introduce an operation that
adds a logic variable U into a state graph G and makes it refer to a node n of G:

addv (G, U, n) =̂ G′ provided U �∈ lv (G),

where G′ is the same as G except that G′.edge = G.edge ∪ {G.lvar
U−→ n}.

Intuitively, ∃U · p is satisfied by G if there is an object node or value node n of
G such that p is satisfied by addv (G, U, n). The satisfaction of other assertions
can be defined straightforwardly. For example, t1 = t2 is satisfied if t1 and t2
evaluate to the same value, t ↑ is satisfied if t evaluates to a value other than ⊥,
while t : C is satisfied if the runtime type of t is C.

Definition 3 (Satisfaction of assertion). For an assertion p, an interpreta-
tion I and a state graph G with flv(p) ⊆ lv (G), we use G |=I p to denote that p
is satisfied by G under I. It is defined inductively on the structure of p.

– For p ≡ P (t1, . . . , tk), G |=I p if (eval (t1), . . . , eval (tk)) ∈ I(P ).
– For p ≡ t1 = t2, G |=I p if eval (t1) = eval (t2).
– For p ≡ t ↑, G |=I p if eval (t) �= ⊥.
– For p ≡ t : C, G |=I p if rtype(t) = C.
– For p ≡ true, G |=I p always holds; for p ≡ false, G |=I p never holds.
– For p ≡ ¬p1, G |=I p if G |=I p1 does not hold.
– For p ≡ p1 ∧ p2, G |=I p if G |=I p1 and G |=I p2,
– For p ≡ ∃U ·p1, assume U �∈ lv (G) as U can be renamed by alpha-conversion.

G |=I p if addv (G, U, n) |=I p1 for some object node or value node n of G.

We say p is true under I, denoted as |=I p, if G |=I p for any state graph G with
flv(p) ⊆ lv(G). In addition, we say p is valid, denoted as |= p, if |=I p under
any interpretation I.

Notice that we use ≡ to denote the equivalence in syntax. For example, p ≡ t : C
means p and t : C represent the same syntactic assertion, i.e., p is exactly t : C.

It is straightforward to verify that the satisfaction of an assertion does not
rely on the naming of nodes of the underlying state graph, i.e., G |=I p if and
only if G′ |=I p for isomorphic state graphs G and G′. This indicates that our
oo assertion model, and further the proof system, is location independent.

The semantics of assertions provided in the above definition is consistent with
the semantics of first-order logic. As a result, every valid formula of first-order
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logic, e.g. ¬¬p ⇔ p, is a valid assertion. In addition, it is straightforward to
prove the validity of the following oo assertions, where t �= t′ is a shorthand for
¬t = t′.

1. t = t′ ⇒ t1 = t′1, provided t′1 is obtained from t1 by replacing one or more
occurrence of t by t′. This assertion says that aliasing terms share the same
properties.

2. t.a ↑⇒ t ↑ ∧ t �= null . This assertion says that the evaluation of t.a successes
only if t evaluates to a non-null object.

3. t : C ⇒ t ↑ ∧ t �= null . This assertion says that only objects can have runtime
class types.

4. t ↑⇔ ∃U ·U = t provided U is fresh. This assertion reflects the intuition that
a logic variable is used to record a value.

4 Proof System

The assertion language enables us to define program specifications. A specifi-
cation takes the form {p} c {q}, where p, q are assertions and c is a command.
We call p and q the precondition and postcondition of the specification, respec-
tively. Intuitively, such a specification means that if p holds before c executes,
and when the execution of c terminates, then q holds after the execution. We
will formally define the semantics of specifications in the next section. For a
specification {p} c {q}, we always assume flv(q) ⊆ flv(p). In fact, a specifica-
tion that generates new free logic variables in the postcondition is not nec-
essary. For example, by {x = y} skip{x = V ∧ V = y}, we actually mean
{x = y} skip{∃V · x = V ∧ V = y}.

In this section, we present the Hoare proof system that consists of a set of
logic rules for specifications of all constructs of the oo language presented in
Section 2.1. Each logic rule defines a one-step proof (or derivation) of a conclusion
from zero or more hypotheses. The conclusion takes the form of a specification,
while each hypothesis can be either an assertion, a specification, or a specification
sequent Φ � Ψ , where Φ and Ψ are sets of specifications. The specification sequent
means Ψ can be proved (or derived) from Φ by applying the logic rules.

For natural specification of commands such as assignment and object creation,
we define the proof system in a pre-to-post way. That is, each logic rule calculates
the postcondition of a specification from an arbitrary precondition.

4.1 Assignment

For specification of an assignment le := e, we introduce two logic variables V0

and V to record the values of le and e before the assignment, respectively. The
l-expression le can be either a variable x or a navigation expression e0.a.

In the former case le ≡ x, the specification is straightforward and x = V holds
in the postcondition.

{p ∧ x = V0 ∧ e = V } x := e {p[V0/x] ∧ x = V } (1)
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If the precondition p does not contain x, p also holds in the postcondition because
the assignment only modifies the value of x. Otherwise, we can replace each x
in p by its original value V0, so that p[V0/x] holds in the postcondition.

In the latter case le ≡ e0.a, we use an extra logic variable U to record the
value of e0, so that U.a = V holds in the postcondition.

{p ∧ e0 = U ∧ U.a = V0 ∧ e = V } e0.a := e {p[V0/U.a] ∧ U.a = V } (2)

For the rest of the postcondition, we introduce a special substitution [V/U.a].
Intuitively, p[V/U.a] is obtained from p by replacing every (sub-)term of the form
t′.a, where t′ is an alias of U , by the logic variable V . As a result, the satisfaction
of p[V/U.a] is not compromised by the assignment. This substitution is formally
defined according to the structure of assertions p, as well as terms t.

p[V/U.a] =̂

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (t1[V/U.a], . . . , tk[V/U.a]) if p ≡ P (t1, . . . , tk)

t1[V/U.a] = t2[V/U.a] if p ≡ t1 = t2

t[V/U.a] ↑ if p ≡ t ↑
t[V/U.a] : C if p ≡ t : C

p if p ≡ true or false

¬p1[V/U.a] if p ≡ ¬p1
p1[V/U.a] ∧ p2[V/U.a] if p ≡ p1 ∧ p2

∃V ′ · p1[V/U.a] if p ≡ ∃V ′ · p1 where V ′ is not U or V

t[V/U.a] =̂

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t if t ≡ x, self , l or V

t1[V/U.a].a1 if t ≡ t1.a1, a1 �≡ a

V � t1[V/U.a] = U � t1[V/U.a].a if t ≡ t1.a

f(t1[V/U.a], . . . , tk[V/U.a]) if t ≡ f(t1, . . . , tk)

t1[V/U.a] � t′[V/U.a] = t′′[V/U.a] � t2[V/U.a] if t ≡ t1 � t′ = t′′ � t2

4.2 Object Creation

For specification of an object creation C.new(le), we use a logic variables V0 to
record the original value of le. Like in the specification of assignment, we need
to consider two cases of le: a variable x, or a navigation expression e0.a.

For le ≡ x, the logic rule is given as follows.

provided V is fresh
{p ∧ x = V0}C.new(x)
{p[V0/x] ∧ ∃V · x = V ∧ V : C ∧ V = Cinit ∧ V �= p[V0/x]}

(3)

Similar to Rule (1), p[V0/x] holds in the postcondition given any precondition
p. In addition, we introduce a fresh logic variable V , which is existentially quan-
tified, in the postcondition to record the reference to the new object of class C,
thus x = V and V : C hold. For the rest of the postcondition, V = Cinit says
that the attributes of the new object are initialized, while V �= p[V0/x] indicates
that the new object can only be accessed from x but not p[V0/x].
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Formally, V = Cinit is a shorthand for V.a1 = init(C, a1) ∧ . . . ∧ V.ak =
init(C, ak), provided Attr(C) = {a1, . . . , ak}. V �= p is a shorthand for V �=
t1 ∧ . . . ∧ V �= tk, where t1, . . . , tk are the free maximum terms occurring in p.
A term is free if it does not contain a quantified logic variable, while a term is
maximum if it does not occur as a sub-term of another term.

For le ≡ e0.a, we use a logic variable U to record the original value of e0.

provided V is fresh
{p ∧ e0 = U ∧ U.a = V0}C.new(e0.a)
{p[V0/U.a] ∧ ∃V · U.a = V ∧ V : C ∧ V = Cinit ∧ V �= p[V0/U.a]}

(4)

This rule is similar to Rule (3), while p[V0/U.a] holds in the postcondition.

4.3 Local Variable Declaration

We only consider the specification of var T x = e; c; end x where x is initialized
by e, because var T x; c; end x is a shorthand for var T x = zero(T ); c; end x. We
use a logic variable V to record the original value of e, so that the specification
of var T x = e; c; end x depends on a specification of c with x = V in the
precondition.

If x does not occur in a precondition p or the expression e, we can simply use p
as a precondition of c which will lead to a postcondition q. To obtain the overall
postcondition that holds after the execution of end x, we hide all occurrences of
x in q by existential quantification.

provided U is fresh
{p ∧ x = V } c {q}

{p ∧ e = V } var T x = e; c; end x {∃U · q[U/x]}

If x occurs in p or e, we need to record the value of x by a logic variable W so
as to recover x after the execution of var T x = e; c; end x. Of course, p cannot
be used as a precondition of c until we replace each occurrence of x by W .

provided U is fresh
{p[W/x] ∧ x = V } c {q}

{p ∧ e = V ∧ x = W} var T x = e; c; end x {(∃U · q[U/x]) ∧ x = W}

For conciseness, we unify the above two cases into a single logic rule.

provided U is fresh; let p∗ be p ∧ e = V

{p[W/x] ∧ x = V } c {q}
{p∗ ∧ (?p∗)x = W} var T x = e; c; end x {(∃U · q[U/x]) ∧ (?p∗)x = W}

(5)

Here, (?p)w = t is a designated assertion defined as follows, in which w is either
a variable or self. We will also use it in the specification of method invocations.

(?p)w = t =̂

{
w = t if w occurs in p

true otherwise
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4.4 Method Invocation

A key feature of oo programs is the dynamic binding of method invocation.
That is, a method invocation e.m(ve; re) is an invocation of the method C :: m
where C is the runtime type of e. In our logic, the condition “C is the runtime
type of e” is naturally characterized by an assertion e : C.

For specification of an invocation of C :: m, we make use of a method invariant
{p}C :: m() {q} that is a specification of the general execution of the method
C :: m(). Specifically, the semantics of C :: m() is defined the same as that of
the body command of C :: m. Therefore, if a method C :: m is non-recursive, its
invariant is directly proved from the specification of its body command.

provided mbody(C :: m) = (x; y; c)

{p} c {q}
{p}C :: m() {q}

(6)

Once a method invariant is proved, it is used to derive specifications of invoca-
tions e.m(ve; re) of the method C :: m with any (well-typed) actual parameters
(ve; re), where e : C.

provided mtype(C ::m) = (S;T ); mbody(C ::m) = (x; y; c); W4,W5,W6,W7 fresh;
let p∗ be p ∧ e = U ∧ ve = V ∧ re ↑
{p[W1, W2, W3/self, x, y] ∧ self = U ∧ x = V ∧ y = zero(T )}C :: m() {q}
{p∗ ∧ U : C ∧ re? = V0 ∧ (?p∗)self = W1 ∧ (?p∗)x = W2 ∧ (?p∗)y = W3}
e.m(ve; re) {(∃W4, W5, W6, W7 · q[W4, W5, W6, W7/self, x, y, re[V0/ ?]]
∧re[V0/ ?] = W6) ∧ (?p∗)self = W1 ∧ (?p∗)x = W2 ∧ (?p∗)y = W3}

(7)

Given a precondition p of the method invocation, we use logic variables U and
V to record respectively the values of e and the value parameter ve in p, so that
U and V are respectively the values of self and x in the precondition of C :: m().
Besides, the result parameter re must have a value to receive the result of the
invocation, thus p∗ ≡ p∧ e = U ∧ ve = V ∧ re ↑ is part of the precondition of the
invocation. If p∗ contains self, x and y, we record their values by logic variables
W1, W2 and W3, respectively, and recover them after the invocation. However,
p∗ may not contain all of them. In the case p∗ contains self and y but not x, for
example, we only need to introduce the corresponding logic variables W1 and
W3. To unify different cases, we make use of the notation (?p∗)w = t defined in
Section 4.3. This is similar to Rule (5) for local variable declaration. The rest of
the postcondition is obtained from that of C :: m() by hiding self, x and y that
are local to C :: m(). For this, we first replace them by fresh logic variables W4,
W5 and W6, respectively, thus W6 actually records the result of the invocation.
Then, we hide these logic variables with existential quantification.

The rest of the rule is the return of result of the invocation W6 to the result
parameter re. There are two cases of re: a variable x or a navigation expression
e0.a. In the former case, we simply return W6 to x. In the latter case, we introduce
an extra logic variable V0 to record the parent object e0 of re before the invocation
and return W6 to V0.a after the invocation. This is the so-called early binding
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of result parameters. For unification of the two cases, we introduce a designated
assertion le? = V and a designated term le[V/ ?] for l-expressions le and logic
variables V .

le? = V =̂

{
e = V if le ≡ e.a

true if le ≡ x
le[V/ ?] =̂

{
V.a if le ≡ e.a

x if le ≡ x

Of course, we need to hide the value of re[V0/ ?] before returning W6 to re[V0/ ?].
To avoid unnecessary name conflicts, we always assume that the result param-

eter re of a method invocation e.m(ve; re) has a different name from a formal
parameter x of a method declaration. Otherwise, e.g. re ≡ x, we can replace
e.m(ve;x) by an equivalent command var T z; e.m(ve; z);x := z; end z, where T
is the type of the result parameter of m and z is a fresh name.

Recursive method invocation. Rule (6) is not strong enough to prove the in-
variants of recursive methods. For example, if the body c of a method C :: m
involves an invocation of C :: m itself, the hypothesis {. . .} c {. . .} of the rule
would in turn rely on the conclusion {. . .}C :: m() {. . .} of the rule and thus
cannot be proved.

We take the general approach to dealing with recursion [6,1]. Assume a group
of mutually recursive methods C1 :: m1, . . . , Ck :: mk, each of which may
call the whole group in its body. If the specifications of the method bodies
{p1} c1 {q1}; . . . ; {pk} ck {qk} can be proved under assumptions of the invariants
{p1}C1 :: m1() {q1}; . . . ; {pk}Ck :: mk() {qk}, these assumptions are established.

provided mbody(Ci :: mi) = (xi; yi; ci) for i = 1, . . . , k

{pi}Ci :: mi() {qi} i=1,...,k � {pi} ci {qi} i=1,...,k

{pj}Cj :: mj() {qj} 1≤j≤k

(8)

4.5 Other Constructs

Logic rules of sequential composition, conditional choice and while loop simply
follow the traditional Hoare Logic [5].

{p} c1 {p1} {p1} c2 {q}
{p} c1; c2 {q}

(9)

{p ∧ b} c1 {q} {p ∧ ¬b} c2 {q}
{p} c1 " b � c2 {q}

(10)

{p ∧ b} c {p}
{p} b ∗ c {p ∧ ¬b}

(11)

4.6 Auxiliary Rules

Besides rules for deriving specifications of various oo constructs, we have aux-
iliary rules that are useful to transform the precondition and postcondition of
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a specification. First, we can make the precondition of a specification “stronger”
and the postcondition “weaker”. And this is the so-called consequence rule.

provided flv(p) ⊆ flv(p′); flv(q′) ⊆ flv(q)

p′ ⇒ p {p} c {q} q ⇒ q′

{p′} c {q′}
(12)

Another rule is about constant assertions. An assertion p is called constant if it
does not contain any variable x, self or navigation expression e.a. The satisfaction
of a constant assertion cannot be changed by the execution of commands.

provided p is constant
{p} c {p} (13)

In addition, we can combine specifications of the same command by conjunction.
We can also hide, by existential quantification, and rename logic variables.

{p1} c {q1} {p2} c {q2}
{p1 ∧ p2} c {q1 ∧ q2}

(14)

{p} c {q}
{∃U · p} c {∃U · q}

(15)

provided U never occurs in the scope of ∃V
{p} c {q}

{p[V/U ]} c {q[V/U ]}
(16)

4.7 Example

We use an example to show the application of the proof system. Consider the fol-
lowing class declaration, with a recursive method fact(Int x; Int y) to calculate
the factorial of x and to return it to y.

class C{ . . . ;
fact(Int x; Int y){

(var Int z; self.fact(x− 1; z); y := z ∗ x; end z) � x > 1 � y := 1
}

}

We are going to prove the method is correctly defined:

{e : C ∧ z ↑} e.fact(5; z) {z = 5!}.

For this, we need to prove an invariant (INV) of the method:

{x = V ∧ V ≥ 0 ∧ self = U ∧ U : C ∧ y ↑}C :: fact() {x = V ∧ V ≥ 0 ∧ y = V !}.

This invariant is strong enough to derive the above conclusion using Rule (7) of
method invocation, as well as auxiliary rules (12), (13), (14) and (15).
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We use Rule (8) of recursion to prove (INV). That is, assuming (INV), we
prove the following specification of the method body, denoted as (BOD).

{x = V ∧ V ≥ 0 ∧ self = U ∧ U : C ∧ y ↑}
c1 � x > 1 � y := 1 {x = V ∧ V ≥ 0 ∧ y = V !}

where c1 is var Int z; self.fact(x − 1; z); y := z ∗ x; end z.
From (INV) and Rule (7) of method invocation, as well as auxiliary rules (12),

(13), (14), (15) and (16), we have

{x = V ∧ V ≥ 0 ∧ self = U ∧ U : C ∧ y ↑ ∧x > 1 ∧ z = V0}
self.fact(x− 1; z) {V ≥ 1 ∧ z = (V − 1)! ∧ x = V ∧ y ↑}.

From Rule (1) of assignment, as well as Rule (15), we have

{V ≥ 1 ∧ z = (V − 1)! ∧ x = V ∧ y ↑}
y := z ∗ x {x = V ∧ V ≥ 1 ∧ y = V ! ∧ z = (V − 1)!}.

By Rule (9) of sequential composition, the above two specifications lead to

{x = V ∧ V ≥ 0 ∧ self = U ∧ U : C ∧ y ↑ ∧x > 1 ∧ z = V0}
self .fact(x− 1; z); y := z ∗ x {x = V ∧ V ≥ 1 ∧ y = V ! ∧ z = (V − 1)!}.

Then, using Rule (5) of local variable declaration, as well as auxiliary rules (12)
and (15), we arrive at the following specification.

{x = V ∧ V ≥ 0 ∧ self = U ∧ U : C ∧ y ↑ ∧x > 1} c1{x = V ∧ V ≥ 0 ∧ y = V !}

On the other hand, we use Rule (1) of assignment, as well as auxiliary rules (12)
and (15), and arrive at the following specification.

{x = V ∧ V ≥ 0 ∧ self = U ∧ U : C ∧ y ↑ ∧¬(x > 1)} y := 1{x = V ∧ V ≥ 0 ∧ y = V !}

Finally, (BOD) is proved from the above two specifications using Rule (10) of
conditional choice.

5 Soundness of the Logic

We have provided a Hoare proof system for specification of oo programs, denoted
as H, which consists of a set of logic rules (1) to (16). In this section, we show
that H is sound. For this, we need to define the semantics of specifications.

Let {p} c {q} be a specification and I be an interpretation of assertions. We
say {p} c {q} is true under I, denoted as |=I {p} c {q}, if for any state graphs G,
G′, G |=I p and 〈c, G〉 →∗ G′ imply G′ |=I q. We call {p} c {q} valid, denoted as
|= {p} c {q}, if |=I {p} c {q} under any interpretation I.

We say a specification sequent Φ � Ψ is true under an interpretation I, if Φ
is true under I implies Ψ is true under I. Naturally, a set of specifications Φ is
true under I means each specification of Φ is true under I.

Recall that a hypothesis of a logic rule is either an assertion, a specification
or a specification sequent. We establish the soundness of logic rules of H by the
following theorem.
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Theorem 1 (Soundness of Logic Rules). Rules (1) to (16) are sound. Here,
a logic rule is sound means: for any interpretation I, the hypotheses of the rule
are true under I implies the conclusion of the rule is true under I.

Notice that the soundness of a logic rule with no hypothesis simply means the va-
lidity of the specification as the conclusion of the rule. The proof of this theorem
can be found in our technical report [19].

As a natural deduction of Theorem 1, the proof system H is sound. That is,
every specification proved by H is valid.

Theorem 2 (Soundness). � {p} c {q} implies |= {p} c {q}.

6 Conclusions

We propose a graph-based Hoare Logic for reasoning about oo programs. Specif-
ically, the Hoare proof system consists of a set of logic rules that covers most
oo constructs such as object creation, local variable declaration and recursive
method invocation. We have proved the soundness of the logic that every speci-
fication proved by the system is valid.

A distinct feature of the logic is its underlying graph-based operational se-
mantics where execution states of oo programs are visualized as directed and
labeled graphs [9]. The simplicity and intuitiveness of graphs improve people’s
understanding of oo concepts and are thus helpful in thinking of and formulat-
ing clear assertions. On the other hand, the graph model is expressive enough
to characterize important oo properties such as aliasing and reachability.

As for graph models of oo programs, there is some work that proposes an oo
execution semantics [8,3]. However, a graph in their model is a mixture of class
structure, object configuration together with commands to be executed and thus
difficult to comprehend. It is not clear either how assertions can be formulated
and reasoned about. The notion of trace in our graph model comes from [7], a
trace model for pointers and objects. But the main concern of their work is to
maintain the aliasing information.

There is some work on Hoare logic for reasoning about oo programs. In par-
ticular, Pierik and De Boer’s logic [14] based on term substitution is close to our
work. But different from our approach, they calculate the weakest precondition
for both assignment and object creation, and a complicated form of substitution
for dynamic allocation of objects is needed. Von Oheimb and Nipkow [17] present
a machine-checked Hoare logic for a Java-like language in Isabelle. They use a
semantic representation of assertions to manipulate the program state explicitly
instead of syntactic term substitution. Similarly, Poetzsch-Heffter and Müller [15]
use an explicit object store in their logic and present axioms for manipulating
the store. Recently, separation logic [16] has been applied for reasoning about
oo languages [13]. By heap separation, aliasing can be handled in a natural way
and modularity of reasoning is achieved. But meanwhile, users should be careful
of information on separation of heaps for writing correct assertions.
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Future work includes the proof of the completeness of the logic, i.e., every valid
specification can be proved by the system. In fact, we are quite confident that it
is complete, because the logic rules are indeed provided to deal with every kind
of program constructs and the only difficult case is recursive method invocation.
Besides the development of the theory, it is also important to apply the logic
to a more substantial case study and further to investigate tool support for
application of automated techniques of verification and analysis of oo programs.
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Abstract. A cyber-physical system (CPS) is an interactive system of
continuous plants and real-time controller programs. These systems usu-
ally feature a tight relationship between the physical and computational
components and exhibit true concurrency with respect to time. These
communication and concurrency issues have been well investigated in
event based synchronous languages but only for discrete systems. In
this paper, we investigate the distinct features of CPS and propose an
imperative-style language framework for the programming of CPS. To
characterize the semantics of the language, a set of algebraic laws are
provided, which can be used to reduce arbitrary program into normal
form. The programs in the normal form exhibit clear time-consuming
and instantaneous behaviors. Moreover, the algebraic laws can be used
in the transformation from the high level hybrid program specification
to low level controller programs interacting with the physical plants. We
will investigate this part in the follow-up work.

1 Introduction

A cyber-physical system (CPS) is an interactive system of continuous plants and
real-time controller programs. The embedded controllers monitor and control the
evolution of physical plants and make the whole system behave correctly and
safely. Such systems are pervasively used in areas such as aerospace, automotive,
chemical processes, energy, health-care, etc. It is drawing increasing attention
because of its complex but wide applications and high safety requirements in
the applications.

For the modeling and verification of cyber-physical systems, varieties of for-
mal models have been investigated in [1–12] among others. Our intention is to
explore a provably correct way of development from specification to implemen-
tation. Crucial in our approach are a set of algebraic laws that could transform
the arbitrary programs to a representation which is either easy to prove the cor-
rectness or close to the implementation. In this paper we will emphasize on the
algebraic laws that could simplify the program texts and expose the meanings
of the programs.

The great merit of algebra is that it makes no distinctions between the specifi-
cation and implementation [13, 14]. Thus we can represent and reason about the
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specification and the implementation in one framework. Moreover, the algebra is
suited for symbolic calculation and could be used as the basis of reasoning. Alge-
braic proof via term rewriting is one of the most promising way that computers
could assist in the process of reasoning. In practice, the algebraic approach has
been successfully applied in the ProCoS project (Provably Correct Systems) on
the verification of compiler [15]. In [16], a large number of elegant algebraic
laws in OCCAM were provided to characterize the language’s semantics. Within
the OCCAM language framework, a provably correct compilation method from
a high-level OCCAM program to a netlist of Field Programmable Gate Array
components via algebraic laws was constructed [17]. The hardware/software par-
titioning problem could be tackled via the algebra approach as well [18].

To reuse most of the memorable laws in OCCAM and the algebraic trans-
formation strategies, we propose a conservative extension to the language with
changes on the communication mechanism due to the characteristics of CPS.
Similar to OCCAM, the event is still the only way to synchronize the behav-
iors of parallel processes. An input event (or event guard) can be triggered only
when the corresponding output event becomes ready. However, the output in
event based communication paradigm presented in this paper is non-blocking,
i.e., the event can be outputted regardless of the environment. Moreover, the
output is broadcast among the components, which means the communications
could happen among both parallel components and sequential components.

Another main communication paradigm of parallel programming is based on
shared variables [19, 20]. The composition behaviors are arbitrary interleavings
of parallel processes and the shared variables could be updated several times as
all the other discrete variables even at the same time instant. In the event based
communication paradigm, the evaluation of the communication events which
reflect the change of physical world is related to the time, i.e., the value of each
event can be updated at most once at the same time instant. Comparing with
shared variable based concurrency, the event based communication mechanism
can reduce the non-determinism to some extent but bring in the complexity of
iterative triggering of event guards.

The communication issues have been investigated in event based synchronous
languages but only for discrete systems [21–24]. To deal with the physical com-
ponents in CPS, we introduce the continuous statements to the language. More
algebraic laws are presented to characterize the semantics of language. The al-
gebraic laws can be used to reduce arbitrary program into normal form. The
transformation happens to remove all the iterative triggering of event guards
in one instantaneous lock-step. The programs in the normal form exhibit clear
time-consuming and instantaneous behaviors.

The remaining part is organized as follows. Section 2 introduces the features of
our model and a few assumptions. A set of algebraic laws are presented in Section
3. Section 4 specifies the normal form of the language. Section 5 concludes the
paper and outlines some future work.
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2 The Cyber-Physical System Domain

Before introducing our approach, we would like first illustrate the features of
CPS in our model. From the architecture point of view, CPS can be classified
into sensors, actuators, digital components and physical components. It exhibits
both continuous and discrete behaviors which interact tightly. The event is the
mechanism that the components interact with the others. For example, on the
one hand, the change of continuous variables can be viewed as an event, which
can be detected by the sensor and thereby influence the execution of digital
parts. On the other hand, the event can be explicitly emitted by the digital
programs and consequently influences the continuous evolution.

2.1 The Variables

We would like firstly classify all the variables involved in cyber-physical systems.
Fig. 1 illustrates different categories of variables. Note that these categories are
disjoint.

u

time

x

time

event

time

+ + +

(a) Continuous Physical Variables (b) Discrete Variables (c) Event Variables

Fig. 1. The evaluation for different categories of variables

– Continuous Physical Variables. Variables in this category are dominated by
natural laws and vary with respect to time. The variability of these variables
can be described via differential equations. We can only change the value via
modifying the algebraic variables involved in differential-algebraic equations
or differential equations itself, i.e., the mode of variability. We use u, v, x to
denote the continuous variables. Examples in this category are those physical
variables such as the height of the bouncing ball, the level of water tank, etc.

– Discrete Variables. Informally, the discrete variables are program variables
which are piecewise constant and can be changed at each event instant. They
are not shared between controllers and plants.

– Event Variables. The event could be either present or absent. The event is
present when the event is implicitly generated by the changes of continu-
ous variables or explicitly emitted by the controller programs at some time
instant. The present state can be immediately seen by the neighbors (pro-
cesses running in parallel) or the successors. The state of the event is cleared
automatically (reset to absent) if the time advances.
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2.2 The Communication Mechanism

Similar to Communicating Sequential Processes (CSP) [25], the input is syn-
chronous, i.e., an input guard is waiting to be triggered until the corresponding
output event becomes ready. The difference is that in our model the output is
asynchronous, i.e., output can be executed without the need for the ready input.
The synchronous input and asynchronous output reflect the characteristics of
CPS, in which some components are driven by the events from the environment
but the event can be outputted regardless of the environment. For example, the
sensor monitors the evolution of water level and is triggered if the water rises
to a dangerous level. But the event representing such emergent situation can
always be outputted no matter whether the sensor exists or not.

The second feature is that the output is broadcast among the components,
which means that communications can take place among both parallel compo-
nents and sequential components. An input guard can be fired by the event
outputted by the parallel components or its sequential predecessor.

The output events will propagate at each time instant. That means the event
will always be present as long as time does not elapse. It is different from the
view adopted by Hardware Description Language Verilog [26, 27]. In Verilog, the
so-called microstep (or micro-time) is introduced to deal with the execution at
the same time instant. Only one process can output a event which could influence
the execution at each microstep. Once the event triggers the input guard and the
microstep advances, the event will be refreshed and cannot trigger the guards
in the successors any longer. For example, if one input guard is followed by the
same input guard, the second input guard will not be triggered. But in our CPS
model, the present state of event will propagate in one lock-step and the event
guards could be iteratively triggered if the time does not advance. In other words,
once the input guard can be triggered it can always be triggered provided that
the time does not elapse.

2.3 The Concurrency

The cyber-physical system is a true concurrent model and concurrency should
be ensured at every time instant. During continuous evolution, the differential
equations that describe the relations between the variables should be satisfied
concurrently. As for the discrete part, the transitions happen instantaneously
(comparing to the macro time, the execution time of digital computation can
be abstracted away, but the causality relation is reserved). The instantaneous
discrete transitions are executed in a lock-step. Once the instantaneous transition
starts, all the discrete transitions are executed till the system reaches to a stable
state.

The whole system should be consistent with respect to the time, which means
at every time instant, the observation should be consistent. During continuous
evolution, the principle is easily fulfilled if all the differential equations are sat-
isfied concurrently. As for the discrete part, the subsequent execution in one
lock-step in the computation could not contradict the observation in the same
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lock-step. And the effect of instantaneous statements will be observed immedi-
ately by the neighbors and successors.

3 The Language and Algebraic Laws

To deal with the features of CPS, continuous statement and event emission
statement are introduced to the structure of the language. Let us firstly introduce
the syntax of the language.

EQ ::= IDLE | F (u̇,u) = 0 | (EQ|EQ)
AP ::= II | x := v | !e | EQ UNTIL g

P ::= A | P ;P | P ‖ P | WHEN(G) | IF(C) | P ∗

C ::= b → P | C � C
G ::= g&P | G � G

Differential equation F (u̇,u) = 0 is added to express the continuous evolution
of physical plant. IDLE represents the never-terminating continuous evolution
in which the continuous variables remain unchanged. EQ|EQ represents a set of
differential equations.

Informally, II does nothing. x := v is an instantaneous assignment statement.
!e is the explicit emission of event e. Continuous statement EQ UNTIL g behaves
as EQ when g is not triggered. P ;Q is sequential composition and P ‖ Q defines
parallel composition. WHEN(G) represents the input event guard statement
(await statement). G is the guard construct. The corresponding branch P in G
is allowed to execute when the guard g is triggered. If more than one event guard
are satisfied at the same time, the branch will be chosen nondeterministically.
IF(C) represents the conditional statement. The continuous variables cannot be
involved in the Boolean conditions. The repetition statement P ∗ represents the
finite iteration of P . Systems are assumed not to have infinite behaviors. In other
words, an infinite sequence of discrete events over a finite time interval (Zeno
behavior) is not allowed.

The precedence rules of the operators are listed as follows.

:= (!), → (&), �, ;, ‖ (from the tightest to the loosest)

Here in this paper, we adopt the following name conventions. We introduce
(x, y.., z) to represent a list of variables.

v, f expressions
x, y, z variables
a, b, c Boolean expressions
g, h, k event guards
e, s, t events
E, S, T event sets
P, Q, R programs

Note that the algebraic laws in this paper are not exhaustive. We concentrate
on the laws that are needed in the transformation from arbitrary programs into
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the normal form. And also we do not list the laws of assignment repetitively in
this paper as the assignment of discrete variables in this paper share the same
laws presented in [16].

3.1 The Guards

The event is used to denote the interaction or communication mechanism of
CPS. It may reflect the change of a variable’s value, the satisfiability of a desired
condition, or the reaching of a desired point of time, etc. The explicitly emitted
events can be used to model the broadcast message passing. Different types of
events share the following characteristics: (i) each event exhibits one value at
the same time instant; (ii) the value of event is cleared when the time advances.
The event guards are constructed as follows.

g ::= ε | ∅ | e | g + g | g · g | b • g

Event guard ε can be triggered by any event. No event can trigger the guard ∅. e
represents the atomic event guard. The guard composition g1 · g2 can be fired by
the events which triggers both the operands. The event firing either g1 or g2 can
trigger guard g1+g2. The operator · has higher priority than +. b•g is triggered
when g is triggered and the Boolean expression b is true. Both continuous and
discrete variables could be involved in the Boolean expressions. The operator •
has the highest priority.

There are some laws on the guard operators. Multiplication · is idempotent,
commutative, associative and distributes over addition +. It has ∅ as its zero
and ε as its unit. Addition + is idempotent, commutative, associative. It has
∅ as its unit and ε as its zero. Additionally, if the Boolean expressions do not
contain continuous variables, the following laws hold.

(· − 1) g · g = g
(· − 2) g1 · g2 = g2 · g1
(· − 3) g1 · (g2 · g3) = (g1 · g2) · g3
(· − 4) ∅ · g = ∅
(· − 5) ε · g = g
(· − 6) g1 · (g1 + g2) = g1
(· − 7) g · (h1 + h2) = g · h1 + g · h2

(+ − 1) g + g = g
(+ − 2) g1 + g2 = g2 + g1
(+ − 3) g1 + (g2 + g3) = (g1 + g2) + g3
(+ − 4) ε + e = ε
(+ − 5) e + (e · f) = e
(• − 1) true • g = g
(• − 2) false • g = ∅
(• − 3) b1 • g + b2 • g = (b1 ∨ b2) • g
(• − 4) b1 • g1 · b2 • g2 = (b1 ∧ b2) • (g1 · g2)

The partial relation ≤ reflects how the guard can be triggered: if the smaller
guard can be triggered, the larger guard can also be triggered.



400 L. Zhu et al.

Definition 1. g1 ≤ g2 =df g1 · g2 = g1.

Lemma 1. (1) ∅ ≤ g; g ≤ ε;
(2) g1 · g2 ≤ g1 ≤ g1 + g2;
(3) If g1 ≤ g2, then g1 · g ≤ g2 · g

3.2 Laws of Instantaneous Statements

The statements can be further divided into instantaneous ones and
time-consuming ones. Here in this subsection, we mainly focus on the laws of
instantaneous statements.

Definition 2. P is instantaneous (P ∈ I) if P is in the following forms.

– x := v, !e, or II.

– IF(�i∈Ibi → Pi) if Pi is instantaneous.

– P‖Q, or P ;Q if both the operands are instantaneous.

The order of assignment and emission is not relevant.

(instan - 1) x := v; !e = !e;x := v = !e‖x := v

For the composition of emission statements, the order is irrelevant.

(instan - 2) !e; !s = !s; !e = !e‖!s = !{e, s}

The emission of event will not change the variables in any ci.

(instan - 3) !e; IF(�i∈I{ci → Pi}) = IF(�i∈I{ci → (!e;Pi)})
provided that

∨
i∈I ci = true

The assignment can be distributed over the IF construct.

(instan - 4) x := v; IF(�i∈I{ci → Pi}) = IF(�i∈I{ci[v/x] → (x := v;Pi)})
provided that

∨
i∈I ci = true

The following distribution laws are still valid.

(instan - 5) IF(�i∈I{bi → Pi});Q = IF(�i∈I{bi → (Pi;Q)})
provided that

∨
i∈I bi = true

(instan - 6) IF(�i∈I{bi → Pi})‖Q = IF(�i∈I{bi → (Pi‖Q)})

provided that
∨

i∈I bi = true

The nested IF statements can be eliminated via the following law.

(instan - 7) IF(c → IF(�i∈I{bi → Pi})) = IF(�i∈I{c ∧ bi → Pi})
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If none of the Boolean conditions are evaluated to true, the process behaves as
II.

(instan - 8) IF(�i∈I{bi → Pi}) = IF(�i∈I{bi → Pi} � ¬
∨
i∈I

bi → II)

The parallel processes are disjoint on the discrete variables. So we can convert
the parallel of assignments into a multiple assignment.

(instan - 9) x := v‖y := f = (x, y) := (v, f)

3.3 Laws of WHEN

The guard construct is associative, commutative, and idempotent.

(� - 1) (G1 � G2) � G3 = G1 � (G2 � G3)

(� - 2) G1 � G2 = G2 � G1

(� - 3) G � G = G

The component guarded by ∅ will never be triggered.

(WHEN - 1) WHEN(∅&P � G) = WHEN(G)

The await statement with ∅ guard behaves as IDLE. Here, αP stands for the
alphabet of the process P .

(WHEN - 2) WHEN(∅&P ) = IDLEαP

The guarded choice with the same guarded component in an await statement
can be combined.

(WHEN - 3) WHEN(g&P � h&P � G) = WHEN((g + h)&P � G)

The WHEN can be distributed over the sequential operator.

(WHEN - 4) WHEN(�i∈I{gi&Pi});Q = WHEN(�i∈I{gi&(Pi;Q)})

The following two laws are crucial since they depict the propagation of events
and show the elimination of iterative triggering of event guards.

The nested await statements can be converted into single await statement
with Boolean event guards. If the instantaneous statement cannot trigger the
next await statement, a continuous statement is added explicitly. Otherwise, the
guard in the next await statement will be absorbed.
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(WHEN - 5) Let A represent an instantaneous program without parallel con-

structs and Q = WHEN(�i∈I{hi&Qi}), then
WHEN(g&(A;Q) � G)

= WHEN

⎛⎜⎝¬(g ≥ A(h)) • g&(A; IDLE UNTIL h;Q)

� �i∈I{g ≥ A(hi) • g&(A;Qi)}
� G

⎞⎟⎠ ,

where h =
∑
i∈I

hi and A(h) can be defined inductively on the structure of A

as follows.

(1) (II)(h) = h (2) (!e)(h) = h[ε/e]

(3) (x := v)(h) = h[v/x] (4) (A1;A2)(h) = A1(A2(h))

(5) (IF(�i∈I{bi → Ai}))(h) =
∑
i∈I

bi • Ai(h)

The continuous statement nested in the await statement can be transformed in
the similar way. A(h) is defined in the same way as shown in Law WHEN - 5.

(WHEN - 6) Let A represent an instantaneous program without parallel con-

structs,

WHEN(g&(A;EQ UNTIL h;R) � G)

= WHEN

⎛⎜⎝¬(g ≥ A(h) • g&(A;EQ UNTIL h;R)

� g ≥ A(h) • g&(A;R)

� G

⎞⎟⎠ .

The parallel of two await statements can be expanded into an await statement.
For the resulted await statement, there are three cases. The first and the second
are composed of a set of event guard components from one parallel branch.
The third type of guarded choice describes the common event guard of the two
parallel parts, i.e., the compound event guard of the parallel processes.

(WHEN - 7) Let P = WHEN(�i∈I{gi&Pi})
and Q = WHEN(�j∈J{hj&Qj}),

P‖Q = WHEN

⎛⎜⎝ �i∈I {gi&(Pi‖Q)}
� �j∈J{hj&(Qj‖P )}
� �i∈I,j∈J{gi · hj&(Pi‖Qj)}

⎞⎟⎠ .

The IF construct can be transformed into an await statement.

(WHEN - 8) IF(�i∈I{bi → Pi}) = WHEN(�i∈I{bi • ε &Pi})
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3.4 Laws of UNTIL

If the same equations are put together, it is equal to one equation.

(UNTIL - 1) (EQ|EQ) UNTIL g = EQ UNTIL g

If one element of the simultaneous equation set is IDLE, it can be dropped. The
alphabet becomes the union of the two parts.

(UNTIL - 2) (EQα|IDLEβ) UNTIL g = EQα∪β UNTIL g

If the guard in the continuous statement is triggered at the beginning, the state-
ment behaves as II.

(UNTIL - 3) EQ UNTIL ε = II

Continuous statement with event guard ∅ is non-terminating. Any statement
after a non-terminating one will never been executed.

(UNTIL - 4) EQ UNTIL ∅;Q = EQ UNTIL ∅

If the continuous statement is terminated, the event that terminates the contin-
uous statement propagates provided that the time does not elapse.

(UNTIL - 5) EQ UNTIL g;WHEN(g&P ) = EQ UNTIL g;P

We can merge the continuous statements with the same differential equation.

(UNTIL - 6) EQ UNTIL (g + h);EQ UNTIL g = EQ UNTIL g

The parallel of two continuous statements can be transformed into a sequential
one.

(UNTIL - 7) Let P1 = EQ1 UNTIL g1;R1

and P2 = EQ2 UNTIL g2;R2

then P1‖P2 = (EQ1|EQ2) UNTIL (g1 + g2);

WHEN(g1&(R1‖P2) � g2&(R2‖P1) � g1 · g2&(R1‖R2)).

We can eliminate the parallel operator via the following law if it is combined by
the continuous statement and await statement.

(UNTIL - 8) Let P = EQ UNTIL h;R

and Q = WHEN(�j∈Jgj&Qj)

then P‖Q = EQ UNTIL (
∑
j∈J

gj + h);

WHEN(�j∈Jgj&(P‖Qj) � h&(R‖Q) � �j∈Jh · gj&(R‖Qj)).
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Example 1. In the following example, we show how to eliminate the iterative
triggering of event guards in the await statements via the above algebraic laws.

WHEN(s&!e);WHEN(s · e&!t)

= WHEN(s&!e;WHEN(s · e&!t))
(by Law WHEN - 4)

= WHEN

(
¬(s≥ (!e)(s·e))•s&

(
!e; IDLEUNTIL (s·e);WHEN(s·e&!t)

)
� (s≥ (!e)(s·e))•s&(!e; !t)

)(by Law WHEN - 5)

= WHEN

(
false•s&

(
!e; IDLE UNTIL (s·e);WHEN(s·e&!t)

)
� true•s&(!e; !t)

)(by the definition of ≥)

= WHEN(∅&(!e;WHEN(s · e&!t)) � s&(!e; !t))
(by • - 1, • - 2)

= WHEN(s&(!e; !t))
(by Law WHEN - 1)

4 The Normal Form

To illustrate the power of the algebraic laws, we investigate the normal form of
our programs and prove that all the programs can be converted into a normal
form. In the transformation process, the iterative triggering of event guards
is eliminated. Thus the normal form exhibits the clear alternate instantaneous
and time-consuming behaviors, i.e., each instantaneous execution is followed by
an explicitly continuous evolution and the continuous evolution is followed by
instantaneous execution.

In this section, we firstly present the normal form for the instantaneous state-
ments. After that, several derived laws are introduced to facilitate the transfor-
mation. Then we give the normal form of the programs. The proof also demon-
strates the process to transform the program text into a normal form.

4.1 Conditional Normal Form for Instantaneous Statements

Every finite instantaneous program of our language can be reduced into a simple
conditional normal form. Here we extend the event emission statement and use
!E to denote the emission of a set of event. In conditional normal form a program
looks like

IF(�i∈I{bi → Pi}),

where
∨

i∈I bi = true and Pi is x := vi‖!Ei. The sequential operator is eliminated.

Theorem 1. All the instantaneous statements can be reduced to conditional
normal form.
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Proof. Our first step is to show that all primitives can be reduced to conditional
normal form. If we can further prove that normal form is closed under the com-
binators, it is sufficient to know that all the instantaneous statements can be
reduced to conditional normal form. The proof proceeds as follows.
(1) II.

II = IF(true → x := x‖!∅).

(2) Emission.

!e = IF(true → x := x‖!{e}).

(3) Assignment.

x := v = IF(true → x := v‖!∅).

(4) Conditional Statement.

IF(�i∈I{bi → IF(�j∈J{cij → (x := vj‖!Ej)})})

= IF(�i∈I,j∈J{bi ∧ cij → (x := vj‖!Ej)}).
(by Law instan - 7)

(5) Sequential Composition.

IF(�i∈I{bi→(x :=vi‖!Ei)}); IF(�j∈J{cj→(x :=fj‖!Sj)})

= IF(�i∈I{bi→((x :=vi‖!Ei); IF(�j∈J{cj→(x :=fj‖!Sj)}))})
(by Law instan - 5)

= IF(�i∈I{bi→(x :=vi; !Ei; IF(�j∈J{cj→(x :=fj‖!Sj)}))})
(by Law instan - 1)

= IF(�i∈I,j∈J{bi ∧ cj [vi/x]→((x :=vi;x :=fj)||!Ei ∪ Sj)}).
(by Law instan - 3, instan - 4, instan - 7)

(6) Parallel Composition.

IF(�i∈I{bi→(x :=vi‖!Ei)})‖IF(�j∈J{cj→(y :=fj‖!Sj)})

= IF(�i∈I{bi→((x :=vi‖!Ei)‖IF(�j∈J{cj→(y :=fj‖!Sj)}))})
(by Law instan - 6)

= IF(�i∈I{bi→IF(�j∈J{cj→((x :=vi‖!Ei)‖(y :=fj‖!Sj))})})
(by comm of ‖, Law instan - 6)

= IF(�i∈I,j∈J{bi ∧ cj→((x, y :=vi, fj)||!Ei ∪ Sj)}).
(by Law instan - 7, instan - 9, instan - 2)

	


4.2 Additional Derived Laws

Here we firstly introduce three parallel expansion laws. They depict how to trans-
form the parallel construct into sequential one. Note that the Boolean conditions
in the following derived parallel expansion laws mentioned below partition true.
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If the first statements of the parallel processes are both instantaneous, the
effect of execution can be merged.

(der - 1) Let P = IF(�i∈I{bi → ((x := vi‖!Ei);Pi)})
and Q = IF(�j∈J{cj → ((y := fj‖!Sj);Qi)}),
then P‖Q = IF(�i∈I,j∈J{bi ∧ cj → (((x, y) := (vi, fj)‖!Ei ∪ Sj); (Pi‖Qj))}).
Proof. See the appendix. 	

The instantaneous statements are executed before the continuous ones.

(der - 2) Let P = IF(�i∈I{bi → x := vi‖!Ei;Pi})
and Q = EQ UNTIL g;Q′

then P‖Q = IF(�i∈I{bi → ((x := vi‖!Ei); (Pi‖Q))}).
Proof. See the appendix. 	

If instantaneous statements and await statements are executed in parallel, the
instantaneous ones are executed first.

(der - 3) Let P = IF(�i∈I{bi → x := vi‖!Ei;Pi})
and Q = WHEN(�j∈J{gj&Qj}),
then P‖Q = IF(�i∈I{bi → ((x := vi‖!Ei); (Pi‖Q))}).
The following two derived laws are simple variants of LawWHEN - 5, WHEN - 6
(under Law instan - 1 and instan - 2). h[ε/E] represents the substitution of every
element of set E in h with ε.

(der - 4) Let Q = WHEN(�i∈I{hi&Qi}) and h =
∑
i∈I

hi, then

WHEN(g&((x := v‖!E);Q) � G) =

WHEN

⎛⎜⎜⎜⎜⎜⎜⎝
¬(g≥h[v/x, ε/E]) • g&

⎛⎜⎝ (x := v‖!E);

IDLE UNTIL h;

Q

⎞⎟⎠
��i∈I{g≥hi[v/x, ε/E] • g&((x :=v‖!E);Qi)}
� G

⎞⎟⎟⎟⎟⎟⎟⎠
(der - 5) Let h =

∑
i∈I

hi, then

WHEN((g&(x := v‖!E);EQ UNTIL h;R) � G) =

WHEN

⎛⎜⎜⎜⎜⎜⎜⎝
¬(g ≥ h[v/x, ε/E] • g&

⎛⎜⎝ (x := v‖!E);

EQ UNTIL h;

R

⎞⎟⎠
� g ≥ hi[v/x, ε/E] • g&((x := v‖!E);R)

� G

⎞⎟⎟⎟⎟⎟⎟⎠
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4.3 The Normal Form

After introducing the await statements and continuous statements, it is not
easy to distinguish the instantaneous statements from the time-consuming ones.
If the guard in the await statements is triggered, the guarded component will
be executed at current time instant. The execution may emit more events and
the combined events may release more event guards. It is the same with the
continuous statements with guards. We use the algebraic laws to eliminate the
iterative triggering of event guards.

The transformation eliminates iterative triggering of event guards and the
result normal form exhibits clear alternate instantaneous behaviors and time-
consuming ones. The normal form is

WHEN(�i∈I{gi&Pi}),

where Pi is x := v‖!E, or x := v‖!E;EQ UNTIL g;R and R is still in the normal
form. Note that the await statement in the normal form will not take time.
All the time-consuming behaviors are explicitly represented by the continuous
statements.

Theorem 2. The instantaneous statements can be reduced to normal form.

Proof. From Theorem 1, all the instantaneous statements can be transformed
into a conditional normal form. Based on the Law WHEN - 8, we can convert
all the conditional statements into the await statements. 	


Theorem 3. The continuous statement can be reduced to normal form.

Proof. Since II is the unit of any statement, the continuous statements P can
be regarded as

WHEN(true • ε&(x := x‖!∅;P )).
	


Theorem 4. The sequential composition P ;Q can be reduced to normal form,
if P and Q are in normal form.

Proof. Without loss of generality, we assume P = WHEN(�i∈I{gi&Pi}). Based
on Law WHEN - 4 (the distribution law &-;), then

P ;Q = WHEN(�i∈I{gi&(Pi;Q)})

If Pi is x := v‖!E, we need to deal with the cases separately. If Q is await
statement, by Law der - 4 we can eliminate the nested await. If Q is a continuous
statement, Law der - 5 could be applied to eliminate the iterative triggering of
event guards.

If Pi is x := v‖!E;EQ UNTIL g, then Pi;Q = x := v‖!E;EQ UNTIL g;
WHEN(g&Q) (by Law UNTIL - 5). We can further apply Law WHEN - 5 to
eliminate the iterative triggering of event guards. 	
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Theorem 5. The parallel composition P‖Q can be reduced into normal form,
if P and Q are in the normal form.

Proof. We need to analyze different situations in terms of the structure of P and
Q. By Law WHEN - 7, UNTIL - 7, UNTIL - 8, we can convert the parallel into
a sequential one. The sequential statement can be transformed into normal form
by Theorem 4. 	


Theorem 6. The repetition statement P ∗ can be reduced to normal form if P
is in the normal form.

Proof. We firstly show that for all natural numbers n, Pn can be reduced to
normal form if P is in normal form. The proposition can be proved by mathe-
matical induction on natural numbers n. Obviously, it holds when n is equal to
0. Assume that Pn can be reduced into normal form. According to Theorem 4
and Pn+1 = Pn;P , Pn+1 can be reduced to normal form. Thereby Pn holds for
all natural numbers. Thus P ∗ can be reduced to normal form. 	


Theorem 7. All the statements can be reduced to normal form.

Proof. From Theorem 2, 3, 4, 5, 6. 	


5 Conclusion and Future Work

In this paper, we presented an imperative-style language framework for cyber-
physical system modeling. A set of algebraic laws were presented, which char-
acterized the semantics of language. The algebraic laws could be used to reduce
arbitrary programs to normal form. The iterative triggering of event guards in
the programs were removed in the transformation and the result normal form
exhibited clear alternate instantaneous behaviors and time-consuming ones. This
paper has illustrated one usage of algebraic laws, i.e., simplifying the program
texts and transforming all programs to a representation which exhibits clear
behaviors and is easy to prove the correctness.

The second usage of the algebraic laws is the decomposition. CPS can be
further divided into at least two parallel parts, namely, the physical plant and
digital controller. The algebraic laws can be used to decompose the high level
specification into several parts running in parallel which is closer to the imple-
mentation. The controller decomposed from the high level specification could
serve as the specification for further development. To facilitate the decomposi-
tion process, more derived laws are needed. We will investigate this part in the
future.

The algebraic laws can be used to characterize the semantics of the language
but the soundness of the algebraic laws has not been ensured. To enhance the
reliability of our approach, we are planing to explore the denotational semantics
of the language and prove the correctness of the algebraic laws with respect to
the denotational semantics.
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Appendix

(der - 1) Let P = IF(�i∈I{bi → ((x := vi‖!Ei);Pi)})
and Q = IF(�j∈J{cj → ((y := fj‖!Sj);Qi)}),
then P‖Q = IF(�i∈I,j∈J{bi ∧ cj → (((x, y) := (vi, fj)‖!Ei ∪ Sj); (Pi‖Qj))}).
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Proof. As the Boolean conditions partition true, we can use the instantaneous
laws to prove the derived law.

P‖Q

= IF(�i∈I{bi→(((x :=vi‖!Ei);Pi)‖Q)})
(by Law instan - 6)

= IF(�i∈I,j∈J{bi∧cj→(((x,y) :=(vi,fj)‖!Ei ∪ Sj);(Pi‖Qj))}).
(by comm of ‖, Law instan - 6, instan - 7, instan - 9, instan - 2)

	


(der - 2) Let P = IF(�i∈I{bi → x := vi‖!Ei;Pi})
and Q = EQ UNTIL g;Q′

then P‖Q = IF(�i∈I{bi → ((x := vi‖!Ei); (Pi‖Q))}).

Proof. We firstly convert conditional statement to await statement and then
apply the corresponding expansion laws to eliminate the parallel structure. The
proof proceeds as follows.

P‖Q

= WHEN(�i∈I{bi • ε&((x := vi‖!Ei);Pi)})‖Q
(by Law WHEN - 8)

= EQ UNTIL (g +
∑
i∈I

bi•ε);

WHEN

(
�i∈I {bi•ε&(((x := vi‖!Ei);Pi)‖Q)} � g&(P‖Q′)

� �i∈I{bi•ε · g&(((x := vi‖!Ei);Pi)‖Q′)}

)
(by Law UNTIL - 8)

= WHEN(�i∈I{bi•ε&(((x := vi‖!Ei);Pi)‖Q)})
(by + - ε zero, Law UNTIL - 3)

= IF(�i∈I{bi → ((x := vi‖!Ei); (Pi‖Q))}).
(by Law WHEN - 8)
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