
 

D.-S. Huang et al. (Eds.): ICIC 2013, CCIS 375, pp. 7–12, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Fast Wavelet Transform  
Based on Spiking Neural Network for Visual Images 

Zhenmin Zhang, Qingxiang Wu, Zhiqiang Zhuo,  
Xiaowei Wang, and Liuping Huang 

College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China 
qxwu@fjnu.edu.cn, min1011@126.com 

Abstract. The functionalities of spiking neurons can be applied to deal with 
biological stimuli and explain complicated intelligent behaviors of the brain. 
Wavelet transform is a powerful time-frequency analysis tool that can 
efficiently compress image and extract image features. In this article, a spiking 
neural network combined with the ON/OFF neuron arrays associated with the 
human visual system is proposed to perform the fast wavelet transform for 
visual images. The simulation results show that the spiking neural network can 
preserve the key features of visual images very well. 
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1 Introduction 

Hodgkin-Huxley Spiking Neuron Model was proposed in 1952 [1]. But if this model 
is applied to a large scale network, the implementation will encounter a very high 
computational complexity. Therefore, the simplified conductance-based integrate-
and-fire model will be used for each neuron in Spiking Neuron Networks (SNNs) [2]. 
In the human visual system, there are various receptive fields from simple cells in the 
striate cortex to those of the retina and lateral geniculate nucleus [3-5]. The visual 
images are transferred among these neurons in the form of spiking trains through the 
ON or OFF pathways [6-7]. It is assumed that each neuron receives spike trains 
through excitatory synapse for ON neurons and through inhibitory synapse for the 
OFF neurons [8]. Different ON/OFF pathways are used to construct the specific 
network in a biological manner. On the other hand, wavelet transform can efficiently 
extract the key features of images [9-11]. In this paper, a SNN is proposed to mimic 
behaviors of spiking neurons in the human visual system for wavelet transform and 
extract the main features of visual images. 

2 Spiking Neural Network Model for Fast Wavelet Transform 

2.1 Fast Wavelet Transform 

Mallat proposed fast wavelet transform (FWT) in 1987[12, 13]. The flow chart of 
two-dimensional FWT is shown in Fig. 1. 
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Fig. 1. Achieved 2D-FWT through the application of filter bank and down-sampling 

As shown in Fig. 1, the input signal ( , )f m n  is passed through different filters 

0 ( , )h m n and 
1( , )h m n  and down-sampled respectively and the four signals ultimately 

obtained are approximate coefficient wA, horizontal detail wH, vertical detail wV and 
diagonal detail wD of wavelet transform. 

2.2 Spiking Neural Network Model for Fast Wavelet Transform 

Based on the Mallat algorithm and ON/OFF pathways mechanism in the visual 
system [8, 14, 15], an integrate-and-fire SNN model is proposed as shown in Fig. 2. 

The dimension of the input neuron array is M×N. Each pixel of the image 
corresponds to a receptor. Assume that Gm,n(t) represent the gray scale of an image 
pixel and each photonic receptor transfers the pixel brightness to a synapse current 
Im,n(t) [16-18]. The Im,n(t) and the neuron potential , ( )m nv t can be represented as 

follows:  
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where m=1,…,M and n=1,…,N, α, τ are constants, lg is the membrane conductance, 

El is the reverse potential, c represents the membrane capacitance and I0 is 
background noise. If the membrane potential passes threshold vth, then the neuron 
generates a spike. Let Sm,n(t) represent the spike train generated by the neuron such as 
that: 
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Fig. 2. Spiking neural network for fast wavelet transform 

The first layer of the intermediate neuron array is composed of three M×(N+1) 
neuron arrays as shown in Fig. 2. First two are the ON neuron arrays 1ON1(p, q), 
1ON2(p, q) and the third is the OFF neuron array 1OFF(p, q), where p=1, …, M and 
q=1, …, N+1. The convolutions of FWT are corresponding to the accumulation of 
different neural arrays. Assume the spike trains are transferred to the ON/OFF neuron 
arrays through excitatory synapses 

1 1( , )ON p qW and 
1 2( , )ON p qW  and inhibitory 

synapse
1 ( , )OFF p qW . The synapse strength distribution can be set as follows. 

W1ONi(p,k)=aONf (p,q),        W1OFF(p,q)=aOFFf (p,q)
 
 (4)

where i={1,2},1 , 1p M q N≤ ≤ ≤ ≤ . if i=1, k=q, else, k=q+1. aON=1/√2, aOFF=-1/√2. 

The synapse currents 1 1( , ) ( )ON p qI t , and 1 ( , ) ( )OFF p qI t  are governed by the 

current constraint equation: 
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where { , }ON OFFσ∈ . Sσ(p,q)(t) represent a spike train. The neuron potential in the 

ON/OFF array is governed by the potential constraint equation.  
The intermediate second layer of the neuron array is composed of two M×(N+1) 

neuron arrays 2ON(p,q) and 2OFF(p,q). Each neuron receives spike trains through 
excitatory synapse 2 ( , )ON p qW  and inhibitory synapse 2 ( , )OFF p qW , they are set as: 
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where 1 , 1 1p M q N≤ ≤ ≤ ≤ + .

  

The synapse current and the neuron potential in the 

ON/OFF array are still governed by the current and potential constraint equation. 
The third layer of the intermediate array is still composed of two M×(N+1) neuron 

arrays. Neurons in these arrays are labeled with 3CN1*(p, q) and 3CN2*(p, q). The 
synapses strength distribution can be calculated by the following expressions. 

  1ON1( , ) 1ON2( , )3CN1 ( , ) p q p qp q
W W W∗ = + ,     2ON( , ) 2OFF( , )3CN2 ( , ) p q p qp q

W W W∗ = −   (7) 

The synapse currents are set as the following equations: 
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where 1β , 2β is a constant. 

After the accumulation of signals, only the neurons of the even-numbered columns 
of the 3CN1 and 3CN2 neuron layer generate spikes, while the neurons of the odd-
numbered columns do not fire. Then two new neuron arrays are obtained which are 
labeled with 3CN1* and 3CN2*. Synapse strength distribution can be set as follow.  

 3CN 3CN 2i( p ,q ) i ( p , k )
W W ∗=  (10) 

where i={1,2}, 1, 2, , / 2k N= ⋅ ⋅ ⋅ , 1 , 1 / 2p M q N≤ ≤ ≤ ≤ .

 Thereafter, the remaining synapse strength distribution of the network can be set in 
a similar iteration and down-sampling manner, and eventually we will obtain four 
neuron array OUT1, OUT2, OUT3 and OUT4 as the bottom layer and the firing rate 
for these layers is calculated by the following expression: 
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where j={1,2,3,4}, SOUT{j}(m,n)(t) represent spike train generated by the output array. 
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3 Simulation Results 

This network model is simulated by using the Euler method with a time step of 0.1 ms 
by Matlab. The following parameters were used in the experiments corresponding to 
biological neurons. vth = -60 mv. El= -70 mv. gl =1.0 μs/mm2. c=8 nF/mm2. τ = 16ms. 
T=400ms. α=0.02. β1=4.3. β2=5.1. I0=7µA. These parameters can be adjusted to get a 
good quality output image. 

The Lena image (512×512) is used to test the network model. Since the image 
exceeds the Matlab predetermined matrix dimension, therefore the image has been 
divided into 32×32 blocks and each block contains 16×16 pixels. Fig. 3(a)-(d) show 
the four coefficients of the wavelet transform obtained by Mallat method. Fig. 3(e)-
(h) display the similar results obtained by SNN. In Fig. 3, the dimensions of all of the 
images are 8×8 and the resolution of these results is a quarter of the original image. 

 

Fig. 3. Wavelet transform by Mallat method (a-d) and by SNN (e-h) of Lena 

It can be seen that, although the visual image signals pass through a complex 
spiking neural network and lost a lot of details, but ultimately still retain all the main 
information and achieve the purpose of the feature extraction. 

4 Discussion 

In this paper, we propose an integrate-and-fire spiking neuron network combining 
visual ON/OFF neuron pathways and synapse current mechanism to extract features 
from a visual image. In the process of building the model, the accumulation between 
different neuron arrays are used to perform the convolutions of FWT, while the firing 
neurons is selected instead of the down-sampling algorithm. The simulation results 
show that the SNN is able to perform FWT. The key information can be obtained 
when the visual image signals pass through a complex spiking neural network. 
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