Latent Heat of a Traffic Model

Hans Weber and Reinhard Mahnke

Abstract We have studied the optimal velocity model (Bando et al., Jpn J Indust
Appl Math 11:203, 1994; Phys Rev E 51:1035, 1995; J Phys I Fr 5:1389, 1995)
for highway traffic. On a microscopic level, traffic flow is described by Bando’s
optimal velocity model in terms of accelerating and decelerating forces. We define
an intrinsic energy of the model. We find a latent heat when the system undergoes
a phase transition from single phase traffic (free flow) to a phase that contains two
different, a dense and a dilute phase (congested or stop—and—go flow). Here we
report on properties of the latent heat.

1 Introduction

We have studied a model for single lane highway traffic, the so called Bando
Optimal Velocity Model (OVM) [1,2]. In the model a vehicle wants always to drive
with its optimal velocity with respect to the distance to the vehicle ahead, the so
called headway distance. In the model no overtaking is allowed. The model consists
of a set of coupled differential equations one for each vehicle. We integrate out the
equations of motion of the OVM by a Runge Kutta 4th order numerical method.
The phase diagram of the OVM consists of two phases. One is a high density
phase where vehicles have a low velocity (congestion) and the other phase is a low
density phase where vehicles run at nearly maximum velocity (free flow). A system
can end up in one of these two phases in the entire system or it can end up in a mixed
phase state. In the mixed phase state there will be two phase boundaries. The phase
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Fig. 1 Vehicles marked by ‘Ax/,\ -
filled circles driving on a \¢ o 00 5\
closed loop. The arrows [ ]

indicate the direction and
magnitude of the velocity. Ax
is the headway distance

boundaries are either at the head of the queue where vehicles leave the congested
phase or at the tail where vehicles break and enter the queue (congested phase). If
there are too few vehicles in the system a high density phase will not form and all
vehicles will be in the low density phase. The OVM undergoes a dynamic phase
transition.

Within the framework of the OVM an energy E of the model can be defined [3]
and from the energy we can calculate a latent heat E,, for the system of cars going
from a phase of low density to one with a high density.

2 The Bando Optimal Velocity Model

The Bando OVM is a deterministic model for traffic flow. It consists of a one-
dimensional circular road (single lane) with periodic boundary conditions, see
Fig. 1.

The set of differential equations making up the Bando OVM dynamics are:

dimension dimensionless
d 1 d
d_tvi = - (Uopt(Axi) - v,-) d_tui = (Mopt(Ayi) - yi) (Ta)
d d 1
—X; = — Vi = Ui 1b
dtx v dty bu (1b)
(Ax)? (Ay)?
Vopr (Ax) = Umaxm Ugpt (Ay) = T+ (A2 (o)
D
b= (1d)
Umaxf

The set of three equations to the right are the dimensionless version of the equations
to the left. The velocity of the car i is v; and its position is x;. The optimal velocity
function is v,y (Ax). The distance to the vehicle in front, the headway distance,
is denoted by Ax; = x;41 — x; (bumper-to-bumper distance) and ¢ = N/L is
the homogeneous density, where N is the number vehicles and L is the length of
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the road. Control parameters are maximal velocity of a vehicle v,,,, an interaction
distance D and a characteristic time t. These three control parameters can be
combined to a single parameter b in the dimensionless version.

Following [3] the acceleration of a vehicle cars can be split into two contributions

d
m—v; = acc(vi) + Fdec(Axi)

dt
where
Faee) = 2 W = v1) 2 0 (2a)
T
Fdec(Axi) = ﬂ (Uopr(A-xi) - vmax) € [_Umaxm/fv O] <0 (2b)
T

Adding together Egs. (2a) and (2b) recovers Eq. (1a) from above

d 1
EU,‘ = ; (ngt(A.X,') — U,') .

The decelerating force Eq. (2b) can be written as (using Eq. (1¢))

_ m (Ax)?
Fec(Ax;) = Umax? (m - 1) < 0. 3)

The decelerating force will always be less then zero but approach zero at infinite
head away distance Ax and starting at —v,,,,// at zero distance.

A potential energy V' for the system of N vehicles can be defined as V' =
vazl ¢(Ax;) where ¢ (Ax;) is the interaction potential of the i-th car with the
car (i + 1) ahead, which is given by (Note Fy..(Ax;) # —aV/dx; is a violation of
Newton’s 3rd law)

0P (xit1 —x;)  dp(Ax;)

Fdec(Axi) = - 8x,~ = dA)C,‘ . 4

Integrating this equation gives

Dm[n Ax
¢(Ax) = UVWT |:5 — arctan (3)} 5)

where the integrating constant is chosen such that ¢ (co0) = 0
The time derivative of the potential I becomes

av
— = Z(UH'I — Vi) Faec(Axi) (6)

i=1
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2
The time derivative for the kinetic energy 7' = Y/ | oL is

d mv? d
ETZ = Uimavi =V (Facc(vi) + Fdec(Axi)) . @)
The time derivative of the total energy £ = T + V and the energy flux @ obey
the following balance equation

dE +P=0 ®)
dt N
where
N
® ==Y [ Face(0i) + Vi1 Faee(AX;)] ©)

i=1

is the energy flux. It includes both input (from engine) and output (friction) of
energy. Energy is not conserved but the driven system will reach a stationary state
as time goes on.

3 Bando OVM Numerical Results

The system is started in a configuration close to the homogeneous state and as time
goes on in the simulation the system ends up in one of two possible stationary states.

It can end up in a homogeneous flow with all vehicles traveling at the same
headway distance. This solution is the fixed point Ax; = AXpom, Vi = Vopr (AXpom)
and all vehicles travel with the same velocity. This would give the dashed line in
Fig.2.

The other possibility is that the system reaches a limit cycle. In this solution there
is one congested part and one free flow part in the system. Vehicles leave at a steady
rate the head of the queue to enter the free flow regime and after a while they will
reach the tail of the queue and enter the slowly moving regime. This would give
the full line in Fig. 2. Note that there is only one queue in the stationary limit cycle.
If there are more queues the system is still evolving and is not stationary. In the
leftmost figure in Fig. 3 the reduction of the number of queues can clearly be seen
as steps in the energy E as time increases.

Integrating out the equations (Bando OVM equation (1a—1d)) the energy of the
system can be calculated. As the system evolves from its initial configuration the
number of queues will be reduced till the system reaches the limit solution (# — 00).
After that the energy E of the system will remain constant. In the leftmost Fig. 3 the
evolution of the energy to a constant value can be seen clearly.
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Fig. 2 Solution for p = 0.0303m™! solid circle. Solution for p = 0.0606 m~! open circle, but
this splits into a limit cycle
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Fig. 3 In the left figure the solid line (larger density p = 0.0606 m—!) reaches the limit cycle
over a series of smaller queues till finally only one queue is present. The dashed line small density
p = 0.0303 m~! reaches the fixed point a homogeneous system. In the right figure the energy as
a function of the density of cars. The two joining points of the curves define the latent heat to go
from the dense queued state to the free flow

For each particular combination of control parameters N, L and b = —2 — a

calculation is made. In the rightmost Fig.3 one such result is shown combining
several runs. In this figure there are two curves shown. Where the curves are on
top of each other the system is in a homogeneous limit state. Where the two curves
are separated the system is in the limit cycle. The difference in energy between the
two joining positions of the curves is the energy as the system evolves from a dense
homogeneous system to a dilute homogeneous system via a two phase regime. This
energy difference represents a latent heat, here denoted by E,,.

In the leftmost Fig. 4 the latent heat E,,, is presented as a function of the control
parameter b in Eq. (1d). The shape of the curve suggests an analysis according to a
simple power law:

Egop = A(be — b)". (10)

where A is a constant and b, is the value for b that gives a zero latent heat. In
the rightmost Fig. 4 the result according to Eq. (10) is shown. As is apparent from
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Fig. 4 In the left figure the latent energy is shown as a function of the control parameter b. In the
right figure the same data as in the left figure is analyzed according to the scaling relation

the figure the power law seems to be fulfilled quit well. The value arrived for
a = 0.4994. The value used for b, = 1.29745. The scaling is rather sensitive
to small changes to b, as the data will not join a straight line for small b, — b.

4 Conclusions

We have shown how ideas from thermodynamics can be applied to such a many—
particle system as traffic flow, based on a microscopic (car—following) description,
in analogy to equilibrium physical systems like super saturated vapor forming liquid
droplets.

We have calculated the latent heat of the model as the system changes from a low
density phase to the a high density phase. We found the there is a scaling behavior in
the latent heat for small b, — b. Results found for the scaling exponent are « = 0.50
and b, = 1.297.
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