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Abstract We study the stationary properties of a microscopic traffic flow model
related to a continuous time mass transport process. It is a stochastic collision-free
mapping of a classical deterministic first order car-following model calibrated by
the targeted speed function and the driver reaction time. The stationary states of the
model are analytically treated for vanishing reaction time. Some approximations are
calculated, assuming a product form of the invariant measure. When the reaction
time is strictly positive, the process is studied by simulation. A relation between
the parameters and the propagation of kinematic stop-and-go waves is identified
as identical to the well-known stability condition of the car-following model.
The results underline a negative impact of the driver reaction time parameter on
the homogeneity of the flow in stationary state.
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1 Introduction

Stochastic transport processes, extracted from the systems of interacting particles,
can be used to model traffic flow [1]. The approach represents an alternative to the
modelling of traffic flow by systems of differential equations and is an extension
in continuous time of cellular automata models. Markovian jump processes such
as exclusion [2, 3], zero-range [2, 4, 5], random average [6, 7] or misanthrope [8]
processes can describe microscopic traffic flows in the totally asymmetric case and
for specific interpretations of the model parameters.

The totally asymmetric simple exclusion process (TASEP) is a basic model that
has been studied extensively and is often used as a theoretical tool. The TASEP
with nearest-vehicle interaction (which can be mapped to a zero-range process
[5, 9, 10]) as well as with Arrhenius interaction [11] are employed to model traffic
flows. The zero-range process is used to model the evolution of platoons in [12].
Recently, the misanthrope process is applied to describe microscopic multi-lane
traffic flow [13] or mesoscopic ones [14]. These approaches, based on particle
systems, are defined on a discrete space. The totally asymmetric random average
process (TARAP), studied in [15], allows the microscopic modelling of traffic flows
in continuous space.

On the other hand, microscopic traffic models based on ordinary or delayed
differential systems are developed since the 1950s. The approach assumes inter-
actions of the vehicles with their predecessors. Fundamental parameters, initially
estimated from statistical observations, of the targeted speed as a function of the
distance gap and the driver reaction time are sufficient to reproduce reasonably
the driver’s behavior. Models such as the first order one by Newell [16] or the
second order Optimal Velocity model [17] are well understood. Notably, conditions
of linear stability of homogeneous configurations are known. The first one imposes
the derivative of the targeted speed function to be strictly positive, the second one a
derivative strictly positive and strictly less than the inverse of two times the reaction
time [17].

A new model combining the two approaches is proposed. The model is a
stochastic mass transport process mapping a discretisation scheme of the Newell
car-following model. The stochastic process we use is close to the TARAP. It models
the evolution of vehicles in continuous time on a continuous space.

The paper is organised as follows. In a first part, we study the basic model without
reaction time. The model behaviour in the stationary state is described analytically
with the help of results taken from the literature. In a second part, we define
and study the mass transport model including a strictly positive driver reaction
time parameter. The stationary state of the process is investigated by simulations.
Its stability properties are underlined according to the values of the parameters. We
conclude by comparing the properties of the model to empirical observations and
classical traffic theories.
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2 The Basic Model with No Reaction Time

Let us start by mapping the TARAP to the Newell first order car-following model
with no delay.

2.1 Model Definition

The model represents the evolution in continuous time of the distance gaps of vehi-
cles on a one-way road. Since the vehicle order remains the same, this representation
is an exact mapping of a line of vehicles [9,15]. When a vehicle moves, a part of its
distance gap is transmitted to the following vehicle. This representation allows the
use of zero-range processes in discrete space case or random average processes in
the continuous space case that is studied here.

� D .�i /i 2 E D �
R

C�Z
denotes the process of the vehicles distance gaps on an

infinite lane. The jump size and jump rate of the process are defined by a mapping
of the Newell first order car-following model: dxi

dt
.t/ D V

�
�i .t/

�
where xi .t/ is the

position of the vehicle i at the instant t . �i D xiC1 � xi � `, with the vehicle length
`, is the distance gap of the vehicle i that depends on the position of its predecessor
i C 1. V W � 7! minfVmax; �=T g is the positive non-decreasing and piecewise
linear targeted speed function. Vmax > 0 is the maximal desired speed in the free
traffic state and T > 0 is the targeted time gap for a vehicle in the pursuit case.
For a vehicle i the explicit eulerian discretisation scheme of its motion with time
step ıt > 0 is

xi .t C ıt/ D xi .t/ C ıt � V
�
�i .t/

�

with the position x and the distance gap � to the predecessor. In this discrete time
model the jump size of vehicle i is ıtV .�i/ and the jump time is ıt . One may
consider a stochastic model with a jump rate equal to 1=ıt (and the mean jump
time ıt) with jump size ıtV .�i /. For this model, the generator is

L f .�/ D
X

i2If

1

ıt
Œf .�i / � f .�/�1f�i >ıt V .�i /g (1)

with �i D .�i
j /j such that �i

j D �j if j 6D i and j 6D i � 1, �i
i D �i �

ıtV .�i/ and �i
i�1 D �i�1 C ıtV .�i/. The generator is an operator of a function

f depending on the finite set of coordinates If .
The Chapman-Kolmogorov equation allows to describe the marginal first order

momentum of the process. As expected, one obtains the Newell car-following form
applied to the distance gap (.:/0 denotes the time derivative):

�
E.�i .t//

�0 D L E.�i .t// D E
�
V.�iC1.t// � V.�i.t//

�
:
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Vehicles trajectories are independent for the free case where V.�/ D Vmax

is constant. The model is a totally asymmetric random average process [7] when
V.�/ D �=T is a non-decreasing linear function. The generator of a TARAP is

L f .�/ D
X

i2If

�

Z
p.du/ Œf .�i .u// � f .�/� 1f�i >0g (2)

with �i D .�i
j /j such that �i

j D �j if j 6D i and j 6D i � 1, �i
i .u/ D u�i and

�i
i�1.u/ D �i�1 C .1 � u/�i . p.du/ is the distribution on Œ0; 1� of the distance gap

fraction jumping, concentrated on 1 � ıt=T in the traffic model, and � > 0 is the
constant jump rate corresponding to the inverse of the time step ıt .

The vehicles jump successively and the jump times of each vehicle are contin-
uous. More precisely, the jump time of a vehicle is an homogeneous poissonian
process. The jump size does not exceeded the distance gap.

The quantity ıt > 0 is not a physical parameter but a tool of the modelling that
should be close to 0 (at least ıt � T ). In the following, one focuses on the limit
case where ıt ! 0 and targeted speed function V.�/ D �=T .

2.2 Stationary State Description

When the jump size remains constant (free case), vehicle trajectories are indepen-
dent. The stationary distribution of this process is a product form and the invariant
marginal distributions are independent and identical distributed and exponential.
This is not the case for the TARAP. In contrast to the zero-range process whose
invariant distribution is a product form [2, 4, 5], the invariant distribution of the
TARAP is not known for any p distribution. However, explicit formulas for the first
and second moments of the marginal invariant distribution have been derived [7].

First and Second Moment of the Marginal Invariant Distribution

If ˛ 2 E is the space-homogeneous initial distribution of the process, i.e. P.�0 D
˛/ D 1 with the initial system state �0, such that E˛i D D for all i and

P
i jE˛0˛i �

D2j < 1, the first and second order moment of the marginal distribution satisfy [7]:

E�i D D 8i8t and
lim

t!1E�i �j D D2 8i 6D j

lim
t!1E�2

i D r

s
D2 8i

with r D R
.1�x/p.x/dx and s D R

x.1�x/p.x/dx. The first moment is the mean
distance gap that remains constant since the system is conservative. The covariance
is nil, attesting that the invariant distribution of the process may have a product form.



Stationary State Properties of a Microscopic Traffic Flow Model Mixing. . . 39

In the car-following model given by generator (1) with V.�/ D �=T , r D
ıt=T , s D ıt=T .1 � ıt=T / and

lim
t!1V�i D lim

t!1E�2
i � .E�i /

2 D D2 ıt

T � ıt
8i: (3)

The variability of the vehicles distance gap tends towards 0 in the stationary state
(i.e. the flow is homogeneous) when ıt ! 0. This aspect is observed in the
Newell car-following model with differential equation. It is well-known that the
homogeneous state of this model is a stable equilibrium state when V is non-
decreasing (see for instance [14]).

Invariant Distribution

The stationary measure of the process, denoted � W E 7! Œ0; 1�, satisfies the invariant
equation

Z

E

L f .�/ �.d�/ D 0 : (4)

If one assumes that the stationary measure � admits a distribution (�.d�/ D
�.�/

Q
j d�j ), the stationary equation is

R
E

L f .�/ �.�/
Q

j d�j D 0.
For the TARAP given by the generator (2), one obtains after substituting for all

i 2 If , �i�1 by �i�1 � .1 � u/�i and �i by �i =u:

Z

E
f .�/

Y

j

d�j

(
X

i2If

Z 1

�
1C �i�1

�i

�
�1 p.u/

du

u
�

�

�
: : : ; �i�2; �i�1 � 1 � u

u
�i ;

�i

u
; �iC1; : : :

� )

D
Z

E
f .�/

Y

j

d�j

n X

i2If

�.�/
o
:

This equality is satisfied for any function f depending on If � Z with card.If / <

1 if for all � 2 E the following equality using x D 1�u
u �i holds:

X

i2If

Z �i�1

0

p

�
�i

x C �i

�
dx

x C �i

�
�
: : : ; �i�2; �i�1 � x; �i C x; �iC1; : : :

� D X

i2If

�.�/:

Assuming that the invariant distribution of the process has product form of homoge-
neous in space marginal distribution Q� W RC 7! Œ0; 1� such that

R
x Q�.x/ dx D D,

�.�/ D Q
i Q�.�i /, one obtains the equality (cf. [18] with p uniform):

X

i2If

Z �i�1

0

p

�
�i

x C �i

�
dx

x C �i

Q� .�i�1 � x/ Q� .�i C x/

Q�.�i�1/ Q�.�i/
D card.If /:
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This equality holds when one has for all i 2 If :

Z �i�1

0

p

�
�i

x C �i

�
dx

x C �i

Q� .�i�1 � x/ Q� .�i C x/

Q�.�i�1/ Q�.�i /
D 1: (5)

In the case of the car-following model (1), this equation does not admit explicit
solution for the marginal Q� . In the next paragraph we show that the process has an
invariant product form distribution with gamma marginal solution for particular beta
distributions of p.

Beta Distribution for p

We assume that p has a beta distribution on Œ0; 1� with parameters m > 0 and n > 0:

p.u/ D 1

ˇ.m; n/
um�1.1 � u/n�11Œ0;1�.u/

with ˇ.m; n/ D R 1

0
um�1.1 � u/n�1du.

To keep the meaning of the traffic model, one assumes that the expected value
of p is equal to 1�ıt=T . One denotes � D 1

K
ıt
T

�
1 � ıt

T

�
with K > 1 the variance of

the p distribution. One obtains m D .1 � ıt=T / .K � 1/ and n D ıt=T .K � 1/.
The beta distribution tends towards a deterministic one concentrated on 1 � ıt=T

when K tends towards infinity. It becomes bi-modal concentrated on f0; 1g when K

tends towards 1.
If we refer to formulas given in [7], the variability of the distance gap in stationary

state for a beta distribution of p in stationary state is:

lim
t!1V�i D D2 T C ıt.K � 1/

.T � ıt/ .K � 1/
8i: (6)

The variance tends towards infinity for ıt ! T or K ! 1. The distance gap
variance tends towards D2=.K � 1/ when ıt ! 0 and towards D2ıt=.T � ıt/

when K ! 1. Therefore, the variance tends towards 0 for ıt ! 0 and K ! 1
(that corresponds to the deterministic case of p described previously).

When we assume a beta distribution for p and a measure product form with
marginal gamma distribution with parameter � and 	 :

Q�.x/ D x��1 exp.�x=	/


 .�/	�
1Œ0;1/.x/

with 
 .�/ D R 1
0

u��1e�udu, the condition of invariance (5) leads to

R �i�1
0

1
ˇ.m;n/

�
�i

xC�i

�m�1 �
x

xC�i

�n�1
dx

xC�i

�
.�i�1 � x/ .�i C x/

	��1 D �
�i�1�i

	��1
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for all i 2 If By substituting x by u � �i�1, one obtains after simplifications for all
i 2 If :

�
m��
i �n

i�1

ˇ.m;n/

R 1

0
.�i C �i�1u/��m�n un�1.1 � u/��1du D 1: (7)

If one considers the gamma distribution with � D m C n D K � 1 (and 	 D .K �
1/=D to be sure that the expected value is equal to D), the equation of invariance is:

�
�i�1

�i

�n
ˇ.�; n/

ˇ.m; n/
D

�
�i�1

�i

�n
.
 .�//2


 .� C n/
 .� � n/
D 1 : (8)

This equation is satisfied for any system state � 2 E in the limit case n ! 0. This
limit is reached when ıt ! 0 or if K ! 1. Yet, the invariant marginal gamma
distribution depends on K but not on ıt . For a given K > 1, the gamma distribution
is the exact asymptotic invariant marginal distribution for ıt ! 0. For given
ıt > 0 and K > 1, the product of gamma distributions is an approximation of the
invariant measure of the system. The variance of the gamma distribution is equal to
D2=.K � 1/ while the exact value given previously is D2 T Cıt.K�1/

.T �ıt/.K�1/
(cf. Eq. (6)).

For any value of ıt , the variability of the approximation is less that the exact one.
Some simulation experiments are undertaken to evaluate the precision of the

gamma product approximation. 100 vehicles with a length of 5 m on a ring of length
2 km are considered. The targeted speed function is exclusively the pursuit one
(i.e. Vmax D C1). The samples are obtained after a simulated time of 2 h which
is sufficient to reach the stationary state. The initial configurations are uniform.
The sample size for each value of the parameters is equal to 5 � 105 observations.

Figure 1 shows the distributions obtained. The lines represent the empirical
distance gap distributions for various values of the parameter ıt (varying from
1 to 0:05 s). The dotted lines are the asymptotic distributions 
 .K � 1; D=.K � 1//.
Different values for K are compared (2, 10 and 50). The empirical distributions tend
towards the asymptotic ones when ıt ! 0 in all cases. For a given value of ıt , the
differences between the exact and the gamma distributions increase when K tends
towards infinity.

The form of the distributions varies significantly in the limit case where ıt tends
towards 0 with the value of K . The form is exponential when K is less than 2

and monomial otherwise. The exponential case corresponds to the formation of
platoon in stationary state in the system, while the flow is homogeneous when the
distribution is monomial. On the Fig. 2, vehicles trajectories on a ring, from uniform
initial conditions, are plotted for two values of the parameter K . The trajectories are
perturbated and vehicles platooning occurs for K close to 1 (Fig. 2 at left). When K

is high, p variability is low and the flow is homogeneous (Fig. 2 at right).
The formation of platoons observed when K tends towards 1 is due to the

increase of noise in the system through the distribution p. For the deterministic
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Fig. 1 Comparison of the asymptotic gamma marginal distribution with simulation data on a ring
(T D 1:2 s, Vmax D C1 and D D 15 m)
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Fig. 2 Trajectories of 50 vehicles evolving on a ring (ıt D 0:01 s, T D 1:2 s, Vmax D C1 and
D D 15 m)

p distribution, the flow is homogeneous for ıt small. In the next section, a model
including a reaction time produces kinematic waves at the limit case when ıt tends
towards 0 and for the deterministic p distribution.

3 The Model Including a Reaction Time

The proposed model is a stochastic mapping of the delayed Newell car-following
model. It is a stochastic mass transport process distinct from the TARAP.
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3.1 Model Definition

As previously, the model is defined from an explicit eulerian discretisation of the
differential equation with T r > 0: dxi

dt
.t/ D V

�
�i .t � T r/

�
. If a linear development

over the time is applied to the delayed distance gap to manipulate synchronous
variable, the discretisation scheme for the motion of the vehicle i :

xi .t C ıt/ D xi .t/ C ıt � V
�
�i .t/ � T r.viC1.t/ � vi .t//

�

with the position x, the distance gap � to the predecessor and the speed v which
is a new variable introduced in the system. Substituting the speed by the targeted
speed function, a mass transport process corresponding to this discretisation can be
characterised by the generator

L f .�/ D
X

i2If

1

ıt
Œf .�i / � f .�/�1f�i >ıt si g (9)

with si D V
�
�i � T r.V .�iC1/ � V.�i//

�
and �i D .�i

j /j such that �i
j D �j if

j 6D i and j 6D i � 1, �i
i D �i � ıt si and �i

i�1 D �i�1 C ıt si .

With this form, the model is not a random average process even if V is linear
since the jump size depends both on the distance gap and on the predecessor distance
gap. If V.�/ D �=T , one has the smallest sufficient condition on the time step
parameter ıt � T=.1 C T r=T /.

3.2 Stationary State Description

The stationary state of the model including a reaction time is obtained by simulation.
The simulation of this kind of stochastic process is easy and does not require to
define a discretisation scheme. Each vehicle has an exponential clock giving the time
of its next jump. The simulation is event driven by actualizing successively the
vehicle with minimum jump time.

From the simulation results, two types of stationary states for the system on
a ring are clearly identified for congested density levels, according to the value
of the reaction time. the fist is a homogeneous stationary state with monomial
and symmetric distributions of the vehicles distances gap. This state is observed
when the reaction time is zero or not too large. The second is a heterogeneous
stationary state with kinematic wave propagation and bi-modal distributions of
vehicles distance gaps which occurs for sufficiently large reaction times.

In Fig. 3, vehicle trajectories are shown for a uniform initial configuration.
The reaction time vanishes for the left system and the stationary state is homoge-
neous. For the right system the reaction time, equal to 1 s, is enough for convergence
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Fig. 3 Trajectories of 50 vehicles evolving on a ring (ıt D 0:01 s, T D 1:2 s and Vmax D C1)

towards a heterogeneous stationary state. The formation of kinematic stop-and-go
waves which propagate at constant speed can be observed. This phenomenon is
well-known in real traffic. At a given density, the vehicles mean speeds are similar
for the two stationary states although these states are different. The presence of
kinematic waves is not observed in the model without reaction time, even if it
produces locally vehicles platoons when the noise level is important.

Figure 4 presents the distribution of vehicle distance gaps and its mean and
standard deviation for different values of the parameters. In the left part of the
figure, distributions are obtained by simulations for different values of the time step
parameter ıt . One observes bi-modal distributions of the distance gap when ıt is
sufficiently close to 0. This reflects the presence of kinematic waves. At the center,
the mean and standard deviation of the distributions are plotted for different values
of the reaction time. A relation is observed, linking the reaction time and the targeted
pursuit time with the emergence and propagation of waves in the stationary state.
Various simulation experiments lead to the following condition for an homogeneous
system in stationary state: T > 2T r .

It is the same as the stability condition of the Newell delayed car-following model
[14, 17]. It underlines a negative impact of the driver reaction time parameter on
the homogeneity of the flow. To the right, one observes that the maximal speed
parameter Vmax induces a critical flow density threshold for kinematic waves to
emerge. It refers to free and congested traffic states. For densities less that the critical
density, vehicle speeds are close to the maximal value. Beyond the critical density
threshold, vehicle speeds are regulated, with a mean less than the maximal value,
and kinematic waves may emerge and propagate. Various simulation experiments
show that the critical density is close to 1=.VmaxT C `/ or equivalently for a given
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Fig. 4 Distributions in stationary state of the distance gap for different values of ıt (left) and
their mean and standard deviation for different values of, respectively, T r and Vmax. (ıt D 0:01 s,
T r D 1 s, Vmax D 25 m/s, T D 1:2 s and D D 15 m)

density with mean distance gap D, the critical maximal speed is D=T D 12:5 m/s
in the figure.

4 Conclusion

We have presented results for a stochastic mass transport process calibrated by
classical parameters of driver reaction time and targeted speed function, inspired
by the deterministic car-following theory. The model, defined in continuous time,
describes the evolution on a continuous space of the distances between vehicles
without any collision. Its form allows analytical investigation in particular cases and
simulations without requiring the use of a discretisation scheme.

When the reaction time vanishes, the introduction of randomness in the model
induces the formation of vehicle platoons in the stationary state. Analytically,
explicit approximations for the stationary distribution of the process are obtained.
When the reaction time parameter is strictly positive, simulations exhibit a critical
value beyond which kinematic stop-and-go waves propagate for congested densities
in the stationary state. A relation linking the model parameters with the formation
of waves is identified similar to the classical well-known stability conditions of car-
following models.

The results underline the role of the two fundamental parameters of driver
reaction time and targeted pursuit speed function. The reaction time, that is
recognized and measured in real experiments, is identified as a negative factor on
the homogeneity of the flow. Yet, it is known that the drivers are able to anticipate
in order to deflect to the reaction time. They may increase the stability of the flow,
but these aspects are not taken into account in the model.

Acknowledgements A. T. acknowledges support from VINCI/ParisTech Grant 8L1142
“Éco-Conception des ensembles bâtis et des infrastructures”.



46 S. Lassarre et al.

References

1. Schadschneider A, Chowdhury D, Nishinari K (2010) Stochastic Transport in Complex
Systems. From Molecules to Vehicles. Elsevier, Amsterdam

2. Spitzer F (1970) Adv. Math. 5:246–290
3. Liggett T M (1985) Interacting Particle Systems. Springer
4. Andjel E (1982) Ann. Prob. 10(3):525–547
5. Evans M R, Hanney T (2005) J. Phys. A38:R195–R240
6. Pierson H M (1978) Adv. Appl. Prob. 10(3):613–632
7. Roussignol M (1980) Ann. Inst. Henri Poincaré B16(2):101–108
8. Cocozza-Thivent C (1985) Z. Wahr. Verw. Gebiete 70:509–523
9. Evans M (2007) in Traffic and Granular Flow ’05. Schadschneider A, Pöschel T, Kühne R,

Schreckenberg M, Wolf D E (eds). Springer. 447–459
10. Tordeux A, Roussignol M, Lassarre S. (2010) Traffic and Granular Flow’09 Proceedings.

Springer.
11. Sopasakis A, Katsoulakis M (2006) SIAM 66(3):921–944
12. Kaupuzs J, Mahnke R, Harris R J (2005) Phys. Rev. E72(2):056125
13. Kanai M (2010) Phys. Rev. E82(6):066107
14. Tordeux A (2010) Ph.D. Thesis, Paris-Est University, Marne-la-Vallée, France
15. Zielen F, Schadschneider A (2003) J. Phys. A36(13):3709–3723
16. Newell G F (1961) Op. Res. 9(2):209–229
17. Bando M, Hasebe K (1995) Phys. Rev. E51(2):1035–1042
18. Krug J, Garcia J (2000) J. Stat. Phys. 99:31–55


	Stationary State Properties of a Microscopic Traffic Flow Model Mixing Stochastic Transport and Car-Following
	1 Introduction
	2 The Basic Model with No Reaction Time
	2.1 Model Definition
	2.2 Stationary State Description

	3 The Model Including a Reaction Time
	3.1 Model Definition
	3.2 Stationary State Description

	4 Conclusion
	References


