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Abstract We consider the continuous model of Kerner–Konhäuser for traffic flow
given by a second order PDE for the velocity and density. Assuming conservation
of cars, traveling waves solution of the PDE are reduced to a dynamical system in
the plane. We describe the bifurcations set of critical points and show that there is
a curve in the set of parameters consisting of Bogdanov–Takens bifurcation points.
In particular there exists Hopf, homoclinic and saddle node bifurcation curves. For
each Hopf point a one parameter family of limit cyles exists. Thus we prove the
existence of solitons solutions in the form of one bump traveling waves.

1 Introduction

Macroscopic traffic models are based on the analogy with a continuous one
dimensional flow. Conservation of number of cars leads to conservation of mass
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where �.t; x/ is density and V.t; x/ the average velocity of cars. In the kinetic
models the continuity equation is supplied with the law of motion given by the
Navier–Stokes equation
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where � is viscosity and p the local pressure, being proportional to the variance
(“temperature”) of the traffic �.x; t/, namely the average of the squared differences
of the individual cars and the average velocity. The “external forces” in the Kerner-
Konhäuser model are represented by driver’s tendency to acquire a safe velocity
Ve.�/ with a relaxation time � ,

X D �
Ve.�/ � V

�
:

When � D �0 and � D �0 are supposed constants, the equation of motion (2)
simplifies to
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We look for travelling wave solutions of (1) and (3), then the change of variables
� D x C Vgt transform (1) into the quadrature which can be immediately solved:

�.V C Vg/ D Qg: (4)

Here, the arbitrary constant Qq represents the local flux as measured by an observer
moving with the same velocity Vg as the travelling wave.

Following [5] introduce adimensional variables

z D �max�; v D V

Vmax
; vg D Vg

Vmax
; qg D Qg

�maxVmax
(5)

where �max and Vmax are some maximum reference values of the density depending
on the empirical law Ve.�/. Also let

ve.�/ D Ve.�/

Vmax
; �0 D �0

V 2
max

; � D Vmax

�0

; 	 D 1

�max�0�
: (6)

Here Ve.V / is obtained through Ve.�/ by means of (4). Substitution of (4) into the
equation of motion (3) yields dynamical system

dv

dz
D y;

dy

dz
D �qg

�
1 � �0

.v C vg/2

�
y � 	qg

�
ve.v/ � v

v C vg

�
: (7)
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In adimensional form, (4) becomes

�=�max D qg

v C vg

: (8)

Here and in what follows, we will take the parameter values �, 	 as given for
the model, and will analyze the dynamical behavior with respect to the parameters
vg , qg .

2 Fundamental Diagram

Dynamics of (7) depend on the explicit form of the constitutive relationship defined
by the fundamental diagram Ve.�/. A typical form of the curve Ve.�/ must meet the
following properties that we will state as hypotheses.

Hypothesis I. Ve.�/ is a monotone decreasing function defined for � � 0 and
Ve.�jam/ D 0 for some �jam > 0.
Hypothesis II. Ve.�/ is bounded from below.
Hypothesis III. lim�!0 Ve.�/ D Vf > 0 and lim�!0 �2V 0

e .�/ D 0.

Hypothesis I is explicitly adopted in [2]; �jam can be interpreted as jam density where
traffic is stuck. The condition V 0

e .�/ D o.�2/ in Hypothesis II allows for a plateau
in the graph of the curve Ve.�/ for small values of density; Vf is then the average
velocity in free traffic and can be determined by speed limits.

Historically, diverse fundamental diagrams have been considered. Either fit to
empirical data, or deduced from theoretical bases. Some examples are shown in
Fig. 1. Explicit formulas are:

1. Greenshields: V D Vmax.1 � �=�jam/.
2. Greenberg: V D Vmax ln.�jam=�/.
3. Newell: V D Vmax exp.���/.

4. Kerner–Konhäuser: V D Vmax

�
1

1Cexp.
�=�max�0:25

0:06 /
� 3:72 � 10�6

�
.

It can be verified that all except Newell’s fundmental diagram, satisfy Hypothesis
I, and only (3) and (4) satisfy hypothesis II. Kerner-Konhäuser’s can be considered
the most accurate fundamental diagram, since it was fitted from a large set of data
using double induction detectors. Kerner and Konhäuser [2] and [3] (Greenberg was
fitted from 18 data circa 1959). Although Hypothesis III seems reasonable, neither
of the fundamental diagrams (1)–(4) satisfy this condition. We argue that it can
be mathematically sustained since experimental data are available only for strictly
positive �; put it in another way, modern technologies such as GPS could be used
to get more accurate data for small densities. Thus one can take Kerner–Konhäuser
model as an empirical validated for � > ı where ı is some positive small density,
and modify it in such a way that Hypothesis III is true.
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Fig. 1 Fundamental diagrams of mean velocity V vs. density �. (a) Greenshields; (b) Greenberg;
(c) Newell; (d) Kerner–Konhäuser

Hypothesis II implies that lim�!1 Ve.�/ exists. This limit is zero for Newell’s
diagram and equals �3:72 � 10�6Vmax for Kerner–Konhäuser’s. Although � ! 1
does not make sense physically, it will be useful from a mathematical point of view
to allow this limit. This amounts to consider an arbitrary large value of �jam (as
Newell’s diagram). In fact, in (8) v ! �vg as � ! 1 and this corresponds to the
limit of an observer moving with the wave seeing it standing.

We denote by ve.v/ the expression ve.�/ when � is expressed through (8) as a
function of v (see 6).

The following properties of ve.v/ are readily obtained.

Lemma 1. Let Ve.�/ satisfy Hypothesis I, II and III. Then ve.v/ is a monotone
increasing function of v and: (1) limv!�vg ve.v/ exists; (2) limv!�vg v0

e.v/ D 0

and, (3) limv!1 ve.v/ D vf .

Proof. Since (4) can be written as

v C vg D qg

�=�max
(9)

it follows that �=�max is a decreasing function of v, and thus ve.v/ is an increasing
function of v, for v > �vg . If v ! �vg then � ! 1 but then lim ve.�/ exists; this
proves (1). Using the chain rule

v0
e.v/ D v0

e.�.v//�0.v/ D v0
e.�.v//

�
� qg=�max

.v C vg/2

�
D �v0

e.�/�2

qg�max

the last term tends to zero by Hypothesis III; this proves (2). Finally if v ! 1 then
� ! 0 but then ve.�/ ! 0. This completes the proof. ut

The above lemma shows that given “reasonable” fundamental diagram (namely
satisfying Hypothesis I–III) function ve.v/ is sigmoidal: within the interval
Œ�vg; 1
, ve.v/ approaches its limits as v ! �vg or 1, asymptotically flat.
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Fig. 2 Possible intersections ve.v/ D v leading to critical points of system (7). Only the graph
to the right of the vertical curve v D �vg must be considered. From left to right from top to
bottom, the number of critical points are: zero; one; three and two. A non–generic situation of
tangency at the inflection point is not shown

2.1 Critical Points

Critical points of system (7) are given by the equations y D 0 and ve.v/ D v. The
following results describes a generical situation.

Proposition 1. Let Ve.�/ satisfy Hypothesis I–III. Then there exists either 1, 2 or 3
critical points of system (7).

Proof. Since the graph of ve.v/ is sigmoidal, and the critical points are given by the
intersection of the graphs of ve.v/ and the straight line v D v the result follows. ut

Figure 2 shows several possibilities for the intersection of the curve ve.v/ D v,
with 0, 1, 2 or 3 critical points.

3 The Bogdanov–Takens Bifurcation

In this section we will show that the Kerner-Konhäuser ODE (7) undergoes a
Bogdanov-Takens (BT) bifurcation. The BT bifurcation occurs in a two parameter
dynamical system in the plane (see also it generalization to n-dimensions [1]) when
for some value of the parameter vector, the dynamical system has a critical point
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with a double non–semisimple eigenvalue and some non-degeneracy conditions are
satisfied. We state the conditions and its normal form according to Kuznetzov [4].

Theorem 1 (Bogdanov–Takens). Suppose that a planar system

Px D f .x; ˛/; x 2 R
2; ˛ 2 R

2; (10)

with smooth f , has at ˛ D 0 the equilibrium x D 0 with a double zero eigenvalue

�1;2.0/ D 0:

Assume that the following genericity conditions are satisfied

(BT.0) The Jacobian matrix A.0/ D fx.0; 0/ ¤ 0;
(BT.1) a20.0/ C b11.0/ ¤ 0;
(BT.2) b20.0/ ¤ 0;
(BT.3) The map

.x; ˛/ 7!
�

f .x; ˛/; tr

�
@f .x; ˛/

@x

�
; det

�
@f .x; ˛/

@x

��

is regular at the point .x; ˛/ D .0; 0/.
Then there exists smooth invertible transformations smoothly depending on
the parameters, a direction–preserving time reparametrization, and smooth
invertible parameters changes, which together reduce the system to

P�1 D �2 (11)

P�2 D ˇ1 C ˇ2�1 C �2
1 C s�1�2 C O.jj�jj3/ (12)

where s D signŒb20.0/.a20.0/ C b11.0//
 D ˙1.

Remark 1. The coefficients appearing in the hypotheses (BT.1), (BT.2) are defined
as follows: Let v0, v1 be generalized right eigenvectors of A0 D A.0/ and w0, w1

generalized left eigenvectors, such that A0v0 D 0, A0v1 D v0 and AT w1 D 0,
AT w0 D w1. Then by a linear change of coordinates x D y1v0 C y2v1 system (10)
can be expanded in a Taylor series as

Py1 D y2 C a00.˛/ C a10.˛/y1 C a01.˛/y2

C1

2
a20.˛/y2

1 C a11.˛/y1y2 C 1

2
a02.˛/y2

2 C P1.y; ˛/

Py2 D b00.˛/ C b10.˛/y1 C b01.˛/y2

C1

2
b20.˛/y2

1 C b11.˛/y1y2 C 1

2
b02.˛/y2

2 C P2.y; ˛/

where akl .˛/, P1;2.y; ˛/ are smooth functions of their arguments and

a00.0/ D a10.0/ D a01.0/ D b00.0/ D b10.0/ D b01.0/ D 0:
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Fig. 3 Bogdanov–Takens bifurcation

Remark 2. The normal form (12) is a universal unfolding, that is all nearby dynam-
ical systems satisfying the hypotheses of the theorem is topologically equivalent
to the normal form with the O.jj�jj3/ terms deleted. Figure 3 shows the different
scenarios depending in the parameter space ˇ1–ˇ2.

Lemma 2. Let Ve.�/ satisfy Hypothesis I–III. Suppose that for some values of the
parameters vg, qg the curves ve.v/ and v D v have a tangency at v D vc . Then
there exists �0 such that system (7) has a critical point with a double zero eigenvalue
and its linear part is not semisimple.

Proof. The linear part at vc is

A0 D
 

0 1

� qg	.v0

e.vc/�1/
vCvg

qg

�
1 � �0

.vcCvg/2

�
�

!

since the curves v D ve.v/, v D v have a tangency at v D vc then v0
e.vc/ D 1 and

A0 reduces to

A0 D
 

0 1

0 qg

�
1 � �0

.vcCvg/2

�
�

!



22 A. Carrillo et al.

choosing �0 D .vc C vg/2 reduces to

A0 D
�

0 1

0 0

�
(13)

ut
Theorem 2. Let Ve.�/ satisfy Hypothesis I–III. Suppose that for some values of
the parameters vg , qg the curves ve.v/, v D v have a tangency at v D vc with
v00

e .vc/ ¤ 0. Then there exists �0 such that system (7) has the linear part (13).
Moreover, if the following generic condition

�
@2ve

@v2
� @2ve

@vg@v

�
@ve

@qg

C @2ve

@qg@v

@ve

@vg

¤ 0 (14)

is satisfied at the critical value of the point and parameters, then the system
undergoes a Bogdanov-Takens bifurcation.

Proof. According to the remark after the Bogdanov–Takens theorem, the general-
ized right eigenvectors v0, v1 and the generalized left eigenvectors w1, w0 as the
canonical vectors .1; 0/, .0; 1/ in R

2, respectively, and the coordinates .y1; y2/ as
.v; y/ coordinates of the dynamical system (7). Then, denoting as f .y1; y2/ the
vector field defining (7), the coefficients appearing in conditions (BT.1), (BT.2) are

a20.0/ D @2

@y2
1

w0 � f .y1; y2/ D @2

@v2
y D 0

b20.0/ D @2

@y2
1

w1 � f .y1; y2/

D @2

@v2

�
�qg

�
1 � �0

.v C vg/2

�
y � 	qg

�
ve.v/ � v

v C vg

��
D �	

qgv00
e .vc/

vc C vg

b11.0/ D @2

@y1@y2

w1 � f .y1; y2/

D @2

@y1@y2

�
�qg

�
1 � �0

.v C vg/2

�
y � 	qg

�
ve.v/ � v

v C vg

��
D 2	qg�0

.vc C vg/3

we immediately verify that

a20.0/ C b11.0/ D 2	qg�0

.vc C vg/3
¤ 0

b20 D �	
qgv00

e .vc/

vc C vg

¤ 0

the last condition being assumed by hypothesis.
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A straightforward computation shows that the matrix of the map in condition
(BT.3) at v D vc , y D 0, vg, qg is

0
BBBBB@

0 1 0 0

0 0 � 	qgve
0

vg

vcCvg
� 	qgve

0

qg

vcCvg
2�qg

vcCvq
0

2�qg

vc Cvg
0

	qgve
00

v

vc Cvg
� 2�qg

vc Cvq
� 	qgve

0

vg

.vcCvg/2 C 	qgve
00

vg ;v

vc Cvg
� 	qgve

0

qg

.vc Cvg/2 C 	qgve
00

qg ;v

vc Cvg

1
CCCCCA

where ve
0, ve

00 denote first and second order partial derivatives with respect to
the subindex variables and are evaluated at .qg; vg; vc/. The nonvanishing of the
determinant is equivalent to the condition

.ve
00
v � ve

00
vg;v/ve

0
qg

C ve
0
vg

ve
00
qg;v ¤ 0 (15)

which is the same as (14). ut

4 The Kerner-Konhäuser Model

For the Kerner-Konhäuser model one takes

ve.qg; vg; v/ D 1

1 C exp

� qg
vCvg

�d2

d3

� C d1 (16)

with the empirical values [2]

d1 D �3:72 � 10�6; d2 D 0:25; d3 D 0:06

The set of critical points and parameters

f.qg; vg; vc/ j ve.vc/ � vc D 0g

form a three-dimensional surface, given as the zero level set of a function
F.qg; vg; vc/ D ve.qg; vg; vc/ � vc D 0. It is shown in Fig. 1. There the vertical
axis is x D vg Cvc and we restrict to x > 0. The solid curves which will referred as
� are the loci where the projection .vg; qg; vc/ 7! .vg; qg/ is not surjective, namely
the curve defined by the set of equations

F.qg; vg; vc/ D ve.vc/ � vc D 0;

Fv.qg; vg; vc/ D v0
e.vc/ � 1 D 0:
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Fig. 4 Surface of critical points and singular locus of the projection. The solid curve is �

These were computed numerically by solving the above equations. Their projections
on the qg–vg plane is a cusp curve (see Fig. 4) and characterize the values of
parameters .qg; vg/ such that the curve ve.v/ is tangent to the graph of the identity.
On the other hand the solid curve in the three dimensional space qg–vg–vc (or qg–
vg–x) can be lifted to a curve Q� in four dimensional space �0–qg–vg–vc where
�0 D p

vc C vg and thus � can be viewed as the projection of Q� and represent
values .�0; qg; vg/ such that the linear part at the critical point has the form (13).

Proposition 2. The conditions of Theorem 2 are satisfied for the Kerner–
Konhäuser model (16) whenever d1 is small an negative, and d2; d3 > 0.

Proof. The condition v00
e .vc/ D 0 reduces to

e
qg
d3x .qg � 2d3x/ � ed2=d3 .qg C 2d3x/ D 0; (17)

and the nondegenericity condition (14) to

e
qg
d3x .qg � d3x/ C ed2=d3.qg C d3x/ D 0: (18)

The change of variable qg D zx (recall x D v C vg , thus z D �=�max) and reduces
each equation to the trivial one x D 0 which is discarded since v ¤ �vg , or

2d3e
d2=d3 C .2d3 � z/ez=d3 C ed2=d3z D 0 (19)

d3e
d2=d3 C .d3 � z/ez=d3 C ed2=d3z D 0 (20)

Taking the difference of these yields d3e
z=d3 D �d3e

d2=d3 . Since all constants
d1; d2; d3 are positive, this last equation has no solution for z > 0. ut
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Corollary 1. The Kerner–Konhäuser model (3) with the fundamental diagram (16)
under the assumption (1) has traveling wave solutions in the unbounded domain
x 2 .�1; 1/ and in the bounded domain Œ0; L
 with periodic boundary conditions.

Proof. From the BT Theorem 2, it follows that there exists Hopf limit cycles
.v.z/; y.z//, where z D �max� and � D x C Vgt (see (5)). This yields a traveling
wave solution of (3) in the form V.x; t/ D Vmaxv.x C Vgt/. If T is commensurable
with L then the traveling wave satisfies also periodic boundary conditions. ut

References

1. Carrillo, F.A., Verduzco, F. Delgado, J. (2010) Analysis of the Takens-Bogdanov Bifurcation on
m-parameterized Vector Fields. International Journal of Bifurcation and Chaos, Vol. 20, No. 4,

2. Kerner, B.S. and Konhäuser, P. (1993) Cluster effect in initially homogeneous traffic flow. Phys.
Rev. E, 48, No.4, R2335–R2338.

3. Kerner, B.S., Konhäuser, P. and Schilke, P. (1995) Deterministic spontaneous appearence of
traffic jams in slighty inhomogeneous traffic flow. Physical Review E, 51, 6243–6248.

4. Y. Kuznetzov, Elements of Applied Bifurcation Theory, Appl. Math. Ser. 112, 3d. ed., Springer
5. P. Saavedra & Velasco R.M. Phase space analysis for hydrodynamic traffic models (2009) Phys.

Rev. E 79, 0066103.


	A Bogdanov–Takens Bifurcation in Generic Continuous Second Order Traffic Flow Models
	1 Introduction
	2 Fundamental Diagram
	2.1 Critical Points

	3 The Bogdanov–Takens Bifurcation
	4 The Kerner-Konhäuser Model
	References


