
The Fundamental Diagram on the Ring
Geometry for Particle Processes
with Acceleration/Braking Asymmetry

Cyril Furtlehner, Jean-Marc Lasgouttes, and Maxim Samsonov

Abstract The slow-to-start mechanism is known to play an important role in the
particular shape of the fundamental diagram of traffic and to be associated to
hysteresis effects of traffic flow. We study this question in the context of stochastic
processes, namely exclusion and queueing processes, by including explicitly an
asymmetry between deceleration and acceleration in their formulation. Spatial
condensation phenomena and metastability are observed, depending on the level
of the aforementioned asymmetry. The relationship between these two families of
models is analyzed on the ring geometry, to yield a large deviations formulation of
the fundamental diagram (FD).

1 Introduction

In the microscopic theory of traffic [1, 2], an asymmetry between acceleration
and deceleration, observed for example in the headway distribution, is empirically
known to be responsible for the way spontaneous congestion occurs, as can be
seen experimentally on a ring geometry for example [3]. This is often referred
as the slow-to-start mechanism, not present in the original cellular automaton of
Nagel-Schreckenberg [4], but added in refined versions like the “velocity dependent
randomized” one (VDR) [5], which exhibits a first order phase transition between
the fluid and the congested phases and hysteresis phenomena [6] associated to
metastable states. This is partly reflected in the shape of the FD. In this work,
we analyze this property in the context of stochastic processes. We propose a
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minimal extension of TASEP to include that mechanism, and a way to compute
the corresponding FD on the ring geometry, where

• Some equivalence between particle systems and queueing processes holds, either
exactly or with good approximation, and can be exploited to compute the FD;

• The relation between the density of vehicles and the flux is a well defined
quantity in the thermodynamic limit on this geometry, since the number of cars
is conserved (canonical ensemble).

The paper is organized as follows: in Sect. 2, we define a family of exclusion
processes relevant to traffic and we discuss how these can be reformulated in terms
of a tandem queue process with a dynamically coupled stochastic service rate. The
invariant measure of such a process at steady-state is determined in Sect. 3. Finally,
in Sect. 4, we discuss the computation of the FD in the canonical ensemble (with
a fixed number of cars), when a product form of the equivalent queueing process
holds.

2 Multi-speed Exclusion Processes

2.1 Model Definition

In the totally asymmetric version of the exclusion process (TASEP), particles move
randomly on a 1-d lattice, always in the same direction, hopping from one site to
the next at times following a Poisson process and under condition that the next site
is vacant. In the Nagel-Schreckenberg cellular automaton, the dynamics is parallel
and the vehicles’ speeds are encoded in the number of slots that they can cover in
one jump. This speed can adapt stochastically, depending on the available space in
front of the particle. We propose to combine the braking and accelerating features
of the Nagel-Schreckenberg models, with the locality of the simple ASEP model,
in which only two consecutive sites do interact at a given time. For this, we allow
each particle to change stochastically its hopping rate, depending on the state of the
next site. For a 2-speed model, let A (resp. B) denote a site occupied by a fast (resp.
slow) vehicle, and let O denote empty sites. The model is defined by the following
set of reactions, involving pairs of neighboring sites:

AO
�a�! OA simple move of fast vehicle, (1)

BO
�b�! OB simple move of slow vehicle, (2)

BO
��! AO slow vehicle spontaneously accelerates, (3)

A NO ı�! B NO fast vehicle brakes behind another one . NO D A or B/: (4)
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Here �a, �b , � and ı denote the transition rates. The first couple of transitions
corresponds to normal movements of vehicles. The other two encode the fact that a
slow vehicle tends to accelerate when there is space ahead (3), while in the opposite
case (4), it tends slow down. The asymmetry between braking and acceleration is
explicitly present in the model with � different from ı. Our model can be viewed as
the sequential version of the Appert-Santen model [7], in which there is one single
speed, but particles have two states (at rest and moving). In the remainder of the
paper, we will consider this model on the ring geometry.

Let us first notice that this model contains and generalizes several sub-models
which are known to be integrable with particular rates. The hopping part (1)
and (2) is just the totally asymmetric exclusion process [8, 9] (TASEP) when
�a D �b , which is known to be integrable. The acceleration/deceleration dynamics
is equivalent to the coagulation/decoagulation models, which are known to be
solvable by the empty interval method and by free fermions for particular sets of
rates [10], but the whole process is presumably not integrable.

2.2 Relation to Tandem Queues

In some cases, the model can be exactly reformulated in terms of generalized
queueing processes (or zero range processes in the statistical physics parlance),
where the service rate of each server follows itself a stochastic dynamics [11]. In
this preceding work, however, we considered exclusion processes involving three
consecutive sites interactions. In fact, in the present case, a large family of sub-
models can be mapped onto such queueing processes. The mapping works only on
the ring geometry, by identifying servers either with

(i) Cars: clients are the empty sites;
(ii) Empty sites: clients are the vehicles.

In our case, the mapping of type (i) is exact. In the corresponding queueing
process, servers are associated either with fast or slow cars, having then service
rates �a or �b . Slow queues become fast at rate � , conditionally to having at least
one client, while empty fast queues become slow at rate ı.

The mapping of type (ii) is more informative with respect to jam distribution [11],
but is not possible with transitions limited to 2-consecutive sites interactions,
because in that case homogeneity is not maintained in the clusters, and information
beyond the number of cars and the rate of the car leaving the queue is needed
to know the service rate of the queue. Nevertheless, to be able to get meaningful
information on the jam structure, i.e. on the long range correlations of the model
associated to cluster formations, this is the mapping that we will consider later in
Sect. 3.
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Fig. 1 Space-time diagram for multi-speed exclusion process with two speed levels (a)–(c) and
three in (d). Time is going downward and particles to the right. Red, green and blue represent
different speeds in increasing order. The size of the system is 3;000 except for (b) where it is
100;000. Setting are �a D 100, �b D 10, � D 100, ı D 2 for (a) and (b) and ı D 10 for (c), all
with density d D 0:2

2.3 Numerical Observations

Some numerical observations are illustrated on Fig. 1. When no asymmetry between
braking and accelerating is present (� D ı), as in TASEP on a ring, no spontaneous
jam formation occurs. As the density d of cars increases, one observes a smooth
transition between a TASEP of fast particles for small d to a TASEP of slow
particles around d ' 1. When the ratio �=ı is reduced, there is a proliferation
of small jams associated with slow vehicles as seen on Fig. 1c. Instead when it
increases slow car are less present as well as small jams as shown on Fig. 1a. Above
some threshold of this ratio �=ı, which depends on the density, a condensation
phenomenon occurs as seen on Fig. 1b; one or more large jams contain a finite
fraction of the total number of cars. It is therefore tempting to understand this phase
separation with the ZRP interpretation [12] of a spatial condensation phenomena
in the canonical ensemble [13]. In this viewpoint, we expect a condensation
mechanism to occur if the apparition of slow vehicles is a sufficiently rare event [11].
In our context, the probability that a vehicle joining a cluster of particles is still of
type A when it reaches the front is decaying exponentially

p.� D �a/ D e�ıt.s/ D ps;

with t.s/ the waiting time in a queue of size s. Assuming stationarity and the
possible acceleration of the front car, we obtain self-consistently

t.s/ D s
h 1

�a

ps C �a C �

�a.�b C �/
.1 � ps/

i
:

This observation will be made more precise in Sect. 3. It implies qualitatively
that starting with a distribution of jams with different effective service rates, as time
evolves, long-lived jams with effective service rates slightly above �b C �.�a �
�b/=.�a C �/ are able to survive. If the situation with a single jam is not stable,
which is observed below some threshold density, then no large jam may develop
at all, and only small fluctuations are to be observed. Typically this occurs when
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ı � �b and ı < � (Fig. 1b). In contrary when ı > � one likely observes the kind
of jams in Fig. 1c.

We have also simulated a model with three speed levels, see Fig. 1d. In that
case, small jams may have different speeds, depending on which type of slow car is
leading. Then a cascade mechanism takes place, slow speed regions generate even
slower speed clusters of cars and so on, and some kind of synchronized flow is
observed.

3 Queues with Two-State Service Rates

The mapping of type (ii) defined in Sect. 2.2, while not exact here, may help us to
capture the correlations associated to cluster formations. To this end, consider first
the dynamics and steady state regime of a single cluster of vehicles of size nt and
assume that vehicles of type A [resp. B] join the queue with rate �a [resp. �b], while
they leave the queue with rate �a [resp. �b]. �

defD �a C�b represents the intensity of
the incoming process, and particles decelerate with rate ı in the bulk of the queue.
At position n in the queue, counting from the back end position, the probability for
a particle to be still of type A is then

pn
defD �a

�
rn with r

defD �

� C ı
:

Since the front end interface of the cluster has no causal effect on the rest of
the queue, except on the front vehicle which may accelerate with rate � , we can
consider the dynamics of the sequence independently of the motion of the front
interface. Under the additional assumption of independence between speed labels in
the bulk of the queue, we consider the joint probability Pt .n; �/ D P.nt D n; �t D
�a� C �b N�/, i.e. the joint probability that the queue has n clients and its front car
is of type A (� D 1) or B ( N� defD 1 � � D 1). With pn.�/

defD pn� C .1 � pn/ N� , the
master equation then reads

dPt .n; �/

dt
D�

�
Pt .n � 1; �/ � Pt .n; �/

� C �
�aPt .n C 1; 1/ C �bPt .n C 1; 0/

�
pn.�/

� .�a� C �b N�/Pt .n; �/ C �.� � N�/Pt .n; 0/; n � 2

dPt .1; �/

dt
D .�a� C �b N�/Pt .0/ � �Pt .1; �/ C �

�aPt .2; 1/ C �bPt .2; 0/
�
p1.�/

� .�a� C �b N�/Pt .1; �/ C �.� � N�/Pt .1; 0/;

dPt .0/

dt
D ��Pt .0/ C �aPt .1; 1/ C �bPt .1; 0/:
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It is a special case of a queueing process with a 2-level dynamically coupled
stochastic service rate generalizing queueing processes with stochastic service [10,
11, 14]. In the stationary regime, we denote

�a
n

defD P.n; � D �a/; �b
n

defD P.n; � D �b/;

and �0 D P.n D 0/. Consider the generating functions

ga;b.z/
defD

1X
nD1

�a;b
n zn and g.z/

defD �0 C ga.z/ C gb.z/;

and let

�2u
defD �a.�a � �b/ �2w

defD .�a�b C �a�a C �b�b C ��a/�0

�2v
defD .�a�b C �b�a/�0 �

defD .� � � C �a � �b/2 C 4��:

The invariant measure is obtained as follows [15]:

Theorem 1. (i) g.z/ satisfies the functional equation of the type

ug.rz/ D vz C w � .z � zC/.z � z�/g.z/;

where z˙ are given by

z˙ D 1

2�

�
�a C �b C � C � ˙ p

�
�
:

(ii) The solution reads:

g.z/ D
1X

nD0

.�u/n vrnz C wQnC1
kD0.zrk � zC/.zrk � z�/

:

Using the following partial balance relation,

��n D �a�a
nC1 C �b�b

nC1; 8n � 0;

the reduced generating functions ga;b are then obtained as

ga.z/ D �b

�a � �b

�0 C �z � �b

�a � �b

g.z/; gb.z/ D �a

�b � �a

�0 C �z � �a

�b � �a

g.z/:

(5)

Upon using Cauchy integrals, the �a;b
n are then given as sums of geometric laws.

From the radius of convergence z� of g, the limit of ergodicity is obtained for
z� � 1, i.e. for
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� � �b C �
�a � �b

�a C �
:

4 Computing the Fundamental Diagram of Product
Measures

4.1 Fundamental Diagram

In practice, points plotted in experimental FD studies are obtained by averaging
data from static loop detectors over a few minutes (see e.g. [2]), but spatial average
is much easier to obtain analytically. The equivalence between time and space
averaging is not an obvious assumption, but since jams are moving, space and
time correlations are combined in some way [16] and we consider this assumption
to be quite safe. In what follows, we will therefore compute the FD along with
its fluctuations, by considering the conditional probability measure P�.�jd/ for a
closed system, where

8̂
<
:̂

d D N

N C L
;

� D ˚

N C L
;

with

8
ˆ̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂
:

L number of queues

N D
LX

iD1

ni number of vehicles

˚ D
LX

iD1

�i1fni>0g integrated flow

are spatial averaged quantities and represent respectively the density and the traffic
flow. N and L are fixed, which means that we are working with the canonical
ensemble. If we assume that we are in the conditions of having a product form [17]
(see [15] for details in this context) for the stationary distribution with individual
probabilities ��.n; �/ associated to each queue taken in isolation, then, taking into
account the constraints yields the following form of the joint probability measure:

P.fni ; �i g/ D ı
�
N � PL

iD1 ni

�

ZLŒN 	

LY
iD1

��.ni ; �i /;

with the canonical partition function

ZLŒN 	
defD

X
fni ;�i g

ı
�
N � PL

iD1 ni

� QL
iD1 ��.ni ; �i /;

where ı denotes now the usual Dirac function. When this form is not exact but
constitutes a mean-field ansatz, some flow conservation conditions have to be
imposed, which for the model under consideration concern � and �a and read
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�a D �a

1X
nD1

�a
n ; �b D �b

1X
nD1

�b
n D � � �a:

The density-flow conditional probability distribution takes the form

P.�jd/ D ZLŒN; ˚	

ZLŒN 	
;

with

ZLŒN; ˚	
defD

X
fni ;�i g

ı
�
N � PL

iD1 ni

�
ı
�
˚ � PL

iD1 �i1fni >0g
� QL

iD1 ��.ni ; �i /:

ZLŒN 	 and ZLŒN; ˚	 represent respectively the probability of having N vehicles
and the joint probability for having at the same time N vehicles and a flux ˚ ,
under the unconstrained product form. Under this product form, we expect d and
� to satisfy a large deviations principle (see e.g. [18]) i.e. that there exist two rate
functions I.d/ and J.d; �/ such that, for large L,

ZL.N / � e�LI.d/; ZLŒN; ˚	 � e�LJ.d;�/:

In other words, we expect a large deviations version of the fundamental diagram of
the form

P.�jd/ � e�LK.�jd/; with K.�jd/
defD J.d; �/ � I.d/:

When there is one single constraint like for ZL.N /, the large deviations expression
can be obtained by saddle point techniques [13, 19]. For more than one constraint
it seems easier to work variationally. Let us introduce the cumulant generating
function h associated to ��,

h.s; t/
defD log

h 1X
nD0;�

��.n; �/esnCt�
i
;

assuming by convention that the rate � is zero in absence of client. After some
computations (see [15] for details), we obtain I and J as Legendre transforms of
the cumulant generating function, namely:

J.d; �/ D d

1 � d
�n.d; �/ C �

1 � d
��.d; �/ � h

�
�n.d; �/; ��.d; �/

�
;

I.d/ D d

1 � d
�0

n.d/ � h
�
�0

n.d/; 0
�
;
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with �n.d; �/ and ��.d; �/ the Lagrange multipliers, conjugate respectively to the
density and flux, and solution of the equations

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂:

@h

@s

�
�n.d; �/; ��.d; �/

� D d

1 � d
;

@h

@t

�
�n.d; �/; ��.d; �/

� D �

1 � d
;

@h

@s

�
�0

n.d/; 0
� D d

1 � d
:

The ordinary FD �.d/ is the minimizer of K.�jd/ and actually corresponds to

K.�.d/jd/ D 0:

The small i.e. Gaussian fluctuations are then obtained by expanding K at second
order in � � �.d/. Denoting the dual Hessian,

H ?.s; t/
defD

�
hss hst

hts htt

�
;

with the use of shorthand notations for the derivatives, representing the covariant
matrix between the charges of the queues and the flux, we find the following
expression for the variance of the FD:

Var.�jd/ D .1 � d/2

L

�
H ?�1

tt
��1

:

Under the canonical ensemble constraint, the single queue distribution can be
obtained from the partition function as

pCE.n; �/ D p�.n; �/
ZL�1.N � n/

ZL.N /

' p�.n; �/ exp L
h
h
�
s.d � x/; 0

� � h
�
s.d/; 0

�

C d � x

1 � d � x
s.d � x/ � d

1 � d
s.d/

i
;

with x
defD n=.N C L/ and the density constraint satisfied by s.d/:

@h

@s
.s.d/; 0/ D d

1 � d
;

A direct comparison with the 2-speed TASEP of cluster size distributions is
shown on Fig. 2. The correspondance is rather accurate, in particular for the
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n

1e-09

1e-08

1e-07

1e-06

1e-05

0,0001

0,001

0,01

0,1

1

P(
n)

2-speed tasep (L=1000)
2-speed tasep (L=5000)
2-speed tasep (L=10000)
2-speed tasep (L=20000)
queue (L=1000)
queue (L=5000)
queue (L=10000)
queue (L=20000)

1 10 100 1000 10000 0,1 1 10 100 1000

n

1e-08

1e-07

1e-06

1e-05

0,0001

0,001

0,01

0,1

1

P(
n)

2-speed tasep (d=0.1)
2-speed tasep (d=0.2)
2-speed tasep (d=0.35)
queue (d=0.1)
queue (d=0.2)
queue (d=0.35)

Fig. 2 Comparison of particle cluster vs. queue’s size distribution for set of parameters �a D
10�b D 100, � D 10 and ı D 1 for various sizes L with fixed density d D 0:35 (left) and various
densities with fixed size L D 5;000 (right), the number of queues being .1 � d/L

presence and location of the bumps signaling apparition of wide jams. In both
cases, condensation is observed as a finite size effect, the bumps being replaced
by a plateau at larger system size as seen on Fig. 2a.

4.2 Comparison with 2-Speed TASEP

As a sanity check, let us apply first this formula to the simple M=M=1 queue
corresponding to one single speed level (�a D �b D �), i.e. a TASEP process.
The rate of arrival � is set by convenience to � D d�. The cumulant-generating
function then reads

h.s; t/ D log.1 � d/ C log
1 C des.etv � 1/

1 � des :

The FD rate function for TASEP then reads ( Nd defD 1 � d )

K.�jd/ D d

Nd log
�d � �

�d 2
C �

� Nd log
�2

.�d � �/.� Nd � �/
� log

� Nd 2

� Nd � �
;

yielding an expression for FD and variance that matches direct computation [15]:

�.d/ D E.�jd/ D �d Nd; Var.�jd/ D �2

N C L
d 2 Nd 2:

In the case of the model of Sect. 3, the assumption of independence between
servers is not valid anymore, but corresponds to a mean-field approximation [15].
From (5), we get for the cumulant generating function
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d

0

0,5

1

1,5

2

2,5

3
φ

Tasep simulation
E(phi)
E(phi) +/- 2StdDev

0 0,2 0,4 0,6 0,8 1 0 0,1 0,2 0,3 0,4 0,5 0,6

d

0

0,5

1

1,5

2

φ

2-speed tasep simulation
E(phi) (queuing model)
E(phi) +/- 2StdDev

Fig. 3 Comparison between simulation for the simple TASEP FD (left) and the 2-speed TASEP
with �a D 10 � �b D 10 � � D 100 � ı (right) with small deviations results (two standard
deviations) obtained from the queuing processes

h.s; t/ D log
�
�0

�
1 C �be�at � �ae�bt

�a � �b

� C .�a � �es/e�bt C .�es � �b/e�at

�a � �b
g.es/

�
;

from which the Legendre transform as well as the Hessian H �.s?; 0/ for the small
fluctuations can be obtained, where s? is the point which satisfies

es?

g0.s?/ D d

1 � d
:

A comparison with the corresponding 2-speed TASEP is shown on Fig. 3.
The observed discrepancy can be traced back to various approximations made
in the mean-field theory, in particular the assumption of independence between
successive servers. This could be possibly cured by a refined mean field approach,
replacing the product form ansatz with a Bethe approximation. This requires to solve
exactly the 2-servers problem, but the large deviations approach would follow the
same lines.
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