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Preface

The conference series Traffic and Granular Flow has been established in 1995
when the first conference was held in Jülich, Germany. It brought together experts
interested in complex transport processes which appear to be rather different at first
sight. Granular flow is fully determined by the laws of physics whereas in vehicular
traffic the behavior of human drivers plays a decisive role which makes non-physical
aspects like psychology relevant.

The first meeting was a big success, as were the following meetings which were
held bi-annually in Duisburg (1997), Stuttgart (1999), Nagoya (2001), Delft (2003),
Berlin (2005), Paris (2007) and Shanghai (2009). In this time new focus areas have
emerged, like pedestrian and evacuation dynamics or transport in biological systems
and computer networks. Experts from all over the world with rather different
backgrounds ranging from engineering to physics and computer science presented
their newest results. Besides this strong interdisciplinarity the full range of scientific
tools has always been represented with contributions of experimental, empirical,
theoretical and mathematical nature.

The conference Traffic and Granular Flow ’11 (TGF’11) was held from
September 28 to October 1, 2011 in Moscow at the Moscow Technical University of
Communications and Informatics (MTUCI). It was attended by around 150 people
and 28 research groups from Russia and 28 foreign groups have presented their
works. Despite some difficulties with communications, primarily with countries
in Asia and America, the vast majority of registered participants took part in the
TGF’11. In these proceedings we also present the papers and works of those who
could not attend, e.g. due visa problems.

The conference was characterized by the increased use of software and hardware
means of monitoring and simulating transport processes, from urban and highway
traffic and pedestrian crowds to the flow of granular media. Because of this, today
it is possible to address many problems of calibration and validation of model
approaches. This is most systematically developed in the works of scientists from
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vi Preface

Germany. Another feature of many presentations was the importance of probabilistic
approaches for the modeling of socio-technical systems (including flows).

However, most of the presented works used a different strategy: the formulation
of the model, the choice of calculation methods and the illustration of the proposed
approach by investigation of some transport processes scenarios. In many presen-
tations at the conference the dynamics of processes was illustrated by computer
animation. A significant problem, the solution of which at the moment is vague at
best, is the transition from local modeling and simulation for simple structures (i.e.
rings or segments) to the modeling and management of e.g. urban road networks. In
this case the level of detail describing a particular part of the network is bound to be
reduced while including the key links. In some cases, at the moment by schematic
examples, general trends in the development of the network load with the driver
awareness taken into account were established.

Simulation of pedestrian flows, which began much later, shows a rapid develop-
ment and increasing exchange of ideas with the modeling of traffic flows. The
processing of empirical data and experimental study of the phenomenon makes a
significant contribution to it. In a number of works of the pedestrian community,
self-organization phenomena and their origin are intensively studied. This experi-
ence should be transferred to the vehicular traffic community.

The TGF’11 conference has also successfully integrated to its ranks researchers
from countries with developing economies, for which the traffic problems have
dramatically increased over a short time. It is certain that complex research problems
of socio-technical systems, such as traffic and other systems with the presence of the
human factor, must be solved together.

The conference was held with financial support of the Russian Foundation for
Basic Research (RFBR) under the direct supervision of the Russian Academy of
Sciences (RAS). The organizing committee would like to thank Academician Boris
N. Chetverushkin, member of Russian Academy of Sciences, Professor, Doctor
of Physical and Mathematical Sciences, director of Keldysh Institute of Applied
Mathematics of the Russian Academy of Sciences and Prof. Artem S. Adzhemov,
Doctor of Technical Sciences, rector of the Moscow Technical University of
Communications and Informatics for their great support and invaluable contribution
to organization of the conference. Also we would like to thank Leonid M. Lipsitz,
Head of State Traffic Policy Department, Ministry of Transport of Russian Federa-
tion, for active participation and the methodological support of the conference.

We hope that the next conference Traffic and Granular Flow ’13 will continue to
facilitate the scientific exchange in the field of complex transport problems. It will
not only help to increase our theoretical understanding of traffic-like systems, but
also provide solutions to problems of everyday life.
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For the anniversary of its 10th edition the conference will return to the location
of the inaugural meeting, the Research Center in Jülich, Germany, from September
25–27, 2013.

Moscow, Köln, Duisburg Valery V. Kozlov
May 2013 Alexander P. Buslaev

Alexander S. Bugaev
Marina V. Yashina

Andreas Schadschneider
Michael Schreckenberg
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J. Rimšāns Institute of Mathematical Sciences and Information Technologies,
University of Liepaja, Liepaja, Latvia

Christian Rogsch Fire Protection Engineering, Bonhoefferstr. 16, D-67435
Neustadt an der Weinstraße, Germany



Contributors xvii

Michel Roussignol Paris-Est University – LAMA, Marne-la-Vallée, France

Heather J. Ruskin Dublin City University, Dublin 9, Ireland

Patricia Saavedra Departamento de Matemáticas, Universidad Autónoma
Metropolitana Iztapalapa, México, D.F., México

Maxim Samsonov INRIA Saclay – LRI, Bat. 490, Université Paris-Sud, Orsay
cedex, France

M. Luisa Sandoval Departamento de Matemáticas, Universidad Autónoma
Metropolitana Iztapalapa, México, D.F., México

Tibye Saumtally Université Paris Est, GRETTIA, Noisy le Grand Cedex, France

Andreas Schadschneider Institut für Theoretische Physik, Universität zu Köln,
Köln, Germany

M. Reza Shaebani Department of Theoretical Physics, University of Duisburg-
Essen, Duisburg, Germany

Armin Seyfried Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH,
Jülich, Germany

Computer Simulation for Fire Safety and Pedestrian Traffic, Bergische Universität
Wuppertal, Wuppertal, Germany

A. A. Siddiqui Fire Safety Engineering Group, University of Greenwich,
Greenwich, UK

Akiyasu Tomoeda Meiji Institute for Advanced Study of Mathematical Sciences,
Meiji University, Nakano-ku, Tokyo, Japan

CREST, Japan Science and Technology Agency, Nakano-ku, Tokyo, Japan

Wei Tong Department of Modern Physics, University of Science and Technology
of China, Hefei, China

Antoine Tordeux Paris-Est University – LVMT, Marne-la-Vallée, France

János Török Department of Theoretical Physics, University of Duisburg-Essen,
Duisburg, Germany

Marina Trapeznikova Keldysh Institute of Applied Mathematics RAS, Moscow,
Russia

Daishin Ueyama Meiji Institute for Advanced Study of Mathematical Sciences,
Meiji University, Nakano-ku, Tokyo, Japan

Graduate School of Advanced Mathematical Sciences, Meiji University, Nakano-
ku, Tokyo, Japan



xviii Contributors

Nikolay M. Ulyukov Institute of Machines Science named after A.A. Blagonravov
of RAS, Moscow, Russia

Moscow Institute of Physics and Technology (State University), Dolgoprudny,
Moscow Region, Russia

Alexandre Valance Institut de Physique de Rennes, UMR U.Rennes1-CNRS
6251, Université de Rennes 1, Rennes CEDEX, France

Andrey M. Valuev Institute of Machines Science named after A.A. Blagonravov
of RAS, Moscow, Russia

Moscow Institute of Physics and Technology (State University), Dolgoprudny,
Moscow Region, Russia

Hans van Lint Department of Transport & Planning, Delft University of Technol-
ogy, Delft, The Netherlands

Jelena Vasic Dublin City University, Dublin 9, Ireland

Rosa Maria Velasco Physics Department, UAM–Iztapalapa, México, D.F.,
México

Fernando Verduzco Mathematics Department, Universidad de Sonora,
Hermosillo, Sonora, México

A. A. Vinogradov Moscow Technical University of Communications and Infor-
matics (MTUCI), Moscow, Russia

Peter Wagner DLR German Aerospace Center, Cologne, Germany

Binghong Wang Department of Modern Physics, University of Science and
Technology of China, Hefei, China

The Research Center for Complex System Science, University of Shanghai for
Science and Technology and Shanghai Academy of System Science, Shanghai,
China

Hans Weber Department of Physics, Luleå University of Technology, Luleå,
Sweden

Dietrich E. Wolf Department of Theoretical Physics, University of Duisburg-
Essen, Duisburg, Germany

Alexander A. Yakukhnov Moscow Institute of Physics and Technology (State
University), Dolgoprudny, Moscow Region, Russia

Daichi Yanagisawa College of Science, Ibaraki University, Bunkyo, Mito, Ibaraki,
Japan

M. V. Yashina Moscow Technical University of Communications and Informatics
(MTUCI), Moscow, Russia



Contributors xix

Andrei Zamyatin Faculty of Mechanics and Mathematics, Lomonosov Moscow
State University, Moscow, Russia

Jun Zhang Institute for Building Material Technology and Fire Safety Science,
Wuppertal University, Wuppertal, Germany

Wenyao Zhang Department of Modern Physics, University of Science and Tech-
nology of China, Hefei, China



Part I
Highway and Urban Vehicular Traffic



The Fundamental Diagram on the Ring
Geometry for Particle Processes
with Acceleration/Braking Asymmetry

Cyril Furtlehner, Jean-Marc Lasgouttes, and Maxim Samsonov

Abstract The slow-to-start mechanism is known to play an important role in the
particular shape of the fundamental diagram of traffic and to be associated to
hysteresis effects of traffic flow. We study this question in the context of stochastic
processes, namely exclusion and queueing processes, by including explicitly an
asymmetry between deceleration and acceleration in their formulation. Spatial
condensation phenomena and metastability are observed, depending on the level
of the aforementioned asymmetry. The relationship between these two families of
models is analyzed on the ring geometry, to yield a large deviations formulation of
the fundamental diagram (FD).

1 Introduction

In the microscopic theory of traffic [1, 2], an asymmetry between acceleration
and deceleration, observed for example in the headway distribution, is empirically
known to be responsible for the way spontaneous congestion occurs, as can be
seen experimentally on a ring geometry for example [3]. This is often referred
as the slow-to-start mechanism, not present in the original cellular automaton of
Nagel-Schreckenberg [4], but added in refined versions like the “velocity dependent
randomized” one (VDR) [5], which exhibits a first order phase transition between
the fluid and the congested phases and hysteresis phenomena [6] associated to
metastable states. This is partly reflected in the shape of the FD. In this work,
we analyze this property in the context of stochastic processes. We propose a
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minimal extension of TASEP to include that mechanism, and a way to compute
the corresponding FD on the ring geometry, where

• Some equivalence between particle systems and queueing processes holds, either
exactly or with good approximation, and can be exploited to compute the FD;

• The relation between the density of vehicles and the flux is a well defined
quantity in the thermodynamic limit on this geometry, since the number of cars
is conserved (canonical ensemble).

The paper is organized as follows: in Sect. 2, we define a family of exclusion
processes relevant to traffic and we discuss how these can be reformulated in terms
of a tandem queue process with a dynamically coupled stochastic service rate. The
invariant measure of such a process at steady-state is determined in Sect. 3. Finally,
in Sect. 4, we discuss the computation of the FD in the canonical ensemble (with
a fixed number of cars), when a product form of the equivalent queueing process
holds.

2 Multi-speed Exclusion Processes

2.1 Model Definition

In the totally asymmetric version of the exclusion process (TASEP), particles move
randomly on a 1-d lattice, always in the same direction, hopping from one site to
the next at times following a Poisson process and under condition that the next site
is vacant. In the Nagel-Schreckenberg cellular automaton, the dynamics is parallel
and the vehicles’ speeds are encoded in the number of slots that they can cover in
one jump. This speed can adapt stochastically, depending on the available space in
front of the particle. We propose to combine the braking and accelerating features
of the Nagel-Schreckenberg models, with the locality of the simple ASEP model,
in which only two consecutive sites do interact at a given time. For this, we allow
each particle to change stochastically its hopping rate, depending on the state of the
next site. For a 2-speed model, let A (resp. B) denote a site occupied by a fast (resp.
slow) vehicle, and let O denote empty sites. The model is defined by the following
set of reactions, involving pairs of neighboring sites:

AO
�a�! OA simple move of fast vehicle, (1)

BO
�b�! OB simple move of slow vehicle, (2)

BO
��! AO slow vehicle spontaneously accelerates, (3)

A NO ı�! B NO fast vehicle brakes behind another one . NO D A or B/: (4)
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Here �a, �b , � and ı denote the transition rates. The first couple of transitions
corresponds to normal movements of vehicles. The other two encode the fact that a
slow vehicle tends to accelerate when there is space ahead (3), while in the opposite
case (4), it tends slow down. The asymmetry between braking and acceleration is
explicitly present in the model with � different from ı. Our model can be viewed as
the sequential version of the Appert-Santen model [7], in which there is one single
speed, but particles have two states (at rest and moving). In the remainder of the
paper, we will consider this model on the ring geometry.

Let us first notice that this model contains and generalizes several sub-models
which are known to be integrable with particular rates. The hopping part (1)
and (2) is just the totally asymmetric exclusion process [8, 9] (TASEP) when
�a D �b , which is known to be integrable. The acceleration/deceleration dynamics
is equivalent to the coagulation/decoagulation models, which are known to be
solvable by the empty interval method and by free fermions for particular sets of
rates [10], but the whole process is presumably not integrable.

2.2 Relation to Tandem Queues

In some cases, the model can be exactly reformulated in terms of generalized
queueing processes (or zero range processes in the statistical physics parlance),
where the service rate of each server follows itself a stochastic dynamics [11]. In
this preceding work, however, we considered exclusion processes involving three
consecutive sites interactions. In fact, in the present case, a large family of sub-
models can be mapped onto such queueing processes. The mapping works only on
the ring geometry, by identifying servers either with

(i) Cars: clients are the empty sites;
(ii) Empty sites: clients are the vehicles.

In our case, the mapping of type (i) is exact. In the corresponding queueing
process, servers are associated either with fast or slow cars, having then service
rates �a or �b . Slow queues become fast at rate � , conditionally to having at least
one client, while empty fast queues become slow at rate ı.

The mapping of type (ii) is more informative with respect to jam distribution [11],
but is not possible with transitions limited to 2-consecutive sites interactions,
because in that case homogeneity is not maintained in the clusters, and information
beyond the number of cars and the rate of the car leaving the queue is needed
to know the service rate of the queue. Nevertheless, to be able to get meaningful
information on the jam structure, i.e. on the long range correlations of the model
associated to cluster formations, this is the mapping that we will consider later in
Sect. 3.
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Fig. 1 Space-time diagram for multi-speed exclusion process with two speed levels (a)–(c) and
three in (d). Time is going downward and particles to the right. Red, green and blue represent
different speeds in increasing order. The size of the system is 3;000 except for (b) where it is
100;000. Setting are �a D 100, �b D 10, � D 100, ı D 2 for (a) and (b) and ı D 10 for (c), all
with density d D 0:2

2.3 Numerical Observations

Some numerical observations are illustrated on Fig. 1. When no asymmetry between
braking and accelerating is present (� D ı), as in TASEP on a ring, no spontaneous
jam formation occurs. As the density d of cars increases, one observes a smooth
transition between a TASEP of fast particles for small d to a TASEP of slow
particles around d ' 1. When the ratio �=ı is reduced, there is a proliferation
of small jams associated with slow vehicles as seen on Fig. 1c. Instead when it
increases slow car are less present as well as small jams as shown on Fig. 1a. Above
some threshold of this ratio �=ı, which depends on the density, a condensation
phenomenon occurs as seen on Fig. 1b; one or more large jams contain a finite
fraction of the total number of cars. It is therefore tempting to understand this phase
separation with the ZRP interpretation [12] of a spatial condensation phenomena
in the canonical ensemble [13]. In this viewpoint, we expect a condensation
mechanism to occur if the apparition of slow vehicles is a sufficiently rare event [11].
In our context, the probability that a vehicle joining a cluster of particles is still of
type A when it reaches the front is decaying exponentially

p.� D �a/ D e�ıt.s/ D ps;

with t.s/ the waiting time in a queue of size s. Assuming stationarity and the
possible acceleration of the front car, we obtain self-consistently

t.s/ D s
h 1
�a
ps C �a C �

�a.�b C �/
.1 � ps/

i
:

This observation will be made more precise in Sect. 3. It implies qualitatively
that starting with a distribution of jams with different effective service rates, as time
evolves, long-lived jams with effective service rates slightly above �b C �.�a �
�b/=.�a C �/ are able to survive. If the situation with a single jam is not stable,
which is observed below some threshold density, then no large jam may develop
at all, and only small fluctuations are to be observed. Typically this occurs when
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ı � �b and ı < � (Fig. 1b). In contrary when ı > � one likely observes the kind
of jams in Fig. 1c.

We have also simulated a model with three speed levels, see Fig. 1d. In that
case, small jams may have different speeds, depending on which type of slow car is
leading. Then a cascade mechanism takes place, slow speed regions generate even
slower speed clusters of cars and so on, and some kind of synchronized flow is
observed.

3 Queues with Two-State Service Rates

The mapping of type (ii) defined in Sect. 2.2, while not exact here, may help us to
capture the correlations associated to cluster formations. To this end, consider first
the dynamics and steady state regime of a single cluster of vehicles of size nt and
assume that vehicles of typeA [resp.B] join the queue with rate �a [resp. �b], while
they leave the queue with rate �a [resp. �b]. �

defD �aC�b represents the intensity of
the incoming process, and particles decelerate with rate ı in the bulk of the queue.
At position n in the queue, counting from the back end position, the probability for
a particle to be still of type A is then

pn
defD �a

�
rn with r

defD �

�C ı
:

Since the front end interface of the cluster has no causal effect on the rest of
the queue, except on the front vehicle which may accelerate with rate � , we can
consider the dynamics of the sequence independently of the motion of the front
interface. Under the additional assumption of independence between speed labels in
the bulk of the queue, we consider the joint probability Pt.n; �/ D P.nt D n;�t D
�a� C �b N�/, i.e. the joint probability that the queue has n clients and its front car
is of type A (� D 1) or B ( N� defD 1 � � D 1). With pn.�/

defD pn� C .1 � pn/ N� , the
master equation then reads

dPt .n; �/

dt
D��Pt .n� 1; �/�Pt .n; �/

�C �
�aPt .nC 1; 1/C�bPt .nC 1; 0/

�
pn.�/

� .�a� C �b N�/Pt .n; �/C �.� � N�/Pt .n; 0/; n � 2

dPt .1; �/

dt
D .�a� C �b N�/Pt .0/� �Pt .1; �/C �

�aPt .2; 1/C �bPt .2; 0/
�
p1.�/

� .�a� C �b N�/Pt .1; �/C �.� � N�/Pt .1; 0/;

dPt .0/

dt
D ��Pt .0/C �aPt .1; 1/C �bPt .1; 0/:
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It is a special case of a queueing process with a 2-level dynamically coupled
stochastic service rate generalizing queueing processes with stochastic service [10,
11, 14]. In the stationary regime, we denote

�an
defD P.n; � D �a/; �bn

defD P.n; � D �b/;

and �0 D P.n D 0/. Consider the generating functions

ga;b.z/
defD
1X
nD1

�a;bn zn and g.z/
defD �0 C ga.z/C gb.z/;

and let

�2u
defD �a.�a � �b/ �2w

defD .�a�b C �a�a C �b�b C ��a/�0

�2v
defD .�a�b C �b�a/�0 �

defD .� � � C �a � �b/2 C 4��:

The invariant measure is obtained as follows [15]:

Theorem 1. (i) g.z/ satisfies the functional equation of the type

ug.rz/ D vz C w � .z � zC/.z � z�/g.z/;

where z˙ are given by

z˙ D 1

2�

�
�a C �b C �C � ˙ p

�
�
:

(ii) The solution reads:

g.z/ D
1X
nD0
.�u/n

vrnz C wQnC1
kD0.zrk � zC/.zrk � z�/

:

Using the following partial balance relation,

��n D �a�
a
nC1 C �b�

b
nC1; 8n � 0;

the reduced generating functions ga;b are then obtained as

ga.z/ D �b

�a � �b
�0 C �z � �b

�a � �b g.z/; gb.z/ D �a

�b � �a
�0 C �z � �a

�b � �a
g.z/:

(5)

Upon using Cauchy integrals, the �a;bn are then given as sums of geometric laws.
From the radius of convergence z� of g, the limit of ergodicity is obtained for
z� � 1, i.e. for
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� � �b C �
�a � �b

�a C �
:

4 Computing the Fundamental Diagram of Product
Measures

4.1 Fundamental Diagram

In practice, points plotted in experimental FD studies are obtained by averaging
data from static loop detectors over a few minutes (see e.g. [2]), but spatial average
is much easier to obtain analytically. The equivalence between time and space
averaging is not an obvious assumption, but since jams are moving, space and
time correlations are combined in some way [16] and we consider this assumption
to be quite safe. In what follows, we will therefore compute the FD along with
its fluctuations, by considering the conditional probability measure P�.�jd/ for a
closed system, where

8̂
<
:̂
d D N

N C L
;

� D ˚

N CL
;

with

8
ˆ̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂
:

L number of queues

N D
LX
iD1

ni number of vehicles

˚ D
LX
iD1

�i1fni>0g integrated flow

are spatial averaged quantities and represent respectively the density and the traffic
flow. N and L are fixed, which means that we are working with the canonical
ensemble. If we assume that we are in the conditions of having a product form [17]
(see [15] for details in this context) for the stationary distribution with individual
probabilities ��.n; �/ associated to each queue taken in isolation, then, taking into
account the constraints yields the following form of the joint probability measure:

P.fni ; �i g/ D ı
�
N �PL

iD1 ni
�

ZLŒN 	

LY
iD1

��.ni ; �i /;

with the canonical partition function

ZLŒN 	
defD

X
fni ;�i g

ı
�
N �PL

iD1 ni
�QL

iD1 ��.ni ; �i /;

where ı denotes now the usual Dirac function. When this form is not exact but
constitutes a mean-field ansatz, some flow conservation conditions have to be
imposed, which for the model under consideration concern � and �a and read
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�a D �a

1X
nD1

�an ; �b D �b

1X
nD1

�bn D � � �a:

The density-flow conditional probability distribution takes the form

P.�jd/ D ZLŒN;˚	

ZLŒN 	
;

with

ZLŒN;˚	
defD

X
fni ;�i g

ı
�
N �PL

iD1 ni
�
ı
�
˚ �PL

iD1 �i1fni>0g
�QL

iD1 ��.ni ; �i /:

ZLŒN 	 andZLŒN;˚	 represent respectively the probability of havingN vehicles
and the joint probability for having at the same time N vehicles and a flux ˚ ,
under the unconstrained product form. Under this product form, we expect d and
� to satisfy a large deviations principle (see e.g. [18]) i.e. that there exist two rate
functions I.d/ and J.d; �/ such that, for large L,

ZL.N/ � e�LI.d/; ZLŒN;˚	 � e�LJ.d;�/:

In other words, we expect a large deviations version of the fundamental diagram of
the form

P.�jd/ � e�LK.�jd/; with K.�jd/ defD J.d; �/ � I.d/:

When there is one single constraint like for ZL.N/, the large deviations expression
can be obtained by saddle point techniques [13, 19]. For more than one constraint
it seems easier to work variationally. Let us introduce the cumulant generating
function h associated to ��,

h.s; t/
defD log

h 1X
nD0;�

��.n; �/esnCt�
i
;

assuming by convention that the rate � is zero in absence of client. After some
computations (see [15] for details), we obtain I and J as Legendre transforms of
the cumulant generating function, namely:

J.d; �/ D d

1 � d
�n.d; �/C �

1 � d
��.d; �/� h

�
�n.d; �/; ��.d; �/

�
;

I.d/ D d

1 � d
�0n.d/� h��0n.d/; 0

�
;
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with �n.d; �/ and ��.d; �/ the Lagrange multipliers, conjugate respectively to the
density and flux, and solution of the equations

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂:

@h

@s

�
�n.d; �/; ��.d; �/

� D d

1 � d ;
@h

@t

�
�n.d; �/; ��.d; �/

� D �

1 � d ;
@h

@s

�
�0n.d/; 0

� D d

1 � d
:

The ordinary FD �.d/ is the minimizer ofK.�jd/ and actually corresponds to

K.�.d/jd/ D 0:

The small i.e. Gaussian fluctuations are then obtained by expanding K at second
order in � � �.d/. Denoting the dual Hessian,

H?.s; t/
defD
�
hss hst

hts htt

�
;

with the use of shorthand notations for the derivatives, representing the covariant
matrix between the charges of the queues and the flux, we find the following
expression for the variance of the FD:

Var.�jd/ D .1 � d/2

L

�
H?�1

tt
��1
:

Under the canonical ensemble constraint, the single queue distribution can be
obtained from the partition function as

pCE.n; �/ D p�.n; �/
ZL�1.N � n/
ZL.N /

' p�.n; �/ expL
h
h
�
s.d � x/; 0� � h

�
s.d/; 0

�

C d � x
1 � d � x s.d � x/ � d

1 � d
s.d/

i
;

with x
defD n=.N C L/ and the density constraint satisfied by s.d/:

@h

@s
.s.d/; 0/ D d

1 � d
;

A direct comparison with the 2-speed TASEP of cluster size distributions is
shown on Fig. 2. The correspondance is rather accurate, in particular for the
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n
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1e-07
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1e-05
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1

P(
n)
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2-speed tasep (d=0.2)
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queue (d=0.1)
queue (d=0.2)
queue (d=0.35)

Fig. 2 Comparison of particle cluster vs. queue’s size distribution for set of parameters �a D
10�b D 100, � D 10 and ı D 1 for various sizes L with fixed density d D 0:35 (left) and various
densities with fixed size L D 5;000 (right), the number of queues being .1� d/L

presence and location of the bumps signaling apparition of wide jams. In both
cases, condensation is observed as a finite size effect, the bumps being replaced
by a plateau at larger system size as seen on Fig. 2a.

4.2 Comparison with 2-Speed TASEP

As a sanity check, let us apply first this formula to the simple M=M=1 queue
corresponding to one single speed level (�a D �b D �), i.e. a TASEP process.
The rate of arrival � is set by convenience to � D d�. The cumulant-generating
function then reads

h.s; t/ D log.1 � d/C log
1C des.etv � 1/

1 � des
:

The FD rate function for TASEP then reads ( Nd defD 1 � d )

K.�jd/ D d

Nd log
�d � �
�d2

C �

� Nd log
�2

.�d � �/.� Nd � �/
� log

� Nd 2

� Nd � �
;

yielding an expression for FD and variance that matches direct computation [15]:

�.d/ D E.�jd/ D �d Nd; Var.�jd/ D �2

N C L
d2 Nd 2:

In the case of the model of Sect. 3, the assumption of independence between
servers is not valid anymore, but corresponds to a mean-field approximation [15].
From (5), we get for the cumulant generating function
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d

0
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φ
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d

0

0,5

1

1,5

2

φ

2-speed tasep simulation
E(phi) (queuing model)
E(phi) +/- 2StdDev

Fig. 3 Comparison between simulation for the simple TASEP FD (left) and the 2-speed TASEP
with �a D 10 � �b D 10 � � D 100 � ı (right) with small deviations results (two standard
deviations) obtained from the queuing processes

h.s; t/ D log
�
�0
�
1C �be

�at � �ae
�bt

�a � �b
�C .�a � �es/e�bt C .�es � �b/e

�at

�a � �b
g.es/

�
;

from which the Legendre transform as well as the Hessian H�.s?; 0/ for the small
fluctuations can be obtained, where s? is the point which satisfies

es
?

g0.s?/ D d

1 � d
:

A comparison with the corresponding 2-speed TASEP is shown on Fig. 3.
The observed discrepancy can be traced back to various approximations made
in the mean-field theory, in particular the assumption of independence between
successive servers. This could be possibly cured by a refined mean field approach,
replacing the product form ansatz with a Bethe approximation. This requires to solve
exactly the 2-servers problem, but the large deviations approach would follow the
same lines.
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A Bogdanov–Takens Bifurcation in Generic
Continuous Second Order Traffic Flow Models

Armando Carrillo, Joaquín Delgado, Patricia Saavedra, Rosa Maria Velasco,
and Fernando Verduzco

Abstract We consider the continuous model of Kerner–Konhäuser for traffic flow
given by a second order PDE for the velocity and density. Assuming conservation
of cars, traveling waves solution of the PDE are reduced to a dynamical system in
the plane. We describe the bifurcations set of critical points and show that there is
a curve in the set of parameters consisting of Bogdanov–Takens bifurcation points.
In particular there exists Hopf, homoclinic and saddle node bifurcation curves. For
each Hopf point a one parameter family of limit cyles exists. Thus we prove the
existence of solitons solutions in the form of one bump traveling waves.

1 Introduction

Macroscopic traffic models are based on the analogy with a continuous one
dimensional flow. Conservation of number of cars leads to conservation of mass
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where 
.t; x/ is density and V.t; x/ the average velocity of cars. In the kinetic
models the continuity equation is supplied with the law of motion given by the
Navier–Stokes equation




�
@V

@t
C V

@V

@x

	
D @

@x

�
�
@V

@x

	
� @p

@x
CX (2)

where � is viscosity and p the local pressure, being proportional to the variance
(“temperature”) of the traffic�.x; t/, namely the average of the squared differences
of the individual cars and the average velocity. The “external forces” in the Kerner-
Konhäuser model are represented by driver’s tendency to acquire a safe velocity
Ve.
/ with a relaxation time � ,

X D 

Ve.
/� V

�
:

When � D �0 and � D �0 are supposed constants, the equation of motion (2)
simplifies to




�
@V

@t
C V

@V

@x

	
D ��0 @


@x
C 
.Ve.
/� V /

�
C �0

@2V

@x2
(3)

We look for travelling wave solutions of (1) and (3), then the change of variables
 D x C Vgt transform (1) into the quadrature which can be immediately solved:


.V C Vg/ D Qg: (4)

Here, the arbitrary constantQq represents the local flux as measured by an observer
moving with the same velocity Vg as the travelling wave.

Following [5] introduce adimensional variables

z D 
max; v D V

Vmax
; vg D Vg

Vmax
; qg D Qg


maxVmax
(5)

where 
max and Vmax are some maximum reference values of the density depending
on the empirical law Ve.
/. Also let

ve.
/ D Ve.
/

Vmax
; �0 D �0

V 2
max

; � D Vmax

�0
; � D 1


max�0�
: (6)

Here Ve.V / is obtained through Ve.
/ by means of (4). Substitution of (4) into the
equation of motion (3) yields dynamical system

dv

dz
D y;

dy

dz
D �qg

�
1 � �0

.v C vg/2

�
y � �qg

�
ve.v/ � v

v C vg

	
: (7)
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In adimensional form, (4) becomes


=
max D qg

v C vg
: (8)

Here and in what follows, we will take the parameter values �, � as given for
the model, and will analyze the dynamical behavior with respect to the parameters
vg , qg .

2 Fundamental Diagram

Dynamics of (7) depend on the explicit form of the constitutive relationship defined
by the fundamental diagram Ve.
/. A typical form of the curve Ve.
/must meet the
following properties that we will state as hypotheses.

Hypothesis I. Ve.
/ is a monotone decreasing function defined for 
 � 0 and
Ve.
jam/ D 0 for some 
jam > 0.
Hypothesis II. Ve.
/ is bounded from below.
Hypothesis III. lim
!0 Ve.
/ D Vf > 0 and lim
!0 
2V 0e .
/ D 0.

Hypothesis I is explicitly adopted in [2]; 
jam can be interpreted as jam density where
traffic is stuck. The condition V 0e .
/ D o.
2/ in Hypothesis II allows for a plateau
in the graph of the curve Ve.
/ for small values of density; Vf is then the average
velocity in free traffic and can be determined by speed limits.

Historically, diverse fundamental diagrams have been considered. Either fit to
empirical data, or deduced from theoretical bases. Some examples are shown in
Fig. 1. Explicit formulas are:

1. Greenshields: V D Vmax.1 � 
=
jam/.
2. Greenberg: V D Vmax ln.
jam=
/.
3. Newell: V D Vmax exp.��
/.
4. Kerner–Konhäuser: V D Vmax

�
1

1Cexp. 
=
max�0:25
0:06 /

� 3:72 � 10�6
	

.

It can be verified that all except Newell’s fundmental diagram, satisfy Hypothesis
I, and only (3) and (4) satisfy hypothesis II. Kerner-Konhäuser’s can be considered
the most accurate fundamental diagram, since it was fitted from a large set of data
using double induction detectors. Kerner and Konhäuser [2] and [3] (Greenberg was
fitted from 18 data circa 1959). Although Hypothesis III seems reasonable, neither
of the fundamental diagrams (1)–(4) satisfy this condition. We argue that it can
be mathematically sustained since experimental data are available only for strictly
positive 
; put it in another way, modern technologies such as GPS could be used
to get more accurate data for small densities. Thus one can take Kerner–Konhäuser
model as an empirical validated for 
 > ı where ı is some positive small density,
and modify it in such a way that Hypothesis III is true.
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Fig. 1 Fundamental diagrams of mean velocity V vs. density 
. (a) Greenshields; (b) Greenberg;
(c) Newell; (d) Kerner–Konhäuser

Hypothesis II implies that lim
!1 Ve.
/ exists. This limit is zero for Newell’s
diagram and equals �3:72 � 10�6Vmax for Kerner–Konhäuser’s. Although 
 ! 1
does not make sense physically, it will be useful from a mathematical point of view
to allow this limit. This amounts to consider an arbitrary large value of 
jam (as
Newell’s diagram). In fact, in (8) v ! �vg as 
 ! 1 and this corresponds to the
limit of an observer moving with the wave seeing it standing.

We denote by ve.v/ the expression ve.
/ when 
 is expressed through (8) as a
function of v (see 6).

The following properties of ve.v/ are readily obtained.

Lemma 1. Let Ve.
/ satisfy Hypothesis I, II and III. Then ve.v/ is a monotone
increasing function of v and: (1) limv!�vg ve.v/ exists; (2) limv!�vg v0e.v/ D 0

and, (3) limv!1 ve.v/ D vf .

Proof. Since (4) can be written as

v C vg D qg


=
max
(9)

it follows that 
=
max is a decreasing function of v, and thus ve.v/ is an increasing
function of v, for v > �vg . If v ! �vg then 
 ! 1 but then lim ve.
/ exists; this
proves (1). Using the chain rule

v0e.v/ D v0e.
.v//
0.v/ D v0e.
.v//
�

� qg=
max

.v C vg/2

	
D �v

0
e.
/


2

qg
max

the last term tends to zero by Hypothesis III; this proves (2). Finally if v ! 1 then

 ! 0 but then ve.
/ ! 0. This completes the proof. ut

The above lemma shows that given “reasonable” fundamental diagram (namely
satisfying Hypothesis I–III) function ve.v/ is sigmoidal: within the interval
Œ�vg;1	, ve.v/ approaches its limits as v ! �vg or 1, asymptotically flat.
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Fig. 2 Possible intersections ve.v/ D v leading to critical points of system (7). Only the graph
to the right of the vertical curve v D �vg must be considered. From left to right from top to
bottom, the number of critical points are: zero; one; three and two. A non–generic situation of
tangency at the inflection point is not shown

2.1 Critical Points

Critical points of system (7) are given by the equations y D 0 and ve.v/ D v. The
following results describes a generical situation.

Proposition 1. Let Ve.
/ satisfy Hypothesis I–III. Then there exists either 1, 2 or 3
critical points of system (7).

Proof. Since the graph of ve.v/ is sigmoidal, and the critical points are given by the
intersection of the graphs of ve.v/ and the straight line v D v the result follows. ut

Figure 2 shows several possibilities for the intersection of the curve ve.v/ D v,
with 0, 1, 2 or 3 critical points.

3 The Bogdanov–Takens Bifurcation

In this section we will show that the Kerner-Konhäuser ODE (7) undergoes a
Bogdanov-Takens (BT) bifurcation. The BT bifurcation occurs in a two parameter
dynamical system in the plane (see also it generalization to n-dimensions [1]) when
for some value of the parameter vector, the dynamical system has a critical point
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with a double non–semisimple eigenvalue and some non-degeneracy conditions are
satisfied. We state the conditions and its normal form according to Kuznetzov [4].

Theorem 1 (Bogdanov–Takens). Suppose that a planar system

Px D f .x; ˛/; x 2 R
2; ˛ 2 R

2; (10)

with smooth f , has at ˛ D 0 the equilibrium x D 0 with a double zero eigenvalue

�1;2.0/ D 0:

Assume that the following genericity conditions are satisfied

(BT.0) The Jacobian matrix A.0/ D fx.0; 0/ ¤ 0;
(BT.1) a20.0/C b11.0/ ¤ 0;
(BT.2) b20.0/ ¤ 0;
(BT.3) The map

.x; ˛/ 7!
�
f .x; ˛/; tr

�
@f .x; ˛/

@x

	
; det

�
@f .x; ˛/

@x

		

is regular at the point .x; ˛/ D .0; 0/.
Then there exists smooth invertible transformations smoothly depending on
the parameters, a direction–preserving time reparametrization, and smooth
invertible parameters changes, which together reduce the system to

P�1 D �2 (11)

P�2 D ˇ1 C ˇ2�1 C �21 C s�1�2 CO.jj�jj3/ (12)

where s D signŒb20.0/.a20.0/C b11.0//	 D ˙1.

Remark 1. The coefficients appearing in the hypotheses (BT.1), (BT.2) are defined
as follows: Let v0, v1 be generalized right eigenvectors of A0 D A.0/ and w0, w1
generalized left eigenvectors, such that A0v0 D 0, A0v1 D v0 and ATw1 D 0,
ATw0 D w1. Then by a linear change of coordinates x D y1v0 C y2v1 system (10)
can be expanded in a Taylor series as

Py1 D y2 C a00.˛/C a10.˛/y1 C a01.˛/y2

C1

2
a20.˛/y

2
1 C a11.˛/y1y2 C 1

2
a02.˛/y

2
2 C P1.y; ˛/

Py2 D b00.˛/C b10.˛/y1 C b01.˛/y2

C1

2
b20.˛/y

2
1 C b11.˛/y1y2 C 1

2
b02.˛/y

2
2 C P2.y; ˛/

where akl .˛/, P1;2.y; ˛/ are smooth functions of their arguments and

a00.0/ D a10.0/ D a01.0/ D b00.0/ D b10.0/ D b01.0/ D 0:
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Fig. 3 Bogdanov–Takens bifurcation

Remark 2. The normal form (12) is a universal unfolding, that is all nearby dynam-
ical systems satisfying the hypotheses of the theorem is topologically equivalent
to the normal form with the O.jj�jj3/ terms deleted. Figure 3 shows the different
scenarios depending in the parameter space ˇ1–ˇ2.

Lemma 2. Let Ve.
/ satisfy Hypothesis I–III. Suppose that for some values of the
parameters vg, qg the curves ve.v/ and v D v have a tangency at v D vc . Then
there exists �0 such that system (7) has a critical point with a double zero eigenvalue
and its linear part is not semisimple.

Proof. The linear part at vc is

A0 D
 
0 1

� qg�.v0

e.vc/�1/
vCvg qg

�
1 � �0

.vcCvg/2
�
�

!

since the curves v D ve.v/, v D v have a tangency at v D vc then v0e.vc/ D 1 and
A0 reduces to

A0 D
 
0 1

0 qg

�
1 � �0

.vcCvg/2
�
�

!
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choosing �0 D .vc C vg/
2 reduces to

A0 D
�
0 1

0 0

	
(13)

ut
Theorem 2. Let Ve.
/ satisfy Hypothesis I–III. Suppose that for some values of
the parameters vg , qg the curves ve.v/, v D v have a tangency at v D vc with
v00e .vc/ ¤ 0. Then there exists �0 such that system (7) has the linear part (13).
Moreover, if the following generic condition

�
@2ve

@v2
� @2ve

@vg@v

	
@ve

@qg
C @2ve

@qg@v

@ve

@vg
¤ 0 (14)

is satisfied at the critical value of the point and parameters, then the system
undergoes a Bogdanov-Takens bifurcation.

Proof. According to the remark after the Bogdanov–Takens theorem, the general-
ized right eigenvectors v0, v1 and the generalized left eigenvectors w1, w0 as the
canonical vectors .1; 0/, .0; 1/ in R

2, respectively, and the coordinates .y1; y2/ as
.v; y/ coordinates of the dynamical system (7). Then, denoting as f .y1; y2/ the
vector field defining (7), the coefficients appearing in conditions (BT.1), (BT.2) are

a20.0/ D @2

@y21
w0 � f .y1; y2/ D @2

@v2
y D 0

b20.0/ D @2

@y21
w1 � f .y1; y2/

D @2

@v2

�
�qg

�
1 � �0

.v C vg/2

�
y � �qg

�
ve.v/� v

v C vg

		
D ��qgv

00
e .vc/

vc C vg

b11.0/ D @2

@y1@y2
w1 � f .y1; y2/

D @2

@y1@y2

�
�qg

�
1 � �0

.v C vg/2

�
y � �qg

�
ve.v/� v

v C vg

		
D 2�qg�0

.vc C vg/3

we immediately verify that

a20.0/C b11.0/ D 2�qg�0

.vc C vg/3
¤ 0

b20 D ��qgv
00
e .vc/

vc C vg
¤ 0

the last condition being assumed by hypothesis.
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A straightforward computation shows that the matrix of the map in condition
(BT.3) at v D vc , y D 0, vg, qg is

0
BBBBB@

0 1 0 0

0 0 ��qgve
0

vg

vcCvg ��qgve
0

qg

vcCvg
2�qg
vcCvq 0

2�qg
vcCvg 0

�qgve
00

v

vcCvg � 2�qg
vcCvq � �qgve

0

vg

.vcCvg/2 C �qgve
00

vg ;v

vcCvg � �qgve
0

qg

.vcCvg/2 C �qgve
00

qg ;v

vcCvg

1
CCCCCA

where ve 0, ve 00 denote first and second order partial derivatives with respect to
the subindex variables and are evaluated at .qg; vg; vc/. The nonvanishing of the
determinant is equivalent to the condition

.ve
00
v � ve

00
vg;v
/ve
0
qg

C ve
0
vg
ve
00
qg;v

¤ 0 (15)

which is the same as (14). ut

4 The Kerner-Konhäuser Model

For the Kerner-Konhäuser model one takes

ve.qg; vg; v/ D 1

1C exp

� qg
vCvg

�d2
d3

� C d1 (16)

with the empirical values [2]

d1 D �3:72 � 10�6; d2 D 0:25; d3 D 0:06

The set of critical points and parameters

f.qg; vg; vc/ j ve.vc/� vc D 0g

form a three-dimensional surface, given as the zero level set of a function
F.qg; vg; vc/ D ve.qg; vg; vc/ � vc D 0. It is shown in Fig. 1. There the vertical
axis is x D vg Cvc and we restrict to x > 0. The solid curves which will referred as
� are the loci where the projection .vg; qg; vc/ 7! .vg; qg/ is not surjective, namely
the curve defined by the set of equations

F.qg; vg; vc/ D ve.vc/� vc D 0;

Fv.qg; vg; vc/ D v0e.vc/� 1 D 0:
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Fig. 4 Surface of critical points and singular locus of the projection. The solid curve is �

These were computed numerically by solving the above equations. Their projections
on the qg–vg plane is a cusp curve (see Fig. 4) and characterize the values of
parameters .qg; vg/ such that the curve ve.v/ is tangent to the graph of the identity.
On the other hand the solid curve in the three dimensional space qg–vg–vc (or qg–
vg–x) can be lifted to a curve Q� in four dimensional space �0–qg–vg–vc where
�0 D p

vc C vg and thus � can be viewed as the projection of Q� and represent
values .�0; qg; vg/ such that the linear part at the critical point has the form (13).

Proposition 2. The conditions of Theorem 2 are satisfied for the Kerner–
Konhäuser model (16) whenever d1 is small an negative, and d2; d3 > 0.

Proof. The condition v00e .vc/ D 0 reduces to

e
qg
d3x .qg � 2d3x/ � ed2=d3 .qg C 2d3x/ D 0; (17)

and the nondegenericity condition (14) to

e
qg
d3x .qg � d3x/C ed2=d3.qg C d3x/ D 0: (18)

The change of variable qg D zx (recall x D v C vg , thus z D 
=
max) and reduces
each equation to the trivial one x D 0 which is discarded since v ¤ �vg , or

2d3e
d2=d3 C .2d3 � z/ez=d3 C ed2=d3z D 0 (19)

d3e
d2=d3 C .d3 � z/ez=d3 C ed2=d3z D 0 (20)

Taking the difference of these yields d3ez=d3 D �d3ed2=d3 . Since all constants
d1; d2; d3 are positive, this last equation has no solution for z > 0. ut
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Corollary 1. The Kerner–Konhäuser model (3) with the fundamental diagram (16)
under the assumption (1) has traveling wave solutions in the unbounded domain
x 2 .�1;1/ and in the bounded domain Œ0; L	 with periodic boundary conditions.

Proof. From the BT Theorem 2, it follows that there exists Hopf limit cycles
.v.z/; y.z//, where z D 
max and  D x C Vgt (see (5)). This yields a traveling
wave solution of (3) in the form V.x; t/ D Vmaxv.x C Vgt/. If T is commensurable
with L then the traveling wave satisfies also periodic boundary conditions. ut
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Model of Vehicular Traffic by Hilliges
and Weidlich Revisited

Martins Brics, Reinhard Mahnke, and Reinhart Kühne

Abstract Driving of cars on a highway is a complex process which can be
described by different means using continuous or discrete basic equations. It always
leads to equations of motion with asymmetric interaction.

In 1994 Martin Hilliges and Wolfgang Weidlich from University of Stuttgart
developed a phenomenological modeling for dynamic traffic flow in networks,
published in Hilliges and Weidlich (Transpn Res B 29:407–431, 1995). The authors
Hilliges and Weidlich introduce the model in its discrete formulation, carry out
a continuous approximation and investigate stationary solutions with respect to
stability analytically.

Here we consider the Hilliges–Weidlich–Model once again using our optimal
velocity function already introduced in previous papers by Mahnke and Pieret
(Phys Rev E 56:2666–2671, 1997). We solve the equations of motion given by two
coupled partial differential equations numerically and discuss the moving staedy
state profiles of density as well as speed. As a first result we present the long-
time behaviour. The investitations are still going on and comparisons to related
research (Sugiyama Y, Masuoka K, Ishida T (2009) Dynamics of dissipative system
with asymmetric interaction and N–body problem for the emergence of moving
cluster. In: Appert-Rolland C, Chevoir F, Gondret P, Lassarre S, Lebacque J-P,
Schreckenberg M (eds) Traffic and Granular Flow’07. Springer, Berlin, pp 556–563;
Wagner, Phil Trans R Soc A 368:4481–4495, 2010) are in preparartion.
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Fig. 1 Road segment with length L divided into cells with length �x

1 The Discrete Model by Hilliges and Weidlich
and its Continuous Formulation

Following [1] we have a road segment with some length L. We divide it into N
cells with size �x such that L D N�x. In each cell we assume that density 
i and
velocity vi are constant (see Fig. 1).

The density 
i in cell i can change only because of inflow from cell i � 1 and
outflow to cell i C 1, therefore

@
i

@t
�x D ji � jiC1 D 
i�1vi � 
iviC1 : (1)

Equation (1) underlines that traffic is forward oriented. The inflow flux from cell
i � 1 to cell i is defined as ji D 
i�1vi .

If we expand density and velocity in Taylor series up to second order at cell i ,
then


i�1 D 
i ��x
@
i

@x
C .�x/2

2

@2
i

@x2

viC1 D vi C�x
@vi

@x
C .�x/2

2

@2vi

@x2

(2)

and replace vi by v and 
i by 
 we end up with a partial differential equation for the
density

@


@t
C @

@x
.
v/ D �x

2

@

@x

�
@


@x
v � @v

@x



	
: (3)

For the velocity we take the well-known relaxation ansatz

Dv

Dt
D 1

�

�
Vopt.
/� v

�
; (4)
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where D
Dt D @

@t
C v @

@x
is the material derivative and Vopt is a given optimal velocity

function. It forms the following set of equations

@


@t
C @

@x
.
v/ D �x

2

@

@x

�
@


@x
v � @v

@x



	
;

@v

@t
C v

@v

@x
D 1

�

�
Vopt .
/� v

�
:

(5)

To investigate both equations periodic boundary conditions are chosen. As optimal
velocity function we use

Vopt.
/ D vmax
1

D2
2 C 1
(6)

previously introduced by Mahnke and Pieret [2] to understand car clustering.
By using dimensionless variables Qx D x

D
, Qt D t

�
, Q
 D 
D, Qv D v

vmax
, � Qx D �x

D
,

˛ D D
�vmax

the derived set of equations (5) transforms into

@ Q

@Qt D � 1

˛

@

@ Qx . Q
 Qv/C 1

˛

� Qx
2

@

@ Qx
�
@ Q

@ Qx Qv � @ Qv

@ Qx Q

	
;

@ Qv
@Qt D � 1

˛
Qv @ Qv
@ Qx C

�
1

Q
2 C 1
� Qv

	
:

(7)

2 Temporal Development of Car Cluster Solutions

To solve numerically the system of coupled partial differential equations (7) the
spatial derivatives are approximated by central finite differences

@ Q
i
@ Qx D Q
iC1 � Q
i�1

2 Qh I @ Qvi
@ Qx D QviC1 � Qvi�1

2 Qh (8)

@2 Q
i
@ Qx2 D Q
iC1 � 2 Q
i C Q
i�1

Qh2 I @2 Qvi
@ Qx2 D QviC1 � 2 Qvi C Qvi�1

Qh2 ; (9)

where Qh D � Qx is a step in space. Then Eqs. (7) together with periodic boundary
conditions and given initial conditions are solved using Runge-Kutta 4th order
method. Note that by applying central finite differences to the first equation of (7)
we end up back to Eq. (1).

For some parameter values of ˛ and � Qx we see that the homogeneous flow
solution is unstable and clusters are formed (see Fig. 2). However Eq. (7) describes
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Fig. 2 Solution of Eq. (7) with ˛ D 4:0, QL D 20, �Qx D 0:1 for different time moments starting
with the homogeneous solution Q
.Qt /D Q
h D 1:4, Qv D 1

1CQ
2h

Fig. 3 Clusters moving in the opposite of driving direction of cars (cars drive such that Qx
increases)

two types of clusters, those which are moving in the opposite direction to driving
direction of cars (see Fig. 3) and in the same direction (see Fig. 4). We get clusters
which are moving in the same direction as cars if we start with lower values of
space averaged initial density as initial condition. This type of cluster is usually not
observed in microscopic traffic models, however, one is able to see this in real traffic
data analysis and other traffic models.

If we tray to simulate Eqs. (7) for longer times, we see, that the number of clusters
reduces and after some time there are only few clusters existing. Looking at the
density profiles in Fig. 5 it seems that they are going to merge together, but it will
take too long computational time. Unfortunately we are still not able to get initial
conditions such that a one-cluster-solution can be reached in shorter time.
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Fig. 4 Clusters moving in the same direction as cars (cars drive such that Qx increases)
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Fig. 5 Long-time solution of Fig. 2 (right-hand part)

3 Remarks on Steady States Profiles

If we want to get stationary moving profiles which moves with speed Qvg , then the
transformation to a new coordinate system Q D Qx � 1

˛
Qvg Qt is useful.

The equations of motion after transformation into moving frame system can be
written as

@ Q

@Qt � 1

˛
Qvg @

@ Q D � 1

˛

@

@ Q . Q
 Qv/C 1

˛

� Qx
2

@

@ Q
�
@ Q

@ Qx Qv � @ Qv

@ Qx Q

	
;

@ Qv
@Qt � 1

˛
Qvg @v
@ Q D � 1

˛
Qv @ Qv
@ Q C

�
1

Q
2 C 1
� Qv

	
:

(10)

Then for such profiles we have

@ Qv. Q; Qt /
@Qt D @ Q
. Q; Qt /

@Qt D 0 : (11)

To calculate such a profile we have to solve the following equations

@ Q

@ Q D 2

� Qx
�

Q

�
1 � Qvg

Qv
	

� Cg

Qv
	

C ˛ Q

Qv. Qv � Qvg/

�
1

Q
2 C 1
� Qv

	

@ Qv
@ Q D ˛

Qv � Qvg
�

1

Q
2 C 1
� Qv

	
;

(12)
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Fig. 6 Graphical solution of
Eqs. (15) with Cg D 0:4 and
Qvg D �0:03. Solutions are at
the intersections of curves

where Cg is an integration constant which physical meaning of flux in this moving
reference frame Cg D Q
h. Qvh � Qvg/ and 0 � Cg � 0:5 � Q
h Qvg . Here ( Q
h, Qvh) is the
homogeneous solution in the stationary reference frame.

3.1 Homogeneous Solutions

The equations for a homogeneous solution are given as

Cg D Q
 � Qv � Qvg
�

0 D ˛

�
1

Q
2 C 1
� Qv

	
;

(13)

and if we introduce the dimensionless flux QQ D Q
 Qv which is given in this case as

QQ. Q
/ D 



2 C 1
(14)

then Eqs. (13) can be written as

Cg C Q
 Qvg D QQ. Q
/ ;

Qv D 1

Q
2 C 1
:

(15)

The Eqs. (15) can be simply solved graphically and an example with Cg D 0:4

and Qvg D �0:03 can be found in Fig. 6. The solutions are the intersection points.
Note that for negative Qvg the value Cg can be larger then 0.5. In general as we can
conclude from Fig. 6 for positive Qvg we can get up to two solutions, and for negative
Qvg up to three solutions. Let us look to a situation with the values Q
h D 1:4 and
Qvg D �0:079. This case corresponds to C D Q
h Qvh 	 0:473 with Cg 	 0:584.
Graphical solutions of Eq. 15 can be seen in Fig. 7. As we can see in Fig. 7 we have
three solutions Q
 	 f Q
h D 1:4; 1:075; 4:80g. We also see that Q
 D Q
h is still a
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Fig. 7 Graphical solution of Eq. (15) for C � 0:473 and Qvg D �0:079. Solutions are at crossings
of lines

Fig. 8 Valid solution of Eq. (15) as function of Qvg for C � 0:473. Red line shows stationary
homogeneous solution, green line shows solutions for which small and large perturbations
propagate both with either positive or negative speeds. Blue line shows the solution for which
small perturbations propagate with positive speed and large perturbations with negative

solution of the stationary problem in moving reference frame and it can be shown
that this is valid for every velocity Qvg and every density Q
h. If we now look to Fig. 5
we actually see that the peak density in clusters is Q
c 	 4:80 and for free flow
Q
f 	 1:08. So these two non-trivial solutions have some meaning, see also Fig. 8.
Related research has been published [3, 4].
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Abstract We study the stationary properties of a microscopic traffic flow model
related to a continuous time mass transport process. It is a stochastic collision-free
mapping of a classical deterministic first order car-following model calibrated by
the targeted speed function and the driver reaction time. The stationary states of the
model are analytically treated for vanishing reaction time. Some approximations are
calculated, assuming a product form of the invariant measure. When the reaction
time is strictly positive, the process is studied by simulation. A relation between
the parameters and the propagation of kinematic stop-and-go waves is identified
as identical to the well-known stability condition of the car-following model.
The results underline a negative impact of the driver reaction time parameter on
the homogeneity of the flow in stationary state.
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1 Introduction

Stochastic transport processes, extracted from the systems of interacting particles,
can be used to model traffic flow [1]. The approach represents an alternative to the
modelling of traffic flow by systems of differential equations and is an extension
in continuous time of cellular automata models. Markovian jump processes such
as exclusion [2, 3], zero-range [2, 4, 5], random average [6, 7] or misanthrope [8]
processes can describe microscopic traffic flows in the totally asymmetric case and
for specific interpretations of the model parameters.

The totally asymmetric simple exclusion process (TASEP) is a basic model that
has been studied extensively and is often used as a theoretical tool. The TASEP
with nearest-vehicle interaction (which can be mapped to a zero-range process
[5, 9, 10]) as well as with Arrhenius interaction [11] are employed to model traffic
flows. The zero-range process is used to model the evolution of platoons in [12].
Recently, the misanthrope process is applied to describe microscopic multi-lane
traffic flow [13] or mesoscopic ones [14]. These approaches, based on particle
systems, are defined on a discrete space. The totally asymmetric random average
process (TARAP), studied in [15], allows the microscopic modelling of traffic flows
in continuous space.

On the other hand, microscopic traffic models based on ordinary or delayed
differential systems are developed since the 1950s. The approach assumes inter-
actions of the vehicles with their predecessors. Fundamental parameters, initially
estimated from statistical observations, of the targeted speed as a function of the
distance gap and the driver reaction time are sufficient to reproduce reasonably
the driver’s behavior. Models such as the first order one by Newell [16] or the
second order Optimal Velocity model [17] are well understood. Notably, conditions
of linear stability of homogeneous configurations are known. The first one imposes
the derivative of the targeted speed function to be strictly positive, the second one a
derivative strictly positive and strictly less than the inverse of two times the reaction
time [17].

A new model combining the two approaches is proposed. The model is a
stochastic mass transport process mapping a discretisation scheme of the Newell
car-following model. The stochastic process we use is close to the TARAP. It models
the evolution of vehicles in continuous time on a continuous space.

The paper is organised as follows. In a first part, we study the basic model without
reaction time. The model behaviour in the stationary state is described analytically
with the help of results taken from the literature. In a second part, we define
and study the mass transport model including a strictly positive driver reaction
time parameter. The stationary state of the process is investigated by simulations.
Its stability properties are underlined according to the values of the parameters. We
conclude by comparing the properties of the model to empirical observations and
classical traffic theories.
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2 The Basic Model with No Reaction Time

Let us start by mapping the TARAP to the Newell first order car-following model
with no delay.

2.1 Model Definition

The model represents the evolution in continuous time of the distance gaps of vehi-
cles on a one-way road. Since the vehicle order remains the same, this representation
is an exact mapping of a line of vehicles [9,15]. When a vehicle moves, a part of its
distance gap is transmitted to the following vehicle. This representation allows the
use of zero-range processes in discrete space case or random average processes in
the continuous space case that is studied here.
� D .�i /i 2 E D �

R
C�Z denotes the process of the vehicles distance gaps on an

infinite lane. The jump size and jump rate of the process are defined by a mapping
of the Newell first order car-following model: dxi

dt .t/ D V
�
�i.t/

�
where xi .t/ is the

position of the vehicle i at the instant t . �i D xiC1 �xi � `, with the vehicle length
`, is the distance gap of the vehicle i that depends on the position of its predecessor
i C 1. V W � 7! minfVmax; �=T g is the positive non-decreasing and piecewise
linear targeted speed function. Vmax > 0 is the maximal desired speed in the free
traffic state and T > 0 is the targeted time gap for a vehicle in the pursuit case.
For a vehicle i the explicit eulerian discretisation scheme of its motion with time
step ıt > 0 is

xi .t C ıt/ D xi .t/C ıt � V ��i.t/
�

with the position x and the distance gap � to the predecessor. In this discrete time
model the jump size of vehicle i is ıtV .�i/ and the jump time is ıt . One may
consider a stochastic model with a jump rate equal to 1=ıt (and the mean jump
time ıt) with jump size ıtV .�i /. For this model, the generator is

L f .�/ D
X
i2If

1

ıt
Œf .�i / � f .�/	1f�i>ıt V .�i /g (1)

with �i D .�i
j /j such that �i

j D �j if j 6D i and j 6D i � 1, �i
i D �i �

ıtV .�i/ and �i
i�1 D �i�1 C ıtV .�i/. The generator is an operator of a function

f depending on the finite set of coordinates If .
The Chapman-Kolmogorov equation allows to describe the marginal first order

momentum of the process. As expected, one obtains the Newell car-following form
applied to the distance gap (.:/0 denotes the time derivative):

�
E.�i .t//

�0 D L E.�i .t// D E
�
V.�iC1.t// � V.�i.t//

�
:



38 S. Lassarre et al.

Vehicles trajectories are independent for the free case where V.�/ D Vmax

is constant. The model is a totally asymmetric random average process [7] when
V.�/ D �=T is a non-decreasing linear function. The generator of a TARAP is

L f .�/ D
X
i2If

�

Z
p.du/ Œf .�i .u//� f .�/	 1f�i>0g (2)

with �i D .�i
j /j such that �i

j D �j if j 6D i and j 6D i � 1, �i
i .u/ D u�i and

�i
i�1.u/ D �i�1 C .1� u/�i . p.du/ is the distribution on Œ0; 1	 of the distance gap

fraction jumping, concentrated on 1 � ıt=T in the traffic model, and � > 0 is the
constant jump rate corresponding to the inverse of the time step ıt .

The vehicles jump successively and the jump times of each vehicle are contin-
uous. More precisely, the jump time of a vehicle is an homogeneous poissonian
process. The jump size does not exceeded the distance gap.

The quantity ıt > 0 is not a physical parameter but a tool of the modelling that
should be close to 0 (at least ıt � T ). In the following, one focuses on the limit
case where ıt ! 0 and targeted speed function V.�/ D �=T .

2.2 Stationary State Description

When the jump size remains constant (free case), vehicle trajectories are indepen-
dent. The stationary distribution of this process is a product form and the invariant
marginal distributions are independent and identical distributed and exponential.
This is not the case for the TARAP. In contrast to the zero-range process whose
invariant distribution is a product form [2, 4, 5], the invariant distribution of the
TARAP is not known for any p distribution. However, explicit formulas for the first
and second moments of the marginal invariant distribution have been derived [7].

First and Second Moment of the Marginal Invariant Distribution

If ˛ 2 E is the space-homogeneous initial distribution of the process, i.e. P.�0 D
˛/ D 1with the initial system state �0, such that E˛i D D for all i and

P
i jE˛0˛i�

D2j < 1, the first and second order moment of the marginal distribution satisfy [7]:

E�i D D 8i8t and
lim
t!1E�i�j D D2 8i 6D j

lim
t!1E�2

i D r

s
D2 8i

with r D R
.1�x/p.x/dx and s D R

x.1�x/p.x/dx. The first moment is the mean
distance gap that remains constant since the system is conservative. The covariance
is nil, attesting that the invariant distribution of the process may have a product form.
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In the car-following model given by generator (1) with V.�/ D �=T , r D
ıt=T , s D ıt=T .1� ıt=T / and

lim
t!1V�i D lim

t!1E�2
i � .E�i/

2 D D2 ıt

T � ıt
8i: (3)

The variability of the vehicles distance gap tends towards 0 in the stationary state
(i.e. the flow is homogeneous) when ıt ! 0. This aspect is observed in the
Newell car-following model with differential equation. It is well-known that the
homogeneous state of this model is a stable equilibrium state when V is non-
decreasing (see for instance [14]).

Invariant Distribution

The stationary measure of the process, denoted� W E 7! Œ0; 1	, satisfies the invariant
equation

Z

E

L f .�/ �.d�/ D 0 : (4)

If one assumes that the stationary measure � admits a distribution (�.d�/ D
�.�/

Q
j d�j ), the stationary equation is

R
E

L f .�/ �.�/
Q
j d�j D 0.

For the TARAP given by the generator (2), one obtains after substituting for all
i 2 If , �i�1 by�i�1 � .1 � u/�i and�i by�i=u:

Z

E
f .�/

Y
j

d�j

( X
i2If

Z 1

�
1C�i�1

�i

�
�1 p.u/

du

u
�

�

�
: : : ; �i�2;�i�1 � 1 � u

u
�i ;

�i

u
; �iC1; : : :

	)
D
Z

E
f .�/

Y
j

d�j
n X
i2If

�.�/
o
:

This equality is satisfied for any function f depending on If 
 Z with card.If / <
1 if for all � 2 E the following equality using x D 1�u

u �i holds:

X
i2If

Z �i�1

0

p

�
�i

x C�i

	
dx

x C�i

�
�
: : : ;�i�2;�i�1 � x;�i C x;�iC1; : : :

� DX
i2If

�.�/:

Assuming that the invariant distribution of the process has product form of homoge-
neous in space marginal distribution Q� W RC 7! Œ0; 1	 such that

R
x Q�.x/ dx D D,

�.�/ D Q
i Q�.�i /, one obtains the equality (cf. [18] with p uniform):

X
i2If

Z �i�1

0

p

�
�i

x C�i

	
dx

x C�i

Q� .�i�1 � x/ Q� .�i C x/

Q�.�i�1/ Q�.�i/
D card.If /:
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This equality holds when one has for all i 2 If :

Z �i�1

0

p

�
�i

x C�i

	
dx

x C�i

Q� .�i�1 � x/ Q� .�i C x/

Q�.�i�1/ Q�.�i /
D 1: (5)

In the case of the car-following model (1), this equation does not admit explicit
solution for the marginal Q� . In the next paragraph we show that the process has an
invariant product form distribution with gamma marginal solution for particular beta
distributions of p.

Beta Distribution for p

We assume that p has a beta distribution on Œ0; 1	with parametersm > 0 and n > 0:

p.u/ D 1

ˇ.m; n/
um�1.1 � u/n�11Œ0;1	.u/

with ˇ.m; n/ D R 1
0

um�1.1 � u/n�1du.
To keep the meaning of the traffic model, one assumes that the expected value

of p is equal to 1�ıt=T . One denotes � D 1
K
ıt
T

�
1 � ıt

T

�
withK > 1 the variance of

the p distribution. One obtains m D .1 � ıt=T / .K � 1/ and n D ıt=T .K � 1/.
The beta distribution tends towards a deterministic one concentrated on 1 � ıt=T

whenK tends towards infinity. It becomes bi-modal concentrated on f0; 1g whenK
tends towards 1.

If we refer to formulas given in [7], the variability of the distance gap in stationary
state for a beta distribution of p in stationary state is:

lim
t!1V�i D D2 T C ıt.K � 1/

.T � ıt/ .K � 1/ 8i: (6)

The variance tends towards infinity for ıt ! T or K ! 1. The distance gap
variance tends towards D2=.K � 1/ when ıt ! 0 and towards D2ıt=.T � ıt/

when K ! 1. Therefore, the variance tends towards 0 for ıt ! 0 and K ! 1
(that corresponds to the deterministic case of p described previously).

When we assume a beta distribution for p and a measure product form with
marginal gamma distribution with parameter � and � :

Q�.x/ D x��1
exp.�x=�/
� .�/��

1Œ0;1/.x/

with � .�/ D R1
0

u��1e�udu, the condition of invariance (5) leads to

R �i�1
0

1
ˇ.m;n/

�
�i

xC�i
�m�1 �

x
xC�i

�n�1
dx

xC�i


.�i�1 � x/ .�i C x/

���1 D 

�i�1�i

���1
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for all i 2 If By substituting x by u ��i�1, one obtains after simplifications for all
i 2 If :

�
m��
i �ni�1
ˇ.m;n/

R 1
0
.�i C�i�1u/��m�n un�1.1 � u/��1du D 1: (7)

If one considers the gamma distribution with � D mC n D K � 1 (and � D .K �
1/=D to be sure that the expected value is equal toD), the equation of invariance is:

�
�i�1
�i

	n
ˇ.�; n/

ˇ.m; n/
D
�
�i�1
�i

	n
.� .�//2

� .� C n/� .� � n/ D 1 : (8)

This equation is satisfied for any system state � 2 E in the limit case n ! 0. This
limit is reached when ıt ! 0 or if K ! 1. Yet, the invariant marginal gamma
distribution depends onK but not on ıt . For a givenK > 1, the gamma distribution
is the exact asymptotic invariant marginal distribution for ıt ! 0. For given
ıt > 0 and K > 1, the product of gamma distributions is an approximation of the
invariant measure of the system. The variance of the gamma distribution is equal to
D2=.K � 1/ while the exact value given previously is D2 TCıt.K�1/

.T�ıt/.K�1/ (cf. Eq. (6)).
For any value of ıt , the variability of the approximation is less that the exact one.

Some simulation experiments are undertaken to evaluate the precision of the
gamma product approximation. 100 vehicles with a length of 5m on a ring of length
2 km are considered. The targeted speed function is exclusively the pursuit one
(i.e. Vmax D C1). The samples are obtained after a simulated time of 2 h which
is sufficient to reach the stationary state. The initial configurations are uniform.
The sample size for each value of the parameters is equal to 5 � 105 observations.

Figure 1 shows the distributions obtained. The lines represent the empirical
distance gap distributions for various values of the parameter ıt (varying from
1 to 0:05 s). The dotted lines are the asymptotic distributions � .K�1;D=.K�1//.
Different values forK are compared (2, 10 and 50). The empirical distributions tend
towards the asymptotic ones when ıt ! 0 in all cases. For a given value of ıt , the
differences between the exact and the gamma distributions increase when K tends
towards infinity.

The form of the distributions varies significantly in the limit case where ıt tends
towards 0 with the value of K . The form is exponential when K is less than 2
and monomial otherwise. The exponential case corresponds to the formation of
platoon in stationary state in the system, while the flow is homogeneous when the
distribution is monomial. On the Fig. 2, vehicles trajectories on a ring, from uniform
initial conditions, are plotted for two values of the parameterK . The trajectories are
perturbated and vehicles platooning occurs forK close to 1 (Fig. 2 at left). WhenK
is high, p variability is low and the flow is homogeneous (Fig. 2 at right).

The formation of platoons observed when K tends towards 1 is due to the
increase of noise in the system through the distribution p. For the deterministic
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Fig. 1 Comparison of the asymptotic gamma marginal distribution with simulation data on a ring
(T D 1:2 s, Vmax DC1 and D D 15m)
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Fig. 2 Trajectories of 50 vehicles evolving on a ring (ıt D 0:01 s, T D 1:2 s, Vmax D C1 and
D D 15m)

p distribution, the flow is homogeneous for ıt small. In the next section, a model
including a reaction time produces kinematic waves at the limit case when ıt tends
towards 0 and for the deterministic p distribution.

3 The Model Including a Reaction Time

The proposed model is a stochastic mapping of the delayed Newell car-following
model. It is a stochastic mass transport process distinct from the TARAP.
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3.1 Model Definition

As previously, the model is defined from an explicit eulerian discretisation of the
differential equation with T r > 0: dxi

dt .t/ D V
�
�i.t �T r/�. If a linear development

over the time is applied to the delayed distance gap to manipulate synchronous
variable, the discretisation scheme for the motion of the vehicle i :

xi .t C ıt/ D xi .t/C ıt � V ��i.t/ � T r.viC1.t/ � vi .t//
�

with the position x, the distance gap � to the predecessor and the speed v which
is a new variable introduced in the system. Substituting the speed by the targeted
speed function, a mass transport process corresponding to this discretisation can be
characterised by the generator

L f .�/ D
X
i2If

1

ıt
Œf .�i /� f .�/	1f�i>ıt si g (9)

with si D V
�
�i � T r.V .�iC1/ � V.�i//

�
and �i D .�i

j /j such that �i
j D �j if

j 6D i and j 6D i � 1, �i
i D �i � ıt si and �i

i�1 D �i�1 C ıt si .

With this form, the model is not a random average process even if V is linear
since the jump size depends both on the distance gap and on the predecessor distance
gap. If V.�/ D �=T , one has the smallest sufficient condition on the time step
parameter ıt � T=.1C T r=T /.

3.2 Stationary State Description

The stationary state of the model including a reaction time is obtained by simulation.
The simulation of this kind of stochastic process is easy and does not require to
define a discretisation scheme. Each vehicle has an exponential clock giving the time
of its next jump. The simulation is event driven by actualizing successively the
vehicle with minimum jump time.

From the simulation results, two types of stationary states for the system on
a ring are clearly identified for congested density levels, according to the value
of the reaction time. the fist is a homogeneous stationary state with monomial
and symmetric distributions of the vehicles distances gap. This state is observed
when the reaction time is zero or not too large. The second is a heterogeneous
stationary state with kinematic wave propagation and bi-modal distributions of
vehicles distance gaps which occurs for sufficiently large reaction times.

In Fig. 3, vehicle trajectories are shown for a uniform initial configuration.
The reaction time vanishes for the left system and the stationary state is homoge-
neous. For the right system the reaction time, equal to 1 s, is enough for convergence
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Fig. 3 Trajectories of 50 vehicles evolving on a ring (ıt D 0:01 s, T D 1:2 s and Vmax D C1)

towards a heterogeneous stationary state. The formation of kinematic stop-and-go
waves which propagate at constant speed can be observed. This phenomenon is
well-known in real traffic. At a given density, the vehicles mean speeds are similar
for the two stationary states although these states are different. The presence of
kinematic waves is not observed in the model without reaction time, even if it
produces locally vehicles platoons when the noise level is important.

Figure 4 presents the distribution of vehicle distance gaps and its mean and
standard deviation for different values of the parameters. In the left part of the
figure, distributions are obtained by simulations for different values of the time step
parameter ıt . One observes bi-modal distributions of the distance gap when ıt is
sufficiently close to 0. This reflects the presence of kinematic waves. At the center,
the mean and standard deviation of the distributions are plotted for different values
of the reaction time. A relation is observed, linking the reaction time and the targeted
pursuit time with the emergence and propagation of waves in the stationary state.
Various simulation experiments lead to the following condition for an homogeneous
system in stationary state: T > 2T r .

It is the same as the stability condition of the Newell delayed car-following model
[14, 17]. It underlines a negative impact of the driver reaction time parameter on
the homogeneity of the flow. To the right, one observes that the maximal speed
parameter Vmax induces a critical flow density threshold for kinematic waves to
emerge. It refers to free and congested traffic states. For densities less that the critical
density, vehicle speeds are close to the maximal value. Beyond the critical density
threshold, vehicle speeds are regulated, with a mean less than the maximal value,
and kinematic waves may emerge and propagate. Various simulation experiments
show that the critical density is close to 1=.VmaxT C `/ or equivalently for a given
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density with mean distance gap D, the critical maximal speed is D=T D 12:5m/s
in the figure.

4 Conclusion

We have presented results for a stochastic mass transport process calibrated by
classical parameters of driver reaction time and targeted speed function, inspired
by the deterministic car-following theory. The model, defined in continuous time,
describes the evolution on a continuous space of the distances between vehicles
without any collision. Its form allows analytical investigation in particular cases and
simulations without requiring the use of a discretisation scheme.

When the reaction time vanishes, the introduction of randomness in the model
induces the formation of vehicle platoons in the stationary state. Analytically,
explicit approximations for the stationary distribution of the process are obtained.
When the reaction time parameter is strictly positive, simulations exhibit a critical
value beyond which kinematic stop-and-go waves propagate for congested densities
in the stationary state. A relation linking the model parameters with the formation
of waves is identified similar to the classical well-known stability conditions of car-
following models.

The results underline the role of the two fundamental parameters of driver
reaction time and targeted pursuit speed function. The reaction time, that is
recognized and measured in real experiments, is identified as a negative factor on
the homogeneity of the flow. Yet, it is known that the drivers are able to anticipate
in order to deflect to the reaction time. They may increase the stability of the flow,
but these aspects are not taken into account in the model.

Acknowledgements A. T. acknowledges support from VINCI/ParisTech Grant 8L1142
“Éco-Conception des ensembles bâtis et des infrastructures”.
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Identifiability and Practical Relevance
of Complex Car-Following Models

Gunnar Flötteröd, Peter Wagner, and Yun-Pang Flötteröd

Abstract This article looks at car-following models from a deliberately pragmatic
perspective: What information about driver behavior can be extracted from a given
data set without more or less speculative assumptions about underlying behavioral
laws? The objective of this exercise is not to invalidate existing models but to
obtain a better understanding of how much (complex) model structure can be
revealed/validated from real data.

1 Introduction

The estimation of parameters of a microscopic traffic flow model appears at first
glance to be a technically straightforward and well understood procedure. What is
not that well understood is the question what is actually revealed by the calibration.
Typically, the calibration exercise results in parameters that minimize some distance
between model outputs and reality. Some of these parameters have immediate
physical meanings: maximum speed, maximum acceleration, and the like. Other
parameters are hard to interpret and hence are difficult to validate in hindsight, not
even through simple plausibility checks. While sophisticated car-following model
specifications abound, much of their added value lies in theoretically being able to
explain certain (rare) phenomena, which, however, are of limited relevance if one
is interested in estimating, say, a car-following model component for a complex
network simulation from real data.
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This article adopts an (almost naive) engineering perspective on the problem in
that it starts the analysis by estimating a set of simple linear models from a given
data set. If a linear model already explains the data well, there is little reason to
complexify the model further. If, however, a linear model fails to explain certain
aspects of the data, it still is possible to analyze the residuals in order to obtain data-
driven hints of how to improve the model. Clearly, an argument against this approach
is that a good model structure, based on physical and/or behavioral considerations,
should also have a superior explanatory power. The counter-argument has in essence
already been phrased: A simple model with only few, interpretable parameters may
result in a slightly inferior fit, but its estimation may be more robust than for a
complex model, and its simplicity and interpretability is likely to be a key feature in
its practical application.

The remainder of this article investigates the above claims by constraining itself
to utmost simple models and exclusively inferring model structure either from exact
physical laws or from the data itself. Section 2 estimates and analyzes a set of linear
car following models. Section 3 then discusses the implications of this article’s
findings, in particular with respect to more complex nonlinear model specifications.

2 Estimation and Analysis of Linear Models

The data used in this contribution has been recorded some years ago on a Japanese
test track [2]. Nine drivers were following a lead driver, who implemented a certain
speed protocol, changing between regimes of constant and varying speeds. Most
acceleration values were moderate and in the range [�3, 3] m/s2. The drivers’
kinematic states were tracked by means of a differential RTK-GPS system, which
allows for centimeter accuracy in positions and centimeter-per-second precision in
speeds.

Due to the real-time kinematics in the GPS recording, speeds are independently
measured variables (essentially based on the Doppler shift in the signal frequency
between vehicle and satellites) and are not derived via numerical differentiation
from the positions. Altogether, data from eight different experiments of 25 min each
is available, with different drivers and different vehicle sequences per experiment.
Within this contribution, only the first experiment is analyzed. The full data set has
been used in another study on car-following models and their calibration [1].

2.1 Considered Model Specifications

A number of increasingly complex linear models is calibrated from the data
described above. The purpose of this is to understand how much information is
contained in the data that can be captured by linear dynamics.
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We start from the optimal velocity model (OVM) in discrete time t , which is
written as

v.t/ � v.t � h/ D ˛ � .v�.t � h/� v.t � h//C ".t/ (1)

where v is the considered driver’s speed, v� is the instantaneous optimal velocity
(yet to be defined), ˛ 2 .0; 1/ defines the speed of the driver’s adaptation towards
v�, h is the time step length, and " is a temporally uncorrelated error term. (The last
assumption is convenient in terms of model estimation but needs to be validated and
possibly adjusted in future work [3].) Specifically, the following model instances
are considered.

Speed synchronization model. This model assumes v�.t/ D V.t/, which means
that the driver does nothing but follow the speed V of the leading car. The
resulting linear model specification has only one independent parameter:

v.t/ D a1v.t � h/C c1V .t � h/C ".t/ (2)

where a1 corresponds to 1 � ˛ and c1 is constrained to be 1 � a1.
Newell-type model. This model assumes v�.t/ D 1

�
g.t/ with � > 0, which

means that the desired speed is proportional to the distance g from the leading
car. The resulting linear model specification has two parameters:

v.t/ D a1v.t � h/C b1g.t � h/C ".t/ (3)

where a1 corresponds to 1 � ˛ and b1 corresponds to ˛ 1
�
.

Combined OVM model. This model assumes v�.t/ D � 1
�
g.t/C.1��/V .t�h/,

0 � � � 1, which defines the desired speed as a convex combination of lead car
speed and distance. The resulting linear model specification has three parameters:

v.t/ D a1v.t � h/C b1g.t � h/C c1V .t � h/C ".t/ (4)

where a1 corresponds to 1 � ˛, b1 corresponds to ˛ 1
�
� , and c1corresponds to

˛.1 � �/.
Generalized OVM model. A natural extension of the combined OVM model is

to allow for higher order dynamics in the speed adaptation process. This leads to
the following linear model specification:

v.t/ D
���X
iD1

aiv.t � ih/C
���X
iD1

big.t � ih/C
���X
iD1

ciV .t � ih/C ".t/: (5)

Since this model allows for arbitrary linear combinations of past gaps and velocities
of the modeled car and the lead car, it implicitly also captures speed differences
as explanatory variables. Also, since g.t/ � g.t � h/ D h � .V .t � h/ � v.t �
h//, a linear dependency between g, v, and V can be expected. Indeed, it turns out
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Table 1 Estimated parameters for a single driver and the three simple linear models (2)–(4). The
values in brackets indicate the statistical error in the parameter estimate, it relates to the last digit(s)
of the parameter value, i.e. 0:9721˙ 0:0005 is written as 0.9721(5)

Model v.t � h/ g.t � h/ V .t � h/ � LL AIC

Speed -sync. 0.9721(5) – 0.0279(6) 0.0565 23,761 �47,516
Newell 0.9968(1) 0.0021(1) – 0.0595 22,917 �45,828
Combined 0.9719(6) 0.00127(9) 0.02620(6) 0.0561 23,865 �47,723

that the parameters bi>1; ci>1 cannot be identified. What worked, and therefore is
exclusively considered in the following, is the simplification

v.t/ D
���X
iD1

aiv.t � ih/C b1g.t � h/C c1V .t � h/C ".t/: (6)

2.2 Description and Analysis of Estimation Results

A first set of model estimation results is shown in Table 1. All results are obtained
with R’s generalized linear model routine glm(). Also shown in this table are the
following measures of fit:

• The average squared residual

�2 D 1

N

NX
iD1

�
vsim
i � vdata

i

�2
(7)

whereN is the number of data points, vsim
i is the i th simulated velocity, and vdata

i

is its corresponding real data point;
• The log-likelihood

LL D
NX
iD1

ln
�
g
�
vsim
i � vdata

i

��
(8)

where in the given setting g is a standard normal distribution;
• The Akaike Information Criterion

AIC D 2k � 2LL (9)

where k is the number of parameters in the model. The AIC takes into account
not only the likelihood but also the number of parameters needed to achieve



Identifiability and Practical Relevance of Complex Car-Following Models 51

Fig. 1 Auto-correlation function of the residuals. Solid: Speed-synchronization, dotted: Newell,
dashed: combined

the corresponding data fit: For two models with the same likelihood values, the
model with the smaller AIC can be considered as “better”.

Overall, the “combined” model yields both the best fit and the the smallest AIC,
indicating its superiority over the two other models. All model parameters are
within plausible ranges: the by far largest effect on the instantaneous velocity results
from the previous velocity, which reflects the inertia of the driver/vehicle system.
Small (but clearly significant) positive coefficients on g and V capture the distance-
sensitivity of the driver as well as her adaptation to the preceding vehicle’s speed.

Additional insights into the model dynamics can be obtained from Fig. 1, which
shows the auto-correlation function of the residuals of the first three models. A first
observation is that the Newell model performs substantially worse than the two other
models, which is apparently due to the omission of the speed of the leading vehicle.

All models exhibit a relatively low autocorrelation at a lag of one, which then
jumps to a larger value again and decays slowly. As a remedy to this “tail” in the
auto-correlation, the “generalized” model (6) is implemented with more than one
lag in the feedback of v on itself. A maximum lag of seven is chosen (after which
the AIC becomes larger again). The resulting coefficients are shown in Table 2.
One observes a clearly improved fit and AIC. Also, the obtained parameters are
plausible again. The velocity v is fed back with a positive coefficient for small lags,
representing inertia. For higher lags, the coefficients become negative, indicating
overreaction. This could be (tentatively) interpreted as drivers being unable to react
immediately but tending to overreact once their perception is updated.

The error autocorrelation function of the generalized linear model is flat, with
only one peak at zero lag, indicating that all linear dynamics are captured well by
the model.
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Table 2 Parameter value(s) for the generalized linear model Eq. (6). All parameters but a4 have
significance levels well below 10�6, the weakest ones being those for g.t � h/ and v.t � 5h/
Model v.t � h/ g.t � h/ V .t � h/ � LL AIC

Generalized 0.813(8) 0.00037(7) 0.0148(6)
0.0486 26,224 �52,429Higher order a2 D 0:26.1/ a3 D 0:1621 a4 D 0 (not sign.)

Terms a5 D �0:640 a6 D �0:0964 a7 D �0:0871

Table 3 Estimation results for the “combined” model, for all drivers

Driver v.t � h/ g.t � 1/ V .t � h/
1 0.9719 0.00127 0.02620
2 0.9748 0.00183 0.02230
3 0.9770 0.00254 0.01897
4 0.9740 0.00102 0.02375
5 0.9757 0.00307 0.01993
6 0.9822 0.00071 0.01648
7 0.9777 0.00159 0.01934
8 0.9679 0.00370 0.02586
9 0.9737 0.00081 0.02471

2.3 Investigation of Driver Heterogeneity and Time-Dependent
Parameters

Table 3 shows the estimation results for all drivers individually, using the “com-
bined” model (4). The is very little variation in the obtained parameter values
between drivers: the results are extremely stable.

This remains the case when looking at the time-resolved parameter estimates for
a single driver. For this, a window of a certain size w is moved along the data, and
within each window the “combined” linear model is estimated. As the time window
is moved along the data, a time-series of each of the parameters of the linear model
is generated. For a window size of w D 20 s, the parameters of a single driver again
turn out to be fairly stable, with the exception of the beginning of the time series,
where the vehicles are standing still and not yet following each other; see Fig. 2 for
an example.

2.4 Simulation Results

Now, the space-time plots of the real data are compared with those obtained by
simulation of the linear models. To begin with, Fig. 3 shows the space-time plots
of the original data for the leading and all nine following vehicles. This plot alone
reveals little but the fact that the leading vehicle indeed varies its speed.
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Fig. 2 Time dependence of the parameters of the generalized linear model for driver one. Solid:
a1, dashed: b1, dotted: c1

Fig. 3 Space-time plot of original data

Figure 4 (left) shows a “differential” perspective on the original data, where only
the following vehicles are plotted relatively to the leading vehicle’s coordinates. One
clearly recognizes a widening and shortening of the platoon in reaction to the lead
vehicle’s driving pattern. Figure 4 (right) shows the corresponding trajectories as
simulated by the “combined” model when following the (exogenously defined) lead
vehicle. Although there are differences, the very simple linear model captures much
of real data’s dynamics quite well.

It turned out that a simulation of the higher-order model specified in Table 2 does
not yield meaningful results: Without non-negativity constraints on the velocities
and additional rules for collision avoidance, the trajectories do not make physical
sense in that the space ordering of the vehicle is not maintained. An addition of
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Fig. 4 Space-time plots of original data. X-coordinates are relative to the leading vehicle. Top:
original data. Bottom: the “combined” model

these constraints leads to a configuration where all vehicles follow the lead vehicle
with almost zero distance. Apparently, the increased number of parameters of this
model enables a better fit, but it also reveals severe structural inconsistencies that
most likely result from uncaptured nonlinearities.
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3 Summary and Outlook

This study aims at an analysis of how much information can be obtained from real
data about a car-following model’s parameters. The results obtained from estimating
a set of linear models from a rich data set lead to the following observations:

1. A linear model with only three parameters (the “combined” model) already
captures much of the dynamics in the data set.

2. The linear model parameters can be estimated robustly and are stable (i) across
the given driver population and (ii) across time.

3. Increasing the number of linear model parameters in order to capture higher-
order dynamics (the “generalized” model) leads to some increase in fit. This,
however, is counterbalanced by implausible simulation results, both without and
with bounds on velocities and distances.

As a preliminary conclusion, it may be feasible to state that during most of the
time, driver behavior is indeed linear. Further studies should therefore focus more
selectively on those episodes in the data where nonlinearities actually take effect.
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Latent Heat of a Traffic Model

Hans Weber and Reinhard Mahnke

Abstract We have studied the optimal velocity model (Bando et al., Jpn J Indust
Appl Math 11:203, 1994; Phys Rev E 51:1035, 1995; J Phys I Fr 5:1389, 1995)
for highway traffic. On a microscopic level, traffic flow is described by Bando’s
optimal velocity model in terms of accelerating and decelerating forces. We define
an intrinsic energy of the model. We find a latent heat when the system undergoes
a phase transition from single phase traffic (free flow) to a phase that contains two
different, a dense and a dilute phase (congested or stop–and–go flow). Here we
report on properties of the latent heat.

1 Introduction

We have studied a model for single lane highway traffic, the so called Bando
Optimal Velocity Model (OVM) [1,2]. In the model a vehicle wants always to drive
with its optimal velocity with respect to the distance to the vehicle ahead, the so
called headway distance. In the model no overtaking is allowed. The model consists
of a set of coupled differential equations one for each vehicle. We integrate out the
equations of motion of the OVM by a Runge Kutta 4th order numerical method.

The phase diagram of the OVM consists of two phases. One is a high density
phase where vehicles have a low velocity (congestion) and the other phase is a low
density phase where vehicles run at nearly maximum velocity (free flow). A system
can end up in one of these two phases in the entire system or it can end up in a mixed
phase state. In the mixed phase state there will be two phase boundaries. The phase

H. Weber (�)
Department of Physics, Luleå University of Technology, S–97187 Luleå, Sweden
e-mail: Hans.Weber@ltu.se

R. Mahnke
Institute of Physics, Rostock University, D–18051 Rostock, Germany
e-mail: reinhard.mahnke@uni-rostock.de

V.V. Kozlov et al. (eds.), Traffic and Granular Flow ’11,
DOI 10.1007/978-3-642-39669-4__6, © Springer-Verlag Berlin Heidelberg 2013

57

mailto:Hans.Weber@ltu.se
mailto:reinhard.mahnke@uni-rostock.de


58 H. Weber and R. Mahnke

ΔxFig. 1 Vehicles marked by
filled circles driving on a
closed loop. The arrows
indicate the direction and
magnitude of the velocity. �x
is the headway distance

boundaries are either at the head of the queue where vehicles leave the congested
phase or at the tail where vehicles break and enter the queue (congested phase). If
there are too few vehicles in the system a high density phase will not form and all
vehicles will be in the low density phase. The OVM undergoes a dynamic phase
transition.

Within the framework of the OVM an energy E of the model can be defined [3]
and from the energy we can calculate a latent heat Egap for the system of cars going
from a phase of low density to one with a high density.

2 The Bando Optimal Velocity Model

The Bando OVM is a deterministic model for traffic flow. It consists of a one-
dimensional circular road (single lane) with periodic boundary conditions, see
Fig. 1.

The set of differential equations making up the Bando OVM dynamics are:

dimension dimensionless

d

dt
vi D 1

�

�
vopt.�xi /� vi

� d

dt
ui D �

uopt.�yi/ � yi
�

(1a)

d

dt
xi D vi

d

dt
yi D 1

b
ui (1b)

vopt .�x/ D vmax
.�x/2

D2 C .�x/2
uopt .�y/ D .�y/2

1C .�y/2
(1c)

b D D

vmax�
(1d)

The set of three equations to the right are the dimensionless version of the equations
to the left. The velocity of the car i is vi and its position is xi . The optimal velocity
function is vopt.�x/. The distance to the vehicle in front, the headway distance,
is denoted by �xi D xiC1 � xi (bumper-to-bumper distance) and c D N=L is
the homogeneous density, where N is the number vehicles and L is the length of
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the road. Control parameters are maximal velocity of a vehicle vmax, an interaction
distance D and a characteristic time � . These three control parameters can be
combined to a single parameter b in the dimensionless version.

Following [3] the acceleration of a vehicle cars can be split into two contributions

m
d

dt
vi D Facc.vi /C Fdec.�xi /

where

Facc.vi / D m

�
.vmax � vi / � 0 (2a)

Fdec.�xi / D m

�

�
vopt.�xi /� vmax

� 2 Œ�vmaxm=�; 0	 � 0 (2b)

Adding together Eqs. (2a) and (2b) recovers Eq. (1a) from above

d

dt
vi D 1

�

�
vopt.�xi /� vi

�
:

The decelerating force Eq. (2b) can be written as (using Eq. (1c))

Fdec.�xi / D vmax
m

�

�
.�x/2

D2 C .�x/2
� 1

	
< 0 : (3)

The decelerating force will always be less then zero but approach zero at infinite
head away distance �x and starting at �vmaxm=� at zero distance.

A potential energy V for the system of N vehicles can be defined as V DPN
iD1 �.�xi / where �.�xi / is the interaction potential of the i -th car with the

car (i C 1) ahead, which is given by (Note Fdec.�xi / ¤ �@V=@xi is a violation of
Newton’s 3rd law)

Fdec.�xi / D �@�.xiC1 � xi /
@xi

D d�.�xi /

d�xi
: (4)

Integrating this equation gives

�.�x/ D vmax
Dm

�

�
�

2
� arctan

�
�x

D

	�
(5)

where the integrating constant is chosen such that �.1/ D 0

The time derivative of the potential V becomes

dV

dt
D

NX
iD1
.viC1 � vi /Fdec.�xi / : (6)
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The time derivative for the kinetic energy T D PN
iD1

mv2i
2

is

d

dt

mv2i
2

D vim
d

dt
vi D vi .Facc.vi /C Fdec.�xi // : (7)

The time derivative of the total energy E D T C V and the energy flux ˚ obey
the following balance equation

dE

dt
C ˚ D 0 (8)

where

˚ D �
NX
iD1

ŒviFacc.vi /C viC1Fdec.�xi /	 (9)

is the energy flux. It includes both input (from engine) and output (friction) of
energy. Energy is not conserved but the driven system will reach a stationary state
as time goes on.

3 Bando OVM Numerical Results

The system is started in a configuration close to the homogeneous state and as time
goes on in the simulation the system ends up in one of two possible stationary states.

It can end up in a homogeneous flow with all vehicles traveling at the same
headway distance. This solution is the fixed point�xi D �xhom, vi D vopt .�xhom/

and all vehicles travel with the same velocity. This would give the dashed line in
Fig. 2.

The other possibility is that the system reaches a limit cycle. In this solution there
is one congested part and one free flow part in the system. Vehicles leave at a steady
rate the head of the queue to enter the free flow regime and after a while they will
reach the tail of the queue and enter the slowly moving regime. This would give
the full line in Fig. 2. Note that there is only one queue in the stationary limit cycle.
If there are more queues the system is still evolving and is not stationary. In the
leftmost figure in Fig. 3 the reduction of the number of queues can clearly be seen
as steps in the energyE as time increases.

Integrating out the equations (Bando OVM equation (1a–1d)) the energy of the
system can be calculated. As the system evolves from its initial configuration the
number of queues will be reduced till the system reaches the limit solution (t ! 1).
After that the energyE of the system will remain constant. In the leftmost Fig. 3 the
evolution of the energy to a constant value can be seen clearly.
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Fig. 3 In the left figure the solid line (larger density 
 D 0:0606m�1) reaches the limit cycle
over a series of smaller queues till finally only one queue is present. The dashed line small density

 D 0:0303m�1 reaches the fixed point a homogeneous system. In the right figure the energy as
a function of the density of cars. The two joining points of the curves define the latent heat to go
from the dense queued state to the free flow

For each particular combination of control parameters N , L and b D D
vmax�

a
calculation is made. In the rightmost Fig. 3 one such result is shown combining
several runs. In this figure there are two curves shown. Where the curves are on
top of each other the system is in a homogeneous limit state. Where the two curves
are separated the system is in the limit cycle. The difference in energy between the
two joining positions of the curves is the energy as the system evolves from a dense
homogeneous system to a dilute homogeneous system via a two phase regime. This
energy difference represents a latent heat, here denoted by Egap.

In the leftmost Fig. 4 the latent heat Egap is presented as a function of the control
parameter b in Eq. (1d). The shape of the curve suggests an analysis according to a
simple power law:

Egap D A.bc � b/˛: (10)

where A is a constant and bc is the value for b that gives a zero latent heat. In
the rightmost Fig. 4 the result according to Eq. (10) is shown. As is apparent from
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Fig. 4 In the left figure the latent energy is shown as a function of the control parameter b. In the
right figure the same data as in the left figure is analyzed according to the scaling relation

the figure the power law seems to be fulfilled quit well. The value arrived for
˛ D 0:4994. The value used for bc D 1:29745. The scaling is rather sensitive
to small changes to bc as the data will not join a straight line for small bc � b.

4 Conclusions

We have shown how ideas from thermodynamics can be applied to such a many–
particle system as traffic flow, based on a microscopic (car–following) description,
in analogy to equilibrium physical systems like super saturated vapor forming liquid
droplets.

We have calculated the latent heat of the model as the system changes from a low
density phase to the a high density phase. We found the there is a scaling behavior in
the latent heat for small bc �b. Results found for the scaling exponent are ˛ D 0:50

and bc D 1:297.
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Estimation of Transport Systems Capacity

Larisa Afanasyeva and Ekaterina Bulinskaya

Abstract A transport system capacity is introduced as maximal car flow density
compatible with a desired quality of system performance. As an objective function
one can choose mean car velocity or mean travel time dealing with highway
capacity. Mean number of cars waiting before crossroads is useful to analyze the
traffic lights capacity. Probability of a line of stationary or very slow moving traffic
with length exceeding a given threshold can also serve for estimation of a transport
system capacity. We consider three examples of transport systems (a highway
without traffic lights with two car types, a single crossroads as well as hierarchical
networks) and estimate their capacities.

1 Introduction

It is well known that in order to investigate a real-life process or system one has
to construct an appropriate mathematical model. Interest in transport models is old
enough, the first one was introduced by Greenshields, see [1], in 1935. Now it is
impossible even to mention all the researchers who contributed to traffic modeling,
see, e.g., [2–5] and references therein. Various methods such as cellular automata,
statistical mechanics, mathematical physics or queueing theory are widely used.

One of the main problems is how to deal with traffic congestion, the condition
on road networks that occurs as their use increases. It is characterized by slower
speeds, longer trip times and increased vehicular queues, leading to loss of time, air
pollution and many other bad consequences.

We define a transport system capacity as the maximal traffic intensity pro-
viding fulfillment of certain conditions concerning parameters characterizing its
performance.
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The paper is organized as follows. In Sect. 2 we estimate the capacity of highway
without traffic lights under assumption of two car types (quick and slow). The Sect. 3
deals with a single crossroads having traffic lights. A hierarchical transport network
is treated in Sect. 4, whereas conclusions and further research directions are given
in Sect. 5. Due to lack of space almost all proofs, as well as numerical results, are
omitted.

2 Highway Without Traffic Lights (Two Types of Cars)

2.1 Model Description

Consider a one-lane highway without traffic lights. There are cars of two types
(quick and slow) moving in the same direction. Let �i dx dt be the probability that a
car of type i appears in the interval .x; x C dx/ during the time interval .t; t C dt/,
i D 1; 2. Velocity of a i -type car is Vi and V1 < V2. The distance covered by a car
of type i on the highway is exponential random variable (r.v.) with parameter �i .

We make two assumptions:

• A car of type 2 (quick) on catching up with a car of type 1 (slow) begins to move
with velocity V1 until either of them leaves the road.

• The car size is not taken into account.

Let X.t/ be a stochastic process with values in the space of configurations X D
f.xs; ns; es/sDC1sD�1g, here xs is the position of the sth group of cars (xs 2 R1), ns is
the size of the sth group (cars number) and es D 1 if the group contains a slow car,
es D 2 otherwise.

According to the model assumptions X.t/ D f.xs.t/; ns.t/; es.t//sDC1sD�1 g is a
homogenous Markov process with values in the space X .

Theorem 1. If �i > 0, Vi > 0, i D 1; 2, then X.t/ is ergodic.

A proof can be found in [2].
We suppose further on that X.t/ is stationary.

2.2 Car Flow Densities

Let I be a finite interval in R1 and jI j its length, whereas I.A/ is indicator of the
event A.

Definition 1. The density of cars moving with velocity Vi , i D 1; 2, at time t is
given by
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ıi D lim
jI j!1

jI j�1
C1X
sD�1

ns.t/I.es.t/ D i; xs.t/ 2 I /; a.s.;

the mean velocity on highway is

QV D V1 C .V2 � V1/
ı2

ı1 C ı2
(1)

and the density of car flow is ı0 D ı1 C ı2.

The main result of this section is the following

Theorem 2. The densities ıi , i D 1; 2, have the form

ı1 D �1�1 C �1�2C.�2V1.1C �1C //
�1; ı2 D �2�2.1C �1C /

�1 (2)

where �i D .Vi�i /
�1 and C D �1�2.V2 � V1/�2.�1 C �2/

�1.

Proof. Let pjdx be the probability that interval .x; xCdx/ contains j cars of type 2
and one car of type 1, j D 0; 1; 2; : : :, whereas qjdx the probability that interval
.x; x C dx/ contains only j cars of type 2, j D 1; 2; : : :. Put ˛ D P1

jD0 pj and
ˇ D P1

jD1 qj .
Equations satisfied by pj and qj were established in [2]. They have the form

.�1V1 C ˇ.V2 � V1//p0 D �2V1p1 C �1; (3)

.j�2V1 C �1V1 C ˇ.V2 � V1//pj D �2V1.j C 1/pjC1 C .V2 � V1/

j�1X
iD0

piqj�i ; j > 0;

.�2V2 C ˛.V2 � V1//q1 D 2�2V2q2 C �1V1p1 C �2; (4)

.j�2V2 C ˛.V2 � V1//qj D .j C 1/�2V2qjC1 C �1V1pj ; j > 1:

These equations can be solved numerically, the algorithm was proposed in [2].
Since ı1 D P1

jD0.j C 1/pj and ı2 D P1
jD1 jqj , we introduce here probability

generating functions P.z/ D P1
jD0 pj zj andQ.z/ D P1

jD1 qj zj . Then we have

ı1 D P.1/C P 0.1/; whereas ı2 D Q0.1/: (5)

Moreover, in Eqs. (3) and (4) we have ˛ D P.1/ and ˇ D Q.1/.
Multiplying the j th equation of (3) (and (4), resp.) by zj , j D 0; 1; : : :, (j D

1; 2; : : :, resp.) and summing them, we get the following equations for generating
functions

�2V1.z � 1/P 0.z/ D P.z/Œ.V2 � V1/.Q.z/�Q.1//� �1V1	C �1; (6)

�2V2.z � 1/Q0.z/ D �1V1ŒP.z/ � p0	 � P.1/.V2 � V1/Q.z/� �2V2q1 C �2z:
(7)
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The left-hand sides of (6) and (7) are equal to zero for z D 1, the same is true of the
right-hand sides. Thus, we get immediately P.1/ D �1�1. Furthermore, using the
L’Hopital rule we obtain P 0.1/ and Q0.1/ as follows

P 0.1/ D lim
z!1

P.z/Œ.V2 � V1/.Q.z/�Q.1//� �1V1	C �1

�2V1.z � 1/

D .�2V1/
�1Œ.V2 � V1/Q0.1/P.1/� �1V1P 0.1/	;

Q0.1/ D lim
z!1

�1V1ŒP.z/ � p0	 � P.1/.V2 � V1/Q.z/� �2V2q1 C �2z

�2V2.z � 1/
D .�2V2/

�1Œ�2 C �1V1P
0.1/� �1�1.V2 � V1/Q

0.1/	:

Solving this system of equations for P 0.1/ and Q0.1/ we get from (5) the desired
expressions for densities ıi , i D 0; 1; 2: ut

2.3 Highway Capacity

Definition 2. The highway capacity is � D maxf�1 C �2 W QV > V1 C�g; where
� 2 .0; V2 � V1/ is specified.

Let the relationship between intensities of slow and quick cars be known, i.e. �1 D
a�2: Then the densities ıi are functions of �2, namely, ıi .�2/, i D 1; 2. Set g.�2/ D
ı2.�2/Œı1.�2/Cı2.�2/	�1, hence, QV .�2/ D V1C.V2�V1/g.�2/. Thus, according to
Definition 2, the highway capacity is � D .1C a/e�2 with e�2 D maxf�2 W QV .�2/ �
V1 C�g; whence we get the following equation for getting e�2

.V2 � V1/g.�2/ D �: (8)

From Theorem 2 one easily obtains

Corollary 1. The function g.�2/ has the form

g.�2/ D �2Œa�1 C �2 C �2aC.a�1 C .�2V1/
�1/	�1:

Since g.�2/ is continuous non-increasing, g.1/ D 0 and g.0/ D �2.�2 C a�1/
�1,

Eq. (8) has a solution e�2 if �.V2 � V1/
�1 < �2.�2 C a�1/

�1. Therefore, for a fixed
� 2 .0; .V2 � V1//, it follows that condition

a < Qa D �2.V2 � V1 ��/.�1�/
�1

is necessary for existence of e�2. Using (2) it is easy to get the explicit form of
solution
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e�2 D �2.V2 � V1/�
�1 � a�1 � �2

a�21�2.V2 � V1/
� �1 C �2

�1 C a�2
(9)

and highway capacity �.
It is clear that e�2.a/ given by (9) is a monotone decreasing function of a, it tends

to infinity, as a ! 0, and equals zero for a D Qa. Moreover, this expression shows
how to organize the traffic in order to increase the highway capacity. For example,
building special exits for slow cars, we increase �1 thus decreasing �1, and that
results in � growth.

3 Crossroads

3.1 Model Description

Consider a crossroads with cars arriving in two perpendicular directions and
introduce the following notation. Let Ai.t/ be a Poisson flow of cars arriving in
the i th direction, �i intensity of the flow and ft .i/n g1nD1 a sequence of green light

switching on times for the i th direction, i D 1; 2. Let 0 D t
.1/
1 < t

.2/
1 < : : : then

�
.1/
n D t

.2/
n � t

.1/
n ; �

.2/
n D t

.1/
nC1 � t

.2/
n , n D 1; 2; : : :, are interswitching times. Their

distribution functions are Gi.x/ D P.�.i/n � x/ with means ��1i D R1
0 x dGi .x/,

i D 1; 2, whereas � D ��11 C ��12 is the period length. Obviously, the intervals

�
.i/
n when the green light is switched on for the i th direction can be interpreted as a

working state of the server, while the red interval can be considered as a repair state.
The time of passing crossroads by a car is usually supposed exponentially

distributed, see, e.g., [6] or [7]. In practice the distribution of the crossing time
for cars arriving to traffic lights during a green interval differs from that for cars
already waiting before traffic lights. To take into account this difference we assume
that a car arriving during a green interval passes the crossroads immediately if
there are no waiting cars (the service time of such cars is zero). The other cars
have exponential distribution with parameter �. All the random variables involved
in model description are mutually independent.

3.2 Ergodic Theorem

Let Xi.t/ be the car number in the i th direction before the traffic lights. Below we
consider a stochastic processX.t/ D .X1.t/; X2.t//, that is, a continuous-time two-
dimensional random walk. If this process is Markovian its ergodicity conditions are
well known, see, e.g., [8]. However in our setting X.t/ is not a Markov process.
Thus, we need to use another approach.
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Theorem 3. The limits

p
.i/
j D lim

t!1P.Xi .t/ D j /; i D 1; 2; j D 0; 1; 2; : : : ; (10)

with p.i/j > 0 and
P1

jD0 p
.i/
j D 1 exist iff


i D �i�i��
�1 < 1: (11)

The proof is based on the fact that in our case X.t/ is regenerative. Its regeneration
points are the times t .1/j with Xi.t

.1/
j � 0/ D 0, i D 1; 2, namely, there is no queue

before the traffic lights in both directions and green light is switched on for the first
direction. Existence of limits (10) follows immediately from the Smith theorem,
see, e.g., [9]. More precisely, it is not difficult to establish that these limits form a
probability distribution iff the process X.t/ is stochastically bounded. Conditions
(11) are necessary and sufficient for stochastic boundedness. That can be proved by
constructing two auxiliary processes, upper and lower bounds (in stochastic sense)
of the process under consideration. The details are given in [5].

3.3 Estimation of Traffic Lights Capacity (Means as Criteria)

Definition 3. Traffic lights capacity in the i th direction i D 1; 2, is the maximal
intensity �i such that a chosen characteristic of performance quality does not exceed
a certain threshold and the ergodicity condition (11) is fulfilled.

In particular, (11) provides the upper bound of capacity �i < �.�i�/�1: It is possible
to consider one of the following parameters as playing the main role in traffic lights
performance (in a steady state):

1. Mean numbermi.�i / of cars before the traffic lights in the i th direction,
2. Mean time ti .�i / of passing crossroads by a car.

Fixing the acceptable values of these parameters m0 or t0 the capacity can be
obtained as solution of one of the equations

1: mi.�i / D m0 or 2: ti .�i / D t0: (12)

Stationary Distribution Calculation

To implement the procedure of solving (12) we have to calculate the limits (10),
since mi.�i/ D P1

jD1 jp
.i/
j .

Hence, begin by treating imbedded Markov chains X.i/
n D Xi.t

.i/
n / where t .i/n is

the moment of the nth switching on of the green light in the i th direction, n � 1,
i D 1; 2. Condition (11) is supposed to be valid. Our aim is to propose an algorithm
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for calculating the stationary distribution of fX.i/
n g, i D 1; 2, as well as steady-state

expected numbers of waiting cars. It is possible to deal only with fX.1/
n g because the

results for fX.2/
n g are obtained by putting everywhere �2 instead of �1, G2 instead

of G1 and vice versa.
To obtain the transition probabilities for imbedded Markov chain we introduce

an auxiliary birth-and-death process Z.t/ with absorbing state f0g, birth intensity
�1 and death intensity �. Put 'kj.t/ D P.Z.t/ D j jZ.0/ D k/, k; j > 0. These
functions satisfy the following system

' 0k1.t/ D �.�1 C �/'k1.t/C �'k2.t/;

' 0kj.t/ D �.�1 C �/'kj.t/C �'k;jC1.t/C �1'k;j�1.t/; j > 1; (13)

with initial conditions 'kk.0/ D 1 and 'kj.0/ D 0 for j ¤ k. The solution of system
(13) is obtained by applying the Laplace transform and its subsequent inversion.
Thus we get the explicit form of 'kj.t/ in terms of generalized Bessel functions of
the first kind. For j > 0,

'kj.t/ D e�.�1C�/t .�1=�/.j�2/=2.Jjj�kj.2
p
�1�t/ � JjCk.2

p
�1�t//

where

Jl .u/ D
1X
mD0

.u=2/lC2m

mŠ� .l CmC 1/
:

Moreover, 'k0.t/ D 1 �P1
jD1 'kj.t/.

Next, denote by dj the probability that j cars arrive during a red interval (in the
first direction), therefore

dj D
Z 1
0

e��1y.�1y/j .j Š/�1 dG2.y/; j D 0; 1; : : : :

Introduce also b00 D 1. Furthermore, let bkj be the probability that at time of red
light switching on there are j cars before traffic lights under condition that at time of
the previous green light switching on there were k cars, namely, bkj D P.X1.t

.2/
n / D

j jX1.t.1/n / D k/, k; j � 0. Then

bkj D
Z 1
0

'kj.y/ dG1.y/; k; j > 0; bk0 D 1 �
1X
jD1

bkj:

The transition probabilities for the imbedded Markov chain fX.1/
n g are given by

P.1/kj D P.X.1/
nC1 D j jX.1/

n D k/ D
jX

mD0
bkmdj�m; k; j D 0; 1; : : : :
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Hence the stationary distribution f�kg of the imbedded Markov chain is obtained by
solving the system

�j D
1X
kD0

�kP
.1/
kj ;

1X
jD0

�j D 1:

So it is easy to calculate the mean number of cars in a steady state (for imbedded
Markov chain). Finally, the stationary distribution fp.1/j g of the process X1.t/ has
the form

p
.1/
j D ��1

1X
kD0

�k

Z 1
0

'kj.y/Œ1 �G1.y/	 dy

C��1
jX
iD0

1X
kD0

�kbki

Z 1
0

e��1y.�1y/j�i Œ.j � i/Š	�1Œ1 �G2.y/	 dy: (14)

Example 1. Assume interswitching intervals to be exponentially distributed. Con-
sider the first direction. Let pj (qj , resp.) denote the probability of car queue before
traffic lights in a steady state having length j and green (red, resp.) light being
switched on for the first direction.

Generating functions for these probabilities are obtained by authors in [5]. The
mean queue length m1.�1/ D P1

jD1 j.pj C qj / has the form

m1.�1/ D �1�1.1C .� � �1/.�1 C �2/
�1/

.�1 C �2/.� � �1/.�2.�1 C �2/�1 � �1��1/
: (15)

Function m1.�1/, for �1 2 .0; �.��1/
�1/, is continuous and monotone increasing.

Sincem1.0/ D 0 and lim�1"�.��1/�1 m1.�1/ D C1, equation 1. in (12) has a unique
solution e�1 which can be considered as traffic lights capacity for the first direction.

Without loss of generality put �1 C �2 D 1 and x D �1�
�1. Then it easily

follows from (15) that a1x2 � b1x C m0.1 � �1/ D 0; here a1 D m0 C �1, b1 D
m0.2� �1/C �1.� C 1/. Hence, e�1 D �.b1 �

q
b21 � 4a1m0.1 � �1//.2a1/

�1:
According to Little’s formula, we calculate the mean passing time of crossroads

as follows t1.�1/ D ��11 m1.�1/: Inserting this expression in equation 2. of (12) we
establish that there exists a unique solution satisfying (11). It represents the traffic
lights capacity according to this criterion.

3.4 Capacity According to Criterion of Level Crossing

Sometimes it is desirable that, for given " > 0 and N0, probability of waiting car
queue length exceedingN0 were less than ".
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Let r.i/j be the probability that the number of cars waiting before traffic lights in
the i th direction in a steady state is equal to j . The aim is to choose the maximal �i
such that

1X
jDN0C1

r
.i/
j < "; �i < �.�i�/

�1: (16)

Using the results obtained in [2] it is possible to propose an algorithm for numerical
estimation of traffic lights capacity in framework of this criterion.

For large N0 one can also use the heavy-traffic asymptotics given by the
following result proved in [5]. Put �ı1 D .1 � ı/�.�1�/

�1 and let X1.�ı1/ be the
number of waiting cars in the first direction if the flow intensity is �ı1.

Theorem 4. If E�2C�i < 1, i D 1; 2, for some � > 0 then

P.ıX1.�ı1/ > y/ ! e�y=�2 ; ı ! 0; (17)

with �2 D 1C .��1/.2�
2/�1.��21 Var�1 C ��22 Var�2/; here �1 and �2 are the green

and red intervals respectively.

Putting

�1 D .1CN�10 �2 ln "/�.�1�/�1; (18)

one obtains from (17) that (16) is fulfilled, so for large N0 the capacity is estimated
by (18).

4 Transport Networks Analysis

4.1 Model Description

We study transport networks assuming that their nodes (vertices) are crossroads
(with traffic lights) and arcs (edges) are the roads connecting the nodes. It is
supposed that each node has two admissible motion directions. Moreover, the
transport system under consideration is a superposition of two hierarchical networks
SC and S�. Hence, if SC contains a route from node A to node B then S� has a
route from B to A.

Time intervals when vehicular traffic in a given node is permitted in network
SC (green light) correspond to the intervals when traffic is forbidden in S� (red
light) and vice versa. We establish conditions of stationary distributions existence
for the processes describing the system performance under assumption that input
flows are regenerative. This enables us to introduce the so-called traffic coefficients
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of nodes, to point out the most loaded ones and investigate the dependence of
asymptotic behavior of car queues at crossroads on the traffic-lights performance.
The estimates of system capacity are also provided.

We assume that the nodes of network SC (S� resp.) consist of r (l resp.) levels
(or classes). Thus, the cars arrive in the network through nodes of the first level,
then they proceed through nodes of the second level etc. and leave the network
through the nodes of the last level. Note that additional nodes with zero passing
times at each level let consider the case with cars arriving (or leaving) the system
on some intermediate level. The interswitching intervals for all the traffic lights
are independent random variables with Erlang distribution. The crossroads passing
times for the cars are exponentially distributed r.v.’s.

Consider SC and enumerate the nodes of each level in such a way that .i; j /
means the j th node, j D 1; ni , of the i th level, i D 1; r . The route is a sequence
I D .j1; : : : ; jr / where ji D 1; ni , i D 1; r . Let d .i/ji ;jiC1

be the distance between the

node ji of level i and the node jiC1 of the level i C 1, ji D 1; ni , jiC1 D 1; niC1,
and v.i/ji ;jiC1

the admissible velocity for cars moving on this link (arc). Suppose a
probability measure fP.I /; I 2 J g is defined on the set J of all the routes and an
arriving car chooses a route I with probability P.I / independently of others.

4.2 Ergodicity Conditions

Thus, we consider an hierarchical transport system with input flow A.t/. It is a
stochastic process fA.t/; t � 0g, A.0/ D 0, taking values 0; 1; 2; : : : defined
on a probability space .˝;F ;P/. The process has non-decreasing left-continuous
trajectories with unit jumps.

Definition 4. The input flow A.t/ is regenerative if there exists an increasing
sequence of r.v.’s f�j ; j � 0g, �0 D 0, such that the sequence

f�j g1jD1 D f�j � �j�1; A.�j�1 C t/ �A.�j�1/; t 2 Œ0; �j � �j�1/g1jD1
consists of i.i.d. random elements.

Note that for the most part flows used in queueing theory are regenerative. Doubly
stochastic Poisson process, Markov modulated, semi-Markov flows and many others
belong to this class, see, e.g., [3]. A very useful property of regenerative flows
is their remaining regenerative (under some general assumptions) after passing a
queueing system of any level of hierarchical networks. It plays important role in our
reasoning.

We use the following notation. Let �i be the i th regeneration point, �i D �i��i�1
the i th regeneration interval, i D A.�i / � A.�i�1/ the car number entering the
network during this regeneration interval, a D Ei , � D E�i .

Intensity of input flow is given by � D limt!1A.t/=t D a=� a.s. The time
of passing the traffic lights .i; k/ has the mean ��1ik , here i is the level of network
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and k is the number of the node on this level. We have assumed that this time has
exponential distribution, however it is possible to consider an arbitrary distribution.
The mean length of the green (red, resp.) interval for the traffic lights .i; k/ is ˛�1ik
(ˇ�1ik , resp.), k D 1; ni , i D 1; r .

Obviously, intensity of input in the node .i; k/ is

�ik D �ıik; k D 1; ni ; i D 1; r; with ıik D
X
I WjiDk

P.I /: (19)

The traffic coefficient of the node .i; k/ is defined as


ik D �ik.˛ik C ˇik/.�ikˇik/
�1: (20)

It is well known that Erlang distribution can be considered as a convolution of
exponential distributions. Namely, if the interswitching times �.j /ik , j D 1; 2, for

the node .i; k/ have Erlang distribution with parameters .�.j /ik ; l
.j /
ik /, then �.j /ik D

�
.j /
ik .1/ C : : : C �

.j /
ik .l

.j /
ik / where f�.j /ik .m/gl

.j /
ik
mD1 are i.i.d. r.v.’s having exponential

distribution with parameter �.j /ik . It follows immediately that

˛�1ik D E�.1/ik D l
.1/
ik Œ�

.1/
ik 	
�1; ˇ�1ik D E�.2/ik D l

.2/
ik Œ�

.2/
ik 	
�1:

We say that at time t the node .i; k/ is in themth phase,m D 1; l
.j /
ik , if t 2 .�.j /ik .0/C

: : :C �
.j /
ik .m� 1/; �.j /ik .0/C : : :C �

.j /
ik .m// where �.j /ik .0/ D 0. Moreover, for j D 1

the green light is switched on, whereas for j D 2 the red light is switched on.
Introduce a stochastic process

X.t/ D .qik.t/;wik.t/; eik.t/; uik.t/; i D 1; r; k D 1; ni /;

here qik.t/ is the number of cars waiting at the traffic lights .i; k/, wik.t/ the number
of cars on all the arcs going out of node .i; k/, furthermore eik.t/ D 1 (or 2) in case
of green (red, resp.) light switched on and uik.t/ is the number of phase in the node
.i; k/ after the previous switching of lights.

Theorem 5. The process X.t/ is ergodic iff


ik < 1 for all k D 1; ni ; i D 1; r: (21)

Sketch of proof. The process X.t/ is regenerative and its regeneration points are �j
satisfying the following conditions qik.�j �0/ D 0, wik.�j �0/ D 0, eik.�j �0/ D 1,
uik.�j � 0/ D 1. We use the fact that input flow for each node is regenerative, a
well-known Smith theorem and majorization procedure.

If for some node of network the ergodicity condition (21) is not fulfilled, that is,

ik � 1, then qik.t/ will be stochastically unbounded, as t ! 1.
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4.3 Capacity of Transport Network

Conditions (21) enable us to estimate the maximal admissible intensity of car inflow
in the network SC as follows

� < min
kD1;ni I iD1;r

�ikˇikŒ.˛ik C ˇik/ıik	
�1: (22)

The same inequalities let us establish the network bottlenecks with 
ik defined by
(20) very close to 1.

The objective function measuring the network performance we are going to
consider is the mean time T .�/ of passing the route by a car. Recall that� is intensity
of input flow to network.

Definition 5. The capacity of network is the maximal intensity of input flow �

satisfying the ergodicity condition (22) as well as inequality T .�/ � T0, where
T0 is the upper limit of desired network passing time by a car.

The question is how to determine T0. At first we calculate the minimal mean time
of passing the network by car. To this end consider a car arriving to empty network
(that is, containing no other cars). Let t.I / be the mean time of passing the route
I D .j1; : : : ; jr /, then

t.I / D
rX

kD1

d
.k/
jk;jkC1

v
.k/
jk;jkC1

C
rX

kD1

˛kjk

˛kjk C ˇkjk

.ˇ�1kjk
C ��1kjk

/: (23)

The first sum in (23) is the mean time of passing of all the arcs connecting the nodes
of the chosen route, whereas the second sum is the mean time of nodes (traffic lights)
passing by a car.

The mean velocity of passing the route I is given by v.I / D jjI jj=t.I /, here
jjI jj D Pr

kD1 d
.k/
jkjkC1

is the length of the route.
Thus, the minimal mean time of route passing and the maximal mean velocity are

Tmin D
X
I

t.I /P.I /; vmax D
X
I

P.I /jjI jj=t.I /; (24)

respectively. Obviously, the network capacity can be determined by the condition
v.�/ � v0 for mean velocity instead of T .�/. Here v.�/ is the mean car velocity in
case of input flow intensity � and v0 the admissible bound.

Expressions (24) let us establish the possible values of Tmin and vmax. Clearly
they depend only on network structure and its parameters and are independent of
the inflow intensity. It is possible to take T0 D #Tmin and v0 D vmax#

�1 for some
# > 1.
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4.4 Approaches to Estimation of Network Capacity

For capacity estimation we have to calculate (or estimate) the mean time or mean
velocity of network passing. Recall that intensity of car inflow to node .i; k/ is given
by (19). Suppose for simplicity that input to network is Poisson with parameter �.
Then the inflows to the nodes of the first level of network are also Poisson with
parameters �ı1j , j D 1; n1.

The inflows to the nodes of the second level are not Poisson even for exponential
traffic lights passing times. They are doubly stochastic Poisson processes. The
previous level forms the random environment for these processes. However for large
networks these inflows may be considered approximately Poisson as the sums of
large number of regenerative flows, see, e.g., [10]. Hence, assume that for a chosen
route I D .j1; : : : ; jr / we have Poisson inflows for all nodes with parameters
�ı1j1; : : : ; �ırjr , respectively.

Consider some arc of the route, dropping all indices for brevity. Let d be the arc
length and Q� the intensity of the Poisson input at the node beginning the arc. If Q�
is small then a car does not disturb the others, that is, the mean car velocity does
not depend on the intensity. Thus, to calculate the mean car velocity one can use the
first term in (23). If Q� is large enough, a car on reaching a slow one either overtakes
it or has to slow down. It is possible to use the model with two car types proposed
in Sect. 1.

If the distance between the traffic lights (arc length) is not large we propose
another model. Let V1 < V2 < : : : < Vl be the set of possible velocities and pj
the probability that a car intends to move with velocity Vj , j D 1; l . The main
assumption is that if after passing the traffic lights a car finds some other car on the
arc it begins to move with the same velocity. Otherwise its velocity equals Vj with
probability pj .

To find the mean car velocity on the arc consider a queueing system M jGj1
with input intensity Q�. Assume that the customer arriving to the empty system (that
is, that beginning the busy period) has the service time d=Vj with probability pj .
All the customers arriving during this busy period have the same service time. We
say that the busy period has type i if the service times are equal to d=Vi , i D
1; l . Denote by T .i/b such a busy period. It is not difficult to establish that  i.s/ D
Ee�sT

.i/
b has the form .sC Q�/.se.sCQ�/d=Vi C Q�/�1,Re s � 0. It follows immediately

that ET .i/b D Q��1.eQ�d=Vi � 1/: According to Little’s formula, the mean number of

customers served during this busy period is given by ~.i/ D e
Q�d=Vi � 1: Hence,

the mean number of customers served during a busy period is ~ D Pl
iD1 pi~.i/ DPl

iD1 pi e
Q�d=Vi � 1: The probability of moving on arc with velocity Vi is equal to

pi~
.i/=~ and the mean velocity on the arc is

NV D
lX

iD1
Vi .e

Q�d=Vi � 1/pi

 
lX

iD1
pie
Q�d=Vi � 1

!�1
: (25)
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For the arc .jk; jkC1/ of the chosen route denote by p.k/i the probability of velocity
Vi , i D 1; l , k D 1; r . Finally, the mean total time of passing the route I D
.j1; : : : ; jr / is given by the first sum in (23) with Qv.k/jkjkC1

.�/ instead of v.k/jkjkC1
where

Qv.k/jkjkC1
.�/ D

Pl
iD1 Vip

.k/
i .e

�ıkjk djkjkC1
=Vi � 1/

Pl
iD1 p

.k/
i e

�ıkjk d
.k/
jk jkC1

=Vi � 1
: (26)

Now it is necessary to find the mean waiting time before the traffic lights. For the
simple case of exponential interswitching times (with parameters �.i/jk , i D 1; 2, for
the node .j; k/ with i D 1 corresponding to the green light and i D 2 for the red
one) one can rewrite expression (15) for the mean waiting time before traffic lights
in the form

mjk.xjk/ D xjk.1 � cjk/.1C djk.1 � xjk/.1� cjk//

.1 � xjk/.cjk � xjk/
(27)

with xjk D �jk=�, cjk D Œ�
.1/
jk �jk	

�1, �jk D Œ�
.1/
jk 	
�1 C Œ�

.2/
jk 	
�1, djk D �=�

.1/
jk . The

mean time of traffic lights .j; k/ passing by a car is found by means of Little’s
formula, that is, t.jk/ D ��1jk mjk.xjk/:

Using (23) we get the mean time of route I D .j1; : : : ; jr / as

t.I / D
rX

kD1

d
.k/
jkjkC1

Qv.k/jkjkC1
.�/

C
rX

kD1

m
.k/
jk .xkjk /

�ıkjk

with Qv.k/jkjkC1
.�/ given by (26) and m.k/

jk by (27).
Then the mean time of passing is

T .�/ D
X
I

t.I /P.I /:

Thus the problem is to find � satisfying (22) and being the solution of equation

T .�/ D #Tmin for a chosen #:

5 Conclusion and Further Research Directions

A transport system capacity was introduced as maximal car flow intensity compati-
ble with a desired quality of system performance. As an objective function we have
chosen

• The mean car velocity or mean travel time dealing with highway capacity,
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• The mean number of cars waiting before crossroads useful to analyze the traffic
lights capacity,

• Probability of a line of stationary or very slow-moving traffic (caused by traffic
lights, road works, an accident or heavy congestion) with length exceeding a
given threshold.

We have considered several examples of transport models, namely, a highway
(without traffic lights) with two types of cars, a single crossroads with traffic lights,
as well as hierarchical networks and estimated their capacities. For this purpose
we investigated the limit behavior of such systems (proving ergodic theorems) in
light- and heavy-traffic conditions. Markov, Poisson and doubly stochastic Poisson
processes, renewal and regenerative ones are the main tools in our study.

There arise interesting problems for further investigation concerning the optimal
choice of routes and optimization of traffic lights performance under general
assumptions about the random variables involved in models description. The results
will be published elsewhere.
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Classification Approach to Traffic Flow
Simulation

Yury V. Chekhovich and Nikita P. Ivkin

Abstract A new approach to a microscopic traffic flow simulation is presented.
The approach is based on application of data mining techniques. Key moments
of constructing process are considered and main advantages in comparison with
classical models are provided.

1 Introduction

Simulating and predicting traffic macro parameters (such as velocities and flows)
in heterogeneous traffic networks is an essential problem in transport management.
In the majority of modern approaches to the given problem either heterogeneity
of a simulated traffic flow isn’t considered at all, or solution is offered just for
several special cases. Taking into account heterogeneity means considering different
types of agents in traffic flow (buses, trucks, private cars, etc.). But, the structure of
heterogeneity is supposed to differ from one place to another and change in time.
Thus, ready-made solutions give back bad quality of simulating. In this paper, we
propose a new method of constructing microscopic models. This method allows
taking into account different kinds of heterogeneities.
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2 Key Ideas of Model Construction

2.1 Classification Approach

This paper is based on the classification approach of simulation modelling of
the complex socially-technical systems offered in [1–3]. Obviously, the simulated
object, namely a traffic flow, is a complex socially-technical system in the terms
determined in mentioned articles: a traffic flow consists of a quantity of vehicles and
drivers make decisions which completely define the movements of vehicles operated
by them. Further we name pair <vehicle, driver> as a subject and, saying that the
subject makes the decision, we mean that the decision is accepted by the driver.

The classification approach is based on three general assumptions:

1. Assumption on behaviour of system:

• Each subject has the information about itself and about subjects from some
“vicinity”, that is “the situation description”.

• Analysing “the situation description” the subject makes the decision on the
further behaviour.

• Often the subject gets out the decision from finite, most likely “relatively
small”, set of decisions.

2. Assumption on behaviour of system:
There is some measure of similarity (or even metrics) in the space of

“descriptions of situations”. It is supposed that the subject in situations of one
class makes the same decisions and, thus, it allows classifying “situations”.

3. Assumption on existence of subject types:
Subjects which belong to one type in similar situations accept identical (or

similar) decisions. This idea is effectively applicable only if there are many
subjects and comparably less types.

2.2 Fitting Classification Approach to Traffic Micro-models

We propose to construct a model in terms of microscopic simulation. In a traffic
flow “the situation description” for the simulated subject is the information about
itself and about the nearest vehicles. This information can be presented in the form
of vector of microscopic parameters. For example, for acceleration model [6] the
vector of microscopic parameters consists of subject’s speed, distance to a leader and
leader’s speed. Some other micro-parameters are presented in the Fig. 1: distance to
a leader, distance to the neighbour car (LXA), velocities of different neighbour cars
and others.
The set of decisions is determined by possible changes in the movement mode
undertaken by the subject. For acceleration model the multitude of decisions
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Fig. 1 Micro-parameters examples

5 5 2
3

3

Fig. 2 Two stages of model constructing

consists of strong and weak accelerations, maintenance of speed, strong, weak and
emergency braking. Such a poor model, apparently, fails any quality competition,
but it is good for understanding key points.

When the formal description of situations space is received and the set of
decisions is set, data for tuning our model should be presented in following view:
<subject id, situation description—decision>. Further, the construction procedure
of model divides into two stages (Fig. 2).

Stage One: Zonal Pattern of Behaviour for Each Subject

We propose to classify situations for each subject using provided sample of
precedents. We need to introduce some measure of similarity in the space of
situations descriptions. The most evident candidate is n-dimensional Euclidean
metric or may be its weighted variant.

F .S1; S2/ D
vuut NX

iD1
wi .a1i � a2i /2; (1)

where S1 and S2—two situations, aji—micro-parameter number i that described
situation Sj , wi—weight of micro-parameter aji and N—number of given
hboxmicro-parameters.
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Then, we should use some algorithm of classification, for example, Support
Vector Machine (SVM) [4]. The constructed classifier divides all space of situations
into zones of various decisions (zonal pattern). Thus, decisions are evaluated for
each vector of micro-parameters, that is for each situation.

Stage Two: Types Description

Dealing with a large sample of subjects described by zonal patterns, it’s essential to
search some groups of similar subjects. In simulation each group will be presented
by some average representative. Thus, we need to solve the problem of clustering [4]
on a set of zonal patterns, thereby subjects with a similar choice of decisions
correspond to one group, that is to one type. To solve the problem of clustering
we need to introduce measure of similarity on a set of zonal patterns. For example,
we could divide a zonal pattern into finite number of small square parts and several
infinite parts, then introduce the following function as measure of similarity between
two zonal patterns, v and u:


 .v; u/ D
nX
iD1

w .v; u; i / Œz .v; i/ ¤ z .u; i /	 ; (2)

where i D 1 : : : n—number of part (apparently it is supposed that all zonal patterns
were divided identically), z .v; i/—function, that returns type of the zone, which
occupy the biggest space in part number i of zonal pattern v, w .v; u; i /—weight
function that depends on type of difference in part number i of zonal patterns v
and u. We can use algorithm FOREL (FORmal ELement [4]) for clustering zonal
patterns.

2.3 Training Data Collecting

To create a training sample mentioned above authors suggest to use the program
stand simulating the movement of a car driven by an operator in a traffic flow.
All situations descriptions and undertaken decisions are fixed by the program, and
relying on the received sample of precedents the model is identified. More accurate
tool of creation of precedent samples would be a real vehicle equipped with sensors
which fix situations descriptions and undertaken decisions. The program stand
allows to show general qualities of the offered model.

2.4 Key Model’s Features

We propose to consider two classes of microscopic models: acceleration models
and lane changing models. Several shortcomings of the classical approach, which
are avoided in the offered model, are presented below:
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• The majority of models are tuned on some “average” driver (“average” in
terms of internal parameters) and often it isn’t informative enough. The model
constructed according to the classification approach assumes division of subjects
into types, thus, the given lack isn’t inherited. Even more, the number of types is
evaluated from training sample, that give us an opportunity to take into account
different types of heterogeneity.

• The majority of the program complexes based on microscopic modelling don’t
allow switching of models for simulating the same subject. Though in various
situations this subject can behave differently. The given lack is also eliminated
by construction.

• Historically, the majority of models were offered as complications and general-
izations of already existent models. For example, here is a General Motors chain
of models:

1. an.t/ D ˛�V
front
n .t � �n/—Chandler et al. [5],

2. an.t/ D ˛
.�V

front
n .t��n//

.�X
front
n .t��n//—Gazis et al. [6],

3. an.t/ D ˛
.Vn.t/

ˇ�V
front
n .t��n//

.�X
front
n .t��n/� / —Gazis et al. [7],

where an—the acceleration of a simulated car, �V front
n —the relative speed of

a leader, �X front
n —the distance to a leader, Vn—the speed of a simulated car,

�n—the time of driver’s reaction, ˛; ˇ; �—internal parameters. Each subsequent
model has new internal and external parameters. Therefore for each situation
there is a question of choosing particular model. On the one hand, chosen model
shouldn’t be too simple, but on the other hand, too complex model involves
an over-fitting problem. In the model constructed according to the classification
approach, the problem of complexity turns into the problem of feature selection
in classification. There already exist feature reduction methods for classification
problems (features are the parameters of situations descriptions in our case) [4].

Thus, the offered approach allows eliminating the specified lacks. Also in the
present paper it is proved that any reasonable classical model can be approximated
by the model constructed according to the classification approach as precisely as
needed.

3 Conclusion

We’ve proposed the application of the classification approach offered in [1, 2] to
the traffic flow problem as an instrument of considering heterogeneity. We also
have offered a program stand which can be used to demonstrate features of model
identification.And finally, we’ve shown that the basic lacks of classical models
are eliminated in the offered model. This branch of traffic modelling should be
developed theoretically and, of course, should be compared experimentally with
classical models.
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Multilane Vehicular Traffic Simulation Using
the CA Theory

Ilya Furmanov, Natalia Churbanova, and Marina Trapeznikova

Abstract The paper deals with the development of microscopic mathematical
models for the simulation of vehicular traffic flows taking into account real road
geometry, i.e. the multilane structure, presence of crossroads, traffic lights etc.
The proposed model is based on the cellular automata (CA) theory. Generalization
of the Nagel-Schreckenberg model to the multilane case is presented. The model has
been verified by the number of test problems. Practically important road situations
have been predicted. Simulation of traffic on a crossroad demonstrates the influence
of traffic lights regimes on the crossroad capacity. The road capacity depending on
the entries/exits presence and on the distance between them is also investigated.

1 Model Description

The proposed microscopic model is based on the cellular automata (CA) theory. CA
theory is an idealization of the physical system with discrete space and time, each
of interacting units of this system has got a finite number of discrete states. For the
description of vehicular traffic the CA concept is being developed since 1980s.

In the classical approach, a lane is represented by a one-dimensional lattice. Each
cell of the lattice can be either empty or occupied by one particle, which represents
a vehicle. Vehicles can skip from one cell to another (which must be empty) in
one direction and cannot overtake one another. Since space and time are quantified,
the speed and the acceleration take on only discrete values. In such models the
particle movement is regulated by special laws of the cell state update incorporating
stochastic observations. The update rules are identical for all cells and are applied
to all cells in parallel. Therefore parallel computer codes can be developed for
modeling to run on high-performance multiprocessors.
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The CA rules feature the property of locality. In other words, to obtain the current
state of the cell, it is necessary to know only the states of some of its neighbors called
the cell vicinity. The cell length equals the length of the road interval occupied by
a vehicle in the traffic jam that is the length of a vehicle and the distance between
neighboring vehicles. Usually it is 7.5 m. The speed denotes how many cells the
vehicle overpasses during a time step. The cell length, the maximal speed and the
time step describe the model completely.

One of the well-known CA-based microscopic models is the Nagel—
Schreckenberg model [1]. Its original variant is one-dimensional. In this model
the speed v of each vehicle can take one of the integer values v D 0; 1; : : : ; vmax

(each vehicle can have its own vmax ).
If xn and vn are the position and the speed of the current n-th vehicle, dn is the

distance between the current vehicle and the vehicle in front of it, then at each time
step t ! t C 1 the algorithm of the vehicle arrangement update consists of the next
stages:

1. Acceleration vn ! min.vnC1; vmax/

2. Deceleration vn ! min.vn; dn�1/
3. Randomization vn ! max.vn�1; 0/ with some probability p
4. Vehicle movement xn ! xn C vn

The first stage reflects the common tendency of all drivers to move as fast as
possible, the second one guarantees avoiding collisions, the third one takes into
account randomness in driver behavior, and the skip itself takes place on the fourth
stage—each vehicle is moved forward according to its new velocity.

The Nagel-Schreckenberg model is a minimal model because it reproduces
only primary features of real traffic flows. The present research takes this model
as a basis to describe movements on relatively short road intervals with a high
probability of traffic congestion. Aiming at simulation of multilane traffic, the
authors have generalized the above model to the two-dimensional case. In this case
the computational domain is the 2D lattice. The number of cells in the transverse
direction corresponds to the number of lanes. Such a model allows vehicles to
change lanes and to overtake one another. The algorithm of the cell state update
is formed by two components:

1. Lane change (if it is necessary and possible);
2. Movement along the road by the rules of one-lane traffic (stages 1–4 above).

Change of lanes should happen during a time step. If there are more than two lanes
in one direction, a conflict can occur when two vehicles from extreme lanes tend to
the inner lane and try to occupy the same cell. The rule like the next one could help
to resolve such a situation: vehicles change to the right only on even time steps and
change to the left on odd steps.

In general rules and conditions for changing lanes are as follows:

1. Vehicle is located in the domain where lane change is allowed;
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2. Lane change leads to increase of the speed (decrease of the density) or is
necessary to reach the destination (to achieve the goal);

3. Target cell is empty;
4. Safety condition is satisfied—on the target lane the distance behind the vehicle

is greater or equal to vmax, in front of the vehicle it is greater or equal to vn, then
the change takes place with some probability.

The algorithm proposed in the present work ensures the possibility to achieve the
destination. For example, the side road exit or the appointed turn at traffic lights can
be assumed as destinations in multilane traffic. In any case, starting from the certain
time moment vehicles aim at the target lane and ignore the density and velocity
values on it. However drivers cannot disregard the safety condition. If the destination
is not far, vehicles change to the target lane at the first opportunity and do not quit
it anymore. The situation is possible when a driver is not able to turn to the required
lane up to the destination achievement. In such cases the vehicle has to stop near by
the target lane and to wait for the opportunity of wedging itself in the lane. In doing
so, it can disable forward movement of other vehicles on the current lane. General
considerations help to evaluate the distance to the destination at which drivers start
trying to change to the target lane. As a matter of fact, this distance depends on the
flow density. In different problems it is 75–150 m. Thus the developed model keeps
the destination parameter for each vehicle. Vehicle destinations are obligatory, they
cannot be modified.

2 Test Predictions

In this work, results of test predictions are compared to results obtained on the
same initial data with usage of macroscopic quasi-gas-dynamic (QGD) approach,
described in [2]. Results obtained using CA approach are numerically close to
those, obtained with the usage of the macroscopic model [3]. This fact leads us
to conclusion that both models are consistent with the real road traffic movement.

2.1 Local Widening of the Road

The first test problem is vehicle movement on the road with local widening.
The corresponding road configuration is shown in Fig. 1.

Figure 2 demonstrates the density field obtained with the use of the macroscopic
model. The density for a given computational domain is shown. The density of
vehicles falls at the wide part of the road but when the traffic flow shrinks back
from three to two lanes, the speed falls significantly. Thus, the total time required to
pass the given road interval grows as compared with the road without widening.
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Fig. 1 Local widening: the problem statement

Fig. 2 Density field obtained via the macroscopic model

Fig. 3 Density field obtained via the microscopic model

The same test problem has been solved using the microscopic model. The average
density is depicted in Fig. 3. One can observe the same tendency: the maximal
density is located at the end of widening. Moreover, the density at the road exit
exceeds the enter density.

2.2 Crossroad Simulation

The second problem to be considered is the simulation of traffic on a crossroad
at different traffic lights regimes using the above microscopic model. The problem
consists in obtaining the optimal traffic lights regime namely the signal durations to
ensure the minimal time of stay on the crossroad for all traffic participants. Figure 4
illustrates the problem.
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Fig. 4 Problem statement of traffic lights on the crossroad

Fig. 5 Incoming flow rates and allowed directions on the crossroad

Lattice consists of four crossing roads each of them has four lanes: two in forward
and two in reverse directions. The traffic flows are multicomponent, incoming
flow rates are non-uniform. There are vehicles of four types according to its
destination—to move forward or to turn to the right or to the left. Figure 5 shows
incoming flow rates and allowed directions of movement on the crossroad.

Traffic lights has four operating modes which determine the order of traffic on
the crossroad at the given time moment (see Fig. 6). Each mode has its own duration
coinciding or not with other ones. All data correspond to some real crossroad.

Vehicles have more complicate behavior in the vicinity of the crossroad in
comparison with straight intervals of the road. If the vehicle intends to turn it must
decrease the speed till to allowed for turning. The vehicle must also take into account
positions of vehicles in neighbor lanes and in other directions.
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Fig. 6 Traffic lights
operating modes allowing the
given directions on the
crossroad

Apart from steps, described in Sect. 1, following rules are also applied to vehicles
in this simulation:

• Within 200 m before traffic lights the vehicle changes lane under its purpose
according to the road laws.

• Additional speed decreasing takes place under the follows conditions:

– If the vehicle is located near the turning point (at the turning point it stops);
– If the traffic light is red;
– If there is the collision threat on the crossroad.

• The vehicle turns if it is located in the turning point and has got the corresponding
target.

Table 1 demonstrates results of predictions. Varying mode durations one can
increase the crossroad capacity, i.e., the number of vehicles overpassing the
crossroad for 10 min. Obtained results allow us to conclude the following. Equal
mode durations do not provide the best capacity (see row 2 of Table 1). Mode 1
allows passing over the crossroad by vehicles with the maximal incoming flow rate.
But excessive increase of the Mode 1 duration does not lead to the capacity increase
(compare rows 2 and 4).

2.3 Comparative Analysis of Different Road Types

In the next set of problems, we perform a comparative analysis between ordinary
roads without any entries/exits and roads of special configuration with multiple
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Table 1 The traffic lights operating modes—simulation results

Mode 1 Mode 2 Mode 3 Mode 4 Capacity of
duration, s duration, s duration, s duration, s the crossroad

90 90 45 45 490
60 60 60 60 545
90 60 90 60 545
45 45 60 60 575
45 45 90 90 575

Fig. 7 Configuration of the road with multiple entries and exits

entries/exits. Reason for this test was to validate model and find optimal configu-
rations of the road.

In the first problem of this set we compare the ordinary 3-lane road and the road
with entries and exits placed at the both road sides at different distances (see Fig. 7).
Both road types have the same length and input flows per a lane. All roads with
multiple entries and exits have the same additional input flow per an entry and the
same length of speed-up/slow-down lane. What we vary is the number of lanes in
the road of special configuration (1, 2 or 3 lanes) and distance K between adjacent
entries.

Test results show us that even the two-lane road of special configuration is almost
twice as better as the ordinary road in terms of capacity (see Fig. 8).

We also found optimal distance between entries for the road of special configu-
ration (Fig. 9). Note the fact that this distance is significantly different for one-lane
roads and two- or three-lane roads. This is because in case of one lane additional
entries, if situated too close to each other, add too much extra flux that cannot be
digested by the system and results in traffic jams.

In the case of two- and three-lane roads the optimal distance between adjacent
entriesK is equal to 1.5 km vs. 3 km in the single lane case.

In the second problem related to roads of different configurations, we compare
two proposed configurations of 75-km long road. The first road is the four-lane road
with entries and exits located at every 3 km at the right side of the road. The second
option is a two-lane road of special configuration, with exits and entries located at
both sides of the road, 1.125 km away from each other, as on Fig. 7.
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Fig. 8 Maximum capacity of the ordinary road vs. the roads with multiple entries and exits

Fig. 9 Optimal distance between adjacent entries for 1-,2- and 3-lane roads

Table 2 Capacity (in
vehicles per hour) of studied
roads

Four-lane road, Three-lane road,
Ordinary Special
vph vph

11,000 15,000

Test results show us that despite the road of special configuration has two times
less lanes, overall capacity of it is higher, than one of the four-lane ordinary road
(see Table 2).
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3 Conclusions

• The model and algorithm developed can be implemented as a program package to
be used in various engineering applications, including recommendations for the
optimal motorway construction, road situation prediction and traffic flow control.

• High performance of modern supercomputers allows implementation of
microscopic models with the detailed description of each vehicle behavior at
large-scale computations. One of macroscopic models distinctive features—the
possibility of large distances simulation—inheres now in microscopic models
too.
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Multi-agent Model of the Price Flow Dynamics

Vadim Malyshev, Anatoly Manita, and Andrei Zamyatin

Abstract On the real line initially there are infinite number of particles on
the positive half-line., each having one of K negative velocities v.C/1 ; : : : ; v

.C/
K .

Similarly, there are infinite number of antiparticles on the negative half-line, each
having one ofL positive velocities v.�/1 ; : : : ; v

.�/
L . Each particle moves with constant

speed, initially prescribed to it. When particle and antiparticle collide, they both
disappear. It is the only interaction in the system. We find explicitly the large time
asymptotics of ˇ.t/ – the coordinate of the last collision before t between particle
and antiparticle.

1 Introduction

We consider one-dimensional dynamical model of the boundary between two phases
(particles and antiparticles, bears and bulls) where the boundary moves due to
reaction (annihilation, transaction) of pairs of particles of different phases.

Assume that at time t D 0 infinite number of .C/-particles and .�/-particles are
situated correspondingly on RC and R� and have one-point correlation functions

fC.x; v/ D
KX
iD1



.C/
i .x/ı.v � v

.C/
i /; f�.x; v/ D

LX
jD1



.�/
i .x/ı.v � v

.�/
j /
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Moreover for any i; j

v
.C/
i < 0; v

.�/
j > 0

that is two phases move towards each other. Particles of the same phase do not
see each other and move freely with the velocities prescribed initially. The only
interaction in the system is the following. When two particles of different phases find
themselves at the same point they immediately disappear (annihilate). It follows that
the phases stay separated, and one might call any point in-between them the phase
boundary (for example it could be the point of the last collision). Thus the boundary
trajectory ˇ.t/ is a random piece-wise constant function of time.

One of the possible interpretations is the simplest model of one instrument (for
example, a stock) market. Particle initially at x.0/ 2 RC is the seller who wants
to sell his stock for the price x.0/, which is higher than the existing price ˇ.0/.
There are K groups of sellers characterized by their activity to move towards more
realistic price. Similarly the .�/-particles are buyers who would like to buy a stock
for the price lower than ˇ.t/. When seller and buyer meet each other, the transaction
occurs and both leave the market.

The main result of the paper is the explicit formula for the asymptotic velocity of
the boundary as the function of 2.K CL/ parameters – densities and initial veloci-
ties. It appears to be continuous but at some hypersurface some first derivatives in the
parameters do not exist. This kind of phase transition has very clear interpretation:
the particles with smaller activities (velocities) cease to participate in the boundary
movement – they are always behind the boundary, that is do not influence the market
price ˇ.t/. In this paper we consider only the case of constant densities 
.C/i ; 


.�/
i ,

that is the period of very small volatility in the market. This simplification allows
us to get explicit formulas. In [1] much simpler case K D L D 1 was considered,
however with non-constant densities and random dynamics.

Other one-dimensional models (hardly related to ours) of the boundary move-
ment see in [2, 3].

Main technical tool of the proof may seem surprising (and may be of its own
interest) – we reduce this infinite particle problem to the study of a special random
walk of one particle in the orthant RNC with N D KL. The asymptotic behavior of
this random walk is studied using the correspondence between random walks in RNC
and dynamical systems introduced in [4].

2 Model and the Main Result

2.1 Initial Conditions

At time t D 0 on the real axis there is a random configuration of particles, consisting
of .C/-particles and .�/-particles. .C/-particles and .�/-particles differ also by
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the type: denote IC D f1; 2; : : : ; Kg the set of types of .C/-particles, and I� D
f1; 2; : : : ; Lg – the set of types of .�/-particles. Let

0 < x1;k D x1;k.0/ < : : : < xj;k D xj;k.0/ < : : : (1)

be the initial configuration of particles of type k 2 IC, and

: : : < yj;i D yj;i .0/ < : : : < y1;i D y1;i .0/ < 0 (2)

be the initial configuration of particles of type i 2 I�, where the second index is the
type of the particle in the configuration. Thus all .C/-particles are situated on RC
and all .�/-particles on R�. Distances between neighbor particles of the same type
are denoted by

xj;k � xj�1;k D u.C/j;k ; k 2 IC; j D 1; 2; : : :

yj�1;i � yj;i D u.�/j;i ; i 2 I�; j D 1; 2; : : : (3)

where we put x0;k D y0;i D 0. The random configurations corresponding to the
particles of different types are assumed to be independent. The random distances
between neighbor particles of the same type are also assumed to be independent, and
moreover identically distributed, that is random variables u.�/j;i ; u

.C/
j;k are independent

and their distribution depends only on the upper and second lower indices. Our
technical assumption is that all these distributions are absolutely continuous and

have finite means. Denote �.�/i D Eu.�/j;i ; 

.�/
i D

�
�
.�/
i

��1
; i 2 I�, �.C/k D

Eu.C/j;k ; 

.C/
k D

�
�
.C/
k

��1
; k 2 IC.

2.2 Dynamics

We assume that all .C/-particles of the type k 2 IC move in the left direction with
the same constant speed v.C/k , where v.C/1 < v

.C/
2 < : : : < v

.C/
K < 0. The .�/-

particles of type i 2 I� move in the right direction with the same constant speed
v
.�/
i , where v.�/1 > v

.�/
2 > : : : > v

.�/
L > 0. If at some time t a .C/-particle

and a .�/-particle are at the same point (we call this a collision or annihilation
event), then both disappear. Collisions between particles of different phases is the
only interaction, otherwise they do not see each other. Thus, for example, at time t
the j -th particle of type k 2 IC could be at the point

xj;k.t/ D xj;k.0/C v
.C/
k t
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if it will not collide with some .�/-particle before time t . Absolute continuity of
the distributions of random variables u.�/j;i ,u.C/j;k guaranties that the events when more
than two particles collide, have zero probability.

We denote this infinite particle process D.t/.
We define the boundary ˇ.t/ between plus and minus phases to be the coordinate

of the last collision which occured at some time t 0 < t . For t D 0 we put ˇ.0/ D 0.
Thus the trajectories of the random process ˇ.t/ are piecewise constant functions,
we shall assume them continuous from the left.

2.3 Main Result

For any pair .J�; JC/ of subsets ; J� � I�; JC � IC; define the numbers

V.J�; JC/ D
P

i2J
�

v
.�/
i 


.�/
i CP

k2J
C

v
.C/
k 


.C/
kP

i2J
�



.�/
i CP

k2J
C



.C/
k

; V D V.I�; IC/ (4)

The following condition is assumed

fV.J�; JC/ W J� ¤ ¿; JC ¤ ¿ g \ fv.�/1 ; : : : ; v
.�/
L ; v

.C/
1 ; : : : ; v

.C/
K g D ¿ : (5)

If the limit W D lim
t!1

ˇ.t/

t
exists a.e., we call it the asymptotic speed of the

boundary. Our main result is the explicit formula forW .

Theorem 1. The asymptotic velocity of the boundary exists and is equal to

W D V.f1; : : : ; L1g; f1; : : : ; K1g/
where

L1 D max
n
l 2 f1; : : : ; Lg W v.�/l > V.f1; : : : ; lg; IC/

o
; (6)

K1 D max
n
k 2 f1; : : : ; Kg W v.C/k < V.I�; f1; : : : ; kg/

o
: (7)

Note that the definition of L1 and K1 is not ambiguous because v
.�/
1 >

V.f1g; IC/ and v.C/1 < V.I�; f1g/.
Now we will explain this result in more detail. As v.C/K < 0 < v

.�/
L , there can be

three possible orderings of the numbers v.�/L ; v
.C/
K ; V :

1. v.C/K < V < v
.�/
L . In this case

K1 D K; L1 D L; W D V
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2. If v.C/K > V then V < 0 and K1 < K; L1 D L. Moreover

W D V.f1; : : : ; Lg; f1; : : : ; K1g/ D min
k2I

C

V.f1; : : : ; Lg; f1; : : : ; kg/ < V < 0

3. If v.�/L < V then V > 0 and K1 D K; L1 < L. Moreover

W D V.f1; : : : ; L1g; IC/ D max
l2I

�

V.f1; : : : ; lg; IC/ > V > 0

2.4 Another Scaling

Normally the minimal difference between consecutive prices (a tick) is very small.
Moreover one customer can have many units of the commodity. That is why it is
natural to consider the scaled densities



.C/;�
j D ��1
.C/j ; 


.�/;�
j D ��1
.�/j

for some fixed constants 
.C/j ; 

.�/
j . Then the phase boundary trajectory ˇ.�/.t/ will

depend on �. The results will look even more natural. Namely, it follows from the
main theorem, that for any t > 0 there exists the following limit in probability

ˇ.t/ D lim
�!0 ˇ

.�/.t/

that is the limiting boundary trajectory.

2.5 Example of Phase Transition

The case K D L D 1, that is when the activities of .C/-particles are the same (and
similarly for .�/-particles), is very simple. There is no phase transition in this case.
The boundary velocity

W D v
.C/
1 


.C/
1 C v

.�/
1 


.�/
1



.C/
1 C 


.�/
1

(8)

depends analytically on the activities and densities. This is very easy to prove
because the n-th collision time is given by the simple formula

tn D x
.C/
n .0/� x

.�/
n .0/

�v.C/1 C v
.�/
1

(9)



100 V. Malyshev et al.

and n-th collision point is given by

x.C/n .0/C tnv
.C/
1 D x.�/n .0/C tnv

.�/
1 : (10)

More complicated situation was considered in [1]. There the movement of
.C/-particles has random jumps in both directions with constant drift v.C/1 ¤ 0

(and similarly for .�/-particles). In [1] the order of particles of the same type can
be changed with time. There are no such simple formulas as (9) and (10) in this
case. The result is however the same as in (8).

The phase transition appears already in case when K D 2; L D 1 and moreover
the .�/-particles stand still, that is v.�/1 D 0. Denote 
.�/1 D 
0, v

.C/
i D vi ; 


.C/
i D


i ; i D 1; 2. Consider the function

V1.v1; 
1/ D 
1v1


0 C 
1
:

It is the asymptotic speed of the boundary in the system where there is no .C/-
particles of type 2 at all.

Then the asymptotic velocity is the function

W D V.v1; v2; 
1; 
2/ D 
1v1 C 
2v2


0 C 
1 C 
2

if v2 < V1 and

W D V1.v1; 
1/ D 
1v1


0 C 
1

if v2 > V1: We see that at the point v2 D V1 the function W is not differentiable
in v2.

3 Random Walk in RN
C and Method of Proof

3.1 Associated Random Walk

One can consider the phase boundary as a special kind of server where the customers
(particles) arrive in pairs and are immediately served. However the situation is more
involved than in standard queuing theory, because the server moves, and correlation
between its movement and arrivals is sufficiently complicated. That is why this
analogy does not help much. However we describe the crucial correspondence
between random walks in RNC and the infinite particle problem defined above, that
allows to get the solution.
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Denote b.�/i .t/ (b.C/k .t/) the coordinate of the extreme right (left), and still
existing at time t , that is not annihilated at some time t 0 < t , .�/-particle of
type i 2 I� (.C/-particle of type k 2 IC). Define the distances di;k.t/ D
b
.C/
k .t/ � b

.�/
i .t/ � 0; i 2 I�; k 2 IC: The trajectories of the random processes

b
.�/
i .t/; b

.C/
k .t/; di;k.t/ are assumed left continuous. Consider the random process

D.t/ D .di;k.t/; .i; k/ 2 I / 2 RNC , where N D KL.
Denote D 2 RNC the state space of D.t/. Note that the distances di;k.t/, for any

t , satisfy the following conservation laws

di;k.t/C dn;m.t/ D di;m.t/C dn;k.t/

where i ¤ n and k ¤ m. That is why the state space D can be given as the set of
non-negative solutions of the system of .L � 1/.K � 1/ linear equations

d1;1 C dn;m D d1;m C dn;1

where n;m ¤ 1. It follows that the dimension of D equalsKCL�1. However it is
convenient to speak about random walk in RNC , taking into account that only subset
of dimensionK C L � 1 is visited by the random walk.

Now we describe the trajectories D.t/ in more detail. The coordinates di;k.t/
decrease linearly with the speeds v.�/i � v

.C/
k correspondingly until one of the

coordinates di;k.t/ becomes zero. Let di;k.t0/ D 0 at some time t0. This means that
.�/-particle of type i collided with .C/-particle of type k: Let them have numbers
j and l correspondingly. Then the components of D.t/ become:

di;k.t0 C 0/ D u.�/jC1;i C u.C/lC1;k

di;m.t0 C 0/� di;m.t0/ D u.�/jC1;i ; m ¤ k

dn;k.t0 C 0/� dn;k.t0/ D u.C/lC1;k; n ¤ i

and other components will not change at all, that is do not have jumps.
Note that the increments of the coordinatesdn;m.t0C0/�dn;m.t0/ at the jump time

do not depend on the history of the process before time t0, as the random variables.
u.�/j;i (u.C/j;k ) are independent and equally distributed for fixed type. It follows thatD.t/
is a Markov process. However, this continuous time Markov process has singular
transition probabilities (due to partly deterministic movement). This fact however
does not prevent us from using the techniques from [4] where random walks in ZNC
were considered.
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3.2 Ergodic Case

We call the processD.t/ ergodic, if there exists a neighborhoodA of zero, such that
the mean valueE�x of the first hitting time �x of A from the point x is finite for any
x 2 D. In the ergodic case the correspondence between boundary movement and
random walks is completely described by the following theorem.

Theorem 2. Two following two conditions are equivalent:
(1) The processD.t/ is ergodic; (2) v.C/K < V < v

.�/
L .

All other cases of boundary movement correspond to non-ergodic random walks.
Even more, we will see that in all other cases the process D.t/ is transient.
Condition (5), which excludes the set of parameters of zero measure, excludes in
fact null recurrent cases.

To understand the corresponding random walk dynamics introduce a new family
of processes.

3.3 Faces

Let � � I D I� � IC. The face of RNC associated with � is defined as

B.�/ D fx 2 RNC W xi;k > 0; .i; k/ 2 �; xi;k D 0; .i; k/ 2 �g � RNC (11)

If � D ;, then B.�/ D f0g. For shortness, instead of B.�/ we will sometimes
write �. However, one should note that the inclusion like � 
 �1 is always
understood for subsets of I , not for the faces themselves.

Define the following set of “appropriate” faces

G D ˚
� W � D J� � JC; J� � I�; JC � IC

�
:

Lemma 1.

D D
[
�02G

.D \�0/:

This lemma explains why in the study of the process D.t/ we can consider only
“appropriate” faces.

3.4 Induced Process

One can define a family D.t IJ�; JC/ of infinite particle processes, where J� �
I�; JC � IC. The process D.t IJ�; JC/ is the process D.t/ with 
.C/j D 0;
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j … JC and 
.�/j D 0; j … J�. All other parameters (that is the densities and
velocities) are the same as for D.t/. Note that these processes are in general defined
on different probability spaces. Obviously D.t I I�; IC/ D D.t/.

Similarly to D.t/, the processes D.t IJ�; JC/ have associated random walks
D.t IJ�; JC/ in RN1C with N1 D jJ�jjJCj. Usefulness of these processes is that
they describe all possible types of asymptotic behavior of the main processD.t/.

Consider a face � 2 G, i.e., such face that its complement � D J� � JC where
J� � I� and JC � IC. The processD�.t/ D D.t IJ�; JC/ D .d�i;k.t/; .i; k/ 2 �/
will be called an induced process , associated with �. The coordinates d�i;k.t/ are

defined in the same way as di;k.t/ D d�i;k.t/, where � D f;g. The state space of

this process is D� D D.Rj�j/, where j�j D jJ�jjJCj. Face � is called ergodic if
the induced processD�.t/ is ergodic.

3.5 Induced Vectors

Introduce the plane

R.�/ D fx 2 RN W xi;k D 0; .i; k/ 2 �g � RN

Lemma 2. Let � be ergodic with � D J� � JC, and Dy.t/ be the process D.t/
with the initial point y 2 B.�/. Then there exists vector v� 2 R.�/ such that for
any y 2 B.�/ t � 0, such that y C v�t 2 B.�/, we have asM ! 1

DyM .tM/

M
! y C v�t

This vector v� will be called the induced vector for the ergodic face�. We will
see other properties of the induced vector below.

3.6 Non-ergodic Faces

Let� be the face which is not ergodic (non-ergodic face). Ergodic face�1:�1 � �

will be called outgoing for�, if v�1i;k > 0 for .i; k/ 2 �1 n�. Let E.�/ be the set of
outgoing faces for the non-ergodic face �.

Lemma 3. The set E.�/ contains the minimal element�1 in the sense that for any
�2 2 E.�/ we have �2  �1:
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3.7 Dynamical System

We define now the piece-wise constant vector field v.x/ in D, consisting of induced
vectors, as follows: v.x/ D v� if x belongs to ergodic face�, and v.x/ D v�1 if x
belongs to non-ergodic face �, where �1 is the minimal element of E.�/. Let U t

be the dynamical system corresponding to this vector field.
It follows that the trajectories �x D �x.t/ of the dynamical system are piecewise

linear. Moreover, if the trajectory hits a non-ergodic face, it leaves it immediately. It
goes with constant speed along an ergodic face until it reaches its boundary.

We call the ergodic face � D L final, if either L D ; or all coordinates of the
induced vector vL are positive. The central statement is that the dynamical system
hits the final face, stays on it forever and goes along it to infinity, if L ¤ ;.

The following theorem, together with Theorem 2, is parallel to Theorem 1. That
is in all three cases of Theorems 1–3 describe the properties of the corresponding
random walks in the orthant.

Theorem 3.

1. If D.t/ is ergodic then the origin is the fixed point of the dynamical system U t .
Moreover, all trajectories of the dynamical system U t hit 0.

2. Assume v.C/K > V . Then the process D.t/ is transient and there exists a unique
ergodic final face L, such that vL

i;k > 0 for .i; k/ 2 L. This face is

L.L;K1/ D f.i; k/ W i D 1; : : : ; L; k D K1 C 1; : : : ; Kg

whereK1 is defined by (7). Moreover, all trajectories of the dynamical system U t

hit L.L;K1/ and stay there forever.
3. Assume v.�/L < V . Then the process D.t/ is transient and there exists a unique

ergodic final face L, such that vL
i;k > 0 for .i; k/ 2 L. This face is

L.L1;K/ D f.i; k/ W i D L1 C 1; : : : ; L; k D 1; : : : ; Kg

where L1 is defined by (6). Moreover, all trajectories of the dynamical system U t

hit L.L1;K/ and stay there forever.
4. For any initial point x the trajectory �x.t/ has finite number of transitions from

one face to another, until it reaches f0g or one of the final faces.

3.8 Simple Examples of Random Walks and Dynamical
Systems

If K D L D 1 the process D.t/ is a random process on RC. It is deterministic on
RC n f0g – it moves with constant velocity v.C/ � v.�/ towards the origin. When it
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reaches 0 at time t , it jumps backwards

D.t C 0/ D �

where � has the same distribution as u.C/1 C u.�/1 . The dynamical system coincides
with D.t/ inside RC, and has the origin as its fixed point.

If L D 1;K D 2 and moreover v.�/1 D 0 then the state space of the process is
R2C D f.d11; d12/g. Inside the quarter plane the process is deterministic and moves

with velocity .v.C/1 ; v
.C/
2 /. From any point x of the boundary d12 D 0 it jumps to

the random point x C �1, and from any point of the boundary d11 D 0 it jumps
to the point x C �2, where �1; �2 have the same distributions as .u.�/j;1 ; u

.�/
j;1 C u.C/j;2 /

and .u.�/j;1 C u.C/j;1 ; u
.�/
j;1 / correspondingly. The classification results for random walks

in Z2C can be easily transfered to this case; the dynamical system is deterministic
and has negative components of the velocity inside R2C. When it hits one of the
axes it moves along it. The velocity is always negative along the first axis, however
along second axis it can be either negative or positive. This is the phase transition
we described above. Correspondingly the origin is the fixed point in the first case,
and has positive value of the vector field along the second axis, in the second case.
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Calibration of Nomad Parameters Using
Empirical Data

Winnie Daamen, Mario Campanella, and Serge P. Hoogendoorn

Abstract This paper describes the results of calibration of the Nomad pedestrian
simulation model using empirical data from laboratory experiments. The results of
the calibration show that complex walker models with large amounts of parameters
can indeed be calibrated. The estimated average parameter values are shown
and discussed, as well as their significance and correlation. Furthermore, pedes-
trian behaviors are investigated using the estimated parameters values in various
conditions, among which flow configuration, pedestrian heterogeneity and traffic
conditions.

1 Introduction

The microscopic pedestrian simulation model Nomad has (like other simulation
models) a large amount of parameters. The calibration of such complex models is
not a simple process given the reliability and correlation of parameters, as well as the
problem of the information richness of the available data. Furthermore, pedestrian
behaviours are complex and vary according to several factors such as walking
area configurations, traffic conditions and pedestrian heterogeneity. Therefore, it
is important to know to which situations a model can be applied for prediction.
One way to estimate the general applicability of a walking model is to compare
the parameter estimates when varying the different factors. Differences in the
estimated parameter samples will reflect the inability of the model to correctly
predict differences in the behaviours. If the parameter samples are significantly
different then the model is not general enough and the samples reflect variations of
pedestrian behaviours. As a positive consequence the estimated parameter samples
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can therefore be used to investigate how pedestrians are behaving in the different
situations.

This paper therefore presents the calibration results of Nomad using data from
several controlled experiments. The parameters are simultaneously estimated for
each individual pedestrian using trajectory data. The calibration results are then
used to investigate the reliability, parameter correlation and general applicability
of Nomad.

In the following, first a short description is given of the laboratory experiments
of which the data are used. Then, the Nomad parameters that will be estimated are
introduced, followed by the calibration results. Finally, we show the effect of the
flow configuration, the population heterogeneity and the traffic conditions on the
estimated parameters. We end with conclusions and recommendations for future
research.

2 Laboratory Experiments

The data used for the model calibration come from the controlled experiments
described in Daamen and Hoogendoorn [1]. Figure 1 shows the infrastructure layout
and flow directions of the four configurations discussed in this paper: unidirectional
flow, bidirectional flows, crossing flows and a narrow bottleneck. All experiments
have been performed under normal walking conditions, while only in the narrow
bottleneck experiment congestion occurred. Since the congestion occurred upstream
of the corridor, the area of this experiment has been split into two: one (possibly)
congested area upstream of the bottleneck and an area inside the bottleneck where
capacity occurred. Trajectory data have been collected for 0.1 s and smoothed and
interpolated to time-steps of 0.2 s to minimize numerical errors in the estimation
process.

3 Microscopic Pedestrian Simulation Model Nomad

The microscopic pedestrian simulation model Nomad has been developed at the
department Transport & Planning of the Delft University of Technology [2, 3].
Nomad is an agent-based model, covering the tactical and operational levels
of human behaviour, including route choice behaviour, activity (area) choice
behaviour, walking behaviour, waiting behaviour and behaviour in special infras-
tructure elements, such as revolving doors and turnstiles. The Nomad model is
composed of linearly added components that correspond to specific pedestrian
behaviours: path following, pedestrian and obstacle interaction. The parameters
shown in Table 1 are included in the calibration process.

The parameters describing the lateral avoidance between pedestrians .A1 and
R1/ are only estimated in the experiments in which these lateral movements
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Fig. 1 Overview of laboratory experiment infrastructure configurations

occurred, that is, the bidirectional and the crossing flows. The parameter describing
the interaction with obstacles is only estimated in the experiment with the narrow
corridor, the only experiment where obstacles were present. All other parameters
were estimated in all experiments.

Another important parameter in the Nomad model is the free speed V0. Since this
free speed is specific for each pedestrian, this speed is measured using the beginning
of the trajectories (first 0.2 s), when the densities are low and it can be assumed that
a pedestrian is walking in free flow conditions.

The parameters used to calculate the physical forces have been excluded from
the calibration as previous tests have shown these parameters to be insensitive to
calibration results. The parameters have been set to very large values to prevent
compressions of pedestrians .K0 D 1;000; K1 D 1;000/. The stochastic noise
that accounts for modelling errors and behavioural variations was always set to
zero, preventing it to influence the estimation. This way, the estimated parameters
are optimal regardless of the size of the modelling errors and the behaviour
variations can be measured by the differences of the parameters for different
individuals.
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Table 1 Overview of Nomad parameters estimated in this paper

Symbol Explanation

T Acceleration time (s), the time required to accelerate towards the free speed V0

in the direction of the desired path. Small values of T will force pedestrians to
walk very close to their desired path with their free speeds and any deviation
from the path will generate large path following accelerations

A0 Interaction strength (m/s2), controls the intensity in which pedestrians
are avoiding each other. Larger values of A0 when other parameters are kept
equal indicate an increase of importance of the avoidance
accelerations due to other pedestrians

R0 Interaction distance (m), controls how responsive the avoidance accelerations
are to the distance between pedestrians. Small values of R0 (�0.0 m ) signify
that only small distances between pedestrian cause avoidance accelerations

c�

0 Transform the shape of the influence area behind pedestrians from circular
(valueD 1) to an ellipsoid. For values smaller than one the main axis of the
ellipsoid is in the walking direction otherwise in the perpendicular direction

c
C

0 Transform the shape of the influence area in front of pedestrians from circular
to an elongated ellipsoid similarly as c�

0

ief Influence area extension in the front (m), the largest distance at the front
in which a pedestrian will provoke the avoiding behaviours

ieb Influence area extension in the back (m), the largest distance at the back
in which a pedestrian will provoke the avoiding behaviours

A1 Frontal interaction strength for pedestrians (m/s2), controls the intensity
of the extra lateral component of the avoidance accelerations when
pedestrians are walking towards each other

R1 Frontal interaction distance for pedestrians (m), controls how responsive
the extra lateral avoidance accelerations are to the lateral distances of
pedestrians walking towards each other

AT Anticipation time (s), the time in the future that pedestrians project the current
locations of neighbouring pedestrians

AW Obstacle interaction strength (m/s2), controls the extent in which pedestrians
are avoiding obstacles. Larger values of AW when other parameters are kept
equal (ceteris paribus) indicate an increase of importance of the obstacle
avoidance accelerations

4 Model Calibration Results

For the calibration results, samples of estimated parameters have been derived. A
parameter set � for an experiment consists of all the estimates of each parameter
(�i D T;A0; : : :). A single calibration thus results in an optimal parameter set ��,
consisting of all samples ��i 2 ��. An estimated value is only part of the parameter
set if it is significant, while values on the boundaries of the estimation interval are
excluded from the set, since their optimality is not guaranteed. An overview of the
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Table 2 Average values of all parameters for the five data sets

Pedestrian interactions

Path Ped Influence Lateral Antici-
follow avoid area avoid pation Obstacle

rad T A0 R0 c�

0 c
C

0 ief ieb A1 R1 AT AW

bidir 0.32 2.02 1.24 0.94 1.01 1.30 1.98 7.08 0.69 0.53
unidir 0.27 2.39 1.45 1.01 1.03 1.42 1.82 0.61
cross 0.62 2.42 0.99 1.00 1.00 0.96 1.10 4.71 � 0.52
bneckDown 0.63 4.51 1.28 1.07 1.06 1.04 1.51 0.56 9.43
bneckUp 0.57 2.84 1.06 0.99 0.96 1.36 1.14 0.60 9.02

estimated parameter values can be found in Table 2, where the � indicates that no
significant estimations could be achieved.

Low values of the acceleration time T indicate a strong tendency of pedestrians
to stay close to their desired paths. In general, the values of T are around values
obtained in other calibrations [4, 5]. The unidirectional and the bidirectional flows
resulted in significantly smaller values of T when compared with the other normal
walking experiments, which is due to the lower densities in these experiments. In
these relatively free situations, pedestrians have smaller probabilities to interact with
other pedestrians and therefore only need small corrections to keep their desired
path.

Larger values of the interaction strengthA0 alone do not indicate large avoidance
accelerations because the final acceleration value depends on distances to other
pedestrians and the interaction distance R0. The relatively large values of A0 and
R0 indicate that pedestrians in normal walking conditions are more reactive due
to the presence of other pedestrians. This implies that when necessary pedestrians
need to apply larger accelerations at larger distances to anticipate the longer
distances between pedestrians (lower densities). The most reactive behaviours are
encountered inside the narrow corridor (bneckDown), when they settle in a laterally
displaced position that was identified by Hoogendoorn and Daamen [6] as the
‘zipper-effect’. This arrangement puts pedestrians very close to each other and
simultaneously close to the corridor walls, while the speeds inside the corridor
are relatively high. With such high speeds, natural variations cause pedestrians
to apply large accelerations to prevent collisions. The largest R0 is estimated in
the unidirectional flow (unidir) indicating that pedestrians are more sensitive to
pedestrians further away than in the other experiments. This is largely due to the
low densities in the experiment that make short distances very unlikely.
cC0 remained reasonably constant along the normal walking experiments with

values around 1.0 indicating that pedestrians seem to be isotropic (scanning equally
in all directions) contrary to previous findings [6]. However, further in this paper we
show that for most walking experiments the slower the pedestrians walk the more
they consider pedestrians walking near their walking paths (larger anisotropy). This
is supported by the experiment bneckUp with the lowest average speeds presenting



114 W. Daamen et al.

Table 3 Percentages of significant parameters in each experiment (percentages below 5 %
highlighted in bold)

Pedestrian interactions

Path Ped Influence Lateral Antici-
Parameters follow avoid area avoid pation Obstacle

Experiments T A0 R0 c�

0 c
C

0 ief ieb A1 R1 AT AW

bidir 49 58 10 66 62 62 68 7 1 57
unidir 75 62 17 60 71 71 71 56
cross 52 36 3 40 55 43 28 2 0 48
bneckDown 72 91 32 72 81 72 79 61 28
bneckUp 66 75 21 55 66 58 53 53 13

the largest anisotropy in the frontal part of the influence area. The opposite happens
in the back part of the influence area where pedestrians are clearly reacting to
pedestrians immediately at their shoulders and lesser by those behind them. This is
probably due to the large densities. As for cC0 , the values of c�0 are around 1 with the
largest anisotropy for the bidirectional experiments (bidir) due to the self-organised
presence of lanes that align the pedestrians and also makes them consider less the
pedestrians in the nearby lanes.

In all but the last experiment pedestrians clearly consider more what happens in
their back than in their front .ieb > ief /. This surprising result is counter-intuitive
since pedestrians are certainly more attentive to what they see in front, especially
in relatively uncomplicated traffic situations and low densities that usually do not
require special attention to the surroundings. These results may reflect a deficiency
of the model rather than pedestrian behaviours. Campanella et al. [4] already showed
the necessity of the so-called ‘push from behind’ in the Nomad model to come up
with good validation results. This effect is stronger in the experiments in which
pedestrians are more aligned with each other (larger differences between ieb and
ief and larger values of ieb).

The average value of AT is around 0.55 s, whereas the lowest values are found
for the bidirectional and crossing flows, indicating that the benefits of cooperation
reduce the necessity of anticipation. However, these differences are too small to be
conclusive.

4.1 Significance of Calibrated Parameter Values

Table 3 shows the percentages of significantly estimated parameters, which values
were not on the limits of the interval used by the optimisation algorithm. Most
parameters are seen to be significantly estimated for a large percentage of the
trajectories: only 4 out of 46 significant parameters were constituted from less than
5 % of the total amount of available trajectories. This shows that the parameters are
relevant to the model and that the calibration procedure is finding optimal values.
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Table 4 Significant correlations between parameters (only correlations above an absolute value
of 0.35 are shown)

Pedestrian interactions

Ped Influence Lateral Antici-
Parameters avoid area avoid pation Obstacle

Experiments A0 R0 c�

0 c
C

0 ief ieb A1 R1 AT AW

bidir
A0 0.50
R1 0.71

unidir
R0 0.41
c

C

0 0.42

cross
A0 �0.41 0.99
c�

0 0.48
c

C

0 0.51
bneckDown A0 0.39 0.84

The parameters describing lateral avoidance .A1 and R1/ show very low signif-
icance. To test the relevance of these parameters, a model with these parameters
has been compared to a model without these parameters using the likelihood ratio
test. These tests show a surprisingly high level of success, indicating that even
though the parameter is not significant, any value different from zero (that is the
equivalent of removing it) improves the simulated behaviour. The reason for the low
percentage of significant parameters is the lack of a sufficient amount of moments
when pedestrians are walking towards other pedestrians, which is the situation A1

and R1 can be estimated.

Correlation Between Calibrated Parameters

Table 4 shows that from a total of 190 possible pair combinations for all exper-
iments, only 10 show significant correlations above an absolute value of 0.35.
The low amounts of significant estimations for A1, R1 and AW did not allow for
many valid pair comparisons between these and other parameters, thus only few
correlations involve these parameters.

The only correlation between parameters from different components was
between the obstacle component parameter AW and the pedestrian avoidance
parameter A0 for the bottleneck experiment, suggesting that the three components
have a large independence from each other. The bottleneck situation is in this case
very specific, since pedestrians keep their relative distances to walls regardless
of the local densities experienced by the pedestrians, thus pedestrian avoidance
accelerations had to be large. Table 4 also shows that 50 % of the correlations
included at least one parameter of the influence area, indicating that the variables
shaping the influence area are not independent.
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Table 5 Similarity statistics for the walking experiments

bidir unidir cross bneckDown bneckUp

bidir 0.00 1.19 1.79 1.77 1.50
unidir 0.00 1.84 1.64 1.50
cross 0.00 1.47 1.40
bneckDown 0.00 1.50
bneckUp 0.0

5 Effect of Flow Configuration on Estimated Parameters

This section discusses the differences in pedestrian behaviour due to different
flow configurations of the experiments. Table 5 shows the results of the similarity
statistics ST that are the sum of the KS distances D1;2 of every parameter sample
�i 2 �� of a pair of experiments:

ST D
X
�i2��

D1;2.�
i / (1)

It is important to note that the KS statistics can be used regardless of if the KS
test is passed. Once ST is measured for all pairs of experiments, the pairs with
the smallest results can be identified and, based on the KS distances, it can be
determined whether these experiments present similar pedestrian behaviours.

Table 5 shows that in general the experiments display a similar value of
the similarity statistic. The unidirectional and bidirectional experiments show the
smallest value of the statistic, indicating that these experiments are most similar,
which can be explained by the occurrence of lane formation in the bidirectional
flows, thus effectively turning these into several unidirectional flows. The largest
value of the statistic occurs between the unidirectional flow and the crossing flows,
which is also intuitive, but the difference is not significant.

6 Pedestrian Heterogeneity

In this section we investigate the heterogeneity of pedestrian behaviours by cal-
culating the coefficient of variation CV for the parameter samples. Table 6 shows
the coefficients for variation for all parameters in all experiments. For most of
the samples the CV is large. Only the parameters c�0 and cC0 presented relatively
low averages of 0.23 along all experiments. The last column with the average CV
per experiment was calculated using only the parameters that were common to all
experiments. The overall average of CV is 0.71, in itself a large value that shows
that there is a significant amount of heterogeneity in the population.

As the narrow corridor experiment has been split up into two separate areas, it
is possible to see whether the behaviour of exactly the same pedestrians changed in
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Table 6 Coefficient of variation for all estimated parameter samples

Pedestrian interactions

Path Ped Influence Lateral Antici-
follow avoid area avoid pation Obstacle

rad T A0 R0 c�

0 c
C

0 ief ieb A1 R1 AT AW �

bidir 0.92 1.54 1.49 0.22 0.24 0.68 0.58 0.95 1.21 0.51 0.77
unidir 0.75 1.20 1.34 0.23 0.24 0.51 0.50 0.48 0.65
cross 1.07 1.20 1.54 0.24 0.23 0.32 0.32 1.22 � 0.47 0.67
bneckDown 0.74 1.34 1.47 0.23 0.22 0.57 0.54 0.49 1.02 0.70
bneckUp 0.92 1.39 1.58 0.21 0.24 0.65 0.62 0.50 1.00 0.76

the upstream and the downstream part, the so-called intra-pedestrian heterogeneity.
Table 6 shows the differences between the estimated parameters for each pedestrian
i walking upstream of the narrow corridor �up

i and inside the narrow corridor �ini .
This difference dif is calculated as

dif D
ˇ̌
�

up
i � �ini

ˇ̌

max
�
�

up
i ; �

in
i

� (2)

The results show that pedestrians show significantly different walking behaviour
upstream of and inside the narrow bottleneck, which is already indicate by the
relatively large similarity statistic (1.5) in Table 5. Especially the parameters relating
to the influence area, and specifically the ones transforming its shape (c�0 and cC0 )
show large differences, while the small CV values (see Table 6) indicate that the
parameters are not much affected by external conditions. We can thus conclude that
natural variations of pedestrian behaviour (intra-pedestrian heterogeneity) causes
these differences.

The median values for the path following, pedestrian avoidance, anticipation
time and obstacle avoidance parameters show median values well above 0.6. This
confirms the hypothesis that the behaviours are significantly different and we can
conclude that natural variations occur here as well (Fig. 2).

7 Influence of Traffic Conditions

In this section, we investigate how the parameters vary for traffic conditions.
Here, we take the speed as the independent variable, since it is relatively easy
to measure and it always reflects the local conditions. For each pedestrian, the
average speed encountered during his entire trajectory is calculated and assigned
to an interval of 0.2 m/s. The average values of the estimated parameters per
interval are then compared to see whether pedestrian behaviours change with speed.
Table 7 shows for which experiments which parameters are statistically different.
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Fig. 2 Box-plot with normalised differences of parameters estimated for the same trajectories in
the upstream and inside the narrow corridor

Table 7 Parameters for each experiment that have been shown a statistical difference for various
speed intervals

Path Pedestrian Influence Antici-
follow avoidance area pation Obstacle

T A0 R0 c�

0 c
C

0 ief ieb AT AW

bidir
unidir � �
cross � �
bneckDown � �
bneckUp � � � � �

Only the interaction strength appears to be statistically different for four out of
five experiments, while the interaction distance, the shape transformation of the
influence area behind pedestrians and the obstacle interaction strength does not seem
to differ over speed. The samples of the frontal interaction strength and distance
.A1 and R1/ were too small to perform the test. Most significant difference were
found for the upstream area of the narrow bottleneck experiment, which is also the
experiment with congestion, and thus the largest speed range, whereas no significant
differences were found for the bidirectional flow experiment, which might be caused
by the self-organisation in the form of lane formation in which pedestrians simply
follow other pedestrians. The relation between the significantly different parameters
T, A0 and are shown in more detail in Fig. 3, where the graphs on the left hand side
show the experiments for which the parameter was significantly different, and in the
graphs on the right hand side the parameter was not significantly different for the
various speed intervals.

Figure 3a shows that the acceleration time follows a sigmoid curve for both
the narrow bottleneck experiment (upstream part) and the crossing experiment,
where the speed is constant for low and high speeds. For the other experiments
the acceleration time is constant, and thus independent of the speeds. However,
especially in the unidirectional and bidirectional experiments no high densities, and
thus no low speeds, have been observed, so the sigmoid curve could still be possible
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Fig. 3 Graphs with average parameter values of acceleration time (a and b), interaction strength
(c and d) and influence area extension at the front (e and f) over speed

for these situations. The larger value of T is due to the more complex manoeuvres
that are needed in congestion, especially when pedestrians also have to cross.

Figure 3c shows that A0 follows a U shaped curve, with a minimum value at
speeds around 1.0 m/s for the narrow bottleneck experiment. For higher densities
larger A0 values are caused by the fact that pedestrians become more reactive and
manoeuver more intensively, while for lower densities, pedestrians are compen-
sating for the larger distances between pedestrians to avoid accelerations (more
anticipation). Also Fig. 3e shows that pedestrians consider a longer horizon to
perform their avoidance behaviours when walking faster: in more dense situations
pedestrians are less likely to see pedestrians further away and even if they would
they are more concerned with those nearby that are more likely to cause a
conflict.
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8 Conclusions and Recommendations

The main contribution of this paper is the extensive calibration of pedestrian
behaviours using multiple sets of trajectories from several experiments, including
different flow configurations, population characteristics and traffic conditions.

All parameters of the Nomad model could be calibrated, and are therefore
necessary to be included in the model. Results of the calibrations from trajectories
of different experiments show that flow configurations have a strong influence
on pedestrian behaviours, and resulted in different parameters. Pedestrians in
unidirectional flows behaved similar to pedestrians in bidirectional flows, showing
that lane formation effectively separates the area in unidirectional regions. In
congestion, pedestrian behaviour is quite different: in low densities pedestrians
are more reactive due to the presence of other pedestrians, while in congestion
pedestrians tend to follow other pedestrians and do not strain from their paths. The
latter is also shown in the clear relation between some of the parameters and the
(local) speed.

The clear differences between the parameters estimated for different situations
show that a simulation model needs a specific parameter set to optimise prediction
of pedestrian behaviour in a specific situation. However, simulation models are not
applied for specific situations, but for a combination of situations, so future research
aims at the assessment of the different parameter set for different situations.
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Estimating Model Parameters for Bottlenecks
in Evacuation Conditions

Winnie Daamen and Serge P. Hoogendoorn

Abstract Emergency doors may be bottlenecks in the evacuation of a building.
To assess and improve ways in which bottlenecks are used during evacuation
conditions, knowledge regarding the microscopic and macroscopic phenomena at
bottlenecks is required. Using data from laboratory experiments, parameters have
been estimated using the microscopic simulation tool Nomad. The conclusion is that
the pedestrian behavior shown upstream of bottlenecks in evacuation conditions is
different from normal walking behavior. In the latter, especially in higher densities,
pedestrians look for gaps which they can use to overtake other pedestrians when
they have a higher free speed. In the experiments described here, pedestrians seem to
have determined a path leading towards the door (the bottleneck), along which they
only progress slowly, but where they stick to rather consistently. Overall, we could
conclude that both types of behavior cannot be covered with a similar model type,
but a multiregime model seems to be more appropriate, in which situations with low
and high densities can be distinguished and dedicated models can be applied in the
specific situations (regimes).

1 Introduction

Emergency doors may be bottlenecks in the evacuation of a building. In design
guidelines requirements have been set to the door width, depending on the number
of persons that rely on a specific door [1,2]. The Dutch guidelines are based on rather
old experimental research with healthy students [3], while both the fire department
and recent literature studies [4, 5] indicate that the capacities mentioned in the
(Dutch) design guidelines are rather high. To see which capacities are realistic
and to assess and improve ways in which bottlenecks are used during evacuation
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conditions, knowledge regarding the microscopic and macroscopic phenomena at
bottlenecks is required. Therefore, experimental research has been performed to
collect detailed data on pedestrian behaviour in and around doors during emergency
conditions.

In this contribution we have estimated the parameters of the microscopic
simulation tool Nomad to identify the ability of the tool to predict the microscopic
pedestrian behaviour.

In the following, we first describe the set up and performance of the lab-
oratory experiments. Then, a short description is given of the simulation tool
Nomad, followed by the estimation results. The paper ends with conclusions and
recommendations for further research.

2 Set Up and Performance of Laboratory Experiments

The evacuation experiments have been conducted on January 8th, 2009 in a
large hallway. A wall was located perpendicular to the side wall of this hallway.
A doorway opening was created in the wall, which was easy to adjust in width. An
emergency exit sign was shown above the doorway to imitate the real situation, see
left side of Fig. 1. A traffic signal was used which was turned to green when the
participants could start walking, see left side of Fig. 1. Before every experiment,
the group of participants lined up 5 m upstream of the wall behind a line that was put
on the floor, see right side of Fig. 1. For an extensive description of the experimental
set up, we refer to Daamen and Hoogendoorn [6].

The experimental variables consist of the composition of the population using the
door, the door width and the conditions under which the door is used. We have used
seven different population compositions, corresponding to characteristic buildings
or situations, being school, station during peak hours, retirement home, work
meeting, shopping centre, a disabled population and an average population. Due
to ethical reasons, the disabled part of the population consisted of three blindfolded
persons and three persons in wheelchairs. In total 75 children of 11 years old (blue
caps), 90 adults (red caps) and 50 elderly persons (yellow caps) have participated in
the experiments. This leads to populations of between 90 and 150 persons, which
are large enough to cause congestion upstream of the door to observe capacities.

The conditions under which an emergency door is used may vary considerably. In
the experiments, both the stress level of the participants and the sight are varied. Not
much is known on how to introduce stress in an experiment. In the past two methods
have been considered favourable: enforcing participants to hurry e.g. by rewarding
participants according to their performance and exposing participants to noise. Here,
we have chosen to use for the latter option by sounding the slow-whoop signal. In
addition, the stress level of the participants is raised by a combination of the slow-
whoop signal and stroboscope light. In total, participants have been exposed to three
stress levels: none, a slow-whoop signal and a combination of a slow-whoop signal
and stroboscope light. The sight is reduced by reducing illumination to a low level.
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Fig. 1 Overview of the experiments

Two alternative light situations are considered: full lighting (200 lux) and dimmed
(1 lux, corresponding to emergency lighting).

In the experiments, the opening width is varied between 50 cm (the minimal
free passageway of an escape route in the Building decree for existing buildings)
and 275 cm. In addition to an opening of 85 cm wide (minimal free passageway of
an escape route in the Building decree for new estates) openings are a multiple of
55 cm. Furthermore, an opening of 100 cm is tested to see the correspondence with
the normative capacity expressed as the number of persons passing an opening of
1 m wide in 1 min.

The final experimental variable relates to whether or not the outflow of pedes-
trians after passing the doorway is free. In reality, doors cannot always open 180ı,
but may be restricted. In the experiments we used a door being fixed at an opening
of 90ı. The total doorway width is not affected.

Ideally, all combinations of experimental variables should be investigated. Since
this is not feasible due to time restrictions (the experiments should not last longer
than a single day), for each experiment one variable is changed, while for the
other variables the default value is maintained. By interpolation of the results
of the various experiments, pronouncements can be made on the not performed
experiments. The stress levels are varied for all experiments.

Each experiment has been performed multiple times to guarantee the reliability of
the observations. To determine the number of repetitions, a total time of congestion
of 3 min should be achieved. Since the time of congestion for wide doors is shorter
than for narrow doors, more repetitions are performed for the wide doors. An
overview of the experiments is shown in Table 1.

3 Microscopic Pedestrian Simulation Model Nomad

This section describes the microscopic pedestrian simulation model Nomad, devel-
oped at our department [7, 8]. To interpret the behaviour in the experiments, we
estimate the individual pedestrian model parameters using the before mentioned
trajectory data. We include inter-pedestrian differences expressed by the variability
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Table 1 Overview of performed experiments

Opening Start time
Experiment width [cm] Population Sight [lux] Open door [hh:mm]

1 100 Average 200 No 9:58
2 220 Average 200 No 10:17
3 85 Retirement home 200 No 10:43
4 85 Average 200 No 10:58
5 165 Average 1 No 11:25
6 275 Average 200 No 11:52
7 85 Work meeting 200 No 12:49
8 85 Disabled 200 No 12:23
9 85 School 200 No 13:48
10 85 Average 1 No 14:08
11 50 Average 200 No 14:24
12 110 Average 200 No 14:39
13 85 Shopping centre 200 No 15:19
14 85 Average 200 Yes 15:40
15 165 Average 200 No 16:03
16 85 Station 200 No 16:24

in estimated model parameters. To do this, we use the maximum likelihood approach
described in [9]. We estimate the anisotropic model, where pedestrians from the
front have more impact on pedestrian behaviour than pedestrians from the back.
The model predicts the two-dimensional acceleration vector ap.t/ as a function of
the free velocity v0

p, the current speed vp.t/ and distance dpq between pedestrians p
and q as follows:

ap.t/ D fp
�
vp.t/; rp � rq; � � �

� D v0
p � vp.t/

Tp
�Ap

X
q

2 Qpupq.t/e
� dpq.t/

Rp (1)

where Qp denotes the set of pedestrians that influence pedestrian p, and where

d�.t/ D upq � vp.t/
jjvp.t/jj D �p

wpq � vp.t/
jjvp.t/jj (2)

Here, �p > 1 is a pedestrian specific factor that describes differences in pedestrian
reaction to stimuli directly in front and stimuli from the sides of the pedestrians.
In the estimations described in this section, �p is chosen equal to 8. The desired
walking direction e0p D v0p=V0

p V is derived from the data by taking a rough
smoothing of the speeds.

The model has four pedestrian specific parameters, namely the free speed V0
p D

jjv0pjj, the acceleration time Tp, the interaction constant Ap and the interaction
distance Rp that are to be estimated from the trajectory data.
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Fig. 2 Overview of the parameter estimation of three populations: school, work meeting
and retirement home. (a) Free speed estimations. (b) Estimations for the acceleration time.
(c) Estimations for the interaction term. (d) Estimations for the interaction distance

In previous analyses [6] we saw that both the school population and the
population with the disabled pedestrians showed specific behaviour. In addition, we
found out that heterogeneity might play an important role in pedestrian behaviour.
We have chosen to estimate parameters for experiments with homogeneous yet
very different populations, so the heterogeneity is between the populations and
not within the population. For this, we have selected the school population (90 %
children of 11/12 years old and 10 % adults), the station population (100 % adults)
and the retirement home population (5 % children, 20 % adults and 75 % elderly
of 65 years old or more). For the latter population, we have only estimated the
trajectories for the elderly. For all populations, we have not estimated the trajectories
of the first 25 pedestrians of each experiment, since these pedestrians did not have
sufficient interactions and walked more in free flow conditions than in the congested
conditions relevant for the experiments. The estimation results for the mentioned
four parameters for these three populations are shown in Fig. 2.

Figure 2a shows that the free speed estimations are similar for children, adults
and elderly. The estimates are lower than the free speeds usually observed in
literature, which is due to the fact that pedestrians do not walk in free walking
conditions, but in congested conditions. This might also be the reason that the
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estimated speeds are similar for the three different pedestrian types. The variation is
higher for the school and retirement home population than for the station population.

The acceleration time indicates the time that pedestrians take to accelerate
towards their free speed. The lower this time is, the more eager pedestrians are
to walk with their free speed. This corresponds with behaviour where pedestrians
are actively looking for gaps where they can overtake other pedestrians in order to
pass the bottleneck as fast as possible. However, the values in Fig. 2b are very large,
which means that pedestrians are not actively trying to walk with their free speed,
but just continue with their current speed. It is remarkable that the acceleration time
is lowest for the elderly pedestrians, whereas the macroscopic traffic characteristics
(especially the speed variation) suggested that the children would have the highest
preference to walk with their free speed.

The size of the interaction term (Fig. 2c) is rather hard to interpret in a
behavioural way. The estimations also show that the values are not very reliable,
since the standard deviation is almost as high as the average value of this parameter.
This means that the strength of the interaction differs considerably between pedes-
trians, assuming a large heterogeneity between pedestrians. What can be seen is that
the interaction between children and adults is stronger than the interaction between
elderly, which is according expectations.

Finally, we look at the interaction distance (Fig. 2d), which indicates the distance
that pedestrians prefer to keep to each other. This variable is directly related to
density. Corresponding to other analyses, where we saw the highest densities for
the children, children have the lowest interaction distance. However, the elderly
have the highest interaction distance, whereas their density was higher than that for
the adults. The findings for the macroscopic traffic characteristics do therefore not
completely correspond to the findings on the microscopic level. If we compare the
estimated parameters for these evacuation conditions near door openings with the
parameters estimated in normal walking conditions described in [9], we see some
remarkable differences. With a lower free speed and a twice as high acceleration
time, the influence of the first term on the acceleration is much smaller than
in normal walking conditions. This would imply that pedestrians are not eager
to keep their free speed. The influence of other pedestrians on the acceleration
(interaction) is also much lower, due to the lower value of the interaction term A,
while the remaining part of the term remains similar since the interaction distance
is comparable in the two situations.

4 Conclusions

These results as well as further observations during the estimation process bring
us to the conclusion that the pedestrian behaviour shown in this experiment is
different from normal walking behaviour. In the latter, especially in higher densities,
pedestrians look for gaps which they can use to overtake other pedestrians when
they have a higher free speed. This is also the way the Nomad model, and
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most other pedestrian simulation models, is set up. In the experiments described
here, pedestrians seem to have determined a path leading towards the door (the
bottleneck), along which they only progress slowly, but where they stick to rather
consistently. This would require a completely different model formulation, in which
only the size of the acceleration is determined, while its direction depends on
the route choice. Overall, we could conclude that both types of behaviour cannot
be covered with a similar model type, but a multiregime model seems to be more
appropriate, in which situations with low and high densities can be distinguished
and dedicated models can be applied in the specific situations (regimes).
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Counterflow in Evacuations

Tobias Kretz

Abstract It is shown in this work that the average individual egress time and other
performance indicators for egress of people from a building can be improved under
certain circumstances if counterflow occurs. The circumstances include widely
varying walking speeds and two differently far located exits with different capacity.
The result is achieved both with a paper and pencil calculation as well as with
a micro simulation of an example scenario. As the difficulty of exit signage
with counterflow remains one cannot conclude from the result that an emergency
evacuation procedure with counterflow would really be the better variant.

1 Introduction and Description

It is usually assumed that during evacuations counterflow [1–10] – or bi-directional
flows – only occurs when occupants and rescue forces meet in opposite directions
and that apart from that counterflows should not occur as they would inevitably
imply that the time for evacuation is higher than necessary. This is surely true for a
situation as shown in Fig. 1.

However, what if the exits have different capacities and are located at different
walking distances from the two groups? What, furthermore, if the two groups have
distinct walking speeds? Figure 2 shows such a situation.

There are two groups of occupants shown in blue and red each in their own room.
Each group has exactly 100 members. The two groups differ as the blue agents have
a desired walking speed of 2:5˙0:2 km/h (about 0.7 m/s) and the red agents 10:0˙
1:0 km/h (about 2.8 m/s). Within the given boundaries the speeds are distributed
equally among the population.
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Fig. 1 Two groups of occupants (denoted by the blue and red spheres; walls are shown in brown)
in a simple scenario with high symmetry: the exits (shown in green at the right side) are equally
far away and have equal capacity. If the two groups have equal size in number and the occupants
of both groups have comparable walking speeds it would not make sense to use the connecting
corridor as it would imply a time delay

Fig. 2 3D and 2D view of the scenario: Two groups (blue and red) of occupants at the beginning
of an evacuation process. The two available exits are marked in light green to the upper left and
lower right. Note that here in front of exit A walls restrict the capacity

Fig. 3 Measures

The two exits differ in two important aspects: the one on the upper left (exit A)
is the closer one for both groups of occupants, but it has a restricted capacity –
the occupants need to pass a bottleneck before they reach the exit. The exit to the
lower right (exit B) is more remote for both groups, but it has – considering the
total number of occupants – nearly unlimited capacity. The geometric dimensions
are shown in Fig. 3.

It is not difficult to see that the bottleneck in front of exit A will produce
high total evacuation times as well as high average individual egress times if all
occupants choose to use exit A. It therefore might make sense with regard to the
user-equilibrium [11] as well as the system optimum that a number of occupants
use exit B. However, as exit B is rather far away, the costs to use it in terms of
travel time are lower for the faster red agents. From this, one can hypothesize that to
optimize at least some of the egress performance measures it makes sense to accept
counterflow in the small corridor which connects the two main corridors.
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Table 1 Main property of
the egress strategy as a
consequence of exit choice on
the group level

Red
: : : Blue Exit A Exit B

Exit A Shortest path Separated
Exit B Counterflow Maximum capacity

Principally the distribution of pre-movement times as well as the individual
choice of exits would produce a large number of variants. These have been reduced
for this study to four by assuming a pre-movement time of zero and that all members
of a group walk to the same exit.

This leaves four variants which are compared regarding the evacuation perfor-
mance measure:

1. Shortest Path: blue group and red group both use exit A.
2. Maximum Capacity: blue group and red group both use exit B.
3. Separated: blue group uses exit B and red group uses exit A.
4. Counterflow: blue group uses exit A and red group uses exit B.

This is shown as a matrix in Table 1.

2 Paper and Pencil Calculation

To investigate this hypothesis we first do a simple calculation of the total evacuation
times for both groups, i.e. the time when the last pedestrian of each group has left
the building. For this the geometry of Fig. 3 is reduced to the network graph shown
in Fig. 4. In addition to the variables and their values given there, what is needed
for the following calculations are the walking speed of a member of the red group
vr D 2:78m/s, the walking speed of a member of the blue group vb D 0:69m/s,
the assumed specific flow j D 1:31/ms (in accordance with [12]), the width of exit
A bA D 0:8m, the width of exit B: bB D 9:7m, and the number N D 100 of the
pedestrians in each of the groups. The widths of the doors of the rooms where the
two groups start are equal: br D bb D 1:5m.

With these definitions and values the egress times for the two groups can be
calculated. We begin with the simplest case.

Case 1, Separated: In this case the bottleneck for the red group is exit A and the
bottleneck for the blue group is the door of their starting room. Therefore the
evacuation times result as

Tred D du C bc C dA

vr
C N

jbA
D 113:1 s (1)

Tblue D N

jbb
C bc C dl

vb
D 120:8 s (2)
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Fig. 4 Simplified network display for the paper and pencil calculation. The lengths of the links
are dA D 4m, bc D 5m, du D 38m, dc D 5m, dl D 43m

Case 2, Maximum Capacity: We neglect that the members of the red group might
slow down when walking around the corners and when they have to overtake the
members of the blue group. For the blue group as well we neglect any negative
impact from the fact that they now have to share the wide (lower) corridor with
the red group. Therefore their evacuation time results identically as in Eq. (2).

Tred D N

jbr
C du C dc C dl

vr
D 82:2 s (3)

Case 3, Shortest Path: Here both groups queue before the narrow exit A. The
evacuation times depend much on the assumption which group moves first
through the bottleneck. If it was the red group, for the red group an evacuation
time as in case 1 would result. If it was the blue group an evacuation time as in
case 4 would follow. For the total evacuation time the worst case assumption is
that both groups move alternating. This maximizes the time for both groups and
gives – in this type of calculation – equal results.

Tred D Tblue D Min

�
du C bc C dA

vr
;
dc C dA

vb

	
C 2N

jbA
D 205:3 s (4)

Case 4, Counterflow: The puzzling question in this case is with what factor one
should take care for the fact of counterflow. For this simple calculation here we
decide to do not at all so, i.e. assume that the counterflow is as efficient as if it
was uni-directional. First the connecting corridor is relatively wide compared to
the two doors of the starting rooms, second, from this simple calculation it does
not follow how long the counterflow situation persists, and third with an assumed
optimal flow from the result it can become apparent how large the loss in flow
efficiency could be, before the conclusions of the calculation would have to be
modified.

Tred D N

jbr
C du C dc C dl

vr
D 82:2 s (5)

Tblue D dc C dA

vb
C N

jbA
D 109:2 s (6)
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Table 2 Summary of results
of paper and pencil
calculation (in seconds)

Red
: : : Blue Exit A Exit B

Exit A 205.3
: : : 205.3 113.1

: : : 120.8

Exit B 82.2
: : : 109.2 82.2

: : : 120.8

Table 2 summarizes these results. It shows that the counterflow strategy performs
best.

3 Simulation

Motivated by this result but still careful for having done many simplifications, we
now simulate the scenario using VISWALK (the pedestrian module of VISSIM)
[13–15]. The pedestrian dynamics model of VISWALK is the variant of the Social
Force Model introduced as elliptical variant II in [16,17] with minor modifications
and extensions for specific situations.

At the beginning of the simulation the occupants are set into the simulation
equally distributed over their room. Each of the four variants has been simulated
20 times with different random numbers for the stochastic term of the Social Force
Model. Table 3 shows the average (over simulation runs) of averages of individual
egress times. Figure 5 shows screen captures of the animated simulation runs. From
the 20 simulation runs that were carried out those four were selected (respectively
their random number generator seed value), which were closest to the average with
respect to the average individual egress time for both the blue as well as the red
agents.

These results show that for the blue as well as for the red group the case with
counterflow leads to the smallest value of average individual egress times, with
regard to this measure this therefore obviously is the system optimum. It can easily
be seen that with Table 3 as cost matrix in an iterated game [18–21] the case with
counterflow as well emerges as stable user equilibrium. With respect to the time
when 95 % of the agents (i.e. 190 agents) have reached one of the two destination
areas for the red group again the counterflow strategy would be clearly the best one,
while within the variance of results for the blue group “counterflow”, “separated”,
and “maximum capacity” are equally well suited, only “shortest path” is worse. If
one neglects the statistical scatter of results and only considers the mean value then
the “Maximum Capacity” strategy would be the user equilibrium (Table 4).

For total evacuation times (Table 5) – only considering mean values and
neglecting the standard deviations – the counterflow strategy remains the best one
for the blue group, the sum of times is best for the maximum capacity strategy
which is also the user equilibrium strategy. For the blue group the separated strategy
scores best. It is not surprising that with increasing number of pedestrians within
the same geometry maximum capacity at some time becomes the best strategy.
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Table 3 Average of averages of individual egress times in seconds

Red
: : : Blue Exit A Exit B

Exit A 104:9˙ 3:8 : : : 124:5˙ 3:1 62:7˙ 2:2 : : : 112:6˙ 1:1
Exit B 47:9˙ 0:5 : : : 87:1˙ 1:8 49:8˙ 0:7 : : : 114:7˙ 1:1

Fig. 5 Situation after 20 s for all four variants (the four figures are placed according to the matrix
of Table 1). The corresponding animations are available online at http://youtu.be/-cXH6ExUTg4

Table 4 Average of simulation times when 95 % of all agents had reached
one of the two destination areas

Red
: : : Blue Exit A Exit B

Exit A 221:2˙ 4:9 : : : 189:3˙ 4:6 107:5˙ 4:2 : : : 143:5˙ 1:6
Exit B 58:1˙ 0:6 : : : 146:5˙ 2:8 61:3˙ 1:2 : : : 145:4˙ 1:6

Table 5 Average of total evacuation times (all agents have left the simulation)

Red
: : : Blue Exit A Exit B

Exit A 229:5˙ 4:9 : : : 206:1˙ 6:3 116:1˙ 4:6 : : : 150:1˙ 2:1
Exit B 59:8˙ 0:6 : : : 158:0˙ 3:4 63:5˙ 1:3 : : : 151:9˙ 1:9

http://youtu.be/-cXH6ExUTg4
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Fig. 6 Number of agents that have arrived at their destination in dependence of the simulation time
(evacuation graph). Shown are not averages, but the time dependence of those simulation runs from
which the Fig. 5 were taken and which with their average individual egress time are closest to the
average of all simulation runs. This plot shows most clearly that for a wide range the counterflow
strategy is the best one

Fig. 7 Left: Number of red agents that have arrived at their destination in dependence of the
simulation time (evacuation graph). This plot shows that in the beginning it is faster for members
of the red group to use exit A (as they are the first to arrive there), however if a red agent is not
among the very first of his group then exit B is the better choice. The delay in the “shortest path”
strategy curve exists as in this run many blue agents passed exit A before the red agents joined.
Right: Number of blue agents that have arrived at their destination in dependence of the simulation
time (evacuation graph). From this plot it becomes clear that the counterflow strategy benefits the
blue agents most

Finally, Figs. 6 and 7 show the number of agents that have arrived at their destination
area in dependence of the simulation time.

4 Discussion and Summary

It has been shown that situations exist where the quickest evacuation can be
achieved when the egress procedure includes a counterflow. Both, calculation as
well as simulation, were carried out with simplifications. If route choice were not
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bound to whole groups, but could be carried out and optimized individually clearly
results would change. However, probably still parts of the blue group would find
themselves in a situation of counterflow with parts of the red group, which would
imply that the main claim of the contribution would still be valid. Route choice
based on travel time has recently been in the focus of a number of studies [22–32].
Such methods could be used to compute route choice individually.

For this study the corridor width was chosen wide enough such that the friction
from counterflow between the two groups is small. However, the results as shown
in Table 3 are clear enough to allow for increased counterflow friction. As different
models of pedestrian dynamics yield strongly different friction for identical inflow
and corridor width, the case with small friction is the one where models agree most.

The impact of this study for application is currently very small. Present day
emergency egress signage is static and group independent. To implement the
solution as proposed, an emergency egress signage would have to tell “if you are a
fast walker walk this way, else the other way”, which to date is too complicated. An
application could be possible when individual routing information could be given
via mobile devicesq to each occupant individually in a comprehensible way [33].

What can nevertheless be learned from this result is to mistrust simple truths.
There could be other situations, where it is not so unrealistic to place an adequate
emergency egress signage. Second, the fundamental condition for the results as
presented is that the two groups have different walking speeds. Therefore this is
another example that the phenomena of pedestrian dynamics depend much on the
width of the distribution of walking speeds, as it is the case for the stability of lanes
in counterflows. Most obviously the example is a hint that with largely scattered
walking speeds there are new phenomena to be considered in the search for quickest
travel time solutions.
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Using a Telepresence System to Investigate
Route Choice Behavior

Tobias Kretz, Stefan Hengst, Antonia Pérez Arias, Simon Friedberger,
and Uwe D. Hanebeck

Abstract A combination of a telepresence system and a microscopic traffic
simulator is introduced. It is evaluated using a hotel evacuation scenario. Four
different kinds of supporting information are compared: standard exit signs, floor
plans with indicated exit routes, guiding lines on the floor and simulated agents
leading the way. The results indicate that guiding lines are the most efficient way to
support an evacuation but the natural behavior of following others comes very close.
On another level the results are consistent with previously performed real and virtual
experiments and validate the use of a telepresence system in evacuation studies.
It is shown that using a microscopic traffic simulator extends the possibilities for
evaluation, e.g. by adding simulated humans to the environment.

1 Introduction

To accurately plan and evaluate safety measures in buildings and transportation sys-
tems, knowledge of the behavior of pedestrians in emergency situations is required.
There are two major ways to acquire this information, conducting experiments or
performing computer simulations. The problem with experiments is the immense
effort that is necessary to recreate an appropriate situation. This is even more
difficult in the planning phase when a prototype would have to be constructed. In
addition many situations cannot be evaluated experimentally because the safety of
the test subjects cannot be guaranteed. Simulations on the other hand are usually
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based on relatively simple models of pedestrian behavior and cannot capture the
complexities of human thought processes and decision making. A common solution
is to conduct simple experiments and simulations and attempt to derive generally
applicable rules from them [1]. The generality makes these rules necessarily crude;
an example would be the required exit width depending on the number of people
in a building. Kobes et al. [2] propose the usage of so called serious games to
combine the benefits of simulations and experiments. Their system allows a test
subject to try to escape from a simulated emergency situation using common video
game techniques. The problem with this approach is that the user doesn’t actually
move even though proprioception (i.e. self-perception of motion) has been shown to
improve navigational abilities. We therefore introduce a combination of an extended
range telepresence system and a pedestrian simulation. The effectiveness of the
system is shown by comparing different utilities for finding fire exits. Such different
utilities, like escape exit signs or guiding lines, can be seen and followed with
varying simplicity. As for example guiding lines are visually very intrusive and may
be considered unaesthetic a quantitative evaluation of the usefulness of different
signage is desirable.

2 Combined System

This section presents the components of our experimental setup; the extended range
telepresence system and the pedestrian simulation software.

2.1 Extended Range Telepresence

The extended range telepresence system allows a user to feel present in a remote
or virtual environment (called the target environment) by locally reproducing
perception for the user and remotely reproducing actions by the user. To achieve this,
the user is wearing a head-mounted display (HMD) capable of displaying the target
environment in 3D and playing back sound (cf. Fig. 1). The head-mounted display is
fitted with additional sensors that allow its position and orientation in the room to be
tracked. When the user takes a step forward, this movement will be registered and
transferred to the target environment and what the user sees will change accordingly.
This process is further complicated by an algorithm called Motion Compression
[3–5], which allows the target environment to be much larger than the user
environment. The path of the user is curved to require less space while keeping
length and turning angles of the paths in both environments identical. It has been
shown that users do not notice slight changes in curvature [6]. The image the user
sees is then rotated slightly to steer him on the calculated user path.
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Fig. 1 User in the
telepresence system, wearing
HMD and backpack computer
for processing

Fig. 2 Screenshot from the
VISSIM microscopic traffic
simulator

2.2 VISSIM

We have connected the pedestrian and vehicle simulation software VISSIM [7,8] to
the extended range telepresence allowing us to simulate environments that include
virtual agents (cf. Fig. 2). These virtual (simulated) agents react to the telepresent
user as if he was a simulated agent allowing him to become part of the simulation
and interact with it.

2.3 Benefits

This setup has several benefits apart from proprioception. Three dimensional vision
with the head mounted display allows to naturally judge distances and increases
realism. The user position is tracked, which allows the simple creation of detailed
records of his movement. The orientation of the head-mounted display is tracked
as well which can be used to extract coarse focus of attention information, e.g.,
whether a fire exit is visible. Using a pedestrian simulation enables us to populate
the simulated world with other humans without requiring further test subjects.
This allows conducting experiments concerning the behavior of individuals in large
crowds quickly and cheaply.
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Fig. 3 Orthogonal view of
the 3D scenario

3 Route Choice Behavior in a Hotel Evacuation

3.1 Scenario

The combined VISSIM-Telepresence system is used to study the influence of
different signage for finding fire exits in a virtual hotel scenario (Fig. 3), it has
the same layout as the scenario used by Kobes et al. in [2, 9–11]. The layout was
enhanced with textures and furniture in order to realistically reproduce a typical
hotel scenario.

Using this scenario has two advantages: First, the layout of the chosen hotel is
classified as complex [10] and the choice of the nearest exit is not trivial. Second,
this scenario reproduces a real hotel and data of a real case study performed in the
hotel are available in [10], so that we can compare our results with the real data.

3.2 Experiment Description

Preliminary experiments were conducted to check the user behavior concerning
the virtual walls. In principle, the user could consciously decide to move through
the virtual walls. Different to an experiment designed to be done in front of a
screen and controlled by keys, mouse or joystick, the telepresence system has no
mechanism to prevent this. The preliminary experiments showed that the visual
information that the user receives via the head-mounted display is sufficient to
navigate in the virtual environment without colliding with the virtual walls (Fig. 4
shows exemplary trajectories of these experiments). However, without supporting
information (cf. Fig. 5) most test subjects were unable to find the nearest exit in
these experiments.

A case study was designed to investigate the influence of the signage in finding
the nearest exit in case of a hotel evacuation. As part of this study, we compared
exit choice, travel times, walking distances, and walking speeds towards exits under
following conditions:

There is a guiding line on the floor (Fig. 6a). There are other persons (simulated
agents) walking to the exit (Fig. 6b). There is standard escape exit signage above
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Fig. 4 Example trajectories (Base picture adapted from [9])

Fig. 5 Screenshot of evacuation scenario without supporting information

head (Fig. 6c). There is an evacuation floor plan in the room where the evacuation
starts (Fig. 6d).

3.3 Experiment Participants

We introduced 20 participants, all male, between 21 and 32 years old to the
scenario. The participants had the opportunity to familiarize themselves with the
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Fig. 6 Screenshots of scenarios with supporting information: (a) guiding lines, (b) simulated
agents, (c) escape exit signs, and (d) floor plan

telepresence system in a simpler scenario. All participants tested the four conditions.
The participants started each test run at different positions to avoid learning effects.
Moreover, 5 participants started with condition 1, 5 with condition 2, etc., in a way
that we could analyze the performance under different signage conditions with and
without learning effects separately. The participants were instructed to leave the
building as fast as possible as they would be a real evacuation.

3.4 Performance Measures

In order to evaluate the efficiency of the supporting information, exit choice, travel
times, walking distances, and walking speeds towards exits were recorded. In order
to quantify the subjective preference of the participants for each type of signal, a
questionnaire was used.

4 Results

The participants were not able to find the nearest exit without supporting infor-
mation. Therefore, the next results only report the performance measures for the
scenarios with supporting information.

4.1 Objective Measures

4.1.1 Nearest Exit Choice

The evaluation of the exit choice in Fig. 7 shows that the guiding lines are the most
efficient signage to find the nearest exit. By using other signage the nearest exit is
only chosen in about 50 % of the test runs.
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Fig. 7 Percentage of correct exit choice for each signage condition

Fig. 8 (a) Average duration for each signage condition using only the first runs of the participants.
(b) Average duration using all runs of the participants

4.1.2 Travel Time

The time needed to find the exit in the evacuation scenario is shown in Fig. 8a.
When only the first test runs are evaluated (i.e., the participants do not know the
hotel scenario in advance), the guiding lines and the presence of other pedestrians
lead to the shortest travel times with average values of 91.6 s and 87.2 s, respectively.
Escape exit signs and the escape floor plan have the longest travel times. Note that
there is a higher standard deviation across the participants when using the exit signs,
whereas the floor plan leads to longer times for most participants.

The guiding lines and the presence of other pedestrians also lead to faster
evacuations when regarding the average time duration for all test runs Fig. 8b,
although the duration of the evacuation using the exit signs and the floor plan is
as expected shorter when the user knows the building in advance.

4.1.3 Walking Distance

Figure 9a shows the average of the covered distances to the exits using only the
first runs of the participants. The guiding lines and the presence of other pedestrians
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Fig. 9 (a) Average walking distance using only the first runs of the participants. (b) Average
walking distance using all runs of the participants

Fig. 10 Average velocity of participants at each run

again lead to shorter walking distances than the exit signs and the floor plan. The
same trend is observed when considering all test runs of the participants (Fig. 9b).

4.1.4 Walking Speed

The learning effect is clearly observed by regarding the average velocity of the
participants at each test run in Fig. 10. The average velocity in the first test run
is significantly lower than in the other runs. However, no significant difference is
observed between the second run and the next runs.

4.2 Subjective Measures

The evacuation scenario was found to be modeled realistically by almost all (19)
participants. Most participants found the guiding lines to be the most efficient signal.
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Table 1 Questionnaire used to evaluate the preference of the participants

Guiding lines Exit signs Sim. agents Floor plan

Which aid seemed to provide the fastest
way out?

9 7 2 2

Which aid seemed the most useful? 17 2 1 0
Which aid would you prefer in case of fire? 19 5 2 0
(Multiple answers possible)

Moreover, in case of fire, 19 participants would prefer the guiding lines and 7
participants would prefer a combination of guiding lines and exit signs (Table 1).

4.3 Discussion

In our route choice behavior study, the guiding lines turned out to be the most
efficient signage method in order to find the nearest exit. This signage condition
achieved shorter times and walking distances than exit signs or a floor plan hanging
on the wall. The evaluation of the questionnaires also showed that participants have a
clear preference for this signage condition, especially in the case of a fire evacuation.
These results are in agreement with studies reported in [9, 12, 13] that indicate
that photoluminescent low-level exit path markings are likely to be more effective
compared to conventional escape route signs. The presence of other pedestrians
turned out to be very beneficial for the evacuation in our study leading to exit times
close to those of guiding lines. However, following other agents did not always
guide to the nearest exit for the user who may have started in a different room.
In order to validate our extended range telepresence system as an adequate tool
to perform such a route choice study, a comparison of our results with real data
is necessary. For this purpose, we use the results from the case study in the hotel
scenario presented in [10]. In our experiments not all participants chose the nearest
exit, neither did they in the real experiments. The mean value of the covered distance
to the chosen exit is 48.8 m in the real experiment, with a minimum value of 13.5 m
and a maximum value of 83.2 m [10]. The mean value of the covered distance in our
experiments (considering only the first run) is 26.7 m, with minimum and maximum
values of 13.5 m (following simulated pedestrians) and 54.5 m (following the exit
signs), respectively. The mean and the maximum covered distance in extended range
telepresence are rather lower than in the real experiments. However, all the values
are within the range of distances achieved in the real experiments. The mean value
of the walking velocity in the real experiments [10] is 1.03 m/s, which is higher
than the mean velocity in our experiments. This difference may be due to the user
being afraid of running outside the borders of the user environment or damaging the
carried equipment. This difference is irrelevant for our evaluation of route choice as
there are no differences in speed limiting factors along the different exit paths.
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5 Summary

A combination of a telepresence system and a microscopic traffic simulator has
been introduced and its efficacy for evaluating evacuation scenarios has been shown.
As a first test scenario, the evacuation of a hotel using different kinds of signage
has been evaluated. The results indicate that low-level exit path markings are the
most efficient way of guiding people to an emergency exit but also that following
others is efficient as well. These results are consistent with previously performed
real and virtual experiments, which validates the use of our telepresence system in
evacuation studies, and also shows the extended possibilities of using a pedestrian
simulation software to add virtual agents.
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A Cellular Automaton Approach for Lane
Formation in Pedestrian Counterflow

Stefan Nowak and Andreas Schadschneider

Abstract The formation of lanes is a well known emergent behavior in pedestrian
counterflow as well as in some other physical systems. Nevertheless, not much is
known quantitatively which is related to the fact that the empirical situation is quite
poor. Here we analyze lane formation in a two-dimensional cellular automaton for
pedestrian dynamics. To quantify the lane structure, we make use of a laning order
parameter which has been used previously to detect lanes in colloidal systems. The
main purpose of our work is to determine a phase diagram in dependence on the
coupling constants and the particle density. Furthermore, we compare the results of
our simulation with experimental data.

1 Introduction

In recent years, pedestrian dynamics has become more and more attractive for
scientists from different fields. This is not very surprising because there are many
applications which require a profound knowledge of crowd dynamics. It can help
to make forecasts of evacuation scenarios as well as to plan the layout of buildings
and venues. Furthermore, pedestrian dynamics is very interesting from a physical
point of view. Human crowds are many-body systems which show many interesting
collective effects like jamming at bottlenecks, density waves, flow oscillations and
lane formation [1]. The latter is also known from other driven systems [2], e.g., from
complex plasmas [3], molecular ions [4] and colloidal suspensions [5–7].

There are many models which are able to reproduce the collective phenomena
mentioned above [8, 9], but quantitative studies are rare. Especially, lane formation
in counterflow is often used as a validation to check whether a model is realistic.
However, there are very few studies that go beyond the statement that lanes

S. Nowak (�) � A. Schadschneider
Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
e-mail: sn@thp.uni-koeln.de; as@thp.uni-koeln.de

V.V. Kozlov et al. (eds.), Traffic and Granular Flow ’11,
DOI 10.1007/978-3-642-39669-4__15, © Springer-Verlag Berlin Heidelberg 2013

149

mailto:sn@thp.uni-koeln.de
mailto:as@thp.uni-koeln.de


150 S. Nowak and A. Schadschneider

are present in the system, even though simulations of bi-directional pedestrian
movement are made very often [9–24].

Comparisons with empirical data are even made less frequently. This is related
to the fact that the empirical situation is not very satisfying. Even for quite simple
scenarios, like the fundamental diagram in a corridor, there is no consensus [1, 25].
But the situation has been improved recently within the Hermes project [26, 27]
where several large scale experiments were performed [28–31] with high accuracy
[32] and automatized evaluation [33].

The goal of this article is to make quantitative statements about lane formation
with help of an order parameter adopted from the analysis of colloidal suspensions
[7]. The results of the simulations will also be compared with experimental data.

2 Definitions

2.1 Floor Field Cellular Automaton

The Floor Field Cellular Automaton (FFCA) [14,34] is defined on a square lattice of
size L�W . Each cell corresponds to an area of 0:4�0:4m2 and can either be empty
or contain a type-A particle, a type-B particle or a wall. The two different types of
particles represent pedestrians with opposite walking direction: Type-A particles go
to the right, type-B particles to the left. Their movement is defined by update rules
that transfer the system from one timestep to the next. One timestep corresponds to
about 0.25 s. The update rules are defined by the probability

pij D 1

Z
exp

�
kSSij C kDDij

�
ij (1)

that a certain particle goes to the cell .i; j /. The factor ij 2 f0; 1g ensures
that movement only takes place at allowed cells, i.e., ij D 0 for cells which are
occupied by other particles or walls and cells which are not nearest neighbors of
the origin-cell. Z is a normalization constant which ensures that

P
ij pij D 1. The

actual direction of motion is determined by the so called floor fields Sij and Dij .
Movement is preferred into the direction of larger fields. The coupling constants kS

and kD control the strength of the fields.
The static floor field (SFF) Sij contains the information about the desired

direction of movement, i.e., SA
ij D 1 for cells to the right of a type-A particle,

SA
ij D �1 for cells to the left and SA

ij D 0 otherwise. The corresponding field of a
type-B particle is given by SB

ij D �SA
ij .

The dynamic floor field (DFF) Dij is used to model longer ranged interactions.
Each type-X particle that moves from a cell .i; j / to another cell increasesDX

ij by 1.
It can be interpreted as a virtual trace that acts attracting to other particles. The DFF
has also its own dynamics, namely diffusion and decay. At the end of each timestep
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it is updated according to

Dij .t C 1/ D .1 � ı/
h
Dij .t/C ˛

4
�Dij .t/

i
(2)

where

�Dij .t/ D Di;jC1.t/CDi;j�1.t/CDiC1;j .t/CDi�1;j .t/ � 4Di;j .t/

is a discretization of the Laplace operator.
Since all particles choose a destination cell synchronously, a conflict occurs when

n > 1 particles try to move to the same cell. In this case, with probability .1 � �/,
the conflict is solved, i.e., one of the particles is chosen at random to move. For
simplicity we assume that each particle is chosen with equal probability 1=n. With
probability � the conflict is unsolved, i.e., all particles stay where they are. � can
be interpreted as a friction parameter [35].

In summary, the update rules are given as follows:

1. All particles chose a destination cell according to Eq. (1)
2. Conflicts are solved
3. All particles move to their destination cell. The dynamic floor field of the origin

cells is increased by one
4. Diffusion and decay of the dynamic floor field according to Eq. (2)

2.2 Order Parameter for Lane Formation

In order to quantify the lane structure in the system, we use an order parameter
which is based on the order parameter that was introduced in Ref. [7] to detect lanes
in a colloidal suspension. Other attempts for lane detection are given in Refs. [14,
36, 37].

Considering the discreteness of space in our system, the order parameter can be
written as

˚ D 1

N

NX
nD1

 
NA
in

�NB
in

NA
in

CNB
in

!2
(3)

where in is the vertical position of the n-th particle, NA
i (NB

i ) denotes the number
of particles of typeA (B) at row i andN is the total number of particles. This value
is close to 0, if there is a homogenous mixture of type-A and type-B particles, and
equal to 1, if each row contains only one type of particle. Note that the value of˚ is
in general larger than zero, even if all particles are distributed at random. The mean
value of ˚ in that case is denoted by ˚0 and can be large although there is no lane
structure in the system, especially for small densities. We take this into account by
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defining a reduced order parameter

Q̊ D ˚ �˚0
1� ˚0

: (4)

3 Results

3.1 Determination of Phases

In this section the number of particles of type A and B is equal, i.e., 
A D 
B D

=2. The parameters are given by

kS D 2:5; ˛ D 0:3; ı D 0:1; W D 10; L D 100 (5)

if not mentioned otherwise. The boundary conditions are periodic in walking
direction and open perpendicular to it, i.e., there is a virtual wall at rows 0 and
W C 1. We use the von Neumann neighborhood, i.e., each cell has four nearest
neighbors. As a first result one observes that in general the probability Pjam that the
system forms a gridlock increases both with an increasing density and a decreasing
coupling constant kD (Fig. 1a). This is not very surprising since an increasing
density means a larger number of type-A and type-B particles which can block
each other. Additionally, there is less space to avoid such collisions. An increasing
kD means that it becomes more likely for a particle to follow another particle of
the same kind and thus collisions of type-A and type-B particles are avoided. Note
that the jamming transition to a gridlock state was examined frequently [15–19], but
there is no empirical evidence that such a transition occurs in reality [31]. Therefore,
the occurrence of gridlocks at too low densities should be seen as an indication for
unrealistic behavior of the model.

For the analysis of the order parameter Q̊ and in the following only those
simulations are considered that did not evolve into a gridlock. One can see in Fig. 1b
that a certain minimal density 
 and coupling constant kD is necessary to form lanes.
If one of these parameters is reduced, the interaction between particles becomes too
weak. For large densities (
 > 0:225) and small kD no data are available because the
system always evolves in a gridlock. If kD is increased at those large densities one
observes that no configuration with a medium value of Q̊ is stable, i.e., the system
is either in a gridlock state or in a state with almost perfect lanes.

3.2 Properties of Lanes

Figure 2a shows the distribution of densities 
i in the different rows i D 1; : : : ;W .
If the particles were equally distributed over the system (disordered configuration),
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one would expect a sharp peak in the distribution at the position of the global density

. But since the DFF leads to an attractive interaction between particles, the number
of rows which are not occupied as well as the number of rows with larger density
grows. This can be observed in the distribution as a sharp peak at 
i D 0 and a larger
support for increasing coupling constant kD. The latter means that the mobility of
particles and thus the average velocity is reduced.

Another feature of the distribution is the existence of a characteristic lane density
which does neither depend on the coupling constant kD nor on the global density 
.
This becomes visible as peaks in the distribution. The positions of the peaks are at

�1 D 0:28, 
�2 D 0:46 and 
�3 D 0:56. Note that not all peaks have to be present at
a given set of parameters. It turns out that, if there is a peak located at 
�i for some
i 2 f1; 2; 3g, there are also peaks at 
�j for all j < i . This was tested for different
coupling constants kD 2 Œ1; 7	 and for different (global) densities 
 2 Œ0:1; 0:3	. For
instance, at 
 D 0:15 there is only one peak at kD D 1, two peaks at kD D 3 and
three peaks at kD D 5.
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Since lane formation is a way of separating different types of particles which
leads to less opposing traffic one can expect that lanes increase the mean velocity v
in the system. But on the contrary, lane formation requires a sufficiently large value
of the coupling constant kD which can lead to large local densities in a row. As
mentioned above, this decreases the velocity. Therefore, there is an optimal value
of kD and one has a maximum in v.kD/ (Fig. 2b). But note that not for all densities
such a maximum is present. For instance, at 
 D 0:1 the global densities does not
suffice to create a local density which is larger than 0.5. Hence, each particle has on
average one empty cell in front and the velocity does not decrease. If the density is
too large one has also no maximum because there are no data available for small kD
due to a large jam probability.

4 Additional Mechanisms for Lane Formation

The basic model as described above shows interesting effects, but it is not sufficient
to reproduce experimental data. The main reason is that the tendency of the system
to form a gridlock is too large. Therefore, we introduce a few additional mechanisms
which are able to prevent jams.

4.1 Anticipation

When pedestrians are in a counterflow they usually try to avoid collisions by
estimating the prospective route of pedestrians with opposite walking direction. This
behavior can be imitated by introducing an additional “Anticipation Floor Field”
[38]. For particles of type A it is defined as

AAij D
X
j 0

�dA.j;j
0/ (6)

where the sum is over all type-A particle positions in the i -th row. � 2 .0; 1/ is a
parameter which controls the range of anticipation. dA.j; j 0/ is the minimal number
of cells which have to be passed if a particle of type A goes from a cell .i; j 0/ to the
cell .i; j /, only taking steps towards its desired walking direction. The field ABij for
particles of typeB is defined analogously. This definition ofAij causes a large value
of AXij (X 2 fA;Bg) if there are many particles of type X which are going to tread
the cell .i; j / in the nearby future. Particles of the other type Y should avoid this
cell. This can be achieved by reducing the transition probability pij by an additional
factor exp.�kAA

X
ij / in Eq. (1), where kA is the coupling constant to the anticipation

floor field AXij .
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order parameter Q̊

As Fig. 3b shows, the anticipation mechanism is able to create lanes, too. But the
more important fact is that the jam probability is strongly reduced compared to the
system without anticipation (cf. Fig. 3a).

4.2 Swapping

In reality pedestrians are not incompressible squares like in the model but more or
less compressible bodies. They are also able to turn sideways such that the contact
area becomes smaller, i.e., they are able to walk past each other even if the available
space is smaller than two cells (D 0:8m). We take this into account by providing a
certain probability � that two opposing particles can swap their position. Swapping
is applied in each timestep after the “normal” movement of particles, but only to
those pairs of particles that did not move previously in that timestep and if their
combined neighborhood contains at least one empty cell.

4.3 Politeness Factor

The “politeness factor” [39] takes into account that pedestrian usually try to avoid
to get too close to other pedestrians, i.e., it is a kind of repulsive force. It is not
necessary for lane formation or the prevention of gridlocks, but it is important
for quantitative predictions of the fundamental diagram [40]. It can be easily
implemented by adding an additional politeness factor exp.�kP QNij / in the transition
probabilities (1). Here we define QNij D max.0;Nij �Nkl/ for a particle on the cell
.k; l/, Nij is the number of nearest neighbors of the cell .i; j / and kP controls the
strength of politeness.
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Fig. 4 Pictures of the experimental setup (a) in reality (Taken from [31]) and (b) in the simulation

5 Comparison with Experimental Data

5.1 Experiment

Experiments were performed within the Hermes project [26, 27] in the fairground
Düsseldorf [31]. A schematic picture of the experimental setup can be found in
Fig. 4a. There were several experiments with varying width of the corridor, but here
we will only consider the experiments with bcor D 3:6 m. In order to vary the shape
of the lanes in the counterflow, there are two versions of the experiment. In the first
version, the participants get no instruction about which of two possible exits (left or
right) they have to choose. One observes a complete segregation of the two opposing
streams. The lanes are formed immediately after the beginning of the experiment
and stay stable the whole time. This regime is called “Stable Separated Lanes”
(SSL). In a second version, they were told to choose an exit according to a number
they got before the experiment: Odd numbers exit to the left, even numbers to the
right. One still observers lane formation in this version, but the lanes are unstable
and their number increases. This regime is called “Dynamical Multi-Lanes” (DML).
A surprising result is that in both cases the fundamental diagram (Fig. 5) looks very
similar, at least up to a density of 2 Persons/m2. Unfortunately, there have been no
experiments for larger densities in the SSL regime. From the fundamental diagram



A Cellular Automaton Approach for Lane Formation in Pedestrian Counterflow 157

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4

J
[1

/(
m

·s)
]

ρ [1/m2]

Experimental data
Simulation

Fig. 5 Empirical fundamental diagram vs. simulations in the DML regime

of the DML regime one can see that densities up to 3.5 Persons/m2 are possible
without a noticeable decrease of the flow. This corresponds to a density of 
 D 0:56

in the model, i.e., no gridlocks should occur for smaller densities.

5.2 Simulation

The “experimental” setup in the simulation can be found in Fig. 4b. Particles are
inserted into the system at every timestep on each of the b entrance cells with
probability ˇ. If they reach one of the exit cells, they are removed from the system.
We assign the static floor field according to the negative Euclidean distance to the
four cells which are indicated with white circles in Fig. 4b. In the DML regime there
are two different SFFs SL

ij and SR
ij corresponding to the left and right exit. Particles

which enter the system choose one of them at random. In the SSL regime there is
only one SFF Sij D maxfSL

ij ; S
R
ij g.

First of all, we try to adjust the parameters of the model such that the experi-
mental fundamental diagram is reproduced. The best agreement was found with the
following parameters: kS D 2:5; kD D 2; kA D 2; kP D 3:2; � D 0:5; � D
0:6; ˛ D 0:25; ı D 0:15; � D 0:8. The resulting plot is shown in Fig. 5.

From visualisations of the simulations one can also clearly see the difference
in the dynamics of the SSL and the DML regime. Like in the experiment, in the
simulated SSL regime the particles form a configuration of two separated lanes
which is stable for a long time. The only difference is that it takes some longer
time to form the lanes while in the experiment lanes are formed immediately.

In the DML regime one can observe the same instability of lanes as in the
experiment. It seems that the dynamics in the inside of the corridor is at least similar
to the behavior in the experiment. The dynamics in the entrance/exit area still needs
some improvement. In the simulation particles go often to the center and wait for
a gap in the opposing stream, which they cannot cross easily due to anticipation
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(cf. Fig. 6d). In the experiment participants usually take a more direct way out of
the corridor (cf. Fig. 6c). The discrepancy is related to the fact that anticipation and
swapping only works well when the walking direction is parallel to the corridor.

6 Conclusion and Outlook

We have discussed the phenomenon of lane formation in a cellular automaton
model. With help of an order parameter one can easily estimate the range of model
parameters where lane formation can be observed in the system. The basic floor
field model can reproduce lane formation, but it turns out that the tendency to form
a gridlock is too large to be realistic. For this reason additional mechanisms have to
be introduced. If they are included the model is able to reproduce the experimental
data quite well.

In future work one can try to improve the model further, especially to deal with
more complex scenarios. It would also be nice if there were quantitative empirical
data on the lane structure, for instance in terms of the order parameter. This could
help to make the model calibration even more sophisticated.
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A Methodological Approach to Adjustment
of Pedestrian Simulations to Live Scenarios:
Example of a German Railway Station

Maria Davidich and Gerta Köster

Abstract Pedestrian stream simulations serve to predict the flow of a crowd.
Applications range from planning safer buildings, performing risk analysis for
public events to evaluating the clever placement of advertisement. The usability of
a simulator depends on how well it reproduces real behavior. Unfortunately very
little data from live scenarios has been available so far to compare simulations
to. Calibration attempts have relied on literature values or, at best, laboratory
measurements. This paper is based on live video observations at a major German
railway station. We present a methodological approach to extract key data from
the videos so that calibration of the simulation tool against live video observations
becomes possible. The success of the approach is demonstrated by reproducing the
real scenario in a benchmark simulator and comparing the simulation with the live
video observations.

1 Introduction

Real time simulations of pedestrian behavior collect live data and calibrate the
simulator against the actual scenario. After that predictions on the evolution of
the scenario are made. For a useful prediction it is essential that the simulator is
capable of reproducing real situations. An accurate reproduction of known data,
without being an exact proof, indicates that the simulator may be trusted. This is
best tested beforehand by comparing simulation data to data that was extracted from
live observations and stored.
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Unfortunately such live data is not readily available and most calibration attempts
are still based on literature data or laboratory experiments. They focus on some
specific phenomenon, such as the reproduction of the classic fundamental diagram
by Weidmann [1] and Schadschneider et al. [2]. This is very helpful and fully
justified when one seeks to better understand an isolated phenomenon. However,
one cannot expect to reproduce a complete scenario with all the aspects that define
this scenario. For this a more holistic attempt is necessary. The authors are not aware
of any publications on comprehensive calibration.

In this paper we use data gathered through video cameras installed at a major
German railway station to demonstrate step by step, how data collection, data
analysis and calibration of simulation against data from live scenario are combined
to ensure high quality predictions of pedestrian flows.

The results also shed some more light on to which extent the use of the
classic literature values on density-flow relationships compiled in [1] is adequate to
calibrate the scenario we investigate. In particular, we look at the free-flow velocities
of pedestrians and the fundamental diagram. We finally demonstrate the success
of the proposed methodology: We apply it to a one of our sample videos. Then
we feed the results into a benchmark pedestrian stream simulator and compare the
evolution of the density of the simulation experiment to the measurements in several
observation areas.

2 Gathering Data for a Scenario: A German Railway Station

Several cameras filmed the crowd flow in a part of a German railway station from
the bird’s view. The trajectories of individual pedestrians in time and space must be
extracted manually from the videos using a tool that allows to “click” positions on
the video. At this point we have finished analyzing two of the videos, each of which
has a duration of at least 1.5 min. The number of pedestrians walking on each video
is about 400 persons. The area covered on each video includes several platforms and
a part of the station’s main hall.

All trajectories within the complete area of video observation were extracted
and analyzed. Some trajectories are partially obscured from the camera view or
the view is distorted by distance. Obscured or distorted trajectories are only used
to gather source-target statistics. The detailed analysis of velocities and flows is
conducted exclusively on the visible and undistorted parts of the trajectories to
keep measurement errors small. Figure 1 shows a schematic picture of an area of
observation of a measurement experiment, highlighting the fact that one has to deal
with hidden areas.
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Fig. 1 Schematic representation of the measurement experiment: The white area corresponds to
the field of vision of a camera mounted at a location in the upper left corner of the picture. There
are platforms on the left, obstacles in the middle and a wall on the right side

3 The Benchmark Simulation Tool

There are many different models for pedestrian movements, all of them having their
own merits. For surveys we refer to [3–7] with descriptions of a large number of
approaches for modeling pedestrian movements.

Our own simulation tool is a cellular automaton. The simulator has been
described in earlier publications by the authors and by their colleagues, namely
in [8]. Details on calibration according to fundamenatal diagrams are given in
[9] and the path finding method based on geodesics is described in [10, 11]. We
will therefore restrict the description to the minimum necessary to understand the
paper.

In a cellular automaton the area of observation is divided in a lattice of cells.
Each cell at each time step has a status: either empty or occupied by either a person,
or an obstacle, or a source or a target. Virtual persons enter and leave the scenario
through sources and targets. The cells are updated by rules which together form the
automaton. The cell diameter is usually set to 53 cm to accommodate an average
sized European male (Fig. 2).

The core of the model is contained in the automaton, that is, the set of rules
according to which the cell states are updated when the simulation steps forward
in time. In many aspects, the model is similar to other cellular automaton models
based on potentials [2, 12–15].

We imagine that attractive forces act between targets and pedestrians, whereas
obstacles and other pedestrians repulse pedestrians. These forces between pedes-
trians, targets and obstacles are expressed through suitable scalar functions: the
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Fig. 2 Pedestrians move on a grid with hexagonal cells towards a target. Persons, targets and
obstacles occupy cells. Positions are updated sequentially in each simulation step, so that collision
is impossible

potentials. Virtual persons seek to minimize the overall potential when stepping
ahead. Obstacles are successfully skirted because the target potential is given
through the arrival time of a traveling wave front [10]. A sequential update scheme
makes collisions impossible. Furthermore, each person has an individual speed that
the person tries to achieve – and indeed does achieve when the path is free: the
free-flow velocity. Our model enriches the basic ideas by a number of sub-models
to compensate the most relevant shortcomings [8].

4 Methodology: Realistic Calibration According
to Video Data

The next step is to adjust the simulations to video data. In order to achieve this,
we need to define sets of data and parameters that capture the most important
phenomena. Some data, such as the location and form of obstacles, is extracted
from the videos and then directly fed into the simulation. We also extract parameter
estimates by statistically analysing the data. For some parameters, we may also
need to find statistical distributions. This is the case for the free-flow velocity,
where literature suggests a normal distribution [1]. In some cases, we may have
to measure a dependency instead of a simple parameter, such as the relationship
between density and velocity or equivalently density and flow in a crowd.

We propose to extract the following information, which we consider necessary
for the reconstruction of live scenarios, from the video footage and, if available,
floor plans. We would like to stress that in some scenarios additional input, like the
average size of pedestrians, may be necessary or at least beneficial.
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• The topology of the area of interest in two dimensions. This is direct input data.
• The positions of sources and targets within a scenario, that is, the locations

where people come from and to where they go to. This is again direct input data.
• Statistical information on the distribution of trajectories between sources

and targets. This data is necessary to direct virtual pedestrians from sources to
targets in a way that fits the scenario.

• A schedule of pedestrian appearances and disappearances. How many
persons per second appear or disappear at each location? This data is necessary
to feed virtual pedestrians into the simulation so that it fits the scenario and to
adequately remove them from the simulation.

• The scenario specific distributions of free-flow velocities.
It is very important to use the measured free-flow velocity distribution that is
correct for a particular scenario. Only then our simulation will produce consistent
and quantitatively correct data: e.g. during the rush hour we observe mostly fit
walkers with a clear purpose in mind. They tend to walk fast towards their goals.
Only minutes later, when the last commuter train has arrived and its passengers
have left the station, we may observe a more relaxed crowd of casually strolling
tourists with no particular goal or time schedule in mind.

At 17:26 p.m. we measured a mean free-flow velocity of 1.04 m/s with a
standard deviation of 0.51 m/s at the railway station. This differs significantly
from the benchmark data for a Gaussian distribution about a mean of 1.34 m/s
with a standard deviation 0.26 m/s in [1]. The histogram and quantile plot of
the measured distributiona are depicted in Fig. 3 and in Fig. 4. In the benchmark
simulations presented in Sect. 5 we decided to use a normal distribution with the
mean and standard deviation from the data including some very slow and very
fast pedestrians.

• Measured data from which the density-flow relationship (fundamental
diagram) valid for the current scenario can be derived. The density-flow
relationship observed in the video also deviates from the fundamental diagram
provided by Weidmann (see Fig. 5). The method to calibrate the pedestrian
simulation against a given density-flow relationship that we use in the benchmark
simulator is described in detail in [9].

5 Results

As soon as the steps from Sect. 4 are completed and the adjustments against
measured data have been performed, a comparative simulation can be started.
We compare simulation results and video measurements for data that was recorded
during the rush hour in the afternoon. In the benchmark scenarios a train arrives
on a platform (on the left side of Fig. 1), passengers exit the train and move to
different destinations, such as the entrances to the subway, food stalls, elevators
and other platforms. Accordingly, the density is low at first. Then the bulk of
the passengers appear on the video and a higher pedestrian density is measured.
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Fig. 3 Histogram of free-flow velocities at 17:26 p.m. at a German railway station. Only the 214
trajectories with a free path in the direction of movement are considered. The mean free-flow
velocity is 1.04 m/s and the standard deviation is 0.51 m/s

Fig. 4 Quantile plot of free-flow velocities comparing the distribution of the free-flow velocities
measured at 17:26 p.m. at a German railway station to a normal distribution. Only the 214
trajectories with a free path in the direction of movement were considered
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Fig. 5 Measured density-flow relationship at a German railway station at 17:26 p.m. on a workday
compared to Weidmann’s diagram (dashed line). Densities above 1 person/m2 did not occur. The
solid line is a smooth approximation of the measured data

Finally, the pedestrian density decreases slowly. After 3 min no more passengers
come from the platform. Only pedestrians that come from other trains or entrances
are seen in the main hall.

When comparing measurements to simulation results one must find suitable
quantities that allow such a comparison. The sources, destinations and speeds of
the virtual pedestrians in our simulations match measurements statistically, that is,
the distributions coincide. Individually no such match can be expected and, as a
consequence, individual trajectories cannot be compared. We need an aggregated
quantity instead. We pick the density of the crowd as it evolves with time in an area
of observation. The density cannot only be measured quite easily in both cases, but
is also of immediate interest, because densities above a certain threshold would be
an indicator for impending danger.

Figure 6 shows a comparison of simulated and measured densities in a time span
of 3 min. Solid lines correspond to the video footage, dashed lines to the simulation.
The prediction from the simulator qualitatively reproduces the scenario quite well,
that is, the peak density occurs in the area of observation, at the correct time, for the
correct duration and in the correct order of magnitude.

However, the result somewhat overestimates the densities. Part of the differences
can be explained by the influence of chance. The simulation is subject to random
input as far as the velocities of the virtual pedestrians and their chosen trajectories
are concerned. Only the distributions of the input and measurement parameters
coincide. Therefore, for each new seed and for each new simulation the results differ
and one cannot ever expect a complete match with the measurements.
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Fig. 6 Comparison of measured densities from video footage (solid line) and simulated densities
(dashed lines) when pedestrians are fed into the scenario with the source target distribution, the
free-flow velocities and the density-flow relationship measured at the start of the scenario. One
hundred eighty seconds (3 min) are simulated

We also suspect that the real pedestrians coordinate their movements better than
the virtual pedestrians. The virtual pedestrians are quite ‘short sighted’ and take
steps to avoid collision only when the actually ‘feel’ the potential of the other pedes-
trians. Real pedestrians are more likely to plan ahead. This is a typical disadvantage
of high speed pedestrian stream simulators that need to restrict influences to a near
field, so-called greedy algorithms, to keep computation times low.

The important question is whether this systematic overestimation is acceptable.
In our case, we are interested in a warning system for potentially dangerous
densities. Therefore we believe that slight overestimates can be tolerated, whereas
underestimations would be inacceptable.

6 Discussion and Next Steps

In this paper, we proposed a methodological approach to adjust pedestrian simu-
lations to live scenarios. We applied the methodology to a complex live scenario
at a major German railway station. The most important aspects and characteristics
that are taken into account and should be adjusted are: the topology of a scenario,
the positions of sources and targets and the statistical distribution of trajectories
between sources and targets, the current schedule of pedestrian appearances and
disappearances, the current distribution of free-flow velocities and the density-flow
relationship. Some of the parameters are direct input parameters, others, like
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the density-flow relationship, must be used as target functions for parameter
adjustments.

The analysis of the data from our live scenario revealed significant differences
to known literature data [1], which underlines the importance of scenario specific
measurements as input data and calibration to measured relationships, especially if
predictive simulations are attempted. The success of the proposed approach has been
tested by comparing the density evolution of the simulated data to the measured data
in an area of observation. The simulation predicts the density evolution rather well
at least qualitatively and also, to some extent, quantitiatively.
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Optimal Density in a Queue with Starting-Wave

Akiyasu Tomoeda, Daichi Yanagisawa, Takashi Imamura,
and Katsuhiro Nishinari

Abstract The propagation speed of people’s reaction in a relaxation process
of a queue, so-called starting-wave, has an essential role for pedestrians and
vehicles to achieve smooth movement. For example, a queue of vehicles with
appropriate headway (density) alleviates the traffic jams, since the delay of reaction
to start is minimized. In the previous study (Tomoeda et al., Fifth international
conference on pedestrian and evacuation dynamics. Springer), it was found that the
fundamental relation between the propagation speed of starting-wave and density
is well approximated by the power law function. We have revealed the existence of
optimal density, where the travel time of last pedestrian in a queue with the starting-
wave to pass the head position of the initial queue is minimized. This optimal density
inevitably plays a significant role to achieve smooth movement of crowds.
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1 Introduction

Various kinds of self-driven many-particles (SDP) systems, such as pedestrian
dynamics, vehicular traffic and traffic phenomena in biology have attracted a great
deal of attention in a wide range of fields during the last few decades [2–4]. Most of
these complex systems are interesting not only from the point of view of natural
sciences for fundamental understanding of how nature works but also from the
points of view of applied sciences and engineering for the potential practical use
of the results of the investigations. Especially, the interdisciplinary investigations
for the dynamics of jamming phenomena in SDP systems, so-called Jamology,
have been progressed by developing sophisticated mathematical models considered
as a system of interacting particles driven far-from equilibrium [5–11]. These
contributions to analyze the mechanism of jamming formation tell us that one of
the most important factor to cause the jamming phenomena is a sensitivity, which
indicates the time delay of reaction of particles to the stimulus. As an example,
if the reaction of drivers are extremely sensitive, they can avoid the traffic jam by
adjusting their behavior immediately to their front car’s movement. The reaction
time of pedestrians is similarly important toward smooth movement of crowd.
Moreover, we would like to point out that the wave of successive reaction in a queue,
so-called starting-wave, plays a significant role for the waiting time in a queuing
system of pedestrians and vehicles, since quick-start in walking accomplishes the
more smooth movement of crowds and jams. In this paper we have investigated
the optimal density to minimize the travel time of last pedestrians in a queue to pass
the head position of the initial queue by taking into account the propagation speed
of pedestrians’ reaction, which is characterized by the power law [1].

This paper is organized as follows. In the next section, let us introduce the
fundamental relation between propagation speed of starting-wave and density.
In Sect. 3, the existence of optimal density which minimizes the travel time in a line
and the effect of the partition number of groups are shown by analytical calculation.
Moreover, we show the existence of optimal density by actual experiments of
pedestrians. Finally, Sect. 4 is devoted to the concluding discussions.

2 Propagation Speed of Starting-Wave

In this section, let us introduce the fundamental relation between propagation
speed of starting-wave and density obtained from both numerical simulations and
experimental measurements.

Our mathematical model is built on the stochastic cellular automaton, which
recently prevails to modeling the complex systems [12]. Let us imagine that the
passage is partitioned into L 2 N identical cells that each cell can accommodate
at most one particle (pedestrian) at a time. Note that, in the following, we refer
to “particle” as a representation of a pedestrian in a model and “pedestrian” as
a person itself. The length of each cell corresponds to 0:5m by considering the
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reasonable volume exclusion effect of pedestrians. Moreover, a total number of N
.2 < N � L/ indicates the particles which are placed at equal distance Nh cell. In our
model, the parameters .N;L; Nh/ satisfies the equally-spaced condition as follows:

.N � 1/. NhC 1/C 1 D L: (1)

The update rules of our cellular automaton model are as follows: first of all,
only the particle at the right boundary (head of a queue) moves forward. Then
the following particle (only second particle in the queue) can also move forward.
After the second particle moves forward, the next particle can also start to move
in sequence. These rules of pedestrians’ walking are applied in parallel to all
particles. Note that, in this study, in order to investigate the propagation speed of
successive reactions, all of the following particles cannot move forward before
the starting-wave reaches to themselves. Therefore, unlike the usual stochastic
cellular automaton model such as ASEP [13–15], ZRP [16–18], in our model,
only if the next cell is empty and predecessor had already moved, following
particles can move forward with probability p.h/ which depends on their headway
distance h. This hopping probability of particles p.h/, which indicates the velocity
of particles, is given in analogy with the idea of Optimal Velocity (OV) function,
which is often introduced into the mathematical model for vehicular traffic as a
desired velocity of drivers depending on headway distance (or density) [5,19]. This
function is motivated by the common expectation that drivers have their desired
velocity and adjust to their suitable driving behavior. That is, the velocity must be
reduced and become small enough to prevent crashing into the preceding particle
when the headway becomes short. Whereas, when the headway becomes longer,
particles can move with their maximum velocity, which corresponds to the legal
velocity in vehicular traffic.

We approximate the experimental data of pedestrians’ walking on a circular
passage way [20] as a linear type function for the simplicity, which is widely
used in the traffic flow modeling built on the fluid dynamics [19, 21]. The constant
value Vmax and 
max indicate the maximum velocity of particles and the density at
complete stand-still, respectively. This linear relation gives us the OV function by
translating the headway distance into the reciprocal of the density as h � 1=
. In
order to apply the OV function obtained from the experimental data to the stochastic
cellular automaton model, the OV function is scaled so that the function from the
origin and the free hopping probability satisfies p D 1, if h D 5, which is based on
the maximum headway (5 cells) in our experiment as shown in Fig. 1.
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Fig. 2 Simulation results (a) and experimental measurements (b) between propagation speed of
starting-wave and density. The dashed curve shows the fitting function based on the form (2)

On the other hand, in our experiments, we have measured the propagation
speed of starting-wave under several densities which are decided by the initial
number of pedestrians along a line. At first, we make a long straight passage (L 2
f5; 10; 15; 20gm) and put marks with a distance of 0:5m between them. As an initial
condition of pedestrians, all pedestrians stand in line with same headway distance.
After that, the leader of queue starts to walk by the cue and then we measure the
elapsed time until the last pedestrian starts to walk. Thus, we have obtained the
propagation speed of successive reaction which is derived from the length of initial
queue divided by the elapsed time under each given density.

As a significant result of both numerical simulations and experimental measure-
ments, we have found the power law in the relation between propagation speed of
starting-wave and the initial density of pedestrians as shown in Fig. 2.Taking into
account this power law, we have assumed the simple relation between propagation
speed and density of pedestrians in analogy with the sonic speed of aerodynamics
as the form

a.
/ D ˛
�ˇ (2)

where 
 and a are the density and the propagation speed of starting-wave, relatively.
˛ and ˇ indicate positive parameters. By fitting this simulation result, we have
obtained the parameter values ˇ � 4=3, which shows the good agreement with
the experimental measurements.

3 Optimization of Initial Distribution

Now, let us apply this fundamental relation (2) to the optimization of initial
distribution for a long queue, for example, teemingly number of the athletes in
marathon. This subject is quite important for organizers to achieve the smooth
movement, since the athletes located rearward position have some unavoidable
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delay to pass the head of the initial queue. Moreover, if there is an optimal density
to minimize the delay time, the control of density reduces the waste of waiting
time in a queue. If athletes stand in line with large headway (low density), the
starting-wave propagates fast, but the queue becomes long. Whereas, if they stand
in line with small headway (high density), the starting-wave propagates slowly, but
the queue becomes short. Which situation decreases the delay to pass the start line?
This problem which includes the effect of starting-wave has not been investigated.
Thus, the optimal initial distribution for a queue is investigated here.

We set the problem as follows:

Which density minimizes the required time for the last to pass the head position of the initial
queue?

We generally set N as the total number of pedestrians. Tn and L indicate
the travel time T of n-th pedestrian and the length of initial queue, respectively.
The initial equally-spaced density 
0 is calculated by 
0 D N=L.

3.1 Existence of Minimum Tn

The travel time Tn for given initial density 
0 is calculated as

Tn D L

a.
0/
C L

v.
/
: (3)

First term and second term of right-hand-side in (3) indicate the required time to
start walking and the one to pass the head position of the initial queue after start
walking, respectively. Substituting the relation L D N=
0, (3) is translated into

Tn D N
� 1


0a.
0/
C 1


0v.
/

�
: (4)

If the velocity v.
/ is constant v, (4) reduces to

Tn D N
� 1


0˛

�ˇ
0

C 1


0v

�
; (5)

by substituting the relation (2). This relation (5) is shown in Fig. 3.From this figure,
we have found the existence of optimal density which minimizes the travel time
in the case of constant walking velocity. Moreover, the density which satisfies the
extreme value dTn=d
0 D 0 is calculated by



ˇ
0 D ˛

v.ˇ � 1/
: (6)

In order to exist the value of 
, ˇ satisfies ˇ > 1, since the parameter ˛; ˇ, and
v are all positive value. As noted before, the value of ˇ � 4=3 is larger than 1.
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against the constant velocity
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Therefore, it is found that an optimal density does exist for given parameter ˛; ˇ
and v. Note that, as shown in (6), the optimal density becomes lower as the velocity
becomes faster.

3.2 Effect of Divided Groups

We consider the several divided groups which are often introduced to avoid the large
crowd for their safety. For example, Wave Starts by several groups is prevailed in
New York City Marathon to alleviate congestion at the start.

As an common expectation, the best movement for these divided groups is to
connect smoothly with each other, that is, the leader of following group catches up
with the last of former group without loss of the velocity. Under this expectation,
therefore, one satisfies the condition

L�.m�1/d
m

a.
0/
D d

V.
/
; (7)

where L;m and d are corresponds to the total length, the number of partitions for
groups and the distance between successive groups, respectively. 
0 corresponds to
the initial density in a group and is same for all groups. Once the density is given,
the propagation speed of starting-wave is constant value a.
0/ D const:

Here, we assume that the leader of the group walks with constant velocity NV .
The required time T for the last of the following group to pass the head of queue is
given by

T D
L�.m�1/d

m

a.
0/
C L

NV D d C L

NV : (8)

The message we receive from this equation is the travel time T does not depend
on the number of partitions m under above assumptions. Thus, it is enough to
consider the optimization in only one group to minimize the travel time.
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Table 1 The travel time data for each density from
experiments. The density is measured in pedestrians
per a meter

Density 
 1.0 2.0 3.0 4.0
Travel time T 33.6 26.2 27.8 27.3

3.3 Experimental Results

Here, we measure a required time after the leader starts to walk by the cue and before
the last pedestrian passes the head position of the initial queue for four situations;

 D 1:0; 2:0; 3:0, and 4:0.

The experimental results of the travel time T are shown in Table 1. We have
found that the optimal initial density, which minimizes the travel time, does exist
at density 
 D 2:0. If the density is small, the pedestrian moves longer distance,
since the distance to the head position of queue becomes large. Whereas, if the
distance to the head position of queue is small, it is difficult for the pedestrian
to move without perspectives, since the density becomes large. In other words,
longer queue or higher density causes the lost time for smooth start. It is common
expectation that there is an optimal density to minimize the travel time, since
both opposite extreme situations make travel time longer. We have verified this
expectation by both analytical calculations built on mathematical modeling and
substantiative experiments.

4 Conclusion

In this contribution, we have investigated the propagation speed of pedestrians’
reaction in relaxation process of a queue which is called starting-wave. The faster
the starting-wave propagates, the more smooth the crowd moves.

We have revealed the existence of optimal density, where the travel time of
last pedestrians to pass the start line for the initial queue is minimized by both
analytical calculations and experiments. If the walking velocity is very slow, the
value of optimal density is detached from reality. However, the optimal density is
suitable to apply to the real situation, for example, a queue of athletes starts to
move in marathon, since the optimal density becomes lower as the walking velocity
increases. This optimal density inevitably plays a significant role to design not only
the initial queue of pedestrians but also the traffic intersections and signals.
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Arch-Shaped Equilibrium Solutions in Social
Force Model

Tsubasa Masui, Akiyasu Tomoeda, Mayuko Iwamoto, and Daishin Ueyama

Abstract In the present paper, we investigate arch-shaped equilibrium solutions
in the social force model proposed by Helbing and Molnar (Phys Rev E 51:4282,
1995) and Helbing et al. (Nature 407:487, 2000). The social force model is a system
of ordinary differential equations, which describe the motion of the pedestrians
under a panic situation. In the simulation of the social force model, we observe an
intermittent appearance of arch-shaped structures (i.e. the “Blocking clusters” Parisi
and Dorso, Physica A 354:606, 2005; Physica A 385:343, 2007; Frank and Dorso,
Physica A 390:2135, 2011) around an exit which block up the flow of pedestrians.
To understand such a dynamic behavior, we study arch-shaped equilibrium solutions
around an exit under the simplest configuration.
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1 Introduction

Investigations of pedestrian dynamics have been attractive not only for engineers but
also for scientists over recent decades, since it shows the large variety of interesting
collective effects and self-organization phenomena that can be observed [6–8].
Especially, understanding of the characteristics of pedestrian behaviors is important
and helpful to avoid the jamming state of panicking pedestrians in emergency escape
situations [9–12]. This jamming phenomenon occurs due to an arching effect when
many pedestrians rush through an exit to leave a room at the same time and often it
brings on tragic disasters [13].

Sometimes, the kinds of crowd stampede are triggered in life-threatening situa-
tions. The evacuation dynamics from a room is one of the important subjects for our
safety in the design of buildings. It is well known that there are blocking effects
around an exit under a panic situation. Several models can reproduce blocking
effects of pedestrians around an exit. The correlation of the “Blocking clusters” due
to the blocking effect and the “Faster is slower effect”, which states that the faster the
pedestrians wish to move the slower they can escape from the room under a panic
situation [3–5]. Here, in order to achieve a smooth flow around an exit by resolving
the blocking effect, the “Blocking clusters” is investigated from a perspective of the
equilibrium solutions in the social force model.

2 The Equilibrium Arch-Shaped Solutions

Let us consider the social force model proposed by Helbing and Molnar [1] and
Helbing et al. [2]. The model equations are the following,

mi

dvi .t/
dt

D mi

v0i ei .t/ � vi .t/
�i

C
X
j.¤i /

fij C
X

w

fiw; (1)

where mi is the mass of i -th particle,1 vi and v0i ei are the current and the desired
velocities, respectively. ei is the unit vector pointing to the desired target (particles
inside the room have their targets located at the closest position over the line of the
exit) and �i is a constant related to the relaxation time of the particle to achieve v0.
In the model equation,

P
j.¤i / fij and

P
w fiw are respectively the sum of the forces

from the other particles and the walls, which come from the psychological force,
the physical repulsion force and the sliding friction force. The functions to describe
these forces have been developed in [1, 2]. In the simulation of (1), we observe
arch-shaped structures around an exit intermittently as in Fig. 1. These arch-shaped

1“Particle” is used to represent “pedestrian” in the model.
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Fig. 1 (a) An arch-shaped structure in the simulation of the social force model [1, 2]. In the case
of high desired velocity, such arch-shaped structures appear intermittently and cause the “Faster is
slower effects” [3–5]. (b) Magnification of (a). Four particles (striped circle) around an exit form
an arch-shaped structure. The white circle indicates the particle who has just escaped from the
room

structures, so-called the “Blocking clusters”, are made in a self-organized manner
and they block up the flow of the particles for a moment [3–5].

Such a blocking effect is obviously undesirable for an escape situation, therefore,
we focus on the arch-shaped structures around an exit in this contribution. From
the mathematical viewpoint, the arch-shaped structure can be assumed as an
equilibrium solution of the system. This equilibrium solution of the system satisfies
the following equation,

mi

v0i ei
�i

C
X
j.¤i /

fij C
X

w

fiw D 0: (2)

For the equilibrium situation, the sliding friction can be negligible. However, it is
still hard to obtain the equilibrium solution of the system due to its high degree
of freedom, i.e. 200 particles in the simulation of Fig. 1. In the first step of our
investigations, we develop the simplest configuration for the arch-shaped solution;
say the system made from a few particles. The particles are split up into two groups,
i.e. the particles in the arch-shaped structure (Arch) and the outside of the arch-
shaped structure (Out). In Fig. 1b, (Arch) particles correspond to the striped circles
and (Out) particles correspond to the gray filled circles. As we have mentioned
earlier, let us assume this situation as the steady state here, since all particles
nearly remain still due to the arch-shaped structures. Moreover, we have found
that the symmetric arch consists of four particles which appears frequently in our
simulations. Then, we consider the symmetric arch for simplicity. The external
forces from (Out) particles acting on the arch are approximated by introducing a
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Fig. 2 Schematic description
of the simplified
configuration (3). In this
figure, there are four particles
that make an arch-shaped
structure. Each particle in the
arch-shaped structure gets
the force gi , which represents
the force from other particles
in the original configuration

function gi D g.n/ei , which is a sum of the forces from (Out) particles to the i -th
particle of (Arch) and n is a number of (Out) particles.

Thus, the equation for i -th particle in the arch-shaped structure (Arch) is

m
v0ei
�

C
X
j.¤i /

fij C
X

w

fiw C gi D 0: (3)

Here, we assume all particles have same size (0:3m in radius), weight (80 kg),
relaxation time(0:5 s) and the desired velocity (4:9m/s). As in Fig. 2, we assume
the force from (Out) particles direct to the center of the exit. The function g.n/ is
obtained by the numerical simulation of full system (1) for a given number of the
particles where four particles around the exit are pined arch-shaped form. It is fitted
by square root function to the numerical data for a present study as follows,

g.n/ D 800

 p
0:18n

0:6
� 1

!
; (4)

where n is a number of the particles. As shown in Fig. 3, (4) shows a good agreement
with the numerical results, which is estimated by the numerical simulations based
on the full system (1).

Further decreasing the degree of freedom, we assume symmetry of the motion of
particles to the x-axis. Then, we employ Mathematica’s NSolve function to obtain
arch-shaped equilibrium solutions numerically.
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Fig. 3 Magnitude of the force from the other particles to arch-shaped particles. Horizontal axis
denotes the number of the particles and the vertical axis describes the magnitude of the force.
A dashed curve is square root function fit to numerical data

3 Results

The examples of the obtained arch-shaped equilibrium solutions are shown in Fig. 4.
Here we take a number of the particles in 200. Then jgi j D g.200/ is used in (3).
Fig. 4a represents one of the arch-shaped equilibrium solutions of (3) for 1:2m exit
size. Fig. 4b is one of the solutions for 1:8m exit size. It is noted that the shape of
the arch-shaped structures depends on the parameters. The numerical results show
that those arch-shaped equilibrium solutions of (3) are not stable.

4 Summary

In this paper, we obtained the equilibrium arch-shaped solution of the social force
model under a very simplified configuration. However, there are ongoing topics on
the relationship between the arch-shaped equilibrium solutions of (3) and the one
in (2). We know that there is a difference between them, especially the assumption
for gi is not appropriate, say gi is not directed to the center of the exit in a general
configuration.
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Fig. 4 The arch-shaped equilibrium solutions for 200 particles for different width of the exit.
(a) 1:2m (b) 1:8m
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Effect of Rhythm on Pedestrian Flow
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Abstract We have calculated a fundamental diagram of pedestrians by dividing
the velocity term into two parts, length of stride and pace of walking (number of
steps per unit time). In spite of the simplicity of the calculation, our fundamental
diagram reproduces that of traffic and pedestrian dynamics models in special cases.
Theoretical analysis on pace indicates that rhythm which is slower than normal
walking pace in free-flow situation increases flow if the fundamental diagram of
flow is convex downward in high-density regime. In order to verify this result, we
have performed the experiment by real pedestrians and observed improvement of
pedestrian flow in congested situation by slow rhythm. Since slow rhythm achieves
large pedestrian flow without dangerous haste, it may be a safety solution to attain
smooth movement of pedestrians in congested situation.
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1 Introduction

Pedestrian dynamics has been studied vigorously over last decades [1, 2], and
many collective phenomena typified by arching and lane formation are analyzed
by macroscopic models as well as the microscopic models such as the social force
model [3], the lattice gas model [4], and the floor field model [5]. Fundamental
diagram, which depicts the relation between density and flow (or velocity) is
important to know the characteristics of pedestrian flow, so that it is also investigated
actively by both theoretical [6, 7] and experimental [8, 9] approaches. Experimental
and observational data have been accumulated through the coordinated efforts of the
researchers at the ped-net.org homepage [10]. Due to the variety of the experimental
and observational conditions, the fundamental diagrams also vary; however, there is
a common feature accepted widely to the researchers. As density increases velocity
decreases, whereas flow increases until it reaches maximum and then decreases.

Important goals of pedestrian-dynamics research along with elucidation of col-
lective phenomena are development of solutions to ease congestion and contribution
to the safety [11]. As the fundamental diagrams indicate, congestion occurs at
high-density regime, and pedestrians are exposed to stressful situation, i.e., difficulty
to move in the desired direction and conflicts with others. Therefore, we will develop
a method to increase pedestrian flow in the congested situation in this paper.

We obtain the fundamental diagram by considering the effect of length of
stride and pace of walking (number of steps per unit time) instead of microscopic
interaction between pedestrians. It reproduces the fundamental diagrams of basic
models for traffic and pedestrian dynamics, and indicates that when pedestrians walk
in a constant pace irrespective to the density, the flow increases in the high-density
regime even if the pace is slower than that in the normal-walking condition. We have
performed the real experiment and verified that the pedestrian flow increases when
their walking pace is controlled by slow rhythm.

This paper is organized as follows. In the next section, we simply calculate the
fundamental diagram and discuss the relation between the existing models. The
effect of pace on the pedestrian flow is also studied. Increase of pedestrian flow
is theoretically predicted in Sect. 3 and it is verified by real experiments in Sect. 4.
The final section is devoted to summary and proposition of future works.

2 Simple Theoretical Fundamental Diagram

2.1 Introduction of Stride Function

Let us start calculating the fundamental diagram theoretically without considering
complex microscopic interaction. We consider one-dimensional periodic circuit,
whose length is L, as in Fig. 1. The width of the circuit is as wide as that of one
pedestrian, so that pedestrians walk in a line without overtaking. Most fundamental
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L

N

bNL −
N : Number of pedestrians in the circuit b

Fig. 1 Schematic view of the situation considered in our calculation. N pedestrians, which are
depicted as black particles, walk in the circuit. The length of each pedestrian and the circuit are
described as b and L. The boundary is periodic, so that pedestrians move to the leftest end after
they pass the rightest end. Due to the assumption of the homogeneous distribution, the headway,
i.e., the distance between pedestrians, are simply calculated as .L� bN /=N

diagrams are depicted by quasi-one-dimensional flow, where overtaking is accept-
able, and the variety of them is partially attributed to overtaking. Thus, this condition
contributes to reduce variety and focus on simple situation. The similar pedestrian
flow is studied in Ref. [8, 12]. Furthermore, we assume that N homogeneous
pedestrians, whose length are b, distribute homogeneously in the circuit without
considering complex microscopic interaction as shown in Fig. 1. This simplification
deprives the model of interesting and important phenomena such as instability of
flow and the propagation of stop waves; however, it still preserves the character-
istics of previous successful models and let us obtains the method for increasing
flow.

Due to the homogeneous distribution of pedestrians, the density and headway are
calculated as follows:


 D N=L; (1)

h D .L� bN/=N; (2)

thus, the headway h is described as the function of 
 as h.
/ D .1 � b
/=
.
Since we have simplified the distribution of pedestrians, we consider the velocity

V of individual pedestrian in detail by dividing it to two parts as

V.h/ D S.h/P.h/; (3)

where S (stride function) and P (pace function) denote length of a stride and pace
of walking (number of steps per unit time), respectively.

The explicit formulation of the stride function is intuitively determined as
follows. It is plausible to assume that there is maximum length of stride for
pedestrians, which is given as s, in the low-density regime. When the density
becomes large, pedestrians are no more able to walk with their maximum stride.
Since we assume homogeneous distribution, the pedestrians can maximally proceed
the headway h in one step; however the effect of personal space, which is usually
larger than the exact pedestrians length, prevents the pedestrians from contact with
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their predecessors. This phenomenon is introduced by the parameter k 2 .0; 1	, and
the stride function is described as

S.h/ D

kh

s

.0 � h � hc/;

.hc < h < 1/;
(4)

where hc is calculated from the equation khc D s, and obtained as hc D s=k as
well as 
c D k=.kb C s/.

Because of the homogeneity of pedestrians and their distribution, the flow Q is
computed by using hydrodynamic equation and individual velocity V as

Q.
/ D 
V.h/ D 
S.h/P.h/ D

s
P.h/

k.1 � b
/P.h/
.0 � 
 � 
c/;

.
c < 
 � 
j /;
(5)

where 
j D 1=b is the maximum density. Headway h D 0 at 
 D 
j .

2.2 Correspondence with Traffic and Pedestrian Dynamics
Models

Before the detailed analysis on the pace function, we would like to consider the
correspondence between our model and the previous sophisticated models for traffic
and pedestrian dynamics in the case P.h/ D 1 D const: to investigate the
characteristics of our model.

Firstly, Eq. (5) represents the flow of the totally asymmetric simple exclusion
process (TASEP) [13,14] with deterministic movement, in other words the elemen-
tary cellular automata with the rule 184 [15], which is one of the fundamental model
for traffic, pedestrian, and molecular motor dynamics, in the case b D s D k D 1

as shown in Table 1. The TASEP with stochastic movement is also applied to many
models for self-driven particles; however, the equation b D s indicates that the
maximum stride and the length of pedestrians are same, which is not very realistic.
Therefore, our model obtains the detailed effect of stride in return for the loss of
stochastic dynamics.

Secondly, the zero-range process (ZRP) [16, 17] with piecewise-linear hopping-
probability function u.h/ is also reproduced when the reciprocal of the critical
headway hZc , where the hopping probability reached 1 in the u.h/, corresponds to
the parameter k as in Table 1. Moreover, Eq. (5) represents the fundamental diagram
of the Nagel-Schreckenberg model (NaSch) [18] without random-braking rule if we
substitute the parameter vNm , which is the number of maximum proceeding cells
in one time step, to the maximum stride s. These are successful cellular-automata
models for highway traffic, and many extended models are developed. Velocity of
vehicles in these models changes according to their headway, i.e, the number of
empty cells in front of them, and this characteristic enables us to obtain realistic
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Table 1 Parameters which reproduce the expression of flow
of the previous models in the special cases. The parameter
hZc is the headway where the hopping probability reached 1
in the piecewise-linear hopping-probability function u.h/ in
the ZRP, vNm denote the maximum velocity, i.e., the number of
the maximum proceeding cells in one time step in the NaSch,
and vOm represents the maximum velocity in the OVM

Model b s k

ASEP 1 1 1
ZRP 1 1 1=hZc
NaSch 1 vNm 1
OVM b vOm 1

fundamental diagrams. The correspondence between our model and the above two
models implies that the effect of important relation between headway and velocity
does not harmed by the homogeneous assumption.

Finally, we would like to confirm that our model is a reduction of the optimal
velocity model (OVM) [19], which is a successful microscopic continuous model
for highway traffic. When the parameter of driver’s sensitivity tends to infinity, and
a piecewise-linear optimal velocity function with the size of vehicles b and the
maximum velocity vOm is introduced, the OVM shows homogeneous distribution
of the vehicles similar to our model, thus, our assumption of the homogeneity
corresponds to that of agile pedestrians. Since inertia of pedestrians is much smaller
than vehicles, the homogeneous assumption does not greatly deviate from the real
pedestrian dynamics. From the discussion above, we have verified that our model
is one of the minimum models, which can be reduced from many previous one-
dimensional models. Pedestrians are agile enough in our model, and only the change
of stride against headway is considered in detail.

2.3 Influence of Pace Function on Pedestrian Flow

In this subsection, we focus on the pace function. If the density is low and a
pedestrian does not interact with each other, it is feasible to assume that pedestrians
walk with constant pace. However, contrary to the stride function case, it is
difficult to obtain the explicit formulation of the pace function with some intuitive
assumptions in the high-density regime, thus, we consider simple linear function and
investigate how the change of pace affect on the flow. Mathematical formulation of
the pace function is given as follows:

P.h/ D

p � a.hc � h/

p

.0 � h � hc/;

.hc < h < 1/;
(6)
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where p is a pace in the free-flow situation and a represents the influence of the
density on pace. If a > 0 (a < 0) the pace of pedestrians decrease (increases) when
the density increases, and if a D 0 pedestrians keep walking with the constant pace
regardless of the density. Note that a � p=hc D kp=s since P.h/ � 0. Substituting
Eq. (6) for P.h/ in Eq. (5), the expression of the flow is described as

Q.
/ D

sp


kŒp � a.hc � h.
//	.1 � b
/
.0 � 
 � 
c/;

.
c < 
 � 
j /;
(7)

and, the maximum of the flow is calculated as

Qmax D
8
<
:
sp
c

kpj � 2kab

�
1 �

q
1 � pj

ab

	 at 
 D 
c

at 
 D
h
b
q
1 � p0

ab

i�1 .a � ac/;

.a > ac/;
(8)

where
8
<
:
pj D P.
j / D p � ahc;
ac D � bp

hc.b C hc/
:

(9)

Since second derivative of the flow are computed as

d2Q.
/

d
2
D 1


3
d2V .h/

dh2
D

0

2ka=
3
.0 < 
 < 
c/;

.
c < 
 < 
j /;
(10)

the convexity in the region 
 > 
c becomes


convex downward .a > 0/;

convex upward .a < 0/:
(11)

Therefore, the convexity of the flow changes at a D 0. Plots of the flow for various a
are depicted in Fig. 2a. We can confirm that the parameter a, i.e., the pace function,
affects on the density which achieves the maximum flow and the convexity as we
have analyzed above.

3 Increase of Pedestrian Flow by Slow Rhythm

If pedestrians walk with rhythm, in other words if we can control the walking pace
by rhythm using a device such as a metronome, the rhythm exactly corresponds
to the pace, i.e., the parameter p. Therefore, fast and slow rhythm increase and
decrease the flow, respectively, as we can verify from Eq. (7). In this case, the
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Fig. 2 (a) Theoretical fundamental diagrams for various a in the case b D 1, s D 2, and p D 1.
We see that they are convex downward (upward) when a > 0 (a < 0). (b) Theoretical fundamental
diagrams of the normal walking (p D pN D 1, a D 0:5) and the slow-rhythmic walking (p D
pR D 0:8, a D 0) in the case b D 1 and s D 2. The crossing is observed at 
s D 5=13, and the
rhythmic walking, whose flow is smaller than that of the normal walking in the low-density regime
due to the slow pace, i.e., pR < pN , achieve larger flow in the high-density regime

parameter a D 0 because pedestrians walk with the constant rhythm irrespective
to the density.

Suppose that pedestrians in the normal situation walk with the pace p D pN ,
and it decreases in the high-density regime, i.e., a > 0. Then the surprising figure
as shown in Fig. 2b is depicted. Due to the convexities of the fundamental diagrams
in the normal and rhythmic walking cases, i.e., convex downward and linear, the
rhythm which is slower than the normal walking pace, increases the flow in the
high-density regime. The crossing is achieved at


s D 
c

1 � 
c.pN � pR/=a
; (12)

where 
c < 
s < 
j , if the condition pNj < pR < pN is satisfied.
This phenomenon may give a solution to ease congestion in the real word. The

significant advantage is that any excessive haste does not necessary at all. The flow
increases by just keeping the slow walking pace. Thus, pedestrians do not consume
extra energy or conflict with others by moving aggressively in pedestrian jam.

4 Experiment

4.1 Experimental Condition

We have performed an experiment with real pedestrians to verify the theoretical
result obtained in the previous section. Schematic view of the circuit used in our
experiment is depicted in Fig. 3a. Inner and outer radius are ri D 1:8 and ro D
2:3 [m], respectively, and the participants of the experiment, who are male university
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2.3 [m]

1.8 [m]

a b

Fig. 3 (a) Schematic view of the circuit used in the experiment. The black particles represent
the participants of our experiment. (b) Snap shot of the experiment (Normal walking, N D 24

(
 D 1:86 [persons/m]))

students between 18 and 39 years old, walk the circuit in the counter-clockwise
direction. Snap shot of the experiment is shown in Fig. 3b.

We have executed 11 kinds of density conditions. The number of the participants
in the circuit in each condition is N D f1, 3, 6, 9, � � �; 30g. The condition N D 1

and N D 3 are tried three times, and the other conditions are tried once. Each trial
is more than 1 min. The density is calculated as


 D N

L
D N

� .ri C ro/
: (13)

Two kinds of walking were performed in the experiment. In the first case, we did
not give any specific instructions to the participants, so that they walked normally in
the circuit. In the latter case, the participants were instructed to walk with the sound
from the electric metronome, whose rhythm is 70 beat per minutes (BPM). Note
that we did not uniform which foot to move first.

4.2 Experimental Result

Figure 4 shows the fundamental diagram obtained from our experiment. Firstly, we
see that the flow is larger in the normal case than the rhythmic case at the leftest
plot, i.e.,N D 1. Hence, the pace 70 [BPM] is slower than the normal-walking pace
of the participants. Secondly, we observe that the flow in the normal case is convex
downward in the high-density regime as we have assumed in the theoretical analysis.
Thus, the walking pace decreases by the influence of the predecessors. Thirdly, the
flow decreases linearly in the rhythmic case, which follows our intuition. Finally,
since the theoretical assumptions of the convexity are satisfied in the experimental
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Fig. 4 Fundamental diagram of the normal walking and the rhythmic walking (70 [BPM]). Data
plots represented by the cross and circle markers are interpolated by second-order curves. The
values at 
 D 0:07 and 0.23 [persons/m], i.e., N D 1 and 3, are average of the three trials.
We clearly observe the crossing and the rhythmic walking achieve larger flow in the high-density
regime

flows, the crossing appears after the both flows achieve maximum, and the flow of
the rhythmic case exceeds that of the normal case. Therefore, we have succeeded to
verify that slow rhythm improves the pedestrian flow.

5 Conclusion

In this paper, we have calculated the fundamental diagram of pedestrians by dividing
the velocity term into the stride and pace parts. It reproduces the fundamental
diagram of the basic models, which are applied for traffic and pedestrian dynamics.
Analyzing the effect of pace, we have surprisingly discovered that the rhythm which
is slower than the normal pace in the free-flow situation increases the flow in the
congested situation. This phenomenon is also verified by our real experiment and
expected to be applied to ease congestion and increase flow in the high-density
regime.

One of the important future works related to this study is theoretical analysis on
the effect of rhythm in higher-dimensional case, i.e, quasi-one and two dimensional
cases. In the quasi-one-dimensional case, where the width of the circuit is larger
than one pedestrian, fast pedestrians are able to pass slow ones. When we consider
bi-directional flow and two dimensional cases, we need to consider conflicts
between pedestrians. Therefore, investigation of the effect of rhythm may not be
as simple as one-dimensional case in this paper; however, success of the study
broadens the range of application of the slow-rhythmic flow.

In our experiment, we have instructed the participants to walk with the rhythm
from the electronic metronome; however, it is not certain that whether pedestrians
in the real world walk with the rhythm as in the experiment. Therefore, research on
the relation between the improvement of flow and the ratio of pedestrians walking
with the rhythm is another important future work to apply the rhythmic-walking
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method to the real world. When pedestrians’ movement is synchronized to the
rhythm without explicit instruction, a smooth-flow society will be achieved by our
slow-rhythmic method.
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Social Field Model to Simulate Bidirectional
Pedestrian Flow Using Cellular Automata

Jorge D. González, M. Luisa Sandoval, and Joaquín Delgado

Abstract A collective phenomenon appearing in the simulation of bidirectional
pedestrian flow in corridors is dynamic multi-lane (DML) flow. We present a cellular
automata model that reproduces this behavior. We propose to incorporate a social
distance emulating a territorial effect through a social field, similar to the dynamic
floor field of Burstedde et al. (Physica A 295:507–525, 2001). This model also
considers a vision field allowing a pedestrian to collect information from cells in
front of him/her and to get the weighted social parameter as well; the importance
of this parameter in the formation of dynamic lanes is that it helps a pedestrian to
choose the lane that contains the highest concentration of persons walking in the
same direction. We present numerical simulations in corridors with bidirectional
flow and the fundamental diagram for unidirectional flow.

1 Introduction

In recent decades, the study of the dynamics of pedestrians has witnessed a great
development, mainly through cellular automata (CA) modeling due to its efficiency
in describing model complex systems.

Several models have been developed to simulate pedestrian traffic based on
cellular automata [1–9]. In order to model the change of walking lane, these models
have used different types of probabilities or parameters: either fixed in advance or
dynamical. The latter are calculated according to the conditions that exist around the
pedestrians. An important factor to determine the dynamic parameters is to define
properly the shape of the area that influences the behavior of pedestrians.
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Few cellular automata models take into account social distance between pedestri-
ans [1,10]. We introduce the idea of social distance through a social field, according
to the dynamic floor field of Burstedde et al. [1], which resembles the territorial
effect [11].

Our goal is to combine a dynamic parameter with the overlapping of different
fields of influence in order to obtain numerical simulations that generate dynamic
lanes and to avoid body contacts. As will be shown, with the addition of the social
field, we were able to reproduce Weidmann’s fundamental diagram [12].

This paper presents the modeling of bidirectional pedestrian flow in a corridor,
where in order to change the walking lane, we define a vision field for each
pedestrian and a weighted social parameter. In Sect. 2 the proposed model is
described and in Sects. 3 and 4 the numerical simulations and conclusions are
presented, respectively.

2 Description of the Model

Our microscopic model based on CA is intended to simulate bidirectional pedestrian
traffic along a corridor. The CA is defined on a rectangular grid of size I1 � I2
contained in R

2. Each cell is a square of 40 � 40 cm2. Pedestrian enter and exit
through (lateral) left and right boundaries of the corridor. Impenetrable boundary
conditions are imposed at the top and bottom borders of the corridor, and two types
of boundary conditions on the lateral boundaries are considered: open and periodic.

There are three basic elements that a microscopic pedestrian model must take into
account: to mitigate conflicts, forward and lateral motions (as in change of lane) [3].
For this reason a pedestrian is only allowed to move as shown in Fig. 1.

A collective phenomenon, the dynamic multi-lane (DML) flow is formed by
groups of pedestrian moving along directional lanes. Pedestrians generate a lane
by avoiding others coming from the opposite direction and by following the one
just ahead of him/her and going in the same direction [3]. A factor enabling self-
organization of collective phenomena in pedestrian behavior is the social distance
or social field [1, 10, 11].

Formation of dynamical lanes can be understood as follows: a typical pedestrian
chooses to minimize its energy by walking along currents of people in its own
direction. Thus when he/she walks along, he/she has to worry about keeping its own
distance from the pedestrian in front of him/her. Without forming lanes, pedestrians
will confront each other frequently and would have to deviate from its own route
avoiding physical contact, thus expending more energy.

2.1 Social Field

The territorial effect arises changes in pedestrian behavior, which are guided by
social fields. Helbing and Molnár [11] takes this idea to model territorial behavior



Social Field Model to Simulate Bidirectional Pedestrian Flow Using Cellular Automata 199

Fig. 1 Movements allowed in the model

Fig. 2 Social fields: (a) continuous and (b) discrete

by means of repulsion forces, in such a way that persons tend to move away from
others or objects to avoid collisions or hurting. Social field resembles an individual
space where each person feels comfortable. Thus the social field acts in a similar
manner as the repulsive force of the social force model.

Whenever a person invades the social space of another, the last tries to move in a
direction that diminishes the discomfort, acting as a repulsive force among persons.
In this way the social distance is kept among individuals. Social field also augments
the presence of the individual in such a way that he/she is perceived among others.
Figure 2 shows two kinds of social fields: continuous and discrete. The shape of a
discrete field is similar to the continuous field due to the fact that it is elliptical. A
discrete value of the social field is assigned to each cell. In the case that the fields
intersect, the values at the intersected cells are summed up as shown in Fig. 3, so the
intensity or presence of the individual is increased.

2.2 Vision Field

The majority of pedestrians look at all what happens in front of them, as they walk
by. In this way they can avoid collisions with either objects or another persons.
The vision field reflects the attention that a pedestrian pays to situations that
happens in front of him/her, giving them more attention than those which happen
besides or back of him/her. On the other hand, the vision scope of pedestrians
becomes important from certain distance, where he/she can change direction to
avoid collision with obstacles. These characteristics permit the pedestrian to decide,
to continue walking straight ahead or deflect.



200 J.D. González et al.

1 1 1

1 2 0. .5 0 5

1 1 1

1 1 1 5

1 2 0 5 2

1 1 2

3 2 1

1 5 3 1

2 1 11

1 2 0. .

..

. .

5 0 5

1 1 1

1 1 1

0 5

a

b

Fig. 3 (a) Social field configuration and (b) intersections of social fields

Fig. 4 Vision fields: (a) continuous and (b) discrete

Figure 4 shows two types of vision fields: continuous and discrete. The vision
scope of a pedestrian will be equal to its individual velocity, thus he/she will have a
vision of the route along time. Figure 5 shows different scopes of vision field.

2.3 Weighted Social Parameter

Hao Yue et al. [4] introduce dynamical parameters in order to control pedestrian
motion. Similarly we introduce the so called weighted social parameter. The idea of
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Fig. 5 Different scopes of vision field: (a) vi D 5 and (b) vi D 3
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Fig. 6 Weights per lane for each walking lane

this parameter is to help a pedestrian decide on the lane with the highest pedestrian
concentration walking in the same direction. In this way formation of dynamical
lanes is more likely. Let us introduce two intermediary parameters: the weight and
the social value per lane.

The weight per lane for lane i is defined by

wik D 1C
npkX
jD1

dj

lk � vi (1)

where npk is the number of persons in lane k, vi is the number of cells within the
vision scope of a pedestrian, l D 1 for walking lanes k � 1, k and k C 1, and l D 2

for walking lanes k � 2 and k C 2; dj D C1 if pedestrian j walks in the opposite
direction as pedestrian i and dj D �1 for those walking in the same direction. The
composition of walking lanes is shown in Fig. 6; cells of the same color belong to
the same walking lane.
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Fig. 7 Computation of weights and social values per lane for: (a) the lane k and (b) the five lanes

The social value of lane k is obtained by summing the social field of each cell
that form the walking lane, see Fig. 7 for an example. The weighted social parameter
for each lane is computed by multiplying the weight by the social value per lane.
That is, vpk D wiksk .

2.4 No Crossing Paths

The restriction of “no crossing paths” applies to models that use maximum speeds
greater than one per cell in each time-step: The pedestrian moves ahead as long as
there is no other pedestrian blocking his/her path, see Fig. 8. We have incorporated
this restriction since it was shown to work well [13].
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Fig. 8 Restriction of no
crossing paths

2.5 Pedestrian Motion

Pedestrian motion is achieved in two stages: first, the whole path of each pedestrian
is computed, then each pedestrian position is updated. Each time-step is sectioned
in time sub-steps. Pedestrian motion applies to each time sub-step until completing
the whole time-step or the individual velocity is attained. The updating of pedestrian
positions is made in parallel, that is, in each time step a pedestrian moves to the last
cell of the computed path.

Following is the sequence of pedestrian motion:

I. Computation of pedestrian path

1. Compute the vision scope of the pedestrian.
2. Compute vpk the weighted social parameter of walking lane k.
3. If the weighted social parameter is less than 1, then go to step 6. Otherwise

go to the step 4.
4. Compute the weighted social parameter for adjacent walking lanes k � 1,

k C 1, k C 2 and k � 2, as shown in Fig. 7.
5. Compare and choose the free cell with the least weighted social

parameter. That is, z D fz 2 Œk; k � 1; k C 1; k C 2; k � 2	 j vpz D
minŒvpk; vpk�1; vpkC1; vpkC2; vpk�2	;Cell.z/ D 0g.

6. Move and update pedestrian social field, go to step 7.
7. In case there is no free cell, pedestrian stays in the same cell.
8. End.

3 Numerical Simulations

We consider two types of boundary conditions in a corridor of size 10 � 50m2

for bidirectional pedestrian flow: (a) open and (b) periodic. For both boundary
conditions, the common parameters are: time step �t D 2 s which is divided in
five subintervals of equal length. Each pedestrian is assigned a velocity taken from
a normal distribution with mean 1.34 m/s and variance 0.26 m/s. In the following
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Fig. 9 Numerical simulation with open boundary conditions

Fig. 10 Numerical simulation with periodic boundary conditions, time: 1,197 s and 160 pedestri-
ans

figures, pedestrians in blue move from left to right, those in red move in the opposite
direction.

For open boundary conditions, 0–5 pedestrians are introduced at the left and
right boundaries every two time-steps. Figure 9 shows the numerical simulation in
this case for 167 pedestrians. Dynamical multi-lane flow is clearly apparent in our
simulation.

For periodic boundary conditions, Fig. 10, observed that most of the simulations
show a self-organization by formation of four flow currents, two of them larger than
the others.

3.1 Fundamental Diagram

We compute a fundamental diagram of velocity vs. density from our CA model.
Data were generated as follows: A corridor of 3:6� 40m2 size was simulated. Each
simulation was run for 500 s. After a transient period of 60 s when the flow has been
stabilized, data (mean velocity and density) were computed in a sub-region of the
corridor of size 3:6 � 5:6m2.

Figure 11 shows: (a) Weidmann’s empirical curve (continuous), (b) computed
data with social field model (red dots) and (c) computed data with modified social
force model (blue asterisks) [14]. Remarkably, social field model reproduces Wei-
dmann’s curve even for high densities (greater as 4.8 p/m2) at a low computational
cost.
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Fig. 11 Fundamental
diagram

4 Conclusions

We have proposed a CA model that incorporates three main features: a social field,
a vision field and a weighted social parameter. Our results reproduce dynamical
multi-lanes as observed empirical data published elsewhere.

Our social field model fits quite well to Weidmann’s empirical curve up to high
densities such as 4.8 p/m2.

The advantages of a CA modeling are its simplicity and its computational speed
which are very convenient for real time simulation.

Acknowledgements The authors were supported by the FOMIX grant 120375, “Desarrollo de
modelos matemáticos para mejorar la operación de la Red del STC”.
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Some Empirical Studies on Evacuation
from a Hall

Ujjal Chattaraj, Partha Chakroborty, and Armin Seyfried

Abstract Studies on egress time and spatio–temporal progression of pedestrians
inside a hall are important for design of exits of halls. In this study experiments
on evacuation from a hall are conducted to understand the impact of exits and the
geometry of the flow space on pedestrian flow. The width of the door openings
as well as number, shape, size and positioning of obstacles are varied to change
the nature of the goals and the geometry of the flow space. Results from this
study explain how evacuation time from an enclosed space varies with number of
persons inside the flow space and nature of exits present in the flow space as well
as geometry of the space. Results also show how pedestrians distribute themselves
inside the flow space while evacuating due to the above mentioned variations in the
flow space. These results may help in designing enclosed space geometry and exits.

1 Introduction

Any space provided for human circulation (for example, airport terminals, side-
walks, shopping malls, fair grounds, etc.,) involves movement of pedestrians.
Efficient design of facilities catering to pedestrian movement can be achieved
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only if one understands pedestrian flow. Empirical studies available in literature
on pedestrian flow can be broadly classified as (i) studies on speed, density and
their interrelationship and (ii) studies on the various different phenomena that can
be observed in pedestrian dynamics. In this section, first, studies related to speed,
density and their interrelationship are discussed. Later studies related to different
pedestrian dynamics phenomena are presented.

Over the years various studies on speed–density (or flow–density or speed–flow)
relationships (also known as fundamental relationship) of pedestrian streams have
been reported [1–8]. The results however varied substantially primarily due to
differences in the ways the data was collected and represented. Seyfried et al. [7]
have tried to develop an experiment scenario which tries to capture only the impact
of density on speed. Others have studied such relations in the specific case of experi-
ment/observation without nullifying the impacts of influencing factors like entrance
and exit condition of the corridor, width of the corridor, overtaking, pedestrians
moving side by side, etc. [1–6, 8]. Morrall et al. [9] and Chattaraj et al. [10] have
studied whether cultural differences impact the fundamental diagram.

Some studies have concentrated on determining capacity and specifying guide-
lines for Level of Service (LOS). Notable among these are the work by Polus
et al. [11], Hoogendoorn and Daamen [12] and Seyfried et al. [13]. Polus et al. [11]
have tried to determine LOS definitions in terms of nature of flow (free flow, unsta-
ble flow, dense flow and jammed flow) for uniform width sidewalks. Hoogendoorn
and Daamen [12] have studied capacity of bottlenecks. Seyfried et al.’s [13] study
relates exit widths to immediate upstream capacities.

There are yet other studies which relate to speed of pedestrians only. For
example, Henderson and Lyons [14] observed male and female pedestrians in the
same homogeneous mix follow different speed distributions. A similar, but more
restrictive, remark was also made by Polus et al. [11], who observed that speeds of
male pedestrians are far greater than female pedestrians. Young [15] has also done
some speed studies on pedestrians in airport terminals.

Many studies relate to empirical observations on interesting phenomena that
occur in pedestrian flow. Many authors, for example, have studied the spontaneous
formation of lane-like structures in primarily bi–directional flow. Isobe et al. [16]
have observed pattern formation and jamming transition (occurrence of jam when
the density exceeds certain threshold value) in pedestrian counter flow. Kretz
et al. [17] have plotted frequency distribution of number of lanes formed for
bi–directional pedestrian flow. Hoogendoorn and Daamen [18] have studied lane
formation and cluster formation for bi–directional pedestrian flow. Zhang et al. [19]
have studied ordering in bidirectional pedestrian streams and its influence on
the fundamental diagram. They found that the maximum of the specific flow in
bidirectional streams is significantly lower than that in unidirectional streams. In
another study Hoogendoorn and Daamen [12] have observed zipper effect (stag-
gered positioning of pedestrians when the width of the corridor is in excess than that
required for single file movement but not sufficient for two pedestrians moving side
by side) at bottlenecks. Oscillations at bi–directional bottlenecks (alternate passing
of pedestrians from one direction blocking pedestrians from the opposite direction)
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with emphasis on alternate passing time and frequency distribution of time headway
was studied by Helbing et al. [20]. Helbing et al. [8] have observed upstream moving
(back–propagating) stop and go shock waves forming in pedestrian streams.

It is evident from the literature reviewed that till now reasonable number of
experimental studies have been done on speed, density and their interrelationship.
But, till now there is no experimental study available in literature to understand how
pedestrian flow parameters (speed and density) change spatially and temporally,
especially, in response to geometric and other factors of the flow space. These
phenomena motivated the present study. It can be thought that pedestrian movement
is broadly classified as either movement inside enclosed spaces with few entry–exit
points or movement through corridors. In this paper results from experiments on
evacuation from a hall are presented. Results on lateral and longitudinal variations of
density and speed along a corridor having geometric variations along it are presented
in [21].

This category of experiments is on evacuation from a hall with two doors. The
width of the door openings as well as shape, size and positioning of obstacles are
varied to change the nature of the goals and the geometry of the flow space. As stated
earlier, these experiments are conducted to understand the impact of goals and the
geometry of the flow space on pedestrian flow. Various experiments designed to
investigate the progression of pedestrians while evacuating from a hall have been
conducted as a part of this study [22].

2 Experimental Set–Up and Procedure

These experiments on evacuation are conducted in an indoor hall with two doors
and paved floor. The lighting in the hall was very good during the experiments.
Figure 1 shows a schematic of the experimental set–up. The size of the goals and
obstacles can be varied. Different combinations of the goal sizes and obstacles
lead to different experiments. In all the experiments the pedestrians are initially
in a waiting zone as shown in Fig. 1. At their initial position they keep 0:4m gap
from the person immediately ahead and immediately behind. They also keep 0:4m
gap from the persons on either sides. This 0:4m is approximate body size of a
human being. After the instruction to start is given the pedestrians move through
the flow space at their comfortable speed and go out of the flow space through
the goal (door) of their choice. Each experiment is conducted three times. Data is
collected by video recording by overhead camera. In order to determine the position
of pedestrians on the flow space a grid (0:4 � 0:4m) is constructed using thin but
highly visible wires at a height of 1:65m (this is approximately equal to the average
height of Indian people [23]) from the ground. Once the grid is constructed the
fixed cameras record this grid. Once the grid is recorded neither the camera position
nor the camera angle is altered till all the experiments are over. The grid is removed
before the experiments begin. The video recordings of the experiments are projected
on a 53 in. television for extraction of data. Before beginning to extract data from
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8.4 m
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Flow space (ABCD) 

Obstacles with variable 
shape/size and numbers 

Waiting zone Pedestrians wait here

A D
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8.4 m

3.6 m

Goals with variable size 
(maximum width = 1.6 m)

Fig. 1 Schematic of the flow space for evacuation from a hall

the recording, the grid recorded by the camera is painstakingly recreated by using
removable marker to mark each line of the grid on the television screen. These lines
on the screen constitute a virtual grid on which the motion of pedestrians recorded
on tapes are played back. For every experiment, at every instant of time ‘t’ the cells
(i , j ) that are occupied are noted. The set of experiments conducted here are as
follows:

(i) Both doors are fully open; no obstacle present in the flow space
(ii) Left door is fully open and right door is half open; no obstacle present in the

flow space
(iii) Both doors are half open; no obstacle present in the flow space
(iv) Left door is fully open and right door is closed; no obstacle present in the flow

space
(v) Left door is half open and right door is closed; no obstacle present in the flow

space
(vi) Both doors are fully open; a rectangular obstacle in the form of a barrier as

shown in Fig. 2a is in the flow space
(vii) Both doors are fully open; an obstacle near the initial position of the

pedestrians as shown in Fig. 2b is placed in the flow space
(viii) Both doors are fully open; a rectangular obstacle near the left door as shown

in Fig. 2c is placed in the flow space.

In all the three cases where obstacles are present, height of the obstacle is kept
low so that the doors are visible. Further, each experiment is done with two levels
of initial density; in one set of experiments 14 people are used and in the other 35
people are used. The subjects are all male in the age group of 20–30. They are not
familiar with one another.
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Fig. 2 Sketch of flow space for evacuation when both the doors are fully open and (a) a rectangular
obstacle in the form of a barrier (b) an obstacle near the initial position of the pedestrians and (c)
a rectangular obstacle near the left door

2.1 The Observed and Computed Parameters

For easy understanding of the data, the whole flow space is divided into zones. Data
on the indicator variable Ot

i;j (where, (i , j ) indicates the cell co–ordinate and t the
time instance), is collected from the video recording. In order to extract meaningful
information the data on Ot

i;j is aggregated. To represent the data, two parameters,
zonal density and relative zonal density are defined with regard to time and their
temporal profile is also studied to understand the progression of pedestrians. These
parameters are defined as follows:
Zonal density of zone z at time t :

ZDt
z D

X
.i;j /2z

Ot
i;j (1)

and Relative zonal density of zone z at time t :
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Fig. 3 Zoning pattern of the flow space when (a) both the doors are open (full or half) (b) left
door is open (full or half); right door is closed

RZDt
z D ZDt

z

N0
(2)

where, N0 is the total number of pedestrians participating in the experiment.
Zones used here are shown in Fig. 3a, b. Zone 0 is outside the flow space and

represents the waiting area for pedestrians. These definitions for zones are motivated
by the positions of the goals and the hypothesis on how these goals might affect
pedestrian motion. While defining these zones, cells which are assumed to get
similarly impacted by the goals are grouped together. Number of zones and their
positions are primarily user–defined and therefore qualitatively fixed. For example,
Zone 4 in Fig. 3a (or Zone 6 in Fig. 3b) represent cells which have large attraction
for pedestrians. Similarly, Zone 3 in Fig. 3a (or Zone 5 in Fig. 3b) represent cells
which are reasonably attractive for pedestrians and so on.

3 Results and Discussions

Figure 4 shows the temporal profiles of RZDt
z for the case when both the doors

are fully open and there is no obstacle in the flow space for different number of
persons. There are similar other figures for all the rest seven cases (which are not
presented here due to space restriction). In the figures all the zones from 0 to 4 (or 0
to 6) are the same as shown in Fig. 3a, b; whereas, Zone E indicates the zone where
pedestrians go after evacuation through the door(s), i.e., the space outside the flow
space. From all the figures two points can be readily observed:
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Fig. 4 Temporal profile of RZDt
z when both the doors are fully open and there is no obstacle in

the flow space for number of persons (a) 14 (b) 35

(i) As the initial number of pedestrians increase the total evacuation time increases
because of the fact that at higher density pedestrians’ movements get obstructed
frequently, and

(ii) The RZDt
z are sharper with higher peaks when number of pedestrians is lower.

This indicates that at higher densities there is more uniformity in the way
pedestrians distribute themselves over the flow space.

The results are further used to study the impact of width of opening and the impact
of choice of goals (number of doors) on the pedestrian flow. The results are also
used to study the impact of obstacle positioning, size and shape on pedestrian flow.

3.1 Study on Impact of Width of Opening

In this study five different experiments with different door openings are conducted.
If one adds the width of the doors that are open then these five cases collapse into
four; for the cases when both the doors are fully open, the total door opening is
3:2m, for the cases when left door is fully open and right door is closed, the total
door opening is 2:4m, for the cases when (a) both the doors are half open, and (b)
left door is fully open and right door is closed the total door opening is 1:6m and for
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Table 1 Total evacuation
time (in second) for different
placement, size and shape of
obstacles

Number of persons

Case 14 35

No obstacle 14 20

Barrier obstacle 15 22

Composite obstacle 14 20

Obstacle near left door 14 19

the cases when left door is half open and right door is closed the total door opening
is 0:8m. Figure 5 shows a plot of the total evacuation time (time required by all
the pedestrians in the flow space to evacuate the flow space) versus width of door
opening for experiments with 14 and 35 persons. From the figure it can be seen
that:

(i) The total evacuation time versus width of door opening plot for 35 persons is
above that for 14 persons,

(ii) Total evacuation time rises sharply when the width of door opening reduces
beyond a certain value (from the figure the value seems to be around 1:6m),

(iii) As expected the rise is sharper when more number of persons participating in
the experiment,

(iv) The width of 1:6m is obtained in two ways; in one case only one door is fully
open and in the other case both doors are half open; the results show there is
not much change in the total evacuation time thereby showing that the humans
choose openings judiciously.

3.2 Study on Impact of Obstacle Positioning, Size and Shape

When the three different sets of obstacle positioning, size and shape are compared
with the no obstacle case, it is seen that the total evacuation time of different cases
differ randomly and minimally from one another. This suggests that for the densities
studied here pedestrians adjust their speeds such that the obstacle does not impact
the time they take to evacuate the flow space.

Table 1 shows total evacuation time for different placement, size and shape of
obstacles.
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4 Conclusions

Experiments on pedestrian motion in a closed space with varying number and width
of exit locations and different obstacle positioning, size and shape yield among other
things information on:

(i) How pedestrians choose a goal and how this affects their movement,
(ii) The impact of obstacles on pedestrian movements, and

(iii) How exit geometry (width) affects pedestrian evacuation process.

It needs to be mentioned that these types of experiments help to understand
pedestrian motion inside enclosed spaces, which is essential for their design.
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Understanding and Simulating Large Crowds

S.M.V. Gwynne and A.A. Siddiqui

Abstract Simulation tools are often used to establish pedestrian and evacuee
performance. The accuracy and reliability of such tools are dependent upon their
ability to qualitatively and quantitatively capture the outcome of this performance.
This paper investigates the relationship between the representation of low-level
agent actions and the generation of reliable emergent, high-level conditions that can
then be used to better understand the conditions that may develop in large crowds
and mitigate against them. Data has been collected concerning the movement of pil-
grims during the Hajj. This paper presents a simple framework for categorizing these
real-world observations and then translating them into the simulated environment –
extracting key information from the data collected to configure the simulation tool
as required. Several scenarios are simulated using the buildingEXODUS model to
test the impact of representing these observations to a greater or lesser degree.
This enables the importance of low-level behaviours upon emergent conditions
to be investigated, even when simulating large numbers of pilgrims attending the
Hajj; i.e. in large crowds. The relationship between low-level agent actions and the
high-level emergent conditions is investigated using analytical and simulation tools.
This paper should help future researchers (1) identify and extract key factors from
crowd data and then (2) appropriately configure simulation tools to represent agent
behaviour and the subsequent emergent conditions produced (e.g. congestion, flow
patterns, etc.).
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1 Introduction

The Hajj represents one of the largest annual human gatherings. Pilgrims congregate
from around the world to perform religious rites within a fixed area and a
specified period of time. This gathering is made more complex by the orchestrated
movement of this population between locations and the performance of rituals at
pre-determined times. As such, it provides a unique opportunity to (predictably)
observe movement under a wide range of conditions: from low-density unmotivated
movement, to high-density, driven movement.

The Hajj has been subject to a number of recent serious incidents; for instance,
between 1994 and 2006 there were five major incidents leading to 1,053 fatalities
and 1,295 injuries [1, 2]. These were produced through a combination of the popu-
lation size (several million people) and population densities produced (significantly
beyond 4 p=m2), the physical and environmental constraints, and the procedures
employed. This suggests the need for close scrutiny of the event, irrespective of the
general value of the data extracted. As such, the event demands close examination
both to determine (1) ways in which pilgrim safety can be protected, and (2) lessons
that can be learned and applied more generally.

A number of studies of the Hajj movement have been conducted [2], primarily
characterising the flow-density relationships generated. In addition, there have been
several attempts at simulating the pedestrian conditions present during the Hajj
primarily to investigate mitigation opportunities [2–13]. However, little, if any,
analysis has been performed relating the behaviours of the individual hajji (those
individuals performing the Hajj) to the high-level conditions produced, the ability
to simulate these behaviours within computational tools, and the improved fidelity
in the overall results produced due to the representation of these behaviours. Recent
work (examining other incidents) has been conducted investigating the relationship
between low-level behaviours and high-level conditions [14] albeit in a simplistic
manner.

Simulation tools are often used to establish pedestrian performance [15]. The
accuracy and reliability of such tools are dependent on their ability to qualitatively
and quantitatively capture the outcome of pedestrian performance; i.e. whether
agents perform the expected acts and take the expected amount of time to complete
them. In the past, it was often assumed that as crowds got larger so it became
more reasonable to reduce the detail in which pedestrian behaviour was represented.
This assumption was based as much on necessity as on theoretical understanding;
i.e. given the computational expense of simulating large crowds. However, there
was certainly a widely held opinion that low-level agent behaviours became less
important, as the crowd became larger: that the omission of low-level behaviours
had a negligible impact on the high-level outcomes produced. This confused the
impact of an individual performing an action in isolation with the cumulative
impact of many individuals performing an action (or set of actions). In addition,
it is often assumed that it is possible to understand individual actions by isolating
them from the surrounding procedural, physical and organizational influences – the
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external context of an event. By doing so, the individual response is divorced from
the original context in which it occurred, and conclusions drawn from the results
produced may be inappropriately associated primarily with the individual response
rather than the procedural/organizational influences underlying them [16–22]. This
may lead to misunderstanding and scape-goating.

This paper is an attempt to demonstrate the importance of understanding low-
level pedestrian behaviours, even in large crowds: establishing the conditions under
which they occurred, the factors that influenced them and the conditions that were
produced by them. These behaviours can be represented in the assessment of
pedestrian/evacuee performance. For this to happen, a sufficiently detailed and com-
prehensive data-set is required, locating coincident factors and responses, allowing
a contextual understanding of events (at the individual, procedural and emergent
levels), and enabling these events to be represented within simulation tools to a
higher degree of fidelity, if possible. To do this, an analytical framework has been
developed to categorize the observations made, and to relate these categories (e.g.
relating low-level pedestrian actions observed and the constraining factors present at
the time these actions were performed) with the high-level conditions that emerged.
Observations have been made by the second author during his own pilgrimage.
These observations enabled the actions of hajjis to be recorded, along with the
surrounding influential factors and the resultant high-level conditions that emerged.
These observations were made across the full pilgrimage and were categorized
accordingly. A smaller event within the Hajj was examined in greater detail and
is used as a case study during this paper. This event (the Sa’ee) was selected as
numerous observations were made and also given the self-contained nature of the
event itself. A summary of the observations and conditions recorded during this
event are presented in this paper. This analytical framework is demonstrated by
focusing on the Sa’ee observations, and then applying a simulation tool to explore
the relationship between individual actions and emergent conditions. A similar
approach has been adopted elsewhere to investigate evacuee behaviour during fires
incidents [23, 24].

Three sets of simulations have been conducted using the buildingEXODUS
model to examine the impact of representing hajji performance at different levels of
detail: (a) hajji capabilities based on the model’s default travel speeds, (b) observed
hajji travel speeds, and (c) observed hajji travel speeds and the inclusion of several
observed behaviours. These were conducted assuming a population of 15,000 hajjis.
The intent of these sets of simulations was to determine the ability of the model to
represent the observed conditions in a credible manner and enable a comparison
between the high-level conditions produced and the conditions observed in the
actual event. This should allow several questions to be addressed:

1. Is the simulation model employed able to represent the low-level behaviours
observed?

2. Do the low-level behaviours represented have a comparable impact on the high-
level conditions to those observed in the actual event?
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3. Are the sets of simulated emergent conditions produced sufficiently different
from each other to demonstrate the sensitivity of the model to the underlying
assumptions made?

4. Is it important for the accuracy of the emergent conditions to represent low-level
pedestrian behaviours, even in large-scale crowd movement?

2 Hajj Overview

The Hajj involves the annual pilgrimage of Muslims to Makkah, Saudi Arabia.
During this physically demanding event, pilgrims perform a series of rituals in
and around Makkah. The exact manner and order in which these actions are
performed is influenced by the branch of Islam to which the individual belongs,
religious rites, operational needs and the geographical and environmental conditions
present. The nature of Hajj therefore means that pedestrians have different objectives
and expectations even though they are using the same routes within the same
time period. This variation complicates the management of the pilgrim movement,
produces unbalanced loading of locations and routes, and increases the likelihood
that pedestrian incidents occur. Given the scale of the event, the requirements
of those involved, and the conditions produced, the Hajj presents an opportunity
for safety scientists to (1) make observations regarding a range of pedestrian
conditions produced, and (2) from these observations, improve our understanding
and subsequently improve the conditions for the hajjis.

This cultural and geographical diversity has enormous implications for the
management of the pilgrims and their subsequent behaviour. In 2010 (1431 in
Hijiri), 2.8 million pilgrims were recorded as having attended the Hajj: 1 million
were Saudis, while 1.8 million were non-Saudis [1–14]. This represents a 40 %
increase on the overall figure recorded in 2004, posing significant difficulties in
planning pilgrim movement and also in the provision of services. The majority of
those performing the Hajj come from overseas and may well not be familiar with
the spatial layout of the area or with the services available. In addition, a large
number of volunteers, security personnel and those on business also arrive into the
area during the Hajj period. Catering for people of different races, demographics,
language/education skills, and cultural practices is a challenge for the organisers
(i.e. the Ministry of Hajj of Saudi Arabia), especially given that the organisers are
attempting a delicate balance: (a) ensuring the security and heritage of the site;
(b) the safety of those involved; and critically (c) the (religious) experience of the
pilgrims. The relative importance of these three components is not necessarily the
same as comparable non-religious events; however, the need to balance competing
priorities is typical of the management of large numbers of people.

The procedural requirements associated with religious rites place low-level
obligations upon the individual hajji; i.e. religious rites have individual implications.
Although the visiting hajji will be familiar with the high-level religious rites required
of them (from their religious observances), many will be unfamiliar with the
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conditions that the mass performance of these rites produce and the impositions
that are subsequently placed upon them.

Although the Hajj is unique, it is formed from a collection of activities and
conditions that (when reduced to their constituent components) are comparable
to other pedestrian events – it is only the combination of the activities and scale
of the event that is unique. This enables the observations produced here to be of
general value, and also enables the existing theories and tools available to aid in the
mitigation of conditions at the Hajj. The data collected and the observations made
can be used in a number of ways: (1) to inform the development of behavioural
theories; (2) to inform the implementation of these theories within existing egress
models; (3) to validate/verify the quantitative performance of these models; (4) to
configure these models for use in examining large crowds; (5) to validate/verify the
qualitative performance of these models. This paper primarily focuses on the last
two applications.

3 General Approach

Observations were made during the Hajj. An analytical framework was devel-
oped to enable an understanding of the underlying (low-level) factors present
and the (high-level) conditions that emerged because of them. This framework
enabled the observations to be clearly categorized and, where possible, relationships
derived. The relationship between these factors and subsequent conditions were then
explored using the simulation tool.

3.1 Observation

A large number of observations were made during the 2008 Hajj and then
catalogued; e.g. associated with particular locations, times and events. This included
over 250 catalogued still photographs, several hours of video footage (collected
directly by the second author or collated from other resources), and hundreds of
manual observations. Each piece of material was interrogated to extract as many
qualitative observations as possible. This helped build a picture of the relationship
between the key factors at specific times and locations.

These observations focused on qualitative aspects of the pilgrimage; i.e. whether
actions/events took place, the manner in which they took place, the hypothesized
impact of these actions/events. Pictorial evidence, video evidence and manual
observations were collected in support of this data collection effort. A limited
number of quantitative measurements were also made, primarily relating to the
population densities present, the travel speeds achieved and the completion times
for specific events. These are supported by observations from other sources [1–14],
and were found to be broadly representative. Real-world observations were made
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across the Hajj phases at two distinct levels: the low-level actions of the hajji
and high-level emergent conditions that were the result of the combined hajji
activities, environmental conditions and structural constraints. In addition, infor-
mation was gathered on the procedural influences present; i.e. the set of religious,
safety/security/operational, and cultural objectives that influenced the hajji actions.
This allowed the authors to speculate on the objectives and motives underlying hajji
actions; however, it should be noted that the inferred objectives are only based on
known external factors – no survey was conducted. The information gathered also
allowed the authors to hypothesise on the causal relationship between the combined
hajji actions and the subsequent production of emergent conditions.

3.2 Analytic Framework

An analytical framework has been developed to help categorize the data collected, to
enable relationships between low-level and high-level observations to be made, and
for real-world observations and simulated results to be compared. This comparison
enables us (1) to establish whether the simulation of low-level actions actually
improves the accuracy and sophistication of simulated high-level conditions, and
(2) to suggest which of the real low-level factors had the biggest impact on the high-
level conditions produced and when they might have occurred. It has both forensic
and testing applications. This approach was developed by first deriving the key
factor groupings that might influence performance, and the level at which they might
operate. The potential responses were then identified along with the constraints
that influence response selection and inhibit performance. These factors, responses
and constraints were derived from examining Hajj-specific data, but also from
looking at broader sources in emergency and non-emergency literature [25–40]. The
framework developed is presented in Fig. 1.

The framework to the observations made was applied in several stages. Stage [1]
of the framework (shown in Fig. 1), was first applied to the full set of Hajj data.
The observations made of the Hajj movement were grouped into the following
categories:

1. Low-Level Actions [LLA] – actions that could be attributed to individual hajji
(primarily from direct observation)

2. Procedural Factors [PrF] – factors that are not tied to an individual, but instead
existed prior to the event and which had an impact on the motivations and objec-
tives of the pilgrim population; e.g. religious rites, safety/operational procedures,
services, etc. (combination of direct observation and secondary material)

3. Physical Constraints [PhC] – the physical and environmental constraints that
influenced pedestrian movement; e.g. nature of the terrain, configuration/
dimensions of the space, temperatures, etc. (combination of direct observation
and secondary material)
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Fig. 1 Analytical framework

4. High-Level Outcomes [HLO] – emergent conditions produced through the
combination of procedural factors, physical constraints and low-level actions
(primarily from direct observation)

This categorisation enabled sufficiently complex, but manageable, sub-sets to be
identified. A sub-set of the overall Hajj data-set was selected (see next section) for
the application of Stages [2,3] of the analytical framework; i.e. decomposition of
actions and representation within a simulation tool. This data was categorized in
the manner discussed previously (i.e. a dictionary of key terms produced in Stage
[1]). Each of the observed low-level actions was then decomposed into its basic
constituent components in Stage [2a]: movement, delay in movement associated
with specific actions, change of direction, and change of speed. All of the actions
represented in the dictionary could be crudely represented within a simulation model
through the recombination of these constituent components. This was particularly
useful in translating the real world actions into simulated tasks selected to be
represented within the model. It was also useful in gaining a simple overview of
the core components of each action. These components were then translated into
tasks within a simulation tool (in Stage [2b]). These were then grouped to form
representative scenarios (in Stage [3]; e.g. geometrical, environmental conditions),
allowing the functionality of the tool to be established and the relationships between
the factors represented tested.
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Fig. 2 (a) Location of the Sa’ee; (b) Sa’ee procedure

3.3 Case Study: Sa’ee

The analytical framework was applied to the Sa’ee observations providing a
manageable (but sufficiently complex) level of data for the demonstration case
presented here. The Sa’ee movement was selected as

1. A large number of observations were made leading to a sizeable data-set;
2. The Sa’ee event is relatively self-contained allowing the analysis to focus on

specific events while managing the impact of external events;
3. The conditions present, the underlying procedural/behavioural factors and the

outcomes produced were sufficiently complex to be of interest.

Sa’ee Description and Observations

Direct observations of the Sa’ee were made in two forms: (1) the observer detached
from the Sa’ee, and (2) the observer embedded in the flow movement during the
performance of the Sa’ee. These two perspectives allowed numerical observations
to be collected at the individual (speed) and population (flow) level, and allowed
descriptive observations to be made (experienced directly and observed). A large
selection of still photographs, video footage and manual observations were col-
lected. This was supported by existing observations made by other researchers,
secondary material or material collected describing the religious requirements of
the hajji during the Sa’ee, and the operational procedures in place [1–14]. This
amounted to approx. 300 separate sources from which numerical and descriptive
observations could be made.

During the Sa’ee, hajji have to make three circuits (seven ‘rounds’) between
Safa and Marwah (the remains of two small hills now located inside the Grand
Mosque in Makkah, Fig. 2a) in a manner indicated in the religious stories associated
with this rite (Fig. 2b). The pilgrims start Sa’ee from Safa and while facing in the
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direction of the Ka’ba, make Dua (i.e. to supplicate themselves, delaying their
movement). The hajji then head towards the Marwah while reading/reciting Duas
(Fig. 2). Occasionally, this is performed in groups, with a leader reciting text while
others in the group repeat it. Male pilgrims are required to increase their speed in the
area marked by green lights, but walk at the normal pace elsewhere. Female pilgrims
generally walk at a normal pace throughout. When the pilgrims reach Marwah, they
again stop and make Dua, as they did at Safa. This is considered one round, as is the
return movement from Marwah to the Safa. A total of seven rounds of movement
are required to perform the Sa’ee, with the last round ending at Marwah.

The Sa’ee takes place over a path 450 m in length (between Safa and Marwah)
and 40 m in width (in some places the presence of obstacles reduce the available
width to approximately 24 m). The distance travelled during the seven rounds
amounts to approximately 3 km [1, 41]. The two points and the path between them
are inside the Grand Mosque (see Fig. 2a). Since 2009, the capacity of the Sa’ee
has increased from an expected 44,000 to 118,000 pilgrims per hour, given the
expansion of the area involved (from 24,400 to 87,000 m2) and the number of
floors involved (currently four covered floors and an additional uncovered floor) [1].
The temperature inside the structure is approximately 25 ıC, which is significantly
cooler than the external environment. This is aided by the use of ceiling and wall
fans. The terrain is typically flat with firm footing (generally marble flooring),
except for a slight incline at each end (at the approach to the Marwah and Safa)
and some standing water around the water dispensers.

Anyone who is unable to walk or is impaired can use a wheelchair. Those
(males) in wheelchairs are still required to accelerate in the designated area between
the green lights and to stop at Safa and Marwah so that they can make Dua as
is expected of the rest of the hajji population. Dedicated lanes are provided for
wheelchair users located in the central area (marked in Fig. 2b). These dedicated
lanes are provided on three of the five levels. These pilgrims are usually assisted by
someone in pushing the wheelchairs. However, occasionally wheelchair users are
also seen moving around the general area. Water coolers are provided at designated
locations between Safa and Marwah for pilgrims: typically at six locations along
the inner boundary of the route. These locations are usually monitored by dedicated
maintenance staff whose responsibility it is to ensure that spilled water is removed
to avoid people from slipping and falling.

As with the Hajj process in general, each of the observations made was closely
scrutinized to identify elements that might influence performance. Examples are
shown in Fig. 3. At this stage they were in the form of raw observations, associated
with each other only in that they were contemporaneous; i.e. taken from the same
source. These direct observations formed the basis for the detailed analysis to be
performed. The observations were categorized according to the groupings suggested
in the analytical framework, informing the identification of low level actions,
physical constraints, procedural factors and high-level outcomes, complementing
the information derived from secondary sources (derived from documentary and
internet resources [1–14]).
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Fig. 3 Sa’ee observations. (a) Dec 5, 2008 at 18:54: The day before the start of Hajj (Pilgrims
moving towards Safa). (b) Dec 5, 2008 at 18:53: The day before the start of Hajj (Pilgrims moving
towards Safa)

Application of Analytical Framework

The information derived from the observations made and the secondary material
collected was collated using the analytical framework; namely, separated into Low-
Level Actions, Procedural Factors, Physical Constraints and High-Level Outcomes
(as indicated by Stage [1] in Fig. 1). This collation enabled a more detailed under-
standing of the underlying factors to be established, along with their relationship
with the conditions produced. The presentation of a full set of derived factors is
beyond this paper; therefore, a selection of the collated factors are presented in
Tables 1–3. Table 1 includes the observed procedural factors deemed to have the
most impact on performance. These are categorised into those relating to religious
requirements and to operational and service procedures. In reality, the nature of the
impact of the two sets of factors manifested in entirely different ways; however,
they are represented using the same mechanisms within the simulation tool. This
is achieved by initially breaking them down into their constituent parts and then
representing these more basic components implicitly within the simulation tool.

Table 2 describes observations associated with individual hajji: their attributes
and their actions. Both of these sets of observations are useful in configuring the
agent attributes within the simulation tool; i.e. where the tool could represent the
attributes and where they affected the results produced. Basic speeds ([S_LLA_1])
were derived from examining movement of the flow at several different locations
around the circuit. These were collected from situations where congestion did not
impinge upon free movement. These were compared with other reported movement
speeds [19–21, 26, 27, 30–32, 36]. The collection of the accelerated speeds adopted
by males between the green lights was more constrained [S_LLA_2], given that it
only occurred in this area and inevitably involved some interaction between those
moving more quickly and other hajji. It should be noted that the focus of this work
is in gaining representative numerical values to configure the model use, rather than
to provide a definitive numerical resource, which is beyond the scope of this paper.
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Table 1 Sa’ee procedural factors

Religious requirements Operational/service factors

[S_PrF_1] While wearing Ihram (if
performing Umrah) and not wearing shoes,
start from Safa and while facing in the
Ka’ba, make Dua.

[S_PrF_9] Separate lanes for Safa to
Marwah and from Marwah to Safa.

[S_PrF_2] Walk towards Marwah while
reciting/reading Duas.

[S_PrF_10] Dedicated lanes for wheelchair
users on three of the five floors.

[S_PrF_3] Area clearly marked by green lights
where change of speed is required. Male
hajji jog in the area bounded by the green
lights.

[S_PrF_11] Water coolers at designated
locations.

[S_PrF_4] Stop at Marwah, make Dua to
complete one round.

[S_PrF_12] Small areas on either side of
the lanes which can be used for
resting/waiting.

[S_PrF_5] Walk towards Safa while
reading/recting duas and jog (for male
pilgrims only) between the specified area.

[S_PrF_6] Stop at Safa, make Dua to complete
another round.

[S_PrF_7] Make seven rounds in total, last one
ends at Marwah.

[S_PrF_8] The Sa’ee stops at the time of five
daily congregational Salah.

During busy periods, this area is also used for
Salah.

The combined impact of the procedures, the individual attributes, the physi-
cal/environmental conditions and the low-level actions are shown in Table 3; i.e. the
high-level outcomes that emerged as a result of these factors (Fig. 1). These reflect
the qualitative and quantitative benchmarks against which the simulated results can
be compared. In essence, the simulated results should be able to produce more
reasonable quantitative and qualitative high-level results, as the low-level factors
become representative of the original conditions.

As with travel speeds, population densities [S_HLO_1] were derived from a
number of areas around route during peak use. These were calculated by selecting
locations where the area available could be approximated, where head counts were
performed. The time to complete the Sa’ee was derived from two sources: the
author’s direct experiences from him (and his group) completing the Sa’ee several
times, and calculations derived from video footage. Both sources demonstrated that
when relatively low level of congestion were experienced completion times were
towards the minimum of the range (i.e. 45 min), while where a hajji consistently
experienced congestion the completion times were towards the maximum of the
range (75 min). These figures were moderated by individual abilities. However,
given the scale of the movement and the conditions that can develop, these results
should only be considered as indicative.
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Table 2 Summary of Sa’ee internal hajji factors and low-level observations

Individual
attributes

Gender [male/female] Walking aid [none/stick/chair]

Physical fitness
[impaired/unimpaired]

Carrying shoes [yes/no]

Age [yound adult – elderly] Education level [not possible to
ascertain visually]

Wearing Ihram [yes/no]
Level of experience and training

[inexperienced – experienced with
procedures/space]

Cultural background [not possible
to reliably ascertain visually]

Encumbered
[unencumbered/object/child]

Reading [yes/no]

Low-level
observations

[S_LLA_1] Basic movement speed [averaging 1.0 m/s, ranging from 0.6 to
1.3 m/s, 50 observations]

[S_LLA_2] Speed change in the specified area with male pilgrims jogging
at 2.0 m/s [ranging from 1.3 to 2.4 m/s, 30 observations] between green
lights.

[S_LLA_3] Duas at both Safa and Marwah. [15–20 % of population
delaying for between 1 and 3 min]

[S_LLA_4] Direction change at the end of each round at Safa and Marwah.
[S_LLA_5] Group coherence and reformation, with males typically leaving

women and waiting for them after they have accelerated away in green
zone. [10–20 % male population remaining in place for 10–30 s].

[S_LLA_6] Individuals stop to drink water and/or rest. [5 % of population
remain for between 2 and 5 min, queuing and drinking at designated
sites].

[S_LLA_7] Leave shoes in allocated areas in the mosque or keep them in a
hand bag.

[S_LLA_8] Individuals read/recite Duas while walking.
[S_LLA_9] Movement down from the Safa hill onto the flat terrain.
[S_LLA_10] Some impaired individuals make use of the general purpose

lanes as well. Some unimpaired pilgrims walk in the dedicated
wheelchair only lanes.

[S_LLA_11] Individuals stop to rest/wait at non-designated areas, along the
side of the path. [5 % of population remain for between 4 and 5 min]

[S_LLA_12] Some pilgrims are accompanied by young children/elderly
relatives.

[S_LLA_13] Some pilgrims carry small items with them, e.g. books,
handbag, etc.

[S_LLA_14] Given variation in travel speeds, overtaking is required.
[S_LLA_15] Male group members slow down after crossing the specified

jog area.
[S_LLA_16] Between green lights those in wheelchairs pushed more

quickly to approximate jogging speed.
[S_LLA_17] Hajji groups form and maintain during movement. This is

occasionally accompanied by the grouper leader reciting prayers as they
move.

[S_LLA_18] Sometimes hajji get hit by wheelchairs as they change direction.
[S_LLA_19] Staff cleaning/sweeping floors.
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Table 3 Sa’ee high level outcomes

[S_HLO_1] Population densities of between 1:0 and 3:0 p=m2 observed locally (50 observations).
[S_HLO_2] Variation in hajji travel speeds leading to overtaking and local navigation.
[S_HLO_3] Unimpaired using the designated impaired lanes producing delays and local

congestion.
[S_HLO_4] Congestion produced by hajji waiting along the edges of the path encroaching upon

the movement.
[S_HLO_5] Designated water cooler areas produce congestion impeding the flow as people

queue.
[S_HLO_6] Congestion developed at Safa and Marwah where pilgrims stopped to perform Duas.

This impeded the flow of hajji and also impeded those who have completed their Duas from
rejoining the flow.

[S_HLO_7] The flow is typically relatively smooth moving. However, it is not uniform, given the
social groupings that exist within it. Strata therefore appear in the flow. The flow is further
disrupted by the acceleration/deceleration of hajjis in relation to the green lights. Strata
develop as hajji accelerate forward (with female hajji remaining behind) and then decelerate
at the end of the green area.

[S_HLO_8] Contra-flows and cross-flows were produced given the range of hajji objectives and
local activities.

[S_HLO_9] The hajji typically completes Sa’ee between 45 and 75 min, according to the (40)
observations made.

As an example of the relationships drawn, an explanation of the development of
congestion at key locations is presented. Congestion appeared at either end of the
circuit, as pilgrims delayed their movement while performing Dua. Congestion also
developed along the inner boundary of the route. This was due to hajji queuing at
water coolers, and when hajji stopped at undesignated locations to rest along the
perimeter of the circuit (again typically along the inside of the route). This reduced
the effective width of the route. Congestion was also produced when hajji interaction
increased, particularly where there were larger variations in hajji travel speeds. The
acceleration of male hajji between the green lights stratified the flow into waves,
given the speed variations. Initially, the flow of hajji approached the green lights.
At this stage the hajji are mixed and travelling at their typical walking speed.
This is constrained by the population densities present, making the movement rates
more uniform than might otherwise be the case. On passing the green lights, male
hajjis accelerated, jogging away from the rest of the hajji. This often required them
weaving through slow moving hajji in order to gain sufficient space to accelerate
and jog through the designated area. Once beyond the second set of green lights,
male hajjis decelerated. Some of these continued on at normal speed (i.e. those that
were not in social groups), while others waited for the rest of their party. At this
stage there were three waves of hajji in the area: the male hajji who had accelerated
and who were not waiting, male hajji who accelerated and were now waiting, and
the other hajji who did not initially change their speed. This collapsing of the
population into waves increased local population densities that then influenced the
travel speeds achieved. In this manner, the identification of low-level actions and
procedure factors were related to the emergence of high-level conditions.
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Figure 1 outlines the steps involved in the transition from observation (see
Tables 1–3) to simulation (see Sect. 4):

1. Elements observed, categorized and prioritized given their influence on perfor-
mance (Stage [1]).

2. Prioritized elements broken down into their constituent parts (movement, delay,
direction change, speed change) (Stage [2a]).

3. Constituent parts represented as itineraries within the simulation tool and
allocated to the agent population in accordance with the observations made
(Stage [2b]);

4. Simulated emergent conditions (qualitative and quantitative) compared against
the original high-level conditions (Stage [3]).

The development of applicable scenarios from these constituent parts and the
results produced, as part of the Stage [3] framework analysis, are now discussed.

4 Modelling Hajji Movement

Simulations were conducted using advanced features of the buildingEXODUS
model [42]. This enabled the simulated impact of the low-level agent behaviours
upon the high-level scenario conditions to be examined. buildingEXODUS is a
simulation tool that enables the representation of pedestrian and evacuee movement,
in conjunction with the procedural, structural and environmental factors present. The
model represents the population at the individual level allowing the attributes, tasks
and capabilities of the population to be modified and to influence (individual and
high-level) performance. The model is able to produce a range of output, allowing
performance to be examined at the individual, group, or population level [42].
Within the model, goals and tasks can be imposed upon the agents reflecting
the action components derived from the real-world observations; i.e. an attempt
to qualitatively represent the individual actions such as those shown in Fig. 2b.
The high-level results simulated can then be compared to the emergent conditions
noted in the original observations to determine whether they are acceptable. Three
scenarios have been examined to investigate the relationship between the simulation
of low-level conditions and the high-level outcomes produced:

1. (a) Using the model’s default movement parameters
(b) Using modified movement parameters to reflect the observed travel speeds
(c) As (2), with the inclusion of a sub-set of the procedural activities observed

represented as tasks inserted to reflect low-level actions.

These were conducted for a single agent (to validate the approach) and a
population of 15,000 to examine the impact of agent interaction upon the conditions
produced. Only the simulations involving the 15,000 agents are discussed here.

The assumptions employed in the model during the three scenarios are outlined
in Table 4. In Scenario [A1], the default travel speed ranges of 1.2–1.5 m/s were
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Table 4 Scenarios examined

Scenario Travel speeds (m/s) Mobility factor Tasks represented

[A1] Default 1.35 [1.2–1.5] 0.7–1.0 None
[A2]a Physical 1.0b[0.8–1.2] 0.7–1.0 None
[A3] Physical and

behavioral
Walking
1.0b

[0.8–1.2]
Jogging
2:0c

[1.8–2.2]

0.7–1.0 1. Speed modification in
area denoted by green
lights�20 % probability
(male only)c

2. Performance of Dua.
[1–3 min] delay. 20 %
probability.d

3. Stop at water dispenser.
[0.75–1.5 min] delay.
5 % probability.e

4. Group reform post-green
zone. [0.25–0.5 min]
delay. 20 % probability.f

5. Rest at side of path.
[4–5 min] delay. 5 %
probability.g

a The slight discrepancy between the travel speeds observed and those imposed within the model
are due to manner in which the speeds are simulated and the interaction between theses speeds
and other factors, such as agent mobility

b Based on [S_LLA_1]
c Based on [S_LLA_2]
d Based on [S_LLA_3]/[S_LLA_4]
e Based on [S_LLA_6]
f Based on [S_LLA_5]/[S_LLA_15]/[S_LLA_17]
g Based on [S_LLA_11]

employed. In addition, the assumption that 10 % of the population were impaired
was also employed, as indicated by Boyce [43]. Within the model this was
represented as a coefficient applied to the travel speed (Mobility Factor). This
was assumed to vary between 0.7 and 1.0, and produced up to a 30 % reduction
factor in travel speeds for the impaired section of the population (i.e. 10 % of the
population). Wheelchair users were not represented during any of the scenarios;
the model is not able to simulate wheelchair movement. Therefore, the central
lanes (i.e. lanes dedicated for wheelchair users and the severely impaired) were
excluded in all cases. In Scenario [A2], the travel speeds imposed were broadly
representative of those observed. Given the range of factors discussed previously
(e.g. individual, procedural, environmental, structural, etc.), the unimpeded speeds
observed averaged around 1.0 m/s. Again, those with movement impairments were
also represented as in Scenario [A1]. In Scenario [A3], the movement parameters
were identical to those assumed in Scenario [A2]; however, behavioural tasks
were introduced to broadly represent some of the key observations made (see
Tables 1 and 2). As hajji travelled between the Marwah and the Safa they had the
potential for being assigned itineraries to complete. This is a functionality within the
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buildingEXODUS model that allows agents to be assigned tasks that take a period of
time to complete; i.e. implicitly representing the actions performed by an individual.
These can either be pre-determined or assigned stochastically according to the
individual attributes, location and experiences during the simulation. In this case,
each agent was assigned tasks when passing pre-assigned locations. The assignment
of these tasks was dependent on their attributes (e.g. gender), and the percentages
described in Table 4. If assigned, this meant that an agent had to perform (one or
more from) Dua, rest, wait after accelerating between the green lights, and/or get
water at the assigned location, for a period of time between the ranges associated
with that task. In effect, the itinerary task was used to represent five behavioural
tasks.

It should be recognized that the set of tasks assigned to the population only
represent a small sub-set of the behaviours observed (see Table 2). Given this, the
simulated differences produced by including tasks (both in terms of the quantitative
differences and the qualitative emergent conditions produced) should be considered
a crude estimate of those that might be generated.

A representative population of 15,000 hajji were simulated. This population
size was selected as it was representative of the conditions viewed and produced
the population densities typically observed. This population was randomly located
about the space, typically producing population densities of between 1.0 and
3.0 p=m2. Each scenario was run five times. The location of the hajjis was
randomized and the time for the population to complete the 3.5 circuits observed.
For each scenario the minimum, maximum and average times for the 15,000
hajji to circumambulate the space was recorded, ensuring that a relatively broad
and representative set of completion times was produced; i.e. this would have
represented the population involved in each simulation, and the different populations
used across the five simulations. This approach was adopted as there was not one
representative completion time for the entire population as might normally be the
case in an evacuation of a space, for instance.

5 Results

Three scenarios were simulated where the hajji population of 15,000 circumam-
bulated the space. The numerical results from these scenarios are shown in Table 5.
When the default buildingEXODUS speeds were assumed during Scenario [A1], the
simulated hajji completed the route in, on average, 57 min. When the observed travel
speeds were employed in Scenario [A2] the average completion time increased to
65 min. As expected, Scenario [A2] produces longer completion times than Scenario
[A1] (a 14 % increase), given the reduced travel speeds assumed. It is apparent
that both sets of results are ‘credible’ in that the fall within the observed range of
completion times (45–75 min); however, the qualitative conditions produced were
different from those observed in reality.
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Table 5 Results produced
when the full hajji population
was simulated

Scenario Completion time (s)

[A1] 3,450
Default [3,303–3,722]
[A2] 3,912
Physical [3,542–4,557]
[A3] 4,426
Physical and behavioural [4,211–5,316]
Observed [2,700–4,500]

Fig. 4 Population Density Contour of Scenario. Hajji movement is from right to left

Fig. 5 Population Density Contour of Scenario. Hajji movement is from right to left. High
densities are circled

Although there is a 14 % increase in the completion time for Scenario [A2]
over Scenario [A1], the emergent (qualitative) conditions produced during the
simulations were similar (and different from the actual conditions observed, see
Table 3). Figure 4 shows a Population Density Contour of a section of the geometry
traversed during the Sa’ee. This is a feature within the buildingEXODUS model that
demonstrates the population densities (i.e. the number of people per square metre)
produced at a particular time during the simulation. This is employed here as it better
displays the conditions experienced given the scale of the geometry represented. In
this contour, dark areas typically represent 4 p=m2. It is apparent from Fig. 4 that
the contour is fairly uniform and does not have a discernible pattern or include
noticeable conditions specific to particular locations; for instance, congestion along
the inner wall, congestion produced as people wait for others, etc., as was observed
during the original event. It should also be noted that the section shown in Fig. 4
includes the area between the green lights, where significant fluctuations in the
population densities were produced. This area is located in the middle third of the
graphic. This example is typical of the conditions produced during Scenario [A1]
and [A2] along the entire Sa’ee route.

In Scenario [A3] the average time for the simulated hajji to complete Sa’ee was
73 min. This is at the upper end of the observed completion times representing a
13 % increase over the average Scenario [A2] completion time (although the value
ranges produced for the two scenarios do overlap). However, more significant is the
changes in the emergent conditions that have been produced. An example of this
is shown in Fig. 5. This shows the same section of the geometry that appears in
Fig. 4 at a comparable time in the movement of the hajji (approximately 10 min into
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Fig. 6 Population Density Contour of Scenario [A3] – focus on area between green lights

the simulation). The flow through the section is uneven with population densities
varying significantly with changes in the conditions specific to particular locations.
For instance, it is apparent that there is additional congestion along some sections
of the inner boundary. This is produced through agents stopping for water or resting
along the inner boundary of the route and replicates both the local congestion and
impedance that was observed. A similar effect was also produced at either end of
the route, as a proportion of the agents delayed simulating them performing Dua.

The conditions around the green lights were more complex. In Fig. 6a, the area
between the green lights shown in Fig. 5 is magnified. (This is from the centre
point in the graphic to the right-hand edge of Fig. 5.) The uneven distribution of
population densities is immediately apparent. The typical 2D buildingEXODUS
view is shown (with individual hajji displayed, Fig. 6c), along with explanatory
schematics (Fig. 6b, d). These views are presented to help identify the underlying
causes producing the emergent conditions evident; i.e. by identifying individual
actions and the conditions produced (see Table 3).

In Fig. 6d, the hajji population are shown approaching the green lights where
some of them are expected to accelerate. In this section the movement of the hajji
is complex with some heading towards the inner boundary to rest, retrieve water or
moving directly forward. This is reflected in the large number of agents interacting
prior to reaching the green lights – the complex movement impeding their progress
leading to additional congestion (see the high densities evident at the right-hand end
of Fig. 6a). The male hajji then accelerate away from the other hajji causing two
obvious strata to form: one high-density group of relatively slow-moving hajji; the
second, formed from a more dispersed group of male hajji accelerating away from
first group. These distinct strata are apparent in the 2D buildingEXODUS image
(the high density area is shown in the right-hand third of Fig. 6c, while the dispersed
group is visible in the middle third). Once the accelerating hajji reach the end of the
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green lighted section, a portion of them delay, simulating them waiting for slower
moving group members (see Fig. 6b). This leads to congestion as other hajji interact
with and overtake those waiting. This in turn produced congestion at the edge of
the green lighted section forming a grouping of hajji across the width of the path,
as evident in Fig. 6a, c. These results are representative of the original observations
made. Therefore, in this instance, not only are the quantitative results representative,
but they are based on acceptable qualitative conditions.

6 Discussion

Four questions were posed in the introduction:

1. Is the simulation model employed able to represent the low-level behaviours
observed?

2. Do the low-level behaviours represented have a comparable impact on the high-
level conditions produced to those in the actual event?

3. Are the sets of simulated emergent conditions produced sufficiently different
from each other to demonstrate the sensitivity of the model to the underlying
assumptions made?

4. Is it important for the accuracy of the emergent conditions to represent low-level
pedestrian behaviours, even in large-scale crowd movement?

These are now discussed.
The model is able to represent simple itineraries based on the recombination

of basic behavioural tasks: movement, delay in movement associated with specific
actions, change of direction, and change of speed. From these basic components,
relatively complex itineraries were formed allowing procedures and behaviours
to be simulated. Once the original low-level behaviours had been identified, the
sub-set of those selected for representation within the model could be implicitly
included. Once represented, these behaviours had an impact on the emergent
conditions produced. The emergent conditions produced by the model as part of
the simulated scenario were noticeably different once the low-level task itineraries
were introduced. The manner in which the agents used the space changed producing
more complex dynamics and different population distributions throughout the space.
The fact that the inclusion of more representative agent task itineraries produced
more credible high-level outcomes is encouraging. Simply producing reasonable
quantitative estimates irrespective of the underlying conditions can lead to incorrect
conclusions being derived. It may also indicate that a model is insensitive to the
underlying conditions employed and the manner in which they interact. That was
not the case here. In this instance, the model was able to cope with a large crowd
movement; represent the low-level actions observed; and then produced credible
emergent conditions when these low-level actions were employed that differed from
when the low-level actions were excluded. As such, this model may be a useful
diagnostic tool in investigating the underlying causes of emergent conditions, if
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applied expertly. The model was not able to produce identical conditions. This is
highly unlikely in any situation, and was not expected here given that numerous
low-level behaviours were not simulated and that those that were included were only
represented implicitly. However, the inclusion of the sub-set of low-level behaviours
certainly produced a closer approximation of the qualitative conditions originally
observed than when they were not included.

It is important to recognize the limitations of computational models and of
their application in investigating the relationship between low-level factors/actions
and high-level conditions. Broadly speaking, there are four different relationships
between low-level factors and high-level outcomes that can exist with a model.
This paper presents tentative evidence that the buildingEXODUS model examined
was able to generate increasingly credible emergent conditions as the low-level
behaviours/factors became more representative. This applied to both qualitative and
quantitative aspects of the simulation. This only relates to the case examined, but
suggests that the relationship between low-level and high-level factors is reasonable
within the model. This may not always be the case, in other models. Often, models
are said to produce accurate quantitative outcomes with little comment made on the
low-level factors/actions employed. Some models are not able to vary the low-level
conditions represented and so produce high-level conditions that are insensitive to
the low-level factors employed. In effect, the low-level factors assumed are only
coincidental to the high-level outcome, rather than causal or influential. Similarly,
other models are able to produce credible high-level outcomes irrespective of
the accuracy of the low-level conditions represented. In both cases, this may
lead to inaccurate conclusions being drawn concerning the relationship between
low-level factors and high-level outcomes. Some models are able incorporate
a representative set of low-level conditions, which do not combine to produce
credible high-level outcomes. These models then have the scope to produce more
complex and representative individual behaviours (i.e. low level factors), but not
the sophistication to accurately represent the interaction between these individual
behaviours. Finally, some models are neither capable of representing representative
low-level conditions, nor generating credible high-level outcomes. The use of these
models is limited, but at least predictably so.

The relationship between low-level and high-level conditions matters as it
influences the credibility of any findings produced by the model, especially when
used to investigate causal relationships. It is therefore important to understand the
theoretical/empirical basis for these relationships and how they are represented
within the model being employed prior to applying such a model to establish causal
relationships as part of an analysis.

7 Conclusion

This paper presents an analysis of the pilgrim movement at the Hajj. This analysis
involved the collection of data, the categorization of this data, and the investi-
gation of the underlying dynamics of a particular event using a simulation tool.
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The buildingEXODUS model proved capable of representing a set of low-level
agent actions indicative of those seen during the original observations, which
then combined to produce reasonable completion times and emergent high-level
conditions. As such the model was able to discriminate between the impact of
different low-level factors and their impact upon the outcome of an event. It was
able, albeit imperfectly, to produce reasonable quantitative completion times and
qualitative emergent conditions. This should enable the model to credibly produce
simulated outcomes, and be used to explore potential causal factors of identifiable
emergent conditions in real large-scale incidents. Given that this model (and
potentially others) is able to adequately represent these relationships, the importance
of understanding and simulating low-level actions in large crowd scenarios, given
their impact on the conditions that emerge, seems apparent.

References

1. http://www.hajinformation.com/main/l.htm.
2. S. A. AlGadhi, “Jamarat bridge: Mathematical models, computer simulation and hajjis safety

analysis,” tech. rep., Ministry of Public Works and Housing - Saudi Arabia, 2003.
3. A. Johansson, “From crowd dynamics to crowd safety: a video-based analysis,” Advances in

Complex Systems, vol. 4, p. 497–527, 2008.
4. H. Klüpfel, “The simulation of crowd dynamics at very large events,” in Traffic and Granular

Flow ’05 (A. Schadschneider, ed.), Traffic and Granular Flow ’05, Springer, 2006.
5. A. M. Shehata, “Using 3d gis to assess environmental hazards in built environments,” Journal

of Al Alzhar University.
6. Z. Zainuddin, “Simulating the circumambulation of the kaaba using simwalk,” European

Journal of Scientific Research, vol. 38, pp. 454–464, 2009.
7. N. A. Koshak, “Analyzing pedestrian movement in mataf using gps and gis to support space

redesign,” in Proceedings of the Ninth International Conference on Design and Decision
Support Systems in Architecture and Urban Planning, 2008.

8. D. Clingingsmith, “Estimating the impact of the hajj: Religion and tolerance in islam’s global
gathering,” tech. rep., Harvard University, 2008. CID Working Paper No.159.

9. A. Addelghany, “Microsimulation assignment model for multidirectional pedestrian movement
in congested facilities,” in Bicycles and Pedestrians; Developing Countries 2005, vol. 1939,
pp. pp123–132, 2005.

10. H. Klüpfel, “The simulation of crowd dynamics at very large events calibration, empirical
data, and validation,” in Proceedings of the 3rd International Conference on Pedestrian and
Evacuation Dynamics, 2006.

11. S.A.H. AlGadhi, “Modelling crowd behavior and movement: Application to the makkah
pilgrimage,” in Transportation and Traffic Theory, pp. 59–78, 1990.

12. N. Hussain, “Cdes: A pixel-based crowd density estimation system for masjid al-haram,” Safety
Science, 2011. (Online).

13. N. Zarboutis, “Design of formative evacuation plans using agent-based simulation,” Safety
Science, vol. 45, p. 920–940, 2007.

14. M. Moussaïda, “How simple rules determine pedestrian behaviour and crowd disasters,” in
Proceedings of the National Academy of Sciences of the United States, 2010.

15. S. Gwynne, “Simulating a building as a people movement system,” Journal of Fire Sciences,
vol. 27, pp. 343–368, 2009.

http://www.hajinformation.com/main/l.htm


238 S.M.V. Gwynne and A.A. Siddiqui

16. D. Vaughan, “The dark side of organizations: Mistake, misconduct, and disaster,” in Annual
Review of Sociology, vol. 25, pp. 271–305, 1999.

17. E. Hollnagel, “Understanding accidents - from root causes to performance variability,” in
Proceedings of the 2002 IEEE 7th Conference on Human Factors and Power Plants, pp. 1–6,
2002.

18. J. M. Lewis, Theories Of The Crowd: Some Cross Cultural Perspectives. Easingwold Papers,
1990. ISBN1874321043.

19. S. A. H. AlGadhi, “Simulation of crowd behavior and movement: Fundamental relations and
application,” in Transportation Research Record, vol. 1320, pp. 260–268, 1991.

20. S. AlGadhi, “Review study of crowd movement and behavior,” J. of King Saud Univ, vol. 8,
no. 1, pp. 77–108, 1996.

21. J. J. Fruin, Engineering For Crowd Safety, ch. The Causes And Prevention Of Crowd Disasters.
1994. 0444899200.

22. J. Drury, “Cooperation versus competition in a mass emergency evacuation: A new laboratory
simulation and a new theoretical model,” Behavior Research Methods, vol. 3, no. 41, pp. 957–
970, 2009.

23. W. Grosshandler, “Draft report of the technical investigation into the station nightclub fire,”
Tech. Rep. NCSTAR 2, National Institute of Standards and Technology, 2005.

24. J. D. Averill, “Federal investigation of the evacuation of the world trade center on september 11,
2001,” in Proceedings 3rd International Conference on Pedestrian and Evacuation Dynamics,
2005.

25. J. Bryan, The SFPE, Handbook of Fire Protection Engineering(2nd Edition), ch. Behavioural
Response To Fire And Smoke, pp. (1–241)–(1–262). National Fire Protection Association,
1996.

26. H. Nelson, The SFPE, Handbook of Fire Protection Engineering(2nd Edition), ch. Emergency
Movement, pp. (3–286)–(3–295). National Fire Protection Association, 1996.

27. S. A. H. AlGadhi, “A speed-concentration relation for bi-directional crowd movements with
strong interaction,” in Pedestrian and Evacuation Dynamics (S. et al, ed.), pp. 3–20, 2001.

28. C. Saloma, “Self-organized queuing and scale-free behavior in real escape panic,” in Proceed-
ings of the National Academy of Sciences of the United States, vol. 100, pp. 11947–11952,
2003.

29. C. E. Nicholson, Engineering For Crowd Safety, ch. The Investigation Of The Hillsbor-
ough Disaster By The Health And Safety Executive, pp. 361–370. Elsevier, 1994. ISBN
0444899200.

30. V. M. Predtechenskii, Planning For Foot Traffic Flow In Buildings. Amerind Publishing Co.,
1978.

31. V. V. Kholshevnikova, “Recent developments in pedestrian flow theory and research in russia,”
Fire Safety Journal, vol. 43, p. 108–118, 2008.

32. S. M. V. Gwynne, The SFPE Handbook of Fire Protection Engineering (4th edition),
ch. Employing the Hydraulic Model in Assessing Emergency Movement, p. 3–355. National
Fire Protection Association, 2008.

33. J. A. . Bryan, “Selected historical review of human behavior in fire,” Fire Protection
Engineering, vol. 16, pp. 4–10, 2002.

34. G. Proulx, The SFPE Handbook of Fire Protection Engineering (4th edition), ch. Evacuation
Time. National Fire Protection Association, 2008.

35. J. Sorenson, “Warning and evacuation: answering some basic questions,” Industrial Crisis
Quarterly, vol. 2, pp. 195–209, 1988.

36. K. Ando, “Forecasting the flow of people,” Railway Research Review, vol. 45, pp. 8–14, 1988.
37. S. M. V. Gwynne, “Optimizing fire alarm notification for high risk groups research project,”

Tech. Rep., The Fire Protection Research Foundation, 2007.
38. S. M. V. Gwynne, “Conventions in the collection and use of human performance data,” Tech.

Rep. NIST GCR 10–928, National Institute of Standards and Technology, 2010.
39. E. Kuligowski, “Process of human behavior in fire,” in Proceedings of the Human Behaviour

in Fire Symposium, pp. 627–632, 2009.



Understanding and Simulating Large Crowds 239

40. E. Kuligowski, “What a user should know about selecting an evacuation model,” Fire
Protection Engineering Magazine, Human Behaviour in Fire Issue, 2005.

41. http://www.en.wikipedia.org/wiki/AlSafa_and_Al-Marwah.
42. E. D. Kuligowski, “A review of building evacuation models, 2nd edition,” Tech. Rep. NIST

TN - 1680, National Institute of Standards and Technology, 2010.
43. K. E. Boyce, “Towards the characterization of building occupants for fire safety engineering,”

Fire Technology, vol. 35, no. 1, 1999.

http://www.en.wikipedia.org/wiki/Al Safa_and_Al-Marwah


Experimental Study of Pedestrian Flow
Through a T-Junction

Jun Zhang, W. Klingsch, A. Schadschneider, and A. Seyfried

Abstract In this study, series of experiments under laboratory conditions were
carried out to investigate pedestrian flow through a T-junction, i.e., two branches
merging into the main stream. The whole duration of the experiments was recorded
by video cameras and the trajectories of each pedestrian were extracted using the
software Petrack from these videos. The Voronoi method is used to resolve the
fine structure of the fundamental diagram and spatial dependence of the measured
quantities from trajectories. In our study, only the data in the stationary state are
used by analyzing the time series of density and velocity. The density, velocity
and specific flow profiles are obtained by refining the size of the measurement area
(here 10 � 10 cm are adopted). With such a high resolution, the spatial distribution
of density, velocity and specific flow can be obtained separately and the regions
with higher value can be observed intuitively. Finally, the fundamental diagrams
of T-junction flow is compared in three different locations. It is shown that the
fundamental diagrams of the two branches match well. However, the velocities
in front of the merging are significantly lower than that in the main stream at the
same densities. After the merging, the specific flow increases with the density 
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till 2:5m�2. While in the branches, the specific flow is almost independent of the
density between 
 D 1:5 and 3:5m�2.

1 Introduction

In recent years, research on pedestrian and traffic flow became popular and attracted
a lot of attention [1–5]. A great deal of models has been proposed to simulate
pedestrian movement in different situations [6, 7]. Most of these models are able
to reproduce crowd phenomena such as lane formation qualitatively. On the other
hand, some field studies and laboratory experiments are also carried out to obtain
empirical data and improve models.

Unfortunately, the empirical database is insufficient leading to discrepancies
among different handbooks. The fundamental diagram describing the empirical
relation between density (
), velocity (v) and flow (J ) (or specific flow (Js)) is the
key characteristics of pedestrian dynamics used to support the planning and design
of facilities. However, there is considerable disagreement among the empirical
data from different studies and handbooks even for the same type of facility or
movement. The maximum flow as well as the density where the maximum flow
appear has a broad range [8, 9]. These discrepancies cause big inconvenience in
design and assessment. Further research is necessary to study the reasons for these
differences. Carrying out laboratory experiments is a good way to do this, since
secondary factors can be removed or controlled.

T-junctions are important part of most of buildings. In this kind of structure,
bottleneck flow, merging flow or split flow are all possible to take place in dif-
ferent situations. Especially around the corners, pedestrian behavior is much more
complex. Pedestrian flow characteristics in this kind of geometry are significant to
study. However, except for some studies using a Cellular Automaton model [10,11],
there are few empirical studies directly considering the fundamental diagram of
pedestrian flow in T-junctions.

In this study, series of well-controlled laboratory experiments are carried out to
investigate the pedestrian movement in T-junctions. The Voronoi method is accepted
to analyze the fundamental diagram and field profiles of density, velocity and
specific flow.

2 Experiment Setup and Trajectory Extraction

Seven runs of experiments were carried out in a T-junction with corridor width
bcor1 D bcor2 D 2:4m. Figure 1 shows the sketch of the experiment setup. Pedestrian
streams move from two branches oppositely and then merge into the main stream
at the T-junction. To regulate the pedestrian density in the corridor, the width of
the entrance bentrance was changed in each run from 0:5 to 2:4m, see details in
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Fig. 1 Setup of T-junction experiments

Table 1 Parameters for the T-junction experiments

Runs Name bcor1 (m) bentrance (m) bcor2 (m) Nl CNr
1 T�240�050�240 2.40 0.50 2.40 67C67
2 T�240�060�240 2.40 0.60 2.40 66C66
3 T�240�080�240 2.40 0.80 2.40 114C114
4 T�240�100�240 2.40 1.00 2.40 104C104
5 T�240�120�240 2.40 1.20 2.40 152C153
6 T�240�150�240 2.40 1.50 2.40 153C152
7 T�240�240�240 2.40 2.40 2.40 151C152

Table 1. For simplicity, the left and right entrances have the same width. In this way,
we guarantee the symmetry of the two branch streams. More than 300 pedestrians
participated in the experiments, which makes the duration of the run long enough
to obtain stationary states. The average age and body height of the tested persons
was 25 ˙ 5:7 years and 1:76 ˙ 0:09m (range from 1:49 to 2:01m), respectively.
They mostly consisted of German students of both genders. The free velocity
v0 D 1:55˙ 0:18m/s was obtained by measuring 42 participants’ free movement.

At the beginning, the participants were held within waiting areas in the left
and right side. When the experiment starts, they pass through a 4m passage into
the corridor simultaneously and merge into the main stream at the vertical corner.
The passage was used as a buffer to minimize the effect of the entrance. In this
way, the pedestrian flow in the corridor was nearly homogeneous over its entire
width. When a pedestrian leaves the main corridor, he or she returned to the waiting
area for the next run.

The whole processes of the experiments were recorded by two synchronized
stereo cameras of type Bumblebee XB3 (manufactured by Point Grey). They were
mounted on the rack of the ceiling 7:84m above the floor with the viewing direction
perpendicular to the floor. The cameras have a resolution of 1;280 � 960 pixels
and a frame rate of 16 fps (corresponding to 0.0625 s per frame). To cover the
complete region, the left and the right part of the scenario were recorded by the
two cameras separately (see Fig. 2a). The overlapping field of view of the stereo
system is ˛ D 64ı at the average head distance of about 6m from the cameras. With
the above-mentioned height range, all pedestrians can be seen without occlusion at
any time.
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Fig. 2 Trajectories and snapshot from T-junction experiment. (a) Snapshot. (b) Pedestrian
trajectories

To make a highly precise analysis, accurate pedestrian trajectories were auto-
matically extracted from video recordings using the software PeTrack [12]. Lens
distortion and perspective view are taken into account in this program. Figure 2b
shows the pedestrian trajectories for one run of the experiments. From these tra-
jectories, pedestrian characteristics including flow, density, velocity and individual
distances at any time and position can be determined.

3 Experiment Analysis

In previous studies, different measurement methods were used to limit the com-
parability and fluctuation of the data. E.G. Helbing et al. proposed a Gaussian,
distance-dependent weight function [13] to measure the local density and local
velocity. Predtechenskii and Milinskii [14] used a dimensionless definition to
consider different body sizes and Fruin introduced the “Pedestrian Area Module”
[15]. This study focuses on the Voronoi method proposed in [16, 17], where
the density distribution can be assigned to each pedestrian. This method permits
examination on scales smaller than the pedestrians for its high spatial resolution.

3.1 Measurement Methodology

At a given time t , the Voronoi diagram can be generated from the positions of
each pedestrian. It contains a set of Voronoi cells for each pedestrian i . The cell
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area, Ai , can be thought as the personal space belonging to each pedestrian i . Then,
the density and velocity distribution over space can be defined as


xy D 1=Ai and vxy D vi .t/ if .x; y/ 2 Ai (1)

where vi .t/ is the instantaneous velocity of each person (see [17]). The Voronoi
density and velocity for the measurement area Am is defined as

h
iv.x; y; t/ D
’

xydxdy

Am
; (2)

hviv.x; y; t/ D
’
vxydxdy

Am
: (3)

The specific flow

Js.x; y; t/ D h
iv.x; y; t/ � hviv.x; y; t/ (4)

can also be calculated using the Voronoi density and velocity.

3.2 Results and Analysis

To analyze the spatial dependence of density, velocity and specific flow precisely,
we use the Voronoi method to measure these quantities in areas smaller than the
size of pedestrians. We calculate the Voronoi density, velocity and specific flow over
small regions (10 � 10 cm) each frame. Then the spatiotemporal profiles of density
(
.x; y/), velocity (v.x; y/) and specific flow (Js.x; y/) can be obtained over the
stationary state separately for each run as follows:


.x; y/ D
R t2
t1

h
iv.x; y; t/dt
t2 � t1

; (5)

v.x; y/ D
R t2
t1

hviv.x; y; t/dt
t2 � t1

; (6)

Js.x; y/ D 
.x; y/ � v.x; y/: (7)

Figure 3 shows the profiles for two runs of the experiments under the situations
of low density (T -240-050-240) and high density (T -240-240-240), respectively.
These profiles provide new insights into the spatiotemporal dynamics of the
motion and the sensitivity of the quantities to other potential factors. The density
distribution in T-junction is not homogeneous both for low and high density



246 J. Zhang et al.

Fig. 3 The profiles of density, velocity and specific flow in T-junction obtained from Voronoi
method. The resolution of the profiles is 10 � 10 cm. (a) Density profile. (b) Velocity profile. (c)
Specific flow profile

situations. For the former, the higher density region locates at the main stream after
merging. Whereas for the latter, the higher density region appears near the junction
and the lowest density region locates at a small triangle area, where the left and
right branches begin to merge. For both of the two situations, the densities in the
branches are not uniform and are higher over the inner side, especially near the
corners. In other words, pedestrians prefer to move along the shorter and smoother
path. Moreover the density profile shows obvious boundary effects at high density
situation. The spatiotemporal variation of the velocity is different. At low density
situation, the velocity profile is nearly homogeneous all over the T-junction except
the places near corner. Pedestrians move with free velocity and slow down round the
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Fig. 4 Fundamental diagram of pedestrian flow at different measurement areas in T-junction

corner. While for high density condition, the velocity distribution is not uniform any
more. The velocities of main stream is obviously higher than that in the branches.
Boundary effect does not occur and the velocities after merging increase along the
movement direction persistently. By comparison of the specific flow profiles at the
two different situations, the highest flow regions are both observed at the center of
the main stream after the merging. The difference is that the region extends further
into the area where the two branches start to merge for the high density case, but
for the other case it doesn’t. This indicates that the merging process in front of the
exit corridor leads to a flow restriction. Causes for the restriction of the flow must
be located outside the region of highest flow.

These profiles demonstrate that density and velocity measurements are sensitive
to the size and location of the measurement area. For the comparison of measure-
ments (e.g. for model validation or calibration), it is necessary to specify precisely
the size and position of the measurement area.

In Fig. 4, we compare the fundamental diagrams obtained from all T-junction
experiments. The data assigned with ‘T-left’ and ‘T-right’ are measured in the areas
before the streams merge, while the data assigned with ‘T front’ are measured in the
region where the streams have already merged. The locations of these measurement
areas can be seen in Table 2. For ease of comparison, we choose these measurement
areas with the same size (4:8m�2). One finds that the fundamental diagrams of
the two branches match well. However, for densities 
 > 0:5m�2 the velocities
in the ‘right’ and ‘left’ part of the T-junction (T-left and T-right) are significantly
lower than the velocities measured after the merging of the streams (T-front). This
discrepancy becomes more distinct in the relation between density and specific
flow. In the main stream (T-front), the specific flow increases with the density 
 till
2:5m�2. While in the branches, the specific flow nearly remains constant for density
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Table 2 The location
of measurement area
in T-junction

Measurement area Range (m)

T-left x 2 Œ�4:5;�2:5	; y 2 Œ�2:4; 0	
T-right x 2 Œ1:0; 3:0	; y 2 Œ�2:4; 0	
T-front x 2 Œ�2:4; 0	; y 2 Œ1:0; 3:0	


 between 1:5 and 3:5m�2. Thus, there seems no unique fundamental diagram
which describes the relation between velocity and density for the complete system.

For this difference, we can only offer assumptions regarding the causes. One is
based on behavior of pedestrians. Congestion occurs at the end of the branches,
where the region of maximum density appears. Pedestrians stand in a jam in front
of the merging and could not perceive where the congestion disperse or whether the
jam lasts after the merging. In such situation, it is questionable whether an urge or
a push will lead to a benefit. Thus an optimal usage of the available space becomes
unimportant. Otherwise, the situation totally changes if the location of dissolution
becomes apparent. Then a certain urge or an optimal usage of the available space
makes sense and could lead to a benefit. They will move in a relatively active way.
That’s maybe the reason why the velocities after merging are higher than that in
front of merging at the same density. Whether this explanation is plausible could be
answered by a comparison of these data with experimental data at a corner without
the merging. This comparison is in preparation.
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Geodesics and Shortest Paths Approach
in Pedestrian Motions

B. Nkonga, Michel Rascle, F. Decoupigny, and G. Maignant

Abstract We revisit existing ideas on the eikonal equation and combine them with
a discrete Lagrangian description. Some preliminary numerical tests are reported.

1 Introduction

The first two Authors are from Applied Mathematics (M.R.) or Computational Fluid
Mechanics (B.N.), whereas F.D. and G.M. are from Geography.

We present and revisit here in some detail the modeling of pedestrian flows based
on the shortest path and geodesics approach, i.e. on variants of the Hamilton-Jacobi
(HJ) equation, more precisely on the eikonal equation. For general mathematical
references, among a huge literature, see e.g. [3, 10]. In the context of pedestrian
flows [1], and many subsequent papers, e.g. [2, 14].

Our approach here was motivated for the last two Authors by previous works of
Decoupigny on various problems, including discrete models of optimal paths for
visitors of French national parks [12] and for Rascle by previous works on mesh
generation [4], apparently far away from, but in fact closely related to this subject.

In fact, besides its historical origin on light or particle propagation, this fairly
general view has been intensely used in the last decades on a huge variety of fields,
e.g. by Osher and Sethian [9], Sethian [5], and many others, e.g. in the group of
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Markowich at Cambridge, not forgetting a lot of clever works, e.g. [7], on the
numerical approximation of the viscosity solution, see e.g. [10].

This approach is thus not new in the Pedestrian experts community, see again [1],
many people know it and its limitations, in particular its numerical cost. Of course,
there are so many aspects in pedestrian traffic analysis that it would be naive to
pretend cover all of them with this single method. Nevertheless, its beauty and the
relevant global information its contains make it quite elegant and appealing.

By the way, it is perhaps worth to emphasize that, here like in (car) traffic flow,
there is no physics or continuum mechanics involved, no conservation of momentum
etc. The aim is simply to propose one optimization principle which might govern the
choice of pedestrian trajectories in a crowded area.

It would be also quite interesting to compare it carefully with competing meth-
ods, in particular with the social forces (or acceleration) methods, see e.g. [8, 13].

In the next section, we briefly recall a few basic facts on this highly classical
method, up to the notion of distance d.x; C / from a curve C to any point x.
Typically, say in a big hall or a plaza, each population k of pedestrians travels
towards a door or a destination C WD Dk with a velocity determined by the gradient
of dk.x/ WD d.x;Dk/.

In Sect. 3, we present the full corresponding macroscopic model and give some
details on its (expensive) approximation, before studying in Sect. 4 a (much cheaper)
semi-discrete description, in which each population k of pedestrians is defined in a
discrete way, but each corresponding distance dk in a macroscopic way. We then
show a few preliminary results and conclude.

2 Basic Facts on Hamilton-Jacobi Equation: Distance

We first briefly summarize the main ingredients.

2.1 Variational Problem: Distance

For any curve fX.t/ D .X1.t/; X2.t//; 0 � t � T g from point y D .y1; y2/ (origin)
to point z D .z1; z2/ (destination), define:

L1ŒX	 WD
Z T

0

L.X.t/; PX.t// dt; (1)

where the cost L.x; v/ D L.X.t/; PX.t// � 0 is often called the Lagrangian. We set

dL.y; z/ D inffL1ŒX	 ; X.0/ D y ; X.T / D zg: (2)
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The infimum, taken on all curves from y D .y1; y2/ to z D .z1; z2/, depends on y; z
and (non locally) on the choice of L. Since L � 0, dL is a distance, provided that
L.x; v/ � L.x;�v/, which implies: dL.y; z/ D dL.z; y/ for all pairs .y; z/.

2.2 Euler-Lagrange Equation

If a trajectory is optimal, then a Taylor expansion and an integration by parts shows
that necessarily this celebrated relation:

d

dt
. @vL.X; PX// D @xL.X; PX/; (3)

must be satisfied. Here v D .v1; v2/ D PX.:/; x D X.:/ and the gradients @xL; @vL
are 2D vectors.

In particular, straight lines are optimal if we choose L.x; v/ � L.v/ WD 1
2
jvj2,

and broken lines are optimal if L.x; v/ D 1
2c.x/

jvj2, with c.x/ > 0 is piecewise-
constant, say c.x/ D c˙ for ˙ x2 > 0: Descartes refraction law.

2.3 Legendre Transform in v: Link with Hamilton-Jacobi
Equation

For any position x and any 2D vector p, the Hamiltonian is defined as the Legendre
transform of L.x; v/:

H.x; p/ WD sup
v

fp:v �L.x; v/g: (4)

For convex Lagrangian with respect to v, extremality conditions give

H.x; p/ D p:v � L.x; v/; for v D @pH.x; p/ (5)

In particular in the cases considered below, the Lagrangian is v-convex and of the
following form

L.x; v/ D 1

2c.x/
jvj2; (6)

where c.x/ is a given strictly positive function. In this case, we obtain

H.x; p/ WD sup
v

fp:v � 1

2c.x/
jvj2 � c.x/

2
jpj2g C c.x/

2
jpj2 D c.x/

2
jpj2; (7)
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and (extremality relations), for any x, the supremum in v is reached for

v D c.x/p: (8)

Link with Euler-Lagrange: Hamiltonian System

Using these extremality relations leads classically to the characterization of optimal
trajectories by the celebrated Hamiltonian characteristic system:

PX D dX

dt
D @pH.X; p/ D v; (9)

Pp D dp

dt
D �@xH.X; p/ D @xL.X; v/; (10)

which itself leads, in a highly nontrivial way, to the corresponding eikonal or more
generally Hamilton-Jacobi (HJ) equation.

Hamilton-Jacobi Equation

Finally, written here in the time-dependent version:

@t˚ CH.x; @x˚.x; t// D 0; (11)

or in its stationary version

H.x; @x'.x// D f .x/; (12)

with in either case suitable initial and/or boundary conditions, this famous equation
characterizes the optimal trajectories and therefore the solution of variational
problems formulated as in Eq. (2), with the same cost L and Hamiltonian H

defined in (4).

2.4 Application: Distance from a Given Curve .C /

In view of its sense for propagation, we should perhaps call it: distance from (C)
to x. Anyway, this distance, according to a cost function L, is defined as:

d.C; x/ WD dL.C; x/ WD inf
y2.C / fdL.y; x/g : (13)
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In particular, we choose the cost function L given by (6) and H in (7), with
f .x/ � 1

2
. In the next sections two choices are considered:

Choice 1 : c.x/ D ˇ.
.x//, Choice 2 : c.x/ � 1.

The function ˇ.
/ will vanish at high local densities when 
.x/ D 
1, i.e. in
congested regions. We will use ˇ.
.x// D 1:0 � 
.x/



1

. It turns out that '.x/ WD
d.C; x/ satisfies (12), and finally satisfies:

H.x; @x'.x// WD c.x/

2
j@x'.x/j2 D f .x/; with '.x/ � 0 on .C /: (14)

Indeed, using the extremality relations (8), with choice 1 and again f � 1=2,
we see that on each optimal trajectory, parameterized by some artificial time, say
x D X.t/:

v D PX.t/ D c.x/@x'.x/ and jvj D p
c.x/: (15)

Therefore, as expected, the smaller c.x/, the smaller the speed. For numerous
applications, see again the Osher-Sethian literature.

Moreover, ˚.x; t/ WD '.x/ � t
2

is a solution of the evolution equation (11). Of
course, similar relations would arise if we used another variant of eikonal equation:

p
c.x/ j@x'.x/j D 1: (16)

Finally, we note that, see e.g. [3], even with smooth data, the solutions of (11) or
(12) are not uniquely defined: shocks can arise, at points x which are equidistant
from at least two points of curve .C /. Then the theory of viscosity solutions,
[10], provides a uniqueness criterion by selecting the first arrival “time”, i.e. the
trajectory coming from the nearest point on .C /, and this criterion is built in efficient
numerical schemes.

For instance, in some figures in Sect. 3 below, where we plot the distance dk.x/
from exit door k at any point x in a plaza, these shocks appear on the graph as
“passes” near a “peak” separating two different paths from the door to x.

Two Applications

As we already said, most of the material here is classical. We have been motivated
by two different previous works of ours:

• One concerns mesh generation or refinement, with the same ideas as here, e.g.
refine a mesh by moving at constant Riemannian speed on the graph of a previous
approximation of the solution. We refer to [4] for many illustration of the results.

• The other one concerns the optimal location of parking lots in a national park
in order to restrict the number of paths. The idea (Decoupigny) is to identify a



256 B. Nkonga et al.

Pedestrian movment
simulations

Path and impacts of the
pedestrian movments

Cellular automates and graph theory
Localization of pedestrian impacts in natural environment

National Park of Mercantour : 
Vallées des Merveilles

Area : PACA

Fig. 1 Pedestrian paths in the Mercantour French National Park

cost on each path, depending on the slope and of the interest of each site, find
the geodesics, compare with existing paths, make recommendations. For related
ideas, see [12]. A joint work in this direction is in progress (Fig. 1).

3 Pedestrian Flow: Eulerian Description

We are going to apply the above-mentioned notion of distance depending on
the density. We refer again to the literature quoted in the Introduction and so
many references therein, in particular we revisit here with minor variations the
approach of [1].

3.1 Principle

Consider, see Fig. 2 below, a plaza or a big hall with several doorsDk; k D 1 : : : K ,
all being possibly both entrance and exit doors. At each time t and point x, let

k.x; t/; k D 1 : : :K be the local density of pedestrians moving towards door Dk .
When time is discrete, set 
nk.x/ WD 
k.x; tn/ and let 
n.x/ WD P

k 

n
k be the

local total density. Finally, let dnk .x;Dk/ be the distance to door Dk , defined as
in Sect. 2 by:

H.x; @xd
n
k / WD ˇ.
n.x//

2
j@xdnk j2 D 1

2
in the plaza; (17)

dnk .x/ � 0 on doorDk; (18)
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Fig. 2 Level curves of distance (left) from the exit door, computed for c.x/ D c1.x/, estimation
of optimal paths (right) as sum of distances and local optimal trajectory direction for the exit

where the associated Lagrangian depends on the (local) total density:

Lnk.x; v/ D 1

2c.x/
jvj2; with c.x/ WD cnk .x/ D ˇ.
n.x//; (19)

and f .:/ is a given non-increasing function of 
, vanishing for large densities.
With the background of Sect. 2 in mind, we now postulate that at each discrete

time tn, each population k responds to the gradient of the distance dnk .x;Dk/ by
moving towards doorDk with a velocity given by Eq. (20) below.

Compare with extremality conditions (8) and note the difference of signs: here,
the distance dnk is a nonlocal information which travels from door Dk , whereas the
k-pedestrians travel towards this door. Consistently with this observation, we note
that for each transport equation (21) to the unknown density 
k , see below, the other
entrance doors Dj ; j ¤ k only play a role in boundary data, as (given) entering
fluxes into the plaza.

3.2 The Algorithm

Step 1: Assuming 
 WD 
n is known at time tn, compute each distance dk WD dnk
(we drop the index n), by solving the above problem (17).

Step 2: Using the extremality condition, the corresponding velocity field vk is
then (note again the – sign):

vk D � 1

2 ˇ.
.x//
@xdk (20)

Step 3: For each k, refresh 
k from tn to tnC1 by approximating the solution at
time tnC1 to the Initial Value Problem (IVP):

@t
k C r:.
k vk/ D 0 in ˝ � .tn; tnC1/; (21)


k.x; tn/ D 
nk.x/ in ˝; (22)
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with the classical entering boundary conditions: the flux 
 v at each point x of
the boundary @˝ is imposed whenever vnk �� < 0, �.x/ being the exterior normal
vector at point x. Practically, the flux 
k � vk is only entering in the plaza, call it
˝ through the other doors Dj ; j ¤ k.

Step 4: Knowing the partial densities 
nC1k at time tnC1, refresh the total density

nC1. Go to step 1.

4 Pedestrian Flow: Eulerian-Lagrangian Description

4.1 Principle

Consider each discrete population k, going to doorDk , assume that their individual
velocities are given from a continuous velocity field.

As above, at each time t , e.g. t D tn, we assume that vk.x/ WD vk.x; t/ D
�c.x; t/@xdk.x;Dk/, where dk.x;Dk/ D 'k is the solution to (17), and again

c.x/ WD c.x; t/ D ˇ.
.x; t// (23)

is a function of a total continuous approximation of the total discrete density 
 DP
k 
k at time t , as in steps 1 and 2 of our above fully Eulerian algorithm.
Now, for each individual j in population k, the resulting semi-discrete problem

at time t is, for each population k:

PXj .t/ D vj .t/ with vj .t/ D �c.Xj .t/; t/ @xdk.Xj .t/;Dk/: (24)

where c.Xj .t/; t/ '
Z

˝

X
k

X
`2k

ı`.x/K.x �Xj .t//dx with ı`.x/ a Dirac function

centered at the position of the particle ` and K./ is a smoothing kernel.

4.2 Comments

We obviously approximate this ODE system, say by the explicit Euler scheme. At
each time step, the function c.:/ is defined by (23), and we have to decide either
to refresh the density (either at each time step, or more rarely, e.g. at each time of
visualization), or even to keep the (obsolete) initial density.

When refreshing the density, the obvious problem is passing from the discrete
positions to a continuous density. A simple choice is to count the number of particles
in each numerical cell.
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A crucial issue in designing pedestrian models is their ability of predicting
and describing the appearance and subsequent evacuation of high concentration
populations, where panic can be lethal. Of course, we do not claim to solve this
challenging problem with such a simple model. Nevertheless, we see in Figures
below that dense regions of space become repulsive, in a way which depends on
the stiffness of function ˇ in Eq. (20). This is related with a constrained model with
a maximal 
max has been introduced and intensely studied several years ago by
Maury, Venel and (on a more theoretical viewpoint) Santambrogio et al., see e.g.
[11]. An obvious idea is to approximate this limit model with the above model
studied here, and using in (20) a function ˇ stiff near the maximal density 
max. In
the semi-discrete approach, that requires a careful calibration in the link between
discrete and continuous densities, which requires more work.

5 Numerical Tests

We present here a few preliminary tests and visualizations, in which we try to
combine and/or compare some of these approaches.

Test 1: We consider a curve-shaped hall, with an (Nord-Est) entrance door and
a (Sud-West) exit door. We consider that at a given time there is a dense region
corresponding to c.x/ D c1.x/ D 1 � 0:99 exp.�.x � x0/

2/. Figure 2 shows on
the left the level curves of the distance to the exit: see the shock (the “pass”) in
the NE corner and note that the trajectories, not shown here, are orthogonal to
these level curves. On the right, we plot the sum of the two distances to (SW)
and to (NE), computed on an unstructured mesh, via a numerical solver of the
evolution HJ equation [6]. Even without any computation of the trajectories, the
optimal paths from NE to SW or conversely (the purple areas) at a given time
look pretty obvious, whereas running the full algorithm of Sect. 3, much more
expensive, provides the velocity field, see Fig. 2, right.

Test 2: Here, a corridor or a platform with an exit door (right), with given
incoming flux on the left door that is non zero for 0 < t < 120, The geometry
and positions of doors are taken from [7]. In Fig. 3 we plot the density at two
different times. A high density front is formed near the obstacle and, by the
distance update, is transversally (anisotropic) diffused. The local behavior around
the obstacle is clearly different to results in [7] where high densities are avoided
by adding an isotropic diffusion in the velocity (Fig. 4).

Test 3: Using the semi-discrete approach of Sect. 4 we have made a couple of
comparisons between:

Choice 1: Use the above eikonal equation with a variable coefficient c.x/ D
ˇ.
.x//, in order to prevent the density from becoming too large. Here, we
have only tested it with a smooth ˇ.
/ D 1:0 � 




1

and a given 
1.
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Fig. 3 Plots of the density at t < 120 (left) and t > 120 (right), using the full scheme of Sect. 3
with ˇ.
/ D 1:0� 




1

and 

1

D 10

Fig. 4 Choice 1 (left) vs. choice 2 (right). Snapshots at computational midtime. For comparison,
the speeds are normalized in both algorithms

Choice 2: cf. Maury, Venel (and Santambrogio et al. on more theoretical side),
eikonal equation with a constant c.x/ and a constraint on the maximal (total)
density with corresponding Lagrange multipliers and a numerical solution
based on Uzawa algorithm. Very nice mathematically and numerically, but
expensive. Its “incompressible” feature in congested regions is perhaps a good
cartoon for lane formation.

6 Final Comments and Conclusion

As we said, we have revisited existing ideas on the eikonal equation, combined them
with a discrete Lagrangian description, and made some preliminary numerical tests
on some of these ideas. Clearly, by far the most tractable method is the semi-discrete
algorithm used in Sect. 4.

We could also see, on numerical movies that we cannot show here, that this
method can nicely describe counterintuitive motions, like moving away from
the target in order to avoid crowded areas, which is a neat advantage on fully
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discrete methods. Going further requires a more refined calibration, with an ad hoc
function ˇ, in order to see how far one can go in this direction. We also mention
again the importance of this notion of geodesics in geography and more generally
in any field related to space organization.
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Modeling the Desired Direction in a Force-Based
Model for Pedestrian Dynamics

Mohcine Chraibi, Martina Freialdenhoven, Andreas Schadschneider,
and Armin Seyfried

Abstract We introduce an enhanced model based on the generalized centrifugal
force model. Furthermore, the desired direction of pedestrians is investigated. A new
approach leaning on the well-known concept of static and dynamic floor-fields in
cellular automata is presented. Numerical results of the model are presented and
compared with empirical data.

Force-based models try to describe the dynamics of pedestrians as reaction to
forces acting on each single pedestrian. Basically two kinds of forces can be
distinguished:

• Driving forces designed to drive pedestrians to a desired direction with a desired
speed.

• Repulsive forces which are responsible for preserving the volume exclusion of
pedestrians.

Since the introduction of force-based models [1] many works were dedicated
to investigations of the repulsive forces and finding new and better forms [2–6].
These efforts for improving the form of the repulsive force is understandable, since
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the interactions between pedestrians dominate the dynamics, especially at high
densities. Surprisingly, not much work has been done on the influence of the specific
form of the driving force which is expected to dominate the behavior at low or
intermediate densities.

The standard form of the driving force is

�!
Fi

drv D mi

�!
v0i � �!vi
�

; (1)

with a relaxation time � and a desired velocity
�!
v0i . Although this expression is

simple, it is not clear how to choose the desired direction

�!
e0i D

�!
v0i

k �!
v0i k

(2)

in a given situation and only very few works were concerned with modeling the
desired direction (2). In [7] an Ansatz with directing lines was introduced to steer
pedestrians around 90ı and 180ı corners. Gloor et al. [8] used a path-oriented
approach to model the desired direction of agents on given hiking paths.

In [9] Moussaïd et al. have formulated the determination of the desired direction
in form of a minimization problem.

It should be mentioned that the directing problem we discuss here, i.e. the
determination of the desired direction for each pedestrian, is conceptually different
from the classical routing problem. In [10] an algorithm for generating automatically
a navigation graph in complex buildings in combination with directing lines at
corners was proposed. Another algorithm for way finding in buildings was proposed
in [11]. Recently a further development of the notion of the “quickest path” using
a non-iterative method to estimate the desired direction in the social force model
(SFM) was introduced [12]. The main concern in this class of problems is how
to define and connect intermediate targets, in order to facilitate the evacuation of
pedestrians. By contrast, in the directing problem the existence of such intermediate
targets is in general assumed.

In this work we introduce enhancements of the generalized centrifugal force
model (GCFM) and investigate on their basis the modeling of the desired
direction (2). For the sake of demonstration we test our model in two different
geometries: a bottleneck and a corner.

1 The Model

In this section we give a brief overview of the GCFM and its definition. Furthermore
we introduce an effective modification of the pedestrian-wall interactions that
simplifies the definition of the repulsive force.
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1.1 Pedestrian-Pedestrian Repulsive Interactions

Introducing the vector connecting the positions of pedestrians i and j ,

�!
Rij D �!

Rj � �!
Ri ;

�!eij D
�!
Rij

k �!
Rij k

; (3)

the repulsive force in the GCFM reads

�!
Fij

rep D �mikij
.�vi

0 C vij/
2

dij

�!eij ; (4)

with mi D 1 the mass of i and the effective distance between pedestrian i and j ,

dij Dk �!
Rij k �ri .vi /� rj .vj / ; (5)

and the polar radius ri of pedestrian i .
The relative velocity vij is defined such that slower pedestrians are less affected

by the presence of faster pedestrians in front of them:

vij D 1

2
Œ.�!vi � �!vj / � �!eij C j.�!vi � �!vj / � �!eij j	

D
(
.�!vi � �!vj / � �!eij if .�!vi � �!vj / � �!eij > 0

0 otherwise.
(6)

The parameter

kij D 1

2

�!vi � �!eijC j �!vi � �!eij j
vi

D
(
.�!vi � �!eij/= k �!vi k if �!vi � �!eij > 0 & k �!vi k¤ 0

0 otherwise,
(7)

reduces the effective range of the repulsive force to the angle of vision. Through the
coefficient kij the strength of the repulsive force depends on the angle: it is maximal
when pedestrian j is in the direction of motion of pedestrian i and minimal when
the angle between j and i is bigger than 90ı.

1.2 Wall-Pedestrian Repulsive Interactions

In the GCFM the interactions between pedestrians and walls are modeled by a force
similar to the pedestrian-pedestrian repulsive force. A wall is represented by three
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w

diw

l

r

i

Fig. 1 Illustration of
distances used in the
definition of the
wall-pedestrian repulsive
force (8)

point masses acting on pedestrians within a certain range. From a computational
point of view this analogy exhibits an overhead since the repulsive force between a
pedestrian and a wall is calculated three times.

We now make use of the “distance of closest approach” as defined in [6] to
formulate the repulsive force between a pedestrian i and a wall w as

�!
Fiw

rep D �0 k �!
vi
0 k kiwbiw; (8)

with

biw D H

�
1 � diw

r C l

	
�
�
1 � diw

r C l

	
; (9)

where l is the distance of closest approach between an ellipse and a line, r is the
polar radius determined by the nearest point on the line to the center of the ellipse i

(Fig. 1). H./ is the Heaviside step function, kiw is defined in Eq. (7), k �!
vi
0 k is the

desired speed of i and �0 is a parameter to control the strength of the force.
The repulsive force (8) is a contact force that is different from zero if the effective

distance of the center of the ellipse to the segment line is non-positive. For the
simulations in this paper we set the strength of the repulsive forces as � D 0:2

and �0 D 5.

2 Influence of the Desired Direction

In this section we study the effects of the desired direction on the dynamics of a
system by measuring the outflow from a bottleneck with different widths. See Fig. 2
for the simulation set-up. Four different methods for setting the direction of the
desired velocity are introduced and discussed. Finally, simulation results will be
compared.

2.1 Strategy 1: Directing Towards the Middle of the Exit

The first strategy is probably the most obvious one. Herein, the desired direction
�!
e0i

for pedestrian i is permanently directed towards a reference point that exactly lies
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l

w

h

b

Fig. 2 Scenario set-up:
Pedestrians move from a
holding area (shaded region)
through the bottleneck
(l D 2:8m, h D 4:5m,
b D 4m and w variable)

e2
bmin

e1

Fig. 3 Strategy 1: All
pedestrians are directed
exactly towards the reference
points e1 and e2

on the middle of the exit. In some situations it happens that pedestrians cannot get to
the chosen reference point without colliding with walls. To avoid this and to make
sure that all pedestrians can “see” the middle of the exit the reference point e1 is
shifted by half the minimal shoulder length bmin D 0:2m (Fig. 3). Pedestrians that
pass to the right of the reference point e1 head towards e2.

2.2 Strategy 2: Enhanced Directing Towards the Middle
of the Exit

This is a modification of strategy 1. Pedestrian are still directed to the shifted
reference point e1. However, from a certain position pedestrians can see through the
bottleneck the second reference point e2. In this case e1 is ignored and the desired
direction is set to be parallel to the line ��!e1e2. Since, pedestrians that are inside the
bottleneck can always see e2 the desired direction is kept parallel to ��!e1e2.

Here again the reference points and the delimiting range of the bottleneck is
shifted in x- and y-direction by bmax (Fig. 4).

2.3 Strategy 3: Directing Towards the Nearest Point on the Exit

Another possibility to choose the desired direction
�!
e0i is to define a line l in front of

the exit and take at each time the nearest point from the pedestrian i to l (Fig. 5).
In comparison with strategy 2, pedestrians that are not in the range where the point
e2 is not visible choose one of the end points of the line l . In strategy 2 this would
be the middle of l .
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e1 e2

bmax

bmax

Fig. 4 Strategy 2: Depending on their position pedestrians adapt their direction. In the range where
the exit of the bottleneck is visible (marked by dashed lines) the direction is longitudinal. Outside
this area they are directed towards the middle of the bottleneck

bmax

bmax

Fig. 5 Strategy 3: Directing towards the nearest point on the exit. Molnár published in [13] a very
similar strategy. The only difference is the placement of the line, which is away from the corner
by bmax

e1

Fig. 6 Strategy 4: Guiding line segments in front of the bottleneck. For each corner a set of three
line segments is generated. The length of all directing lines is equal to 3.5 m

2.4 Strategy 4: Guiding Line Segments

Without loss of generality we introduce the main idea of strategy 4 with help of
the previous bottleneck. Unlike the previous strategies this strategy is applicable to
all geometries with corners even if the exit point is not visible. We recall that in
strategy 3 a line in front of the bottleneck was defined. The nearest point from each
pedestrian to this line was set to define the desired direction. As a generalization we
make use in strategy 4 of three different lines to “smoothen” merging in front of the
bottleneck (Fig. 6). The blue line set (down the dashed line segment) is considered
by pedestrians in the lower half and the red line set by pedestrians in the upper half
of the bottleneck. For a pedestrian i at position pi we define the angle

�i D arccos

 ��!pie1 � ��!
pi lij

k ��!pie1 k � k ��!
pi lij k

!
; (10)

with lij the nearest point of the line j to the pedestrian i .
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Fig. 7 Flow through a
bottleneck with different
widths. Simulation results
with different strategies for
the desired direction of
pedestrians in comparison
with empirical data from [14].
The experiments were
conducted with 180 persons

The next direction is then chosen as

�!
e0i D

��!
pi lij

k ��!
pi lij k

(11)

with j such that �j D minf�1; �2; �3g. As in strategy 3 the direction lines are shifted
in x- and y-direction by bmin.

2.5 Numerical Results

In the previous section we have proposed different methods (called strategies) for

choosing the desired direction
�!
e0i . To compare these strategies we have performed

simulations for a bottleneck using the same set of parameters for the GCFM. For
each strategy only the width of the bottleneck was varied from 1 to 2:4m.

On the basis of a quantitative analysis the importance of the choice of strategy
for the observed behavior can be estimated. In the following, for each strategy we
measure the flow through bottlenecks of varying width w. The flow is measured
directly at the entrance of the bottleneck according to

J D N�t � 1
�t

; (12)

with N�t D 60 pedestrians and �t the time necessary that all pedestrians pass the
measurement line.

In Fig. 7 the resulting flow for all four strategies is presented.
The flow for strategy 1 saturates independently of the width. This was expected

since pedestrians do not use the whole width of the bottleneck and keep indeed
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oriented to the middle. The picture changes for strategies 2–4, where the effective
width of the bottleneck is clearly larger. Strategy 2 shows a better usage of the
middle widths (�1.8 m). Here, the slight blocking near the corners, that emerges
from strategy 3 is particularly disadvantageous. Strategy 4 produces higher flows
for widths up to 2m. Up 2m the flow stagnates. The main observations are:

• The choice of the strategy for the desired direction influences considerably the
outcome of the simulation.

• An inconsiderate choice of strategy, in that case strategy 1, can lead to large
variations from experimental results.

• In contrast to strategy 1, strategies 2–4 show better usage of the bottleneck width
and lead to higher flow values.

3 An Application: Motion Around a Corner

Basically, force-based models are functional only in areas, where the exit is
constantly visible by all pedestrians. Obviously, this cannot always be guaranteed

which is a problem since a proper initialization of the desired direction
�!
e0i for each

pedestrian is not possible. In order to overcome this problem one has to introduce
“virtual” exits. This was showcased previously with strategy 4.

In this section, we introduce enhancements of strategy 4 and study their impact
on the movement time, i.e. the time until all pedestrians have left the simulation set
up. For simplicity we consider the movement of N D 100 pedestrians in a 90ı-
corner-like corridor.

The basis of our enhancements is the following observation: Given a guiding
line l , the desired direction of a pedestrian i is determined in dependence of its
position and the nearest point to l . This choice neglects two important factors:

1. The perception of space: Individuals try to minimize, when possible, their path
to the exit. In our example, pedestrians would take a point near the corner as goal
and not the nearest point on the guiding line. Depending on the starting position
of pedestrians, this can be far away from the corner and much longer than the
shortest path to the exit.

2. The dynamical and collective influence of pedestrians: In the presence of other
pedestrians and depending on the magnitude of the local density, the nature of
the “quickest path” [15] changes dynamically and differs in most cases from the
“shortest path” to the exit.

We therefore adopt a concept similar to ideas introduced in [16] which are well
established and widely used in cellular automata models [17, 18].

At a time step t a pedestrian i heads towards a point on the line which minimizes
the distance to the inner point of the corner l i .t/. This is a natural territorial effect
which leads to the shortest path to the exit. If all pedestrians try to take the shortest
path, large jams will be observed right at the inner point of the corner. If, however,
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−→ei,l

−→ei,j

i

j

l
l′

A

Fig. 8 How to get around the
corner? Pedestrian i that is
heading toward the first
guiding line, considers the
positions of its neighboring
pedestrians as well as its
initial position to decide
whether or not to head closer
to the edge of the corner

the collective influence of pedestrians dominates the choice of the desired direction,
pedestrians will choose their desired direction to be orthogonal to the guiding lines
and thus make better use of the whole directing line.

For this reason we include a dynamical factor that depends mainly on previous
decisions taken by other pedestrians:

pi .t/ D exp
��kd � occirel.t/

�
; (13)

where

occirel.t/ D ni

nimax
(14)

is a measure of the occupation of the line. ni is the cardinality of the set

Al D ˚
lj j j 2 Bl & lj < li

�

and nimax is the cardinality of the set

Bl D ˚
j 2 Œ1; N 	 j i ¤ j & �!ei;l � �!ei;j � 0

�
: (15)

Bl is the set of all relevant neighbors of i , that influences its desired direction by
means of a contribution to occirel.t/ (14). For the scenario depicted in Fig. 8 the set
Bl for i (red ellipse) contains only one pedestrian j (bold ellipse).

Large values of occirel.t/ imply small values of pi .t/. As a consequence
pedestrians prefer not to change their desired direction closer to the edge of the
corner.

Finally, the update rule of the distance l i .t/ is given by:

l i .t C�t/ D l i .t/ �
�
1 � pi .t/

�
: (16)
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Fig. 9 Movement of N D 100 pedestrians around a corner with different values of kd . The width
of the corridor is wD 3m. (a) kd D 0. (b) kd D 10

pi .t/ 2 Œ0; 1	 gives the rate of change from the initial “guess” of pedestrian i .
For pi .t/ D 0 the desired direction of i stays orthogonal to the guiding line, while
pi .t/ D 1 displays the case where i ’s desired direction is directed to the edge of
the corner A. In the next section we study the influence of the parameter kd on the
dynamics of pedestrians. For the second and third line we set kd D 0 and vary it
only for the first line.

4 Analysis of the Sensitivity Parameter

To understand the impact of the collective influence of pedestrians on the chosen
target point for each pedestrian i , we study the time evolution of the relative length
for different values of kd . The relative length is defined as

l irel.t/ D l i .t/

lmax
(17)

where lmax is the length of the guiding line.
Figure 9a shows the probability distribution of the relative length for kd D 0.

Pedestrians are mainly heading towards A and the full length of the directing line is
rarely used.

The situation changes considerably for kd D 10. Figure 9b shows that the
distribution of the length is more balanced which indicates that pedestrians make
better use of the directing lines.

To showcase the impact of collective influence of pedestrians on the desired
direction, we show in Fig. 10 the variation of the movement time in dependence
of kd .
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Fig. 10 Movement time for a simulation with N D 100 pedestrians around a corner for different
values of kd

Fig. 11 Screen shot of a simulation with 100 pedestrians, kd D 0 (top) and kd D 10 (bottom)

A qualitative comparison shown in Fig. 11 confirms the above-mentioned quan-
titative analysis.

For kd D 0 a jam forms immediately before the corner as indicated by the large
number of slowly moving pedestrians (red ellipses). This results from a strong
competition between the pedestrian to pass close to the edge A of the corner.
In contrast, for kd D 10 pedestrians move quicker since they make optimal use
of the guiding line.

5 Summary

We have developed a strategy to determine the desired direction
�!
e0i for each

pedestrian i . This method is rather general and can be used in each geometry
characterized by the existence of corners, e.g. bottlenecks (two corners), T-Junction
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(two corners). In analogy to CA models we introduced and tested a factor to model
the static and dynamic interactions of pedestrians with the geometry.

Our work was based on an enhanced version of the GCFM [6]. The enhancements
use a considerable simplification of the repulsive forces acting on pedestrians
from walls. Furthermore, we addressed an important issue in force-based models,
namely the choice of the desired direction of pedestrians. Several strategies were
implemented and compared with empirical data. This comparative investigation
showed that the outcome of a simulation depends strongly on the chosen direction
of the desired direction of pedestrians. Finally, we introduced a new mechanism to
direct pedestrians in 90ı-corners by means of directing lines. The main concept of
this strategy base on the well-known concept of dynamical floor-field. For further
works, the parameter kd that expresses the tendency of pedestrians to take the
shortest path (or not) should be varied individually as the geometrical and dynamical
conceptions of pedestrians differ.
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A Simple Model for Phase Separation
in Pedestrian Dynamics

Christian Eilhardt and Andreas Schadschneider

Abstract The occurrence of phase separation is a common feature observed in
vehicular traffic. Experiments have shown a similar behavior for pedestrians, though
the situation in pedestrian dynamics is more complicated. The two separate phases
in one-dimensional “single-file” pedestrian movement are a jammed high-density
phase and a phase of medium to high density with slowly moving pedestrians. Both
phases consist of interacting particles (pedestrians). To understand the emergence
of this kind of phase separation, we develop a simple cellular automaton model.
The transition probabilities of the modeled pedestrians in general depend on their
current velocities and on the occupancy of the next two cells in front of them.
For inhomogeneous initial conditions the simulated pedestrian trajectories clearly
feature two distinct phases analogous to the experiment. The lifetime of the decaying
jammed phase is consistent with experimental results.

1 Introduction

Pedestrian dynamics is becoming a more and more important field of research for
scientists of many different fields. This is understandable due to the multitude of
related applications. The main areas of interest are firstly evacuation scenarios that
include both forecasts of live evacuations [1] and planning of pedestrian facilities to
improve safety during evacuations and avoid crowd disasters. Secondly, knowledge
about the movement of pedestrian crowds can be applied to optimize the daily use of
pedestrian facilities in buildings that are frequented by large numbers of pedestrians
such as airports, railway stations, shopping centers etc.

In both cases an accurate understanding of the underlying principles of pedestrian
motion in necessary. In particular for evacuation simulations the high density regime
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can be very important. The effect we are interested in is a separation of pedestrian
traffic into two distinct phases which consist of standing pedestrians and slowly
moving pedestrians, respectively. This can generally be observed at high densities,
but has barely been studied systematically. To understand complex phenomena, one
typically has to understand the underlying basic mechanisms first. Therefore we here
only consider phase separation in one-dimensional movement without overtaking.

Typical pedestrian models such as the social force model [2] or the floor field
cellular automaton model [3] can successfully describe qualitative phenomena like
lane formation and are even used for quantitative predictions. However, they do not
feature phase separation.

2 Phase Separation in Vehicular Traffic

The occurrence of phase separation is a common and well-understood feature in
vehicular traffic [4]. There are two empirically observed, distinct phases: A jammed
phase with high density and a free-flow phase with low density where cars move
at their desired velocity. This can be reproduced in appropriate models such as
the VDR model [5]. By using a “slow-to-start” rule the outflow of the jam is
reduced compared to the maximal flow of the system. This leads to a region of
non-interacting cars and thus to the free-flow phase, see Fig. 1.

The existence of two distinct phases is connected to the existence of metastable
states in the fundamental diagram, see Fig. 2. For intermediate density values the
flow is not a unique function of the density: the free flow branch can spontaneously
break down into a congested state. This is called a capacity drop and leads to a
hysteresis loop [6].

3 Phase Separation in Pedestrian Traffic

The situation in pedestrian dynamics is more complicated for several reasons. The
most obvious one is the generally two-dimensional nature of pedestrian movement
in contrast to the one-dimensional movement in vehicular traffic. Furthermore,
collision avoidance is less of an issue for pedestrians – pedestrians bump into
each other regularly, cars do not. Finally, the movement of pedestrians is at least
potentially influenced by multiple other pedestrians whereas the interaction range
in vehicular traffic is very small.

Consequently, experiments [7] show a similar, but somewhat different behavior
for pedestrians compared to what is observed in vehicular traffic. Firstly, the pedes-
trian fundamental diagram does not show metastable states similar to the vehicular
fundamental diagram. However, the trajectories of the one-dimensional “single-file”
pedestrian movement feature two separate phases, namely a jammed high-density
phase and a phase of medium to high density with slowly moving pedestrians.
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Fig. 2 Schematic fundamental diagram of the VDR model

To analyze pedestrian phase separation, one therefore has to study microscopic
quantities (trajectories), it does not suffice to study the (macroscopic) fundamental
diagram. In contrast to vehicular traffic, the distance between pedestrians in the
moving phase is small, not allowing them to move with their desired velocity. Both
phases consist of interacting particles. The mechanism creating the phase separation
therefore differs from a “slow-to-start“ rule.

Figure 3 shows the experimental setup of an experiment performed by
Seyfried et al. [7] in 2006 with up to 70 pedestrians. The length of the experimental
setup was 26m including a 4m long measurement section in which the pedestrian
trajectories have been measured by automatically tracking the pedestrian heads.
The resulting trajectories for the very high global density of 2.7 pedestrians/m are
shown in Fig. 4 as a space-time plot. Note the separation into phases with slowly
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Fig. 3 Experimental
setup [7]

Fig. 4 Experimental
trajectories [7]

moving pedestrians with velocity v D 0:15m/s and phases in which the pedestrians
do not move. Small movements in the trajectories come from the head movement
of standing pedestrians.

The experimental data only extend over the small time-scale of 140 s and
small spatial scales of 26m of the whole experimental setup and only 4m of
the measurement section. This prevents judging the stability and locality of the
empirical phase separation. Firstly, it is unclear whether the phases remain separate
for longer timescales. Secondly, we do not know whether the observed jam in the
measurement section is the only jam in the experimental setup. The existence of
additional jams at the same time indicates that jams may be forming and decaying
dynamically.

4 Model Definition

We develop a simple rule-based cellular automaton model that aims at reproducing
the observed phase separation. This work tries to show that our model is in
principle capable to create phase separation that is in qualitative agreement with
the experimental data, i.e. two separate phases with slowly moving and not moving
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Fig. 5 Definition of the five transition probabilities used in the model

particles, respectively. The model is defined on a one-dimensional lattice containing
200 cells. As in the experiments we use periodic boundary conditions to connect
the last cell to the first cell. Each cell can either be occupied by one pedestrian
or empty. Densities are defined relative to the maximal density, 
 D Noccupied

Ntotal
. The

current velocity of a pedestrian is defined as the number of cells it moved in the last
timestep. In every timestep the pedestrians are updated in parallel according to the
following update rules which are also shown in Fig. 5.

Pedestrians that have a velocity unequal zero and at least two free cells in front
of them move to the cell directly in front of them with probability p1 and move two
cells forward with probability p2. Pedestrians with current velocity zero and two
free cells in front of them are allowed to move to the cell directly in front of them
and the cell two steps in front of them with probabilities p01 and p02, respectively.
Note that this requires both p1 C p2 � 1 and p01 C p02 � 1. Pedestrians with only
one free cell in front of them move one cell forward with probabilityp01, independent
of the movement of the pedestrian two cells in front of them.

The simulation results can be mapped to experimental results by identifying
every cell with an area of size 0:4 � 0:4m2. This is standard for cellular automata
models such as the floor field cellular automaton [8] and corresponds to a maximum
density of 6:25 pedestrians/m2 or a maximum line density of 2:5 pedestrians/m.
Note that this is a little lower than the density of 2:7 pedestrians/m used in the
experiment. Identifying each cell instead with a one-dimensional length of 0:3m
leads to a maximum density of 3:33 pedestrians/m. The experimental density
2:7 pedestrians/m then corresponds to the relative density 0.81. It may not be
reasonable to naively extend this to two dimensions because the resulting maximum
density of 11:1 pedestrians/m2 is very high. A timestep corresponds to about 0:35 s.
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With standard parameter values the free velocity of about 1.85 cells/timestep
(see Sect. 5.1) equates to

vfree D 1:85
cells

timestep
D 1:85 � 0:3m

0:35 s
	 1:6

m

s

in accordance with typical experimental values.

5 Results

5.1 Modeled Pedestrian Trajectories

Figure 6 shows pedestrian trajectories from a simulation of 140 pedestrians with
inhomogeneous initial conditions. This density corresponds to a relative density of
0.7. The resulting trajectories of the pedestrians clearly feature two distinct phases,
namely a completely jammed phase and a phase in which pedestrians are slowly
moving. This phase separation is very slowly decaying into a single congested high
density state with slowly moving pedestrians, see Sect. 5.2. However, the results are
in good agreement with the experimental data when observed over a corresponding
timescale.

The parameter values used here are

p1 D 0:05; p2 D 0:9; p01 D 0:01; p02 D 0:99; p01 D 0:99:

The resulting free velocity can be approximated by vfree D p1 C 2 � p2 D 1:85

because the configurations that require the use of p01; p02 and p01 are very unlikely
to occur for free moving pedestrians.

The velocity in the congested phase is about 0:7 cells/timestep and therefore
much smaller than the free-flow velocity. This qualitatively reproduces the experi-
mental results. Small changes of the parameters generally produce only small and
non-significant changes of the resulting trajectories.

Figure 7 shows two simulation runs with inhomogeneous initial conditions but
higher/lower densities. The pedestrian trajectories at density 0.85 show an increased
jam length compared to 0.7 density which is easily explained by the larger amount
of particles in the simulation. The velocity in the congested phase is roughly the
same at all three densities 0.55, 0.7 and 0.85. For relatively low densities such as
0.55 the initial jam decays within about 800 timesteps. This clearly shows the finite
lifetime of the phase separation. Note that the density 0.55 is much smaller than the
densities at which phase separation has been observed experimentally, even though
it still is a relatively high density!
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Fig. 6 Simulated pedestrian trajectories with inhomogeneous initial conditions and density 0.7.
The space-time plot clearly features two separated phases
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Fig. 7 Simulated pedestrian trajectories with inhomogeneous initial conditions and density
0.55 (left) and 0.85 (right)

Figure 8 shows the simulation results for homogeneous initial conditions and
densities 0:7 and 0:85, Fig. 9 shows trajectories for the same densities but random
initial conditions.

The trajectories of the simulation runs with homogeneous and random initial
conditions and with densities 0:7 and 0:85 are barely distinguishable after 1,000
timesteps. All four space-time plots show only local phase separation. In other
words: at any given time there is more than one jam in the simulation. These
jams are created and die dynamically. The jams are separated by congested areas
in which pedestrians can move slowly. There are however small differences in
size and frequency of the jams. With random initial conditions the simulation
develops less but larger jams. It is unclear whether this local phase separation is
in accordance with the empirical situation because of the small measurement area
in the experimental setup.
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Fig. 8 Simulated pedestrian trajectories with homogeneous initial conditions and density 0.7 (left)
and 0.85 (right)
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Fig. 9 Simulated pedestrian trajectories with random initial conditions and density 0.7 (left) and
0.85 (right)

5.2 Jam Stability

A jam is defined as a collection of multiple successive non-moving pedestrians, the
length of the largest jam in the system is called jam length. For inhomogeneous
initial conditions the largest jam typically is the initial jam, at least until the initial
jam has decayed such that another randomly created jam can be larger.

Figure 10 shows the jam length during a typical simulation run as a function
of the elapsed time for three different densities. For high to intermediate densities
such as 0.85 (top left) and 0.7 (top right) the jam length does not change much over
the course of the simulation. Even though the jam length is obviously decaying,
its lifetime is much longer then the duration of the experiment in which phase
separation has been observed. At the low density 0.55 the decay is more quickly:
The initial jam has decayed completely after about 800 timesteps.

Note that this is a low density only with respect to phenomena that occur at very
high densities such as phase separation. In most circumstances a density of 0:55
which corresponds to 1:83 pedestrians/meter would be regarded as a high density.
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Fig. 10 Jam length for simulations with densities 0.85 (top left), 0.7 (top right) and 0.55 (bottom)
and inhomogeneous initial conditions as a function of elapsed time

In a time frame of 140 s or about 470 timesteps corresponding to the experimental
data the simulation results are consistent with the experimental results in the sense
that despite the decay the model clearly features phase separation at every point in
time.

Simulations with inhomogeneous initial conditions show only one large but
decaying jam in the system. However the lifetime of the jam is larger than the
timescale of the experimental data. In simulations with random or homogeneous
initial conditions jams appear and disappear dynamically. In this case there can be
several jams in the system at the same time. This is however consistent with the
experimental data which only shows one jam at any given time due to the small
measurement section. To prove or disprove the existence of local phase separation
large scale experiments are needed.

6 Outlook

The understanding of pedestrian phase separation deepens the general understanding
of pedestrian dynamics and can therefore improve the design of airports, shopping
centers and other crowded areas as well as improve safety during evacuations.
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Phase separation in pedestrian traffic is different from phase separation in vehicular
traffic. The mechanism responsible for creating pedestrian phase separation is
yet unknown. The model presented here is capable of qualitatively reproducing
the experimental results. It features two distinct phases in which the pedestrians
(a) move with greatly reduced velocity or (b) do not move at all. The relatively
small time-scale as well as spatial scale of the actual measurement do not allow to
judge the stability and locality of the phase separation.

The next step is to quantitatively reproduce the experimental results. To do that,
the system size needs to be decreased. However, this increases finite size effects and
leads to a few other challenges as well. Phase separation occurs in the very high
density regime in which the total number of free cells in simulations of cellular
automata models becomes very small. The limited spatial resolution of standard
cellular automata models leads to a limited velocity resolution as well. Therefore
it is extremely difficult to distinguish between standing and very slow moving
pedestrians.

This could in principle be resolved by reducing the cell size to 0:15� 0:15m2 or
smaller and increasing the size of the particles to several cells as well as increasing
the velocity of the particles.
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HERMES: An Evacuation Assistant for Large
Sports Arenas Based on Microscopic
Simulations of Pedestrian Dynamics

Andreas Schadschneider, Christian Eilhardt, Stefan Nowak,
Armel Ulrich Kemloh Wagoum, and Armin Seyfried

Abstract The improvement of safety at mass events has become an important issue
not only due to several disasters involving large crowds. To support security services
in case of emergencies we have developed an evacuation assistant which allows
forecasting the emergency egress of large crowds in complex buildings. Such a
forecast requires pedestrian models which produce realistic crowd dynamics and,
at the same time, can be simulated faster than real-time. Here we give an overview
of the project and present first results.

1 Introduction

In recent years we have seen an increasing number of mass events with sometimes
more than 100,000 spectators. Unfortunately also the number of crowd disasters
with many injured persons or even fatalities has increased [1]. Multifunctional
building structures in combination with a wide range of large-scale public events
present new challenges for the quality of security concepts [2]. Rather general legal
regulations should ensure that in case of an emergency all spectators are able to leave
the danger zone quickly. This is achieved by specifying e.g. the minimal width and
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maximal length of escape routes. Sometimes computer simulations are performed
[3–9], but these are usually restricted to the planning stage.

In the event of an emergency, not all rescue routes might be available due to
fire or structural damage to the facility. For an optimal crowd management which
aims to prevent critical situations, e.g. due to dangerously high crowd densities and
bottlenecks, accurate and up-to-date information about the current status is needed.
In the project HERMES we have developed a new concept to increase safety in
large sports arenas. An evacuation assistant provides valuable information for the
security forces (e.g. police or firefighters) which supports them in their decision
[2, 10]. In addition, a forecast is made which shows the evolution of the evacuation
based on a microscopic computer simulation.

2 The Concept

The idea behind the evacuation assistent HERMES is to provide the security forces
with additional information about the current situation, e.g. the number of people in
the danger zone. It thus supports the decision makers to rate the actual danger, to
decide on a successful evacuation strategy and to optimally employ the security
staff. To test this concept the evacuation assistent has been implemented in the
ESPRIT arena in Düsseldorf (Germany). This multifunctional arena with a capacity
of 60,000 spectators will show how crowds of people at big events can be guided
also considering the current risk situation.

Various universities, industrial partners and users cooperate in this project. For
an overview we refer to [10,11]. HERMES consists of several components as shown
in the schematic diagram of its functional layout (Fig. 1). In a first step information
about the situation when an emergency occurs is gathered. The distribution of the
spectators in the facility is obtained by automated person counting at entrances and
doors using a video-based system. Information about the available escape routes
blocked due to smoke, locked doors or other dangers comes from the safety and
security management system of the facility.

This information is used as basis for a computer simulation of a microscopic
model of pedestrian dynamics. It will provide a forecast of the evacuation process by
predicting the movement of all people during the next 15 min and updates it at 1-min
intervals. This forecast is used by the security personnel to identify critical situations
(e.g. congestion areas, high densities) and decide about possible provisions for
their avoidence. Moreover a macroscopic network model will calculate the optimal
distribution of occupants on the available routes. A communication module provides
the information to the emergency teams on site.

The approach is very flexible and allows to take into account the actual situation
concerning the distribution of persons and availability of exits. In contrast, currently
emergency plans exists only for some selected scenarios. The computer simulation
uses microscopic models (floor field cellular automaton model [12], the TraffGo
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Fig. 1 Schematic diagram of the evacuation assistant

Fig. 2 The evacuation assistant showing the results of a simulation. The congestion areas are
displayed

cellular automaton [4] and the generalized centrifugal force model [13, 14]) which
provide rather detailed predictions about the likely development of an evacuation.

Different types of information are displayed, for instance real-time information
like the spatial distribution of the pedestrians, as well as the states of the different
doors and areas. The simulation results are shown using the Level of Service (LOS)
classification [15]. LOS is a measure used in traffic to determine the effectiveness
of elements of transportation infrastructure, for instance highways. The LOS of the
areas are displayed in three colors (red, yellow and green) where red stands for high
density and green for low density (Fig. 2).
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Fig. 3 Snapshot from an evacuation experiment in the arena

3 Empirical Studies

To increase the reliability of the forecast, large-scale experiments have been
performed in the laboratory and the arena. The results from these experiments have
been used to calibrate the models in order to make quantitative predictions.

3.1 Laboratory Experiments

Numerous laboratory experiments have been performed to study pedestrian streams
in a controlled environment. The focus has been on basic situations, e.g. the motion
in a corridor, the behavior at bottlenecks, the influence of counterflow etc. [16, 17].
The results for T-shaped corridor [18] are described elsewhere in these proceedings.

3.2 Arena Experiments

In addition to the laboratory experiments we have also performed experiments in
the arena itself. Figure 3 shows a snapshot of one of these experiments. Here it was
studied how the stands are emptied, e.g. to identify the areas of congestion. It was
found that the congestions occur near the seating area and on the stairs, not at the
exit itself.
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4 Microscopic Models

To obtain more reliable predictions, different modeling strategies are combined.
One approach is based on cellular automata models which allows to achieve an
good performance and obtain results quickly. The second approach is a spatially
continuous force-based model which gives a better spatial resolution. The advan-
tages and drawbacks of these two model classes are e.g. discussed in [19]. The
application of these models to security sensitive tasks within the Hermes project
requires their quantitative verification and calibration. Currently it is not known
how reliable forecasts based on simulations are. However large differences in the
predictions of commercially available simulations even for the simplest scenarios
have been found [20]. Partly this is a consequence of the insufficient and sometimes
even contradictory experimental data which makes testing and calibration difficult
[19, 21]. In the following we briefly describe the modeling approaches used in the
Hermes project.

4.1 Cellular Automata

Cellular automata (CA) models are characterized by discrete space, time and
state variables. The dynamics is usual based on simple rules which have a rather
intuitive justification. Space is discretized into small cells which can be occupied
by at most one pedestrian (exclusion principle). The cell size corresponds to the
space requirement of a person in a dense crowd. Assuming a maximal density
of 6 persons/m2 yields a cell size of 40 � 40 cm2. Time is also discrete and the
pedestrians move synchronously in each time step. The time step can naturally be
identified with the reaction time of a pedestrian. Thus one time step corresponds to
a few tenths of a second in real time.

In the CA approach pedestrians are represented by particles moving according to
stochastic rules. Usually the motion is restricted to neighbouring cells. The transi-
tion probabilities are determined by three factors: (1) the desired direction of motion
(e.g. given by origin and destination), (2) interactions with other pedestrians, and
(3) interactions with the infrastructure (walls, doors, etc.). In the simplest models,
the latter two factors are only taken into account through an exclusion principle, i.e.
occupied or wall cells are not accessible. More sophisticated approaches like the
floor field model try to model these interactions in more detail which leads to more
realistic results, especially for collective effects and self-organization phenomena
[21]. Figure 4 illustrates the definition of the transition probabilities pij for a particle
representing a pedestrian located at (0, 0) to one of the neighbour cells (including
the current position). Some model variants also allow diagonal steps.

One of the most popular models is the floor field cellular automaton (FFCA)
[12, 22–25]. The transition probabilities are determined by the three contributions
(1)–(3) mentioned above. The interactions with other pedestrians and with the
infrastructure are incorporated via two discrete floor fields D and S . These act
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Fig. 4 Definition of the transition probabilities pij for a particle

like virtual chemotaxis by enhancing transitions in the direction of stronger fields.
The static floor field S does not change in time and represents the environment
(surrounding infrastructure) and can be used to encode e.g. the shortest path to
the destination or exit. It decreases with increasing distance from the destination.
The dynamic floor field D represents a virtual trace left by moving pedestrians.
It reflects attractive interactions between pedestrians, e.g. the preference to follow
moving persons, e.g. to minimize interactions with oncoming persons. Similar to
the process of chemotaxis, this trace has its own dynamics (diffusion and decay).
Two parameters, ˛ and ı, control the broadening and dilution of the trace.

In each time step for each pedestrian the transition probabilities pij for a move to
a neighbour cell .i; j / (see Fig. 4) is determined:

pij D N exp.ksSij/ exp.kDDij/.1 � nij/�ij : (1)

The relative influence of the static and dynamic fields S and D is controlled by
sensitivity parameters kS and kD . The occupation number is nij D 0 for an empty
and nij D 1 for an occupied cell, but n00 D 0 for the cell currently occupied by the
considered particle. The obstacle number is �ij D 0 for forbidden cells, e.g. walls,
and �ij D 1 otherwise, and the factorN ensures the normalization

P
ij pij D 1 of

the probabilities. A more detailed description of the update rules can be found in
[12, 23].

The floor field model has been applied to various situations. It is not only able to
reproduce collective effects like lane formation [26] or oscillations at bottlenecks
[12, 24], but gives also realistic results for evacuation scenarios [12, 22, 27, 28].
The realism of the FFCA can further be improved by taking into account various
modifications. A more detailed discussion of these variants can be found in [29].

4.1.1 Generalized Centrifugal Force Model

The Generalized Centrifugal Force Model (GCFM) [13,30] is a spatially continuous
which describes the movement of pedestrians and their interactions in terms of fields
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or forces [31–33]. It is based on modifications of the Centrifugal Force Model
introduced in [34]. The acceleration of a pedestrian i is – analogy to Newtonian
dynamics – determined by the superposition of all forces acting on her/him:

mi
RRi D Fi D Fdrv

i C
X
j2Ni

Frep
ij C

X
w2Wi

Frep
iw : (2)

Here Fdrv
i is a driving force

Fdrv
i D mi

v0
i � vi
�

; (3)

with the desired velocity of pedestrian i , the current velocity and � a relaxation time.
It reflects the motion towards a desired destination. Frep

iw is a force imposed by walls
or other stationary obstacles. Pedestrians interact via a repulsive force

Frep
ij D �mikij

.��0i C �ij/
2

Rij � ri .�i /� rj .�j /
� Rij

Rij
(4)

where Rij D Ri � Rj is the vector connecting the positions of the pedestrians and

�ij D 1

2
Œ.�i � �j / � eij C j.�i � �j / � eijj	 and kij D 1

2

�i � eij C j�i � eijj
k�ik : (5)

�ij is the projection of the relative velocity of pedestrian i and j onto the direction
of the vector connecting their centers, see Fig. 5 (left). The coefficient kij reduces
the action-field of the repulsive force to 180ı in the direction of motion.

In the GCFM the pedestrians are represented by ellipses with velocity-dependent
semi-axes since faster pedestrians require more space in walking directory than
slower pedestrians. In addition, the lateral swaying of slower pedestrians is stronger
than that of faster pedestrians. In order to obtain a more realistic behavior, in the sim-
ulations a cut-off radius rc for the repulsive force is introduced (Fig. 5 (right)) which
also allows runtime optimization by means of neighbor list methods [35]. Further
details of the model are given in [13, 14] and elsewhere in these proceedings [30].

5 The Evacuation Assistant

5.1 Simulation Speed and Distribution of Evacuation Times

A very important aspect of the evacuation assistant is the time it takes to make a
forecast of the evacuation. To be helpful for the decision makers, results have to
be available quickly. Its speed is determined by the speed of the simulation kernels
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Fig. 5 Left: the repulsive force acting on the center of the ellipse representing pedestrian i . Right:
interpolation of the repulsive force between pedestrians i and j with respect to their distance
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Fig. 6 Distribution of evacuation times

on the one hand and the speed of the visualization of the resulting trajectories on
the other hand. The latter is mainly a question of software engineering and will be
neglected here.

The deterministic GCFM is the computationally more expensive model and uses
most of the computation power available for the microscopic simulations. Due to the
intrinsic stochasticity of its dynamics, results of the FFCA model vary when several
runs are performed. The question then is: How may runs have to be analyzed to get
meaningful results?

Figure 6 shows the distribution of evacuation times for a typical scenario with
10,000 pedestrians and for two other scenarios which refer to the uncertainty
of the pedestrian counting and use pedestrian numbers 5 % higher and lower,
respectively. Figure 6a, b use a different definition of the evacuation time: results
for the naive definition – evacuation time is the time it takes to evacuate 100 % of
the pedestrians – are shown in Fig. 6b. Sometimes slightly different definitions of
the evacuation time are more useful since the naive definition depends strongly on
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Fig. 7 Distribution of evacuation times

the last stages of the simulation when there are only a few pedestrians remaining in
the simulation who might have got “lost”.

A more reliable description of a typical evacuation can be gotten by defining
the evacuation time as the time it takes until 90 % of the pedestrians are evacuated
(Fig. 7). This is shown in Fig. 6a. For both definitions the variation of the evacuation
times over 10,000 simulation runs is clearly smaller than the uncertainty related to
the initial conditions. This suggests that it is sufficient to only do one simulation run
and still get a sufficiently accurate evacuation time – despite the stochastic nature
of the model. This is justified by the law of large numbers due to the large number
of simulated pedestrians: a typical evacuation consists of more then 107 random
decisions.

5.2 Routing

In addition to the uncertainty of the initial conditions there is another factor that
influences the outcome of the simulation: the route choice behavior of the pedes-
trians. The FFCA model uses a stochastic routing. Pedestrians can leave a room
only towards other rooms that are closer to an exit, they basically follow (virtual)
emergency exit signs. When there are several such exits, the pedestrians choose
different exits with different probabilities depending on the distances between the
pedestrian and the exits. This is done such that the closest door is the most likely
choice.

Routing in the GCFM is done on a navigation graph generated from the arena
geometry. The graph is computed at the beginning of each simulation, to consider
situations that have changed: a closed door for instance. Well established algorithms
like Floyd-Warschall are used to determine the default optimal paths. The default
paths are only optimal in the case there are no congestions. In that case the global
shortest and the quickest path to a given destination are the same. To optimize
the runtime, each node of the graph stores information such as the distances to
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all possible final destinations. Those destinations are pre-defined by the means
of transport to the arena: train station, parking 1, parking 2. Depending on the
affiliation of each pedestrian, he/she chooses either way. The graph is a directed
graph. No backward movement to the previous destination point is possible.

On top of this graph, a quickest path is implemented. The idea behind this is
presented in [36]. At a given point, usually when arrived in a new location, each
pedestrian observes the current situation, evaluates the travel times and compares
them with his/her actual default route. If the results of the evaluation are above
a certain threshold, the actual route is modified. The same process is started if a
pedestrian is stuck in a jam for an amount of time and can freed him/herself. This is
the case if the pedestrian is not in the middle of the jam, for instance.

5.3 Runtime Optimization

An optimization of the runtime of the GCFM model is required to achieve the goals
for the assistant, i.e to compute faster than real-time. The geometrical operations
bounded to the GCFM together with the route choice algorithm made it very time
consuming. The optimization is performed at three levels. The Message Passing
Interface (MPI) is used to run the code across different computing nodes. A static
domain decomposition approach has been adopted to share the work among the
nodes. On each node the code is run in a multi-threaded environment using OpenMP.
The threads used the linked-cells algorithm, which takes advantages of the short
range character of the repulsive forces in the GCFM. More about this complexity
and some preliminary results are found in [35]. A configuration for instance of 5 �
800 pedestrians distributed in the promenade gives a speedup of 131.44 over the
brute force serial program and 12.52 over the code optimised with the linked cells
and run with MPI C OpenMP [37].

6 Summary and Outlook

We have described an evacuation assistant (HERMES) for mass events. It uses
information about the distribution of persons in a sports arena which is collected
using video-based automated person counting at entrances and doors as a basis for
computer simulations of the evacuation process. These simulations are based on
two classes of pedestrian models, a cellular automaton (FFCA) and a continuous
force-based approach (GCFM) which are more than 10 times faster than real time.
The predictions of the simulations are than visualized using a graphical interface
and provide valuable information for the security forces to support them in their
decisions. HERMES was successfully tested between April and November in the
ESPRIT Arena in Düsseldorf.
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Pedestrians and Escalators: Usage Under
Normal Conditions

Christian Rogsch

Abstract For large multi-storey buildings, like shopping centers, the usage of
escalators is the most comfortable way to change different levels contrary to
the usage of elevators. Comparing escalators to elevators, escalators have some
advantages: They are open (not a closed box like an elevator), quick to use (just
enter, do not wait as in front of an elevator), groups with more than 12 pedestrians
can change the building levels as one group, and in case of a failure (e.g. stopping)
people can leave the escalator very quickly without extra help of a technical service
team. The paper show how people use an escalator in a shopping center during their
“shopping tour”.

1 Introduction

For large multi-storey buildings, like shopping centers, the usage of escalators is the
most comfortable way to change different levels contrary to the usage of elevators.
Comparing escalators to elevators, escalators have some advantages: They are open
(not a closed box like an elevator), quick to use (just enter, do not wait as in front of
an elevator), groups with more than 12 pedestrians can change the building levels
as one group, and in case of a failure (e.g. stopping) people can leave the escalator
very quickly without extra help of a technical service team.

Based on this few general advantages of escalators against elevators it is actually
unknown how pedestrians enter an escalator and how they leave it in the next upper
or lower level during normal conditions (no evacuation or fire condition), like during
normal opening hours of a shopping center. The paper will show how pedestrians

C. Rogsch (�)
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Fig. 1 New stairs at the
conference venue

• Enter an escalator, e.g. which line do they use (right, left, middle),
• How many of them use the handrail,
• Which foot enters the escalator first,
• Which foot leaves the escalator first, and
• Which “configuration” like pedestrians standing on an escalator.

To obtain reliable data a large group of pedestrians has been analyzed by using
video analyses. The videos show how they enter and leave an escalator during their
normal “shopping tour” in a shopping center. The data obtained from the videos
should help to simulate pedestrian movement and the usage of escalators during
normal conditions in a more realistic way.

2 Escalators Versus Stairs

Escalators can be called “the moving stairs”. They are easy to use because on
escalators the tread moves; contrary to escalators on stairs the pedestrian moves.
Even if escalators need electrical power to move pedestrians one level up or down,
they can be used as a “normal” stair if they have no power in a case of electrical
failure. In this case case they are a normal stair only with a different size of tread.
So, an escalator has a rise height with equal distance except at the beginning and the
end, but stairs can be very different even if they are new as you can see in Fig. 1.

3 Data Collection

The data presented in this paper was obtained by using a video analysis from
pedestrians at the Złote Tarasy Shopping Center in Warsaw, Poland. The paper is
a first analysis of ca. 500 pedestrians during a normal shopping time, e.g. no rush
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Fig. 2 Escalators at Złote Tarasy shopping center [1, 2]

Fig. 3 Line, which is chosen by pedestrians when they enter the escalator

hour or special events. Figure 2 shows how escalators are built in this shopping
center.

4 Results

In this section the first results of the video observation are shown.

4.1 Which Line?

If we look in direction of the escaltor most pedestrians use the right line (or side) if
they enter the escalator. Ca. 10 % of all pedestrians change the line, e.g. move from
left to right or the other way round. Figure 3 shows the results.
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Fig. 4 Handrail usage of
pedestrians

Fig. 5 Foot, which enters the
escalator first

4.2 Handrail Usage

Not much interesting for modeling, but more interesting for visualisation is the
question how many people use the handrail. The observation has shown that ca.
25 % of the observed pedestrians use no handrail, ca. 75 % use it. In this case it
doesn’t matter if pedestrians are on the right or left line, the observation has not
show that e.g. people on the left line use the handrail more often than on the left
line. The results are shown in Fig. 4.

4.3 Which Foot Enters First?

Like handrail usage is the question “which foot enters the escalator first?” more
interesting for visualisation than for modeling. During the observation it was not
possible to find a “favourite” foot which enters the escalator first. As noticed above,
the selected line has no influence of the “foot choice”. Results are shown in Fig. 5.
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Fig. 6 Foot, which leaves the
escalator first

4.4 Which Foot Leaves First?

When pedestrians enter an escalator they have to leave it also. So, the next question
is: “Do they prefer any foot if they leave an escalator?” Contrary to the results shown
in the case of entering an escalator, it seems that people prefer to leave the escalator
with the right foot. But based on ca. 500 pedestrians, the results can change if more
pedestrians are observed. Results are shown in Fig. 6.

4.5 Different “Configurations”

Pedestrians try to get as much space as possible (“personal or private space”) when
they enter an escalator. In the rush hour this is normally not possible, because many
pedestrians use escalators thus a high density is a normal situation. This situation is
also well known by all pedestrians and also accepted. But in the case of using an
escalator in a shopping center pedestrians try to get their private space every time,
even if they use an escalator. The observation has shown that pedestrians like to
stay side-by-side or one-after-another with one stair between them, they do not like
to stand directly one-after-another, because in this case their private space gets lost.
Figure 7 shows a graphical sketch how people like or dislike to stand on an escalator
if they have the chance to choose their position independently.

5 Conclusion

In this paper the first results are shown how escalators are used by pedestrians. In
detail, the author has shown that

• Pedestrian like to stay on the right side,
• Pedestrian like to have one treat of space between them if they stay on the same

side,
• Pedestrians like to use the handrail,
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Fig. 7 Different
“configurations” which
people like or dislike when
they stand on an escalator

• No significant foot is used by pedestrians to enter or to leave (maybe the right
foot) the escalator, and

• Only 10 % of pedestrians change the line after entering the escalator.

Based on the number of pedestrians which have been observered (ca. 500 pedes-
trians) it is well know that these values might be changed if more pedestrians
are observed. However, this investigation shows at least a basic observation about
pedestrians and how they use an escalator.
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Model of Sand Transport by Consecutive
Particle Collisions with Wind Interaction

Luc Oger, Alexandre Valance, and Madani Ammi

Abstract We study successive collisions of incident energetic beads with granular
packing in the context of Aeolian saltation transport. We investigate the collision
process for the case where the incident bead and those from the packing have
identical mechanical properties. We analyze the features of the consecutive collision
processes. We used a molecular dynamics method known as DEM (soft Discrete
Element Method) with an initial static packing of 20;000 2D particles. The packing
is created randomly in a box of dimension 250 � 60 disk diameters. The incident
disks are launched at a given velocity ranging between 25 and 100 (normalized byp
g:d ) and an angle of 15ı with random position on top of the flowing zone. Few

disks are launched to initiate the dilation of the upper surface. This situation due to
the previous collisions is responsible for a need of less input energy for maintaining
the flow by ejecting new disks from the static bed. This new behavior is obtained
by the presence of the wind which can accelerates the flowing disks during their
ballistic trajectories.

1 Introduction

The advance of the dunes in the desert is a threat to the life of the local people.
The dunes invade houses, agricultural land and perturb the circulation on the roads.
It is therefore very important to understand the mechanism of sand transport in
order to fight against desertification. Saltation, in which sand grains are propelled
by the wind along the surface in short hops, is the primary mode of blown sand
movement [1]. The saltating grains are very energetic and when impact a sand
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surface, they rebound and consequently eject other particles from the sand bed.
The ejected grains, called reptating grains, contribute to the augmentation of the
sand flux. Some of them can be promoted to the saltation motion.

The main outcomes of our numerical studies follow. Firstly, we make an
short overview of the previous experimental and numerical results concerning the
successive collision between an incident beads and a granular packing. Then, we
describe briefly our mechanical model based on the Discrete Element Method and
the special wind conditions used in this study. Finally, we present the main results
available from this study.

2 State of the Art

Some experimental models of collision between an incident bead and the granular
packing have been performed by different authors. They studied the effect of the
impact angle [2] and the incident speed [3, 4] on the collision process. The authors
have used steel beads (4 mm by Mitha et al. [2]), PVC beads (6 mm by Rioual
et al. [4]) and the sand grain (850�m by Werner [3]). The experimental results
showed that the mean restitution coefficient for the impacting bead (defined as
the ratio between the rebound speed and the incident speed) depends only on the
impact angle. The restitution coefficient decreases with increasing impact angle.
Concerning the ejection process, Mitha et al. [2] showed that the number of ejected
beads does not vary significantly when the impact angle increases from 17ı to 31ı
and that the average of vertical speed of ejection is of order of 3

p
g:d (where g

is the gravitational acceleration and d the bead diameter). However, the number of
ejected grains increases with increasing incident speed [4].

In addition to the experiments, some simulations of the collision process have
been performed [5–7]. The authors made simulation using a discrete element
method (DEM). The numerical simulations allowed to extract a law for the incident
and ejected beads behaviors. The numerical results confirm the experimental result,
in particular:

• The dependence of the mean normal restitution coefficient for impacting bead
with impact angle. This coefficient is inversely proportional to the sinus of the
impact angle,

• The mean number of ejected beads increases linearly with incident speed and
impact angle,

• The distribution of the velocities for the ejected beads can be fitted by an
exponential law.

These simulations were limited to a single shot but the DEM can be easily extended
for sequential or simultaneous shots of particles on partially immobile packings.
This is the goal of our present study. We study successive collisions of incident
energetic beads with granular packing in the context of Aeolian saltation transport
(i.e. with the presence of lateral wind).



Model of Sand Transport by Consecutive Particle Collisions with Wind Interaction 309

3 Description of the Numerical Simulation

The full description of the different steps of the numerical simulations to mimic
the collision process between an incident bead and a packing of identical beads
was already made by Oger et al. [7]. So we will briefly present here the two main
steps of the numerical simulations. Indeed, in order to save time of computation,
we have simplified the technique to create the static packings of disks prior to the
active part of the simulation; we perform two consecutive and complementary steps:
a geometric piling step then a dynamic one.This second step can be also separated
by an initiation one and a flowing one according how the flow is maintained.

3.1 DEM Model: Soft Model Approach

Our mechanical model is similar to the two-dimensional formulation of Savage [8].
The ith particle is characterized by its radius ri, the position of its center (xi ; yi ).
A “soft-particle” approach is used, where each particle can have multiple contacts
that can persist for extended durations. Both normal and tangential forces develop at
the contact between two particles. The normal and tangential contact forces increase
as the centers of the particles approach each other.

The normal force Fn at the contact is modeled as viscoelastic. It consists
of an elastic (a linear spring linked to Kn) contribution and viscous damping
(a linear dashpot bn). The force in the tangential direction is modeled also as a
viscoelastic one; a linear spring and a linear dashpot are used to generate a tangential
contact force. The tangential force is also limited to a maximum value which is
chosen according to a Coulomb friction law when slipping can occur according
to the intergrain coefficient of friction. For this mechanical model, the time step
calculation remains constant.

It is convenient to cast the governing equations in a non dimensional form
and perform the computations based upon these dimensionless equations [8]. It is
straightforward to revert back to physical variables if desired. Hence, all lengths
are nondimensionalized by D, the diameter of the largest sized particles used in the
computations. Time is nondimensionalized by dividing by

p
M=Kn, where M is

the mass of the largest particle and Kn the effective spring constant. Velocities are
nondimensionalized by dividing by D=

p
M=Kn. Thus we introduce the following

non dimensional time and spatial coordinates

.Qt ; Qx; Qy/ D .t

r
Kn

M
;
x

D
;
y

D
/: (1)

This dimensionless approach lets us model either large bead collisions such as
in Rioual et al. [4] experiments (6 mm) or sand grains .200�m/ [9–11]. For each
particle, the forces acting on it are calculated; then the particle is displaced according
to the resultant of all these forces. Local displacements of each particle are recorded.
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(3)

Fig. 1 Schematic representation of the disk packing (2). The lower part (3) is the damping zone.
The lateral wind profile is represented in the upper empty zone (1)

3.2 Initial and Running Conditions

In the first step, we are doing a geometrical piling of disks in which the particles
are just touching each other. In a mechanical point of view, this stage corresponds
to a dense packing of perfectly rigid, immobile grains. In order to generate the 2D
packings, we followed the Powell’s algorithm [12]. The total number of disks used
for the packing is between 20,000 and 30,000 (150–250 large by 60–100 height).
We have already assigned periodic boundary conditions for the lateral wall during
the piling and this periodic boundary condition will be maintained for the saltating
simulation.

For a mechanical point of view, we assign some physical parameters to each disk.
We choose those corresponding to classical sand grains. The disk diameter is taken
equal to 200�m and the density is 2;500 kg=m3. The coefficient of restitution and
the friction coefficient will be selected according to the desired studies (inside a
range of 0.75–0.95 and 0.2–0.4 respectively). The spring constant is chosen equal to
Kn D 109 N m�1 for normal force and for the tangentional one: Kt D 0:3Kn. The
normal dashpot coefficient bn is calculated according to the restitution coefficient
and the tangentional one is bt D 0:5 bn. The problem and its boundaries are defined
as shown in the Fig. 1:

• Perfectly lateral periodic conditions;
• The lower part of the packing ((3) in the figure) is defined as a dumping surface

in which the two components of the particle velocity are dumped by an amount



Model of Sand Transport by Consecutive Particle Collisions with Wind Interaction 311

proportional to the particle altitude: i.e. the particles are less and less mobile as
they are deeply located.

• In order to limit the possible flights of moving disks we have defined a horizontal
upper limit like a perfect mirror for the moving disks (same horizontal velocity
component and reverse vertical one after touching the mirror) (see Fig. 1).

After this first step, the shooting sequence is activated and the collision process
proceeds. At each time step of the process, position and velocity of the particles are
recorded. A bead becomes an ejecta if its center moves, from its initial coordinate,
more than one diameter in the vertical direction. Two different ignitions of the flow
process are studied: a full consecutive series of launched disks with wind inter-
action (case 1) or few initial launched disks coupled with lateral wind interaction
(case 2).

4 Results

There many adjustable parameters in this study that can be tuned such as the
angle, the velocity for each individual launched disk, the variable time between
two consecutive shots, and so on.: : : So, in order to start easily this study, we
have decided to keep constant the angle and the input velocity of each launched
disk during one run. Only the interval time between two consecutive shots will be
varied for either the full series of launched disks (case 1) and also for the the few
initial launched disks (case 2). The randomness of the simulation will be assured by
two variables: the random horizontal initial position of the shot (the vertical one is
defined at some altitude from the initial static bed) and a fluctuating time interval
around the mean value given as an input.

4.1 Case 1: Without External Wind Force

Firstly, to see the evolution of the flowing disks or by analogy the energy increase
for the flowing grains, we have observed the number of moving disks versus time
for different numbers of disks launched. The mean time between consecutive shots
varied from 2:5 10�5 up to 2:0 10�3 s which characterize, by analogy, the fluctuation
of the energy flux. We have seen that the amount of moving disks can increase
according to the energy flux increase. The generation of the number of moving
disks is less efficient when the input energy flux is large which can be easily
demonstrated by the logarithmic relation (dashed line in the figure) between this
slope and the interval time. In complementary, if we increase the energy flux by only
increasing the velocities of the launched disks we can also observe a higher slope
on Fig. 2.
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the energy increase during the time in which few energetic new disks are launched. The continuous
curve represents the energy kept by the system during the time run

4.2 Case 2: With External Wind Force

In the previous case, it was very easy to analyze the efficiency of the energy input
due to the flow of launched disks as no external forces were involved. But in the real
saltation, the wind is present and plays a crucial role in the acceleration of the grains.
In order to mimic this effect we have developed a second case which starts exactly as
the previous one (i.e.: initial dense packing then few launched disks which already
interact with the wind) but continues with only wind interaction. The Fig. 3 shows
the two different steps of this numerical conditions. The dashed line characterize the
energy increase during the time in which few energetic new disks are launched and
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zero

then the horizontal constant situation. The continuous curve represents the energy
kept by the system during the time run.

At the initial stage, the packing is homogeneously packed and dense which can
be seen by the perfect vertical relation between the packing fraction and the height
of the packing in Fig. 4 for t D 4ms. When some energy flux coming from the
launched disks and also from the saltating ones starts to punch the packing surface,
two effects appear: a dilation of the upper part of the packing and also a compaction
at the bottom of this upper flowing zone. This can be observed for the profile at time
t D 100ms

In order to analyze more precisely what is the behavior close to the transition
between the reptating grain areas and the saltating ones, we have looked at
the other well known parameters for granular flows such as the granular temperature
and the local pressure. The transition of the reptating threshold visible in the
displacement of the packing fraction profile can, of course, be observed also on
the granular temperature Fig. 5. We can easily seen that, close to the beginning of
the experiments, few grains have been put in displacement which implies that they
are more energetic Fig. 5 for t D 13ms. The granular temperature is in this case
very high on top of the upper surface. Then more and more grains are moving which
implies a kind of reorganization of the flowing zone.

After some time of the runs, the moving reptating and dilute grains area is larger
and the packing fraction is more ‘uniformly’ diluted from the dense close packing
up to the fluidized area (i.e. packing fraction from 0.8 up to 0.0).

The Fig. 6 shows also that during the initial process the packing has a compres-
sion wave due to the initial external shots which impact the surface. This creates
the appearance of a higher pressure close to the surface and also at the limit of
the dumping zone. After this initial reorganization period, the packing founds some
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kind of homogeneity behavior which can be observed by a high pressure profile just
behind the reptating zone (i.e.: inside all the dense moving zone).

The Fig. 7 presents another very interesting point of view: the horizontal velocity
profile for the grains is almost independent of the horizontal wind velocities. This
fact can only be explained by the presence of the other adjusting parameters of
the classical splash function: the number of saltating grains, higher velocity, higher
moving grains. This conclusion is in conformity with the previous results obtained
for the splash function when the shot velocity increases: the number of ejecta
increases but not the mean value of their velocities [13].
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5 Conclusion

Changing the different parameters of the input energy by selecting, for a fixed
angle and vertical position of the incident beads, given velocities and variable time
between launches gave us the ability to determine one of the crucial parameters
for the saltating splash function. We can observe that the energy kept by the bed
decreases with the global energy input. In the same time, we need less and less
input energy flux in order to keep the same amount of disks inside the flying zone.
When the wind is present to maintain the energy input we can observe the same
global behavior which can permit to keep the grain flux if enough energy is given to
the medium.
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“Faster Is Slower” Effect in Granular Flows

Paula A. Gago, Daniel R. Parisi, and Luis A. Pugnaloni

Abstract We investigate the faster is slower (FIS) effect for a granular flow system
which consist of a quasi two-dimensional hopper placed on a vibrating inclined
plane. Increasing the angle of the plane (�) is similar to increasing the driving
force in the social force model. We measured the distribution of the time intervals
between two successive particles (dt) and found that for narrow exits (3 particle
diameter) it displays a power-law tail with a negative exponent ˛, were j˛j < 2,
indicating that the mean dt is not defined. Hence, we proposed to use ˛ as a measure
of the ability of the system not to develop long-lasting blockages and in this sense,
the FIS effect was observed for the experimental granular system. This is the first
experimental evidence of the FIS effect in granular flows. Moreover, our results
suggest that a different approach might be necessary to quantify the evacuation time
for pedestrians since its mean may not be defined for highly competitive crowd
systems.

1 Introduction

The study of the dynamics of high density crowds is of fundamental importance in
pedestrian evacuation. The availability of validated models that describe this state
of high density would allow the design of safer pedestrian facilities, ensuring that
all people can egress in the case of an emergency.
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However, an experimental characterization of this type of systems is not
straightforward because, under competitive or emergency conditions, the high
pressure zones caused during the blockage of an exit may lead to choking and other
fatal injuries.

This is the main reason why computer simulations are the state of the art to study
this type of phenomena. However, given the lack of information about how real
systems behave in extreme conditions, computational and physical models are not
properly validated. One should be very careful when drawing conclusions for real
systems based on computational models.

A key problem in evacuation dynamics is the escape of highly competitive
pedestrians through a narrow door. Using the social force model (SFM), it was
predicted the faster is slower (FIS) effect [1]. FIS can be observed in a plot of mean
evacuation time vs. desired velocity. There exists an optimum pedestrian desired
velocity that yields the shortest mean evacuation time. This optimum is related to
the appearance of blocking clusters [2] of pedestrians that intermittently clog the
exit door mainly due to frictional contact forces [3].

Permanent full blockages have been observed in real catastrophes such as in the
Rhode Island fire (at the disco “The Station”) in USA, 2003. Such events are not a
proof of the existence of FIS. Each point on the FIS curve is an average of many
realizations. We do not know what is the occurrence probability of these blockages
under controlled initial conditions. Thus, the FIS curve has not been measured for
humans under laboratory conditions yet.

Lacking information of human evacuation, it is very helpful to study, experimen-
tally, similar systems. One possibility is to consider the evacuation of biological
agents (e.g., ants [4, 5] or mice [6]). The analogy with human crowds is based on
both kind of agents having biological sensors, communication mechanisms, alarm
behavior and being self-propelled.

Another system similar to the room evacuation that can be study is granular flow.
Implications on pedestrian evacuation drawn from granular experiments can already
be found in the literature [7]. In Ref. [7], the granular flow through an exit at the
bottom of a vertically shaken box is studied. It was found that variations in the
geometry of the box can increase the outflow. In particular the suitable placement
of a cylindrical obstacle above the exit allows the enhancement of the mean rate of
discharge up to 3.5 times the rate without obstacle.

In the case of granular flow, the analogy with pedestrian flow is based on the
contact forces. It was shown in [3] that the contact forces play a key role in the FIS
effect emerging in the simulation of competitive egress with the SFM. The contact
force in the SFM is directly related to the contact force of grains in a granular
system. The social force term of the SFM is not relevant to the existence of FIS [3].
Furthermore, it is natural to expect for a high density crowd, that social interactions
(i.e., the desire to stay away from other pedestrians) are not relevant. So, the absence
of remote interactions in granular systems is analogous to what happen in a packed
crowd under panic conditions.

We have carried out an experiment that consists of a quasi two-dimensional silo
and hopper placed on a vibrating inclined plane. Increasing the angle of the plane
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leads to an increase in the component of the force of gravity parallel to the incline.
This is similar to increasing the driving force in the SFM. Since blocking arches
are much more stable in granular flows than in self-propelled particle flows, it is
necessary to add an external perturbation to the system [7]. We achieve this by
applying an external vibration which is an aid to the rearrangement of grains that
promote breaking of blockages and, otherwise permanent, arches.

In the present work we will study the aforementioned granular system for two
exit widths of the hopper that correspond to the flowing and jammed regime. For
the jammed regime, it will be shown that the experimental system do exhibit the
FIS effect.

The rest of the paper is organized as follows. In Sect. 2 the experimental device
is described. In Sect. 3 the results of the experiment are presented via the analysis
of the times intervals, dt, between the output of two successive grains. Finally,
in Sect. 4, the conclusions are presented.

2 Experimental Set Up

The experiment consists in a two-dimensional silo and hopper on an inclined plane
(Fig. 1). The incline is made of a Plexiglas bottom sheet covered in a grounded
aluminum foil to reduce electrostatic charges. The entire incline is covered with a
second Plexiglas sheet supported by a frame slightly thicker than the plastic strips.
The silo and hopper are built at the center of the incline by means of plastic strips
3.0 mm thick and 4 mm wide glued to the Plexiglas cover. The whole system is
mounted on a pivot that allows the control of the angle, � , that the incline makes
with the horizontal. A secondary hopper allows the refilling of the silo by simply
inverting the inclination angle. Attached to the plane, from below, there is a speaker
that is used to vibrate the system. This vibration was a sinusoidal wave of 130 Hz
with a maximum acceleration of 0:23 g in the Oz direction, perpendicular to the plane.
In the Ox and Oy directions, parallel to the plane, there exists a small transfer of the
vibration whose maximum acceleration is of 0:09 g. The vibration was measured
by means of an accelerometer (ADXL321) attached to the lower Plexiglas sheet.
Although mechanical modes of the structure distort the sinusoidal input vibration,
the amplitude and overall shape proved to be relatively independent of our main
control parameter, i.e., the inclination angle � .

The granular material consists in 200 mono-disperse glass spheres (diameter d D
3:5mm). Two exit widths were investigated: W D 3d D 10:5 and W D 5d D
17:5mm. The silo itself is 4:5 cm wide and 8:5 cm long. The hopper at the bottom
has an inclination with respect to the silo wall of 105ı.

After filling the silo with the glass spheres at a given � while keeping the exit
closed, the vibration is started and the particles allowed to rearrange for a few
seconds before opening the exit.
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Fig. 1 Lateral and zenithal view of the experimental device: C is the incline, D is the door, M is
the microphone, A is the accelerometer, S is the speaker, G is the wave generator and E is the
rotation axis of the incline

Each discharge process was registered by a microphone placed below the exit
such that particles leaving the hopper knock it. From this data, the total discharge
time (T ) and the time intervals between the passage of two consecutive beads (dt)
can be obtained.

3 Results

3.1 Flowing Regime

In this regime, the hopper presents a smooth continuous discharge without
intermittencies. The exit has 5 particle diameters (W D 17:5 mm). In Fig. 2
we plot the total time of discharge as a function of the angle of the incline. Thirty
realization (NR D 30) were carried out for each of the four angles studied. It can be
seen that, in this regime, faster is faster: the increase of the driving force (i.e., the
inclination angle) induce a decrease of the evacuation time. The mean discharge
time in this regime is inverse to the flow-rate which in turn is proportional to

p
g

for vertical configurations [8]. In this inclined set up, the effective acceleration of
gravity is g sin.�/. Therefore, hT i / sin.�/�1=2 (see fit in Fig. 2.)

This regime is characterized by very short time delays (dt) between the passage of
two particles because blockages are not present. In Fig. 3 the probability distribution
function (PDF) of dt is shown. It can be seen that as the angle increases the
probability of having longer dt decreases. Time delays beyond 0:5 s have not been
observed.

In Fig. 4 we plot the probability of finding a delay dt > dt0, with dt0 an arbitrary
threshold. As we can see, for any threshold dt0 the probability of finding a large dt
falls as the inclination angle grows. This feature is hard to appreciate from Fig. 3,
and it is an indication that, in this regime, a larger “driving force” does not promote
long delays between the passage of consecutive grains.
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3.1.1 Intermittent Regime

This regime is characterized by the occurrence of very long lasting blockages. The
PDF of the interparticle delays dt show slowly decaying tails as can be seen in
Fig. 5a. This behavior has been observed in previous studies of discharge of vibrated
vertical silos [9, 10] and in the evacuation of mice [6].

The long time delays dominate the total discharge time. Looking in detail
at the long tails of the distributions, for dt longer than 0:5 s, it is possible to
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approximate these by a power law as shown in Fig. 5b. The exponent of the power
law increases with the angle � , indicating that longer dt are more probable for larger
angles, in contrast to what we have observed in the flowing regime (see Fig. 3).
Furthermore, the absolute values of the exponent are less than 2 for the present
experimental conditions, indicating that the mean dt of the distribution is not
defined. Distributions with absolute value of the power-law exponents below 2 have
been also reported in other granular discharges under low intensity vibrations [9].
This is a crucial observation if we consider that FIS has been intensively studied
in the past in terms of the mean evacuation time. If realistic conditions lead
to undefined mean evacuation times, FIS should be rethought from a different
perspective.

In Fig. 6, we look at the probability of having a delay dt between the passage of
two particles lasting more than a certain time dt0. Notice that in this regime longer
dt0 can be considered since long-lasting blockages appear. As it can be expected
from the tendency of the exponent of the power-law tails, longer time delays are
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more probable for grater angles. This is the opposite situation to that of the flowing
regime (see Fig. 4). Therefore, a FIS effect is observed in terms of the probability of
having long-lasting jams rather than in terms of mean evacuation times, which are
not defined.

4 Conclusions

We have studied a two-dimensional granular flow on a vibrated inclined plane for
two hopper exits (3 and 5 particle diameter). The angle of the incline was varied
in the range 7:5ı–22:5ı, which allows to mimic different degrees of hurry in a
pedestrian system. The two exit widths generate two different states in the system:
continuous flow and intermittent flow.

For the narrow exit (3 particles diameters) the distribution of dt (the delay
between the passage of two consecutive grains) shows a long tail which is the
main responsible for the total discharge time. This tail can be fitted by a power
law [9] with a negative exponent ˛, were j˛j < 2, indicating that the mean dt is
not defined. As a consequence, the mean discharge time depends on the number of
discharges averaged. This implies that a different approach is necessary to quantify
the evacuation dynamics for pedestrians since the mean evacuation time may not be
defined in such systems. Hence, we suggest a different observable to characterize
the experimental results in the intermittent regime.

The probability of finding a discharge with a delay (dt) between the passage
of two grains that lasts longer than a prescribed cutoff seems to be a suitable
observable. For the narrow exit (intermittent regime), this probability increases with
the angle of the inclined indicating that longer blockages are more probable when
grater forces are exerted by the particles over the exit. This is clear evidence of the
FIS effect in the intermittent regime. For the wider exit, this probability decreases
monotonically, indicating that faster is faster in the flowing regime.

Based on our results, it can be stated that, depending on the exit width, two
different states of the system can be found. In the one hand, in the intermittent
regime the discharge performance decreases when greater forces are exerted by
particles (when the angle of the incline increases). On the other hand, for a wider
exit (W D 5 d ), a continuous flow regime is found, where the efficiency of the
discharge improves for increasing forces exerted by the particles. Consequently an
optimum exit width should exist being the minimum width that allows a regime
where the total discharge time improves for greater driving forces. Notice that this
is related, but not identical to the problem of finding a critical exit width beyond
which jamming will never occur in non-vibrated silos [11, 12].

Although the existence of an optimum exit door suggested by our experiments on
granular flow should be taken with care when extrapolating to pedestrian dynamics,
the results are encouraging and attempts should be made to pursue similar analysis
regarding realistic experiments with biological agents.
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Modeling of Nanoparticles in a Gas Flow

J. Kaupužs, Sh. E. Guseynov, and J. Rimšāns

Abstract A mathematical model is developed to describe the motion of solid
particles of micro- and nano-size in a gas flow. The model is represented by certain
integro-differential equation with appropriate initial and boundary conditions. A
probabilistic interpretation of the model is provided and its solvability is studied.
We find that unique solution exists at certain sufficient condition. In this case, the
Fokker–Planck equation can be obtained from the integro–differential equation.

1 Introduction

In the present work, the behavior of solid particles of micro- and nanosize in a gas
flow is modeled. The motion of solid particles is considered in a coordinate system
which moves along with the gas flow. We describe this as a Brownian motion,
resulting from the influence of gas on the particles due to thermal fluctuations in the
gas pressure. In absence of a temperature gradient (rT ) the time-averaged value of
the Brownian fluctuations is zero. Otherwise, it is nonzero because of asymmetric
action of the gas flow on the nanoparticles, resulting in a thermophoretic force [1,2]
which shifts the mean position of a particle. The modeling of the thermophoretic
force is related to the problem of making traps for particles and their agglomerates
without any electro-magnetic or chemical actions on these particles. Here we treat
only the simplest case of rT D 0.
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The following assumptions are made:

• The influence of the gas on the micro- nanoparticles is negligible;
• The influence of the micro- nanoparticles on each other is negligibly small as

compared to the influence of gas on the particles;
• Micro-nanoparticles can move in the gas flow in different directions. At each time

step a particle moves by certain distance, not necessarily to the next position.

These assumptions are quite natural if, e.g., the concentration of solid particles
is sufficiently small, and if external forces are absent. This situation is typical in
many important applications dealing with dilute particle flows. Based on these
assumptions, first we build up a discrete one-dimensional model, and then we
obtain a continuous model as a initial-value boundary problem for certain integro-
differential equation. A probabilistic interpretation of the model is given and its
solvability is studied. Finally, a generalization to the two-dimensional case is
performed.

2 A Discrete One-Dimensional Model

We have build a discrete one-dimensional model based on the following
assumptions:

(A) At each time moment t D 0;�t; 2�t; 3�t; : : : each of the micro–nanoparticles
can have one of the coordinates 0;˙�x;˙2�x;˙3�x : : :.

(B) If any of the particles in the 1D volume has coordinate i �x (i D
0;˙1;˙2; : : :) at time moment n�t .n 2 f0 [ Ng/, then in the next time
moment .nC 1/�t .n 2 f0 [ Ng/ it can have any one of the coordinates j �x
(j D 0;˙1;˙2; : : :) with probability

pnIi;j .n 2 f0 [ Ng I i; j D 0;˙�x;˙2�x;˙3�x : : :/ (1)

(C) The transition probabilities correspond to the Markov process.
(D) The particle-gas system is considered as almost homogeneous and it is assumed

that the properties of the system do not depend on the direction of particle
motion.

In the limit case, where the number of particles U.m; n/ at any coordinatem�x
and time n�t tends to infinity, we have the following balance equation

U.m1; nC 1/� U.m1; n/ 	
X

m2D0;˙1;˙2;:::

m2¤m1

U.m2; n/ pnIm2;m1

� U.m1; n/
X

m2D0;˙1;˙2;:::

m2¤m1

pnIm1;m2 : (2)
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This relation is useful to derive an integro-differential equation in the continuum
limit considered further on.

3 Continuum Model

Considering the limit, where the number of particles U.m; n/ is large, we introduce
the particle mass density


.x; t/ D M

�x
U.m; n/ : (3)

HereM is the mass of a particle, which is assumed to be constant. In the continuum
limit �x ! 0, �t ! 0 we have

@
.x; t/

@t
D lim

�x!0 lim
�t!0

M

�x

U.m; nC 1/� U.m; n/

�t
: (4)

Dividing both sides of (2) by �t , we obtain after certain limit procedures a
continuous model as a initial-value boundary problem for the integro-differential
equation

@
.x; t/

@t
D
ClZ

�l
K.t Iy; x/ 
.y; t/dy � 
.x; t/

ClZ

�l
K.t I x; y/dy ; (5)

where

K.t I x; y/ D lim
�x!0

mi!˙1

lim
�t!0
n!˙1

p.n�t Im1�x;m2�x/

�x �t
(6)

(here i D 1; 2) is the kernel of the integro–differential equation. The used here limit
procedures are such that the coordinates xD lim

�x! 0
m1! ˙1

m1�x, yD lim
�x! 0

m2! ˙1

m2�x

and the time t D lim
�t!0
n!˙1

n�t tend to finite values.

Equation (5) has to be solved with appropriate initial and boundary condi-
tions, e.g.,


.x; t/ jtD0D 
0.x/ ; x 2 Œ�l;Cl	 (7)
�
˛1
.x; t/C ˇ1


0.x; t/
� jxD�lD 
1.t/ ; t 2 Œ0; T 	 (8)

�
˛2
.x; t/C ˇ2


0.x; t/
� j x D l D 
2.t/ ; t 2 Œ0; T 	 ; (9)

where 
0.x/ is the initial distribution which obeys the boundary conditions.
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The kernel of the integro–differential equation K.t I z1; z2/ is equal to the
probability density for moving a particle from z1 2 Œ�l;Cl	 to z2 2 Œ�l;Cl	
(z1 ¤ z2) at t 2 Œ0; T 	. More precisely, K.t I z1; z2/d z2dt is the probability that
a jump from a given point z1 to z 2 Œz2; z2 C d z	 occurs within a time interval dt .
Due to the assumed isotropy and homogeneity of the model, we haveK.t I z1; z2/ �
K.t I j z1 � z2 j/.

The density 
.x; t/ of micro-nanoparticles in gas flow can be interpreted as the
density of mathematical expectation of particle mass. If we consider a random walk
of a single particle, then 
.x; t/ is the probability density for finding this particle at
coordinate x at time t .

4 Solvability of the Model

We have investigated the solvability of the model and have found a sufficient
condition in the form of an inequality

12 .�x/2
lZ

0

K.t I z/z2d z �
lZ

0

K.t I z/z4d z ; 8x 2 Œ�l;Cl	; t 2 .0; T 	

(10)

for the existence and uniqueness of the solution, where �x is the average jump
interval. It implies a sufficiently fast convergence of a Taylor series expansion
around y D x in our integro–differential equation (5).

5 The Fokker–Planck Equation

If the stability condition (10) is satisfied, then the Fokker–Planck equation [3]

@
.x; t/

@t
D a2.t/

@2
.x; t/

@x2
(11)

is obtained by truncating the Taylor series, where

a2.t/ D
lZ

0

K.t I z/ z2d z > 0 (12)

is the sensitivity or the diffusion coefficient. It can depend on time t in general.
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6 The Two-Dimensional Case

Our model can be easily extended to the two-dimensional case, where we have

@
.x1; x2; t/

@t
D
Cl1Z

�l1
dy1

Cl2Z

�l2
K.t Iy1; y2I x1; x2/ 
.y1; y2; t/dy2

� 
.x1; x2; t/

Cl1Z

�l1
dy1

Cl2Z

�l2
K.t I x1; x2Iy1; y2/dy2 : (13)

Here 
.x1; x2; t/ is the two-dimensional particle mass density (or probability density
for finding a single randomly walking particle at certain position). The kernel
K.t I x1; x2Iy1; y2/ is the probability density for moving a particle from certain point
.x1; x2/ in the two-dimensional domain to vicinity of another point .y1; y2/.

7 Conclusions

A mathematical model is developed, describing the motion of micro-nanoparticles
in a gas flow by means of an integro–differential equation. Solvability of this model
has been studied, showing that it has a unique solution under certain conditions.
The Fokker–Planck equation can be obtained from the integro–differential equation
at this condition.
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Multiple Shear Banding in Granular Materials

Robabeh Moosavi, M. Reza Shaebani, Maniya Maleki, János Török,
and Dietrich E. Wolf

Abstract We present numerical and experimental evidences for multiple shear
band formation in sheared granular materials. A modified Couette cell with a
split bottom near the outer cylinder is made rough by gluing glass beads on all
boundaries. The cell is filled with the same beads and sheared by slowly rotating the
inner cylinder and the attached bottom disk. A wide shear band is mostly observed at
the free surface of the material. However, depending on the filling height and grain
size, simultaneous shear bands may form near the confining walls and in the middle
of the system. By minimizing the rate of energy dissipation, we numerically find
similar velocity profiles for intermediate filling heights and relatively large grain
sizes.

1 Introduction

As dense granular materials are sheared, they finally yield under stress and start
flowing. The resulting flow is not necessarily homogeneous like in normal fluids.
At low shear rates, grains form solid like regions separated by narrow regions
between them, called shear bands [1–3]. The rigid blocks move relative to each
other in such a way that the strain is localized in shear bands, i.e. along the narrow
interfaces between the unstrained parts. Understanding the mechanism of material
failure is of great importance in industry and geophysics, and hence shear band
formation is widely investigated experimentally [4–14] and numerically [15–18].
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The shear bands are dependent on size and shape of the grains [5, 8] and, most
of the time, are narrow (of the order of a few grain diameters) and localized near
the boundaries [1,7,13], which makes the theoretical description more difficult. For
example, in a Couette cell geometry one always observes that a narrow shear band
forms near the inner cylinder [4–6]. However, using a modified Couette geometry,
Fenistein and co-workers managed to generate wide shear zones in the bulk of the
material away from the confining cylinders [2, 8]. The experimental setup was a
Couette cell (two co-axial cylinders) modified by splitting the bottom into two rings
which were attached to the cylinders. The cell was filled with grains up to height
H and one of the cylinders together with its co-moving bottom ring were rotated.
In this way, they drove the system from the split bottom, which initiates a shear
band with cylindrical symmetry. The shear band is pinned to the split bottom and its
width W grows with height. The angular velocity profile at the surface follows an
error function characterized by the width and center position of the shear zone at the
surface. The center of shear zone shifts towards the inner cylinder with increasing
the filling height H independent of the particle properties. The width W , however,
depends on the shape and size of the grains. Using a theory based on the principle
of minimum dissipation, Unger et al. described the position of the shear band with
the assumption of negligible width of the shear band [15]. The model produced
results in excellent agreement with the experiments with no fitting parameter. Later,
a generalized version of this method proposed which was capable of reproducing
the width of the shear bands [18].

In the present work, we introduce a new geometry which initiates a wide
shear band in bulk and narrow ones near the confining walls simultaneously. The
effective friction coefficient is different in bulk and near the rough boundaries.
This difference, together with the possibility of choosing different grain size and
filling height, leads to different scenarios for shear band formation. We use the
least dissipation principle to describe the behavior and compare the results with
experimental data.

2 Shear Band Formation as a Variational Problem

According to the experimental findings (from Refs. [2, 8]), the width of shear band
W depends on the grain properties. One can make W arbitrarily small, by using
a suitable choice of the size and shape of the grains. This justifies the narrow
band approximation used in Ref. [15] to calculate the center position of the shear
band. Applying the idea of the principle of least dissipation, they required a time-
independent (steady) flow which leads to the minimum rate of energy dissipation
and fulfils the external constraint conditions. Assuming a narrow shear band, the
dissipation occurs throughout the interface between the two sliding rigid blocks
which leads to the following variational problem

Z
v p �eff dS D min; (1)
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Fig. 1 (left) Schematic view of our modified Couette cell. (right) Side view

where v, p, and dS are the relative velocity of the blocks, the pressure, and the
sliding surface at height h, respectively, and the dissipation is integrated over
the whole sliding surface. The effective coarse-grained friction coefficient �eff

can be assumed to remain constant in the bulk of the material. Then, assuming
hydrostatic pressure, Eq. (1) for the modified Couette geometry leads to

Z
r2 .H � h/ 
1C .dr=dh/2

�1=2
dh D min: (2)

Equation (2) provides a unique path for the shear band inside the bulk of the
material, which is in agreement with the center position obtained from experi-
ments [15].

In practice, the path of the shear band is not frozen due to the presence of disorder
and inhomogeneities. Because of the relative displacements in the shear band, the
spatial distribution of the inhomogeneities changes with time, which may change the
global minimum path and produce instantaneous shear bands. If a random potential
is replaced (in order to take into account the disordered nature of the system), then
an ensemble average over the instantaneous shear bands, obtained via the principle
of least dissipation, reproduces a wide shear band [18]. The width W obtained this
way matches remarkably with the experimental data.

3 Experimental Setup

Our experimental setup is basically a modified Couette geometry with a split bottom
near the outer cylinder (see Fig. 1). The gap between the bottom plate and the
outer cylinder is around 400�m. The space between the two cylinders is filled with
spherical glass beads up to a height H , and the inner cylinder rotates together with
the attached bottom plate. The diameter of the grains ranges from 1 to 3 mm, thus
no particle can escape from the split bottom. The side walls and bottom disk made
rough by gluing a layer of grains. The system is driven from the bottom by a motor.
The resulting flow at the free surface is monitored from above by a fast CCD camera
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dω
/d

r

ω

Fig. 2 (left) Angular velocity (!) profile as a function of the distance r�R1 from the inner
cylinder for different filling heights. R1 is the radius of the inner cylinder. (right) The derivative of
! with respect to r . The ratio between the effective friction coefficients in bulk and wall �bulk=�wall

is set to 1:0
w

w

Fig. 3 The same plots as in Fig. 2 but for �wall=�bulk D 0:7. The arrows show the center position
of the shear bands for intermediate filling heights

at a rate of 60 frames/s with pixel resolution of 100�m. The flow rapidly reaches to
a stationary state (of the order of few seconds) where the angular velocity profile is
symmetric with respect to the cylinder axis.

4 Numerical Results

We first apply the numerical method of Sect. 2 to the geometry of our experimental
setup. We use a random potential field and find the path which minimizes the rate of
energy dissipation and fulfils the constraints. As the local structure is changed along
the shear path, we change the randomness in the neighborhood of the shear band
and search for the optimal path anew. This process is repeated many times, and the
shear band is finally determined as the ensemble average over all realizations.
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Fig. 4 Numerical results for the phase diagram of the possible shear bands in the (�wall , �bulk )
space for different ratios between the filling height H and the width of the system L: H=LD
(a) 0:5, (b) 1:0, (c) 2:0, and (d) 3:0. The blue square, green cross, and red plus denote, respectively,
a shear band near the outer cylinder, a wide shear band in the middle, and a shear band near the
inner cylinder

We fix the ratio R1=R2 between the radius of the inner and outer cylinders and
vary the ratioH=L (aspect ratio,L D R2�R1), the lattice size (larger than the grain
diameter d ), and the ratio between the effective friction coefficient in the bulk and
near the rough walls �bulk=�wall . Most of the time, the numerical results produce an
angular velocity profile at the surface which can be well fitted by an error function,
i.e. a wide shear band exists in the bulk of the system (see Fig. 2). However, for
relatively large grains (d=L � 0:04) and in the intermediate filling heights we find
different types of velocity profile, which imply the existence of simultaneous shear
bands: relatively narrow shear bands near the confining walls, and a wide shear zone
in the middle (Fig. 3).
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w
w

Fig. 5 Experimental data for the angular velocity profile (top) and its derivative (bottom) as a
function of the distance from the inner cylinder for different shear rates

The phase behavior for different values of �bulk and �wall is shown in Fig. 4.
Since the walls are made rough with the same grains as those used in the bulk, one
expects that �wall < �bulk in our setup. Therefore, Fig. 4b reveals that the chance of
multiple shear band formation is remarkably larger for intermediate filling heights
(L <D H ).

5 Experimental Evidence

The experimental data show two different situations depending on the particle size.
For small grains, there is always a single shear band which starts at the split
bottom and reaches the surface. It is located near the outer cylinder for small
filling heights, but it becomes wider and shifts towards the inner cylinder with
increasing H , a behavior reported previously in the literature. Interestingly, for
larger grains, there can be more than one shear band on the surface in agreement
with numerical results. An example is shown in Fig. 5 belonging to 2 mm glass
beads andH=L� 1:2. Besides the wide middle shear band, a narrow one also forms
near the inner cylinder. The behavior is robust with respect to the choice of shear
velocity. By varying the grain size and filling height, we are currently looking for
cases where two shear bands form near the rough walls or all three types of shear
band coexist simultaneously.
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Anisotropic Elasticity in Sheared Packings
of Frictional Disks

M. Reza Shaebani, Jens Boberski, and Dietrich E. Wolf

Abstract We study the effect of unilaterality of the interparticle interactions on
the elastic response of granular materials. The anisotropy of the contact network is
related to the opening of contacts during quasi-static shear deformations. As a result,
local incremental constitutive relations describing the evolution of stress in terms of
shear and volumetric strains are proposed, and it is shown that the macroscopic
elastic behavior of anisotropic granular assemblies under biaxial deformations can
be described by three independent elastic moduli: bulk, shear, and anisotropy
modulus. We show that the bulk and shear moduli are independent of the imposed
shear deformation if scaled by the contact density, and the magnitude of the
anisotropy modulus is proportional to the ratio between shear and volumetric strain.
The theoretical predictions are qualitatively in agreement with MD simulation
results far from the jamming transition.

1 Introduction

Mechanical response of granular materials has been widely studied because of
scientific challenges and many industrial and geophysical applications [1,2]. A static
granular assembly does not behave like an ordinary elastic solid. The stress-strain
relation is nonlinear and depends on the loading path and fabric. The nonlinear
behavior originates from the nonlinearity of contact forces, disorder, and friction.
However, unilaterality of the contact forces is another source of the nonlinear elastic
response in granular media [3]. In the absence of attractive contact forces in dry
granular media, the contacts open, and hence no elastic restoring or frictional force
is transmitted. This renders the macroscopic elastic behavior nonlinear, even in the
case of linear restoring interparticle forces. This source of nonlinearity is studied
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in the present work. We investigate the fabric anisotropy and relate it to the shear
deformation. The elements of the stiffness tensor are expressed as functions of the
average packing properties and the probability distribution of contact orientations.
We derive analytical expressions for the elastic moduli and compare them with
molecular dynamics simulation results.

2 Linear Elastic Response

The relationship between the stress � and strain � tensors expresses the elastic
response of solids. The relation between the incremental strain and stress for small
deformations (by first order Taylor expansion of the strain increment) is given by

ı�ijD
X
k;l

Cijkl ı�kl ; (1)

where the fourth rank tensor C is the stiffness tensor. Due to symmetry consider-
ations for the stress and strain tensors, C usually has few independent elements.
Isotropic materials can be described by only two independent elements, represented
by the Lamé coefficients. We first recall how the elements of stiffness tensor are
related to the average packing properties and the probability distribution of contact
orientations [4, 5]. Using a harmonic force law with normal and tangential spring
constants kn and kt (which approximates the interaction for 2D disks for small
deformations [6, 7]) and starting from a weakly deformed state, the change in the
force exerted by particle B on particle A due to a small change of the branch vector
l c is

ıf c D kn.ıl
c � nc/nc C kt .ıl

c � tc/tc ; (2)

and the average stress increment within the volume V can be approximated by [8, 9]

ı�ijD
1

V

NcX
cD1

 
kn.
X
k

ılc
k
nc
k
/nc

i
Ckt .

X
k

ılc
k
t c
k
/t c
i

!
lc
j
: (3)

If one assumes affine displacements of the particle centers Eq. (3) can be simplified.
The affine part of the relative displacements reads

ılc
k

D
X
l

ı�
kl
lc
l
: (4)

Then, using the affine assumption, the stiffness tensor elements can be obtained as
[10, 11]

Cijkl D `
2

V

NcX
cD1

�
knn

c
i
nc
j
nc
k
nc
l

C kt t
c
i
nc
j
t c
k
nc
l

�
: (5)
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In the case of polydisperse packings, a correction factor has to be also taken into
account which only depends on the moments of the particle size distribution [12].
If the sum over the contacts located inside the volume V is replaced by an integral
over the contact orientation distribution P.˛/ [5], Eq. (5) becomes

CijklD
2

�
z�
Z �

��
�
knni nj nk nl C kt ti nj tknl

�
P.˛/ d˛ ; (6)

where z, �, and P.˛/ denote, respectively, the average coordination number, the
volume fraction of the packing, and the probability distribution of the contact
orientations. Therefore, the fabric properties (z, �, and P.˛/) determine the
elements of the stiffness tensor.

By choosing the principal axes of the strain tensor increment ı� as coordinate
system so that

ı� D 1

2

�
ı�vCı� 0

0 ı�v�ı�
	

with ı� � 0 ; (7)

where ı�v and ı� , denote the change in the volumetric strain and in the shear
deformation respectively, Eq. (1) can be written as

0
BB@

ı�11
ı�

22

ı�12
ı�21

1
CCAD

0
BB@

C1111 C1122
C
2211

C
2222

C1211 C1222
C2111 C2122

1
CCA
�
.ı�vCı�/=2
.ı�v�ı�/=2

	
: (8)

The torque balance requires that the average stress tensor remains symmetric, i.e.
ı�12Dı�21 , which leads to the following constraints

C1211DC2111 ; C1222DC2122 : (9)

3 Isotropic Packings

For isotropic assemblies of grains, we can assume a uniform distribution of contact
orientations i.e. P.˛/D 1

2�
. Using Eq. (6) one obtains the stress-strain relation in the

principal axes of incremental strain for an isotropic packing as

0
BB@

ı�11
ı�22
ı�12
ı�21

1
CCAD

0
BB@

C1111 C1122
C2211 C2222
0 0

0 0

1
CCA
�
.ı�vCı�/=2
.ı�v�ı�/=2

	
: (10)
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with C1111DC2222D z�
4�
.3knCkt /, C1122DC2211D z�

4�
.kn�kt /. Equation (10) shows that

ı�12Dı�21D0, so the principal axes of strain and stress coincide. One can write the
stress tensor increment in its principal axes as

ı� D
�
ıP C ı� 0

0 ıP � ı�
	
; (11)

where ıP and ı� are the incremental isotropic pressure and shear stress. The
stiffness tensor elements can be related to the two Lamé coefficients, � and �, as
�DC1122 and �C 2�DC1111 . Then, Eq. (10) is further reduced to

�
ıP C ı�

ıP � ı�

	
D
�
�C2� �

� �C2�
	�

.ı�v C ı�/=2

.ı�v � ı�/=2
	
: (12)

Therefore, one obtains ıP and ı� as

�
ıP

ı�

	
D
�
�C � 0

0 �

	�
ı�v
ı�

	
: (13)

It then follows from Eq. (13) that the bulk modulus E and the shear modulus G
are [11]

E D ıP

ı�v
D �C � D z�

2�
kn ;

G D ı�

ı�
D � D z�

4�
.kn C kt / : (14)

As expected for isotropic materials, the elastic response can be described via only
two independent parametersE and G that are determined by the spring coefficients
kn and kt , and the contact density of the structure.

4 Anisotropy Induced by Unilaterality

We investigate the effect of unilaterality on the elastic response by considering the
possibility of opening and closing of contacts, after a finite volumetric strain �v and
shear deformation � are imposed to the unstrained reference state with zero overlap.
Assuming the affine displacements of the particles, the distance between the centers
of neighboring particles changes due to the strain � as

�n.˛; �/D � `
X
i;j

�ijninjD � `
��v
2

C�

2
cos 2˛

�
: (15)
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�n depends on � and the direction of the branch vector, ˛. If the two particles
touched each other, i.e. n D 0 in the unstrained state, a positive�n means that the
deformation leads to an overlap, while a negative value indicates that the particles
are no longer in contact in the strained state. When there is a gap between the particle
surfaces in the unstrained configuration, an overlap can also form, if �n is larger
than the gap. We, therefore, extend the notion of an overlap to include small negative
values, n < 0, which tell the size of the gap. We introduce the probability density
Q.n; ˛; �/ that a particle pair has a branch vector at an angle ˛ with respect to the
principal axis of the strain tensor �, belonging to the eigenvalue �v C � , and that
the overlap respectively the negative gap has a value n. This probability density
depends on the strain �. For � D 0 it is assumed to be isotropic, i.e. independent of
˛, and it fulfills Q0.n/ D 0 for n > 0, as there are no overlaps in the unstrained
configuration, and Q0.n/ ¤ 0 for n � 0, as the unstrained configuration is
jammed. We assume that the probability distribution simply shifts by�n, Eq. (15),
under the influence of strain:

Q.n; ˛; �/ D Q0.n ��n.˛; �// (16)

The probability that a pair of neighbor particles is actually in contact is

N D
Z �

��
d˛

Z 1
0

dn Q.n; ˛; �/ (17)

The probability density that a contact has a certain angle ˛ with respect to the
principal axis of the strain, which belongs to the eigenvalue �v C � , is

P.˛; �/ D 1

N
Z 1
0

dn Q.n; ˛; �/: (18)

Applying the assumption (16), the integral is in first order of � given by

Z 1
0

dn Q.n; ˛; �/ 	 Q0.0/�n.˛; �/

D �Q0.0/`
��v
2

C �

2
cos 2˛

�
: (19)

Integrating this over ˛ gives the corresponding first order approximation of N :

N 	 �Q0.0/`�v�: (20)

Hence the properly normalized first order approximation of the probability density
of contact directions is

P.˛; �/ 	 1

2�

�
1C �

�v
cos 2˛

	
: (21)
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This approximation can at most be applied for
ˇ̌
ˇ ��v
ˇ̌
ˇ � 1, as otherwise the probability

density would not be positive semi definite. ˛ D 0 is the direction of the principal
axis belonging to the eigenvalue �v C � . For �v < 0 (compressive strain) and � � 0

(by definition) this is the direction in which the precompressed system expands
during biaxial deformation. Therefore contacts preferentially open in this direction

so that P.0; �/ 	 1
2�

�
1C �

�v

�
< 1

2�
. One finds that the elastic moduli of a granular

packing are approximately

E D z�

2�
kn; G D z�

4�
.kn C kt /; A D z�

4�
kn
�

�v
: (22)

Note that due to the presence of the nonzero element A, two independent experi-
mental tests are required to determine the elastic moduli of an anisotropic material,
for example:

(I) Incremental ı�v while ı�D0:

E D � ıP

ı�v

ˇ̌
ˇ̌
ı�D0

; A D � ı�

ı�v

ˇ̌
ˇ̌
ı�D0

: (23)

(II) Incremental ı� while ı�vD0:

G D � ı�

ı�

ˇ̌
ˇ̌
ı�vD0

; A D � ıP

ı�

ˇ̌
ˇ̌
ı�vD0

: (24)

This is in contrast to the isotropic case, where a single experiment with simultaneous
incremental ı�v and ı� is sufficient to measure both bulk and shear moduli. In
granular media, in contrast to an isotropic elastic material, a pure shear leads to
a pressure increase, ıP D �Aı� > 0 as A < 0.

5 Simulation Results

We carry out numerical simulations to verify the theoretical predictions of Sects. 3
and 4. We first generate 2D polydisperse packings of 3;000 rigid disks with
particle radii uniformly distributed between aminD0:95 and amaxD1:05 to avoid
crystallization. By means of contact dynamics simulations [13], the initial dilute
configurations of particles with fully periodic boundary conditions are compressed
to construct homogeneous packings. Each of the resulting packings then provides
an initial unstrained jammed configuration for MD simulations of soft particles. By
modeling the interparticle interactions with normal and tangential Hookian springs
(with kt=knD0:5), the system is subjected to compression and then shear with the
help of the LAMMPS molecular dynamics code [14, 15].
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Fig. 1 (a) Bulk, and (b) shear modulus in units of kn determined during an isotropic compression,
in which the volumetric strain �v is increased in small steps and � D 0. The moduli are calculated
from fabric (method 1, dashed lines), or from Eq. (23) (method 2, full circles)

In a quasi-static compression process, the volume of the unstrained packing is
gradually decreased by applying incremental volumetric strain steps and allowing
the system to relax between those steps. The process is stopped when the total
volumetric strain �v D �V=V reaches a given value (�v D �0:04 respectively
�v D �0:09). This precompressed packing is then sheared in a biaxial geometry,
while keeping the volume of the system constant. The shear deformation is imposed
via incremental steps, and the system is allowed to relax between the steps. Two
different methods are used to determine the elastic moduli: (1) Using Eq. (5) the
elastic constants can be computed from the fabric. This formula assumes affine
deformations and that the contact network remains unchanged for incremental
strains. (2) An incremental strain test is simulated by molecular dynamics and the
elastic moduli are determined from Eqs. (23) and (24). This method allows for a
change of the contact network and non-affine motions of the particles.

For pure compression, the values of moduli calculated from the fabric agree with
the theory, whereas the ones obtained by evaluating Eqs. (23) and (24) are about
20 % smaller (see Fig. 1). Moreover, as one approaches the unstrained configuration
(at the jamming transition), the elastic moduli obtained from evaluating incremental
strain tests soften, whereas the ones calculated from the fabric remain unchanged.
This shows that close to the jamming transition the assumption that the incremental
particle movements are affine fails, in agreement with the findings of [16]. Therefore
we concentrate on the regime ��v � 0:04 in the following. Remarkably, the ratio
of the two moduli, G=E is very close to the prediction of the simple theory,
G=E D .1 C kt =kn/=2 D 0:75. The contact density increases during the
compression process, while it decreases if a precompressed sample is sheared at
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fabric (method 1, open symbols), respectively from Eq. (23) (method 2, full symbols). The full line
represents z�, referring to the scale on the right
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Fig. 3 Ratio of negative anisotropy modulus and bulk modulus,�A=E , as function of the ratio
between shear strain and negative volumetric strain, ��=�v . Data are shown for two volumetric
strains, �v D �0:04 (circles) and �v D �0:09 (triangles). They were calculated from fabric
(method 1, open symbols), respectively from Eq. (23) (method 2, full symbols). The dashed line is
the theoretical result, Eq. (22)

fixed volume, provided � remains small enough. For large shear deformation, the
system presumably forms a shear band and begins to flow. Then the contact density
must become independent of � .

The bulk and shear moduli, divided by the contact density, do not change when a
precompressed state is sheared, in agreement with the theoretical result Eq. (22) (see
Fig. 2). The model predicts, however, that the anisotropy modulus is proportional to
�=�v (dashed line in Fig. 3). Indeed, this is confirmed in the simulation. The results
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for A=E determined from the fabric, as well as the ones from the incremental shear
tests for �v D �0:04 agree with each other within the error bars and can be fitted
by a linear dependence on �=�v. Only the shear test simulation data for �v D �0:09
deviate from this behavior for small shear, ��=�v < 0:7, although the evaluation
of the fabric perfectly agrees. Further simulations are needed to clarify the origin of
this peculiar behavior. The simulation data essentially confirm the linear dependence
of the anisotropy modulus on the ratio �=�v, however, the theory overestimates the
slope.
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Two-Variable Macroscopic Fundamental
Diagrams for Traffic Networks

Victor L. Knoop and Serge P. Hoogendoorn

Abstract Traditionally, traffic is studied at the level of individual vehicles
(microscopic), or the level of road sections (macroscopic). Recently, a higher level
of study has been introduced, the level of an area. In homogeneous traffic conditions,
there is a relationship between the number of vehicles in an area (accumulation) and
the average flow in that area (production). This paper studies this relationship under
inhomogeneity. Using simulation on a grid network it is shown that the performance
of a network is a smooth function of the average network density (accumulation) and
the spatial variation of the density. Hence, we introduce a two-variable macroscopic
fundamental diagram (TV-MFD) which also holds in a inhomogeneous transition
state, for instance in queue build up. The TV-MFD can be used for network control,
for instance at ramp metering installations or at a more aggregate level perimeter
control.

1 Introduction

To control traffic, its processes needs to be understood, or at least need to be
predictable. Nowadays, research projects aim at collecting detailed data of driving
processes, which reveals even more differences between drivers. These data will
need much aggregation to come to the understanding of general traffic patterns.

As opposed to the movement of collecting more detailed data, Geroliminis and
Daganzo [1] started a simplified description of traffic. The traffic state is only based
on the accumulation, being the number of vehicles in an area. Drawback of this
description is that it is only valid for homogeneously loaded networks, e.g. [2].

In this paper we analyse the onset of congestion in a simulated grid network. The
focus for the paper is the effect of the spatial variation of density on the network
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performance. The next section summarises the recent developments in describing
traffic with the macroscopic fundamental diagram. Section 3 then presents the setup
of the simulation study. The 2-dimensional macroscopic fundamental diagram,
performance as a function of accumulation and of spread of the accumulation,
is presented in Sect. 4. Finally, Sect. 5 presents the conclusions and the further
outlook.

2 Literature Overview of Macroscopic Fundamental
Diagrams

In the past 5 years the theory of a macroscopic fundamental diagram (MFD) has
been developed. Concepts were already proposed by Godfrey [3], but only when the
concept of perimeter control was reintroduced [4], more studies started.

The best-known studies are the ones by Daganzo [4] and Geroliminis and
Daganzo [1]. They show the relationship between the number of completed trips and
the production function which is defined as a weighted average of the flow on all
links. This means that the network production can be used as a good approximation
of the utility of the users for the network, i.e., it is related to the estimated travel time
of travelers. Furthermore, after some theoretical work, it was shown that MFDs work
in practice [1]. With pioneering work using data from the Yokohama metropolitan
area, an MFD was constructed with showed a crisp relationship between the network
production and the accumulation.

Also, theoretical insights have be gained over the past years. Daganzo and
Geroliminis [5] have shown that rather than to find the shape of the MFD in practice
or by simulation, one can theoretically predict its shape. This gives a tool to calculate
the highest production of the network, which then can be compared with the actual
network production.

One of the requirements for the crisp relationship is that the congestion should
be homogeneous over the network. Buisson and Ladier [6] were the first to test
the how the MFDs change if the congestion is not homogeneously distributed over
the network. They showed a reasonably good MFD for the French town Toulouse in
normal conditions. However, 1 day there were strikes of truck drivers, driving slowly
on the motorways, leading to traffic jams. The researchers concluded that leads
to a serious deviation from the MFD for normal conditions. The inhomogeneous
conditions were recreated in a traffic simulation of a urban motorway with several
on-ramps (several kilometers) [7]. I was found that inhomogeneous congestion leads
to a reduction of flow. Moreover, they advised on the control strategy to be followed,
using ramp metering to create homogeneous traffic states. Cassidy et al. [2] studied
the MFD for a motorway road stretch. They conclude, based on real data, that the
MFD only holds in case the whole stretch is either congested or in free flow. In case
there is a mix of these conditions on the studied stretch the production is lower than
the production which would be predicted by the MFD.
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The effect of variability is further discussed [8, 9]. Contrary to Ji et al. [7],
these papers focus on urban networks. First, Mazloumian et al. [8] show with
simulation that the variance of density over different locations (spatial variance)
of density (or accumulation) is an important aspect to determine the total network
production caused by the discrete nature of vehicles at junction, leaving gaps.
So not only too many vehicles in the network in total, but also if they are located
at some shorter jams at parts of the networks. The reasoning they provide is that
“an inhomogeneity in the spatial distribution of car density increases the probability
of spillover, which substantially decreases the network flow.” This finding from
simulation and reasoning is confirmed by empirical analysis [9], using the data from
the Yokohama metropolitan area. The main cause for this effect is claimed to be the
turning movement of the individual vehicles.

A theoretical explanation for the phenomenon of the influence of the spatial
variance of the accumulation is given by Daganzo et al. [10]. They show that
turning at intersections is the key reason for the drop in production with unevenly
spread congestion. Dayah and Daganzo [11] then use this information by adding
dynamics to the MFD. If congestion solves, it will not solve instantaneous over all
locations. Rather, it will solve completely from one side of the queue. Therefore,
reducing congestion will increase the spatial variance of the accumulation and thus
(relatively) decrease the production. This means that the production for a system of
dissolving traffic jams is under the equilibrium state, thus under the MFD. This way,
there are hysteresis loops in the MFD, as also noted by Ji et al. [7]. Note that these
loops are an effect by themselves and are different from for instance the capacity
drop [12, 13].

This paper will again look into this phenomenon by performing a macroscopic
traffic simulation, but without individual turning movements. By means of this
simulation we aim to reveal the importance of the microscopic (i.e., vehicle based)
turning movement.

3 Experiment Setup

This section describes the traffic simulation used for this research. The section first
describes what will be simulated in terms of network and demands. Then, Sect. 3.2
describes the model used for this simulation. Section 3.3 describes the output of the
simulator that is used later in the paper.

3.1 Experimental Settings

In the paper an urban network is simulated, since this is the main area where
MFDs have been tested. We follow [9] and choose a Manhattan network with
periodic boundary conditions. This means that the nodes are located at a regular grid,
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Fig. 1 Illustration of a 4� 4
grid network with periodic
boundary conditions

for which we choose a 20 � 20 size. Then, one-way links connect these nodes. The
direction of the links changes from block to block, i.e. if at x D 2 the traffic is
allowed to drive in the positive y direction, at x D 1 and at x D 3 there are one-
way roads for traffic to drive in the negative y direction. We assume 2 lanes per link,
a 1 km block length, a triangular fundamental diagram with a free speed of 60 km/h,
a capacity of 1,500 veh/h/lane and a jam density of 150 veh/km/lane.

Furthermore, periodic boundary conditions are used, meaning that a link will not
end at the edge of the network. Instead, it will continue over the edge at the other
side of the network. An example of such a network is given in Fig. 1. Traffic can
continue in a direct link from node 13 to node 1 or from node 5 to node 8. This way,
all nodes have two incoming and to outgoing links and network boundaries have no
effect.

The destinations are randomly chosen from all points in the network. In the
network, there are 19 nodes chosen as destination nodes. There are no origin nodes.
Instead, at the beginning of the simulation, traffic is put on the links. Vehicles are
assigned to a destination, and for this distribution is equal over all destinations.

When the cars have reached their destination, they will not leave the network,
but instead they are assigned a new destination. We use a macroscopic model
(see Sect. 3.2), hence we can split the flow of arriving traffic equally over the 18
other destinations. The number of cars in the network is hence constant. This number
will be a parameter setting for the simulations, but throughout one simulation, it is
constant. The demand level is expressed as the density on all links at the start of
the simulation, as fraction of the critical density. Figure 2a shows the network used
under initial conditions.

3.2 Traffic Flow Simulation

This section describes the traffic flow model. For the traffic flow modelling we
use a first order traffic model. Links are split into cells with a length of 250 m
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Fig. 2 Evolution of the densities (bar heights) and speeds (colours) in the network. (a) Start of the
simulation. (b) 0.5 h. (c) 1 h. (d) 1.5 h. (e) 2 h. (f) 3 h

(i.e., 4 cells per link). We use the continuum LWR-model [14,15] that we solve with
a Godunov scheme [16]. Lebacque [17] showed how this is used for traffic flows,
yielding a deterministic continuum traffic flow simulation model. The flux from one
node to the next is basically restricted by either the demand from the upstream node
(free flow) or by the supply from the downstream node (congestion):

�c;cC1 D min fDc; ScC1g I (1)

At a node r we have inlinks, denoted by i which lead the traffic towards node r
and outlinks, denoted by j which lead the traffic away from r . At each node r , the
demandD to each of the outlinks of the nodes is calculated, and all demand to one
link from all inlinks is added. This is compared with the supply S of the cell in the
outlink. In case this is insufficient, a factor ˛ is calculated which shows which part
of the demand can continue.

˛r D argmin
Œj leading away from r	


Sj

Dj

�
(2)
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This is the model developed by Jin and Zhang [18]. They propose that all demands
towards the node are multiplied with the factor ˛, which gives the flow over the
node.

This node model is slightly adapted for the case at hand here. Also the node itself
can restrict the capacity. In our case, there are 2 links with a capacity of 3,000 veh/h
as inlinks and 2 links with a capacity of 3,000 veh/h as outlinks. Since there are
crossing flows, it is not possible to have a flow of 3,000 veh/h in one direction and a
flow of 3,000 veh/h in the other direction. To overcome this problem, we introduce
a node capacity (see also [19]). The node capacity is the maximum of the capacities
of the outgoing links. This means that in our network, at maximum 3,000 veh/h can
travel over a node. Again, the fraction of the traffic which can continue over node r
is calculated, indicated by ˇ:

ˇr D CrP
8i to r Di

(3)

The demand factor � is now the minimum of the demand factor calculated by the
nodes and the demand factor due to the supply:

� D min f˛r ; ˇr ; 1g (4)

Similar to [18], we take this as multiplicative factor for all demands to get to the
flux �ij, i.e. the number of cars from one cell to the next over the node:

�ij D �Dij (5)

The path choice is static, and determined based on distance to the destination.
Traffic will take the shortest path towards the destination. For intersections where
both directions will give the same path length towards a destination, the split of
traffic to that direction is 50–50.

3.3 Variables

In this paper, several traffic flow variables will be used. In this section we will
explain them and show the way to calculate them.

Standard traffic flow variables are flow, q, being the vehicle distance covered
in a unit of time, and density, k, the number of vehicles per unit road length. The
network is divided into cells, which we denote by c, which have a length Lc . Flow
and density in cells are denoted by qc and kc .

Furthermore, the accumulationN in an area X is the weighted average density:

NX D
X
c2X

kc � Lc
Lc

(6)
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Similarly, the production P in an area X is the weighted average flow:

PX D
X
c2X

qc � Lc
Lc

(7)

Since the cell length are the same for all links in the network, the accumulation and
production are average densities and flows. Recall that there is a strong relationship
between the production and the number of completed trips [1].

This paper also studies the variations in densities. The standard deviation of the
cell density is found by considering all cell densities for one moment in time, and
calculate the standard deviation of these numbers.

4 Simulation Outcomes

This section describes the evolution of traffic over the time. First, the traffic
flow phenomena are qualitatively described, then in Sect. 4.2 the performance and
variation are quantified.

4.1 Traffic Flow Phenomena

This section first describes the traffic flow over time. Figure 2 shows the outcomes
of the simulation, in snapshots of the density and speed over time. At the start
of the simulation (see Fig. 2a), traffic is evenly distributed over all links, since
this was the initial situation as it was regulated externally. The destinations of the
network are indicated by the vertical lines.

When the traffic starts to run, various distributed bottlenecks become active. This
is shown in Fig. 2b. After some time (Fig. 2d–f), traffic problems concentrate more
and more around one location. The number of vehicles in the rest of the network
reduces, ensuring free flow conditions there. This complete evolution can be found
in Fig. 2a–f. The network has periodic boundary conditions, which means that the
network edges do not have any effect. Any deviations from a symmetry are due
to random effects and thus to the location of the destinations, since the traffic
simulation is deterministic.

At the end, the situation seems to have stabilised. From 2.5 to 3 h (Fig. 2e–f) there
have been little change, and the changes in the traffic state get smaller and smaller:
an equilibrium has formed. Now, the number of vehicles passing the most restricting
bottleneck equals the number of vehicles arriving at the end of the queue.



358 V.L. Knoop and S.P. Hoogendoorn

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

Standard deviation of density (veh/km)

Pr
od

uc
tio

n 
ve

h/
h

Production Std Density

0.5
1.5
1
2.5
2
3.5
3
4.5
4
5

0
1

2
3

4
5

0

20

40

60
0

1000

2000

3000

Demand level

2D Macroscopic Fundamental Diagram

St
.d

ev
 o

f d
en

si
ty

 (v
eh

/k
m

/la
ne

)
Pr

od
uc

tio
n 

(v
eh

/h
)

a b

Fig. 3 The effect of demand and spatial variation on the network performance. (a) Different lines
for different demands. (b) The two-dimensional macroscopic fundamental diagram

4.2 Influence of Variation in Density

Most articles describing macroscopic fundamental diagrams emphasize that the
relationship is only valid as long as traffic states are similar for all links in
the network (e.g. [1]). This requirement of homogeneous distributed congestion
clearly does not hold for our situation (see Fig. 2f). Furthermore, a standard
macroscopic fundamental diagram would relate the network performance to the
network accumulation, being proportional to the number of vehicles in the network.
In this case, however, the number of vehicles in the network is constant: vehicles
cannot drive out of the network and at the destination they are simply given another
destination. The accumulation is thus fixed, but there are various values for the
performance, depending on the congestion, hence the macroscopic fundamental
diagram would result in a vertical line.

Instead of linking the performance only to the accumulation, we also link it to the
variation of the densities in the network. This relation is shown graphically in Fig. 3.
Figure 3a shows production lines for the different network loadings. They decrease
as function of the density variability, as also found by Mazloumian et al. [8].
Contrary to their setup, the simulation in our paper does not have a flow
discretization in vehicles. So the effect of the decreasing production with increasing
variability is not mainly caused by the individual vehicle movements since it can
found in a simulation modelled with aggregated flows.

It is remarkable that the slope of the lines in Fig. 3a is different. If the average
accumulation is undercritical, the demand rapidly decreases with the increase of
variability. This is caused by queues, and spillover of queues. With a demand higher
than the critical level (demand> 1), the decrease is less steep. In this case the
temporal spillovers are less important, since vehicles will find a queue later on in
the network anyway.
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Figure 3b shows how these lines can be transformed into a two-dimensional
macroscopic fundamental diagram. Note that the impact of the variation on the
production is of a similar magnitude as the impact of the total accumulation.
It is therefore essential that the variation of the density is also used in the
state estimation, and thus the prediction of the production or performance. Note
furthermore that we did not exclude any points from the observations. This two-
dimensional macroscopic fundamental diagram can also be used if congestion is
homogeneously distributed over the network.

5 Conclusions and Outlook

This paper presented a simulation study to the effect of variation in the macroscopic
fundamental diagram. Even with very simple simulation tools, being a first-order
traffic simulation, a proportional node model, and a node capacity, we find a clear
influence of the variation of density on the network performance. In fact, the
variation has an influence on the performance which is similar in magnitude to the
influence of the accumulation. We therefore propose to use a two-variable macro-
scopic fundamental diagram (TV-MFD) instead of the one-variable macroscopic
fundamental diagram used up to now.

The traffic processes themselves cause a the variation of the congestion. This
depends on the OD matrix, as well as on traffic dynamics and the route choice.
Future work therefore includes how the shape of the two-dimensional fundamental
diagram depends on the network internal structure, and route choice. Also the effect
of route choice is topic of future study.
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A Uzawa Algorithm for Static Traffic
Assignment in an Orthotropic Network

Tibye Saumtally, Jean-Patrick Lebacque, and Habib Haj-Salem

Abstract We consider a static traffic assignment problem in a bidimensional net-
work, viewed as a continuum of orthotropic roads. The commuters are spilled over a
dense urban area, and try to reach a possible destination. There are a finite number of
destinations, which are represented by a small area. The traffic flows from the city
area to a determined destination are considered as one commodity. The network
supply is defined by the side constraints, or road capacities. The travel demand is
variable. The traffic assignment problem is built as a mathematical program inspired
from the Beckmann objective function. It is solved by a Lagrangian scheme and a
dual method.

1 Introduction

The assignment problem has been formulated well in the discrete network case.
Nevertheless, this approach is difficult to develop to give general patterns of traffic
in a dense urban area. There are some big disadvantages to this approach, due to
the elevated level of details and time computing. Several authors have suggested a
continuous modelling approach [1–5]. The main advantage of this approach is that
it involves a small number of parameters, hence the computing time is much shorter.
A variable demand has been introduced in a continuum approach in [6], but these
articles didn’t take the network supply into account. The network supply is the road
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capacity, or the maximum flow which can be accepted on a given road. A description
of road capacity also called side constraints can be found in [7].

2 Road Traffic on a Large and Dense Urban Area

We consider a city in a two-dimensional plane. We denote the geographical surface
of this city by A. The surface A can be identified as a subset of the affine space
R
2. We suppose that all the commuters are uniformly distributed in the area A, and

try to get to their destination. There are M possible destinations for the customers
in the area. We denote them by Bm; m 2 f1; : : : ;M g. The traffic flows from all
the area to one determined destination are called a commodity. Hence, there are M
commodities on the area A. The network of the area A is viewed as a continuum. To
illustrate it, one could imagine a big city observed from so far away that it would be
impossible to distinguish separately the different roads of the network.

2.1 Distance in the Network

If the area A is provided with an orthotropic network (a set of orthogonal streets),
the distance between two points A and B of A, which coordinates are .xA; yA/ and
.xB; yB/, is d.A;B/ D jxA � xB j C jyA � yB j. This distance is called orthotropic
as far as it defines an orthotropic scheme of paths on A. What has to be pointed out
is that with an orthotropic metric, several paths can have the same distance between
two points (e.g. the green and red paths of the Fig. 1-left). This is not the case with an
isotropic metric, where there is a single shortest path betweenA andB: the segment
ŒAB	 (Fig. 1-right). In the following, we will develop an orthotropic model.

3 Demand Function of Commuters

The traffic demand to the destination Bm from a small area dxdy around the point
located by its coordinates .x; y/, is the quantity we denote �m.x; y/dxdy. This
quantity is positive over the area A n [M

mD1Bm, and strictly negative over [M
mD1Bm.

3.1 Demand Function While Getting to a Destination
(Generation)

We assume that the demand for each destination is elastic. This means that for
every m, it exists a monotonic decreasing function of the travel cost � from the
origin .x; y/ to the destination Bm. The travel cost � from origin .x; y/ to the
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Fig. 1 Examples of short distance paths between two points: orthotropic case (left), isotropic case
(right)

area
demand

generalized
cost

dmax=ζO

D−1

destination
demand

generalized
cost

dmin= γ O

G−1

Fig. 2 Affine demand functions

destination Bm only represents the time cost (we assume it does not include
the transportation cost). The demand at point .x; y/ is set in Œ0; �m.x; y/	. This
means that the demand is generated, and it cannot exceed a maximum �m.x; y/,
which depends on the network generation possibility (e.g. vehicle exits on .x; y/).
For all m and for all .x; y/ 2 A n Bm, we denote the area demand function
Dm;.x;y/ W � 7! dm�C�m.x; y/, where dm < 0. We assume that for every .x; y/, the
demand functions are all parallel (same slope dm), but do not have necessarily the
same demand-intercept (�m.x; y/ may vary with .x; y/). For every m, the function
Dm;.x;y/ is supposed to be strictly decreasing, so D�1m;.x;y/ is. If # is the travel demand
at a point to the destinationm, the travel cost from this point to the destinationm is
D�1m;.x;y/.#/, and the higher is D�1m;.x;y/.#/, the lower is # .

3.2 Demand Function into a Destination Area (Absorption)

While entering the area of their destination, the commuters feel satisfied. For a
given destination, we can hypothesize that there will be more demand as the gain
of being at its area is high. As the vehicles are absorbed by the destination, we can
model the demand function as on Fig. 2-right. In this case, the cost has to be seen as
the opposite of a gain, that’s why we represent the demand as a strictly increasing
function of the cost. The demand at point .x; y/ is set in Œ�m.x; y/; 0	. This means
that the demand is absorbed, and it cannot underpass a minimum �m.x; y/, which
depends on the network absorbtion possibility (e.g. vehicle entrance on .x; y/).
For all m and for all .x; y/ 2 Bm, we note the destination demand function
Gm;.x;y/ W � 7! gm� C �m.x; y/, where gm > 0. We assume that for every .x; y/, the
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demand functions to the destination m are all parallel (same slope gm), but do not
have necessarily the same demand-intercept (�m.x; y/ may vary with .x; y/).

4 Road Traffic Physic

4.1 Flow Conservation

At each point .x; y/ of the network, the vector qm.x; y/ represents the flow state of
vehicles that want to reach the destination m. If we represent the vector qm.x; y/
by its coordinates .q1m.x; y/; q2m.x; y//, each one of its coordinates is expressed in
number of vehicles per length unit.

On every disc D included in A, the demand refered to the destinationm is equal
to the projection of the flow over the normal exterior vectors of D, what we can
mathematically express by the relation

’
D
�m.x; y/dxdy D H

@D
hqm.x; y/jnid� .

If we suppose that the flow q is sufficiently smooth, by using the Green-Riemann
theorem, we obtain the relation of conservation in the static case: �m D divqm.

4.2 Travel Cost

As vehicles in opposite ways do not share the same lane, a crucial difference
between traffic flow and fluids is that two opposite traffic movements do not cancel
each other out. To illustrate this, one can see on Fig. 3 that the flows qa and qb have
nearly the same influence on the travel cost at pointP , whereas each one of the flows
qa and qc nearly do not disturb the other. Then, the travel cost at a point where exist
two opposite flows of traffic is the sum of the cost of each flow (but not the cost of
the sum of the norms of each flow).

We consider the two privileged network lines of the area. These lines are
orthogonal, and give us four possible directions of moving. We explain with the
simple example of the Fig. 4 how we construct the travel cost for the commuters at
any point P of the area A. Let the four vectors e1, e2, e3 and e4 be as in Fig. 4. The
three flows qA, qB and qC at the point P can be written as qA D qA1e1 C qA2e2,
qB D qB3e3 C qB2e2 and qC D qC3e3 C qC4e4 where each of the coordinates
qij (with .i; j / 2 fA;B;C g � f1; 2; 3; 4g) are positive numbers. On direction i ,
the travel cost is equal to the cost of the sum of the projection on this direction.
As only two orthogonal directions are privileged, it is just as if the travel cost
at any point were the sum of the costs of the sum of each flow coordinates on
every possible direction of moving:C.P; .qA; qB; qC // D c1.P; qA1/Cc2.P; qA2C
qB2/ C c3.P; qB3 C qC3/C c4.P; qC4/. We have written four travel cost functions
ci ; i 2 f1; 2; 3; 4g because we allow the cost to be different for each sense of one
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Fig. 3 Different flows of traffic at point P
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Fig. 4 Three different flows at point P

determined direction (think about two lanes in one sense and only one lane in the
opposite sense).

5 The Network’s Supply

The displacement scheme is the result of the confrontation between a demand and
a supply. We have explained what is the demand in Sect. 3. Now let us explain what
is the network’s supply.

Each road has a finite limit of traffic flow, congestion point being reached while
flow getting to this limit. To take this into account roads are provided with an upper
bound on traffic flows, so the roads could not carry arbitrarily large volumes of
traffic. This upper bound is called a side constraint [7, 8].

6 Formulation of the Equilibrium

For any real number a, we note R.a/ or simply aC, the quantity max.0; a/. The
function R is called Ramp function. It is convex (but not strictly convex), it is not
differentiable at 0.
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6.1 Formal Approach of the Constraint Flows and Demands
Set

The functions qm and �m we are looking for must verify conditions that come
from the network’s topological properties, the capacity constraints and the under-
lying traffic model.

A first constraint is the positivity (which corresponds to a generation of vehicles)
and the upper boundedness (which corresponds to a maximum number of generated
vehicles per unit area and per hour) of each demand function �m at every point of
the area which is not in destination Bm: 8m 2 f1; : : : ;M g; 8.x; y/ 2 AnBm; 0 6
�m.x; y/ 6 �m.x; y/:

A second constraint is the negativity (which corresponds to an absorption of
vehicles) and the lower boundedness (which corresponds to a maximum number
of absorbed vehicles per unit area) of each demand function �m at every point of
the area which is in destination Bm: 8m 2 f1; : : : ;M g; 8.x; y/ 2 Bm; �m.x; y/ 6
�m.x; y/ 6 0:

A third constraint is the capacity constraint on every direction, the traffic flow

cannot exceed it: 8i 2 f1; 2; 3; 4g; 8.x; y/ 2 A;

MX
mD1

hqm.x; y/jei iC 6 Ki.x; y/:

This constraint takes into account the network’s topology (an orthotropical
network) too.

A fourth constraint is the flow conservation for every destination: 8m 2
f1; : : : ;M g; 8.x; y/ 2 A; divqm.x; y/ D �m.x; y/:

A fifth constraint is the border conditions, the traffic flow goes along the
boundary of the area and cannot cross it: 8m 2 f1; : : : ;M g; 8.x; y/ 2
@A; hqm.x; y/jni D 0:

We denote by X0 the set of couples .q;�/ such that

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

0 6 �m.x; y/ 6 �m.x; y/ 8m 2 f1; : : : ;M g 8.x; y/ 2 A n Bm .1:a/
�m.x; y/ 6 �m.x; y/ 6 0 8m 2 f1; : : : ;M g 8.x; y/ 2 Bm .1:b/
MX
mD1

hqm.x; y/jei iC 6 Ki.x; y/ 8i 2 f1; 2; 3; 4g 8.x; y/ 2 A .1:c/

div qm.x; y/ D �m.x; y/ 8m 2 f1; : : : ;M g 8.x; y/ 2 A .1:d/

It is relevant to see that we have quit the fifth constraint from the set we call X0.
Indeed, we are going to incorporate this constraint directly in the functional space
of the flow q, the Hilbert .H0.div//M .
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Fig. 5 Area and destination demand functions for the mathematical study

6.2 A Beckmann-Like Objective Function

A city commuter wants to reach his destination. The problem of user equilibrium
in a dense and large urban area with an orthotropic network viewed as a continuum
can be formulated in analogy to Beckmann’s model for graphs [1]. We will prove
that the obtained traffic assignment obeys Wardrop’s first principle [2]. We denote
J0 W .H0.div//M � .L2/M ! R the function defined by

J0.q;�/ D
“

A

4X
iD1

Z PM
mD1hqm.x;y/jei iC

0

ci .x; y; /d dxdy

�
MX
mD1

" “

AnBm

Z �m.x;y/

0

D�1m;.x;y/.#/d# dxdy

C
“

Bm

Z 0

�m.x;y/

G�1m;.x;y/.#/d# dxdy

#
(1)

Here we can remark that the functions D�1m we chose in Fig. 2 do not fit. We will
use in place of them the functions of the Fig. 5. Such two inverse demand functions
do not have any physical sense, they are just a way to build the function J0 on its
definition domain .H0.div//M � .L2/M , from a mathematical point of view.

6.3 Minimization Problem

The minimization problem is P :

min
.q;�/2X0

J0.q;�/ (2)

It is relevant at this point to explain why the minimum we are looking for exists.
The function to minimize is convex. Moreover, the couples .q;�/ are in the non-
empty (it contains .0; 0/) closed convex set X0 defined by the constraints. The
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set X0 is closed and it is bounded (8.q;�/ 2 X0; k.q;�/k2
.H0.div//M�.L2/M 6

2
PM

mD1.k�m1AnBm
C �m1Bmk2

L2
/C 2M

P4
iD1 kKik2L2 ). Hence, generic properties

of separable Hilbert spaces give us the existence of the minimum.

7 Two Important Properties of the Minimizers

We note J0.q;�/ D � .q/C � .�/, with

� .q/ D
“

A

4X
iD1

Z PM
mD1hqm.x;y/jei iC

0

ci .x; y; /d dxdy

and

� .�/ D �
MX
mD1

" “

AnBm

Z �m.x;y/

0

D�1m;.x;y/.#/d# dxdy

C
“

Bm

Z 0

�m.x;y/

G�1m;.x;y/.#/d# dxdy

#
:

If f is an increasing (respectively strictly increasing) function, then u 7! R u
0
f

is convex (resp. strictly convex). By using this fact, it is easy to see that the function
� is strictly convex; and that the function � is convex (but not strictly convex as
the Ramp function is only convex). Hence, if we have two minimizers .q�; ��/
and . Nq; N�/, then �� D N� almost everywhere on A, and for every i 2 f1; 2; 3; 4g,PM

mD1hq�m.x; y/jei iC D PM
mD1h Nqm.x; y/jei iC almost everywhere on A.

8 Approximation of the Equilibrium with a Smooth
Formulation

8.1 Smooth Functions and Mere Properties

As we have yet noticed it, the Ramp function is not differentiable. It only has
a distributional derivative, called the Heaviside step function, but this type of
derivative is too weak for our problem. Let’s fix � > 0. For every x 2 R we denote
r�.x/ D 1

2

�
x C .x2 C �2/

1
2

�
, a smooth approximation of the Ramp function. The

parameter � > 0 is bound to tend towards 0 (see Fig. 6). We note h� D r 0�.
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8.2 The New Problem

For every � > 0, we denote J� W .H.div//M � .L2/M ! R the function defined by:

J�.q;�/ D
“

A

4X
iD1

Z PM
mD1 r�.hqm.x;y/jei i/

0

ci .x; y; /d dxdy

�
MX
mD1

" “

AnBm

Z �m.x;y/

0

D�1m;.x;y/.#/d# dxdy

C
“

Bm

Z 0

�m.x;y/

G�1m;.x;y/.#/d# dxdy

#
(3)

The function J� is an approximation of J0 when � is near 0. The minimization
approximated problem is P�:

min
.q;�/2X�

J�.q;�/ (4)

where X� is the subset of .H.div//M � .L2/M defined by (only the inequation (1.c)
is changed into (3.c), the others remaining the same):

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

0 6 �m.x; y/ 6 �m.x; y/ 8m 2 f1; : : : ;M g 8.x; y/ 2 A n Bm (3.a)
�m.x; y/ 6 �m.x; y/ 6 0 8m 2 f1; : : : ;M g 8.x; y/ 2 Bm (3.b)
MX
mD1

r�.hqm.x; y/jei i/6Ki .x; y/CM
�

2
8i 2 f1; 2; 3; 4g 8.x; y/ 2 A (3.c)

div qm.x; y/ D �m.x; y/ 8m 2 f1; : : : ;M g 8.x; y/ 2 A (3.d)

Let us remark that the notations are consistent. We can take � D 0 in the
expression of J� and X� to have J0 and X0. The main fact is that for all � > 0

fixed, the functional J� is strictly convex and smooth on .H0.div//M � .L2/M .
We note .q�;��/ its unique minimum on X�. It can be proved that the sequence
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.q�;��/ is a minimizing sequence of J0 in this sense: if we fix .q�; ��/ 2 X0 such
that min

X0
J0 D J0.q

�; ��/, then lim�!0C
J0.q�;��/ D J0.q�; ��/.

Let us define F� as the representative constraints functional: for every .q;�/ 2
.H.div//M � .L2/M ,

F�.q;�/ D .F 1
� .�/;F

2
� .�/;F

3
� .�/;F

4
� .�/;F

5
� .q/;F

6
� .q;�//

where

F 1
� .�/ D ��; F 2

� .�/ D � � �; F 3
� .�/ D � ��; F 4

� .�/ D �;

F 5
� .q/ D .x; y/ 7! � MX

mD1
r�.hqm.x; y/jei i/�Ki.x; y/ �M

�

2

�
i
;

F 6
� .q;�/ D div q ��:

9 Lagrangian Formulation

Then, for every .q;�; �; '; �;  ; �; �/ 2 .H0.div//M �.L2/M �˘M
lD1L2.AnBm/�

˘M
lD1L2.A nBm/�˘M

lD1L2.Bm/�˘M
lD1L2.Bm/� .L2/4 � .H1/Mwe consider the

Lagrangian of the problem:

L�.q;�; �; '; �;  ; �; �/ D J�.q;�/C
D
�; '; �;  ; �; �

ˇ̌
ˇF�.q;�/

E
(5)

where h j i is the scalar product in ˘M
lD1L2.A n Bm/ � ˘M

lD1L2.A n Bm/ �
˘M
lD1L2.Bm/ �˘M

lD1L2.Bm/ � .L2/4 � .L2/M .

9.1 Saddle Point of the Lagrangian

The nine-uplet .qs;�s; �s; 's; �s;  s; �s; �s/ such that .�s; 's; �s;  s; �s/ > 0 is
said to be a saddle point of the lagrangian L" if for all .q;�; �; '; �;  ; �; �/ such
that .�; '; �;  ; �/ > 0:

L�.qs; �s; �; '; �;  ; �; �/ 6 L�.qs; �s; �s; 's; �s;  s; �s; �s/

6 L�.q;�; �s; 's; �s;  s; �s; �s/:

If .qs;�s; �s; 's; �s;  s; �s; �s/ is a saddle point of the Lagrangian L� , as
.qs;�s/ 2 X� and is a global minimum of J� on X�, then .qs;�s/ D .q�;��/

(see e.g. [9, 10]). It is easy to show that if .q�;��; ��; '�; ��;  �; ��; ��/ is a saddle
point of the Lagrangian L� , then it confirms the four relations (3.a)–(3.d).
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9.2 Relations Between the Primal and Dual Variables
at a Saddle Point

As the functions which represent the contraints are convex and differentiable, we
have:

8. Oq; O�/; D.q;�/L�

�
.q�;��; ��; '�; ��;  �; ��; ��; ��/ j . Oq; O�/� D 0;

with

D.q;�/L�

�
.q;�; �; '; �;  ; �; �; �/ j . Oq; O�/� D

“

A

MX
mD1

�
Oqm
ˇ̌
ˇ̌C

4X
iD1

�
�i C ci

�
x; y;

MX
mD1

r�.hqmjeii/
��
h�.hqmjeii/ei � r�m

�
dxdy

C
“

A

MX
mD1

O�m
��

�D�1m .�m/��mC'm��m
�

1AnBm

C
�
G�1m .�m/��mC m��m

�
1Bm

�
dxdy: (6)

The existence of a saddle point is a difficult problem in the case of general
Hilbert spaces with convex constraints. It is possible to find a saddle point in an
approximated sense if contraints are linear [11], but the mathematical techniques
involved are far away from our article, and we will suppose the existence of such a
saddle point. Supposing the existence of a saddle point, its uniqueness would also
be a very difficult problem. In finite dimension, the uniqueness of the Lagrange
multipliers comes from properties called constraint qualification which are not
easily adaptable to the infinite dimension. Anyway, we will content ourselves with
the discretized problem and its numerical solution.

Now let us fix m. For

Oqm D
4X
iD1

�
��;i C ci

�
x; y;

MX
mD1

r�.hq�;mjei i/
��
h�.hq�;mjeii/ei � r��;m;

Oql D 0 8l ¤ m and O� D 0

(to avoid the integral on the boundary @A anyway, we can use a sequence Oq.n/m 2 C1c
that converges to this Oqm with the topology of the norm jj � jjH1�H1 ) we obtain that:

8m;
4X
iD1

�
��;i C ci

�
x; y;

MX
mD1

r�.hq�;mjei i/
��
h�.hq�;mjeii/ei D r��;m: (7)
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With the same types of arguments, we deduce that for all m:

� D�1m .��;m/ � ��;m C '�;m � ��;m D 0 onA n Bm; (8)

G�1m .��;m/� ��;m C  �;m � ��;m D 0 onBm: (9)

10 Used/Unused Paths Costs

The sign function is defined by sgn.a/ D �1 for every a < 0, sgn.0/ D 0 and
sgn.a/ D 1 for every a > 0. First, we are going to prove that all used paths between
an origin O and a destination Dm have the same cost. The cost of travel on such a
path is:

Cost.usedp;m/ D
Z

p
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�
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��
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C
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C
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p
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C
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x; y;
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��
h�.hq�mje4i/jdyj: (10)

In fact, with the functions r� and h� , the cost of small coordinates of the flow
are underestimated. By noticing that at any .x; y/ on the used path p we have
jdxj D sgn.hq�;m.x; y/je1i/dx and jdyj D sgn.hq�;m.x; y/je2i/dy, we can write
the previous cost as:
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Then,

Cost.usedp;m/ D
Z

p

D
r��;m

ˇ̌
ˇ dx
dy

E
D ��;m.Dm/� ��;m.O/ (12)

We have obtained that for each commodity, the cost of the used paths have the same
cost for the commuters.

Second, we are going to prove that the unused paths between the origin O and
the destination Dm are more expensive than the used ones. For any unused path
p, since hq�;m.x; y/je1ie1 can be equal to the zero vector, or be parallel in the
opposite sense with the path p, at any .x; y/ of the unused path p, we have jdxj >
sgn.hq�;m.x; y/je1i/dx, and by the same token, jdyj > sgn.hq�;m.x; y/je2i/dy.
Thus, if we repeat the last calculus, in place of the equality, we have the following
inequality:

Cost.unusedp;m/ >
Z

p

D
r��;m

ˇ̌
ˇ dx
dy

E
D ��;m.Dm/� ��;m.O/ (13)

We conclude that the cost of any unused path is higher than or equal to the cost
of the used path. This satisfies the Wardrop’s first principle of user equilibrium.

11 Algorithmical Aspects

The Uzawa Algorithm 1 computes the traffic assignment problem. It uses the
Newton-Raphson-Armijo Algorithm 2 at line 7. The approximated problem we
studied has one major problem: the objective function is only strictly convex. This
property is not strong enough to run the classical algorithm of Uzawa of non linear
programming. We will show a convenient method to obtain the property of strong
convexity, but first, we are going to eliminate some dual coefficients from the
algorithm, their calculus being useless.

11.1 How to Eliminate Some Coefficients

We are going to eliminate the dual variables �; '; �;  . This result has a computa-
tional interest as far as the functions �; '; �;  have no physical interest. If u and
v are two L2 functions with u 6 v, we note for every f 2 L2:

˘Œu;v	.f / D u1ff <ug C f 1fu6f6vg C v1fv<f g:
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˘Œu;v	.f / is the orthogonal projection of f on the closed convex subset of L2: fg 2
L2= u 6 g 6 v a.e.g. Let us examine relation (8). Let us fix m and .x; y/ 2 A n
Bm. As ��;m.x; y/ 2 Œ0; �m.x; y/	 and as the quantities ��;m.x; y/ and '�;m.x; y/
cannot be both non equal to zero, using that Dm is a strictly decreasing function,

one can write: for all m, ��;m D ˘Œ0;�m	

�
Dm

� � ��;m
��

on A n Bm. As well, with

relation (9), using that G�1m is strictly increasing, we could show that for all m,

��;m D ˘Œ�m;0	

�
Gm
�
��;m

��
, on Bm. So we can summarize the obtained result in the

formula:

��;m D ˘Œ0;�m	

�
Dm

� � ��;m
��

1AnBm
C˘Œ�m;0	

�
Gm
�
��;m

��
1Bm:

11.2 How to Get Strong Convexity?

The first crucial point in the algorithm of Uzawa is the strong convexity of the
objective function. To do so, we add to J�.q;�/ an artificial term �kqkH.div/M ,
where � is a positive constant, sufficiently small in order to not disturb too much
the objective function J� . We do not add anything in relation with � because
the objective function is already strongly convex with regard to �, as a primitive
of a strictly increasing affine functions. We can interpret this new approximated
problem as the research of the minimizer of the objective function J� which would
have the smaller norm. Physically, it does not have any relevant interpretation, and
this technique only has to be seen as a convenient way to have a strongly convex
structure.

11.3 Lipschitz Properties of the Constraint Functions

The second crucial point in the algorithm of Uzawa is that the constraints functionals
must be Lipschitz. Nevertheless, in our case, we only need the constraint functional
associated to the capacity constraints to be Lipschitz. It is possible to prove
that for every i 2 f1; 2; 3; 4g, .F 5

� /i is
p
M�Lip. This result proves that the

four constraint functions associated to the four inequalities contained in (3.c)
are

p
M�Lip.

We now have all the elements we need to implement the algorithm.
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11.4 Uzawa Algorithm for Static Traffic Assignment

Algorithm 1 Uzawa algorithm
Require: the domain area; the M destinations (in the following, m D 1; : : : ;M )

the capacity constraints functions on the four directions Ki (i D 1; 2; 3; 4)
the inverse demand functions D�1

m and G�1
m (which give us the functions �m and �m)

the small positive constants �, �, error; �Ini
m , �Ini

m

1: 
 0:95 � 2�
M

2: k 0

3: for every m, �0m �Ini
m , �0m �Ini

m ,
4: while k D 0 or jjdivqk ��k jj.L2/M > error

or jjqkC1 � qk jj.H.div//M > error or jj�kC1 ��kjj.L2/M > error do
5: Calculate for every m: �kC1

m  �km C 
.divqkm ��k
m/

�kC1
m  ˘Œ0;�m	

�
Dm

�� �kC1
m

��
1AnBm C˘Œ�m;0	

�
Gm
�
�kC1
m

��
1Bm

6: Calculate for every i : �kC1
i  P

C

�
�ki C 
.

MX
mD1

r�.hqmjei i/�Ki �M �

2
/
�

7: Solve with the algorithm of Newton-Raphson-Armijo:
qkC1 D Arg min

q2H.div/M
L�;�.q; �

kC1; �kC1/

8: k k C 1
9: end while

10: return the flux qFin
m , the demand functions �Fin

m

the potential functions �Fin
m , the four over cost functions �Fin

i

Algorithm 2 Newton-Raphson algorithm with an Armijo step
Require: the strongly convex function J to minimize; the first step of the iteration uIni

the small positive constant: error; the proportion w in the Armijo step
1: j  0

2: u0  uIni

3: while jjDJ.uk /jj > error do
4: Solve the descent vector dk by solving the problem with GMRes Algorithm:

8v; D2J.uk/.dk ; v/CDJ.uk/.v/ D 0

5: ˛ 1

6: while J.uk C ˛dk/ > J.uk/C w˛DJ.uk/.dk/ do
7: ˛ ˛

2

8: end while
9: ukC1  uk C ˛dk

10: k k C 1
11: end while
12: return the minimizer uFin
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12 Numerical Example

12.1 Example Values

The roads’ capacity for each of the four directions is constant: K D 2;000

vehicles/length unit. The cost function at every point of coordinates .x; y/ and for
each one of the four directions is chosen as ci .x; y; / D 0; 04 � .1 C =K/. The
inverse demand functions on the area are chosen for example as D�1m .x; y; �/ D
�0; 02 � � C 9 (this one gives a maximum vehicle generation on the area equal to
450 vehicles/km2). The inverse demand functions on the destinations are chosen for
example as G�1m .x; y; �/ D 0; 02 � � C 10 (this one gives a maximum absorption
on the destination equal to 500 vehicles/km2).

12.2 An Imaginary City

We propose an illustration of our model. The city we draw is an imaginary city
which looks like Paris. We don’t intend here to give a truthfull representation of
traffic in Paris. We just want to explain some possibilities of our model, and how it
works with mathematical entries. These mathematical entries should be replaced by
engineering measures. Paris has some special interesting geometrical aspects: a ring
road that allows a clear-cut frontier with 35 gates, and the Seine river that provides
a natural obstacle crossed by bridges. As in the articles [6], we only consider a
continuum network over the urban area. The main difference between our network
and theirs is that we build an orthotropic network with horizontal and vertical roads
characterized with side constraints whereas their network is isotropic without side
constraint.

We represent eight possible destinations for the commuters who are spilled over
the yellow area, and want to go back home in the suburbs of Paris, which are
the colored triangles (see Fig. 7-left). On Fig. 7-right, one can see the meshing
implemented by the software FreeFem++. The edges of the small triangles do not
represent the network’s roads, they are just used for the numerical program. More
precisely, one has to imagine the network as an infinite collection of vertical and
horizontal lines on the city area. Figure 8-left represents the solutions we obtain
for a particular generation function �m. Figure 8-right represents the traffic load
for direction e1 (west to east):

PM
mD1hqmje1iC. To obtain the traffic assignment, we

will implement the mathematical program described in the previous chapter with
the cost functions, the demand functions and the side constraints.

Comments on Fig. 8-Left

We have chosen to represent the north generation function. Same results take place
for the seven other possible destinations. Vehicles are absorbed at north destination
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Fig. 7 Chosen destinations on the Paris ring road and meshing

IsoValue
-445.216
-407.671
-382.641
-357.611
-332.581
-307.55
-282.52
-257.49
-232.46
-207.43
-182.4
-157.37
-132.34
-107.31
-82.28
-57.25
-32.22
-7.18991
17.8401
80.4152

 Theta0 recherche x^10002
IsoValue
-7.5916
3.7958
11.3874
18.979
26.5706
34.1622
41.7538
49.3454
56.937
64.5286
72.1202
79.7118
87.3034
94.895
102.487
110.078
117.67
125.261
132.853
151.832

 Flux local0 recherche x^10002

Fig. 8 Generation function for the north destination (left), traffic load in direction West to East
(right)

(negative values on the destination area). They are generated on the rest of the area
(positive values on the rest of the urban area). More precisely, the negative values
near the destination are due to the smoothness of the demand function by the used
software (FreeFEM++). The closer the vehicles are to a destination, the more they
want to reach this destination.

Comments on Fig. 8-Right

We have chosen to represent the traffic load in the west to east direction. Same
results take place for the three other possible directions. Figure 8-right has to be read
from left to right, in the movement of the vehicles. Traffic load increases while
coming close to the destinations, because vehicles pile up there, before entering the
destination area.
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Route Advice Based on Subnetwork Properties

Victor L. Knoop, Hans van Lint, and Serge P. Hoogendoorn

Abstract Large scale routing strategies require many data, and high computational
power if the basic information unit is small. This paper checks the effects of
a routing strategy based on aggregated information, the average speed, of a
subnetwork. In a grid-network this routing is compared with shortest-distance
routing, and data-demanding shortest-time routing. Contrary to the fixed routing,
the proposed average-speed routing algorithm can avoid congestion quite long time,
and it still needs very few data. Furthermore, it is less sensitive to fluctuations than
the control based on speeds on all links. This is a good starting point for further
control based on the macroscopic fundamental diagram.

1 Introduction

Freeway traffic control have focussed on central approaches in the past decades.
Only recently, more spatial spread control algorithms are proposed [1, 2]. To find
optimal control in a centralized approach, one needs many data. Alternatively, one
can introduce multi-level control, limiting the amount of information needed by
omitting information at the lower level in the higher level optimization.

Theoretically, the information needs may be even very light: the network state
can possibly be expressed in two parameters, the accumulation and production
of a traffic network. Geroliminis and Daganzo [3] show that these variables even
are connected to each other, by the macroscopic fundamental diagram (MFD) or
network fundamental diagram. Main drawback is the homogeneity over the network
which is needed. Buisson and Ladier [4] were the first to test the how the MFDs
change if the congestion is not homogeneously distributed over the network. They
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showed a reasonably good MFD for the French town Toulouse in normal conditions.
However, 1 day strikes of truck drivers considerably impacted the traffic conditions,
and the MFD changed. For more details how inhomogeneity within the network
affects the MFD, see [5, 6].

The MFD can represent the traffic in an aggregated form, but up to now it is
unclear whether control can be applied based on aggregated data. Therefore, in this
paper we explore how alternative but still “light” information may be utilised for
traffic control, and in particular the effectiveness of routing. We do so by simulating
a network and applying different control strategies. The experimental set-up is given
in the next section, followed by the routing strategies in Sect. 3. Section 4 presents
the results and the paper concludes by the conclusions and the discussion.

2 Model

This section discusses the simulation set-up. It first describes what will be simulated
in terms of network and demands. Then, Sect. 2.2 describes the model used for this
simulation. Section 2.3 describes the output of the simulator that is used later in the
paper. The routing is discussed separately in Sect. 3.

2.1 Experimental Settings

In the paper an urban network is simulated, since this is the main area where MFDs
have been tested. We follow Geroliminis and Ji [7] and choose a Manhattan network
with periodic boundary conditions. This means that the nodes are located at a regular
grid, for which we choose a 16� 16 size. Then, one-way links connect these nodes.
The direction of the links changes from block to block, i.e. if at x D 2 the traffic is
allowed to drive in the positive y direction, at x D 1 and at x D 3 there are one-way
roads for traffic to drive in the negative y direction. We assume 2 lanes per link, a
1 km block length, a triangular fundamental diagram with a free speed of 60 km/h,
a capacity of 1,500 veh/h/lane and a jam density of 150 veh/km/lane.

Furthermore, periodic boundary conditions are used, meaning that a link will not
end at the edge of the network. Instead, it will continue over the edge at the other
side of the network. An example of a smaller grid network with periodic boundary
conditions is given in Fig. 1a. Traffic can continue in a direct link from node 13 to
node 1 or from node 5 to node 8. This way, all nodes have two incoming and to
outgoing links and network boundaries have no effect.

The destinations are randomly chosen from all points in the network. In the
network, there are 15 nodes chosen as destination nodes. There are no origin nodes.
Instead, at the beginning of the simulation, traffic is put on the links. Vehicles are
assigned to a destination, and for this distribution is equal over all destinations.
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a b

Fig. 1 A road network with periodic boundaries, and its division into subnetworks. (a) Illustration
of a 4 � 4 grid network with periodic boundary conditions. (b) A 16 � 16 network with a 4-block
subnetwork

When the cars have reached their destination, they will not leave the network,
but instead they are assigned a new destination. We use a macroscopic model (see
Sect. 2.2), hence we can split the flow of arriving traffic equally over the 14 other
destinations. The number of cars in the network is hence constant. This number
will be a parameter setting for the simulations, but throughout one simulation, it is
constant. The demand level is expressed as the density on all links at the start of
the simulation, as fraction of the critical density. Figure 2a shows the network used
under initial conditions.

2.2 Traffic Flow Simulation

This section describes the traffic flow model. For the traffic flow modelling we use a
first order traffic model. Links are split into cells with a length of 250 m (i.e., 4 cells
per link). We use the continuum LWR-model [8, 9] that we solve with a Godunov
scheme [10]. Lebacque [11] showed how this is used for traffic flows, yielding a
deterministic continuum traffic flow simulation model. The flux from one node to
the next is basically restricted by either the demand from the upstream node (free
flow) or by the supply from the downstream node (congestion):

�c;cC1 D min fDc; ScC1g I (1)

At a node r we have inlinks, denoted by i which lead the traffic towards node r
and outlinks, denoted by j which lead the traffic away from r . At each node r ,
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the demand D to each of the outlinks of the nodes is calculated, and all demand to
one link from all inlinks is added. This is compared with the supply S of the cell in
the outlink. In case this is insufficient, a factor, ˛, is calculated which show which
part of the demand can continue.

˛r D argmin
Œj leading away from r	


Sj

Dj

�
(2)

This is the model developed by Jin and Zhang [12]. They propose that all demands
towards the node are multiplied with the factor ˛, which gives the flow over the
node.

This node model is slightly adapted for the case at hand here. Also the node
itself can restrict the capacity. In our case, there are two links with a capacity of
3,000 veh/h as inlinks and two links with a capacity of 3,000 veh/h as outlinks.
Since there are crossing flows, it is not possible to have a flow of 3,000 veh/h in one
direction and a flow of 3,000 veh/h in the other direction. To overcome this problem,
we introduce a node capacity (see also for instance [13]). The node capacity is the
maximum of the capacities of the outgoing links. This means that in our network,
at maximum 3,000 veh/h can travel over a node. Again, the fraction of the traffic
which can continue over node r is calculated, indicated by ˇ:

ˇr D CrP
8i to r Di

(3)

The demand factor � is now the minimum of the demand factor calculated by the
nodes and the demand factor due to the supply:

� D min f˛r ; ˇr ; 1g (4)

Similar to [12], we take this as multiplicative factor for all demands to get to the
flux �ij , i.e. the number of cars from one cell to the next over the node:

�ij D �Dij (5)

2.3 Variables

In this paper, several traffic flow variables will be used. In this section we will
explain them and show the way to calculate them

Standard traffic flow variables are flow, q, being the vehicle distance covered
in a unit of time, and density, k, the number of vehicles per unit road length. The
network is divided into cells, which we denote by c, which have a length Lc . Flow
and density in cells are denoted by qc and kc .
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Table 1 Characteristics of the routing strategies used

Characteristic 1 – Fixed 2 – Speed-based 3 – Subnetwork based

Routing type Destination-specific, node specific split fractions
Update frequency fixed 15 min 15 min
Basis Distance Time distance/(subnetwork speed)
Model Analytical Probit, 3 draws Probit, 3 draws
Compliance 100 % 50 % per round 50 % per round

Furthermore, the accumulationN in an area X is the weighted average density:

NX D
X
c2X

kc � Lc
Lc

(6)

Similarly, the production P in an area X is the weighted average flow:

PX D
X
c2X

qc � Lc
Lc

(7)

Since the cell length are the same for all links in the network, the accumulation and
production are average densities and flows. Recall that there is a strong relationship
between the production and the number of completed trips[3].

3 Control Strategies

There are three routing scenarios considered in this paper:

1. Fixed routing
2. Speed-based routing
3. Subnetwork speed based routing

Details of these strategies follow below; a summary of the characteristics of the
strategies is found in Table 1.

For the initial situation, the route choice is determined based based on distance
to the destination. Traffic will take the shortest route towards the destination.
For intersections where both directions will give the same path length towards a
destination, the split of traffic to that direction is 50–50. Note that for the initial
conditions the distances are proportional to the times, since traffic is loaded in at
under-critical conditions and the traffic is at free flow speeds at the whole network.

For the case with fixed routing, the initial routes are used throughout the whole
simulation period. Routing strategies 2 and 3 are adaptive strategies which vary with
the travel times in the network. Each 15 min there is a route update. Both are based
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on a probit assignment [14, 15]. The strategies differ in the utility function which is
used as basis for the probit assignment.

For strategies 2 and 3 there is dynamic information which is used for the adaptive
routes. In strategy 2, the routes are determined based on the speed on the links.
Strategy 3 uses the average speed in a subnetwork as representative for the speed of
all links in the subnetwork. The subnetwork chosen here are 4 � 4 nodes, such that
there are 4 � 4 D 16 subnetworks in total (see Fig. 1b).

The travel times which result from these interpretations are disturbed with an
error of 10 % to mimic user interpretation. For each node, the shortest path (in time)
to each of the destinations is determined, indicated with Q!�. On the node, this leads
to a single decision: turn or straight, indicated with Q��. This process is repeated
three times, which gives three decisions for the route from node r to destination s.
These all give a split (� ) at node r , which are averaged, which is denoted by �C:

�Cj D
P

˘
Q��

�
(8)

Note that all routing variables are destination specific, but the destination index
is omitted for reasons of notational simplicity.

Then, this average split vector is averaged with the split vector in the previous
time period.

�
j
t D .1 � �/�t�1 C ��Cj (9)

4 Results

Figure 2 shows the network state for different routing strategies at different times.
The initial state is the same for all routing strategies. This situation, with the vehicles
distributed evenly, is depicted in Fig. 2a. In case of no routing, the congestion
clusters more and more. The reason is that the flow in these areas is low, and the
flow in the lower density area is high. Vehicles from the uncongested, or less strong
congested areas, can move quicker and reach the area of heavy congestion, thus
increasing the area of heavy congestion – see Fig. 2b.

With routing based on speeds, routing 2, the congestion is much more spread,
as is depicted in Fig. 2c, d. However, in the situation with route advice, the
traffic is adaptive and the vehicles will avoid the areas with the strong congestion.
Therefore, there is not such a clustered area of congestion, but there are several
local bottlenecks. These are “fed” by vehicles which are routed around the strong
congestion. This situation does not change considerably after this spread congestion
has set in, as the evolution from 1.5 (Fig. 2c) to 3 h (Fig. 2d) shows.

This level of control is only possible with detailed information of traffic speeds
at each cell of each link. However, proper traffic control is possible with much
less information, namely subnetwork aggregated information, as is shown by the
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Fig. 2 Network evolutions. (a) Start. (b) End no routing. (c) 1.5 h speed routing. (d) End speed
routing. (e) 1.5 h subnetwork routing. (f) End subnetwork routing

network states in Fig. 2e, f. Also here, the congestion is spread, meaning there are
different bottlenecks active, and thus the production is the sum of the capacities of
these bottlenecks.

Figure 3 shows the performance, i.e. the arrival rate, for the three routing
strategies. It shows that the situation without routing degrades to a situation with
very low performance quickly, and continously. With routing on a link level, this
process is interrupted each time when a new advice is computed and communicated
to the vehicles, every 15 min. This is visible in Fig. 3 by the decreasing performance
for one route, followed by a sharp increase of performance every 15 min.

With routing based on subnetwork speeds, the control is almost as effective, but
less sensitive to fluctuations. The performance remains on average slightly under
the average level with control based on the full information, but there are less
fluctuations. One reason is that the subnetwork average speeds, being the basis for
control in this routing strategy, will not fluctuate quickly.

Another measure of performance might not be the average flow [3], but the
arrival rate. This is what interests the end user in the end the most. There is a
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Fig. 4 Evolution of the key indicators. (a) Arrival rate vs production. (b) Standard deviation of
the accumulation

good relationship between the network performance (the average flow) and the
arrival rate at the destination, as is shown in Fig. 4a. The simulation starts with
all users distributed over the network, at undercritical densities. In this situation,
the performance is high, but the arrivals still low since drivers have to drive towards
their destination. This is the line at the right hand side of the figure. This line is equal
for all routing strategies since in the first time period of 15 min, the actual routing is
the same. The routing strategies can be ordered as follows, in which the first gives
the best result: speed routing – subnetwork routing – no routing. This results holds
both for the arrivals as for the network performance, i.e. the average flow.

As shown by Mazloumian et al. [16], density variance has an impact, which
has been further developed by us [17], stating that two-dimensional macroscopic
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fundamental diagram exists. The production depends on the accumulation and the
spatial fluctuation of the density. Note that in the simulation we have a fixed number
of vehicles, and thus have the same accumulation. We analyse the influence of
variation of density again for the situation with control, which is shown in Fig. 4b.
The spatial fluctuation of the density is expressed as the standard deviation of the cell
density. The production reduces with an increase of spatial fluctuation of density,
similar to other literature [16, 17]. However, low-level control (i.e., including
cell speeds) gives a higher production under similar spatial spread of densities.
Generally, that means that the form of the 2-dimensional network fundamental
diagram changes as result of the low-level control, and its interference with traffic
processes.

5 Conclusions and Discussion

In this paper the possibilities for traffic control are explored. In particular we focus at
the possibilities for routing based on the speed in subnetworks. The first conclusions
is that routing advice is effective and can prevent the breakdown of traffic which
happens without control. It might not be as effective as routing based on actual
speeds of all links, but is much more robust and the network performance varies
less.

Secondly, we found that this performance increase can be found with the current
speeds. Using the spatial spread of congestion, as suggested earlier [18] is not
strictly needed, but might increase of the network performance even further. This
is subject of further research.

Thirdly, the macroscopic fundamental diagram, even as function of two variables,
accumulation and spatial distribution of accumulation, changes in shape under
traffic control using link-level information.
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Dynamic User Optimal Route Assignment
System for Traffic Flows Microsimulation

Gregory Cherniak

Abstract The occurrence of the hunting phenomenon in route assignment systems
based on the Dynamic User Optimal principle is demonstrated. A method to reduce
its effect on the system is developed.

1 Introduction

One of the tasks that arise during traffic flows simulation is route assignment,
that is a search for the routes the vehicles follow. Described in the paper is a
route assignment system for the micro-model of traffic that utilizes parameters of
individual vehicles such as coordinates and instantaneous speed of an individual
vehicle.

Route assignment system described in the paper is based on the Dynamic User
Optimal (DUO) principle that assumes routes yielding the minimum estimated
travel time for every individual vehicle [1], assigned routes being corrected on a
periodic basis.

Road network model that serves as a basis for the route assignment system is
comprised of links and crossroads. A link is a one-way road part that has a single
entrance and a single exit. A crossroad is an element that connects two or more
links. For each pair of lanes in these links a crossroad specifies whether vehicles
are allowed to move from one to the other. In other words, road network is a
directed graph with links as its edges and crossroads as its vertexes. Hence standard
algorithms for path search in a graph are used, namely Dijkstra algorithm, reducing
the task to a search for edge weights which were chosen to be estimated travel times
of the corresponding links. Estimated travel time depends on static parameters of
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the link and vehicle distribution and their speeds along the link. Vehicular data is
collected from individual vehicles and aggregated on a periodic basis.

2 Data Aggregation

In order to estimate travel time of a separate link we use data on average travel speed
and queue length on the link. This approach was adopted due to effects inherent to
microscopic data collection.

If one to take the simplest way to estimate travel time on a link as a ratio of the
link length to the average travel speed on the link, given every vehicle on the link is
in the queue and reporting zero instantaneous speed one has infinite estimated travel
time whereas in reality it may prove quite low for short queues. Queueing time and
free motion time should be estimated separately. So all the vehicles are separated
in two groups: ones with a speed less than 5 km/h that are assumed to be queued,
and other vehicles that are assumed to be in free motion. The first vehicles group
provides data on the average free motion speed, making free motion time a ratio of
the link length and the free motion speed. Free motion speed is assumed to be equal
to the maximal travel speed if there are no vehicles in the first group. The second
vehicles group provides data on queue position and length. In order to make travel
time estimation there was developed a linear queue traversal model.

3 Queue Traversal Model

Queue traversal time depends on the nature of the queue. Described in this section
is a model for a queue formed on a signal-controlled junction with two phases –
red one with a duration of tr giving zero transportation capacity and green one
with a duration of tg giving transportation capacity equal to that of adjoining link.
Acceleration and deceleration processes are neglected, a vehicle is either stopped or
is moving at a constant average speed v. Another assumption used is that start- and
stop-waves in the queue are traveling at equal constant speed of vq .

Shown on the Fig. 1 are the pathes that vehicles follow through the queue in
the form of time dependency of vehicle position in the queue that is the distance
between the vehicle and the crossroad. Green signal duration is 60 s, red signal
duration is 90 s. Start- and stop-waves are shown in dashed lines.

Traversal time for the queue of the length L is an average duration of a time
period from the moment vehicle entered the tail of the queue to the moment it
reached the crossroad. Exact queue traversal time of a vehicle for a queue of a fixed
length depends on the traffic lights phase at the moment the vehicle reached the tail
of the queue. However it is difficult to predict this moment in constantly changing
road situation, so it makes sense to use average queue traversal time on the traffic
lights period. It is assumed that the moment above has a uniform distribution.



Dynamic User Optimal Route Assignment System for Traffic Flows Microsimulation 391

Fig. 1 Queue traversal

Consider one traffic lights period that is from 0 to 150 s. According to the Fig. 1
it may be splitted into three parts:

AB D tr ; BC D tg � L

v�q
; CD D L

v�q
(1)

where v�q is a normalized queue travel speed

v�q D
�
1

v
C 1

vq

	�1
(2)

Durations of BC and CD depend on queue length and are determined by the
intersection point C of a constant queue length line and a limit path. Limit path
is a path that have vehicle reaching the head of the queue (i.e. the crossroad) at the
moment the red signal starts. Exact queue traversal time function has a break at limit
pathes. We will call all the pathes between two successive limit pathes a group of
pathes. There are three groups of pathes on the Fig. 1 shown in different colors, and
there are two limit pathes Limit1 and Limit2.

Queue traversal time average for the queue length of L that features pathes from
the first group (shown in green on Fig. 1) on AC and pathes from the second group
(shown in red) on CD is

F .1/.L/ D 1

tr C tg

�
I
.1/
AB C I

.1/
BC C I

.1/
CD

�
D L

v
C tr

tr C tg

 
tr

2
C L

v�q

!
(3)
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The same average for a longer queue featuring pathes from the second group on AC
and pathes from the third group (shown in blue) on CD is

F .2/.L/ D F .1/.L/C tr

tr C tg
tr (4)

So the average queue traversal time will has a break at queue lengthes of Llim D
nv�q tg; n 2 N when point C moves from one limit path to another.

All the calculations above were made for a fixed-length queue. However in real
situations it is difficult to predict or measure the exact queue length for a specific
vehicle, so a linear approximation to the average queue traversal time found above
may suffice:

T D L

v
C a

L

v�q
; a D tr

tg
(5)

4 Test Road Network

The route assignment system in hand was studied on a simple test road network
of one source and one destination with two alternate pathes (legs) between them,
XPath being shorter than Y Path. Transportation capacity is assumed to be limited
by the controlled intersection only so that there is not more than one queue per leg
situated on its farther end and queues are assumed to be much shorter than the legs.
Theoretical analysis of such road network was done and its results compared to the
results of micromodeling. Network parameters that were used are originating flow
of 1,440 veh/h, legs lengthes of 1 and 1.5 km and equal traffic signal durations of
40 s for both leg directions (Fig. 2).

Presented on the Fig. 3 are Y Path time dependencies of incoming flow and traffic
loading that is vehicle quantity on the leg. Micromodeling results that are shown on
figure in solid line demonstrate that traffic loading oscillations are present in the
system. The period of oscillations for test road network is 240 s. Figures for the
X Path leg show the same picture.

The nature of the oscillations is the following. Initially there are no vehicles on
both legs. Since the X leg is shorter, all the vehicles will go to the X leg. A queue
begins to form on the farther end of the X leg when it has red traffic light to it.
Traffic flow would have started being equal for both legs from the moment estimated
travel times for the X leg reaches that of the Y leg, but that is not the case. At that
moment the X leg will have vehicles that are not in the queue but in the free motion
yet. Queued vehicles are making estimated travel time of legs equal, whereas free-
motion vehicles are making no effect on travel times. However after a little while,
when some of the free-motion vehicles on the X leg reach the tail of the queue,
the queue length on X leg will increase making its travel time larger than that of
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Fig. 2 Test road network

Fig. 3 System evolution

that Y leg, the legs swap their roles and the process repeats for the Y leg. So the
system does not stay in the equal-travel-time state, but has oscillations instead.

This effect is called hunting phenomenon. It is inherent to control systems
featuring an inverse feedback with a lag. Inverse feedback of the route assignment
system in hand is its very principle of route assignment: when one route is
overloaded the vehicles start to increase the load of the other route and vice versa.
It also has the three types of lag: the first one is caused by the periodic nature of
the data collection, the second one – by the periodic nature of the route updates.
Decisions the system takes are based on outdated data and the routes vehicles follow
are based on outdated decisions. The third type of lag, being much larger than
the first two, is not a direct lag, but an effect that may be represented as a lag –
unaccounted free-motion vehicles. We propose a way to substantially reduce the lag
and hence the hunting phenomenon by taking these vehicles into account.
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5 Hunting Phenomenon

Control systems with a lag may be described with a system of differential equations.
Let x be a queue length on the X leg in the vehicles number, the distance between
vehicles assumed constant and equals l . Then estimated travel time for X and Y legs
is (5)

Tx.t/ D Lx

v
C a

lx.t/

v�q
Ty.t/ D Ly

v
C 1

a

ly.t/

v�q
(6)

where Lx is the length of the X leg, v�q is the normalized vehicle speed (2).
Let xin.t/ be the incoming traffic flow on X leg at the moment t and xout.t/ – the

outgoing traffic flow on X leg. Initial conditions are

x.t/jt<0 D 0; xin.t/jt<0 D 0 (7)

Instantaneous queue increase equals to the difference between vehicle flows entering
and leaving the queue. Consider vehicles that entered the X leg at the moment t .
Since queue length is neglected in comparison with the leg length, free motion will
take

�tx D Lx

v
(8)

then vehicles will enter the queue. Instantaneous queue increase is

Px D xin.t ��tx/� xout.t/ (9)

Outgoing flow for a signal-controlled junction with two signal phases is

xout.t/ D

Io; tph � tg
0; tph > tg

; tph D


t

tr C tg

�
(10)

where I0 is maximum transportation capacity of the X leg.
Time dependency of incoming flow when taking into account average second

type lag of tc=2 (if routes are updated each tc seconds) is

xin.t/ D fx.t � tc

2
/I.t � tc

2
/ (11)

where fx.t/ is the percentage of the vehicles that are prescribed to take the X leg at
the moment t , I.t/ – total traffic flow. On a test road network the total traffic flow is
constant I.t/ D I D const.
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Decision function f .r/ is governed by the strategy of route assignment. In the
case of the Dynamic User Optimal assignment it is

fx.t/ D
8
<
:
1; Tx.t/ < Ty.t/
1
2
; Tx.t/ D Ty.t/

0; Tx.t/ > Ty.t/

(12)

So we have a system of two differential equations with a lag for the instantaneous
queue increase on X and Y legs (Eq. (9) and a correspondent equation for Y leg). In
order to compare its solution with the results of simulation traffic loading and the
incoming flow should be determined. Incoming flow was introduced above as xin.t/.
Traffic loading that is the number of vehicles on the leg is defined as a sum of free-
motion and queued vehicle numbers xfree C xqueue, where

Pxfree D xin.t/ � xin.t ��tx/ (13)

Pxqueue D xin.t ��tx/� xout.t/; xqueue � 0 (14)

The solution of the equations system is depicted on the Fig. 3 with a dashed line.
It is worth noting that developed equations describe system dynamics accurately
enough to make its qualitative analysis.

6 Inferred Queue Model

The differential equation system above can be easily reduced to a single differential
equation for the difference of queue length on the legs taken with phase ratio
coefficient: z D ax � y=a

Pz.t/ D Ii

a

�
a2fz.t � tc

2
��tx/C fz.t � tc

2
��ty/ � 1

�
� Io

a

�
.aC 1/xout

Io
.t/� 1

�

(15)

fz.t/ D

8̂
<
:̂
1; z.t/ < zst

1=2; z.t/ D zst

0; z.t/ > zst

; zst D Ly � Lx

l

v�q
v

(16)

This equation has two lags

�t1 D tc

2
C�tx; �t2 D tc

2
C�ty (17)

each comprised of a second-type lag of tc=2 and third-type lag of �t D L=v, the
third-type lag being larger than the second-type one for long enough links. One may
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Fig. 4 Real and inferred queue

show that the period and amplitude of a hunting phenomenon are proportional to the
lag. So in order to reduce hunting phenomenon one should eliminate third-type lags.

We propose that a predicted queue length should be used during travel time
estimation instead of current queue length. Prediction of the queue length should
be taken for the moment current vehicle reaches queue tail. In this way travel
time estimation made at the moment vehicle chooses between two legs takes into
account free-motion vehicles ahead and the effect that causes third-type lag is
greatly reduced (Fig. 4).

It is convenient to split the predicted queue into the real queue that is the queue
at current moment and the inferred queue. The inferred queue may be positive or
negative, but here for simplicity we assume it to be non-negative only.

xqueue.t C�tx/ D xqueue.t/C xinfer.t/ (18)

Using average transportation capacity for the traffic lights period (that is
I0=.aC 1/ for X leg and I0=.a�1 C 1/ for Y leg for two phase traffic lights) and
Eq. 14 we have an equation for the inferred queue:

Pxinfer.t/ D minf0; xin.t/ � Nxoutg � minf0; xin.t ��tx/ � Nxoutg (19)

It is worth noting that Pxinfer ¤ xin.t/ � xin.t � �tx/ since the real queue length
xqueue � 0. The assumption that the inferred queue is not negative was used to
address this issue.

Predicted queue was separated into real and inferred queue for inferred queue is
quite easy to implement in a micromodel. If at the moment t , when a vehicle enters
the X leg, incoming flow xin.t/ is higher than the average transportation capacity
Nxout then the vehicle is assumed to be in the inferred queue with a probability

Pinfer D xin.t/ � Nxout

xin.t/
(20)
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Fig. 5 System evolution with inferred queue introduced

After free motion period�t D L=v vehicle is removed from the inferred queue for
it must have reached real queue or already left the leg.

Presented on the Fig. 5 is the evolution of the system with an inferred queue
introduced. Period and amplitude of traffic loading oscillations decreased, hunting
phenomenon period was reduced from 240 to 80 s, i.e. from triple total traffic
lights period to a single. It should be mentioned that in both cases we observed
an oscillation synchronization effect that made the hunting phenomenon period be a
multiple of traffic lights period (which made it impossible to obtain periods smaller
than one traffic lights period under current conditions).

Another notable result of inferred queue introduction and the consequence of
hunting phenomenon reduction is the decrease of average travel time from 128 to
109 s.

7 Conclusion

Demonstrated in this paper is the occurrence of hunting phenomenon in route
assignment system based on Dynamic User Optimal principle and a method to
reduce its effect on the system.

Found in the research process was an effect of hunting phenomenon oscillations
synchronization with a traffic lights signal. The synchronization effect was observed
both in micromodeling results and in differential equations solution. It was found
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empirically that the period of oscillations tosc depends on the full traffic lights period
tg C tr as

tosc D m.tg C tr / D
�

�t

tg C tr
C 1

2

�
.tg C tr /; m 2 N (21)

where�t is the total lag present in the system.
Besides theoretical analysis of the developed equations on system dynamics

future research areas may include a search for a method to provide further stability
to the system. One of the reasonable options is to utilize a more complex decision
function, for instance that of Dynamic Stochastic User Optimal. In Dynamic
Stochastic User Optimal a route assigned to a vehicle is not always the one with
the shorter travel time, but the shorter the route the more probability it has to be
assigned to the vehicle. It is supposed that this approach may reduce feedback and
decrease oscillation amplitude.
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On Traffic Flow on the Arterial Network Model

Konstantin K. Glukharev, Nikolay M. Ulyukov, Andrey M. Valuev,
and Ivan N. Kalinin

Abstract The problem of comprehensive model development for traffic flow on a
city network is studied. Discrete traffic flow model with a safe distance is introduced
and its properties are studied, including queue dynamics and stable modes. Flow
properties in closed loops are also studied. Road intersections are decomposed
onto primitive elements (uniform lane segments and elementary junctions) and the
discrete flow model approach is applied, namely initial and boundary conditions
are constructed and model parameters are defined. An arterial network model
and topological network types are introduced. Routing is studied for certain
network topological types. Computational model for traffic network is created; some
simulation results and qualitative conclusions are presented.

1 On the General Problem “Traffic Jams on a City Road
Network”: Discrete Flow Theory – Network Navigation

Traffic jams are caused by a set of factors including traffic flows oversaturation and
consequent instability that can lead traffic to a complete stop. Flow stabilization
and control requires various network-scale feedback mechanisms including those
based on satellite navigation systems (GPS/GLONASS/etc.). In effect, constructive
solution of the problem in question suggests the development of theories and models
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Fig. 1 Discrete flow in a
uniform lane

for a new object – road network flow navigation. In this paper three types of models
are presented and discussed:

• Single channel traffic flow;
• Traffic flow through crossroads;
• Traffic flow on the arterial network.

These models create a foundation for understanding flow blocking mechanisms and
effects.

2 Single Channel Traffic Flow

We have developed a traffic flow microscopic model that treats a single car as a
particle of a flow and describes the flow of these particles in the form of differential-
functional equations [1–3]. Its simplest implementation is a model for traffic flow
on a single isolated lane. We consider a part of lane in ŒSC; S�	, with SC and S�
being entry and exit sections respectively (see Fig. 1).

Lane is filled with cars that follow each other effectively forming what is called
a discrete flow. We assume the following properties for this flow:

• Every particle’s speed is either equal to zero or directed along the coordinate
axis;

• Particle interaction is given with the law of safe distance [4] as follows:

Psi .t/ D
8
<
:

maxfPsi .t � 0/; Psi�1.t/g; �i > �.Psi�1.t//;
Psi�1.t/;�i D �.Psi�1.t//;

minfPsi .t � 0/; Psi�1.t/g; �i < �.Psi�1.t//

�i D si�1.t/ � si�1.t/;

i D 1; 2; 3; : : :

Ps0.t/ D f .t; s0/;

with si .t/ being particles’ coordinates, f .s/ being the leader motion function and
 .�/ being the safe distance function.
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The latter means that if particles in the flow have equal speed then the distance
between any two subsequent particles is equal to  .�/, � being the leader speed
(see Fig. 2).

Dependencies  .�/ and q.�/ D �
. .�//

correspond well to the experimental data.

� is the distance between neighbouring particles, � D ı
ıt

is the particle speed
in stationary uniform flow, q D 1

ıt
is the flow intensity and �� � 50 km/h is

the maximum flux speed corresponding to the maximum flux q� � 2;000 cars/h.
Relation between intensity and speed is called the Fundamental diagram.

Car dynamics is very complex because of presence of the great number of degrees
of freedom and, therefore, in a full detail doesn’t suit well for the traffic flow
modelling. Because of that we use a greatly simplified model for car dynamics that
allows instantaneous changes of speed. This simplification is justified by the fact that
in the case of high traffic flow intensity it is impossible for a particle to change it’s
speed in a wide range of values and acceleration/deceleration time is greatly smaller
than the time it takes a particle to move from one crossroad to another. Moreover,
simplified dynamics allows analytical analysis of different modes of motion.

To study various flow effects discrete flow is defined as a solution to the mixed
type problems described with initial conditions (speed and position for every car
in a lane) as well as boundary conditions given in the terminal sections of the lane
segment. Modelling results are conveniently presented in graphical form as a set of
particle trajectories.

For example, Fig. 3 presents the results for modelling of stationary flow recon-
figuration due to a leader speed change in assumption of free exit conditions. The
figure shows that there is so-called reverse wave that propagates in the direction
opposite to the flow.
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Fig. 4 Discrete flow in the uniform lane
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Fig. 5 Stressed periodic mode

Traffic light presence results in a boundary condition of a different kind – it
prohibits leader motion through the exit section of a lane during red light intervals.
It leads to queue accumulation before the traffic light, queue dynamics depending
on the traffic light mode and allowed velocities before and after the traffic light.

Figure 4 depicts queue dynamics for a single-shot red light and shows a wedge
filled with horizontal lines corresponding to cars with zero speed. Wedge height is
given as follows:

h D �red
j�1jj�2j

j�1j � j�2j ; �2 < �1 < 0;

with �red being red light duration, �1 – left slope speed and �2 – right slope speed.
There are conditions that may lead to the stabilized queue dynamics (Fig. 5) and

growing queue (Fig. 6). In the latter case queue is growing indefinitely and, finally,
reaches previous crossroad and blocks it. However, in both cases there is a mode
when a queue propagates in a direction opposite to the flow.

In the periodic queue mode it is possible to define flux count function (number of
particles passed through exit section) as a sum of linear and periodic components,
the former being equal to the average flux – see Fig. 7.
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Fig. 6 Queue buildup mode

Fig. 7 Queue dynamics in periodic mode

In addition to a lane segment (isomorphic to a straight line segment) lane loops
are studied. Modelling shows that the flow breaks apart to the set of uniform clusters,
particles in clusters having equal speed and distance to the local leader, clusters
being separated by vacant lane segments (see Fig. 8).

Considering city traffic, it’s biggest part goes through the arterial network. In this
network all the crossroads are either traffic light controlled or level-separated (via
bridges and overpasses). In both cases any time period is separated into subperiods
for which there are no traffic flow intersections on any crossroad in the arterial
network. For these subperiods arterial network is divided into the set of non-
intersecting uniform segments and loop lanes [12].

3 Crossroad Traffic Flow

Although the above problems do provide understanding of the traffic flow interac-
tions in various parts of a network, description of crossroads is still incomplete and
may be inadequate for the crossroads lacking traffic light control. To clarify this and
to create a detailed model of traffic flow on crossroads we have conducted detailed
simulation.
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Fig. 8 Clusters on a lane loop

X-cross

Binary splitter

Binary summator

Fig. 9 Sample crossroad trajectories web set

Crossroad area is covered with web-like allowed trajectories set (see Fig. 9). Joins
of this web are divided into three classes:

• Splitters
• Summators
• x-crosses
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splitters

x-cross
summators

Fig. 10 Crossroad bipartite
graph

In the case of x-crosses absence the web can be reduced to a bipartite graph (see
Fig. 10). Combinatory schemes for crossroad construction from binary splitters and
summators have been developed in [10].

The problem of maximizing the traffic flux through the crossroad [13] is studied
with the following assumptions. Maximum flux is considered in terms of the linear
component given previously and is defined as the mode having all the fluxes
through incoming and outcoming lanes equal to the maximum flux. Flux separation
matrix kkij k is introduced for the linear component, connecting linear component
intensities for pairs of enters (first index) and exits (second index) of a crossroad as
follows:

w� D kkij k0

wC;

w� and wC being linear component intensity vectors for incoming and outcoming
flows respectively.

Sufficient condition for achievement of the maximum flow through a crossroad
without x-crosses is given as follows:

• Number of incoming and outcoming lanes is equal
• kkij k matrix is bistochastic
• lij > hij , lij being trajectory length for i � j branch and hij being queue wedge

height
• �ij

�t
is an integer

• kij are rational numbers.

4 Arterial network flow

Complex and developed city road network may be practically reduced to its arterial
(or highway) segment that bears most of the traffic. Concept of highway is inherently
clear and highways are generally outlined in maps and atlases. Arterial network
consists of highways and interconnecting crossroads, parking and stop being
prohibited on the whole arterial network. This road network backbone separates and
unites so-called P-zones, i.e. other parts of road network that have different rules,
allowing stopping and parking. Figure 11 depicts an example of a regular arterial
network illustrating the latter principles [9].
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Fig. 11 Sample regular arterial network

Arterial network is covered with route lines connecting all P-zone pairs, route
lines being considered as allowed particle trajectories. Shortest route connecting
given pair of P-zones can be found unambiguously for some kinds of regular
networks, rectangular network for example. However, route density over the
rectangular network is strongly non-uniform [11]. Figure 12 depicts the number of
shortest routes through given network segment as a function of the segment direction
and position relatively to the boundaries of the network. It is clear that the route
density increases rapidly towards the network centre.

Due to existence of such effects, leading to the inevitable overutilization of a
network’s central areas and underutilization of a network’s peripheral areas in the
case of regular rectangular network the problem of the rational arterial network
topology is considered. We note that change in topology does not always require
road construction, but can be done via road markings and signs change – for
example, changing streets to one-way traffic or prohibiting left turn on some
crossroads (see Fig. 13).

On the microscopic level we consider the single crossroad structure and traffic
light control mode. Based on the introduced principles reference crossroad structure
models are developed (see Fig. 14).

So-called Design equations are developed, relating the crossroad structure and
traffic light mode across the network as follows:

n D diag
˚
�1i

� kkij k0

diag fi g n;

P
iefigCl i D 1; 0 � i � 1;

P
j2fig�l kij D 1; i 2 figCl ; i 2 1; I ; l 2 1;L; I D PL

lD1
ˇ̌figCl

ˇ̌
;
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Fig. 12 Rectangular network route density
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Fig. 13 Regular network topologies

summator

splitter

splitter

summator summator

splitter

Crossroad with n=2 Crossroad with n=3 Crossroad with n=4

Fig. 14 Crossroads for regular networks
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Fig. 15 Cyclic block on a sample crossroad

with n being vector of highway lane numbers, i being i-th traffic light period related
to traffic light period �i , l is in 1::L, L being the total number of crossroads in the
network, kkij k being doubly stochastic flux separation matrix, i; j D 1::I , I being
the total number of highway segments in the network, i�l being the set of indices of
highways outgoing from l-th crossroad and iCl being the set of highway segments
ingoing to the l-th crossroad.

The problem of symmetric loop design is considered [8]. It is shown that Design
equations are reduced as follows:

nC � nCn� C n� D 0;

nC being the number of incoming lanes in every junction and n� the number of
outcoming ones. It is taken for granted that the equations have the only non-zero
solution of nC D n� D 2.

Studies via traffic simulations were carried out together with the analytical
analysis [7].

Figure 15 depicts snapshots from traffic simulation of flows through crossing
of 2-lane and 4-lane roads controlled by traffic lights. In the frames a,b,c one can
observe the initial queue buildup and evolution and cyclic blocking in the frames
d,e,f. This kind of simulation experiments can provide data needed for analysis and
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Fig. 16 Time-to-live for an uncontrolled crossroad

optimization of particular network segments performance via traffic light mode or
traffic organization change. It may also be a useful tool for evaluating road network
projects for newly developed territories.

Simulation can also provide means to obtain high-scale integral characteristics of
network segments, like average passage time, channel capacity per road width unit
etc. as a function of traffic load structure.

Figure 16 depicts simulation results for simple non-controlled crossroad as
a graph of average time-to-live (TTL – time from initial moment to complete
self-blocking) against inversed flux (average time between particle entry to the
crossroad) with different curves corresponding to different flux separation coef-
ficient f – part of particles that does a left turn [14]. As the figure suggests,
TTL is infinite with � > 5:5 s and constant with � < 4:5 s, which means that
� � 5:5 s corresponds to the maximum non-blocking flux through the crossroad
(over 600 cars/h). Also, TTL is lower for higher f , what means that left-turning
particles do cause crossroad self-blocking.

Methods for rational routing with respect to the traffic dynamics and current road
situation are also developed [5, 6].

With the aid of software for simulation which development is based on the above
principles different routing schemes are examined, particularly schemes for routing
inside Moscow Sadovoye Ring (see Fig. 17).
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Fig. 17 Proposed routing scheme for the Sadovoye ring in Moscow

5 Conclusion

Traffic models development leads to the following problems consideration:

• Control of commuters demand;
• Quality standards and the problem of the etalon network;
• Flow observability and navigation;
• Network in congestion conditions;
• On the levels of control;
• Particular applications:

– Conditions for buildup and propagation of queues;
– Control of queues;
– Recommended configurations for simple crossroads;
– Instability of stationary flows;
– Feedbacks in traffic processes;
– Control of exits from P-zones;
– Principles for flow separation.
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Quasi-stationary Approach in Mathematical
Modeling of Traffic Flows Dynamics in a City
Road Network

Andrey M. Valuev

Abstract The paper proposes a new approach for traffic flows modeling in a
city road network for typical conditions of heavy traffic. The model is created
according to the assumption of flow uniformity in space (but not in time) for
each road segment between junctions. In format, it resembles quasi-stationary flow
models for technological network that proved their usefulness for control problems.
Some evidence for the model adequacy is obtained from computational experiments
based on simulation of car motion ruled by the safe distance law. With a certain
hypothesis of path choice by informed drivers the model gives the possibility
to predict traffic dynamics. The paper expresses Bellman’s type relationships for
conditionally optimum route choice that may be combined with general balance
equations expressing the quasi-stationary approach, which yields a closed predictive
model.

1 Motivation for a Quasi-stationary Continuous Flow Model
Introduction

Despite the fact that traffic flow is in fact a discrete flow of cars and other
transportation units, macroscopic models were developed. In these models traffic
flow is treated as analogous to a gas or fluid flow. These models may be very useful
for a single road, especially a highway, and somewhat applied to practical problems
of road networks study and control [1, 2]. They probably may be applied to small
networks but seem to be too detailed for computations for city road networks where
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the number of road segments between crossroads may be counted in thousands.
Other obstacle for these models application is not a computational but principal
question: in fact even the flow in a single segment is a mix of flows oriented to
different destination points; but this situation is not reflected by known macroscopic
models.

Discrete flow models representing the traffic flow on a road lane realistically as a
queue of moving cars or, in a more conventional way, as a cellular automaton cannot
cope with complexity of the problem of the entire network traffic flow representation
as well. It results from the huge dimension of models of these kinds. So solution of
any control problem for big city traffic on the basis of such models is practically
impossible.

The study of a simple discrete flow models reveals a specific feature for car chains
with constant input intensity periodically stopped with red traffic lights. Traffic flow
as a whole may be represented as a sum of uniform and periodical components,
the latter with zero average value [3]. Certainly, regular trends of traffic flow in
different parts of the city road network determine its behavior much more than these
periodical or stochastic fluctuations from it and must be taken into account in control
problems.

To generalize the above particular results the approach is developed that hap-
pened to be very useful for technological network control (e.g., [4,5]). It is so-called
quasi-stationary approach where flow in every uniform network arc is treated as
having the same density and speed, which change, however, in time. The basic part
of the model is Kirchhoff equations of two types, second type equation expression
depending on specific features of the network [6].

The paper presents an experience of constructing a model of quasi-stationary
traffic flows in a city road network realizing a known demand for transportation.
Flow propagation in the model is described analogously to technical networks (e.g.,
mine ventilation networks), but restrictions on car velocity and the law of safe
distance are taken into account as well. The model admits different ways of route
choice by car drivers.

2 Substantiation of Quasi-stationary Continuous Flow Model
from a Simple Hypothesis of Car Motion Ruled by the Safe
Distance Law

Due to the proposed approach me treat traffic flow at any uniform road segment
without junctions as a succession of cars moving with the same speed with
equal distances between them. If such a flow takes place in reality then there is
dependence between speed and distance known as the safe distance law [7]. This
fact is confirmed with numerous natural observations and experiments. In fact,
the dependence was established for really uniform flows and the question exists
whether it approximately expresses average characteristics of traffic flows when the
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uniformity does not take place. So numerical experiments were fulfilled in which it
was supposed that all cars have the same length and each driver tries to hold the safe
distance law between it and the preceding car but uniformity of speeds is disturbed
in some ways. Speed limitation was taken in account too.

We used for the safe distance law the formula proposed by Tanaka in 1963 [7],
namely

�.v/ D L0 C TRv C v2=.2b/; (1)

where L0 is an (average) car length, TR is an average driver reaction time and b an
average deceleration. For a given distance �s between leader car and the follower
we assume that the speed of the latter corresponds to (1), so

vSAFE.�s/ D b.�TR C
p
.TR/2 C 2.�s �L0/=b/: (2)

Within a certain oriented network segment cars are enumerated in order of their
appearance at its beginning point. Position of the i -th car is characterized by distance
si .t/ from segment beginning. The dynamics of the entire chain of cars on a fixed
segment is described with a hybrid system in which L.t/ M.t/ are numbers of the
first and the last car staying within the segment at the moment t :

PsM.t/ D
8<
:
VMAX.sM.t//; if sM.t/ < S 00 or t 2 TGREEN;

0; otherwise;
(3)

PsiC1.t/ D
8
<
:
vSAFE.�iC1.t//; vSAFE.�iC1.t// � VMAX.siC1/;

VMAX.siC1/; vSAFE.�iC1.t// > VMAX.siC1/;

i D L.t/; : : : ;M.t/� 1:

(4)

where change of L.t/ is determined by boundary conditions at the beginning of the
segment (s D S 0/ and M.t/ from boundary conditions at the segment end

M.t C 0/ D M.t/C 1; if sM.t/ D S 00 C 0: (5)

Equations (3) admit instantaneous change of the queue leader that is physically
impossible. This feature of the model does not affect sufficiently the general picture
of traffic presented by the model, since speed jumps for other cars due to (4) are
impossible. The model (2)–(4) evolves the approach presented in [3].

Our study revealed conditions in which the dependence between mean values of
distance between cars and car speed on the segment with constant VMAX.s/ and
formula (2). A series of computational experiments was fulfilled with different
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Fig. 1 Dependencies between average speed and density obtained in three computational experi-
ments with probability values 0.1, 0.4 and 0.7 for car appearance at the beginning point

conditions of car input in the beginning point and connection between adjacent
segments (with/without traffic lights regulation). Input flow was represented mainly
as stochastic one. It was established that in the absence of regulation points
representing instantaneous mean values of v and density (1=�s/ practically lie on
the theoretical curve, except its beginning (see Fig. 1).

In the case of regulation some degree of correspondence between the theoretical
curve and points obtained from computation representing average values for
the regulation cycle. However results of these computational experiments need
additional checkup.

3 Model Formulation

City road network may be represented as an oriented graph which nodes represent
junctions and arcs correspond to road segments between them, the j -th arc being
the set of collinear lanes having the following parameters: lengthLj , the number of
lanesNROWj, maximum allowed speed Vmaxj. The number of arcs is denoted as n, the
numbers of initial and final node of the j -th arc are denoted as BEG.j /, END.j /.
The network topology is defined with sets of adjacent arcs entering its initial point
(JInj,JOUTj/ and leaving its end.

The aim of an individual car is to reach a definite j -th arc starting from an
i -th arc. The function Qij.t/ expresses average amount of such cars starts per time
for the time interval [t � �t , t C �t]. The set of Qij.t/ for all i ,j represents the
entire demand for transportation. Another principal item of the research is the safe
distance law. It is assumed that a car moves with the maximum allowed speed V
until the distance between it and the preceding car diminishes to the safe distance
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Dmin.V /, afterward its speed diminishes to the speed of the preceding car V1 and a
distance to Dmin.V1/. Therefore, the maximum speed for a uniform flow in the j -th
arc is reached when the number of cars in it satisfies

Nj � Nmax j .NROWjLj ; Vmax j / D NROWjLj =.Dmin.Vmax j //:

We define the quasi-stationary speed as V0.Nj /(NROWjLj /, Vmaxj/, where

V0 D Vmax j for Nj � Nmax j .NROWjLj ; Vmax j /: (6)

Otherwise, V0 is the root of the equation

Nj=.NROWjLj / D Dmin.V0/: (7)

To develop the equation set for traffic flow dynamics we introduce Boolean
variables Ilkj.t/ indicating whether cars moving in the l-th arc and aimed at reaching
the k-th one choose the j -th arc as the next arc in their route. These variables may
be treated in a model either as constants or as functions of flow intensities. With
values representing the number of cars at the instant t moving in the j th arc and
aimed at reaching the k-th one we obtain the balance equations for quasi-stationary
flows (assumed to be uniform in every arc)

dNlk=dt D
P
l2JINj

�
Ilkj.t/ � V0j .

nP
rD1

Nlr.t/=.NROWlLl/; Vmax j / �Nlk.t/=Ll/

	
C

Qlk.t/ � V0j .
nP
rD1

Njr.t/=.NROWjLj /; Vmax j / �Njk.t/=Lj ;

k D 1; : : : ; n;

(8)

Njj .t/ D 0; j D 1; : : : ; n: (9)

4 Using the Model with Different Routing Principles

With the Eqs. (6)–(9) we may compare effects of different routing principles. If
all routes are chosen as optimal ones for network with minimum load, then Ilkj.t/

represent the matrix of optimum routes and are constants. The other principle is
the choice among suboptimum routes (which are calculated in advance for every
pair of arcs), the chosen route yielding the least time for current or prognosed
traffic situation, flow density being assessed by interpolation. In the last case, Ilkj.t/

functionally depend on Nlk.t/ or even Njk(�),�2[0, t] that may lead to a great
amount of calculations but does not principally complicate integration of (3.3).
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And the last way is to calculate routes that are (conditionally) optimal with respect
to instantaneous values of flow speed in the network arcs. Values of Ilkj.t/ are
expressed via Bellman functions Wjk.t/ that express conditionally minimal time of
reaching the j -th arc from the beginning of the k-th one. Optimality conditions for
Bellman function determination are

WBEG.j/k.t/ D minfWBEG.i/k.t/C Li=V0i .t/ j i 2 JINjg;

WBEG.k/k.t/ D 0; k D 1; : : : ; n:

(10)

Then

Ijkl.t/ D

1; if WEND.l/k D WEND.j/k C Ll=V0l .t/;

0; otherwise,
l 2 JOUTj: (11)

Equations (10)–(11) may be used altogether with (6)–(9) in simulation of traffic.
In fact, Eq. (8) are written under the assumption that does not form car queues

before them. Taking into account queues before junctions with traffic lights, we must
write analogous equations to different segments of arcs.

5 Conclusions

The proposed model treats somewhat ideal situations with no delays on com-
mutation points (it means that no flows intersect). To incorporate in the model
crossroads, both regulated and non-regulated, it is necessary to introduce other types
of elements, namely queues before crossroads and any intersection sites. It seems
that there is no principal obstacles to develop such generalization, but expression
dynamics of interacting queues needs detailed study of passing intersection sites by
particular cars.
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Some Problems of Rational Route Choice
for a City Road Network

Alexander A. Yakukhnov and Andrey M. Valuev

Abstract The paper treats some problems of rational route choice for a city road
network with changing traffic load. Determination of the optimum route in the strict
sense as a program acting from the start time of a certain trip is impossible, the cause
consisting in its dependence on future behavior of other drivers. Two approaches to
the problem setup and solution are proposed. The first consists in definition of the
entire set of suboptimum acyclic routes between start and destination points. For
the problem solution the generalization of method by Shier for determining the K
shortest paths in a network is proposed. On this basis the most reasonable route
may be chosen as the suboptimum route with the minimum prognosis duration. The
problem in question is that of the optimum route choice for a network with a known
traffic dynamics: its implementation may be based on regularity of traffic dynamics
trends taking place for a certain day of a week. The problem setup and Dijkstra
algorithm modification is proposed. Some aspects of its computational complexity
are studied both theoretically and by means of computational experiments. The
latter are fulfilled with our computer program aimed for routes optimization and
analysis of route method efficiency that may be studied on real networks as well
as randomly generated ones. In addition, as an alternative to dynamic programming
methods variants of branch-and-bound method are proposed for both problems.
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1 The General Problem of Rational Route Choice for a City
Road Network

The problem of a rational route choice, ideally the choice of the quickest one, arises
for any driver in the beginning of its route; acquisition of new information may
result in several changes of the route at arbitrary moments of the route. Even for the
case when the start and destination points as well as the start time stay the same for
a particular driver many times, as for routes from home to the job place, changes
in traffic situation may result in change of the optimum route. In fact the term
“optimum route” has a conditional meaning. Realizing that in the case of heavy
traffic the result of a definite route choice by any driver depends on the same choice
by another drivers (including those starting later) we must come to the conclusion
that at the start moment and during the entire route a driver principally has no
sufficient information for the best route choice even if he would have data from
exhaustive monitoring.

To be more exact, the present traffic situation prognosis, even if we take into
account its faults, may indicate that a certain route stay better that any alternative
routes, if difference between this optimum route and the next suboptimum route
exceeds effect of possible faults. On the contrary, if the difference between optimum
and suboptimum routes is small, preference of a certain route as the best one
is doubtful. However, in the latter case the cost of preference of an arbitrary
suboptimum route is low. Thus the suboptimum routes set definition is more useful
that attempt to determine the only best route.

It must be noticed that for a certain range of traffic situations and their dynamics
(this range may be wide enough) the genuine best route belongs to the set
of suboptimum routes established for a certain representative of this range. To
recommend a driver a rational route in the present situation it is sufficient to be
able to solve two problems:

• To define the suboptimum routes sets for “typical” traffic situations; only routes
containing no loops (“acyclic routes”) must be taken into consideration.

• To assess present traffic situation and elaborate a reliable prognosis of its
dynamics.

The more exact is prognosis, the smaller “typical” traffic situations set is sufficient
to cover the best route choice in possible situations with suboptimum route sets for
“typical” situations. The problem of prognosis having many ways of solution based
on various traffic flow models and prognosis methods is not considered, however, in
the paper.

The second approach to optimum route choice is based on knowledge of regular
trend of traffic situation within a day (trends for week days and weekends must
be treated separately). For long enough routes the optimum path with respect to
deterministically changing traffic situation may be other than for initial, final or any
intermediate traffic situation. For this type of route choice conditions (they are very
typical for large cities) the generalization of the quickest path problem is needed.
The proposed problem setup and the method of its solution are proposed below.
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2 The Problem of Definition of the Entire set of Suboptimum
Acyclic Routes

The double search method was introduced that solve the following problem of K
“shortest” (suboptimum) routes [1]. A network is given with known length of each
arc and a marked node; a numberK is given too. For each node including the marked
node (e.g., the 0-th node) one should establish the first K values in the row of
length of paths connecting the marked node and this node arranged in the ascending
order. Note that the first length is the length of the shortest path (or paths) between
nodes, the second is the length of path (or paths) having the next length value (first
suboptimum path) etc. To guarantee the problem solvability one must admit paths
having loops; for paths from the marked node to itself it goes without saying. Path
containing loops are, however, useless as routes for cars in the road network.

The proposed modified method enables simple restoration of routes itself, not
only their length, from calculated matrices of preceding nodes; second, it excludes
from the resulting paths sets those containing cycles.

In general case the problem is solved for an oriented graph. To determine it,
for each j -th node two sets of adjacent nodes are determined, IINj for nodes arcs
from which enter the j -th node and IOUTj, for nodes entered by arcs initiating in the
j -th node. Generalized Bellman function Wj is a vector with componentsWj1,. . . ,
WjK expressing the above mentioned row of suboptimum paths length. For an
arbitrary set {W .1/,. . . ,W .m/} ofK-dimensional vectors we determine the operation
MAXK{W .1/,. . . ,W .M/} as the operation of fetching K initial values from the
succession of values of {W .1/,. . . ,W .m/} components taken in the ascending order.
The operation ˚ of adding a scalar value to all vector components is introduced too.
Via these operators Bellman vector equations is represented as

W01 D 0; Wj D MAXKfWk ˚ dkj j k 2 IINjg; j D 0; 1; : : : ; m � 1: (1)

where m is the total number of network nodes. In iteration process of (1) solution
the value 1 for components is admitted with obvious rules of its use. Modified
algorithm determines simultaneously with Wj a cortege of K sets of nodes Jj1,. . . ,
JjK as subsets of IINj where begin the last arc of paths from 0-th node to the j -th one
having respectively lengthsWj1,. . . ,WjK . The set Jjk is empty iffWjk D 1: For Jjk

determination the operation ARGMAXK{j .1/;W .1/,. . . ,j .M/;W .M/} is used which
result is the cortege of K sets, the k-th one consisting of all j .l/ for which some
component ofW .l/ is equal to the k-th component of MAXK{W .1/,. . . ,W .M/}.

With the sets Jjk the problem of restoration of the entire acyclic suboptimal paths
is solved with a simple algorithm.
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3 The Problem of the Optimum Route Choice a for Network
with a Given Dynamics of Traffic Flow Intensities

We consider here formulation and properties of the optimum route problem for a
network with given dynamics. In networks with a heavy traffic all cars move in a
certain uniform road practically with the same speed and pass it in the same time.
This speed depends on flow intensity and changes in time. So we introduce the value
tij.t/ denoting the time of passing the arc between adjacent nodes i and j provided
that motion begins at the moment t . It looks very natural that the moment of reaching
the j -th node from the i -th node leaving the latter at the moment t is an increasing
function of t ; it is defined from the relationship Tij.t/ D t C tij.t/.

We solve the problem of optimum routes between the 0-th node and all other
ones provided that motion begins at the moment t and denote the sought values
Tj .t/, j D 1,. . . ,m. For our suppositions the following relationships take place that
generalize optimality conditions for a static network

T0.t/ D t; (2)

Tj .t/ D minfTi.t/C tij.Ti .t// j i 2 JINjg; j D 1; : : : ; m � 1; j ¤ 0: (3)

It is shown [2] that the solution of the problem in question for a given value of t
is given with the following modification of Dijkstra algorithm

Step 1. Let T1 D t , K D ;, K 0 D f1g.
Step 2. If K 0 D ;, halt. Otherwise determine the node i 2 K 0 on which the

minimum of Tj .t/ for j 2 K 0 is achieved and pass it fromK 0 to K .
Step 3. Add to K 0 the set of nodes J2in.K [K 0/ and determine for them

Tj .t/ D Ti .t/C tij.Ti .t//: (4)

For other nodes fromK 0 \ J2i let

Tj .t/ D minfTj .t/; Ti .t/C tij.Ti .t//g: (5)

Step 4. Return to Step 2.

Computing alongside with Tj .t/ the number kj .t/ of the preceding node on the
optimum route between the 0-th and j -th node gives a simple way of the entire
optimum route restoration.

Importance of the computational efficiency problem for the modified Dijkstra
algorithm depends on context of its solution. As for a particular driver, the problem
is solved once (at most, several times) for a route and does not need a great amount
of computations exceeding possibilities of a typical PC. The serious difficulty exists
in providing him with needed data as for any arc we must have vast arrays of data
for determination of dependence tij.t/, so for independent solution of a particular
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problem great data transfer is required from city traffic control center (CTCC) to a
driver’s PC. In fact, using the optimization algorithm based on (2) it is enough to
know only values of tij.Ti .t//. But in the latter case queries for these values arise
during computational process and delays for data transfer may make it too slow.

Another way of the problems solution is their permanent solution for current
t and different initial and final nodes in the CTCC and transfer of their solution
on query. In this case data transfer problem has less significance but the problem of
computational efficiency exists in two aspects: first, to compute a particular problem
with a fixed initial node and starting time with minimum computation, second, to
use results of solution for previous values of t for computation of optimum routes
for a new given starting time.

3.1 Computational Complexity of Dijkstra Algorithm
and Possibilities to Diminish It

Complexity of the very problem is determined by the number of nodes m and the
number of arcs n. Typical conditions for a city street network are:

1. For network nodes both the number degIN.v/ of adjacent nodes arcs from each
enter the node v and the number degOUT.v/ of adjacent nodes entering with arcs
from v are bounded on the entire set of nodes;

2. The following relationship takes place: 2m � n � 5m;
3. There are positive lower and upper bounds for distances between nodes on the

entire set of arcs.

For these conditions it is reasonable to assume that dimension of K 0 in the entire
process of algorithm fulfillment does not exceed a

p
n and for oblong cities it is

bounded with a constant value not depending on n.
Main computations for Dijkstra algorithm are

1. Determination of the minimum of Tj .t/ (Step 2)
2. Calculations of Tj .t/ by formulas (4) and (5) which total amount not exceeds
O.n/.

If array of pairs {j , Tj .t/}, j 2 K is not ordered, then computational complexity
is mainly determined with the first type of computations which amount is assessed
for an iteration with O.m1=2/ and for the entire algorithm with O.m3=2 C n/.

For Gribov modification or some similar approaches [3–5] the optimum number
of ranges of fTj .t/; j 2 K 0g values is O.n1=4/ and the entire time estimate is
O.m5=4 C n/. But is a mean value and for worse cases there is no preferences with
respect to the original method.

Best results are obtained if the set fTj .t/; j 2 K0g is organized as a binary heap
(B-tree). Then the guaranteed estimate is O.mlog2mC n/.

The difference between the above estimates is important for largest cities like
Moscow where the number of road network nodes is counted in thousands. Our
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computational experiments results correspond to these valuations, typical B-tree
height for mD 100 � 625 ranges from 5 to 10. Other possible way to achieve
high computational efficiency may consist in application of Levit algorithm [6] that
does not require a minimization operation at all. Alternative way to methods based
on dynamic programming may be application of branch-and-bound type method
similar to [7]. It is considered below.

3.2 Use of Interrelations Between Optimum Paths for Different
Start Time

The idea of using of results of computations for some values of t to solve problems
for other t values underlies a principal fact: possible values of t form a continuum
set, since possible paths between two nodes only a finite one. Dependencies tij.t/
are mostly unimodal or bimodal, so switches in time between routes serving as
the optimum ones are rare; the closer initial and final nodes are situated the less
switches exist. So to establish the sequence of optimum routes for all t it suffices
to compute them for relatively short sequence of t . To find the optimum route for
value t between two values of sequence with different optimum paths it is sufficient
to compare times for both paths and choose the best one.

Implementing Dijkstra algorithm it is possible to store integer values

kj .t/ D arg minfTi.t/C tij.Ti .t// j i 2 J1j g; j D 1; : : : ; m; j ¤ 1:

If for a given t for each algorithm step the demanded index i is unique (the
general case), then for small values of �t it will be the same for t C �t . Then
the correspondence between vertices of B-tree and nodes network nodes will stay
the same as for t .

Assertion 1. If all functions Tij.t/ are monotonous and continuous on the right
piecewise linear with a finite number of linearity segments, then for each pair of
nodes there is a finite number of intervals on which the optimum routes set are
constant.

Validity of the assertion results from the following facts:

1. The number of acyclic routes between each pair of nodes is finite;
2. On intersections of linearity segments of Tij.t/ for all arcs for each route its total

time is a linear function of time;
3. Minimum of a finite set of linear functions is a piecewise-linear function with a

finite number of linearity segments.

Remark 1. We do not say “the optimum route” but “the optimum routes set”
because for some time intervals existence of more than one optimum route is possi-
ble. It is obvious for regular square grid of roads with the same speed limitations.
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Corollary. For each route P on each time interval of Tij.t/ continuity for all its
arcs its duration TP .t/ is Lipschitz continuous, constant L being limited with value
not depending on P and intervals of t .

Remark 2. The above substantiation of Assertion 1 results in a definite method for
determination of bounds of the optimum path sets. To its usage for a marked initial
moment t 0 it is necessary to determine alongside with which the optimum route
the set St 0 of all suboptimum acyclic routes P , for which for a given value of �T
motion time satisfies TP .t 0/ � TOPT.t

0/C�T . Then for each t 2 Œt 0; t 0C�t	 where
�t D �T=.2L/ the optimum route belongs to S.t 0/.

For constancy of kj .t/ values the following necessary and sufficient conditions
are valid:

• Each new node added to the B-tree as its next node for t 0 > t has in it the same
position as for t .

Then the B-tree conserves its structure on each iteration (as for t/ both when a new
vertex is added (Step 3) or deleted (Step 2; then it is the leftmost B-tree leaf).

To get the proposed computation decrease it is necessary to fix the B-tree
structure after each iteration. Thus B-trees may be constructed not from beginning.

It is very likely that if the algorithm fulfillment succession is the same for t and
t 0 > t then it will be the same for the entire interval Œt; t 0	. A simpler test for
constancy of the algorithm fulfillment succession is that:

The next value computed as Tj .t 0/ D Tkj.t/.t 0/C tij.Tkj.t/.t 0// is greater than the
preceding one.

Other idea consists in determination of the optimum route to a certain node
via optimum routes to adjacent nodes. More detailed results of our computational
experiments will be given in the paper presentation on the conference.

The entire set of optimum routes for t 0 > t is the same that for t if and only if
kj .t

0/ D kj .t/. In that case mostly we have kj .t 00/ D kj .t/ for all t 00, t 0 > t 00 > t .
For each node the finite value of Ti .t 0/ is determined when the node is passed to
the set K . To be sure that the succession fil ; l D 1; : : : ; ng expressing the order
in which nodes enter the set K stays for t 0 > t the same that for t the following
check must be fulfilled. It must be established whether for each member j D il of
the above succession the condition is valid

kj .t/ D arg minfTi.t 0/C tij.Ti .t
0// j i 2 J1j \ fil ; l D 1; : : : ; l � 1gg: (6)

If the formula (6) is valid, then Tj .t 0/ may be determined by the formula

Tj .t
0/ D Ti .t

0/C tij.Ti .t
0//; i D kj .t/:

From the above arguments we conclude that for determination of the optimum
routes system for all t it is sufficient to determine it on a discrete succession. The
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Table 1 Statistical characteristics of computational experiments

The number Database Calculation Amount of Average Maximum
of nodes m capacity (Kbytes) time (s) data (Mbytes) tree height tree height

100 548 13.4 47.4 5.49 10
100 586 13.9 48.9 5.62 13
100 838 14.1 52.7 6.13 11
100 791 14 51.6 6.02 13
625 3594 51.0 256.3 9.64 20
625 4352 55.7 312.6 10.3 22
1024 8153 120.9 568.1 18.45 40
1024 7946 115.3 549.2 18.63 38
1024 8394 131.8 598.2 18.7 39

problem of determination of t values for which the optimum routes system changes
is similar to the problem of roots determination for a scalar argument function and
may be solved with the similar methods.

3.3 A Computer Program for Routes Optimization and Some
Results of Computational Experiments

The program developed by A. Yakukhnov is intended for solution of the following
problems:

1. To create interactive interface for transportation network display and editing:
2. To implement generation of a random network;
3. To calculate the commutation table, i.e., the table of costs of optimum routes

between pairs of nodes.

Statistical characteristics of computational experiments fulfilled on randomly gen-
erated networks is presented in the Table 1.

4 Variants of Branch-and-Bound Method for Both Problems

A branch-and-bound method aimed at calculation of the optimum flight plan (route)
for a civil aircraft was proposed in [7]. Its main characteristic feature is that it finds
that route in a dynamic medium, because dangerous weather phenomena and other
aircrafts that serve as forbidden areas for free flight move rapidly. When repre-
senting these areas as moving polyhedra we obtain for horizontal flight forbidden
areas (horizontal sections of spatial areas) as moving polygons. The optimum route
consists of arcs linking vertices of these polygons with orthodromy intervals and all
these arcs form a network changing in time. So the problem of the optimum flight
plan is a particular form of optimum routing problem for a variable network.
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Unlike dynamical programming the proposed method solves the only problem
of finding the optimum route (or a set of suboptimum routes) between a certain
pair of nodes (e.g., the I -th J -th ones) trying not to take into account all nodes
that lie beside the path in question. Moreover, when using the method we reduce
the network at each method iteration to its subset very slowly enlarging this subset
from one iteration to the next one. The possibility of finding the optimum route not
taking into account majority of nodes and arcs is based on the fact that road network
is planar or almost planar and so lower valuations of route cost beginning from a
certain node may be obtained from geometrical calculations. Considering a path
cost as the time of passing it and supposing the uniform speed limitation we obtain
that:

for an arbitrary network the minimum TIJ � D2IJ=VMAX and
for a rectangular road grid TIJ � D1IJ=VMAX,

whereD2IJ is a Euclidian distance and D1IJ a “city block distance”.
Other way of the method application for dynamical networks is a priori deter-

mination of fastest paths on static networks for static networks with minimum or
fixed traffic loads and usage of these paths to determine bounds for a dynamic
network with exceeding traffic loads in all arcs. It must be emphasized that these
static optimum routes are calculated once and dynamically optimum routes many
times.

In general, for determination of the optimum path (or a family of suboptimum
paths) each node tested as possible intermediate node on the path from the I -th
node to the J -th one is assessed with a lower bound of the cost of routes passing it
calculated with the formula

TFACT IK.tSTART/C TMIN KJ (7)

Valuation (7) excludes from the solution tree vertices corresponding to nodes that
lie beyond the domain of possible optimum (suboptimum) paths except nodes in the
vicinity of the initial node. So it may be said that this branch-and-bound method
permanently sees the target but dynamic programming based method see possible
routes to the target but not the target itself.

When seeking the only optimum path each node is represented with no more than
one vertex of the solution tree. On the contrary, when finding the set of suboptimum
paths with R minimum costs each node may be represented with up to R vertices,
every for some different way of reaching it.

5 Conclusions

Choice of the optimum path in the city road network is not a problem for particular
drivers only; it is the problem of efficiency of the road network performance.
Recommendations for drivers elaborated in the CTCC in the case of their massive
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use may result in more rational paths and gradual establishment of dynamic
equilibrium of traffic flows that is the best reachable situation. To attain it, permanent
monitoring of traffic flows and processing of its results must be combined with
efficient ways of particular rational route problems solution.
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Weighted Value Feedback Strategy in Intelligent
Two-Route Traffic Systems with a Bottleneck

Bokui Chen, Wei Tong, Wenyao Zhang, and Binghong Wang

Abstract Information feedback strategies are attracting keen attention recently
as the central part of intelligent traffic systems. Various strategies have been put
forward by previous researchers and have been applied in the model of symmetrical
two-route scenario. In this letter, a novel strategy for scenario with speed-limited
bottlenecks is raised, which is called weighted value feedback strategy (WVFS).
Combined with three former strategies, we simulated these four into a two-route
scenario with a speed-limited bottleneck. The results show that our strategy wins
over the other three in effectively enhancing and balancing the vehicle numbers,
as well as increasing the average flux on both routes.

1 Introduction

With the rapid development of global economy, traffic jams in urban areas have been
more and more serious, which have aroused the interest of scientists in different
fields to solve the puzzle with their expertise. Physics scientists are ones who have
made contribution, many concepts and methods in physics have been applied in
it [1–3]. During the past half century, a series of theoretical models to solve the
phenomenon in traffic flow have been put forward, such as car-following model [4],
kinetic model [5, 6] and particle hopping model [7]. Recently, the research on
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intelligent traffic systems has received more and more attention and to fabricate
a reasonable information feedback strategy has been the most important part to
solve the traffic congestion. Physics have already proposed many strategies and put
them into the application of symmetrical two-route scenario. In 2000, Wahle et al.
first put forward travel time feedback strategy (TTFS) [8]. Subsequently, Lee et al.
raised mean velocity feedback strategy (MVFS) [9]. Then Wang et al. proposed the
third one, called congestion coefficient feedback strategy (CCFS) [10]. All of them
have been simulated in the symmetrical two-route scenario with two exits and
the result shows that CCFS is better than others. The others three strategies have
been put forward recently by Dong et al., named vehicle number feedback strategy
(VNFS) [11], weighted congestion coefficient feedback strategy (WCCFS) [12] and
corresponding angle feedback strategy (CAFS) [13]. All of these have been applied
into a symmetrical two-route scenario with one exit and they have proved that these
three strategies are better than TTFS, MVFS and CCFS [11–13].

Accidents always lead to the change of the condition of the routes in our life,
such as the traffic accident, or terrible weather like dense fog and blizzard which
block the roads and limit the driving speed. Based on such situation, in this letter
a novel information feedback strategy is put forward in order to deal with the two-
route traffic systems with a speed-limited bottleneck, called weighted information
feedback strategy (WVFS). We will compare our new strategy with VNFS, WCCFS
and CAFS, and finally come to the conclusion of optimal strategy according to the
simulation results.

2 Related Definitions

2.1 Traffic Flux

The road conditions can be characterized by flux of two routes, and flux is defined
as follows:

F D Vmean
 D Vmean
N

L
; (1)

where Vmean represents the mean velocity of all the vehicles on one of the roads. N
denotes the vehicle number on each road and L is the length of two routes.

2.2 NS Mechanism

Vehicles on routes move according to Nagel-Schreckenberg (NS) rules [14] as
follows:

1. Acceleration: vi .t/ ! vi.t C 1=3/ D minfvi .t/C 1; vmaxgI
2. Deceleration: vi .t C 1=3/ ! vi .t C 2=3/ D minfvi.t C 1=3; di.t//gI
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Fig. 1 Sketch of two-route scenario with a speed-limited bottleneck

3. Randomization with probability p : vi .t C 2=3/ ! vi .t C 1/ D maxf0; vi .t C
2=3/ � 1gI

4. Vehicle motion: xi .t C 1/ D xi .t/C vi .t C 1/:

The vmax above is the maximal velocity of a car and di.t/ is the number of empty
cells in front of car i . In their simulations, the road is divided into cells of length
8m. Each cell can either be empty or occupied by just one vehicle at a certain time.
Meanwhile, the time is divided into time steps of 1 s. Thus, a velocity of n means
n � 8m/s.

2.3 Two-Route Scenario with a Speed-Limited Bottleneck

In previous research, the model was symmetric two-route, that is obviously far from
the real situation. To better handle the complicated road condition, symmetrical two-
route scenario with a speed-limited bottleneck is introduced in this letter (see Fig. 1).
At every time step, a new vehicle is generated at the entrance of two routes and one
route will be selected. If a vehicle enters one of two routes, the motion of it will
follow the dynamic of the NS mechanism. When the vehicle arrives at the exit,
it will be deleted.

In this model there are two types of vehicles: dynamic and static vehicles.
Suppose a driver is a dynamic one, he will make a choice in light of the information
feedback. On the other hand, a static one selects routes to enter at random ignoring
any advice. The ratio of dynamic and static travelers are Sdyn and 1 � Sdyn,
respectively.

2.4 Feedback Strategies

Therefore Dong et al. have proved that VNFS, WCCFS and CAFS are better than
TTFS, MVFS and CCFS, therefore we only do the comparison between our new
strategy with VNFS, WCCFS and CAFS.
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Fig. 2 Angles corresponding to each congestion cluster on the lane

VNFS: Every time step, the traffic control center will receive data of the total
vehicle number of the first 500 cells of each route, then shows them on the
board. Dynamic drivers at the entrance will choose the route with smaller vehicle
number [11].

WCCFS: At each time step, the traffic center collects the information of the
vehicles on the routes, then calculates the congestion coefficient according to a
weighted function and displays the results on the board. Dynamic drivers choose the
route with the smaller congestion coefficient. The weighted congestion coefficient
is defined as:

Cw D
mX
iD1

F.nij/n
w
i D

mX
iD1

�
k � nij

2;000
C 2:0

	
� nw

i (2)

where ni stands for vehicle number of the i-th congestion cluster.. nij stands for
the middle position of the i th congestion cluster. Here w D 2 [12]. k is a factor to
be determined. According to the simulation results, we found out that for the two-
route scenario with a speed-limited bottleneck, the average flux reaches maximum
at k D �1:7.

CAFS: Every time step, the traffic control center will receive data from the
navigation system (GPS). It is its function that the traffic control center computes the
corresponding angle of each congestion cluster (see Fig. 2) on the route, then sums
square of each corresponding angle up and displays it on the board. Dynamic drivers
at the entrance will choose one road with smaller corresponding angle coefficient.
The corresponding angle coefficient is defined as:
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iD1
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where nfirst
i and nlast

i stand for the positions of the first and last vehicle in the
i th congestion cluster. �i stands for the weight (corresponding angle) of the i th
congestion cluster.H denotes the vertical distance from the point T to the lane, and
in this letter, we set H D 100 [13].

WVFS: At every time step, the traffic control center gets the information from
the GPS and then calculates the weighted value of two routes according to the
following:

W l D
(

1
lA

C na
L2a
; route A

1
lB
; route B

(4)

where lA and lB stands for distances of the last vehicles on route A and route B
to the entrances, respectively. La stands for the middle position of the bottleneck.
na is the number of vehicles in the traffic bottleneck. Then the information will be
displayed on the board. Dynamic drivers at the entrance will choose the route with
the smaller weighted value.

3 Simulation Results

In the simulation, the length of the routes is set to be LA D LB D 2;000 cells
and the speed-limited bottleneck appears on road A between 300th and 500th
cells. In the bottleneck region, maximum speed of vehicles is set to be vmax D 1,
otherwise vmax D 3. The ratio of dynamic drivers is Sdyn D 0:85 and p D 0:25

is the random break probability in NS mechanism [11]. The simulation results
of vehicle number, speed and flux shown here are obtained by 100,000 iterations
excluding the initial 95,000 time steps. When it comes to the dependence of average
flux on dynamic travelers, we obtain the simulations based on 10 times average over
100,000 iterations in order to show more precise results.

Figure 3 displays how the vehicle number changes as time passes when adopting
four different strategies. From this figure we can see that the number of vehicles on
route B is about 400 or so for all of the strategies. But for the route A which has a
speed-limited bottleneck, the vehicle number is remarkably smaller than the route
B by using VNFS, WCCFS and CAFS. On the contrary, when we adopt WVFS,
the numbers of vehicles on route A and route B are almost equal. Therefore WVFS
can better balance the vehicle number on two routes. Since we presume that the two
routes are of the same length in our model and the density of the vehicles is defined
as the vehicle number per unit length, larger vehicle number means greater vehicle
density. Someone may be worried about that the high density will lead to traffic
jams. We find that the vehicle number on each route is about 400 when adopting
WVFS, but the length of each route is 2,000, which means each vehicle occupies 5
cells and there is 3 or 4 cells’ space between neighboring vehicles. In this situation,
the probability of traffic jams is low. However, high density of vehicles can easily
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a

c d

b

Fig. 3 Vehicle number of each route with (a) VNFS, (b) WCCFS, (c) CAFS, (d) WVFS. The
parameters are LA D LB D 2;000, p D 0:25, Sdyn D 0:85, k D �1:7 in WCCFS

lead to jams. Therefore the stability of vehicle number is very important for the
traffic. In Fig. 3, we can see that compared with other strategies, the vehicle number
is more stable for WVFS. So in terms of the ability to accommodate more vehicles
of a route, WVFS is the optimal strategy.

Nevertheless, it is not reasonable enough to come to the conclusion of which one
is the best only according to the vehicle number. More vehicles on the road can
lead to the decrease of average velocity. Fortunately, two parts should be taken into
consideration about the flux–the density of vehicles multiply the average velocity.
Combining these two factors can we describe the capacity of the routes more
objectively. So we do further research about the flux. Figure 4 shows the result
of flux versus time by applying four strategies, from which we can see that both the
value and the stability are almost the same. In this way, we have to take advantage
of average flux for judgment.

The average flux means the following quantity when the value of Sdyn is given:

Fave D
Pn

iD1
Pt

jD1 fij

t � n (5)
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a

c d

b

Fig. 4 Flux of each route with (a) VNFS, (b) WCCFS, (c) CAFS, (d) WVFS. The parameters are
set the same as in Fig. 3

where fij is the flux of the i th route at time j , t is the total time and n is the
number of route. From this definition, we find that the average flux is the reflection
of flux based on both the time and route average, thus it can reflect the merits of the
strategies more precisely. Figure 5 shows how the average flux changes along with
the ratio of dynamic drivers when adopting four different strategies, all of which
are among 0.336 and 0.350. We find that when using CAFS, the average flux nearly
remains the same as Sdyn goes up. Therefore no matter how many drivers prefer to
accept the advice on board, the average flux changes little and so does the capacity of
the road. We also find that, as Sdyn runs from 0 to 0.5, the tendencies of the average
flux are almost the same when the VNFS, WCCFS and WVFS are adopted. If Sdyn

runs from 0.5 to 1, the average flux decreases by using the VNFS and WCCFS, but
the average flux keeps stable when WVFS is adopted. Thus we can conclude that
WVFS is the best choice whatever the value of Sdyn.

We also investigate the influence of bottleneck length and bottleneck location.
Figure 6a reflects the affect of the bottleneck length on the average flux when the
WVFS is adopted and the head of bottleneck is set at L D 300. When the length
of bottleneck increases from 100 to 200, the average flux decreases obviously. But
when the bottleneck length goes up from 200 to 1,500, the decrease of average flux
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Fig. 5 Average flux by performing different strategy versus Sdyn

a b

Fig. 6 (a) Average flux vs the length of bottleneck when adopting WVFS. (b) The influence of
bottleneck location to the average flux when adopting WVFS

is not comparatively obvious. That is to say, when the head of the bottleneck is
settled, the average flux will decrease dramatically and then keeps stable as the
length increases. The traffic situation of the preceding part of the route affects
greater on the capacity of the whole scenario. Figure 6b can also serve as evidence.
It displays the influence of bottleneck location to the average flux when the WVFS
is adopted and the bottleneck length is set as 4L D 200. If the bottleneck is decided
at the entrance, the flux is low. The average flux does not increase obviously as the
position of the head of bottleneck changes from 100 to 1,500. Thus we deduce that
the greatest negative influence appears when the head of bottleneck is set at the
entrance. As the head of bottleneck moves to the exit, the influence decreases.
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4 Conclusion

In this letter, we put forward a novel information feedback strategy called weighted
value feedback strategy for a two-route scenario with a speed-limited bottleneck.
Combined with previous work, we compare WVFS with VNFS, WCCFS and
CAFS, and apply all of them on the model for simulation. The relation of the
vehicle number and flux versus time is obtained, as well as the average flux versus
proportion of dynamic drivers. From the simulation results, WVFS cannot only
effectively enhance and balance the vehicle number on both routes, but increase
the average flux on the routes as well. The influence of length and location
of bottlenecks on the scenario is also studied carefully, which shows that when
the bottleneck is at the entrance, the negative impact to the whole routes is the
greatest. The negative impact decreases and finally falls stable with the location
of a bottleneck leaving the entrance.
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On Traffic Control Means Recognition
in Intelligent Monitoring and Traffic Safety

M.V. Yashina and A.A. Vinogradov

Abstract Methods of automatic recognition of traffic and pedestrian control means
are in high demand today. Many problems in this field are not solved yet, or solved
with significant restrictions in their work. Our approaches and methods help to
advance these complex problems closer to practically important goals. Here we
describe our approaches to smartphone-based recognition of traffic lights, traffic
signs and “zebra” pedestrian crossings. These are all needed and very important for
ensuring road safety and traffic regulation.

1 Introduction

Methods of automatic recognition of traffic and pedestrian control means, such
as road signs, traffic lights, pedestrian crossings, etc. in intelligent monitoring
problems are very important for both organizations in charge of the placement and
maintenance of those means, and drivers directly in movement. These methods
are in high demand on the actively developing market of navigational computer
software and systems, for analysis of traffic flow characteristics and for ensuring
safety in saturated traffic and pedestrian flows.

Our recognition problems are solved using modern consumer video cameras,
smartphones and computers. Developed applications can be used for driver escort
and assistance as well as for driver warning in dangerous situations.

Some problems in this field can be considered as almost solved. For example,
the problem of vehicle registration number recognition is deeply researched and
is widely used in existing intelligent systems, i.e. in [1]. However, many more
problems are not solved yet, or solved with significant restrictions in their work.
One of such problems is the automatic recognition of parking rules violations, the
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Fig. 1 MSRR mobile
laboratory

automatic (or even semi-automatic) solutions of which are not yet implemented.
Our approaches and methods, presented further, help to advance these complex
problems closer to practically important goals.

Currently, there is a rapid increase in the degree of integration of electronic
vision devices into everyday life. The improvement of technical capabilities of
devices for video capture, information receiving and recording, data exchange,
their raising compatibility with various computing devices allow monitoring of
required objects, visual and statistical information processing, development of real-
time mobile systems for objects recognition. The relevance of capture and automatic
processing of data in real-time for the legal issues arising from events on the road
network can also be noted.

We aim to explore capabilities of medium level consumer devices and computers
that can be connected in a system, for which we can create algorithms for solving
problems of recognition for ensuring driver safety, as well as for data capture,
including cases where a legally relevant visual confirmation is needed.

In the Scientific-Educational Center “Intelligent Monitoring, Communication
and Transport Control” (SEC IMCTC) the technologies of mobile video monitoring
of flows is developed under the supervision of Prof. A. P. Buslaev since the begin-
ning of the 2000s [2–5].

In 2005 a photo camera-based monitoring system was built for solving the
problem of road sign recognition. Such technologies are being tested on mobile
laboratories, on which special equipment is mounted. One of these laboratories –
the Mobile Street Road Receptor (“MSRR”) – is shown in Fig. 1.

It has to be noted that similar systems were then being actively developed around
the world. For example, an algorithm using neural networks was demonstrated
in [6]. Such approaches undoubtedly have educational value, but are not fit for usage
in realtime systems due to high computational complexity of the algorithm.

Now means of video capture have reached an acceptable quality to solve the
challenges of object recognition in real time while capturing the information directly
from the device’s video stream. In the next section we describe the recognition of
traffic lights, which is very different from the problem of recognition of road signs,
as described in Sect. 3. The difficulty in recognizing traffic lights on an image or
a video stream is that they glow. Whereas road signs contain distinct monochrome
colors and brightly stand out of natural objects, traffic lights glare and gleam, which
leads to non-uniform distribution of color on the object that changes depending on
the angle of view. Due to the fact that the traffic lights and road signs are in the
field of vision of the camera for a short time, their real-time recognition algorithms
should be as simple and fast as they can be. It will be taken into account below that
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the problem of object recognition can be divided into two stages: localization (A)
and object feature detection (B).

2 Recognition of Traffic Light Objects

2.1 Problem Description

Input data for the problem algorithm is an image or frame of video stream in the
RGB color format, from a camera mounted on the dashboard of a moving vehicle
(Fig. 2.). This perspective allows us to analyze the same information flow that the
driver receives while driving. We need to find the object on the image, specify the
type of traffic light and calculate its characteristics.

(A) The localization process is to select the input image or video frame rectangular
area containing a traffic light;

(B) The recognition process is to process the areas obtained in the localization
process.

The problem of traffic light recognition is largely determined by the traffic light
image capture method type:

1. Capture with a stationary camera;
2. Capture from a moving camera, mounted on the vehicle dashboard.

For the problem of recognizing a traffic light with a stationary camera, we need
to restore traffic light mode function of �.t/, which is defined by the five possible
values depending on the time t (frame number):

�.t/ D

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂̂
:

0; if at the moment t no light is active (black)I
1; if at the moment t red light is activeI
2; if at the moment t red and yellow lights are activeI
3; if at the moment t yellow light is activeI
4; if at the moment t yellow and green lights are activeI
5; if at the moment t green light is active:

In the case of the recognition of traffic lights with a moving video source we only
want to determine the momentarily active traffic light mode.

Also to meet the challenges of mapping the distribution of required objects
and evaluation of the effectiveness of their location, a link of objects with GPS
coordinates is necessary. The coordinates of the found object are transferred to the
server side, where a map of recognized objects is stored.

As mentioned above, the detection of traffic lights on video sequence is
complicated by a high degree of dispersion of the color signal in the image (Figs. 3
and 4).
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Fig. 2 Russian mentality features

Fig. 3 Red signal has a high degree of dispersion in the RGB color matrix

2.2 Traffic Light Recognition Analysis from a Stationary
Video Source

This separate problem is of great practical importance. To implement the methods of
obtaining information from monitoring systems as well as information about traffic
management systems, an external automatic independent control over their work is
needed. For the accuracy of the information a long processing of the parameters
of the system running is needed. This will allow to collect statistical data, which
will help evaluate and address the shortcomings of the existing system or its current
settings.
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Fig. 4 Traffic light color change depending on environmental conditions

Initial localization, or finding a traffic light on the video stream, can be done
manually or automatically. Traffic light is determined by the color and geometric
properties: we search for colored spots that are located in a straight vertical line
close to each other and having the similar size. Color clusters of primary colors (red,
yellow and green) are determined. We also calculate the diameter and the center of
mass of spots. If the center points of the color spots have coordinates

.xr ; yr /; .xy; yy/; .xg; yg/;

then the traffic light is determined by the following condition:

abs

ˇ̌
ˇ̌xr � xy yr � yy
xg � xy yg � yy

ˇ̌
ˇ̌ � ":

Thus, after a full cycle of the traffic light, we obtain a rectangular region that
describes the desired object (Fig. 5).

The following requirements for video source position and angle necessary for the
correct use of the developed applications were established:
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Fig. 5 Automatic traffic light object localization as implemented on a smartphone

• Stationary capture angle. The object of analysis must be in the same location in
the frame throughout the capture and must not move in the frame. To provide the
necessary camera immobility a stand or bracket can be used to secure the capture
device;

• When using manual localization: conformity of the recognition area with the
object of research. The user selected area should cover the analyzed object
and exclude analysis of the image background. Fulfillment of this requirement
directly affects the accuracy of the analysis and the information obtained.
Sufficient application accuracy is achieved with an accuracy of selection (the
presence of the required object in the selected area) not less than 90 %;

• Absence of overlapping objects that prevent recording. Moving objects that
enter the processing area frame and interfere with the analysis of the object
considerably reduce the accuracy and make it impossible to obtain the correct
information;

• Weather and light conditions. The application can operate with sufficient accu-
racy under different lighting conditions and weather. However, in special cases,
such as heavy rain, snowstorm or night capture, manual adjustment of application
parameters may be needed for proper operation.

Applications for stationary PCs and smartphones running Google Android were
developed. Portable implementation functionally copies the implementation for the
PC, with the exception of that the automatic localization takes longer and there is
no output of calculated parameters charts and diagrams.

After finding the area of traffic light object its processing and the evaluation of
numerical parameters takes place. We find numerical parameters such as:

• The current active mode of each traffic light;
• Durations of previous modes of each traffic light;
• The percentage of the activity of each mode in the current cycle;
• The mean percentage of the activity of each mode for all cycles;
• Pie charts of traffic light modes in the current cycle and in all cycles of operation

(Fig. 6);
• Graphs of active modes and color channels distribution (Figs. 7 and 8).
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Fig. 6 Analysis of the function �.t/

Fig. 7 �.t/ function plot

Fig. 8 TrafficLightRec PC application interface

2.3 Traffic Light Recognition with a Moving Video Source

To create various systems for ensuring road safety, such as “black box” vehicle
systems, a solution of the problem of online object recognition is required. For
example, the system can advise the driver not to go past a red traffic light signal
while passing an intersection. This allows fast processing of incoming information
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and its verification, with the possibility of instantaneous signaling to the driver and
transmitting information to the server for further processing and storage. To solve
these problems the use of the simplest and most lightweight algorithms are required
[7,10]. For example, to detect the traffic light active mode a geometric criterion can
be used, that is, the position of the changing segment in the area of the traffic light.
This algorithm, in some cases, has a large error, but sometimes it is more convenient
and faster than a color recognizing algorithm.

The usage of smartphones as client-side devices can reduce the overall system
cost and increase its scalability – at the moment there are many different models
of mobile devices that are suitable for the solution of problems of recognition and
monitoring. Almost any of them can be used to create computer vision systems.
Specific technologies and means of implementation of the recognition problem
depend on the choice of smartphones and their operating systems. In particular,
for smartphones running Google Android the OpenCV software library exists, that
contains a large number of methods of computer vision adapted to mobile platforms.
Its use greatly facilitates the creation of software for recognition systems and saves
time and device performance load.

3 Traffic Sign Recognition Problem

Using the control, identification and analysis of the distribution of road signs in the
city tasks such as city traffic flow optimizations, the removal of traffic jams and
registration of traffic rule violations can be performed (Fig. 9). For example, the
system can be used in conjunction with the license plate recognition systems for the
detection and registration of violations such as stopping and parking under the “No
Parking” road sign, which is a typical and common violation in Moscow. In Fig. 10
one of the situations where such a system can be applied is shown. The plan of the
system is shown in Figs. 11 and 12. In [2] in the 2005, a solution for traffic sign
recognition using photographic equipment was described, including a description
of the method of color detection of localized road signs (color vectorization). These
methods form the basis of our work. In [2] methods for detecting all types of traffic
signs are described. To address recognition problems in real time described in this
article, only some road signs are important. Among those particularly important
to recognize the signs “No Stopping”, “Speed limit,” “No passing,” “ Pedestrian
crossing” can be distinguished. To be able to use the application in the real world
conditions, we want to automate the process of finding the sign on the frame
(localization) and the recognition of the sign, reducing the user actions required
to prepare the system and for use in the operation of the system to a minimum.
The localization process is conducted based on two kinds of features: color and
geometric. Many signs that are important for us have a clear red borderline on
the edges of the sign. Therefore, the first step is the normalization of the red
color in the image, that is, bringing different shades of red to a perfect red color
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Fig. 9 Red color dispersion
on a traffic sign

Fig. 10 A violation of the
road sign 3.27 No Stopping

Fig. 11 Parking rules
violation recognition system
concept scheme
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Fig. 12 An existing traffic situation recognition system (MUDRETS) [4]

Fig. 13 Red color normalization

Fig. 14 Road sign localization

(RGB: 255, 0, 0), and the search of closed borders in red (Fig. 13). On the second
step we evaluate the form of the found borders. If an ellipse or a triangle is
recognized, then we say that the sign is localized in the found area (Fig. 14). The
process of recognition of the sign is performed on a rectangular area drawn around
the localized area (elliptic or triangular). The area is divided into 16 equal parts
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Fig. 15 Color vectorization

and color vectorization is performed for each of the parts (Fig. 15). A comparison
of found color vectors with color vectors from the road sign database is then
performed. If the distance between the current road sign color vector and the color
vector of the database sign is less than the threshold value, the sign is considered
recognized and the user is alerted.

4 Recognition of a Pedestrian Crossing

To ensure safety on the road the problem of pedestrian crossing real-time recog-
nition on a video stream with recognition of its occupation is also very important.
Moreover, the developed methods can be used for detecting violations by drivers as
well as violations by pedestrians on the crossing. The task is to find a pedestrian
crossing using a mobile video source, mounted on a car dashboard, [8]. According
to the traffic rules of the Russian Federation, pedestrian crossing can be indicated
with markings (“zebra”), and road signs (Fig. 16). This task is of high practical
importance, especially in Russia. The relatively recent (2009) changes in the traffic
rules introduced fines for drivers who do not stop before a pedestrian, who stepped
onto the “zebra” road crossing. Unfortunately, because of this many pedestrians
think they have a right to cross the road when and where they want, and literally
jump under the wheels of passing cars, even during active prohibiting pedestrian
traffic light signal.

Methods of road signs recognition have been described in Sect. 3. In the case
of a pedestrian crossing sign, detecting the red edge of the prohibitory sign may
be replaced by a blue border detection of the road crossing sign. Otherwise the
recognition method remains the same. For detecting crosswalk road markings an
image area binarization and evaluation of the graph of the distribution of white
pixels in the search area algorithm is used. Binarization is performed for the image
converted to black and white. Binarization threshold (intensity of gray) is 128
(in range from 0 to 255).
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Fig. 16 Pedestrian crossing indication

Fig. 17 Binarization of the distribution function

There are two ways of processing the selected search area, [9]:

• Wide viewing angle (DVR): Vertical rectangular search area processing. In this
case, the X axis corresponds to the column number of the rectangular search area,
the Y axis – to the number of white pixels in the column;

• Narrow viewing angle (video camera).

Processing is made by trapeze parts. X-axis corresponds to the number of trapezoids,
Axis Y – to the mean intensity of color in the current part. Before the analysis of the
distribution function of white pixels in the search area its binarization is preformed.
If the Y coordinate of the specified point is greater than the upper binarization
threshold value the coordinate value is set to 1. If the coordinate Y is below the
lower binarization threshold value it is set to 0. If the value is between binarization
thresholds it is rounded to the nearest integer value. In this case, a warning of a
possible detection error is displayed (Fig. 17). If the chart contains three peaks
or more, the area is considered to contain a crosswalk. In this case, an alert is
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Fig. 18 Crossing occupation determination

displayed in the application window. To determine if the crossing is occupied the
uniformity of the area distribution graph is estimated. We compare all the peaks and
the distances between the peaks of the distribution function by their length. If there
is no difference or small difference the crossing is considered empty. If there is an
average difference a message of possible crossing occupation is displayed. If we see
a large difference indication of crossing occupation is displayed (Fig. 18).

Functionally, the road crossing recognition algorithm consists of three steps:

1. Recognition of the crossing road sign;
2. Recognition of the zebra crossing;
3. Recognition of moving objects on the crossing (optional).

5 Conclusion

To map the distribution of traffic signs and evaluate the placement of traffic control
elements a link to the current GPS-coordinates is important for the GPS-track
creation. The coordinates can be sent to the server for tracking in real-time and
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long-term storage. To implement these methods it is useful to use smartphones
as client devices. Although they have much lower computational capabilities and
camera quality than the video camera C laptop connection, they are much less
demanding on power, take up little space and are easy to install. The described
methods have a portable implementation and can be used on smartphones running
Google Android OS. An analysis of the algorithm complexity and devices’ compu-
tational capabilities has been conducted, and an effective system architecture was
determined and created. Thus, there are several options for creating monitoring
systems using the elements of the described methods. Each option has its advantages
and disadvantages, and should be selected based on the specific requirements and
objectives.
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Interaction of Cars and Bicycles on a One-Way
Road Intersection: A Network CA-Based Model

Jelena Vasic and Heather J. Ruskin

Abstract Modelling of heterogeneous traffic including non-motorised modalities is
a topic of increased interest, as ‘greening’ becomes an integral part of transportation
science. The variation of form among these heterogeneous flows means that models
developed to represent them are just as diverse. The particular case of interest here
is that of lane-sharing between bicycles and motorised vehicles, with positional
discipline. A cellular automata-based model is developed and applied for the study
of this kind of mixed traffic.

1 Introduction

In the push towards ‘greening’ of urban transport, encouragement and facilitation
of alternative modalities features prominently, owing to the associated benefits
that span environmental, health and social domains. Heterogeneous traffic flows
including non-motorised modes, especially bicycles, have attracted less extensive
modelling efforts to date. Our work offers a contribution in this area by way of a
model for the type of heterogeneity formed through lane sharing with ‘positional
discipline’, which is characteristic of Dublin and other cities where dedicated
bicycle infrastructure is scarce and streets relatively narrow.

The added complexity involved in modelling heterogeneous traffic, as compared
to that of the mode-homogeneous case, has two components: one that stems from
differences in vehicle properties and driver/rider behaviour among different mode
types and another arising from unique interactions that occur between specific pairs
of modalities. In terms of these, the inclusion of the bicycle in a traffic model
requires a representation of cyclists’ behaviour and the allowance for interactions
between bicycles and motorised traffic.
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All bicycle-focused modelling work must, indeed, include some manner of the
former. However, characteristics of bicycle-only flow and related road capacities,
including the bicycle-only fundamental diagram and levels of service, have been
the central topic of a number of publications. These are reviewed in detail in [1],
where the authors also present a cellular automaton bicycle flow model of their own,
representing ‘two abreast’ bicycle flows. Another bicycle-only flow model using
cellular automata, where multiple bicycles can occupy a single cell and distinction
is made between slow and fast cyclists, is presented in [2].

Interactions between bicycles and motorised vehicles are implicit in models of
broadly heterogeneous traffic, found, e.g., in many Asian countries, where any type
of vehicle can occupy any lateral position on the road. A number of models aimed at
representing this form of heterogeneity, all based on space-continuous simulation,
are reviewed in [3]. A lane-based scenario including bicycles is modelled using
car-following rules in [4]. Cellular automaton (CA) models described in [5] and
[6] represent similar scenarios and were validated using real data and existing
simulation models. While applied to heterogeneous motorised-only traffic, these
CA models allow for differently-sized vehicles, including motorcycles, through
multiple-cell occupancy and could easily be applied to a pedal-bicycle inclu-
sive case.

Separately identifiable interactions between bicycles and motorised vehicles can
be classified into lateral interference and cross-flow. The former occurs where
bicycles and motor vehicles are moving side-by-side and interfere with each other’s
motion, mostly causing deceleration of the other vehicle type. The latter are
interactions arising from intersections of bicycle flows with motorised ones, often
in circumstances created exclusively by the presence of bicycles in traffic. For
example, if bicycles and cars are sharing a lane by positional discipline, which
means that bicycles keep to the left1 and motorised vehicles to the right of the
shared lane, cars turning left are in conflict with the bicycle flow and the two
types of vehicle affect each other’s movements. In the cellular automaton model
presented in [7], lateral interference between a car lane and the adjacent multi-lane
bicycle stream is represented through a higher probability for cars to slow down
in circumstances of ‘friction’ or ‘blockage’ caused by bicycles. In [8], the lateral
interference type of interaction is introduced into an optimal velocity model as a
friction component accounting for the effect of pedestrians on cyclists and cyclists
on motorised vehicles, with the different types of vehicles moving in designated but
spatially adjacent lanes. A slightly different question, of how the general network
flows are affected by different vehicle types moving side-by-side on individual links
in the network, is posed in [9], where interactions are accounted for in a combined
forecasting model through link impedance functions. Here, higher bicycle flows
increase the impedance of motorised flows and vice versa. Cross-flow interactions
are the subject of work described in [10], wherein a logit model is proposed for

1Our model assumes left-hand side driving, that in effect in Ireland, UK etc., without loss of
generality.
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the relation between the flow of turning cars and the straight-moving bicycle arrival
rate, based on bicycle flow properties derived from empirical data. In [11] the same
scenario is modelled building on the cellular automaton (CA) flow representation
from [2], where a single cell can be occupied simultaneously by multiple bicycles.
Here, general CA rule application takes place synchronously, with an exception
made in instances of conflict between car and bicycle flows. These conflicts are
resolved through stochastic designation of update sequence among the flows in
conflict, on a case-to-case basis. Finally, interactions between left turning bicycles
and straight moving cars on a two-way street are studied in [12] using a two-
dimensional optimal velocity model.

Ours is a general cellular automata (CA) simulation model, primarily suited to
representing lane-based traffic with positional discipline in case of lane sharing, is
applicable to any vehicle type mix and accommodates both lateral interference and
cross-flow types of interaction. The application here is to traffic including bicycles
and cars on the intersection of two one-way streets. The scenario is used singly and
as the building block of a 16-node network, in both cases under periodic boundary
conditions, for a study of the relationship between traffic densities and flows. The
model, which has been presented in some detail in [13], is summarised in Sect. 2,
while the simulation scenario and results are presented in Sect. 3.

2 Model

The spatial aspect of the model uses the one-dimensional cellular automata (CA)
space, or a track, as a building block. A track consists of cells of equal size,
each occupied by a single vehicle or empty. Vehicle positions in the track are
updated iteratively according to some rules with the aim of reproducing traffic flow
dynamics. The iterations represent changes in the system during successive fixed
time intervals or time steps. Any route that may be taken in the simulation scenario
by any type of vehicle, as it navigates the model space, is represented as a track,
resulting in a space consisting of tracks, each with cells of a size appropriate for the
type of vehicle it accommodates and intersecting with other tracks, as dictated by
the simulation scenario. Tracks may connect so as to form longer tracks, intersect,
diverge, converge (the two latter cases corresponding to pairs of tracks that are
identical up to, or starting with, a certain cell) or be adjacent to each other, forming
spatial features that must be handled by the update rules, in addition to basic
movement along a track.

The spatial elements of the simulated scenarios, each built from a number of
tracks, are shown in Fig. 1. This figure is also intended to serve as an illustration
of the general spatial modelling method, in which the model is ‘extracted’ from a
sketch of the modelled space, hence the hand-drawn pictures. Figure 1a, b show the
tracks modelling an intersection of two one-way streets and a one-way road stretch,
respectively. In Fig. 1a the bicycle cells are marked in some detail. The car track
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Fig. 1 Sketch for model of an intersection of two one-way streets (a) and for a straight road stretch
(b), with mixed car and bicycle traffic sharing a road with positional discipline (bicycles stay to
the left and cars to the right, with reference to the direction of movement). The four movement
directions in the intersection (south-north [SN], south-west [SW], east-west [EW] and east-north
[EN]) and the road stretch are each represented by two tracks � one for cars and one for bicycles,
positioned side by side. The bicycle cell front lines are marked in (a) using the cell names, BSN1
for the first cell in the bicycle SN CA space, etc. A matching pair of symbols, such as * or C
are used to mark the beginning and end lines of cells in the BSW CA space, indicating overlap
between cells, which is used to model the slowing of vehicles caused by the turn. The shaded areas
are examples of bicycle cells. The arrows indicate the travel direction. The car and bicycle tracks
constituting the straight road stretch in (b) consist of 50 and 100 cells, respectively

cells are not shown to avoid cluttering the picture, however, they consist of: track
CSN 2 cells, CSW 4 overlapping cells, CEW 2 cells and CEN 4 overlapping cells.

The actual spatial model used by the update rules is based on information
extracted from sketches such as those in Fig. 1. This information consists of the
item types described in Table 1 together with actual information for the elemental
models in Fig. 1.

The space in which the update rules operate must be completed with a conflict
resolution method, which can be considered a control component of the model.
To use the elemental model in Fig. 1a as an unsignalised intersection, priority is
assigned to either the south-north or the east-west direction, resulting in the left-
hand-side (LHS) and the right-hand-side (RHS) rule, respectively. In the case of
cross-flows on the same road, the straight moving flow always has priority, i.e.,
track BSN has priority over CSW and track CEW over BEN.
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Table 1 Spatial model information item types and information item values extracted from the
pictures in Fig. 1

Information item type
Value for inter-section
model in Fig. 1a

Value for road stretch
model in Fig. 1b

Description of tracks in terms of cell
size, cell count, direction of cell
numbering (corresponding to that
of vehicle movement) and cells at
which a turn (left or right) starts in
the track

Car cells correspond to real lengths of 7.5 m, while
bicycle cells correspond to half that length, i.e.,
3.75 m; tracks BSW, CSW, BEN and CEN each
have a turn, starting at cell 1

Track connections (where one track
extends another one so that the first
cell of the extending track follows
the last cell of the extended one)

The first cell of any track in the intersection and road
stretch models may follow the last cell of another
track and vice versa, if the followed and
following cell are the same size

Cell overlap instances Shown in Table 2 None
Conflicts and divergences Shown in Table 3 None
Indication as to whether any two

tracks are geometrically positioned
so as to cause inter-track
interaction (other than that at
conflicts) between vehicles and if
yes, what kind of interaction

All adjacent car-bicycle track pairs imply interaction
between bicycles and cars on those two tracks, by
virtue of the tracks’ proximity; cars decelerate in
the presence of bicycles

The update rules are based on those defined for traffic on a single-lane road by
Nagel and Schreckenberg in [14]. These rules can be formulated using a combined
limit value as follows:

0. Determine the combined limit value: vCLi D min.vMAX; di /

1. Acceleration: if vi < vCL, vi ! vi C 1

2. Slowing: if vCLi < vi , vi ! di
3. Randomisation: with probability pR, vi ! vi � 1

4. Vehicle motion: each vehicle is advanced vi cells

where vCLi is the combined limit value for the i th vehicle, vMAX is the maximal
velocity for the vehicle type, di is the number of free cells to the nearest other
vehicle ahead of vehicle i and vi is the velocity of vehicle i . The variables are
dimensionless: distance is measured in cells and velocity in cells per time step.

The update rules used herein modify the Nagel-Schreckenberg rules by (i) sub-
stituting di with dUi , which is the number of unimpinged cells ahead of the i th
vehicle (a cell is impinged if an overlapping cell, including itself, is occupied) and
(ii) including another three limiting factors in the combined limit value:

vCL D min.vMAX; dUi ; vLT.dTi /; vLC.dCi /; vLB.dBi // (1)

where vLT.dTi / is the velocity limit imposed by the proximity of a turn, as a function
of the distance to the turn, dTi , and vLC.dCi / and vLB.dBi / are analogous values
relating to unresolved conflicts ahead of vehicles and bicycles ahead of cars on
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Table 3 Conflicts and divergences for model in Fig. 1a. A conflict is defined
with the first cell in conflict of each the left and the right involved track.
For example, a conflict between tracks BSN and CSW starts at cell 2 of the
former and cell 1 of the latter. A divergence is, similarly, defined with the first
divergent cell of each the left and the right involved track

Conflict or divergence First cell of First cell of
id, prefixed conflict/divergence conflict/divergence
C or D, in in
respectively left track right track

D1 BSW1 BSN1
D2 CSW1 CSN1
D3 BEW1 BEN1
D4 CEW1 CEN1

C1 BSN2 CSW1
C2 BSN2 BEW3
C3 BSN2 CEW2
C4 BSN3 BEN3
C5 CSN1 BEW2
C6 CSN1 CEW1
C7 CSN1 BEN2
C8 CSN1 CEN1
C9 BSW2 BEW3
C10 CSW1 BEW2
C11 CSW1 CEW1
C12 CSW1 BEN2
C13 BEN2 CEW1

adjacent tracks, respectively. The three velocity limit functions have been chosen
so as to allow vehicles to reach a turn, conflict or bicycle at velocity 1, 0 and 1,
respectively (only in the case of an unresolved conflict does a vehicle actually have
to stop), while decelerating by, at most, 1 at any time step. The update is performed
in parallel, which means that in each time-step the velocity update rules (1–3) are
applied to all vehicles in the simulation, then the position update rule (4) is applied
to all the vehicles. The rules are identical for bicycles and cars but the value of vMAX

is decided separately for the two types of vehicle.
Navigation of the multi-track space is handled using two system-wide parame-

ters: probability of turning right, pTR, and probability of turning left, pTL.

3 Simulation Results

The two scenario spaces, shown in Fig. 2, were built using the elemental models
from Fig. 1. The following parameters and initial conditions apply to both: maximal
velocity, vMAX, is 3 for cars and 2 for bicycles; the randomisation parameter is
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Fig. 2 Schematic representation of simulation scenario space for intersection of two one-way
streets (a) and a 4�4 node network (b), both with closed boundary conditions. The diamond shapes
each represent the intersection from Fig. 1a, while the straight lines between nodes represent the
element in Fig. 1b. The pair of points at the ends of each free-form line are directly connected in
the model, to form closed boundaries

pR D 0:1; simulation length is 105 timesteps, each corresponding to 1s; the
turning probabilities, pTL and pTR and vehicle densities are varied; initial vehicle
spatial distribution is homogeneous among and within tracks, initial velocity for all
vehicles 0. Flows are measured at the cells preceding all the southern- and east-most
intersection entry points.

The results of some of simulation instances are shown in Figs. 3 and 4. While
the priority bicycle flows for the LHS rule take the form of a standard fundamental
diagram (Fig. 3a), the car flows are reduced at high bicycle densities (b), because of
the slowing effect built into the model for adjacent bicycle and car tracks. The non-
priority flows are low, as expected (c, d). The same conditions on each of the nodes
in the network scenario produce similar, but fairly ‘noisy’ priority-flow diagrams for
the case with 50-cell edges (e, f) and ones almost identical to those for the isolated
intersection in the case of 200-cell edges (g, h). The diagram in Fig. 4a shows a case
of a scaled fundamental diagram, owing to increased densities on two perpendicular
tracks. This is reproduced in the network case (b). Another effect that can be seen
is that of gridlock causing sudden flow failure, due to increase of other vehicle type
density cross-flows (c). The diagrams are rather random in the network case (d, e),
but the effect is still visible, particularly for the scenario with 200-cell edges (e). A
simulation case that exhibits both the scaled fundamental diagram and gridlock is
shown in Fig. 4f. The last two diagrams (g, h) show a case where the priority east-
west bicycle flow is ‘protected’ from diagram scaling, due to high densities in the
adjacent car track, which do not allow bicycles turning from the south-north track
easy entry into the east-west one.

The application of this method of modelling is envisaged as a useful and system-
atic approach for the investigation of networks that accommodate heterogeneous
traffic of the type encountered in old city centres, such as Dublin’s, but also for
other types of networks and other vehicle type mixes.
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Fig. 3 Average flow for bicycles or cars, as a function of overall bicycle and car density. Each
scenario instance is specified using (i) scenario name (intersection or network with length of
edge in brackets), (ii) conflict resolution rule (LHS or RHS), (iii) vehicle type (B for bicycle
or C for car) and (iv) direction of flow measurement (south-north or east-west). All turning
probabilities are 0. (a) Intersection, LHS, B-SN. (b) Intersection, LHS, C-SN. (c) Intersection,
LHS, B-EW. (d) Intersection, LHS, C-EW. (e) Network(50), LHS, B-SN. (f) Network(50), LHS,
C-SN. (g) Network(200), LHS, B-SN. (h) Network(200), LHS, C-SN
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Fig. 4 Average flow for bicycles or cars, as a function of overall bicycle and car density, continued.
Each scenario instance is specified using (i) scenario name (intersection or network with length
of edge in brackets), (ii) conflict resolution rule (LHS or RHS), (iii) vehicle type (B for bicycle
or C for car), (iv) direction of flow measurement (south-north or east-west) and (v) any turning
probabilities that are not equal to 0. (a) Intersection, RHS, B-EW. (b) Network(50), RHS, B-EW.
(c) Intersection, LHS, C-SN. (d) Network(50), LHS, C-SN. (e) Network(200), LHS, C-SN.
(f) Intersection, LHS, C-EW. (g) Intersection, RHS, B-EW. (h) Network(50), RHS, B-EW



Interaction of Cars and Bicycles on a One-Way Road Intersection: A Network. . . 463

Acknowledgements This work is funded by the Irish Research Council for Science, Engineering
and Technology (IRCSET), through an ‘Embark Initiative’ postgraduate scholarship.

References

1. Gould G, Karner A (2009) Modeling bicycle facility operation. Transp Res Rec 2140:157–164
2. Jia B, Li X, Jiang R, Gao Z (2007) Multi-value cellular automata model for mixed bicycle flow.

Eur Phys J B 56:247–252
3. Khan S, Maini P (1999) Modeling heterogeneous traffic flow. Transport Res Rec 1678:234–241
4. Faghri A, Egyháziová E (1999) Development of a computer simulation model of mixed motor

vehicle and bicycle traffic on an urban road network. Transport Res Rec 1674:86–93
5. Gundaliya P, Mathew T, Dhingra S (2008) Heterogeneous traffic flow modelling for an arterial

using grid based approach. J Adv Transport 42:467–491
6. Mallikarjuna C, Rao K (2009) Cellular automata model for heterogeneous traffic. J Adv

Transport 43:321–345
7. Cheng S, Yao D, Zhang Y, Su Y, Xu W (2008) A ca model for intrusion conflicts simulation

in vehicles-bicycles laminar traffic flow. In: Proceedings of the 11th International IEEE
Conference on Intelligent Transportation Systems Beijing, China, October 12–15, 2008

8. Tang T, Huang H, Shang H (2010) A dynamic model for the heterogeneous traffic flow
consisting of car, bicycle and pedestrian. Int J Mod Phys C 21:159–176

9. Si B, Long J, Gao Z (2008) Optimization model and algorithm for mixed traffic of urban road
network with flow interference. Sci China Ser E 51:2223–2232

10. Xue Z, Ming G, Kuan Y (2007) A model of potential capacity of right turn movement at
signalized intersections under mixed traffic conditions. In: Proceedings of the 3rd Urban Street
Symposium, June 24–27, 2007, Seattle, WA

11. Li X, Gao Z, Jia B, Zhao X (2009) Modeling the interaction between motorized vehicle and
bicycle by using cellular automata model. Int J Mod Phys C 20:209–222

12. Xie D, Gao Z, Zhao X, Li K (2009) Characteristics of mixed traffic flow with non-motorized
vehicles and motorized vehicles at an unsignalized intersection. Physica A 388:2041–2050

13. Vasic J, Ruskin H (2012) Cellular automata simulation of traffic including cars and bicycles.
Physica A 391: 2720–2729

14. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I
2:2221–2229



About New Dynamical Interpretations
of Entropic Model of Correspondence Matrix
Calculation and Nash-Wardrop’s Equilibrium
in Beckmann’s Traffic Flow Distribution Model

E.V. Gasnikova and T.A. Nagapetyan

1 Correspondence Matrix Calculation Model

Assume that in some town there are n districts (regions), Li > 0 is the number of
residents living at the district i , and Wj > 0 is the number of residents working
at the district j .1 By xij .t/ � 0 we will denote the number of residents living
at the district i and working at the district j at the moment of time t � 0. Over
course of the time numbered residents (whose quantity doesn’t alter, and is equal to

N D
nP
iD1

Li D
nP

jD1
Wj ) change their apartments (homes). And we suppsose, that

changes may happen only by the means of the exchange of the apartments, i.e.

xij .t/ � 0;

nX
jD1

xij .t/ � Li ;

nX
iD1

xij .t/ � Wj ; i; j D 1; : : : ; n: (1)

Suppose, that at the time t � 0 resident r lives in the district k and works in the
district m, and the resident l lives in the district p and works in the district q. Then
pLk;mI p;q .t/ �t C o .�t/ - is the probability for the residents with numbers r and
l .1 � r < l � N/ to exchange their apartments in a period of time .t; t C�t/.
It’s natural to consider that probability (in the unit time) of exchanging apartments
depends only on the location of the workplaces and homes, which are exchanged.
For instance, it may be considered that the “distance” between district i and district
j is cij � 0, and

1This section is based on the works [1–11].
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pLk;mI p;q .t/ � pL exp .
�
ckm C cpq

�
„ ƒ‚ …

sum of the distances

before exchange

� �
cpm C ckq

�
„ ƒ‚ …

sum of the distances
after exchange

/ > 0:

Then, by the virtue of the ergodic theorem for discrete homogeneous Markov
process with finite number of states, for all

˚
xij
�n; n
iD1;jD1 2(1) we have that

lim
t!1P

�
xij .t/ D xij ; i; j D 1; : : : ; n

� D

D Z�1
n; nY

iD1;jD1
exp

��2cij xij
� � �xij Š

��1 defD p
�˚
xij
�n; n
iD1; jD1

�
;

where Z is the normalizing multiplier.
Here we have the case where the final distribution, which is also a stationary

distribution, satisfies detailed balance condition2:

.xkm C 1/
�
xpq C 1

� � Op � pLk;mI p;q D xpmxkqp
�˚
xij
�n; n
iD1; jD1

�
pLp;mI k;q;

where

Op D p
�˚
x11; : : : ; xkm C 1; : : : ; xpq C 1; : : : ; xpm � 1; : : : ; xkq � 1; : : : ; xnn

��
:

Distribution p
�˚
xij
�n; n
iD1; jD1

�
on a set (1) is concentrated with N � 1 (see below)

in a neighborhood of the most probable value
n
x�ij
on; n
iD1; jD1, which is determined as

a solution of the following entropic –linear programming problem:

n; nX
iD1; jD1

xij lnxij C 2

n; nX
iD1; jD1

cij xij ! min
fxij gn; niD1; jD1

2.1/
: (2)

The solution of this problem might be presented as

xij D exp
�
�1 � �Li � �Wj � 2cij

�
;

2 Multipliers before probabilities, for example, in the state
˚
xij
�n; n
iD1; jD1

, arise because of the
number of the ways to choose the resident, living in the district p and working in the district m,
is xpm, and independently the number of ways to choose the resident, living in the district k and
working in the district q, is xkq .
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where Lagrange multipliers (dual variables)
˚
�Li
�n
iD1 and

n
�Wj

on
jD1 are determined3

from the system of equations (1). In practice we usually have some information
about fLi ;Wi gniD1 and

˚
cij
�n; n
iD1;jD1. So, when we solve (2), we find

xkm

�
fLi ;Wi gniD1 I ˚cij

�n; n
iD1;jD1

�

If N � nm, m � 1 8i; j D 1; : : : ; n ! Li ;Wj � m; cij D c > 0, then the

distribution of the probabilities p
�˚
xij
�n; n
iD1; jD1

�
on the set (1) is concentrated in

O
�p
m
�

neighborhood of the most probable value x�ij 	 LiWj

ı
N � m=n; i; j D

1; : : : ; n. More precisely:

9� > 0W lim
t!1P

�
8 i; j D 1; : : : ; n !

ˇ̌
ˇxij .t/

.
x�ij � 1

ˇ̌
ˇ � �=

p
m
�

� 0:999

Indeed, let us note, that

8 ˚
xij
�n; n
iD1; jD1 2 .1/ !

n; nX
iD1; jD1

@ lnp

�n
x�ij
on; n
iD1; jD1

	

@xij
�
�
xij � x�ij

�
� 0

Thus, 8 ˚
xij
�n; n
iD1; jD1 2 .1/ 9 � 2 Œ0; 1	 W

lnp
�˚
xij
�n; n
iD1; jD1

�
� lnp

�n
x�ij
on; n
iD1; jD1

	
C

C
n; nX

iD1; jD1

@2 lnp

�n
x�ij � C xij � .1 � �/

on; n
iD1; jD1

	

@x2ij
�
�
xij � x�ij

�2

2

Since

@2 lnp
�˚
xij
�n; n
iD1; jD1

�

@x2ij
D
@2

 
�

n; nP
iD1; jD1

xij ln xij

!

@x2ij
D � 1

xij

3 This can be done in different ways. For example, by Bregman’s balancing method or by Newton’s
method [5]. The other way is to solve the dual problem for the entropy programming problem (2).
There are a lot of different algorithms with the first order oracle (MART, GISM, etc. [4,5]). It can be
shown that most of these methods (including Bregman’s) are just barrier-multiplicative antigradient
descending methods [11]. At the end (when the iteration process is achieving a sufficient small
vicinity of the global minimum) it is worth to use the second order interior-point method, like
Nesterov–Nemirovskii polynomial algorithm [12] (for so-called “separable” tasks).
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we have “inequality of measure concentration”:

8 M > 0; 8 ˚
xij
�n; n
iD1; jD1 2 .1/ W

n; nP
iD1; jD1

�
xij � x�ij

�2

2max
n
xij ; x

�
ij

o � M

p
�˚
xij
�n; n
iD1; jD1

�
� e�Mp

�n
x�ij
on; n
iD1; jD1

	

2 Beckmann Traffic Flow Distribution Model

Let us consider the oriented graph � D .V;E/, which stands for transportation
route in some town (V – nodes (vertices),E 
 V �V – arc of the network (edges)).4

LetW D fw D .i; j / W i; j 2 V g be a set of pairs inlet-outlet;p D fv1; v2; : : : ; vmg
– a route from v1 to vm, if .vk; vkC1/ 2 E , k D 1; : : : ; m � 1 (it will be
shown later (see example by V.I. Shvetsov) that, to specify the path it may not be
enough to indicate only the set of vertices. In general, one must also specify exactly
which edge, connecting the specified vertices, is chosen); Pw – the set of routes in
correspondence w 2 W ; P D S

w2W Pw – the collection of all routes in the network
� ; xp – flux on the way p, x D ˚

xp W p 2 P �; Gp .x/ – specific costs of travel
on the road p, G .x/ D ˚

Gp .x/ W p 2 P �; ye – flux on the arc e: y D �x, where
� D ˚

ıep
�
e2E;p2P (ıep D f1; e 2 pI 0; e … pg/; �e .ye/ – specific costs of travel

on the arc e (generally increasing, convex, smooth functions), it is natural to assume,
that G .x/ D �T � .y/. Let flows on correspondences dw, w 2 W to be known. Then
x, which describes flow distribution, must lie in the set:

X D
8
<
:x � 0W

X
p2Pw

xp D dw; w 2 W
9
=
; :

Consider a game in which each element w 2 W corresponds to a considerably
big (dw � 1/ set of players of the same type. The set of pure strategies of such
player is Pw, and profit (minus losses) is defined by the formula �Gp .x/ (a player
chooses a strategy p 2 Pw and neglects the fact, that jPwj components of the
vector x and hence the profit depends slightly on his choice). One can show, that
Nash equilibrium is equivalent to complementarity problem, being equivalent to
a solution of variation inequality, which, in its turn, is equivalent to a solution of
convex optimization problem.

4This section is based on the works [13–24].
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8w 2 W; p 2 Pw ! x�p �
�
Gp .x�/ � min

q2Pw

Gq .x�/
	

D 0

m
8x 2 X ! hG .x�/ ; x � x�i � 0

m

� .x/ D
X
e2E

P
p2P xpıpeZ

0

�e .z/ d z ! min
x2X : (3)

It is easy to show, that in the case G .x/ being strictly monotonic transformation,
the Nash-Wardrop equilibrium x� is unique. If �e .ye/ are increasing functions then
y� D �x� is unique, although, as we will see later, x� isn’t necessarily unique.

The route at a step .nC 1/ player at correspondence w, choose independently
according the mixed strategy with probability

Probw
p .nC 1/ D �n � max

˚
xp .n/ ; n

�1� exp
��Gp .x .n//

ı
T
�ı
Zw
n ; w 2 W;

to choose path p 2 Pw (0 < �n � 1/, and with probability 1 � �n to choose
the same strategy as at the n-th step. Here xp .n/ – the number of players at w,
who have chosen at the n-th step strategy p 2 Pw, and Zw

n can be found from the
normalization condition. Multiplier max

˚
xp .n/ ; n

�1� describes the will to imitate
and, also, the reliability of using this strategy. This multiplier notices specifics of
the problem (without it there could be convergence to something different from the
Nash-Wardrop equilibrium). Parameter � describes “the conservatism”, while “the
temperature” T stands for “the risk appetite”.

Theorem 1. Let T > 0 be sufficiently small,
1P
nD1

�n D 1;
1P
nD1

.�n/
2 < 1.

Then � .x .n//
a:s:�!
n!1 � .x�/, where x� is the minimizer from (3). Moreover, if the

equilibrium is unique, then x .n/
a:s:�!
n!1 x�:

In the experiments, conducted at the Laboratory of Experimental Economics
in the Faculty of Applied Mathematics and Control, MIPT, in which students of
the 5th course were involved, we observed the convergence to equilibrium and
“vibrations” around it. Fluctuations should be explained, apparently, by the fact that
in experiments the number of players was small and the hypothesis of a competitive
market was not performed. We also observed, that for students �n � � > 0 it is more
likely, than �n � 1=n. As a result there will be convergence not to the equilibrium
point, but to its neighborhood. Size of the neighborhood depends on T , � > 0 and
the number of players.

Example 1 (Braess paradox, 1968 [15]). Let correspondence x14 D 6 thousand
cars/hour (see graphs on Figs. 1 and 2). Weight of the edges is time delay (in
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Fig. 1 Case 1.
x124 D x134 D 3. Total time
for each path is T D 83min

Fig. 2 Case 2.
x124 D x1;234 D x134 D 2.
Total time for each path is
T D 92min

Fig. 3 Nonuniqueness
of the equilibrium

minutes) when the flow on the edge is yij (1,000 cars/h). For example, in case 2
(see Fig. 2): y24 D x1;324 C x124. It is natural that time delay (at each of the edge) is
a growth function of flow.

The following example shows, that under the very natural conditions vector-
function of cost of the travel G .x/ can’t be strictly monotone:

9x; y 2 X .x ¤ y/ W G .x/ D G .y/ ) hG .x/ � G .y/ ; x � yi D 0:

This, for example, can be because of

G .x/ D �T � .y/ ; y D �x;

where y D fyege2E describes the loading of edges (arcs) of a graph of the transport
network, � .y/ D f�e .ye/ge2E – vector-function of cost of the travel on the edges
of transport network,� – incidence matrix of edges and paths, and different vectors
of flow distributions x may correspond to the same vector y D �x.

Example 2 (Nonuniqueness of the equilibrium; Shvetsov, 2010). On Fig. 3 the
equilibrium flow distribution is shown, for all x 2 Œ0; 0:5	.
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Theorem 2. Let T > 0 be sufficiently small,
1P
nD1

�n D 1;
1P
nD1

.�n/
2 < 1. Then

� .x .n//
a:s:�!
n!1 � .x�/ and x .n/

a:s:�!
n!1 x� .x .0// : Note most of the elements of

x� .x .0// can be equal to zero.

We should notice, that Theorem 2 is a refutation (in case of the considered
dynamics) of the hypothesis [16]. It states that in the case of non-unique Nash-
Wardrop equilibrium, the equilibrium is more likely to realize, and it is a solution
of the following linear-enthropy programming problem

X
w2W

X
p2Pw

�
xp ln

�
xp
ıjPwj� � xp

� ! min
x2X; �xDy�

;

where y� – is the unique solution of V .y/ D P
e2E

yeR
0

�e .z/ d z ! minyD�x; x2X .

3 Sketch of the Proof of the Theorem 1

Lemma 1. Let f .w/ D �T ln w, where w 2 .0; 1/. ˛i > 0 — are some randomly
chosen, but fixed parameters; wi 2 .0; 1/. Let us consider functions

F0 .w/ D
P
i

˛iwi f .wi /
P
i

˛iwi
; andF1 .w/ D

P
i

˛if .wi /
P
i

˛i
:

Then F0 .w/ � F1 .w/, and the equality is attained only when

w1 D w2 D : : : D w�:

Proof. The proof is based on the consequent usage of the inequality between
harmonic mean and geometric mean and then Cauchy inequality.

Lemma 2. For any x .n/ 2 X W x .n/ ¤ x� holds the following inequality

hgrad� .x.n// ; E Œx.nC 1/� x .n/j x .n/	i

D hG .x.n// ; E Œx.nC 1/� x.n/j x .n/	i < 0:

Proof. Without restricting the generality, we can assume that 8p 2P !xp .n/ � 1.
Then

hG .x .n// ; E Œx .nC 1/� x .n/j x .n/	i D
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D �n
X
w2W

dw

2
664

P
p2Pw

xp .n/Gp .x .n// exp
�
�Gp.x.n//

T

�

P
p2Pw

xp .n/ exp
�
�Gp.x.n//

T

� �

P
p2Pw

Gp .x .n// xp .n/

P
p2Pw

xp .n/

3
775:

From Lemma 1 it follows that

hG .x .n// ; E Œx .nC 1/ � x .n/j x .n/	i � 0:

The equality can be attained only on the equilibrium vector x�, which can not be
under considered hypothesis.

Remark 1. Lemma 2 can be more specified. At some neighborhood of the equilib-
rium there exists l > 0, such that

hG .x .n// ; E Œx .nC 1/ � x .n/j x .n/	i � �l�n � �� .x .n// � � �x��� :

Also, with some reserves, we can change constraint x .n/ 2 X to x .n/ � 0.

Lemma 3 ([25], Chap. 2.2). Let

1X
nD1

�n D 1;

1X
nD1

.�n/
2 < 1:

Then

� .x .n//
a:s:�!
n!1 �

�
x�
�

and if the equilibrium is unique, then also

x .n/
a:s:�!
n!1 x�:

Proof. Lemma 2 and Theorem 1 from Chap. 2.2 of [25] allow us to consider only
the situation, when x .n/ is close to x�. Then by Taylor formula we have:

E Œ� .x .nC 1//j x .n/	 D � .x.n//C

C hgrad � .x .n// ; E Œx .nC 1/� x .n/j x .n/	i C O
�
.�n/

2
�
:

If we take mathematical expectations from both sides of this equality, we will get
that there exists sufficiently large C > 0, such that

E .� .x .nC 1///� �
�
x�
� � .1 � l�n/ � �E .� .x .n/// � � �x���C C � .�n/2 :



About New Dynamical Interpretations of Entropic Model of Correspondence. . . 473

From more general statement from [25] we get that

E .� .x .n/// � � �x�� �!
n!1 0;

if

1X
nD1

�n D 1;

1X
nD1

.�n/
2 < 1:

From Kolmogorov inequality follows

P
�8 n � n0 ! � .x .n//� �

�
x�
� � "

� �

� 1 � "�1 �
0
@E �� .x .n0// � � �x���C

1X
kDn0

.�k/
2

1
A ;

which concludes the proof.

In the end we will formulate a known result, which is in high correlation with the
proved one.

Theorem 3. Let5 T > 0. Then there 9C; ˛ > 0W 8 N 2 N

P

 
�

 
1

N

NX
nD1

x .n/

!
� �min � ˝p

N

!
� 2 exp .�C �˝/ ;

where � D p̨
N
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Feed Forward Back Propagation
Neural Networks to Classify Freeway
Traffic Flow State

Onur Deniz and Hilmi Berk Celikoglu

Abstract Analyses on traffic flow require accurate time-varying local traffic
density information in order to effectively determine inflows to and outflows from
freeway segments in several aspects of network traffic control. It is essential to
specify the flow state, equivalently to derive density variable with the corresponding
flow-rate measure, from primary traffic variables in order to provide accurate input
to real-time traffic management strategies. In this paper, a study on the flow state
specification process that employs feed forward back propagation neural network
method to map sectional lane based density measure with raw traffic data collected
from successive remote microwave sensor units mounted along a segment existing
on the freeway network of Istanbul, is summarized. Classification of traffic flow
states and matching the corresponding real-time flow state is obtained dynamically
inputting raw flow measures simultaneously to neural density mapping and traffic
flow modeling processes. The approach is promising in capturing instantaneous
changes on flow states and may be utilized within intelligent management strategies
such as incident control.

1 Introduction

Freeway traffic data is often available in the form of occupancy and volume
measurements collected generally from loop detectors embedded in the pavement
or from remote microwave sensor units. In conjunction with effective length data
specific to detected portions of vehicle classes, these measurements can be converted
into fundamental macroscopic flow variables such as density and speed. Raw
data sets obtained by neither loop detectors nor microwave sensors provide full
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satisfactory inputs to flow based traffic modeling studies since data sets are often
incomplete or contain inaccurate samples. However, analysis on conserved traffic
flow, such as path based network assignment procedures and freeway ramp control
strategies, require accurate time-varying local traffic density information in order to
effectively determine inflows to and outflows from freeway segments respectively
at merges and diverges. Therefore, it is essential to derive density variable from
primary traffic variables as well as to reconstruct missing traffic measurements. In
this paper, an approach to specify flow state variations in real-time is proposed
mainly concentrating on the incorporation of neural network theory to provide
derivation for traffic density. Raw traffic measures collected by successive remote
microwave sensor units existing on a stretch of freeway network in Istanbul are input
simultaneously to both density mapping with functional approximation component
and traffic flow modeling component of the overall state specification process.
Classification of flow states and matching the corresponding real-time flow state
is obtained dynamically. Performances of employed neural approximation methods
on density mapping are evaluated considering the flow conservation principle. In the
following, a brief review on the relevant literature is provided in Sect. 2. The overall
process proposed for flow state specification is explained in Sect. 3. Formulation of
density mapping problem and sought solutions with selected methods is summarized
in Sect. 4. The final section concludes the paper with findings, evaluation, and
possible future directions.

2 Brief Literature Review

The existing literature on the mapping of traffic data that is collected on a regular
basis can be roughly classified into two that are for time interval based series
prediction problems and for flow variable based modeling problems. Studies in the
former class including missing data replacement and short-term variable prediction
generally contain the simple applications of stochastic and heuristic methods and
are relatively easier to be formulated when considered with the ones in the latter
class. Solutions to flow variable based prediction problem formulations ranging
from simple link performance prediction to network wide assignment require the
satisfaction of desired mathematical properties, such as uniqueness and existence,
besides an appropriate trade-off between accuracy and the computational burden.
While the former class comprises prediction problems on fundamental traffic flow
variables, i.e., speed, occupancy, volume, and etc., problems belonging to the latter
class target the estimates of link performances, i.e., link-path traveling time, delay,
queuing, and etc. Studies on missing data recovery covered a wide range of
statistical method applications as well as the applications of stochastic methods
and neural theory. In order to compare the effectiveness of widely used approaches
and provide alternative for predicting missing data at traffic measurements factor,
genetic, neural, and regression models are developed in [1]. A method based
on principal component analysis and support vector regression for a short-term
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prediction of network traffic volume is proposed and its performance is evaluated in
comparison to neural network and auto-regressive models in [2]. A new reliable
method called probabilistic principal component analysis to impute the missing
flow volume data based on historical data mining is proposed in[3]. Examining the
statistical properties of traffic flow volume time series the fluctuations of traffic flow
are found to be Gaussian type and principal component analysis is found to be an
alternative to be used to retrieve the features of traffic flow in [3].

Within a number of studies, the fundamental traffic flow variables, especially
the speed variable, are tried to be estimated with the input of data obtained from
inductive loop detectors. An algorithm for estimating mean traffic speed using
volume and occupancy data obtained from a single inductance loop is proposed
in [4]. The PeMS algorithms for the accurate, adaptive, real-time estimation of
the effective vehicle length and vehicle speeds from single-loop detector data via
validating the estimates by comparison with independent, direct measurements of
the g-factor and vehicle speeds from 20 double-loop detectors over a 3-month
period is presented in [5]. The estimates on real-time speed and travel time derived
from single-loop detector data assuming a common effective vehicle length for all
detectors existing on a network are declared to possibly be in error by 50 %, and use
of the PeMS algorithm is suggested to reduce those errors in [5]. Unlike in the works
preceding an improved algorithm for estimating speed from single loop detector
data, which is simple enough to be implemented using existing controller hardware,
is proposed in [6]. A hybrid model for speed estimation by neglecting vehicle types
and only considering the variational trend of lane occupancy and volume without
the influence of difference of mean effective vehicle length was later on proposed
in [7]. A rare method for speed estimation from traffic count and occupancy data
by applying a Markov chain Monte Carlo approach with assumption of a simple
random walk model for successive vehicle speeds, in which missing vehicle lengths
are sampled from an exogenous data set was proposed in [8]. Unlike prior studies
on speed estimation, measurement error in occupancy data is explicitly modeled and
the efficacy of the estimation scheme is examined by comparing the estimates with
independently collected vehicle speed data in [8].

A few numbers of studies integrating a mathematical model of traffic flow
to validate fundamental variable data obtained by sensors or to derive sectional
link performances in a time interval based series prediction frame is encountered
in the literature. A derivation of a macroscopic traffic flow model from the
cell transmission model and application to the estimation of traffic densities at
unmonitored locations along a highway was presented in [9]. Both the model in
[9] and a density-based version of the cell transmission model have been simulated
using several days of loop detector data collected during the morning rush-hour
period. Evolving the switching model in [9], a cell transmission model based
switching state-space model to estimate vehicle densities and congested flow states
at unmeasured locations on a highway section was proposed in [10]. A method for
estimating density in a freeway lane between detector stations and measuring the
net number of vehicles to enter (or leave) the lane, i.e., the lane inflow was also
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proposed in [11]. Vehicle arrivals at each detector station and information from a
sparse vehicle re-identification system are used in [11].

Considering the works summarized above, the novelty in proposed state spec-
ification approach is two-fold: the neural network approximator to map sectional
density from vehicle count and speed measures at successive cross-sections, and the
simultaneous functioning of the neural approximator with the traffic flow model that
simulates actual traffic dynamics.

3 Proposed Flow Specification Sub-process

The proposed process for flow state specification involves three sub-processes,
two of which are simultaneous, i.e., the density derivation sub-process and the
flow modelling sub-process. The third sub-process is the classification of mapped
density variable with the corresponding flow-rate measure considering a dynamic
segmentation on flow states over the fundamental diagram of flow and density. The
overall flow state specification process is shown in Fig. 1.

Two simultaneous sub-processes run with the input of raw traffic flow measures
that are collected by microwave sensors mounted on a freeway stretch. The neural
network method incorporated model maps the dynamic variation of density measure
along the section bounded by successive sensors, while the flow model accounts for
obtaining the fundamental diagram of flow-density within a macroscopic approach
to be partitioned to provide a base for the final sub-process. The critical measures of
density variable, including optimum and jamming densities, with the corresponding
flow-rates are used to derive a classification on the fundamental diagram. The
current flow state is specified by the match-up of neural network mapping with the
appropriate fundamental diagram segment.

Each sub-process is coded by C language and run with a batch file in order to
simulate the overall process in real-time fashion. In the following, each sub-process
is explained following the information on field data.

3.1 Information on Study Area and Data Set

In this study the remote traffic microwave sensor (RTMS) data is processed to
derive the macroscopic features of traffic flow and to have a comparison between
the model prediction values with the corresponding observations. RTMS unit is a
traffic sensor which uses microwave signals by transmitting frequency modulated
continuous waves (FMCW) to detect vehicles. These sensors transmit an FMCW
waveform in which the transmitted frequency is constantly changing with respect to
time in a fixed fan-shaped beam, as shown in Fig. 2 [12].



45 Feed Forward Back Propagation Neural Networks to Classify Freeway. . . 479

Fig. 1 Overall flow state specification process

Fig. 2 FMCW signal and radar processing as utilized to measure vehicle presence and speed [13]

The FMCW radar continuously modulates the transmitted frequency and can
therefore detect stationary objects. The RTMS can be used to count vehicles and
their speed in either a side-fired or forward-looking setup.

Field data is obtained from two successive RTMS units both located in side-fired
position on a multi-lane, 4 � 4, approach of a Bosphorus strait crossing, the Fatih
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Fig. 3 Location of successive RTMS units on schematic freeway approach to strait crossing
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Fig. 4 Total vehicle count measures per lane within 2 min period obtained at upstream RTMS unit
during 4th of February 2008

Fig. 5 Speed measures per lane within 2 min period obtained at upstream RTMS unit during 4th
of February 2008

Sultan Mehmet bridge, on the European side of Istanbul (see Fig. 3). Measurements
on traffic variables, i.e., long vehicle counts, n1(t), the rest vehicle counts, n2(t),
speed, s(t), and occupancy, o(t), for the reference time period of 4 downstream lanes
labeled consecutively from 1 to 4 where lane number 4 is adjacent to the median.

Each measurement on the variables of flow is obtained by the RTMS unit within a
period of 2 min. Total vehicle count and speed measures per lane within 2 min period
obtained at upstream RTMS unit during the 4th of February 2008 are respectively
given in Figs. 4 and 5.
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Fig. 6 Configuration of a
feed-forward multi layer
perceptron

3.2 Density Derivation Sub-process

The density derivation sub-process is formulated as a sectional density mapping
problem. Solution to this problem is sought by the feed forward back propagation
neural network (FFBPNN) method, that is incorporated for neural approximation.
In neural network (NN) theory, the neurode (a neural node rather than a biological
neuron) is the basic component and a multi layer perceptron structure is a fully
interconnected set of layers of neurodes, as shown in Fig. 6. Each neurode (Nij)
of a layer is connected to each neurode of the next layer so that only forward
transmission through the network is possible, from the input layer to the output
layer through the hidden layers.

In this structure, the output Yi of each neurode of the nth layer is defined by a
derivable nonlinear function F as given by

Yi D F �
0
@X

j

wi � yi
1
A (1)

where F is the nonlinear activation function, wj i are the weights of the connection
between the neurode Nj and Ni , yj is the output of the neurode of the .n � 1/th
layer. For each input vector presented into the network, the set of connection weights
between the different neurodes determines the answer of the network in the output
layer. Partial specifications of the problem allow the measurement of output error
of the network and the adjustment of its behaviour. An iterative algorithm does the
adjustment during the training phase of the neural network. During training phase, a
selected set of training patterns is presented to the network. When the error between
the network output and the desired output is minimized, the network can be used in a
testing phase with test pattern vectors. At this stage, the neural network is described
by the optimal weight configuration, which means that theoretically ensures the
output error minimization.

As the form of the mapping F a priori is not known, an approximation
is sought. The development of NNs offers an alternative to approximate such
multivariate functions and had been widely studied beginning from the late 1980s
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with various results, concerning density or complexity, established for different
situations [14–16].

In the following sub-sections the NN methods used for approximation are
summarized.

Feed-Forward Back-Propagation Neural Network (FFBPNN) Method

The back-propagation NN, which has only a finite number of parameters, can
approximate most bounded functions with arbitrary precision [14] and is used here
to approximate F. A multi-layer feed-forward back-propagation neural network
FFBPNN.�/ 2 Rm is a mapping constructed recursively by vector linear/nonlinear
functions, shown with Eq. (2):

FFBPNN.�;W; �/ D �ŒWn�.Wn�1�.: : : �.W1UI C�1//C �n�1/C �n	 (2)

Here; n is the number of layers; Wi is the linear operator of proper dimensions
where i D 1; : : : ; n; �i is the bias vector, where i D 1; : : : ; n; UI is the input vector
of the neural network;  is the vector-valued linear/nonlinear mapping (transfer
function); W D ŒW1; : : : ;Wn	; and � D Œ�it ; : : : ; �nt ]T (T denotes the transpose
of vector/matrix). In an FFBPNN, the weight matrices W1;W2; : : : ;Wn and bias
vectors �1, �2,. . . , �n are adjusted by a learning rule called back-propagation, to
minimize output error with respect to the weights and thresholds [17].

An NN is non-linear if at least some of its transfer functions are non-linear.
Typical non-linear transfer functions are utilized in the literature [17].

3.3 Flow Modelling Sub-process

The flow modelling component accounts for obtaining the fundamental diagram
of flow-density within a macroscopic approach. Macroscopic flow models, having
sufficient similarities to make the hydrodynamic theory useful in describing traffic
dynamics, trace the collective vehicle dynamics in terms of aggregate variables such
as density, flow-rate, and speed and are useful in reproducing network-wide dynamic
flow [18].

The fluid dynamic theory of continuous vehicular traffic flow, defined upon the
variables of flow-rate q, density k, and speed s, and referred to as the LWR theory,
in [19,20], is adopted. This theory assumes that flow is strictly a function of density,
q D f .k/, or equivalently, speed is strictly a function of density, s D f .k/, and
enables the fundamental conservation law of fluid dynamics to be written in terms
of a continuity equation as given by

ık

ıt
C ı.k � s.k//

ıx
(3)
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or alternatively as

ık

ıt
C
�
C.k/ � ık

ıx

	
(4)

where C.k/ D ıf .k/=ık. The LWR theory expresses that slight fluctuations in
flow are propagated upstream along kinematic waves, where the speed is given by
c D C.k/, such as the slope of flow-density curve. Given the appropriate boundary
conditions, solution to this model can be obtained by determining the function
k.x; t/, where x and t represent space and time respectively. Different variations of
the macroscopic model given by Eq. (2) can be characterized by the speed-density
relationship s D f .k/. In the study, we adopt the linear relationship between speed
and density [21] as given by

s D sf �
�
1 � k

kjam

	
; (5)

ık

ıt
C
�
sf � ık

ıx

	
�
�
sf

kjam

	
� ık2

ıx
D 0 : (6)

The free-flow speed and the occupancy ratio measure, k=kjam, obtained by
microwave sensors are input to the macroscopic flow model and the fundamental
diagram of flow-density is derived considering that q D f .s; k/.

3.4 Flow State Classification Sub-process

Flow state classification process involves the segmentation of the fundamental flow-
density diagram considering a user defined classification number. n flow states
require n C 1 flow-density pairs to derive boundaries between flow states, where
each state is defined in terms of a density range. This classification approach is
analogous to the level of service concept defined over the flow-speed diagram
proposed in HCM (2000) [22]. In each time step, dynamic segmentation on the
fundamental curve is updated considering the critical value of maximum density
where the overall range of density is partitioned to n equal classes to form flow
states. Then, density measure mapped by the density derivation sub-process is input
and classified within flow states.

4 Problem Formulation and Solution Analysis

The sectional density mapping problem is transformed into a minimum norm
problem: the search for the appropriate NN configurations with each NN method
to map the density variable specific to each lane existing on the freeway section
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bounded with the succeeding sensors that will minimize the Euclidean distance,
kP.UIk/�NN.UIk/k, where UIk and Yk are the actual values vector series (obtained
by the two succeeding sensors, downstream and upstream), UI D Œn1u1.t/, n1u2.t/,
n1u3.t/, n1u4.t/, n2u1.t/, n2u2.t/, n2u3.t/, n2u4.t/, su1.t/, su2.t/, su3.t/, su4.t/,
n1u1.t/, n1d2.t/, n1d3.t/, n1d4.t/, n2d1.t/, n2d2.t/, n2d3.t/, n2d4.t/, sd1.t/, sd2.t/,
sd3.t/, sd4.t/	 is the input vector of NN for all four lanes, and Yk C 1 D P.UIk/.

The solution to the minimum norm problem involves a number of steps. The
first one is the choice of the model inputs, and the second step is the attainment of
parameters that minimize the norm given above. In order to obtain an approximation
to time-varying density variable of each lane, the input variables are selected on
purpose to accurately represent the flow state variation within the section bounded
with succeeding sensors. Each of the long vehicle counts n1ij.t/, the rest vehicle
counts n2ij.t/, and speed measurements sij.t/ is selected as an input node, where i
is the sensor label, i D u; d and j is the counter for lane number, j D 1; 2; 3; 4.
Therefore, the input layer of the neural network configurations consist of 24 nodes
and the 4 output layer nodes represent the density specific to each lane bounded by
downstream and upstream sensors.

Considering that the success of neural approximation depends heavily on
the availability of a good subset of training data, data partitioning for the NN
approximations is carried out considering explicitly the error term computations
in all available partitions. The iterative structure of the training process needs a
threshold value to stop learning; performance criteria for varying neural network
configurations require convergence to some selected error term targets.During the
training stage the first half of the data set, out of 687 values were analyzed, the last
344 were then used to examine the performance of the testing phase. The optimum
number of training pairs has been selected considering the minima existing after the
plot of mean squared error (MSE) terms obtained by scaled training pairs. Following
the training period, the networks are applied to the testing data and NN methods’
performances are evaluated with the selected statistical criteria.

4.1 Neural Network Component Configuration

Each utilized NN architecture had different configurations for diverging links of
both the sample node and the nodes of the sample network. The most appropriate
configurations are selected by evaluating the convergence to error term target.

The Levenberg-Marquardt algorithm is utilized to minimize output error with
respect to the weights and thresholds in simulations with FFBPNN integration.
Back-propagation neural networks having varying numbers of hidden layers and
hidden layer units with the hyperbolic tangent functions as their nonlinear transfer
functions, � (x), are selected. The FFBP neural mappings existed as in the form
given with Eq. (2). In the training process, the optimum iterations are chosen with
respect to a fixed mean squared error (MSE) terms on scaled values congestion
values. Optimal characteristics of FFBPNN configuration are given in Table 1.
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Table 1 FFBPNN
configuration charecteristics

Characteristic Selected measure

Hidden layer number 1
Hidden layer node number 48
Iteration number for training

convergence
619

Hidden layer transfer functions Hyperbolic
tangent

Output layer transfer functions Linear

Table 2 Performance criteria obtained specific to each lane

Criteria Lane #1 Lane #2 Lane #3 Lane #4

MARE (vkpm-lane) 0.0046 0.0034 0.0037 0:0194

MAE (vkpm-lane) 0.1684 0.0779 0.0939 0:0591

MSE (vkpm-lane) 1.2749 0.0386 0.0262 0:0221

RMSE 1.1291 0.1967 0.1619 0:1487

R2 0.9942 0.9999 0.9999 0:9999

RMSPE (%) 1.9282 0.4632 0.4948 19:2114

4.2 Simulation Results

To represent the deviation of NN methods’ mappings on lane based densities
from lane based density data generated by the flow conservation principle,
k.t/ D .j .n1uj.t/C n2uj.t// � .n1dj.t/C n2dj.t// j//(distance between sensors),
predictions and conservation principle generated values have been used to calculate
the root mean squared error (RMSE) and the coefficient of determination .R2/,
shown in Table 2.

To clearly show the deviations of results from observations, the RBFNN pre-
dicted lane densities are plotted with the corresponding conservation rule generated
values in Figs. 7–10, respectively for lane#1–lane#4.

5 Conclusion

In this study, an approach to flow state classification is proposed as an overall
process. Classification of traffic flow states and matching the corresponding real-
time flow state is obtained dynamically inputting raw flow measures simultaneously
to neural density mapping and traffic flow modeling processes.

Simulation results obtained from density derivation sub-process highlight the fact
that, NN mapping method is able to provide accurate density variable derivation.
Within the analyses carried out, it is seen that approximating with feed-forward back
propagation trained neural networks led to significantly considerable predictions
which is due to neuron processing mechanism’s flexibility to adapt to non-linear
traffic flow relationships. NNs have a distributed processing structure in which



486 O. Deniz and H.B. Celikoglu

Fig. 7 FFBPNNas predicted lane densities corresponding to conservation rule generated values
for lane#1

Fig. 8 FFBPNN predicted lane densities corresponding to conservation rule generated values for
lane#2

each individual processing unit or the weighted connection between two units is
responsible for one small part of the input-output mapping system. Therefore, each
component has no more than a marginal influence with respect to the complete
solution.

As a result, the neural mechanism functions and generates reasonable lane based
sectional density mappings only from speed and vehicle count data. The approach
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Fig. 9 FFBPNN predicted lane densities corresponding to conservation rule generated values for
lane#3

Fig. 10 FFBPNN predicted lane densities corresponding to conservation rule generated values for
lane#4

is promising in capturing instantaneous changes on flow states and is open to be
utilized within a series of intelligent management strategies including especially
incident detection and control, mainstream flow detection for ramp control, and
queue propagation analysis.
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