
An Integrated Environment for Reasoning over
Ontologies via Logic Programming�

Barbara Nardi, Kristian Reale, Francesco Ricca, and Giorgio Terracina

Department of Mathematics, University of Calabria, Italy
{b.nardi,reale,ricca,terracina}@mat.unical.it

Abstract. Ontology-based reasoning is considered a crucial task in the area of
knowledge management. In this context, the interest in approaches that resort
to Datalog (and its extensions) for implementing various reasoning tasks over
ontologies is growing. Nonetheless, looking from the developer point of view,
one can notice that the editing environments for ontologies on the one hand and
Datalog-like logic programs on the other hand are often developed independently
and miss a common perspective. In this paper we face with this issue proposing
the integration of two major development environments for Datalog programs and
Ontologies, respectively: ASPIDE and protégé. We extended both systems with
specific plugins that enable a synergic interaction between the two development
environments. The developer can then handle both ontologies and logic-based
reasoning over them by exploiting specific tools integrated to work together.

Introduction

In the area of knowledge management, ontology-based reasoning is becoming more and
more a relevant task [1, 2]. New Semantic Web repositories are continuously built either
from scratch or by translation of existing data in ontological form and are made publicly
available. These repositories are often encoded by using W3C [3] standard languages
like RDF(S), and OWL, and query answering on such repositories can be carried out
with specific reasoners, supporting SPARQL as the query language.

In this context, the interest in approaches that resort to Datalog (and its extensions)
for implementing various reasoning tasks over ontologies is growing. Consider for in-
stance that recent studies have identified large classes of queries over ontologies that
can be Datalog-rewritable (see [4] for an overview) or First-Order Rewritable [5]. Ap-
proaches dealing with such fragments usually rely on query reformulation, where the
original query posed on the ontology is rewritten into an equivalent set of rules/queries
that can be evaluated directly on the ontology instances. Many query rewriters that
are based on this idea exist [6–10] producing SQL queries or stratified Datalog pro-
grams. Moreover, even considering a setting where SPARQL queries are posed on RDF
repositories, translations to Datalog with negation as failure were proposed [12] and
implemented [13].

� This work has been partially supported by the Calabrian Region under PIA (Pacchetti Integrati
di Agevolazione industria, artigianato e servizi) project KnowRex POR Calabria FESR 2007-
2013 approved in BURC n. 49 s.s. n. 1 16/12/2010.

W. Faber and D. Lembo (Eds.): RR 2013, LNCS 7994, pp. 253–258, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



254 B. Nardi et al.

However, if we look at this scenario from a developer point of view, one can notice
that different families of tools are required. On the one hand, one needs a good environ-
ment for designing and editing ontologies. On the other hand one would like to design,
execute and test Datalog programs for ontology reasoning. Unluckily specific tools for
these tasks are currently developed independently and miss a common perspective.

In this work we face with this issue proposing the integration of two major devel-
opment environments for Datalog programs and Ontology editing, respectively: AS-
PIDE [14] and protégé [15]. Protégé being one of the most diffused environments for
the design and the exploitation of ontologies; and ASPIDE being the most compre-
hensive IDE for Datalog extended with non monotonic negation and disjunction under
the stable model semantics [16]. In particular, protégé is an open source ontology editor
and knowledge-base framework, which (i) provides an environment for ontology-based
prototyping and application development; (ii) supports several common formats (such
as RDF(S), OWL); (iii) supports several querying and reasoning engines; and (iv) can
be extended with user-defined plugins. ASPIDE supports the entire life-cycle of Data-
log programs development, from (assisted) program editing to application deployment.
ASPIDE combines an advanced editing tool with a collection of user-friendly graphical
tools for program composition, debugging, testing, profiling, DBMS access, solver ex-
ecution configuration and output-handling. Nonetheless, ASPIDE can be extended with
user-defined plugins [17] to support: (i) new input formats, (ii) program rewritings,
and even (iii) the customization of solver results.

In this paper we present an extension of both editors with specific plugins that en-
able a synergic interaction between them. The user can, thus, handle both ontologies
and Datalog-based reasoning by exploiting specific tools integrated to work together.
Note that, our solution has to be considered as a first step towards the development of a
general platform, which can be personalized and extended (also with the help of the re-
search community) by integrating additional rewriters/reasoners. The aim is to provide
an environment for developing, running and testing Datalog-based ontology reasoning
tools and their applications.

1 Integrating ASPIDE and protégé

The integration between ASPIDE and protégé is obtained by developing two separate
plugins respectively extending these systems, see Figure 1. Both plugins are developed
according to the following principle: simple modifications to ontologies and logic pro-
grams should be possible in both environments, but the user can switch to the most
specific editor seamlessly.

As far as ASPIDE is concerned, we developed an input plugin [17] that recognizes
and takes care of the ontology file types. The ASPIDE plugin offers two editing modal-
ities for ontology files, which can be selected by clicking on the standard “switch
button” of ASPIDE. The first modality opens a simple text editor embedded in AS-
PIDE, the second modality automatically opens the selected file in protégé. The plugin
can also associate ontology files with some specific query rewriter, which is available
in ASPIDE in the form of a rewriting plugin. Clearly new rewriters can be added to
the system by developing additional rewriting plugins. ASPIDE is equipped with run



An Integrated Environment for Reasoning over Ontologies via Logic Programming 255

Fig. 1. Integration of ASPIDE and protégé

configurations. A run configuration allows to setup a Datalog engine with its invocation
options, to select input files and to (possibly) specify the associated rewriters.

Concerning the protégé side, we developed a plugin for protégé that displays the
currently open ASPIDE workspace1 in the usual tree-like structure. The idea is that the
ASPIDE workspace acts as a common repository for Datalog programs and ontologies.
The user can browse, add, remove or modify files in the workspace from protégé. Dat-
alog programs can be modified in protégé by using a simple text editor in the plugin
panel, whereas ontology files in the workspace are open and displayed in protégé as
usual. The user can also: require to open specific files in ASPIDE, execute one of the
available rewriters, and invoke a Datalog reasoning engine by setting up and executing
an ASPIDE run configuration.

The two plugins are connected each other via Java RMI. In particular, the ASPIDE
plugin acts as a server. It publishes a remote interface that allows the protégé plugin to
access the ASPIDE workspace and to require the execution of available commands. The
same remote interface is exploited by ASPIDE to open ontologies in protégé.

2 Some Use Cases

In this section we consider some use cases possibly involving three kind of users inter-
acting with our platform, namely: (i) an ontology engineer, (ii) an engineer of query
rewritings for ontologies, and (iii) a Datalog specialist using ontologies for reasoning
tasks. In our description we refer to the well known Datalog-based rewriters, Requiem
[8] and Presto [9]. The first has been already integrated in our platform as a rewriting
plugins of ASPIDE, and we are already working to integrate also Presto. Moreover,
for the sake of presentation, we refer to some instantiation of the well known LUBM
ontology. First of all, consider an ontology engineer, whose main objective is the de-
sign/update of ontologies. In this case the user starts his session from protégé by open-
ing the ontology and modifying it with standard protégé tools. Then, in order to check
the result of some reasoning task on the ontology, to be carried out with Requiem or
Presto, the ASPIDE plugin can be opened inside protégé and used to select a run con-
figuration choosing the desired rewriter and Datalog engine. The plugin allows also to
inspect the produced rewriting before/after the execution, as well as the query result
in the output panel of ASPIDE. Figure 2(a) shows LUBM opened in protégé and a
Requiem query rewriting shown in the ASPIDE panel inside protégé.

Let us now consider a rewriting engineer, whose main objective is the design/imp-
rovement of Datalog-based rewritings for ontology reasoning. In this case, his session

1 The workspace of ASPIDE is a directory collecting programs and files organized in projects.



256 B. Nardi et al.

Fig. 2. ASPIDE and protégé plugins at work

can start either from protégé or from ASPIDE. In fact, the ASPIDE plugin for protégé
allows to open ontology files directly in ASPIDE, in order to perform basic inspec-
tion/modification tasks. Now, provided that an ASPIDE rewriting plugin is available,
the user can activate the corresponding algorithm, inspect the resulting Datalog pro-
gram, possibly modify it and run the Datalog engine to check the result. As a simple
example, one could be interested in studying performance improvements possibly ob-
tained on query answering by the application of magic-sets or unfolding strategies2

applied in cascade, as a post-processing step, to a Requiem output program. This kind

2 These are standard query optimization strategies for Datalog programs.



An Integrated Environment for Reasoning over Ontologies via Logic Programming 257

Fig. 3. Setting up a run configuration in ASPIDE

of analysis can be easily carried out with the proposed platform by properly setting
two run configurations, one including and one excluding the post-processing step. As
another example the rewriting engineer can be interested in checking the correctness
and the performance of his brand new rewriting w.r.t. existing ones; again, this can be
simply done by setting up different run configurations working on the same ontology.

Figure 2(b) illustrates the ASPIDE plugin at work on the LUBM ontology, with the
Datalog program resulting from the activation of a rewriting plugin.

Finally, consider a Datalog specialist that needs to carry out complex reasoning tasks
over ontologies. As an example, assume that the user is interested in identifying max-
imal cliques of coauthors in LUBM. LUBM provides both the Person and Publication
concepts and the publicationAuthor role, which specifies the Authors (i.e. Persons) of
each Publication. Finding a maximal clique of Authors is something that can be eas-
ily expressed with disjunctive Datalog extended with weak constraints,3 provided the
output of an ontology reasoner querying the ontology. Observe that, without our plat-
form, the user should first infer authors and co-authorship relations from LUBM, then
he should translate obtained results in a Datalog compliant format, and finally he should
run a maximal clique encoding based on Datalog. To the contrary, by using the protégé
plugin inside ASPIDE and a single ASPIDE run configuration it is sufficient to spec-
ify: the input ontology file, the queries needed to infer data of interest, the rewriting
plugin to activate, the program for computing maximal cliques, and the Datalog

3 We refer the reader to [11, 18] for more details on these extensions of Datalog.



258 B. Nardi et al.

evaluation engine supporting needed language extensions. Figure 3 shows the run con-
figuration implementing the above example, where the DLV system [18] is selected as
Datalog engine.

Implementations Availability. The two plugins are available in beta version for AS-
PIDE v. 1.35 and protégé v. 4.3. They can be dowloaded from the ASPIDE website
http://www.mat.unical.it/ricca/aspide, and installed acting on the AS-
PIDE menu “File→Plugins→Manage Plugins”.

References
1. Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query

answering over ontologies. In: Proc. of PODS 2009, pp. 77–86. ACM (2009)
2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning

and efficient query answering in description logics: The dl-lite family. Journal of Automated
Reasoning 39(3), 385–429 (2007)

3. W3C: The World Wide Web Consortium (2012), http://www.w3.org/
4. Heymans, S., Eiter, T., Xiao, G.: Tractable reasoning with dl-programs over datalog-

rewritable description logics. In: Proc. of ECAI 2010, pp. 35–40. IOS Press (2010)
5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of

query answering in description logics. Artif. Intell. 195, 335–360 (2013)
6. Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting for OWL 2 QL. In: Bjørner,

N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 192–206.
Springer, Heidelberg (2011)

7. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri, M., Rosati,
R.: QUONTO: querying ontologies. In: Proc. of AAAI 2005, vol. 4, pp. 1670–1671. AAAI
Press (2005)

8. Pérez-Urbina, H., Motik, B., Horrocks, I.: A comparison of query rewriting techniques for
dl-lite. In: Proceedings of the 22st International Workshop on Description Logics, DL 2009,
vol. 477. CEUR-WS.org (2009)

9. Rosati, R., Almatelli, A.: Improving Query Answering over DL-Lite Ontologies. In: Proc. of
KR 2010, pp. 290–300. AAAI Press (2010)

10. Stocker, M., Smith, M.: Owlgres: A scalable owl reasoner. In: Dolbear, C., Ruttenberg, A.,
Sattler, U. (eds.) OWLED 2008, vol. 432. CEUR-WS.org (2008)

11. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

12. Polleres, A.: From sparql to rules (and back). In: Proc. of WWW 2007, pp. 787–796. ACM
(2007)

13. Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: A rule system for querying persistent
RDFS data. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 857–862. Springer,
Heidelberg (2009)

14. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: Integrated development environment for an-
swer set programming. In: Delgrande, J., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645,
pp. 317–330. Springer, Heidelberg (2011)

15. Stanford University: The Protégé Ontology Editor and Knowledge Acquisition System
(2012), http://protege.stanford.edu

16. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385 (1991)

17. Febbraro, O., Leone, N., Reale, K., Ricca, F.: Extending aspide with user-defined plugins.
In: CILC, vol. 857, pp. 236–240. CEUR-WS.org (2012)

18. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (2006)

http://www.mat.unical.it/ricca/aspide
http://www.w3.org/
http://protege.stanford.edu

	An Integrated Environment for Reasoning over
Ontologies via Logic Programming

	Introduction
	1 Integrating ASPIDE and prot´eg´e

	2 Some Use Cases
	References




