
StreamRule: A Nonmonotonic Stream

Reasoning System for the Semantic Web

Alessandra Mileo, Ahmed Abdelrahman,
Sean Policarpio, and Manfred Hauswirth

DERI, National University of Ireland, Galway, Ireland
first.last@deri.org

Abstract. Stream reasoning is an emerging research field focused on dy-
namic processing and continuous reasoning over huge volumes of stream-
ing data. Finding the right trade-off between scalability and expressivity
is a key challenge in this area. In this paper, we want to provide a baseline
for exploring the applicability of complex reasoning to the Web of Data
based on a solution that combines results and approaches from database
research, stream processing, and nonmonotonic logic programming.

1 Introduction and Motivation

The Semantic Web and the growing interests in linking data for sharing, re-use,
and understanding have started to intersect with the domain of Big Data1. To
be successful and efficient in this joint space, processing paradigms need a shift
from the current batch-like approaches (e.g., distributed and parallel computing
with MapReduce) towards stream reasoning in near-real-time [10].

Streamprocessing is under active research for several years inDatabase aswell as
in the Semantic Web community [8,21,20,7]. Stream reasoning on the other hand
had only started in recent years, and a few research prototypes exist [9,17,18,4].
Some of these solutions try to capitalize on the synergies between stream query
processing and stream reasoning for Web data, but the trade-off between scalabil-
ity and expressivity is not exploited enough yet. Gaining better insights on this
trade-off is a necessary step to be able to deal with large volume of input streams,
incomplete or inconsistent data, and computationally intensive reasoning tasks.
Our approach for this investigation combines the latest advancements in stream
query processing for linked data on theWeb, with nonmonotonic stream reasoning.
To our knowledge, ours is the first approach that proposes this kind of coupling to
explore how to enable expressive reasoning for the Semantic Web.

Nonmonotonic stream reasoning techniques for the (Semantic) Web have po-
tential impact in a variety of real-world applications, but the ability of dealing
with incomplete and noisy input streams, conflicts, defaults, qualitative pref-
erences, constraints, non-determinism and generation of multiple solutions is
computationally intensive. Extensions of Datalog towards the logic paradigm of
Answer Set Programming (ASP) [16,5] have been implementing these reasoning

1 http://semanticweb.com/big-data-and-the-semantic-web-their-paths-will-

cross b32027

W. Faber and D. Lembo (Eds.): RR 2013, LNCS 7994, pp. 247–252, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://semanticweb.com/big-data-and-the-semantic-web-their-paths-will-cross_b32027
http://semanticweb.com/big-data-and-the-semantic-web-their-paths-will-cross_b32027


248 A. Mileo et al.

capabilities which can go far beyond the capabilities of existing query engines.
Logic programming dialects like Datalog with negation, covered by ASP, are
viewed as a natural basis for the Semantic Web rule layer [13], but the full ex-
pressivity of ASP introduces new challenges concerning the trade-off between
expressivity and scalability, especially in a streaming scenario.

Our approach is based on the assumption that not all raw data from the
input stream might be relevant for complex reasoning, and efficient stream query
processing can provide aggregation and filtering functionalities to help reducing
the information load over the logic-based stream reasoner.

In order to deal with streaming RDF, solutions like the Linked Sensor Middle-
ware (LSM) [22] have been proposed, providing APIs and a SPARQL-like end-
point abstraction, CQELS [20], for efficiently [19] processing SPARQL queries
on streaming and static RDF data. In terms of knowledge-intensive stream rea-
soning a recent ASP-based solution [15], shifts the emphasis from rapid data
processing towards complex reasoning needed in domain such as robotics, plan-
ning, health monitoring and so on. The resulting system OClingo [15], has been
proven to outperform other nonmonotonic reasoners [1], but its applicability
to the Semantic Web requires tighter coupling with efficient stream processing
techniques. For this reason, we believe the combination of LSM and CQELS for
stream filtering and aggregation, with OClingo represents a good starting point
for investigating the applicability of complex reasoning for the Semantic Web.

To demonstrate this idea, we consider the scenario below.

Scenario 1.1 People wear RFID tags and move around in a building equipped
with RFID readers producing streams of position information. Within the build-
ing, we have defined “geo-fences”, i.e., virtual perimeter for a real-world area.
Particular rooms are marked “off-limits.” We want to detect (1) users who have
traversed outside the geo-fence or into off-limits rooms, and (2) inconsistencies
in the movement patters of people, e.g., movement between non-adjacent rooms.

Each RFID tag reading generates an event (a person enters a room) captured
by the stream query processor. In the reasoning step, we could detect a geo-
fence violation under incomplete knowledge by reasoning about the absence of
knowledgeor by triggering default behaviours. For example, if a subject Bob
cannot be identified or we don’t know if he has access to a room X , we can still
detect a geo-fence violation with a rule like: “If somebody is detected in Room
X but we do not know whether his access is restricted, then send an alert”. This
is generalized to all persons regardless of our ability to identify them or prior
knowledge about their restricted access. In a similar way, if we have no sensor
readings available, we may want to know all plausible locations for a person in
a particular point in time, generating plausible solutions or “answer sets”.

Nonmonotonicity via the use of Negation As Failure (NAF) and non determin-
ism makes it possible to address these cases. NAF can also be applied in reasoning
about inconsistencies, such asmovements between unconnected rooms (e.g. rooms
with no path between them or connected by locked doors). To do that, we can de-
fine a rule like “If Bob is detected in both room X and room Y in the last 5 seconds,
and room X and room Y are not connected, record an inconsistency”. Similar to



StreamRule 249

our previous rules, we reason upon the streaming information regardless of the
possible absence of some knowledge (in this case, a connection between rooms X
and Y ). Additionally, we specify temporal reasoning by constraining the rule to
a specific window (i.e., the last 5 steps).

Non determinism can be combined with special constraints to produce alter-
native solutions. For example, if “Bob is in room X and in room Y” because of
erroneous readings, rather than reporting this as an inconsistency we can define
a constraint rule saying that “For all of Bob’s sensor readings, only one of them
only can be valid in each solution”. In ASP this translates in each stream read-
ing for Bob to be part of only one of the solutions. If this information related to
some other rules – for example, setting off an alert – then they will be triggered
in their respective answer set too.

2 System Design and Implementation

The conceptual design of StreamRule is shown in Figure 1. Abstraction and fil-
tering on raw streaming data is performed by a stream query processor using
declarative query patterns as filters. Matching patterns are processed by the
middle layer and returned as input facts to the nonmonotonic stream reasoner
together with the declarative encoding of the problem at hand. Output is re-
turned as a set of solutions to the logic program applied to the (filtered) input.

Web 
of 

Data

Filtered Stream
Middle-
layer

Processor 
Query

Logic
Program

Solutions

FactsStream Rule

Stream
query

processor

Non-Monotonic
Rule Engine

Fig. 1. StreamRule: Conceptual Framework

Event filtering is specified by end-users through a CQELS query2. As the
CQELS engine providesAPI accessibility for configuration, instantiation, and out-
put using Java, we also based the StreamRule implementation on Java. Our
system acts as a pipeline which intercepts the output RDF stream query results
filtered by CQELS and processes them into internal data structures. These are
then streamed into OClingo in ASP syntax. Presently, OClingo is executed as a
subprocess within StreamRule and the answer sets it produces are fed back into the
Java runtime for further processing and/or display. To optimize performance and
guarantee non-blocking communication and processing, StreamRule uses asyn-
chronous communication and a multi-threaded and concurrent callback-based (or
chaining) infrastructure across and among the three major components –CQELS,
OClingo, and the Java middle layer. We also implemented a buffering algorithm
to ensure the reasoner does not become a bottleneck. Additionally, the implemen-
tation also adheres to accepted best practices for performance-optimized stream

2 SPARQL 1.1 extension with streaming operators.



250 A. Mileo et al.

processing engine design [23]. The configuration of the StreamRule system is cur-
rently specified as an an XML configuration file. The base system is then capable
of being run directly in a Java Virtual Machine. After deployment and configura-
tion into a web server, users are simply required to define two major inputs: the
RDF stream query and the logic program. Once execution is started, continuous
answer sets are output to a dynamic user interface. The reasoning component uses
OClingo’s sliding windows and time-decay model [15].

3 Related Work

Stream reasoning and processing is a rapidly growing area of research. Rele-
vant systems include C-SPARQL [6], EP-SPARQL [2]. A recent effort is Spark-
wave [17] which, however, does not have comprehensive performance evaluation
results available, thus making comparison hard.

Due to the decisive results in [19], our preference was towards CQELS. In
general though, these systems share the same approach of utilizing SPARQL-like
specification of continuously processed queries for streaming RDF data, so they
could all be used for StreamRule in principle. What they lack is the possibility
to express more complex reasoning. Stream processing engines which augment
stream reasoning through this kind of approach are still limited, but include those
such as the use of Prova [24] and Streaming IRIS 3. In terms of performance,
Prova is more concerned about how much background (static) knowledge can be
pushed into the system, while Streaming IRIS does not test complex reasoning
tasks. ETALIS [3] is a CEP system implemented in Prolog, which provides a rich
temporal query language to capture some of the patterns we considered. To our
knowledge, the work by Do et al. [12] is probably the only other current stream
reasoning approach for the Semantic Web that utilizes ASP. Although the work
is quite recent, their approach is still much more prototypical and it is based on
the DLV [14] system, which does not pertain to continuous and window-based
reasoning over streaming data within the reasoner.

4 Experiments and Discussion

To evaluate our implementation and trigger discussions we enacted Scenario 1.1
using real sensor readings 4. The CQELS queries and the ASP rules are avail-
able at http://streamrule.org/www13/experiments. Assuming the expressive
power of ASP is clear to the reader, in what follows we briefly discuss our lesson
learned as a starting point for future investigation.

Streaming rate and program complexity: We observed that the logic
program needs to return results faster than the inputs arrive from the stream
query component. While this may look like a limitation, it provides a clear
understanding of the throughput threshold up to which the system is guar-
anteed to work correctly, and can be used for planning the input stream

3 http://www.envision-project.eu/wp-content/uploads/2012/11/D4.8-1.0.pdf
4 http://www.openbeacon.org/

http://streamrule.org/www13/experiments
http://www.openbeacon.org/


StreamRule 251

capacities and the necessary hardware for the reasoning. Such hard bound-
aries are also used in real-time systems to ensure upper bounds in the result
delays of a computation. We follow this established technique in StreamRule.
Streaming rate and window size: A trade-off exists between logical win-
dow size and streaming rate: faster streams are more likely to produce query
matches, so they require smaller window sizes, unless the speed of the rea-
soning process is increased by faster hardware. Conversely, if larger window
sizes are required, then sampling techniques or further aggregation or selec-
tive reading might help. This is reflected in most real scenarios where we
need to decide what is a relevant event pattern for a particular reasoning
task and for how long that is likely to be valid. Leveraging fast stream data
with the use of CQELS query patterns as a filter, can provide significantly
lower requirements for the computation thus enabling some forms of complex
reasoning, but further investigation for optimization is needed.
Optimizations: Our initial investigation helped understanding limitations
and feasibility of applying complex reasoning over noisy and erroneous linked
data streams, capacities that make StreamRule a stream reasoning system
in a class of its own [11]. This work also help sketching a promising path
for optimization of such system which requires i) definition of an operational
semantics for tighter integration of the two components, ii) design and in-
vestigation of more complex scenarios to better understand the nature of the
correlation between window-size and streaming rate and iii) specification of
dynamic metrics for the reasoner (e.g. based on the complexity of the ruler
or the relevance and quality of the streaming events) to provide a feedback
loop to the query processor. In this way event filtering and optimization can
be tailored to the specific scenario and data at hand. We are currently in-
vestigating these issues and engaging with scientists from relevant domains
including smart cities and bioinformatics.

References

1. 2011 ASP Competition – system track final results (2011),
https://www.mat.unical.it/aspcomp2011/SystemTrackFinalResults

2. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: Proc. of the 20th WWW Conference,
pp. 635–644. ACM (2011)

3. Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic, N., Studer, R.: A
rule-based language for complex event processing and reasoning. In: Hitzler, P.,
Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 42–57. Springer, Heidelberg
(2010)

4. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex
event processing in ETALIS. In: Semantic Web (2011)

5. Baral, C.: Knowledge representation, reasoning and declarative problem solving.
Cambridge University Press (2003)

6. Barbieri, D., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment for
c-sparql queries. In: Proc. of the 13th Int’l Conference on Extending Database
Technology, pp. 441–452. ACM (2010)

https://www.mat.unical.it/aspcomp2011/SystemTrackFinalResults


252 A. Mileo et al.

7. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Querying rdf
streams with c-sparql. SIGMOD Record 39(1), 20–26 (2010)

8. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., Zdonik, S.: Monitoring streams: a new class of data man-
agement applications. In: VLDB 2002, pp. 215–226. VLDB Endowment (2002)

9. Della Valle, E., Ceri, S., Barbieri, D.F., Braga, D., Campi, A.: A first step towards
stream reasoning. In: Domingue, J., Fensel, D., Traverso, P. (eds.) FIS 2008. LNCS,
vol. 5468, pp. 72–81. Springer, Heidelberg (2009)

10. Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a Streaming World!
Reasoning upon Rapidly Changing Information. IEEE Intelligent Systems 24(6),
83–89 (2009)

11. Della Valle, E., Schlobach, S., Krötzsch, M., Bozzon, A., Ceri, S., Horrocks, I.:
Order matters! harnessing a world of orderings for reasoning over massive data.
Semantic Web Journal (2012)

12. Do, T.M., Loke, S.W., Liu, F.: Answer set programming for stream reasoning.
In: Butz, C., Lingras, P. (eds.) Canadian AI 2011. LNCS (LNAI), vol. 6657, pp.
104–109. Springer, Heidelberg (2011)

13. Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with rules
and ontologies. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.)
Reasoning Web 2006. LNCS, vol. 4126, pp. 93–127. Springer, Heidelberg (2006)

14. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Dlv-hex: Dealing with semantic
web under answer-set programming. In: Proc. of ISWC (2005)

15. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.:
Answer set programming for stream reasoning. CoRR, abs/1301.1392 (2013)

16. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proc. of the 5th Int’l Conference on Logic Programming, vol. 161 (1988)

17. Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pat-
tern matching over RDF data streams. In: Proc. of DEBS, pp. 58–68 (2012)

18. Lanzanasto, N., Komazec, S., Toma, I.: Reasoning over real time data
streams (2012), http://www.envision-project.eu/wp-content/uploads/2012/

11/D4-8 v1-0.pdf

19. Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T., Fink, M.: Linked
stream data processing engines: Facts andfigures. In:Cudré-Mauroux, P., et al. (eds.)
ISWC 2012, Part II. LNCS, vol. 7650, pp. 300–312. Springer, Heidelberg (2012)

20. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data. In:
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.,
Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer,
Heidelberg (2011)

21. Madden, S., Shah, M., Hellerstein, J.M., Raman, V.: Continuously adaptive con-
tinuous queries over streams. In: 2002 ACM SIGMOD Int’l Conference on Man-
agement of Data, pp. 49–60. ACM, New York (2002)

22. Le-Phuoc, D., Quoc, H.N.M., Xavier Parreira, J., Hauswirth, M.: The Linked Sen-
sor Middleware – Connecting the real world and the Semantic Web. In: Semantic
Web Challenge, ISWC, Bonn, Germany, October 23-27 (2011)

23. Stonebraker, M., Çetintemel, U., Zdonik, S.: The 8 requirements of real-time stream
processing. ACM SIGMOD Record 34(4), 42–47 (2005)

24. Teymourian, K., Rohde, M., Paschke, A.: Fusion of background knowledge and
streams of events. In: Proc. of the ACM DEBS, DEBS 2012, pp. 302–313. ACM,
New York (2012)

http://www.envision-project.eu/wp-content/uploads/2012/11/D4-8_v1-0.pdf
http://www.envision-project.eu/wp-content/uploads/2012/11/D4-8_v1-0.pdf

	StreamRule: A Nonmonotonic StreamReasoning System for the Semantic Web
	1 Introduction and Motivation
	2 System Design and Implementation
	3 Related Work
	4 Experiments and Discussion
	References




