
Kiabora: An Analyzer of Existential Rule Bases

Michel Leclère, Marie-Laure Mugnier, and Swan Rocher

University Montpellier 2, France

Abstract. Kiabora is a software tool dedicated to the analysis of a base of ex-
istential rules (also called Datalog± rules). It is able to check if a set of rules
belongs to a known class for which entailment is decidable, either directly, by
checking some syntactic properties, or by means of its Graph of Rule Dependen-
cies, which allows to combine decidable cases. Kiabora is available online via
a simple web form. It is written in Java and is easily extensible to take new de-
cidability results into account. It comes with a textual format, called DLGP (for
Datalog Plus), which can be seen as an extension to usual plain Datalog format.
In this paper, we briefly introduce the existential rule framework as well as decid-
ability results and presents the analysis performed by Kiabora. More details are
available on Kiabora website.1

1 Introduction

Existential rules allow to assert the existence of not-yet-known individuals, a desir-
able feature in open world applications. These rules are of the form body → head,
where the body and the head are conjunctions of atoms (without functions) and vari-
ables that occur only in the head are existentially quantified. They are also known as
Datalog± framework, an extension of plain Datalog to tuple-generating dependencies
[CGL09]. Existential rules have been specifically developed in the context of Ontology-
Based Query Answering (OBQA), which consists in querying data while taking into
account inferences enabled by the ontology. Note that existential rules cover the core of
lightweight description logics dedicated to query answering, while being more powerful
and flexible.

The basic OBQA problem can be recast as entailment of a Boolean conjunctive query
(an existentially closed conjunction of atoms) from a knowledge base composed of data
and existential rules. This problem being undecidable, there has been a lot of work on
defining specific cases of existential rules for which it is decidable, as well as safely
combining such cases.

Kiabora is an open source software written in Java, whose purpose is to analyze a
set of existential rules w.r.t. decidability of entailment. It is able to check if this set
belongs to a known decidable class of rules (i.e., a class for which entailment is decid-
able), either directly by checking some syntactic properties or by means of its Graph
of Rule Dependencies (GRD); in this latter case, the strongly connected components
in the GRD are analyzed, and their properties are combined in order to determine the
decidability of the whole set of rules, as well as the kind of paradigm (forward or back-
ward chaining) ensuring decidability. Of course, decidable sets of rules are generally

1 Kiabora website: http://www.lirmm.fr/graphik/kiabora/

W. Faber and D. Lembo (Eds.): RR 2013, LNCS 7994, pp. 241–246, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://www.lirmm.fr/graphik/kiabora/

242 M. Leclère, M.-L. Mugnier, and S. Rocher

not recognizable, thus Kiabora tries to find sufficient properties ensuring membership
of a known decidable class of rules.

Kiabora also provides some utilities, in particular concerning rule decompositions:
it allows to decompose a rule into a set of equivalent rules with a simpler head, either
restricted to a “piece” (which roughly corresponds to a unit of information added by a
rule) or a single atom (which requires to introduce an auxilliary predicate). Kiabora’s
preferred input/output format is called DLGP (for Datalog Plus). DLGP is a textual
format meant to be at once human-friendly, concise and easy to parse. It can be seen as
an extension to the commonly used format for plain Datalog.

The paper is organized as follows. Fundamental notions about the existential rule
framework and decidability properties are respectively introduced in Sections 2 and
3. Section 4 presents the analysis performed by Kiabora. Section 5 draws up some
perspectives for the next tool version.

2 Preliminaries

An atom is of the form p(e1 . . . ek) where p is a predicate, k ≥ 1 is the arity of p, and
each ei is a variable or a constant. A fact F is an existentially closed conjunction of
atoms ∃X̄F [X̄], where X̄ is the set of variables occurring in F . The classical notion of
a fact as a ground atom is thus generalized by the introduction of existentially quanti-
fied variables. Hence a conjunction of facts can be seen as a single fact. An existential
rule is a positive rule of the form ∀X̄∀Ȳ (B[X̄, Ȳ] → ∃Z̄H [X̄, Z̄]), where B and H
are conjunctions of atoms, respectively the body and the head of the rule, X̄ are the
variables shared by B and H , Ȳ are the variables that occur only in B and Z̄ are the
variables that occur only in H ; Z̄ variables are existentially quantified.

Example 1 (Facts and Rules). We consider the following predicates, with their arity
mentioned after their name: area/1, project/1, researcher/1, hasExpertise/2, isMember/2,
isProject/3. Unary predicates can be seen as classes of entities. Binary predicates has-
Expertise and isMember respectively relate a researcher to an area and a project. The
ternary predicate isProject links a project, the area of this project and the leader of this
project. The following sentences express a fact and two rules.

– Fact: “Researcher a is member of a project in kr area”
∃X∃Y (researcher(a)∧ isMember(a,X) ∧ isProject(X, kr, Y))

– Rule 1: “Every leader of a project is a member of this project”
∀X∀Y ∀Z(isProject(X,Y, Z) → isMember(Z,X))

– Rule 2: “Every researcher expert in an area is member of a project in this area”
∀X∀Y (researcher(X) ∧ hasExpertise(X,Y) →
∃Z∃L(isProject(Z, Y, L) ∧ isMember(X,Z)))

A Boolean conjunctive query Q has the same logical form as a fact. The fundamental
decision problem associated with query answering can be defined as follows: given a
knowledge base K = (F,R), where F is a fact (or a set of facts logically equivalent
to a single fact) and R is a set of existential rules, and a Boolean conjunctive query Q,
is Q entailed by K (notation F,R |= Q)? This problem is undecidable in the general
case, even if R is restricted to a single rule [BLMS11].

Kiabora: An Analyzer of Existential Rule Bases 243

3 Decidability Properties

For reasons of brevity, in the sequel of this paper we call “decidable” a class of rules for
which the fundamental entailment problem is decidable. Decidable classes found in the
literature are based on various syntactic properties of existential rules. Figure 1 shows the
main currently known decidable classes, partially ordered by syntactic inclusion: Dat-
alog, weakly-acyclic [FKMP05], (weakly-) acyclic GRD [Bag04], atomic-body or lin-
ear [BLMS11, CGL09], frontier-1 and (weakly-)(frontier-)guarded [CGL09, BLMS11],
domain-restricted [BLMS11], (weakly-)sticky [CGP12]. These classes are all considered
by Kiabora (see Kiabora website for their definition and the synthesis paper [Mug11] for
a more complete picture of decidable classes).

For readability reasons, the decidable class of “disconnected rules” was omitted in the picture.
This class is included in weakly-acyclic (fes), frontier-guarded (bts) and domain-restricted (fus).

Fig. 1. Main decidable classes

There are two main paradigms for processing rules, namely forward chaining (FC)
and backward chaining (BC). FC uses the rules to enrich the initial fact F into a fact
F ′ and F,R |= Q holds if F ′ |= Q. BC uses the rules to rewrite Q into a query Q′ and
F,R |= Q holds if F |= Q′. More complex mechanisms rooted in these paradigms have
then been developed. In order to classify the decidable classes found in the literature,
the following abstract properties related to the behavior of FC and BC mechanisms are
considered in [BLMS11]: (1) FC halts in finite time; (2) FC may not halt but the gen-
erated facts have a tree-like structure; (3) BC halts in finite time. These properties yield
three abstract classes of rules, respectively called finite expansion sets (fes), bounded
treewidth sets (bts) and finite unification sets (fus). The fes class is included in the bts
class, and they are both incomparable with the fus class. These classes are said to be

244 M. Leclère, M.-L. Mugnier, and S. Rocher

abstract in the sense that they do not come with a syntactic property that can be checked
on rules or sets of rules. As a matter of fact, they are not recognizable in general. Note
that, whereas fes and fus classes are provided with halting mechanisms, no halting pro-
cedure is known for bts; however, a subclass of bts was defined, namely gbts, which
comes with a halting procedure [BMRT11].

In contrast, the classes defined by a syntactic property are called concrete. Syntac-
tic properties have to be fulfilled either by each rule (unit property) or by the set of
rules as a whole (global property). Almost all known concrete classes fulfill one of the
above abstract properties (see Figure 1). Some of them fulfill several abstract properties,
moreover a given set of rules may itself belong to several concrete classes.

The rough union of two sets of rules belonging to decidable classes almost always
leads to undecidability. The notion of rule dependency can be used to define constraints
on the interactions between rules and safely combine decidable classes. We say that a
rule R2 depends on a rule R1 if R1 may lead to trigger R2, i.e., there exists a fact F
such that R1 is applicable to F , which yields a fact F ′, and a new application of R2 is
possible on F ′ (see [BLMS11] for a formalization and computation of this notion).2

The Graph of Rule Dependencies (GRD) is a directed graph with the set of rules
as set of nodes and an edge from a rule R1 to a rule R2 if R2 depends on R1. If the
GRD is acyclic then the associated set of rules is both fes and fus. If all its strongly
connected components (SCC) are fes (resp. fus) then the set of rules is fes (resp. fus).
Moreover, fes, bts and fus SCC can be safely combined when the set of rules can be
partitioned while enforcing specific constraints. If all SCC are fes or bts, and no rule
processed as fes depends on a rule processed as bts, then the set of rules is bts; if no rule
processed as bts depends on a rule processed as bts or fus then entailment is decidable.
Schematically, fes/bts rules can be applied to the initial fact and used to build a finite
saturated fact (fes case) or finite structure encoding a potentially infinite fact (gbts case),
while fus rules can be used to rewrite the initial query into a query evaluated against the
transformed fact.

4 Kiabora

Kiabora can be run via a simple web form, which allows to load a rule set file (preferably
in DLGP format) and to set the analysis parameters. Following Example 2 is a DLGP
file translating the fact and rules in Example 1; note that objects may be named (here
the rules are named R1 and R2) and quantifiers are implicit.

Example 2 (DLGP format).
researcher(a), isMember(a, X), isProject(X, kr, Y). % fact

[R1] ismember(Z,X) :- isProject(X, Y, Z). % plain Datalog rule

[R2] isProject(Z, Y, L), isMember(X, Z) :-

researcher(X), hasExpertise(X, Y). % extended Datalog rule

2 Kiabora allows to refine this notion by enforcing that the fact obtained after the application
of R2 is not equivalent to F ′ [Lam12], however this option may significantly increase the
computation time.

Kiabora: An Analyzer of Existential Rule Bases 245

DLGP format allows to encode negative constraints (rules with an head restricted to ⊥)
and non-Boolean conjunctive queries as well, but these objects have no specific role in
this paper.

The output of the analysis is composed of the following elements (in textual format):

– the GRD, the content of each SCC and the graph of the SCC (i.e., the reduced GRD,
in which each SCC is a node),

– the unit properties fulfilled by each rule,
– the unit and global properties fulfilled by each SCC and by the whole set of rules,
– one or several safe combinations of abstract classes based on the SCC of the GRD,
– the conclusion of the analysis (proven or not decidable w.r.t. the selected

parameters).

The following example illustrates the use of the GRD.

[R0] p(X,Z):-p(X,Y),p(Y,Z).
[R1] p(Y,X),q(X,Y,X):-p(X,Y).
[R2] q(X,Z,T):-r(X,Y).
[R3] r(Z,T):-q(X,Y,Z).
[R4] s(Z,Z,Z):-p(X,X),r(Y,U),s(T,Y,X).
[R5] s(Z,X,Y):-s(X,X,X),s(Y,Y,Y).

R0

R1 R3

R2

R4 R5

C0

C1

C2

fes bts/fus

fus

GRD

R = {R0 . . . R5} does not belong to any concrete decidable class. As shown in the
above figure, the GRD of R contains three SCC. Each SCC satisfies some concrete
properties (not mentioned in the figure), which themselves allow to prove the member-
ship to abstract rule classes : C0 is fes, C1 is bts (actually gbts) and fus, and C2 is fus.
There are two safe combinations of these SCC, which differ in how C1 is considered. If
C1 is considered as a bts, then C0 ∪ C1 is identified as a bts, and R is found decidable
since there is no edge from C2 to C0 ∪ C1. Otherwise, C1 is considered as a fus, then
C1 ∪ C2 is a fus, and R is decidable, since there is no edge from C1 ∪ C2 to C0.

User preferences regarding abstract classes can be taken into account in the combin-
ing step. For instance, the user may prefer backward chaining, hence the fus class, in
which case Kiabora will give priority to safe combinations that maximise the number
of rule sets processed as fus; or she may prefer to saturate the facts, hence the fes class.
Furthermore, since no algorithm is known for bts, and the algorithms available for gbts
are rather complex to implement, one can also ask Kiabora to minimize the number of
bts components.

All concrete properties can be checked in linear or quadratic time, except those based
on the GRD. Indeed, checking if a rule R2 depends on a rule R1 is an NP-complete
problem. Note however that it becomes linear in time if R1 has an atomic head, which
is often the case. The combining step can be performed by a simple breadth-first search
in the graph of the SCC.

First experiments have been led with available sets of existential rules: for sets of
about five thousands rules (e.g., Galen-Lite [KLT+10]) the whole process, including file

246 M. Leclère, M.-L. Mugnier, and S. Rocher

loading and result display, takes less that one minute on a standard labtop. Nevertheless,
we have to point out that available rule sets are very simple since they are translations
from lightweight description logics; experiments with more complex rule sets would be
needed to test the efficiency of the GRD construction.

Finally, we have to point out a current limitation of Kiabora: for now, the equality
predicate in rules, which is allowed in DLGP format, is considered like any other pred-
icate (it follows that some rule dependencies may be missed in presence of equalities).

Since new decidable rule classes are regularly discovered, Kiabora has been designed
to allow for easy inclusion of new decidability properties. Actually, adding a new class
membership check is very simple as it consists of (1) implementing a Java interface and
(2) inserting an instance into the graph of known decidable classes (see Figure 1). For
more details, the reader is referred to the RuleClass interface documentation.

5 Perspectives

This paper briefly presents Kiabora, a tool for analyzing the structure of existential rule
bases. Its main purpose is to determine whether the rule base belongs to a known de-
cidable class of rules and propose paradigms to process the rules. It can also be used
to compute the graph of rule depencencies independently of decidability issues. In ad-
dition it provides some utilities concerning format translation or rule decompositions.
Kabiora has been designed to allow easy inclusion of new decidability results.

Further developments are planned, such as exploiting negative constraints, taking
into account equalities in rules or providing a finer analysis of relevant processing
algorithms.

References

[Bag04] Baget, J.-F.: Improving the forward chaining algorithm for conceptual graphs rules.
In: KR 2004, pp. 407–414. AAAI Press (2004)

[BLMS11] Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: On rules with existential vari-
ables: Walking the decidability line. Artificial Intelligence 175(9-10), 1620–1654
(2011)

[BMRT11] Baget, J.-F., Mugnier, M.-L., Rudolph, S., Thomazo, M.: Walking the complexity
lines for generalized guarded existential rules. In: IJCAI 2011, pp. 712–717 (2011)

[CGL09] Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. In: PODS 2009, pp. 77–86 (2009)

[CGP12] Calı̀, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: The
query answering problem. Artif. Intell. 193, 87–128 (2012)

[FKMP05] Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query
answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

[KLT+10] Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined
approach to query answering in dl-lite. In: KR (2010)

[Lam12] Lamare, B.: Optimisation de la notion de dépendance. Internship report, ENS
Cachan and LIRMM/INRIA (September 2012)

[Mug11] Mugnier, M.-L.: Ontological Query Answering with Existential Rules. In:
Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 2–23. Springer,
Heidelberg (2011)

	Kiabora: An Analyzer of Existential Rule Bases
	1 Introduction
	2 Preliminaries
	3 Decidability Properties
	4 Kiabora
	5 Perspectives
	References

