
Inconsistency Management for Description Logic
Programs and Beyond�

Thomas Eiter, Michael Fink, and Daria Stepanova

Institute of Information Systems
Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria
{dasha,eiter,fink}@kr.tuwien.ac.at

Abstract. Description logic programs are a declarative approach to access on-
tological knowledge bases through a query interface, and to combine the query
results using rules that can be nonmonotonic. Noticeably, a bidirectional infor-
mation flow between the rules and the ontology is supported, which opens the
possibility of sophisticated data exchange and advanced reasoning tasks on top
of ontologies. As it happens, inconsistency may arise from the interplay of the
rules and the ontology. We consider this issue and discuss different origins of
inconsistency, as well as approaches to deal with it. While recent progress has
been made, several issues remain to be explored; among them is inconsistency
management for generalizations of description logic programs, and in particular
for HEX programs, where this issues is largely unexplored and challenging, the
more if distributed or web-based evaluation scenarios are considered.

1 Overview

The need for expressive formalisms that embrace both ontological knowledge bases,
and rules has led to a number of proposals that are based on different grounds (see [10]
for some overview). Among them are nonmonotonic description logic programs (briefly
dl-programs) [4], which provide a declarative approach to access ontologies through a
query interface and to combine the query results using rules that can be nonmonotonic.
Roughly speaking, a dl-program consists of a pair (O,P ) of an ontological knowledge
base (briefly, ontology) O and a rule set P , where in the bodies of the rules in P so
called dl-atoms of the form DL[λ,Q](t) may occur. Informally, Q(t) is a query to O,
and λ is a list of update operationsS op p which specify assertions S(c) resp. ¬S(c) for
O depending on the rules predicate p; these assertions are calculated from the valuations
of p and temporally added to O before the query Q(t) is evaluated.

Noticeably, this mechanism allows for a bidirectional information flow between the
rules and the ontology, which opens the possibility of sophisticated data exchange and
advanced reasoning tasks on top of ontologies. It has been been fruitfully generalized to
so called HEX programs [5], which provide a view-based access of external information
sources from rules beyond ontologies through external atoms of the form &e[i](t),
where &e is an external predicate and i is a list of input parameters (which are terms).

Different semantics for dl-programs have been defined (cf. e.g. [13]), extending an-
swer set and well-founded semantics. As it happens, the information flow between the

� This work was supported by the Austrian Science Fund (FWF) projects P20480 and P24090.

W. Faber and D. Lembo (Eds.): RR 2013, LNCS 7994, pp. 1–3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 T. Eiter, M. Fink, and D. Stepanova

rules and the ontology can have unforseen effects and cause inconsistency, such that no
answer set or model exists; the dl-program thus yields no information and is unusable.

Possible sources of inconsistency in a dl-program (O,P ) are naturally

(1) the rules P ,
(2) the ontology O, and
(3) the interface DL[λ,Q](t) between P and O,

and they may also be intermingled. Different approaches have been pursued to deal with
the problem, in particular to tolerate inconsistency and program repair.

Inconsistency tolerance (see e.g., [7,1]) aims at suppressing or weakening informa-
tion that leads to inconsistency in model building. In [11], rules with dl-atoms that
amount to queries over inconsistent ontologies are suppressed, while [6] extends para-
consistent semantics of ordinary answer set programs to dl-programs, exploiting a logic-
based view of dl-programs by introducing assumptions. The semantics pays particular
attention to inconsistency due to the lack of stability in models (termed paracoherence),
and it is in line with paraconsistent semantics for description logics [9]. However, one
aspect in which this approach needs refinement is modularity; layered program evalu-
ation as for ordinary nonmonotonic logic programs is not compatible with unrestricted
assumptions, and thus structural information needs to be taken into account.

Repairing dl-programs, i.e., to change formulas to obtain consistency (which is a
natural and ubiquitous approach in knowledge representation) was only most recently
attacked. Here, due to various sources of inconsistencies, different possibilities exist.
The recent work [3] concentrates on the repair of the ontology O, taking the view that
the rules are correct (as they are on top of the ontology, this may be separately assessed;
moreover, ontology repair is well-researched (cf. [8,2]), while repair of nonmonotonic
rules is less developed (cf. [12]). In particular, [3] restricts changes to the assertional part
(the ABox), and formally defines repairs and repair answer sets as changes that enable
answer sets; refined notions incorporate criteria to select preferred repairs, with a focus
on properties that allow to extend existing evaluation methods for dl-programs. At the
heart of the method is a generalized ontology repair problem, which roughly speaking
asks for an ABox repair that effects certain positive and negative query answers; while
intractable in general, it can be polynomially solved in relevant non-trivial settings.

On the other hand, repair of the rules part and repair of the interface remain to be
considered. The former subsumes repair of ordinary nonmonotonic programs, and thus
poses a challenge as such, especially if repair goes beyond merely dropping rules. Re-
pair of the interface might be addressed in different ways. One possibility is to modify
the update specification λ in a DL-atom DL[λ;Q](t) and/or the query Q(t) to effect
a different information flow between the rules and the ontology. However, the search
space for changes is large and needs to be limited, and user intervention will most
likely be needed. Another possibility is to change query evaluation: rather than sim-
ply expanding the ontology O with assertions assembled from the update specification
λ, one incorporates them into O in a way such that consistency is preserved, using a
revision or update operator; it remains to identify suitable such operators.

In the context of HEX programs, the issues above are lifted to a more abstract level.
Here we have in general multiple (not a single) external sources, which are not necessary
ontologies and even if so they may be in different formats; their semantics is defined



Inconsistency Management for Description Logic Programs and Beyond 3

using Boolean-valued functions f& associated with external predicates &e of external
atoms &e[i](t), which model membership of a tuple t in the “result” of evaluating &e
with “input” parameters i. As for sources of inconsistency in a HEX program, external
sources may vanish to appear as such, as in lack of a logical semantics the notion of
“inconsistency” is inapplicable; furthermore, repair of an external source may be limited
(if not impossible). Hence, paraconsistent semantics and/or rule or interface repair are
expected to be more promising. While the abstract nature of HEX programs, in which the
external atoms are viewed as black boxes, allows to access any kind of external source,
for specific settings domain information about the external sources may be useful. To
this end, properties of the evaluation functions f&e may be taken into account, as well
as the possibility to access a source via functions of an API (other than those used in the
program) in the style of an abstract data type. Indeed, external functions may serve to
provide traditional data structures such as strings, but also more complex ones like trees
or routes computed by a route planner. However, work on this is in an embryonic state.

In conclusion, while recent progress has been in inconsistence management of
dl-programs, open issues remain to be explored; among them is to consider generaliza-
tions of dl-programs, and in particular HEX programs, where this issue is largely un-
explored and challenging, the more if distributed or web-based evaluation scenarios are
considered.

References

1. Bertossi, L., Hunter, A., Schaub, T. (eds.): Inconsistency Tolerance. LNCS, vol. 3300.
Springer, Heidelberg (2005)

2. Bienvenu, M.: On the complexity of consistent query answering in the presence of simple
ontologies. In: Proc. 26th Conf. Artificial Intelligence, pp. 705–711. AAAI Press (2012)

3. Eiter, T., Fink, M., Stepanova, D.: Data repair of inconsistent dl-programs. In: Proc. 23rd
Int’l Joint Conf. Artificial Intelligence (IJCAI 2013). AAAI Press/IJCAI (to appear, 2013)

4. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the Semantic Web. AIJ 172, 1495–1539 (2008)

5. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order rea-
soning and external evaluations in answer-set programming. In: Proc. 19th Int’l Joint Conf.
Artificial Intelligence (IJCAI 2005), pp. 90–96. Professional Book Center (2005)

6. Fink, M.: Paraconsistent hybrid theories. In: Proc. 13th Int’l Conf. Principles of Knowledge
Representation and Reasoning (KR 2012), pp. 141–151. AAAI Press (2012)

7. Hunter, A.: Paraconsistent logics. In: Handbook of Defeasible Reasoning and Uncertainty
Management Systems, vol. 2, pp. 11–36. Kluwer (1998)

8. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics
for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp.
103–117. Springer, Heidelberg (2010)

9. Ma, Y., Hitzler, P., Lin, Z.: Paraconsistent reasoning for expressive and tractable description
logics. In: Proc. DL 2008. CEUR Workshop Proc., vol. 353. CEUR-WS.org (2008)

10. Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5) (2010)
11. Pührer, J., Heymans, S., Eiter, T.: Dealing with inconsistency when combining ontologies and

rules using DL-programs. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuck-
enschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp.
183–197. Springer, Heidelberg (2010)

12. Sakama, C., Inoue, K.: An abductive framework for computing knowledge base updates.
Theory and Practice of Logic Programming 3(6), 671–713 (2003)

13. Wang, Y., You, J.H., Yuan, L.Y., Shen, Y.D., Zhang, M.: The loop formula based semantics
of description logic programs. Theor. Comput. Sci. 415, 60–85 (2012)


	Inconsistency Management for Description LogicPrograms and Beyond
	1 Overview
	References




