
Chapter 9
Algorithms for Auctions and Games

Vincenzo Bonifaci and Stefano Leonardi

Abstract Economics is one of the diverse aspects of our life in which algorithms
play a – perhaps subtle – role. Whether we are buying an item through an
eBay auction, or choosing a pricing scheme from our telephone company, we are
participants in distributed decision-making processes having consequences that may
affect our personal “welfare”. And with the advent of the Internet and the Web, there
is an increasing demand for algorithms that run, manage or analyze such economic
transactions. In this chapter, we discuss some of the basic notions that underlie an
algorithmic view of economic and strategic interactions.

9.1 Introduction

The exchange of ideas between the theory of algorithms and the economic theory of
games is one of the most fascinating facets of computer science in the last decade.
Such an encounter originated from the development of the Internet and the World-
Wide Web (see Chap. 5) as organic, self-organizing systems, whose evolution is
guided by a multitude of independent agents that operate according to economic
principles. Computer science has taken inspiration from the economic theory of
games in order to understand the economic mechanisms that motivate the agents of
the network; in fact, the strategic interaction between agents is now considered an
essential aspect of algorithm design in such contexts.
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The Internet is a decentralized system in which agents are independent and
able to take individual decisions. In such scenarios it is important to foresee the
states that the system is going to enter, since it is normally impossible to enforce
some particular, favorable state. Consider, for example, the selection by the network
agents of the path and transmission speed when transferring data from some origin
to some destination. The strategy of each agent can consist in selecting, for each
transmission, the path with the smallest estimated delay. Then we may, for example,
ask whether the system will reach a state in which congestion is much larger than
that of a state in which routing strategies are centrally planned. Or whether the
system can oscillate from state to state due to the continual change of the strategies
of the agents. The interaction between agents makes the adoption of the points of
view of the theory of games unavoidable, and in particular calls for the notion of
equilibrium states, those states of the system from which no agent has an incentive
to deviate.

In recent years, several methodological contributions have been provided by
algorithmics to economics and to game theory in particular. First of all, we
remark that the theory of algorithms, mathematical optimization and the theory
of computational complexity are tackling the delicate questions of the existence
of equilibria and of the hardness of computing them. Secondly, a study has begun of
the inefficiency of the solutions determined by the equilibrium states, in other words
a quantitative comparison between the equilibrium solutions and the best solutions
that could be imposed by a centralized “enlightened dictatorship”. Finally, given a
view of the Internet as an open and democratic system aiming to guide the agents
towards solutions that are more favorable towards the overall community, algorithms
and protocols have been proposed that include incentives and penalties.

Computer science and network science also bring an important contribution to
economic sciences, since the ever larger and pervasive diffusion of the Internet
determined the migration of several economic and commercial activities on the
net and created more of them, including ones that were unthinkable before, things
like electronic commerce and online computerized auctions with a multitude of
participants (eBay, Amazon, etc.). This determines the need to design algorithms
and software that manage the commercial transactions electronically. Another
important aspect has been the advent of digital goods in unlimited supply and the
availability of commercial spaces on digital media such as the Web, blogs, forums
and social networks.

We would like to stress one more aspect of the encounter between computer
science and economics. The Internet and the World-Wide Web can be viewed as
formed and governed by the action of a multitude of autonomous, rational agents
that operate with the goal of optimizing their own individual “payoff functions”.
Network algorithms and protocols have to operate on data supplied by these agents.
But such data could be manipulated by the agents in order to optimize their own
utility. For example, an algorithm searching for shortest routes along the Internet
will have to acquire as input the costs for traversing (sub)networks, costs that are
estimated and declared by autonomous systems, the independent economic entities
that manage the networks. The traditional approach to algorithm design should then
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be rebuilt to accommodate the issue of input data manipulation from the part of
rational agents. The fundamental question there is whether it is possible to design
algorithms that efficiently solve some algorithmic problem and at the same time
give incentives to the agents to reliably report that part of the input data that is
their private information. Mechanism design offers in this direction an essential
methodological reference and an important contribution from economic sciences
to computer science.

The arguments that we discussed should have convinced the readers that the
encounter between algorithms and economic mechanisms is a necessity imposed
by the Internet, an information system that in the last two decades revolutionized
the modes of production and communication. The fact remains that the fundamental
principles and the quality properties that are required by algorithms and economic
mechanisms are deeply different, and it is not at all clear that for one of the two
disciplines it should be possible to relax them while adopting those from the other
discipline. In the case of algorithms, such requisites are usually expressed in terms
of the computational resources necessary for execution or in terms of the quality
of the computed solution. In the case of economic mechanisms, these requisites
are expressed in terms of objectives such as the equilibrium between demand and
supply, the maximization of the agents’ profit or utility and, finally, the impartiality
of a recognized authority with respect to all the participants of some economic
game. Such an integration requires, then, a deep knowledge of both fields and the
development of new models, algorithms and mechanisms, as well as methods for
their analysis.

In this chapter we intend to present some fundamental concepts of the theory of
games and some examples that illustrate how algorithms inspired by the theory of
games are essential for many economic activities that happen daily on the Internet.

9.2 Games and Solution Concepts

9.2.1 Prisoner’s Dilemma

To better understand the approach of game theory to the analysis of conflict
situations, consider the following famous scenario, proposed in 1950 by American
mathematicians Merrill Flood, Melvin Drescher and Albert W. Tucker. Two crime
suspects, R. and C., have been captured by the police and have been charged with a
major offense. In order to acquire the necessary evidence, the prosecutor is trying to
separately persuade each of the suspects to confess his crime. The suspects are held
in separate cells, and no communication can occur between them. The prosecutor
proposes the following to each: if the prisoner confesses, his jail sentence will
be cut in half – but only if his accomplice does not also confess, otherwise there
would be no choice but to convict both. If the prisoner does not confess, he will get
the maximum possible time in jail if the prosecutor is successful; otherwise, both
suspects will be convicted anyway for some other minor offense.
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Table 9.1 Prisoner’s
Dilemma Confess Silent

Confess �5 �10
�5 0

Silent 0 �1
�10 �1

We reach the situation summarized in Table 9.1. The action selected by R. deter-
mines the row of the table, the one selected by C. the column; this is why R. is also
called the Row player and C. the Column player. In each of the four entries of the
table, the bottom left number denotes the payoff (also called utility) of R. and the top
right number the payoff of C. Most numbers are negative since they denote the
penalty due to the number of years to be spent in prison: serving 10 years is worse
than serving 5. A zero means that the criminal was let free.

What will each player do? Imagine taking R.’s role. Observe that if C. confesses,
it is better to confess, since you’ll have to serve 5 years instead of 10. And if
C. doesn’t confess, it is better to confess too: you’d be let free instead of spending
a year in jail. So no matter what C. does, confessing is a better option than not
confessing! An action with such a property – the property of being preferable to
all other actions, independently of the other players’ choices – is called a dominant
strategy.

Looking at the table, one sees that the roles of R. and C. are symmetrical,
therefore confessing is a dominant strategy for C. too. Thus, the overall outcome
is that both prisoners will have to spend 5 years in jail, more than each of them
would have if they both chose not to confess. This result may sound paradoxical,
but several experiments in psychology and sociology show that outcomes of this
kind are actually not uncommon in practice.

It should be intuitively clear that the Prisoner’s Dilemma is not limited to the
simple scenario outlined above. It has been applied in the most diverse contexts and
several examples can be found also in telecommunication and computer networks.
A more general situation is the setup and usage of some public good. Say that
a public good is worth 3e to each of the two players, Row and Column. Some
investment is necessary to create the good, so the good will be available only if
4e total are invested. Each player may volunteer to invest or not: if he is the only
volunteer, he will pay 4e, otherwise the cost is shared equally. The payoff of a player
is the value of the good (or zero, if the good is not created), minus the investment
cost. The resulting payoff matrix is given in Table 9.2.

The situation of each player is similar to that in the Prisoner’s Dilemma: there
are two choices, one of which is better from an opportunistic point of view, but that
damages the other player. Although numerically different, the payoff table has in
fact the same structural properties of the payoff table for the Prisoner’s Dilemma:
namely that the more aggressive option is, for both players, a dominant strategy.
Therefore, the theory predicts that no investment will be made.
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Table 9.2 Provision of a
public good

Free ride Invest

Free ride 0 �1
0 3

Invest 3 1
�1 1

Table 9.3 Battle of the
Sexes Movies Concert

Movies 4 1
3 1

Concert 2 3
2 4

A final remark on the pessimistic outcome that game theory predicts in the
Prisoner’s Dilemma. The result is based on several assumptions that are not
necessarily realistic: that the players are rational; that they care exclusively about
their own good; and that the game is played exactly once. In the absence of one or
more of these conditions, it is possible to have outcomes that are different and more
optimistic. In fact, Merrill Flood, one of the discoverers of the Prisoner’s Dilemma,
once made the following proposal to a secretary of the institute he was working
in: she could either immediately accept 100 dollars, or be given 150, but in the
second case she would need to find an agreement on how to split the money with
a second secretary that had been kept unaware of the proposal. The secretary chose
the second option and agreed with her colleague to get 75 dollars each, even though
she could easily have kept the 100 dollars without her colleague ever getting to know
anything.

9.2.2 Coordination Games

In some strategic situations, conflicts may arise simply due to the impossibility
for the players of the game to coordinate their choices. Consider another scenario,
known in game theory as the “Battle of the Sexes”. A man and a woman are deciding
how to spend the evening out: the man would like to go to the movies, while the
woman would prefer a concert. It is too late to consult and each of them should
reach the chosen location directly from his or her office. Both of them prefer to
spend the evening together rather than alone, but, given the choice, the man would
prefer the movie while the woman would prefer the concert. A possible payoff table
for the game is reported in Table 9.3, where the values denote again the utility of
each action combination.

What does game theory predict in such a case? The answer is less clear-cut than
that we saw for the Prisoner’s Dilemma. If the woman knew for certain that the
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Table 9.4 Rock–
Paper–Scissors

Rock Paper Scissors

Rock 0 �1 1
Paper 1 0 �1
Scissors �1 1 0

man would go to the movies, she would choose the movies over the concert; if she
knew that the man would go to the concert, she would be happy to join him there.
In other words the best response to the man’s action of going to the movies is for
the woman to go to the movies, and the best response to the man’s action of going
to the concert is for the woman to go to the concert. A similar reasoning holds of
course for the man. The two solutions (Movies, Movies) and (Concert, Concert) are
therefore “stable” in the sense that in each of them the action chosen by each player
constitutes a best response to the other player’s choice.

Such “mutual best response” outcomes are called Nash equilibria, from the
name of the American mathematician and Nobel prize for Economics winner John
F. Nash, who introduced and studied them. In the Battle of the Sexes, the only
equilibria are those in which the woman and the man spend the evening together:
for example, the outcome in which the woman goes to the concert and the man goes
to the movies is not a Nash equilibrium, since the man could improve his payoff by
“changing his mind” and going to the concert instead.

A small weakness of the Nash equilibrium as a solution concept of a game is that
it is not necessarily unique, as can be seen from the example of the Battle of Sexes,
in which there are in fact two Nash equilibria. On the other hand, this ambiguity
captures the uncertainty of outcomes in a conflict situation.

9.2.3 Randomized Strategies

The game known as Rock–Paper–Scissors is a simple and popular two player game.
The players simultaneously represent, by a gesture of their hand, an object among
paper, scissors and rock. Rock beats scissors, scissors beats paper, and paper beats
rock. If the players choose the same object, the game is tied. A player gets payoff 1 if
she wins, �1 if she loses, and 0 if there is a tie. Therefore, the sum of the two payoffs
of the players, whatever the outcome of the game, is always zero; a player can win
only as much as her opponent loses – something that was not the case with other
games such as the Prisoner’s Dilemma or the Battle of the Sexes. Such a game is
called zero-sum. In a two-player zero-sum game it is sufficient to specify the payoff
of one of the two players, say the Row player, as in Table 9.4.

The Rock–Paper–Scissors game has an interesting property: it admits no Nash
equilibria. The reason is that the best response of a player to a given action of
the opponent renders the action of the opponent a “bad response”: if we knew our
opponent would play paper, we would play scissors, but then our opponent would
play rock, etc. Therefore there is no Nash equilibrium in the sense we previously
discussed.
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What can game theory say about such cases? The key idea lies in generalizing
the notion of strategy to allow probabilistic or mixed strategies (see the box
“Events, Probabilities and Expected Values”). An example of mixed strategy is:
play paper with probability 70 %, scissors with probability 20 % and rock with
probability 10 %.

As a consequence of this generalization, the concept of payoff of a player is
substituted by that of expected payoff, which is simply the average utility obtained
by choosing the actions according to the prescribed probabilities. If, for example, we
play 70 % paper, 20 % scissors, 10 % rock, and our adversary answers with 100 %
scissors, our expected utility will be

0:7 � .�1/ C 0:2 � 0 C 0:1 � .C1/ D �0:6:

To remark on the difference with such mixed strategies, the strategies in which each
player selects a single action are called pure strategies. A pure strategy can be seen
as a very special case of mixed strategy.

Events, Probabilities and Expected Values

Mathematically, the probability of an event A is a real number between 0 and
1, often denoted as PrŒA�. When A is an impossible event, PrŒA� D 0, while
when A is certain, PrŒA� D 1.

The complement event to A (which occurs if and only if A does not occur)
has probability 1 � PrŒA�.

When A and B are independent events, the probability that they simultane-
ously occur is equal to PrŒA��PrŒB�. For example, the probability of obtaining
two heads when tossing two coins is equal to 1=2 � 1=2 D 1=4.

When A and B are mutually exclusive events, the probability that at least one
of them holds is equal to PrŒA�CPrŒB�. For example, the probability to obtain
a 5 or a 6 after throwing a standard six-faced die is equal to 1=6C1=6 D 1=3.

Finally, when a numerical variable X can take the values x1; x2; : : : ; xn, with
probability p1; p2; : : : ; pn, respectively, its expected value is given by the
formula

p1 � x1 C p2 � x2 C : : : C pn � xn:

The conceptual leap from pure strategies to mixed strategies has an interesting
and somewhat unexpected consequence: any game that is finite, in other words any
game that has a finite number of players and a finite number of strategies, always
admits at least one mixed strategy equilibrium. Such a fundamental property was
proved by John Nash in 1950 and has since been known as Nash’s theorem.
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What is, then, a Nash equilibrium in mixed strategies for the Rock–Paper–
Scissors game? Assume we play the three actions at random, each with probability
1=3. If our opponent plays paper with probability p, scissors with probability s, and
rock with probability r , his expected utility will be

.1=3/ � 0 � p C .1=3/ � 1 � p C .1=3/ � .�1/ � p

C .1=3/ � .�1/ � s C .1=3/ � 0 � s C .1=3/ � 1 � s

C .1=3/ � 1 � r C .1=3/ � .�1/ � r C .1=3/ � 0 � r

D 0:

Therefore the expected payoff of our opponent will be zero, independently from
the mixed strategy that he chooses. If he, too, is choosing with the same probabilities
rock, paper and scissors, then the expected payoff of both players will be zero and
neither of them will have a way to obtain an expected payoff larger than zero by
adapting their strategy. In other words, we will have a situation of mutual best
response, exactly as required by the definition of Nash equilibrium. In fact, in this
case the outcome we described is the only Nash equilibrium of the game, although
this uniqueness property does not hold in general, as we saw in the Battle of the
Sexes example.

The reader may wonder whether actual Rock–Paper–Scissors games are played
as the theory prescribes. It is certainly true that if one follows the optimal strategy,
then it is impossible to achieve a negative expected utility (although it is always
possible to be particularly unlucky!). However, many “real-world” players, due
to limitations of several kinds, such as not being able to choose the actions in a
perfectly random fashion, may not be playing an optimal strategy but some slightly
different mixed strategy. In this case we might obtain an expected payoff larger
than zero by adopting a mixed strategy different than the perfectly uniform one.
For example, if our opponent plays scissors and paper with the same probability,
but never plays rock, then we can increase our expected utility by always playing
scissors. Our expected payoff then becomes positive, since

1 � 0:5 � 0 C 1 � 0:5 � 1 D 0:5:

For this reason, in games such as Rock–Paper–Scissors, the players that more often
succeed are those that try to learn the adversary’s strategy, at the same time adapting
their own strategy to it.

9.2.4 Hawks and Doves

So far, we exemplified potential conflict situations through some simple but
paradigmatic two-player games: the Prisoner’s Dilemma, the Battle of the Sexes
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Table 9.5 Chicken Swerve Keep

Swerve 0 1
0 �1

Keep �1 �100
1 �100

and Rock–Paper–Scissors. We add an equally interesting game to the list, called
“Chicken”. The scenario is as follows: two contestants start driving cars at each
other at high speed. The first of the two that, by swerving, deviates from the collision
trajectory will be the loser, in other words the “chicken”. The player that resists
swerving until the end will instead be the winner. Clearly, a participant in Chicken
should try to resist as much as possible in order to overcome his opponent, but if
both players act out this idea, the result is a disaster!

Analyzing the game (Table 9.5) in light of the concepts discussed so far, we
observe that there are only two Nash equilibria in pure strategies: the one in
which the first player swerves and the second keeps the trajectory, and the one
in which the opposite happens. Is there by any chance some Nash equilibrium in
which the strategies are all probabilistic? Indeed there is. Denote by Rs and Rk

the probability with which the first player (the Row player) swerves or keeps the
trajectory, respectively. If we consider the configuration in which Rs D 99 % and
Rk D 1 %, then we notice that

0 � Rs C .�1/ � Rk D 1 � Rs C .�100/ � Rk D �1:

This implies that the expected payoff for the second player is the same (�1)
independently of the action he chooses. Similarly, if Cs D 99 % and Ck D 1 %
are the probabilities with which the second player swerves or keeps the trajectory
respectively, we have

0 � Cs C .�1/ � Ck D 1 � Cs C .�100/ � Ck;

so that also the expected payoff of the first player is the same independently of
his action. Such a combination of mixed strategies therefore constitutes a Nash
equilibrium.

Games akin to Chicken are those in which the players have to decide whether
they want to be aggressive “hawks” or peaceful “doves”. The Cuban missile crisis
of 1962 was analyzed by the advisors of US President J.F. Kennedy and classified
exactly as a situation of this kind, where the catastrophic outcome could have been a
nuclear war. Kennedy decided to let USSR Chairman N. Khrushchev know that the
United States would not have played the dove’s role, even to the point of having to
enter the war. Luckily for everybody, Khrushchev chose to concede and be a “dove”.

The Chicken game also allows us to introduce an important extension of
the notion of Nash equilibrium, proposed by the Israeli mathematician Robert
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J. Aumann (also a Nobel prize for Economics) in 1974. In this extension, known as
correlated equilibrium, we consider acceptable equilibria all outcomes of the game
in which players do not have an incentive to change their own strategy, assuming
that the strategy that the players follow is suggested in some way by a trusted third
party. For example, consider a third party that with probability 1/2 suggests to the
first player to swerve and to the second player to stay on track, and with probability
1/2 gives the opposite suggestions. In this case, if one of the two players assumes
that the other one behaves according to the suggestion of the third party, he will have,
in fact, an incentive to behave exactly as suggested; in other words, the suggestion
is self-enforcing. This is not at all a phenomenon that is far removed from daily
experience: a traffic light is nothing but such a trusted third party in the Chicken-
type game that any two car drivers play when they have to go through the same
crossing from different directions.

9.3 Computational Aspects of Game Theory

We have seen through the previous example how rigorous theorems such as Nash’s
theorem ensure, for several games, the existence of the equilibria we are interested
in. We can ask ourselves whether these equilibria can actually be computed via some
algorithm: knowing that an optimal strategy for a given game exists does not help
us much if we do not know how to determine it. For this reason the computational
aspect of game theory is crucial. We may even go further and say that if a given type
of equilibrium is hard to compute, then most likely that type of equilibrium does not
fully capture the realistic outcomes of a game, since after all the participants in a
game, be they individuals or companies or specifically designed software, always
have a limited computational power. The computational properties of equilibria
therefore help us understand what equilibrium concepts are indeed more realistic.

9.3.1 Zero-Sum Games and Linear Optimization

In the case of games where players move simultaneously, the computation of
equilibria is more or less complicated depending on the type of equilibrium that
is sought. For example, in the case in which one seeks a Nash equilibrium in
pure strategies, it is indeed sufficient to consider all combinations of the players’
strategies and for each combination verify whether both players are playing a best
response action. If the first player has m actions available and the second player
has n, we have to consider m � n cases, and for each of those we must compare the
payoff with other m C n � 2 values of alternative payoffs. As we have already seen,
though, an equilibrium in pure strategies might not exist.

More interesting is the case of Nash equilibria in mixed strategies. If we consider
arbitrary games (even with only two players) things get complicated pretty quickly.
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Table 9.6 An example of a
zero-sum game

C D

A 2 �1
B 1 3

We thus start from the relatively simpler case of zero-sum games; this case was
analyzed for the first time in 1928 by John von Neumann. As we have seen with the
Rock–Paper–Scissors game, zero-sum games can be described by a single matrix in
which the entries indicate at the same time the payoff for the first player and the cost
for the second player, as in Table 9.6 where, for example, if the first player chooses
strategy A and the second strategy C , then the first player gains 2 and the second
pays 2.

The basic idea behind von Neumann’s result is that an equilibrium strategy
should be stable even when it has been revealed to one’s opponent. If the mixed
strategy of the Row player is known, the Column player will select a mixed strategy
that minimizes the payoff of the Row player. By foreseeing this, the Row should
then select a strategy that minimizes his own maximum loss, or in other words that
maximizes his minimum gain. Such a strategy his called a minimax strategy: some
mathematical details are given in the box “Minimax Strategy”. The main point is
that in this case the equilibrium strategies can be computed efficiently.

Minimax Strategy

A minimax strategy can be expressed by a system of inequalities, where the
variables a and b represent the probability with which the player chooses
his strategy A or B , respectively, and where variable v represents the gain
obtained by the player.

max v

2a C b � v

� a C 3b � v

a C b D 1

a; b � 0:

The first two conditions ensure that no matter the answer of the Column
player, the payoff of the Row player will be at least v. The other conditions
simply ensure that a solution of the system represents a mixed strategy.
By solving the system – for example graphically (see Fig. 9.1) – we obtain
a D 2=5, b D 3=5, that is to say that the Row player should play action A

with probability 40 % and action B with probability 60 %. That ensures an
expected payoff v D 7=5 to the Row player.

(continued)
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a

v

a ≥ 0

a + 1 ≥ v

−4a + 3 ≥ v

( 2
5 ;

7
5 )

Fig. 9.1 Equilibrium
computation for a simple
zero-sum two-player game

(continued)

Clearly, a similar argument can work for the Column player too. In this
case, if w represents the minimum loss by the Column player, we get
w D 7=5. The fact that v equals w is a general property that is ensured by
von Neumann’s theorem: when both players follow a minimax strategy, the
resulting outcome is an equilibrium. In general such systems of inequalities
constitute instances of linear optimization problems, a well-studied field in
mathematical optimization. Algorithms are known that solve such problems
in polynomial time (see Chap. 2). The same algorithms can thus be directly
applied to the computation of mixed strategy equilibria in zero-sum games
with two players.

9.3.2 Fixed-Points: Nash’s Theorem and Sperner’s Lemma

What happens when we move from zero-sum games to the general case? Is it still
possible to efficiently compute the Nash equilibria in mixed strategies? It turns out
that no one has a definitive answer to such an apparently simple question.

A natural approach, when trying to understand how to find a Nash equilibrium
in a non-zero sum game, is to take a step back and analyze the proof of Nash’s
theorem – in other words, to understand why an equilibrium in mixed strategies
must exist. We will not give here the details of the proof, but we will hint at some of
the ideas on which it is based.

Nash’s theorem can be seen as a so-called fixed point theorem, that for a given
function F asserts that, under suitable conditions, the equation F.x/ D x always
admits a solution – in other words, that the function F has at least one fixed point.
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B C

A

Fig. 9.2 A valid coloring of a subdivided triangle ABC

In the case of Nash’s theorem, x represents a list of mixed strategies (one for
each player), and the function F.x/ gives a new list of mixed strategies in which
every player is adopting a best response to the configuration in which the other
players choose their actions according to what is specified by x. The equation thus
represents the fact that we seek a list of mixed strategies such that each is a best
response to the other ones.

To illustrate one of the ideas on which the theorem relies, we will discuss a
result used in the proof of the theorem and strongly linked to it, known as Sperner’s
lemma. We will not formulate the lemma in its full generality. However, one of the
consequences of this lemma is the following: take some triangle ABC and arbitrarily
subdivide it into smaller triangles, as in Fig. 9.2. Then color the vertices of all small
triangles with one of three colors (say white, black and gray), while obeying the
following rules:

1. The three vertices A, B , C of the original triangle should be colored with three
different colors;

2. The vertices that lie on a same edge of the original triangle should not be colored
with the color assigned to the vertex opposite to that side; for example, vertices
lying on the AB line cannot be colored with C ’s color;

3. The vertices in the interior can be arbitrarily colored.

Sperner’s lemma asserts that, independently of how we color the vertices, there
will always exist a triangle of the subdivision whose vertices have three distinct
colors. And, in fact, in the case of Fig. 9.3 such a triangle exists. Why is that?
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B C

A

Fig. 9.3 Illustration of the proof of Sperner’s lemma

To understand, mentally picture each triangle of the subdivision as a triangular
room with three walls, one per side. Each wall has a door in it, if the corresponding
side of the triangle has one white vertex and one black vertex. It is easy to check that
such rooms may have zero, one or two doors, but never three. Moreover, if a room
has a single door, it must correspond to a triangle with three differently colored
vertices, because if that was not the case there should be an additional white–black
side, and the doors would be two.

Observe that from the outside of the original triangle ABC there is an odd number
of accessible doors (again, this can be seen to be always true). Take any one of
this doors and follow the path through each door. Notice that we never have a
choice, since the number of doors in a room on the path is one or two. The path
will necessarily end either in a room with a single door, or again outside the ABC
triangle. But in this last case the path has used two doors facing the outside of the
triangle, and since there was an odd number of those doors, there must be another
door from which we can proceed in a similar fashion. Thus the only way to end this
process is to find a room with a single door, corresponding to the triangle with three
distinct colors whose existence was claimed by the lemma. Figure 9.3 illustrates the
argument.

The above argument may perhaps give a vague intuition of why finding Nash
equilibria in mixed strategies appears to be difficult. The procedure to determine
the triangle that verifies Sperner’s lemma is correct, but in general it may require
very long paths, which in turn correspond to a long computation time. Nothing,
however, prevents that in principle one could devise a smarter, more “direct” method
of determining the correct triangle, even though that appears unlikely.
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9.3.3 Mixed Nash Equilibria in Non-zero-Sum Games

There is an algorithm, although markedly inefficient, that allows us to determine
a Nash equilibrium in mixed strategies for any two-player game. An idea at the
basis of the algorithm is the notion of support of a mixed strategy. The support is
simply the set of actions that in the mixed strategy considered are selected with
probability larger than zero. In other words, it is the set of pure strategies that
concur to form a given mixed strategy. Now, a property of equilibria is that a mixed
strategy constitutes a best response if and only if all the pure strategies in its support
are best responses. This fact is useful to determine a Nash equilibrium. In the box
“Equilibrium Computation” a complete example is given, with all the corresponding
calculations.

Equilibrium Computation

Consider the following example.

C D

A 1 3
2 0

Silent 2 1
1 4

The pure strategies of the Row player are A and B , those of the Column
player C and D. Let us ponder whether a Nash equilibrium exists in which the
support of the first player is fA; Bg and that of the second player is fC; Dg.
Call a; b; c; d the probabilities assigned to the respective strategies. Then it
should hold

a; b; c; d > 0;

a C b D 1;

c C d D 1:

Moreover, in order for .a; b/ to be a best response to .c; d /, and since we are
assuming that both A and B are in the support of .a; b/, A must be a best
response to .c; d / and should thus give an expected payoff at least as large as
that would be obtained with B:

2c � c C 4d;

(continued)
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(continued)

but by a similar argument B should be a best response to .c; d /:

c C 4d � 2c:

We thus obtain 2c D c C 4d , that combined with the previous equations
gives c D 4=5, d D 1=5. Analogously we can deduce, from the fact that
both C and D should be a best response to .a; b/, that a C 2b D 3a C b and
so a D 2=3, b D 1=3. Such an argument shows that the main difficulty in
finding a Nash equilibrium is in the determination of the support sets of the
two players. Once the supports are known, as we explained it is sufficient to
verify that a given system of linear inequalities admits a solution. A possible
algorithm to determine a Nash equilibrium then, however inefficient, consists
in enumerating all possible pairs of supports and for each of them verifying if
it gives rise to an equilibrium by solving the linear system. The running time
of such an algorithm is dominated by the number of possible pairs of supports,
that in the case of m actions for one player and n for the other one, is roughly
2mCn.

9.4 Inefficiencies

9.4.1 The Tragedy of the Commons

In many of the examples discussed so far, we have seen how one can mathematically
formalize the kind of individual behavior that emerges from the interaction of
rational agents, each of whom is driven to his own goals. A natural question is:
what happens to the overall system? What levels of “social welfare” are obtained
when each agent is pursuing his own goal separately? For such questions to make
sense we need to define what we mean by social welfare. There are many possible
definitions that are equally valid. For example, with social welfare we could mean,
in a utilitarian perspective, the sum of the payoff of all the players; or the payoff of
the player with the smallest payoff (the “poorest”). In any case it should intuitively
be clear that when the users of a system individually pursue their own goals, the
resulting social welfare is not necessarily maximized. In other words, the solution
determined by the agents will not in general be a globally optimal solution.

Consider, for example, a simple scenario in which a set of 100 users shares the
access to the same Internet connection, by means of a certain finite transmission
bandwidth B . Every user can regulate the amount of bandwidth that he intends to
use. The strategy of the i th user consists in the fraction x.i/, with 0 � x.i/ � 1, of
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the amount of bandwidth used (so that the user gets a bandwidth equal to x.i/ � B).
Assume that the payoff of a user depends on the amount of bandwidth he consumes,
but also on the amount of bandwidth left unused by the other players, according to
the formula

u.i/ D x.i/ � .1 � x.1/ � x.2/ � x.3/ � : : : � x.100//:

The second term in this formula captures the fact that the latency of the
communication channel is lower when the channel is less congested, while if the
channel is almost saturated the latency is very high and thus the payoff quickly
drops. (For simplicity we do not require that the sum of the x.i/ fractions be inferior
to 1, so the second term can even become negative.) We thus obtain a multiple player
game. Such a game is not finite – the number of players is finite, but the strategies
are values from a continuous set and are thus infinite – so we cannot invoke Nash’s
theorem directly.

Still, in this case a Nash equilibrium exists; we can find out that it corresponds
to the solution in which each user has a fraction of the bandwidth equal to 1=101.
The communication channel in this solution is almost completely saturated, since it
is used for a total fraction equal to 100=101. The payoff of each user will then be
1=101 � .1 � 100=101/ D 1=.101/2. How large is the social welfare in this case? If
by social welfare we mean the total utility of the players, we obtain a social welfare
equal to 100=.101/2, roughly 0:01. However, if we could have forced each user to
use a bandwidth fraction equal to 1=200, half of the total bandwidth would have
stayed unused, so that the payoff of each user would have been equal to 1=400,
and the total payoff equal to 1=4 D 0:25. Such value is 25 times larger than the
value obtained at the equilibrium (0:01), so that we can say that in this case the
independence of the players caused a large decrease of the social welfare. Such a
negative phenomenon is well-known in economics under the name of tragedy of the
commons. It manifests itself every time that the individual interests of a group of
users tend to destroy the advantages deriving from the use of a common resource.
Clearly, not all economical interactions are of this kind and sometimes the individual
interest gets close to the collective one, but such ‘tragedies’ are indeed frequent.

Although such phenomena were known since long ago, only more recently have
researchers from the computer science community, starting with Elias Koutsoupias
and Christos Papadimitriou, analyzed them in a deeper quantitative way, through
the notion of price of anarchy: that is, the ratio between the globally optimal social
welfare and the social welfare arising from the equilibrium (or between the social
cost at the equilibrium and the optimal social cost). The closer such ratio is to
one, the more reasonable it is to claim that the individual interest approximately
coincides with the collective interest, while if the price of anarchy is very high – as
in the case of the bandwidth sharing game – the outcomes in the two settings can be
very different. The notion of a price of anarchy has been applied and continues to
be applied in the study of many economical scenarios, in particular those related to
networks.
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Fig. 9.4 Pigou’s example

9.4.2 Routing Games

Imagine a familiar scenario: we need to move by car from one end of the city to the
other, and the choice of our itinerary will have deep impact on the travel time. Such
time will also depend on how many other car drivers will choose the same itinerary,
due to possible congestion effects. We thus see that the scenario can be modeled as
a game in which the players are the drivers and the actions are the itineraries. What
are the equilibria of the game, and how inefficient are they? The question is not
futile, also because a similar model can be applied to computer networks, with the
difference that the flows to be routed are flows of data instead of flows of vehicles.
It should not be surprising then that the answer has been in part given by computer
scientists, as well as by traffic engineers.

To understand it we first have to better specify our model. We represent the traffic
network as a graph in which nodes are the locations of interest and the arcs represent
the connections from one place to the others. Moreover, to describe the possible
congestion effects, we assign to each arc a cost (or “latency”) function that gives
the travel cost incurred for each level of traffic on that particular connection. For
example, in the graph of Fig. 9.4 the upper arc has a constant cost function (function
c1), while for the lower arc the cost function is the identity (function c2).

We finally select an origin point s, a destination point t and a flow value, that
is, an amount of traffic to be routed from s to t . We can imagine that such flow is
composed of an infinite number of “traffic particles”, each of which has no influence
by itself, but that can behave independently (in this formulation we thus have a game
with infinitely many players – the existence of an equilibrium is not ensured by
Nash’s theorem, but can in fact be proved by similar means). The overall cost of a
certain flow is obtained by summing, on each arc, the product between the quantity
of flow traversing the arc and the latency of the arc. For example, if in Fig. 9.4 we
had a flow equal to 0:2 on the upper arc and equal to 0:8 on the lower arc, the overall
cost would be equal to 0:2 � 1 C 0:8 � 0:8 D 0:66:

Suppose, for example, that the overall traffic flow is equal to 1 unit (say, 1,000
cars). If everybody used the upper link in the figure, the cost would be 1 � c1.1/ D 1.
Such configuration is however not an equilibrium. Indeed, if nobody used the lower
link, a car driver would find it convenient to leave the first route for the second, since
the cost that he would find on the new link would be equal to c2.0:001/ D 0:001,
which is much lower than 1.

In general, the traffic is in equilibrium if for each pair of paths P and P 0 from
s to t in the network, such that the traffic along P is positive, it holds that the cost



9 Algorithms for Auctions and Games 225

s

v

w

t

x

1

1

x

s

v

w

t

x

1

1

0

x

Fig. 9.5 The two networks
of Braess’ Paradox

along P is not larger than the cost along P 0. As a consequence, the costs of paths
actually used in the equilibrium are all equal, and they are all less than or equal to
the cost which a single driver would incur on any unused path.

If the traffic was equally split among the two links, the total cost would be 1=2 �
c1.1=2/C1=2�c2.1=2/ D 1=2C1=4 D 3=4. But that would not be an equilibrium,
since the flow along the upper link would be positive but the one along the lower
link would have a cost smaller (1=2) than that of the upper link (1).

It can be checked that the only equilibrium in this example corresponds to the
case in which the flow is only routed along the lower link. We thus obtain an overall
cost equal to 1 � c2.1/ D 1. As seen above, this value is not optimal; in terms of the
price of anarchy we have a ratio between cost at equilibrium and optimal cost equal
to 4=3.

The example just seen was discussed in the 1920s by the British economist
Arthur C. Pigou. Afterwards it became clear that the individual behavior of the users
can even give rise to some counterintuitive phenomena, as shown by the following
example due to German mathematician Dietrich Braess (Fig. 9.5). Assume once
again one unit of flow has to be routed. In the network on the left of the figure,
the equilibrium flow is the one in which half of the traffic follows the path .s; v; t/

and the other half the path .s; w; t/. The overall cost is then .1=2/ � .1=2 C 1/ C
.1=2/ � .1 C 1=2/ D 1:5.

In the network on the right a ‘superhighway’ has been added that has zero cost
and connects v and w. In the new network now, the only equilibrium is the one that
routes all the flow along the path .s; v; w; t/. But this flow has overall cost equal to
1 � .1 C 0 C 1/ D 2, larger than in the previous case! The apparently beneficial
decision of adding a connection from v to w has thus given rise to a degradation of
the system’s performance. Such a phenomenon is now known as Braess’ Paradox.

Anomalies notwithstanding, is it possible to give more encouraging results for
such routing games? How large can, in general, be the price of anarchy of such
games? In general, the answer depends not so much on the structure of the network,
as on the type of cost functions. If such functions are linear, that is, of the form
c.x/ D ax C b, Tim Roughgarden and Éva Tardos have shown that the price of
anarchy is never larger than 4=3, so that things never get worse than in Pigou’s
example, even in networks that are much larger and more complex. On the other
hand, if the cost functions have some “nonlinearities”, then the price of anarchy can
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be very high and it is not possible to bound it a priori. Informally, this corresponds
to saying that things tend to get worse when roads have a certain maximum capacity
and more easily act as bottlenecks.

9.5 Mechanism Design and Online Auctions

Mechanism design is the field of economics that is concerned with procedures for
aggregating the preferences of rational agents among a set of possible economic
choices, about the allocation of goods and the definition of prices. The goal
of mechanism design is to define an algorithm that takes as input the agents’
evaluations and returns as output the allocation of goods to the agents and the
price that the agents should pay for the allocated good. Analogously, one can
view computer science as interested in algorithms and protocols that, through the
use of computationally limited resources, determine solutions of good quality to
a problem for a given set of input data. Mechanism design is therefore an ideal
meeting ground between economics and computer science. The algorithmic design
of mechanisms is a research area originated by N. Nisan and A. Ronen that has
flourished in recent years and that aims at formally defining the economic features
that are algorithmically implementable and the computational issues that arise in
the design of economic mechanisms. To introduce some of the main ideas in the
algorithmic design of mechanisms we will refer to some simple examples in the
area of online auctions.

9.5.1 The Vickrey Auction

Online auctions are a typical scenario in which the design of some economic
mechanism is required. The goal of a mechanism for an online auction is the
identification of an allocation of the goods to the participants and the definition
of the price that each participant will pay. Such an algorithm has to be conceived
with the goal of satisfying some desirable features both from the point of view of
the auctioneer, such as the maximization of the profit obtained by selling the goods,
and from the point of view of the users, such as the perception of the electronic
commerce site as reliable and of the auction as fair.

Consider first a well-known example of auction, the Vickrey auction or second-
price auction, that aims at selling one indivisible good, such as an art piece, to one
of a set of n interested agents. The Vickrey auction assumes that the i th agent has
his own evaluation vi for the good being sold and that he communicates to the
mechanism, by means of a sealed envelope, his offer bi for the good. Observe
that user i has some private information (the evaluation), while only the offer bi

is communicated to the mechanism, that will open the envelopes after all offers has
been received from all participants. The mechanism has to determine the agent i that
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will obtain the good and the price pi that agent i should pay. The utility function
of player j is vj � pj in case he obtains the good at price pj , or 0 if he does not
obtain the good. We are interested in agents behaving rationally, that decide upon
their strategy – the offer communicated to the mechanism – in a way that maximizes
their own utility.

The strategy of an agent may in principle depend on the behavior of the other
players, whose offer and valuations are however not known to the agent, and from
the publicly known mechanism, deciding the allocation of the good and the selling
price. What one aims to design is a mechanism for managing the auction that
induces a dominant strategy for each agent, that is, a strategy that optimizes the
payoff of each player independently from the behavior of other players.

An example of auction that does not induce a dominant behavior is the
assignment of the good to the agent with the highest offer, for the price indicated in
the offer. In such an auctions there may be several situations in which a lower offer
from a player may lead to the allocation of the good for a lower price. Consider, for
example, the case of two agents that offer for the good the values b1 D v1 D 10e
and b2 D v2 D 20e. Observe that in this example the offers coincide with the
valuations. The strategy of the second player is not optimizing the agent’s utility,
since any offer above 10e will allow to obtain the good for a lower price.

The Vickrey auction, or second-price auction, also allocates the good to the
highest bidding player, but at the second highest price that is offered by any player.
In the preceding example, player 2 would obtain the good at a price of 10e. One
can observe that in this case, independently of the offers of the other players, the
dominating strategy is to communicate an offer equal to one’s own valuation for
the good being sold. The selling price, and thus the utility of the agents, are not
affected if a different offer from an agent does not change the allocation of the
good. A different agent could obtain the good by bidding an offer higher than
his own valuation, but then he would incur a negative utility. An offer lower than
the valuation might cause the loss of the good and therefore a reduction in utility.
Agents have therefore no incentive in communicating a bid different from their own
valuation of the good.

The Vickrey auction, for all its simplicity, allows us to reason about several
important properties of mechanisms:

• Social welfare: Firstly, the good is being assigned to the user that had the highest
valuation for it. The social welfare of an allocation is the sum of the valuations
of the agents for that allocation. The Vickrey auction is maximizing the social
welfare, since its maximum value is equal to the maximum valuation of a single
agent. Such a goal is relevant, since it is usually desirable that goods are given to
the users who value them most highly.

• Implementability: A second important property is the possibility of each user
implementing his own strategy simply, without having to ponder the other
players’ choices. In other words, each agent needs an elementary computational
power to determine his own optimal strategy, called dominant. In the case of
the Vickrey auction the dominant strategy is very simple, since it corresponds
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to communicating an offer that is equal to the user’s valuation. We observe that
in less elementary classes of games, such as those illustrated in the preceding
sections, the optimal strategies, such as pure Nash equilibria, may be multiple
or not even exist, and reaching those strategies might require a set of relatively
complex interactions among the agents.

• Truthfulness: An additional result of the Vickrey auction is the revelation from
each agent of his own evaluation, in other words of the private information
that defines the agent and his contribution to the input data of the problem.
This property is the prevailing fundamental solution concept in the design of
mechanisms, since in its absence the algorithm allocating the goods has to base
its decisions on misleading information about the features of the participating
agents, and thus on input data that are different from the actual ones.

9.5.2 Vickrey–Clarke–Groves Mechanisms

Some assumptions of our model of the Vickrey auction require further discussion.
In particular, we assumed that the valuation of the good by an agent could be
expressed in monetary terms. It follows that the utility of an agent is also expressible
in monetary terms: the utility of agent i when receiving the good at price pi is equal
to vi �pi , or 0 if the good is not allocated to the agent. Such a utility model is called
quasilinear. But other models have been extensively adopted during the history of
economical sciences. For example, each agent could express an order of preference
among all possible alternatives or communicate his own preference among each pair
of allocations. However the quasilinear model of utilities yields important results in
terms of dominant strategies that may not be achieved by other models.

We should also define in a slightly more formal way the notion of mechanism, in
order to better appreciate the generality of this concept. The notion of mechanism
in the economic sciences is the counterpart of the concept of algorithm in computer
science. A mechanism for the allocation of goods has as input the description of
the preferences of the agents among all possible allocations of the goods. The
output of the mechanism is the selection of one allocation for the goods and of
the payment that each agent should contribute. Somewhat more formally, the input
to an economic mechanism is composed of a set I of n agents and a set A of
possible alternative allocations of the goods. For example, in the case of an auction
for a single good, the set of alternative allocations is composed of the n distinct
assignments of the good to one of the n agents, the winner of the auction. The
preferences of agent i on each alternative in A are represented by a valuation
function vi . The term vi .a/ denotes then the valuation of agent i for alternative a.
The function vi is, however, a private information of agent i . It may be convenient
for the agent i to communicate a different and not necessarily truthful valuation
function v0

i . The result of the application of the mechanism, that is, the output of the
mechanism, consists in the selection of an alternative in A and of a payment pi for
each agent i .
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The key concept in mechanism design is that of truthfulness, as we already
informally discussed in the case of the Vickrey auction. A mechanism is truthful
if, for every agent i , reporting the true valuation function vi is a dominant strategy
when maximizing the utility and so is preferable to reporting any other function
v0

i . If a and a0 are, respectively, the alternatives selected by the mechanism when
agent i declares valuations vi and v0

i , and pi , p0
i are the respective payments, then a

mechanism is truthful if for every agent i , vi .a/�pi � v0
i .a

0/�p0
i , independently of

the strategy of the other agents. Such mechanisms are also called direct revelation
mechanisms since they are implementable by an algorithm that receives from the
agents the real input data formed by the private valuation of the agents. This is not
the only class of mechanisms that can implement a function as the dominant strategy
equilibrium of a game. The so-called Revelation Principle ensures, however, that
all mechanisms that can be implemented through dominant strategies can also be
implemented in the form of truthful mechanisms.

The issue is then that of determining a selection mechanism for one of the
alternatives and a set of payments that induce a truthful behavior from the agents.
The fundamental result in this direction is the Vickrey–Clarke–Groves (VCG)
mechanism, that we discuss in the related box for the interested reader.

Vickrey–Clarke–Groves Mechanism

We define the social welfare of an alternative a as the value
P

i vi .a/, that
is the sum of the valuations of the agents for a. A mechanism is called
a Vickrey–Clarke–Groves (VCG) mechanism (with Clarke’s rule for the
definition of payments) if

(i) It selects the alternative a 2 A maximizing the social welfare
P

i vi .a/;
(ii) It defines pi D maxb2A

P
j ¤i vj .b/ � P

j ¤i vj .a/ as the payment of
agent i , that is, the maximum possible reduction in social welfare of the
other agents due to the existence of agent i , that by reporting valuation vi

has determined the selection of a by the mechanism.

Intuitively, the payment required from every agent is the compensation due
to the maximal damage caused by agent i to the other agents because of his
existence, when alternative a is selected. Such a mechanism is truthful since
the agent maximizes the social welfare by revealing his own true preferences.
In a way, the VCG mechanism carries out the task of decoupling the choices of
the agents and determines as the dominant strategy the declaration of the true
preferences of the agent. We also observe that payments are always positive
and the utility of each agent equals maxa2A

P
i vi .a/ � maxb2A

P
j ¤i vj .b/:

As an example of application of VCG with Clarke’s rule, we proceed to
prove that the Vickrey auction is a VCG mechanism. The Vickrey auction
assigns the good to the agent with the highest valuation and then chooses

(continued)
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(continued)

the alternative maximizing the social welfare among the n possible ones. For
the agent that obtains the good, pi D maxb2A

P
j ¤i vj .b/ � P

j ¤i vj .a/ is
exactly equal to the second price, since the highest valuation of a different
alternative is the second price offered by an agent, while the other agents have
valuation 0 as they do not receive the good. For an agent i not obtaining the
good, pi D maxb2A

P
j ¤i vj .b/ � P

j ¤i vj .a/ has in fact value 0 since both
terms equal the maximum valuation of an agent.

Another example of application of VCG is given by a multiple items auction.
In a multiple items auction, k identical goods are offered to a set of n > k

agents, each of which seeks to obtain a single unit of the k available goods.
Each agent has the same fixed valuation for all alternatives in which one of
the goods is allocated to him. Each agent submits his bid in a sealed envelope.
VCG chooses the alternative that maximizes the social welfare, which in this
case means assigning the k units to the k agents with the highest valuations.
The payments computed by VCG with Clarke’s rule for the k agents that
receive the good are in this case set to the .k C 1/th highest valuation of an
agent, in other words the highest valuation of an agent that does not obtain
the good. Indeed, for an agent i obtaining the good, the first term in pi DP

j ¤i vj .b/ � P
j ¤i vj .a/ is exactly the sum of the k C 1 highest valuations

minus the valuation of agent i , while the second term equals the sum of the k

highest valuations minus the valuation of agent i . It can be promptly checked
that the payment asked to the agents that do not obtain the good equals 0. The
multiple items auction can be further generalized, for example, in the setting
of the so-called combinatorial auctions, that, however, we will not consider in
this discussion.

9.5.3 Computational Aspects of Mechanism Design

The VCG mechanism and the definition of truthful, direct revelation mechanisms
are the fundamental concepts at the basis of the area of mechanism design and
its algorithmic aspects. In the following, we consider a fundamental aspect that
concerns the computational issues related to social welfare maximization.

VCG requires the maximization of an objective function, the social welfare,
in the domain of all possible allocations. The maximization of such an objective
function can be computationally difficult for many problems of high relevance (see
also Chap. 3). It is customary in the field of optimization algorithms to circumvent
the computational complexity of exactly optimizing a function by the use of an
approximation algorithm, that is, an algorithm that always allows one to obtain,
on any instance, a solution close to the optimal one, while incurring a polynomial
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computational cost. In a strategic setting it is also required, however, that such
functions be implementable through some dominant strategy equilibrium.

A fundamental question is thus the characterization of the social choice functions
that are implementable. Are there simple properties that a function should have so
that it is implementable by dominant strategies of the agents?

A relevant case is that in which the valuation of an agent is some numerical
value in a subset of the alternatives Wi � A, called winning for agent i , while it is
zero on all other (losing) alternatives. More precisely, the agent is characterized
by a valuation t for all alternatives in Wi and 0 for all alternatives outside Wi .
In this particular case it is possible to completely characterize the set of truthful
mechanisms by relying on the monotonicity properties of the implementable
functions. A single-parameter allocation function is called monotone in vi if it is
possible to define a single critical value corresponding to the minimum valuation
that allows the agent to be in a winning alternative. For example, in the case of the
Vickrey auction the critical value equals the largest of the valuations of the losing
agents.

The definition of critical value plays a fundamental role in the definition of
payments, since the agents’ payments can be fixed exactly at the critical value. The
importance of monotone functions is in the fact that a monotone social choice func-
tion and the respective critical values allow one to implement a truthful mechanism
in which the winning agents pay exactly the critical value. Such a characterization
is of great importance, since it allows the implementation of truthful mechanisms
for the optimization of social welfare functions that are computationally hard and
that can be approximated by monotone functions that are simple to compute.

Consider, for example, a multi-unit auction problem, in which m units of the
same good are available to n agents. Each agent j desires some number qj of units,
known to the mechanism, and has a private valuation function vj for obtaining such
a set of units. This is a clear case in which agents are completely described by a
single private value, their valuation. The problem of maximizing social welfare in
the allocation of the m available units to the n agents corresponds to the well-known
knapsack problem (see Sects. 2.3.2 and 5.3), for which an application of VCG would
require a computational cost that is not polynomial in the size of the input. For the
interested reader, the box “Monotone Mechanisms” reports an alternative approach
to the same problem.

Monotone Mechanisms

We consider an alternative approach to the multi-unit auction problem, based
on the adoption of monotone mechanisms that yield a good approximation to
the optimal solution of the problem in question. In particular, consider these
two algorithms:

1. VAL: Sort the agents non-increasingly by their valuation vj ;

(continued)
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(continued)

2. DENS: Sort the agents non-increasingly by their density (valuation per
unit) vj =qj .

Both algorithms define a ranking among the agents and allocate the elements
according to this ranking, until some agent requires more units than those that
remain available. Let’s look at the execution of both algorithms when there
are 3 players (n D 3), 4 units of the good (m D 4), and the agents’ data are
the following:

v1 D 5; q1 D 2I v2 D 3; q2 D 1I v3 D 4; q3 D 2:

The algorithm that sorts by valuation will allocate 2 units to agent 1 and 2
units to agent 3, with an overall social welfare of 9. The algorithm that sorts
by density will allocate 1 unit to agent 2 and 2 units to agent 1 for an overall
social welfare of 8. Observe that in this last case one unit of the good is not
allocated.

Firstly, we observe that both algorithms are monotone. Indeed, if an agent
with a given valuation is selected, he is also selected when his valuation is
increased.

Let us compute the payments for the agents in both cases. Such payment for
each agent is equal to the minimum valuation that would allow the agent to
be selected. In the case of ranking by valuation, the payments required from
the two winning agents equal the valuation of the losing agent.

In the case of ranking by density, consider the first agent in the ranking that
is not winning. Let this agent be j . The payment of winning agent i will be
equal to qi .vj =qj /. Observe that in case all agents are winning each payment
equals 0, since the presence of agent i is not decreasing the social welfare of
the remaining agents.

Each algorithm individually is not producing a good approximation of the
optimum. Indeed, the ranking by valuation could accept an agent requiring
all m units with a valuation of 2 and at the same time not accept m agents
each requiring one unit with valuation 1. Analogously, the ranking by density
could accept an agent requiring 1 unit with valuation 2 and not accept an agent
requiring m units with valuation m. Notice, however, that if we define a third
algorithm called MAX that outputs the best solution among those given by
VAL and DENS, then we obtain a solution close to optimum. In our example,
MAX returns the solution constructed by algorithm VAL. It can be easily
shown that, in fact, algorithm MAX always constructs a solution with value
at least half the optimum solution.

(continued)
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(continued)

Unfortunately, the algorithm obtained by the combination of two monotone
algorithms is not necessarily monotone. For this to hold, it is required that
the two algorithms satisfy a condition stronger than monotonicity, called
bitonicity. The combination of two bitonic algorithms is indeed monotone. An
algorithm is bitonic if it is monotone and whenever a losing agent increases
his valuation then one of the two following conditions is satisfied:

1. The agent becomes winning; or
2. The agent remains losing but the value of the constructed solution does not

improve.

In the case in question, it is immediate to verify that any algorithm that defines
the winning agents by traversing a ranking in which the priority of each agent
can only increase if his valuation increases, is bitonic. Indeed, if the valuation
has not increased enough to make the agent winning, then the constructed
solution does not change.

9.6 Price-Setting Mechanisms and Competitive Equilibria

Mechanisms for defining prices of goods have played a central role in economic
theory during the last two centuries. Price-setting mechanisms have been given
the task of introducing fundamental notions such as efficiency and equilibrium in
markets, the availability of goods and services, and the operation of the economy
in stable conditions. The role of initiator of the mathematical theory of markets
is attributed to Léon Walras, who in 1874 was the first to define the notion of
competitive equilibrium: an equilibrium in which each agent obtains the good from
which he extracts the highest utility and in which all goods left unsold have zero
price. Mechanisms for price setting form a further fascinating field of application of
algorithmic methods and provide important computational questions.

Consider the case in which we have a set I of n agents and a set J of m distinct
goods. Each agent has a valuation function vi for each set S formed by some of the m

goods. The goal is to allocate a set of goods to each agent. A price-definition scheme
defines a price pj for each good j 2 J . The demand of agent i is defined as the set S

of goods preferred by agent i , the one that maximizes the utility vi .S/ � P
j 2S pj

of the agent.
A Walras equilibrium is defined as a set of prices in which each agent receives

his demand and all goods not allocated have price 0.
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A first important result, also called first welfare theorem, proves that a Walras
equilibrium determines an allocation maximizing the social welfare of the agents.
In the following, we consider an example scenario.

Consider two agents, Alice and Bob, and two elements fa; bg. Alice has valuation
2e on every nonempty set of elements, while Bob has valuation 3e on the whole
set fa; bg and valuation 0e for each single item. The solution that maximizes social
welfare assigns the set fa; bg to Bob. Thus, to obtain a Walras equilibrium, Alice
should prefer the empty allocation to each of the individual items. For this to be
true, the price of each good should be at least 2e. But then the price of the set fa; bg
is 4e and so Bob, too, will prefer the empty set as an allocation. There is therefore
no Walras equilibrium in this case.

An important question in economic theory is the characterization of markets
that admit a Walras equilibrium. The answer to such a question can be reduced,
surprisingly, to the solution of some important algorithmic questions. It is in fact
possible to relate the existence of a Walras equilibrium to the existence of an integer
solution to a linear optimization problem in fractional variables. We stop here and
do not embark on a field that would require a long discussion. The interested reader
will find in Sect. 9.7 some references to the main monographs surveying the area.

9.7 Bibliographic Notes

The book that marked the birth of game theory is the classic text of von Neumann
and Morgenstern [108]; it is remarkable that the book is largely due to John von
Neumann, one of the fathers of the digital computer era, as a well as world-class
mathematician.

Modern treatments of the theory of games and its applications to economics are
given, for example, by Binmore [9], Osborne and Rubinstein [88] and Mas-Colell,
Whinston and Green [76]. The encyclopedic work by Aumann and Hart [6] is
an updated state of the art of the theory, and contains many further references to
the scientific literature. Computational aspects and applications of game theory to
computer science are discussed in a recent textbook by Nisan et al. [86], to which
we point the interested reader for further investigation of many of the topics touched
in this chapter, including algorithmic mechanism design.
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