
The Power
of Algorithms

Giorgio Ausiello · Rossella Petreschi Eds.

Inspiration and Examples
in Everyday Life

The Power of Algorithms

Giorgio Ausiello • Rossella Petreschi
Editors

The Power of Algorithms

Inspiration and Examples in Everyday Life

123

Editors
Giorgio Ausiello
Dip. di Informatica e Sistemistica
Università di Roma “La Sapienza”
Rome, Italy

Rossella Petreschi
Dipartimento di Informatica
Università di Roma “La Sapienza”
Rome, Italy

First published in Italian in 2010 by Mondadori Education S.p.A., Milano as “L’informatica invisibile:
Come gli algoritmi regolano la nostra vita : : : e tutto il resto”

ISBN 978-3-642-39651-9 ISBN 978-3-642-39652-6 (eBook)
DOI 10.1007/978-3-642-39652-6
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013952981

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

The meaning of the word algorithm as found in any English dictionary is rather
similar to the meaning of words such as method or procedure, that is, “a finite set
of rules specifying a sequence of operations to solve a particular problem”. Simple
algorithms we are all familiar with are those used to perform the four arithmetical
operations, or the binary search which, more or less unconsciously, we use to find a
name in a telephone directory.

Strangely, however, the very mention of the word algorithm provokes a sense
of fear in many people, possibly due to its mathematical connotations. Indeed, the
word’s etymological origin is the name of the Persian mathematician, al-Khwarizmi,
who worked in Baghdad at the beginning of the ninth century, and its contemporary
meaning is derived from the fact that he introduced Indian methods of calculation
based on positional representation of numbers into the Christian countries of the
West.

And so it may be that a deep-seated unease with mathematics causes many to
lose sight of the central role algorithms play in computer science and of the fact that
myriad activities of their lives are today governed by algorithms. Booking a plane
ticket, effecting a secure transaction at the cash machine of a bank, searching for
information on the Web, and zipping or unzipping files containing music or images
are just a few examples of the way algorithms have come to pervade all aspects
of everyday life. Algorithms are even inserted into national legislation, such as the
rules defining the construction of a citizen’s fiscal code, national insurance number,
etc., or the increasingly widely used digital signature for authenticating documents.

A highly important consideration to emphasize, however, is that not only do
algorithms have a huge number of applications, but they also act as powerful
“magnifying lenses” enabling a penetrating comprehension of problems.

Examining, analyzing, and manipulating a problem to the point of being able
to design an algorithm leading to its solution is a mental exercise that can be of
fundamental help in understanding a wide range of subjects, irrespective of the fields
of knowledge to which they belong (natural sciences, linguistics, music, etc.).

v

vi Preface

In any case, it was the advent of computers and computer science that led to the
word ‘algorithm’ becoming known to a wide range of people, so much so that even
in 1977 Donald Knuth (one of the founding fathers of computer science) wrote:

Until ten years ago the word algorithm was unknown to the vast majority of educated people
and, to tell the truth, there was little need for it anyway. The furiously rapid development
of computer science, whose primary focus is the study of algorithms, has changed this
situation: today the word algorithm is indispensable.

Formalizing a problem as an algorithm thus leads to a better grasp of the
argument to be dealt with, compared to tackling it using traditional reasoning.
Indeed, a person who knows how to handle algorithms acquires a capacity for
introspection that she/he will find useful not only in writing good programs for
a computer, but also in achieving improved understanding of many other kinds
of problem in other fields. Knuth, again, in his book “The Art of Computer
Programming”, asserts that:

If it is true that one doesn’t truly understand a problem in depth until one has to teach it to
someone else, it is even truer that nothing is understood more completely than something
one has to teach to a machine, that is, than something which has to be expressed by way of
an algorithm.

Unfortunately, the precision demanded by the algorithmic approach (the algorithm
has to be independent of the data to which it is applied and the rules it employs have
to be elementary, that is, very simple and unambiguous), although useful as a means
of mental development, limits the types of problem for which it can be adopted. To
convince oneself of this just think of the fact that no algorithm exists for teaching
“how to live a happy life”. Alternatively, as a more rigorous demonstration of these
limitations, we cite one of the most important findings of twentieth century logic,
whereby Alan Turing (in the wake of Gödel’s incompleteness proof) showed that no
algorithm exists that would be capable of deciding whether or not a logical formula
asserting a property of arithmetic is a theorem (see Chaps. 1 and 3).

For every algorithm two fundamental components can be identified: the determi-
nation of the appropriate algorithmic design technique (based on the structure of the
problem) and the clear understanding of the mathematical nucleus of the problem.
These two components interact closely with each other, thus it is not so much that
algorithmic ideas just find solutions to well-stated problems, as that they function
as a language that enables a particular problem to be expressed in the first place. It
is for this reason that David Harel, in his 1987 book “Algorithmics: The Spirit of
Computing” was able, without fear of contradiction, to define the algorithm as “the
soul of computer science”.

The earliest algorithms can be traced back as far as 2000 BCE; Mesopotamian
clay tablets and Egyptian papyrus have been found bearing the first examples of
procedures for calculation defined in fairly rigorous ways. Over the successive
millennia thereafter humans made ever-increasing use of algorithms to solve
problems arising in widely diverse fields: from measurements of land areas to
astronomy, from trade to finance, and from the design of civil engineering projects

Preface vii

to the study of physical phenomena. All of these significantly contributed, in the
eighteenth and nineteenth centuries, to the first products of the industrial revolution.

Notwithstanding this, it was not until the twentieth century that the formal
definition of the concept of algorithm began to be tackled. This was done pri-
marily by mathematical logicians, such as Alonzo Church and the already-cited
Alan Turing, in a series of theoretical investigations which turned out to be the
indispensable groundwork for subsequent development of the first programmable
electronic computer and the first computer programming languages. As mentioned
earlier, it was with the advent of computers and computer science that algorithms
really began to play a central role, initially only in military and scientific fields, and
then ever increasingly in the fields of commerce and management. Today we can
say that algorithms are an indispensable part of our everyday lives—and it seems
they are destined to become even more pervasive in the future.

Nevertheless, despite this massive influence of algorithms on the world around
us, the majority of users remain totally ignorant of their role and importance in
securing the performance of the computer applications with which they are most
familiar, or, at best, consider them technical matters of little concern to them. Instead
quite the opposite is the case: in reality it is the power, the precision, the reliability
and the speed of execution which these same users have been demanding with ever-
increasing pressure that have transformed the design and construction of algorithms
from a highly skilled “niche craft” into a full-fledged science in its own right.

This book is aimed at all those who, perhaps without realizing it, exploit the
results of this new science, and it seeks to give them the opportunity to see what
otherwise would remain hidden. There are ten chapters, of which nine are divided
into two parts. Part I (Chaps. 1–3) introduces the reader to the properties and
techniques upon which the design of an efficient algorithm is based and shows how
the intrinsic complexity of a problem is tackled. Part II (Chaps. 4–9) presents six
different applications (one for each chapter) which we encounter daily in our work
or leisure routines. For each of these applications the conceptual and scientific bases
upon which the algorithm used is grounded are revealed and it is shown how these
bases are decisive as regards the validity of the applications dealt with. The book
concludes with a different format, that of the dialogue. Chapter 10 illustrates how
randomness can be exploited in order to solve complex problems, and its dialogue
format has been deliberately chosen to show how discussions of such issues are part
of the daily life of those who work in this field.

As an aid to readers whose educational background may not include particularly
advanced mathematics there are clear indications in the text as to which sections
containing more demanding mathematics may be skipped without fear of losing the
thread of the main argument. Moreover, in almost every chapter, boxes covering
specific mathematical or technical concepts have been inserted, and those readers
wishing to get a general sense of the topic can avoid tackling these, at least on a first
reading.

In fact, an overriding aim of the authors is to make the role of algorithms
in today’s world readily comprehensible to as wide a sector of the public as
possible. To this end a simple, intuitive approach that keeps technical concepts to a

viii Preface

minimum has been used throughout. This should ensure ideas are accessible to the
intellectually curious reader whose general education is of a good level, but does
not necessarily include mathematical and/or computer scientific training.

At the same time, the variety of subjects dealt with should make the book
interesting to those who are familiar with computer technologies and applications,
but who wish to deepen their knowledge of the ideas and techniques that underlie
the creation and development of efficient algorithms. It is for these reasons that the
book, while having a logical progression from the first page to the last, has been
written in such a way that each chapter can be read separately from the others.

Roma, Italy Giorgio Ausiello
July 2013 Rossella Petreschi

Contents

Part I Finding One’s Way in a World of Algorithms

1 Algorithms, An Historical Perspective . 3
Giorgio Ausiello
1.1 Introduction .. 3
1.2 Teaching Algorithms in Ancient Babylonia and Egypt. 4
1.3 Euclid’s Algorithm . 8
1.4 Al-Khwarizmi and the Origin of the Word Algorithm 10
1.5 Leonardo Fibonacci and Commercial Computing 13
1.6 Recreational Algorithms: Between Magic and Games 17
1.7 Algorithms, Reasoning and Computers . 21
1.8 Conclusion .. 25
1.9 Bibliographic Notes . 26

2 How to Design an Algorithm . 27
Rossella Petreschi
2.1 Introduction .. 27
2.2 Graphs . 28

2.2.1 The Pervasiveness of Graphs . 28
2.2.2 The Origin of Graph Theory.. 32
2.2.3 The Topological Ordering Problem . 35

2.3 Algorithmic Techniques.. 36
2.3.1 The Backtrack Technique .. 37
2.3.2 The Greedy Technique .. 42

2.4 How to Measure the Goodness of an Algorithm 49
2.5 The Design. 52
2.6 Bibliographic Notes . 57

3 The One Million Dollars Problem . 59
Alessandro Panconesi
3.1 Paris, August 8, 1900 . 61
3.2 “Calculemus!” . 65

ix

x Contents

3.3 Finding Is Hard: Checking Is Easy . 67
3.4 The Class NP . 70
3.5 Universality . 74
3.6 The Class P . 74
3.7 A Surprising Letter . 76
3.8 The Driving Force of Scientific Discovery .. 80
3.9 Bibliographic Notes . 80

Part II The Difficult Simplicity of Daily Life

4 The Quest for the Shortest Route . 85
Camil Demetrescu and Giuseppe F. Italiano
4.1 Introduction .. 85
4.2 The Mathematisch Centrum . 88
4.3 Shortest Paths in Graphs . 89
4.4 Nature and Its Algorithms . 90
4.5 A Simple Idea . 91
4.6 Time Is a Tyrant . 94
4.7 How to Set Your Priorities . 96

4.7.1 The Heap Data Structure . 98
4.8 The Humble Programmer .. 100
4.9 Still an Open Challenge . 101

4.9.1 The ALT Algorithm by Goldberg and Harrelson 103
4.10 Bibliographic Notes . 105

5 Web Search . 107
Paolo Ferragina and Rossano Venturini
5.1 The Prologue . 107
5.2 Internet and Web Graphs .. 108
5.3 Browsers and a Difficult Problem . 114
5.4 Search Engines . 118

5.4.1 Crawling . 120
5.4.2 The Web Graph in More Detail . 122
5.4.3 Indexing and Searching .. 124
5.4.4 Evaluating the Relevance of a Page . 127
5.4.5 Two Ranking Algorithms: PageRank and HITS. 129
5.4.6 On Other Search Engine Functionalities . 133

5.5 Towards Semantic Searches . 134
5.6 Bibliographic Notes . 137

6 Algorithms for Secure Communication . 139
Alberto Marchetti-Spaccamela
6.1 Introduction .. 139
6.2 A Brief History of Cryptography .. 141

6.2.1 Monoalphabetic Substitution Codes . 141

Contents xi

6.2.2 Polyalphabetic Substitution Codes . 143
6.2.3 The Enigma Machine . 144

6.3 Cryptographic Codes and Secret Keys . 145
6.3.1 How to Encode a Long Message Using

an Integer Function . 146
6.3.2 Cryptanalysis and Robustness

of a Cryptographic Protocol . 147
6.4 Secret Key Cryptography . 151

6.4.1 Secret Key Cryptography Standards . 151
6.4.2 Limitations of Secret Key Encryption . 152

6.5 The Key Distribution Problem .. 153
6.5.1 Modular Arithmetic . 154
6.5.2 Diffie and Hellman’s Algorithm

for Establishing a Secret Key . 155
6.6 Public-Key Cryptography .. 157

6.6.1 The RSA Algorithm . 158
6.7 Digital Signatures and Other Useful Applications

of Public-Key Cryptography .. 161
6.7.1 How Public-Key Cryptography Allows

for Digital Signatures . 162
6.8 Bibliographic Notes . 165

7 Algorithmics for the Life Sciences . 167
Raffaele Giancarlo
7.1 Introduction .. 167
7.2 The Fundamental Machinery of Living Organisms.. 170
7.3 Algorithmic Paradigms: Methodological Contributions

to the Development of Biology as an Information Science 174
7.3.1 String Algorithmics: Identification

of Transcription Factors Binding Sites . 175
7.3.2 Kolmogorov Algorithmic Complexity:

Classification of Biological Sequences and Structures 178
7.3.3 Graph Algorithmics I: Microarrays and Gene

Expression Analysis . 179
7.3.4 Graph Algorithmics II: From Single

Components Towards System Biology. 182
7.4 Future Challenges: The Fundamental Laws of Biology

as an Information Science. 184
7.5 Bibliographic Notes . 185

8 The Shortest Walk to Watch TV . 187
Fabrizio Rossi, Antonio Sassano, and Stefano Smriglio
8.1 A Different Idea of Television . 187
8.2 Designing a Broadcasting Network . 189

8.2.1 The Physical Elements of the Network . 189
8.2.2 Computer Representation .. 190

xii Contents

8.2.3 Model for the Digital Coverage Assessment 191
8.2.4 Network Design . 194

8.3 The Role of Transmission Delays . 194
8.4 An Algorithm for Optimizing Transmission Delays. 199

8.4.1 From Inconsistent TP Sets to Inconsistent
Systems of Inequalities . 200

8.4.2 The Difference Constraints Graph . 202
8.4.3 Shortest Walks in G and Transmission Delays 203

8.5 From Shortest Walk to Television . 205
8.6 Bibliographic Notes . 205

9 Algorithms for Auctions and Games . 207
Vincenzo Bonifaci and Stefano Leonardi
9.1 Introduction .. 207
9.2 Games and Solution Concepts . 209

9.2.1 Prisoner’s Dilemma . 209
9.2.2 Coordination Games . 211
9.2.3 Randomized Strategies . 212
9.2.4 Hawks and Doves . 214

9.3 Computational Aspects of Game Theory . 216
9.3.1 Zero-Sum Games and Linear Optimization.. 216
9.3.2 Fixed-Points: Nash’s Theorem and Sperner’s Lemma 218
9.3.3 Mixed Nash Equilibria in Non-zero-Sum Games 221

9.4 Inefficiencies . 222
9.4.1 The Tragedy of the Commons .. 222
9.4.2 Routing Games . 224

9.5 Mechanism Design and Online Auctions . 226
9.5.1 The Vickrey Auction . 226
9.5.2 Vickrey–Clarke–Groves Mechanisms. 228
9.5.3 Computational Aspects of Mechanism Design 230

9.6 Price-Setting Mechanisms and Competitive Equilibria 233
9.7 Bibliographic Notes . 234

10 Randomness and Complexity . 235
Riccardo Silvestri
10.1 A Dialogue.. 235
10.2 Bibliographic Notes . 250

References . 251

List of Contributors

Giorgio Ausiello Dipartimento di Ingegneria Informatica, Automatica e
Gestionale, Sapienza Università di Roma, Roma, Italy

Vincenzo Bonifaci Istituto di Analisi dei Sistemi ed Informatica “Antonio
Ruberti”, Consiglio Nazionale delle Ricerche, Roma, Italy

Camil Demetrescu Dipartimento di Ingegneria Informatica, Automatica e
Gestionale, Sapienza Università di Roma, Roma, Italy

Paolo Ferragina Dipartimento di Informatica, Università di Pisa, Pisa, Italy

Raffaele Giancarlo Dipartimento di Matematica ed Informatica, Università
di Palermo, Palermo, Italy

Giuseppe F. Italiano Dipartimento di Ingegneria Civile e Ingegneria Informatica,
Università di Roma “Tor Vergata”, Roma, Italy

Stefano Leonardi Dipartimento di Ingegneria Informatica, Automatica e
Gestionale, Sapienza Università di Roma, Roma, Italy

Alberto Marchetti-Spaccamela Dipartimento di Ingegneria Informatica,
Automatica e Gestionale, Sapienza Università di Roma, Roma, Italy

Alessandro Panconesi Dipartimento di Informatica, Sapienza Università di Roma,
Roma, Italy

Rossella Petreschi Dipartimento di Informatica, Sapienza Università di Roma,
Roma, Italy

Fabrizio Rossi Dipartimento di Informatica, Università dell’Aquila, Coppito (AQ),
Italy

Antonio Sassano Dipartimento di Ingegneria Informatica, Automatica e
Gestionale, Sapienza Università di Roma, Roma, Italy

Riccardo Silvestri Dipartimento di Informatica, Sapienza Università di Roma,
Roma, Italy

xiii

xiv List of Contributors

Stefano Smriglio Dipartimento di Informatica, Università dell’Aquila, Coppito
(AQ), Italy

Rossano Venturini Dipartimento di Informatica, Università di Pisa, Pisa, Italy

Part I
Finding One’s Way in a World

of Algorithms

Chapter 1
Algorithms, An Historical Perspective

Giorgio Ausiello

Abstract The design of algorithms for land measurement, financial transactions
and astronomic computations goes back to the third millennium BCE. First exam-
ples of algorithms can be found in Mesopotamian tablets and in Egyptians scrolls.
An important role in the development of numerical algorithms was played in
the ninth century by the Persian mathematician al-Khwarizmi, who introduced
the Indian numeration systems to the Arab world and from whom we derived the
name ‘algorithm’ to denote computing procedures. In the Middle Ages algorithms
for commercial transactions were widely used, but it was not until the nineteenth
century that the problem of characterizing the power of algorithms was addressed.
The precise definition of ‘algorithm’ and of the notion of computability were
established by A.M. Turing in the 1930s. His work is also considered the beginning
of the history of Computer Science.

1.1 Introduction

The ability to define algorithms for numerical computations or, more generally,
as we would say today, for data processing, starts to appear in the history of mankind
a few millennia before Christ. Among the most ancient examples of this ability
are some tools used for taking note of the results of computations and, especially,
the first calendars designed in ancient Egypt. In this chapter, far from attempting a
history of algorithms, an effort that would require several volumes by itself, we want
to show meaningful examples of algorithms, both numerical and non-numerical,
that have been designed, studied and used throughout various historical ages. In the
choice and illustration of such examples, there are two most relevant aspects that

G. Ausiello (�)
Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Università di Roma,
via Ariosto 25, 00185 Roma, Italy
e-mail: ausiello@dis.uniroma1.it

G. Ausiello and R. Petreschi (eds.), The Power of Algorithms,
DOI 10.1007/978-3-642-39652-6__1, © Springer-Verlag Berlin Heidelberg 2013

3

mailto:ausiello@dis.uniroma1.it

4 G. Ausiello

should be taken into account and that are still important nowadays in the design of
modern algorithms. The first one derives from the very notion of algorithm, and
corresponds to the need to find the correct sequence of precise and elementary
operations that duly executed allow one to reach the solution of a problem in a
finite number of steps. The second is related to the need to communicate to other
people the sequence of computing steps to be performed and is related, therefore, to
the use of a formal and unambiguous language in the presentation of an algorithm.

It is interesting to observe that these two properties (finiteness and formal
definability) were understood only recently (less than a century ago, see Sect. 1.7)
and are exactly the two properties that nowadays allow us to write, in a suitable
programming language, algorithms that can be interpreted and performed by an
electronic computing device (see Sect. 2.5). The same properties allow us to
highlight the difference between the history of computing and the history of
mathematics. It is clear, in fact, that in some sense the history of algorithms is part of
the history of mathematics: various fields of mathematics developed due to the need
to find solution methods for precise problems.1 On the other hand are exactly the
above-cited finiteness and constructiveness characters that draw a borderline with
respect to those fields of mathematics (set theory, function theory, topology, etc.)
in which, instead, the study and demonstration of properties of abstract structures
have to employ the concepts of the infinitely small and the infinitely large, and often
require the use of nonconstructive existential proofs.

1.2 Teaching Algorithms in Ancient Babylonia and Egypt

The oldest nontrivial example of numerical computation that we are aware of is
reported on a Sumerian clay tablet from around 2500 BCE, found in Shuruppak, on
the Euphrates river. In this example a simple basic problem is addressed, typically
related to the life of an agricultural community: the subdivision of the content of a
wheat warehouse among various persons in such a way that each person receives
a specified amount of wheat. Hence the problem consists in computing how many
people can receive their portion of wheat. Actually, the scribe does not present a
particular algorithm but just the obtained result. Such a document is nevertheless
interesting because we can derive from it information about the number system
used by the Sumerians (a mixed decimal and sexagesimal system), and we learn
that Sumerians knew various ways to execute division.

More interesting to understanding how algorithms were defined and used in
ancient times are some Babylonian tablets from the period 2000 to 1650 BCE. In this
case (as in the case of contemporary Egyptian scrolls), the algorithms are presented
in a didascalic and repetitive style with reference to specific numerical examples.

1For example, Herodotus claimed that the development of geometry in ancient Egypt was due to
the need to solve land measurement problems arising from repeated Nile floods.

1 Algorithms, An Historical Perspective 5

The number is 4;10. What is its inverse?
Proceed as follows.
Compute the inverse of 10. You will find 6.
Multiply 6 by 4. You will find 24.
Add 1. You will find 25.
Compute the inverse of 25. You will find 2;24.
Multiply 2;24 by 6. You will find 14;24.
The inverse is 14;24. This is the way to proceed.

Fig. 1.1 Algorithm for the inversion of the number 4I 10 (that is 250). It is easy to check that
14I 24 is the inverse of 4I 10 since .4 � 60 C 10/ � .14 � 60�2 C 24 � 60�3/ D 1

The number is x. What is its inverse?
Proceed as follows.
[Let y and z be two numbers such that x = y+ z]
Compute the inverse of y. You will find y′.
Multiply y′ by z. You will find t.
Add 1. You will find u.
Compute the inverse of u. You will find u′.
Multiply u′ by y′. You will find v.

 The inverse is v. This is the way to proceed.

Fig. 1.2 Algorithm for the inversion of the number x. The algorithm is derived from the example
in Fig. 1.1 by replacing the numbers appearing in the example with variables

What we can argue is that such tablets were used to teach algorithms to students,
that is, to present them with the lists of elementary operations to be performed
for each specific numerical example. The general rule (although not explicitly
presented) could then be inductively derived from the examples. In the tablets
various problems are addressed: square root computations, resolution of second-
degree equations, computation of the inverse of a given number, etc. Let’s look at
one of the examples in detail. This will also offer us the possibility to observe the
Babylonian number system more closely.

The problem consists in inverting a given number and, as we said above, the
algorithm (Fig. 1.1) does not refer to a generic number denoted by a variable x

as we would do today (and as we actually do in Fig. 1.2 in order to illustrate the
computation executed by the algorithm), but to a specific value. Let us remember
that the inverse of a number x is the number y D 1=x that multiplied by x

gives as result the number 1. For example, the inverse of 2 is 30 since choosing
a suitable power of the basis 60 we have 2 � 30 � 60�1 D 1. Computing the
inverse is an important basic operation and, in particular, it was an important
operation at that time, since the division operation was performed by multiplying
the dividend by the inverse of the divisor. For simple numbers tables of inverses
were available. In order to explain the algorithm we have to specify that, in the
original text, numbers are represented in cuneiform characters and are expressed
in mixed decimal and sexagesimal base. Every number consists of a sequence

6 G. Ausiello

of values between 1 and 59, each one expressed in base 10 that here, for the
sake of clarity, we present separated by the symbol “;”. The number zero simply
corresponds to an empty space. The sequence 2I 4I 10, for example, denotes the
number 2 � 602 C 4 � 60 C 10 D 7;200 C 240 C 10 D 7;450. Which powers of 60

were used depended on the context, therefore the same sequence might represent the
number 2�603 C4�602 C10�60. In particular, and this has to be regarded as one
of the advanced characteristics of Babylonian mathematics, the same notation might
be used to express decimal numbers. For example, the above-mentioned sequence
2I 4I 10 might as well represent the number 2 C 4 � 60�1 C 10 � 60�2.

In Fig. 1.1 we can see how the hypothetical Babylonian teacher could present the
algorithm for the computation of the inverse of the number 4I 10 (corresponding to
250) to his students. The presentation starts as follows: “The number is 4I 10. What
is its inverse?” In the same tablet the algorithm is presented several times, each
time applied to different numbers expressed in sexagesimal notation. For example,
“The number is 8I 20. What is its inverse?”, “The number is 1I 13I 20. What is its
inverse?”, etc.

It is interesting to pay attention to the last sentence in the presentation of the
algorithm: “This is the way to proceed.” This sentence shows that the person writing
the text was conscious of having discovered a computation procedure, in other
words an algorithm, to solve the general problem. In fact, the procedure always
followed the same steps, independently from the input values. By means of a
simple abstraction process it is easy for us to derive the underlying algorithm from
the examples (see Fig. 1.2). The computation method is based on the expression
1=x D 1=.y Cz/ D 1=y �1=.z�1=y C1/ and consists in reducing the computation
of the inverse of a given number x to the computation of the inverse of the two
smaller numbers y and u D z � 1=y C 1 until we reach numbers for which the
inverse is already known (or can be found in precomputed tables of inverses2).

A very similar approach in the presentation of algorithms can be found in a
famous Egyptian papyrus belonging to the first centuries of the second millennium
BCE. The scroll is known as the “Rhind papyrus” from the name of a Scottish
traveler who bought some of its fragments, or the “Ahmes papyrus” from the name
of the scribe who copied it from an older document. This papyrus is currently held
in the British Museum (with the name pBM 10057) and, together with the so-called
“Moscow papyrus” and a leather scroll also held in the British Museum, is one of the
few documents that provide us with information about the mathematical knowledge
in ancient Egypt. Despite its ambitious title, “Accurate reckoning for inquiring into
the nature and into the knowledge of all things, all mysteries, all secrets”, the
document just contains a collection of examples showing how the computation
should be carried out in particular cases. Again, as in the case of the Babylonian
tablets, the general computation rules (the algorithms) are not explicitly provided
in the document, but we can easily infer them from the examples as we did above
for the computation of the inverse. The examples provided in the papyrus concern

2Babylonians left several tables of simple inverses.

1 Algorithms, An Historical Perspective 7

Example of the computation of a triangle of land surface.
If you are told: a triangle is high 10 khet and his base is 4 khet.
What is its area? Do as it has to be done.
Divide 4 by 2. You obtain 2.
Multiply 10 by 2. This is its area.
Its area is 20.

Fig. 1.3 Problem 51 in the Rhind papyrus: algorithm for the computation of the area of a triangle
of height 10 and base 4

34 × 1 = 34 21 : 2 = 10 remainder 1
34 × 2 = 34 + 34 = 68 10 : 2 = 5 remainder 0
34 × 4 = 68 + 68 = 136 5 : 2 = 2 remainder 1
34 × 8 = 136 + 136 = 272 2 : 2 = 1 remainder 0
34 × 16 = 272 + 272 = 544 1 : 2 = 0 remainder 1

34 x 21 = 34 x (1 + 4 + 16) = 34 + 136 + 544 = 714

Fig. 1.4 Multiplication of 34 by 21 with the method of duplicating the first factor and halving the
second factor. Note that the sequence 10101 is the binary representation of 21

a large variety of problems: computation of fractions, computation of geometrical
series, resolution of simple algebraic equations, and computation of surfaces and
volumes.

In order to illustrate the way algorithms are presented in the Rhind papyrus, let us
choose a simple example for the computation of the area of a triangle. The sequence
of computation steps (somewhat rephrased) is presented in Fig. 1.3.

It is interesting to observe that the style of presentation of the algorithm is quite
similar to the style we have found in Babylonian tablets. It is also worth noting
that, again in this case, the author is aware of the paradigmatic character of the
computation procedure presented in the example when he says: “Do as it has to be
done”.

Among the algorithms presented in the Rhind papyrus it is particularly relevant
to cite the multiplication algorithm based on the so-called technique “by duplicating
and halving”. The technique is based on the distributive property of multiplication
and on the possibility to represent a number as the sum of powers of two (the same
property that is behind the binary representation of numbers in computers). Let
us consider the following example: Suppose we have to multiply 34 by 21. The
same result can be obtained by computing 34 � .1 C 4 C 16/ with the advantage
that the product of 34 by a power of two can be obtained by means of repeated
sums (duplications: see Fig. 1.4). As a consequence, although less efficient than
the multiplication algorithm that we use nowadays, the described method does not
require knowing the multiplication table (the so-called “table of Pythagoras”).

8 G. Ausiello

1.3 Euclid’s Algorithm

In various beginners’ classes in mathematics and computer science, one of the first
algorithms that is taught is also one of the most ancient: Euclid’s algorithm for the
computation of the greatest common divisor of two integer numbers.

The algorithm is presented in book VII of the Elements, Euclid’s main work.
For over two millennia this book has been a fundamental source for mathematical
studies, particularly for geometry and number theory. In the landscape of Greek
mathematics, Euclid’s algorithm plays a singular role. In fact, in contrast to the
kind of mathematics used by Egyptians and Mesopotamian peoples, oriented, as we
saw, to the solution of practical problems, Greek mathematics, starting with Thales’
work, followed an abstract approach, based on a line of thought that nowadays
we would call axiomatic and deductive. On one side, this approach was a big
cultural leap and influenced the future course of the discipline, but, on the other
side, it put in a secondary place the aspects related to computation and algorithm
design. The algorithm for greatest common divisor computation, therefore, is in a
sense an exception. At the same time, it has to be noted that the style in which the
algorithm is presented by Euclid offers an important step forward with respect to
the way in which the computation processes we have seen until now were presented.
In Euclid’s text, in fact, the algorithm is formulated in abstract terms, with reference
to arbitrary values and is not applied to specific integer numbers given as examples.
In addition, the algorithm is formulated in geometrical terms. The arbitrary integer
values are actually represented by means of segments and the expression “a number
measures another number” expresses the idea that the smaller number divides the
larger number and can, therefore, be adopted as a unit of measure of the larger
number (just as a shorter stick can be used to measure the length of a longer stick).

After defining the concept of relatively prime numbers (segments that have the
property that the only segment that divides them both is the unit segment), Euclid
proceeds to defining the computation process in the following terms.

Suppose we are given two numbers AB and �� that are not relatively prime, and suppose
that �� is the smaller. We have to find the greatest common measure of the numbers AB
and ��. If �� measures AB then �� is the common measure of AB and ��, since ��

is also a measure of itself. Clearly it is also the greatest common measure since no number
larger than �� can measure ��. In case �� does not measure AB, if we eliminate ��

from AB a number will exist that measures what is left. The remainder cannot be 1 since
otherwise the numbers AB and �� would have been relatively prime, which is not in the
hypothesis. Let us suppose that, measuring AB, �� leaves the remainder AE smaller than
itself and let us also suppose that measuring ��, AE leaves � Z smaller than itself. Let us
finally suppose that � Z measures AE. Then, since � Z measures AE and AE measures Z�,
� Z measures Z�. But since � Z is also a measure of itself, it follows that � Z measures
the entire ��. Now, since �� measures BE then � Z measures BE and since � Z also
measures AE, this means that � Z measures the entire AB. Hence � Z is a common measure
of both AB and ��.

The text then goes on to prove that � Z is the largest common measure of AB and
�� and finally ends with the statement “This is what was to be proven” (Fig. 1.5).

1 Algorithms, An Historical Perspective 9

A E B

Γ Z Δ

Fig. 1.5 Computation of the greatest common divisor between the length of the segment AB and
the length of the segment ��. The result is given by the length of the segment � Z

Input: two integer numbers n and m.
Output: the GCD of n and m.
Step 1: If m = n then GCD(n;m) = n
Step 2: else if m > n then compute GCD(m−n;n)

else compute GCD(n−m;m)

Fig. 1.6 Euclid’s algorithm for the computation of the greatest common divisor (GCD)

In modern terms the algorithm can be more easily formulated in the way it
appears in Fig. 1.6.

In the algorithm presented in Fig. 1.6 we use a technique that is widely employed
in current programming languages and is now known as recursion. This technique
(that as we saw was already implicitly used by Euclid) is inspired by the logical
concept of induction (see Chap. 2) and consists in determining the value of a
function applied to given arguments (in our case, the function GCD applied to n

and m) by making use of the value that the same function would return when applied
to smaller arguments (m � n and n or, alternatively, n � m and m).

It is also interesting to observe that Euclid’s text provides, at the same time,
both the algorithm to be followed for computing the function with arbitrary input
values and the proof of its correctness (whose presentation is made easy thanks
to the recursion approach used by the algorithm). This appears to be a great
step forward, not only with respect to the way the algorithms we saw in the
preceding sections were presented, but also with respect to the way algorithms are
presented today, often without the support of a rigorous correctness proof. In order
to guarantee the correct behavior of computer applications, in fact, it would be
appropriate that both the algorithms used and the computer programs that implement
them in applications were accompanied by formal proofs of their correctness
(see Sect. 2.5). Unfortunately, this only happens rarely, and only for the most
sophisticated applications.3

3In some cases, as users unfortunately realize at their own expense, for economy reasons, programs
are written by poorly qualified personnel, without making use of the scientific programming
methods that research in computer science has made available. This is why computer programs can
sometimes behave differently than they were expected to and can even make errors with disastrous
consequences.

10 G. Ausiello

1.4 Al-Khwarizmi and the Origin of the Word Algorithm

Few people realize that, when in 772 CE the seat of the caliphate was moved from
Damascus to Baghdad, this had an exceptional impact on the history of mathematics
and of algorithms. In fact, under the Abassid caliphs, and in particular during the
caliphate of al-Mansur, Harun ar-Rashid (the legendary caliph of “One Thousand
and One Nights”), al-Mamun and al-Mutasim, Baghdad became a very important
center for the development of mathematics and science. The translation into Arabic
of Greek scientific works had already started in the sixth and seventh centuries,
but the early Islamic period also witnessed various violent actions carried out by
fanatic religious people that even led to the destruction of books and other scientific
works. During the Abassid caliphate, a more open-minded and rational point of
view prevailed. Knowledge was gathered from all regions of the known world,
processed and elaborated through a synthetic approach that allowed mathematicians
and scientists to realize meaningful progress in all fields.

The last decades of the eighth century and the first decades of the ninth century
were a flourishing period for Baghdad from both the economical and the cultural
points of view. Not only did revenues from commercial exchanges flow to Baghdad
from all regions reached by Arab merchants and ambassadors but also many
manuscripts were collected in the many libraries of the city. Around the year 820,
al-Mamun founded a scientific academy, the House of Wisdom (Bayt al-Hikma),
which consisted of a library and an astronomy observatory where scientists and
scholars in all disciplines were invited from abroad.

Among the mathematicians who arrived at the House of Wisdom was the person
whose name was given to computational procedures: Abdallah Mohamed Ibn Musa
al-Khwarizmi al-Magusi. Although we have limited information about his life,
we know that he lived approximately between the years 780 and 850 and that, as his
name reveals, he was the son of Musa and was born in Khoresme on the border
between the regions that today belong to Iran and Uzbekistan. Recently the Uzbek
government dedicated a stamp to him and a statue was placed in what is presumed
to be his home town, Khiwa (Fig. 1.7).

It is interesting to observe that, as al-Khwarizmi himself reports, the task assigned
to him by al-Mamun upon his arrival in Baghdad was mainly of a practical nature:

. . . to compose a short report concerning computation by means of the rules of restoration
and reduction, limited to the simplest and most useful aspects of mathematics that
are constantly applied to inheritances, legacies, their sharing out, court decisions and
commercial transactions and in all other human business or when land measurements are
required, excavations of water channels, geometric computations and similar things.

What al-Khwarizmi really did was of much greater impact: his works were of
fundamental relevance in the development of arithmetics and over the centuries
have been translated and disseminated, establishing the foundations of medieval
mathematical thought.

Several works of al-Khwarizmi reached us through Medieval Latin translations:
a treatise on mathematics, one on algebra, one on astronomy, one on geography,

1 Algorithms, An Historical Perspective 11

Fig. 1.7 Uzbek stamp
representing al-Khwarizmi

and a Hebrew calendar. We suspect that other works have been lost. In particular,
al-Khwarizmi’s name is related to the introduction of the positional decimal system
in Islamic countries (and from there to Christian Europe). As is well known,
in such systems, developed first in India, a fundamental role was played by the
representation of zero by means of a special symbol, a small circle or a dot.
Even if the decimal positional notation was in fact known for a long time (as we
have also seen, the Mesopotamians used in a sense a positional system), the an
arithmetic treatise by al-Khwarizmi was the first mathematical work to provide
a detailed presentation of the rules for executing the four basic operations and
for computing with fractions according to such notation. The efficiency of such
computing methods, compared to the less efficient methods based on the use of the
abacus, determined the dissemination of the Indian numbering system (that indeed
we call the “Arabic numbering system”) and contributed to making the name of
al-Khwarizmi famous and to the use of his name to denote any kind of algorithm.

In addition, al-Khwarizmi’s treatise devoted to algebra (Book of algebra and
al-muqabala) had an important role in the development of mathematical knowledge.
In this treatise several algebraic problems are presented, most of which derived from
applications (e.g., subdivision of legacies), in particular, a series of algorithms for
the solution of first- and second-degree equations with numerical coefficients, duly
organized into six different classes according to their structure.

In Fig. 1.8 we provide a simple example of the method used to solve the equation
x2 C 10x D 39 (this example would later appear in several medieval algebra
textbooks). The method is called “square completion” and, in the particular case
of our example, consists in constructing first a square of size x (the unknown value)

12 G. Ausiello

10/2 x 25

x2 10/2 x

Fig. 1.8 Geometric method
for solving the equation
x2 C 10x D 39

on whose sides two rectangles of sides x and 10=2 are built. Finally the larger
square is completed by introducing the square with side 10=2. The larger square
that we have constructed in this way has sides of size x C 5 and area of size
x2 C 10x C 25. But according to what is established by our equation we have:
x2 C 10x C 25 D 39 C 25 D 64, and therefore the sides of the larger square have
size 8. From x C 5 D 8 we may derive x D 3.

As we said before, the works of al-Khwarizmi reached us through subsequent
Latin versions, and the works of other mathematicians that were inspired by his
texts. The number of Latin authors who spread the work of al-Khwarizmi is very
large: John of Toledo (Liber Algorismi de practice arismeticae), Adelard of Bath
(Liber Ysagogarum Alchorismi in artem astronomicam a magistro A. compositus),
Leonardo Pisano (Liber abbaci), Alexander of Villadieu (Carmen de Algorismo),
John of Halifax, better known as Sacrobosco, (Algorismus vulgaris), etc.

It is due to all these authors that the term Algorismus eventually became
synonymous with computing procedures. For a long time the term was applied only
with reference to arithmetical operations, as opposed to computing methods based
on the use of abacus. In the Florence Chronicle written by Giovanni Villani, for
example, we can read that in 1338, in Florence

we find that boys and girls that learn to read are between eight and ten thousand. The young
students that learn the abacus and the algorismus in six schools are between one thousand
and one thousand two hundred.

Figure 1.9 shows that, according to an image contained in a book printed in 1508,
the contraposition between algorithmic computations and computations based on
the use of abacus was still present at the beginning of the sixteenth century.

Only in the eighteenth century did the term ‘algorithm’ start assuming the broad
meaning that it has today. The Encyclopedia of d’Alambert and Diderot provides a
definition of the term algorithm as follows:

1 Algorithms, An Historical Perspective 13

Fig. 1.9 The contraposition between algorithmic computations and computations based on the use
of the abacus, as shown in [96]

Arab term used by some authors and in particular by Spanish authors to identify the
practice of Algebra. Sometimes it is also applied to arithmetic operations based on digits.
The same word is more generally used to denote method and notation of whatever kind
of computation. In this sense we speak of algorithm for integral calculus, algorithm for
exponential calculus, algorithm for sine calculus etc.

1.5 Leonardo Fibonacci and Commercial Computing

Among the mathematicians who contributed to spreading al-Khwarizmi’s work,
a very special role was played by Leonardo Pisano, also known as Fibonacci, who
lived between c. 1180 and 1250, whose name is now, for various reasons, famous
in the algorithm community (see Fig. 1.10). The main information concerning his
origin and his life can be found in his most important work: the Liber abbaci that
was written in 1202. Fibonacci was the son of a merchant from Pisa who worked in

14 G. Ausiello

Fig. 1.10 Leonardo Pisano,
also known as Fibonacci

the important warehouse of Bugia (nowadays Béjaïa in Algeria), where he moved
in 1192. In this merchant environment Fibonacci learned the algorithms of “Indian
arithmetics” (“Ubi ex mirabilis magisterio in arte per novem figuras Indorum
introductus. . . ”) that were extremely effective for commercial computing. Later,
as a merchant, he traveled to various places around the Mediterranean (Egypt, Syria,
Greece, Sicily and Provence), where he had the chance to upgrade his knowledge
of mathematics. In the Liber abbaci he explains how he was able to integrate the
knowledge of Indian and Arab computing (which he learned from al-Khwarizmi’s
works) with Euclidean mathematics. Fibonacci was also the author of other treatises
such as the Practica geometriae and the Liber quadratorum. Although, from a
mathematical point of view, the last one is probably his most original work, the
Liber abbaci is undoubtedly the most relevant for its didactic value and for its role
in making the name of Fibonacci famous throughout the Western world.4

Among the fifteen chapters of the Liber abbaci several concern problems
of commercial nature; for example, the title of Chap. 9 is “De baractis rerum
venalium”, and the title of Chap. 10 is “De societatis factis inter consocios”. In the
volume various practical accounting problems (money exchange, computation of
interest, amortization of debts, etc.) are addressed and make this work an important
step in the history of accountancy.5 In any case, the Liber abbaci cannot be classified

4The name of the volume should not be misunderstood: the book is entirely devoted to the Indo-
Arabic computing system and the use of the abacus is never addressed.
5Thanks to his competence in this field, in 1241 Fibonacci was in charge of reorganizing the public
accounting of the city of Pisa.

1 Algorithms, An Historical Perspective 15

Input: integer n.
Output: F(n): nth Fibonacci number.
Step 1: If n = 0 then F (n) = 1

Else if n = 1 then F (n) = 1
Else F (n) = F (n−1) + F (n−2)

Fig. 1.11 Algorithm for the computation of Fibonacci numbers

just as an accountancy textbook nor as a handbook of commercial practice (as is the
case of other books of the fourteenth and fifteenth centuries). This work is a real
mathematical treatise that spans a great variety of topics, from integer arithmetic to
fractional computing, from geometry to the solution of algebraic equations, from the
computation of arithmetic and geometric series to the calculus of roots of equations.

The 12th chapter of the Liber abbaci (“De solutionibus multarum positarum
questionum”) is a rich source of mathematical problems, especially in the field of
recreational mathematics. Among them we can find the famous “rabbit problem”
that, as we will see, gained an important role in the history of algorithms: “Quot
paria coniculorum in uno anno ex uno pario germinentur”. In English the statement
of the problem is more or less as follows: a man has a pair of rabbits in a secluded
place and we would like to know how many rabbits this pair would generate in
1 year, taking into account that they can generate a pair every month and that after
1 month also the newly born can reproduce.

Fibonacci presents the solution in the following terms:

Since in the second month the pair generates we will have two pairs in one month. One of
these pairs (the first one) generates also in the second month, therefore we will have 3 pairs.
After one more month two of them will be fertile and 2 pairs will therefore be born in the
third month. We have then 5 pairs. Three of them will then be fertile and hence in the fourth
month 3 more pairs will be born and 8 will be the overall number. The last month we will
have 377 pairs. You can see in the margin how we operated: we summed the first number
with the second then the second with the third, the third with the fourth. . . in this way you
can compute for an infinite number of months.

It is easy to see that the computation procedure can be naturally formulated in
recursive terms. The nth value of the sequence is defined as the sum of the .n� 1/th
and the .n � 2/th values. Usually it is assumed that the value for n D 0 and n D 1

is 1, and hence the sequence is 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, In modern terms
the sequence (now known as the sequence of Fibonacci numbers) would be defined
as in Fig. 1.11.

Beside being defined with the algorithm in Fig. 1.11, Fibonacci numbers can
also be expressed in explicit terms by means of the expression: F.n/ D c1..1 Cp

5/=2/n C c2..1 � p
5/=2/n with suitable coefficients c1 and c2 derived from the

initial conditions F.0/ and F.1/.
Fibonacci numbers have several interesting properties. The most important one

is that the ratio between F.n/ and F.n � 1/ tends to the constant value � D 1:618,
known as “the mean of Phidias” or the “golden ratio”.

16 G. Ausiello

Fig. 1.12 Mario Merz, The
Flight of Numbers,
installation

It is worth remembering that the golden ratio is the ratio existing between a
segment of unit length and a portion r of it that satisfies the relation 1 W r D r W 1�r

(in other words, r is defined as the solution of the equation r2 C r D 1). The value
r D 0:618 (equal to 1=�) is called the “golden section” of the segment.

The golden ratio was used by the ancient Greeks in order to obtain particularly
elegant proportions between the dimensions of a building (such as, for example,
a temple). More recently the existence of this harmonious ratio between a Fibonacci
number and the number that precedes it in the sequence is at the base of the
important role that Fibonacci numbers had in architecture for establishing the
size of housing modules (Le Corbusier), in music for creating new tonal scales
(Stockhausen), and in artistic installations (Merz, see Fig. 1.12).

This very same property is at the root of another reason why the name of
Fibonacci is so important in computer science, beside, of course, the role that he
played in disseminating Indo-Arabic computation methods. In fact, various data
structures (see Fibonacci Heaps in Chap. 4) that allow us to perform operations on
large data sets efficiently derive their name from Fibonacci, in particular, those data
structures that allow us to handle a set of n records in logarithmic time.6

6In order to understand the great advantage to using this type of data structures it is enough to
observe that searching and updating a database consisting of 500 million records can be done in
fewer than 30 steps by making use of Fibonacci trees.

1 Algorithms, An Historical Perspective 17

22 47 16 41 10 35 4

5 23 48 17 42 29 29

30 6 24 49 18 12 12

13 31 7 25 43 19 37

38 14 32 1 26 44 20

21 39 8 33 2 27 45

46 15 40 9 34 3 28

Fig. 1.13 Magic square of
order 7

1.6 Recreational Algorithms: Between Magic and Games

As we saw in previous sections, throughout the centuries algorithms were developed
mostly for practical needs, that is, for solving problems related to the productive
activities of humans (agriculture, commerce, construction of buildings). The rabbit
problem that is at the origin of the Fibonacci sequence of numbers and of the
related algorithm is of a different nature. In this case we see an example that can be
classified as recreational algorithmics, in which the design of algorithms is aimed at
solving games and puzzles.

Other famous examples of algorithms of this nature are those referring to
relational structures (which in the modern language of mathematics and computer
science are called graphs), that since the eighteenth century have attracted the
attention of mathematicians. As we will see in Chap. 2, such structures were initially
defined and studied to solve recreational problems such as the classic problem
introduced by Euler, which consisted of deciding whether it was possible to visit
all parts of the city of Königsberg going exactly once over all seven bridges that
connected them.

In this section we will address two other kinds of problems of a recreational
nature that have been studied over the centuries and that stand at the intriguing
crossroads between games, religion, and magic: the construction of magic squares
and the traversal of labyrinths.

A magic square is a square table containing one integer in each cell arranged in
such a way that the result obtained by summing up the integers contained in the
cells of each row, of each column, and of each of the two diagonals, is, magically,
the same. If the table contains n rows and n columns, the resulting magic square is
said to be of “order n”. Normally a magic square of order n contains all integers
between 1 and n2, and the magic sum is therefore equal to the sum of the first n2

integers divided by n, that is n.n2 C 1/=2 (see Induction in Chap. 2). In Fig. 1.13 a
magic square of order 7 is shown, where the sum over each row, each column, and
each of the two diagonals is equal to 175.

The simplest magic square is of order 3, since no magic square of order 2 can
exist. Besides, it is in a sense unique because all the other eight magic squares of
order 3 can be obtained by means of symmetries and rotations of the same square.

18 G. Ausiello

Fig. 1.14 The diagram of the
Luo river (China, tenth
century)

Such a square is also one of the oldest known magic squares; in fact, versions of this
square have been known since the early Chinese Song dynasty (tenth century). The
example in Fig. 1.14 is known as the Lo Shu magic square (literally the magic square
of the Luo river) and is related to feng shui geomancy. There are 16 magic squares
of order 4 and, from them, by means of symmetries and rotations, 880 variants can
be obtained. The number of magic squares of order 5 is 275; 305; 224. At present
the exact number of magic squares of order 6 is not known.

As we said above, in various historical contexts, magic squares have taken
a religious, esoteric, or even curative meaning, and for this reason they were
called “magic”, probably in the seventeenth century. Still, it is clear that the most
interesting properties of such squares are the mathematical properties that since the
eleventh century attracted the interest of Arab mathematicians like, for example,
al-Haytham. In 1654 Pascal presented a work with the strange title “Treatise
on magically magic numbers” to the Paris Academy and, subsequently, in the
eighteenth and nineteenth centuries other famous mathematicians such as Fermat,
Euler and Cayley analyzed the numerical and algebraic properties of magic squares.

It is not surprising that the interest in magic squares naturally led to the definition
of algorithms for their construction. One of the most studied techniques is based
on the progressive filling of concentric layers, moving from the outside toward the
inside. This technique was formulated for the first time in the thirteenth century by
the Arab mathematician al-Zinjani in his “Epistle on the numbers of harmony” and
was developed in 1667 by the French scientist Arnauld. We cannot provide details
on how the algorithm works here, but it is interesting to quote some comments that
the author made on the algorithm. Such comments evidence the attention for the
main properties that algorithms should satisfy, simplicity, generality, and efficiency,
but also the possibility to demonstrate the correctness of the proposed technique.

From this I think I can conclude that there does not exist a method which is easier,
more synthetic and more perfect for constructing magic squares, one of the most beautiful
arithmetical problems. What is peculiar with this method is that figures are written at most
twice; we do not proceed by trials but we are always sure that what we do is correct; the
largest squares are not more difficult to construct than smaller squares; various solutions
can be obtained; nothing is done that cannot be demonstrated.

1 Algorithms, An Historical Perspective 19

o o 4 1 4 14 15 1

o o 7 6 9 7 6 12

o o 11 10 5 11 10 8

o o 16 13 16 2 3 13

Fig. 1.15 Construction of a magic square with the marking technique

A second algorithmic technique for constructing magic squares was proposed
in the fourteenth century by the Byzantine mathematician Manuel Moschopoulos;
it consists of filling a square of odd order n by progressively inserting all integers
from 1 to n2 following suitable rules, similar to the way in which chess pieces are
moved on the chess board. Such rules can be expressed formally by making use of
modular arithmetic. For example, one of the fundamental rules says that if integer
x is in the cell corresponding to row i and column j , if x is not a multiple of n,
the number x C 1 goes in row i C 1 .mod n/7 and column j C 1 .mod n/, while
in the other case (when x is a multiple of n) x C 1 goes to row i C 2 .mod n/ and
column j .

The last technique that we want to mention is the one reported by Ibn Qunfudh,
in the fourteenth century, in his work The revelation of operations of computing.
Ibn Qunfudh’s method is essentially a marking technique, which is likely to have
been introduced centuries before and that can only be applied in the case of squares
whose order is a multiple of 4. The method consists in marking, in a suitable way,
one half of the cells of a square in such a way that exactly one half of the cells are
marked on each row and on each column. Then, starting from the topmost cell on
the right (and proceeding row by row from right to left) all integers from 1 to n2 are
progressively enumerated, and those corresponding to the marked cells are inserted
in such cells. Finally, starting from the lowest cell on the left, in a similar way, all
numbers from 1 to n2 are again enumerated, and those corresponding to the empty
cells are inserted in such cells (Fig. 1.15).

Another class of non-numeric algorithms that were frequently mentioned over
the centuries and that have always fascinated experts in recreational mathematics
are algorithms for the traversal of labyrinths.

As is well known, just as for magic squares, labyrinths also have taken important
meanings and played diverse roles in ancient civilizations. Starting from the most
ancient one, the labyrinth of el-Fayum, described by Herodotus, to the mythological
labyrinth of the Minotaur, which the archeologist Arthur Evans identified with the
Knossos royal palace in Crete, labyrinths have been mostly associated with the
symbol of absolute power, the power that it is impossible to reach and, from which,

7We have to remember that the value a .mod b/ corresponds to the remainder of a divided by b;
for example 7 .mod 5/ D 2.

20 G. Ausiello

Fig. 1.16 Labyrinth
designed on the floor of
Chartres cathedral

at the same time, it is impossible to escape. Other meanings have been assigned
to labyrinths in religion (see the labyrinths designed on the floor of cathedrals to
mean a trail of expiation, as in Fig. 1.16), in magic (labyrinths designed on jewels
and amulets), in love (as a metaphor for the pains of the lover), and in architecture
(labyrinths of hedges in Renaissance gardens).

We will not devote space here to the description of the various topological
structures of labyrinths, nor will we address the issue of labyrinth design, which
stimulated several studies across the centuries. We will instead concentrate on the
issue of the traversal of labyrinths, either with the aim of reaching the center or of
finding the way out.

As far as we know, the first real traversal algorithm was proposed by M. Trémaux
in 1892. Technically it is an algorithm for “depth-first” visits, similar to the well-
known one based on the idea of following the right wall by always maintaining the
right hand on the wall. Different from that one, this algorithm can also be applied in
the case where the labyrinth contains circular paths.

In the words of W.H. Matthews, who at the beginning of the twentieth century
wrote a book on mazes and labyrinths, Trémaux’s algorithm is as follows:

On arriving at a node which, by the absence of marks, you know you have not already
visited, mark the path by which you have just arrived by three marks; if you see by marks
on other paths that you have already been to that node, mark the arrival path with one mark
only. If now there are no unmarked paths at this node, it means that you have explored

1 Algorithms, An Historical Perspective 21

this particular branch-system and must retrace your steps by the path by which you have
arrived. If, however, there are one or more unmarked paths leading from the node, select
one of them, and, as you enter it, mark it with two marks. On arrival at a node, you shall
never take a path with three marks, unless there are no paths unmarked or with one mark
only. When you enter a one-mark path, you shall add two marks so that it is now marked
with three marks.

Speaking about Trémaux’s algorithm it is nice to remember that the novelist
Umberto Eco, in his well-known book The Name of the Rose, pretends that the
algorithm was already known to the characters of his book in 1327 (the year in
which the story is supposed to have happened) but, ironically, he tells us that when
Adso of Melk asks “Does this method allow us to escape from the labyrinth?”,
William of Baskerville replies “Almost never, as far as I know.”

In conclusion, let us observe that the problem of traversing a labyrinth is still
considered one of the fundamental problems in computer science. In fact, it has a
paradigmatic value since finding the path between the entrance and the exit of a
labyrinth is not very different from finding the connection between two entities in a
relational structure, and this is a problem that frequently occurs in several computer
applications.

1.7 Algorithms, Reasoning and Computers

Among the various applications of algorithms to human activities, the application
to reasoning is certainly, for the reason we will examine in this section, the one
that has the most relevant consequences. Automatic reasoning is still, definitely, one
of the most ambitious and interesting research domains of artificial intelligence:
together with the development of cognitive robotics, the applications of computers
to reasoning will have a great impact on the future of mankind. What we want to
emphasize here is that even the invention of the first computers derives, although
indirectly, from the attempt to transform reasoning into an algorithmic process.

The possibility to realize algorithms that allow one to determine whether a
sentence is true or false, and, in such a case, to derive from it all its logical con-
sequences, started to appear in the Western world of philosophy in the seventeenth
century, as a consequence of the success of mathematical computing and of the
creation of the first computing machines (Pascal’s machine is from 1642). Such an
ambitious goal arose from the combination of two intellectual dreams that had been
cultivated by philosophers from the time of Aristotle and that were reanimated in
the Renaissance. The first one was the idea of recording and classifying all universal
knowledge, by creating languages and ontologies able to represent all aspects of
reality; the second consisted (so simply!) of the search for truth.

The German philosopher Gottfried Leibniz formulated the most ambitious
proposal in this direction, based on his interdisciplinary culture, ranging from
Aristotelian philosophy to combinatorics and from law to infinitesimal calculus,
and animated by an optimistic (almost illuministic) spirit. He thought that it

22 G. Ausiello

might be possible to organize all human knowledge in an “encyclopedia” and
to apply to knowledge and reasoning the same computation rules that had been
successfully applied to mathematics. He felt this could be made possible by
using a suitable symbolic system for knowledge representation, which he called
characteristica universalis. The computation system that he introduced with the
name of calculus ratiocinator was aimed at extending algebraic methods to logic
and thereby to proving or disproving any statement whatsoever. In a nondistant
future, Leibniz thought, faced with a problem of any nature, instead of losing time
in useless quarrels, “wise and good willing men” might sit around a table and
say: “Calculemus!”; at that point they might run an algorithm (or even turn on a
computing machine8) that would solve the problem.

The name of Leibniz is often related to the history of computers since he was
the first to introduce the binary numbering system and the logical operations on
which the binary mathematics used by computers is based. Actually, the relationship
between Leibniz and computers is much deeper. We might say that a red line
connects directly ideas and works of Leibniz across three centuries with the birth
of the first computers.9

The construction of the first computers was, indeed, the result of a number of
technologically and methodologically convergent developments that took place in
the nineteenth and twentieth centuries and of the pressing needs for computing
power deriving from the industrial development and (most important) from the
military build-up in which the German, British, and American governments were
involved from the late 1930s to 1945. This is not the place to illustrate the history
of computing machines, but we have to remember that a crucial role in this
history (in particular, in the history of the first programmable machines, the real
ancestors of today’s computers) was played by the studies and works of the English
mathematician Alan M. Turing in the mid-1930s. Such studies were devoted,
on one side, to formalizing the concept of algorithm and understanding its limits by
showing the existence of problems that algorithms are unable to solve. On the other
side, Turing’s work suggested the possibility to build programmable computers, that
is, computers that could execute whatever algorithms were assigned to them in a
suitable formal description.

The connection between Leibniz and Turing in computer history, more properly
in the history of algorithms, has been established thanks to a problem formulated by
another great mathematician, David Hilbert. Among the 23 problems that Hilbert
presented at the Mathematics World Congress, held in Paris in 1900, as the main
open problems to which the work of mathematicians should be devoted in the

8In 1673 Leibniz himself proposed one of the first models of computing machine to the Royal
Society: the “machina arithmetica.”
9It is worth observing that the creation of suitable ontologies allowing us to classify entire domains
of human knowledge is still today one of the big challenges of modern computer science. This is
related to the aim of providing computer systems (not only those that supervise information search
in the Web but also those that execute traditional data management applications) with semantic
support that enhances the “intelligence” of software.

1 Algorithms, An Historical Perspective 23

twentieth century, the Second Problem emerged as the most important. The problem
consisted in establishing whether the axioms of the logical theory of arithmetic
were consistent or not, or, in other words, whether it was not possible to derive
two contradictory consequences from the axioms.

The issue was more precisely addressed in a famous talk given by Hilbert at the
Mathematics World Congress that took place in Bologna in 1928. On that occasion,
besides underlining the relevance of the issue of consistency, Hilbert illustrated two
other problems concerning the logical theory of arithmetic: the completeness of the
theory, that is, the property by which any true assertion should be provable in the
theory, and the decision problem (the Entscheidungsproblem), that is, the problem of
establishing whether there exists an algorithm that, given any logical formula of the
theory of arithmetic, is able to tell, in a finite number of steps, whether the formula
is valid or not. In other words, Hilbert proposed to address an issue that was much
more specific than the ambitious one raised by Leibniz. In fact, the question was
not to assess the existence of an algorithm able to decide the truth or falsity of any
statement in any field of knowledge but was limited to considering the formalized
knowledge in a specific logical domain and to finding out whether an algorithm
existed able to decide truth or falsity for an assertion in such a theory. Clearly a
positive reply to Hilbert’s question would have been encouraging with respect to
Leibniz’ dream to decide in algorithmic terms any dispute, while a negative answer
not only would have implied the end of this dream but would have also indicated a
precise limit to the power of algorithmic methods. This type of issue, the conceptual
tools needed for addressing them, and the answers that eventually were achieved,
had a fundamental role in twentieth century mathematics and also had unforeseen
consequences in the development of computer science and of its conceptual basis
(see also Chap. 3).

The negative answer to the Entscheidungsproblem was given by Alan Turing in
1935–1936. How was this result obtained? In order to show that a problem can
be solved by means of an algorithm, it is sufficient to show this algorithm. In this
way we can prove the existence of an algorithm to compute the greatest common
divisor or to decide whether an integer is a prime number or not. Instead, in order
to show that a problem cannot be solved by means of an algorithm (or, as we used
to say, to prove that it is an undecidable problem), first of all it is necessary to
provide a definition of the concept of algorithm and then to show that algorithms
corresponding to this definition cannot solve the given problem. Despite various
previous attempts in this direction, in 1935 a satisfactory definition of the concept
of algorithm was not known and, hence, first Turing had to find one.

To start with, Turing introduced a notion of algorithm that was based on a very
elementary abstract machine model (later to be called “Turing machine”). Such a
machine is provided with a (potentially) unlimited tape divided into cells, on which
a tape-head (able to move in both directions) can write and read symbols belonging
to a suitably defined finite alphabet. In addition, the machine in any moment is in
one of a finite set of internal states. For example, a typical behavior rule of the
machine could be the following: if the machine is in state q1 and its head reads the
character ‘2’ on the tape, then it should write the character ‘4’ in place of ‘2’ in

24 G. Ausiello

the same cell, move the head to the next cell to the right, and enter the state q2. Note
that, in general, a machine that is activated with a particular string x of characters
(the “input” string) on the tape can reach a particular “final” state corresponding to
the end of the computation. In this case the content of the tape in such a moment
can be considered the “result” of the computation, but in some cases it may happen
that the machine does not reach the final state and may indefinitely keep working.

The next step of Turing’s work was the following: having assumed that the
most general kind of algorithm was provided by his machines, he had to identify a
problem that could not be solved by these machines, since a problem not solvable by
means of Turing machines would be a problem that could not be solved by means
of any possible kind of algorithm. Such a problem turned out to be exactly the
so-called halting problem of Turing machines. In fact, Turing was able to show that
there does not exist any Turing machine able to decide, given a machine M and a
string of symbols x, whether M enters a final state or not when it is activated on
a tape containing the input string x. Finally, as a last step, Turing showed that the
halting problem could be formulated as a particular case of the decision problem
stated by Hilbert.

As stated above, Turing reached several results that had a fundamental role in
the subsequent developments leading to the construction of the first computers and
that are among the most important conceptual pillars of computer science. The first
result, clearly, was to provide a definition of the concept of algorithm that, although
very simple, has never been substituted by any other definition and still represents
the most general notion of algorithm. In fact, no problem is known that can be solved
by any algorithm and that cannot be solved by a Turing machine.

The second result was to identify the limits of algorithms. After the proof
of the undecidability of the halting problem (and, as a consequence, of the
Entscheidungsproblem), many more undecidable problems have been discovered
in various domains of knowledge (algebra, geometry, coding theory, computer
science, etc.). The same limits that hold for Turing machines clearly hold for real
computers in the sense that if a problem cannot be solved by means of algorithms,
it cannot be solved by any computer, no matter how powerful it is.10

The third, fundamental result is closely related to the construction of
programmable computers. Although Turing was not thinking in terms of real
computing machines when he defined his model, but rather he was trying to
represent the way a man’s mind proceeds when he performs a computation, it is
clear that his notion of algorithm (based on the Turing machine) was leading to
the conclusion that any algorithm could be performed with an automatic device.
But this might create the impression that we should build a different machine for
every problem that we want to solve. The most surprising result that Turing showed

10Note that the contrary is not true. As we will see in Sect. 2.3 and in Chap. 3, there are problems
that, in principle, can be solved in algorithmic terms but cannot be solved in practice with a
computer since their solution may require an amount of time (computation steps) greater than
the life of the Universe.

1 Algorithms, An Historical Perspective 25

is that, instead, there exist special Turing machines able to simulate the behavior
of any other Turing machine. A machine U of this kind, called a universal Turing
machine, is devised in such a way that if we provide the description of another
Turing machine M (the “program” of M) and a sequence of symbols x (the “input”
of M) on the tape of U and then we activate U , the universal machine, step by step,
executes the rules of the machine M on the string x.

The universal Turing machine had an important role in the invention of
programmable computers that in the 1950s replaced the previously built computers,
thanks to its greater versatility. A great deal separates those first programmable
computers, in which the program had to be manually uploaded in the memory of
the computer in the form of a binary string, from the modern computers in which
programs are written in high-level languages easily understandable by the users and
then translated into binary computer language by suitable software systems running
on the computer itself. On the other hand it has been precisely this long history of
innovations and technological advances that has made algorithms and computers
ubiquitous today.

1.8 Conclusion

In this chapter we have shown, by means of a few paradigmatic examples, how
in various historical ages, spanning thousands of years, algorithms were used to
solve problems of interest for specific applications or, in some cases, simply to
solve recreational problems. The examples also show a variety of styles in which
algorithms were presented in different contexts. We have also illustrated how,
around the mid-twentieth century, the need to provide a formal definition of the
concept of algorithm and the discovery of the existence of universal algorithms
(or machines), able to interpret and execute any algorithm presented to them
(provided it is written in a suitable formal language) had a crucial role in the
construction of the first programmable computers.

Today, thanks to the ubiquitous presence of computers and of computer
applications, the concepts of algorithm and of computer program are quite familiar
also to non-experts. Nonetheless, it is not as clear to everybody that, thanks to the
technological development of computers and of programming languages and to the
growing complexity of applications, the design of algorithms has changed from a
creative and artisanal activity into a real science. In the next chapter we will show
how the design of valid and efficient algorithms requires the use of suitable design
techniques and a sophisticated organization of the data to be processed. Then, in the
subsequent chapters, we will present examples of algorithms that are present in our
everyday life (although hidden in devices such as, for example, our cellular phones)
and we will illustrate the advanced design techniques that have been employed in
order to obtain from them the required performance and effectiveness.

26 G. Ausiello

1.9 Bibliographic Notes

The history of algorithms and the history of mathematics clearly have several points
in common. In order to understand such interconnections it is certainly advisable
to read a volume devoted to the history of mathematics, such as [10], but, more
interesting may be [35], where a study of the role that computing had in the evolution
of mathematics is presented.

The history of algorithms is systematically presented in [16]. From this work
are taken various examples presented in this chapter. Several volumes illustrate
the development of the concept of algorithms in some specific historical periods.
Particularly interesting are the books [15] for Egyptian mathematics and [95, 114]
for Arab mathematics and, in particular, for the works of al-Khwarizmi. A good
illustration of the relevance of the work of Fibonacci in the history of algorithms is
contained in [28], while a general historical perspective is provided by Morelli and
Tangheroni [81]. The Trémaux algorithm for the traversal of labyrinths is presented
in [77].

The interesting relationships among mathematics, philosophy, and esoterism that
characterized the search for a language that could be used to classify and represent
all human knowledge is well described in [37]. The cultural and conceptual trail
that, in the context of Western mathematical thought, leads from Leibniz to Turing
and to the invention of programmable computers is illustrated in [23] in a very
clear way by one of the greatest contemporary logicians, Martin Davis, who had an
important role in the study of undecidability. Readers interested in the life and work
of Alan M. Turing can read [60].

Chapter 2
How to Design an Algorithm

Rossella Petreschi

Abstract Designing an algorithm is a profoundly creative human endeavor. Indeed,
to design an algorithm one has to conceive a solution by drawing on a deep
understanding of the problem at hand, on one’s knowledge of techniques adopted
for the construction of other algorithms and, above all, on a fair sprinkling of one’s
personal inventiveness. As a consequence there can be no fully automated method
for generating the solution to a given problem. So, in this chapter we want to indicate
the line to be followed in order to arrive at an algorithm design of optimized form.
Integral to this we explain why it is essential to find the best way to abstract,
represent and organize the information available about the specific problem to be
tackled.

2.1 Introduction

In the process leading to the creation of an algorithm to solve a given problem it
is possible to identify two basic phases: first, outlining the mathematical kernel of
the problem, and second, identification of appropriate techniques for designing the
procedures that will lead to its solution. Obviously, these two phases are not clearly
separable; on the contrary, they are tightly intertwined. Algorithm design, in fact,
is not to be understood as solely a process for developing solutions to problems that
are already well-defined, but also as a methodology for clearly defining the problem
to be tackled in the first place. As a consequence, the design of algorithms can be
seen as an art, for it can never be rendered fully automatic because it is founded
on a thorough understanding of the problem to be solved, on analysis of approaches
adopted for the construction of other algorithms, and, crucially, on individual insight
and creativity.

R. Petreschi (�)
Dipartimento di Informatica, Sapienza Università di Roma, via Salaria 113, 00198 Roma, Italy
e-mail: petreschi@di.uniroma1.it

G. Ausiello and R. Petreschi (eds.), The Power of Algorithms,
DOI 10.1007/978-3-642-39652-6__2, © Springer-Verlag Berlin Heidelberg 2013

27

mailto:petreschi@di.uniroma1.it

28 R. Petreschi

In this chapter the design of a “good” efficient algorithm is presented; namely
we first provide an introduction to the mathematical concept of a graph (Sect. 2.2),
then we go on to illustrate two of the best-known techniques of algorithm design
(Sect. 2.3). Following this, we introduce the concept of the goodness of an algorithm
as a measure of its efficiency (Sect. 2.4). Finally, in Sect. 2.5, we present a complete
example of the design of an algorithm, focusing on the binary search algorithm.

2.2 Graphs

Let us start by providing an introduction to the mathematical concept of a graph,
which will also pave the way for several subsequent problems presented in this
book where the search for an efficient solution entails the modeling of information
in the form of graphs.

2.2.1 The Pervasiveness of Graphs

A graph is the representation of a set of elements where some pairs of the
elements are connected by links. By convention, the elements of a graph are called
nodes and are represented as points. The link (relationship) between two nodes is
represented by a line. Depending on whether the relationship is symmetrical or non-
symmetrical, a graph is defined as non-orientated or orientated (Fig. 2.1). In other
words, in a non-orientated graph the relations .x; y/ and .y; x/ correspond to the
same line, called an edge, whereas in an orientated graph .x; y/ and .y; x/ refer to
two different lines, called arcs.

A graph is a natural way to model a real-life situation because it represents
entities in relation to one another. As an example, one can think of a railway
network: the stations are the nodes of a graph whose edges indicate that two stations
are connected by a section of the railway track. Clearly, networks of any kind can
be represented by graphs. In this book we focus on three types of network. Two of
these, the television network (Chap. 8) and the Internet (Chap. 5), concern systems
that exchange messages in electronic form through links that make use of cables,
fibre optics, radio or infrared connections; the third is the road network (Chap. 4).

If it is easy to represent a network in terms of graphs, it is not so natural
to think of graphs as capable of representing labyrinths (Sect. 1.6), or a sporting
activity, or even as a useful aid in the search for the ideal marriage partner.
Nevertheless, a sports tournament, for example, can be modeled with a graph, each
node representing a participating team and two teams being linked once they have
played their match against each other.

As for the search for a marriage partner, the problem of stable marriages can be
modeled as follows. Suppose that in a small, isolated village there are equal numbers
of young men and women of marriageable age. Given the village’s isolation,

2 How to Design an Algorithm 29

Fig. 2.1 Examples of graphs: G1 non-orientated graph; G2 orientated graph: the arrows on each
arc indicate the orientation of that arc; for example, the arc .q; r/ exists, but the arc .r; q/ does not

Mark

Julia

Clair

Alexandra

Benny

Alexis

Daniel

Gabriel

Mark

Julia

Clair

Alexandra

Benny

Alexis

Daniel

Gabriel

a b

Fig. 2.2 Affective ties represented through graphs. Solid lines represent possible matches.
(a) A graph representing a state in which at most three marriages are possible. (b) A graph showing
a situation in which four marriages can be celebrated

its elders naturally hope that the maximum number of these young people will be
able to find a marriage partner among the pool of available mates, in order that
reproduction of the population can be ensured. Unfortunately, however, it is not
certain that all the eligible young people will succeed in “tying the knot”, because
obstacles such as too-close kinship ties, or insurmountable dislike for someone or
other, will inevitably exclude the possibility of some marriages.

In order to establish the maximum number of couples that can be formed, it turns
out to be useful to model the problem by way of a graph of 2n nodes, n representing
the young women and n representing the young men. The edges in the resulting
graph have to provide information on the possibility of forming a marriage that
can produce offspring; thus they will only connect male nodes with female nodes.
An edge will be present only if there is no impediment to the marriage.

Figure 2.2 shows two possible states of affective ties between eight young people
of the two sexes. The ideal would be to end up with four marriages, so as to ensure
the prosperity of the village. But observing the relations in the first case, shown
in Fig. 2.2a, it is apparent that this is not possible. In fact, Julia can only marry
Alexis, just as Clair can only marry Daniel. Alexandra and Benny, instead, each have
two possible matches, Alexis and Daniel and Gabriel and Mark, respectively.1 The
obligatory matches of Julia and Clair therefore leave Alexandra without a partner,
whereas any match made by Alexandra would leave either Julia or Clair without a
partner. The consequence of Benny’s choice will be that either Gabriel or Mark will

1The graph could, instead, be read symmetrically from the male point of view, that is, Alexis can
choose between Julia and Alexandra, Daniel between Clair and Alexandra, etc.

30 R. Petreschi

Fig. 2.3 The binary tree
associated to the mobile in
Fig. 2.4

remain bachelors. The other situation, shown in Fig. 2.2b, is clearly more favorable.
Since in this scenario Clair has no incompatibility with any of the four young men,
it follows that four marriages can be celebrated.

A wide variety of algorithms have been designed for solving this problem. Each
of these algorithms, given a graph representing a particular instance of the problem,
enable it to be decided whether or not it is going to be possible to form couples
from all members of a given group of young people, and if it is not, to establish the
maximum numbers of couples that it is going to be possible to form.

It should be noted that this problem, which has been presented in a playful way
here, is, in fact, of great practical interest. To give just one example of its many
potential applications we mention the problem of assigning the staff of a company
to particular shifts.

An important class of graphs which offers a wealth of potential applications is
that of trees (box “Trees”).

Here, let us introduce trees by comparing them to the moving abstract sculptures
known as “mobiles”, thereby further emphasizing the connection between scientific
and artistic disciplines already highlighted in Chap. 1.

Alexander Calder (1898–1976) revolutionized the world of sculpture by intro-
ducing movement as a fundamental component of his works. His mobiles, today
available in series and sold in shops of the world’s leading art museums, pivot on just
one point and are free to move slightly according to air currents in the environment
in which they are located. Beyond their artistic value, these sculptures are perfect
examples of binary trees. In fact, each joint of a mobile has exactly two terminal
points, each of which can be either just a terminal, or a new joint which has, in turn,
two terminal points. Figure 2.3 depicts the tree associated to the mobile in Fig. 2.4,
where it can be seen that the root corresponds to the pivot.

Note that we could attribute labels 0 or 1 to the arcs coming out of a node,
according to whether they lead to a leaf or to another internal node. Each sequence
of zeroes and ones, corresponding to the path from a root to a specific leaf, enables
information to be given regarding the position of that leaf in the tree. In other words,
the sequence of zeros and ones is a variable-length code that is representative of that

2 How to Design an Algorithm 31

Fig. 2.4 Mobile in the
garden of the Beyeler
Foundation in Basel (photo
Baglioni)

leaf in that tree. Note that this concept is very similar to the one used for the Morse
code (1838), which combined sequences of variable length lines of dots, dashes and
spaces to represent the letters of the English alphabet. These simple considerations
could initiate a long discussion on how to construct an efficient binary code for
a computer, but that is another story and the interested reader will find useful
references in the bibliography.

Trees

Given a graph G D .V; E/ with n nodes V D .v1; v2; : : : ; vn/ and m edges
.vi ; vj /, we call path of length k from a node vi to a node viCk a sequence
of nodes vi ; viC1; : : : ; viCk such that .viCj ; viCj C1/ is an edge of G, with
0 � j � k � 1. When vi D viCk the path is a cycle. A non-orientated graph
G is said to be connected if every pair of nodes vi and vk is joined by a path.

A free tree T (T1 in Fig. 2.5) is a connected non-orientated graph without
cycles. A tree with n nodes has n � 1 edges and for any pair of nodes there
exists just one path that connects them. A rooted tree R (T2 in Fig. 2.5) is a
tree in which a particular node, defined root, has been identified. In a rooted
tree there exists an implicit direction between the root and the other nodes that
allows the following definitions to be introduced:

• w is the father of v; that is, v is the son of w if there exists the edge .w; v/

on the path from the root to v;
• f is a leaf if it does not have children. In a tree a node is either a leaf, or it

is an internal node;
• The height of a tree is the longest path among all those leading from a root

to a leaf.

(continued)

32 R. Petreschi

Fig. 2.5 Examples of trees: T1 free tree; T2 rooted tree; T3 complete binary tree

(continued)

A rooted tree is said to be a binary tree if each node has at most two children;
furthermore, a distinction is always made between left child and right child,
even if one of the two children does not exist. A tree (and a graph, in general)
is said to be weighted when a cost is assigned to each of its edges. A tree in
which every internal node has exactly two children is called a complete binary
tree (T3 in Fig. 2.5) and a binary tree in which every internal node has exactly
one child is called a degenerate binary tree. The height h of any given binary
tree is a value falling somewhere in the interval between log2 n (height of a
complete binary tree having n nodes) and n (height of a degenerate binary
tree having n nodes).

2.2.2 The Origin of Graph Theory

Graph theory is one of the few fields of mathematics which has a precise date of
origin. The first work on graphs was written by Euler in 1736 and appeared among
the publications of the Academy of Science in St. Petersburg. Euler had found
himself presented with the following problem:

In the city of Königsberg2 there is an island, A, called Kneiphof, around which flow two
branches of the River Pregel. Crossing these two branches are seven bridges: a, b, c, d, e,
f, g. The question is this: is it possible for a person to choose a walk which takes them across
each of the seven bridges once and only once, and then brings them back to their point of
departure?

2Today named Kaliningrad.

2 How to Design an Algorithm 33

a b

Fig. 2.6 (a) The city of Königsberg and its bridges. (b) Representation of city of Königsberg’s
map in graph form

Figure 2.6a shows a map of the city of Königsberg with the four districts which
Euler labelled A, B, C and D, and represented as the nodes of a graph connected
by edges corresponding to the bridges (Fig. 2.6b).3 Euler proved that the graph can
not be visited completely following a single cyclic path; that is, regardless of which
node is departed from, it is impossible to visit all the nodes of the graph and return
to the starting node without backtracking for at least part of the way.

A path solving the problem (today called an Eulerian circuit) would enter each
node exactly the same number of times as leaving it, but this condition cannot be
satisfied by the map of Königsberg. Euler subsequently went on to prove that every
connected graph with all nodes of even degree4 exhibits an Eulerian circuit.

From the foregoing description, it is clear that an Eulerian circuit requires that
each arc of a graph be visited once, and only once. When, instead, it is required
that each node of a graph be passed through once, and only once, this is known as a
Hamiltonian Cycle.

In 1859 the Irish mathematician W.R. Hamilton created a wooden puzzle in the
form of a tridimensional regular dodecahedron (Fig. 2.7a) (subsequently distributed
commercially as a pegboard with holes at the nodes of the dodecahedral graph). The
name of a city was associated to each of the 20 nodes of the dodecahedron and the
problem was to find an itinerary along the arcs such that each city was visited once
and only once. The path selected by a player was recorded by a thread wound round
pegs inserted into the nodes.

Since this puzzle did not have much success on the market, Hamilton brought
out a two-dimensional version that was easier to handle: the puzzle was in the form
of a planar graph5 corresponding to a dodecahedron (Fig. 2.7b). However, it seems

3To be precise, the graph in Fig. 2.6b is in fact a multigraph, since two of its nodes can be connected
by more than one edge.
4The degree of a vertex in a non-orientated graph is defined as the number of edges incident on
that vertex.
5A graph is said to be planar if it can be drawn in the plane without its edges intersecting.

34 R. Petreschi

a b

Fig. 2.7 (a) A tridimensional regular dodecahedron and (b) its representation as planar graph

(5, 3, 2, 1)
(5, 3, 4)
(5, 4, 3, 2, 1)
(4, 5, 3, 2, 1)

(1, 2, 3, 4, 5)
(1, 2, 3, 5, 4)
(2, 1)
(2, 3, 4, 5)
(2, 3, 5, 4)

(3, 2, 1)
(3, 4, 5)
(3, 5, 4)
(4, 3, 2, 1)
(4, 3, 5)

Fig. 2.8 List of the 14 paths on a simple graph of 5 nodes that do not pass more than once through
the same node. The four paths of length 5 are Hamiltonian

that this puzzle did not meet with much success either. In contrast, the search for a
Hamiltonian Cycle has, from that time onwards, been considered one of the most
important problems of graph theory.

At this point we need to pause a moment to explain that, although the calculation
of an Eulerian Circuit and a Hamiltonian Cycle are very similar problems as regards
their formulation, they are very different as regards their degree of difficulty. First,
let us point out that the solution to a problem modeled in terms of a graph is
obtained by analyzing whether or not a structural property of that graph satisfying
the specific instance of the problem exists. Now, as regards the Eulerian Circuit we
know (indeed, from Euler himself) that a connected graph has an Eulerian Circuit
if all the degrees of its nodes are even. Since establishing whether the degrees of
a graph are even is easy, it follows that it is also easy to establish whether a graph
has an Eulerian Cycle. However, the situation is quite different when it comes to
Hamiltonian Cycles.

To date no structural property of the graph associated with the Hamiltonian Cycle
problem has been found, and it is not known if one exists. As a consequence,
whether or not a Hamiltonian Cycle exists can only be determined by exhaustive
analysis of all the possible itineraries along the arcs of a graph. In fact, identifying
all these possible itineraries is in itself a difficult problem, as becomes clear from
a quick glance at the number and complexity of itineraries existing in even a small
graph, such as the one shown in Fig. 2.8. This explains why, even today, finding a
Hamiltonian path remains “a difficult problem to solve” (see Sect. 2.4).

2 How to Design an Algorithm 35

2.2.3 The Topological Ordering Problem

Consider the following problem: a part-time student, studying for a university
degree in Informatics in Rome, has to choose which courses to follow among those
she is expected to take. Owing to her work commitments, our student can only take
one course in a semester; the courses can be followed in any order, but only as long
as the prerequisites established by the Faculty Academic Board are satisfied.

Thus, owing to the fact that an acceptable choice exists, it is clear that:

C1: The prerequisites must be such that they are not mutually binding: if course
A is a requirement for proceeding to course B, and course B is a requirement for
proceeding to course C, then course C cannot be a requirement for proceeding
to course A, otherwise no acceptable order for the courses would exist;

C2: At least one of the courses must not have an entry requirement. It must be
stressed that in general there will not be just one possible selection.

Let us see how our student goes about making her particular selection. As a
starting point she decides to represent the courses by means of the nodes of an
orientated graph and the prerequisites by arcs between these nodes: the arc from
node v to node w indicates that course v has to be completed before starting course
w. The problem of the choice of courses, when represented on an orientated graph,
is the equivalent of asking oneself if an ordered sequence of nodes exists such that
v precedes w, for every arc (v, w) on the graph, while the conditions C1 and C2,
expressed on the graph, become:

G1: No cycles must exist. If we analyze a cycle of three nodes a,b,c and three arcs
(a, b), (b, c), (c, a) it becomes apparent that none of the six possible sequences
of three nodes (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a) is an
acceptable solution, given that for each sequence there exists at least one arc
whose end points are not in the correct relative order in the sequence (the arc (c,
a) in the first sequence,the arc (b, c) in the second, and so on);

G2: There has to be a source, that is, there has to be at least one node to which
no arc arrives.

At this point, the student is ready to make her choice by proceeding source by
source. Let us suppose that the graph in Fig. 2.9a is the model she has constructed.
A, B, C, D, E, F and G are the names of the courses and each arc XY indicates that
course Y has course X as its prerequisite (e.g., course A is a prerequisite for courses
B and D). We can follow the student’s choices by observing the graph in Fig. 2.9a.
This graph satisfies both condition G1 (there are no cycles) and condition G2 (there
is at least one source6).

Let us now suppose that C is the first course that the student decides to follow.
Once she has sat and passed the exam for course C, both C and all the arcs leaving
it are eliminated from the graph. This is equivalent to saying that in mastering the

6In the graph shown in Fig. 2.9a there are two sources: node A and node C.

36 R. Petreschi

ba c

gfed

G

CFABDEG

E

G

CFABDE

D

E

G

CFABD

B

D

E

G

CFAB

B

A

E

G

CFA

source
(forced choice)

B

A

E

F

G

CF

selected
source

so
ur

ce
B

A

C

D D D

E

F

G

C

selected
source

so
ur

ce

Fig. 2.9 Example showing how the topological ordering algorithm works

subject matter of course C she now has the necessary competences to tackle the
subject matter of courses D and F. The new graph is shown in Fig. 2.9b. Since
conditions G1 and G2 are still satisfied she can proceed with a new choice (A or F).
Let us say she chooses F. The elimination of F and its outgoing arcs leads to a
graph that has just one source. That is, she has become obliged to tackle course A
before being able to take any other course (Fig. 2.9c). The rest of Fig. 2.9 shows the
remaining steps of the procedure, and we can see that, in the case of this example,
from this point onwards the choice of course is always obligatory and the gradually
reduced graph obtained at each successive step satisfies both G1 and G2.

The sequence is completed when all the nodes and arcs of the graph have
been eliminated. It must be emphasized that the solution CFABDEG found by the
algorithm here is not the only one possible. A quick look at Fig. 2.9a shows that
A could have been chosen as the first source and thus as the first element in a
differently ordered sequence.

2.3 Algorithmic Techniques

In the previous section, having modeled the problem of topological ordering in terms
of graph theory and identified the properties of the model graph (properties G1
and G2), we went on to present the appropriate algorithmic technique for resolving
the given problem. In that case it was the procedure of successively analyzing each
reduced graph obtained by eliminating a specific source.

It is by no means easy to explain how one arrives at the design technique to
be employed in constructing an algorithm because, as we said at the outset of this
chapter, the choice of technique depends not only on a thorough understanding of
the problem, but also on the extent of our knowledge about techniques that have
already proved effective in solving other problems. It also depends upon a good
dose of intuition in hitting upon the model that is most suited to the problem at
hand.

2 How to Design an Algorithm 37

In this section we introduce two of the most interesting and widely used
algorithmic techniques and illustrate them by way of problems drawn from everyday
life. These are the backtrack technique and the greedy technique.

In general terms we can say that the backtrack technique is applied when nothing
is known about the problem to be solved apart from the statement of the problem
itself. One thus proceeds by making choices that can be reversed if needed. The
greedy technique, instead, is applied when one has sufficient information about the
problem to be able to proceed by making local irreversible choices.

In the final section of this chapter a further highly useful algorithmic technique
will also be introduced, that of divide et impera (divide and conquer) which can be
applied when a problem lends itself to being divided into various subproblems.

2.3.1 The Backtrack Technique

The Eight Queens Puzzle, in its original form, is the problem of finding how to place
eight chess queens on a chessboard (8�8 squares) in such a way that no two queens
attack each other.

For readers who are not familiar with the rules of chess, it is sufficient to know
that a queen can move horizontally, vertically or diagonally for any number of
squares; consequently, a solution requires that no two queens share the same row,
column or diagonal.

The first proposal of the puzzle was due to Max Bezzel, who in 1848 published
it in the chess journal Berliner Schachzeitung. The problem was considered so
intriguing that even Carl Friedrich Gauss devoted time to studying it. In 1874
Professors Glaisher of Cambridge University and Günther of Leipzig University
published the first proof that there are 92 solutions to the problem. These 92
solutions are obtained from 12 fundamental solutions by rotating the chessboard
90ı, 180ı, or 270ı and then reflecting each of the four rotational variants (including
its original form) in a mirror in a fixed position.

Figure 2.10a shows the 12 fundamental solutions to the eight queens problem.
In each sequence of eight numbers the order in the sequence indicates the row—
and the number itself, the column—in which each of the eight queens is placed.
Figure 2.10b shows in detail the situation represented by the sequence 1 5 8 6 3 7 2 4,
with the identifiers Q1 to Q8 representing each queen (and corresponding to the
number of the row she occupies). Thus, the first queen is placed in the square at the
top left of the board (first row, first column), the second queen is placed in the second
row, fifth column, and so on. Note that in order to represent a possible positioning of
the eight queens by way of a sequence, just eight items of information are sufficient.
In contrast, in order to represent the positioning by way of a chessboard we need to
know the content of all 64 squares (see box “Data Structures”).

The first solutions to the eight queens problem were based on purely numerical
calculations. Here, however, we present an algorithmic solution that is arrived at
through an exhaustive, but controlled, analysis of all possible positions that each

38 R. Petreschi

1 5 8 6 3 7 2 4 2 5 7 4 1 8 6 3
1 6 8 3 7 4 2 5 2 6 1 7 4 8 3 5
1 7 4 6 8 2 5 3 2 6 8 3 1 4 7 5
1 7 5 8 2 4 6 3 2 7 3 6 8 5 1 4
2 4 6 8 3 1 7 5 2 7 5 8 1 4 6 3
2 5 7 1 3 8 6 4 2 8 6 1 3 5 7 4

Q8

Q7

Q1

Q2

Q3

Q4

Q5

Q6

a b

Fig. 2.10 (a) The 12 fundamental solutions to the eight queens puzzle. (b) Chessboard showing
the positioning of the eight queens represented by the sequence 1 5 8 6 3 7 2 4

Q1
a b

1,1 1,2 1,3 1,4

Q1

Fig. 2.11 Placing of the first queen in the last column of the first row: (a) Represented on a
chessboard; (b) represented on a decision tree

successively placed queen can occupy. Given the conditions that each placement
must comply with, a systematic search is designed which, by means of checks,
eliminates a certain number of positions in advance, thus reducing the number of
possible placings that need to be analyzed. To make the illustration simpler, let
us consider the problem of placing four queens (Q1; Q2; Q3; and Q4) on a 4 � 4

chessboard. At the start of the algorithm, Q1 can be placed on any one of the four
columns of the board. Let us choose the fourth column—that is, let us put 4 as the
first number in the solution sequence.

This choice, as can be seen from Fig. 2.11a, means the other three queens are
unable to use the first row, the fourth column and the diagonal towards the right
i.e., the one linking square .4; 1/ with square .1; 4/. Figure 2.11b shows the first
step in the construction of the decision tree,7 a tree that will enable us to represent
the procedure that we are carrying out. Each shaded node contains the name of the
queen that is being allocated to it, while all the unshaded nodes (that are children
of a shaded node) indicate possible alternative positions for that queen, taking into
account the choices made in all preceding placings. Since it is the first queen that we
are placing, all four positions on the board are still available. The double circle in
an unshaded node (see Fig. 2.11b) indicates that it is the position that has currently
been chosen for the queen that is being analyzed.

7Decision tree is the name given to a tree in which each node represents a set of possible choices.

2 How to Design an Algorithm 39

Q1

Q3

Q2

a

b

1,1 1,2 1,3 1,4

2,22,1

3,3

Q2

Q3

Q4

Q1

Fig. 2.12 Impossibility of placing the fourth queen following the choice to place the first queen
in the fourth column and the second queen in the first column. (a) Representation on a chessboard;
(b) representation on a decision tree

The second queen, therefore, can only be placed on either the first or the second
position on the second row, given that the third and fourth positions are, respectively,
on the diagonal and on the column of Q1. Let us begin by choosing the first position,
that is, by writing 1 as the second number of the solution that we are seeking. As a
consequence of the previous choices, Q3 can only be placed on the third position of
the third row, that is, 3 is the third number of our hypothetical solution, given that
the first position is on the column of Q2, and the second and fourth on the diagonal
and column, respectively, of Q1. As a consequence of the choices made, Q4 does
not have any acceptable placing, given that the first, third and fourth squares are
on the columns of Q2; Q3 and Q1, respectively, while the second square is on the
diagonal of Q3 (see Fig. 2.12a).

Given the impossibility of placing the fourth queen, the algorithm goes back to
the last choice made in order to check if it is possible to arrive at a solution by
another route. In our example the last choice made was that regarding the placing
of Q2, since the placing of Q3 had turned out to be obligatory. Figure 2.12b gives
the decision tree of the procedure up to this step, showing the allocation of queens
Q1; Q2; and Q3 and the backtrack due to the impossibility of allocating queen Q4.

Returning to the shaded node Q2, it becomes apparent that only one alternative
placement possibility exists: allocating Q2 to the second square of the second row.
The choice to place Q1 on the fourth square and Q2 on the second square block the
placing of Q3, since the first and third squares of the third row are on the diagonal

40 R. Petreschi

Q2

Q1

a

b

1,1 1,2 1,3 1,4

2,22,1

3,3

Q1

Q2

Q3Q3

Q4

Fig. 2.13 Impossibility of
placing the third queen
following the choice to place
the first queen in the fourth
column, and the second queen
in the second column.
(a) Representation on a
chessboard;
(b) representation on a
decision tree showing the
backtrack to the root—that is,
the placing of the first queen

of Q2, while the second and the fourth are, respectively, on the diagonal and column
of Q1 (see Fig. 2.13). Backtracking to Q2 has shown us that there are no alternative
choices for queen Q3 under the hypothesis of Q1 in position 4. Therefore a new
search for a solution can only start from a different placing of Q1 (Fig. 2.13b).
Figure 2.14 shows the decision tree depicting the behavior of the entire algorithm,
according to which of the four possible placements of Q1 is chosen.

Data Structures

We have seen that an algorithm is a sequence of unambiguous instructions that
enable an output to be generated in a finite time interval for every legitimate
input.

The information that an algorithm receives as input has to be a meaningful
abstraction of the actual data to be processed, that is an abstraction capable of
representing the nucleus of information of the problem, and from which it is
possible to derive the desired results.

In order to clarify this concept, let us take the problem of placing n queens on
an n � n chessboard: the meaningful part of the data is an object possessing
the property of being able to attack the row, column and diagonal associated
with its position on an 8 � 8 matrix (precisely the characteristics of a chess
queen). No other real-world information, such as, for example, the material
from which the chess pieces are made, the precise shape of the pieces, or
the craftsperson who made them, is necessary for solving the problem. Once

(continued)

2 How to Design an Algorithm 41

Fig. 2.14 Decision tree
showing all the choices
consequent upon the four
different placements of Q1

(continued)

the characteristics of the data to be given as input have been identified, the
question has to be tackled of how to represent and organize them such that the
algorithm is able to process them in the most efficient manner possible.

Referring once again to the problem of the queens, we noted that the repre-
sentation by way of number sequences requires only n items of information
in order to provide possible allocations for n queens in output, whereas the
representation by means of a chessboard requires n � n items of information.

The choice of how to represent the data is, in general, anything but simple,
and as the example of the eight queens has shown us, there is likely to be
more than one mode of representation available.

Thus the choice has to be made with due regard to the type of operations that
are going to need to be performed on the data. In our example the operations
are those involved in checking the position to which a queen is allocated so as
to ensure she is not attacked by any other queen already placed on the board.
Using the representation by way of a matrix, if we wanted to place the i th
queen on the square where the i th row and the j th column intersect we would
first have to check that no other queen was already placed on the i th row, on

(continued)

42 R. Petreschi

(continued)

the j th column, on the diagonal to the left, on the diagonal to the right, up to
a total of four checks before each and every hypothesis of placement.

Alternatively, how could we go about making these same checks using the
representation by means of sequences? Here we present the solution proposed
by Niklaus Wirth in his book Algorithms C Data Structures D Programs.
Before placing the i th queen on the j th column, Wirth analyzes four binary
variables which carry information about whether or not a queen is present
in the i th row, r , j th column, c, in the diagonal to the right, rd, or in the
diagonal to the left, ld. The variables can only assume two values, true or
false, representing, respectively, the presence or absence of a queen. The
4n variables are all initialized with the value false, or absence of a queen,
and then as each queen takes up her allotted place the relevant values switch
accordingly. For example, placing queen 1 on position 4 leads to r.1/, c.4/,
rd.5/ and ld.�3/ becoming true. The values 5 and �3 for rd and ld are two
constants, derived from the fact that for rd the sum of the indices of row and
column is always 5, while for ld the difference between these indices is always
�3, and that these values, therefore, can be considered as representative of
the two diagonals. In the case of a backtrack, the values corresponding to the
removal of a queen from her previous placement will be reswitched to false.
Thus it follows that adopting Wirth’s approach it is again sufficient to make
just four checks prior to each placement proposal. It is easy to see that this
type of check is also efficient when the representation is done using a matrix,
however in this case the disadvantage remains that of requiring a quadratic
number of items of information.

In general, the term data structure refers to the way of representing and
organizing the information an algorithm needs in order to generate a solution
to the given problem. The choice of an efficient data structure is in itself
a problem that can profoundly influence the planning and construction of
a good algorithm. Queues, piles, lists, priority queues, search trees, heaps,
tries, graphs, etc. are just a few of the many structures widely dealt with in
the literature. The reader interested in exploring the subject further will find
references in the bibliography at the end of this chapter.

2.3.2 The Greedy Technique

Let us now use as an example the simple act of giving a customer the correct
change that cashiers all over the world perform daily. Typically a cashier will first
choose, more or less automatically, the note or coin with the largest face value

2 How to Design an Algorithm 43

below the amount that needs to be given back, and then repeat this procedure until
the operation is completed. For example, when giving change of 33 euro-cents the
cashier will tend to start with a 20-cent piece, then a 10-cent piece, then a 2 and
finally a 1. In this particular case, our mode of operation has led us to give the
change using the lowest possible number of coins.

The algorithmic technique that we are now going to examine is known as the
greedy technique, because at each step the aim is to grab the largest amount possible
as a vital strategy towards achieving the final goal.

Let us analyze two further examples. Suppose the coinage we have is not euro-
cents, but simply values of 6; 5 and 1 units (u). If change of 15u has to be given,
keeping strictly to our greedy technique we would begin with a coin of 6u, followed
by another of 6u and finally, in sequence, three coins of 1u, for a total of five coins
overall. If we had been less greedy, the problem could have been solved with just
three 5u coins and, as in our previous example, above, the lowest possible number of
coins would have been used. Now let us suppose, instead, that the coinage available
consisted of values of 7; 4 and 2 units. Greediness would lead us to choose two
successive coins of 7u. But then we would have to come to a halt, because any
further coin would lead to the amount of change needing to be given being exceeded.
So, in the first of these two examples the optimal solution of giving the change using
the smallest number of coins possible was not achieved, while in the second, the
procedure had to come to a halt without having produced a solution.

The obvious objections the reader may raise at this point are, first, that no cashier
would be obliged to give change using the lowest possible number of coins, and,
second, that as soon as a cashier realized that it was not going to be possible to
arrive at the correct change, he/she would simply ask for the 7u back and then give
the customer one 4u and two 2us.

But what if the cashier were a machine? Every choice made would be irrevocable.
What the greedy technique requires, in fact, is:

1. At each and every step an irrevocable choice be made which meets the demands
of the problem (that is, to give an amount of change which does not exceed the
amount due to the customer);

2. To pay no heed to what will happen afterwards but to be optimum locally (that is,
to choose the coin with the largest face value among those that comply with
rule 1).

The foregoing examples have highlighted the fact that it is necessary to ask
oneself whether or not the choice of local optima will lead to a global optimum
for the problem as a whole, given that there are certain problems for which the
choice of local optima will lead invariably to an optimal global solution, and other
problems for which this is not the case.

In fact, the optimality of a solution depends on the mathematical properties of
the problem, or, to put it another way, it is necessary to be able to provide the
mathematical characterization of the optimal solution that is being sought.

Our illustration will now go on to show that every greedy choice reduces the
given problem to a problem that is of the same type, but of smaller dimensions. To

44 R. Petreschi

put it another way, we have to prove that an optimal overall solution of the problem
contains within it the optimal solutions of the subproblems of the same type. Finally,
it is necessary to demonstrate by induction (see box “Induction”) that the choices
can be iterated.

Induction

In his “Formulaire de mathematiques” (1898), Giuseppe Peano showed that
the theory of natural numbers follows from three primitive notions and five
axioms. Thus:

Given 0, a number and its successor, and accepting that the natural numbers
form a class, the following axioms are valid:

• 0 is a natural number;
• Every natural number n has a natural number successor (succ.n/);
• Let S be a class of natural numbers containing zero. If every successor

of every natural number in S still belongs to S , then S is the class of all
natural numbers;

• Successors of equal natural numbers are themselves equal natural num-
bers;

• No successor of a natural number can be 0.

Peano’s system enables the following principle to be formulated:

Principle of Mathematical Induction A statement is true, for every natural
number n, if the following conditions are satisfied:

Basic Case: The statement is true for n D n0, where n0 represents the
minimum of the indices that satisfy the statement (usually 0 or 1).
Inductive Step: The truth of the term for a generic natural number n D
k (inductive hypothesis) implies its truth also for the successive natural
number n D k C 1.

The term mathematical induction was coined by Augustus De Morgan in
1838, even if traces of the concept were evident prior to this date (to support
this claim we cite “Arithmeticorum libri duo” (1575) by the Italian Francesco
Maurolico as just one possible source). In the formulation of the Principle
of Induction that has just been given, the term statement was purposefully
generic because, by way of this principle, whenever we have an enumerable
infinity of cases of uniform type with respect to the identifying index, it is
possible both to formulate a definition and to provide a proof.

By way of illustration, we now give two definitions based on mathematical
induction.

(continued)

2 How to Design an Algorithm 45

(continued)

Definition 1. The sum a C b of two natural numbers a and b is defined as
follows: a C 1 D succ.a/; a C .b C 1/ D .a C b/ C 1 D succ.a C b/.

Peano added an explanatory note to this definition affirming that it must be
read as follows: if a and b are numbers, and if a C b is a number (that is, if it
has been defined), but a C .b C 1/ has not yet been defined, then a C .b C 1/

means the number that follows a C b.

Definition 2. F0 D 0; F1 D 1; Fn D Fn�1 C Fn�2 for every n � 2

Note that this definition uses a generalization of the principle of induction in
that it requires two basic cases, one for n D 0 and one for n D 1, and the
inductive step requires two inductive hypotheses, one regarding Fn�1 and one
regarding Fn�2. This generalization goes by the name of principle of complete
induction (the interested reader will find further references on this topic in the
bibliography).

Proof by Means of Mathematical Induction. In order to prove a theorem
T by mathematical induction (or, simply, by induction) it is necessary to
prove that a statement E of T satisfies the two conditions of the principle
of induction. As an example, let us attempt to prove that the sum of the first n

odd numbers is n squared (Fig. 2.15), or to put it in another way, let us prove
that: 1 C 3 C 5 C : : : C .2n � 1/ D n2.

The base case is trivially true.

The inductive step tells us that we must prove the truth of the assertion (a)
1 C 3 C 5 C : : : C .2.k C 1/ � 1/ D 1 C 3 C 5C. . . C (2k C 1) D .k C 1/2,
using the inductive hypothesis: (b) 1 C 3 C 5 C : : : C .2k � 1/ D k2.

Since .k C 1/2 D k2 C 2k C 1, the assertion (a) is obtained from the equality
(b) simply summing .2k C 1/ to both sides of the equality:

1 C 3 C 5 C : : : C .2k � 1/ C .2k C 1/ D k2 C .2k C 1/ D .k C 1/2:

Now let us show that in order to complete a proof by induction it is essential
to establish the truth of both the inductive hypothesis and the inductive
step. In other words, let us show how mathematical induction enables us to
avoid arriving at a result that is in error. Let us hypothesize that someone
(erroneously) wishes to prove that 1 C 3 C 5 C : : : C .2n � 1/ D n.

The base case for n D 1 is true. We have to prove that 1 C 3 C 5 C : : : C
.2k C 1/ D .k C 1/, assuming the truth of the inductive hypothesis (1 C 3 C
5 C : : : C .2k � 1/ D k).

(continued)

46 R. Petreschi

Fig. 2.15 The sum of the
first n odd numbers is n

squared

(continued)

Now, 1 C 3 C 5 C : : : C .2k C 1/ D .1 C 3 C 5 C : : : C .2k � 1// C
.2k C 1/ D k C .2k C 1/ D 3k C 1 ¤ k C 1. Therefore it is not true that
1 C 3 C 5 C : : : C .2k C 1/ D .k C 1/, given that the inductive step of the
proof has led us to a different result.

Similarly, if we wished to prove that 1 C 3 C 5 C : : : C .2k C 1/ D k C 1,
the base case of the proof by induction would immediately make us realize
the assertion was false, in as much as for n D 1 we would have 1 D 2.

As an example of the type of problem for which the greedy technique provides
optimal solutions, let us consider the generation of a minimum spanning tree.

Let G be a connected, non-orientated graph G D .V; E/; a tree T is called
a spanning tree for G if it has the same n nodes as V, but only n � 1 of the m

edges of E . To aid understanding of this concept we might say that a spanning
tree represents a possible “skeleton” for the graph. If G is a weighted graph with
positive weights on its edges (Fig. 2.16a), the spanning tree may be unweighted
(if its edges are not weighted) (Fig. 2.16b) or weighted if its edges maintains the
same weights they have in G. The cost of a weighted spanning tree is simply the
sum of the weights of the n � 1 edges belonging to it (Fig. 2.16c, d). It is easy to see
that for a given graph we may generate many spanning trees and that the cost of two
weighted spanning trees may be the same, even if the trees are different. Among all
the possible weighted spanning trees of a graph G, there will be some whose cost
is minimum in comparison to all the others: the problem we are going to analyze is
that of how to find one of these minimum-cost trees (Fig. 2.16d).

This typical graph theory problem was first confronted in 1926 by the
mathematician Otakar Boruvka, during a period when, as he himself declared,
“graph theory was decidedly dull”. Presented with the task of minimizing the costs
of constructing a grid to supply electricity to southern Moldavia, Boruvka decided

2 How to Design an Algorithm 47

a b c d

Fig. 2.16 (a) A connected, non-orientated graph GD(V, E) with positive weights on its edges;
(b) a possible non-weighed spanning tree of G; (c) a weighted spanning tree of G whose cost is 8;
(d) a minimum weighted spanning tree of G whose cost is 5

to tackle the problem using graphs: starting from the assumption that the junctions
of the grid could only be located in cities, the nodes of the graph represented those
cities to be connected to the electricity grid, while the weighted edges represented
the lengths of power lines with their respective associated costs. The solution he
came up with led to the definition of the minimum spanning tree, which stimulated
immediate interest among the mathematics community.

Subsequently, the refinements made to the technique and its application to a wide
range of problems within the field of computer science (computer design, network
security, automatic language recognition, image processing, etc.) have led to the
minimum spanning tree being attributed to the algorithms of Kruskal (1956) and
Prim (1957) rather than to Boruvka’s work (in spite of the fact that both Prim and
Kruskal cited Boruvka in their papers). In the following we present Prim’s greedy
solution, illustrating its functioning with a specific example.

The algorithm for generating a tree starting from a graph adds just a single node
and a single edge at each step. From the graph in Fig. 2.17a it can be seen that
at the outset of the procedure the tree, T , that we are going to construct has just
the node 1. The choice of the next new node to be added to the tree will be made
by analyzing the costs of all the edges that connect the node already in E to all
the other nodes remaining in the graph (nodes R in the figure). In our example,
at the first step, we have only edges .1; 2/ and .1; 3/. Therefore both edge .1; 2/

and node 2 will be added to the tree (Fig. 2.17b). Now edges .1; 3/, .2; 5/ and .2; 4/

have to be analyzed; the latter two each have a cost of 1, so it makes no difference
which of the two is chosen. In the example node 5 and edge .2; 5/ are added to the
tree (Fig. 2.17c). In order to pass from the situation depicted in Fig. 2.17c to that in
Fig. 2.17d it is necessary to choose the edge with the lowest cost from among the
following: .1; 3/ of cost 2; .2; 4/ of cost 1; .5; 4/ of cost 3; and .5; 3/ of cost 14.
The lowest cost is 1, therefore edge .2; 4/ and node 4 are chosen. In similar fashion
we pass from the situation in Fig. 2.17d to that in Fig. 2.17e by choosing edge .1; 3/

and node 3, and from that in Fig. 2.17e to that in Fig. 2.17f by choosing edge .4; 6/

and node 6.
We repeat that this algorithm, based on the greedy technique, yields an optimal

solution, and that the optimality of this solution is due to the mathematical properties
of the problem. The optimal solution that is being sought by the algorithm is a
spanning tree of graph G for which the sum of the weights of its edges is minimum.

48 R. Petreschi

cba

fed

1 1

1

3 12

2 14

4

6

2

1

3

5

T
R

A = {1} R = {2..6}

1 1

1

3 12

2 14

4

6

2

1

3

5

T
R

A = {1,2} R = {3..6}

1 1

1

3 12

2 14

4

6

2

1

3

5

T
R

A = {1,2,5} R = {3,4,6}

1 1

1

3 12

2 14

4

6

2

1

3

5

T R

A = {1,2,4,5} R = {3,6}

1 1

1

3 12

2 14

4

6

2

1

3

5

T R

A = {1..5} R = {6}

1 1

1

3 12

2 14

4

6

2

1

3

5

T

R
A = {1..6} R =O/

Fig. 2.17 Example of the operation of Prim’s algorithm

Each greedy choice generates a minimum spanning subtree from among all the
spanning subtrees covering the same portion of the graph. We now present the
scheme to prove by induction that the algorithm is correct.

Basic step: A tree, T , consisting of only one node and of no edge is obviously a
tree for which the sum of the weights of its edges is minimum;

Inductive hypothesis: Let T with k nodes and k � 1 edges be a tree for which the
sum of its weights is a minimum among all the possible weighted spanning trees
having the same k nodes;

Inductive step: The new tree T 0 obtained by adding to the tree of the inductive
hypothesis the edge .x; y/, which is of minimum cost among all the edges with x in
T and y in R, maintains the property of being of minimum cost among all the trees
covering the same k C 1 nodes.

Let us now round off this section by outlining a further application of the greedy
technique, one which enables an approximate solution to a problem to be obtained
when arriving at an optimum solution would require the analysis of too great a
quantity of information (see Sect. 2.4).

Suppose that a house burglar, in order to facilitate his exit, can only steal items
that he is able to stow away completely inside his “swag sack”. Obviously, his
primary aim on each break-in is to maximize the overall value of the items he is
going to steal. The ideal for him would be to analyze all the possible combinations
of items that could be stowed into the sack, and for each combination calculate the
overall value it amounts to. However, if our burglar were to do this it would not be
long before he ended up in jail!

In general terms this problem, known as the knapsack problem, consists of
having a set of n elements (items to be stolen) each of a predetermined weight

2 How to Design an Algorithm 49

and value, and a container of capacity C (the swag sack). Given that the sum of
the weights is limited by the capacity of the container, the aim is to maximize the
sum of the values.8 An exact solution can only be obtained by analyzing all the 2n

possible combinations of the given elements (using, for example, the backtracking
technique), discarding those combinations whose sum exceeds the capacity C and
choosing from among the remaining combinations the one which maximizes the
sum of the values. However, as we will now go on to explain in the next section, the
goodness of such an algorithm would not be acceptable. In spite of this, it is possible
to prove that a greedy algorithm that analyzes the n elements in descending order
of the ratio between value and weight guarantees a good approximate solution that
is only slightly worse than the optimum solution. This argument will be dealt with
more thoroughly in Chap. 5 (see Sect. 5.3).

2.4 How to Measure the Goodness of an Algorithm

So, what do we mean by the goodness of an algorithm? What do we mean when we
say that an algorithm behaves in an efficient manner? And what do we mean when
we declare that an algorithm is not acceptable?

All the examples we have seen so far have shown us that an algorithm arrives at
a solution to a problem step by step, performing at each step basic operations that
can be either comparative, or arithmetical, or logical. In fact, the measure of the
goodness of an algorithm is calculated according to the number of basic operations
it has to perform. We will now see how.

Let us start by analyzing a very simple problem: calculating the sum of the first
n integer numbers, when n is given a priori. The Sum1 algorithm in Fig. 2.18 solves
this problem correctly, following a method derived directly from the problem’s
definition: starting from 0 it builds to the result by summing first 1, then 2, then 3,
and so on until it has added n, too.

Accepting the hypothesis that a constant time c1 is necessary for summing any
two numbers (independently of their values), we see that the time for generating the
output will depend on how many numbers have to be summed (i.e., c1 � n). This
might appear self-evident, given that it is intuitive to think that the time taken to
perform a task is going to be the greater, the greater the number of operations that
have to be performed. Nevertheless, in the following we will show that this statement
is not always true. In fact, generally speaking, a number of different solutions to
a problem can be derived, depending on whether the design of the algorithm is
based on the simple definition of the problem, or on some intrinsic properties of the
problem itself.

8This is a typical allocation problem similar to the problems of how to load crates of different
weights into a container, how to cut plates of different shape from a sheet, how to store files of
different sizes on a disc, etc.

50 R. Petreschi

Input: an integer number n
Output: S = the sum oft he first n integer numbers

Algorithm Sum1
Step 1: Set S = 0;
Step 2: Repeat S = S + i for i = 1;:::;n;
Step 3: Provide S in output.

Fig. 2.18 Algorithm Sum1

Input: an integer number n
Output: S = the sum of the first n integer numbers

Algorithm Sum2
Step 1: S = n×(n+1)=2;
Step 2: Provide S in output.

Fig. 2.19 Algorithm Sum2

By way of illustration of this point an anecdotal story recounts that around 1780
a primary school teacher set his pupils the task of summing the first 100 integer
numbers, convinced this would keep them occupied for a few hours. Unluckily for
him, however, there was a pupil, named Carl Friedrich Gauss, in the class, who,
after just a few minutes, brought him the correct solution: 5050. Gauss had noticed
that the sum of the first and last numbers (1 and 100), the second and penultimate
numbers (2 and 99), and so on, remained constant at 101. Thus it was sufficient
simply to multiply the number 101 by 50 to obtain the correct result. The algorithm
Sum2 in Fig. 2.19 is based on the generalization of Gauss’s observation:

Whatever the value of n, in the sequence of the first n integer numbers the sum of the pair
of numbers that are symmetrical with respect to n=2 is always n C 1.

The Sum2 algorithm correctly calculates the sum of the first n integer numbers
by performing just three elementary operations (a product, a sum and a division),
irrespective of the number of elements to be summed. If we call the constant times
needed to calculate a product and a division, c2 and c3, respectively, the time
required for the entire algorithm to execute will be c1 C c2 C c3, and we say that
the time complexity of the algorithm is of constant order (because it is independent
of n). This contrasts with the time complexity of the Sum1 algorithm, which has
a linear order (because its time complexity grows in proportion to the value of n).
We can therefore say that Sum2 algorithm is more efficient than Sum1 in that it
requires a constant time irrespective of the size of the problem, rather than a time
that increases linearly with the increase in n.

Although the linear order often cannot be attained due to the time complexity of a
problem, we wish to emphasize that it is possible to prove the linear time complexity

2 How to Design an Algorithm 51

Fig. 2.20 Graphic of some important functions for calculating computational complexity

for the topological order and for the Prim algorithm. Figure 2.20 shows some of
the more important functions that appear in the computation of an algorithm’s time
complexity. Regardless of how much the reader may remember about functions from
high school studies, it should be immediately obvious to him/her that there are some
functions, like logarithm, that increase more slowly than others as n increases, just
as there are some functions that increase much, much faster (for example, f5 and f6

in Fig. 2.20).
For readers who may wish to enjoy playing with numbers, Table 2.1 gives the

values, as n increases, of the various functions depicted in the graphic in Fig. 2.20.
Here we just want to point out that executing an exponential number of operations,
such as 2100 for instance, using today’s most powerful computers would require
billions of years, while a length of time equal to the age of the universe would not
be sufficient to perform nŠ operations9 when n is quite large (just consider that 10Š

is already 3,628,800).

9The factorial of a number n is the product of all the whole numbers between 1 and n, inclusive.
That is, nŠ D n � .n � 1/ � .n � 2/ � .n � 3/ � : : : � 3 � 2 � 1.

52 R. Petreschi

Table 2.1 Increase in values of the functions shown in Fig. 2.20. Note that compact notation has
been adopted to avoid having to use an excessive number of figures to express the values, that is,
102 D 100, 103 D 1;000, 104 D 10;000 : : :

n f1 D log2 n f2 D n f3 D n log2 n f4 D n2 f5 D n3 f6 D 2n f7 D nŠ

10 3.32 10 33.22 102 103 1,024 3:62 � 106

102 6.64 102 664.39 104 106 1:26 � 1030 9:33 � 10157

103 9.97 103 9,965.78 106 109 1:07 � 10301

106 19.93 106 1:99 � 107 1012 1018

109 29.90 109 2:99 � 1010 1018 1027

Due to the foregoing considerations, problems requiring algorithms that make
use of an exponential (or factorial) number of operations, such as those employing
the backtrack technique, are termed intractable. This is because, however interesting
they may be from a theoretical point of view, in practice, unless they are quite
small in size, they can only be solved in an approximate manner. Therefore, it is
essential that in designing an algorithm it is not just the aim of resolving the problem
that is born in mind, but also, and perhaps most importantly, the efficiency of its
resolution. In order to be able to measure the efficiency of an algorithm, the theory
of computational complexity studies the classification of problems in terms of their
intrinsic difficulty and defines as tractable all those problems that are amenable
to resolution by at least one algorithm of polynomial time complexity. In Chap. 3,
these problems will be covered in more detail, while in Chap. 10 it will be shown
how introducing probabilistic concepts into algorithm design enables efficient, if not
exact, solutions to be found for very difficult problems.

2.5 The Design

In this chapter, although we have covered all the fundamental aspects involved in
designing an algorithm, we have not necessarily presented them in a sequence that
the reader has been able to follow readily. In this final section, therefore, we will
provide a step-by-step summary of the process, using the binary search procedure
by way of illustration.

Let us start by summarizing the basic characteristics of an algorithm that have
been presented under a variety of headings in the first two chapters of this book.
Following the teachings of Donald Knuth we can say that an algorithm, when given
a specific input, needs to generate an output by executing a series of successive steps
(a sequence of elementary operations) that have the following properties:

Finiteness: An algorithm must always terminate after the execution of a finite
number of steps. It is worth noting that sometimes, even if rarely, the non-
termination of an algorithm is acceptable, though in such cases we speak of
computational procedure rather than algorithm. An example of a computational
procedure is a computer operating system, designed to control the execution of

2 How to Design an Algorithm 53

other programs and to remain suspended in a state of readiness when no program
is being executed.

Effectiveness: Every algorithm must be effectively executable, that is, each
operation must be sufficiently basic as to be executed using “pen and paper”
in a finite amount of time. A typical example of lack of effectiveness would be
the division of a natural number by zero.

Definiteness: Each step of an algorithm must be defined in a clear, unambiguous
way, that is, it must give rise to the same sequence of operations and outcomes
regardless of by whom, and when, it is being executed. As an example of lack of
definiteness just think of the way culinary recipes are typically presented, with
frequent use of terms such as “according to taste or as much as is needed”, and
which, therefore, cannot be considered algorithms.

An algorithm can thus be expressed in any language, as long as this language
can guarantee definiteness. Programming languages, which are designed to ensure
that every statement has a unique meaning when it comes to be interpreted by
the computer, were introduced to avoid ambiguities that might arise from the
use of natural languages. An algorithm expressed by means of an appropriate
programming language is called a program. Once an algorithm’s design is complete,
its correctness needs to be tested, that is, it has to be proved that the algorithm
provides the correct output for every possible input. It needs emphasizing, however,
that this proof concerns the “philosophy of the algorithm” only, and thus it must
be independent of whichever programming language has been used to implement
the algorithm. The validation therefore concerns the algorithm, not the program.
Once the algorithm has been validated it can be transformed into a program. This
program must then, in its turn, also be certificated, that is, it has to be verified that
the program correctly expresses the algorithm it is intended to implement.

To illustrate what we have just summarized, let us consider the following
problem: given a sequence A of n elements, each distinct from the other, and a
known value x, check whether x is in the sequence A and provide as output a value
j which indicates the position of x in A, if x is in the sequence, or output 0 if it is
not. For example, given the sequence A D .2; 8; 1; 7; 5/ when x D 8, the output
will tell us that this value of x is present in the sequence and is located in the second
position .j D 2/. Instead, when x D 4, the output will be j D 0, indicating that the
element is not present in the sequence.

Let us now see how it is possible to solve the problem without having any further
information about the input: we have to compare the element x with the first element
of the sequence, then with the second, and so on until either x has been found, or all
of the elements in A have been analyzed. The method of sequential search presented
here is easy to validate, given that an exhaustive search on all the elements in the
sequence makes it possible to say that the element x has not been found. We can
therefore pass from the algorithm to the program, which is shown in Fig. 2.21.

A vector data structure has been chosen for the set A because this offers the
simplest way of accessing the elements of the sequence by indices. The repetition of
step 2 until either the searched-for element has been found, or one or more elements

54 R. Petreschi

Input: A: vector of n elements; x: a known element
Output: j if x = A(j) (1 ≤ j ≤ n); j = 0, otherwise

Algorithm Linear Search
Step 1: Set j = 1
Step 2: Repeat j = j + 1 until j > n or x = A(j)
Step 3: If j > n then set j = 0
Step 4: Provide j as output

Fig. 2.21 Linear search program

remain to be analyzed .j < n/, guarantees that the program has translated the
algorithm in a correct manner. Note also that the algorithm (and thus the program)
is based solely on elementary operations that are clearly defined and executable
in practice. And at this point we can say that the algorithm is finite, given that
its computational complexity is of order n, that is, the number of elements to be
compared increases as the size of the sequence increases: for these reasons this type
of algorithm is also known as a linear search algorithm.

In order to optimize the design of an algorithm it is essential to exploit to the full
all information concerning its input. To this end, let us see how the search algorithm
might be modified if we accept the hypothesis that the set of information in input
is sorted. Thus, instead of performing comparisons starting with the first element
and then proceeding by comparing x with all the elements of the sequence, the
fact that the input is sorted enables us to start by comparing x with the element
in the middle of the sequence, say A.middle/. Then, even if the result of this
comparison is shown that j is not the index of the middle element, this single
comparison enables us to halve the number of elements that need to be analyzed.
In fact, x < A.middle/ means that x, if it exists in the sequence, can only lie to the
left of A.middle/. Similarly, if x is greater than A.middle/, then, it can only lie to
the right of A.middle/. This reasoning is now applied to the half of the sequence
just identified and a new middle is computed. The algorithm then repeats this step
until the position of element x in the sequence is found, or until there are no more
elements to be compared. Figure 2.22 shows the complete example of the search for
the element 20 in the sequence A D .�2; �1; 3; 5; 7; 9; 15; 20; 22; 25; 33; 35/.

The algorithm in Fig. 2.22 is known as the binary search algorithm. It can be
validated through a a proof by contradiction, that is, by demonstrating that declaring
the algorithm does not function correctly calls into question the conditions imposed
by the formulation of the problem (see Fig. 2.23).

Figure 2.24 shows the transformation of the binary search algorithm into a
program (in terms of our simplified programming language).

The program is effectively concentrated in Step 2, which correctly transforms
the binary search algorithm because it continues to check the middle element of
the current subvector until either it finds the element in the sequence .j ¤ 0/,
or there are no more elements to check, that is, the end points of the sub-vector

2 How to Design an Algorithm 55

Step 1: A(1; : : : ;12) = (−2;−1;3;5;7;9;15;20;22;25;33;35) and x = 20 is compared against
the middle element, A(6) = 9.
20 is greater than 9, therefore in the next step x will be searched for to the right of 9.

Step 2: A(7; : : : ;12) = (15;20;22;25;33;35) and x = 20 is compared against the new middle
element A(9) = 22.
20 is less than 22, therefore in the next step x will be searched for to the left of 22.

Step 3: A(7;8) = (15;20) and x = 20 is compared against the new middle element A(7) = 15.
20 is greater than 15, therefore in the next step x will be searched for to the right of 15.

Step 4: A(8) = (20) and x = 20 is compared against the new middle element A(8) = 20.
The two numbers are equal, thus x lies in the eighth position in the sequence and the
output is j = 8.

Fig. 2.22 Binary search algorithm

Rejecting the correctness of the algorithm is equivalent to stating that:

1. x is greater than A(middle);
2. x is in the sequence;
3. x is to the left of A(middle).

Statements 1, 2 and 3 can only be simultaneously true if values that are equal exist in the
sequence or it is established that the values in the sequence are not sorted. In either of
these cases a part of the information provided as input is contradicted and is therefore in
absurdum.

Fig. 2.23 Validation of the binary search algorithm through proof by contradiction

under analysis switch places .lx > rx/. The detection of the subvector is performed
correctly because it is in agreement with the validation of the algorithm (Fig. 2.23).

All that now remains to complete this outline of the binary search algorithm is
to calculate its computational complexity. To do this, let us express the problem in
terms of trees. The elements of a sorted sequence can be represented on a binary
tree in a recursive manner bearing in mind that:

• The root of the tree contains the middle element of the sequence;
• The left subtree represents the subsequence to the left of the middle element;
• The right subtree represents the subsequence to the right of the middle element.

The sorted sequence of Fig. 2.22 is represented on the binary tree in Fig. 2.25.
Highlighted on the tree are those nodes of the sequence that the algorithm has
compared with the element x D 20. From analysis of this tree it can be seen
that each individual step of the binary search algorithm on the sorted sequence
corresponds to individual choices on a decision tree representing this sorted
sequence. The maximum number of comparisons executed by the algorithm is
therefore equal to the height of the tree (one for each node on the path from the
root to a leaf), plus 1 extra comparison in the case that element x has not been
found in the sequence, whereupon it is necessary to check that there are no further

56 R. Petreschi

Input: A : a vector of n distinct elements sorted in non-decreasing order; x: a known element
Output: j if x = A(j) (1 ≤ j ≤ n,); j = 0, otherwise

Algorithm Binary Search
Step 1: Set j = 0; lx = 1; rx = n
Step 2:

Repeat
middle = (lx + rx)=2
if x = A(middle) then j = middle otherwise

if x < A(middle) then rx = middle − 1 otherwise
lx = middle + 1

until lx ≤ rx and j = 0
Step 3: j is provided in output

Fig. 2.24 Binary search program

Fig. 2.25 Decision tree for the search for element 20 in the sequence AD (�2, �1, 3, 5, 7, 9, 15,
20, 22, 25, 33, 35)

elements to be compared. Since the height is equal to log2 n, it follows that the
maximum number of comparisons performed by the binary search algorithm on a
sorted sequence of n elements will be at most .log2 n C 1/, and we say that the
computational complexity of the algorithm is logarithmic.

The binary search algorithm is a typical example of an algorithm based on the
divide and conquer technique, which, following the well-known ancient Roman
battle strategy, first divides the instance of the given problem into subinstances
(usually two, and of equal dimensions if possible), and recursively solves each
instance separately. At the end of the process the solutions of the subinstances are
combined, if necessary, in order to generate a solution to the original problem. As we
showed in the case of the binary search, this approach, when applicable, leads to
efficient solutions, given that the division into subinstances of equal dimensions
usually enables the concept of logarithm to be introduced into the calculation of the
computational complexity.

2 How to Design an Algorithm 57

2.6 Bibliographic Notes

A wide range of introductions to algorithm design are to be found in the literature.
Knuth’s book [68] has been amply cited in the course of this chapter. For

indicative purposes only, and without wishing to imply it makes the list any way
exhaustive, we mention two further books that have become classics: Aho et al. [3],
concentrating on design aspects, and [62] focusing on data structures. Among the
more recent books, again purely by way of indication, we point out [67] and [71].
Finally, we would like to recommend Harel’s rather more popularized book [55],
which is now in its third edition and has been translated into many languages,
including Chinese.

The form of the eight queens problem presented in this chapter takes its
inspiration from the treatment of Wirth in [111]. An enjoyable account of the
developmental history of the solution to the problem of the minimum spanning tree
is to be found in [52], while we point readers interested in the matching problem
to [102].

For information on the life and works of Euler we indicate the website, The
Euler Archive, which also provides access to his original publications: www.math.
dartmouth.edu/~euler/.

Pólya, in his seminal book on inductive reasoning in mathematics [92], provides
a detailed description of mathematical induction, devoting an entire chapter to the
subject.

Finally, as regards codes, the reader is pointed to [107].

www.math.dartmouth.edu/~euler/
www.math.dartmouth.edu/~euler/

Chapter 3
The One Million Dollars Problem

Alessandro Panconesi

Dedicated to the memory of a gentle giant

Abstract In May 1997, Deep Blue, an IBM computer, defeated chess world
champion Garry Kimovich Kasparov. In the decisive Game 6 of the series,
Kasparov, one of the most talented chess players of all time, was crushed. According
to Wikipedia “after the loss Kasparov said that he sometimes saw deep intelligence
and creativity in the machine’s moves”. Can machines think? Scientists and
philosophers have been debating for centuries. The question acquired powerful
momentum in the beginning of the twentieth century, when the great mathematician
David Hilbert launched an ambitious research program whose aim was to prove
conclusively that his fellow mathematicians could be supplanted by what we now
call computers. He believed that mathematics, one of the most creative human
endeavours, could be done by them. In spite of the rather dramatic denouement
of Hilbert’s program, the question he posed is not yet settled. The ultimate answer
seems to be hidden in a seemingly silly algorithmic puzzle: a traveling salesman
is to visit N cities; can the cheapest tour, the one that minimizes the total distance
travelled, be computed efficiently?

Our story begins in Paris on March 24, 2000, when the Clay Foundation, during
a ceremony held at the Collège de France, announced an initiative intended to
“celebrate the mathematics of the new millennium.” The American foundation
instituted seven prizes of one million dollars each for the resolution of seven open
problems of mathematics, selected by a committee of distinguished mathematicians
for their special significance. Among these seven “Millennium Problems”, alongside

A. Panconesi (�)
Dipartimento di Informatica, Sapienza Università di Roma, via Salaria 113, 00198 Roma, Italy
e-mail: ale@di.uniroma1.it

G. Ausiello and R. Petreschi (eds.), The Power of Algorithms,
DOI 10.1007/978-3-642-39652-6__3, © Springer-Verlag Berlin Heidelberg 2013

59

mailto:ale@di.uniroma1.it

60 A. Panconesi

classics such as the Riemann Hypothesis and the Poincaré Conjecture, a newcomer
stood out, a computer science problem known as “P vs. NP”. Formulated just
40 years ago in the Soviet Union by Leonid Levin, a student of the great Andrei
Kolmogorov, and simultaneously and independently in the West by Stephen A. Cook
of the University of Toronto in Canada, and by Richard M. Karp of the University of
California at Berkeley, this algorithmic problem is considered to be of fundamental
importance not only for the development of mathematics and computer science
but also for its philosophical implications. Its resolution will tell us something
fundamental about the intrinsic limitations of computers, regardless of the state of
technology. At first blush, the problem does not appear forbidding or especially
noteworthy but, as they say, looks can be deceiving. One of the many ways in which
it can be formulated is the following, known as the Traveling Salesman Problem
(henceforth abbreviated as TSP): suppose that we have a map with N cities that must
be visited by means of the shortest possible route. That is, starting from any city,
we must visit each city once and only once, and return to the city we started from.
Such an itinerary is called a tour and the goal is to find the shortest possible one.

Computers seem ideally suited for such tasks. The resulting mathematical
challenge is to find an algorithm (or, in the final analysis, a computer program)
that is able, given any input map, to find the shortest tour. The crucial requirement
that our algorithm must satisfy is to be efficient. The one million dollars problem is
the following: does there exist such an algorithm?

Although it may seem surprising, no one has ever managed to find an efficient
algorithm for the TSP, and it is conjectured that none exists! Note that it is
completely trivial to develop an algorithm that finds the shortest tour. Already in
the first year of college computer science students are typically able to come up
with this algorithm:

Enumerate all possible tours among the N cities, measuring the length of each one of them,
and record the shortest one observed so far.

In other words, if we generate by computer all possible tours, measure the length
of each, and keep the shortest distance observed so far, we will eventually find the
shortest one. The catch, of course, is that this algorithm, as easily programmable
as it may be, is not efficient: its execution time is so high to make it completely
useless. To see this, note that if you have N cities the number of all possible tours
is given by:

.N � 1/ � .N � 2/ : : : � 4 � 3 � 2 � 1:

(Start from any city, then we have N � 1 choices for the second city, N � 2

for the third, and so on). This number is denoted as .N � 1/Š and, even for small
values of N , it is so large as to require a certain amount of thought in order to be
comprehended. For example, 52Š is equal to:

3 The One Million Dollars Problem 61

80,658,175,170,943,878,571,660,636,856,403,766,975,289,505,440,883,277,824,000,
000,000,0001

How big is this number? Expressed in billionths of a second it is at least
5,000 billion times greater than the age of the universe. In industrial applications it
is necessary to solve the traveling salesman problem for values of N in the order
of the thousands, and beyond (Fig. 3.1). Numbers like 5;000Š or 33;474Š would
require quite some time and ingenious mathematical notation to be grasped and
are immeasurably greater than a puny, so to speak, 52Š. It is therefore quite clear
that the algorithm described is of no help in solving realistic instances of the TSP.
Moreover, and this is a fundamental point, no technological improvement will ever
make this algorithm practical.

In summary, the difficulty with the TSP is not that of finding an algorithm that
computes the shortest tour, but to find an efficient one. Surprisingly, nobody has
been able to find such a method and not for lack of good-will. The problem is quite
relevant from the point of view of the applications, where it is encountered often
and in different guises. For decades, researchers have tried to come up with efficient
algorithms for it, but without success.

In conclusion, the algorithmic problem for which one million dollars are at stake
is this: find an efficient algorithm (i.e., a programmable procedure) for the TSP, or
prove that such an algorithm does not exist. This deceptive-looking problem is at the
heart of a series of far-reaching mathematical, technological and even philosophical
issues. To understand why we return to Paris, but going back in time.

3.1 Paris, August 8, 1900

Who of us would not be glad to lift the veil behind which the future lies hidden; to cast a
glance at the next advances of our science and at the secrets of its development during future
centuries? What particular goals will there be toward which the leading mathematical spirits
of coming generations will strive? What new methods and new facts in the wide and rich
field of mathematical thought will the new centuries disclose?

Thus began the famous keynote address that the great mathematician David Hilbert,
at age 40, gave at the International Congress of Mathematicians in 1900.2 With his
speech Hilbert who, along with Henri Poincaré, was considered the most influential
mathematician of the time, outlined an ambitious program to shape the future of
mathematics. The centerpiece of his proposal was his now famous list of 23 open
problems that he considered to be central to the development of the discipline.

1The calculation, by no means trivial, is taken from http://www.schuhmacher.at/weblog/52cards.
html
2Maby Winton Newson [85].

http://www.schuhmacher.at/weblog/52cards.html
http://www.schuhmacher.at/weblog/52cards.html

62 A. Panconesi

Fig. 3.1 A TSP input instance consisting of 15,112 German cities. The calculation of the shortest
tour (shown in the figure) kept two teams of researchers from Rice University and Princeton
University busy for several months and required considerable ingenuity and computing resources:
110 parallel processors, equivalent to 22.6 years of calculation on a single processor. In 2006,
another instance with 85,900 cities was solved, again with massive parallel resources. The
computation time, translated for a single processor, was 136 years. (See “Traveling salesman”
on Wikipedia). Note that this considerable deployment of resources was needed to solve just two
isolated instances of the problem – the methods developed have no general applicability

What makes this speech so memorable in the history of ideas is the fact that the
twentieth century has been a golden age for mathematics. With his 23 problems
Hilbert succeeded in the incredible undertaking of shaping its development to a
large extent for a 100 years. On the problems posed by Hilbert worked titans such
as Kurt Gödel, Andrei Kolmogorov and John (Janos) von Neumann, and more than
once the Fields Medal, the highest honor in mathematics, has been assigned for the
resolution of some of Hilbert’s problems. In fact, the event that we mentioned at the
beginning, the announcement of the seven Millennium Problems at the Collège de
France, was meant to celebrate and hopefully repeat the fortunate outcome of that
memorable speech, exactly 100 years later.

In modern terms, one of Hilbert’s main preoccupations, which was already
apparent in his work on the foundations of geometry “Grundlagen der Geometrie”
(Foundations of Geometry) and that became more explicit with the subsequent
formulation of his program for the foundations of mathematics, was the pursuit of
the following question: can computers do mathematics, and if so to what extent?

3 The One Million Dollars Problem 63

One of the underlying themes of Hilbert’s vision was an ambitious program of
“mechanization” or, in modern terms, computerization of the axiomatic method,
one of the pillars of modern science that we have inherited from Greek antiquity
and of which “The Elements” by Euclid, a book that remained a paragon of
mathematical virtue for many centuries, is probably the most influential example.
The axiomatic method, in no small measure thanks to the revitalizing work of
Hilbert, now permeates modern mathematics. According to it, mathematics must
proceed from simple assumptions, called axioms, by deriving logical consequences
of these through the mechanical application of rules of inference. To give an idea
of what it is about let us consider a toy axiomatic system whose “axioms” are the
numbers 3, 7 and 8 and whose “inference rules” are the arithmetic operations of
addition and subtraction. Starting from the axioms, we apply the inference rules
in every possible way to generate other numbers. For instance, we can derive
5 D 8 � 3, and 2 D 8 � .3 C 3/, etc. The new numbers thus obtained are the
“theorems” of this theory. The “theorems” obtained can be combined with each
other and with the axioms to generate other “theorems” and so on. In our example,
since 2 is a theorem and C is an inference rule, we can generate all even numbers.
Thus 4, 6, etc., are theorems whose corresponding proofs are 2 C 2, 2 C 4, and
so on. The axiomatic systems that are used in mathematics are obviously much
more expressive and complex and, in general, are meant to manipulate predicates –
logical formulas that can be true or false – rather than raw numbers. Predicates
are sentences that express the universe of mathematical statements, things like
“There are infinitely many prime numbers”, “The equation xn C yn D zn has
no integer solutions for n > 2”, and so on. But, by and large, the essence of
the axiomatic method is the one described: precise inference rules are applied to
predicates in a completely circumscribed and mechanical fashion, in the same way
as the four arithmetic operations handle numbers. The axiomatic method offers the
best possible guarantees in terms of the correctness of the deductions. If the starting
axioms are propositions known to be true, and they do not contradict each other,
by applying the rules of inference (which are nothing other than simple rules of
logical deduction) we can only generate other true statements. For the Greeks the
axioms were self-evidently true by virtue of their sheer simplicity. (In contrast, the
modern point of view requires only that they do not contradict each other.) For
instance, one of the axioms of Euclidean geometry is the following, arguably self-
evident, statement: “If we take two points in the plane, there is a unique straight
line that goes through them”.3 The mechanical aspect of the axiomatic approach
is clear: given that the application of an inference rule is akin to performing an
arithmetical operation, and since a mathematical proof is nothing other than the
repeated application of such elementary and mechanical operations, that from a set
of premises lead to a conclusion, a computer should be able to reproduce such a
process. And indeed, a computer is certainly able to mimic it. For instance, given

3Of course, as we now know with hindsight 2,000 years later, assuming that axioms are self-evident
truths is a slippery slope, exemplified by the development of non-Euclidean geometry.

64 A. Panconesi

an alleged proof of a mathematical statement such as “There exist infinitely many
prime numbers” a computer can rather easily determine if the given proof is correct
or not. But beware! This by itself does not mean that computers can supplant
mathematicians. The aspects of the matter are quite complex, but for our purposes it
is sufficient to focus on a fundamental dichotomy, the difference between inventing
and verifying. To check the correctness of a given mathematical proof – i.e. its
verification – is a mental activity fundamentally quite different from the act of
finding it. The latter is a creative act while the former is not.

To create a mathematical proof is a convoluted and complex psychological
process in which logic does not play a primary role at all, necessarily supplanted
by mysterious visions that suddenly emerge from the subconscious. In contrast, to
verify a demonstration (i.e. to convince oneself of its correctness) is a task that
can be intellectually very demanding but that does not require creativity. In order
to verify a proof one must check that the conclusions follow, now logically, from the
premises through the correct application of rules of inference. This is an essentially
mechanical process, somewhat similar to performing a long series of complicated
arithmetical operations. It is in this second phase, during which the correctness
of the visions and insights of the creative process of mathematical discovery are
put under rigorous scrutiny, that the task of logic, very limited in the discovery
phase, becomes predominant. In the words of Alain Connes, the great French
mathematician, winner of the Fields Medal,

Discovery in mathematics takes place in two phases. [. . .] In the first, the intuition is not yet
translated into terms that you can communicate in a rational manner: here is the vision, [. . .]
a kind of poetic inspiration, which is almost impossible to put into words. [. . .] The second
phase, that of demonstration, is an act of verification: it requires high concentration and a
kind of extreme rationalism. But luckily there is still a vision, which activates the intuition
of the first phase, does not obey certainty and is more akin to a burst of poetic nature.4

By transcribing the complex creative process that leads to the discovery of mathe-
matical truths in a succession of elementary and verifiable steps, the mathematician
submits voluntarily to the most exacting verification discipline: the tortuous path
that leads to the inescapable conclusion is laid out carefully and thoroughly in a
long sequence of logical, and hence unimaginative and ultimately mechanical, steps.
In such a way not only a machine, but even a person who is completely devoid of
mathematical talent can be convinced!

Unfortunately, the teaching of mathematics, even at university level, is almost
exclusively confined to the hard discipline of verification. This hides its creative
dimension and it is not surprising that mathematics suffers from the undeserved
reputation of being a dry discipline. That one of the most imaginative human
activities must suffer from such an injustice is a tragedy comparable to the
destruction of the great masterpieces of art.

4Alain Connes [19].

3 The One Million Dollars Problem 65

3.2 “Calculemus!”

Let us go back to Hilbert and his influential school, who believed that it was
possible to push the level of formalization of the axiomatic method to a point
where it becomes entirely mechanical. It may seem surprising now, but Hilbert
and his followers, including geniuses like von Neumann, not only believed that the
verification process but also the discovery of mathematical truths could be made
by a computer! As we discussed, to find a mathematical proof and to verify it
are two completely different psychological processes. How could Hilbert think that
even the former, a quintessentially creative act, could be carried out by a machine?
In Science, often the power of an idea stems not so much from the fact that it
ultimately turns out to be correct, but rather from its vision, its power to summon
“the leading [minds] of coming generations” who, in their quest for truth, will
produce revolutionary new knowledge, and a leap forward in the understanding of
the world. Hilbert’s Program for the “computerization” of mathematics is a case
in point. Its great merit was to frame a set of bold, profound questions of great
mathematical, and even philosophical, import in such a way that they could be
fruitfully tackled in precise and concrete mathematical terms. Hilbert’s promethean
conjectures gave impetus to a steady flow of sensational results on the foundations
of mathematics that culminated, in 1931, with the Incompleteness Theorem of Kurt
Gödel, one of those achievements that, like the great masterpieces of art and music,
will forever continue to inspire humankind to accomplish great and noble deeds:
“Kurt Gödel’s achievement in modern logic is singular and monumental – indeed
it is more than a monument, it is a landmark which will remain visible from afar, in
space and time.” (John von Neumann).

One of the ways in which Hilbert’s program concretely took shape is the so-called
“problem of decidability”. Leaving aside several important technical issues, in a
nutshell Hilbert believed that one could design an algorithm (or, equivalently, write
a computer program) which, on receiving as input a mathematical statement such
as “There are infinitely many prime numbers” or “There exist planar graphs that
are not 4-colorable”, would correctly output the correct answer – in our examples,
respectively, “Yes, this sentence is true” and “No, this statement is false”. The
question of whether such an algorithm exists is called the “Entscheidungsproblem”,
the Problem of Decision. In fact, Hilbert did not consider it quite as an open problem
but almost as a foregone conclusion. Hilbert believed that computers could not
only verify the correctness of mathematical proofs, but find them! This is a less
ambitious version, restricted to mathematics “only” of the dream cherished by the
mathematician, philosopher, naturalist, diplomat and. . . computer scientist Gottfried
Wilhelm Leibniz who thought that it was possible to settle differences of opinion
through logic, by means of a computer:

The only way to rectify our reasonings is to make them as tangible as those of the
Mathematicians, so that we can find our error at a glance, and when there are disputes

66 A. Panconesi

among persons, we can simply say: Let us calculate [calculemus], without further ado, to
see who is right.5

In order to address the Entscheidungsproblem it was first of all necessary to
understand what an algorithm is. In the early decades of the twentieth century,
several people, including Emil Post, Alonzo Church, and Kurt Gödel captured
the intuitive notion of algorithm with precise mathematical definitions. But it was
Alan Turing, perhaps the first genuine computer scientist, who proposed the most
satisfactory characterization. Turing devised an abstract machine, now known as
the Turing Machine that, to all intents and purposes, from the conceptual point of
view is a full-fledged, modern digital computer capable of executing any computer
program.6 In modern terms, for Turing an algorithm was nothing other than a
computer program written in a programming language like C, Java or Python.
In other words, an algorithm is any process of calculation that is programmable on a
modern computer. This was a rather exceptional contribution for the simple reason
that at the time computers did not exist. To develop his theory Turing invented
an abstract digital computer along with a primitive but powerful programming
language, a sort of assembly language with which one can express, or more precisely
program, any computation. The beauty and power of the approach were such that it
allowed Turing to demonstrate by means of an uncannily simple argument that the
Entscheidungsproblem has a flatly negative answer: there is no algorithm that can
determine whether mathematical statements given in input are true or false.7 Now,
someone might breathe a sigh of relief – human creativity is saved! But not quite:
as we shall see, the computer is a tough nut to crack.

Although ultimately the research program advocated by Hilbert proved to be
fundamentally flawed, to the point that, essentially, the truth turned out to be the
exact opposite of what he believed, the amazing discoveries made in its wake
opened grand (and in some sense humbling) new vistas and jump-started whole
new disciplines. In particular, although the advent of the digital computer cannot
be attributed solely to the research related to Hilbert’s program, there is no doubt
that it played a key role. The ENIAC, perhaps the most successful early electronic
computer,8 was developed at Princeton in the context of a project supervised by

5Cited by Wikipedia’s article on Leibniz: http://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
6Turing invented two abstract devices, the Turing machine, which corresponds to a computer
running a specific program, and the universal Turing machine, corresponding to a general purpose
computer able to execute any program. See Chap. 1.
7The same conclusion was reached independently by Alonzo Church at Princeton about a year
earlier thanks to the invention of the �-calculus, that in essence is a functional programming
language of which LISP is perhaps the best-known example.
8The first electronic computer is due to Konrad Zuse, who set one up in Berlin in 1941. In a
remarkable instance of scientific short-sightedness his invention was considered by the German
authorities to be “strategically irrelevant” and not developed. The indomitable Zuse immediately
after the war founded a company, the second ever to market the computer, trying to plant a fertile
seed in the arid soil of post-war Europe. Meanwhile, overseas the first computers were triggering
the computer revolution.

http://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz

3 The One Million Dollars Problem 67

John von Neumann who, besides being an early believer of Hilbert’s program, knew
well all developments arising from it, including those due to Alan Turing. The two
became acquainted in Princeton where Turing spent some time as a post-doctoral
researcher. Moreover, the difference between a Turing Machine and a modern
computer is “only” technological, and indeed immediately after the end of the war
Turing was able to develop in Britain a modern electronic computer called ACE.

3.3 Finding Is Hard: Checking Is Easy

The dichotomy concerning mathematical proofs that we introduced, the mechanical
nature of the verification process versus the complex creativity of mathematical
discovery, is at the core of the one million dollars problem. To understand why, let
us consider the following algorithmic problem known as Satisfiability (henceforth
SAT). We shall adopt the convention normally used in college textbooks, where an
algorithmic problem is described by specifying the input data and the type of result
you want in output:

Satisfiability (SAT)
Input: a Boolean formula F.x1; x2; : : : ; xN / with N variables x1, x2, : : :, xN ,
each of which may assume either the value true or the value false.
Question: is the formula F satisfiable, i.e., is there a truth assignment to the
variables that makes F true?

SAT is the propositional-logic counterpart of the familiar algebraic problem of
finding the zeroes of a polynomial. Given a polynomial like x2 � 2xy C y2 D 0

or x2 C 3y.1 � z/ C z3 � 8 D 0 one seeks values for the variables x, y, and z
that verify the expressions. With SAT, logical connectives (and, or, implies, etc.) are
used instead of arithmetic operations and the variables can assume the values true or
false instead of numerical values. An assignment is sought that makes the formula
true (see box “Satisfiability of Boolean expressions”).

Satisfiability of Boolean expressions

This computational problem concerns so-called Boolean expressions, an
example of which is the following:

..x1 _ x3 ! :x2/ ! .x2 ! x5 ^ x4// ^ :.x1 _ .:x5 ^ x3//:

(continued)

68 A. Panconesi

(continued)

The variables x1, x2, x3, x4, x5 may assume either the value T (true) or F

(false). The symbols !, :, ^, _ are logical (also called Boolean) connectives
whose semantics is defined in the following truth tables. These are just a
few of all logical connectives. The negation inverts the truth value of the
expression it operates on (an expression can be a single variable or a Boolean
formula, e.g. .:x5 ^ x3/, .x2 ! x5 ^ x4/, etc.):

E :E

T F

F T

The implication forbids us to derive falsehoods from truth (A and B denote
Boolean expressions):

A B A ! B

T T T

T F F

F T T

F F T

And finally the disjunction (or) is true when at least one of the operands is
true, while the conjunction (and) is true only when both operands are true:

A B A _ B

T T T

T F T

F T T

F F F

A B A ^ B

T T T

T F F

F T F

F F F

The above expression is satisfiable with the truth assignment x1 D x2 D x3 D
F and x4 D x5 D T . An example of unsatisfiable formula is the following:

.x1 _ x2/ ^ .:x1 _ x2/ ^ .x1 _ :x2/ ^ .:x1 _ :x2/

(the reader should verify this).

The natural algorithmic problem associated with SAT is the following: find an
efficient algorithm such that, given a logical formula as input, it determines whether
the formula is satisfiable or not.

SAT is an important computational problem for several reasons. From a practical
standpoint, many application problems can be expressed in a natural way as a
satisfiability problem. Making sure that the complex software systems that control

3 The One Million Dollars Problem 69

an Airbus or the railroad switches of a busy railway station do not contain dangerous
programming bugs boils down to a satisfiability problem. More generally, model
checking, the discipline whose aim is to ascertain whether a specific software
system is free from design errors, is, to a large extent, the quest for algorithms as
efficient as possible for SAT. An efficient algorithm for SAT therefore would have a
significant industrial impact. The state of the art with respect to the algorithmics of
SAT is rather fragmented. There are computer programs, so-called SAT-solvers, that
work quite well for special classes of formulas. But apart from such very restricted
situations, all known algorithms run in exponential time and hence perform very
poorly in general.

SAT encapsulates well the dichotomy between finding and checking. Given a
truth assignment, it is child’s play for a computer to determine whether it satisfies
the formula. In order to check whether a polynomial is zero, one just replaces
the numerical values specified for the variables and performs simple algebraic
operations. Similarly, with a Boolean formula one just replaces the truth values
specified for the variables and performs a series of logical operations to verify if the
formula is satisfied. Computers can do this very efficiently, in time proportional to
the length of the formula. The verification of a given truth assignment, therefore, is a
computationally easy task. An entirely different matter is to find a truth assignment
satisfying the given input formula, if it exists. Note that, similarly to what we
saw for TSP, in principle such a finding algorithm exists. Since each variable can
take only the two values true or false, a formula with N variables has 2N possible
assignments. It is easy to write down a computer program that generates all these
assignments and checks them one by one. If one of them satisfies the formula we
have found a satisfying assignment, otherwise, if none does, we can conclude that it
is unsatisfiable. But here too the same caveat that we discussed for TSP applies: 2N

is too huge a number, even for small values of N (see box “Exponential growth is
out of reach for technology”). The enumerative method proposed is thus completely
useless, and it will remain so forever since no improvement in computer technology
can withstand exponential growth. To appreciate how fast the function 2N grows the
reader can try to solve the following fun exercise: if you fold a sheet of paper 50
times, thereby obtaining a “stack of paper” 250 times thicker than the original sheet,
how high would it be? The answer is really surprising!

Exponential Growth Is out of Reach for Technology

Imagine we have designed three different algorithms for a computational
problem whose complexities (running times) grow like N , N 2 and 2N , where
N is the input size in bits. The next table compares their running times when
the algorithms are run on a processor capable of performing 200 million
operations per second, somewhat beyond the current state of the art. The
acronym AoU stands for “Age of the Universe”:

(continued)

70 A. Panconesi

(continued)

N D 10 N D 100 N D 1; 000

N 0.056 ns 0.56 ns 0.0056 �s

N 2 0.056 ns 0.056 �s 0.0056 ms

2N 0.057 �s > 16 AoU > 1:39 10272 AoU

It is instructive to see what happens to these running times when the
technology improves. Even with computers one billion times faster – quite
a significant leap in technology! – the exponential algorithm would still take
more than 10261 times the age of the universe for N D 1; 000. Keep in
mind that in realistic applications N is of the order of millions if not more.
Technology will never be able to match exponential growth.

Thus satisfiability embodies the following dichotomy: while it is computationally
easy to check if a given truth assignment satisfies the input formula, no one knows
whether it is possible to efficiently find such an assignment. The dichotomy is
reminiscent of a familiar situation for students of mathematics and mathematicians.
To check whether a given proof is correct (e.g., to study the proof of a theorem)
is a task that may be quite demanding, but that is relatively easy if compared
with the conceptual effort needed to find, to create, a mathematical proof. This
similarity with the computational tasks of finding and verifying may seem shallow
and metaphorical but, in fact, it is surprisingly apt. As we shall see, the problem
of devising an efficient algorithm for satisfiability is equivalent to that of finding
a general procedure capable of determining whether any given mathematical
statement admits a proof that is understandable by the human mind!

Another surprising fact is that SAT and TSP from a computational point of view
are equivalent, different abstractions that capture the same phenomenon. There is a
theorem, whose proof is beyond the scope of this book, which shows that if there
were an efficient algorithm for SAT, then there would exist one for TSP too, and
vice versa. Therefore, an equivalent formulation of the one million dollars problem
is: find an efficient algorithm for SAT or prove that such an algorithm does not exist.

3.4 The Class NP

The dichotomy “checking is easy” vs. “finding is difficult” is shared by a large class
of computational problems besides SAT. Let us see another computational problem
that exhibits it:

3 The One Million Dollars Problem 71

Partitioning
Input: a sequence of N numbers a1, a2, : : :, aN

Question: can the sequence be partitioned, i.e. divided into two groups in
such a way that the sum of the values in one group is equal to the sum of the
values in the other group?

For example, the sequence 1, 2, 3, 4, 5, 6 is not partitionable (because the total
sum of the numbers in the whole sequence is 21, which is not divisible by 2), while
the sequence 2, 4, 5, 7, 8 can be partitioned into the two groups 2, 4, 7 and 5, 8.
Indeed, 2 C 4 C 7 D 5 C 8. PARTITIONING is a basic version of a fun problem
in logistics called KNAPSACK: we are given a knapsack (which can be thought of
as an abstraction for a truck, a ship or an aircraft) of maximum capacity C , and
a set of N objects, each of which has a weight and a value. The goal is to select
a subset of objects to carry in the knapsack in such a way that their total value
is maximum, subject to the constraint that their total weight does not exceed the
knapsack’s capacity.

If we look for an efficient algorithm for PARTITIONING we soon realize that
a brute force approach is out of the question. Here too the space of all possible
partitionings, given an input sequence of N values, has 2N candidates (because
every element has two choices, whether to stay in the first or in the second
group) and therefore the trivial enumerative procedure is useless. The verification
procedure, however, once again is rather straightforward and computationally
inexpensive: given a partitioning of the input sequence, just compute two sums and
check if they are the same.

The class NP contains all computational problems that are verifiable efficiently,
like SAT and PARTITIONING. This is a very important class because it contains a
myriad of computational problems of great practical interest. Indeed, NP problems
are encountered in all fields where computers are used: biology, economics, all
areas of engineering, statistics, chemistry, physics, mathematics, the social sciences,
medicine and so on and so forth. One of the reasons why NP is so rich with
problems of practical importance is due to the fact that it captures a huge variety
of optimization problems. We already saw an example of an optimization problem,
TSP: given the input (a map with N cities) we are seeking the optimal solution
(the shortest tour) among a myriad of candidates implicitly defined by the input
(all possible tours). Thus, in optimization we are seeking an optimal value inside a
typically huge space of candidates. In contrast, NP is a class of decision problems,
computational problems whose answer is either yes or no. There is however a
standard way to transform an optimization problem into a decision problem. As an
example, consider the following budgeted variant of TSP:

72 A. Panconesi

Budgeted TSP
Input: a map with N cities and a budget B (expressed, say, in kilometers)
Question: Is there a tour whose length is no greater than B?

The problem asks if there is a way of visiting all the cities within the budget
available to us, while in the original TSP we were looking for the tour of minimum
length. Notice that now the answer is either yes or no. This budget trick is
rather standard. With it we can turn any optimization problem into a decision
problem. From a computational point of view, an optimization problem and its
decision version are equivalent: if there exists an efficient algorithm to solve
the optimization problem then there exists an efficient algorithm to solve the
corresponding decision problem, and vice versa. In the case of TSP, for instance,
if we solve the optimization problem by computing the shortest tour, then we can
immediately answer the question “Is there is a tour of length not exceeding the
budget?” thereby solving the decision problem. The converse is also true: If we can
answer the question “Is there is a tour of length not exceeding the budget?” then we
can efficiently determine the shortest tour (the slightly involved proof is beyond the
scope of this book).

In order to appreciate the huge variety of contexts in which optimization
problems arise it can be instructive to see one of the many examples taken from
biology. DNA is a sequence of genes each of which is a set of instructions, a recipe,
with which the cell can synthesize a specific protein. It is known that many species
share the same gene pool, but the genes are positioned differently along the genome,
i.e., genomes are anagrams of each other. For example a bonobo may have the
following genome (letters represent genes):

PRIMATE:

While chimpanzees and humans might otherwise have, respectively, the genomes
RPTIMEA and MIRPATE. Biologists postulate different mutation mechanisms that
are responsible for the shuffling of genes during the course of evolution. One of these
is the so-called “reversal”. A reversal is due to a transcription error that literally
inverts a segment of the genome, as in this example (the reversed part appears in
bold):

PRIMATE ! PRTAMIE

Biologists believe that reversals are rare events, taking place at intervals of
millions of years. In our example the distance between bonobos and humans is
only one reversal, PRIMATE ! MIRPATE, while both species turn out to be
farther away from chimpanzees (the reader can try to determine the minimum
number of reversals between the three different species). Biologists assume that

3 The One Million Dollars Problem 73

Fig. 3.2 From left to right: a young chimpanzee who already shows signs of aggressiveness, two
bonobos in a normal loving attitude, and a lovely child

the minimum number of reversals to transform a genome into another is a good
estimate of the evolutionary distance between the two species. Therefore, at least
in this example, the lustful bonobo would be our closer relative than the irascible
chimpanzee (Fig. 3.2). Thus, given two genomes, it is of interest to determine the
minimum number of reversals between them. The corresponding decision version
of this optimization problem is the following9:

Sorting by Reversals
Input: Two genomes G1 and G2 with the same set of genes, and a budget T .
Question: Is it possible to transform G1 into G2 with no more than T

reversals?

The reader should try to convince him-/herself that this computational problem is
in NP and that it is computationally equivalent to its optimization version (i.e., given
two genomes find the minimum number of reversals that transforms one into the
other).

In summary, the class NP captures a very large class of optimization problems of
great practical importance. NP also contains other non-optimization problems that
are of enormous industrial interest, such as the automatic verification of software
and of robotic systems. But there is more. NP is also interesting from the point of
view of the foundations of mathematics, a topic to which we now turn.

9The algorithmic structure of this important combinatorial problem was investigated by my late
friend Alberto Caprara, who died tragically in a mountain accident. Alberto was able to establish
that the problem is NP-complete (see next paragraph), thus settling an important open problem in
the field of computational biology. The proof was quite a tour de force, and conveyed a sense of
serene strength, quite like Alberto. This chapter is dedicated to him.

74 A. Panconesi

3.5 Universality

A beautiful and fundamental theorem concerning the class NP was established
simultaneously and independently by Leonid Levin and Stephen A. Cook in the
early 1970s. The theorem states that the class NP contains universal problems.
A computational problem X in NP is universal (but the correct terminology is
NP-complete) if it has the following property: if there is an efficient algorithm A
for X, then, taken any other problem Y in NP (by means of a general procedure)
we can transform algorithm A into an efficient algorithm B for Y. An immediate
consequence of universality is: if we find an efficient algorithm for a universal
problem then we can also find an efficient algorithm for every other problem in NP.

For example, satisfiability is universal: if one day you could find an efficient
algorithm to decide whether a given Boolean formula is satisfiable, then it would
be possible to efficiently solve any problem in NP. This result is known as Cook’s
Theorem (Levin had demonstrated the universality of a different problem, known
as tessellation). Despite being a very strong property, universality appears to be
the norm rather than the exception. Universal problems are plenty and we have
encountered some of them already: satisfiability, partitioning, sorting by reversals
and the budgeted versions of TSP. Other examples of universal problems are the
decision versions of natural optimization problems like finding the longest path in
a network, determining the smallest set of lecture halls to host university classes,
packing a set of items with the smallest number of bins, and thousands more. For
none of them it is known whether an efficient algorithm exists.

The concept of universality is very useful because it allows us to greatly simplify
a complex picture without loss of generality. The class NP contains a bewildering
variety of computational problems, how can we tell if there are efficient algorithms
for all of them? Universality allows us to focus on just one problem, provided that
it is universal. If we could find an efficient algorithm for a universal problem like
TSP or satisfiability then we could efficiently solve any problem in NP. Conversely,
if we could show that an efficient algorithm for TSP or satisfiability does not exist,
then no universal problem may admit an efficient algorithm. In this way, the study
of the “computational complexity”, as it is called, of a myriad of problems can be
reduced to the study of a single mathematical object.

3.6 The Class P

So far we have freely used the term “efficient algorithm”, but what exactly do
we mean by that?10 The standard definition given in textbooks is the following:
an algorithm is efficient if its computation time grows polynomially with the size of

10We revisit here concepts discussed in Chap. 2.

3 The One Million Dollars Problem 75

the input. It is intuitive that the larger the input the longer the calculation takes. For
example, a multiplication algorithm will need more and more time to perform the
product as the numbers to multiply become larger and larger. One of the missions
of the theory of algorithms is to determine as precisely as possible the running
time of algorithms, in a technology-independent manner (something that can be
achieved thanks to appropriate mathematical models such as the Turing machine).
If N is the number of bits needed to represent the input, the running time of the
algorithm is “polynomial” if its computation time grows at most as a polynomial.
For example, N , N 2, N log N , N 3=2 are polynomial computation times (log N too
is fine since it grows much slower than N). In contrast, we saw that the enumerative
algorithms for SAT and TSP require exponential time, at least 2N and .N �1/Š steps
respectively, and we know that this kind of “complexity” is prohibitive, regardless
of the technology.

NP is the class of problems whose solutions can be verified to be correct in
polynomial time, while P is the class of problems for which the solution can be not
only verified, but found in polynomial time. Various chapters of this book discuss
important problems that are in P, such as the calculation of shortest paths in a
network, the retrieval of information from the Web, and several fascinating examples
taken from cryptology and computational biology. Other important computational
tasks that are in P are the multiplication of matrices, solving systems of linear
equations, determining whether a number is prime, the familiar “find” operation
to look for the occurrence of a word inside a text, and the very general problem of
linear programming (which asks us to optimize a linear function subject to linear
constraints). The class P captures the set of all problems that are computationally
tractable. We thus come to the most general formulation of the one million dollars
problem:

P
‹D NP

If P D NP then every problem in NP can be solved efficiently, i.e., in polynomial
time. In contrast, if P ¤ NP, as it is widely conjectured, then no universal problem
can be in P. (Why? The reader should try to answer.) If this is indeed the case we
will have to accept our lot: we live in a world where computational intractability
is the rule rather than the exception because, as we have discussed, NP contains a
myriad of natural occurring computational problems that are universal (Fig. 3.3).

The theory of algorithms has thus developed two main approaches to ascertain
the so-called “algorithmic complexity” of a problem. Given a computational
problem, we can either exhibit a polynomial-time algorithm for it, or show that
it is universal for NP (i.e., NP-complete). In the latter case we do not know for
sure that the problem does not admit efficient algorithms, but we do know that
finding one is a very difficult mathematical challenge, worth at least one million
dollars! Let us stress once again that this theory is independent of technology:
the watershed between exponential and polynomial complexity is such that no
technological improvement will ever make exponential-time algorithms practical.

76 A. Panconesi

Fig. 3.3 The world as seen
from NP. If P D NP then the
three classes coincide, but if P
¤ NP then the rich class of
Universal (NP-complete)
problems is disjoint from P

After having discussed the practical implications of the one million dollars
problem, let us look at the other side of this precious coin, the link with the
foundations of mathematics.

3.7 A Surprising Letter

As recalled, the theory of NP-completeness was developed in the early 1970s
independently in the Soviet Union and in the West. An exceptional discovery made
in the basement of the Institute for Advanced Study at Princeton in the late 1980s
sheds new light on the history of the P vs. NP problem: it had been prefigured by
no less than Kurt Gödel. In a letter that he wrote to John von Neumann, dated 20
March 1956, he states the P vs. NP problem quite ahead of its time. Although we
do not know for sure, it is unlikely that von Neumann read the letter, or at least that
he gave it much thought. At the time, unfortunately, he was lying in a hospital bed
fighting the disease that would soon lead him to his death. In the letter, with a few
quick, clean strokes Gödel goes back to Hilbert’s Entscheidungsproblem arguing
that, in a sense, his approach was simplistic. Suppose, Gödel says, that we find the
proof of an interesting mathematical statement, but this proof is enormously long,
say, it consists of 21;000 symbols. This number, even when expressed in picoseconds,
is well beyond the age of the universe. It is clear that such a proof would be of very
little use: its length must be compatible with human life! The interesting question to
ask therefore, is not so much whether a particular mathematical statement admits
a proof but if a proof exists that can be grasped by mere mortals. To capture
this more realistic situation in mathematical terms, consider the following decision
problem, a sort of Entscheidungsproblem restricted to mathematical proofs that can
be grasped by human beings11:

11We are sweeping a few technical issues under the carpet for the sake of simplicity. For a rigorous
treatment see [13].

3 The One Million Dollars Problem 77

Existence of a Readable Proof (ERP)
Input: a mathematical statement E and a number N.
Question: is there a proof of E of length at most N?

The question asked by Gödel in his letter is whether ERP admits an efficient
algorithm: is it possible to find a readable proof, or conclude that none exists, in time
polynomial in N , for example in time proportional to N or N 2? In this way Gödel
identifies the true nature of the problem investigated by Hilbert and, embryonically
if not naively, by Leibniz: can the creative process that leads to mathematical proofs
be replaced by the work of a computer, i.e., a machine? To see why, let us compare
the two approaches to this question, as proposed by Hilbert and by Gödel. Recall
that Hilbert starts from the following computational problem (notice the difference
with ERP):

Existence of a Proof (ED)
Input: a mathematical statement E.
Question: is there a proof of E?

Let us now consider the following three questions, concerning these
computational problems:

1. (Hilbert’s Entscheidungsproblem) Is there an algorithm for ED?
2. Is there is an algorithm for ERP?
3. (Gödel’s letter) Is there an efficient algorithm for ERP?

Gödel, perhaps because he was living at a time when electronic computers had
become a reality, frames the problem correctly in a computational light. As he notes
in his letter, an affirmative answer to the third question “would have consequences
of the utmost importance [as] it would imply that, in spite of the undecidability of the
Entscheidungsproblem, the mental work of a mathematician with regard to yes/no
questions could be replaced entirely by the work of a machine.”12

To clarify this point, suppose that there is an algorithm of complexity N 2 for
the problem ERP and that we are interested in a particular statement E, e.g., the
Riemann hypothesis. To find out if there is a proof of the Riemann hypothesis
using ten million symbols, or about 350 pages, with current technology we would
have to wait for a day or so. Possibly, something so deep and complex like the
Riemann hypothesis might need more than 350 pages. No problem! By setting
N equal to 100 million, corresponding to a proof of nearly 35,000 pages, you

12A translation of the letter can be found at http://blog.computationalcomplexity.org/2006/04/kurt-
gdel-1906-1978.html

http://blog.computationalcomplexity.org/2006/04/kurt-gdel-1906-1978.html
http://blog.computationalcomplexity.org/2006/04/kurt-gdel-1906-1978.html

78 A. Panconesi

would have the answer within 4 years. It may seem a lot, but what about Fermat’s
Last Theorem, whose proof required nearly four centuries? To have the answer of
what is considered the most important open problem in mathematics we might as
well wait a few years! Moreover, technological improvements, providing ever more
powerful hardware, would soon make manageable values of N over a billion, which
is equivalent to considering arguments millions of pages long, a limit beyond which
it certainly makes no sense to look for proofs.

We now note a trivial but surprising fact. The (negative) answer to question
1 required a flash of genius, in its most elegant form due to Turing. In contrast,
the answer to question 2 is affirmative and rather trivial. Let us see why. Every
mathematical theory can be described by means of standard mathematical formalism
in which all the formulas, sentences, definitions, theorems and so on, can be written
down by means of a finite set of symbols, the so-called alphabet (this should not be
surprising, after all mathematics is written in books). Specifically, any mathematical
theory uses the ten digits 0; 1; : : : ; 9, uppercase and lowercase letters of the alphabet,
sometimes Greek letters, special symbols like 8, 9, etc., parentheses (,), [,], and
so on. Suppose, for the sake of simplicity but without affecting the generality of
the argument, that our alphabet has 100 symbols. To determine whether a certain
statement admits a proof with N symbols it is sufficient to generate all candidate
proofs, i.e., all possible 100N strings of symbols, and check them one by one. The
checking part, to determine whether a given sequence of N symbols is a correct
proof of a statement E, is doable by computer efficiently, in polynomial time.

The answer to question 2 therefore is affirmative: there is a simple, indeed trivial
general procedure that allows a computer to tell, given any statement of mathematics
whatsoever, whether there exists a proof understandable by human beings. For the
proponents of human superiority over soulless machines this might sound like a
death knell, but there is no need to worry. The by-now-familiar catch comes to our
rescue: the algorithm that we outlined, having exponential complexity, is useless.
To settle the question of human superiority once and for all we have to follow
once again our lodestar – computational efficiency – and consider the third question,
which asks whether machines can find understandable proofs efficiently. It should
not come as a surprise by now to learn that ERP is universal (NP-complete).
In other words, the problem posed by Gödel in his letter, question 3 above, which
so effectively captures an old and formidable question – whether the creativity of a
mathematician can be effectively replaced by a machine – is none other than the one
million dollars problem:

P
‹D NP

If P D NP, then, given any mathematical statement, a proof or a refutation can be
found efficiently by an algorithm and, therefore, by a computer. It could be argued
that in this case the discoverer of this exceptional algorithm could claim not one, but
six million dollars, as it could answer all Millennium Problems remained unsolved

3 The One Million Dollars Problem 79

until now!13 This seems very unlikely and is part of the circumstantial evidence that
leads us to conjecture that the two classes must be different. This triumph of human
creativity over the machines, however, would come at a heavy price, for we would
have to resign ourselves to live in a world where, despite the impressive progress of
technology, computational intractability remains the norm, even for trivial-looking
tasks.

The Class P and Efficient Computations

A common, and quite sensible, objection that is raised when the class P is
encountered for the first time is the following: if the running time of an
algorithm is, say, proportional to N 1;000;000;000;000;000, we do have polynomial-
time but this is as impractical as a running time like 2N , and therefore P
cannot be considered as a good characterization of the realm of feasible
computations. To be sure, the intuitive concept of “feasible computation” is
a very elusive one and P is only a raw characterization of it. It does capture
however some of its fundamental aspects. A common occurrence is that, once
a polynomial-time algorithm for a problem is found, however impractical,
successive improvements bring about new algorithms of better and better
performance. In practice, most polynomial-time algorithms have very low
exponents. One could also argue that P embodies a conservative approach:
if a problem does not have a polynomial-time algorithm, it must certainly
be computationally unapproachable. The main point however is different
and has to do with the combinatorial structure of algorithmic problems.
As we have discussed, if we could afford exponential running times like
2N , NP-complete problems like Satisfiability would admit trivial, brute-force
algorithms: it would be sufficient to enumerate all possible candidate solutions
(i.e., all possible truth assignments) and check them one by one, to see
if any satisfies the formula. Suppose now that we could afford a running
time of N 1;000;000;000;000;000. Even such a huge polynomial cannot match the
exponential growth of 2N and if we want an algorithm for SAT to cope with
all possible inputs we cannot rely on a brute-force enumerative approach any
more. In order to zero in on a satisfying assignment, or to conclude that none
exists, a good deal of mathematical ingenuity would be needed to identify
and exploit hidden organizational principles of the solution space (in the case
of SAT, all possible truth assignments), provided that they exist. In fact, it is
quite conceivable that no such regularities exist for NP-complete problems.

13Since the awards were established, the Poincaré Conjecture, one of the most coveted prey, has
been answered affirmatively by Grigori Perelman. He refused, however, to collect both the prize
and the Fields Medal!

80 A. Panconesi

3.8 The Driving Force of Scientific Discovery

“As long as a branch of science offers an abundance of problems, so long is it alive;
a lack of problems foreshadows extinction” warned David Hilbert in his famous
speech. Computer science certainly enjoys an extraordinary vitality in this respect.
The pace of its fantastic technological achievements – a revolution that continues
unabated in full swing – and the momentous social consequences that they engender,
are perhaps the reason why the conceptual depth at the basis of this revolution is
underappreciated. And yet, as we have seen, some of the scientific questions posed
by computer science, of which P vs. NP is just one example, are of the greatest
import, with ramifications deep and wide not only for mathematics but for many
other disciplines. Nor could it be otherwise. Computer Science tries to understand
the laws that govern two concepts that lie at the foundations of our understanding of
the world: information and computation. These laws, which at present we are just
beginning to glimpse, are as concrete as those of nature and, like those, define the
boundaries of our universe and our ability to maneuver within it. The one million
dollars problem is just the tip of a glittering iceberg.

3.9 Bibliographic Notes

The Millennium Problems and their relevance are discussed on the website of the
Clay Mathematics Institute [79] (see Millennium Problems).

The theory of NP-completeness is now part of the standard university under-
graduate curriculum in computer science around the world. Among the many
excellent algorithms books now available I can certainly recommend “Algorithm
Design” by Jon Kleinberg and Éva Tardos [67]. For a discussion from the viewpoint
of computational complexity theory, a nice and agile book is “Computational
Complexity” by Christos Papadimitriou [89]. The classic text, however, remains
“Computers and Intractability: a Guide to the Theory of NP-Completeness” by
Michael R. Garey and David S. Johnson [47]. This book played an important role in
disseminating the theory, and it remains one of its best accounts.

An interesting article which describes the state of complexity theory in the Soviet
Union is [106]. Kurt Gödel’s letter to von Neumann is well analyzed in [13]. Both
articles are available on the Web.

Turning to the popular science literature, a very nice account that explores the
role of mathematical logic for the development of computers, from Leibniz to
Turing, is “Engines of Logic: Mathematicians and the Origin of the Computer” by
Martin Davis [24].

Biographies can offer interesting insights by placing ideas and personalities in
their historical and cultural context, as well as reminding us that science, like all
human activities, is done by people of flesh and bone, with their dreams, their
pettiness and greatness, happiness and suffering. An excellent biography is “Alan

3 The One Million Dollars Problem 81

Turing: the Enigma” by Andrew Hodges [60], which tells the story of the tragic
life of this great scientist, his role in decoding the secret code of the German
U-boats during the Second World War, until the brutal persecution and breach of
his fundamental human rights that he endured at the hands of the British authorities.

Finally, a wonderful booklet is “Gödel’s Proof” by Nagel and Newman [83],
a layman’s masterly exposition of Gödel’s magnificent Incompleteness Theorems.

Part II
The Difficult Simplicity of Daily Life

Chapter 4
The Quest for the Shortest Route

Camil Demetrescu and Giuseppe F. Italiano

Abstract Finding the shortest route is a ubiquitous problem in our daily life.
Whenever we look for driving directions, surf the Web, send emails, or interact
with our contacts in a social network, we are, perhaps unwittingly, exploiting the
efficiency of an underlying shortest path algorithm. In this chapter, we review
the basic ideas which are at the heart of shortest path algorithms and show how
they seem to be related to some of the fundamental questions investigated by
philosophers and scientists for centuries, in their effort to understand some of the
deep mechanisms that rule the universe.

4.1 Introduction

While planning for a trip, whether it is a long-distance journey or just a short
drive, we are often interested in taking the shortest possible route. This task can be
automated with the aid of navigation systems, which deploy algorithms capable of
finding the shortest, quickest or cheapest path among several possible alternatives.
With today’s impressive advances in technology, even small portable devices, such
as smartphones and GPS navigation devices, are able to compute in a few seconds
shortest routes on very large road networks covering many millions of roads and
road junctions.

C. Demetrescu (�)
Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Università di Roma,
via Ariosto 25, 00185 Roma, Italy
e-mail: demetres@dis.uniroma1.it

G.F. Italiano
Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma “Tor Vergata”,
via del Politecnico 1, 00133 Roma, Italy
e-mail: italiano@disp.uniroma2.it

G. Ausiello and R. Petreschi (eds.), The Power of Algorithms,
DOI 10.1007/978-3-642-39652-6__4, © Springer-Verlag Berlin Heidelberg 2013

85

mailto:demetres@dis.uniroma1.it
mailto:italiano@disp.uniroma2.it

86 C. Demetrescu and G.F. Italiano

Finding the shortest route appears as a subproblem in many other applications
as well. Indeed, and perhaps surprisingly, most of our daily activities hinge on
shortest paths, even when we are not traveling! As we are writing a piece of text
or editing a file on a computer, the text editor is using a shortest path algorithm to
format paragraphs, in order to balance the distribution of words within the same
line or among different lines of the text. Whenever we search the Web, send email,
chat, interact with our contacts in a social network or share files and other media
(such as music, photos, and videos) over the Internet, we perform activities that are
all based on shortest paths. In fact, when data is transferred on the Internet, deep
down in the inner workings of computer networks each piece of data is chopped
into small packets, which are then routed from their origin to their final destination
by algorithms based on shortest paths. Similarly to road networks, in this case we
can have several metrics for shortest paths, depending on whether the costs of the
network links are given by their capacity, their congestion, or the physical distance
between the corresponding endpoints.

Thus, the quest for the shortest route appears to be ubiquitous in our daily life.
One might argue that this is due to the fact that, as human beings, we tend to transfer
to computers our own problem-solving strategies in the form of sophisticated
algorithms. On the other hand, one might wonder whether it is Nature itself which
often tries to choose the shortest, simplest, or quickest way to achieve its goals. As a
matter of fact, philosophers and scientists have been trying to address this question
for centuries, in their effort to understand some of the deep mechanisms that rule
the universe.

The anthropomorphic concept of a thrifty Nature, which operates by always
choosing the most economical alternative, has indeed inspired many deep intuitions
throughout the history of science. In the first century CE, Hero of Alexandria
demonstrated that the assumption that light rays always travel between two points
on the path of shortest length makes it possible to derive the law of reflection by
using simple geometry. Sixteen centuries later, the French mathematician Pierre
de Fermat (1601–1665) was able to push this idea even further, by postulating
that “light travels through the path in which it can reach the destination in least
time”. This is Fermat’s Principle, also known as The Principle of Least Time,
and it is a fundamental law of optics from which the other laws of geometrical
optics can be derived. After a few decades, Pierre-Louis de Maupertuis (1698–
1759) extended the idea of a thrifty Nature from optics to mechanics, by introducing
the Principle of Least Action, which basically states that Nature always finds the
most efficient course from one point to another according to paths of least action,
i.e., paths in which the total energy needed to get from one point to another is
minimized. Since then, this paradigm has inspired several other important scientific
developments, including the method of maxima and minima due to Leonhard Euler
(1707–1783), and analytical mechanics due to Joseph-Louis Lagrange (1736–1813)
and William R. Hamilton (1805–1865). Amazingly enough, the Principle of Least
Action remains still central in modern physics and mathematics, and it has been
applied in the theory of relativity, quantum mechanics, and quantum field theory.

4 The Quest for the Shortest Route 87

There are scents of shortest paths even among the oldest civilizations. According
to Egyptian mythology, each day the sun-god Ra was born and began his journey
across the sky. At sunset, the sky goddess Nut swallowed Ra, who passed through
her body during the night, until he was born anew from her pelvis at the dawn
of the new day. This beautiful image, which associates night with death and day
with life or rebirth, reflects the typical Egyptian idea of immortality, and it can be
taken as a symbol for the eternal cycle of life, death, and rebirth. In ancient Egypt,
the myth of the solar child Ra and his mother Nut seemed to have close ties to
actual astronomical observations. Indeed, the goddess Nut was frequently depicted
as a personification of the Milky Way, a young goddess arching her body over the
Earth, with her birth canal corresponding to Deneb, one of the stars of Cygnus.
A line drawn from the North Celestial Pole through the star Deneb intercepts the
horizon exactly at the point where the sun rises at Cairo every winter solstice: this
line forms a great circle and represents the shortest path that the solar infant Ra
would follow after exiting the birth canal to the point of appearance on the horizon
at sunrise [109].

For ages, the shortest route appeared to be the main road for mortals and
immortals alike. However, the shortest route may often contain hidden difficulties,
and its quest can cost dearly people who ignore those hardships. The Carthaginian
general Hannibal, for instance, on his march in the Roman territory in 217 BCE,
planned to catch the Roman consul Gaius Flaminius off guard. To do this, he led
his army to the mouth of the Sarnus river, a huge marsh which happened to be
overflowing more than usual during that particular season. Hannibal knew that this
way was full of difficulties. He could have taken a more comfortable path to central
Italy, but decided to choose the shortest route instead. Paulus Orosius, a Christian
historian from the fifth century CE, reports in his history the hardships incurred by
Hannibal through the marshy lowlands of the Sarnus river [87]:

So Hannibal, knowing that Flaminius, the consul, was alone in the camp, that he might
more quickly crush him when unprepared, advancing in the early spring took the shorter
but marshy road, and when the Sarnus happened to have overflowed its banks far and wide
and had left the fields about it uncertain and loose, about which it has been said: “And the
plains which Sarnus floods”. When Hannibal proceeded into these fields with his army, with
the mist especially as it rose from the marsh cutting off his view, he lost a large part of his
allies and beasts of burden. He himself, moreover, seated upon an elephant which alone had
survived, barely escaped the hardship of the journey; but he lost one eye, with which he had
long been afflicted, because of the cold, lack of sleep, and hardships.

In 1474 Fernão Martins, canon at Lisbon Cathedral, was commissioned by King
Alfonso V of Portugal to obtain some information from his friend Paolo dal Pozzo
Toscanelli (1397–1482) as to the shortest route for reaching the East Indies by
sailing to the west. This new curiosity was sparked by the fall of Constantinople
to the Ottoman Turks in 1453, which make the land route to Asia more difficult,
and forced western Europe to look for new trade routes between Europe and Asia.
Toscanelli was considered to be one of the best mathematicians of his time, and
he was also an astronomer and a cosmographer. His reply to Martins detailed a
scheme for sailing westwards to reach the Spice Islands and Asia, and argued that

88 C. Demetrescu and G.F. Italiano

the distance from Lisbon to Cathay (China) was only 6,500 miles, which were
supposed to be one third of the earth’s circumference:

Paul, the physicist, to Fernando Martinez, canon, at Lisbon, greeting. [. . .] I have formerly
spoken with you about a shorter route to the places of Spices by ocean navigation than that
which you are pursuing by Guinea. [. . .] in order to make the point clearer and to facilitate
the enterprise, I have decided to exhibit that route by means of a sailing chart. I therefore
send to His Majesty a chart made by my own hands, upon which are laid down your coasts,
and the islands from which you must begin to shape your course steadily westward, [. . .]
From the city of Lisbon due west there are 26 spaces marked on the map, each of which
contains 250 miles, as far as the very great and splendid city of Quinsay. [. . .]

The King of Portugal did not follow Toscanelli’s suggestions and decided to
pursue the alternative route through Southern Africa. In 1474, however, Columbus
requested the same information from Toscanelli, and received back a copy of
the letter he had sent to Martins, which Columbus transcribed in his copy of
Piccolomini’s Historia, accompanied again by a chart. Toscanelli’s claims about the
distance from Lisbon westwards to China were not correct, and Columbus himself
added more errors by considering a worse estimate of the earth’s circumference.
As a result, he believed that the distance between Spain and Japan was only about
3,000 nautical miles, rather than the actual 10,600 nautical miles. Despite those
errors, Columbus embarked on what he believed to be the shortest sea route to the
Indies, and he ended up discovering America by mistake.

4.2 The Mathematisch Centrum

The idea of promoting the application of mathematics in the Netherlands was
conceived during World War II. The Mathematisch Centrum (MC), now Centrum
voor Wiskunde en Informatica (CWI), opened in Amsterdam in 1946, and many
institutions, including the Philips Gloeilampen Fabrieken (now Philips Electronics),
contributed to its foundation. One of the first decisions taken was to build a
computer, named ARRA, which was completed after 6 years in 1952. Unfortunately,
the ARRA never worked satisfactorily and it was broken up shortly after its
official inauguration. In the same year, 22-year-old Edsger W. Dijkstra (1930–
2002) joined the Mathematisch Centrum. Dijkstra was a brilliant student in the
University of Leiden, who was interested in theoretical physics. In 1951 his father
saw an advertisement for a 3-week summer course in computer programming at
the University of Cambridge, and he advised his son to attend the course. Feeling
that programming was a good skill to have for a theoretical physicist, the young
Edsger took the course, a decision that would eventually change his life. Aad
van Wijngaarden, Director of the Computation Department of MC, had taken the
same course in the previous year; when he learned that Dijkstra had completed
the summer course in Cambridge he decided to hire him as a programmer to write
the basic software for ARRA II, the next MC computer. Dijkstra accepted the
position but only as a part-time job, since he wanted to complete his studies in

4 The Quest for the Shortest Route 89

theoretical physics at the University of Leiden. The ARRA II was completed in
1955 and worked successfully, thanks also to the influence of Gerrit A. Blaauw
(1924–), who had gained some experience in the field by working with Howard
Aiken (1900–1973) at IBM.

Dijkstra graduated in theoretical physics in 1956 and moved to Amsterdam to
work full-time at MC. In the same year, the third MC computer, named ARMAC,
was ready for use, with much of its basic software being programmed by Dijkstra.
For the celebration of the ARMAC inauguration, Dijkstra was asked to prepare
a demonstration to show the power of the new computer. It was crucial to find
a fundamental problem whose importance could be easily understood even by
non-specialists. Could anything have been better than the ubiquitous quest for the
shortest route? As Dijkstra said in a later interview:

[. . .] for a demonstration for non-computing people you have to have a problem statement
that non-mathematicians can understand, even they have to understand the answer. So I
designed a program that would find the shortest route between two cities in the Netherlands,
using a somewhat reduced roadmap of the Netherlands, on which I had selected 64 cities
(so that in the coding, 6 bits would suffice to identify a city).

This is how Dijkstra described that important day in one of his papers [32]:

For the purpose of the demonstration, I drew a slightly simplified map of the Dutch
railroad system, someone in the audience could ask for the shortest connection between,
say, Harlingen and Maastricht, and the ARMAC would print out the shortest route town
by town. The demonstration was a great success; I remember that I could show that the
inversion of source and destination could influence the computation time required. The
speed of the ARMAC and the size of the map were such that one-minute computations
always sufficed.

To solve this problem, Dijkstra invented a new algorithm for computing effi-
ciently the shortest paths. First of all, it was necessary to formalize the problem in a
proper mathematical setting, and for this graph theory came in handy.

4.3 Shortest Paths in Graphs

We can think of a railway system in abstract terms, as was done by Dijkstra, by using
a graph-theoretical approach. Graphs are fundamental mathematical structures that
are used to model relations between objects from a certain collection. In particular,
a graph consists of a set of vertices and a set of edges that connect pairs of vertices.
In this context, each city in a railway network can be represented by a vertex,
and there is an edge between two vertices if there is a direct rail line between the
two corresponding cities. Each train route will therefore be associated to a suitable
sequence of graph vertices which represent the cities crossed by that route, and
a shortest path between two cities in the railway network will correspond to a
shortest path in the graph. This correspondence allows us to abstract the essence
of the problem mathematically, so that it can be possible to solve it with a computer
program.

90 C. Demetrescu and G.F. Italiano

What do we mean exactly by shortest path? It clearly depends on what we are
interested in. For instance, we might be interested in computing the train route with
the smallest number of city stops. In this case, we have to find the path with the
smallest number of edges in the corresponding graph. On the other hand, we might
want to minimize the geometric distance traveled, the travel time, or the total rail
fare for our journey. Of course, different criteria will yield pretty much different
results. This must have been clear to Hannibal, since taking the shorter but marshy
road close to the Sarnus river resulted in a much higher cost overall!

How can we add information about geometric distances, travel times or rail fares
to the abstract representation of a graph? This can be done by associating with each
edge in the graph a real-valued cost, which represents the length, the travel time,
or the fare of the corresponding rail line. In this framework, the cost of a path will
be given by the sum of the costs of its edges, and the shortest path between two
vertices in the graph will give respectively the shortest, quickest or cheapest train
route between the two corresponding cities. We remark that the edge costs play a
crucial role in the correct formulation of the problem. This could be witnessed by
Columbus: after assigning the wrong cost (3,000 rather than 10,600 nautical miles)
to an edge, he sailed towards the Indies on a sea route quite different from the
shortest path!

4.4 Nature and Its Algorithms

We now go back to our original question: is Nature able to find the shortest route? To
answer that question, we look at a graph from a geometric viewpoint. Towards this
aim, we realize a “physical” graph with balls and strings, as illustrated in Fig. 4.1.
We put on a table a ball for each vertex u in the graph. For each edge .u; v/ we cut a
piece of string, with length proportional to the cost of edge .u; v/, and tie the string’s
endpoints to the two balls representing vertices u and v, respectively. The result is
depicted in Fig. 4.1b: the mathematical structure of the graph is simply represented
by a set of balls and strings!

Now take two specific balls: if you pull them gently far apart, some strings
will be in tension until you reach a point where pulling the two balls any further
will break one of the strings (see Fig. 4.1c). It is not difficult to see that the set of
strings in tension between the two chosen balls represents a shortest path between
the corresponding vertices. In this case, Nature is able to find the shortest route!

We now perform another experiment, but this time we use flammable balls and
replace each string with a line of gunpowder. We assume that flames travel at
the same speed down the line: i.e., if we take two lines of gunpowder having the
same length and light them up at the very same time, they will burn completely in
the same amount of time. If we now light up a given ball s, then the fire front will
get simultaneously to all lines of gunpowder connected to s.

What is the second ball that will burn after s? Obviously, the ball which has
the shortest line of gunpowder to s. The fire front will attack balls and lines of

4 The Quest for the Shortest Route 91

Fig. 4.1 (a) Ingredients and tools used for realizing a graph: balls, strings, scissors and a Swiss
army knife. (b) A graph with six vertices and nine edges built with balls and strings. (c) A shortest
path is given by a sequence of strings in tension

gunpowder until all of the graph is completely burnt out. The time at which a
particular ball v burns will be proportional to the distance from s to v, i.e., to the
length of the shortest path from s to v. Furthermore, the predecessor of v in this
shortest path is given by the line of gunpowder .u; v/ which caused v to light up.
Once again, Nature computes shortest routes!

4.5 A Simple Idea

Dijkstra thought about his algorithm on a sunny morning in 1956, while drinking
coffee with his wife in a cafe terrace in Amsterdam. To find the shortest path
between two vertices, he considered the more general problem of finding the shortest
path from a given source vertex to all other vertices. As we saw in the previous
chapters, an algorithm is defined by a finite sequence of basic operations, which a
particular executor (such as the CPU of a computer) is able to perform in order to
produce a final result starting from some input data. In our setting, the input is given
by a weighted graph and a starting vertex s. The final result that we would like to
obtain as output is, for any vertex v, its distance from vertex s (denoted by d.v/) and
its predecessor in a shortest path from s to v (denoted by p.v/). As we will see next,
once all distances d.v/ are available, then also the predecessors p.v/ can be easily
computed. In the following, we will thus restrict ourselves only to the computation
of the distances d.v/.

92 C. Demetrescu and G.F. Italiano

Input: A weighted graph with vertex set V and a source vertex s
Output: For each vertex v, its distance d (v) from s

Algorithm Basic Dijkstra
Step 1: Let A be the set consisting of vertex s and let d (s) = 0
Step 2: Repeat the following steps until A = V:

2.1 Let (u;v) be the edge with u in A and v not in A which minimizes the quantity
d(u)+ cost of (u; v)

2.2 Set d (v) = d (u)+ cost of (u;v)
2.3 Add v to set A

Fig. 4.2 Dijkstra’s algorithm

Dijkstra’s algorithm is a classic example of how a mathematical property can
yield a simple and elegant procedure. Assume that all the distances from source
s to a set A of vertices have been already computed, and let .u; v/ be the edge,
having only one end in A, that minimizes the quantity d.u/Ccost of .u; v/. Dijkstra
observed that this edge .u; v/ is particularly important, as it allows one to compute
the distance from s to v:

d.v/ D d.u/ C cost of .u; v/

As a consequence of this property, if we find the proper edge .u; v/, we can find
one more vertex v for which we know the exact distance from s! This step can be
repeated, until we find the distances from vertex s to all other vertices. Initially,
we can start from A D fsg, since we only know the exact distance from s to itself
(d.s/ D 0). Figure 4.2 summarizes the steps of this simple algorithm.

There is a striking analogy between the algorithm given in Fig. 4.2 and the
process of fire propagation illustrated in Sect. 4.4. In this analogy, the vertex set
A corresponds to the balls that already caught fire, and the edges with exactly one
endpoint in A correspond to the lines of gunpowder that are currently burning. The
edge .u; v/ chosen in Step 2.1 of Fig. 4.2 is the next line of gunpowder that will
burn completely, and the vertex v will correspond to the ball that will catch fire next.
Dijkstra’s algorithm can thus be seen as a discrete simulation of the continuous
combustion process that burns balls and lines of gunpowder!

The algorithm of Fig. 4.2 computes only distances. However, as was mentioned
before, it can be easily modified to keep track of all predecessors p.v/. Indeed, if
we set d.v/ D d.u/ C cost of .u; v/ on Step 2.2 of Fig. 4.2, then the shortest path
from s to v is given by the shortest path from s to u followed by edge .u; v/, and
thus vertex u is the predecessor of v along the shortest path from s. Consequently, to
compute all predecessors it is enough to set p.v/ D u on Step 2.2. Figure 4.3 shows
an example of how Dijkstra’s algorithm computes all distances from a given source
vertex.

4 The Quest for the Shortest Route 93

a
7

A C

B

D

6

30 10

14

6

E

F

G
9

1 4

b

c d

1

30

14

7 6

A C

B

D

E

F

G

e

9

6
1

30

14

7 6

A C

B

D

E

F

G

f

g

4

30

14

7 6

9

6

1A C

B

D

E

F

G

h

i

E

F

G

7

E

F

G

30

14

7 6

C

D

A

B

4

1030

14

7 6

9

6

1A C

B

E

F

G

A C

B

D

E

F

G

s

s

s

s

s s

s

30

14

7 6

9

6

1A C

B

E

D

F

G

30

14 C

B

D

s A

4

D

0

+∞

+∞

+∞ +∞

+∞

+∞

0

7

30

14 +∞

+∞

+∞

0

7

30

13 14

+∞

+∞

140

7

30

13

20

23

0

7

30

13 +∞

+∞

+∞

0

7

30

13

20

23

0

7

30

13

20

23

0

7

30

13

20

23

14 14

14

Fig. 4.3 (a) A weighted graph; (b)–(i) the steps of Dijkstra’s algorithm on the graph in (a) with
source vertex A. At each step, the tentative distance of each vertex from v is shown below the
vertex itself. Initially (b), the source vertex has distance 0 from itself, and the remaining vertices
have tentative distance equal to C1. In the following steps (c)–(i), actual distances are computed
with the formula d.v/ D d.u/ C cost of .u; v/. At each step, all the vertices in A are shown gray,
and the chosen edge is highlighted with a box

94 C. Demetrescu and G.F. Italiano

4.6 Time Is a Tyrant

How fast is Dijkstra’s algorithm? Of course, it depends on the size of the input graph.
Let m and n denote, respectively, the number of edges and vertices in the graph. The
bottleneck of the algorithm seems to be the search for the edge .u; v/ in Step 2.1.
This step is repeated at most n times, since each time we execute Step 2.1, a new
vertex gets added to the set A in Step 2.3. A naive implementation Step 2.1 requires
us to scan all edges in the graph, and thus it can take as many as m basic operations
(such as sums and numeric comparisons). This implies that Dijkstra’s algorithm can
be implemented with a total of m � n basic operations in the worst case.

Such an algorithm would be rather unpractical on large-scale graphs. Assume
that we wish to plan a car trip from Rome to Amsterdam, and are interested in
finding the shortest route using the trivial implementation of Dijkstra’s algorithm
described before. The road network of Western Europe is a graph with roughly
18 million vertices and 42 million edges, where vertices are intersections and edges
are road segments between intersections, with their cost being the average travel
times [93]. On a graph with n D 1:8 � 107 vertices and m D 4:2 � 107 edges,
finding the shortest path requires m�n D 7:5�1014 basic operations, i.e., 750 trillion
basic operations! Even on today’s computing platforms, with CPUs clocked at about
3 GHz, this would imply several months of computing time! If this computation had
started in 1956 on the ARMAC computer, it would still be going on today!

We now show how this algorithm can be sped up. As we saw before, the
bottleneck of the algorithm is finding the next vertex v to be added to the set A. This
is trivially accomplished in Step 2.1 of Fig. 4.2 by looking for the edge .u; v/ that
has exactly one endpoint in A and that minimizes the quantity d.u/ C cost of .u; v/.
Can we check this faster than Step 2.1? Going back to our fire analogy, if at any
time we take any snapshot of our burning graph, the set A corresponds to balls that
already burned. We can partition the remaining balls into two disjoint sets, denoted
by B and C , as follows: B contains all unburned balls that are connected to at least
one burning line of gunpowder, while C contains all the other unburned balls (i.e.,
unburned balls which are connected to no burning line). Note that the set B includes
the next ball v that will catch fire, which is exactly what we would like to compute
more efficiently. In graph-theoretical terms, B contains the vertices that are not in A

but are connected directly through an edge to vertices in A, and C contains all the
remaining vertices (which are neither in A nor in B).

For each vertex y in B , consider the edge .x; y/, with x in A, which minimizes
the quantity d.x/ C cost of .x; y/, and denote this quantity by D.y/. We can think
of D.y/ as the earliest time at which the fire coming from a line of gunpowder with
one end in A will reach ball y. With this approach, the next vertex v to be added
to set A is the one with the smallest possible value of D.v/. Put in other words, if
D.y/ is available for all vertices y in B , to find the next vertex v to be added to A

we do not need to scan all the edges with exactly one endpoint in A, which can be
as many as m, but only the vertices in B , which are at most n. Since m can be as

4 The Quest for the Shortest Route 95

Input: A weighted graph with vertex set V and a source vertex s
Output: For each vertex v, its distance d(v) from s

Algorithm Faster Dijkstra
Step 1: Let B be the set consisting of vertex s,

let D(s) = 0 and let D(x) = +∞ for each vertex x �= s
Step 2: Repeat the following steps until B = :0/

2.1 Let v be the vertex in B with smallest D(v)
2.2 Remove vertex v from B
2.3 Set d(v) to D(v)
2.4 For each edge (v;z) incident to vertex v do the following:

2.4.1 If d(v)+ cost of (v;z) is smaller then D(z) then
2.4.1.1 Add vertex z to B (unless z is not already in B)
2.4.1.2 Set D(z) = d(v) + cost of (v; z)

Fig. 4.4 A faster version of Dijkstra’s algorithm

large as about n2 (there can be one edge between any vertex pair), we expect this
observation to produce a faster implementation of Dijkstra’s algorithm.

The resulting algorithm, which is closer to Dijkstra’s original formulation, is
illustrated in Fig. 4.4. The basic idea behind this algorithm is to maintain for each
vertex x the value D.x/ defined previously. More precisely, D.x/ is an upper bound
on the distance d.x/ from the source vertex s, i.e., D.x/ � d.x/, and we refer to
D.x/ as the tentative distance of x from s. Note that a trivial upper bound of the
distance d.x/ is always D.x/ D C1, and the goal of the algorithm is to compute
the best possible estimate D.x/ D d.x/ for each vertex x. Throughout its execution,
the values D./ are used by the algorithm to identify the three disjoint vertex sets A,
B and C , as follows.

1. For each vertex x in A, d.x/ has been already computed and D.x/ D d.x/: the
corresponding ball x burned already, and its tentative distance D.x/ equals its
actual distance d.x/.

2. For each vertex y in B , d.y/ � D.y/ < C1: vertex y has a nontrivial (i.e.,
finite) tentative distance D.y/, and the corresponding ball y is connected directly
to the fire front; D.y/ gives the earliest time at which the fire will arrive in y

directly through a currently burning line.
3. For each vertex z in C , D.z/ D C1: the corresponding ball z did not catch

fire yet, and it is not connected to a burning line, so we can only have a trivial
estimate (i.e., D.z/ D C1) of when z will catch fire.

We remark that the algorithm in Fig. 4.4 maintains explicitly only the set B , as the
two other sets A and C can be identified implicitly from the values of the tentative
distances D./.

Initially (i.e., before starting the fire from ball s), we only know that D.s/ D 0

(i.e., the source s will catch fire at time t D 0), and that D.x/ D C1 for x ¤ s.
Thus, B D fsg. There is no fire front yet, and thus no other ball is connected to the

96 C. Demetrescu and G.F. Italiano

fire front with a burning line. At the generic iteration, the algorithm selects the vertex
v in B with smallest tentative distance (Step 2.1), i.e., it identifies the unburned ball
v that will catch fire next. When the ball v will go off, the lines of gunpowder .v; z/
(not yet burned) connected to v will catch fire, as considered in Step 2.4. Each line
.v; z/ will contribute to the computation of the possibly new minimum value for
d.v/ C cost of .v; z/ that defines D.z/ (Steps 2.4.1 and 2.4.1.2) and to the update of
the set B (Step 2.4.1.1).

What is the running time of this algorithm? Since each vertex can be inserted
and removed from the set B only once, Steps 2.1–2.3 and Step 2.4.1.1 are executed
at most n times each. Note that Steps 2.2–2.3 and Step 2.4.1.1 requires a constant
number of basic operations, while Step 2.1 requires us to find the minimum in B .
The minimum in B can be computed by simply scanning all the elements of B ,
and thus in at most n basic operations. On the other hand, the remaining steps (i.e.,
Steps 2.4, 2.4.1 and 2.4.1.2) are executed at most once for each edge, and thus at
most m times each. As a result, the algorithm in Fig. 4.4 can be implemented in
approximately n2 C m basic operations, if n and m are, respectively, the number of
vertices and edges in the input graph.

Is this a significant improvement? We observe that n2 C m is better than m � n

whenever m is much larger than n. When m is close to n, however, n2 C m

is not much better than m � n. On the road network of Western Europe, with
approximately 18 million vertices and 42 million edges, this improved version of
Dijkstra’s algorithm would still require about n2 C m D 3:2 � 1014, i.e., roughly
320 trillion basic operations, which is only slightly better than the m � n D
7:5 � 1014 D 750 trillion basic operations required by the first version of the
algorithm illustrated in Fig. 4.2. Thus, this improved version of Dijkstra’s algorithm
would still require months of computations on today’s computing platforms. In
1956, Dijkstra’s demonstration took only few minutes on the ARMAC, but on a
much smaller graph with only tens of vertices and edges. Nevertheless, today we
are able to compute in few seconds shortest paths on graphs with million vertices
and edges using Dijkstra’s algorithm. How can that be possible?

4.7 How to Set Your Priorities

One of the crucial (and most expensive) tasks of Dijkstra’s algorithm is to select
the element of minimum value in the set B (Step 2.1 of Fig. 4.4). We call the value
D.v/ of each element v its priority. Note that the set B is changing dynamically, as
new elements may be added to B (Step 2.4.1.1 of Fig. 4.4), removed from B (Step
2.2 of Fig. 4.4) or have their priority decreased (Step 2.4.1.2 of Fig. 4.4). In other
terms, the algorithm needs to maintain a data structure capable of performing the
following operations:

• Add a new item x with priority D.x/ to the set B (operation insert);
• Decrease the priority of item x to a new value D.x/ (operation decrease);

4 The Quest for the Shortest Route 97

Table 4.1 Faster implementations of the heap data structure and their impact on the running times
of Dijkstra’s algorithm. For each heap operation, the corresponding column shows the number of
basic operations required by the operation on average, up to multiplicative factors. The last column
shows the total number of basic operations required by Dijkstra’s algorithm with the different heap
implementations considered, again up to multiplicative factors

Find Running time of
Year Insert Delete minimum Decrease Dijkstra’s algorithm

1956 1 1 n 1 n2 C m

1964 log n log n 1 log n .n C m/ � log n

1987 1 log n 1 1 m C n � log n

• Find the item of minimum priority in B (operation find minimum);
• Remove the item x from set B (operation delete).

This data structure is known as a heap (or alternatively priority queue). Heaps
were not well known in the 1950s, when Dijkstra first designed his shortest path
algorithm. However, today they are ubiquitous data structures in many computa-
tions. If we run Dijkstra’s algorithm of Fig. 4.4 on a graph with m edges and n

vertices, and maintain the set B as a heap, then it is possible to see that we will
have to perform at most n insert, delete or find minimum operations. This is a
consequence of the fact that, once removed from B , a vertex cannot be reinserted
back, and thus each vertex can be inserted and removed only once from B . On the
other side, if the priority of a vertex v is decreased then we are scanning an edge
to v, and thus the total number of decrease operations will be proportional to m in
the worst case. If we denote by tfind minimum, tinsert, tdelete and tdecrease, respectively, the
running times of the find minimum, insert, delete and decrease operations, then the
total running time of Dijkstra’s algorithm will be proportional to

n � .tfind minimum C tinsert C tdelete/ C m � tdecrease:

As a consequence, the performance of Dijkstra’s algorithm depends on the particular
heap deployed. Although the key algorithmic idea conceived in 1956 did not change
throughout the years, the dramatic progress on the design of efficient heap data
structures has produced faster solutions to the shortest path problem. Table 4.1
reports some of the milestones in the progress of efficient heap implementations,
and their impact in Dijkstra’s algorithm. The program written for the ARMAC in
1956 implemented the heap as a simple linked list: within this framework, inserting,
removing and decreasing the priority of an item could be done in a constant number
of steps, but finding the minimum required that we scan the entire list, and thus a
number of basic operations proportional to n. This is illustrated in the first row of
Table 4.1; we will next see more sophisticated implementations of heaps, capable
of achieving the bounds contained in the last two rows of Table 4.1.

In 1964, John W. J. Williams [110] designed an ingenious method to implement
heaps: the number of basic steps required to find the minimum would improve from
n to constant, at the price of increasing from constant to log2 n the basic steps

98 C. Demetrescu and G.F. Italiano

Fig. 4.5 A heap with six
nodes

required by the other operations. The interested reader is referred to the next section
for the details of the method, which accounts for the second row in Table 4.1.

4.7.1 The Heap Data Structure

The basic idea of Williams was to organize the data of a heap in a binary tree (see
Chap. 2), with the following three additional properties:

Property 1: Each element in the heap corresponds to a binary tree node (in the
following, we will use interchangeably the terms heap element and tree node).

Property 2 (heap property): Each non-root node is greater than or equal to its
parent.

Property 3 (shape property): All levels of the tree, except possibly for the last one
(deepest) are fully filled; if the last tree level is not complete, the nodes of that
level are filled from left to right.

Figure 4.5 illustrates an example of a heap. Given n elements, Property 1
guarantees that the heap contains exactly n nodes. As a consequence of Property 2,
all nodes are greater than or equal to the tree root, and thus operation find minimum
can be implemented by simply returning the tree root. Finally, Property 3 can be
used to prove that the height of a heap is proportional to log2 n. We now show how to
implement efficiently the other operations insert, delete and decrease. In particular,
we will see how the number of basic steps required to support each operation is
proportional to the tree height, i.e., to log2 n.

Consider operation decrease first. After decreasing the priority of a node v, then
Properties 1 and 3 will trivially hold. However, if the new priority of v is less than
the priority of the parent of v, then Property 2 might be violated. In this case, we
can restore Property 2 by repeatedly swapping v with its parent until they are in the
correct order. This can be accomplished with the algorithm up heap illustrated in
Fig. 4.6. Since the height of a heap with n nodes is proportional to log2 n, then up
heap and consequently decrease can be implemented with log2 n basic steps in the
worst case.

To perform operation insert, we first add the new node to the bottom level
of the heap, so that the shape property is maintained. Similarly to the previous
case, Properties 1–3 hold except for the newly inserted node, which may violate

4 The Quest for the Shortest Route 99

Input: A binary tree for which Properties 1–3 hold, except for node v, which violates Property 2
(with v being smaller than its parent)

Output: The modified tree so that it is a heap

Algorithm up heap
Repeat the following step

Swap v with its parent
Until either v is the tree root or v is greater than or equal to its parent

Fig. 4.6 Algorithm up heap restores Property 2 by repeatedly swapping a node with its parent
until they are in the correct order

Input: A binary tree for which Properties 1–3 hold, except for node v, which violates Property 2
(with v being larger than its smaller child)

Output: The modified tree so that it is a heap

Algorithm down heap
Repeat the following step

Swap v with its smaller child
Until either v is a leaf or v is less than or equal to its children

Fig. 4.7 Algorithm down heap restores Property 2 by repeatedly swapping a node with its smaller
child until they are in the correct order

Property 2. We can thus restore this property by applying again the algorithm up
heap of Fig. 4.6 starting from the new node. Again, this will require log2 n basic
steps in the worst case.

It remains to show how to implement operation delete. Let u be the node to be
deleted from the heap. Note that, unless u is the last node on the last level (i.e.,
the rightmost leaf in the tree), the deletion of u might cause a violation of Property
3 (shape property). To maintain this property, we replace the node u to be deleted
with the rightmost leaf. At this point, we have restored Properties 1–3, except for the
replaced node, which might now violate Property 2. If the replaced node is smaller
than its parent, then it must move up the tree. Otherwise, if the replace node is
larger than either of its children, it must move down the heap. The former case can
be dealt with the algorithm up heap of Fig. 4.6. In the latter case we can repeatedly
swap the node with the smaller child, until they are in the correct order. This can
be accomplished with the algorithm down heap described in Fig. 4.7, which again
requires time proportional to the height of the heap (i.e., log2 n basic steps).

In summary, with this approach a find minimum requires constant time, while
the remaining heap operations (insert, delete and decrease) can be implemented
in approximately log2 n basic steps each. Plugging this data structure into Dijkstra’s
algorithm yields a .mCn/ log2 n bound, as illustrated in the second row of Table 4.1.
Two decades later, in the late 1980s, Michael L. Fredman and Robert E. Tarjan

100 C. Demetrescu and G.F. Italiano

contributed another major step to the shortest path problem. Indeed in a famous
article published in a scientific journal in 1987 [45], Fredman and Tarjan presented
a new heap, called the Fibonacci heap. The name comes from Fibonacci numbers,
which are used in the running time analysis of this data structure. The improvement
of Fibonacci heaps over traditional heaps is that they are able to support insert and
decrease operations faster in average constant time rather than logarithmic time.
Dijkstra’s algorithm implemented with Fibonacci heaps requires m C n log2 n basic
steps (improved from the .m C n/ log2 n bound obtained with Williams’ classic
heaps). On our road network of Western Europe, with approximately 18 million
vertices and 42 million edges, these advances in data structure technology bring the
running time for computing a shortest path with Dijkstra’s algorithm from several
months down to a few seconds!

4.8 The Humble Programmer

Let us go back to 1956. Although Dijkstra was fully aware of the importance of his
discovery, he did not publish his result until 1959 [33]:

At the time, algorithms were hardly considered a scientific topic. I wouldn’t have known
where to publish it. . . . The mathematical culture of the day was very much identified with
the continuum and infinity. Could a finite discrete problem be of any interest? The number
of paths from here to there on a finite graph is finite; each path is a finite length; you must
search for the minimum of a finite set. Any finite set has a minimum – next problem, please.
It was not considered mathematically respectable. . .

Dijkstra’s algorithm was published only 3 years after its discovery, and it is one of
the most cited and celebrated articles in computer science. Dijkstra himself recalled
the birth of that three-page article, which was published in 1959 in the first issue of
Numerische Mathematik, the first journal devoted to automatic computing [32]:

In retrospect, it seems strange that I waited another two years before I submitted them
for publication. The main reason was the absence of journals dedicated to automatic
computing, something the foundation of Numerische Mathematik sought to remedy. I wrote
and submitted my little article – my second one – trying to assist the fledgling. Furthermore,
the publish-or-perish syndrome had not reached the Netherlands yet.

Dijkstra’s algorithm was not known for several years after its publication. Indeed,
the classic 1962 book by Lester Ford and Delbert Fulkerson [44] on network
optimization cited many other inferior algorithms. This explains why Dijkstra’s
algorithm was later rediscovered by several other researchers, George Dantzig
included. In his Turing Award Lecture [31], Dijkstra called himself a “humble
programmer”, and recalled the times where he was hired as a programmer at the
Mathematisch Centrum, where he designed his famous shortest path algorithm,
which was only intended for a demo.

Another two years later, in 1957, I married and Dutch marriage rites require you to state
your profession and I stated that I was a programmer. But the municipal authorities of the

4 The Quest for the Shortest Route 101

town of Amsterdam did not accept it on the grounds that there was no such profession. And,
believe it or not, but under the heading “profession” my marriage act shows the ridiculous
entry “theoretical physicist”!

4.9 Still an Open Challenge

As was described earlier, Dijkstra’s algorithm is able to compute all the shortest
paths from a given vertex to all other vertices in the graph, a problem known in the
scientific literature as the single-source shortest path. However, the demonstration
prepared for the inauguration of the ARMAC computer was intended to solve an
apparently simpler problem, namely the single-pair shortest path, which consists
of finding a shortest path between two given vertices. In the last decade, many
researchers investigated the simpler single-pair shortest path problem and tried to
design algorithms that require time proportional to the size of the shortest path rather
than to the size of the entire graph.

An efficient solution to the single-pair shortest path problem appears indeed of
great practical importance. Consider, for instance, GPS navigation systems, which
typically run on low-end architectures, including smart phones and small portable
devices. The goal of a navigation system is to compute the shortest/fastest route
between any two given points of a road network. A navigation system must be
able to answer queries in reasonable times on road networks, which typically have
millions of vertices and edges. Thus, it cannot afford to explore the entire road map,
but rather it can only visit a smaller portion of the map. Back in 1956, Dijkstra used
the following simple heuristic to speed up the computation of his program: as soon
as the final destination was reached, the algorithm would be stopped. This might not
be always sufficient, however, as the algorithm could still explore a large portion of
the graph before reaching the final destination. Figure 4.8a shows the result of an
experiment on a portion of the North American road network around Seattle, having
about 1.6 million vertices and 3.8 million edges. The vertices explored by Dijkstra’s
algorithm before reaching the final destination are shown in dark gray, while the
shortest path is shown in black. As can be clearly seen from the figure, the dark gray
region covers almost the entire road network, while the shortest path contains only
few hundred vertices.

A faster method could be to run a bidirectional version of Dijkstra’s algorihtm.
Namely, we run two copies of Dijkstra’s algorithm simultaneously: the first copy
proceeds forward from the source, while the second copy proceeds backward from
the destination. In our fire analogy, this would be like lighting up at the same time the
two endpoints of the shortest path: as soon as the two fire fronts meet, the shortest
path has been computed and thus the computation can be stopped. The result of
one such experiment in the North American road network around Seattle is shown
in Fig. 4.8b. Although the area explored by this bidirectional version of Dijkstra’s
algorithm is much smaller than the area explored by the classic Dijkstra’s algorithm

102 C. Demetrescu and G.F. Italiano

Bidirectional ALTBidirectional DijkstraDijkstra

a b c

Fig. 4.8 Portion of the North American road network around Seattle explored by three different
shortest path algorithms. The network contains about 1.6 million vertices and 3.8 million edges,
and edge costs are average travel times. The dark gray area contains the vertices explored by each
algorithm, while the shortest path is shown in black. (a) Dijkstra. (b) Bidirectional Dijkstra. (c)
Bidirectional ALT

(in Fig. 4.8a), the bidirectional Dijkstra’s algorithm still explores about 100,000
vertices.

The increasing popularity of navigation systems and the availability of online ser-
vices for maps and driving directions which have to support millions of user requests
per second, such as Google Maps or Bing Maps, have sparked in the last decade new
research on faster single-pair shortest path algorithms. In November 2004, the first
author of this chapter was visiting the Microsoft Research Labs in Silicon Valley. He
was working with Andrew V. Goldberg on graph optimization problems, and they
conceived the idea of launching a new challenge to the algorithmic community,
where research teams from all over the world would have to compete to design
and implement the fastest shortest path algorithm. David S. Johnson, Head of the
Algorithms and Optimization Department at AT&T Research Labs in New Jersey,
liked the idea. In 1990 David Johnson had started the DIMACS Implementation
Challenges, a series of events devoted to realistic algorithm performance and
to leading-edge design and implementations of algorithms. The Implementation
Challenges, sponsored by the Center for Discrete Mathematics and Theoretical
Computer Science (DIMACS), proved to be very influential in many areas of
combinatorial optimization.

In September 2005, the 9th DIMACS Implementation Challenge, devoted to the
shortest path problem, was officially started and many leading research groups
contributed to the event. After 1 year of hard work, the five finalists presented
their algorithms and implementations in the final workshop, which took place in
November 2006 at the DIMACS Center in Rutgers University, New Jersey. The final
competition consisted of finding shortest paths for a sequence of 1,000 random cities
in the US road network, which contains roughly 24 million vertices and 60 million
edges. Each challenger had 24 h to look at the road graph and perform any required
preprocessing on that input graph. The results of the challenge were surprising: on
a low-end PC, all five finalists were able to answer a shortest path query in less
than 3 ms on average. The fastest program, designed by Peter Sanders and Dominik
Schultes [97], was able to answer a shortest path query in about 20 �s on average:

4 The Quest for the Shortest Route 103

this is roughly 200,000 times faster than running Dijkstra’s algorithm on the same
computer!

The secret of the efficiency of those algorithms lies in their ability to look for the
solution by exploring only a limited search space, without having to wander through
unpromising areas of the entire input graph. To illustrate this concept, consider
Fig. 4.8c, which shows the footprint left by the ALT algorithm by Goldberg and
Harrelson [50] while looking for the same shortest path as the two algorithms of
Fig. 4.8a, b. As can be easily seen from Fig. 4.8, the ALT algorithm explores only
a tiny fraction of the vertices, centered around the shortest path to be searched for.
In order to guide the search towards the final destination, Goldberg and Harrelson
adapted A* search [56], a famous algorithm used for many problems in Artificial
Intelligence. The details of their approach are spelled out in the next section.

4.9.1 The ALT Algorithm by Goldberg and Harrelson

Let s and t be, respectively, the source and destination vertex of an instance
of the single-pair shortest path problem. The ALT algorithm by Goldberg and
Harrelson [50] resembles Dijkstra’s algorithm, with one notable exception: vertices
are not considered according to their tentative distance computed from the source
vertex s, but rather according to their combined tentative distance both from the
source s and to the destination t . This requires it to maintain, for each vertex v,
estimates of its distance from the source s and of its distance to the destination t .
Note that the tentative distance D.v/ from the source s to each vertex v is already
maintained (as an upper bound) by Dijkstra’s algorithm, so we need only to worry
about the tentative distance from each vertex v to the destination t . Similarly to
the definition of the tentative distance D.v/, we do not know a priori the distance
from v to the destination t . Thus, in the algorithm we make use of an estimate of
this distance, possibly a lower bound of its exact value, denoted by H.v/. The next
vertex that will be selected by the ALT algorithm is the vertex v in the set B which
minimizes the quantity D.v/ C H.v/.

The crux of the algorithm is to find good distance estimates D.v/ and H.v/ for
each vertex v: the more accurate these distance estimates, the faster the algorithm, as
it will explore only vertices centered around the shortest path. Indeed, in the special
(and lucky) case where all our tentative distances coincide with exact distances,
then it is not difficult to see that the algorithm will limit its search only to the set of
shortest path vertices. So the natural question is to find good estimates H.v/ for the
distance from vertex v to the destination t . To accomplish this task, Goldberg and
Harrelson used a basic property of metric spaces, called triangle inequality: given
any three vertices `, t and v in a graph, the distance from ` to t does not exceed the
sum of the distances from ` to v and from v to t (see Fig. 4.9). More formally, we
have the following inequality:

d.`; t/ � d.`; v/ C d.v; t/:

104 C. Demetrescu and G.F. Italiano

Fig. 4.9 Triangle inequality
in a graph

Note that we can rewrite the triangle inequality as

d.`; t/ � d.`; v/ � d.v; t/:

Let t be the destination vertex for our shortest path, let v be a vertex to be extracted
from the set B of the original Dijkstra’s algorithm and let ` be any other vertex in the
graph. If the distances from ` to t and from ` to v are known, the above inequality
states that the quantity d.`; t/ � d.`; v/ is a lower bound on the distance from v to
t , and thus it can be used to compute H.v/ in the algorithm:

H.v/ D d.`; t/ � d.`; v/:

The accuracy of this estimate for H.v/ depends on the particular choice of the vertex
`. Indeed if ` is closer to the destination t than to the vertex v, then d.`; t/ � d.`; v/

and consequently H.v/ D d.`; t/ � d.`; v/ � 0, which is not a very useful
estimate. In order to be resilient to possibly bad choices of the vertex `, Goldberg
and Harrelson did not use only one vertex ` in the triangulation, but rather defined
a set of vertices L, which they called landmarks, and considered several possible
triangulations with respect to the vertices in L. To obtain a good estimate of
H.v/, they considered the maximum value obtained over all possible choices of
the landmark ` in L, as follows:

H.v/ D max
`2L

fd.`; t/ � d.`; v/g (4.1)

Now, it should be clear why the algorithm was called ALT, since it is based on
A* search, Landmarks and Triangle inequalities. Note that a proper selection of
landmarks is critical for the performance of the ALT algorithm. In particular, it
follows from Eq. (4.1) that the initial choice of landmarks has an immediate impact
on the quality and efficiency of the algorithm. For this reason, Goldberg and
Harrelson designed and engineered several heuristics for selecting landmarks and
evaluated them empirically. The landmarks that the ALT algorithm selected for the
North American road network around Seattle appear as diamond dots in Fig. 4.8c:
note that most of them are close to the edge of the road map. Once the landmarks are
chosen, to apply Eq. (4.1) we still need to know all distances from every landmark
to every vertex, which can be computed in an initial preprocessing phase. With
all this information precomputed and stored in memory, the algorithm is now able
to answer efficiently any single-pair shortest path query. The implementation used

4 The Quest for the Shortest Route 105

in the final competition of the DIMACS Implementation Challenge on shortest
paths was a bidirectional variant of the ALT algorithm, where two searches proceed
simultaneously (until they meet) from the two endpoints of the shortest path.

We observe that those recent algorithmic results, even though inherently bound
to the “Reign of Quantity”, using a metaphor loved by the French philosopher René
Guénon (1886–1951), represent the apex of a research path that started one morning
in 1956 in front of a coffee cup in Amsterdam. Although in recent decades research
has produced major technological breakthroughs and has been of significant impact
in everyday life, today’s faster shortest path algorithms are still descendants of that
famous common ancestor designed for the ARMAC demonstration, and preserve its
fundamental spirit and basic properties. On the other hand, that common ancestor
is in turn a descendant of an ancient thought, aimed at mimicking, and possibly
understanding, the deepest mechanisms underlying Nature and Nature’s ubiquitous
ability to find the shortest route.

4.10 Bibliographic Notes

The shortest path problem arises in many application areas, particularly in com-
munication and transportation networks. For this reason, it has been studied in
many disciplines, including computer science, operations research and discrete
mathematics. The original algorithm by Dijkstra is described in [30], while an
excellent survey on algorithms for shortest paths is contained in the textbook
by Ahuja et al. [4]. A basic ingredient for shortest path algorithms is the heap
data structure; a general treatment of heaps can be found in a classic algorithmic
textbook, such as the book by Cormen et al. [20]. The interested reader is referred
to [110] for the low-level details of the classic binary tree heaps by Williams, and
to [45] for a complete description of the Fibonacci heaps by Fredman and Tarjan.

Given their importance in many applications, shortest path algorithms have been
investigated not only from the theoretical but also from the experimental viewpoint.
In particular, a thorough experimental study of the practical performance of shortest
path algorithms was carried out by Cherkassky et al. [18]. Other empirical studies
on shortest paths were performed by Gallo and Pallottino [46], and by Divoky and
Hung [34]. Many other implementations and experimental evaluations of shortest
path algorithms were recently presented during the 9th DIMACS Implementation
challenge [26]. Among the new algorithms proposed in this Challenge, we mention
the algorithm by Sanders and Schultes [97] and the ALT algorithm by Goldberg and
Harrelson [50], which is based on A*, a famous search algorithm proposed by Hart
et al. [56].

Acknowledgements We thank Andrew V. Goldberg, Chris Harrelson, Haim Kaplan and Renato
F. Werneck for making available to us the images in Fig. 4.8.

Chapter 5
Web Search

Paolo Ferragina and Rossano Venturini

Abstract Faced with the massive amount of information on the Web, which
includes not only texts but nowadays any kind of file (audio, video, images, etc.),
Web users tend to lose their way when browsing the Web, falling into what
psychologists call “getting lost in hyperspace”. Search engines alleviate this by
presenting the most relevant pages that better match the user’s information needs.
Collecting a large part of the pages in the Web, extrapolating a user information
need expressed by means of often ambiguous queries, establishing the importance
of Web pages and their relevance for a query, are just a few examples of the difficult
problems that search engines address every day to achieve their ambitious goal.
In this chapter, we introduce the concepts and the algorithms that lie at the core of
modern search engines by providing running examples that simplify understanding,
and we comment on some recent and powerful tools and functionalities that should
increase the ability of users to match in the Web their information needs.

5.1 The Prologue

Just 10 years ago, major search engines were indexing about one billion Web pages;
this number has today exploded to about one trillion as reported in Google’s blog
by Alpert et al. [5]. Such growth is proportional to three orders of magnitude, thus
leading everyone to talk about the exponential growth of the Web. But this number
denotes only the amount of pages that are indexed by search engines and thus are
available to users via their Web searches; the real number of Web pages is much
larger, and in some sense unbounded, as many researchers observed in the past.
This is due to the existence of pages which are dynamic, and thus are generated
on-the-fly when users request them, or pages which are hidden in private archives,

P. Ferragina (�) � R. Venturini
Dipartimento di Informatica, Università di Pisa, largo B. Pontecorvo 3, 56123 Pisa, Italy
e-mail: ferragina@di.unipi.it; rossano@di.unipi.it

G. Ausiello and R. Petreschi (eds.), The Power of Algorithms,
DOI 10.1007/978-3-642-39652-6__5, © Springer-Verlag Berlin Heidelberg 2013

107

mailto:ferragina@di.unipi.it
mailto:rossano@di.unipi.it

108 P. Ferragina and R. Venturini

and thus can be accessed only through proper credentials (the so-called deep Web).
At the extreme, we could argue that the number of (dynamic) pages in the Web is
infinite, just take sites generating calendars.

Faced with this massive amount of information, which includes not only text but
nowadays any kind of file (audio, video, images, etc.), Web users tend to lose their
way when browsing the Web, falling into what psychologists call “getting lost in
hyperspace”. In order to avoid this critical issue, computer scientists designed in the
recent past some sophisticated software systems, called search engines, that allow
users to specify some keywords and then retrieve in a few milliseconds the collection
of pages containing them. The impressive feature of these systems is that the
retrieved pages could be located in Web servers spread all around the world, possibly
unreachable even by expert users that have clear ideas of their information needs.
In this chapter we will review the historical evolution and the main algorithmic
features of search engines. We will describe some of the algorithms they hinge on,
with the goal of providing the basic principles and the difficulties that algorithm
designers and software engineers found in their development. This will offer a
picture of the complexity of those systems that are considered as the most complex
tools that humans have ever built. A commented literature concludes the chapter
by providing pointers to several fundamental and accessible publications that can
help readers to satisfy their curiosity and understanding of search engines and, more
specifically, the wide and challenging research field known as Information Retrieval.

The following sections will cover all those issues, starting with an analysis of
two networks that are distinct, live in symbiosis, and are the ground where search
engines work: the Internet and the Web.

5.2 Internet and Web Graphs

As we saw in Chap. 2, a graph is a mathematical object formed by a set of nodes and
a set of edges which represent relationships between pairs of nodes. Founded in the
eighteenth century, Graph Theory has gained great importance in the last century as
a means to represent entities in relation to each other. Nowadays, Graph Theory has
further increased its importance being essential for the study of the Internet and its
applications (such as the Web).

A network of computers (hereinafter simply referred to as a network) is a set
of devices that send messages through electronic connections by means of cables,
fiber optics, radio or infrared links. In our abstraction of a network, connections
are represented with the edges of a graph whose nodes represent the devices. The
Internet is actually a network of networks: institutions may own many computers
which are connected to each other, but each institution enters the Internet as a
single unit. These units are called autonomous systems (ASs) and constitute the
nodes of the Internet graph. Each of these ASs could be either a user owning a
single computer, or a set of computers connected together within the same building,
or even very complex networks whose computers may be geographically far from

5 Web Search 109

A B

C

D

F

E

H
G

3
2

1

5

4

9

8
7

6

Fig. 5.1 The structure of the
Internet and the Web graphs.
Circles represent the
autonomous systems, and
edges marked with solid lines
represent the connections
between them. Rectangles
represent Web pages, and
edges marked with dashed
arrows represent the links
between them

each other. Internet Service Providers (ISPs) are examples of the latter typology of
ASs. ISPs are companies which regulate the traffic of messages on the Internet by
selling their services to other users.

Figure 5.1 shows a possible fragment of the Internet graph: nodes are drawn as
circles connected by edges which are represented by continuous lines. Notice that
edges can be traversed in both directions. A direct message from G to B , e.g., an
e-mail, could follow the path G � E � F � D � B . User G is the sender who pays
her service provider E , which regulates its costs with subsequent nodes. However,
the real scenario is much more complicated. The Internet is huge: even if we do
not know how many computers are connected (this question is indeed misplaced
because the network topology is constantly changing), we can estimate that this
number exceeds one billion, considering all the computers within the ASs. The
path followed by a message is not determined beforehand and may even change
during the transmission. This is a consequence of the enormous size and anarchistic
structure of the Internet, which grows and evolves without any centralized control,
and the inevitable continuous changes in the connections deriving from technical
or maintenance issues. This behavior has characterized the network since its birth
in the late 1960s and distinguishes the Internet from both telephone and electrical
networks.

Traditional telephone networks work by using a methodology called circuit
switching: two people talking on the phone are using the “channel” that has been
reserved for their communication. The two network nodes establish a dedicated
communication channel through the network before they start communicating. This
channel works as if the nodes were physically connected with an electrical circuit.
However, if something goes wrong, the communication is interrupted. The initial
idea for the Internet was to resort to a mechanism called message switching: the
routing of messages in the network is established node by node depending on the
location of the recipient and the current level of traffic. At each step, the current
node is responsible for choosing the next node in the path. As a side effect of this

110 P. Ferragina and R. Venturini

mechanism, a message sent to a close user may be sent through a path longer than
necessary. This method was soon replaced by a close-relative method called packet
switching, which is currently still in use. A (binary) message is divided into packets
of a fixed length; this length is reported at the beginning of each packet together
with its destination address. Sometimes it happens that packets of the same message
are routed thought different paths and reach the destination in a order that differs
from the original one. The recipient is then responsible for reordering the packets
to (re-)obtain the original message. This mechanism guarantees that a message is
always accepted by the network, even if it may take time before all of its packets
reach their final destination and the message can be reconstructed. In a telephone
network, instead, a phone number can be “busy” even if the recipient’s phone is
free, due to the saturation of the chain of connections which link the two locations
involved in the call because of other calls.1

Now let us see what we mean by Web (or www, which is the acronym for the
World Wide Web). Born in 1989 at CERN in Geneva and based on the known
concept of hypertext, the Web is a set of documents called pages that refer to
each other to refine or improve the same subject, or to draw a new subject in some
relation to the first one. The luck of the Web is inextricably linked to the Internet.
Pages of the Web are stored in the memories of computers on the Internet network,
so that users can freely consult this collection of pages by moving from one page
to another one via (hyper-)links, quickly and without leaving their PCs, regardless
of the location of the requested pages. Seen in this way, the Web is represented as a
graph whose nodes are pages and whose edges are the (hyper-)links between pairs
of pages. Edges in this graph are directed, meaning that each edge can be traversed
only in one predetermined direction. Figure 5.1 shows a portion of the Web graph
in which the orientation of an edge is specified by means of an arrow.

We should immediately establish some properties of this graph being very
important for search engines which collect, inspect and make Web pages available
to users. First, the graph is literally huge, and its topology varies continuously due
to the continuous creation or deletion of pages. Regarding the size of the graph,
sometimes we read unfounded and fanciful stories: it is reasonably sure that search
engines provide access to roughly hundreds of billions of pages. Nonetheless, the
number of existing pages is larger, though many of them may be not directly
available as we commented at the beginning of this chapter.2 Another important
observation is that, although the Web pages are stored in computers of the Internet,

1This phenomenon happened frequently years ago. Nowadays, it is rare due to the improvement
of transmission techniques. However, it can still happen if we call foreign countries or if we try to
make national calls in particular periods of the year (e.g., New Year’s Eve).
2We usually refer with indexable Web to the set of pages that could be reached by search engines.
The other part of the Web, called the deep Web, includes a larger amount of information contained
in pages not indexed by search engines, or organized into local databases, or obtainable using
special software. Nowadays an important area of research studies the possibility of extending the
functionalities of search engines to the information stored in the deep Web. In this direction can be
classified the initiative open data, see, for example, linkeddata.org.

5 Web Search 111

Fig. 5.2 Adjacency matrices I and W for the Internet and the Web graphs of Fig. 5.1, and the
square matrix W 2

these two graphs do not have any other relationship between each other. Referring
to the example of Fig. 5.1, page 1 has a link to page 2 but there is no direct link
between the two nodes A and B of the Internet (i.e., the computers containing these
pages). On the other hand, the two nodes C and F are connected but there are no
links between the pages contained therein. Another difference between these two
graphs is that the edges of the Web are directed, while those of the Internet are
not. Moreover, the graph of the Internet is strongly connected, i.e., there always
exists a path that connects any two nodes, unless a temporary interruption of some
connection does occur. This, however, does not happen in the Web graph where there
are nodes that cannot be reached by others. This may happen for several reasons:
a node cannot be reached by any other node since it has only outgoing links (nodes 3
and 7 in the figure), a node cannot reach other nodes since it has only incoming links
(node 4), or a node is completely disconnected since it has no links at all (node 9).
In the box below we present a deeper algorithmic elaboration about these important
characteristics.

Adjacency Matrix and Paths of a Graph

A graph G with n nodes can be represented in a computer through an
adjacency matrix M having n rows and n columns. Rows and columns are
in correspondence with nodes of G. The cell of M at row i and column
j , denoted with M Œi; j �, corresponds to the pair of nodes i and j . We set
M Œi; j � equal to 1 whenever G has an edge from node i to node j ; M Œi; j � is 0

otherwise. The Internet graph and the Web graph of Fig. 5.1 have, respectively,
the adjacency matrices I of size 8 � 8 and W of size 9 � 9. These matrices
are shown in Fig. 5.2.

Notice that any undirected graph induces an adjacency matrix which is
symmetric with respect to its main diagonal, because if the edge .i; j /

exists then so does the edge .j; i/, hence M Œi; j � D M Œj; i � D 1. We
observe that the Internet graph is undirected and, thus, matrix I is symmetric.

(continued)

112 P. Ferragina and R. Venturini

(continued)

For an example, edge A � C can be traversed in both directions and, thus,
I ŒA; C � D I ŒC; A� D 1. In directed graphs, as the Web graph, the matrix
may be asymmetric and so there exist entries such that M Œi; j � ¤ M Œj; i �.
In our example we have W Œ1; 2� D 1 and W Œ2; 1� D 1 because there are two
distinct edges going in both directions. However, we also have cases in which
only one edge between two nodes is present (e.g., we have W Œ1; 6� D 1 and
W Œ6; 1� D 0).

In mathematics the square of an n� n matrix M is an n� n matrix M 2 whose
cells M 2Œi; j � are computed by a way different than the standard product of
numbers. Each cell M 2Œi; j � is, indeed, obtained by multiplying the i th row
and the j th column of M according to the following formula:

M 2Œi; j � DM Œi; 1� � M Œ1; j � C M Œi; 2� � M Œ2; j � C : : : C M Œi; n�

� M Œn; j �: (5.1)

This formula has a deep meaning that we will illustrate through our example
matrix W of Fig. 5.2. Take W 2Œ6; 4�, which is equal to 1 because the sixth row
and the fourth column of W are, respectively, equal to Œ0 0 0 0 1 0 0 0 0� and
Œ0 0 1 0 1 0 0 0 0�. So that the formula above returns the value 1 since there
is a pair of multiplied entries (W Œ6; 5� in row 6 and W Œ5; 4� in column 4) that
are equal to 1.

W 2Œ6; 4� DW Œ6; 1� � W Œ1; 4� C W Œ6; 2� � W Œ2; 4� C : : : C W Œ6; 9�

� W Œ9; 4�

D0 � 0 C 0 � 0 C 0 � 1 C 0 � 0 C 1 � 1 C 0 � 0 C 0 � 0

C 0 � 0 C 0 � 0

D1

Interestingly, there is a deeper reason behind the value 1 obtained by
multiplying W Œ6; 5� and W Œ5; 4�. Since these two cells indicate that in the
Web graph there is one edge from node 6 to node 5 and one edge from node
5 to node 4, we conclude that there exists a path that goes from node 6 to
node 4 traversing exactly two edges. Therefore, each cell W 2Œi; j � indicates
the number of distinct paths from node i to node j that traverse exactly two
edges. We can understand this statement better by further examining other
entries of the matrix W 2. We have W Œ1; 2� D 1 but W 2Œ1; 2� D 0 because
there is an edge from node 1 to node 2 but there does not exist any path
of length 2 connecting these two nodes (see Fig. 5.1). Furthermore, we have

(continued)

5 Web Search 113

(continued)

W 2Œ2; 6� D 2 because the second row of W is Œ1 0 0 0 0 1 0 1 0� and its sixth
column is Œ1 1 0 0 0 0 0 1 0�:

W 2Œ2; 6� DW Œ2; 1� � W Œ1; 6� C W Œ2; 2� � W Œ2; 6� C : : : C W Œ2; 9�

� W Œ9; 6�

D1 � 1 C 0 � 1 C 0 � 0 C 0 � 0 C 0 � 0 C 1 � 0 C 0 � 0

C 1 � 1 C 0 � 0

D2

Here we find two pairs of 1s: W Œ2; 1� D W Œ1; 6� D 1 and W Œ2; 8� D
W Œ8; 6� D 1, meaning that the Web graph has two paths of length 2
connecting node 2 to node 6 (i.e., 2 � 1 � 6 and 2 � 8 � 6).

Following the same rule we can proceed in the calculation of successive
powers W 3, W 4, : : : of the matrix W . The entries of these matrices indicate
the number of paths of length 3, 4, : : : between pairs of nodes, and thus the
number of links that we must follow in order to move from one Web page
to another. For example, the elements of W 3 are obtained by resorting to
Eq. (5.1), as the product of a row of W 2 and a column of W (or vice versa).
We have thus:

W 3Œ7; 6� D 1�1C0�1C0�0C1�0C0�0C0�0C0�0C1�1C0�0 D 2

which corresponds to the two paths of length 3 from node 7 to node 6 (i.e.,
7 � 5 � 1 � 6 and 7 � 5 � 8 � 6).

Classical algorithms compute a power of a matrix by taking two powers with
smaller exponents and by applying Eq. (5.1) to one row and one column of
each of them. Since the number of these pairs is n2, and since the calculation
of Eq. (5.1) requires a time that is proportional to n (in fact, the expression
contains n multiplications and n � 1 additions), the total computation time
required by one matrix multiplication is proportional to (i.e., is order of)
n3. Of course, the actual time required by an algorithm also depends on
the computer and on the programming language in use. n any case, a cubic
behavior like this is undesirable: it means, for example, that if the number of
nodes of the graph doubles from n to 2n, the time grows from n3 to .2n/3 D
8n3, i.e., it becomes eight times larger. As we shall see in a following section,
computing powers of matrices is one of the main ingredients to establish an
order of importance (ranking) among Web pages. However, considering that
the Web graph has hundreds of billions of nodes, it is unfeasible to perform

(continued)

114 P. Ferragina and R. Venturini

(continued)

this computation on a single computer. The solution usually adopted consists
of dividing the work among many computers by resorting to techniques
of distributed computation, which are, however, much too complex to be
discussed here.

5.3 Browsers and a Difficult Problem

A Web site is a group of related Web pages whose content may include text, video,
music, audio, images, and so on. A Web page is a document, typically written
in plain text, that, by using a special language, specifies the components of that
page (e.g., text and multimedia content) and the way in which they have to be
combined, displayed and manipulated on a computer screen. A Web site is hosted
on at least one Web server and can be reached by specifying the address of one of its
pages. Each page has, indeed, its own numeric address which is, for convenience,
associated to a textual name which is easier to remember (called URL). For example,
www.unipi.it/index.htm is the name of the main Web page of the University of
Pisa, while its numeric address of the hosting Web server is 131.114.77.238.
A Web site is characterized by its domain name, e.g., unipi.it, and by its
main page, which is the starting point to visit the other secondary pages of the
site. The URLs of these pages are refinements of the domain name through a
hierarchical structure expressed by means of a path. For example, www.unipi.it/
research/dottorati is the address of the page that contains the list of PhD courses of
the University of Pisa.

A browser is a software that allows Web users to visualize a page on the screen of
a computer by specifying its URL. After the first Web browser developed at CERN
for the original Web, many commercial products were developed, e.g., Netscape
Navigator, Internet Explorer, Firefox, Chrome, and many others. In order to speed
up the access to Web pages by browsers and other software/applications, network
engineers have designed special nodes that collect large groups of page copies.
These nodes are called caches, and caching refers to the activity of storing pages
in them. Figure 5.3 shows a typical organization of connections and caches in the
Internet graph.

A key role in the network is played by proxies, which are computers serving as
a local cache within an AS. These computers keep copies of the most frequently
requested Web pages by users of the AS. These pages are typically news sites,
popular social networks, search engines, and so on. The cached pages are either
from outside the AS, or from inside the AS. In the example of Fig. 5.3, users A

and B reside inside the same AS, so if they have recently requested the same page,
then this page is probably stored in proxy 1 of their AS. In addition, proxies cache
Web pages which are stored in the AS and are requested frequently from computers

www.unipi.it/index.htm
www.unipi.it/research/dottorati
www.unipi.it/research/dottorati

5 Web Search 115

A

B

C

D

F

E

G

9

2

3

6
8

4

7

1

10

H5

11

Fig. 5.3 Several levels of caching for Web pages are shown. Circles labeled with A; B; : : : ; H

are computers with a browser which store in their memory the most recently accessed Web pages.
Regions enclosed with dotted lines are ASs, while rectangles represent their corresponding proxies.
Double rectangles represent routers, which are devices that route the messages flowing through the
network. Finally, diamonds represent large CDN subnetworks

outside that AS. In this way, these frequent requests are served immediately without
the need of traversing the whole AS. In the example of Fig. 5.3, if pages stored in the
computers A and B are requested frequently from other users of the network, copies
of them may be kept in proxy 1, which is responsible for answering requests coming
from outside. Caching can be structured in a hierarchical way, by introducing the
so-called Content Delivery Networks (CDN), which are subnetworks of computers
that provide caching at geographic level. It goes without saying that the same Web
page can be replicated in many proxies and CDNs, provided that this improves its
delivery to the requesting browsers and Web applications.

An interesting problem is that of distributing Web pages in the caches of the
network with the aim of minimizing the overall amount of time required to access
the Web pages that are more likely to be requested by users in a certain period of
time. As we will see, from an algorithmic point of view, this problem is practically
insolvable because all known solutions have exponential time complexity. In fact,
this problem belongs to a class of hard problems for which we can compute
efficiently only approximated solutions.3 We will support this claim by introducing
the well-known Knapsack Problem, discussed in Sect. 2.3.2. What is nice in this

3This class of problems, called NP-hard problems, is extensively discussed in Chap. 3.

116 P. Ferragina and R. Venturini

Object 1 2 3 4 5 6 7
Weight 15 45 11 21 8 33 16
Value 13 25 14 15 6 20 13

1 0 1 1 0 0 1

Fig. 5.4 An example of the Knapsack Problem: we have to choose a subset of objects that
maximizes their total value and satisfies a constraint on their total weight, which should be at most
C D 70. The last row represents the optimal subset f1; 3; 4; 7g, which is encoded by indicating
with a 1 an object included in the subset and with a 0 an object not included in it. The total weight
is 15C11C21C16 D 63 < 70, while the total value is 13C14C15C13 D 55. This is optimal
in that no other subset of weight smaller than 70 has a larger value

discussion is that, although these two problems appear very different, they turn out
to be highly related in terms of the time required to compute their solution.

Let us consider Fig. 5.4 in which we have seven objects, numbered from 1

through 7, and a knapsack of maximum capacity C D 70. For each object we
report its weight and its value (e.g., object 1 has weight 15 and value 13, object 2

has weight 45 and value 25, and so on). In the last row of the table we represent
a subset of objects by using a bit that indicates whether the corresponding object
has been selected (value 1) or not (value 0). We recall that the Knapsack Problem
identifies the subset of objects which maximizes the total value, provided that its
total weight is at most C . As already observed in Chap. 2, it is strongly believed that
this problem does not admit any solution which is more efficient than the one that
considers all possible subsets of objects and discards the ones having total weight
larger than C . Since the number of possible subsets of n objects is 2n (including the
empty one), this solution requires exponential time and thus it is unfeasible even for
a small number of objects.4

In the box below we will show the existing relation between the Knapsack
Problem and the problem of distributing Web pages in a cache (Cache Problem).
We observe that a more general formulation of the latter problem is more compli-
cated than the one presented here. For example, in real applications it is typical to
consider also the probability of accessing a certain page, the frequency of requests
arriving from each AS, the time variation of these quantities, and so on. However,
it suffices to show that the simplified problem is still hard in order to prove the
hardness of any more general formulation. In our case, it can be proved that
the Cache Problem is at least as hard as the Knapsack Problem. This proof is
called reduction and, specifically, consists of showing that whenever there exists
an algorithm that solves the Cache Problem in less than exponential time, the same
algorithm can be applied with simple changes to the Knapsack Problem and solve
it in less than exponential time too. Since this event is considered to be impossible,

4For example, for n D 20 objects we have 220 > 1 millions of subsets.

5 Web Search 117

one can reasonably assume that such a “surprisingly efficient algorithm” for the
Cache Problem does not exist; so this problem can be addressed only by means
of exponential solutions or, efficiently, by returning approximate solutions. Space
limitations and the scope of this chapter do not allow us to detail the reduction
that links the Cache Problem to the Knapsack Problem; rather we content ourselves
by showing a simpler result, namely, that an approximate solution for the Cache
Problem can be derived from an approximate solution to the Knapsack Problem.

The Cache Problem
Let us assume that the network has k ASs, denoted with AS1; AS2; : : : ; ASk,
n pages, denoted with p1; p2; : : : ; pn, and just one cache that stores copies
of Web pages for a total size of at most B bytes. Furthermore we assume
that each page is stored in its AS, that all pages are requested with the same
probability, and that all ASs access the same number of pages. As in the
Knapsack Problem, we define an array W of page weights so that W Œj � is
the size in bytes of the file representing page pj . It is a little bit harder to
define an array of “values” for the Cache Problem that mimics the array of
values in the Knapsack Problem. For this aim we use Aj to indicate the AS
owner of page pj ; we use d.i; j / to denote the distance, expressed in number
of hops, that separate the generic ASi from Aj ; and we use c.i; j / to indicate
the cost that ASi has to pay, in terms of number of hops, to obtain the page pj .
This cost may depend on the choice between placing or not placing the page
pj in the single cache we assumed to exist in the network. Indeed, if pj is in
the cache and the distance between ASi and the cache is smaller than d.i; j /,
we have c.i; j / < d.i; j /. In any other case, the value of c.i; j / is equal to
d.i; j /. We can then introduce the value u.i; j / D d.i; j / � c.i; j /, which
expresses the gain for ASi of having the page pj copied in cache. At this
point we are ready to define the value V Œj � of pj as the total gain of placing
pj in the cache, summing over all ASs: V Œj � D P

iD1:::k u.i; j /. Finally, the
“reduction” to the Knapsack Problem can be concluded by taking an auxiliary
array A to indicate the subset of pages to be cached.

At this point, we could solve the “synthetic” Knapsack Problem either
exactly in exponential time (by enumerating all subsets), or approximately
in polynomial time. In this second case, we could choose the objects (pages)
in order of decreasing ratio value (gain) versus weight (byte size) until the
capacity C of the knapsack (cache) is saturated. The behavior of this simple
algorithm is shown in Fig. 5.5. However there do exist solutions to the Cache
Problem that do not pass through this “algorithmic reduction”: the simplest
one consists of caching the most popular Web pages. Clearly, there do also
exist more sophisticated approximation algorithms that exploit knowledge
about the topology of the network and the frequency of distribution of the

(continued)

118 P. Ferragina and R. Venturini

Object 3 1 7 5 4 6 2
Weight 11 15 16 8 21 33 45
Value 14 13 13 6 15 20 25
Value/Weight 1:27 0:87 0:81 0:75 0:71 0:61 0:55

Fig. 5.5 The objects of Fig. 5.4 are sorted by decreasing values of the ratio V Œi �=W Œi �. The
heuristically chosen subset of objects is f3; 1; 7; 5g, its total weight is 50 and its total value is
46. Recall that the optimal subset has weight 63 and value 55, as shown in Fig. 5.4

(continued)

page requests. For example, the cache in a CDN Ci may give a larger priority
to a page pi having a high value of the product �j � d.i; j /, where �j is the
frequency of request for page pj .

5.4 Search Engines

Browsers are fundamental tools for navigating the Web, but their effective use
imposes that users clearly know their information needs and where the Web pages
matching them are located in the Web. However, it is common that a user has only
a partial knowledge of her information need, and wants to find pages through their
content without necessarily knowing their URL. Search engines are designed to
address this goal and are indispensable for finding information in the huge graph of
available Web pages. Bing, Google and Yahoo! are the three most famous search
engines available to Web users to match their information needs. They are based
on similar algorithmic principles, which are nevertheless implemented differently
enough to show, in response to the same user query, a different set of result pages.
Here we will neither provide a comparison of different search engines, nor we will
discuss how to implement effective user queries; rather we will limit ourselves to
the more instructive description of the algorithmic structure of any modern search
engine, detailing some of its components.

One of the key features of the search task is that it must be executed fast
over a huge set of indexed pages. To this aim, each search engine resorts to a
large number of computers grouped in different data-centers distributed around
the world. Although many companies are reluctant to reveal precise information
about their data-centers, it is estimated that each search engine deploys hundreds
of thousands of computers organized into subnetworks, each of which provides
different functions. We can distinguish these functions into two main categories
(detailed in the following pages): those intended for building a huge index of the

5 Web Search 119

Web pages, and those intended for resolving in the best and the fastest possible way
the queries submitted by the users.

In the first category, we can identify several important algorithmic steps: the
crawling of the Web, the analysis of the Web graph and the parsing of the crawled
pages, and finally the construction of an index containing all relevant information
to match efficiently the user queries. All these tasks are repeated at regular time
intervals in order to keep the index (and therefore the results provided to the user
queries) updated with respect to the continuous variations of the Web.

In the second category, we can also identify several important algorithmic steps
which are executed at each user query and mainly consist of consulting the current
index in order to discover the relevant pages for that query, ranking these pages in
order of relevance, and possibly applying some classification or clustering tools that
aim at offering different (and eventually more meaningful) views on the returned
results. All these steps have as ultimate goal the one of satisfying in the best and the
fastest way the information need hidden within the user queries.

A user query is typically formed by a sequence of keywords. The process that
leads the user to choose a specific set of keywords is critical since it significantly
influences the quality of the results reported by the search engine. It is clear that an
information need may be correctly settled by different groups of results. However,
the actual relevance of these groups depends on the user submitting the query and
her current information need, which may change, even drastically, from one user to
another, and indeed it can change even for the same user depending on her specific
interests at the time the query is issued. For example, the query Lufthansa for a user
may have a navigational goal because she wants to find the homepage of the airline,
a transactional goal because she might wish to buy a ticket, or an informational goal
because she is interested in gathering some information regarding the company. And
of course, the same user could issue queries at different times having different goals.

If the user is not completely satisfied by the results returned by the search engine,
she could refine her query by adding keywords, or she could more clearly specify her
intention by reformulating the query itself. However, this rarely happens: statistics
show that more than 80 % of the queries are formed by only two keywords and their
average number is around 2:5. Add to this that most users look at only the first page
of results. This behavior is driven by not only user laziness in composing selective
queries and browsing the returned results, but also in the intrinsic difficulty for users
to model their information needs by means of appropriate keywords.

Despite all these problems, modern search engines perform their tasks very
efficiently and provide very relevant results. Moreover, they are improving every
day, thanks to intensive academic and industrial research in the field. In the
following we will describe the salient operations performed by search engines
noticing that, not surprisingly, many algorithms usually employed are not publicly
known.

120 P. Ferragina and R. Venturini

5.4.1 Crawling

In the slang of Internet, the term crawling refers to the (un-)focused retrieval of a
collection of Web pages with the purpose of making them available for subsequent
analysis, cataloguing and indexing of a search engine. A crawler, also named spider
or robot, is an algorithm that automatically discovers and collects pages according
to a properly-designed traversal of the Web graph. The reader should not confuse
browsers with crawlers: the former retrieve and visualize specific pages indicated by
a user via their URL; the latter retrieve and collect pages which are automatically
identified via proper Web-graph visits. The following box details the algorithmic
structure of a crawler.

Crawling Algorithm
A crawler makes use of two data structures called queue and dictionary,
whose functionalities are close to the ones these terms assume in the context
of transports (a queue of cars) and linguistics (a dictionary of terms),
respectively. A queue Q is a list of elements waiting to be served. The element
that is placed at the head of Q is the next that will be served and, when this
happens, the element will be removed. In this way, the second element will
become the new head of the queue. This operation is denoted by Q ! e and
indicates that element e is released outside. A new element is always inserted
at the end of Q, and it will be served after all elements currently in Q. This
operation is denoted by e ! Q.

A dictionary D is a set of elements (not necessarily words in some natural
language) waiting to be examined. In this case, however, there is more
flexibility than in the queue regarding the operations that can be supported.
What concerns us here is, indeed, that there is an efficient way to determine
whether a particular element e is already in the dictionary D and possibly
remove it (denoted by D ! e). The dictionary is built by means of insertions
of new elements (denoted by e ! D). Notice that, since we wish to perform
fast searches in the dictionary D, we have to carefully insert and organize the
elements into it.

Now we will introduce a (necessarily simplified) crawling algorithm whose
fundamental steps are reported in Fig. 5.6. We first notice that the owner of
a site could forbid the crawling of some Web pages, by adding a special file
called robots.txt, which specifies which pages can be downloaded and
which cannot.

The crawling algorithm deploys a queue Q containing addresses of Web
pages to be processed, two dictionaries Durls and Dpages containing, respec-
tively, the addresses of the Web pages already processed and an archive of

(continued)

5 Web Search 121

(continued)

information extracted from those pages. Initially, both Durls and Dpages are
empty, while Q contains a set of addresses that are the starting seeds of the
crawling process. Not surprisingly, the choice of these initial seed pages is
fundamental to quickly reach the most relevant part of the Web. Seed pages are
usually Web portals (e.g., DMOZ, Yahoo!), educational sites (e.g., Wikipedia
and universities), news and social-network sites, since they contain pages that
point to important and popular resources of the Web.

The algorithm of Fig. 5.6 is not trivial. When a new link U 0 is found in a
crawled page, its address is inserted in Q ready to be processed in the future.
This is done only if the link U 0 is not already present in Durls, which means
that its text T .U 0/ has not been downloaded yet. Notice that the same link
U 0 may be contained in several pages which are discovered by the crawling
algorithm before that U 0’s content is downloaded. Thus, this check ensures
that U 0 will be downloaded and inserted in Dpages only once.

Obviously, state-of-the-art crawling algorithms are more complex than the
one presented here, and have to include sophisticated functionalities and
optimizations. One of the most important issues regards the fact that the
Web changes at such high rate that, as estimated, we have a 30 % renewal
every year. So the crawlers must usually be trained to follow the more rapid
variations (think, e.g., news sites), and designed to be as fast as possible
in making “one scan of the Web” in order to keep the search engine index
as fresh as possible. Moreover, the crawler should reduce the interactions
with the crawled sites as mush as possible, in order to not congest them
with continuous requests, and it should make use of advanced algorithmic
techniques in distributed computing and fault tolerance, in order to ensure that
it will never stop its operations. Therefore, the design and development of an
efficient and effective crawler is much more complicated than what a reader
could deduct from the algorithm reported in Fig. 5.6. The reader interested in
those algorithmic details may look at the literature reported in Sect. 5.6.

We conclude this section by observing that the design of a crawler has to
be optimized with respect to three parameters: the maximum number N of
Web pages that can be managed before its algorithms and data structures
are “overwhelmed” by the size of Durl; the speed S with which the crawler
is able to process pages from the Web (nowadays crawlers reach peaks of
thousands of pages per second); and, finally, the amount of computational
resources (CPU, memory and disk space) used to complete its task. Clearly,
the larger are N and S , the higher is the cost of maintaining the queue Q and
the dictionaries Durl and Dpages. On the other hand, the more efficient is the
management of Q, Durl and Dpages, the lower is the amount of computational
resources used and the consumption of energy. The latter is nowadays an
extremely important issue, given the high number of computers used to
implement the modern search engines.

122 P. Ferragina and R. Venturini

Crawling Algorithm

• Input: {u1; : : : ;uk} an initial set of addresses of Web pages;
• Output: Durls and Dpages.

1. Insert u1; : : : ;uk into the queue Q;
2. Repeat until Q is non-empty
3. Extract Q → u the next page-address u from Q;
4. If u �∈ Durls, then
5. Request the file robots.txt from the site of u;
6. If this file allows to access page u, then
7. Request the text T (u) of the page u
8. Insert u → Durls
9. Insert T (u) → Dpages

10. Parse T (u), and for any link u′ in T (u)
11. if u′ �∈ Dpages, add u′ → Q

Fig. 5.6 A simple crawler using the urls fu1; : : : ; ukg as initial seed set

5.4.2 The Web Graph in More Detail

At this point it is natural to ask how large the Web graph is and what is the structure
of its interconnections, since the effectiveness of the crawling process is highly
dependent on these characteristics.

We have already noticed that the Web is huge and rapidly changing. There is,
therefore, no hope that a crawler can collect in Dpages all the existing Web pages;
so it has necessarily to be resigned to obtaining only a subset of the Web which,
hopefully, is as broader and more relevant as possible. In order to optimize the
quality of the collected pages, the crawler has to perform a visit of the graph which
is inevitably more focused and complex than the one used in Fig. 5.6. For this
purpose, the crawler uses a more sophisticated data structure, called priority queue
(see Chap. 4), that replaces the simple queue Q and extracts its elements depending
on a priority assigned to each of them. In our case the elements are Web pages
and the priorities are values related to the relevance of those pages. The higher the
priority, the sooner the crawler will process the page and download its neighbors.
The objective is that of assigning low priority to pages with a lower relevance or that
have been already seen, or to pages that are part of a site which is too large to be
collected in its entirety. To model this last case, we take into account the depth of a
page in its site as a measure of its importance. The depth is measured as the number
of forward slashes in its URL address (for example, the page http://www.unipi.it/
ricerca/index.htm is less deep than the page http://www.unipi.it/ricerca/dottorati/
index.htm, and thus is assumed to be more important in that site and hence crawled
first). Recent studies have shown that the depth and the number and quality of the
links incoming and outgoing from a page are effective indicators for the assignment
of these priorities.

http://www.unipi.it/ricerca/index.htm
http://www.unipi.it/ricerca/index.htm
http://www.unipi.it/ricerca/dottorati/index.htm
http://www.unipi.it/ricerca/dottorati/index.htm

5 Web Search 123

Fig. 5.7 The characteristic “bow” shape of the Web graph (1999). The subgraphs SCC, IN, OUT,
tendrils and tubes, each consist of about one quarter of the nodes in the total graph

The structure of the graph significantly influences the behavior of the crawler.
We consider two extreme examples that make this fact more evident. If the graph
was made up of many disconnected components, the seed set of the crawler should
contain at least one address for each of them; if the graph was instead made up of
one (long) chain of pages, the seed set should contain the heading pages of this chain
in order to guarantee that the graph visit traverses most of the Web. In November
1999 a study, now classic, analyzed the structure of a subgraph of the Web of that
time formed by about 200 million pages. It turned out that this portion of the Web
did not recall the two previous extreme examples, but it consisted of four main
components shown in Fig. 5.7, all having about the same size: a strongly connected
component, denoted SCC and called core,5 a subgraph IN with paths that end up
in pages of SCC, a subgraph OUT with paths that start at SCC, and a number of
tendrils and tubes, namely pages linked in chains that do not pass through SCC
or are completely isolated. These findings were later confirmed by studies carried
out on larger and more recent samples of the Web: they actually showed not only
that the sampled graph always has the form indicated in Fig. 5.7 and its components
have about the same sizes, but also that the graph structure has some fractal property
which leads any sufficiently large subgraph to have the same structure as its original
containing graph. These surprising results are nowadays justified by mathematical
studies on the laws that regulate the growth of the networks.

5Recall that a graph is strongly connected if and only if there exists a path that connects any pair
of its nodes.

124 P. Ferragina and R. Venturini

This structure of the Web graph suggests to insert in the seed set of the crawler
pages chosen from IN or SCC. The problem is how to efficiently determine
candidates from these two sets of nodes before a visit of the Web graph is
performed. If candidates are chosen randomly from the Web, then we would have
a probability 1=2 that each selected page is either in IN or in SCC, given that
each of these sets is 1=4 of the total graph. Thus, it would be enough to choose
a small number of candidates to be reasonably sure to start the crawling from IN or
SCC. Unfortunately, this strategy is difficult to implement because there are neither
available list of all the addresses of existing pages nor it is clear how to perform
uniform sampling without this list. So the typical choice of existing crawlers is the
simple one sketched above, and consists of taking as seeds the portals and any other
sites that can lead to good pages of the Web and probably lie in IN or SCC.

5.4.3 Indexing and Searching

The pages collected by the crawler are subsequently processed by an impressive
number of algorithms that extract from them a varied set of information that is stored
in proper data structures, called indexes, allowing it to efficiently answer the user
queries. Entire subnets of computers are dedicated to this significant task in order to
perform it in a reasonable amount of time.

Hereafter we will talk about documents, instead of pages, and with this term we
will refer to the content of a Web page p plus some other information about p itself
collected during the crawling process. An example of such additional information
is the so-called anchor text, which corresponds to a portion of text surrounding a
link to p in another page. Given that page p may have many incoming links, page p

may have many anchor texts written by authors who are possibly different from the
author of p. An anchor text may be therefore a particularly reliable and important
piece of information because, presumably, it describes succinctly the content of p.
Not surprisingly, search engines give great importance to anchor texts and use them
to extend the content of Web pages, because they typically use a different set of
words to describe their content and thus allow search engines to extend the results
of a query.

For example, let us assume that a page p contains pictures of various species
of insects but does not contain the word “insect(s)” in its body, or even does not
contain any text at all, consisting just of that picture. Nevertheless it is possible
that a passionate entomologist wrote his own Web page with a link to page p and
annotated this link with the phrase “beautiful images of insects”. This piece of text
is an anchor for p, so the words in “beautiful images of insects” are added to those
found in p and are considered highly characteristic for this page. Therefore a query
“insects” would find p, even if it does not contain that word.

Unfortunately, as often happens in the Web, a valuable use of information is
followed by a malicious one of it. In 1999 the first result reported by Google for the

5 Web Search 125

query “more evil than Satan” was the homepage of Microsoft. This phenomenon
was eventually the result of the creation of many pages containing links to the
homepage of Microsoft with anchor text “more evil than Satan”. This awkward
situation was resolved by Google in a few days, but a similar accident happened
again in November 2003 with the query “miserable failure” and the page returned by
Google as the first result was the homepage of the former U.S. President George W.
Bush. This type of attack is nowadays called Google bombing, and it was repeated
many other times in languages other than English.

Once the search engine has crawled a huge set of documents, it analyzes them to
extract the terms contained therein and inserts these terms in a dictionary. Checking
the presence of query terms in this dictionary is the first step performed during a
query resolution. We observe that a query term may be not just a word, but any
sequence of alphanumeric characters and punctuations because it may represent
telephone numbers (911 or 1-800-237-0027), abbreviations (e-ticket), models of
our favorite devices (N95, B52, Z4), codes of university courses (AA006), and
so on. We cannot go into the details of efficient implementations of dictionary data
structures, but we observe here that it is unfeasible to implement keyword searches
through a linear scan of the dictionary, because this would take too much time.6 It is
thus crucial to have appropriate algorithms and data structures to manage efficiently,
both in time and space, these numerous and long sequences of characters. One
approach could be the dichotomous search algorithm presented in Fig. 2.24; more
efficient solutions are known, mainly based on tries and hash tables, so we refer the
reader to the literature mentioned at the end of this chapter.

The dictionary is just a part of the mass of information extracted by a
search engine from the crawled documents, during the so-called indexing phase.
The overall result of this phase is the construction of a data structure, called
an inverted list, which is the backbone of the algorithms answering the user
queries. An inverted list is formed by three main parts: the above dictionary of
terms, one list of occurrences per term (called posting list), plus some additional
information indicating the importance of each of these occurrences (to be deployed
in the subsequent ranking phase). The word “inverted” refers to the fact that term
occurrences are not sorted according to their position in the text, but according to
the alphabetic ordering of the terms to which they refer. So inverted lists remind the
classic glossary present at the end of a book, here extended to represent occurrences
of all terms present into a collection of documents.

The posting lists are stored concatenated in a single big array kept in mem-
ory. The URLs of the indexed documents are placed in another table and are

6Several experimental results have shown that the number n of distinct terms in a text T follows a
mathematical law that has the form n D kjT j˛ , with k equal to a few tens, jT j being the number of
words of the text, and ˛ approximately equal to 1=2. The actual size of the Web indexed by search
engines is hundreds of billions of pages, each with at least a few thousand terms, from which we
derive n > 10 � 106 D 107. Thus, the dictionary can contain hundreds of millions of distinct
terms, each having an arbitrary length.

126 P. Ferragina and R. Venturini

U (Urls)D (Dictionary)
Term Post docID Web Address

: : :: : :
foot : : : 50 www.nfl.com
football 90 : : :
footing : : : 100 www.bbc.co.uk/football
footnote : : :: : :

: : : 500 www.afl.com.au
: : :

P (Posting Lists)
i 1 2 3 90 91 92 93 94
P 50 1 5 100 3 15 17 500 2 15 20 #

Fig. 5.8 Indexing by using
inverted lists. From the
dictionary D we know that
the list of documents
containing the term “football”
starts at position 90 in the
array P of posting lists. The
term “football” is contained
in the Web pages whose
docID is 50, 100, 500, and
whose URL address is
reported in table U

succinctly identified by integers, called docIDs, which have been assigned during
the crawling process. The dictionary of terms is also stored in a table which contains
some satellite information and the pointers to the posting lists. Of course, the
storage of all terms in the documents impacts the total space required by the index.
Previously, software engineers preferred to restrict the indexed terms to only the
most significant ones; nowadays, search engines index essentially all terms extracted
from the parsed documents because advances in data compression allowed engineers
to squeeze terms and docIDs in reduced space and still guarantee fast query
responses. Actually, search engines also store the positions of all term occurrences in
each indexed document because this information is used to support phrase searches
and to estimate the relevance of a document with respect to a query, based on the
distance between the query terms in that document. It is evident that such a refined
set of information has huge size and thus necessitates sophisticated compression
techniques. The literature reports several studies about this issue, nonetheless the
actual compressors adopted by commercial search engines are mostly unknown.

Figure 5.8 illustrates the structure of an inverted list. Each term t (“football”
in the example) has associated a subarray of P which stores, in order, the docID
of a document d containing term t (the first document in the example is 50), the
number of times that t occurs in d (1 in the example), the position in d of each of
these term occurrences (position 5 in the example). The posting list of t ends with a
terminator #. From the figure we notice that the term t D football is contained in
document 50 at one single position, i.e., 5; in document 100 the term occurs in three
positions (15, 17 and 25); in document 500 it occurs in two positions (15 and 20).
It is convenient to store the docIDs of each posting list in increasing order (50, 100,
500 in the example) because this reduces the space occupancy and the time required
to solve future queries. In this case each docID can be stored as the difference with
respect to its preceding docID. The same method can be used to succinctly store
the positions of the occurrences of term t in document d . So, in the posting list of
Fig. 5.8, we can represent the sequence of docIDs 50 100 500 as 50 50 400: the
first 50 is exactly represented, since it has no preceding docID, whereas we have
100 � 50 D 50 and 500 � 100 D 400 for the next two docIDs. By also inserting the

5 Web Search 127

occurrences of the term, encoded similarly, the compressed posting-list of the term
“football” becomes:

50 1 5 50 3 15 2 8 400 2 15 5 #:

The original posting list is easily reobtained from the compressed one by a simple
sequence of additions. We are speaking about “compression” because the obtained
numbers are smaller than the original ones, so we can squeeze the total space usage
by means of appropriate integer coders that produce short bit sequences for small
integers.

As we anticipated above, the order of the docIDs in the posting lists is important
also to efficiently answering queries that consist of more than one keyword. Imagine
that a user has formulated a query with two keywords, t1 and t2 (the extension to
more keywords is immediate). Solving this query consists of retrieving the posting
lists L1 and L2 of docIDs referring to t1 and t2, respectively. As an example,
take L1 D 10 15 25 35 50 : : : # and L2 D 15 16 31 35 70 : : : #, where
we are assuming to have already decompressed the lists. Now the problem is to
identify the documents that contain both t1 and t2 (namely, the elements in common
to both the two posting lists). The algorithm is deceptively simple and elegant;
it consists of scanning L1 and L2 from left to right comparing at each step a pair
of docIDs from the two lists. Say L1Œi � and L2Œj � are the two docIDs currently
compared, initially i D j D 1. If L1Œi � < L2Œj � the iterator i is incremented,
if L1Œi � > L2Œj � the iterator j is incremented, otherwise L1Œi � D L2Œj � and thus a
common docID is found and both iterators are incremented. If we let n1 and n2 be
the number of elements in the two lists, we can realize that this algorithm requires
time proportional to n1 C n2. A each step, indeed, we execute one comparison and
advance at least one iterator. This cost is significantly smaller than the one required
to compare each element of L1 against all elements of L2 (which is n1 � n2),
as would happen if the lists were not sorted. Since the values of n1 and n2 are on
the order of some hundreds of thousands (or even more for the common terms), the
latter algorithm would be too slow to be adopted in the context of a search engine
answering millions of queries per day.

5.4.4 Evaluating the Relevance of a Page

Since user queries consist of a few keywords, the number of pages containing these
keywords is usually huge. It is thus vital that a search engine sorts these pages
and reports the most “relevant” ones in the top positions to ease their browsing
by the user. However, an accurate characterization of what is the “relevance” of a
Web page has a high degree of arbitrariness. Nonetheless, this is probably the most
important step in modern search engines, so that a bunch of sophisticated algorithms
have been proposed to efficiently quantify that relevance. This step goes under the
name of ranking, and its solution represents the main point of distinction between

128 P. Ferragina and R. Venturini

the major known search engines. It is indeed not exaggerated to affirm that one of
the key ingredients that enabled Google to achieve its enormous popularity was its
algorithm for ranking the pages shown to the user, called PageRank (see below for
details).7

Nowadays the relevance of a page p is measured by combining several
parameters: the type and the distribution of the occurrences of the query-terms
in p, the position of p in the Web graph and its interconnections with other pages,
the frequency with which Web users visit p as a result of a user query, and many
other factors, not all revealed by search engines. In particular, it is known that
Google uses about 100 parameters! We present below the two most important
measures of relevance for Web pages known in the literature, prefacing them with
some considerations that will allow us to understand their inspiring motivations.

It is natural to think that the relevance of a term t for a document d depends
on the frequency TFŒt; d � of occurrence of t in d (called Term Frequency), thus,
on the weight that the author of d has assigned to t by repeating this term several
times in the document. However, considering only the frequency may be misleading
because, for example, the articles and prepositions of a language are frequent in
texts without characterizing them in any way. Thus, it is necessary to introduce a
correction factor which also takes into account the discriminative power of a term
which is very low for secondary linguistic elements. However, the situation is more
complicated, since a term like “insect” may be discriminant or not, depending on the
collection of documents in its entirety: “insect” is unusual and probably relevant for
a collection of computer-science texts, whereas it is obvious and therefore irrelevant
for a collection of entomology texts. It is therefore crucial to consider the rarity of a
term in the collection by measuring the ratio between the number ND of documents
in the collection and the number N Œt� of documents containing the term t . The rarer
the term t , the larger the ratio ND=N Œt�, and thus t is potentially more discriminative
for the documents in which it is contained. Usually this ratio is not directly used to
estimate the discrimination level of t , but it is mitigated by applying the logarithmic
function. This defines the parameter IDFŒt � D log2.ND=N Œt�/, which is called the
Inverse Document Frequency. In this way, the measure is being not too sensitive to
small variations in the value of N Œt�. On the other hand, it is not always true that a
rare word is very relevant for the document d . For example, the presence of the word
may be caused by a typing error. Therefore, term frequency and inverse document
frequency are combined to form the so-called TF-IDF measure of relevance of a
term in a document. This combination was proposed in the late 1960s and is given
by the formula W Œt; d � D TFŒt; d � � IDFŒt �. Notice that if t is, say, an article,
it appears frequently in almost all the documents in the collection. Thus, its ratio
ND=N Œt� is very close to the value 1 and its logarithm is close to the value 0, thus
forcing a small value of W Œt; d �. Similarly, a term typed incorrectly will have a

7Google trusts so much in its ranking algorithm that it still shows in its homepage the button “I’m
feeling lucky” that immediately sends the user to the first ranked page among the results of her
query.

5 Web Search 129

small value for TF, thus forcing again a small value of W Œt; d �. In both cases then
the term relevance will be correctly evaluated as not significant. Numerous linguistic
studies have corroborated the empirical validity of the TF-IDF weight which is now
at the basis of any information retrieval system.

The first generation of search engines, such as Altavista, adopted the TF-IDF
weight as a primary parameter to establish the importance of a Web page and sorted
the query results accordingly. This approach was effective at the time in which the
Web content was mainly restricted to government agencies and universities with
authoritative pages. In the mid-1990s the Web was opened to the entire world
and started to become a huge “shopping bazaar”, with pages composed without
any control in their content. All this led some companies to build “rigged” pages,
namely pages that contained, in addition to their commercial offerings, also the
set of properly concealed keywords that frequently appeared in user’s queries. The
net aim was to promote the relevance of these pages, even in other contexts. Thus,
it was evident that the textual TF-IDF weight alone could not be used to assess the
importance of a page, but it was necessary to take into account other factors specific
to the Web graph.

Since the mid-1990s several proposals came from both academia and industry
with the goal of exploiting the links between pages as a vote expressed by the
author of a page p to the pages linked by p. Among these proposals, two ranking
techniques gave rise to the so-called second generation search engines: the first
technique, called PageRank, was introduced by the founders of Google, Larry Page
and Sergey Brin, and the second technique, called HITS (Hyperlink Induced Topic
Search), was introduced by Jon Kleinberg when he was at IBM. In PageRank each
page is assigned with a relevance score which is independent of its textual content,
and thus of the user query, but depends on the Web-graph topology. In HITS each
page is assigned with two relevance scores which depend on the topology of a
subgraph selected according to the user query. Although very different, PageRank
and HITS have two common features: they are defined recursively, so the relevance
of a page is computed from the relevance of the pages that are linked to it; they
involve computations on very large matrices derived from the structure of the Web
graph, so they need sophisticated mathematical tools (readers less familiar with
linear algebra can jump to Sect. 5.4.6).

5.4.5 Two Ranking Algorithms: PageRank and HITS

PageRank measures the relevance of a page p according to its “popularity” in the
Web graph, which in turn is computed as a function of the number and origin of
links that point to p. In mathematical terms, the popularity R.p/ is computed as the
probability that a user will reach page p by randomly walking over the Web graph,
traversing at each step one of the links outgoing from the currently visited page,
each selected with equal probability. Let p1; : : : ; pk be the pages having at least one
link to p, and let N.pi/ be the number of pages linked by pi (i.e., the number of

130 P. Ferragina and R. Venturini

outgoing links from pi in the Web graph). The basic formula for the calculation of
R.p/ is the following:

R.p/ D
X

iD1:::k

.R.pi/=N.pi//: (5.2)

Notice that only the pages having a link to p directly contribute to the value of
R.p/, and moreover, this contribution is proportional to the relevance of these pages
scaled by their number of outgoing links. The ratio underlying this formula is that
if a page pi with a certain relevance R.pi / points to p, it increases the popularity
of p, but this increment should be equally shared among all the pages to which pi

points.
It is evident that the formula is recursive, and its computation presents some

technical problems because it requires us to specify the initial value of R.p/, for all
pages p, and to indicate how to deal with pages that do not have either incoming
or outgoing edges. To address these two issues, we consider a slightly different
formula that introduces a correction factor taking into account the possibility that
a user leaves the link-traversal and jumps to a randomly chosen page in the Web
graph. This change allows the random walker to not remain stacked into a page that
has no outgoing links, or to reach a page even if it has no incoming links. Therefore,
the formula becomes:

R.p/ D d
X

iD1:::k

.R.pi/=N.pi// C .1 � d/=n; (5.3)

where n is the number of pages collected by the crawler and indexed by the search
engine, and d is the probability of continuing in the link-traversals, whereas .1 �
d/ is the complement probability of jumping to a randomly chosen page in the
crawled graph. In the extreme case that d D 0, all pages would obtain the same
relevance R.p/ D 1=n, while in the case of d D 1 the relevance R.p/ would
entirely depend on the structure of the Web graph and it would show the problems
mentioned above. Experiments have suggested taking d D 0:85, which actually
attributes more importance to the relevance that emerges from the structure of the
Web.

The real computation of R.p/, over all pages p, is performed by resorting to
matrix operations. We have already seen that the Web graph may be represented by
a matrix W whose powers W k indicate the number of paths of length k between
pairs of nodes in the graph (see box Adjacency matrix and paths of a graph). For
this reason, we introduce a matrix Z of size n � n, whose elements have value
ZŒi; j � D d � W Œi; j � C .1 � d/=n. The value ZŒi; j � represents the probability
that a random walker traverses the link from pi to pj , while the matrix-powers Zk

represent the probability that paths of length k are traversed by that random walker.
We can also represent the relevance of the pages in vector form: RŒi� is the

relevance of page pi ; and use the notation RkŒi � to denote the relevance of page pi

5 Web Search 131

after k iterations of the algorithm. At this point we can compute the configurations
for all Rk as:

R1 D R0 � S; R2 D R1 � Z D R0 � Z2; : : : ; Rk D R0 � Zk: (5.4)

This formula is related to a deep mathematical theory known as Markov’s chains,
which is, however, too difficult to be discussed here. We note that this theory
guarantees that the limit value for RkŒi �, when k ! 1, equals the probability
that a random walker traverses page pi , and it also guarantees that this limit value
does not depend on the initial conditions R0, which can then be assigned arbitrarily.

Obviously, the calculation indicated in Eq. (5.4) is not trivial due to the size of the
matrices involved, which are indeed huge since they consist nowadays of hundreds
of billions of pages and hence have a total size of at least 25 � 1020 elements!
However, the computation of Rk is simplified by the fact that we do not need to care
about the exact values of its elements, since it suffices to determine only their order:
if R.p1/ > R.p2/, then page p1 is more important than page p2. Therefore, we can
stop the above computation whenever the values of Rk’s components are sufficiently
stable and their order can be determined with some certainty. Experimental tests
showed that about 100 iterations suffice.

We conclude the discussion on PageRank by recalling that it induces an ordering
among pages which is a function only of the graph structure and thus it is
independent of the user query and page content. Therefore, PageRank can be
calculated at the indexing phase, and deployed at query time in order to sort the
result pages returned for a user query. Many details on the current version of
PageRank are unknown, but numerous anecdotes suggest that Google combines this
method with TF-IDF and a 100 other minor parameters extracted automatically or
manually from the Web.8

Let us study now the HITS algorithm, which is potentially more interesting than
PageRank because it is query dependent. For a given query q, it retrieves first the
set P of Web pages that contain all query terms, and then it adds those pages that
point to or are pointed to by pages in P . The resulting collection is called the base
set and contains pages that are related to q either directly (because they contain the
query terms) or indirectly (because they are connected to a page in P). The situation
is shown in Fig. 5.9a.

A (sub-)graph is then built by setting the pages in the base set as nodes and the
links between these pages as edges of the (sub-)graph. For each node, we calculate
two measures of relevance, called authority and hubness scores. The first score,
denoted with A.p/, measures the authoritativeness of page p relative to the query q.

8In a recent interview, Udi Manber (VP Engineering at Google) revealed that some of these
parameters depend on the language (ability to handle synonyms, diacritics, typos, etc.), time (some
pages are interesting for a query only if they are fresh), and templates (extracted from the “history”
of the queries raised in the past by the same user or by her navigation of the Web).

132 P. Ferragina and R. Venturini

base

P

p

z1

z3

z2
y2

y1

y4

y3

a b

Fig. 5.9 (a) The set P of pages that contain the terms of a query q, and its base set; (b) the pages
zi and yi that contribute to determine respectively the authority and the hubness score of a page p

The second score, denoted with H.p/, measures how much the p’s content is a good
survey for the query q (i.e., a directory that points to many authoritative pages on the
subject). This way, a page p having a large value of A.p/ is an authority for q, while
a large value of H.p/ implies that p is a hub for q. Computing these two measures
follows their intuitive meanings: a page p is a good hub (and, thus, the value H.p/

is large) as p points to many authoritative pages; a page p is a good authority (and,
hence, the value of A.p/ is large) as more good hubs point to p. We can formalize
the previous insights with the following two formulas:

A.p/ D P
iD1:::k H.zi /I

H.p/ D P
iD1:::k A.yi /;

(5.5)

where z1; : : : ; zk denote the pages that point to p, and y1; : : : ; yh denote the pages
pointed to by p (see Fig. 5.9b). Similarly to what was done for the PageRank,
we can compute the two scores by resorting matrix computations. We then define the
adjacency matrix B of the graph induced by the base set, and we compute the vectors
A and H with the formulas (5.5) via matrix computations involving B . These
computations are similar to the ones performed for PageRank with two essential
differences. The first concerns the size of the matrices, which is now moderate
since B usually consists of only a few thousands of nodes. The second is that the
calculation has to be executed on-the-fly at query time because B is not known in
advance, and thus the values of A and H cannot be precalculated. This represents a
strong limitation for the application of this method on the Web, and in fact HITS was
originally proposed for search engines operating on small collections of documents
and for a limited number of users (e.g., on a company intranet). Another limitation of
this approach resides in its small robustness to spam (see Sect. 5.4.6); for this reason
in the literature this issue got some attention with many interesting proposals.

5 Web Search 133

5.4.6 On Other Search Engine Functionalities

Among the other operations that a search engine is called to perform, the presenta-
tion to a user of the results of her query has great importance. Search engines show,
for each result page, a short textual fragment, known as a snippet, which represents
the context surrounding the query terms in that page. Other search engines offer also
the possibility of viewing a copy of a result page as it was retrieved by the crawler.
This is particularly useful whenever the link returned for a result page is broken, due
to the fact that this page was removed from the Web since it was crawled. The copy
of this page can thus be useful to retrieve the indexed page, even if it is no longer
present in the Web.

We emphasize that the results of search engines are sometimes corrupted with
sophisticated techniques, which fraudulently increase the relevance of certain pages
to let them appear among the first results for a user query. This is known as
spamming and consists of constructing proper subgraphs of the Web that artificially
increase the relevance of the fraudulent pages. Other forms of spamming are more
subtle. One technique, known as cloaking, is adopted by fraudulent servers to mask
the real content of their pages and thus make them the result of queries which are not
related to their content. The cloaking idea makes servers return to the search engine
some good content taken, for example, from Wikipedia at each crawling request.
If the artifact is relevant for a user query, the search engine will then display a
snippet appropriate and interesting for the user and referring to a Wikipedia page.
However, the page that appears to the user after clicking on the link shown in the
snippet is totally different and possibly contains irrelevant (if not offensive) content.

Certainly, an exhaustive discussion on spamming methods cannot be addressed
in this short chapter. However, it is interesting to note that spamming has a large
reach, as it is estimated that more than 20 % of Web pages consist of artifacts
that endanger the reputation and usefulness of search engines. In all their phases,
consequently, search engines adopt sophisticated anti-spam algorithms to avoid the
gathering, the indexing and the reporting of these artifacts. As for all the previous
problems, the solutions currently employed by commercial search engines are only
partially revealed, in part to make the job of spammers more difficult.

We finally remark that the goal of search engines is moving toward the
identification of user intentions hidden behind the purely syntactic composition of
their query. This explains the proliferation of different methods that cluster the query
results on the screen (started by the search engine Vivisimo.com), that integrate
different sources of information (news, Wikipedia, images, video, blogs, shopping
products, and so on), and that possibly provide suggestions for the composition of
refined queries (Google Suggest and Yahoo! Search Suggest are the most notable
examples). In addition, search engines have to tackle the fact that users are moving
from being active agents in the search process to becoming more and more passive
spectators: advertising, suggestions, weather forecasts, friends on-line, news, and so
on, are all information that we probably set as interesting in some personal record
or alerts, or that the search engines have in some way inferred as interesting for us

134 P. Ferragina and R. Venturini

given our Web life. All of this information already appears, or will appear more and
more frequently in the near future, on our screens as a result of a query, or on our
email readers, our personal pages on iGoogle or MyYahoo!, or even on applications
in our smartphones.

Many other features of search engines deserve to be carefully studied and
discussed. An interested reader can find many inspiring references in the review
of the literature at the end of this chapter.

5.5 Towards Semantic Searches

Although Web search engines are fairly new, researchers and software engineers
achieved during the last two decades significant improvements in their performance.
These achievements identified many other interesting avenues of further research
which should lead in the near future to implementing more efficient and effective
Information Retrieval (IR) tools. In fact, although the algorithms underlying the
modern search engines are much sophisticated, their use is pretty much restricted to
retrieving documents by keywords. But, clearly, users aim for much more!

Keyword-based searches force users to abstract their needs via a (usually short)
sequence of terms; this process is difficult and thus error prone for most of Web
users, who are unskilled. It would surely be more powerful to let users specify
their needs via natural-language queries: such as “Will it rain in Rome within
the next three hours?”, and get more precise answers than just an ordered list
of pages about Rome, or a Web page about the weather in Rome, such as “yes,
it will rain on the coast”. Interestingly enough, this is not just a matter of ranking;
we are actually asking the search engine to understand the semantics underlying
the user query and the content of the indexed pages. Some interesting research
is actually going on, trying to address these issues by adding metadata to pages
in order to better describe their content (known as the Semantic Web, and as the
Resource Description Framework), or by adding some structure to pages in order
to simplify the automatic extraction of useful information from them (known as
Open Data), or by developing powerful Natural Language Processing techniques
that better interpret short phrases up to long documents. This last research line has
led to some interesting results that we will sketch briefly in this final part of the
chapter.

The typical IR approach to indexing, clustering, classification, mining and
retrieval of Web pages is the one based on the so-called bag-of-words paradigm.
It eventually transforms a document into an array of terms, possibly weighted
with TF-IDF scores (see above), and then represents that array via a highly
dimensional point in a Euclidean space. This representation is purely syntactical
and unstructured, in the sense that different terms lead to different and independent
dimensions. Co-occurrence detection and other processing steps have been thus
proposed to identify the existence of synonymy relations, but everyone is aware of
the limitations of this approach especially in the expanding context of short (and thus

5 Web Search 135

poorly composed) documents, such as the snippets of search-engine results, the
tweets of a Twitter channel, the items of a news feed, the posts on a blog, etc.

A good deal of recent work attempts to go beyond this paradigm by enriching
the input document with additional structured annotations whose goal is to provide
a contextualization of the document in order to improve its subsequent “automatic
interpretation” by means of algorithms. This general idea has been declined in the
literature by identifying in the document short and meaningful sequences of terms,
also known as entities, which are then connected to unambiguous topics drawn from
a catalog. The catalog can be formed by either a small set of specifically recognized
types, most often People and Locations (also known as named entities), or it can
consists of millions of generic entities drawn from a large knowledge base, such
as Wikipedia. This latter catalog is ever-expanding and currently offers the best
trade-off between a catalog with a rigorous structure but with low coverage (like
WordNet or CYC), and a larger catalog with wide coverage but unstructured and
noisy content (like the whole Web).

To understand how this annotation works, let us consider the following short
news: “Diego Maradona won against Mexico”. The goal of the annotation is
to detect “Diego Maradona” and “Mexico” as significant entities, and then to
hyperlink them with the Wikipedia pages which deal with the two topics: the former
Argentinean coach and the Mexican football team. The annotator uses as entities
the anchor texts which occur in Wikipedia pages, and as topics for an entity the
(possibly many) pages pointed in Wikipedia by it, e.g., “Mexico” points to 154

different pages in Wikipedia. The annotator then selects from the potentially many
available mappings (entity-to-topic) the most pertinent one by finding a collective
agreement among all entities in the input text via proper scoring functions. There
exist nowadays several such tools9 that implement these algorithmic ideas and
have been successfully used to enhance the performance of classic IR-tools in
classification and clustering applications. Current annotators use about eight million
entities and three million topics.

We believe that this novel entity-annotation technology has implications which
go far beyond the enrichment of a document with explanatory links. Its most
interesting benefit is the structured knowledge attached to textual fragments that
leverages not only a bag of topics but also the powerful semantic network defined
by the Wikipedia links among them. This automatic tagging of texts mimics
and automates what Web users have done with the advent of Web 2.0 over
various kinds of digital objects such as pages, images, music and videos, thus
creating a new parallel language, named “folksonomy”. This practice has made
famous several sites, such as Flickr, Technorati, Del.icio.us, Panoramio, CiteULike,
Last.fm, etc. Topic annotators could bring this tagging process to the scale of the
Web, thus improving the classification, clustering, mining and search of Web pages,
which then could be driven by topics rather than keywords. The advantage would be

9See, for example, TAGME (available at tagme.di.unipi.it), and WIKIPEDIA MINER (available at
http://wikipedia-miner.cms.waikato.ac.nz/).

tagme.di.unipi.it
http://wikipedia-miner.cms.waikato.ac.nz/

136 P. Ferragina and R. Venturini

the efficient and effective resolution of ambiguity and polysemy issues which often
occur when operating with the purely syntactic bag-of-words paradigm.

Another approach to enhance the mining of Web pages and queries consists
of extracting information from query-logs, namely the massive source of queries
executed by Web users and their selected results (hence, pages). Let us assume that
two queries q1 and q2 have been issued by some users and that they have then clicked
on the same result page p. This probably means that p’s content has to do with those
two queries, so that they can be deployed to extend p’s content, much as we did with
anchor texts of links pointing to p in the previous sections. Similarly, we deduce that
queries q1 and q2 are probably correlated and thus one of them could be suggested
to a user as a refinement of the other query. As an example, Google returns for the
two queries “iTunes” and “iPod” the page http://www.apple.com/itunes/ as the first
result. So we expect that many users will click on that link, thus inferring a semantic
relation between these two queries.

There are also cases in which the same query q might lead users to click on many
different page results; this might be an indication that either those pages are similar
or that q is polysemous. This second case is particularly important to be detected by
search engines because they can then choose to adopt different visualization forms
for the query results in order to highlight the various facets of the issued query
and/or diversify the top answers with samples of pertinent topics. As an example,
let us consider the query “eclipse”, which could be issued by a user interested in
astronomical events, or in the software development framework, or in a plane model
(Eclipse 500), or in a Mitsubishi car. So the query-log will contain many pages
which are semantically connected to the query “eclipse”, all of them pertinent with
its various meanings.

It is therefore clear at this point that the analysis of all queries issued to a search
engine and of the clicks performed by their issuing users can lead us to construct
a huge graph, called the query-log graph, which contains an impressive amount of
semantic information about both queries and pages. The mining of the structure and
content of this graph allows us to extract impressive amounts of useful knowledge
about the “folksonomy” of Web searches, about the community of Web users and
their interests, about the relevant pages frequently visited by those users and their
semantic relations. Of course, a few clicks and searches are error prone, but the
massive amounts of issued queries and user clicks made every day by the Web
community make the information extractable from this graph pretty robust and
scalable to an impressive number of topics and Web pages. It is evident that we
are not yet at a full understanding of the content of a page, neither are we always
able to disambiguate a query or fully understand the user intent behind it, but we are
fast approaching those issues!

http://www.apple.com/itunes/

5 Web Search 137

5.6 Bibliographic Notes

Web search is a complex topic which was worth thousands of scientific papers
in the last three decades. In this section we report the books and some scientific
articles that have advanced the history of this fascinating and rapidly evolving field
of research. These references offer a good and accessible treatment of the various
topics dealt with by this chapter.

The book written by Witten et al. [113] contains a general study of the character-
istics of search engines and implications on their use. This very clear text represents
a great source of knowledge that does not enter much into algorithmic details. Two
recent books by Manning et al. [75], and by Baeza-Yates and Ribeiro-Neto [7],
describe the basics of Information Retrieval, whereas the book by Chakrabarti [17]
provides a complete introduction on the gathering and analysis of collections of
Web pages. Finally, the book by Witten et al. [112] is a fundamental reference
for what concerns the organization and the processing of massive data collections
(not necessarily formed by Web pages).

As far as papers are concerned, we mention the publications by Hawking [57,58]
and Lopez-Ortiz [74], which offer two ample and clearly written surveys on the
algorithmic structure of search engines. On the other hand, the paper by Zobel and
Moffat [116] concentrates on indexing data structures, describing in much detail
Inverted Lists. Two historical papers are the ones published by Broder et al. [12] on
the analysis of the Web graph, and by Brin and Page [11] on PageRank, thus laying
down the seeds for Google’s epoch.

As far as Web tools are concerned, we point out the papers by Fetterly [42],
who deals with spamming and adversarial techniques to cheat crawlers, by
Baeza-Yates et al. [8], who describe the scenario of semantic search engines, and by
Silvestri [101], who surveys the use of query-logs in many IR applications. Finally,
we mention the papers by Ferragina and Scaiella [39] and Scaiella et al. [98], which
review the literature about “topic annotators” and their use in search, classification
and clustering of documents. We conclude this chapter by pointing out to the readers
Google’s blog by Alpert et al. [5], in which these engineers claimed that Google
crawled and indexed in July 2008 about one trillion pages.

Acknowledgements We would like to thank Fabrizio Luccio, who contributed to the writing of
the Italian version of this chapter for Mondadori.

Chapter 6
Algorithms for Secure Communication

Alberto Marchetti-Spaccamela

Abstract The design of algorithms for sending confidential messages (i.e. mes-
sages that no one can read, except the intended receiver) goes back to the beginning
of our civilization. However, before the widespread of modern computers, cryptog-
raphy was practiced by few people: soldiers, or diplomats, or scientists fascinated
by the problem of confidential communication. Cryptography algorithms designed
in the past were ingenious transformations but were lacking a sound mathematical
basis. Recently, the development of computers and of the Internet has opened up
new applications of cryptography in business and society. To answer these needs,
new algorithms have been developed that use sound mathematical techniques and
have produced surprising results, which have opened up impressive possibilities
that were considered unrealistic before. We will see examples of algorithms that use
modular arithmetic (in which operations are performed modulo an integer) that are
based on using functions that are easy to compute but difficult to invert.

6.1 Introduction

Cryptography has a long and fascinating history that started when the military
and diplomats of the first organized states recognized the importance of message
confidentiality in the event that the bearer of the message was captured by the enemy.
To achieve this, the original M , the plaintext message brought by a messenger to a
recipient, must be transformed into a new text Y , the message encrypted or encoded.
When the recipient of the message receives Y he should be able to reconstruct the
original text, but at the same time the encoded message Y must be incomprehensible

A. Marchetti-Spaccamela (�)
Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Università di Roma,
via Ariosto 25, 00185 Roma, Italy
e-mail: alberto.marchetti-spaccamela@uniroma1.it

G. Ausiello and R. Petreschi (eds.), The Power of Algorithms,
DOI 10.1007/978-3-642-39652-6__6, © Springer-Verlag Berlin Heidelberg 2013

139

mailto:alberto.marchetti-spaccamela@uniroma1.it

140 A. Marchetti-Spaccamela

to anyone else who came into possession of the message (for example, the enemy
that took it from the captured messenger).

The advantages of secure methods for communications are obvious and therefore
it is not surprising that we found ways to obscure communications at the beginning
of our civilization that can be considered the first examples of cryptography. For
example, we found ways of obscuring texts in the Egyptian hieroglyphics and in
Assyrian cuneiform scripts used by the Babylonians. Methods to hide the meaning
of texts are also mentioned in the Indian book Kama Sutra among the arts that men
and women should learn. In this case, knowledge is not for war but allows lovers
to communicate without being discovered. In particular, the 44th and 45th of the 64
arts of the book are:

44. The art of understanding writing encrypted and spelling in particular.

45. The art of speaking by changing the form of words. For this art there are several
possibilities: some change the start or end of words, others add unnecessary letters between
every syllable of a word.

We will see in the following that, until the last century, cryptography can be
considered an art practiced by few people: professionals whose only practical
purpose was in the military and diplomatic, or scientists fascinated by it. Over
the last 50 years, there has been a rapid growth of cryptography; the pervasive
development of computers and of the Internet has opened up new applications in
business and society. In fact, on one hand the development of powerful computers
has made it possible to implement sophisticated algorithms that require complex
calculations to encode and decode; on the other hand, the development of the
Internet has opened up new prospects for use, such as electronic commerce and
business. As a consequence, a new approach to cryptography has been developed
that uses sophisticated mathematical techniques and methodologies.

The practical consequence is that nowadays cryptographic algorithms are used
by the layman with no specific knowledge and in most cases without knowing it.1

For example, when we buy a book or a service over the Internet using our credit card
credentials, we generally use cryptographic protocols that make the communicated
data unintelligible to a possible intruder that is able to get the exchanged data.

We finally notice that the commercial development of the Internet has given
rise to new problems and new fields of application in addition to the traditional
secure encryption of messages. In the final paragraph of this chapter we shall refer
to one of these, the digital signature, showing how you can sign documents elec-
tronically to avoid falsification of the signature itself and ensure their authenticity.

1In particular, when buying a product on the World Wide Web and providing the payment
information, the web protocol automatically changes from http to https. The https protocol
is able to realize cryptographic encodings that are not possible with the http protocol, the one
usually used for browsing the Web; the final letter of https means secure.

6 Algorithms for Secure Communication 141

6.2 A Brief History of Cryptography

The history of cryptography is fascinating and long. In the following we will not go
into details and we limit our discussion to some useful elements for understanding
the rest of this chapter; we refer to [64,103] for a detailed presentation of the history
of cryptography.

Most cryptographic codes that were proposed in the past based on the exchange
or replacement of characters of the text. An example is when we exchange the
mutual position of the first pair of characters, of the second pair and so on, thus
writing “esrcte” instead of “secret”. Another example is specular writing, as used
by Leonardo da Vinci in his notebooks.2

6.2.1 Monoalphabetic Substitution Codes

Most codes are based on the replacement of characters of the original text with
other characters. The most famous of these methods proposed in the past is the
Caesar cipher, in which a simple transformation of the text by sliding the alphabet
is performed. In particular, Suetonius (Lives of the Caesars, 56) reports that

if Caesar had something secret to communicate, he wrote in cipher, changing the order of
the letters of the alphabet, so that we could not understand any word. If anyone wanted to
decipher the text and obtain its meaning he must substitute the fourth letter of the alphabet,
namely D, with A, and so on with the others.

Caesar’s code can be generalized using other substitution orderings (i.e., scrolling
through the alphabet by a different number of positions instead of three positions as
reported by Suetonius). Note that, given a message M , if we encode it by scrolling
the alphabet by five positions instead of three we get different encrypted messages.
In other words, the encoding obtained by applying Caesar’s code depends both on
the message M to be encoded and on a key which indicates the number of positions
in the sliding of the alphabet. In particular, in the previous citation of Suetonius, 3

is the key used.
One major limitation of Caesar’s code is that once we know the method, it is

relatively easy to decode messages, even if we do not know the key. In fact, since
there are only 25 possible ways of scrolling the alphabet, it is possible to try them
all to finally know the original message. Motivated by this, a more sophisticated
approach is to use a completely arbitrary substitution of alphabetic character, such
as that described in the following table that assigns the letter “M” to the letter “A”,
and so on.

2Specular writing is handwriting that is written from right to left (left-handed writing), and
therefore can be only deciphered by means of a mirror.

142 A. Marchetti-Spaccamela

Table 6.1 A substitution code

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
M F H A I V R N O B L K E G P X W J S D U T Q Y C Z

Table 6.2 A substitution code that is easy to break

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P R Q S T U V W X Y Z

So if we want to encode the first verse of Shakespeare’s Macbeth

When shall we three meet again?

with the code described in Table 6.1, we get the following encoded message:

QNIG SNMKK QI DNJII EIID MRMOG?

In this case, the number of different encodings of the same text corresponds to all
possible permutations of the characters of the alphabet. However, it is easy to realize
that not all possible permutations make it difficult to analyze the message. For
example, the messages encoded by using the correspondence described in Table 6.2
(in which only the letters R and Q are permuted) are easily understood.

Caesar’s cipher and codes like the one given in Table 6.1 are monoalphabetic
codes (since they replace one character with another character). They were a
breakthrough in their time because they showed the possibility of making obscure
messages relatively easily, thus obtaining a strategic advantage in military commu-
nications. These considerations motivated the proposal of many other algorithms to
keep information secret, leading to the birth of a new art, the art of cryptography.

At the same time, the proposed new encryption methods motivated the study of
the weaknesses of the methods proposed with the opposite goal of breaking the
code. We can imagine this process as a struggle between the inventors of secret
codes and the codebreakers (the opponents), who aim at deciphering the message
(or “breaking” the code), managing to decode encrypted messages in a relatively
short time.

The encrypted text using the replacement products and other techniques proposed
in the past can be easily attacked using statistical information on the frequency of
characters in the original text. In particular, in the ninth century, Arab mathematician
Al-Kindi’s contribution was to show that in a text alphabetic characters are present
with a frequency different from character to character, and that such frequencies
are significantly different depending on the language. Moreover, frequencies do
not depend significantly on the text itself; namely, given a sufficiently long text,
character frequencies are relatively stable and depend only on the language.3

3The text must be long enough to meet the average frequencies of characters. In fact, it is not
difficult to write short sentences in which the frequency is very different.

6 Algorithms for Secure Communication 143

For example, the letters A, T appear in English with an average frequency of
about 8–9 %; the letter E with a frequency above 12 %; the letters J , K , Q, V ,
X and Z have a frequency less than 1 %. This implies that in a sufficiently long
ciphertext, if we use the substitution character described in Table 6.1, the most
frequent characters in the ciphertext will be the characters M , I and D. Al-Kindi
showed how knowledge about the frequency of characters allowed one in a relatively
easy way to reconstruct the original message from a long enough ciphertext. This
observation has led to monoalphabetic codes not being considered safe with respect
to a crafty attacker.

Leon Battista Alberti, the famous Renaissance architect, plays a key role in
the history of cryptography for his proposal of a new type of cryptographic
algorithm, known as polyalphabetic codes. Alberti’s idea was to use different
substitutions for different parts of the message. For example, we can use three
different monoalphabetic substitution codes and apply the first one to the first
character of the message, the second one to the second character, and so on (starting
again with the first code at the fourth character).

It is clear that if we use only three monoalphabetic codes we cannot expect
to obtain an encoded message that is resilient to the analysis based on the
frequencies of characters. In fact, knowing that the same monoalphabetic code is
used for the first, fourth, seventh, etc. character, then frequency analysis can be
applied to this part of the plaintext. However, Alberti’s method allows one to use
many different codes. If we increase the number of monoalphabetic codes, the
obtained polyalphabetic code becomes more reliable but at the cost of increasing
the complexity of encoding and decoding because we need many monoalphabetic
substitution tables. To overcome this drawback Alberti devised a tool to facilitate
these operations consisting of several disks that could rotate independently.

6.2.2 Polyalphabetic Substitution Codes

Alberti’s idea was refined and improved in several ways. From a historical point
of view, the best-known and most widely used method is named after Blaise de
Vigenère, a French diplomat who presented his method to Henry II of France in
1586. However, the method proposed by Vigenère is a simplification algorithm that
G. Bellaso published in 1553 in his book La Cifra (The Cipher). Vigenère almost
certainly did not know the work of Bellaso and so the two cryptographers had the
same idea almost simultaneously; however, even if the primogeniture of the idea is
undoubtedly by Bellaso, for historical reasons, the method is known as the method
of Vigenère.

The main innovation of Bellaso and Vigenère was to simplify the implementation
of Alberti’s proposal by using a secret word that controls which of several
monoalphabetic substitution codes must be adopted. For example, suppose that
“robin” is the secret word, then we note that “r”, the first character of the secret
word, is the 18th letter of the alphabet; therefore the Vigenère method encodes the

144 A. Marchetti-Spaccamela

first character of text using a Caesar cipher with displacement of 17 positions. Since
the second character of the secret is the letter “o” (the 15th character of the alphabet),
the second character of the text is encrypted using a Caesar cipher with a shift of 14
positions. The method proceeds in a similar way: the letter “b” is the third character
of the secret, so the third character of the text is encoded with a Caesar cipher in
which we carry out the displacement of one position (“b” is the second character
of the alphabet). In this way we can encode the first five characters of the text (as
many as there are characters in the secret word). To encode the rest of the message
we reiterate the method, so we encode the sixth character of the text (and, later, the
11th, the 16th, etc.) using a Caesar cipher with a shift of 17 positions, as done with
the first letter.

Note that the transformation of the original text in the text being encrypted is
done using an algorithm and a key (“robin” in the previous example) that specifies
how the original text is transformed. Clearly, using the method on the same text
using different keys allows one to obtain encrypted messages that are completely
different. In particular, the encrypted message is incomprehensible to an opponent
unfamiliar with the key, even if he knows that the message is encrypted using
Vigenère’s algorithm. In this way, the same algorithm can be used to communicate
with more people using a different key for each communication. It should be also
clear that if we use as a secret a long text instead of a single word, then the frequency
analysis that allows us to break Caesar’s code becomes much more difficult (in fact,
for a long time the Vigenère code was named the unbreakable code).

The simultaneous use of different monoalphabetic codes implies that the fre-
quency of the characters in the ciphertext depends on the original text and several
substitution codes that are used together. Therefore it is not obvious how to use
statistical information on the frequency of the characters in the original text in
order to decode the encrypted text, especially when the key is a long word of
unknown length. Nevertheless, in the nineteenth century, it was also shown that
codes based on polyalphabetic replacement can be attacked using a sophisticated
analysis based on frequency analysis of the plaintext character. In particular, the
Polish mathematician Kasiski showed how to break the Vigenère code.

6.2.3 The Enigma Machine

Subsequently other secret codes were developed using techniques other than
polyalphabetic replacement. This includes the code implemented in the Enigma
machine, introduced initially for commercial purposes in Germany from the early
1920s.

The Enigma machine was based on a sophisticated method of substitution
(similar to Vigenère’s code) that allowed one to define an extremely large number
of substitutions. Other methods were also used to make it more resilient to attacks
by cryptanalysts. The encoding and decoding functions were very complicated and
prone to errors if done by humans; for this reason these operations were done by a

6 Algorithms for Secure Communication 145

machine (the Enigma machine) similar to a typewriter. It was modified and extended
over time with new features and subsequently adopted by the Axis forces during
World War II.

The Enigma code was “broken” during the war with a method that allowed one
to decode a percentage of intercepted secret messages in a relatively short time.
In particular, a key contribution to the initial breaking of the Enigma code was
made by Polish mathematician Marian Adam Rejewski, who in 1932 was able to
identify weaknesses in the algorithm text transformation function of the commercial
type of machine then in use. A few weeks before the start of World War II, Polish
intelligence services informed the British and French agencies of what they had
discovered. Subsequently Rejewski’s ideas were used by British intelligence to
attack the machine used by enemy forces in the intelligence center at Bletchley Park.
Alan Turing (see Chap. 1) had a key role in the design of the attack that was able to
decipher in a relatively short time a considerable part of the intercepted encrypted
messages.

The influence of this advantage for Allied forces in the war is difficult to assess.
It is believed that breaking the Enigma code shortened the war by at least a year.

6.3 Cryptographic Codes and Secret Keys

Cryptographic algorithms like the Caesar and Vigenère ciphers transform plain text
messages into encrypted messages by replacing one or more characters with other
characters. The replacement operation is not necessarily the same for each character
(as in polyalphabetic codes), and in some cases could allow the possibility of adding
or removing characters. However, the main operation is to replace a sequence of
characters by another sequence.

We also discussed the distinction between the cryptographic code (or algorithm)
and the key used by the method. For example, with reference to the Caesar cipher,
if we use the English alphabet, we can translate to a number of positions between 1
and 25 and we have 25 possible keys (in fact, if we translate the text of 26 characters
we get the original text). The Caesar cipher is not unique in choosing a numeric key:
all codes that are in use today depend on alphanumeric keys.

The main difference with respect to the past is that most modern cryptographic
algorithms exploit mathematics, and for this reason we can assume that the plaintext
message being encrypted is not a literary text but a sequence of integers. In this way,
a cryptographic algorithm can be considered as a mathematical function that, given
a sequence of integers and a key, calculates a new sequence of integers. The use of
mathematics allows cryptography to acquire a sound scientific basis by exploiting
the tools and the knowledge developed in the past; moreover this approach also
allows the use of mathematics to assess the scientific strength of an encryption code
and to verify how to cope with cryptanalytic attacks.

Namely, from the mathematical point of view, the text transformation operated by
a cryptographic algorithm C is a function fC of two integers, the number M which

146 A. Marchetti-Spaccamela

encodes the message, and the key x, and produces a new number Y representing the
encrypted message. Clearly a change in only one of the two parameters changes the
result. Formally we can write

fC .M; x/ D Y:

We have already seen the benefits of being able to use the same encryption
method to exchange confidential messages with many people; we just need to
be careful to define different keys for each communication. As an example, if
we encrypt the same message with two different keys x and z then fC .M; x/

and fC .M; z/ will represent the two encrypted messages (that, in general, will be
different).

6.3.1 How to Encode a Long Message Using an Integer
Function

It is natural to wonder if being able to encrypt numbers is not a limitation, given that
the messages that we want to encode are usually text messages. For this reason, we
see now how it is possible to transform a text message into a sequence of numbers.

To this goal, suppose we need to encode a text of alphabetic characters and spaces
using a sequence of integers. If we use the English alphabet, one possible method is
to match the sequence 00 to the blank character, the sequence 01 to the letter A, 02

to B , and so on, by finally matching 26 to Z. Using this correspondence between
characters and numbers to assign a number to a text, we can simply concatenate the
numbers representing the individual characters, for example, “HELLO” corresponds
to the number 0805121215.

Note that the method can also be applied to the case where the text is not only
composed of alphabetic characters and spaces, but is a complex text that includes
other characters such as upper- and lowercase alphabetic characters, numerals,
punctuation characters, and characters that are present in the alphabet of other
languages. It is clear that to apply the method we need to use large enough numbers
to encode each symbol of interest. We also remark that the method is also applicable
to the encoding of other information sources such as music, video, and images: in
each case we can consider the message to be encoded as a sequence of numbers.

The above method has the disadvantage that if the message is very long then the
number that represents it is very large. For example, to encode a message consisting
of 100 characters and spaces with the above-presented method, we need an integer
number of 200 digits. Better encodings are used than the simple one we discussed
above; however, the number of digits grows linearly with the length of the message.
Therefore, the encoding of very long messages requires us to work with very large
numbers that not even the computers of today are able to quickly elaborate.

6 Algorithms for Secure Communication 147

Let us now see how it is possible to encode very long messages using not a single
number, but instead a sequence of numbers, each of which has a predetermined
number of digits. For example, we can encode a blank space “00”, the letter A with
“01”, B with “02”, an so on. In this way, to encode the first verse of Shakespeare’s
Macbeth (“when shall we three meet again”) using a sequence of numbers, each
of ten decimal places, we can divide the text into blocks of five characters and
spaces and then encode each block with the above-proposed method. Namely, the
first block encodes the first word “when” followed by a blank space, the second
block encodes the word “shall” and so on. In this way we can represent the verse
“when shall we three meet again” composed of twenty-five alphabetic characters
and five spaces with the following sequence of six numbers composed of ten digits
each

2308051400 1908011212 0023050020 0818050500 1305052000 0107010914

In this way, an encryption method that encodes only ten-digit integers allows
us to encode very long texts by dividing them into blocks and encrypting each
block separately. Without going into more detail, we observe that the cryptographic
methods in use today also divide the message into blocks and then encode the
blocks, one at a time, in a slightly more complex way to increase security (see
[78,104]). Furthermore, we note that the length of the block that can be encoded with
a number varies significantly depending on the encryption method: some methods
have a predetermined length; others admit a variable length.

6.3.2 Cryptanalysis and Robustness of a Cryptographic
Protocol

We already observed that the design of cryptographic algorithms and the search
for their weaknesses can be seen as a continuous struggle between the inventors
of secret codes and the codebreakers whose goal is to “break” the secret code,
i.e., being able to decode encrypted messages in a relatively short time. To better
understand the rules of this confrontation, we need to define what is meant by secure
coding.

We will see that such a definition cannot be given in a few words and requires
a thorough discussion. A first approach might claim that an encryption method is
safe if the opponent (the cryptanalyst) that reads an encrypted message Y obtained
by encoding M is not able to have any partial information on the message unless he
knows the secret key used for the encoding of M .

The above statement, if interpreted literally, requires that for the intruder it is
impossible to have any information about the message; this safety requirement, also
called perfect security, can be obtained, but only with methods that require very
restrictive conditions that are not practical. Although the cryptographic methods
that have been proposed and are used are not perfect, they nevertheless allow us to
achieve security adequate for all practical purposes.

148 A. Marchetti-Spaccamela

We will see that the conditions that an encryption method must verify to be
considered safe are several. The first one concerns what the cryptanalyst knows. In
fact, in order to increase the trust in a protocol, we assume that the opponent knows
the cryptographic algorithm but also knows the encryption of a set of plaintext
messages.

Condition 1 – What the Cryptanalyst Knows

The cryptanalyst knows the encryption method, but he does not know the key
used. Furthermore, the cryptanalyst knows a list of encrypted messages and
the corresponding plaintexts.

Namely, if hM1; Y1i, hM2; Y2i, : : : are the pairs of messages and the corre-
sponding encoded messages known to the cryptanalyst, we want that, even with
this information, our opponent cannot determine the message that matches to a
ciphertext Y (which is different from those already known).

Obviously, knowledge of the method allows the cryptanalyst to know the
message that corresponds to Y when he knows the key used for encoding. We
also observe that knowledge of the encryption method used also provides partial
information on the key. For example, knowledge that the Caesar cipher was used
informs us that the key is a number between 1 and 25 (if we use the English
alphabet). Similarly, in other cases knowledge of the method provides us with
information concerning the set of possible keys; for example, we might know that
the key is a number of 13 decimal digits or the key is a prime number of 200 decimal
digits.

Information about the encryption method and the type of key used provide the
opponent with a chance to decode the message Y . For example, in a Caesar cipher
there are only 25 possible keys and therefore in a short time (even without the help
of a computer) the adversary that knows a single pair hM; Y i of a message and the
corresponding encoded message can easily find the key by testing all possible 25

keys and verifying which one transforms M into Y . Note that the same approach
can be also used if the cryptanalyst only knows the encoded message Y .

This attack, also called the “brute force” method of analysis, does not use
encryption but merely enumerates the possible keys and is always applicable.
Therefore, must we conclude that there are no safe encryption methods when
Condition 1 is verified?

The answer is not a simple yes or no; in fact, enumerating and testing all possible
keys is always possible in theory but often not feasible in practice. Indeed, suppose
that the adversary knows that the key is a number of 13 decimal digits. Also in this
case the adversary can try all possible keys and surely, sooner or later, will find the
right key, but in this case, the possible number of keys is about 10,000,000,000,000.
Assuming that the opponent is able to verify a key in a millionth of a second, it takes
about 2 months to try only half the possible keys.

6 Algorithms for Secure Communication 149

The above discussion shows a direct correspondence between computing power
used by the opponent and the time to try all possible keys. For example, if the
opponent uses 1,000 computers and programs them carefully so that each verifies
different keys, then in a relatively short time he may find the right key. But if the
key is a number of 200 decimal digits, then using thousands of computers to try
only half the keys will still take thousands of years. We are now able to better define
the conditions on the methods that can be considered safe on the basis of time and
computing resources necessary for the opponent to try all possible keys.

Condition 2 – Number of Possible Keys

The number of possible keys must be very large, in order to prevent the
opponents who know the method but who do not know the key from being
able to try all possible keys in a limited time.

The former condition requires some clarification and comments. We first observe
that the definition of time is deliberately vague: the condition does not define exactly
the number of possible keys. In fact, the evolution of computer technology allows
for ever-faster computers, so the number of possible keys that can occur in a given
amount of time increases year over year. For example, codes with secret keys of
18 decimal digits were considered safe 30 years ago, but now new codes are being
proposed based on keys with at least 40 decimal integers; in the future we will use
codes with even longer keys.

The second observation is that there is no absolute concept of security, but it is a
concept related to the specific field of application. Indeed, the secrecy of a message
related to the purchase of an object in an electronic auction is a condition which
must hold for the time duration of the auction (usually no more than a few days),
while the confidentiality of a message related to the national security of a country
must remain secret for a very long time, even tens of years. Therefore, the concept
of the limited time of Condition 2 also depends on the particular application and on
the message.

We also observe that Condition 2 does not exclude the possibility of a lucky
adversary guessing the key with a few attempts. In fact, if the opponent is very
lucky he can also try the right key on the first attempt! However note that, if the
number of keys is very large, the probability that this occurs is very low, almost
negligible.4

The above discussion allows us to conclude that Condition 2 is a necessary
condition for the design of a secure code. However, this condition is not sufficient.
The ultimate goal of a cryptanalyst is to be able to identify the key used to encode

4As an example, the probability of guessing a secret key of 40 decimal integers is smaller than the
probability of having 130 consecutive heads while tossing a fair coin.

150 A. Marchetti-Spaccamela

the text with a limited number of attempts. For example, if an encryption code
includes a set of possible keys, one billion of billions and billions of keys can be
considered safe enough, but if a cryptanalyst is able to reduce the number of possible
keys to only one million then we can assume it is an insecure code: a computer
is able in a short time to try a million keys and find the right one. In fact, there
are codes which, while having a very large number of possible keys, have intrinsic
weaknesses that allow the cryptanalyst to identify their keys with a relatively small
computational effort. Examples of these weaknesses are the statistical analyses that
have been discussed previously for codes based on replacement, and that show
how the definition of a secure code cannot ignore the skills and ingenuity of
cryptanalysts.

Recall that Condition 1 assumes the cryptanalyst might know several pairs
hMessages, Encoded Messagei; moreover, when trying to decrypt an encoded
message Y , the cryptanalyst might also have partial information about the message
that generated Y . For example, in a military setting, if it is clear that an attack of the
enemy is about to occur, it is not very important to completely decode the message:
the most important thing in this case is to discover the time and exact location of an
attack.

We are now ready to summarize the discussion on when an encryption code
should be considered secure: an adversary who knows the method and a list of
unencrypted and encrypted messages should not be able to deduce information
about a message encrypted with a key different from those known to him.

Condition 3 – When an Encryption Code Is Safe

An encryption code is to be considered safe when, given an encoded message
Y , the opponent is not able in a reasonable time and with non-negligible
probability to obtain any partial information on the plaintext M corresponding
to Y or to find the secret key that was used to encode Y .

This should not be possible even if the adversary knows the encryption
method that was used, a list L of messages and their corresponding encrypted
messages (assuming that L does not contain M), and he cleverly applies
known cryptanalysis methods.

The previous condition summarizes all the requirements that an encryption code
must satisfy. From a mathematical point of view, the above condition means that
the knowledge of Y D fC .M; x/ must not yield information on M or on x to an
opponent. This condition should occur even when the opponent knows the function
fC (in fact, assume that the adversary knows the encryption method) and knows the
value of the function for a certain number of values (the messages of the list L).

6 Algorithms for Secure Communication 151

6.4 Secret Key Cryptography

Cryptography algorithms that we discussed in Sect. 6.2 assume that before exchang-
ing confidential messages, the sender and the recipient must choose a cryptographic
algorithm and a secret key; to preserve the confidentiality of the communication
the chosen key should be protected and not revealed to anybody else. This type of
encryption, known as secret key cryptography or symmetric cryptography, was the
only type of encryption known until 1976 and it is still largely used.

Nowadays, many secret key cryptographic codes that are used can be classified as
block codes; a block code can be considered a modern version of the polyalphabetic
substitution code proposed by Alberti: the code receives as input a sequence of
characters of a fixed length and a key, and outputs a block of characters with the
same length. The length of the input block varies according to the cryptographic
method, but in most cases is less than 200 bits, thus allowing us to encode only a
fragment of the message. Since messages are almost always longer than this, the
text block to be encrypted in general consists of several blocks and it is therefore
necessary to use a method to encode a sequence of blocks. We saw such a method in
Sect. 6.3.1; we do not enter into a discussion of the security of such a mode, which
goes beyond the purpose of this chapter. We simply observe that particular care
must be used while encoding long messages using a block code so that no partial
information is disclosed to the adversary.

6.4.1 Secret Key Cryptography Standards

From 1960 onwards, electronic computers have become increasingly powerful and
economical, and have become increasingly popular in business, and about 20 years
later they entered private homes. The parallel development of telecommunications
networks has opened up new scenarios for the use of encryption and has posed new
problems. The first one is to determine a standard algorithm, i.e., an algorithm that
is known worldwide and is recognized as being secure.

To meet this need, in 1976 the US National Standards Agency (NSA) adopted
the Data Encryption Standard (DES) as the secret key encryption standard; DES
is a block code with 56-bit keys. Today, DES is no longer the standard because it
is not adequate to current security needs. In fact, the number of different keys that
an attacker must try is limited with respect to the computing capability of today’s
computers; therefore, nowadays an attack on DES can be performed in a relatively
short period. Moreover, 56-bit DES has also been the subject of cryptographic
attacks that significantly reduce the number of keys that an attacker must try to
find the key to a coded message to about eight trillion (a large number but not too
large to perform an exhaustive search in a relatively short time with the computers
available today).

152 A. Marchetti-Spaccamela

Today the standard for secret key encryption is the Advanced Encryption
Standard (AES), proposed by Rijmen and Daemen. In its basic version AES allows
one to encode a block of fixed length of 128 bits using keys of 128 bits. The AES
encryption is performed by repeating a “round”, which is a sequence of operations
that transforms a block into another block using the secret key. When all rounds are
completed, the block obtained represents the ciphertext of the message. The same
operations are performed in reverse order to get the initial text from ciphertext.

Regarding the security of AES, we first observe that the number of possible keys
that can be defined using 128 bits is very large, so large that an exhaustive search
of all keys cannot be performed in a century even if an opponent uses a million
computers that are the fastest on the market today. Furthermore, none of the known
cryptanalysis attacks can significantly reduce the number of possible keys. Thus,
AES is now considered to be robust, but this excludes any weaknesses that may
be found in the future. If these weaknesses would call into question its safety then
inevitably we would need to define a new standard.

6.4.2 Limitations of Secret Key Encryption

The definition of a reference standard for secret key cryptography, which occurred
in 1976 with DES, has allowed for extensive development of civil uses of cryptog-
raphy, first in finance and then in other economic sectors. At the same time, the
widespread utilization of secret key cryptography has shown two main limitations
of this approach to cryptography that apply to all such algorithms. In the following
we discuss these limitations and the solutions that have been proposed.

The first limit of secret key encryption is the requirement that, before starting
the secret exchange of messages, it is necessary to agree on the secret key that
will be used. In many cases, such a requirement is a significant limitation to the
use of cryptography. As an example, imagine an Italian company which wants to
start a business relationship with a Chinese one and for this reason wants to send
confidential messages using e-mail. To be on the safe side, the company wants to
use encryption in order to exclude the possibility that a competitor is able to read
exchanged e-mails.

To this aim, the company first proposes to start a confidential communication
using a secret key algorithm; however, this requires the creation of a secret key
between the two partners. We can assume that one of the two partners proposes
the secret key, but then how can the other partner know the key? Clearly it is
unacceptable to first exchange the secret key using a nonencrypted e-mail message;
in fact, the initial message containing the key might be intercepted and read by an
adversary. The problem looks like the “chicken or the egg” causality dilemma: we
should be able to encrypt the initial message that contains the secret key, but to do
this we must have a secret key.

For several years the only solution to the above problem was an expensive one:
exploit trustworthy people who physically transferred the keys. This solution is not

6 Algorithms for Secure Communication 153

only expensive but also not completely secure (because it relies on the physical
exchange of the secret key).

The second problem of secret-key encryption is that it requires a key for each
pair of communications. In particular, if a user wants to communicate secretly
with 100 different friends, then 100 different keys are required. In general, if many
people want to communicate with each other in confidence, then the number of keys
required increases greatly. In fact, 100 people who want to communicate in pairs
using different keys must use 4,950 different keys; you can verify that if n is the
number of people who want to communicate with each other, then the total number
of keys required is n.n � 1/=2.

The increased number of keys that are required is a limitation on the spread of
encryption because it poses problems concerning the secure storage of large sets of
keys. A detailed discussion of such issues goes beyond the purposes of this chapter;
we simply observe that it is commonsense that the secret keys should be safely
stored to not allow intruders to obtain information. Therefore, while we are able to
memorize small numbers (like we do with the PIN of our ATM card), it is almost
impossible to be able to memorize hundreds of different keys, each one of many
128-bits like AES secret keys.

6.5 The Key Distribution Problem

We discussed in the previous section that secret key cryptography requires parties
to agree on the secret key to be used before establishing the confidential communi-
cation. Ideally, two users could decide the secret key without meeting, but using a
communication line that is not secure and that can be tapped by an adversary.

Defining a secret key between two users using a nonsecure communication
channel is a challenging problem that at first sight looks impossible. In fact, we
require that even though the adversary is able to listen to all exchanged messages, he
should not be able to know the secret key. Surprisingly, in 1976 Diffie and Hellman
proposed a simple solution to the problem. Their method is still used today and
represents one of the most important discoveries in the history of cryptography, not
only for the relevance of the problem but also for the introduction of innovative
algorithmic and mathematical techniques that paved the way to a new approach to
cryptography. In particular, Diffie and Hellman proposed the use of mathematical
functions that are easy to compute but difficult to invert.

Many mathematical functions are both easy to compute and easy to invert. Here
“easy” and “difficult” should be intended with respect to the computation time
required by a solution algorithm; namely a problem is easy if there is a polynomial-
time algorithm that solves it, and it is hard if such an algorithm cannot exist or
it is believed that it does not exist (see Chap. 3). For example, the function that
computes the double of a number is easy to compute and it is also easy to reverse:
the calculation of the inverse of the function “double” is half of a number. Since
such a calculation can be done even for very large numbers we can therefore say
that the function “double” is easy to calculate and easy to reverse.

154 A. Marchetti-Spaccamela

Functions that are easy to calculate but that are difficult to invert play a
fundamental role in cryptography. Because of their special features they are also
called “one way”. Diffie and Hellman’s proposal exploits one such function; before
presenting their method we must introduce some concepts of modular arithmetic.

6.5.1 Modular Arithmetic

While in the usual arithmetic with integers we perform operations using the set of
all integers, in modular arithmetic we restrict ourselves to a restricted set of possible
values. For example, in arithmetic modulo 5, possible values are only 0; 1; 2; 3 and
4; similarly, in arithmetic modulo 12 we use integers between 0 and 11.

The rules by which we carry out the operations in modular arithmetic take into
account the limited number of values available. In particular, if the calculated value
is less than or equal to the maximum representable number, then the result is the
same as in the usual arithmetic. For example, the addition of 2 and 2 in arithmetic
modulo 5 (which is written .2 C 2/ mod 5) gives 4. Instead, if the result in the
usual arithmetic is a value that cannot be represented, the calculation is slightly
more complex. For example, to calculate .2 C 6/ mod 5 (the sum of 2 and 6

modulo 5) we can imagine arranging the numbers between 0 and 4 on a circle,
as on the face of a clock, with the numbers indicating the hours. At this point, to
calculate (2 C 6) mod 5 we start at 2 and move clockwise for 6 positions: after
making a complete revolution of the circle we get to number 3, which is the result
of (2 C 6) mod 5.

At first glance this approach might seem complicated, but note that we do this
type of operation when we calculate the hours of the day. For example, if it is 9 a.m.
and we have an appointment in 6 h we can say that our meeting will be at 3 p.m.
In this case we compute .9 C 6/ mod 12, which is 3. We observe that, from a
mathematical point of view, the calculation of .9 C 6/ mod 12 is equivalent to first
computing the sum in the usual arithmetic (obtaining 15), and then by considering
the remainder of the division of 15 by 12. Therefore, on the basis of what has been
discussed, we observe that .3 C 7/ mod 5 D 0 and that .11 C 5/ mod 10 D 6.

Similarly, if we perform the multiplication operation in modular arithmetic we
can proceed in two steps: first computing the product of the two numbers in the usual
arithmetic and then computing the remainder of the division of the answer obtained
divided by the module. For example, suppose we have to calculate .2 � 6/ mod 5;
we first compute in the usual arithmetic 2 � 6 (which is 12), and then we compute the
remainder of the division of 12 divided by 5. Therefore 2 is the result of .2�6/mod 5.
Similarly, .3 � 5/ mod 7 D 1; in fact 1 is the remainder of 15 (which is 3 � 5) divided
by 7.

In modular arithmetic both addition and multiplication are easy to calculate
(i.e., computable in time polynomial in the length of the input) and also their
inverse functions are easy; for this reason addition and multiplication have a limited
interest in cryptography. An operation of particular interest is instead modular

6 Algorithms for Secure Communication 155

exponentiation. Observe that the calculation of powers in modular arithmetic is
an easy operation as in the case of multiplication: for example, if we calculate
23 mod 5 we first compute 23 D 8 in the usual arithmetic and then perform the
remainder of the division of 8 by 5. We then have 23 mod 5 D 3.

Exponentiation in modular arithmetic preserves many of the properties of
exponentiation in arithmetic but has a special feature that makes it very useful in
cryptography. In fact, the calculation of the remainder of the division implies that
the function of exponentiation behaves in an apparently bizarre way. For example,
suppose we calculate x2, the square of an integer x. In the usual arithmetic the
square of a number is a function whose value increases as x increases. In fact, if
x D 3 then we get 32 D 9 and if x is equal to 5 we get 25. This observation
facilitates the calculation of the square root, the inverse of the square function;
namely, given an integer z suppose we need to compute y such that y2 D z. In
particular, given z D 16 and knowing that 32 D 9 and that 52 D 25, by observing
that 16 is greater than 9 and smaller than 25 suggests that the square root of 16 must
be between 3 and 5 (indeed, 4 is the square root of 16).

If we use modular arithmetic the above feature vanishes; in fact, if we perform
the same operations modulo 11 we get .32/ mod 11 D 9 and .52/ mod 11 D 3;
namely, we have that the square of 3 is greater than the square of 5. This does not
help us to calculate the square root of 5 in arithmetic modulo 11, which is 4 (in fact
.42/ mod 11 D 5).

The above example illustrates an operation for which the calculation of the
inverse function is actually more complicated. It is important to underline that we do
not know any fast algorithm to compute the inverse of the exponentiation function
in modular arithmetic when operations are carried on modulo n, when n is a very
large prime number, for example, composed of hundreds digits.5

6.5.2 Diffie and Hellman’s Algorithm for Establishing
a Secret Key

Suppose that two friends, Alice and Bob, need to define a secret key using an
insecure communication line; namely, we assume that an intruder, which we denote
as Charles, is able to tap all exchanged messages between Alice and Bob. The
method proposed by Diffie and Hellman for establishing a secret key under such
conditions, requires that both Alice and Bob execute the algorithm independently
of each other and exchange data that is the result of random choices that are not
revealed. An algorithm of this type is generally presented in the technical literature
as a protocol because two independent parties must execute it.

5In fact, even though we do not have a formal proof of intractability, the problem is considered
intractable.

156 A. Marchetti-Spaccamela

The basic idea is to use a function of the form .yx/ mod z. At the beginning,
Alice and Bob will choose two integers y and z. The definition of these two numbers
can be made in the clear (and thus allowing Charles, the intruder, to know both y

and z) with a few restrictions: z must be a prime number (i.e., a number that has
no divisors other than 1 and z itself), and y must be smaller than z. Once y and
z have been chosen, the protocol requires that both Alice and Bob each choose a
secret number; assume that a and b are the two numbers chosen by Alice and Bob,
respectively. For the security of the protocol it is important that both a and b are not
disclosed but remain secret.

The secret key s that Alice and Bob will use is given by the .a � b/th power of
y mod z; formally we have

s D ya�b mod z:

Note that Alice does not know b (and symmetrically Bob does not know a).
Therefore to allow both parties to compute s the protocol continues with the
exchange of two messages: Alice sends .ya/ mod z to Bob; Bob in turn sends to
Alice .yb/ mod z.

At this point, Alice and Bob have all the information to calculate the secret key s.
In fact,

• Alice knows y, z, a and .yb/ mod z. To compute s she performs the ath power of
what she received from Bob; formally Alice performs the following calculation

Œ.yb/ mod z�a mod z:

• Similarly, Bob computes the bth power of what he received from Alice obtaining

Œ.y/a mod z�b mod z:

The modular arithmetic properties imply that the two numbers are equal. In fact,
the following equality holds

Œ.yb/ mod z�a mod z D Œ.ya/ mod z�b mod z D s:

In this way Alice and Bob have defined a secret key by exchanging information
relating to secret numbers a and b but without exchanging the numbers themselves.

We now analyze the security of the method: we assume that the intruder is able
to know all exchanged messages between Alice, and we wonder whether he is
able to reconstruct the secret key s. The information available to Charles are the
initial numbers y and z and the two exchanged values .ya/ mod z and .yb/ mod z;
however he does not know numbers a and b, which are kept secret. This is the
key point of the algorithm: knowledge of .ya/ mod z, y and z implies that to
compute a Charles must be able to perform the inverse operation of exponentiation
modulo z. As we discussed in the previous section, the computation of the inverse

6 Algorithms for Secure Communication 157

of exponentiation in modular arithmetic is a function that nobody knows how to
compute in polynomial time, and therefore it is impossible when the module is a
large prime number.

We observe, however, that Charles has the ability to check whether a number
is indeed the secret number chosen by Alice (or by Bob). However, since a and b

are chosen at random between 1 and z, it follows that the probability that Charles’
guess is correct can be made arbitrarily small by choosing a very large value of z.
For example, the choice of z may be sufficiently large so that the probability of
guessing a or b is negligible; for example, it can be less than the probability of
guessing for 10 consecutive times the winning numbers of the lotto! In conclusion
we have shown how Alice and Bob were able to calculate a secret key between
them with a robust method with respect to an attacker who is able to listen to their
communication.6

6.6 Public-Key Cryptography

Public-key cryptography is a radical discovery useful for establishing confidential
communication and that allows us to obtain new applications of cryptography. The
idea of secret key cryptography is to associate a secret key to each pair of people,
thus allowing them to establish a confidential communication. Differently, in public-
key cryptography keys are associated to each single user; namely, for each user we
have a public key that can be used to encrypt messages and a secret key that can be
used to decrypt messages encrypted. The encoding is such that decryption requires
knowledge of the secret key.

To better illustrate the concept we use a metaphor in which a secure box is used to
transmit the message; the box can be closed with a lock by the sender of the message
and then it is sent to the recipient. During travel the secure box cannot be opened;
upon arrival the recipient of the message opens the lock and reads the message. To
represent the above process using a secret-key encryption method we can imagine
that Alice and Bob buy a lock and each of them makes a copy of the key. In this
way they can safely communicate: when Alice wants to send a message to Bob, she
puts it in the box and locks the box with the lock. When Bob receives the box he
opens the lock using his key and gets the message. Clearly, the communication from
Alice to Bob is analogous and can be done using the same key lock. Obviously, the
accuracy of the method is based on the fact that only Alice and Bob own copies of

6The adversary who only listens to the communication is called a passive attacker and is the
weakest possible adversary. An active adversary is one who is able to send messages on behalf
of others and possibly intercept and modify messages posted by others. The method proposed by
Diffie and Hellman is secure with respect to a passive adversary but it is not resilient with respect
to an active attacker. We refer to [66, 78, 104] for how to cope with active adversaries.

158 A. Marchetti-Spaccamela

the key; therefore, if an intruder had a copy of the key he would be able to open the
box and read the messages in it.

The above scenario describes a system characterized by a perfect symmetry
between Alice and Bob, and where the key represents the secret encryption key.

In the case of public-key cryptography, the transmission of messages to Alice
using the locked box can be modeled by imaging that Alice buys many copies of the
same lock. Namely, we assume that all locks can be opened by the same key and
that to close an open lock we do not need the key. Alice distributes the open locks to
anyone who wants to send her a message and holds the keys to the lock itself. When
Bob want to send a message to Alice he puts it in the box, closes the box with the
lock that Alice gave him, and sends the box back to Alice. Upon receiving the box
Alice opens the lock with her key and gets the message. The crucial observation is
that only Alice holds a copy of the key, and therefore she is the only one able to
open a closed box. The above scenario models a public-key cryptography method.

We observe an asymmetry between Alice and Bob: Bob has a copy of the open
lock, supplied by Alice, but he is unable to open the lock, which may be done
only by Alice. In particular, the open lock represents the public key, and the key
represents Alice’s secret key.

The idea of public-key cryptography was presented to the scientific community
by Diffie and Hellman in an article published in 1976, without proposing an
effective public-key cryptographic algorithm, with appropriate security. Their paper,
however, represents a milestone in the history of cryptography, because it proposes
a revolutionary approach, completely different from the methods used in more than
2,000 years of history. The year after the publication of the article by Diffie and
Hellman, Rivest, Shamir and Adleman proposed the RSA encryption algorithm
(named from the initials of the authors). The salient feature of the method is that
until now nobody has been able to find a possible attack that makes it unusable; for
this reason today RSA public encryption is the most widely used standard.

From the historical point of view we now know that Diffie and Hellman were
not the first to have had the idea of public-key cryptography: Cocks and Ellis, two
English mathematicians who worked for the British intelligence services proposed
the idea of a public-key cryptosystem scheme together with a cryptographic
algorithm—similar to the RSA algorithm—in an internal document in 1973. The
revolutionary contribution of their proposal was misunderstood by their bosses
(perhaps because of the slowness of computers needed for its implementation at the
time) and considered a curiosity. However, the proposal was classified top-secret
and for this reason it was not made public until December 1997.

6.6.1 The RSA Algorithm

We proceed in two steps to present the RSA encryption algorithm; first we will see
how to define the pair of keys, the public key and the secret one, that will be used
by Alice, and then we will see the encoding and decoding algorithms.

6 Algorithms for Secure Communication 159

6.6.1.1 How to Define the Public and the Secret Keys

Assume that Alice wants to establish a public key and corresponding secret key. To
this goal she first chooses two large prime numbers p and q. For security reasons p

and q must be large—they are composed of hundreds of digits—and it is essential
that they are kept secret since knowledge of them would allow an attacker to easily
break the method by computing the secret key. We do not discuss an efficient
procedure for finding such primes, and instead we refer to [66, 78, 104].

Alice’s public key is given by a pair of integers .n; e/, where n is the product of p

and q, and e is an integer greater than 1 that is relatively prime with .p�1/ �.q�1/.7

To find such an e is not too complicated: Alice chooses a random integer repeatedly
until she finds one that satisfies the required condition; in general this procedure
does not take long because there are many numbers that have the property of being
relatively prime with .p � 1/ � .q � 1/. This step completes the definition of Alice’s
public key.

Alice’s secret key that is associated with the public key .n; e/ is defined by the
integer d such that e � d D 1 mod ..p � 1/.q � 1//. Note that given .n; e/, then d

is unique and its calculation is not computationally difficult as it can be done with
a variant of Euclid’s algorithm for calculating the greatest common divisor of two
numbers (see Sect. 1.3).

6.6.1.2 How to Encode and Decode

Recall that in Sect. 6.3 we showed how we can represent messages using integers;
in particular, we assume that the message m is an integer less than n. The RSA
encryption algorithm takes as input the public key .n; e/ and m and computes an
integer y, which is also less than m, representing the encoded message; the secret
key d allows us to compute m from y.

The encoding operation simply requires us to calculate the eth power of m

modulo n. Formally, we have

y D me mod n:

Decoding is similar: to obtain m it is sufficient to calculate the d th power of y

modulo n:

y D md mod n:

7Recall that e and .p � 1/ � .q � 1/ are relatively prime if the Greatest Common Divisor of e and
Œ.p � 1/ � .q � 1/� is 1.

160 A. Marchetti-Spaccamela

To show that the RSA method is correct we need to show that, given m by first
encoding and then decoding we get the original value m. Without going into the
details of a rigorous treatment, we simply observe that the definition of the different
parameters n, e and d implies that, given m, first computing the eth power of m

modulo n and then the d th power of what it achieved (always modulo n) allows
us to get m again. Equivalently we can claim that the encoding and the decoding
operations are the inverse of each other, and therefore we can write:

m D yd mod n D .me mod n/d mod n:

6.6.1.3 Security of the RSA Algorithm

We first observe that Alice’s public key .n; e/ is known by everybody, even to the
adversary who wants to know the confidential messages sent to Alice. Therefore, the
security of the method hinges on the fact that knowledge of the public key does not
allow one to know the associated secret key. Recall that the secret key is uniquely
associated with the public key; therefore the security of RSA requires that the
computation of the secret key, knowing the public key, should be computationally
intractable.

Observe that if an attacker knows the public key .n; e/ and knows the factors
p and q of n, then he is able to calculate the secret key. In fact, the knowledge
of p and q allows one to calculate .p � 1/ � .q � 1/ and, subsequently, knowing
.p � 1/ � .q � 1/ and e it is very easy to compute the secret key d by performing
the same operations that Alice has done while generating her keys. Therefore, the
safety of RSA hinges on the fact that given an integer n product of two primes, the
computation of the primes p and q such that n D p �q is computationally hard. This
problem is a special case of the integer factoring problem that asks for the prime
factors of a given integer.8

Finding an algorithm that solves the factoring problem is not difficult: there is a
simple resolution algorithm that is based on repeated checking of whether a prime
number is one of the factors. Namely, to find the factors of n it is sufficient to divide
it by 2 and verify if the remainder of the division is 0. In the positive case we have
found that 2 is a factor of n; if not we carry out the division of n by 3 and verify
the remainder. If also in this case the remainder is not zero then we continue with
5, then 7 until we find a factor or we reach a sufficiently large number (greater than
the square root of n) without finding the prime factors of n. In this second case we
can deduce that n is a prime number and as such has no prime factors other than 1

and itself.

8Recall that f is a prime factor of n if 0 is the remainder of the division of n by f and f is different
from 1 and n (in fact, we can also say that 1 and n are trivial factors).

6 Algorithms for Secure Communication 161

The previous algorithm is conceptually simple but impractical if n is very large.
For example, the factorization of a number given by the product of two primes p and
q of 100 decimal digits each (whose product n is composed of 200 decimal digits)
requires the execution of a very high number of divisions, which makes the method
impractical. We might wonder whether there are more efficient algorithms that make
the factoring problem tractable. The answer is negative: despite the intensive studies
done we do not know fast methods that are capable of factoring numbers that are the
product of two large prime numbers. In fact, the fastest methods proposed are able to
factor numbers of 200 decimal digits (in a few months and with the use of parallel
computers) but are impractical to factor larger numbers. In fact, the computation
time of all known algorithms grows exponentially with the number of digits of the
number to be factored if both p and q are very large. In particular, known algorithms
may require centuries to factor integers of 400 decimal digits (such as those used
today in RSA applications), even if we have thousands of available computers.

The above discussion shows that with the state of the art we do not know whether
a fast algorithm to factor an integer that is the product of two prime numbers exists
or not. If such an algorithm is discovered, then the RSA encryption code is no longer
secure; however, since nobody has been able to find such an algorithm despite the
problem having been intensively studied is a sufficient reason to believe that for
now RSA is secure. We have emphasized now, because the previous claim does not
exclude the possibility that a brilliant researcher might have the right approach to
solve the problem. In other words, we have no certainty of the fact that RSA is
secure, but there no algorithms that allow an attacker to infer the secret key from the
public key. We can only say that RSA should be considered secure given the present
state of our knowledge.

6.7 Digital Signatures and Other Useful Applications
of Public-Key Cryptography

In the last 20 years we have witnessed a radical change in the way information
is stored and distributed; during this time paper has been progressively substituted
by digital media. This radical change poses new problems: for example, when we
receive a file, how can we be sure that such information is authentic and has not
been modified?

The above problem is caused by a well-known feature of computer and digital
devices in use today: the ease with which we can copy and modify information.
The fact that copying and modifying are simple poses the question of how to
guarantee data integrity and authenticity. Therefore, confidential communication is
not sufficient to meet all safety requirements posed by the many applications of new
information technologies such as e-mail, and Internet commerce. In particular, since
information is primarily stored and transmitted in electronic format, it is necessary
to develop methods and tools to ensure the authenticity of the information and of
the sender.

162 A. Marchetti-Spaccamela

The issue of authentication is not limited to data. In fact, the original design of the
Internet did not consider security and privacy aspects; therefore the original design
does not guarantee the identity of the person with whom we are communicating (as
we often experience with fake e-mails that claim to be sent by our bank and ask to
verify the access codes of bank or credit card accounts).

The above issues have many consequences that are out of the scope of this chapter
such as, for example, that of copyright protection. For the sake of space we will limit
ourselves in the following to discussions of how to digitally sign documents whose
importance in our society does not need to be justified.

6.7.1 How Public-Key Cryptography Allows for Digital
Signatures

We first observe that the ease of copying a document complicates the problem of
signing digitally. In fact, hand signature depends only on the person signing, and
might require experts to distinguish fake signatures. In the case of digital signatures
the problem is more complicated. In fact, suppose that Alice sends a bank order to
Bob for $100 and assume that Alice signs the order by writing “Alice” at the end of
the message. Alice’s message is a sequence of characters that can be easily copied,
so the signature of Alice may be taken by our intruder, say Charlie, who could send
to the bank a message like “Pay $1000 to Charlie” and adding “Alice” at the end.
Clearly the above example holds, even if Alice’s signature is a more complex string
such as “A!23jde/Z2”.

The definition of a digital signature scheme requires us to define an algorithm
for signing a document and an algorithm for verifying whether a signature is a true
(or a fake) signature. The above discussion implies that the digital signature of a
document must depend on the signing person and on the document; namely, the
signatures of two different documents done by the same person should be different.
However, we now need to define a digital signature method that must allow us to
verify the correctness of the signatures created by the same person on different
documents.

6.7.1.1 How to Digitally Sign with Public-Key Cryptography

Public-key cryptography allows us to realize in such a way conceptually simple
digital signatures. In particular, suppose that Alice wants to send the following
message to the bank9:

Pay the sum of 100 US dollars to Bob charging it on my account. Rome, 1.1.2008 8:00.
Alice

9The reason for including date and time in the next message will become clear shortly.

6 Algorithms for Secure Communication 163

Suppose that Alice is using RSA and that .n; e/ is Alice’s public key and that d

is the associated secret key (that is only known to Alice and to nobody else). Let m

be the number (less than n) representing the message to be signed. The operations
of signing and verifying a digital signature are described as follows.

Signature Algorithm

Alice sends the message m and signs by decoding it with her private key.

Namely, the digital signature f is

f D .md / mod n:

Signature Verification Algorithm

After receiving the message m and Alice’s signature f , to verify the signature
it is necessary to know Alice’s public key.

Namely, if .n; e/ is Alice’s public key we define g as follows

g D f e mod n:

The signature is valid if g D m; in such a case the bank executes the payment
order, otherwise the signature is false.

To prove the correctness of the above method we must provide evidence that
only Alice is able to sign a message with her name while at the same time everyone
should be able to verify the signature. Before discussing how this is achieved we
recall that when applying RSA encryption and then RSA decryption on a given m

then we get m; formally the following equality holds for all m

m D .me mod n/d mod n:

The correctness of the verification made is based on the fact that if we perform
two successive operations of exponentiation the order is not important. For example,
squaring 2 and then computing the cube power of the result gives the same result if
we first compute the cube of 2 and then compute the square of the result; in fact we
have that .22/3 D .23/2 D 64.

Formally, the fact that when executing two successive operations of raising a
number to a power we can change the order of execution implies that the operation
of exponentiation is a commutative operation. This property is also true in the case
when the result of the operation is the module of n.

164 A. Marchetti-Spaccamela

The above discussion implies that—in the RSA method—given m by first
decrypting and then encrypting we obtain the same m as when we first encrypt
and then decrypt. Formally, the following equality holds for all m:

m D .md mod n/e mod n D .me mod n/d mod n:

Now recall that the integers n, d and e that form the secret and the public key are
strictly related: in particular, given the public key .n; e/ there is only one integer d

that corresponds to Alice’s secret key and verifies the previous equality. Therefore,
only Alice, who knows the secret key associated with the public key .n; e/, is able
to compute, which verifies the equality

f D .md / mod n:

On the other hand we observe that to verify the digital signature created by Alice
we need to know Alice’s public key. However, we can assume that this information
is publicly available and therefore everyone is able to verify Alice’s signatures. We
also observe that any forger of Alice’s signature must be able to calculate Alice’s
secret key from her public key. We have discussed in the previous paragraph that this
task is virtually impossible and takes a long time even if you have many computers.
Therefore we can safely assume that nobody can use the signature of a message to
falsify the signature of other messages.

Note that by applying the above algorithm, Alice’s signature depends on the
message, and the signatures of different messages are different. Therefore, the
previous reasoning to ensure that only Alice is able to sign the message M also
implies that Alice cannot repudiate her signature before the judge who asks her
to show her secret key. Obviously, Alice’s signature of identical messages is the
same. This implies that if Alice wants to send two identical payment orders then
she should make them different from each other in some detail (such as the date or
time of the payment as we did in the example). Otherwise the two messages are as
indistinguishable as their signatures.

In conclusion, we can conclude that only Alice is able to sign and, therefore, the
validity of the signature itself follows and the proposed digital signature scheme
verifies the following requirements.

Requirements of a Digital Signature Algorithm

A digital signature algorithm must be not falsifiable, not repudiable and ver-
ifiable. Not falsifiable implies that nobody should be able to sign documents
with somebody else’s name. The second condition implies that a judge in
court should be able to certify the authenticity of the signature (in the same
manner as certified by a notary). The third condition requires that everyone
should be able to verify the validity of a signature done by somebody else.

6 Algorithms for Secure Communication 165

Observe that the two requirements of non-falsifiability and non-repudiation are
closely linked.

We have seen how to sign a message that is represented by an integer number m.
We have seen how we can represent a very long message with a sequence of integer
numbers hm1; m2; : : :i. Therefore, if we want to sign a very long message then it is
sufficient to apply the above digital signature scheme to m1; m2; : : : ; obtaining as a
signature a sequence hf1; f2; : : :i. Observe that this method has a major limitation:
the digital signature of a document is as long as the document itself. Clearly this is
not practical. We would like to have short signatures. This can be indeed achieved;
however, the discussion of this is beyond the purpose of this chapter and we refer to
[66, 78, 104].

We conclude by noting that there are other issues in addition to sending
confidential information and the digital signature of documents that are processed
in cryptography, for example, the integrity of data and identification of users. In
the first case you need to have tools to quickly determine whether the information
has been modified in an unauthorized way (e.g., by inserting, modifying or deleting
data). The identification of users instead mainly applies in scenarios where you need
to be certain of your identity.

In the same way as for the sending of confidential information and the digital sig-
nature, encryption has developed the modern mathematical methods and techniques
that allow you to manage these aspects. We refer to the bibliography for further
study.

6.8 Bibliographic Notes

For a history of cryptography, which includes not only the origins but also the latest
developments, the reader is referred to [64] and [103]. The first monograph presents
a thorough discussion of the development of cryptography over the centuries, and
the second monograph is characterized by the historical framework with a series of
examples that highlight the role of cryptography.

For a story about the activities of British intelligence during the Second World
War which led to breaking the Enigma code, refer to [59]. For more on modern
cryptographic codes and methodologies, it should be noted that the encyclopedia
Wikipedia contains much useful information. There are many textbooks on the
market that present basic elements of modern cryptography, for example, [66, 104].
For a very complete and detailed review of the main topics of cryptography, see the
manual [78]; chapters of the manual may be obtained from the publisher’s Web site.

Chapter 7
Algorithmics for the Life Sciences

Raffaele Giancarlo

Abstract The life sciences, in particular molecular biology and medicine, have
witnessed fundamental progress since the discovery of “the Double Helix”.
A relevant part of such an incredible advancement in knowledge has been possible
thanks to synergies with the mathematical sciences, on the one hand, and computer
science, on the other. Here we review some of the most relevant aspects of this
cooperation, focusing on contributions given by the design, analysis and engineering
of fast algorithms for the life sciences.

7.1 Introduction

In February 2001, the reference journals Science and Nature published special issues
entirely dedicated to the sequencing of the human genome completed independently
by The Human Genome Consortium and by Celera Genomics, with the use of two
different sequencing approaches. Those results, of historic relevance, had already
been widely anticipated and covered by the media since they are a fundamental
landmark for the life sciences—biology and medicine, in particular. Indeed, the
availability of the entire sequence of bases composing the human genome has
allowed the comprehensive study of complex biological phenomena that would have
been impossible before then. The abstraction process that allows a genome to be
seen as a textual sequence is summarized in the box “Textual Representation of
DNA”. The race towards such a goal began in the early 1990s, when it became
clear that the sequencing technologies available then, with the focused support of
research in mathematics and computer science, could be extended to work on a
genomic scale.

R. Giancarlo (�)
Dipartimento di Matematica ed Informatica, Università di Palermo, Via Archirafi 34,
90123 Palermo, Italy
e-mail: raffaele@math.unipa.it

G. Ausiello and R. Petreschi (eds.), The Power of Algorithms,
DOI 10.1007/978-3-642-39652-6__7, © Springer-Verlag Berlin Heidelberg 2013

167

mailto:raffaele@math.unipa.it

168 R. Giancarlo

CH3

H H

H

H

H

H

H

H

5'

5'

3'

3'

C A A

A
A

A

A

A

A

T

T T T

T

T

T

T

G

G G G
G

G

G

G

G

G

C

C

C

C

C C
C

C

C

N

N
N

N N

N N

N

NN

N

NN

N N

O

O

O

O

∑ = { a, c, g, t}

δ+

δ+

δ+

δ+

δ+

thymine

hydrogen bond

3 hydrogen bonds

adenine

cytosine

guanine

adenine thymine

guanine cytosine

axis of the
second helical chain

axis of the
second helical chain

axis of the
first helical chain

axis of the
first helical chain

δ−

δ− δ−

δ−

δ−

a b

c d

Fig. 7.1 A genome as a text sequence

Textual Representation of DNA

DNA can be represented in textual form, i.e., its biochemical structure can
be described by a sequence of characters, as briefly outlined next. The
four nucleic acids that compose DNA are Adenine, Cytosine, Guanine,
and Thymine. They bind each other in a complementary way, as follows:
Adenine and Thymine bind exclusively to each other and so do Cytosine and
Guanine. The chemical structure of these bases and their links are illustrated
in Fig. 7.1a. The “double helix” is shown in Fig. 7.1b. Its main features are:
the skeleton of external support, made from sugars, represented on both sides
as a ribbon, and the two filaments of bases linked in a complementary way
that are represented as rods. The four nucleic acids can be simply “coded”
with letters: A, C, G, T—with obvious association. The complementarity of

(continued)

7 Algorithmics for the Life Sciences 169

(continued)

the bonds can be represented by pairs of letters (A, T) and (C, G). Once
that is done, the biochemical structures of Fig. 7.1a can be represented by
an alphabet of four symbols, shown in Fig. 7.1c. It is worth pointing out that a
double-stranded DNA structure can be represented by choosing one of the two
sequences corresponding to one of the two strands, since the other sequence
can be uniquely determined from the chosen one (see Fig. 7.1d).

In the early 1990s, another technology with incredible potential gained the
attention of biomedical research: that is, microarrays, which are chips that,
intuitively, allow for the capture of information about genes that can be used to
identify groups with common behavior in order to infer, for instance, the level
of involvement of each group in the same pathologies. Almost simultaneously
with the announcement of the completion of the human genome, have appeared
in the same or in equally prestigious scientific journals, studies on the automatic
classification of tumors, although there has not been much media coverage about
them. The fundamentally new proposal in those studies is to produce accurate
tumor taxonomies via gene expression experiments with the use of microarrays.
Those taxonomies, in turn, are the initial point of research efforts that, in the future,
would allow for the focusing of treatment of the specific pathology affecting a given
patient. It is not a coincidence that microarrays are also a fundamental tool for drug
design and discovery.

From the 1990s to today, thanks to the reduction in cost, both large-scale
sequencing technologies and microarrays are part of the investigation tools of
research institutions, even small ones. Such a widespread use of those so-called
high-throughput technologies has resulted in data production in quantities such as
to cause serious management problems both for data warehousing and analysis.
Therefore, as a consequence, there has been an exponential growth both of
specialized databases for biological research and of computer science tools essential
for the analysis of those data.

Computer science, mathematics and statistics are therefore fundamental,
certainly for the data warehousing aspects, but even more for the analysis of those
data in order to reach conclusions of relevance for biological research. Algorithmics
has already given contributions that are at the base of tools now recognized as
essential for the life sciences, such as the program BLAST, which is of daily use for
sequence database searches. Here an effort is made to give the reader an idea of those
contributions, limiting the scope to some of the areas of the biomedical sciences
where research is particularly intense and where the computational techniques have
not yet reached their full potential. It has already been established, in the previous
chapters, that algorithmics, tightly connected to combinatorics, proposes automatic
procedures to determine solutions to many computational problems that are based
on deep theories and that try to shed light on what is information and how it is best

170 R. Giancarlo

represented and used. That will be exemplified in what follows by presenting some
algorithms for bioinformatics that are recognized as reference points, either because
they have been evaluated to be the best in a particular domain or because they
have received particularly prestigious honors, such as the front page of outstanding
scientific journals, e.g., Nucleic Acids Research and BMC Bioinformatics.

7.2 The Fundamental Machinery of Living Organisms

A monkey is a machine that preserves genes up trees; a fish is a machine that preserves
genes in water; there is even a small worm that preserves genes in German beer mats. DNA
works in mysterious ways.1

DNA and proteins are polymers, composed of subunits known as nucleotides
and amino acids, respectively. The genomic DNA of an organism, by means of
the genes contained in it, is the information dictating the working of a complex
biochemical machine whose aim is to produce proteins. Such DNA does not exist
as a nude molecule, but rather as an extremely compact, three-dimensional, protein-
DNA complex, known as chromatin. This latter is obtained via a process known as
DNA supercoiling (Fig. 7.2), briefly described in box “DNA as Beads on a String”.
Intuitively, chromatin is the structure that is obtained once a long string has been
wrapped around a series of beads in such a way as to take little space. The role of
chromatin is not limited to such a compression process, as was initially thought,
since it also has a deep influence on gene expression. Indeed, once packaged, only
part of the genomic DNA is accessible and many messages are hidden. In order
to transform those latter messages into proteins, they need to be made accessible.
Such a goal is met via a dynamic behavior of the base components of chromatin.
Here we limit ourselves to pointing out that research on such dynamic behavior
is among the most important and fundamental in the life sciences because its
understanding is seen as a substantial step forward for the cure of genetic diseases.

DNA as Beads on a String

Eukaryotic DNA can be seen as a very long thread. In order for this thread
to be contained in the nucleus of a cell, it is necessary that it folds through
a series of steps, at different levels of hierarchical organization, carried out
through the use of particular proteins such as histones. The key steps of this
process, known as supercoiling of DNA, are shown in Fig. 7.2. It is worth
mentioning that only the first step of this process is known, while for the

(continued)

1Dawkins [25].

7 Algorithmics for the Life Sciences 171

a

b

c

d

Fig. 7.2 The DNA supercoiling process

(continued)

others there are many working hypotheses about their structural conformation.
The following explains in more detail the representations shown in the
figure: (a) A DNA strand. The winding of DNA around spool-like structures
called histones. Each spool with DNA wrapped around it is referred to as a
nucleosome. (b) The resulting structure after this first step of packaging can be
seen as a necklace of pearls, where the pearl is represented by the nucleosome.
Note that the nucleosome is a fundamental unit in this process of compaction
and bending, as DNA is wrapped at regular intervals, around histones to form
nucleosomes. (c–d) The nucleosomes are then further packaged.

There is an estimate that each cell of a human being contains about 30,000
genes, that are present at birth and that remain stable throughout the entire life
of an individual. Depending on various circumstances, including pathological ones
or reactions to drugs, each gene is either activated or deactivated. In order for a
gene to become active (technically, expressed), one needs to use “switchboards”
referred to as promoters: DNA sequences that, on a genome, usually precede the
DNA sequences corresponding to the genes. In each promoter, there are some
“switches” that need to be “turned on” by some very special and important proteins,

172 R. Giancarlo

Fig. 7.3 The structure of a regulatory region

known as transcription factors. This entire process, known as transcription, is briefly
illustrated next, starting with the description of the organization of a typical genomic
region involved in the process, and schematized in Fig. 7.3. The region of interest
can be divided into two smaller regions: “coding” (thick line) and “regulatory”,
where the first is to the right of the second. In the regulatory region, there are three
promoters: the minimal promoter, very close to the start of the coding region, the
proximal, which is further apart, and finally the distal, which can be even thousands
of bases upstream of the beginning of transcription. That is not problematic since
DNA is a dynamic three-dimensional structure and therefore sequences that are
very far from each other may be close, or brought close to each other, in three-
dimensional space. Some binding sites are indicated within each promoter.

When a binding site is “occupied” by a transcription factor, the effect is to recruit
the RNA polymerase that begins the real transcription process. With reference to
Fig. 7.4, the coding region is divided into introns and exons. The RNA polymerase
transcribes the entire region forming the precursor RNA. Via a process known as
splicing, some introns are removed to form the messenger RNA. This latter is then
translated into an amino acid sequence corresponding to the desired protein.

The above transcription mechanism is common to all living species and it
is therefore a fundamental one, whose malfunctioning may result in serious
pathologies. Roger Kornberg, in 2006, received the Nobel Prize for Chemistry for
his contributions to the understanding of the molecular basis of transcription. Those
contributions could lead to the development of therapies, based on stem cells, for
tumor and cardiovascular diseases.

The mechanisms and the processes that regulate gene expression and the quantity
of proteins that result from that expression are extremely complex and much
remains to be discovered and understood. One thing that is certainly clear is that
malfunctioning of those expression mechanisms is at the origin of many pathologies.
In order to shed light on the level of complexity of research in this area, we limit
ourselves to mentioning that it has been discovered, only recently, that some
small RNA sequences, known as microRNA, have a very important role in gene
regulation, by inhibiting the production of some given proteins, de facto “silencing”
or lessening the expression level of the corresponding genes. Recent studies, which

7 Algorithmics for the Life Sciences 173

Fig. 7.4 The structure of a coding region and gene transcription

establish that microRNAs play a fundamental role in tumor development, also put
forward a research plan for their use in therapy. It is also worthy of mention the way
in which genetic information is transmitted to new cells. Indeed, that mechanism
is what indissolubly connects the DNA molecule to inheritance and evolution.
The double helix structure of DNA has already been discussed (see again the
box “Textual Representation of DNA”) and it is also well known that during cell
division, only one helix of DNA is “passed on” to a new cell. In that new cell,
DNA will appear again in its double helix form thanks to DNA polymerase which
reproduces the missing helix from the one that is present. DNA recombination and
copying are error-prone processes and therefore variations in a genomic sequence
may be introduced. The simplest one is a substitution, consisting of one letter being
replaced by another in a given genomic position. If that mutation is transferred to
the offspring it enters the “big game of evolution”. The human genome is made up
of nearly three billion bases, and it is estimated that the difference between any
two given genomes is on the order of about three million bases. Nature, which
seems to appreciate combinatorics and make extensive use of it, leaves room for
43;000;000 different human genomes. Moreover, although it would be nice to think
of ourselves as being a “unique” species, 99 % of our genetic code is very similar
to that of other mammals. In addition, many of our genes are similar to those of
many other species, including fruit flies, worms and : : : bacteria. In fact, winning
biochemical mechanisms are preserved or, more precisely, the mechanisms that
are preserved are the winning ones. For instance, histones are among the most
conserved eukaryotic proteins and that is a clear indication of their involvement in
fundamental biological processes. A guiding principle that one can abstract is that,
even in biodiversity, genomic and proteomic similarity is a notable indication of
biological relevance. Such a principle gives rise to one of the fundamental working
hypotheses of computational biology:

174 R. Giancarlo

Similarity of genomic or proteomic sequences and structures, as measured
by suitable mathematical functions, is a strong indication of biological
relatedness, in evolutionary and/or functional terms.

Equipped now with that working hypothesis, apparently very fragile given the
complexity of the “machine of life”, we will now enter into some areas where
algorithmic research has obtained some very valuable successes.

7.3 Algorithmic Paradigms: Methodological Contributions
to the Development of Biology as an Information Science

: : :The discovery of DNA structure started us on this journey, the end of which will be
the grand unification of the biological sciences in the emerging, information-based view of
biology.2

A genomic sequence contains two types of digital information, suitably
represented: (a) the genes encoding the molecular machinery of life, the proteins
and the RNA, (b) the interaction and regulatory graphs that specify how these genes
are expressed in time, space and intensity. Moreover, there is a “hierarchical flow
of information” that goes from the gene to the environment: gene ! protein !
protein interactions ! protein complexes ! graphs of protein complexes in the
cell ! organs and tissue ! single organisms ! populations ! ecosystem. The
challenge is to decipher what information is contained within this digital code
and in the hierarchical flow that originates from it. Since a few years after the
discovery of DNA structure and the first sequencing experiments, algorithmics has
played a key role in that decoding process. In order to point out the impact that
such algorithmic studies have had on the life sciences, both in terms of tools and
methodologies, it suffices to mention the following two examples. The BLAST
program, the result of deep studies combining statistics and algorithmics, is a
working tool that is now indispensable for the analysis of biological sequences. The
sequencing of a genome by the shotgun sequencing techniques is now a consolidated
reality, but it had a rather controversial beginning. One of the first studies to clearly
indicate the feasibility of that type of sequencing on a genomic scale is based on
algorithm theory. In what follows, we briefly present algorithmic paradigms, i.e.,
general approaches, that have made fundamental contributions in several areas at
the forefront of research in the life sciences.

2Hood and Galas [61].

7 Algorithmics for the Life Sciences 175

Fig. 7.5 Binding sites and motif representation

7.3.1 String Algorithmics: Identification of Transcription
Factors Binding Sites

From the brief introduction given in Sect. 7.2, it is clear that one of the main areas of
research in molecular biology is the discovery and understanding of the mechanisms
that regulate gene expression, which have a strong implication also for medicine.
To this end, an important line of research is the identification of regulatory regions,
in particular binding sites of transcription factors. Obviously, carrying out such a
discovery process purely via computational methods would be a great result for
several reasons, e.g., the cost of experiments in silico compared to those in vitro.
Unfortunately, this problem is difficult for many reasons, the main one being that
the sequence that corresponds to a specific binding site is very short, 8–10 bases, and
its retrieval could encompass the scrutiny of very long sequences, e.g., thousands of
bases. It would be like looking for a needle in a haystack.

Transcription factors, in order to do their job, must bind to a particular DNA
region. It is quite common that a transcription factor binds to a set of sequences
instead of a single specific one. Those sequences are in different parts of the
genome and usually share some characteristics that differentiate them from the
other sequences in the genome. These common characteristics make it possible to
describe these sites by a “motif”, which can be defined in different ways. For the
convenience of the reader, the notion of motif will be exemplified. Figure 7.5a shows
the alignment of 20 sequences of binding sites of the transcription factor MIZF (zinc
finger), i.e., a superimposition of the sequences summarized in a table. Figure 7.5b
represents a Position Weight Matrix, i.e., a matrix of nucleotide frequencies in the
positions of the alignment. Figure 7.5c shows the pure majority system: the motif
is obtained as the consensus sequence from the matrix of frequencies electing the

176 R. Giancarlo

character with a relative majority in each column. Figure 7.5d exemplifies the pure
proportional system: the motif is represented as a “logo” of the sequence obtained
again from the matrix of frequencies: each character has a height, in the interval
[0, 2], proportional to its frequency at that position. In general, given a specific
transcription factor, the mining of its binding sites consists of finding all the shared
sequence features in the site sequences. The main problem is the vague knowledge
of the exact positions of interest in the genome. In particular, this knowledge is
usually represented by a set of sequences, each sequence in the set corresponds to
one or more binding sites.

The direct approach to the problem of extracting motifs from sets of sequences
(each one several hundred bases long) offers only solutions based on enumeration
and therefore expensive in terms of time. Fortunately, by taking advantage of
statistical information about the relevance of each candidate motif, it is possible
to reduce the search space, substantially improving the computational time of the
algorithms.

A recent study has evaluated the best-known algorithms in the literature (11 as
of 2005), on a benchmark dataset consisting of sequences with known binding
sites. The performance of an algorithm is evaluated based on the percentage of
binding sites correctly identified. Among the 11 algorithms examined, the best is
Weeder, an algorithm that uses, in a very brilliant and original way, data structures
and statistical counting techniques representative of many algorithms designed for
the mining of textual information. The core of the algorithm is the suffix tree,
a ubiquitous data structure used to represent textual information. In the area of data
structures, the suffix tree is one of the most fundamental and useful ones: it has
been developed from basic research and is largely used in several applications in
bioinformatics. (The box “The Suffix Tree Data Structure” shows an example of a
suffix tree and details some of its features.) A few years later, the algorithm MOST
was developed to solve the same problem. While differing from Weeder, the core of
MOST is still a data structure analogous to the suffix tree. The main idea of both
algorithms is the identification of portions of a genomic sequence that are “over-
represented” or “under-represented”, i.e., portions of a sequence that are repeated
more frequently or less frequently than expected. In fact, sequences that have an
abnormal “statistical behavior” usually also have an important biological function.
The computational complexity of the above algorithms depends, strongly, on the
particular instance in input. For instance, for Weeder, the computational time can
take from a few seconds to several hours.

The Suffix Tree Data Structure

A suffix tree is a data structure designed to represent a sequence of characters,
highlighting the suffixes that comprise it. More in detail, a suffix tree for a
given sequence S of n characters is a rooted tree (see Chap. 2) with n leaves.

(continued)

7 Algorithmics for the Life Sciences 177

Fig. 7.6 The suffix tree for the sequence mississippi$

(continued)

Each internal node has at least two children and is labeled with a subsequence
of S . The concatenation of the labels of the arcs of a path from the root to a
leaf determines a specific suffix of the sequence S . To better illustrate this
data structure, consider for example the sequence mississippi$. The $ has
the formal role of preventing that a suffix is a prefix of another suffix. For
example, ignoring the $ symbol in the sequence, the suffix i is the prefix of
the suffix ippi, while the suffix i$ is not prefixed by any of the suffixes in
mississippi$. This property allows for the association, one-to-one, between
each suffix and its starting position in the sequence and it is essential for
what follows. For example, the suffixes ssissippi$ and ssippi$ correspond to
the positions 3 and 6 in the sequence. The suffix tree stores all the suffixes
of a given sequence, such that: (a) suffixes with common prefixes share a
path from the root to the leaves; (b) for each suffix, there is only one path
from the root to a leaf associated with it, and vice versa. Property (b) is a
direct consequence of the fact that, by construction, no suffix is a prefix of
another in a given sequence. Thanks to the properties (a) and (b), the suffix
tree stores all the subsequences of a sequence S and can be used to collect
efficiently many statistics about S . Moreover, since suffixes that have prefixes
in common share a path from the root of the suffixes tree, one has that identical
subsequences will share a path starting from the root. In the suffix tree of
Fig. 7.6, the root has five children because there are five different characters
in the sequence that we are analyzing (including $). It is also easy to see that
every letter appears in the sequence a number of times equal to the number of
leaves in the subtree associated to it. Although it may seem surprising, there
are algorithms linear in terms of computational complexity (i.e., complexity
proportional to the length of the input sequence) able to construct a suffix tree.

178 R. Giancarlo

7.3.2 Kolmogorov Algorithmic Complexity: Classification
of Biological Sequences and Structures

The study of the evolution and classification of species has shifted from the
consideration of morphological traits to the consideration of genomic ones. This
change of approach has led, for example, to the discovery that the most common
laboratory animal is not a rodent, even if it looks like it. Although there is a
vast literature in the field and hundreds of algorithms have been designed for
evolutionary studies, unfortunately the time performance of most of them does
not scale well when it is required to classify very long sequences of bases or
whole genomes, instead of sequences consisting of a few thousand bases. Below,
we describe a solution to this problem which is particularly elegant, deep, and
also effective. To this end, we need to introduce a classic notion of complexity
that provides a very elegant measure of the “complexity” of an object, encoded
by a text sequence x. This measure, K.x/, defined independently by Chaitin3 and
Kolmogorov,4 and known as Kolmogorov complexity, is given by the length of
the shortest program that produces x, without any input. Intuitively, the length
of the shortest program required for the automatic construction of x provides a
quantification of how complex x is. This insight and the corresponding definition
can be extended in several ways. For example, K.xjy/ denotes the complexity of
describing x (if y is known) and K.x; y/ denotes the complexity of describing both
x and y. Kolmogorov complexity has several applications in a myriad of contexts,
thanks to its links with statistics and the classic information theory founded by
Shannon.5 It is also a very elegant and simple way to quantify how two objects are
“similar”. In fact, if x is related to y, it is expected that K.xjy/ is smaller than K.x/.
That is, if x and y are similar, the way to describe x starting from y is more concise
than that of describing x, starting from nothing. Based on this observation, the
theory of Universal Similarity Measures between two sequences has been developed
and applied to the classification of sequences and biological structures, providing
evidence of the validity of the approach. Further studies have clearly shown that
the related biological tools based on this notion are extremely fast, scalable with
the amount of data, and flexible. Therefore, they are very competitive with respect
to the other previously known methods. For example, given a set of genomes it
could be useful to group them in a hierarchical tree, depending on how similar
they are based on their sequences. Since the similarity of genomes at the sequence

3Gregory John Chaitin is a well-known mathematician. When he came up with the idea and
corresponding research on Algorithmic Information Theory he was only 18 years old and had
just graduated from CUNY (City College, New York).
4Andrey Nikolaevich Kolmogorov was one of the greatest mathematicians of the twentieth century
and perhaps that is the reason why this complexity measure carries his name.
5Claude Shannon is the founder of a mathematical theory of communication that has taken the
name of Information Theory. This theory was born after World War II for a project regarding
telecommunications networks, but it has had a very wide set of applications also in other fields.

7 Algorithmics for the Life Sciences 179

Pan_paniscusa b Pan_paniscus

Pan_troglodytes Pan_troglodytes

Gorilla_gorilla Gorilla_gorilla

Homo_sapiens Homo_sapiens

Pongo_pygmaeus_abelii Pongo_pygmaeus_abelii

Hylobates_lar Hylobates_lar

Mus_musculus Mus_musculus

Rattus_norvegicus Rattus_norvegicus

Halichoerus_grypus

Halichoerus_grypus
Phoca_vitulina

Phoca_vitulina
Felis_catus

Felis_catus
Balaenoptera_musculus

Balaenoptera_musculus

Balaenoptera_physalus

Balaenoptera_physalus

Ceratotherium_simum Ceratotherium_simum
Equus_caballus Equus_caballus

Fig. 7.7 The tree in (a) shows the taxonomy of the National Center for Biotechnology Information
(NCBI), obtained based on biological considerations and found correct; the tree in (b) shows the
classification of the same species obtained by using Kolmogorov complexity on mitochondrial
DNA sequences

level is indicative of common evolutionary histories, it is expected that the tree
produced should be a biologically acceptable phylogeny. To construct such a tree
it is necessary to have algorithms that compute the similarity between genomes
and then a rule that puts together the genomes, using the quantification of their
similarities. This latter information is stored in a matrix, referred to as a similarity
matrix, and its calculation is the most expensive step of the entire procedure. The
algorithms that calculate similarities via Kolmogorov Complexity are considerably
fast and accurate.

To illustrate this point, we consider 16 mitochondrial genomes, whose evo-
lutionary classification is known and validated. The tree in Fig. 7.7a shows the
taxonomy of the National Center for Biotechnology Information (NCBI), obtained
based on biological considerations; the tree in Fig. 7.7b shows the classification
of the same species obtained by applying the computational tools coming from
Kolmogorov Complexity to the mitochondrial DNA sequences. The two trees are
almost identical, not only “by eye”, but also according to a formal mathematical
similarity function between trees (the Robinson and Fould distance). In fact, the
only difference is that the group of whales in the two trees do not have the
same “close relatives”. The construction of the second tree took a few seconds
on a personal computer, while the first one was obtained using a semi-automatic
procedure, involving also expert NCBI biologists who used knowledge available in
the literature. Thus, not only is the automatic method fast, but it also provides a good
starting point for the biologist to obtain a biologically valid classification.

7.3.3 Graph Algorithmics I: Microarrays and Gene Expression
Analysis

In the introduction of this chapter, microarrays were mentioned as a technology that
allows for the study of the level of expression of many genes, subject to the same

180 R. Giancarlo

Fig. 7.8 The leukemia microarray for 38 patients (rows) and 100 genes (columns)

experimental conditions. This procedure gives very useful information in order to
determine which genes have similar behaviors (expressed or non-expressed) under
similar experimental conditions. The end result of an experiment using microarrays
is a numerical matrix, referred to as an expression matrix. Generally, this matrix
has a number of rows equal to the number of genes involved in the experiment
and a number of columns equal to the number of experimental conditions. When
microarrays are used for the molecular classification of tumors, the rows are
associated with patients while the columns are associated with genes. The numerical
value in the entry .i; j / quantifies the expression levels of gene j in a cell of
patient i . A row gives a signature of how the genes behave in the same patient. It is
expected that patients with similar diseases have “similar” rows in the expression
matrix. The “clustering” of the patients depending on the similarity of the behavior
of some genes could lead to the identification of more accurate methods for disease
classification.

A brief example may help to clarify those ideas. Figure 7.8 shows, graphically,
the gene expression matrix of a leukemia study. The rows are the histological
samples of 38 patients and the columns are expression levels of 100 genes, carefully
selected from over 16,000 that have been studied for that pathology. The patients
are divided into three classes, depending on the type of leukemia affecting them:
AML and ALL, this latter being further divided into two groups, the lines T-ALL
and B-ALL. Given in graphical form, the different tones of the image correspond
to different expression levels. The microarray shown in Fig. 7.8 is part of a study
about the classification of tumors on a molecular basis. This analysis led to the
construction of computer procedures that are able to accurately diagnose the type
of leukemia without the intervention of experts. Therefore, it has produced an
automatic diagnostic tool of great help to doctors, particularly those who have no
significant experience with that particular disease. This study is the first establishing
that it is possible to build diagnostically accurate and clinically relevant tools for
the classification of tumors, using microarrays and experimental computational
techniques.

7 Algorithmics for the Life Sciences 181

From the computer science point of view, one of the main fundamental problems
for the analysis of microarray data is the “clustering”, i.e., the division of the rows
of the expression matrix into “similar” groups, referred to as clusters. Although
clustering is a widely studied problem, data from microarrays are very difficult
to analyze in this context. This is due to the fact that the rows of the expression
matrix are considered as vectors in a high-dimensional geometric space, making
this problem very difficult. This situation has revived interest in the development
of clustering algorithms, specific for gene expression data. Two of the most recent
and distinguished clustering algorithms are Cast and Click. They have an important
role in various research topics and are provided in all major analysis platforms for
microarray data available in the literature. Following the literature, both algorithms
consider the problem of clustering as one of partitioning6 a given set into disjoint
subsets. Formally, the set to be partitioned is a graph that has a vertex for each
object to be classified. Then, for each pair of objects .i; j /, there is an edge labeled
with a certain weight, i.e., a real number which measures the “similarity” between
objects i and j , as given by the corresponding rows of the expression matrix. The
two algorithms use different techniques for partitioning the graph into subgraphs.
Click tries to get the subgraphs formalizing clusters as a problem of network flow,
where the edges with a low weight are removed. The theoretical version of Cast
tries to build subgraphs as close as possible to complete subgraphs, or subgraphs
that do not miss any of the possible edges. Starting from the purely theoretical Cast
version, it has been possible to derive a powerful heuristic process for clustering
gene expression data, which has the same name and is shown in the box “The Main
Steps of Cast”.

The Main Steps of Cast

Let s be a similarity function between two objects x and y, with values in
[0, 1]—the greater the value of s.x; y/, the more similar the objects are; let
S.x; C / D P

y2C s.x; y/ be the total similarity between an element x and
a set of elements C , where ˛ is a discrimination parameter with values in
[0, 1]. Cast identifies a cluster at a time via an iterative process. Assume that
the following “status” holds in a generic iteration of the algorithm: there are
elements in the list UC that have not been clustered yet and a partial cluster
Ctemp is under construction. Ctemp is modified by two basic steps: ADD
and REMOVE. They are performed in the order given and repeated until
one can no longer add or remove items from Ctemp. At this point, Ctemp
is declared stable and labeled as a cluster itself. The procedure resumes with

(continued)

6The term partition refers to a decomposition of a set of “items” into disjoint subsets, whose union
is equal to the entire set.

182 R. Giancarlo

(continued)

Ctemp empty, in the case that there are still elements to be clustered (UC is
not empty). In the following, the ADD and REMOVE steps are detailed.

ADD: an element x is chosen from UC such that S.x; Ctemp/ � ˛jCtempj is
maximized. That is, the similarity average of x with elements in Ctemp must
be at least ˛ percent and maximal. If that condition is satisfied, x is included
in Ctemp, and removed from UC.

REMOVE: an element y is chosen from Ctemp such that S.y; Ctemp/ <

˛jCtempj is minimized. This means that the average similarity of y with
elements in Ctemp is below ˛ percent and minimal. If that condition is
satisfied, y is included in UC and removed from Ctemp.

Click and Cast are extremely fast and take a few seconds on microarrays with
hundred of thousands of genes and conditions, usually providing the number of
groups in which it is reasonably possible to divide the set of genes. Finally,
we briefly come back to the leukemia data. Experimentally, it has been verified
that, given an expression matrix and an appropriate choice of the input parameters,
Cast is able to reconstruct the classification in Fig. 7.8, with only two exceptions.
It is worth pointing out that such a dataset is “simple” to cluster while, in other
circumstances, one must be prepared to have a far lower percentage of accuracy.

7.3.4 Graph Algorithmics II: From Single Components
Towards System Biology

Several relevant studies indicate that the identification of interactions between
different components, such as proteins, at the level both of single and different
organisms, plays a fundamental role in biology. In the following, we briefly high-
light that such interactions are of several types and all of them are very important
for the identification of cellular machinery and evolution histories that characterize
and differentiate species. For example, the human being and the chimpanzee are
very similar, both in terms of genome sequences and gene expression levels.
However, the interactions between genes (graphs of genes) are very different in
the two species, in particular regarding the central nervous system. Like modern
electronic devices, many components in humans and chimpanzees are similar, but
the difference is in the “circuitry” which determines how these components interact.
Discovering the similarities and differences of this circuitry, among various species,
provides important information for system biology, where one of the main goals
is the identification and the understanding of the fundamental properties of those
interactions at the biomolecular “system” level. The significant amount of biological

7 Algorithmics for the Life Sciences 183

data produced in the last few years has uncovered several biomolecular interactions
that can be encoded as graphs, both for the human being as well as for other
model species. In the past 5 years, the number of interaction graphs available has
increased by more than one order of magnitude. Moreover, technological advances
will allow an exponential growth in the number of such graphs. Such a growth
of the available interaction data is similar to that seen in the 1990s for genomic
and proteomic sequences. The main difference is that the analysis of genomic and
proteomic sequences had at its foundation over 40 years of research in algorithmic
theory, while there is no such a background for interaction graphs.

In the literature, there are several interaction graphs of biological interest:
protein–protein, gene regulation, co-expression and metabolic. Each of those graphs
has its own features, but all have in common two computational problems whose
solution, when mature, will provide research tools to the life sciences as important as
the BLAST tool. The first problem is to identify, given a set of graphs, the common
structure shared by them. That is, subgraphs that appear similar in all graphs. This
problem is very similar to, but much more difficult than, the identification of patterns
in sequences (see Sect. 7.3.1). In fact, it can be phrased again as a motif discovery
problem, but this time in terms of graph structures. The other problem is: given a
“query” graph, identify all graphs in a database in which there appear subgraphs
similar to the query graph. Although there is a characterization of the mentioned
two problems in terms of computational complexity, their study for the design of
algorithms for biological graphs is in its infancy.

In what follows, we provide a short description of NetMatch, an algorithm that,
given a “text” graph and a “query” graph, identifies in the text graph the subgraphs
similar to the query graph according to a precise notion of similarity.

For example, consider the protein–protein interaction graph of yeast (Saccha-
romyces cerevisiae), annotated with gene ontology, shown in Fig. 7.9a. Assume
one wants to find, in that graph, paths starting from proteins localized in the
plasma membrane to proteins in the nucleus, passing through kinase proteins. This
request is encoded by the query graph shown in Fig. 7.9b. Note that the nodes
in the graph in Fig. 7.9b are connected by dashed edges. This encodes the fact
that these edges can be replaced by paths during the search process. The graph
in Fig. 7.9c represents an answer to the query. From the algorithmic point of
view, the problem addressed by NetMatch (isomorphism between subgraphs) is
computationally difficult, i.e., it is an NP-complete problem and is conjectured
to have an exponential time complexity (see Chap. 3). Since the isomorphism
between subgraphs is a fundamental problem in many contexts, different heuristic
solutions have been studied. NetMatch generalizes to the case of “approximate
isomorphisms” some of the known algorithms in the literature for the exact solution.
In particular, in order to have a fast program on biomolecular graphs, several
engineering speed-ups have been used. In fact, the program is able to perform in
a few seconds approximate searches on complex interaction graphs.

184 R. Giancarlo

Fig. 7.9 An example of
protein interaction search in a
biomolecular circuit. (a) A
protein–protein interaction
graph; (b) the “query” graph;
and (c) result of the query

7.4 Future Challenges: The Fundamental Laws of Biology
as an Information Science

The paradigm shift, just started, leading to the extension of the information sciences
to biology raises important questions that will affect both the biological and the
information sciences. It is quite clear that this new branch of the information
sciences has a multidisciplinary nature, and biologists, physicists, chemists, com-
puter scientists and mathematicians will play a key role. It is also clear that from

7 Algorithmics for the Life Sciences 185

this new process a new science and technology will arise, and we have seen
only the beginning of it. Such a process requires a huge cultural change, even
in the way of teaching all the involved disciplines to new students wishing to
contribute to the development of this new branch of the information sciences.
On this basis, the classic information sciences have to solve a first great challenge:
the characterization of the complex biological information in terms of mathematics
and computer science. That is, given the stochastic nature of biological processes
we want to discriminate the “relevant biological signal” from the “noise introduced
by stochastic processes” in biological data. A brief overview of past efforts could
help us to understand what we need in the future. Turing and Shannon, between the
1930s and the 1940s, developed theories that reveal some of the basic laws for the
transmission and processing of information, which have led to the development of
the foundations that are the basis of the modern “information society” (see Chap. 5).
The revolutionary contribution made by those two scientists was to show that
something as impalpable as information could be defined, quantified and processed
with mathematical tools. Over the years, those theories have become more refined
and sophisticated. Moreover, they have led to the development of practical tools
used in the transmission of signals and data processing. To all of this, algorithmics
has provided vital contributions not only by introducing paradigms but also by
proving that there are some intrinsic limitations on how efficiently a problem
can be solved by a computer. However, despite the already great knowledge the
information sciences have, it does not seem sufficient to provide adequate tools for
the characterization and interpretation of “biological complexity”. Indeed, the issue
of Science dedicated to the human genome sequence mentions in its conclusions
about ten notions of mathematical complexity known in the literature, but none
of them seems to be suitable to characterize “real” biological complexity. The
definition and use of this new notion of complexity seems to be a main priority
for an information-based approach to biology. Algorithmics for the life sciences
can only take advantage from such a foundational support in order to establish the
complexity and the amount of information contained in a biological system. On the
other hand, it can contribute to the development of this new notion by providing
increasingly more accurate research tools to identify biologically meaningful events
in the current information overflow characterizing the life sciences.

7.5 Bibliographic Notes

The impact that the discovery of the double-helical structure of DNA has had on
science and culture is well presented in a Nature special issue that celebrates the
50 years from the discovery of DNA [84]. The essay by Lander [70], although
a bit dated, presents the challenges for post-human-genome genomics that are
still current and also proposes a global view of biology. Algorithmics has given
outstanding contributions to genomic large-scale sequencing, including the human
genome, that have not been presented here. Those aspects are presented in [48].

186 R. Giancarlo

The importance of chromatin in controlling gene expression is well presented
in a classic paper by Felsenfeld and Groudine [38], while the involvement of
miRNA in cancer was addressed by Calin and Croce [14]. The paper by Hood
and Galas [61] is part of the already-mentioned Nature special issue. The strong
evidence that the guinea pig is not a rodent is presented in D’Erchia et al. [27].
In regard to introductory textbooks presenting algorithms for bioinformatics, those
by Gusfield [53] and Jones and Pevzner [63] are worthy of mention. The BLAST
sequence alignment algorithm is described in both books. The importance of the
suffix tree in bioinformatics is presented in [54]. An elementary presentation of
motifs in DNA sequences is given in [29]. Weeder and MOST are presented
in [90] and [91], respectively. Two of the papers that develop the research line
of classification through Kolmogorov complexity are [40, 73]. More generally,
Kolmogorov complexity theory and its applications are well presented in [72].
The study about the leukemia data and the subsequent development of automatic
classifiers for such a pathology is presented in [51], while the Click and Cast
algorithms are presented in [99], together with many issues regarding microarray
data analysis. Fast algorithms for internal validation measures as they apply to
microarray data analysis are described in [49]. The state of the art regarding
biomolecular graphs is presented in [100, 115]. Finally, NetMatch is described
in [41].

Acknowledgements The author is deeply indebted to Luca Pinello and Filippo Utro for helpful
discussions and comments about the content of this chapter. Many thanks also to Margaret Gagie
for the usual, very competent proofreading and stylistic comments.

Chapter 8
The Shortest Walk to Watch TV

Fabrizio Rossi, Antonio Sassano, and Stefano Smriglio

Abstract The problem of finding the shortest path between two points underlies
the concept of distance. In the common understanding, the physical distance
between two points is always regarded as a non-negative quantity. However, from a
mathematical point of view, the shortest-path problem can be defined and solved
even when distances between points are negative. In this chapter we show that
this model has an engineering application in the problem of synchronizing several
electromagnetic signals received by a set of antennas. Solving this problem is
fundamental in the design and implementation of digital television networks.

8.1 A Different Idea of Television

Our idea of television is intrinsically associated with content: news, reports, movies,
shows, this is what we usually call “television”. Occasionally, we happen to take
notice of other aspects, related to the quality of the image and sound. For instance,
if the reception is poor, we try to rotate the antenna or install some kind of
amplifier to improve the “useful” signal. Going further, we might come across
several technological issues, such as electromagnetic propagation, signal coding,
transmitting and receiving electronic devices. But what we are really not used
to considering as like television is everything concerning the optimal design of
transmission networks along with the related algorithms. In fact, problems and
skills arising in this context have been historically hidden by the redundancy of

F. Rossi (�) � S. Smriglio
Dipartimento di Informatica, Università dell’Aquila, via Vetoio, 67010 Coppito (AQ), Italy
e-mail: fabrizio.rossi@univaq.it; stefano.smriglio@univaq.it

A. Sassano
Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza Università di Roma,
via Ariosto 25, 00185 Roma, Italy
e-mail: sassano@dis.uniroma1.it

G. Ausiello and R. Petreschi (eds.), The Power of Algorithms,
DOI 10.1007/978-3-642-39652-6__8, © Springer-Verlag Berlin Heidelberg 2013

187

mailto:fabrizio.rossi@univaq.it
mailto:stefano.smriglio@univaq.it
mailto:sassano@dis.uniroma1.it

188 F. Rossi et al.

the resource hosting video transmission: the frequency spectrum. For instance, the
design and the implementation of the first Italian broadcasting network, carried
out in the early 1950s, was straightforward. Having all the frequencies available,
the engineers of the public broadcasting company (RAI, Radiotelevisione Italiana)
accomplished the whole territory coverage simply by choosing suitable sites on
hills and then setting up transmitters with the best frequencies in terms of service
area. Nowadays the frequency spectrum is a public and very scarce resource.
It also has a remarkable economic value, thanks to the increasing importance
of wireless communications. To give an idea, the Spectrum Framework Review
(Ofcom) evaluated that in the United Kingdom it was about 24 billion pounds in
2005. Other estimates show that it is about 2 % of GDP and employment in EU.
No precise evaluations of the spectrum value in the Italian market have been carried
out. However, an indication is provided by the 2 billion Euros revenue yielded to
the Italian State by the auction of the 5-MHz bandwidth for UMTS services as
well as the 136 million Euros from WiMAX frequencies. As a consequence, the
optimal design of transmission networks (television, GSM, UMTS, WiMAX, etc.)
has become a strategic goal for governments and regulation authorities. Specifically,
a transmission network has to be designed so as to maximize the coverage while
using the smallest possible amount of spectrum. In this way regulators are able
to know, with good approximation, the maximum number of operators who can
simultaneously use a specific portion of the spectrum without degrading the quality
of service provided.

The process leading to the determination of the optimal network for a specific
technology (digital television, digital radio or WiMAX) in a specific portion of the
spectrum is referred to as network planning. For example, sophisticated planning
techniques have been adopted to carry out the National Plan for Broadcasting
Frequency Allocation issued by the Authority for Communications (www.agcom.it)
in 1998, which set to 17 the maximum number of analogue television networks
feasible in Italy.

This chapter shows how the design and implementation of algorithms is fun-
damental to providing high quality and widespread television service. We start by
introducing the main elements of television networks along with basic notions and
tools for their practical planning. Afterwards, we illustrate the decision problems
concerning with the optimization of several transmitter parameters with a particular
focus on transmission delays, which are a distinguishing feature of the new
digital networks. We then present a mathematical model for the optimization of
transmission delays, which is finally used to develop a planning algorithm. This is
interesting for two main reasons. First, it is applicable to all transmission networks
based on the Orthogonal Frequency Division Multiplexing (OFDM) modulation
scheme, which is used by different types of wireless networks (e.g., 3G, WiFi,
WiMAX, DAB), and, above all, by the digital video broadcasting (DVB) currently
being implemented in Italy and Europe. Second, the algorithm has a “soft” impact
on the network, that is, it does not require a relocation or modification of the
transmission equipment but only a reprogramming of the transmitters. Nevertheless,
it may greatly extend the network coverage. Furthermore, the mathematical model

www.agcom.it

8 The Shortest Walk to Watch TV 189

and algorithm have the advantage of being explainable without resorting to an
advanced mathematical formalism, while maintaining a high level of generality.
In fact, the modeling process also applies when other transmitter parameters, such as
transmission frequency or emission power, have to be optimized. However, in these
cases, the treatment is mathematically more complex with respect to the case of
transmission delays, even if it does not present relevant conceptual differences.

8.2 Designing a Broadcasting Network

In this section we describe notions and concepts such as system elements, computer
representation and performance evaluation that play a central role in designing
broadcasting networks.

8.2.1 The Physical Elements of the Network

A terrestrial television network consists of a set of transmitters which broadcast
television programs simultaneously in a certain geographical area. We refer to a
transmitter as the collection of all devices required to radiate the signal over an
area ranging from a district of a few square kilometers to entire regions. The
antennas are the most visible parts of transmitters, being installed on towers that
can reach considerable heights (more than 100 m). The antennas are fed by a set
of electronic circuits such as oscillators, modulators and amplifiers. Due to the
complexity of the infrastructure and to environmental protection standards that
regulate the maximum level of electromagnetic emissions, the transmitters cannot
be installed just anywhere, but only at sites previously identified by the competent
authorities. Therefore, transmitters’ geographical coordinates are fixed and known
a priori, whereas signal radiation depends on the transmitter configuration. The
radiation diagram is determined by several parameters, including the height, shape
and antenna orientation, the transmission frequency, the emission power in the
various directions, the signal polarization and, distinctively for the new digital
networks, the transmission delay.

Users receive the signal emitted from the transmitters using suitable receivers.
A receiver consists of various electronic devices (tuner, demodulator, the television
screen) connected to a receiving antenna. It is a common experience that the shape
and placement (orientation) of the receiving antenna significantly affect reception
quality. Thus, unlike the transmitters, which are localized in a few carefully selected
sites with well-defined characteristics, the receivers (or users) are non-uniformly
spread over the territory and may have different characteristics (a roof antenna
considerably differs from a portable TV antenna). A receiver is said to be covered
by the service if programs appear clearly on the TV screen.

190 F. Rossi et al.

Designing a broadcasting network consists of choosing a configuration of
transmitters with the goal of maximizing the number of receivers covered by
the service.

Intuition suggests that all receivers can be reached with adequate signal strength
(and, thus, covered) simply by increasing the emission powers of all transmitters.
Unfortunately, this is often not possible due to the interference, that is, the
physical phenomenon of attenuation of the electromagnetic wave intensity occurring
when signals from different transmitters overlap. Thus, designing a large-scale
broadcasting network requires an appropriate model representing the system and
the interference among transmitting antennae.

8.2.2 Computer Representation

A computer representation of a broadcasting network consists of three distinct
models:

1. A digital model of the territory;
2. An electromagnetic propagation model;
3. A receiver model (that is, a model for coverage assessment).

To represent the geographical area and the receivers distributed over it, a geo-
graphical database known as the Digital Elevation Model, (DEM, Fig. 8.1) is
adopted. A DEM consists of a grid of squared cells overlapped on the territory. For
each cell, the altitude above sea level, the number of inhabitants (potential receivers)
and the characteristics of a generic receiver (type of antenna and orientation) are
stored. The reason why the territory is decomposed into cells is that, if a single cell
is small enough, it can be assumed that all the receivers placed inside it receive
the signal in the same way, regardless of their actual position. Therefore, each cell
behaves as a single reference receiver and is called a testpoint (TP, Fig. 8.1).

It is well known that in wireless networks the signal emitted by a transmitter
arrives at the receivers with some fading. This happens due to the distance between
transmitter and receiver (propagation fading), to the presence of obstacles (diffrac-
tion fading) and also to different types of surfaces encountered during the path
(reflection and refraction fading). The mathematical rules that define the calculation
of the power received in a TP as a function of the emitted power and the signal path
are referred to as propagation models. The International Telecommunication Union
(ITU) is an international institute that defines the propagation models recommended
for radio and TV networks. The output of a propagation model is a power value for
each pair (transmitter, TP). Regardless of the specific model, let’s see how many
values have to be computed in a network with national extension that uses 2,000

8 The Shortest Walk to Watch TV 191

TP 3

TP 1

TP 2

Fig. 8.1 Digital Elevation Model (DEM)

transmitters. Since the representation of Italy on a grid with cells of 250 � 250 m
needs about 55,000,000 TPs, the propagation model should in theory calculate
55;000;000 � 2;000 D 11 billion power values! In practice, transmitters do not
reach all TPs, but only some of them (think of a small transmitter in a valley
surrounded by mountains). Assuming that 50 signals arrive on average in each TP,
the evaluation of the received power for all TPs requires the calculation of about
55;000;000 � 50 D 2:75 billion power values. However, despite its complexity,
this calculation is not yet sufficient to determine whether the television program is
received correctly. To complete the coverage assessment we need a further model
representing the receiver behavior and the way it handles the received signals.

8.2.3 Model for the Digital Coverage Assessment

The digital television signal, as with every numeric transmission, carries an encod-
ing of the information associated with the programs: in practice, sound and video
are encoded before being released in a continuous stream of symbols. A symbol
transmitted by transmitter i at time ti is received on TP j at time

	ij D ti C �ij (8.1)

192 F. Rossi et al.

40

50

60

70

80

90

100

0

10

20

30

40

Si
gn

al
 p

ow
er

 (
dB

μV
/m

)

time (μsec)

Fig. 8.2 Received signals at a sample TP

where �ij equals the ratio between the distance from i to j (in km) and the speed of
light (around 300,000 km/s).

The graph of Fig. 8.2 refers to a sample TP: it contains all the received signals
corresponding to the same symbol transmitted simultaneously at time t D 0 from all
the transmitters of the network. The signal arrival times (in microseconds, �s) are
reported on the abscissa, while the ordinate measures the signal strength (in decibels
microvolts/meter, dB�V/m), as computed by the propagation model.

The different shading of the signals represents the fact that they are transmitted
at different frequencies (signals of the same color are transmitted at the same
frequency). The receiver we are considering has the following properties:

1. It is able to tune only on one frequency at a time;
2. Signals received at a frequency different from the tuning frequency have a

negligible effect on the quality of service.

In the example of Fig. 8.2, this gives rise to two different cases: in the first case
the receiver will consider only dark signals, and in the second case will consider
only the white ones. For each case (i.e., frequency), to determine if a TP is covered
by the service at that frequency, one has to classify the received signals into useful
and interfering. The first will contribute to the correct reception of images and
sounds; the latter will tend to degrade their quality. Once the two families of signals
have been identified, an aggregate power contribution is estimated for each of them,
so as to obtain two quantities representing, respectively, the total useful signal and
the total interfering signal. This estimate is carried out by a composition algorithm
certified by the European Broadcasting Union, EBU. The ratio between total useful
and interfering (augmented by the thermal noise of the system) signals is referred
to as the signal=noise ratio. This quantity allows us to formulate the following
coverage condition:

8 The Shortest Walk to Watch TV 193

50

60

70

80

90

0

10

20

30

40

15 45 75 10
5

13
5

16
5

19
5

22
5

25
5

28
5

31
5

34
5

37
5

40
5

43
5

46
5

49
5

52
5

55
5

58
5

61
5

64
5

67
5

70
5

73
5

Si
gn

al
 p

ow
er

 (
dB

μV
/m

)

time(μsec)

Fig. 8.3 Detection window

A TP is regarded as being covered by the service if the Signal=Noise ratio
exceeds a fixed value, which depends on the transmission technology.

The classification scheme of the signals used in digital terrestrial television refers
to the standard DVB-T, Digital Video Broadcasting-Terrestrial. The DVB-T adopts
a modulation scheme (the OFDM scheme) that allows the receiver to combine
constructively isofrequency signals carrying the same symbol if they arrive not too
far apart in time.

Specifically, any two such signals can be constructively combined if the delay of
time distance between them is less than a given value TG (TG D 224 �s for current
DVB-T receivers). The time interval in which the signals can be combined in a
constructive way is called the detection window. In Fig. 8.3, a possible position of
the detection window is represented on our sample TP, relative to the frequency of
white color. All signals that fall within the window are combined in the total useful
signal. The remaining signals with the same frequency, but now represented with
dark color, contribute to the total interference signal.

In principle, the receiver can position the detection window at any point of
the time axis. However, it can be proved that the significant positions are only
those corresponding to the arrival times of the signals. Therefore, to check the
coverage of a TP receiving k signals, only k positions of the detection window
must be evaluated, each time discarding the signals at a different frequency from
that on which the window is positioned. If the covering condition is satisfied in
at least one of these positions, then the TP is covered by the service. Note that
this introduces an additional multiplicative factor in the complexity of the previous
paragraph: although to calculate the received power on the Italian territory we need
27.5 billion operations, to assess the coverage the number of operations grows to
about 27:5 � 50 D 1:3 trillion!

194 F. Rossi et al.

8.2.4 Network Design

The general planning problem is trivially solvable if a sufficiently large number
of frequencies is available: each time the activation of a transmitter at a given
frequency creates interference one can assign a new (not yet used) frequency to
such a transmitter eliminating all possible interferences.

Unfortunately, the spectrum of available frequencies is limited (TV networks
in Italy can use at most 56 frequencies) and then its usage has to be optimized.
Thus, to have the largest possible number of networks in a given area, each network
must use the minimum number of frequencies. At the limit, by using just one
frequency for all transmitters of the network, one may have as many networks as
the number of available frequencies. This is generally not possible with traditional
analogue networks. On the contrary, the reduction mechanism of the interference
implemented in OFDM-based networks (described in Sect. 8.2) allows us to design
single-frequency networks (Single-Frequency Network, SFN) with great extent,
as shown for the first time in the White Book on Terrestrial Digital Television,
produced by the Italian Authority for Communications in the year 2000. In fact, the
features of the OFDM scheme can be exploited to enhance the total useful signal
in TPs which are affected by interference. To clarify this fact, let us go through a
network design by using only one frequency for all transmitters. It might be the
case (and most likely will be) that on several TPs, even combining useful signals,
the Signal=Noise ratio falls below the required threshold. Which “levers” does the
designer have to improve the quality of service on such TPs?

One available option, which can lead to significant coverage enlargement, is
changing the emission power of the transmitters. However, this can only be done
by taking into account a variety of constraints: technology, mutual interference
with other networks, coordination with neighboring countries, legislation for elec-
tromagnetic emissions, etc. Illustrating the resulting optimization problems and
their solution algorithms would require a complex mathematical treatment, hardly
accessible to non-experts. A second lever consists in introducing an artificial
transmission delay to the symbol transmitted by some transmitters of the network.
This operation is technically simple and has no effect on other networks. The next
section describes the role of the transmission delay and the resulting optimization
problem.

8.3 The Role of Transmission Delays

Let us consider a single-frequency network with transmitter set T and TP set Z. For
each pair (transmitter i , TP j) we are given the following data:

1. The power emitted by i and received in j (computed by the propagation model);
2. The time �ij required for a symbol transmitted by i to reach j , which equals the

distance between i and j divided by the speed of light (0.3 km/�s).

8 The Shortest Walk to Watch TV 195

A BTP1 TP2

150 Km

75 Km 30 Km

250
TP1

TP2

A,B

100

B

μ sec

A

4000

Fig. 8.4 Simultaneous transmission tA D tB D 0

Thanks to Eq. (8.1), we can compute the arrival times 	ij as functions of
transmission times ti . For instance, in Fig. 8.4, we have two transmitters, A and B ,
150 km away from each other, transmitting the same symbol in the same instant,
that is, tA D tB D 0. The arrival times (expressed in �s) of the symbol transmitted
from A are: 	A1 D 75=0:3 D 250 in TP1, 	A2 D 120=0:3 D 400 in TP2; while
those from transmitter B are: 	B1 D 75=0:3 D 250 in TP1, 	B2 D 30=0:3 D 100

in TP2.
In the remainder of the treatment we make the following assumption:

The received power values are such that any TP is covered by the service
if and only if all signals carrying the same symbol fall inside the detection
window.

In Fig. 8.4 this holds for TP1, but not for TP2. In fact, the received symbols on
TP2 are separated by an interval of amplitude j	A2 �	B2j D 300 �s, greater than the
width of the detection window (TG D 224 �s in the adopted standard). This means
that there is no position of the detection window which allows TP2 to capture both
symbols and, when tA D tB D 0, TP2 is not covered by the service.

One possibility for extending the coverage also to TP2 is to introduce a
transmission delay in the transmitter A or B so as to bring the two symbols closer

196 F. Rossi et al.

250
TP1

A B

350

TP2
200

B

μsec

A

4000

Fig. 8.5 tA D 0,
tB D 100 �s: both TPs are
covered

TP1
TP2

A

(100, 30)

(300, 90)

(150, 45)

(320, 96)

(msec, Km)

TP3

B

C

(200, 60)

(700, 210)

(550, 165)

(140, 42)

(500, 150)

Fig. 8.6 A more complex
network

to each other and let both of them fall inside the detection window. Thus, we apply
a delay tB D 100 �s to transmitter B. The new configuration is shown in Fig. 8.5.

Since the delay is applied “to the source”, that is, on the transmitter, the arrival
instant of the symbol transmitted from B is delayed by 100 �s on both TPs. Then,
the received signals on the TP1 move away from each other. Nevertheless, the
amplitude of the time interval separating the two symbols is less than the width of
the detection window on both TPs. Therefore, there is a positioning of the windows
that guarantees coverage of both TPs. It should be noted that, in principle, the same
effect would be obtained by physically moving the transmitter B, specifically, by
translating it to the right by 30 km. In conclusion, the introduction of a single
transmission delay extends the coverage of the network. With increasing network
complexity, the calculation of the delays that maximize the number of TPs covered
cannot be done according to simple rules, but requires the use of more sophisticated
algorithmic tools. To understand this, consider the network shown in Fig. 8.6,
composed of three transmitters A, B, C and three TPs 1, 2, 3.

For each pair (transmitter, TP), the figures in brackets indicate, respectively, the
propagation time (�s) and the distance (km). In Fig. 8.7 the arrival instants of the
signals on each TP are represented in the case tA D tB D tC D 0. Recall that,

8 The Shortest Walk to Watch TV 197

100 200 300
TP1

A

A

B

B

C

C

150

320

500

140

700

550

TP2

TP3
μsec

AB C

Fig. 8.7 tA D tB D tC D 0

by assumption, a TP is covered if and only if all of the three signals fall within the
detection window, that is, if and only if, for each pair of received signals, the time
interval which separates them does not exceed the amplitude TG D 224 �s of the
detection window. This condition is not satisfied on TP2 and TP3. In fact, the time
interval between the received signals A and B on TP2 is equal to j	A2�	B2j D 350 >

TG D 224 �s; similarly, the time interval between the received signals B and C on
the TP3 is equal to j	B3 � 	C 3j D 410 > TG . Thus, in the case tA D tB D tC D 0,
the only TP covered is TP1, thanks to the detection window represented in Fig. 8.7.

As a first attempt, we try to replicate the reasoning of the previous example,
that is, we choose a transmitter and look for a transmission delay that induces an
increase of coverage. We begin with transmitter A. By focusing on TP1, we observe
that the maximum delay that can be assigned to A is imposed by the signal B. In fact,
to force both of them to fall in the detection window, the arrival time of A cannot
exceed 424 �s; therefore the maximum delay can be at most 324 �s. Similarly, TP2

is covered if the delay imposed on the transmitter A is at least equal to 326 �s, so as
to move signal A close enough to C. Finally, we note that the TP3 is not covered
because of the distance between the received signals B and C, and therefore a delay
on the transmitter A has no influence on its coverage. Similar considerations hold
for transmitters B and C. In detail, for each transmitter fA,B,Cg and for each TP j ,
Table 8.1 reports the range of values that the delay of i can assume so that j is
covered when the remaining transmitters transmit at time t D 0. It is easy to see
that the introduction of a delay in transmission of a single transmitter does not allow
us to obtain an increase of coverage. For example, the conditions for transmitter A
on TP1 and TP2 are not simultaneously satisfiable. A similar situation occurs for
the transmitter B on TP1 and TP3.

Nevertheless, the coverage of the network can still be increased by applying
simultaneously a transmission delay to different transmitters. Specifically, say tA D
400 �s and tB D 200 �s. The new configuration, represented in Fig. 8.8, shows how

198 F. Rossi et al.

Table 8.1 TPs coverage conditions with only one delayed symbol

TP Condition on A Condition on B Condition on C

1 0 � tA � 324 0 � tB � 124 0 � tC � 24

2 326 � tA � 574 Never covered Never covered
3 Never covered 186 � tB � 404 Never covered

500400300
TP1

A

A

BC

B,C

550

720340

700

550

TP2

TP3

μsec

AB C

Fig. 8.8 tA D 400; tB D 200; tC D 0

all three signals now fall within the composition window of TP1 and TP2, ensuring
their coverage.

At this point, one may wonder whether, like the previous example, it is possible
to determine an assignment of delays so as to cover all TPs. A close analysis of the
diagram in Fig. 8.7 allows us to exclude this possibility. Let us focus on the signals
A and B and TPs 2 and 3. For these signals to fall into the same window on TP2,
signal A should be delayed by at least 126 �s. As for TP3, the two signals can fall in
the same window only if A is delayed by at most 44 �s. The two conditions are not
simultaneously satisfiable: no assignment of delays exists such that TP2 and TP3

are simultaneously covered.
In summary, the two examples show a fundamental difference. In the first

example there is an assignment of the transmission delays so as to cover all test
points in the given set Z. On the contrary, in the second example, only a subset of
TPs in Z can be covered. In this case, our interest is to determine the maximum
number of TPs that can be covered simultaneously by proper assignment of delays,
that is, the largest coverage area of the network. This question leads to the definition
of an optimization problem associated with the assignment of transmission delays.

8 The Shortest Walk to Watch TV 199

Problem 1. Given a single-frequency network .T; Z/ with fixed emission
powers, determine an assignment of transmission delays to transmitters such
that the number of covered TPs in Z is maximized.

In the remainder of the chapter, we develop a solution algorithm for this problem,
which is derived by representing it on a suitable graph.

8.4 An Algorithm for Optimizing Transmission Delays

We have shown that there is no assignment of delays which covers simultaneously
all the TPs of the network of Fig. 8.6. To prove this, we have identified a subset of
TPs, precisely the set f2; 3g, which cannot be simultaneously covered. A set of this
type is a certificate of non-existence of a solution that covers all TPs. We introduce,
therefore, the following definitions:

Definition 1. A TP set Z is said to be consistent if there exists an assignment
of delays such that all TPs in Z are covered by the service. If such an
assignment does not exist, then Z is said to be inconsistent.

Definition 2. An inconsistent TP set Z is said to be minimal if, removing
from Z any of its TPs, the resulting set S is consistent.

In the network of Fig. 8.6 the TP set f2; 3g is a Minimal Inconsistent Set
(MIS) and is also the only MIS contained in Z. If we remove from Z any one
of the two TPs belonging to the MIS, for example, TP3, we obtain a new set
S D Z n f3g D f1; 2g which is consistent (for example, with the assignment
of delays tA D 400; tB D 200 �s). In other words, by removing a TP from the
unique MIS, we obtained a consistent TP set. The generalization to the case where Z

contains more than one MIS is immediate: one TP must be removed from each MIS
to obtain a consistent set. The algorithm, which proceeds by successive deletions of
TPs (contained in some MIS), can be summarized as follows (Table 8.2):

Step 2 and Step 3.b need to be further specified: in particular, we must formally
define a procedure to identify a MIS W in a TP set (Step 2) and a procedure for
calculating the delays to be assigned to the transmitters if there is no MIS in S

(Step 3.b). In the next section we show that these two tasks correspond to the
solution of a single optimization problem.

200 F. Rossi et al.

Table 8.2 clean inconsistency algorithm

Input a TP set Z

Output a consistent TP set S

Step 1 Initialize S D Z

Step 2 look for a MIS W of TPs in S

Step 3.a if W exists, then remove from S any TP contained in W ; goto Step 2
Step 3.b otherwise compute an assignment of delays such that all TPs in S are covered - stop

8.4.1 From Inconsistent TP Sets to Inconsistent Systems
of Inequalities

Consider a TP set Z and recall that, by assumption, a TP j is covered if and only if,
for each pair i , k of received signals, the time interval that separates them does not
exceed the width of the detection window TG D 224 �s. This condition is expressed
mathematically by requiring that the absolute value of the difference between the
arrival instants of the two signals is not greater than TG :

j	ij � 	kjj � TG

this is equivalent to a pair of linear inequalities:

	ij � 	kj � TG

	kj � 	ij � TG

let us now recall that the arrival instants depend on the transmission delays according
to the expression 	ij D ti C �ij, introduced in Sect. 8.2.3. We obtain:

.ti C �ij/ � .tk C �kj/ D ti � tk C �ij � �kj � TG

.tk C �kj/ � .ti C �ij/ D tk � ti C �kj � �ij � TG

Finally, moving to the right-hand side all constants, we have that a TP is covered if
and only if, for each pair i; k of received signals, the following two inequalities are
satisfied:

ti � tk � TG C �kj � �ij D d
j
ik

tk � ti � TG C �ij � �kj D d
j
ki

8 The Shortest Walk to Watch TV 201

Table 8.3 System of
difference constraints
defining the coverage
conditions

TP1 tA � tB � 224 C 200 � 100 D 324

tB � tA � 224 C 100 � 200 D 124

tA � tC � 224 C 300 � 100 D 424

tC � tA � 224 C 100 � 300 D 24

tB � tC � 224 C 300 � 200 D 324

tC � tB � 224 C 200 � 300 D 124

TP2 tA � tB � 224 C 500 � 150 D 574

tB � tA � 224 C 150 � 500 D �126
tA � tC � 224 C 700 � 150 D 774

tC � tA � 224 C 150 � 700 D �326

tB � tC � 224 C 700 � 500 D 424

tC � tB � 224 C 500 � 700 D 24

TP1 tA � tB � 224 C 140 � 320 D 44
tB � tA � 224 C 320 � 2140 D 404

tA � tC � 224 C 550 � 320 D 454

tC � tA � 224 C 320 � 550 D �6

tB � tC � 224 C 550 � 140 D 634

tC � tB � 224 C 140 � 550 D �186

The resulting system of inequalities is known as a system of difference constraints.
This is exhaustively reported in Table 8.3 for the example of Fig. 8.6.

Now, we can state a relationship between the consistency of any TP set Z and
the existence of solutions to the corresponding system of difference constraints.
Specifically, the following property holds:

Property 1. If the system of difference constraints associated with a given TP
set Z admits solution, then the set Z will be consistent and its solution values
will be precisely the transmission delays to be assigned; otherwise, Z will
contain a MIS.

At this point, we need a solution algorithm which has the two possible outputs:

• The solution values, if at least one solution exists;
• A MIS, if the system does not admit solutions.

Let’s go back to the network in Fig. 8.6. We know that its TP set Z is inconsistent,
as it contains the MIS composed of TP2 and TP3, and we wish to detect such a MIS
by an algorithm. If we look at the system of Table 8.3, we notice that it contains
a subset (also minimal) of inequalities that can not be satisfied simultaneously.
Precisely, the inequalities tB �tA � �126 and tA �tB � 44, associated, respectively,

202 F. Rossi et al.

with TP2 and TP3 (marked in bold in Table 8.3), cannot be simultaneously satisfied
by some nonnegative value of tA and tB . This is indeed a general rule:

To detect a MIS in a TP set it is sufficient to identify an inconsistent subset of
inequalities in the associated system of difference constraints. Such a subset
of inequalities is itself said to be inconsistent.

In order to accomplish this task, we need again to resort to a different representation
of the problem. Interestingly (and a bit surprisingly), we are going to represent the
system of difference constraints through a directed graph G D .N; A/ with weights
on the arcs.

8.4.2 The Difference Constraints Graph

The graph G is constructed as follows: the node set contains one node for each
transmitter plus an additional special node s; each inequality tk � ti � d

j
ik gives rise

to an arc, directed from i to k, with weight d
j
ik . However, if a pair i; k appears in

more than one inequality, then only one arc is actually included in A, namely, the
one with minimum weight. The special node s is connected to all other nodes by
zero-weight arcs. The graph corresponding to the system of Table 8.3 is drawn in
Fig. 8.9.

If we now consider the arcs associated with inequalities tB � tA � �126 and
tA � tB � 44 we observe that they form a directed cycle (A ! B ! A) with length
(intended as the sum of the weights of the arcs), equal to �82. This is a critical
structure for our purposes:

Property 2. In general, it can be shown that inconsistent subsystems of the
system of difference constraints correspond to negative-length cycles in G

and vice versa.

Therefore, determining if a system of difference constraints contains an inconsis-
tent subset of inequalities is equivalent to checking if G contains negative (length)
cycles. Furthermore, if G does not contain negative cycles, then it can be used to
calculate the delays to be assigned, that is, a solution to the system of difference
constraints, as discussed in the next paragraph.

8 The Shortest Walk to Watch TV 203

A

s B
−326 424

0

C

s B
424

0

0

Fig. 8.9 Difference
constraints graph for the
system of Table 8.3

8.4.3 Shortest Walks in G and Transmission Delays

We define a directed walk in G as a sequence of nodes and arcs fn1, a12,
n2, : : :, ak�1;k , nkg, where ai;iC1 is the arc going out of ni and entering niC1,
i D 1; : : : ; k � 1. As before, the length of a directed walk equals, by definition,
the sum of the lengths of its arcs. One of the graph optimization problems closest
to our intuition and to our daily experience is the problem of finding the shortest
walks from node s to all other nodes. However, in the case where the graph contains
negative-length arcs some clarifications have to be made. As customary, let us
begin by looking at our example (Fig. 8.9). All the nodes A, B, C are reachable
from s, respectively, through the arcs s ! A, s ! B, s ! C of length 0.
However, the presence of negative-length arcs produces a particular phenomenon.
Indeed, suppose we reach node B passing through the arc s ! A and the arc A ! B
with a path of length �126. In doing so, we have reduced the minimum distance
from s to B, which is now �126. Then, passing again through A by the arc B ! A
of length 44, also the minimum length of the walk from s to A would be updated
to �126 C 44 D �82. In fact, each time that we go through the negative cycle
A ! B ! A, we reduce the distance between s and nodes A and B. At the limit,
going along this cycle infinite times, we could reduce such a distance indefinitely.
This phenomenon occurs if and only if the graph G contains a cycle of negative
length (reachable from s). Now, suppose that TP3 is removed from Z. The modified
difference constraints graph is represented in Fig. 8.10.

Observe that negative cycles do not exist any more, allowing us to compute the
minimum (finite) distances from s to all other nodes. In fact, A is reachable by
the zero-length arc s ! A; B through the walk s ! A ! B of length �126; C
through the walk s ! A ! C of length �186. It is indeed possible to prove that
such distances provide a feasible solution to the system of inequalities of Table 8.3.
In general:

204 F. Rossi et al.

A

s B
−326 424

0

C

s B
424

0

0

Fig. 8.10 The difference
constraints graph after TP3

removal

Property 3. Let G D .N; A/ be a graph associated with a system of
difference constraints. If G does not contain negative length cycles, a solution
to the system is obtained by setting ti equal to the length of the shortest path
from s to node i , for each node i 2 N .

The proof of this property requires advanced knowledge of optimization theory and
goes beyond our purposes.

We also observe that the solution may contain negative ti values. However,
through a scaling operation, that is, by summing to all values the absolute value of
the shortest distance (in our case that of the walk s ! A ! C), a new solution of the
system is obtained with non-negative values, thus representing feasible transmission
delays. For example, in our case, this yields tA D 186; tB D 60 and tC D 0, which
guarantee the coverage of the TP set S D f1; 2g, as shown in Fig. 8.8.

In conclusion, Step 3.b of Algorithm in Table 8.2 is reduced to the computation of
shortest paths from s to the other nodes of G. It is interesting to note that, by simple
shrewdness, the algorithm that finds the shortest walks can also be exploited to
implement Step 2. Intuitively, if in the graph there is a negative cycle, the algorithm
is “attracted” to it, in the sense that it will tend to run it many times, each time
reducing the lengths of the paths from s to the nodes of the cycle, as evidenced in
the example. Then a simple check can be implemented that, in the presence of this
phenomenon, stops the algorithm and returns the cycle identified. In fact, the entire
algorithm in Table 8.2 is nothing but a sequence of shortest walk computations!

8 The Shortest Walk to Watch TV 205

8.5 From Shortest Walk to Television

Retracing the discussion, we can observe that, starting from physical elements and
technological aspects of the system, we came to the definition of alternative mathe-
matical representations of the problem, such as the system of difference constraints,
or the associated graph. This modeling process shows deep connections between
apparently very different problems, such as the design of a television network and
the search for the shortest walk in a generic network (e.g., a road network). Besides
the cultural interest and curiosity stimulated by a similar connection, the modeling
process has practical significance: new representations of the planning problem
allow for a better identification and formalization of solution algorithms. In other
words, the choice of the algorithm was carried out by reducing the real problem to
general paradigms of optimization, such as the search for shortest walks on graphs,
for which efficient algorithms are available.

It is worthwhile to mention that advanced developments of the methodologies
described in this chapter have already had a significant practical impact on the
television that we see every day, especially with regard to terrestrial networks in
digital technology that are currently being implemented.

8.6 Bibliographic Notes

A comprehensive survey of algorithms for finding shortest walks in networks along
with other optimization problems concerning “Flows on Networks” can be found in
the book by Ahuja, Magnanti and Orlin [4]. A simple and complete introduction to
wireless communication systems is given by Rappaport [94]. Besides technological
aspects, the book also illustrates models and techniques for radio network planning.

The algorithms for coverage evaluation are recommended by international
bodies, such as the International Telecommunication Union (ITU, www.itu.int) and
the European Broadcasting Union (EBU, www.ebu.ch). In particular, EBU defined
the standards for service evaluation in digital television [36].

The White Book on Terrestrial Digital Television [2] was produced by the
Italian Authority for Communications (AGCOM). This work involved all the main
stakeholders and represented the first step towards the transition from analogue
to digital broadcasting networks in Italy. Specifically, it started the debate about
the possible configuration for digital multiplex and the need for optimization in
network planning and spectrum management. The White Book on Terrestrial Digital
Television was also the methodological background for a regulation law of AGCOM
known as the National Plan of Digital Radiotelevision Frequencies [1].

www.itu.int
www.ebu.ch

Chapter 9
Algorithms for Auctions and Games

Vincenzo Bonifaci and Stefano Leonardi

Abstract Economics is one of the diverse aspects of our life in which algorithms
play a – perhaps subtle – role. Whether we are buying an item through an
eBay auction, or choosing a pricing scheme from our telephone company, we are
participants in distributed decision-making processes having consequences that may
affect our personal “welfare”. And with the advent of the Internet and the Web, there
is an increasing demand for algorithms that run, manage or analyze such economic
transactions. In this chapter, we discuss some of the basic notions that underlie an
algorithmic view of economic and strategic interactions.

9.1 Introduction

The exchange of ideas between the theory of algorithms and the economic theory of
games is one of the most fascinating facets of computer science in the last decade.
Such an encounter originated from the development of the Internet and the World-
Wide Web (see Chap. 5) as organic, self-organizing systems, whose evolution is
guided by a multitude of independent agents that operate according to economic
principles. Computer science has taken inspiration from the economic theory of
games in order to understand the economic mechanisms that motivate the agents of
the network; in fact, the strategic interaction between agents is now considered an
essential aspect of algorithm design in such contexts.

V. Bonifaci (�)
Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”,
Consiglio Nazionale delle Ricerche, viale Manzoni 30, 00185 Roma, Italy
e-mail: vincenzo.bonifaci@iasi.cnr.it

S. Leonardi
Dipartimento di Ingegneria Informatica, Automatica e Gestionale,
Sapienza Università di Roma, via Ariosto 25, 00185 Roma, Italy
e-mail: leon@dis.uniroma1.it

G. Ausiello and R. Petreschi (eds.), The Power of Algorithms,
DOI 10.1007/978-3-642-39652-6__9, © Springer-Verlag Berlin Heidelberg 2013

207

mailto:vincenzo.bonifaci@iasi.cnr.it
mailto:leon@dis.uniroma1.it

208 V. Bonifaci and S. Leonardi

The Internet is a decentralized system in which agents are independent and
able to take individual decisions. In such scenarios it is important to foresee the
states that the system is going to enter, since it is normally impossible to enforce
some particular, favorable state. Consider, for example, the selection by the network
agents of the path and transmission speed when transferring data from some origin
to some destination. The strategy of each agent can consist in selecting, for each
transmission, the path with the smallest estimated delay. Then we may, for example,
ask whether the system will reach a state in which congestion is much larger than
that of a state in which routing strategies are centrally planned. Or whether the
system can oscillate from state to state due to the continual change of the strategies
of the agents. The interaction between agents makes the adoption of the points of
view of the theory of games unavoidable, and in particular calls for the notion of
equilibrium states, those states of the system from which no agent has an incentive
to deviate.

In recent years, several methodological contributions have been provided by
algorithmics to economics and to game theory in particular. First of all, we
remark that the theory of algorithms, mathematical optimization and the theory
of computational complexity are tackling the delicate questions of the existence
of equilibria and of the hardness of computing them. Secondly, a study has begun of
the inefficiency of the solutions determined by the equilibrium states, in other words
a quantitative comparison between the equilibrium solutions and the best solutions
that could be imposed by a centralized “enlightened dictatorship”. Finally, given a
view of the Internet as an open and democratic system aiming to guide the agents
towards solutions that are more favorable towards the overall community, algorithms
and protocols have been proposed that include incentives and penalties.

Computer science and network science also bring an important contribution to
economic sciences, since the ever larger and pervasive diffusion of the Internet
determined the migration of several economic and commercial activities on the
net and created more of them, including ones that were unthinkable before, things
like electronic commerce and online computerized auctions with a multitude of
participants (eBay, Amazon, etc.). This determines the need to design algorithms
and software that manage the commercial transactions electronically. Another
important aspect has been the advent of digital goods in unlimited supply and the
availability of commercial spaces on digital media such as the Web, blogs, forums
and social networks.

We would like to stress one more aspect of the encounter between computer
science and economics. The Internet and the World-Wide Web can be viewed as
formed and governed by the action of a multitude of autonomous, rational agents
that operate with the goal of optimizing their own individual “payoff functions”.
Network algorithms and protocols have to operate on data supplied by these agents.
But such data could be manipulated by the agents in order to optimize their own
utility. For example, an algorithm searching for shortest routes along the Internet
will have to acquire as input the costs for traversing (sub)networks, costs that are
estimated and declared by autonomous systems, the independent economic entities
that manage the networks. The traditional approach to algorithm design should then

9 Algorithms for Auctions and Games 209

be rebuilt to accommodate the issue of input data manipulation from the part of
rational agents. The fundamental question there is whether it is possible to design
algorithms that efficiently solve some algorithmic problem and at the same time
give incentives to the agents to reliably report that part of the input data that is
their private information. Mechanism design offers in this direction an essential
methodological reference and an important contribution from economic sciences
to computer science.

The arguments that we discussed should have convinced the readers that the
encounter between algorithms and economic mechanisms is a necessity imposed
by the Internet, an information system that in the last two decades revolutionized
the modes of production and communication. The fact remains that the fundamental
principles and the quality properties that are required by algorithms and economic
mechanisms are deeply different, and it is not at all clear that for one of the two
disciplines it should be possible to relax them while adopting those from the other
discipline. In the case of algorithms, such requisites are usually expressed in terms
of the computational resources necessary for execution or in terms of the quality
of the computed solution. In the case of economic mechanisms, these requisites
are expressed in terms of objectives such as the equilibrium between demand and
supply, the maximization of the agents’ profit or utility and, finally, the impartiality
of a recognized authority with respect to all the participants of some economic
game. Such an integration requires, then, a deep knowledge of both fields and the
development of new models, algorithms and mechanisms, as well as methods for
their analysis.

In this chapter we intend to present some fundamental concepts of the theory of
games and some examples that illustrate how algorithms inspired by the theory of
games are essential for many economic activities that happen daily on the Internet.

9.2 Games and Solution Concepts

9.2.1 Prisoner’s Dilemma

To better understand the approach of game theory to the analysis of conflict
situations, consider the following famous scenario, proposed in 1950 by American
mathematicians Merrill Flood, Melvin Drescher and Albert W. Tucker. Two crime
suspects, R. and C., have been captured by the police and have been charged with a
major offense. In order to acquire the necessary evidence, the prosecutor is trying to
separately persuade each of the suspects to confess his crime. The suspects are held
in separate cells, and no communication can occur between them. The prosecutor
proposes the following to each: if the prisoner confesses, his jail sentence will
be cut in half – but only if his accomplice does not also confess, otherwise there
would be no choice but to convict both. If the prisoner does not confess, he will get
the maximum possible time in jail if the prosecutor is successful; otherwise, both
suspects will be convicted anyway for some other minor offense.

210 V. Bonifaci and S. Leonardi

Table 9.1 Prisoner’s
Dilemma Confess Silent

Confess �5 �10
�5 0

Silent 0 �1
�10 �1

We reach the situation summarized in Table 9.1. The action selected by R. deter-
mines the row of the table, the one selected by C. the column; this is why R. is also
called the Row player and C. the Column player. In each of the four entries of the
table, the bottom left number denotes the payoff (also called utility) of R. and the top
right number the payoff of C. Most numbers are negative since they denote the
penalty due to the number of years to be spent in prison: serving 10 years is worse
than serving 5. A zero means that the criminal was let free.

What will each player do? Imagine taking R.’s role. Observe that if C. confesses,
it is better to confess, since you’ll have to serve 5 years instead of 10. And if
C. doesn’t confess, it is better to confess too: you’d be let free instead of spending
a year in jail. So no matter what C. does, confessing is a better option than not
confessing! An action with such a property – the property of being preferable to
all other actions, independently of the other players’ choices – is called a dominant
strategy.

Looking at the table, one sees that the roles of R. and C. are symmetrical,
therefore confessing is a dominant strategy for C. too. Thus, the overall outcome
is that both prisoners will have to spend 5 years in jail, more than each of them
would have if they both chose not to confess. This result may sound paradoxical,
but several experiments in psychology and sociology show that outcomes of this
kind are actually not uncommon in practice.

It should be intuitively clear that the Prisoner’s Dilemma is not limited to the
simple scenario outlined above. It has been applied in the most diverse contexts and
several examples can be found also in telecommunication and computer networks.
A more general situation is the setup and usage of some public good. Say that
a public good is worth 3e to each of the two players, Row and Column. Some
investment is necessary to create the good, so the good will be available only if
4e total are invested. Each player may volunteer to invest or not: if he is the only
volunteer, he will pay 4e, otherwise the cost is shared equally. The payoff of a player
is the value of the good (or zero, if the good is not created), minus the investment
cost. The resulting payoff matrix is given in Table 9.2.

The situation of each player is similar to that in the Prisoner’s Dilemma: there
are two choices, one of which is better from an opportunistic point of view, but that
damages the other player. Although numerically different, the payoff table has in
fact the same structural properties of the payoff table for the Prisoner’s Dilemma:
namely that the more aggressive option is, for both players, a dominant strategy.
Therefore, the theory predicts that no investment will be made.

9 Algorithms for Auctions and Games 211

Table 9.2 Provision of a
public good

Free ride Invest

Free ride 0 �1
0 3

Invest 3 1
�1 1

Table 9.3 Battle of the
Sexes Movies Concert

Movies 4 1
3 1

Concert 2 3
2 4

A final remark on the pessimistic outcome that game theory predicts in the
Prisoner’s Dilemma. The result is based on several assumptions that are not
necessarily realistic: that the players are rational; that they care exclusively about
their own good; and that the game is played exactly once. In the absence of one or
more of these conditions, it is possible to have outcomes that are different and more
optimistic. In fact, Merrill Flood, one of the discoverers of the Prisoner’s Dilemma,
once made the following proposal to a secretary of the institute he was working
in: she could either immediately accept 100 dollars, or be given 150, but in the
second case she would need to find an agreement on how to split the money with
a second secretary that had been kept unaware of the proposal. The secretary chose
the second option and agreed with her colleague to get 75 dollars each, even though
she could easily have kept the 100 dollars without her colleague ever getting to know
anything.

9.2.2 Coordination Games

In some strategic situations, conflicts may arise simply due to the impossibility
for the players of the game to coordinate their choices. Consider another scenario,
known in game theory as the “Battle of the Sexes”. A man and a woman are deciding
how to spend the evening out: the man would like to go to the movies, while the
woman would prefer a concert. It is too late to consult and each of them should
reach the chosen location directly from his or her office. Both of them prefer to
spend the evening together rather than alone, but, given the choice, the man would
prefer the movie while the woman would prefer the concert. A possible payoff table
for the game is reported in Table 9.3, where the values denote again the utility of
each action combination.

What does game theory predict in such a case? The answer is less clear-cut than
that we saw for the Prisoner’s Dilemma. If the woman knew for certain that the

212 V. Bonifaci and S. Leonardi

Table 9.4 Rock–
Paper–Scissors

Rock Paper Scissors

Rock 0 �1 1
Paper 1 0 �1
Scissors �1 1 0

man would go to the movies, she would choose the movies over the concert; if she
knew that the man would go to the concert, she would be happy to join him there.
In other words the best response to the man’s action of going to the movies is for
the woman to go to the movies, and the best response to the man’s action of going
to the concert is for the woman to go to the concert. A similar reasoning holds of
course for the man. The two solutions (Movies, Movies) and (Concert, Concert) are
therefore “stable” in the sense that in each of them the action chosen by each player
constitutes a best response to the other player’s choice.

Such “mutual best response” outcomes are called Nash equilibria, from the
name of the American mathematician and Nobel prize for Economics winner John
F. Nash, who introduced and studied them. In the Battle of the Sexes, the only
equilibria are those in which the woman and the man spend the evening together:
for example, the outcome in which the woman goes to the concert and the man goes
to the movies is not a Nash equilibrium, since the man could improve his payoff by
“changing his mind” and going to the concert instead.

A small weakness of the Nash equilibrium as a solution concept of a game is that
it is not necessarily unique, as can be seen from the example of the Battle of Sexes,
in which there are in fact two Nash equilibria. On the other hand, this ambiguity
captures the uncertainty of outcomes in a conflict situation.

9.2.3 Randomized Strategies

The game known as Rock–Paper–Scissors is a simple and popular two player game.
The players simultaneously represent, by a gesture of their hand, an object among
paper, scissors and rock. Rock beats scissors, scissors beats paper, and paper beats
rock. If the players choose the same object, the game is tied. A player gets payoff 1 if
she wins, �1 if she loses, and 0 if there is a tie. Therefore, the sum of the two payoffs
of the players, whatever the outcome of the game, is always zero; a player can win
only as much as her opponent loses – something that was not the case with other
games such as the Prisoner’s Dilemma or the Battle of the Sexes. Such a game is
called zero-sum. In a two-player zero-sum game it is sufficient to specify the payoff
of one of the two players, say the Row player, as in Table 9.4.

The Rock–Paper–Scissors game has an interesting property: it admits no Nash
equilibria. The reason is that the best response of a player to a given action of
the opponent renders the action of the opponent a “bad response”: if we knew our
opponent would play paper, we would play scissors, but then our opponent would
play rock, etc. Therefore there is no Nash equilibrium in the sense we previously
discussed.

9 Algorithms for Auctions and Games 213

What can game theory say about such cases? The key idea lies in generalizing
the notion of strategy to allow probabilistic or mixed strategies (see the box
“Events, Probabilities and Expected Values”). An example of mixed strategy is:
play paper with probability 70 %, scissors with probability 20 % and rock with
probability 10 %.

As a consequence of this generalization, the concept of payoff of a player is
substituted by that of expected payoff, which is simply the average utility obtained
by choosing the actions according to the prescribed probabilities. If, for example, we
play 70 % paper, 20 % scissors, 10 % rock, and our adversary answers with 100 %
scissors, our expected utility will be

0:7 � .�1/ C 0:2 � 0 C 0:1 � .C1/ D �0:6:

To remark on the difference with such mixed strategies, the strategies in which each
player selects a single action are called pure strategies. A pure strategy can be seen
as a very special case of mixed strategy.

Events, Probabilities and Expected Values

Mathematically, the probability of an event A is a real number between 0 and
1, often denoted as PrŒA�. When A is an impossible event, PrŒA� D 0, while
when A is certain, PrŒA� D 1.

The complement event to A (which occurs if and only if A does not occur)
has probability 1 � PrŒA�.

When A and B are independent events, the probability that they simultane-
ously occur is equal to PrŒA��PrŒB�. For example, the probability of obtaining
two heads when tossing two coins is equal to 1=2 � 1=2 D 1=4.

When A and B are mutually exclusive events, the probability that at least one
of them holds is equal to PrŒA�CPrŒB�. For example, the probability to obtain
a 5 or a 6 after throwing a standard six-faced die is equal to 1=6C1=6 D 1=3.

Finally, when a numerical variable X can take the values x1; x2; : : : ; xn, with
probability p1; p2; : : : ; pn, respectively, its expected value is given by the
formula

p1 � x1 C p2 � x2 C : : : C pn � xn:

The conceptual leap from pure strategies to mixed strategies has an interesting
and somewhat unexpected consequence: any game that is finite, in other words any
game that has a finite number of players and a finite number of strategies, always
admits at least one mixed strategy equilibrium. Such a fundamental property was
proved by John Nash in 1950 and has since been known as Nash’s theorem.

214 V. Bonifaci and S. Leonardi

What is, then, a Nash equilibrium in mixed strategies for the Rock–Paper–
Scissors game? Assume we play the three actions at random, each with probability
1=3. If our opponent plays paper with probability p, scissors with probability s, and
rock with probability r , his expected utility will be

.1=3/ � 0 � p C .1=3/ � 1 � p C .1=3/ � .�1/ � p

C .1=3/ � .�1/ � s C .1=3/ � 0 � s C .1=3/ � 1 � s

C .1=3/ � 1 � r C .1=3/ � .�1/ � r C .1=3/ � 0 � r

D 0:

Therefore the expected payoff of our opponent will be zero, independently from
the mixed strategy that he chooses. If he, too, is choosing with the same probabilities
rock, paper and scissors, then the expected payoff of both players will be zero and
neither of them will have a way to obtain an expected payoff larger than zero by
adapting their strategy. In other words, we will have a situation of mutual best
response, exactly as required by the definition of Nash equilibrium. In fact, in this
case the outcome we described is the only Nash equilibrium of the game, although
this uniqueness property does not hold in general, as we saw in the Battle of the
Sexes example.

The reader may wonder whether actual Rock–Paper–Scissors games are played
as the theory prescribes. It is certainly true that if one follows the optimal strategy,
then it is impossible to achieve a negative expected utility (although it is always
possible to be particularly unlucky!). However, many “real-world” players, due
to limitations of several kinds, such as not being able to choose the actions in a
perfectly random fashion, may not be playing an optimal strategy but some slightly
different mixed strategy. In this case we might obtain an expected payoff larger
than zero by adopting a mixed strategy different than the perfectly uniform one.
For example, if our opponent plays scissors and paper with the same probability,
but never plays rock, then we can increase our expected utility by always playing
scissors. Our expected payoff then becomes positive, since

1 � 0:5 � 0 C 1 � 0:5 � 1 D 0:5:

For this reason, in games such as Rock–Paper–Scissors, the players that more often
succeed are those that try to learn the adversary’s strategy, at the same time adapting
their own strategy to it.

9.2.4 Hawks and Doves

So far, we exemplified potential conflict situations through some simple but
paradigmatic two-player games: the Prisoner’s Dilemma, the Battle of the Sexes

9 Algorithms for Auctions and Games 215

Table 9.5 Chicken Swerve Keep

Swerve 0 1
0 �1

Keep �1 �100
1 �100

and Rock–Paper–Scissors. We add an equally interesting game to the list, called
“Chicken”. The scenario is as follows: two contestants start driving cars at each
other at high speed. The first of the two that, by swerving, deviates from the collision
trajectory will be the loser, in other words the “chicken”. The player that resists
swerving until the end will instead be the winner. Clearly, a participant in Chicken
should try to resist as much as possible in order to overcome his opponent, but if
both players act out this idea, the result is a disaster!

Analyzing the game (Table 9.5) in light of the concepts discussed so far, we
observe that there are only two Nash equilibria in pure strategies: the one in
which the first player swerves and the second keeps the trajectory, and the one
in which the opposite happens. Is there by any chance some Nash equilibrium in
which the strategies are all probabilistic? Indeed there is. Denote by Rs and Rk

the probability with which the first player (the Row player) swerves or keeps the
trajectory, respectively. If we consider the configuration in which Rs D 99 % and
Rk D 1 %, then we notice that

0 � Rs C .�1/ � Rk D 1 � Rs C .�100/ � Rk D �1:

This implies that the expected payoff for the second player is the same (�1)
independently of the action he chooses. Similarly, if Cs D 99 % and Ck D 1 %
are the probabilities with which the second player swerves or keeps the trajectory
respectively, we have

0 � Cs C .�1/ � Ck D 1 � Cs C .�100/ � Ck;

so that also the expected payoff of the first player is the same independently of
his action. Such a combination of mixed strategies therefore constitutes a Nash
equilibrium.

Games akin to Chicken are those in which the players have to decide whether
they want to be aggressive “hawks” or peaceful “doves”. The Cuban missile crisis
of 1962 was analyzed by the advisors of US President J.F. Kennedy and classified
exactly as a situation of this kind, where the catastrophic outcome could have been a
nuclear war. Kennedy decided to let USSR Chairman N. Khrushchev know that the
United States would not have played the dove’s role, even to the point of having to
enter the war. Luckily for everybody, Khrushchev chose to concede and be a “dove”.

The Chicken game also allows us to introduce an important extension of
the notion of Nash equilibrium, proposed by the Israeli mathematician Robert

216 V. Bonifaci and S. Leonardi

J. Aumann (also a Nobel prize for Economics) in 1974. In this extension, known as
correlated equilibrium, we consider acceptable equilibria all outcomes of the game
in which players do not have an incentive to change their own strategy, assuming
that the strategy that the players follow is suggested in some way by a trusted third
party. For example, consider a third party that with probability 1/2 suggests to the
first player to swerve and to the second player to stay on track, and with probability
1/2 gives the opposite suggestions. In this case, if one of the two players assumes
that the other one behaves according to the suggestion of the third party, he will have,
in fact, an incentive to behave exactly as suggested; in other words, the suggestion
is self-enforcing. This is not at all a phenomenon that is far removed from daily
experience: a traffic light is nothing but such a trusted third party in the Chicken-
type game that any two car drivers play when they have to go through the same
crossing from different directions.

9.3 Computational Aspects of Game Theory

We have seen through the previous example how rigorous theorems such as Nash’s
theorem ensure, for several games, the existence of the equilibria we are interested
in. We can ask ourselves whether these equilibria can actually be computed via some
algorithm: knowing that an optimal strategy for a given game exists does not help
us much if we do not know how to determine it. For this reason the computational
aspect of game theory is crucial. We may even go further and say that if a given type
of equilibrium is hard to compute, then most likely that type of equilibrium does not
fully capture the realistic outcomes of a game, since after all the participants in a
game, be they individuals or companies or specifically designed software, always
have a limited computational power. The computational properties of equilibria
therefore help us understand what equilibrium concepts are indeed more realistic.

9.3.1 Zero-Sum Games and Linear Optimization

In the case of games where players move simultaneously, the computation of
equilibria is more or less complicated depending on the type of equilibrium that
is sought. For example, in the case in which one seeks a Nash equilibrium in
pure strategies, it is indeed sufficient to consider all combinations of the players’
strategies and for each combination verify whether both players are playing a best
response action. If the first player has m actions available and the second player
has n, we have to consider m � n cases, and for each of those we must compare the
payoff with other m C n � 2 values of alternative payoffs. As we have already seen,
though, an equilibrium in pure strategies might not exist.

More interesting is the case of Nash equilibria in mixed strategies. If we consider
arbitrary games (even with only two players) things get complicated pretty quickly.

9 Algorithms for Auctions and Games 217

Table 9.6 An example of a
zero-sum game

C D

A 2 �1
B 1 3

We thus start from the relatively simpler case of zero-sum games; this case was
analyzed for the first time in 1928 by John von Neumann. As we have seen with the
Rock–Paper–Scissors game, zero-sum games can be described by a single matrix in
which the entries indicate at the same time the payoff for the first player and the cost
for the second player, as in Table 9.6 where, for example, if the first player chooses
strategy A and the second strategy C , then the first player gains 2 and the second
pays 2.

The basic idea behind von Neumann’s result is that an equilibrium strategy
should be stable even when it has been revealed to one’s opponent. If the mixed
strategy of the Row player is known, the Column player will select a mixed strategy
that minimizes the payoff of the Row player. By foreseeing this, the Row should
then select a strategy that minimizes his own maximum loss, or in other words that
maximizes his minimum gain. Such a strategy his called a minimax strategy: some
mathematical details are given in the box “Minimax Strategy”. The main point is
that in this case the equilibrium strategies can be computed efficiently.

Minimax Strategy

A minimax strategy can be expressed by a system of inequalities, where the
variables a and b represent the probability with which the player chooses
his strategy A or B , respectively, and where variable v represents the gain
obtained by the player.

max v

2a C b � v

� a C 3b � v

a C b D 1

a; b � 0:

The first two conditions ensure that no matter the answer of the Column
player, the payoff of the Row player will be at least v. The other conditions
simply ensure that a solution of the system represents a mixed strategy.
By solving the system – for example graphically (see Fig. 9.1) – we obtain
a D 2=5, b D 3=5, that is to say that the Row player should play action A

with probability 40 % and action B with probability 60 %. That ensures an
expected payoff v D 7=5 to the Row player.

(continued)

218 V. Bonifaci and S. Leonardi

a

v

a ≥ 0

a + 1 ≥ v

−4a + 3 ≥ v

(2
5 ;

7
5)

Fig. 9.1 Equilibrium
computation for a simple
zero-sum two-player game

(continued)

Clearly, a similar argument can work for the Column player too. In this
case, if w represents the minimum loss by the Column player, we get
w D 7=5. The fact that v equals w is a general property that is ensured by
von Neumann’s theorem: when both players follow a minimax strategy, the
resulting outcome is an equilibrium. In general such systems of inequalities
constitute instances of linear optimization problems, a well-studied field in
mathematical optimization. Algorithms are known that solve such problems
in polynomial time (see Chap. 2). The same algorithms can thus be directly
applied to the computation of mixed strategy equilibria in zero-sum games
with two players.

9.3.2 Fixed-Points: Nash’s Theorem and Sperner’s Lemma

What happens when we move from zero-sum games to the general case? Is it still
possible to efficiently compute the Nash equilibria in mixed strategies? It turns out
that no one has a definitive answer to such an apparently simple question.

A natural approach, when trying to understand how to find a Nash equilibrium
in a non-zero sum game, is to take a step back and analyze the proof of Nash’s
theorem – in other words, to understand why an equilibrium in mixed strategies
must exist. We will not give here the details of the proof, but we will hint at some of
the ideas on which it is based.

Nash’s theorem can be seen as a so-called fixed point theorem, that for a given
function F asserts that, under suitable conditions, the equation F.x/ D x always
admits a solution – in other words, that the function F has at least one fixed point.

9 Algorithms for Auctions and Games 219

B C

A

Fig. 9.2 A valid coloring of a subdivided triangle ABC

In the case of Nash’s theorem, x represents a list of mixed strategies (one for
each player), and the function F.x/ gives a new list of mixed strategies in which
every player is adopting a best response to the configuration in which the other
players choose their actions according to what is specified by x. The equation thus
represents the fact that we seek a list of mixed strategies such that each is a best
response to the other ones.

To illustrate one of the ideas on which the theorem relies, we will discuss a
result used in the proof of the theorem and strongly linked to it, known as Sperner’s
lemma. We will not formulate the lemma in its full generality. However, one of the
consequences of this lemma is the following: take some triangle ABC and arbitrarily
subdivide it into smaller triangles, as in Fig. 9.2. Then color the vertices of all small
triangles with one of three colors (say white, black and gray), while obeying the
following rules:

1. The three vertices A, B , C of the original triangle should be colored with three
different colors;

2. The vertices that lie on a same edge of the original triangle should not be colored
with the color assigned to the vertex opposite to that side; for example, vertices
lying on the AB line cannot be colored with C ’s color;

3. The vertices in the interior can be arbitrarily colored.

Sperner’s lemma asserts that, independently of how we color the vertices, there
will always exist a triangle of the subdivision whose vertices have three distinct
colors. And, in fact, in the case of Fig. 9.3 such a triangle exists. Why is that?

220 V. Bonifaci and S. Leonardi

B C

A

Fig. 9.3 Illustration of the proof of Sperner’s lemma

To understand, mentally picture each triangle of the subdivision as a triangular
room with three walls, one per side. Each wall has a door in it, if the corresponding
side of the triangle has one white vertex and one black vertex. It is easy to check that
such rooms may have zero, one or two doors, but never three. Moreover, if a room
has a single door, it must correspond to a triangle with three differently colored
vertices, because if that was not the case there should be an additional white–black
side, and the doors would be two.

Observe that from the outside of the original triangle ABC there is an odd number
of accessible doors (again, this can be seen to be always true). Take any one of
this doors and follow the path through each door. Notice that we never have a
choice, since the number of doors in a room on the path is one or two. The path
will necessarily end either in a room with a single door, or again outside the ABC
triangle. But in this last case the path has used two doors facing the outside of the
triangle, and since there was an odd number of those doors, there must be another
door from which we can proceed in a similar fashion. Thus the only way to end this
process is to find a room with a single door, corresponding to the triangle with three
distinct colors whose existence was claimed by the lemma. Figure 9.3 illustrates the
argument.

The above argument may perhaps give a vague intuition of why finding Nash
equilibria in mixed strategies appears to be difficult. The procedure to determine
the triangle that verifies Sperner’s lemma is correct, but in general it may require
very long paths, which in turn correspond to a long computation time. Nothing,
however, prevents that in principle one could devise a smarter, more “direct” method
of determining the correct triangle, even though that appears unlikely.

9 Algorithms for Auctions and Games 221

9.3.3 Mixed Nash Equilibria in Non-zero-Sum Games

There is an algorithm, although markedly inefficient, that allows us to determine
a Nash equilibrium in mixed strategies for any two-player game. An idea at the
basis of the algorithm is the notion of support of a mixed strategy. The support is
simply the set of actions that in the mixed strategy considered are selected with
probability larger than zero. In other words, it is the set of pure strategies that
concur to form a given mixed strategy. Now, a property of equilibria is that a mixed
strategy constitutes a best response if and only if all the pure strategies in its support
are best responses. This fact is useful to determine a Nash equilibrium. In the box
“Equilibrium Computation” a complete example is given, with all the corresponding
calculations.

Equilibrium Computation

Consider the following example.

C D

A 1 3
2 0

Silent 2 1
1 4

The pure strategies of the Row player are A and B , those of the Column
player C and D. Let us ponder whether a Nash equilibrium exists in which the
support of the first player is fA; Bg and that of the second player is fC; Dg.
Call a; b; c; d the probabilities assigned to the respective strategies. Then it
should hold

a; b; c; d > 0;

a C b D 1;

c C d D 1:

Moreover, in order for .a; b/ to be a best response to .c; d /, and since we are
assuming that both A and B are in the support of .a; b/, A must be a best
response to .c; d / and should thus give an expected payoff at least as large as
that would be obtained with B:

2c � c C 4d;

(continued)

222 V. Bonifaci and S. Leonardi

(continued)

but by a similar argument B should be a best response to .c; d /:

c C 4d � 2c:

We thus obtain 2c D c C 4d , that combined with the previous equations
gives c D 4=5, d D 1=5. Analogously we can deduce, from the fact that
both C and D should be a best response to .a; b/, that a C 2b D 3a C b and
so a D 2=3, b D 1=3. Such an argument shows that the main difficulty in
finding a Nash equilibrium is in the determination of the support sets of the
two players. Once the supports are known, as we explained it is sufficient to
verify that a given system of linear inequalities admits a solution. A possible
algorithm to determine a Nash equilibrium then, however inefficient, consists
in enumerating all possible pairs of supports and for each of them verifying if
it gives rise to an equilibrium by solving the linear system. The running time
of such an algorithm is dominated by the number of possible pairs of supports,
that in the case of m actions for one player and n for the other one, is roughly
2mCn.

9.4 Inefficiencies

9.4.1 The Tragedy of the Commons

In many of the examples discussed so far, we have seen how one can mathematically
formalize the kind of individual behavior that emerges from the interaction of
rational agents, each of whom is driven to his own goals. A natural question is:
what happens to the overall system? What levels of “social welfare” are obtained
when each agent is pursuing his own goal separately? For such questions to make
sense we need to define what we mean by social welfare. There are many possible
definitions that are equally valid. For example, with social welfare we could mean,
in a utilitarian perspective, the sum of the payoff of all the players; or the payoff of
the player with the smallest payoff (the “poorest”). In any case it should intuitively
be clear that when the users of a system individually pursue their own goals, the
resulting social welfare is not necessarily maximized. In other words, the solution
determined by the agents will not in general be a globally optimal solution.

Consider, for example, a simple scenario in which a set of 100 users shares the
access to the same Internet connection, by means of a certain finite transmission
bandwidth B . Every user can regulate the amount of bandwidth that he intends to
use. The strategy of the i th user consists in the fraction x.i/, with 0 � x.i/ � 1, of

9 Algorithms for Auctions and Games 223

the amount of bandwidth used (so that the user gets a bandwidth equal to x.i/ � B).
Assume that the payoff of a user depends on the amount of bandwidth he consumes,
but also on the amount of bandwidth left unused by the other players, according to
the formula

u.i/ D x.i/ � .1 � x.1/ � x.2/ � x.3/ � : : : � x.100//:

The second term in this formula captures the fact that the latency of the
communication channel is lower when the channel is less congested, while if the
channel is almost saturated the latency is very high and thus the payoff quickly
drops. (For simplicity we do not require that the sum of the x.i/ fractions be inferior
to 1, so the second term can even become negative.) We thus obtain a multiple player
game. Such a game is not finite – the number of players is finite, but the strategies
are values from a continuous set and are thus infinite – so we cannot invoke Nash’s
theorem directly.

Still, in this case a Nash equilibrium exists; we can find out that it corresponds
to the solution in which each user has a fraction of the bandwidth equal to 1=101.
The communication channel in this solution is almost completely saturated, since it
is used for a total fraction equal to 100=101. The payoff of each user will then be
1=101 � .1 � 100=101/ D 1=.101/2. How large is the social welfare in this case? If
by social welfare we mean the total utility of the players, we obtain a social welfare
equal to 100=.101/2, roughly 0:01. However, if we could have forced each user to
use a bandwidth fraction equal to 1=200, half of the total bandwidth would have
stayed unused, so that the payoff of each user would have been equal to 1=400,
and the total payoff equal to 1=4 D 0:25. Such value is 25 times larger than the
value obtained at the equilibrium (0:01), so that we can say that in this case the
independence of the players caused a large decrease of the social welfare. Such a
negative phenomenon is well-known in economics under the name of tragedy of the
commons. It manifests itself every time that the individual interests of a group of
users tend to destroy the advantages deriving from the use of a common resource.
Clearly, not all economical interactions are of this kind and sometimes the individual
interest gets close to the collective one, but such ‘tragedies’ are indeed frequent.

Although such phenomena were known since long ago, only more recently have
researchers from the computer science community, starting with Elias Koutsoupias
and Christos Papadimitriou, analyzed them in a deeper quantitative way, through
the notion of price of anarchy: that is, the ratio between the globally optimal social
welfare and the social welfare arising from the equilibrium (or between the social
cost at the equilibrium and the optimal social cost). The closer such ratio is to
one, the more reasonable it is to claim that the individual interest approximately
coincides with the collective interest, while if the price of anarchy is very high – as
in the case of the bandwidth sharing game – the outcomes in the two settings can be
very different. The notion of a price of anarchy has been applied and continues to
be applied in the study of many economical scenarios, in particular those related to
networks.

224 V. Bonifaci and S. Leonardi

s t

c1 (x) = 1

c2(x) = x

Fig. 9.4 Pigou’s example

9.4.2 Routing Games

Imagine a familiar scenario: we need to move by car from one end of the city to the
other, and the choice of our itinerary will have deep impact on the travel time. Such
time will also depend on how many other car drivers will choose the same itinerary,
due to possible congestion effects. We thus see that the scenario can be modeled as
a game in which the players are the drivers and the actions are the itineraries. What
are the equilibria of the game, and how inefficient are they? The question is not
futile, also because a similar model can be applied to computer networks, with the
difference that the flows to be routed are flows of data instead of flows of vehicles.
It should not be surprising then that the answer has been in part given by computer
scientists, as well as by traffic engineers.

To understand it we first have to better specify our model. We represent the traffic
network as a graph in which nodes are the locations of interest and the arcs represent
the connections from one place to the others. Moreover, to describe the possible
congestion effects, we assign to each arc a cost (or “latency”) function that gives
the travel cost incurred for each level of traffic on that particular connection. For
example, in the graph of Fig. 9.4 the upper arc has a constant cost function (function
c1), while for the lower arc the cost function is the identity (function c2).

We finally select an origin point s, a destination point t and a flow value, that
is, an amount of traffic to be routed from s to t . We can imagine that such flow is
composed of an infinite number of “traffic particles”, each of which has no influence
by itself, but that can behave independently (in this formulation we thus have a game
with infinitely many players – the existence of an equilibrium is not ensured by
Nash’s theorem, but can in fact be proved by similar means). The overall cost of a
certain flow is obtained by summing, on each arc, the product between the quantity
of flow traversing the arc and the latency of the arc. For example, if in Fig. 9.4 we
had a flow equal to 0:2 on the upper arc and equal to 0:8 on the lower arc, the overall
cost would be equal to 0:2 � 1 C 0:8 � 0:8 D 0:66:

Suppose, for example, that the overall traffic flow is equal to 1 unit (say, 1,000
cars). If everybody used the upper link in the figure, the cost would be 1 � c1.1/ D 1.
Such configuration is however not an equilibrium. Indeed, if nobody used the lower
link, a car driver would find it convenient to leave the first route for the second, since
the cost that he would find on the new link would be equal to c2.0:001/ D 0:001,
which is much lower than 1.

In general, the traffic is in equilibrium if for each pair of paths P and P 0 from
s to t in the network, such that the traffic along P is positive, it holds that the cost

9 Algorithms for Auctions and Games 225

s

v

w

t

x

1

1

x

s

v

w

t

x

1

1

0

x

Fig. 9.5 The two networks
of Braess’ Paradox

along P is not larger than the cost along P 0. As a consequence, the costs of paths
actually used in the equilibrium are all equal, and they are all less than or equal to
the cost which a single driver would incur on any unused path.

If the traffic was equally split among the two links, the total cost would be 1=2 �
c1.1=2/C1=2�c2.1=2/ D 1=2C1=4 D 3=4. But that would not be an equilibrium,
since the flow along the upper link would be positive but the one along the lower
link would have a cost smaller (1=2) than that of the upper link (1).

It can be checked that the only equilibrium in this example corresponds to the
case in which the flow is only routed along the lower link. We thus obtain an overall
cost equal to 1 � c2.1/ D 1. As seen above, this value is not optimal; in terms of the
price of anarchy we have a ratio between cost at equilibrium and optimal cost equal
to 4=3.

The example just seen was discussed in the 1920s by the British economist
Arthur C. Pigou. Afterwards it became clear that the individual behavior of the users
can even give rise to some counterintuitive phenomena, as shown by the following
example due to German mathematician Dietrich Braess (Fig. 9.5). Assume once
again one unit of flow has to be routed. In the network on the left of the figure,
the equilibrium flow is the one in which half of the traffic follows the path .s; v; t/

and the other half the path .s; w; t/. The overall cost is then .1=2/ � .1=2 C 1/ C
.1=2/ � .1 C 1=2/ D 1:5.

In the network on the right a ‘superhighway’ has been added that has zero cost
and connects v and w. In the new network now, the only equilibrium is the one that
routes all the flow along the path .s; v; w; t/. But this flow has overall cost equal to
1 � .1 C 0 C 1/ D 2, larger than in the previous case! The apparently beneficial
decision of adding a connection from v to w has thus given rise to a degradation of
the system’s performance. Such a phenomenon is now known as Braess’ Paradox.

Anomalies notwithstanding, is it possible to give more encouraging results for
such routing games? How large can, in general, be the price of anarchy of such
games? In general, the answer depends not so much on the structure of the network,
as on the type of cost functions. If such functions are linear, that is, of the form
c.x/ D ax C b, Tim Roughgarden and Éva Tardos have shown that the price of
anarchy is never larger than 4=3, so that things never get worse than in Pigou’s
example, even in networks that are much larger and more complex. On the other
hand, if the cost functions have some “nonlinearities”, then the price of anarchy can

226 V. Bonifaci and S. Leonardi

be very high and it is not possible to bound it a priori. Informally, this corresponds
to saying that things tend to get worse when roads have a certain maximum capacity
and more easily act as bottlenecks.

9.5 Mechanism Design and Online Auctions

Mechanism design is the field of economics that is concerned with procedures for
aggregating the preferences of rational agents among a set of possible economic
choices, about the allocation of goods and the definition of prices. The goal
of mechanism design is to define an algorithm that takes as input the agents’
evaluations and returns as output the allocation of goods to the agents and the
price that the agents should pay for the allocated good. Analogously, one can
view computer science as interested in algorithms and protocols that, through the
use of computationally limited resources, determine solutions of good quality to
a problem for a given set of input data. Mechanism design is therefore an ideal
meeting ground between economics and computer science. The algorithmic design
of mechanisms is a research area originated by N. Nisan and A. Ronen that has
flourished in recent years and that aims at formally defining the economic features
that are algorithmically implementable and the computational issues that arise in
the design of economic mechanisms. To introduce some of the main ideas in the
algorithmic design of mechanisms we will refer to some simple examples in the
area of online auctions.

9.5.1 The Vickrey Auction

Online auctions are a typical scenario in which the design of some economic
mechanism is required. The goal of a mechanism for an online auction is the
identification of an allocation of the goods to the participants and the definition
of the price that each participant will pay. Such an algorithm has to be conceived
with the goal of satisfying some desirable features both from the point of view of
the auctioneer, such as the maximization of the profit obtained by selling the goods,
and from the point of view of the users, such as the perception of the electronic
commerce site as reliable and of the auction as fair.

Consider first a well-known example of auction, the Vickrey auction or second-
price auction, that aims at selling one indivisible good, such as an art piece, to one
of a set of n interested agents. The Vickrey auction assumes that the i th agent has
his own evaluation vi for the good being sold and that he communicates to the
mechanism, by means of a sealed envelope, his offer bi for the good. Observe
that user i has some private information (the evaluation), while only the offer bi

is communicated to the mechanism, that will open the envelopes after all offers has
been received from all participants. The mechanism has to determine the agent i that

9 Algorithms for Auctions and Games 227

will obtain the good and the price pi that agent i should pay. The utility function
of player j is vj � pj in case he obtains the good at price pj , or 0 if he does not
obtain the good. We are interested in agents behaving rationally, that decide upon
their strategy – the offer communicated to the mechanism – in a way that maximizes
their own utility.

The strategy of an agent may in principle depend on the behavior of the other
players, whose offer and valuations are however not known to the agent, and from
the publicly known mechanism, deciding the allocation of the good and the selling
price. What one aims to design is a mechanism for managing the auction that
induces a dominant strategy for each agent, that is, a strategy that optimizes the
payoff of each player independently from the behavior of other players.

An example of auction that does not induce a dominant behavior is the
assignment of the good to the agent with the highest offer, for the price indicated in
the offer. In such an auctions there may be several situations in which a lower offer
from a player may lead to the allocation of the good for a lower price. Consider, for
example, the case of two agents that offer for the good the values b1 D v1 D 10e
and b2 D v2 D 20e. Observe that in this example the offers coincide with the
valuations. The strategy of the second player is not optimizing the agent’s utility,
since any offer above 10e will allow to obtain the good for a lower price.

The Vickrey auction, or second-price auction, also allocates the good to the
highest bidding player, but at the second highest price that is offered by any player.
In the preceding example, player 2 would obtain the good at a price of 10e. One
can observe that in this case, independently of the offers of the other players, the
dominating strategy is to communicate an offer equal to one’s own valuation for
the good being sold. The selling price, and thus the utility of the agents, are not
affected if a different offer from an agent does not change the allocation of the
good. A different agent could obtain the good by bidding an offer higher than
his own valuation, but then he would incur a negative utility. An offer lower than
the valuation might cause the loss of the good and therefore a reduction in utility.
Agents have therefore no incentive in communicating a bid different from their own
valuation of the good.

The Vickrey auction, for all its simplicity, allows us to reason about several
important properties of mechanisms:

• Social welfare: Firstly, the good is being assigned to the user that had the highest
valuation for it. The social welfare of an allocation is the sum of the valuations
of the agents for that allocation. The Vickrey auction is maximizing the social
welfare, since its maximum value is equal to the maximum valuation of a single
agent. Such a goal is relevant, since it is usually desirable that goods are given to
the users who value them most highly.

• Implementability: A second important property is the possibility of each user
implementing his own strategy simply, without having to ponder the other
players’ choices. In other words, each agent needs an elementary computational
power to determine his own optimal strategy, called dominant. In the case of
the Vickrey auction the dominant strategy is very simple, since it corresponds

228 V. Bonifaci and S. Leonardi

to communicating an offer that is equal to the user’s valuation. We observe that
in less elementary classes of games, such as those illustrated in the preceding
sections, the optimal strategies, such as pure Nash equilibria, may be multiple
or not even exist, and reaching those strategies might require a set of relatively
complex interactions among the agents.

• Truthfulness: An additional result of the Vickrey auction is the revelation from
each agent of his own evaluation, in other words of the private information
that defines the agent and his contribution to the input data of the problem.
This property is the prevailing fundamental solution concept in the design of
mechanisms, since in its absence the algorithm allocating the goods has to base
its decisions on misleading information about the features of the participating
agents, and thus on input data that are different from the actual ones.

9.5.2 Vickrey–Clarke–Groves Mechanisms

Some assumptions of our model of the Vickrey auction require further discussion.
In particular, we assumed that the valuation of the good by an agent could be
expressed in monetary terms. It follows that the utility of an agent is also expressible
in monetary terms: the utility of agent i when receiving the good at price pi is equal
to vi �pi , or 0 if the good is not allocated to the agent. Such a utility model is called
quasilinear. But other models have been extensively adopted during the history of
economical sciences. For example, each agent could express an order of preference
among all possible alternatives or communicate his own preference among each pair
of allocations. However the quasilinear model of utilities yields important results in
terms of dominant strategies that may not be achieved by other models.

We should also define in a slightly more formal way the notion of mechanism, in
order to better appreciate the generality of this concept. The notion of mechanism
in the economic sciences is the counterpart of the concept of algorithm in computer
science. A mechanism for the allocation of goods has as input the description of
the preferences of the agents among all possible allocations of the goods. The
output of the mechanism is the selection of one allocation for the goods and of
the payment that each agent should contribute. Somewhat more formally, the input
to an economic mechanism is composed of a set I of n agents and a set A of
possible alternative allocations of the goods. For example, in the case of an auction
for a single good, the set of alternative allocations is composed of the n distinct
assignments of the good to one of the n agents, the winner of the auction. The
preferences of agent i on each alternative in A are represented by a valuation
function vi . The term vi .a/ denotes then the valuation of agent i for alternative a.
The function vi is, however, a private information of agent i . It may be convenient
for the agent i to communicate a different and not necessarily truthful valuation
function v0

i . The result of the application of the mechanism, that is, the output of the
mechanism, consists in the selection of an alternative in A and of a payment pi for
each agent i .

9 Algorithms for Auctions and Games 229

The key concept in mechanism design is that of truthfulness, as we already
informally discussed in the case of the Vickrey auction. A mechanism is truthful
if, for every agent i , reporting the true valuation function vi is a dominant strategy
when maximizing the utility and so is preferable to reporting any other function
v0

i . If a and a0 are, respectively, the alternatives selected by the mechanism when
agent i declares valuations vi and v0

i , and pi , p0
i are the respective payments, then a

mechanism is truthful if for every agent i , vi .a/�pi � v0
i .a

0/�p0
i , independently of

the strategy of the other agents. Such mechanisms are also called direct revelation
mechanisms since they are implementable by an algorithm that receives from the
agents the real input data formed by the private valuation of the agents. This is not
the only class of mechanisms that can implement a function as the dominant strategy
equilibrium of a game. The so-called Revelation Principle ensures, however, that
all mechanisms that can be implemented through dominant strategies can also be
implemented in the form of truthful mechanisms.

The issue is then that of determining a selection mechanism for one of the
alternatives and a set of payments that induce a truthful behavior from the agents.
The fundamental result in this direction is the Vickrey–Clarke–Groves (VCG)
mechanism, that we discuss in the related box for the interested reader.

Vickrey–Clarke–Groves Mechanism

We define the social welfare of an alternative a as the value
P

i vi .a/, that
is the sum of the valuations of the agents for a. A mechanism is called
a Vickrey–Clarke–Groves (VCG) mechanism (with Clarke’s rule for the
definition of payments) if

(i) It selects the alternative a 2 A maximizing the social welfare
P

i vi .a/;
(ii) It defines pi D maxb2A

P
j ¤i vj .b/ � P

j ¤i vj .a/ as the payment of
agent i , that is, the maximum possible reduction in social welfare of the
other agents due to the existence of agent i , that by reporting valuation vi

has determined the selection of a by the mechanism.

Intuitively, the payment required from every agent is the compensation due
to the maximal damage caused by agent i to the other agents because of his
existence, when alternative a is selected. Such a mechanism is truthful since
the agent maximizes the social welfare by revealing his own true preferences.
In a way, the VCG mechanism carries out the task of decoupling the choices of
the agents and determines as the dominant strategy the declaration of the true
preferences of the agent. We also observe that payments are always positive
and the utility of each agent equals maxa2A

P
i vi .a/ � maxb2A

P
j ¤i vj .b/:

As an example of application of VCG with Clarke’s rule, we proceed to
prove that the Vickrey auction is a VCG mechanism. The Vickrey auction
assigns the good to the agent with the highest valuation and then chooses

(continued)

230 V. Bonifaci and S. Leonardi

(continued)

the alternative maximizing the social welfare among the n possible ones. For
the agent that obtains the good, pi D maxb2A

P
j ¤i vj .b/ � P

j ¤i vj .a/ is
exactly equal to the second price, since the highest valuation of a different
alternative is the second price offered by an agent, while the other agents have
valuation 0 as they do not receive the good. For an agent i not obtaining the
good, pi D maxb2A

P
j ¤i vj .b/ � P

j ¤i vj .a/ has in fact value 0 since both
terms equal the maximum valuation of an agent.

Another example of application of VCG is given by a multiple items auction.
In a multiple items auction, k identical goods are offered to a set of n > k

agents, each of which seeks to obtain a single unit of the k available goods.
Each agent has the same fixed valuation for all alternatives in which one of
the goods is allocated to him. Each agent submits his bid in a sealed envelope.
VCG chooses the alternative that maximizes the social welfare, which in this
case means assigning the k units to the k agents with the highest valuations.
The payments computed by VCG with Clarke’s rule for the k agents that
receive the good are in this case set to the .k C 1/th highest valuation of an
agent, in other words the highest valuation of an agent that does not obtain
the good. Indeed, for an agent i obtaining the good, the first term in pi DP

j ¤i vj .b/ � P
j ¤i vj .a/ is exactly the sum of the k C 1 highest valuations

minus the valuation of agent i , while the second term equals the sum of the k

highest valuations minus the valuation of agent i . It can be promptly checked
that the payment asked to the agents that do not obtain the good equals 0. The
multiple items auction can be further generalized, for example, in the setting
of the so-called combinatorial auctions, that, however, we will not consider in
this discussion.

9.5.3 Computational Aspects of Mechanism Design

The VCG mechanism and the definition of truthful, direct revelation mechanisms
are the fundamental concepts at the basis of the area of mechanism design and
its algorithmic aspects. In the following, we consider a fundamental aspect that
concerns the computational issues related to social welfare maximization.

VCG requires the maximization of an objective function, the social welfare,
in the domain of all possible allocations. The maximization of such an objective
function can be computationally difficult for many problems of high relevance (see
also Chap. 3). It is customary in the field of optimization algorithms to circumvent
the computational complexity of exactly optimizing a function by the use of an
approximation algorithm, that is, an algorithm that always allows one to obtain,
on any instance, a solution close to the optimal one, while incurring a polynomial

9 Algorithms for Auctions and Games 231

computational cost. In a strategic setting it is also required, however, that such
functions be implementable through some dominant strategy equilibrium.

A fundamental question is thus the characterization of the social choice functions
that are implementable. Are there simple properties that a function should have so
that it is implementable by dominant strategies of the agents?

A relevant case is that in which the valuation of an agent is some numerical
value in a subset of the alternatives Wi � A, called winning for agent i , while it is
zero on all other (losing) alternatives. More precisely, the agent is characterized
by a valuation t for all alternatives in Wi and 0 for all alternatives outside Wi .
In this particular case it is possible to completely characterize the set of truthful
mechanisms by relying on the monotonicity properties of the implementable
functions. A single-parameter allocation function is called monotone in vi if it is
possible to define a single critical value corresponding to the minimum valuation
that allows the agent to be in a winning alternative. For example, in the case of the
Vickrey auction the critical value equals the largest of the valuations of the losing
agents.

The definition of critical value plays a fundamental role in the definition of
payments, since the agents’ payments can be fixed exactly at the critical value. The
importance of monotone functions is in the fact that a monotone social choice func-
tion and the respective critical values allow one to implement a truthful mechanism
in which the winning agents pay exactly the critical value. Such a characterization
is of great importance, since it allows the implementation of truthful mechanisms
for the optimization of social welfare functions that are computationally hard and
that can be approximated by monotone functions that are simple to compute.

Consider, for example, a multi-unit auction problem, in which m units of the
same good are available to n agents. Each agent j desires some number qj of units,
known to the mechanism, and has a private valuation function vj for obtaining such
a set of units. This is a clear case in which agents are completely described by a
single private value, their valuation. The problem of maximizing social welfare in
the allocation of the m available units to the n agents corresponds to the well-known
knapsack problem (see Sects. 2.3.2 and 5.3), for which an application of VCG would
require a computational cost that is not polynomial in the size of the input. For the
interested reader, the box “Monotone Mechanisms” reports an alternative approach
to the same problem.

Monotone Mechanisms

We consider an alternative approach to the multi-unit auction problem, based
on the adoption of monotone mechanisms that yield a good approximation to
the optimal solution of the problem in question. In particular, consider these
two algorithms:

1. VAL: Sort the agents non-increasingly by their valuation vj ;

(continued)

232 V. Bonifaci and S. Leonardi

(continued)

2. DENS: Sort the agents non-increasingly by their density (valuation per
unit) vj =qj .

Both algorithms define a ranking among the agents and allocate the elements
according to this ranking, until some agent requires more units than those that
remain available. Let’s look at the execution of both algorithms when there
are 3 players (n D 3), 4 units of the good (m D 4), and the agents’ data are
the following:

v1 D 5; q1 D 2I v2 D 3; q2 D 1I v3 D 4; q3 D 2:

The algorithm that sorts by valuation will allocate 2 units to agent 1 and 2
units to agent 3, with an overall social welfare of 9. The algorithm that sorts
by density will allocate 1 unit to agent 2 and 2 units to agent 1 for an overall
social welfare of 8. Observe that in this last case one unit of the good is not
allocated.

Firstly, we observe that both algorithms are monotone. Indeed, if an agent
with a given valuation is selected, he is also selected when his valuation is
increased.

Let us compute the payments for the agents in both cases. Such payment for
each agent is equal to the minimum valuation that would allow the agent to
be selected. In the case of ranking by valuation, the payments required from
the two winning agents equal the valuation of the losing agent.

In the case of ranking by density, consider the first agent in the ranking that
is not winning. Let this agent be j . The payment of winning agent i will be
equal to qi .vj =qj /. Observe that in case all agents are winning each payment
equals 0, since the presence of agent i is not decreasing the social welfare of
the remaining agents.

Each algorithm individually is not producing a good approximation of the
optimum. Indeed, the ranking by valuation could accept an agent requiring
all m units with a valuation of 2 and at the same time not accept m agents
each requiring one unit with valuation 1. Analogously, the ranking by density
could accept an agent requiring 1 unit with valuation 2 and not accept an agent
requiring m units with valuation m. Notice, however, that if we define a third
algorithm called MAX that outputs the best solution among those given by
VAL and DENS, then we obtain a solution close to optimum. In our example,
MAX returns the solution constructed by algorithm VAL. It can be easily
shown that, in fact, algorithm MAX always constructs a solution with value
at least half the optimum solution.

(continued)

9 Algorithms for Auctions and Games 233

(continued)

Unfortunately, the algorithm obtained by the combination of two monotone
algorithms is not necessarily monotone. For this to hold, it is required that
the two algorithms satisfy a condition stronger than monotonicity, called
bitonicity. The combination of two bitonic algorithms is indeed monotone. An
algorithm is bitonic if it is monotone and whenever a losing agent increases
his valuation then one of the two following conditions is satisfied:

1. The agent becomes winning; or
2. The agent remains losing but the value of the constructed solution does not

improve.

In the case in question, it is immediate to verify that any algorithm that defines
the winning agents by traversing a ranking in which the priority of each agent
can only increase if his valuation increases, is bitonic. Indeed, if the valuation
has not increased enough to make the agent winning, then the constructed
solution does not change.

9.6 Price-Setting Mechanisms and Competitive Equilibria

Mechanisms for defining prices of goods have played a central role in economic
theory during the last two centuries. Price-setting mechanisms have been given
the task of introducing fundamental notions such as efficiency and equilibrium in
markets, the availability of goods and services, and the operation of the economy
in stable conditions. The role of initiator of the mathematical theory of markets
is attributed to Léon Walras, who in 1874 was the first to define the notion of
competitive equilibrium: an equilibrium in which each agent obtains the good from
which he extracts the highest utility and in which all goods left unsold have zero
price. Mechanisms for price setting form a further fascinating field of application of
algorithmic methods and provide important computational questions.

Consider the case in which we have a set I of n agents and a set J of m distinct
goods. Each agent has a valuation function vi for each set S formed by some of the m

goods. The goal is to allocate a set of goods to each agent. A price-definition scheme
defines a price pj for each good j 2 J . The demand of agent i is defined as the set S

of goods preferred by agent i , the one that maximizes the utility vi .S/ � P
j 2S pj

of the agent.
A Walras equilibrium is defined as a set of prices in which each agent receives

his demand and all goods not allocated have price 0.

234 V. Bonifaci and S. Leonardi

A first important result, also called first welfare theorem, proves that a Walras
equilibrium determines an allocation maximizing the social welfare of the agents.
In the following, we consider an example scenario.

Consider two agents, Alice and Bob, and two elements fa; bg. Alice has valuation
2e on every nonempty set of elements, while Bob has valuation 3e on the whole
set fa; bg and valuation 0e for each single item. The solution that maximizes social
welfare assigns the set fa; bg to Bob. Thus, to obtain a Walras equilibrium, Alice
should prefer the empty allocation to each of the individual items. For this to be
true, the price of each good should be at least 2e. But then the price of the set fa; bg
is 4e and so Bob, too, will prefer the empty set as an allocation. There is therefore
no Walras equilibrium in this case.

An important question in economic theory is the characterization of markets
that admit a Walras equilibrium. The answer to such a question can be reduced,
surprisingly, to the solution of some important algorithmic questions. It is in fact
possible to relate the existence of a Walras equilibrium to the existence of an integer
solution to a linear optimization problem in fractional variables. We stop here and
do not embark on a field that would require a long discussion. The interested reader
will find in Sect. 9.7 some references to the main monographs surveying the area.

9.7 Bibliographic Notes

The book that marked the birth of game theory is the classic text of von Neumann
and Morgenstern [108]; it is remarkable that the book is largely due to John von
Neumann, one of the fathers of the digital computer era, as a well as world-class
mathematician.

Modern treatments of the theory of games and its applications to economics are
given, for example, by Binmore [9], Osborne and Rubinstein [88] and Mas-Colell,
Whinston and Green [76]. The encyclopedic work by Aumann and Hart [6] is
an updated state of the art of the theory, and contains many further references to
the scientific literature. Computational aspects and applications of game theory to
computer science are discussed in a recent textbook by Nisan et al. [86], to which
we point the interested reader for further investigation of many of the topics touched
in this chapter, including algorithmic mechanism design.

Chapter 10
Randomness and Complexity

Riccardo Silvestri

Abstract Random choices have an unexpected power. From a database search
to traffic analysis of the Web, from data mining to cryptography, several hard
problems can be efficiently solved with the help of probabilistic algorithms. But
random choices are also very elusive. If they were too powerful, some cryptographic
algorithms used daily would no longer be trusted. At the heart of this phenomenon,
the interplay between randomness and complexity creates a fascinating world that is
almost entirely unexplored. This is a world where the most sophisticated algorithms
meet their analytical limitations, and the reasons for their effectiveness in real
applications still remains a mystery.

10.1 A Dialogue

Francis I have a tricky computer problem that comes from a commissioned job.
Laura, Mark Tell us about that!
Francis So, my company must implement an information system on the annual

consumption in Italy. The raw data to be processed are collected in a large number
of files, each of which contains all commodity items that were sold in 1 year by
a certain set of retail stores.

Laura Wow! It’ll be a huge amount of data.
Francis Definitely. Assume that each file collects data from about a 1,000 stores,

and each store, on average, sells around a 100,000 items a year (data collected
refer only to medium–large-sized stores). Thus, each file contains about

R. Silvestri (�)
Dipartimento di Informatica, Sapienza Università di Roma, via Salaria, 113, 00185 Roma, Italy
e-mail: silvestri@di.uniroma1.it

G. Ausiello and R. Petreschi (eds.), The Power of Algorithms,
DOI 10.1007/978-3-642-39652-6__10, © Springer-Verlag Berlin Heidelberg 2013

235

mailto:silvestri@di.uniroma1.it

236 R. Silvestri

100 million records,1 one for each item sold, and takes several gigabytes2 on
disk. Now, before uploading the data into a DBMS3 (which will require a lot
of time), we’d like to quickly get information that will help us to design the
database.

Mark What kind of information?
Francis For example, we could wish to know whether a given archive contains

data relating to at least a food store. I thought about it, but I didn’t find anything
better than the trivial algorithm that scans all the records in the archive. This
requires at least a minute for scanning an archive and then it’ll take a few hours
to search through all the archives, since there are a few hundred.

Mark Are items in the archives arranged in some way? For example, by store?
If so then you could. . .

Francis No, I thought of that too. Unfortunately, in an archive the items, namely
the records, are collected as they are sent by the stores. Some make monthly
transmissions, others every 6 months, still others yearly. I don’t think there’s any
order that you can exploit to speed up the search.

Laura Maybe you could use a probabilistic approach.
Francis What do you mean?
Laura Well, if you wish to get an estimate of the percentage of spoiled nuts in a

bag, you don’t need to open them all. You can pick at random a small sample and
open just those nuts.

Mark That’s true! I think I understand: the nuts are the items, the bag of nuts is
an archive and the spoiled nuts are the food items.

Laura Exactly.
Francis What? What are you talking about!?
Laura You’re right, Fran, let’s talk about details. We wish to know whether in

a given archive there are items sold by food stores. You said that the average
number of items per store is about a 100,000. I think it’s likely that the food
stores are among those which sell a large number of items, and so the number of
items sold from a food store is not lower than the average. An educated guess is
that any food store in the archive has sold at least a 100,000 items.

Francis Yes, I agree with your guess. But so what?
Laura All right. If the archive contains at least one food store, and I pick at

random an item in the archive, what’s the chance that the picked item is a food
item?

Francis Ahem. It should be easy. There are about 100 million items in the archive,
and among them, food items number at least a 100,000. So there are at least
100,000 favorable cases out of 100 million. The probability is at least

1A record is an elementary data item in a database.
2A gigabyte is a unit of measure of the volume of data and is equivalent to approximately one
billion bytes.
3A DBMS (Data Base Management System) is a software system that manages archives or
databases.

10 Randomness and Complexity 237

100;000

1;000;000;000
D 1

1;000
:

A chance out of a thousand, I’d say rather small.
Laura But not too small. If we choose, again at random, k items instead of just

one, what’s the probability that at least one of the chosen items is a food item?
Francis Why is it always up to me? Okay, I’ll put my best foot forward. So, in

such cases, I think, it’s easier to calculate the opposite probability, that is, the
probability that none of the chosen items is a food item. For any chosen item, the
probability that it is not a food item is at most

1 � 1

1;000
:

Since the choices are independent,4 the probability that none of the k choices
succeeds in finding a food item is equal to the product of the individual
probabilities, and then it’s at most .1 � 1=1;000/k. At last I got it: the probability
that at least one of the chosen items is a food item is at least 1 � .1 � 1=1;000/k.

Laura Now simply impose that k be a sufficiently large value (but not too large)
so that the probability is very high. You could set k D 30;000 to obtain

1 �
�

1 � 1

1;000

�30;000

� 1 � 10�13:

So, the probability that by examining 30,000 randomly chosen items you don’t
get the correct answer is less than

10�13;

that is, one in 10,000 billions.
Francis Now I understood the algorithm: we examine 30,000 records (items)

chosen at random; if at least one is a food item we conclude that the archive
contains a food store, otherwise we bet that it doesn’t. The probability that the
algorithm gives a wrong result is very small. In fact, it is a thousandth of the
probability of winning the lottery!

Mark And that probabilistic algorithm is much faster than the trivial algorithm
that looks at all records. Indeed, it only needs to read 30,000 records rather than
100,000,000. I guess it’s at least 3,000 times faster.

4In probability theory the concept of stochastic independence plays an important role (see box
“Events, Probabilities and Expected Values” in Chap. 9). Here we can say, informally, that the
independence of choices means that there are no relationships among the choices: each of them is
carried out in a completely independent way from the others.

238 R. Silvestri

Francis The estimate of how much it’s faster than the trivial algorithm is not so
easy, because the time of reading records scattered here and there in a file is
well above the time to read contiguous records. Anyway, I’d expect that the
probabilistic algorithm is 100 times faster. This means that instead of waiting
hours to get the answer, I’ll get it in a few tens of seconds. That is really a great
idea, Laura!

Laura Thanks, but the idea is certainly not new. In one way or another it’s used in
a lot of algorithms. The general technique is called random search, and it’s used
to check polynomial identities and in several algorithms of number theory, some
of which have applications in cryptography.5

Francis I didn’t know it. It’s very interesting. I’m wondering whether similar
techniques can help me to solve other problems related to my archives. One
of those is that we’d like to estimate the number of distinct types of items.
Each record contains a string that describes the type of the item. For example,
“hammer”, “bread”, “electric toothbrush”, etc. We’d like to know, approximately,
how many different types appear in the archives. This kind of information would
be very useful for improving the design of the database. In addition, getting this
information will not be easy, even after we have the database. I mean, it still
might require a fairly long computing time.

Mark How long can that be?
Francis The algorithm I thought of is based on building the sorted list of all

the item’s types, and then scrolling through the list to determine the number
of different types. But, given the large amount of data, sorting takes a long time
because it needs to be done mostly on the disk. I estimate the algorithm could
take several dozens of hours.

Mark Days of computations.
Francis Oh, yeah. Also, keeping the sorted list of strings requires a great deal of

memory on disk.
Laura Your problem, Fran, can be solved by probabilistic counting. It’s an

algorithmic technique that was specifically invented to solve problems like yours.
In fact, it’s used in data mining,6 for optimizing queries in databases, and to
monitor the traffic in communication networks.

Francis Is it a difficult technique, or you can explain it easily?
Laura The basic idea is pretty simple. In its mathematical essence, the problem

is to determine, or, better, to estimate the cardinality of a multiset.7 Let’s first
consider the following simplification. Suppose that the elements of our multiset
M are binary strings of length 30, selected at random. I’m assuming that the

5See Chap. 6.
6Data mining is a discipline of computer science that deals with the exploration, extraction and
analysis of information implicitly contained in large databases.
7The term multiset means a collection of elements that may contain repetitions of the same element.
In our setting, by cardinality of a multiset we mean the number of distinct elements belonging to
the multiset.

10 Randomness and Complexity 239

types of items are described by binary strings of length 30 and that these have
been chosen at random among all the binary strings of length 30. But I make no
assumptions about their repetitions: each string can be repeated, in the archive,
an arbitrary number of times. Now, in order to estimate the cardinality of M , we
can exploit the fact that the distinct elements of M are randomly distributed.

Francis Oh, is that true? And how can you?
Laura Suppose you scan all the strings of the multiset M and check whether some

fall in the set P10 of strings that have the first symbol 1 in position 10. What’s the
probability that no string falls in P10?

Francis If I understood correctly, I should calculate the probability that a random
set of strings doesn’t contain strings beginning with 0000000001. The set P10

contains exactly

230�10 D 220

strings. So the probability that a string chosen at random, among those of length
30, doesn’t fall into P10 is

1 � 220

230
D 1 � 1

210
:

Letting n be the number of strings, the probability that none of the n strings falls
into P10 is equal to the product of the probabilities, that is

�

1 � 1

210

�n

:

Mark No! My dear friend, you implicitly and incorrectly assumed that the choices
of the n strings are independent. That’s not true because there’s the constraint that
they’re all distinct. Anyway, if we assume that n is much smaller than 230, the
probability that you’ve calculated is a good approximation to the correct one,
which would require a fairly complicated expression.

Francis What a dunce I am!
Mark Don’t worry, you’re in good company. The probability of making mistakes

calculating probabilities is very high.
Laura Let’s not digress. Then, using the probability that Fran has calculated, we

note that, for n � 200, the probability that P10 is empty is greater than

�

1 � 1

210

�200

>
4

5
;

while for n � 2;000 that probability is less than

�

1 � 1

210

�2;000

<
1

7
:

240 R. Silvestri

So if we see that, after scanning all the strings of the multiset, P10 remains empty
we bet that n < 2;000, while if we see that it’s not empty then we bet that
n > 200.

Francis I’m beginning to understand. By keeping just one bit of information, that
is, whether P10 is empty or not, we get information on how large n is.

Laura Exactly. Let’s consider now all the brother sets of P10: Pk is the set of
strings of length 30 that have the first 1 in position k, for k D 1; 2; : : : ; 30. These
sets are a partition of the set of binary strings of length 30, except for the all-0
string. Moreover, each of them is twice the size of the next one: P1 is twice the
size of P2, which is twice the size of P3 and so on. We keep a bit bk for each Pk

that, after scanning, will be 1 if Pk is not empty, and 0 otherwise.
Francis So at first, all those bits are set equal to 0 (b1 D 0; b2 D 0; : : : ; b30 D 0)

and then every time a string is scanned, if it has the first 1 at position k, let
bk D 1.

Laura Yes. Let’s call R the maximum k for which b1 D 1; b2 D 1; : : : ; bk D 1,
after the scan is over. It can be shown that R is an approximation of log2.n/ and
thus 2R is an approximation of n. Clearly, this approximation is quite rough.

Francis If I understand correctly, by keeping just 30 bits of information while
scanning the elements of the multiset, you can get an approximation of the
cardinality, although a little rough. Remarkable!

Laura Not only that. What I have told you is the basic version of the technique.
A refinement leads to an approximation with an error of less than 3%, while
keeping the auxiliary memory used for the counting as small as a few thousands
of bytes. And that even if the cardinality is of the order of billions.

Francis Wonderful! This technique would allow me to get a good estimate of
the number of types of items in just a few hours, which is the time to perform
a full scan of all archives. Also, if I want an estimate relative to some other
characteristic (for example, brands), I can do that at the same time, because the
memory required for each count is very small. With a single scan I can do a lot
of counts at the same time, at the price of only one!

Laura Exactly! There are instances in which the use of this algorithmic technique
led to a reduction in the computation time by a factor of 400. Specifically, it was
an analysis of the Web graph, that is, the connections by links among the pages
of the Web.8

Mark Excuse me, but aren’t you rushing a bit too much? Laura, isn’t something
missing in the description of the technique? Everything that was said is valid
under the assumption that the set of distinct elements have been chosen uniformly
at random. Or not?

Laura Sorry, in the rush to tell you the results of the technique I forgot that point,
which is indeed very important. Clearly, in practice that hypothesis is not likely.
Especially considering that the domain from which the elements are drawn has

8See Chap. 5.

10 Randomness and Complexity 241

to be sufficiently simple that it can be subdivided in an efficient manner, as the
set of binary strings of fixed length.

Francis Ah! It was too good to be true.
Laura Don’t worry, Fran. It’s enough to use a hash function9 H which assigns

to each element of the multiset (whatever its nature) a binary string of suitable
length L. An ideal hash function assigns to each element a randomly chosen
string of length L. So, for every element x, H.x/ will be a random binary string
assigned to x. A way to describe such a hash function is as follows. Whenever
you need to compute H.x/, check if H.x/ has already been computed, if so
return that value, otherwise pick at random a binary string of length L and this
will be the value of H.x/. By using a hash function we can turn any set into
a random set of binary strings. And the probabilistic-counting technique, which
we have discussed, applies to the multiset of binary strings obtained through the
hash function.

Mark And the collisions? What happens when two distinct elements x and y are
turned into the same binary string H.x/ D H.y/?

Laura If you choose the length L of the strings large enough, the collisions will
have a negligible weight on the probabilistic counting. For example, if you want
to estimate a cardinality up to a few billions, simply set L D 64 to make the
chance of collision so small as to be infinitesimal.

Mark The problem still remains of calculating the ideal hash function that you
described. You know perfectly well that in order to implement that function
you should keep a table of size proportional to the cardinality that you want
to estimate, not to mention the time to look up values in this table. So, it would
defeat all or most of the advantages of the technique.

Laura Yes. That’s why in practice nonideal hash functions are used. They’re easy
to compute and work great. Using those the technique retains all the advantages
that we have seen, both in terms of computing time and storage space.

Francis I’m really confused right now! Although, as you know, I’m more focused
on practice than theory, I thought I had understood that the assumption on the
randomness of the set is needed for the technique to work. So much so that it’s
necessary to use an ideal hash function to turn any set into a random set. But
now Laura says you can use a nonideal hash function which is computable by an
efficient algorithm. How does this function guarantee that the set is turned into a
random set?

Laura In fact, it doesn’t guarantee it. Besides, what does it mean to say that a set
is random? In this regard, I’d recall what Knuth wrote

It is theoretically impossible to define a hash function that creates random data from
non-random data in actual files. But in practice it is not difficult to produce a pretty
good imitation of random data.10

9Hash functions are widely used in computer science with applications in databases, encryption
and error correction.
10See [69].

242 R. Silvestri

Of course, that doesn’t satisfactorily answer your question. I think actually
there’s a lack of analysis of the technique. But. . .

Mark Excuse me for interrupting you, but the question raised by Francis is
extremely delicate, fascinating and much broader than you might imagine. I fear
that if we insist on staying on the question we run the risk of falling into a well
of unknown depth. Maybe we can come back to it later. But now I’ve come up
with an idea on probabilistic algorithms I wish to discuss with you. Is it true
that probabilistic algorithms, which can go wrong, albeit with an extremely low
probability, are only used in situations in which a possible error would not be too
harmful?

Laura You think so? Actually it isn’t. When the error probability is low enough,
with respect to the cost of a possible error, and the speed of the algorithm is a
very important aspect, then the probabilistic algorithm is used, even if the cost of
a possible error is very high.

Mark Really?
Laura Definitely. Every day, lots of financial and commercial transactions take

place on the Internet, and these are secured by communication protocols that
encrypt transmitted messages. The most widely used encryption protocol uses
the asymmetric encryption algorithm RSA.11 The RSA algorithm relies on the
choice of very large prime numbers, with hundreds of decimal digits. To do that,
an integer of the required size is generated at random and then it’s checked for
primality. The procedure is repeated until a prime number is found. The primality
tests currently used are probabilistic algorithms.

Mark But I know that, a few years ago, a deterministic primality test was invented
that’s not probabilistic and thus is always correct. If I remember correctly, it’s
also efficient.

Laura Yes, but it’s not efficient enough. You can’t afford to wait several minutes
for a transaction to be carried out, especially when there are tens of thousands of
transactions per day. Think about an online bank.

Francis I’m not an expert like you on probabilistic algorithms and I’m curious to
find out more about probabilistic primality tests.

Laura One of the most widely used is the Miller–Rabin primality test.12

To explain the idea of the test, I’ll start from the simplest primality test: given an
integer n, for every integer x < n (x > 1) check whether x divides n, if it does
then n is not prime; if no x divides n, then n is prime. When we find an x that
divides n we say that x is a witness of the non-primality of n, or compositeness
witness for n. If n is prime, there are no compositeness witnesses, while if n is
composite, there is at least one.

Francis For instance, if n D 15, then 5 is a compositeness witness for 15 and
also 3 is, but 2 is not. Instead, if n D 13, no compositeness witness for 13 exists
because none of the integers 2; 3; : : : ; 12 divides 13. Right?

11See Sect. 6.6.
12The test was invented by Gary L. Miller and Michael O. Rabin.

10 Randomness and Complexity 243

Laura Exactly. However, this test is too inefficient even if we can improve it a lot
by noting that we can limit the search for the divisors of n among the integers
not greater than the square root of n. If n has 100 decimal digits the test can
require about 1050 divisions. Putting together all the computers of the planet, a
1,000 years would not suffice to complete the calculation.13

Francis Oh boy!
Laura Yeah. And that’s where the power of the Miller–Rabin algorithm

helps. Rather than using compositeness witnesses based upon divisibility, the
Miller–Rabin test uses a much more refined kind of compositeness witnesses.
I won’t go into details about how these compositeness witnesses are defined
because it could distract us from the probabilistic structure of the test. Suffice it
to say that, for every n and for every x, we define a property MR.n; x/ and if it’s
true then x is a compositeness witness for n. Indeed, it was proved that if n is
prime then no x makes MR.n; x/ true, and if n is composite at least an integer x

exists which makes MR.n; x/ true.
Francis If I understood correctly, that property can be used in place of the one

based on the divisibility. But what’s the advantage?
Laura The advantage is that when n is composite not only can we say there is

at least one witness, but that there are a lot of them. To be precise, at least 3=4

of all possible x are compositeness witnesses, that is, they make MR.n; x/ true.
So if you pick an x at random in the interval Œ1; n � 1�, it’ll be a compositeness
witness for n with at least a 3/4 probability. In other words, with one try the error
probability is at most 1/4. By k retries the error probability decreases to

�
1

4

�k

:

Usually k is set equal to 50, so the error probability will be less than

2�100:

That probability is so small that it is easier to win the lottery three times in a row
rather than to fail the Miller–Rabin test.

Mark Oh yes, it’s clear. Moreover, that error probability is so small that it is
comparable to the probability of the occurrence of a hardware fault during
the execution of the algorithm. Then, probabilities of error so small make
deterministic algorithms indistinguishable from the probabilistic ones, as far as
their ability to provide correct answers.

Francis So, the Miller–Rabin test still uses the random search technique, as in
the case of my problem, and the error probability is negligible. But, how much
faster is it than the simple test based on divisions? Making an analogy with what

13See Sect. 6.6.

244 R. Silvestri

we saw in relation to my problem, I’d say a few hundred times, maybe some
thousands?

Laura Are you kidding? For numbers with 100 decimal digits, the Miller–Rabin
test is about

1045

times faster than the test based on divisions!
Francis 1045?! I can’t even remotely imagine a similar speedup.
Mark You’re right . . . who can?
Francis But, a terrible doubt entered my mind just now: How does a computer

make random choices?!
Mark Your doubt is perfectly legitimate. It’s enough to remember what von

Neumann said in this regard, more than half a century ago:

Anyone who attempts to generate random numbers by deterministic means is, of course,
living in a state of sin.14

A mathematically rigorous meaning to this statement can be given by the
Kolmogorov complexity theory.15 Leaving out many details (which indeed are
not just details), I could explain the idea upon which the theory is based, in a
nutshell. Suppose you toss a coin 1,000 times and record the sequence of heads
and tails. What is expected, and indeed it can be proved, is that with very high
probability the sequence has no meaningful regularities. We don’t expect to find
that, for example, every three tosses there’s at least one head, or that there’s a
subsequence of 50 consecutive tails, or that the number of heads is substantially
higher than the number of tails, etc.

Laura But how can the concept of regularity be defined in a formal way? It should
include all kinds of regularity and I don’t see any regularity shared by all the
regularities.

Mark That’s right! It would be very hard, if not impossible. Kolmogorov didn’t
directly use the regularities but rather a consequence of their presence. If the
sequence has any significant regularity, then it can be exploited to give a compact
description of the sequence, which is more compact than the sequence itself.
The description can be given by an algorithm (in the theory, the descriptions are
precisely algorithms) whose output is the sequence itself.

Laura I think I understand. Suppose, for instance, I’ve a sequence of 10,000 bits
such that all the bits in the even positions have value 1 and the others have random
values. Then I can describe the sequence using a simple algorithm that always
outputs a 1 if the bit is in an even position, and otherwise it outputs the bit that it
reads from a table containing only the bits in the odd positions of the sequence.
The algorithm has a description whose length is only slightly greater than half

14See [69].
15See Sect. 7.3.2.

10 Randomness and Complexity 245

the length of the sequence, and so it’s much more compact than the description
given by the sequence itself.

Mark That’s right. Now, it’s not hard to prove that a sequence of random bits, with
very high probability, does not have a substantially more compact description
than that of the sequence itself. Summing up, we can say that random sequences
do not have compact descriptions. So, if a sequence has a compact description,
it’s not a random sequence.16

Francis Okay, beautiful theory. But, what does it have to do with the possibility
that computers could make random choices or not?

Mark It’s very simple. If someone says that he found an algorithm that’s able
to generate random sequences, then it’s easy to refute it. Make the algorithm
generate a sequence substantially longer than the description of the algorithm.
This sequence has a description that’s obtained by combining the description
of the algorithm with the description of its length. It’s more compact than the
sequence itself. Thus, the sequence cannot be considered to be random. More
precisely, it can’t be considered as if it were generated by a genuine random
source.

Francis Gosh! I understood. But then there’s no hope.
Laura Not really, there are algorithms that are able to extract from the computer

(for example, by reading the microseconds from power on, the current number
of reads from the disk, the number of currently active processes, etc.) a small
amount of genuinely random bits and then, through appropriate processing, they
can amplify them, producing a much longer sequence of random bits.

Mark But also in that case, Laura, we can apply Kolmogorov’s theory. It’s enough
to consider in the description the random bits derived from the instantaneous state
of the computer, in addition to the algorithm and the length of the sequence. The
truly random bits that can be drawn are few compared to those required and then
the amplification cannot be too small, so the description will be compact.

Laura Oh! It’s true. Indeed that type of algorithm, called a pseudorandom
generator, was developed for cryptographic applications. And the properties that
they must meet are captured by rigorous mathematical definitions. The situation
is quite different from that of probabilistic algorithms. Yet there are strong
connections, but it would be a long story. Instead, I’d like to point out that the
implementations of probabilistic algorithms often use very simple generators.
For example, among the most simple and the most widely used generators there
are the so-called linear congruential generators that have the form:

xiC1 D a � xi C c .mod m/

16The term random sequence is used here in an informal way, hoping that it will not be too
ambiguous or, worse, misleading. It is clear that no sequence can be said to be random or not
random in the sense that all sequences, of a fixed length, have the same probability to be generated
by a genuine random source (uniform), such as repeated coin tosses.

246 R. Silvestri

where a, c and m are integer parameters. The sequence of pseudorandom
numbers is started by the set value x0, called seed. Then, the successive numbers
are computed by applying the formula to the previous number. A possible set of
parameters is as follows: a D 16;807, c D 0 and m D 2;147;483;647. Despite
their simplicity, I’m not aware of discrepancies that have been observed with
respect to what would be expected if genuine random sources were used instead
of such generators.

Mark I don’t want to be a spoilsport, but I know at least one case in which
such discrepancies were observed. In 1992, a computer simulation of a simple
mathematical model of the behavior of atoms of a magnetic crystal didn’t give
the expected results. The authors of the simulation showed that this discrepancy
was just due to the pseudorandom generator that was used. They also noticed
that many other generators, among the most used and which passed batteries of
statistical tests, were affected by similar flaws. One can say that those generators
are poor imitators of truly random generators. However, we should also keep in
mind that this incident concerned a simulation. I don’t know similar incidents
concerning probabilistic algorithms.

Francis This heartens me. If I understand your conversation, I could summarize
the situation (paraphrasing a famous quote by Eugene Wigner17) talking about
the unreasonable effectiveness of deterministic pseudorandom generators to
imitate truly random generators.

Laura To sum up, in theory and especially in the practice, probabilistic algorithms
work great. And then I wonder what’s, in general, the power of probabilistic
algorithms? What’s the power of “random choices”? Maybe, for every hard
problem there’s a probabilistic algorithm that solves it much faster than any
deterministic algorithm.

Mark If so, we could be in trouble.
Francis But how!? We might be able to solve lots of problems that now we don’t

know how to solve.
Mark Of course, but it also would happen that the most widely used algorithms

and protocols to secure Internet communications would be completely insecure.
In addition. . .

Francis Wait a moment, but there’s a mathematical proof of security for those
algorithms, isn’t there?

Mark No, currently there’s no absolute guarantee of their security. Their claimed
security relies on a tangled skein of empirical data, assumptions and conjectures.

Francis Holy cow! Should I be more careful when I use my credit card on
the Web?

17Eugene Paul Wigner was one of the greatest physicists and mathematicians of the last century
(he won the Nobel Prize for Physics in 1963). The phrase is actually the title of his famous essay:
The Unreasonable Effectiveness of Mathematics in the Natural Sciences.

10 Randomness and Complexity 247

Mark If someone knew a way to defeat the protection provided by the present
cryptographic protocols, I don’t think he would waste time with your credit card.
He would have at his disposal much richer targets before being found out.

Laura That’s really true. An example of such protocols is once again RSA.
Mark Yeah, and the interesting thing is that the security of RSA relies on a

problem that seemingly is very similar to the problem solved by the primality
test.

Francis Ah! Tell me.
Mark The security of RSA relies on the (conjectured) difficulty of the integer

factoring problem. Given an integer n, the problem is finding all the prime
factors.18 Actually, we can consider an apparently simpler version: given a
composite integer n, find a nontrivial divisor (that is, different from 1 and n)
of n. If you know how to efficiently solve this version of the problem, you also
know how to efficiently solve the full version.

Francis Well, the algorithm based on the divisions that we saw for the primality
test also solves this problem. When n is composite, it can be stopped as soon as
it finds the first nontrivial divisor.

Mark Yes, of course, but it’s not efficient. And it’s totally inefficient when n

doesn’t have small divisors, and this happens, for example, when n is the
square of a prime number.19 Not by chance, the security of RSA relies on the
(conjectured) difficulty of factoring a number n which is the product of two large
prime numbers (that is, with the same number of digits). On the other hand,
the Miller–Rabin algorithm, which is so efficient to test primality, when applied
to a composite number, does not provide significant information about possible
divisors of n.

Laura Yes, the compositeness witnesses of Miller–Rabin are very different from
those of the test based on divisions. The latter directly provide a divisor of n,
while those of Miller–Rabin are indirect witnesses: They ensure that at least a
nontrivial divisor exists but don’t provide meaningful information about it. On
closer look, right here is the power of the Miller–Rabin algorithm.

Francis It’s strange: You can guarantee that a thing exists without exhibiting it
and without even stating an easy way to find it.

Mark You don’t know how much you’re justified in saying that it’s strange. That
strangeness originated a long time ago; think about, for instance, the controversy
about constructivism in mathematics at the beginning of the last century.20 Or,
closer to our interests, consider the so-called probabilistic method that is a
technique of proof which draws its strength from the opportunity to prove that a
thing exists through a probabilistic argument that doesn’t exhibit the thing itself.

Laura I’m sorry to interrupt you now, but I wouldn’t want to get lost, as you said,
in a bottomless well.

18A prime factor is a divisor that is also a prime number.
19Obviously, in this case, it would be very easy to factorize n: just compute the square root of n.
20See Chaps. 1 and 3.

248 R. Silvestri

Mark Actually I talked about a well of unknown depth; I think there’s a subtle
difference. Anyway you’re right, back to the factoring problem. The present
situation can be summarized by saying that over recent decades, thanks to
the introduction of RSA and its growing importance, various techniques and
algorithms for integer factoring have been developed and then steadily improved.
These algorithms are much more efficient than the algorithm based on divisions,
but they’re still inefficient. I mean that they can’t factorize integers of hundreds or
thousands of digits within a reasonable time. The best algorithms (which indeed
also require human intervention in setting up some critical parameters based
on preprocessing of the integer) have recently factorized an RSA-type integer
of 200 decimal digits within 5 months of calculation using several computers
simultaneously. This is a result that maybe a dozen years ago, would not have
been foreseeable.

Francis I get goose bumps. But then where does the confidence in RSA come
from? I’ve heard about NP-completeness,21 maybe it has something to do with
this?

Mark Yes and no. NP-complete problems are considered difficult to solve because
it’s believed that the conjecture NP ¤ P is true. The factoring problem is
not NP-complete, or, better, it’s not known whether it’s NP-complete or not.
However, if the conjecture were not true, then there would be an “efficient”
algorithm for factoring. I say “efficient” in quotes because the fact that the
conjecture is false doesn’t imply that such algorithms are necessarily efficient in
practice. I don’t want to go into this issue because the discussion would be much
too long. However, even if the conjecture were true and the factoring problem
were shown to be NP-complete, this doesn’t necessarily guarantee the security
of RSA.

Laura I don’t understand. If NP ¤ P and the factoring problem were
NP-complete, then it would be guaranteed that efficient algorithms for factoring
cannot exist.

Mark Yes that’s true, but the theory at issue says nothing about the possibility
that there could be algorithms that are efficient on a subset of instances only. I’ll
explain: even if what we have supposed were true, there could be an algorithm
that is able to efficiently factor a substantial fraction of all integers in the sense
that this possibility is perfectly compatible with the present theory. And this
would be more than sufficient to make RSA totally insecure.

Laura You’re right, in order for RSA to be insecure it is sufficient that there is an
algorithm that can efficiently factorize a small fraction of the integers of the type
used in RSA. For the overwhelming majority of the numbers it could be totally
inefficient. In addition, the algorithm could be probabilistic.

Francis I don’t have your knowledge on this topic and I can only figure out that
the situation is like a tangled web. I’d like you to better explain the phenomenon,

21The theory of NP-completeness is discussed in Chap. 3.

10 Randomness and Complexity 249

rather surprising to me, that there are difficult problems that can be efficiently
solved on many instances.

Mark Certainly. For instance, several NP-complete problems are efficiently solv-
able on random instances. That is, there are very efficient algorithms that if
the instance of the problem has been randomly chosen (among all instances of
the same size) then, with high probability, the algorithm solves the problem or
approximates the optimal solution with high accuracy. This phenomenon can
be viewed as another aspect of the power of random choices. Here the random
choices are embedded in the instance of the problem, while in the probabilistic
algorithms they are part of the algorithm. As Karp22 said, both aspects are
important because although the probabilistic algorithms are more interesting,
to date they are not able to cope with the explosion of combinations typical of
NP-complete problems.

Laura What you are saying does not exhaust either the phenomenon concerning
difficult problems that admit “partially efficient” algorithms or the aspects
relating to the random choices. In fact, there’s a huge realm of algorithms whose
behavior is often so complex as to make their mathematical analysis extremely
difficult, and thus their performance is only evaluated through experimentation.
These are usually called heuristic algorithms or simply heuristics, and they are
developed to deal with difficult problems. Most of these heuristics use random
choices. Just to name two among the most relevant: simulated annealing and
genetic algorithms. For most heuristics it is even difficult to give just a rough
idea of the types of instances on which they behave in an efficient manner.

Mark That’s right. In truth, the realm of heuristics is the “wildest” among those
that belong to the world of algorithms, and it’s also the one showing most
clearly the weakness of current analytical techniques. We may be still very far
from proving the truth or the falsity of the conjecture NP ¤ P and of many
other conjectures of the theory of computational complexity. But even if we
had all these demonstrations, it’s not guaranteed that we would have the tools
to understand which problems can be efficiently solved in practice and which
not, with or without the help of random choices. In short, the power and limits
of algorithms and random choices are very far from being understood, except
perhaps for computability theory.23 And since I came to make considerations on
the ultimate frontiers of algorithms, the time has come for me to go away. I’m
sorry, but I have to run.

Francis Ah! Your words have charmed and numbed me. So, see you, bye!
Laura Bye bye!

22Richard Manning Karp is one of the pioneers of the probabilistic analysis of algorithms and the
theory of NP-completeness; he received the Turing Award in 1985.
23Computability theory, in essence, deals with the ultimate power of the algorithms. The main
questions that it seeks to address are of the type: is there an algorithm (no matter how inefficient)
that solves a given problem?

250 R. Silvestri

10.2 Bibliographic Notes

The conversation of the three friends has just touched the tip of the iceberg of
probabilistic algorithms. Since they were introduced in the 1970s, their applications
have proliferated: sorting algorithms, computational geometry, data mining, com-
munication protocols, distributed computing, etc. The two books by Motwani and
Raghavan [82] and Mitzenmacher and Upfal [80] deal in depth with probabilistic
algorithms with regard to both the applications and the subtleties of their analysis.

The world of probabilistic algorithms is so vast and varied that even those
two books together fail to capture it fully. The technique that has been called
probabilistic counting is not covered in either of these books. An introduction to
this interesting technique is contained in the paper [43].

Like probabilistic algorithms, the applications of hash functions are many and,
as the conversation has shown, probabilistic algorithms and hash functions often
go hand in hand. Virtually any book that introduces algorithms also treats the most
common uses of hash functions. Crescenzi et al. [22] provides a lean and smooth
introduction.

The three friends have discussed with animation the fascinating issues of
primality testing and the factoring problem. One of the best books that addresses in
detail primality tests (including that of Miller–Rabin), the most powerful factoring
algorithms and their applications is [21]. The methods and algorithms used to
generate pseudorandom numbers and the best statistical test beds to evaluate their
quality are admirably presented and discussed in the second volume [69] of the
monumental work by Knuth.

During the discussion, Kolmogorov complexity was invoked in relation to the
impossibility of the existence of truly random generators. Actually, Kolmogorov
complexity has ramifications that are far more extensive and has strong links with
probabilistic methods. The previously mentioned [72] gives an introduction served
with a rich collection of applications.

The intricate relationships between NP-complete problems, probabilistic algo-
rithms, and random instances of hard problems are vividly recounted in the
paper [65] by one of the fathers of the theory of NP-completeness. The even
more intricate and delicate relationships among NP-completeness and, in general,
computational complexity theory and the existence of algorithms that solve in the
real world hard problems are open research issues that offer formidable difficulties
and, maybe, for just this reason, have not yet been systematically studied. One of
the very few papers addressing these issues and that gives an idea of this fascinating
and unexplored land is [105].

References

1. AGCOM: Piano nazionale di assegnazione delle frequenze per la radiodiffusione televisiva.
Autorità per le Garanzie nelle Comunicazioni (1998). http://www2.agcom.it/provv/pnf/
target01.htm

2. AGCOM: Il libro bianco sulla televisione digitale terrestre. Autorità per le Garanzie nelle
Comunicazioni (2000). http://www2.agcom.it/provv/libro_b_00/librobianco00.htm

3. Aho, A., Hopcroft, J., Ullman, J.: Data Structures and Algorithms. Addison-Wesley, Reading
(1987)

4. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applica-
tions. Prentice Hall, Englewood Cliffs (1993)

5. Alpert, J., Hajaj, N.: We knew the web was big: : : Official Google Blog (2008). http://
googleblog.blogspot.it/2008/07/we-knew-web-was-big.html

6. Aumann, R.J., Hart, S. (eds.): Handbook of Game Theory with Economic Applications.
Elsevier, Amsterdam (2002)

7. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts and
Technology behind Search, 2nd edn. ACM, New York (2011)

8. Baeza-Yates, R.A., Ciaramita, M., Mika, P., Zaragoza, H.: Towards semantic search. In: Pro-
ceedings of the International Conference on Applications of Natural Language to Information
Systems, NLDB 2008, London. Lecture Notes in Computer Science, vol. 5039, pp. 4–11.
Springer, Berlin (2008)

9. Binmore, K.: Playing for Real. Oxford University Press, New York (2007)
10. Boyer, C.B., Merzbach, U.C.: A History of Mathematics, 3rd edn. Wiley, Hoboken (2011)
11. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput.

Netw. 30(1–7), 107–117 (1998)
12. Broder, A.Z., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A.,

Wiener, J.L.: Graph structure in the Web. Comput. Netw. 33(1–6), 309–320 (2000)
13. Buss, S.R.: On Gödel’s theorems on lengths of proofs. II: lower bounds for recognizing

k-symbol provability. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 57–90.
Birkhauser, Boston (1995)

14. Calin, G.A., Croce, C.: MicroRNA-cancer connection: the beginning of a new tale. Cancer
Res. 66, 7390–7394 (2006)

15. Cartocci, A.: La matematica degli Egizi. I papiri matematici del Medio Regno. Firenze
University Press, Firenze (2007)

16. Chabert, J.L. (ed.): A History of Algorithms. From the Pebble to the Microchip. Springer,
Berlin (1999)

17. Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data. Morgan
Kaufmann, San Francisco (2003)

G. Ausiello and R. Petreschi (eds.), The Power of Algorithms,
DOI 10.1007/978-3-642-39652-6, © Springer-Verlag Berlin Heidelberg 2013

251

http://www2.agcom.it/provv/pnf/target01.htm
http://www2.agcom.it/provv/pnf/target01.htm
http://www2.agcom.it/provv/libro_b_00/librobianco00.htm
http://googleblog.blogspot.it/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.it/2008/07/we-knew-web-was-big.html

252 References

18. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: theory and experi-
mental evaluation. Math. Program. 73, 129–174 (1996)

19. Connes, A.: Visionari, poeti e precursori. In: Odifreddi, P. (ed.) Il club dei matematici solitari
del prof. Odifreddi. Mondadori, Milano (2009)

20. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
McGraw-Hill, Boston (2001)

21. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective. Springer,
New York (2005)

22. Crescenzi, P., Gambosi, G., Grossi, R.: Strutture di Dati e Algoritmi. Pearson Education Italy,
Milano (2006)

23. Davis, M.: The Universal Computer. The Road from Leibniz to Turing. W. W. Norton &
Company, New York (2000)

24. Davis, M.: Engines of Logic: Mathematicians and the Origin of the Computer. W. W. Norton
& Company, New York (2001)

25. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1979)
26. Demetrescu, C., Goldberg, A.V., Johnson, D.S.: The Shortest Path Problem: Ninth DIMACS

Implementation Challenge. DIMACS Series. American Mathematical Society. http://dimacs.
rutgers.edu/Workshops/Challenge9/ (2009). Accessed 15 Feb 2012

27. D’Erchia, A.M., Gissi, C., Pesole, G., Saccone, C., Arnason, U.: The guinea pig is not a
rodent. Nature 381, 597–600 (1996)

28. Devlin, K.: The Man of Numbers. Fibonacci’s Arithmetic Revolution. Walker & Company,
New York (2011)

29. D’Haeseleer, P.: What are DNA sequence motifs? Nature Biotechnol. 24, 423–425 (2006)
30. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik

1, 269–271 (1959)
31. Dijkstra, E.W.: The humble programmer. 1972 Turing Award Lecture, Commun. ACM

15(10), 859–866 (1972)
32. Dijkstra, E.W.: This week’s citation classic. Current Contents (CC), Institute for Scientific

Information (ISI) (1983)
33. Dijkstra, E.W.: Appalling prose and the shortest path. In: Shasha, D., Lazere, C. (eds.) Out

of Their Minds, The Lives and Discoveries of 15 Great Computer Scientists. Copernicus,
New York (1995)

34. Divoky, J.J., Hung, M.S.: Performance of shortest path algorithms in network flow problems.
Manag. Sci. 36(6), 661–673 (1990)

35. Dowek, G.: Les metamorphoses du calcul, Une étonnante histoire de mathématiques.
Le Pommier, Paris (2007)

36. EBU: Terrestrial digital television planning and implementation considerations. European
Broadcasting Union, BPN 005, 2nd issue (1997)

37. Eco, U.: The Search for the Perfect Language. Blackwell, Oxford (1995)
38. Felsenfeld, G., Groudine, M.: Controlling the double helix. Nature 421, 448–453 (2003)
39. Ferragina, P., Scaiella, U.: Fast and accurate annotation of short texts with Wikipedia pages.

IEEE Softw. 29(1), 70–75 (2012)
40. Ferragina, P., Giancarlo, R., Greco, V., Manzini, G., Valiente, G.: Compression-based

classification of biological sequences and structures via the universal similarity metric:
experimental assessment. BMC Bioinf. 8, 252 (2007)

41. Ferro, A., Giugno, R., Pigola, G., Pulvirenti, A., Skripin, D., Bader, M., Shasha, D.:
NetMatch: a Cytoscape plugin for searching biological networks. Bioinformatics 23, 910–
912 (2007)

42. Fetterly, D.: Adversarial information retrieval: the manipulation of Web content. ACM
Comput. Rev. (2007). http://www.computingreviews.com/hottopic/hottopic_essay_06.cfm

43. Flajolet, P.: Counting by coin tossings. In: Proceedings of the 9th Asian Computing Science
Conference, Chiang Mai, Thailand, pp. 1–12. Springer, Berlin (2004)

44. Ford, L.R. Jr., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton
(1962)

http://dimacs.rutgers.edu/Workshops/Challenge9/
http://dimacs.rutgers.edu/Workshops/Challenge9/
http://www.computingreviews.com/hottopic/hottopic_essay_06.cfm

References 253

45. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimiza-
tion algorithms. J. Assoc. Comput. Mach. 34(3), 596–615 (1987)

46. Gallo, G., Pallottino, S.: Shortest path algorithms. Ann. Oper. Res. 13, 3–79 (1988)
47. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, San Francisco (1979)
48. Giancarlo, R., Mantaci, S.: I contributi delle scienze matematiche ed informatiche al

sequenziamento genomico su larga scala. Bollettino Della Unione Matematica Italiana – Serie
A: La Matematica nella Società nella Cultura, 4-A (2001)

49. Giancarlo, R., Utro, F.: Speeding up the Consensus clustering methodology for microarray
data analysis. Algorithms Mol. Biol. 6(1), 1 (2011)

50. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets graph theory.
In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, Vancouver,
Canada, pp. 156–165 (2005)

51. Golub, T.R., et al.: Molecular classification of cancer: class discovery and class prediction by
gene expression. Science 289, 531–537 (1998)

52. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. Ann. Hist.
Comput. 7(1), 43–57 (1985)

53. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, Cambridge (1997)

54. Gusfield, D.: Suffix trees (and relatives) come of age in bioinformatics. In: Proceedings of the
IEEE Computer Society Conference on Bioinformatics, Stanford, USA. IEEE, Los Alamitos
(2002)

55. Harel, D., Feldman, Y.: Algorithmics: The Spirit of Computing, 3rd edn. Addison-Wesley,
Harlow (2004)

56. Hart, P.E., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

57. Hawking, D.: Web search engines: part 1. IEEE Comput. 39(6), 86–88 (2006)
58. Hawking, D.: Web search engines: part 2. IEEE Comput. 39(8), 88–90 (2006)
59. Hinsley, F.H., Stripp, A. (eds.): Codebreakers: The Inside Story of Bletchley Park. Oxford

University Press, New York (2001)
60. Hodges, A.: Alan Turing: The Enigma. Simon & Schuster, New York (1983)
61. Hood, L., Galas, D.: The digital code of DNA. Nature 421, 444–448 (2003)
62. Horowitz, E., Sahni, S.: Fundamentals of Data Structures. Computer Science Press, Woodland

Hills (1976)
63. Jones, N.C., Pevzner, P.: An Introduction to Bioinformatics Algorithms. MIT, Cambridge

(2004)
64. Kahn, D.: The Codebreakers. Macmillan, New York (1967)
65. Karp, R.M.: Combinatorics, complexity and randomness. Commun. ACM 29(2), 98–109

(1986)
66. Kaufman, C., Perlman, R., Speciner, M.: Network Security: Private Communication in a

Public World. Prentice Hall, Upper Saddle River (2002)
67. Kleinberg, J., Tardos, É.: Algorithm Design. Addison-Wesley, Boston (2005)
68. Knuth, D.: The Art of Computer Programming. Volume 1: Fundamental Algorithms.

Addison-Wesley Professional, Reading (1997)
69. Knuth, D.: The Art of Computer Programming. Volume 2: Seminumerical Algorithms.

Addison-Wesley Professional, Reading (1998)
70. Lander, E.S.: The new genomics: global views of biology. Science 274, 536–539 (1996)
71. Levitin, A.: Introduction to the Design and Analysis of Algorithms, 3rd edn. Addison-Wesley,

Boston (2012)
72. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications.

Springer, New York (2008)
73. Li, M., Xin, C., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. IEEE Trans. Inf. Theory

50, 3250–3264 (2003)

254 References

74. López-Ortiz, A.: Algorithmic foundation of the internet. ACM SIGACT News 36(2), 1–21
(2005)

75. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge
University Press, New York (2008)

76. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University
Press, New York (1995)

77. Matthews, W.H.: Mazes and Labyrinths. Longmans, London (1922)
78. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC, Boca

Raton (1996)
79. Millennium problems. Clay Mathematics Institute. http://www.claymath.org (2000)
80. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and

Probabilistic Analysis. Cambridge University Press, Cambridge (2005)
81. Morelli, M., Tangheroni, M. (eds.): Leonardo Fibonacci. Il tempo, le opere, l’eredità

scientifica. Pacini Editore, Pisa (1994)
82. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,

Cambridge (1995)
83. Nagel, E., Newman, J.: Gödel’s Proof. NYU Press, New York (2008)
84. Nature Reviews: The double helix – 50 years. Nature 421 (2003)
85. Newson, M.W. (trans.): Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902).

(A reprint appears in Mathematical Developments Arising from Hilbert Problems, edited by
Felix Brouder, American Mathematical Society, 1976)

86. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V. (eds.): Algorithmic Game Theory.
Cambridge University Press, Cambridge (2007)

87. Orosius, P.: Historiarum Adversum Paganos Libri VII. Liber IV, 15. Thorunii (1857).
Available online at The Library of Congress, call no. 7252181, http://archive.org/details/
adversuspaganosh00oros

88. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT, Cambridge (1994)
89. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1993)
90. Pavesi, G., Mereghetti, P., Mauri, G., Pesole, G.: Weeder Web: discovery of transcription

factor binding sites in a set of sequences from co-regulated genes. Nucleic Acid Res. 32,
W199–W203 (2004)

91. Pizzi, C., Bortoluzzi, S., Bisognin, A., Coppe, A., Danieli, G.A.: Detecting seeded motifs in
DNA sequences. Nucleic Acid Res. 33(15), e135 (2004)

92. Pólya, G.: Mathematics and Plausible Reasoning. Volume 1: Induction and Analogy in
Mathematics. Princeton University Press, Princeton (1990)

93. PTV: Planung Transport Verkehr AG (2009). http://www.ptvgroup.com
94. Rappaport, T.S.: Wireless Communications: Principles and Practice, 2nd edn. Prentice Hall,

Upper Saddle River, New Jersey, USA (2002)
95. Rashed, R.: Al-Khwarizmi. The Beginnings of Algebra. Saqi, London (2009)
96. Reisch, G.: Margarita philosophica (1525) Anastatic reprint. Institut für Anglistik und

Amerikanistik, Universität Salzburg (2002)
97. Sanders, P., Schultes, D.: Robust, almost constant time shortest-path queries in road networks.

In: Proceedings of the 9th DIMACS Implementation Challenge Workshop: Shortest Paths.
DIMACS Center, Piscataway (2006)

98. Scaiella, U., Ferragina, P., Marino, A., Ciaramita, M.: Topical clustering of search results.
In: Proceedings of the Fifth International Conference on Web Search and Web Data Mining,
Seattle, USA, pp. 223–232. ACM, New York (2012)

99. Shamir, R., Sharan, R.: Algorithmic approaches to clustering gene expression data. In: Current
Topics in Computational Biology. MIT, Cambridge (2003)

100. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison.
Nature Biotechnol. 24, 427–433 (2006)

101. Silvestri, F.: Mining query logs: turning search usage data into knowledge. Found. Trends Inf.
Retr. 4(1–2), 1–174 (2010)

102. Simeone, B.: Nuggets in matching theory. AIRONews XI(2), 1–11 (2006)

http://www.claymath.org
http://archive.org/details/adversuspaganosh00oros
http://archive.org/details/adversuspaganosh00oros
http://www.ptvgroup.com

References 255

103. Singh, S.: The Code Book: The Science of Secrecy from Ancient Egypt to Quantum
Cryptography. Doubleday, New York (1999)

104. Stallings, W.: Cryptography and Network Security. Prentice Hall, Upper Saddle River (2007)
105. Stockmeyer, L.J., Meyer, A.R.: Cosmological lower bound on the circuit complexity of a

small problem in logic. J. ACM 49(6), 753–784 (2002)
106. Trakhtenbrot, B.A.: A survey of Russian approaches to perebor (brute-force searches)

algorithms. IEEE Ann. Hist. Comput. 6(4), 384–400 (1984)
107. van Lint, J.H.: Introduction to Coding Theory. Springer, New York (1998)
108. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton

University Press, Princeton (1944)
109. Wells, R.: Astronomy in Egypt. In: Walker, C. (ed.) Astronomy Before the Telescope. British

Museum Press, London (1996)
110. Williams, J.W.J.: Algorithm 232 (heapsort). Commun. ACM 7, 347–348 (1965)
111. Wirth, N.: Algorithms C Data Structures D Programs. Prentice Hall, Englewood Cliffs (1976)
112. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes. Morgan Kaufmann, San Francisco

(1999)
113. Witten, I.H., Gori, M., Numerico, T.: Web Dragons. Morgan Kaufmann, Amsterdam/Boston

(2007)
114. Youschkevitch, A.: Les mathématiques arabes (VIII-XV siècles). Collection d’Histoire des

Sciences, 2 – CNRS, Centre d’Histoire des Sciences et des Doctrines. VRIN, Paris (1976)
115. Zhang, S., Zhang, X.S., Chen, L.: Biomolecular network querying: a promising approach in

systems biology. BMC Syst. Biol. 2(1), 5 (2008)
116. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38(2), 1–56

(2006)

	Preface
	Contents
	List of Contributors
	Part I Finding One's Way in a World of Algorithms
	Chapter1 Algorithms, An Historical Perspective
	1.1 Introduction
	1.2 Teaching Algorithms in Ancient Babylonia and Egypt
	1.3 Euclid's Algorithm
	1.4 Al-Khwarizmi and the Origin of the Word Algorithm
	1.5 Leonardo Fibonacci and Commercial Computing
	1.6 Recreational Algorithms: Between Magic and Games
	1.7 Algorithms, Reasoning and Computers
	1.8 Conclusion
	1.9 Bibliographic Notes

	Chapter2 How to Design an Algorithm
	2.1 Introduction
	2.2 Graphs
	2.2.1 The Pervasiveness of Graphs
	2.2.2 The Origin of Graph Theory
	2.2.3 The Topological Ordering Problem

	2.3 Algorithmic Techniques
	2.3.1 The Backtrack Technique
	2.3.2 The Greedy Technique

	2.4 How to Measure the Goodness of an Algorithm
	2.5 The Design
	2.6 Bibliographic Notes

	Chapter3 The One Million Dollars Problem
	3.1 Paris, August 8, 1900
	3.2 ``Calculemus!''
	3.3 Finding Is Hard: Checking Is Easy
	3.4 The Class NP
	3.5 Universality
	3.6 The Class P
	3.7 A Surprising Letter
	3.8 The Driving Force of Scientific Discovery
	3.9 Bibliographic Notes

	Part II The Difficult Simplicity of Daily Life
	Chapter4 The Quest for the Shortest Route
	4.1 Introduction
	4.2 The Mathematisch Centrum
	4.3 Shortest Paths in Graphs
	4.4 Nature and Its Algorithms
	4.5 A Simple Idea
	4.6 Time Is a Tyrant
	4.7 How to Set Your Priorities
	4.7.1 The Heap Data Structure

	4.8 The Humble Programmer
	4.9 Still an Open Challenge
	4.9.1 The ALT Algorithm by Goldberg and Harrelson

	4.10 Bibliographic Notes

	Chapter5 Web Search
	5.1 The Prologue
	5.2 Internet and Web Graphs
	5.3 Browsers and a Difficult Problem
	5.4 Search Engines
	5.4.1 Crawling
	5.4.2 The Web Graph in More Detail
	5.4.3 Indexing and Searching
	5.4.4 Evaluating the Relevance of a Page
	5.4.5 Two Ranking Algorithms: PageRank and HITS
	5.4.6 On Other Search Engine Functionalities

	5.5 Towards Semantic Searches
	5.6 Bibliographic Notes

	Chapter6 Algorithms for Secure Communication
	6.1 Introduction
	6.2 A Brief History of Cryptography
	6.2.1 Monoalphabetic Substitution Codes
	6.2.2 Polyalphabetic Substitution Codes
	6.2.3 The Enigma Machine

	6.3 Cryptographic Codes and Secret Keys
	6.3.1 How to Encode a Long Message Using an Integer Function
	6.3.2 Cryptanalysis and Robustness of a Cryptographic Protocol

	6.4 Secret Key Cryptography
	6.4.1 Secret Key Cryptography Standards
	6.4.2 Limitations of Secret Key Encryption

	6.5 The Key Distribution Problem
	6.5.1 Modular Arithmetic
	6.5.2 Diffie and Hellman's Algorithm for Establishing a Secret Key

	6.6 Public-Key Cryptography
	6.6.1 The RSA Algorithm
	6.6.1.1 How to Define the Public and the Secret Keys
	6.6.1.2 How to Encode and Decode
	6.6.1.3 Security of the RSA Algorithm

	6.7 Digital Signatures and Other Useful Applications of Public-Key Cryptography
	6.7.1 How Public-Key Cryptography Allows for Digital Signatures
	6.7.1.1 How to Digitally Sign with Public-Key Cryptography

	6.8 Bibliographic Notes

	Chapter7 Algorithmics for the Life Sciences
	7.1 Introduction
	7.2 The Fundamental Machinery of Living Organisms
	7.3 Algorithmic Paradigms: Methodological Contributions to the Development of Biology as an Information Science
	7.3.1 String Algorithmics: Identification of Transcription Factors Binding Sites
	7.3.2 Kolmogorov Algorithmic Complexity: Classification of Biological Sequences and Structures
	7.3.3 Graph Algorithmics I: Microarrays and Gene Expression Analysis
	7.3.4 Graph Algorithmics II: From Single Components Towards System Biology

	7.4 Future Challenges: The Fundamental Laws of Biology as an Information Science
	7.5 Bibliographic Notes

	Chapter8 The Shortest Walk to Watch TV
	8.1 A Different Idea of Television
	8.2 Designing a Broadcasting Network
	8.2.1 The Physical Elements of the Network
	8.2.2 Computer Representation
	8.2.3 Model for the Digital Coverage Assessment
	8.2.4 Network Design

	8.3 The Role of Transmission Delays
	8.4 An Algorithm for Optimizing Transmission Delays
	8.4.1 From Inconsistent TP Sets to Inconsistent Systems of Inequalities
	8.4.2 The Difference Constraints Graph
	8.4.3 Shortest Walks in G and Transmission Delays

	8.5 From Shortest Walk to Television
	8.6 Bibliographic Notes

	Chapter9 Algorithms for Auctions and Games
	9.1 Introduction
	9.2 Games and Solution Concepts
	9.2.1 Prisoner's Dilemma
	9.2.2 Coordination Games
	9.2.3 Randomized Strategies
	9.2.4 Hawks and Doves

	9.3 Computational Aspects of Game Theory
	9.3.1 Zero-Sum Games and Linear Optimization
	9.3.2 Fixed-Points: Nash's Theorem and Sperner's Lemma
	9.3.3 Mixed Nash Equilibria in Non-zero-Sum Games

	9.4 Inefficiencies
	9.4.1 The Tragedy of the Commons
	9.4.2 Routing Games

	9.5 Mechanism Design and Online Auctions
	9.5.1 The Vickrey Auction
	9.5.2 Vickrey–Clarke–Groves Mechanisms
	9.5.3 Computational Aspects of Mechanism Design

	9.6 Price-Setting Mechanisms and Competitive Equilibria
	9.7 Bibliographic Notes

	Chapter10 Randomness and Complexity
	10.1 A Dialogue
	10.2 Bibliographic Notes

	References

