
Quasi-inverse Based Cryptography

Thuc Dinh Nguyen and Van H. Dang

University of Science, Ho Chi Minh City, Vietnam
{ndthuc,dhvan}@fit.hcmus.edu.vn

Abstract. We are interested in monoids and its applications. If every
element x in a monoid has a quasi-inverse y in the sense of von Neumann,
that satisfies x ·y ·x = x and y ·x ·y = y, the monoid is regular. Our pur-
pose is to use regular monoids to build two abstract algebraic public key
cryptosystems: key exchange protocol and public key encryption with
keyword search scheme. In addition to illustrating how the two cryp-
tosystems work, we provide instances of these abstract algebraic models
and analyse them in terms of cryptanalysis security.

Keywords: public key cryptography, key establishment, searchable
encrypted data, quasi-inverse, pseudo-inverse matrix.

1 Introduction

We consider two problems in public key cryptography: establishing a shared
secret between two or more parties and searching on encrypted data using a
public key system.

There are several protocols to establish a shared secret. Diffie-Hellman key
agreement is a fundamental technique providing unauthenticated key agreement
[1]. The security of Diffie-Hellman protocol rests on the intractability of the
Diffie-Hellman problem and the related problem of computing discrete loga-
rithms. RSA cryptosystem [2], the most widely used public key cryptosystem,
can be used for this goal as well. The security of RSA system is based on the
intractability of the integer factorization problem. In this paper, we will propose
a new abstract key exchange protocol based on the quasi-inverse in the sense
of von Neumann [3]. Besides, we will give an instance of this abstract model.
The security of the proposed instance model is based on the matrix factorization
problem, which is believed to be a hard problem.

Public-key Encryption with Keyword Search (PEKS) was introduced for the
first time by D. Boneh et.al [5]. It is a mechanism which enables searching with
encrypted keywords. They showed that PEKS could be used for exchanging
sensitive emails via an untrusted mail server. In [4], B.R. Waters et.al pointed
out that PEKS can also be used to build an encrypted and searchable audit log.
In this paper, we will present an abstract construction of PEKS using the quasi-
inverse concept, and provide an instance of this abstract PEKS scheme using
pseudo-inverse matrices, or generalized inverse matrices [6]. The security of the
proposed PEKS scheme instance is based on the matrix factorization problem,
which will be investigated in Section 3.

B. Murgante et al. (Eds.): ICCSA 2013, Part IV, LNCS 7974, pp. 629–642, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



630 T.D. Nguyen and V.H. Dang

Organization of the Paper. In Section 2 we review the concept of quasi-
inverse and give an exposition of two abstract algebraic public key cryptography
models: (i) key exchange protocol, and (ii) public key encryption with keyword
search. In Section 3 we provide two instances of the abstract algebraic mod-
els based on the concept of pseudo-inverse matrix, that is also briefly summa-
rized. We investigate the cryptanalysis security of these instance models as well.
Finally, the conclusion are drawn in Section 4.

2 Public Key Cryptography

2.1 Quasi-inverse

Thanks to Classification of Finite Simple Groups theorem in [10], we have a
better understanding of permutation groups. In a transformation monoid, the
elements that are permutations form a group. B. Steinberg studied transforma-
tion monoids and properties of the monoids in [3].

Definition 1. Let M be a monoid.

(i) The element a of a monoid M is regular, or quasi-inverse in the sense of
von Neumann, in M if there is an element b of M such that a · b ·a = a and
b · a · b = b. Then b is called the quasi-inverse of a.

(ii) A monoid M is regular if all its elements are regular.

We will use the quasi-inverse property to develop two public key cryptography
models.

2.2 Key Exchange Protocol

Key establishment is any process whereby a shared secret key becomes available
to two or more parties for subsequent cryptographic usage.

Many various protocols have been proposed for the key establishment. In this
subsection, we propose a new key exchange protocol for key establishment using
quasi-inverse elements of a given regular monoid [3].

(1) Alice and Bob agree to use a same regular monoid M.
(2) Alice chooses a secret quasi-inverse element f in M.
(3) Bob chooses a secret quasi-inverse element g in M.
(4) Alice computes X = f ·h, then sends X to Bob, where h is the quasi-inverse

of f : f · h · f = f and h · f · h = h.
(5) Bob computes Z = y · g and kb = g ·X , then sends Z and kb to Alice, where

y is the quasi-inverse of g : g · y · g = g and y · g · y = y.
(6) Alice computes ka = Z · f , then sends ka to Bob.
(7) Alice computes K = kb · f .
(8) Bob computes K = g · ka.
(9) Alice and Bob now share a secret key K. This is because

K = kb · f = g ·X · f = g · f · h · f = g · f = g · y · g · f = g · Z · f = g · ka.



Quasi-inverse Based Cryptography 631

2.3 Public Key Encryption with Keyword Search

In 2004, D. Boneh et al. [5] introduced a scheme of Public key Encryption
with Keyword Search (PEKS) and provided constructions based on a variant
of the Decision Diffie-Hellman assumption. In this subsection, we propose a new
construction based on the quasi-inverse element of a given regular monoid M
[3]. We shall need cryptographic hash functions [7]: H1 : {0, 1}∗ −→ M, and
H2 : M −→ {0, 1}n, and and H3 : {0, 1}∗ × M −→ M. Our PEKS works as
follows:

– KeyGen(): Do the following:

1. Choose a random quasi-inverse element h in M,

2. Compute the quasi-inverse f of h : f · h · f = f and h · f · h = h,

3. Set the public key Kpub = f · h, and the private key Kpriv = f ,

4. Return Kpub,Kpriv.

– PEKS(m,Kpub): Given a message m in {0, 1}∗ and the public key Kpub, do
the following:

1. Hash m into an element z in M by using H1: z = H1(m),

2. Compute the value P = z ·Kpub,

3. Return P .

– Trapdoor(m,Kpriv): Given a message m in {0, 1}∗ and the private key Kpriv,
do the following:

1. Let q = H3(m,Kpriv) ∈ M,

2. Compute a pair of values T1 = H2(H1(m) ·Kpriv · q) and T2 = Kpriv · q,
3. Return T = (T1, T2).

– Test(P, T ): Given a value of PEKS, P , and a trapdoor, T = (T1, T2), returns
true if H2(P · T2) = T1, and false otherwise.

We prove the consistency of the proposed PEKS scheme as follows.

Let P be PEKS of the messagem, and T = (T1, T2) be the trapdoor of message
m′. According to Trapdoor function for the message m′, we have

T1 = H2(H1(m
′) ·Kpriv · q) = H2(H1(m

′) · f · q)

Besides, we apply Test function for the message m to compute

H2(P ·T2) = H2(H1(m)·Kpub ·Kpriv ·q) = H2(H1(m)·f ·h·f ·q) = H2(H1(m)·f ·q)

If m = m′ then H2(P · T2) = T1, hence Test returns ”true”. Otherwise, Test
returns ”false”.

Note that we can define cryptographic hash functions using available hash
functions, such as SHA [8], MD5 [9].



632 T.D. Nguyen and V.H. Dang

3 Instances of Our Proposed Models

3.1 Pseudo-inverse Matrix

For the convenience of the reader we repeat the relevant concept about full rank
factorization of matrices, the proof of which is included in Appendix A, and the
concept of pseudo-inverse and quasi-inverse in the sense of von Neumann.

Proposition 2. Let A denote a matrix in R
m×n.

If rank(A) = r, there exist matrices B in R
m×r and C in R

r×n such that
A = B · C, where rank(B) = rank(C) = r.

We say A = B · C is the full rank factorization of A.

Definition 3. Let A denote a matrix in R
m×n having rank(A) = r and the full

rank factorization A = B · C, where Bm×r is the matrix of basic columns from
A and Cr×n is the matrix of non-zero rows from EA (EA is the unique reduced
echelon form derived from A by means of row operations). The matrix defined
by

A† = CT · (BT · A · CT
)−1 · BT

is called pseudo-inverse of A.

Theorem 4. Given a matrix A in R
m×n such that rank(A) = r, let A = B ·C

be the full rank factorization of A, where Bm×r is the matrix of basic columns
from A and Cr×n is the matrix of non-zero rows from EA (EA is the unique
reduced echelon form derived from A by means of row operations). The matrix
defined by

A† = CT · (BT · A · CT
)−1 · BT

is quasi-inverse in the sense of von Neumann, that satisfies

A · A† · A = A,

A† · A ·A† = A†

Proof. Notice that:

A† = CT · (BT · A · CT
)−1 · BT

= CT · (BT · B · C · CT
)−1 · BT

= CT · (C · CT
)−1 · (BT · B)−1 · BT ,

hence

A ·A† ·A = B · C · CT · (C · CT
)−1 · (BT ·B)−1 · BT ·B · C

= B · C
= A.



Quasi-inverse Based Cryptography 633

and

A† ·A ·A† = (CT · (C · CT
)−1 · (BT ·B)−1 ·BT ) · (B · C)

· (CT · (C · CT
)−1 · (BT ·B)−1 · BT )

= CT · (C · CT
)−1 · (BT · B)−1 ·BT ·B · C · CT · (C · CT

)−1

· (BT · B)−1 · BT

= CT · (C · CT
)−1 · (BT · B)−1 ·BT

= A†

Proposition 5. Given a matrix A in R
m×n.

(i) If rank(A) = n, then A† =
(
AT · A)−1 ·AT ;

(ii) If rank(A) = m, then A† = AT · (A ·AT
)−1

Proof. We will prove case (i). The case (ii) can proved in the same manner.
If rank(Am×n) = n then matrix (AT · A)n×n is non-singular, hence there

exists
(
AT · A)−1

.

Let A† =
(
AT · A)−1 ·AT . We justify A† by the properties of quasi-inverse in

Theorem 4 as follows:

A · A† · A = A · (AT · A)−1 ·AT · A = A,

A† · A ·A† = (AT ·A)−1 ·AT · A · (AT · A)−1 ·AT = A†.

��

3.2 Pseudo-inverse Matrix Over the Field Zp

Let A denote a matrix in Z
m×n
p , where p is a prime. We can now prove the

following result.

Theorem 6. (Uniqueness) If A is a pseudo-invertible matrix, then A† is
unique by arguing that A† is the unique solution of the four equations,

A ·A† ·A = A; (1)

A† ·A ·A† = A†; (2)
(
A ·A†)T = A ·A†; (3)
(
A† · A)T = A† · A. (4)

Proof. Suppose that B and C are two pseudo-inverse matrices of A that satisfy
the above properties, we have

A · B = (A · B)T , and A · C = (A · C)T ,
B ·A = (B · A)T , and C ·A = (C · A)T ,
A · B · A = A, and A · C · A = A,



634 T.D. Nguyen and V.H. Dang

B ·A · B = B, and C ·A · C = C.
We know that

A · B = (A · B)T = BT · AT ,
and

A · C · A = A ⇔ AT · CT ·AT = AT ,
hence

A · B = (A · B)T = BT · AT = BT ·AT · CT ·AT

In addition, we have
A · B = (A · B)T = BT · AT ,
A · C = (A · C)T = CT ·AT .

We deduce that
A · B = (A · B)T = BT · AT = BT ·AT · CT ·AT = A · B ·A · C = A · C

In the same manner, we can deduce
B ·A = C · A

Therefore
B = B ·A · B = B ·A · C = C · A · C = C

This means that if the pseudo-inverse exists, it is unique. ��
Next we want to apply Proposition 5 to generate a pseudo-invertible matrix
A in Z

m×n
p and its pseudo-inverse A†. The problem is the product

(
AT ·A) is

possibly not invertible even if rank (A) = n. It follows that
(
AT · A)−1

does not

exist. Similarly,
(
A ·AT

)−1
may not exist even if rank (A) = m. In such cases,

we cannot find the pseudo-invesre A† as in Proposition 5. We illustrate such
cases by example as below.

Example 7. A =

(
1
2

)
is pseudo-invertible over Z7, but it is not pseudo-invertible

over Z5. Indeed,

– Over Z7, the matrix AT · A = (1 2) ·
(
1
2

)
= (5) is invertible and its inverse

is (5)
−1 ≡ (3) (mod 7). According to Proposition 5, the pseudo-inverse B is

computed by B =
(
AT · A)−1 · AT =

(
(1 2) ·

(
1
2

))−1

· (1 2) = (3 6).

Now we justify B by the properties in Theorem 6 as follows:

A · B · A =

(
1
2

)
· (3 6) ·

(
1
2

)
=

(
1
2

)
= A

B · A · B = (3 6) ·
(
1
2

)
· (3 6) = (3 6) = B

(A ·B)
T
=

((
1
2

)
· (3 6)

)T

=

(
3 6
6 5

)
=

(
1
2

)
· (3 6) = A ·B

(B ·A)T =

(
(3 6) ·

(
1
2

))T

= (1) = (3 6) ·
(
1
2

)
= B ·A

It follows that B is the unique pseudo-inverse A† of A.



Quasi-inverse Based Cryptography 635

– Over Z5, the matrix AT · A = (1 2) ·
(
1
2

)
= (5) ≡ (0) (mod 7) is not

invertible, therefore we cannot find the pseudo-inverse matrix of A.

The above example gives an idea to build an algorithm to generate a pseudo-
invertible one-dimensional matrix and its pseudo-inverse as below.

Algorithm 1. SimplePseudoMatrix(n, p)- Generating a pseudo-inverse one-
column matrix and its pseudo-inverse matrix

Input: n, p {gcd(n, p) = 1 and p is a prime}
Output: A matrix A in Z

n×1
p , and its pseudo-inverse A† in Z

1×n
p

1: for i = 1 → (n− 1) do
2: A[i, 1] = random(p) {random(p) is a function that returns a random value

v ∈ {0, ..., p− 1}}
3: end for
4: Choose q ∈ {0, 1, ..., p− 1} such that (

∑n−1
i=1 A[i, 1]2 + q2) mod p �= 0

5: A[n, 1] = q
6: A† = (AT · A)−1 ·AT

7: return (A,A†)

The correctness of SimplePseudoMatrix algorithm is due to the fourth state-
ment. Indeed, because (

∑n
i=1 A[i, 1]

2) mod p �= 0, A ·AT = [(
∑n

i=1 A[i, 1]
2) mod

p] is an invertible matrix in Z
1×1
p . Then the matrix

B = (AT · A)−1 ·AT = A†.

We see that, by the uniqueness of the pseudo-inverse matrix as in Theorem 6, if
the matrix B1×n is the pseudo-inverse of the matrix An×1, then the transpose
of B, Cn×1 = BT , is the pseudo-inverse of the transpose of A, D1×n = AT . We
illustrate this idea by the following example.

Example 8. In the Example 7, the matrix A =

(
1
2

)
is pseudo-invertible over Z7,

and its pseudo-inverse matrix is B = (3 6). Then the transpose of B, C =

(
3
6

)

will be the pseudo-inverse matrix of the transpose of A, D = (1 2) over Z7. We
verify this by the properties in Theorem 6

C ·D · C =

(
3
6

)
· (1 2) ·

(
3
6

)
=

(
3 6
6 5

)
·
(
3
6

)
=

(
3
6

)
= C,

D · C ·D = (1 2) ·
(
3
6

)
· (1 2) = (1) ·

(
1
2

)
= (1 2) = D,

(C ·D)
T
=

((
3
6

)
· (1 2)

)T

=

(
3 6
6 5

)T

=

(
3 6
6 5

)
= C ·D,

(D · C)
T
=

(
(1 2) ·

(
3
6

))T

= (1)
T
= (1) = D · C



636 T.D. Nguyen and V.H. Dang

In order to generate a pseudo-invertible multi-dimensional matrix instead of one-
dimensional, and its pseudo-inverse matrix, we can use the following algorithm.

Algorithm 2. PseudoInverseMatrix(m,n, p)- Generating a pseudo-invertible
matrix and its pseudo-inverse matrix

Input: m,n, p : m < n
Output: A pseudo-invertible matrix A in Z

m×n
p , and its pseudo-inverse matrix A† in

Z
n×m
p .

1: Generate a random invertible matrix A′ ∈ Z
m×m
p .

2: Generate a random matrix A” ∈ Z
m×(n−m)
p .

3: Let A = [A′|A”] (combining A′ and A′′ column by column)
4: if det(A.AT ) mod p = 0 then
5: Goto (2).
6: end if
7: Compute A† = AT · (A · AT

)−1
.

8: return (A,A†)

The correctness of PseudoInverseMatrix algorithm is due to the second, third
and fourth statements. Indeed, because det(A · AT ) mod p �= 0, there exists

(A ·AT )−1, hence the pseudo-inverse A† is determined by A† = AT · (A · AT
)−1

.

In Algorithm 2, it is necessary to generate a random invertible matrix over
Zp. This can be done efficiently by applying Theorem 9.

Theorem 9.

(i) Upper-triangular matrix U in Z
n×n
p is invertible iff the product of the

diagonal entries of U is not equal to zero,
∏n

i=1 uii mod p �= 0.
(ii) Lower-triangular matrix L in Z

n×n
p is invertible iff the product of the

diagonal entries of L is not equal to zero,
∏n

i=1 lii mod p �= 0.
(iii) Given a matrix A as a product of two matrices U and V in Z

n×n
p , A = U ·V .

The matrix A is invertible iff both U and V are invertible.

Proof.

(i) Since U is upper-triangular, its determinant is computed by the product
of the diagonal entries. We have det(U) =

∏n
i=1 uii mod p �= 0 ⇔ U is

invertible.
(ii) In the same manner, we have that det(L) =

∏n
i=1 lii mod p �= 0 ⇔ L is

invertible.
(iii) We have that det(A) = det(U · V ) = det(U)det(V ) �= 0 [mod p] iff U and

V are invertible.



Quasi-inverse Based Cryptography 637

3.3 Key Exchange Protocol

Now we establish a key exchange protocol based on quasi-inverse. In order to
exchange a common key, Alice and Bob do the following steps.

(1) Alice and Bob agree on a same prime p.
(2) Alice generates a secret pseudo-invertible matrix F in Z

m×n
p and its pseudo-

inverse H in Z
n×m
p , H = F †.

(3) Bob generates a secret pseudo-invertible matrix G in Z
n×m and its pseudo-

inverse Y in Z
m×n
p , Y = G†.

(4) Alice computes X as the product of F and H , X = F ·H , and sends X to
Bob.

(5) Bob computes Z as the product of Y and G, Z = Y · G, and a middle key
Kb = G ·X , then sends Z and Kb to Alice.

(6) Alice computes a middle key Ka = Z · F and sends Ka to Bob.
(7) Alice computes K = Kb · F .
(8) Bob computes K = G ·Ka.
(9) Alice and Bob now share a secret key K.

Indeed,

K = Kb ·F = G ·X ·F = G ·F ·H ·F = G ·F = G ·Y ·G ·F = G ·Z ·F = G ·Ka.

Example 10.

(1) Alice and Bob agree on the prime p = 7.

(2) Alice generates a secret pseudo-invertible matrix F =

(
1
2

)
and its pseudo-

inverse H = F † = (3 6).
(3) Bob generates a secret pseudo-invertible matrix G = (3 4) and its pseudo-

inverse Y = G† =
(
6
1

)
.

(4) Alice computes X = F ·H =

(
1
2

)
· (3 6) =

(
3 6
6 5

)

(5) Bob computes Z = Y · G =

(
6
1

)
· (3 4) =

(
4 3
3 4

)
and a middle key Kb =

G ·X = (3 4) ·
(
1
2

)
· (3 6) = (5 3), then sends them to Alice.

(6) Alice computes a middle key Ka = Z · F =

(
3
4

)
and sends to Bob.

(7) Alice computes K = Kb · F = (4).
(8) Bob computes K = G ·Ka = (4).
(9) Alice and Bob now share a secret key K = (4).



638 T.D. Nguyen and V.H. Dang

3.4 Public Key Encryption with Keyword Search Scheme

In this scheme, the prime p is published.

– KeyGen(): Do the following:
1. Generate a random pseudo-invertible matrix G in Z

m×n
p and its pseudo-

inverse F , F = G†,
2. Compute the public key Kpub = G · F , and the private key Kpriv = G,
3. Returns (Kpub,Kpriv).

– PEKS(w,Kpub): Given a keyword w in {0, 1}∗ and the public key Kpub, do
the following:
1. Hash the keyword w into a matrix M in Z1×m

p by using some hash
function H1, M = H1(w) (H1 is a hash function that receives a string,
and outputs a matrix in Z1×m

p ),
2. Compute P = M ·Kpub using the public key Kpub,
3. Return P .

– Trapdoor(w,Kpriv): Given a keyword w in {0, 1}∗ and the private key Kpriv,
do the following:
1. Let Q = H3(w,Kpriv) ∈ Z

n×n
p by using some function H3 that is a

hash function that receives a string, a matrix, and outputs an invertible
matrix in Zn×n

p ,
2. Computes a pair of values T1 = H2(H1(w) ·Kpriv ·Q) and T2 = Kpriv ·Q

using the private key Kpriv (H2 is a hash function that receives a vector
in Z

1×m, and outputs a binary value),
3. Return T = (T1, T2).

– Test(P, T ): Given a value of PEKS, P , and a trapdoor, T = (T1, T2), returns
true if H2(P · T2) = T1, and false otherwise.

Example 11.

– KeyGen():

1. Generates a random pseudo-inverse matrix G =

(
1
2

)
in Z

2×1
7 , and its

pseudo-inverse F = G† =
(
3 6

)
,

2. Compute the public key Kpub = G.F =

(
3 6
6 5

)
and the private key

Kpriv = G =

(
1
2

)
.

– PEKS(w,Kpub): Suppose that M = H1(w) =
(
2 5

)
. Then compute P =

M ·Kpub =
(
1 2

)
.

– Trapdoor(w,Kpriv): Suppose that Q = (3). Then with M = H1(w) =
(
2 5

)
,

compute T = (T1, T2) as follows:

T1 = H2

(
(
2 5

) ·
(
1
2

)
· (3)

)
= H2(1),

T2 =

(
1
2

)
· (3) =

(
3
6

)
.



Quasi-inverse Based Cryptography 639

– Test(P, T ):
- If M = (2 5), then P = (1 2). We have

H2 (P · T2) = H2

((
1 2

) ·
(
3
6

))
= H2(1) = T1

Therefore Test returns ”true”.
- If M ′ = (1 5) �= (2 5) = M , then P ′ = (5 3). We have

H2(P
′ · T2) = H2

(
(5 3) ·

(
3
6

))
= H2(5) �= H2(1) = T1

Therefore Test returns ”false”.

3.5 Cryptanalysis

In the Key-Exchange Protocol. In order to grasp the common keyK = G·F ,
a hacker has to solve one of the following two types of problems:

(i) Find F from public key X = F ·H (or G from Z = Y ·G),
(ii) Find G from middle key Kb = G ·X (or F from Ka = Z · F ).

This means that if he can find F or G, he hacks successfully the key-exchange
protocol.

Without loss of generality, if one of two following problems, denoted as HP1
and HP2 respectively, is solved, the key-exchange protocol is broken.

HP1 (recovering the private key from the public key):
Given a matrix A in Z

m×m
p as the product of a pseudo-invertible matrix

X in Z
m×n
p and its pseudo-inverse Y in Z

n×m
p , A = X · Y , find X or Y .

HP2 (recovering the private key from the middle-key):
Given a non-invertible matrix B in Z

n×n
p and a matrix A in Z

n×m
p as the

product of B and a pseudo-invertible matrix X in Z
n×m
p , A = B ·X , find

X .

In the Public Key Encryption with Keyword Search Scheme. We need
only consider two cases.

Case 1. If the private key Kpriv = F can be recovered from the public key
Apub = H · F , where F = H†, this scheme is broken. This is equivalent
to solving the HP1 above.



640 T.D. Nguyen and V.H. Dang

Case 2. If the the private key Kpriv = F can be recovered from the trapdoor
information C = Q ·Kpriv = Q ·F , where Q is a secret invertible matrix.
Obviously, this problem is as difficult as HP1.

Discussion. It is not difficult to see that HP1 is harder than HP2, because to
solve HP1, we are only given one product-matrix and we must find its factor-
matrices. Meanwhile, in the HP2, we are given two matrices and one unknown
matrix. Consequently, we can assume that the security of the proposed public
key algorithms relies on the difficulty of HP2 instead of both HP1 and HP2.

In the HP2, we are given A = B · X in Z
n×m
p , and B in Z

n×n
p , which is not

invertible. We need to find X in Z
n×m
p . Suppose that rank(Bn×n) = r ≤ n, we

have r × m equations with n × m unknowns. Therefore there are (n − r) × m
free unknowns. In order to find out the exact solution X , a hacker must try
to test pm(n−r) times if X is pseudo-invertible and satisfies A = B · X . Hence
we say that the problem HP2 can be solved with the computational complexity
of O(pm.(n−r)). It is infeasible if the prime p or/and m(n − r) are large. For
example, if p is a prime of 128 bit length, the hacker has to try 2128m(n−r) tests,
and it is infeasible even if m(n− r) = 1.

4 Conclusion

We studied the regular monoids and quasi-inverse concept in the sense of von
Neumann, and used them to create two new public key cryptosystems. Such
a quasi-inverse element y has good properties, that are (y · x)n = y · x and
(x · y)m = x · y, for all positive integers m,n.

Besides, we provide the instance of the two models through using pseudo-
inverse matrices. The security of the instances relies on the hardness of the
matrix factorization problem.

In the future lines of research, we aim to investigate in greater detail about the
cryptanalysis security of the proposed models, and/or find out other
under-monoid.

A Proof for the Full Factorization

Let Bm×r = [A∗b1A∗b2 · · ·A∗br ] contain the basic columns of A, and let Cr×r

contain the non-zero rows of EA, where EA denotes the unique reduced row
echelon form derived from A by means of row operations. If A∗k is basic, means
A∗k = A∗bj , then C∗k = ej , and

(B · C)∗k = B · C∗k = B · ej = B∗j = A∗bj = A∗k.



Quasi-inverse Based Cryptography 641

If A∗k is non-basic, then C∗k is non-basic and has the form

C∗k =

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

µ1

µ2

...
µj

...
0

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

= µ1

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

1
0
...
0
...
0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

+ µ2

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

0
1
...
0
...
0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

+ · · ·+ µj

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

0
0
...
1
...
0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

= µ1e1 + µ2e2 + . . .+ µjej,

where ei’s are the basic columns to the left of C∗k.
Because A B, the relationships that exist among the columns of A are exactly

the same as the relationships that exist among the columns of EA.
In particular,

A∗k = µ1A∗b1 + µ2A∗b2 + . . .+ µjA∗bj ,

where A∗bi ’s are the basic columns to the left of A∗k. Therefore,

(B · C)∗k = B · C∗k
= B · (µ1e1 + µ2e2 + . . .+ µjej)

= µ1B∗1 + µ2B∗2 + . . .+ µjB∗j
= µ1A∗b1 + µ2A∗b2 + . . .+ µjA∗bj
= A∗k.

��

References

1. Diffie, W.: The First Ten of Public Key Cryptography. Proceedings of the
IEEE 76(5), 560–577 (1988)

2. Rivest, R.L., Shamir, A., Adleman, L.M.: Cryptographic Communications System
and Method. U.S. Patent #4,405,829 (1983)

3. Steinberg, B.: A Theory of Transformation Monoids: Combinatorics and Represen-
tation Theory. The Electronic Journal of Combinatorics 17 #R164 (2010)



642 T.D. Nguyen and V.H. Dang

4. Waters, B., Balfanz, D., Durfee, G., Smetters, D.: Building an Encrypted and
Searchable Audit Log. In: The 11th Annual Network and Distributed System Se-
curity Symposium, NDSS 2004, San Diego, California (2004)

5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

6. Campell, S.L., Meyer, C.D.: Generalized Inverse of Linear Transformations. Dover
Publications, New York (1979)

7. Menezes, A.J., Oorschot, P.C.V., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy, p. 33. CRC Press (1997)

8. ANSI X9.30 (PART 2), American National Standard for Financial Services - Public
key cryptography using irreversible algorithms for the financial services industry -
Part 2: The secure hash algorithm (SHA), ASC X9 Secretariat - American Bankers
Association (1993)

9. Rivest, R.: The MD5 Message-Digest Algorithm. RFC 1321 (1992)
10. Gorenstein, D.: The Classification of Finite Simple Groups Vol. 1. Groups of Non-

characteristic 2 Type. The University Series in Mathematics. Plenum Press (1983)
ISBN 978-0-306-41305-6, MR 746470


	Quasi-inverse Based Cryptography
	1 Introduction
	2 Public Key Cryptography
	2.1 Quasi-inverse
	2.2 Key Exchange Protocol
	2.3 Public Key Encryption with Keyword Search

	3 Instances of Our Proposed Models
	3.1 Pseudo-inverse Matrix
	3.2 Pseudo-inverse Matrix Over the Field
	3.3 Key Exchange Protocol
	3.4 Public Key Encryption with Keyword Search Scheme
	3.5 Cryptanalysis

	4 Conclusion
	References




