
Formalization and Model Checking

of SysML State Machine Diagrams by CSP#

Takahiro Ando1, Hirokazu Yatsu1, Weiqiang Kong1,
Kenji Hisazumi2, and Akira Fukuda1

1 Graduate School of Information Science and Electrical Engineering,
Kyushu University, Japan

{ando.takahiro,hirokazu.yatsu,fukuda}@f.ait.kyusyu-u.ac.jp,
weiqiang@qito.kyushu-u.ac.jp

2 System LSI Research Center, Kyushu University, Japan
nel@slrc.kyushu-u.ac.jp

Abstract. SysML state machine diagrams are used to describe the be-
havior of blocks in the system under consideration. The work in [1] pro-
posed a formalization of SysML state machine diagrams in which the
diagrams were translated into CSP# processes that could be verified by
the state-of-the-art model checker PAT. In this paper, we make several
modifications and add new rules to the translation described in that
work. First, we modify three translation rules, which we think are inap-
propriately defined according to the SysML definition of state machine
diagrams. Next, we add new translation rules for two components of the
diagrams – junction and choice pseudostates – which have not been dealt
with previously. As the contribution of this work, we can achieve more
reasonable verification results for more general SysML state machine
diagrams.

Keywords: SysML state machine diagrams, formal semantics, model
checking, CSP#.

1 Introduction

The OMG Systems Modeling Language (SysML) [2] is a systems modeling lan-
guage that supports specification description, design, analysis, and verification
of systems.

SysML is a language extension of Unified Modeling Language (UML) [3],
the de facto standard software modeling language. SysML has nine types of
diagrams and the state machine diagrams are one of them. In such diagrams,
the life-cycle behavior of a block in a system is expressed as a state transition
system. SysML diagrams, including state machine diagrams, do not have a strict
formal semantics. This interferes with checking for correctness of the description
and makes it difficult to verify with formal methods especially.

Model checking [4] is a well-known formal verification technique for formally
analyzing state transition systems. In model checking, a target system is mod-
eled with a formal description language and the model is then exhaustively

B. Murgante et al. (Eds.): ICCSA 2013, Part III, LNCS 7973, pp. 114–127, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Formalization and Model Checking of SysML State Machine Diagrams 115

explored to check whether desired properties of the system are satisfied. SPIN
[5], NuSMV [6], and UPPAAL [7], etc. are state-of-the-art model checkers. In
using these tools, a state transition system is modeled in their respective formal
description languages, and properties to be checked are written in formal speci-
fication languages such as Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL), etc.

PAT [8] is a model checking tool whose performance is comparable to that of
SPIN, and it uses CSP# as its model description language. CSP# is a language
extension of Hoare’s Communicating Sequential Process (CSP) [9] with descrip-
tion supports for conditional choice, shared variable and, sequential programs,
etc. CSP is a kind of process algebra and it has been used in the formalization
of concurrent systems. CSP and CSP# are suitable to describe processes with
interruptions and parallel processes.

In this paper, we investigate formalization and model checking for SysML
state machine diagrams. In our formalization, the diagrams are translated into
CSP# descriptions, and then, we apply PAT model checker to check the CSP#
models against desired properties. Similar translation rules from the UML state
machine diagrams into CSP# have been proposed previously in [1]. In this paper,
we make modification to some translation rules described in [1], which we think
are inappropriate according to the definition of SysML state machine diagrams.
In addition, we give new translation rules for two components of the diagrams
that have not been dealt with in [1]. Moreover, we demonstrate and evaluate our
translation rules with a case study for a simple user certification system.

Organization. In Section 2, we describe related work. Section 3 presents our
translation rules for SysML state machine diagram. In Section 4, we demonstrate
and evaluation our translation rules in a case study. Section 5 concludes this
paper and mentions future work.

2 Related Work

Quite a lot research has been done for applying formal verification technique
for formally analyzing state machine diagrams. For example, the work in [10]
gives a comprehensive survey on researches that apply model checking to state
machines, in which various model checkers including SPIN [5], SMV [11], and
FDR [12], etc. are used.

In [13], state machines are translated into models written in the Promela lan-
guage and then verified using SPIN. This work deals only with basic components
of state machine diagrams. In [14], a tool called vUML is proposed for verifi-
cation of UML models using SPIN, but detailed translation rules into Promela,
the input language of SPIN, are not described.

Translation for the state machines into SMV input format has been proposed
in [15]. In the work, each state (and each event) is assigned a single variable for
symbolic model checking. Therefore, even for small diagrams, the state explosion
problem in symbolic model checking can become more obvious due to the increase
of variable numbers. In [16], the semantics and a symbolic encoding of UML

116 T. Ando et al.

state machine diagrams, which has more complex notations, are shown and the
methods of verification is based on NuSMV. The symbolic encoding of state
machines has also been given in [17]. The work proposes to apply SAT-based
bounded model checking for analyzing state machines.

Formalizations in which state machines are translated into process algebra
have been proposed in [18], [19], [20], and [1]. These works are closely related to
our work. In [18], state machines are formalized with mCRL2 [21], a language
based on the Algebra of Communicating Process (ACP) [22], and the model is
verified using the mCRL2 toolset. In [19], [20], and [1], CSP is selected as the
process algebra to formalize state machines. The formalization in [20] can handle
entry and exit behaviors, but cannot handle some pseudostates which represent
complex transitions. And, formalized models in [20] are verified by FDR2 [12]
model checker.

[1] is a direct predecessor of this paper. The work gives a formalization in
which state machines are translated into CSP#, a variant language of CSP. In
this paper, we make modifications to some translation rules proposed in [1], and
add several rules for components of state machine diagrams that are not dealt
with in that work.

3 Formalization of State Machine Diagram

In this section, we briefly explain the elements of SysML state machine diagrams
and the formal language CSP#. Then, we give the translation rules from state
machine diagrams into CSP.

3.1 State Machine Diagram of SysML

When modeling a system in SysML, a state machine diagram is used for illus-
trating behavior of a block that is a component of the system. A state machine
diagram consists of states and transitions between the states. The complete syn-
tax and notations of state machine diagrams are defined in [2].

A state represents a situation in the life-cycle of the block. In general, the
situation is expressed by invariant conditions, etc. Each state is allowed to have
entry/do/exit behavior. The entry behavior is performed when a block goes into
the state, and the exit behavior is performed when the block leaves the state. The
do behavior is performed after the entry behavior, and it continues performing
until it terminates or the block leaves the state.

There are several types of states such as atomic states, composite states and
submachine states. An atomic state has no sub-state. A composition state has
one or more orthogonal regions and each region has sub-states. A submachine
state expresses a state machine that is to be reused in other diagram. The en-
try/exit points of a submachine state correspond to initial/final states in the
diagram which the submachine state refers to.

A transition between states is allowed to have three attributes – trigger, guard,
and effect. An event acts as a trigger that activates the transition. Only if the

Formalization and Model Checking of SysML State Machine Diagrams 117

trigger event occurs and the guard condition is satisfied, the transition can be
fired. When the transition is fired, its effects are performed and then the machine
changes from the current state changes to its target state.

In addition, state machine diagrams have several types of pseudostates. Initial
pseudostates, final states, junction pseudostates, and choice pseudostates, etc.
are representative pseudostates. Initial pseudostates and final states represent
the start and end of state machines, respectively. Junction pseudostates and
choice pseudostates are notations that are used to describe common parts of
multiple transitions.

3.2 CSP#

CSP [9] is a process algebra and is well-known as a formal language for describ-
ing interaction patterns of parallel systems. CSP# is the system description
language of the model checking tool PAT, which adds conditional choice and
shared variable, etc. to CSP.

In the following, we enumerate the elements of a subset CSP# that are used
in this paper by giving their intuitive meanings.

Definition 1. A process P is defined as follows.

P ::=Stop | Skip | e{prog} → P | P1;P2 | P1�P2

| P1 ‖ P2 | P1|||P2 | [b]P | P1�P2

| case{b1 : P1; b2 : P2; · · · ; default : P}

where, P1 and P2 are processes, e is an event name that may have optional
sequential program prog, and b, b1 and b2 are boolean expressions.

Stop represents a dead lock process and Skip represents a process that terminates
successfully. e → P represents a process that performs as process P after event
e occurs. When e has a sequential program, it performs the program atomically,
and afterwards behaves as the process P . P1;P2 behaves firstly as process P1
first and then as process P2. P1�P2 represents a non-deterministic choice, where
the first occurred event determines whether it behaves as P1 or P2. P1 ‖ P2

represents a parallel composition process that synchronizes the common events of
P1 and P2. P1|||P2 represents an interleaved parallel composition. [b]P represents
a process with a guard condition and, only if the boolean expression b is satisfied,
it behaves as P . P1�P2 represents a process having an interrupt process. It
behaves as P1 until the first event of P2 occurs and, after the event occurs, it
behaves as P2. In case process, condition expressions are checked in turn, and it
behaves as the process that corresponds to the first found satisfied condition.

3.3 Translation Rules

Next, we give translation rules from state machine diagrams into CSP#. In
CSP#, states and transitions as well as the whole state machine diagrams are

118 T. Ando et al.

Table 1. Transition Rules from State Machine Diagrams to CSP#

Elements CSP# Comments

State Machine sm tr(sm) = tr(i), where i is the top level
initial pseudo state of sm.

Same for regions in
composite state.

Initial pseudostate i tr(i) = tr(s), where s is the target state
of the outgoing transition from i.

Same for initial pseu-
dostates in any region.

Final state f tr(f) = Skip; This means a state
machine terminates
successfully.

Atomic State s tr(s) = tr(entry); ((tr(do); Stop) �
(tr(t1) � tr(t2) � · · · � tr(tn))), where
t1, t2, . . . , tn are outgoing transitions
from s.

The process of coming
after tr(do) is not Skip
but Stop.

Entry behavior entry tr(entry) = e1 → e2 → · · · → en →
Skip, where e1, e2, . . ., en are actions in
a sequence of entry behavior.

Same for do/exit be-
havior of a state and
effect of a transition.

Transition t tr(t) = [guard](event → tr(exit);
tr(effect); tr(st)), where exit is a exit
behavior of source state and st is a tar-
get state.

Composite state cs tr(cs) = tr(entry); (((tr(do); Stop) |||
tr(r1) ||| tr(r2) ||| · · · ||| tr(rm)) �
(tr(t1) � tr(t2) � · · · � tr(tn))), where
r1, r2, . . . rm are regions in cs and t1,
t2, . . . , tn are outgoing transitions.

all described as processes of CSP#. Events and statements in state machine
diagrams are translated into events of CSP#.

Table 1 summarizes translation rules for the elements of state machine di-
agrams. In the table, for brevity, translation rules are expressed by using an
informal function tr, and the translation result for an element e is denoted as
tr(e).

Our rules in Table 1 are based on the rules proposed previously in work [1],
however there are several differences between them. In the original translation
rules of [1], the entry/exit behavior of a state and the effect of a transition
are translated into an atomic process in the form of a sequence of events or
statements. However, in our rules, atomic notations are not used for sequences
of events or statements, because we believe there is a possibility that certain
unsafe behavior of the target system could be hidden due to over abstraction
when these sequences are treated as atomic processes in CSP#. That is, when the
sequences are treated as atomic processes, the number of behavior patterns are
reduced due to decrease of possible interleaving composition of the processes. As
a result, certain event occurrences order that may lead to a problem/bug might
not be checked when verifying the processes.

Formalization and Model Checking of SysML State Machine Diagrams 119

S1

S2 S4

S3
e1 [g1]/a1

e2 [g2]/a2

Fig. 1. An Example with Junction Pseudostate

In addition, our translation rules for states have two differences compare to
the original rules. The first difference is that the tr(entry) process that repre-
sents entry behavior is excluded from the region in which an interrupt from an
outgoing transition process is caught. This is to reflect that entry behavior must
be completed before other behavior and transitions become executable.

Another difference is to concatenate tr(do) process and Stop process, which
represent do behavior and dead lock, respectively, by using operator“;”. In the
original translation, a translated process is allowed to terminate successfully even
if no outgoing transitions are fired after a do behavior of some state completes.
This is judged from the following two facts.

– When tr(do) process completes, the process behaves as a Skip process.
– In CSP#’s semantics, it is allowed that the process “Skip�P” terminates

successfully without executing process P .

Such a translation is not appropriate because it allows for state machines to
terminate successfully in a state that is not a final state. From the CSP# equa-
tion, Stop�P = P , the behavior that ignores the outgoing transitions can be
prohibited by revising “tr(do)” as “tr(do); Stop”.

Next, we give new translation rules for two pseudostates, i.e., junction pseu-
dostates and choice pseudostates, which are used as representations for organiz-
ing multiple transitions.

Junction Pseudostates. A junction pseudostate is used to describe common
parts of multiple transitions. Therefore, a junction pseudostate can be trans-
lated in CSP, by translating the original transitions that are unwound by using
information of incoming/outgoing transitions of the pseudostate.

The unwound transition set of a junction pseudostate Transunwound is given
as follows, where Transin is the set of incoming transitions of the pseudostate
and Transout is the set of outgoing transitions.

Transunwound = {t | ∃t′ ∈ Transin. ∃t′′ ∈ Transout.
(
source(t) = source(t′) ∧ event(t) = event(t′)
∧ guard(t) = guard(t′′) ∧ effect(t) = effect(t′′)

∧ target(t) = target(t′′)
)}

120 T. Ando et al.

Fig. 2. An Example with Choice Pseudostate

Where the five functions source, event, guard, effect and target return corre-
sponding source state, event, guard, effects and target state, respectively, of the
transition given as an input of the functions. The translation for a junction
pseudostate and its incoming and outgoing transitions is the result of applying
the translation rule for transitions to each element of Transunwound. For exam-
ple, the junction pseudostate and its incoming/outgoing transitions on Fig.1 are
translated into the following four processes.

P13 = [g1]
(
e1 → tr(exit(S1)); tr(a1); tr(S3)

)

P14 = [g2]
(
e1 → tr(exit(S1)); tr(a2); tr(S4)

)

P23 = [g1]
(
e2 → tr(exit(S2)); tr(a1); tr(S3)

)

P24 = [g2]
(
e2 → tr(exit(S2)); tr(a2); tr(S4)

)

where, exit is a function that takes a state and returns exit behavior. The pro-
cesses, P13, P14, are referred in tr(S1) as translation results of outgoing transi-
tions of the state S1 as follows.

tr(S1) = tr(entry(S1));
(
(tr(do(S1)); Stop) � (P13 � P14)

)

P23, P24 are referred in tr(S2) similarly.

Choice Pseudostates. A choice pseudostate has multiple incoming and outgo-
ing transitions as a junction pseudostate does. However, the timing to evaluate
the guard conditions of outgoing transitions is different from a junction pseu-
dostate. For a choice pseudostate, the guards of outgoing transitions are not
evaluated until reaching the choice pseudostate. Thus, the result of effects of
the incoming transition influences the evaluations. Based on the above analysis,
divided into an incoming part and an outgoing part, a choice pseudostate and
its related transitions are translated into CSP#.

An incoming transition of a choice pseudostate is translated into CSP# in
almost the same way as a transition between states. However, instead of the
process of the target state, the process Pchoice, the translation result of the
outgoing part, is used.

Each outgoing transition is also translated almost like a translation between
states. However, the process for the exit behavior of the source state is omitted.
This is because the choice pseudostate is considered as the source state of these

Formalization and Model Checking of SysML State Machine Diagrams 121

outgoing transitions. The process Pchoice, which represents the set of outgoing
transitions of the choice pseudostate, is defined as follows.

Pchoice = tr(t1) � tr(t2) � · · ·� tr(tn)

where, t1, t2, . . . , tn are outgoing transitions of the choice pseudostate. The
choice pseudostate and its related transitions on Fig. 2 are translated as follows.

P1 = e1 → tr(exit(S1)); tr(a1); Pchoice

P2 = e2 → tr(exit(S2)); tr(a2); Pchoice

P3 = [g3]
(
tr(a3); tr(S3)

)

P4 = [g4]
(
tr(a4); tr(S4)

)

Pchoice = P3 � P4

where, P1, P2 are processes that represent transitions from states S1 and S2,
respectively, and they are also referred in tr(S1) and tr(S2), respectively. In
addition, P3, P4 are processes that represent transitions toward states S3 and
S4, respectively.

4 A Case Study

In this section, we demonstrate our translation rules by translating the state
machine diagram of a simple user certification system illustrated in Fig. 3 into
CSP#. In the following, a process translated from a state, e.g., labeled with
“name”, is written as “name()”.

First, let System() be the process that represents the whole behavior of the
state machine in the diagram. The behavior of the state machine is the behavior
that follows the top level initial pseudostate, so the process is written as follows.

System() = TopLevelInit();

where, TopLevelInit() represents the process translated from the top level initial
pseudostate. According to Table 1, the initial pseudostate and the final state at
the top level are translated as follows.

TopLevelInit() = idle();

TopLevelFinal() = Skip;

Next, we show translations for the atomic states “idle”, “initializing” and “di-
agnosing”. The idle and diagnosing state do not have entry/do/exit behavior.
So, the processes that represent these behaviors of the two states are Skip. In
addition, since “Skip;P = P” is defined in CSP#, the translation results of them
can be simply expressed as follows.

idle() = (StartUp → initializing()) � (TurnOff → TopLevelFinal());
diagnosing() = (SystemOK → operating()) � (SystemNG → idle());

122 T. Ando et al.

idle

diagnosing

logged_off

LogOut
 / logged_in = logged _in - 1

LogIn

LogIn
[logged_in<MAX]
/ logged_in = logged_in +1

 [logged_in != 0]

 [logged_in == 0]

operating

entry/logged_in = 0
exit/logged_in = 0

StartUp

TimeOut

[passed == true]

[passed == false]

SystemOK

SystemNG

TurnOff

ShutDown

logged_on

initializing
entry/passed=false
do/passed=true

Fig. 3. State Machine Diagram for an Example User-Certification System

On the other hand, the initializing state has entry/do behavior that change the
value of the variable passed. In our translation rules, these behavior is considered
as action sequences and is translated to event sequences of CSP#. An event in
CSP# is allowed to be attached with a sequential program. For this initializing
state, its entry behavior is translated into “{passed = false} → Skip”, and its exit
behavior is translated into “{passed = true} → Skip”. In addition, the variable
passed used in these behaviors should also be declared as parts of the translation.
Finally, the initializing state (i.e., process) is translated as follows.

// Declaration of Shared Variable
var passed = false;

initializing() = {passed = false} → (({passed = true} → Stop)
� ((TimeOut → idle()) � ([passed == true] operating())

� ([passed == false] diagnosing())));

However, when applying previous translation rules proposed in [1], this initial-
izing state is translated as follows.

// When applying previous translation rules
initializing() = ({passed = false} → {passed = true} → Skip)

� ((TimeOut → idle()) � ([passed == true] operating())
� ([passed == false] diagnosing()));

In this translation by previous rules in [1], the entry behavior process of ini-
tializing state, {passed = true}, is included in the region where an interrupt

Formalization and Model Checking of SysML State Machine Diagrams 123

from an outgoing transition process is caught, and Stop in the translation by
our rules is replaced with Skip. Adopting this previous translation, the process
System() which represents the whole system’s behavior can receive the following
event sequences and then terminate successfully.

StartUp → TimeOut → TurnOff → Skip

StartUp → {passed = false} → {passed = true} → Skip

The first sequence means that the user certification system can receive the Time-
Out event before the entry behavior of the initializing state is executed. On the
other hand, the second sequence means that the system can be terminated suc-
cessfully in the initializing state without firing no outgoing transition. However,
we think that these behaviours are inappropriate as the system behaviors accord-
ing to the definition of the SysML state machine diagrams. That is, we believe
that the translated process of the system should not receive the event sequences.
Using our translation, there is no possible that they are received.

From now on, we describe the translation of the composite state “operating”,
which has a region with junction and choice pseudostates. The composite state
has an entry behavior, and this behavior must be executed before the internal
state transition. After the entry behavior completes, the state transition started
from the initial pseudostate in the internal region is performed. The composite
state also has an exit behavior, and the behavior is executed when the outgoing
transition to the idle state is fired by event ShutDown. This composite state is
translated as follows, where operatingSubInit() is the process translated from the
internal initial pseudostate.

// Composite State
var logged in = 0;
operating() = {logged in = 0}

→ ((operatingSubInit() ||| Stop)
� (ShutDown → {logged in = 0} → idle()));

The two sub-states “logged off” and “logged on” are associated with the tran-
sitions with junction and choice pseudostates. No translation rule for states and
transitions associated with these pseudostates is proposed in [1]. However, we
can translate them by using our translation rules added in this paper.

The junction pseudostate in the composite state groups two transitions, from
logged off to logged on and from logged on to logged on. These two transitions
have LogIn event as a trigger and the boolean expression “logged in < MAX”
as a guard condition. Both of the original unwound transitions are translated as
follows.

// for junction pseudostate
[logged in < MAX] (LogIn → {logged in = logged in+ 1} → logged on())

The choice pseudostate has an incoming transition whose effects decrement the
value of variable logged in by 1, and two transitions whose guard condition

124 T. Ando et al.

compares logged in with 0. For a choice pseudostate, as mentioned earlier, the
guard condition of an outgoing transition is evaluated after the effect of the
incoming transition is performed. Therefore, the incoming and outgoing parts of
the choice pseudostate are translated as follows, respectively.

// incoming part of choice pseudostate
LogOut → {logged in = logged in− 1} → Choice()

// outgoing part of choice pseudostate
Choice() = ([logged in == 0] logged off()) � ([logged in != 0] logged on())

From the above, the internal state transition in the composite state operating is
translated as follows.

// for the region in “operating” composite state
operatingSubInit() = logged off();

logged off() =
[logged in < MAX] (LogIn → {logged in = logged in+ 1} → logged on());

logged on() =
([logged in < MAX] (LogIn → {logged in = logged in+ 1} → logged on()))
� (LogOut → {logged in = logged in− 1} → Choice());

// outgoing part of choice pseudostate
Choice() = ([logged in == 0] logged off()) � ([logged in != 0] logged on());

The CSP# descriptions obtained as above can be used as an input model for
the model checking tool PAT [8]. In the rest of this section, we describe about
model checking of the translated descriptions (model) with PAT.

We consider the following three properties as requirements that should be
satisfied by the state machine of Fig. 3.

1. The state machine is deadlock free.
2. The state machine can reach the state in which the condition, “logged in >

0”, is satisfied.
3. The value of the variable logged in always satisfies “0 ≤ logged in ≤ MAX”.

PAT has built-in functions for checking deadlock-freeness and reachability for a
CSP# process. For properties 1 and 2, they are written as simple assertions of
CSP# as follows, and they can be checked by evaluating these assertions with
PAT.

#assert System() deadlockfree; (for Property 1)

#define logged on prop (logged in > 0);
#assert System() reaches logged on prop;

}
(for Property 2)

Property 3 is expressed in LTL as follows.

�((logged in ≥ 0) ∧ (logged in ≤ MAX))

Formalization and Model Checking of SysML State Machine Diagrams 125

In order to check whether the state machine satisfies this LTL property, the
following assertion is defined and evaluated.

#define user num prop ((logged in >= 0) && (logged in <= MAX));
#assert System() | = []user num prop;

When these three assertions are evaluated with PAT, all properties are evaluated
as valid. Finally, we consider to check whether the system satisfies the following
property 4.

4. When the event LogIn is received, the value of the variable passed is in-
evitably true.

Property 4 is defined as an assertion as follows and evaluated with PAT.

#define passed prop (passed == true);
#assert System() | = [](LogIn → passed prop);

When the assertion is evaluated with PAT, the property is evaluated as “NOT
valid”, and the following event sequence is given as a counter example.

StartUp → τ → SystemOK → {logged in = 0} → LogIn

where τ represents an event not labeled. This sequence represents a path to
reach the logged off sub-state through the diagnosing state from the initializing
state and to receive the event LogIn at the logged off sub-state. If the system
behaves along the path, the value of passed is false until LogIn event is received.
Therefore we can make sure that the system does not satisfy the property 4.

The processes that can be model-checked with PAT are not limited to the
top level process System() that represents behavior of the whole state machine.
For instance, if the process System() in the above assertions is replaced with
the process operatingSubInit(), the internal state transition of the composite
state could be model checked. Since the initial pseudostate in each region is
translated into a CSP# process in our translation rules, such operations can
be performed easier. When invariant properties (i.e., properties that should be
satisfied through the whole system) are to be checked, checking them from the
internal state transitions could help achieve early detection of defects that may
be possibly lurk in deep nests. The translation rules given in this paper have the
advantage that such hierarchical checking can be handled flexibly.

5 Conclusions and Future Work

In this paper, we described translation rules from SysML state machine dia-
grams to CSP# processes. This translation allows formal verification of the cor-
rectness of SysML state machine diagrams. We modified some translation rules
proposed in [1], which we believe are not appropriate according to the formal defi-
nitions of SysML state machines. As a result, model checking of SysML state ma-
chine diagrams has become more accurate against the definition of the diagrams.

126 T. Ando et al.

In addition, we added translation rules for two elements – junction pseudostates
and choice pseudostates, which are not handled in [1]. These rules have con-
tributed to increasing component types which are targets of model checking,
and then,the coverage of verifiable diagrams has extended. Moreover, we con-
ducted a case study to demonstrate the actual translation, and then, we showed
some model checking results with PAT. These model checking results showed
that, compared with the case where the previous translation rules in [1], verifi-
cation of SysML state machine diagrams are more accurate when our translation
rules are used.

Future Work. Regarding future work, we consider that it is important to deal
with the followings. In order to expand the coverage of our methods, the behavior
with message communication across multiple state machine diagrams should
be handled. In addition, it is necessary to develop translation rules for other
types of SysML diagrams such as block diagrams, parametric diagrams, and
sequence diagrams, etc. Moreover, we plan to implement our translation rules
and integrate the implementation with a web-based model driven development
(MDD) tool Clooca [23], by which SysML diagrams including state machine
diagrams can be graphically developed. Clooca is used currently for education
purpose mainly. We have a vision that we will be able to perform a series of
tasks like the followings on the Web: 1) draw SysML diagrams with Clooca, 2)
translate the diagrams and generate processes in CSP#, and 3) apply model
checking to check correctness of the diagrams. We expect that we can offer
higher quality education for the MDD formalization and model checking by this
combination of our transition with Clooca.

Acknowledgment. This research is conducted as a program for the “Regional
Innovation Strategy Support Program 2012” by Ministry of Education, Culture,
Sports, Science and Technology (MEXT), Japan.

References

1. Zhang, S.J., Liu, Y.: An Automatic Approach to Model Checking UML State
Machines. In: IEEE International Conference on Secure Software Integration and
Reliability Improvement Companion, pp. 1–6 (2010)

2. OMG: OMG Systems Modeling Language Version 1.3 (June 2012),
http://www.omg.org/spec/SysML/1.3/PDF

3. OMG: OMG Unified Modeling Language Superstructure Version 2.4.1
(August 2011), http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

4. Edmund, M., Clarke, J., Grumberg, O., Peled, D.A.: Model Checking. The MIT
Press (1999)

5. Holzmann, G.: The Model Checker Spin. IEEE Trans. 23(5), 279–295 (1997)
6. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: A New Symbolic

Model Verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 495–499. Springer, Heidelberg (1999)

7. Larsen, K.G., Pettersson, P., Yi, W.: Model-Checking for Real-Time Systems. In:
Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg (1995)

http://www.omg.org/spec/SysML/1.3/PDF
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

Formalization and Model Checking of SysML State Machine Diagrams 127

8. Sun, J., Liu, Y., Dong, J.S.: Model Checking CSP Revisited: Introducing a Process
Analysis Toolkit. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17,
pp. 307–322. Springer, Heidelberg (2008)

9. Hoare, C.A.R.: Communicating Sequential Processes. Commun. ACM 21(8),
666–677 (1978)

10. Bhaduri, P., Ramesh, S.: Model Checking of Statechart Models: Survey and Re-
search Directions. CoRR cs.SE/0407038 (2004)

11. McMillan, K.L.: Symbolic Model Checking: An approach to the state explosion
problem. PhD thesis, Pittsburgh, PA, USA (1992)

12. The Formal Systems website: FDR2.91 (November 2010), http://www.fsel.com/
13. Latella, D., Majzik, I., Massink, M.: Automatic Verification of a Behavioural Sub-

set of UML Statechart Diagrams Using the SPIN Model-checker. Formal Asp.
Comput. 11(6), 637–664 (1999)

14. Lilius, J., Paltor, I.P.: vUML: A Tool for Verifying UML Models, 255–258 (1999)
15. Clarke, E.M., Heinle, W.: Modular Translation of Statecharts to SMV. Technical

report (2000)
16. Dubrovin, J., Junttila, T., Högskolan, T., Dubrovin, J., Junttila, T., Dubrovin,

C.J., Junttila, T.: Symbolic Model Checking of Hierarchical UML State Machines.
Technical report, Helsinki University of Technology Laboratory (2007)

17. Niewiadomski, A., Penczek, W., Szreter, M.: A New Approach to Model Checking
of UML State Machines. Fundam. Inf. 93(1-3), 289–303 (2009)

18. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J.C.: Towards
Model Checking Executable UML Specifications In MCRL2. Innovations in Sys-
tems and Software Engineering 6, 83–90 (2010)

19. Rasch, H., Wehrheim, H.: Checking Consistency in UML Diagrams: Classes and
State Machines. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003.
LNCS, vol. 2884, pp. 229–243. Springer, Heidelberg (2003)

20. Ng, M.Y., Butler, M.: Towards Formalizing UML State Diagrams in CSP. In: 1st In-
ternational Conference on Software Engineering and Formal Methods, pp. 138–147.
IEEE Computer Society (2003)

21. Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., Weerdenburg, M.V.: The
Formal Specification Language mCRL2. In: Proceedings of the Dagstuhl Seminar.
MIT Press (2007)

22. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press
(1990)

23. Technical Rockstars: clooca, http://www.clooca.com

http://www.fsel.com/
http://www.clooca.com

	Formalization and Model Checkingof SysML State Machine Diagrams by CSP#
	1 Introduction
	2 Related Work
	3 Formalization of State Machine Diagram
	3.1 State Machine Diagram of SysML
	3.2 CSP#
	3.3 Translation Rules

	4 A Case Study
	5 Conclusions and Future Work
	References

