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Preface

These multiple volumes (LNCS volumes 7971, 7972, 7973, 7974, and 7975) consist
of the peer-reviewed papers from the 2013 International Conference on Compu-
tational Science and Its Applications (ICCSA2013) held in Ho Chi Minh City,
Vietnam, during June 24-27, 2013.

ICCSA 2013 was a successful event in the International Conferences on Com-
putational Science and Its Applications (ICCSA) conference series, previously
held in Salvador, Brazil (2012), Santander, Spain (2011), Fukuoka, Japan (2010),
Suwon, South Korea (2009), Perugia, Italy (2008), Kuala Lumpur, Malaysia
(2007), Glasgow, UK (2006), Singapore (2005), Assisi, Italy (2004), Montreal,
Canada (2003), (as ICCS) Amsterdam, The Netherlands (2002), and San Fran-
cisco, USA (2001).

Computational science is a main pillar of most of the present research, in-
dustrial, and commercial activities and plays a unique role in exploiting ICT in-
novative technologies; the ICCSA conference series have been providing a venue
to researchers and industry practitioners to discuss new ideas, to share complex
problems and their solutions, and to shape new trends in computational science.

Apart from the general track, ICCSA 2013 also included 33 special sessions
and workshops, in various areas of computational sciences, ranging from com-
putational science technologies, to specific areas of computational sciences, such
as computer graphics and virtual reality. We accepted 46 papers for the general
track, and 202 in special sessions and workshops, with an acceptance rate of
29.8%. We would like to express our appreciation to the Workshops and Special
Sessions Chairs and Co-chairs.

The success of the ICCSA conference series, in general, and ICCSA 2013,
in particular, is due to the support of many people: authors, presenters, par-
ticipants, keynote speakers, Workshop Chairs, Organizing Committee members,
student volunteers, Program Committee members, International Liaison Chairs,
and people in other various roles. We would like to thank them all. We would
also like to thank Springer for their continuous support in publishing ICCSA
conference proceedings.

May 2013 David Taniar
Beniamino Murgante
Hong-Quang Nguyen



Message from the General Chairs

On behalf of the ICCSA Organizing Committee it is our great pleasure to wel-
come you to the proceedings of the 13th International Conference on Computa-
tional Science and Its Applications (ICCSA 2013), held June 24-27, 2013, in Ho
Chi Minh City, Vietnam.

ICCSA is one of the most successful international conferences in the field
of computational sciences, and ICCSA 2013 was the 13th conference of this se-
ries previously held in Salvador da Bahia, Brazil (2012), in Santander, Spain
(2011), Fukuoka, Japan (2010), Suwon, Korea (2009), Perugia, Italy (2008),
Kuala Lumpur, Malaysia (2007), Glasgow, UK (2006), Singapore (2005), Assisi,
Ttaly (2004), Montreal, Canada (2003), (as ICCS) Amsterdam, The Netherlands
(2002), and San Francisco, USA (2001).

The computational science community has enthusiastically embraced the suc-
cessive editions of ICCSA, thus contributing to making ICCSA a focal meeting
point for those interested in innovative, cutting-edge research about the latest
and most exciting developments in the field. It provides a major forum for re-
searchers and scientists from academia, industry and government to share their
views on many challenging research problems, and to present and discuss their
novel ideas, research results, new applications and experience on all aspects of
computational science and its applications. We are grateful to all those who have
contributed to the ICCSA conference series.

For the successful organization of ICCSA 2013, an international conference
of this size and diversity, we counted on the great support of many people and
organizations.

We would like to thank all the workshop organizers for their diligent work,
which further enhanced the conference level and all reviewers for their expertise
and generous effort, which led to a very high quality event with excellent papers
and presentations.

We especially recognize the contribution of the Program Committee and lo-
cal Organizing Committee members for their tremendous support, the faculty
members of the School of Computer Science and Engineering and authorities of
the International University (HCM-VNU), Vietnam, for allowing us to use the
venue and facilities to realize this highly successful event. Further, we would like
to express our gratitude to the Office of the Naval Research, US Navy, and other
institutions/organizations that supported our efforts to bring the conference to
fruition.

We would like to sincerely thank our keynote speakers who willingly accepted
our invitation and shared their expertise.

We also thank our publisher, Springer-Verlag, for accepting to publish the
proceedings and for their kind assistance and cooperation during the editing
process.



VIII Message from the General Chairs

Finally, we thank all authors for their submissions and all conference atten-
dees for making ICCSA 2013 truly an excellent forum on computational science,
facilitating an exchange of ideas, fostering new collaborations and shaping the
future of this exciting field.

We thank you all for participating in ICCSA 2013, and hope that you find
the proceedings stimulating and interesting for your research and professional
activities.

Osvaldo Gervasi
Bernady O. Apduhan
Duc Cuong Nguyen
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Selecting LTE and Wireless Mesh Networks
for Indoor/Outdoor Applications

Dharma Agrawal*

School of Computing Sciences and Informatics, University of Cincinnati, USA
dharmaagrawal@gmail.com

Abstract. The smart phone usage and multimedia devices have been
increasing yearly and predictions indicate drastic increase in the upcom-
ing years. Recently, various wireless technologies have been introduced to
add flexibility to these gadgets. As data plans offered by the network ser-
vice providers are expensive, users are inclined to utilize freely accessible
and commonly available Wi-Fi networks indoors.

LTE (Long Term Evolution) has been a topic of discussion in providing
high data rates outdoors and various service providers are planning to roll
out LTE networks all over the world. The objective of this presentation is
to compare usefulness of these two leading wireless schemes based on LTE
and Wireless Mesh Networks (WMN) and bring forward their advantages
for indoor and outdoor environments. We also investigate to see if a
hybrid LTE-WMN network may be feasible. Both these networks are
heterogeneous in nature, employ cognitive approach and support multi
hop communication. The main motivation behind this work is to utilize
similarities in these networks, explore their capability of offering high
data rates and generally have large coverage areas.

In this work, we compare both these networks in terms of their data
rates, range, cost, throughput, and power consumption. We also compare
802.11n based WMN with Femto cell in an indoor coverage scenario,
while for outdoors; 802.16 based WMN is compared with LTE. The main
objective is to help users select a network that could provide enhanced
performance in a cost effective manner.

* More information can be found at http://www.iccsa.org/invited-speakers



Neoclassical Growth Theory, Regions
and Spatial Externalities

Manfred M. Fisher*

Vienna University of Economics and Business, Austria
manfred.fischer@wu.ac.at

Abstract. The presentation considers the standard neoclassical growth
model in a Mankiw-Romer-Weil world with externalities across regions.

The reduced form of this theoretical model and its associated em-
pirical model lead to a spatial Durbin model, and this model provides
very rich own- and cross-partial derivatives that quantify the magnitude
of direct and indirect (spillover or externalities) effects that arise from
changes in regions characteristics (human and physical capital invest-
ment or population growth rates) at the outset in the theoretical model.

A logical consequence of the simple dependence on a small number
of nearby regions in the initial theoretical specification leads to a final-
form model outcome where changes in a single region can potentially
impact all other regions. This is perhaps surprising, but of course we
must temper this result by noting that there is a decay of influence as
we move to more distant or less connected regions.

Using the scalar summary impact measures introduced by LeSage and
Pace (2009) we can quantify and summarize the complicated set of non-
linear impacts that fall on all regions as a result of changes in the physical
and human capital in any region. We can decompose these impacts into
direct and indirect (or externality) effects. Data for a system of 198
regions across 22 European countries over the period 1995 to 2004 are
used to test the predictions of the model and to draw inferences regarding
the magnitude of regional output responses to changes in physical and
human capital endowments.

The results reveal that technological interdependence among regions
works through physical capital externalities crossing regional borders.

* More information can be found at http://www.iccsa.org/invited-speakers



Global Spatial-Temporal Data Integration
to Support Collaborative Decision Making

Wenny Rahayu*

La Trobe University, Australia
W.Rahayu@latrobe.edu.au

Abstract. There has been a huge effort in the recent years to estab-
lish a standard vocabulary and data representation for the areas where
a collaborative decision support is required. The development of global
standards for data interchange in time critical domains such as air traffic
control, transportation systems, and medical informatics, have enabled
the general industry in these areas to move into a more data-centric
operations and services. The main aim of the standards is to support
integration and collaborative decision support systems that are opera-
tionally driven by the underlying data.

The problem that impedes rapid and correct decision-making is that
information is often segregated in many different formats and domains,
and integrating them has been recognised as one of the major prob-
lems. For example, in the aviation industry, weather data given to flight
en-route has different formats and standards from those of the airport
notification messages. The fact that messages are exchanged using differ-
ent standards has been an inherent problem in data integration in many
spatial-temporal domains. The solution is to provide seamless data inte-
gration so that a sequence of information can be analysed on the fly.

Our aim is to develop an integration method for data that comes
from different domains that operationally need to interact together. We
especially focus on those domains that have temporal and spatial char-
acteristics as their main properties. For example, in a flight plan from
Melbourne to Ho Chi Minh City which comprises of multiple interna-
tional airspace segments, a pilot can get an integrated view of the flight
route with the weather forecast and airport notifications at each segment.
This is only achievable if flight route, airport notifications, and weather
forecast at each segment are integrated in a spatial temporal system.

In this talk, our recent efforts in large data integration, filtering, and
visualisation will be presented. These integration efforts are often re-
quired to support real-time decision making processes in emergency sit-
uations, flight delays, and severe weather conditions.

* More information can be found at http://www.iccsa.org/invited-speakers
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Roto-torsional Levels
for Symmetric and Asymmetric Systems:
Application to HOOH and HOOD Systems

Ana Carla Peixoto Bitencourt!,
Frederico Vasconcellos Prudente?, and Mirco Ragni!

! Department of Physics
Universidade de Feira de Santana, UEFS
Feira de Santana, Bahia (BR)
ana.bitencourt@gmail.com
2 Institute of Physics
Universidade Federal da Bahia, UFBA
Salvador, Bahia (BR)

Abstract. Two pictures of separation of torsional mode in intramolecu-
lar dynamics are given for the treatment of hindered rotations of molecu-
lar systems like ABCD, which present a large amplitude motion
associated with the torsional mode. The energy profile (torsional po-
tential) is described by a dihedral angle and the chosen coordinates are
based on orthogonal local vectors. Our model consists of two linear rigid
rotors AB and CD that rotate around the Jacobi vector connecting the
centers of mass of the diatoms AB and CD. We have used two procedures
to calculate the roto-torsional energy levels. The first, referred to bi-rotor,
uses the Hamiltonian as function of the azimuth angles of the AB and
CD rotors. In the second one, referred to roto-torsion, we separate the
internal rotation (torsional mode) from the overall rotation around the
Jacobi vector. For the cases where the two moments of inertia are equal,
e.g. HOOH, conservation of both energy and angular momentum for a
system viewed as involving either torsion plus external rotation or inter-
action of two rotors requires correlation of levels with symmetries 7 =1
and 4 with zero or even values of the external rotation angular momen-
tum quantum number £ in units of h. Conversely, torsional energy levels
that belong to the 7 = 2 and 3 symmetries, correlate with odd values of
k. In HOOD the two rotors have different moments of inertia, and this
causes further level splitting for 7 = 2 and 3 only. Here we apply the
two procedures to understanding the roto-torsional levels for HOOH and
HOOD molecules.

Keywords: Orthogonal coordinates, roto-torsional levels.

1 Introduction

Recently there has been a renewed interest in the studies of internal rotation
(torsional mode) in small molecules of the type ABCD, such as HOOH and

B. Murgante et al. (Eds.): ICCSA 2013, Part IT, LNCS 7972, pp. 1-[6] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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HOSH [2ITTIT6UT9T5]. For hydrogen peroxide and its isotopomers the torsional
dynamics are best described in diatom-diatom vectors, a particular local orthog-
onal coordinate set, [I0], leading to the interpretation of the OH and OD groups
as semi-rigid rotors executing torsion motions around a (Jacobi) vector joining
their centers of mass. In previous works [I0/T1] we have described the torsional
mode of the HOOH using the Jacobi dihedral angle as variable, while the other
five degrees of freedom were frozen at the equilibrium configuration. Formu-
las relating geometrical and local vector parameters are given in Ref. [I0]. The
particular choice of the parametrization rigorously eliminates couplings terms
in the Hamiltonian [I4]. Some recent results for hydrogen peroxide, based on
the diatom-diatom vectors and using a full-dimensional quantum calculation of
the vibrational energy levels, can be found in [3], for a J = 0 Hamiltonian, for
deuterated isotopomers [4/5], and in the case of J # 0 [QIRII7]. As discussed
in Ref. [14], the diatom-diatom vectors not describe the torsional mode in gen-
eral ABCD molecules [I2]. Here we use the HOOH and HOOD as prototypes
molecules to study the symmetric and not-symmetric systems [I8[13]. Both are
near-prolate symmetric tops with the principal axis corresponding to the small-
est moment of inertia being coincident with the second vector of Jacobi, see Fig.
[l Since HOOD does not possess the symmetry of HoO5 it is necessary to derive

x
C w1
D %3 w3 Zy A
1)
39;’3 > o
€2
7 z
Z1
B

Fig. 1. Jacobi H scheme. §2 = 0.

the periodicity of the torsional eigenfunctions. The purpose of this paper is to
characterize the torsional levels around the O-O bond in the HOOH and HOOD
molecules. The principal difference between these two systems is that, in the
second case, the inertia moments of the two dimers are different. For symmetric
systems, like the HOOH molecule, the torsional levels are well characterized and
it is well know that these are subdivided in four symmetries, generally indicated
with 7 = 1,2,3 and 4. For not symmetric system, like HOOD, further symme-
tries appear. This aspect can be described through the so called H scheme of
orthogonal local vectors for four bodies [I0/T4]. This scheme consists of two vec-
tors, each one joining an oxygen atom to the respective hydrogen (or deuterium
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in the case of the OD dimer) plus a vector that joins the two centers of mass
of the diatoms, see Fig. Il The torsional potential of the HOOH and HOOD is
well described by the dihedral angle w{ when the others coordinates are fixed to
their values at the equilibrium. The inertia moments of the two diatoms permit
to obtain the periodicity of w] and to introduce all the torsional symmetries
around the O-O bonds. These symmetries are associated to the projection of the
total angular momentum on the x5 vector, which prolongation is taken as z axis.
Two methodologies are used to calculate the torsional levels. The first, referred
by ”bi-rotors” (BR), consists in solving the problem of two planar and rigid
rotors coupled by a torsional potential. A proper combination of the two angles
wp and ws that describe the rotation of x; and x3 around the z axis, permits to
separate the external rotation and to define a second approach, referred by as
"roto-torsion” (RT), that includes the correct periodicity of the dihedral angle
and permits to define all the symmetries of the torsion.

The paper is structured as follows. In the next section the Jacobi H scheme
is discussed and constrains are applied to the coordinates to reduce the problem
in a useful form to describe the torsional problem. In section Bl the BR scheme
is presented while section Ml describes the RT one. The torsional levels of the
HOOH and HOOD molecules are given in section [0l Section [0 reports remarks
and conclusions.

2 Methodology

In this section we give the kinetic energy operator for two linear rigid rotors AB
and CD that rotate around the vector xo, see Fig. [[I The reduced problem is
treated in two ways leading to the BR and RT schemes. In the orthogonal local
vectors parametrization [I4], also called diatom-diatom vectors, we have

X} =Tr4—Trp, X3 =Trc —TIp,
1 1
Xo = (mara +mprp) — (mere + mprp)
ma +mp mg +mp
1
X4 = m(mAI‘A +mprg + mere +mprp) , (1)

where m; and r; are the masses and the position vectors of the particles (i =
A, B,C, D), respectively; x4 gives the position of the center of mass and m is
the total mass of the molecule. The kinetic energy operator is expressed as

. 11 92 1 02 1 02 1 02
T(x) = - 2 2 2 2| (2)
2 [ Ox7 o 0x35  pu30x3  mOxj
where
1 1 1 1 1 1 1 1 1
= + ) = + ) = + .(3)
1 mag mp 1% ma+mp mc+mp us mc  Mmp

Neglecting the center of mass and in spherical coordinates, we have
3

s RP=1[19 ,0 1,1 0 .. 0 1 9
T=- 2 Zul {r% 87“1” or + r? (sin&l 08; Sm(sl(%l + sin? §; awfﬂ (@)

=1
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where 1 > 0, 0 < §; <7 and 0 < w; < 27. Fixing r;, §; and wy in the previous
equation we reduce the problem in a useful form to represent the BR scheme. In
fact the kinetic energy operator is

. R? (1 02 1 02
T = —
2 (11 Ow? * I3 (‘3w§> ’ )

where I; and I3 are the effective moments of inertia of the rotors. They are
obtained from those of the rotors multiplying them by sin?§; and sin® ds, re-
spectively. Then

I1 = /,(,17“% sin2 (51 5 I3 = /,L3’I“§ sin2 (53 . (6)

For a system like ABCD (see Fig. [ll) we have Iy = Ijp, Is = Icp and the z axis
coincides with the vector x2. The angles w; and ws are the rotation (azimuth)
angles of AB and CD rotors, respectively.

In the RT scheme, we separate the torsional mode from the overall rotation
defining two new coordinates as combination of wy and ws [L9/7]:

W/1 =Wz — W1, (7)
Lw + I3ws (8)

[
YsT o 4,

The ranges of the variables w; and w3 lead to those of the new variables:
21 <wj <27, 0<wjy<2r. (9)

The angle w4 represents the external rotation of the system around the z axis
and has a periodicity of 27. The dihedral angle w/| has a periodicity of 47 but
the torsional potential, that is a function of wj, has a periodicity 27. However,
as explained in section @l to define the periodicity of the eigenfunctions it is
necessary to consider the inertia moments of the two rigid rotors.

Using eqs. () and () the kinetic energy operator for the RT scheme can be

written as . 52 52
. 1 1 1
Tt = — , o 10
2 Kfl +13) 0w T I 4 Iy 0w (10)

Fixing the w} value we impose that the total angular momentum is zero, so the
second term of the eq. (I0]) vanishes. In particular, if the two effective moments
of inertia are equal as in H-O-O-H, the torsional part of the eq. (I0) can be
written as . 52

o
- . ’ .
ROHTS 1 sin? §; Owy?

(11)
Identical results can be obtained starting from the mass scaled Jacobi H coupling
scheme vectors.

In the following we treat the BR and RT models separately. In both cases we
illustrate first the “free” situation and then we introduce the torsional potential
that is a function of the dihedral angle wi, eq. ().
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3 Bi-rotot (BR) Model

We consider first the “free” situation, in order to find a basis set for the treatment
of the hindered rotation when the torsional potential is introduced.

3.1 “Free” Bi-rotor

The Schrondinger equation for the “free” bi-rotor motion is obtained by eq. (@)
and results in:

h2 82 h2 82

0 _ br 0
*211 &U% - 21, aw?g’ wkl,kg(wl’WS) = Ekl,kgwkl,kg(wl’WS) . (12)

The superscript 0 of the eigenfunctions ¢ indicates the “free” situation. The
generic eigenfunction 1/}21’ ks (W1,ws3) can be written as

1 . ]
1/)21’]% (wl,wg) = o el(k1w1+k3ws) , (13)
where ky,ks = 0,4+1,£2,£3,... are the quantum numbers of the two rotors.

The total energy is given by the sum of the two energies E,’;ll and E,’;g of the
separated rotors:

. B2 (k% ks?
s =m0 ) a9

while the angular momenta is given by

R . 0 0
Iy, g, (w1, ws) = —ih ( + ) Vo ks = (k1 + k)R, g, - (15)

8w1 80.)3
For symmetric systems we have I; = I3 = I, so

h2

b —
Bk = o

(kT +K3) - (16)

3.2 Hindered Bi-rotor Model
Introducing the torsional potential in the Schrodinger equation (I2)) we have

{_fﬂ(l 0? 1 92

)| v = By,
2 \Low? " Iy aw§>+v(w1’w3)} Sk "

Let’s expand the potential in a cosine series:

V(wi,ws) = Z Vicos(l(ws — w1)) 1=0,1,2,.. (18)
1=0
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The eigenfunctions 1); is expanded using the basis set wgh ks (W1, w3) of eq. (L3):

Ui = > S kb ks (w1, w3) - (19)

k1,k3

where f,zl k, are the coefficients of the expansion. The kinetic energy matrix
elements are given by

B2 Kk
Doy ik iy, = (11 + Is) Oky k) Oks K, (20)

while the potential energy matrix elements are given by

Vi
Vier kst e, = > 5 (80,k; —ky—1 00,1y — kg1 + 00,11 —k1+1 00,k —ka—t) - (21)
!

The angular momentum eigenvalues of each eigenfunction is obtained as follows.

(03] w5 =13 (o 4+ ko) )? (22)

k1,k3

From eq. (2I)) it can be found that the V; term gives a non-zero contribution to
the Vies ksl i, element only if | =k} — k1 = ks —kgorl =k —k; = k3 — ks.

Consequently it must be k = k1 + k3 = k:/l + k:é This result reflects that the
potential couples only basis set functions with the same value of k, that means
with the same value of the total angular momentum, see eq. (IH]). Therefor,
the Hamiltonian matrix can be factorized in sub-matrices, one for each value
of the total angular momentum number k, with consequently reduction of the
calculation time.

An interesting result, presented in the next section, can be anticipated here
observing what follows. A fixed value of k means that the eigenvalues of the cor-
responding matrix gives the torsional energies plus a fixed contribution of the
overall rotation energy. Analogously, the eigenfunctions are product of a well de-
fined overall rotation eigenfunction times appropriated torsional eigenfunctions.
As described in the next sections, the overall rotation eigenfunction is given by
eik‘”é, depending by k and by the coordinate wé, eq. ([8). This discussion permits
to conclude that the torsional basis set for a particular value of k is

ei(lﬁ w1 +k3w3)

_ ei(k1w1+k3w3—kwg) kw1 +ksws—k(Iwi+Isws)/(I1413)]

il
oikws =¢

_ eiwll(ksl1—k1f3)/(11+ls) — eiwll(ks—kls/(ll-ﬁ'h)) ) (23)

4 Roto-torsion (RT) Model

As in the previous section, also the roto-torsion problem is initially tackled using
a zero torsional potential. The eigenfunctions of the “free” situation are then used
to expand the solution of the problem when the torsional potential is introduced.
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4.1 “Free” Roto-torsion

To treat separately the torsional mode and the overall rotation around the Jacobi
vector xo we have to use the kinetic energy operator of eq. (I0). The “free”
Schrédinger equation is

n* o2 h? o?

where
Lot (25)
I L I3

The eigenfunction ¥°(w},w}) can be written as

1 .
Wg,k(wiawé) = f(wi)n(wé) — elnwl oikws

o ’ (26)

where the correct values of n and k are obtained with appropriated considerations
about the periodicity of w] and wj, respectively. Imposing a null value of wj in
eq. ) we have w1l + wsl3 = 0, that, by a classical point of view, corresponds
to a null value of the total angular momentum. In other words, the null value of
the total angular momentum is guaranteed if

I3

e (27)

W1, = —Ws
If we consider I; < I3, it easy to see that if the rotor with inertia I3 spans a full
rotation (ws = 27) and back to an indistinguishable position, the other rotor
have to do an angle of w3 = —2nl3/I; to guaranteed a null value of the total
angular momentum. Substituting eq. 1) in eq. (@) it is one obtained

I + 15
3 .

I (28)

W =ws—w =w
The exact periodicity is obtained when both w; and ws are multiples of 2,
so the system oscillates between two indistinguishable positions. Therefore, the
period of wj must be 2wp(ly + I3)/I1, where p is an integer chosen so that
p(I1+15)/I; = N is approximatively an integer. This boundary condition implies
that

inwy _ ein(w'1+2ﬂ'p(11+13)/11)
b

e
et l) /Iy — cos(n2mp(Iy + Is) /1)) +isin(n 27 p(l, + Is) /1) =1,
n2mp(ly + 1)/, = £271j j=0,1,2,...
1 . ]
n:ip(lljrlg)]:izif' (29)
Starting from eqs. 24]) and (26), it is found that the rotational energy is
hQ
E7 K k=0,+1,42,43,... (30)

FTo(L + 1)
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and the angular momentum is
71,7,0 / / . 0 0 / / 0 / /
lg/n,k(wlvw?)) = _lhaw’ Q’n,k(wlvwzs) = hkg’n,k(%awz’,) . (31)
3

In fact wf is an internal coordinate and does not carry information regarding
the total angular momentum. Obviously the eigenvalues of the two operators [,

eq. ([8), and I, eq. @), need to be equal,
ki+ks=Fk. (32)

Concordantly to that discussed at the end of sec. B, the torsional energy levels
can be found observing that:

El =E ., — E}, (33)

where E,I;i,% are the energy of the bi-rotor, eq. (I4), and Ej, are the rotational
energy, eq. (B0). Concordantly to eqs. [24) and (286), the torsional levels can be
written as

B 1
Et _ 2
n 2 In )
and using eq. [33)) we find the possible values for n:

h? Lo\ s \?
Et fr— ]{} _ k = k - k .
n 21(1 L+1s > 21(3 L+13 ) (35)

(34)

Consequently we identify

1 I3
L +13 I +13
This last result was anticipated in eq. (23]). For a given system, I; and I5 are fixed
while k£ must be fixed to an integer value concordantly to the considered total

angular momentum. This implies that the possibles values of n are determined
by k1 or k3, that are also integer. As an example, for a null value of the total

n=—ks + k= ks k. (36)

angular momentum (k = 0), we have n = —k; = ks,
hQ
El = K} 37
n 29T 1> ( )

and only integer values of n are possible.

Symmetric Case Considering I = I3 = I, the kinetic energy operator of eq.
&) is

h? 92 h? 9?
ST oW AT W
where I is given by eq. (6) and the eigenvalues of the first term are given by eq.

: 2
h? 1 12
E! = I (kg — Qk:) = n?, (39)

Tt = (38)
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— For even k, n=0,4+1,4+2 +3,...
— For odd k,n::té,:tg,:tg,...

Another way to write the torsional energy levels is by separation in four sym-
metries with the quantum number 7 = 1,2, 3,4 [6I1T]:

E, = ;=012

Eja= <J+ ) j=0,1,2
h2
El, = <]+ ) j=0,1,2,...
El, = Ij2 j=1,2,3... (40)
The eigenvalues of the second term of eq. (B8] (external rotation) are
h2
E| = 4I/<:2 : k=0,+1,42,+3,... (41)
and the total energy is
Eka Ejt','r +El: . (42)

Resuming 7 = 2,3 symmetries are compatible only with & = +1,+3,45,...
while 7 = 1,4 ones are compatible only with kK =0,+2,+4, ...

4.2 Hindered Roto-torsional
Introducing the potential, the Schrédinger equation is written as
h? 92 h? 02
— — \% Et EY) Yk 43
2T AL+ Is) O Wl)} = (B + E) (43)

The eigenfunctions ¥, j are expanded using the basis set y'/g p(Whsws), eq. (26).
The kinetic energy matrix elements are obtained using eq. (24))

n? h? -
Tnk;n’kl - ( 27 +Ek> Onn’ Ok, k (44)
and the potential energy matrix elements are
Vi
V o = 5 n’'—n 5 777,/77,6 . 45
eSS o (001n/—n + 00,1—n'+n)0k 1 (45)

l

where N depends of the period of w/, see egs. ([28)-29). The last equation
shows that the matrix is factorized in sub-matrices, one for each value of k. This
because, as anticipated at the end of section[3] the potential does not couple basis
set functions with different angular momenta k. Each sub-matrices presents in
the diagonal elements the contribution of the external rotation for that value of
k. For each sub-matrix this contribution is constant and can be neglect to obtain
only the torsional energy levels. The other important thing to be observed is that
each block is build up only with k-compatible functions, as imposed by eq. (3G]).
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5 Examples: HOOH and HOOD

As explained in previous papers [L0/TI], the Jacobi H scheme can be used to pre-
dict the torsional path of HOOH system. The strategy adopted is to fix all the
Jacobi parameters to those of the equilibrium. The torsional path is obtained
varying only the dihedral angle w{. This angle depends on the masses of the
system. So the torsional path is different for HOOH and HOOD systems. As
can be see in Fig. B the differences between the two predicted torsional path
and the optimized path are negligible, especially for our purpose. Tab. [l reports

2750 -

2500 HOOH profile

HOOD profile

2250
° Optimized

2000
1750
1500
1250

1000

Energy (cm™!)

750
500

250

150 180

¢ (degree)

Fig. 2. Torsional profile predicted by the angle w}] for HOOH and HOOD systems, red
and blue lines respectively. To compare with the optimized profile (Black dots), the
potential is presented in function of the geometrical dihedral angle HOOH (¢).

the geometry of the minimum of the hydrogen peroxide expressed in internal
parameters and calculated at UMP2=full/aug-cc-pvqz level of theory. Jacobi H
parameters for the HOOH and HOOD are also reported. Tab. Pl reports the
coefficient V; of eq. ([I8]) for the energy profile of HOOH and HOOD systems
presented in Fig. 2l These coefficients are found by the Newton-Raphson algo-
rithm fitting the ab-initio points (available on request from the authors). For the
HOOH system, I; = I, p = 1 and the periodicity of wj is 4, see eqs. (28) and
@9). For HOOD, the approximated inertia moments in Tab. 2] lead to a finite
periodicity of w/. This periodicity depends by the level of accuracy of the values
of the two inertias. Expressing the inertia with a greater number significant fig-
ures, a greater periodicity of w] is found. Consequently, the representation of the
torsional energy levels improves. We give the values of the inertia with three-four
figures because this level of accuracy is sufficient for us purpose and we found
p = 200. This means that the basis set derived for k = 0 is approximatively
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Table 1. Geometrical parameters of the minimum of the hydrogen peroxide calculated
at ump2=full/aug-cc-pvqz level. Jacobi parameters for HOOH and HOOD are also
presented. For the HOOD case, |x3| join the atoms O and D. Angles are expressed in
degrees and lengths in A.

Geometrical parameters rgo roo rom £HOO LOOH {HOOH
0.9627 1.4433 0.9627 99.94 99.94 112.59

Jacobi H scheme [x1] %2  |xs| »1 P3 wy
HOOH 0.9627 1.4660 0.9627 102.98 102.98 111.76
HOOD 0.9627 1.4782 0.9627 103.68 104.89 111.34

Table 2. Values, in em ™", of the coefficients V; of eq. ([[8) for HOOH and HOOD
energy profiles of Fig. Effective inertia moments I; and I3 in u.m.a.A? are also
presented. The masses in u.m.a. of O, H and D atoms are 15.9994, 1.0079 and 2.01363
respectively.

Vo Vi1 Va2 Vs V4 Vs I I3
HOOH 837.551 1072.064 687.812 65.383 8.973 1.601 0.834 0.834
HOOD 834.975 1061.922 689.156 65.023 8.076 1.328 0.830 1.548

correct for |k| = 200 too. Analogously, |k| = 1 and |k| = 201 are near compatible
with the same symmetry and so on for all the values of k. Eq. (B8) permits to
calculate the compatible values of n for every k. In section we present how
to tackle this type of problems.

The torsional symmetries found for each k can be further separated in even
and odd functions as suggested by the second equality of eq. [@3)). In fact the
torsional potential, due to the symmetry around 7, can be expanded in a cosine
series and [ assumes only integer values. Three types of integrals are found: A
first type is of the form

/cos(n w)) cos(l wy)sin( n'wy) dw | (46)

and is always zero. In other words, cosines and sines are not coupled by a sym-
metric torsional potential. The other two types of integrals are

/cos(n w)) cos(l wy) cos( n'wy) dw, (47)
/sin(n w)) cos(l wy)sin( n'wy) dw; . (48)

In summary, for a given value of k, the possible values of n are calculated with
eq. (30). Furthermore the torsional matrix can be factorized in two sub-matrices,
one of them representation of even eigenfunctions (expanded in cosine functions)
while the other is the representation of the odd eigenfunctions (expanded in sine
functions).
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5.1 Symmetric Systems: HOOH

BR Model. The problem is tackled following the factorization described at the
end of section Bl For a selected value of k£ only values of k1 and k3 that respect
the condition k + k3 = k are taken. These were introduced in eqs. (20)-(21))
to found the energy levels of the bi-rotors E;-””. The rotational contribution Fj,

is found with eq. (30), while the torsional contribution E} is simply E;-”" - E;.
Results for the torsional energy levels Ejt are reported in Tab. [B

Table 3. Torsional energy contributions of the bi-rotors energy levels for the HOOH
system, obtained with eq. {@2), E! (em™'). The bi-rotors levels were calculated with
basis set of 120 eigenfunctions for each k.

k=0,+£2,44,... k=+1,43,... k=0,£2,24,... k= £1,43,...
172.860197 172.860204  2171.396396  2182.712034
184.505254 184.505245  2432.736930  2395.268584
432.933494 432.933550  2589.873209  2685.168639
551.304401 551.304165  2946.351412  2771.972723
754.236097 754.237293  2980.969544  3223.361043
965.131881 965.125746  3520.964623  3234.172685
1104.968428  1194.999239  3523.889768  3841.034956
1435.192291  1435.043177  4183.740018  3841.755708
1681.497440  1682.181378  4183.905322  4548.679360
1032.273870  1929.351857 - 4548715075

RT Model. When I; = I3 according with section A1l and eq. (B9)), in the
torsional basis set &(w}), eq. [26]), n assumes both integer and half integer values.
The decomposition of £ in sines and cosines leads to

1+ (ﬂl— 1)d;.0 \/1277 cos(j wi) (49a)
o oSl +1/2) ) (49D)
oy Sl +1/2) ) (490)
gy 00 1) (49d)

with j = 0,4+1,42,.... Note that these equations have a period of 47 and this
justifies the normalization factors. In the eq. @9d) j = 0 loses meant. As de-
scribe above in this section, the potential coupling only eigenfunction with the
same parity, (cosine with cosine and sine with sine); moreover the expansion in a
serie of cosine of the torsional potential does not couple the cos[jp] functions with
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the cos[(j' + 1/2)] ones, as so as it does not couple sin[j¢] and sin[(j' 4+ 1/2)¢]
functions. So the eigenfunctions of the problem become:

o1 = \/%];a; cos(j wy) (50a)
o = V;ﬂjzob;fcosml/z) ] (50b)
b5 = j%;oc;sin[(ﬁl/m ] (50¢)

s = j%;ld; sin(j w}) (50)

These basis sets were used to calculated the torsional energy levels that are
presented in Tab. @l As expected, the values obtained with the two different but
equivalent procedure are identical.

Table 4. Torsional energy levels of H2O2 system calculated with the RT procedure.

Basis set of 200 eigenfunctions for each symmetry. Values in cm™*.

1 2 3 4
172.860197 172.860204 184.505245 -
432.933494 432.933550 551.304165 184.505254
754.236097 754.237293 965.125746 551.304401
1194.968428 1194.999239 1435.043177 965.131881
1681.497440 1682.181378 1929.351857 1435.192291
2171.396396 2182.712934 2395.268584 1932.273870
2589.873299 2685.168639 2771.972723 2432.736930
2980.969544 3223.361043 3234.172685 2946.351412
3523.889768 3841.034956 3841.755708 3520.964623
4183.905322 4548.679360 4548.715075 4183.740018

3

© 00 IO Ui W~ O —

5.2 Non Symmetric System: HOOD

The mass of the deuterium atom is approximatively double respect that of the
hydrogen. This affects the torsional energy levels despite the torsional poten-
tial (written in Jacobi coordinates) be approximatively the same for the two
cases. More exactly, the higher mass of the deuterium thicken the levels, but the
difference in mass between the two systems is not so relevant respect the char-
acteristic of the torsional potentials. This means that the energies of the lower
torsional levels of the HOOD are expected to be of the same order of those of the
HOOH.



14 A.C.P. Bitencourt, F.V. Prudente, and M. Ragni

BR Model. As in the HOOH case, torsional energy contributions E]t of the bi-
rotors energy levels for the HOOD system are obtained neglecting the rotational
energy contribution Ej from E;?T, see eqs. (B0) and (). The bi-rotors levels are
obtained considering the factorization in sub-matrices described at the end of
section [Bl The torsional energy levels of HOOD calculated with the BR model,
for k = 0,41, 42, are showed in Tab.

Table 5. Torsional energy contributions of the bi-rotors energy levels for the HOOD
system, obtained with eq. ([@2]). The bi-rotors levels were calculated with basis set of
120 eigenfunctions for each k.

torsional contribution (cm™).
k=0 k==1 k=42
157.414847 157.414847 157.414847
162.768676 162.768676 162.768676
398.858888 398.858892 398.858892
477.489056 477.489043 477.489045
649.776606 649.776673 649.776662
821.080170 821.079836 821.079891
1013.417658 1013.419336 1013.419060
1216.217830 1216.209519 1216.210885
1427.194799 1427.234678 1427.228122
1643.461487 1643.278270 1643.308352
1861.261273 1862.054670 1861.923699
2081.283525 2078.067422 2078.587141
2284.306288 2295.664206 2293.689023
2515.689746 2479.169064 2484.280015
2633.830757 2703.865455 2690.318948
2962.571619 2830.604867 2847.777383
2984.792085 3134.217450 3112.129466
3462.205628 3282.450595 3306.038508
3464.013067 3653.391059 3627.387613

RT Model For HOOD the possible values of n for the torsional problem are
evaluated with eq. (86) and I3/(I; + I3) = 0.6511. The approximative values of
I and I3 for HOOD are given in Tab. ). Considering eqs. [@1) and [{8]) we can
derive the following “symmetries” (basis sets) for k equal to 0, +1, £2:

— 7=0c cos[j w)] with j=0,1,2,... and k=0
— 7=0s: sinf[j wy] with j=1,2,...and k=0
— 7 =1c: cos|(j + €) w)] with j =0,41,42,.. ;¢ = 0.6511 and k = +1
— 7=1s: sin[(j +€) wy] with j =0,+1,+2,..;€=0.6511 and k = £1
— 7=2¢: cos[(j+e) wﬂ with 7 =0,41,42,...; e = 1.3022 and k = £+2
— 7 =25 sin[(j +€) wy] with j = 0,41,42,..; = 1.3022 and k = +2
Another possible way to write these basis sets is the following:

— 7=0c cos[j w,ﬂ with 7=0,1,2,...and k=0
— 7=0s: sin[j w] with j=1,2,...and k=0
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—7=1e cos[(j+e€) w } with 7=0,1,2,...; e =0.6511,0.3489 and k = +1

— 7 =1s sin[(j +¢) wy] with j =0,1,2,...; ¢ = 0.6511,0.3489 and k = %1

— 1 =2¢: cos|(j +€) wy] with § =0,1,2,...; e = 1.3022,0.6978 and k = £2
[ | wi 0,1,2

— 7=2s sin[(j +¢€) wy ,.. €=1.3022,0.6978 and k = £2
With these basis functions the torsional levels given in Tab. [(] are found.

Our results shows that, under the trans barrier, the torsional energy levels are
degenerate. This is independent by the quantum number k£ and, consequently by
the symmetry 7. Significant splitting between different symmetries 7 for the same
level are predicted starting from the sixth level, just and under the cis barrier.
This means that the experimental observation of the separation in symmetries
of the torsional problem could be not so easy.

Table 6. Torsional energy levels of HOOD system calculated with the RT procedure.
Basis set of 400 eigenfunctions for each symmetry. Values in cm™*.

k 0 +1 +2
Levels 7 Oc 0Os 1c 1s 2c 2s
157.414847 157.414847 157.414847 157.414847 157.414847
162.768676 162.768676 162.768676 162.768676 162.768676
398.858888 398.858892 398.858892 398.858892 398.858892
477.489056 477.489043 477.489043 477.489045 477.489045
649.776606 649.776673 649.776673 649.776662 649.776662
821.080170 821.079836 821.079836 821.079891 821.079891
1013.417658 1013.419336 1013.419336 1013.419060 1013.419060
1216.217830 1216.209519 1216.209519 1216.210885 1216.210885
1427.194799 1427.234678 1427.234678 1427.228122 1427.228122
1643.461487 1643.278270 1643.278270 1643.308352 1643.308352
1861.261273 1862.054670 1862.054670 1861.923699 1861.923699
2081.283525 2078.067422 2078.067422 2078.587141 2078.587141
2284.306288 2295.664207 2295.664207 2293.689021 2293.689021
2515.689746 2479.169061 2479.169061 2484.280021 2484.280021
2633.830757 2703.865462 2703.865462 2690.318933 2690.318933
2962.571619 2830.604858 2830.604858 2847.777402 2847.777402
2984.792085 3134.217463 3134.217463 3112.129442 3112.129442
3462.205628 3282.450582 3282.450582 3306.038534 3306.038534
3464.013067 3653.391073 3653.391073 3627.387585 3627.387585

o
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6 Conclusions and Perspective

In this work we have shown how torsional energies can be calculated with both
bi-rotor and by the roto-torsion schemes. We remark that the two schemes are
equivalent and related one to the other. The separation of the overall rotation and
the consequent factorization in symmetries of the torsional problem is possible
in an easy way due to the properties of the Jacobi coordinates (H scheme).
This factorization greatly improves the calculation of the torsional levels, also
describing spectral lines of non symmetric systems like HOOD. Obviously, a
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full calculation, including all the degree of freedom, for not symmetric systems
could be of extreme interest, especially if we consider the origin of the life, see

.

In fact, a variety of organic and inorganic molecules, indispensable for the

development of the live, present one or more torsional degree of freedom. Of
interest is that, frequently, the inertia moments of the two dimers involved in
the torsional mode are different. This means that further level splitting can
be expected with consequently modification of the partition functions and rate
constants.
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Abstract. In this paper we illustrate an approach to the study of the
molecular collision dynamics, suited for massive calculations of vibra-
tional state-specific collision cross sections and rate constants of elemen-
tary gas phase processes involving carbon oxides. These data are used in
the theoretical modeling of the Earth and planetary atmospheres and of
non-equilibrium reactive gas flows containing the CO2 and CO molecules.
The approach is based on classical trajectory simulations of the collision
dynamics and on the bond-bond semi-empirical description of the in-
termolecular interaction potential, that allows the formulation of full
dimension potential energy surfaces (the main input of simulations) for
small and medium size systems. The bond-bond potential energy sur-
faces account for the dependence of the intermolecular interaction on
some basic physical properties of the colliding partners, including mod-
ulations induced by the monomer deformation. The approach has been
incorporated into a Grid empowered simulator able to handle the mod-
eling of the CO2 + CO2 collisions, while extensions to other processes
relevant for the modeling of gaseous flows and atmospheres, such as CO
+ CO — C + CO2 and CO2 + Ng, are object of current work. Here the
case of CO2 4 CO2 collisions will be illustrated in detail to exemplify an
application of the method.

Keywords: Intermolecular interactions, molecular dynamics, carbon
oxides, gas flows, Earth and planetary atmospheres.

1 Introduction

The dynamics of molecules in gaseous systems is dominated by bimolecular col-
lisions events which generate roto-vibrational energy exchange and are there-
fore responsible for the energy relaxation and the state population of molecules.
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In turn, such energy-relaxing and population—altering effects play a key role in
determining the energy balance of several chemical processes. This is precisely
the case of the processes involving carbon oxides, such as COy + CO3, COy +
Ny and CO 4+ CO — C 4 COq, which are object of interest in connection to the
study of Earth’s and planetary atmospheres [II2] (their presence on Venus and
Mars is well documented). Carbon monoxide is also one of the most abundant
molecules in interstellar space. Recently CO molecules have been found in the
10-million-degree gas associated with the young supernova remnant Cassiopeia A
(Cas A, see [3]). Beside their role in astrochemistry and atmospheric chemistry,
the above mentioned collisions involving CO and COs deserve the interest of the
gas dynamics community, since they give rise to a series of elementary processes
relevant to the kinetic and fluid dynamic study of shock waves in connection to
the spacecraft reentry problem (see the FP7 EU project []). Especially in the
cases in which the speed of the vehicles exceeds the local speed of sound, the
consequent formation of a shock wave leads to strong excitation of the molecular
internal degrees of freedom (rotational, vibrational and electronic) and promotes
a strong energy transfer that activates many chemical reactions [5]. The react-
ing gas or plasma, which interacts with the surface of the thermal protection
system, is often characterized by thermal and chemical non equilibrium condi-
tions and the only useful collision observable, that can be safely used in models,
is the collision cross section, a quantity which is not averaged over an energy
distribution.

Further motivations for work on such processes (in addition to their relevance
to the goals of Ref. [4]) come from other innovative fields in which there is need
for carrying out dynamical simulations, namely, supercritical fluids for extrac-
tion processes, the study of the environmental impact of green-house gas, the
exploitation of plasma chemistry.

The quantum mechanical solutions to the problem of the energy transfer are
mainly based on the so called close-coupling approach, where the wave function
describing the scattering process is expanded in a suitable set of basis functions,
most of the times obtained as direct product of the internal states of the colliding
molecules and a set of angular functions. Then the resulting problem is solved
numerically. A main difficulty with applying the close-coupling methods to prob-
lems other than those involving three atoms is that the vibro-rotational basis
sets required become too large for the calculation to be feasible. Improvements
of the feasibility are based on an appropriate choice of the coordinate system
and of the related internal and rotational state basis set [6]. High dimensional
scattering problems are quite common in kinetic modeling of gas phase systems
and the processes involving the CO2 molecules are a paradigmatic example of
the difficulties encountered. Recent attempts in the gas dynamics community
for refining kinetic models at a state-specific level [7], require the calculation
of state-to-state cross sections and rate constant for a representative set of the
many possible state-to-state energy exchange processes. The necessary massive
calculation are very demanding and the use of trajectories, motivated by the fact
that accurate quantum calculations of inelastic and reactive cross sections are
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unfeasible for any system made up by more than four atoms, as well as three-
atom processes become unfeasible when massive calculations, required to form a
data base of state-to-state vibrational exchange cross sections and thermal rate
coeflicients, have to be performed.

The bimolecular collisions are driven by weak non-covalent intermolecular
forces [8I9]. As a consequence, the development of an intermolecular potential
energy surface (PES) is a crucial issue in the theoretical study of molecular dy-
namics, since the description of the interaction is the main input of both quantum
and classical scattering calculations [8/9]. Even for relatively simple systems, high
level ab initio calculations are computationally so demanding that an adequate
investigation of the full configuration space is still, in practice, out of reach. In
order to give a realistic description of the intermolecular interaction for these
cases, semi-empirical approaches are the only viable alternative. An effective for-
mulation of the intermolecular interaction potential is that based on the so called
bond-bond approach (see [I0] and references therein), which expresses the inter-
molecular interaction in terms of bond properties and parameters characterizing
the internal molecular structure, such as charge distributions and polarizabilities
[11]. For the case of the COy 4+ COx collisions treated in Ref. [11], of fundamen-
tal importance, due to the widespread presence of this molecule in Earth and
planetary atmospheres, the effects of vibrations and rotations of the molecule
have to be included in models, since modify polarizabilities and charge distribu-
tions, strongly affecting the interactions. In this respect, the work in Ref. [11]
has improved the existing CO2 dimer PESs (see e.g. [12]), by releasing the frozen
stretching and bending constraints for the CO5 monomers. The resulting inter-
molecular interaction part of the PES is given a flexible analytic formulation
including its dependence on the internal degrees of freedom (stretching and/or
bending) of the monomers. The PESs formulated according to the bond-bond
and related approaches are parametrized using quantities having a well defined
physical meaning, are usable in different environments and conditions, and are
extensible to the description of systems of increasing complexity (see for instance
Refs. [I3IT4U15]). For these reasons, they can easily be used in conjunction with
computational technologies that nowadays make available impressive amounts
of computing time, such as when codes are implemented on the Grid in an orga-
nized form (possibly a work-flow [16]). A work-flow for simulations COg + COq
collisions has recently actually been developed as part of the activities of the
virtual organization COMPCHEM [I7].

In this paper, we will consider the case of vibrational energy transfer in CO5 +
COz collisions, while the other above mentioned processes, CO + CO and CO,
+ Ny, are currently object of ongoing work devoted to build up the required
potential energy surfaces and to perform QCT calculations for cross sections
and rate constants.

The paper is organized as follows. In section [ background information on
the bond-bond approach to the intermolecular PES is given and the application
to the case of CO; + COg collisions is illustrated. In section [] details of QCT
collision dynamics calculations are given and an illustration of typical outcomes
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of molecular dynamics simulations for the case of COs 4+ CO4 collisions, is
proposed. Section Ml contains conclusions and future perspectives.

2 The Representation of the PES

The main input of any scattering calculation is the potential energy function
which represents the interaction energy of the system as a function of the po-
sitions of the atoms. In collision problems there are two atomic or molecular
fragments that, initially at large distance, collide exchanging energy among their
translational, vibrational and rotational degrees of freedom, and eventually get
far apart. At large distances (greater than typical bond distances) long range
attractive interaction dominates, whereas at short distances repulsive forces over-
come the attraction. The collisions are therefore strongly influenced by the com-
bined effect of these attractive and repulsive non-covalent forces, and much of
the effort in the theoretical scattering studies have to be spent for a realistic
description of these interactions. An appropriate representation of a PES for the
collision of two molecules is obtained expressing the interaction potential as a
function of the distance R between the two fragments (centers of mass), of a set
of angles (2 defining the mutual orientation of the fragments, and a set of internal
coordinates, collectively denoted as p, that uniquely defines the configuration of
each colliding partner. This representation permits the formulation of the PES
as a sum of two main terms accounting for the internal interaction energy and
for the intermolecular interaction energy, respectively:

V (Ra Qa P) = V;ntra (P) + Vvinter (Ra “Qv P) (1)

where Vipirq (p) is the internal interaction energy and coincides with the po-
tential energy of the two isolated molecules and Vipter (R, §2; p) represents the
intermolecular part of the interaction, that is supposed to depend parametrically
on the internal structure of the interacting partners.

The term Vipter (1, £2; p) can be conveniently expressed as a sum of two effective
interaction components (the coordinates are omitted for simplicity):

Vvinter = VvdW + ‘/;lect- (2)

where Vi,qw and Vijeer represent the van der Waals (size repulsion plus disper-
sion attraction) and the electrostatic interaction components, respectively. Veeet
originates from the anisotropic molecular charge distributions of the two bodies,
which asymptotically tend to the permanent quadrupole-permanent quadrupole
interaction. Both V,gw and Vet strongly depend on the distance R between
the centers of mass of the two monomers (say the molecules a and b), and also
vary as a function of the additional coordinates (in general taken as angular
coordinates, collectively denoted as {2 in Eq. [I]) defining their mutual orienta-
tion. A careful definition of a suitable set of angular coordinates is important in
many cases, for example when stereochemistry is concerned [I8/T92012T22], or
when an expansion in terms of special angular functions (i.e. hyperspherical har-
monics [232425261272829I30)31]) is needed, similarly to what is usually done
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in quantum and classical mechanics to improve the separability of the internal
degrees of freedom of molecules or clusters (see e. g. [32]).

2.1 The Bond-Bond Approach to the vdW Term

In the framework of the bond-bond approach (see [10] and references therein) the
van der Waals term, V,qw of Eq.[2 is expressed as a sum over the contributions

of all the possible interaction center pairs between the two monomers Vv W

vdW Z R;, 'Yz (3)

where R; is the distance between the reference points of the two interacting cen-
ters of the i-th pair, v; denotes collectively the angular coordinates defining the
related mutual orientation and N is the number of interaction pairs. In most
common applications the interaction centers are chemical bonds, but they can
be atoms, group of atoms or bonds, depending on the structure of the monomers.
Such representation is based on the additive character of the various bond po-
larizability components in contributing to the overall molecular polarizability (a
fundamental feature of the vdW interactions), that can be extended to the re-
lated interaction contributions. Moreover, the interaction terms, so formulated,
indirectly accounts for nonlinear three body effects [33], since bond polarizability
components are not merely the sum of the contributions of the isolated atoms.

The V- term is formulated as an extension and a generalization of the
atom-bond pairwise additive property discussed in Refs [33I34]. It is important
to note that each of the interacting centers considered here is assumed to be
an independent sub-unit having a definite polarizability and a given electronic
charge distribution (it can be, for example, of nearly cylindrical symmetry when
the center is a bond).

The explicit formulation adopted for V., 1. is of the Improved Lennard-Jones
(ILJ) type [35]:

ngvetgfj)’ o flz;) = [n(x;)n m (xli)n(m - n(;‘i()xi)m (‘jz)m] W

where z; is the reduced distance defined as

R;
Runi(vi) )

while +; again denotes collectively the angular coordinates (see Eq. B) and e;
and R,,; are the well depth of the interaction potential and the related equilib-
rium distance respectively. The parameter m takes pair specific values (e.g. the
value is equal to 6 for neutral interacting centers). It is worth emphasizing here
that the ILJ function [35] is definitely more realistic than the original Lennard-
Jones(12,6) one, because it represents more accurately both the size repulsion

T =
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(first term within the square brackets) and the long range dispersion attraction
(second term within the square brackets) [2736].

As a matter of fact, the n exponent is expressed as a function of both the
distance R; and the angles 7; (see Eq. B) using the following empirical equa-
tion [34):

n(x;) = B+ 4.022. (6)

in which § is a parameter depending on the nature and the hardness of the
interacting centers that introduces the metric of a more ambient-like charac-
teristic (that can be named as the hardness of the interacting partners [34I35])
by modulating the repulsion and controlling the strength of the attraction. The
introduction of this modulation (absent in the classical Lennard-Jones potential
function) provides the ILJ expression with the possibility of indirectly taking
into account induction, charge transfer and atom clustering effects.

2.2 The Electrostatic Component

The V,jeer term of Eq.Bloriginates from the anisotropic molecular charge distribu-
tions of the two bodies, which asymptotically tend to the permanent quadrupole-
permanent quadrupole interaction, and can be formulated as a sum of Coulomb
potential terms for each pair of interacting molecules, say a and b. For a given pair
one has:

Vitreet (R, ) = Z Qjadkb (7)
ik

Tjk

where ¢;, and ggp are point charges located on the interacting molecules a and
b and rj; is the distance between them. This improves considerably the usual
expression depending on the product of the molecular quadrupoles @ (see Eq. 9
of Ref. [10]).

In the above given Eq. [ instead, the charge distributions on each molecular
monomer are taken to be compatible with the corresponding calculated molec-
ular quadrupoles.

Such formulation of V.. must be used for cases in which the molecular di-
mensions are not negligible with respect to the intermolecular distance R [9]. The
choice of the spatial distribution of the charge is not complicated for relatively
simple molecules (e.g. triatomics), especially when the dominant role of strongly
charged atoms (e.g. oxygen in HyO) is well evident [373839]. The choice of the
charge centers has instead a certain extent of arbitrariness for more complex
systems (see, e.g., Ref [40/41]).

2.3 The Intermolecular Interaction of the CO; + CO,; System

Both the V,gqw and Ve; terms of Eq. 2l depend, as above mentioned, on the
distance R between the centers of mass of the two molecules (say a and b), and
on a set of angular coordinates, that can be conveniently set up to be the Jacobi
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angular coordinates @,,0, and @ describing the a — b mutual orientation as
well (for examples of the importance of the coordinate choice for the represen-
tation of the molecular potential energy see [42/43] and references therein). To
construct the entire potential energy a set of leading configurations, which differ
for the mutual orientation of the two monomers, can be individuated by the
following values of the angular variables (6,,0,9)=(90°,90°,0°),(90°,90°,90°),
(0°,90°,0°),(0°,0°,0°), (45°,45°,0°) and (60°,60°,0°). The corresponding config-
urations are also referred to as H, X, T, L, S% and S%° (see Fig. 1 of Ref. [T1]).
The van der Waals term, V,gw of Eq. 2 is in turn expressed as a sum of the
contributions deW for all the different possible bond,;-bondy; i-th pairs between
the two monomers.

K
‘/UdW (Ra 9&7 @ba @) = Z VUZdW (Ru 9&17 ebia ¢Z) . (8)

in which R; is in this case the distance between reference points conveniently
placed on the two bonds of the i-th pair, 8,;, 8;, the ¢; are the related mutual
orientation angles, and K = 4 is the number of CO-CO pairs for the two COq
molecules. This formula enforces the additivity of the various bond polarizabil-
ity components that contribute to form the overall molecular polarizability (a
fundamental feature of the vdW interactions) and, as pointed out in section [Z1]
indirectly accounts for three body effects [33].

The VvidW terms are formulated as in Eq. @l exploiting the pairwise additivity
discussed in Refs [33I34]. It is important to note that each of the bonds consid-
ered here is assumed to be an independent diatomic sub-unit having a definite
polarizability and a given electronic charge distribution of nearly cylindrical sym-
metry. In addition, it has been assumed that the reference point of each bond
is set at about the geometric bond center (more precisely the reference point
of the CO pair has been displaced of 0.1278 A towards the O-end) because the
dispersion and the bond centers do not usually coincide. One has [35]:

leglgf) ") _ Flzi) = l”(“fﬁ) 6 (;)() - n(zgi)a (;)6] )

where z;, the reduced distance and the exponent n are as in Eqgs. [l and
respectively, 7; denotes collectively the triple of angles (64, 0y, ¢;) and €; and
R,,; are, as usual, respectively the well depth of the interaction potential and
the related equilibrium distance. Again we would like to emphasize here that the
ILJ function [35] is much more realistic than the o Lennard-Jones(12,6) function
because it better reproduces both the size repulsion (first term within the square
brackets) and the long range dispersion attraction (second term within the square
brackets) [36127].

To obtain a more flexible formulation of the V,?; ;. it has been found convenient
to expand the parameters ¢; and R,,; in terms of bipolar spherical harmonics
AEiL2L () [11]. In this way f(z;), the reduced form of the bond-bond potentials
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(see Ref. [34]) is taken to be the same for all the relative orientations (see Refs.
[44/45)4647]). For the CO2—COx system it was found sufficient to truncate the
expansion to the fifth order:

i(1) = €000 + 22 AR2(3) + AR () 1 BOAPO(y) + 2P () (10)

() = RS-+ REZA(0) + REZAP(0) + D AP0) + REZA(3) (1)

In Appendix A of Ref. [10] it is illustrated a method to estimate the €; and
R,,; expansion parameters from the values of bond (or diatomic molecule) po-
larizability. In the case we are showing here, the five limiting configurations
(mutual orientations) of each ¢ bond-bond pair that have been chosen, are:
H; (04:=90°,0,;=90°,6;=0°), X;(02;=90°,0,;=90°,0;=90°), T4i(04:=90°,05;=0°,
$i=0°), Tp;(0,:=0°,0,,=90°,0;=0°), and L;(04;=0°,0,;=0°,¢;=0°) [48], are con-
sidered for obtaining the €; and R,,; parameters (the method gives the same
parameters for the X; and H; geometries and in the case of rigid molecules also
for T,; and Ty;). For the five selected geometries of each i-th bond-bond pair
the coefficients E{“I”L and R%LQL can be obtained by a simple inversion of
Egs. [0l and [IT] [I0]. The global function obtained in this way is a tentative full
dimensional PES whose accuracy can be improved by a fine tuning of the ¢;
and R,,; parameters by fitting experimental data and by comparing the model
predictions with accurate ab initio electronic structure calculations (see Ref. [L1]
for details about comparisons and parameter optimization).

2.4 Dependence of the Intermolecular Energy on Monomer
Deformations

Unlike the PESs available from the literature [49J50] reproducing the interaction
of two rigid linear molecules, the parameters of the formulation illustrated in the
above sections depend respectively on the C-O bond polarizability, say «, and on
the monomer charge distribution (that determines the molecular multipole mo-
ments) components (see Appendix A of Ref. [10] and Eq.[7)). Therefore the effect
of the modification of the bond length r and of the monomer bending angle § on
the bond polarizability «, and on the positions and values of the point charges,
localized along the CO on the O and C atom (see [I1]), can be explicitly evalu-
ated, and so the consequent changes in the value of the interaction parameters.
For the C-O bond stretching and shrinking an empirical radial dependence of «
on 7 (see the Appendix B of Ref.[10] for a similar problem in the case of Hy and
N3) was worked out (see also detailed discussions in Appendix A of Ref. [I1]).
A multipole moment representation can be obtained for the charge distribution
with the aid of ab initio calculations (see, e. g., Fig. 3 in Ref. [I1]). To this
end, the key point is to fit ab initio data using appropriate analytic functions to
obtain the radial dependence of the point charges on the bond lengths r of each
monomer. (This procedure is shown in detail in Appendix B of Ref. [I1]).
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The dependence of the intermolecular interactions on the bending of the
monomer, has been incorporated into the PES modeling each monomer as an ‘ef-
fective’ linear molecule whose bond length 7 is shorter and whose total electronic
charge, responsible for the molecular polarizability, is decreased along the molec-
ular axis and increased perpendicularly to it with respect to the unbent molecule,
averaging the interaction over oscillations and rotations around the main molec-
ular axis, for each value of the monomer bending angle. This procedure has been
detailed in Appendix C of Ref. [I1], where a dependence on the bending angle has
been included in both the bond polarizability o and the point charges.

3 Molecular Dynamics Simulations

The availability of a realistic intermolecular interaction potential energy surface
allows the dynamical evaluation of the energy exchange occurring in molecu-
lar collisions between external (translation) and internal (rotation, vibration)
degrees of freedom. The energy exchange is primarily due to the effects of the
intermolecular interactions and is in general enhanced as the energy available to
molecular collisions increases (like when warming up a system), although it also
depends in different ways on the initial allocation of energy in the various modes,
since, as seen in previous sections, physical properties such as polarizabilities and
multipole moments can vary significantly with the vibrational and/or rotational
excitation of the molecules. For the reasons mentioned in the above introduc-
tory sections, massive calculations on the systems COy + COs are performed
using the quasi-classical trajectory (QCT) method. This allows us to determine
state-to-state probabilities and cross sections for processes resulting in a energy
exchange between vibrational degrees of freedom. For the CO5 + CO5 systems,
this required to simulate the following non reactive collisions:

CO2(V41, Va2, Va3) + CO2(vp1, Vb2, Vp3) — CO2(V)q, Vg, Uhs) + COg(vl’ﬂ,v{)Q,EJ{)S))

12
where the v,); (i = 1,2,3) are the quantum labels of a normal-mode model for
symmetric stretching, bending and asymmetric stretching respectively, before
(unprimed) and after (primed) the collision event involving the two (a and b) COq
molecules. CO4 is linear in its equilibrium geometry, with degenerate (ground)
bending states. The rotation around the O—C—O molecular axis may occur when
the bending mode is excited and a quantum number for the total molecular
angular momentum projection on the quantization axis z, usually denoted as I
is needed. Nevertheless, the amount of energy associated with rotations around
the molecular axis is neglected in our model treatment of CO5 because it is in
general small and, in any case, smaller than the statistical error of the QCT
calculations (that amounts up to 5 %) [L1].

In our model, separability between rotations and vibrations is allowed, and
the COs molecule is considered to be a linear rotor. However, the effects in-
duced by the modification of the molecular shape occurring during the collision
are properly taken into account by computing the true intermolecular potential
Vinter, as described in Sec. [2.4]
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The QCT calculations illustrated here have been performed using the VENUS96
program [51]. This program has been properly modified in order to incorporate the
CO2—-CO4 potential energy routine obtained according to the approach illustrated
in section 21 and containing a potential energy function for the isolated molecules
(Vintra) [52] and an intermolecular potential energy function Ve (see Eq. ).
The code required additional modifications for the selection of the trajectory initial
conditions.

The initial conditions of the batches of trajectories run for the study re-
ported here were, in fact, selected as follows: the collision energy E was given
a fixed value; the initial rotational angular momenta of the two molecules were
selected through a random sampling of the Boltzmann distribution correspond-
ing to the rotational temperature T}.,; (that for our calculations was set equal
to the translational one, as usually done for this type of massive computational
campaigns); the initial vibrational states of the two molecules were defined by
choosing two triples of integer numbers (one for each molecule) corresponding to
the va(b)1, Va(b)2> Va(p)3 quantum numbers. Then initial coordinates and momenta
for the relative motion were set by assigning a random value to the impact pa-
rameter b in the range [0,by4z], Where byq,, the maximum impact parameter,

Probabilities, CO,(0,0,0) + CO,(0,0,0)

006 T I T I T I T T I T I T I T I T I T
+— (1,2,0) +(1,0,0)
B s—a (1,1,0) +(0,1,0)| ]
L (1,1,0) + (1,1,0)
0.05 a=—a (0,1,0) +(0,0,0)
| *—x (1,0,0) +(0,2,0) | |
(1,2,0) + (1,1,0)
0.04 (1,0,0) +(0,3,0)
— (1,0,0) + (0,4,0)
| (1,1,0) + (0,3,0)
m) L
e 0.03
0.02
0.01
0 L
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E (kcal/mol)

Fig. 1. Transition probabilities, of a series of low probability processes, as a function
of the collision energy for CO2+CO2 collisions with the two molecules initially in their
ground vibrational states, and with initial angular momenta randomly sampled from
a Boltzmann distribution in the hypothesis of rotational temperature equal to the
translational temperature
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Probabilities, CO,(0,0,0) + CO,(0,0,0)
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Fig. 2. Transition probabilities, of a series of high probability processes, as a function
of the collision energy for CO2+COx2 collisions with the two molecules initially in their
ground vibrational states, and with initial angular momenta randomly sampled from
a Boltzmann distribution in the hypothesis of rotational temperature equal to the
translational temperature

was taken as a truncation limit. The molecules were then randomly oriented,
with the initial distances being large enough to make the interaction between
them negligible and the rotation of each of them that of a linear rigid rotor, with
no coupling between rotations and vibrations.

Figures 1 and 2 below, show vibrational transition probabilities as a func-
tion of the collision energy, for collisions of molecules initially in their ground
vibrational state. Figure 1 shows the series of low probability transitions, whose
collective behavior is that of a convergent trend, as the energy increases, to prob-
ability values ranging between 1 and 3 %. A somewhat anomalous behavior is
that of the (0,1,0) + (0,0,0) transition probability, corresponding to the trans-
fer of one energy quantum in the bending mode of one of the two molecules.
The probability profile starts to increase quickly yet at a collision energy of 5
kcal/mol and and exhibits a well pronounced maximum around 40 kcal/mol.
Figure 2 reports a series of similar plots for the largest probability transitions,
showing a slightly different behavior. At low energies (say up to 15 kcal/mol) the
symmetric stretching excitation is the only active process, and the transitions
(1,0,0) + (0,0,0) and (1,0,0) + (1,0,0) dominates, with probabilities around 45
and 30 % respectively. At higher energies, probabilities for these processes de-
crease, while the probability of different excitation processes, involving also the
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Table 1. Probabilities and cross sections for CO2+CO2 collisions at a collision en-
ergy E= 65.0 kcal/mol, initial angular momenta of the molecules sampled randomly
from a Boltzmann distribution at a rotational temperature T,,:=32500 K. The initial
vibrational state of CO2 is the ground vibrational state (0,0,0) for both molecules

V1 Vho Uhs Vhy Uhe Uhs Prob. Cross section (A?)

1 0 0 0 0 0 0.1075 147.68918
1 0 0 1 0 0 0.08809 121.89021
1 1.0 1 0 0 0.07424 105.09936
1 0 0 0 1 0 0.05932 81.49853
1 1.0 0 0 0 0.04761 65.18432
01 0 0 0 O 0.03854 52.54149
0 0 0 0 0 0 0.03310 45.82671
1 2 0 1 0 0 0.02873 39.98163
110 0 1 0 0.02766 37.31915
10 0 0 2 0 0.02123 28.89951
110 1 1 0 0.01876 26.79776
12 0 0 0 0 0.01682 23.52837
10 0 0 3 0 0.01612 22.80238
0 2 0 0 0 0 0.01418 20.15736
12 0 1 1 0 0.01278 18.16008
13 0 1 0 0 0.01307 17.54502
10 0 0 4 0 0.01163 16.71428
01 0 0 1 0 0.01204 16.32544

bending mode, start to increase. There is however a collective behavior at high
energies, similar to that of lower probability transitions of Figure 1, with a trend
convergent to a range of values between 4 and 6 %. A proper averaging of the
probabilities over a sufficiently large set of impact parameters, leads to cross sec-
tions for the energy exchange processes occurring upon COs 4+ COs collisions. As
an example, the probabilities and the corresponding cross sections for the most
relevant vibrational transitions upon collisions of two COs molecules, initially at
their ground vibrational states, for an energy of 65 kcal/mol, are shown in Table
1. The approach illustrated here is in principle applicable to even more complex
systems (e.g. larger molecules or ions, see Refs [53,54]) to obtain cross sections,
provided that a description of the interaction potential is given by means of the
method illustrated in previous Section 2.

Cross sections, at a state-to-state level, are very basic quantities and can
hardly ever be measured, having to be obtained by dynamics simulations of the
collision processes. Rate constants can be obtained at any temperature from
cross sections, provided they have been calculated over a wide range of collision
energies, by averaging them over the appropriate energy distribution.

4 Conclusions

The aim of this paper was to illustrate the validity of a combined method
for state-to-state cross section calculations, obtained using the well established
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bond-bond approach for the construction of intermolecular potential energy sur-
faces and the QCT method for the simulation of collisions. Due to the portability
of the bond-bond method, based on the additivity of bond polarization compo-
nents, and the versatility of the QCTs, this approach has been implemented as
a Grid empowered simulator for massive calculations of cross sections and rate
constants of use in modeling of atmospheres and gaseous flows. To exemplify
the possible applications, the specific case of massive calculations of state-to-
state vibrational energy transfer cross section for COs 4+ COs collisions has
been illustrated, a choice motivated by the importance of this process in Earth
and planetary atmosphere modeling and in the kinetic studies of gaseous flows
encountered in spacecraft reentry problem studies. Other processes involving
carbon oxides are being currently studied with a similar approach and a partic-
ular care is being dedicated to the CO + CO — C + COs reaction. For the CO»
+ COg collisions we have shown vibrational energy transfer probabilities over
a wide range of collision energies, taking advantage of the dependence of the
intermolecular interaction part on the internal geometry of the two molecules,
explicitly included in the PES. Moreover, a list of all the most probable transi-
tions for collisions at energy equal to 65 kca/mol has been shown as a sample
of the huge amount of data that can be obtained by extensive use of the Grid
simulator.

These results confirm that the possibility of obtaining realistic PESs and the
computational efficiency of QCTs (compared to quantum calculations) makes it
possible systematic studies of inelastic and reactive collision processes involving
diatomic and triatomic molecules (the majority of those occurring in the atmo-
spheres and in shock waves during reentry), properly implementing the approach
as a Grid simulator. The resulting tools are then sources for the generation of
cross section and rate constant databases for the kinetic modeling of atmospheres
and gas flows.
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Abstract. An effort is accounted for in the present paper to exhibit
the recently actively investigated connection between the search and use
of 7orbitals” as basis sets in applied quantum mechanics and current
advances in the mathematics of special functions and orthogonal polyno-
mials, which are in turn motivated by the developments of the
quantum theory of angular momentum. The latter theory in modern
applications forms the basis for the class of ”spin-network” algorithms.
These ”orbitals” enjoy important properties regarding orthogonality and
completeness. In configuration space, they are often designated as Kepler-
Coulomb Sturmian orbitals, in momentum space they are intimately
connected with hyperspherical harmonics. The paper contains a brief
presentation including also computational results and a discussion ori-
ented towards the numerical use of these orbitals.

Keywords: Classical orthogonal polynomials, Kepler-Coulomb Sturmi-
ans, configuration space, hydrogenoid orbitals.

1 Introduction

Basic connections among the 6j symbols of angular momentum theory, both with
the theory of superposition coefficients of hyperspherical harmonics and with the
theory of discrete orthogonal polynomials, have been studied in [1, [2].

As we will see in the next section, expanding work in reference [3], we also
sketched a connection between the Askey scheme of orthogonal polynomials and
the tools of angular momentum theory (6j, 3j, rotation D-matrices,. . . ); de-
scending along the scheme corresponds in quantum mechanics to an itinerary
towards the semiclassical limit, while ascending the ladder provides discretiza-
tion algorithms for quantum mechanical calculations (for example, the hyper-
quantization algorithm). This work (Sec. 2) starts by updating the previous one
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[3] by accounting on recent progress and then presents illustrations of exact and
asymptotic formulae of relevance for applications. The main focus of the pa-
per is on the role of orthogonal polynomials and special functions as orbitals in
quantum chemistry and is tackled in Sec. 3. Concluding remarks follow in Sec.
4. This work extends recent work on polynomials [4], spin networks [5-7] and
Sturmian orbitals [§].

2 Polynomials and Spin Networks: Beyond the Quantum
Mechanical Jacobi Ladder

According to the book of Genesis, 28: 10, the biblical patriarch Jacob dreamed
of 7a ladder set up on earth, and the top of it reached to heaven”. The stan-
dard presentation of orthogonal polynomial families (e. g. ref. |[9], Chapter 22)
ascends from the basic polynomials of Hermite, through those of Laguerre up
to Jacobi’s, the latter named after the great mathematician of the Nineteenth
century. Together with their particular cases, these families form what we can
call Jacobi ladder: as is well known, those polynomials where recognized at the
birth of quantum mechanics as occurring in the solution of Schrédinger’s equa-
tion, and are important tools as expansion basis sets for atomic, molecular and
nuclear wavefunctions. Fig. 1 is a sketch of how the mathematicians of the late
Twentieth Century extended the Jacobi ladder in different directions, remark-
ably by introducing polynomials of a discrete variable, or discrete polynomials
for short. Interestingly, these mathematical developments were inspired by the
quantum theory of angular momentum due to Wigner, Racah and others, and
form the topics which include the powerful tools modernly known as ”spin net-
works” [10,11]: some time ago we elaborated such a parallelism [2], as illustrated
in Fig. 2.

From a computational viewpoint, explicit expressions for the 6j coefficients
can be written according to the series expressions of the Racah type, or as gen-
eralized hypergeometric series, or in connection with the Racah polynomials,
and similarly for all functions appearing in Figs. 1 and 2. Orthogonal polyno-
mials of a discrete variable are important tools of numerical analysis for the
representation of functions on grids. As matrix elements of the overlap between
spherical and hyperspherical harmonics [2,[12], they occur in quantum chemistry
as momentum space (or Sturmian) orbitals, see following Section. We exploited
both their connection with the coupling and recoupling coefficients of angular
momentum theory [13] and their asymptotic relationships (semiclassical limit)
[14, 115] to develop a discretization procedure, the hyperquantization algorithm,
applied to the study of anisotropic interactions and of reactive scattering as a
quantum mechanical n-body problem [16]. Use for fitting of potential energy
surfaces has been also proposed [17] and further applications have been made to
stereodirectional dynamics of chemical processes via an exact representation for
scattering matrix [18], as well as to the characterization of atomic and molecular
polarizations |19].

Of great relevance from the viewpoint of quantum chemistry and of applica-
tions in atomic and molecular science are the dual sets of Laguerre and Charlier
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Orthogonal Polynomials (Partial Askey Scheme)

Hypergeometric series

aF3(1)

sF2(1)

oF1(x)

oFo(x) 11F4(x)

2Fol(x)

Polynomials
Discrete
(Quantum)
Racah 1
Hahn Dual Hahn
Jacobi Meixner Kravchuk

Laguerre

Charlier

Hermite

v
Continuous
(Semiclassical)

Fig.1. Classification of orthogonal hypergeometric polynomials (a partial view of
schemes in [1] and [20]). The first column lists the correspondence with the gener-
alized hypergeometric series. Polynomials at the same level are identical, but the role
of the three-term recurrence relation and of the finite difference equation varies - Hahn
and dual Hahn differ in the role played by the ”degree” and the ”variable” parame-
ters, which correspond to the dual role that angular momentum and projection quan-
tum numbers play in vector coupling coefficients. Similarly for the Jacobi polynomials,
where the Meixner and Kravchuk polynomials are the ”discrete” counterparts, and the
Charlier polynomials are the ”discrete” dual of Laguerre polynomials. For the Hermite
polynomials, a ”duality” connects the continuous variable and the discrete polynomial
order: in their occurrence as wavefunctions of the quantum harmonic oscillator (Fig.
2), the duality is between elongation and vibrational level of the oscillator [21].
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Discrete and Continuous Wavefunctions and Spin Networks

6j symbols or Ji Jh Js
Racah coefficients L1
lim &} lim %7}
1,01, ;> g

3j symbols or (jl J js] . {6 } JivoJy Js
Clebsch-Gordan lim ©J m, m, m,

ny m, ni

coefficients alzods s
for all allowedj, Sor all allowedm,
Rotation matrices, (1,2 (B (l’f, - d,f, w(B)
symmetric top, g 4 function of p asa functlon of j as a function of m
Eckart Oscillator \ /\ /
Hydrogenic Orbitals,
. R, (r) R, (r)

Coulomb Sturmians,

as a function of v as a function of n
Morse Oscillator S f /i f

Harmonic Oscillator

[//H (x)

as a function of n and x

Fig. 2. Occurrence of continuous and discrete polynomials in quantum mechanics. The
first two downward connections are limiting relationships which physically correspond
to semiclassical limits, while the remaining ones are progressive confinements in space
due to the form of the potential. Earlier versions of this scheme were given in |2,
3], which also provide explicit asymptotic relationships corresponding to the arrows.
Recent advances are reported in refs. |[5-7], where the main properties are illustrated
in detail.

polynomials, which describe the configuration space radial wavefunctions of the
Kepler-Coulomb problem. (For the classification of hydrogenoid wavefunctions
in momentum space see ref. [22]: they involve D matrices as harmonics on the
Ss hypersphere). The Laguerre and Charlier polynomials occur in the Sturmian
orbitals under focus in the next Section. Their name was derived from their be-
ing solutions of a Sturm-Liouville problem, involving a second order differential
equation of the Schrédinger type. All continuous functions in Figs.1 and 2 enjoy
the same property, and provide orthonormal complete basis sets.

It is remarkable that a modern viewpoint looks at the discrete functions of
Figs. 1 and 2 as orthonormal complete basis sets, which are solutions of three-
term difference equations, considered as discrete Sturm-Liouville problems, and
obtained by diagonalization of Jacobi (again!) matrices |23] (a Jacobi matrix is
real, symmetric and tridiagonal).
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3 Kepler-Coulomb Sturmian Orbitals

As a theory of electronic structure of atoms and molecules, quantum chemistry
uses basis sets for the solution of Schrédinger equation. Because the Schrodinger
equation for the non-relativistic hydrogen atom is analytically soluble in a closed
form, the use of hydrogen-like orbitals as expansion basis sets to calculate the
electronic wavefunctions of atoms and molecules has been extensively considered.
In order to tackle the obstacles encountered for the efficient computation of
matrix elements involved in the calculations, preference has been given over the
years to Gaussian orbitals, more convenient for such purposes.

However, recent progresses concerning the use of Slater orbitals [24-28] have
revived the interest in the more natural [29] (from both the physical and math-
ematical viewpoint) exponential type orbitals. Indeed, the use of a procedure
based on Gaussian orbitals suffers of several disadvantages, among which the
calculation of long-range interactions and of the properties of the excited states,
and the slow convergence in reproducing the cusps in the electronic densities at
nuclei.

Among exponential type orbitals, Sturmian basis sets have been considered by
several authors [30-32] both in their generalized form [30,133-35] and as Coulomb
Sturmians [36-38, 131)] for applications to atomic and molecular structure.

There is a close relationship between Sturmians and Slater type orbitals (see
for instance [39]) and the former can be expressed as a simple linear combination
of the latter, so that progresses in the computation of integrals over Slater type
orbitals can also be exploited for Sturmian basis sets.

The full strength of the approach based on Kepler-Coulomb Sturmians comes
from the fact that their counterparts in momentum space are hyperspherical
harmonics and their overlaps or superposition integrals can be easily reduced to
sums over discrete analogues of classical orthogonal polynomials [1], which, in
turn, can be related to generalizations of vector coupling and recoupling coeffi-
cients (37, 65 or 95 coefficients) |2]. As depicted in |2], the radial part of Coulomb
Sturmians |2, 13] appears as a step in the ladder of Askey scheme [20, 21] of or-
thogonal polynomials of Figure 21

All other functions involving angles or hyperangles can be analytically handled
within this scheme, including limits (downward arrows), explicit matrix elements
for integrals, etc. The reader is invited to see [21].

The quantum mechanics of multielectron atoms and molecules can indeed
be discussed in terms of the breaking of the hyperspherical symmetry of a d-
dimensional hydrogenic atom with d=3(N — 1) for N body Coulomb problems,
due to the introduction of further charged particles (electrons and/or nuclei) [31].
In this case, the generalization of Fock’s treatment [40] to spaces of mathematical
dimensions higher than the physical one allows to study atomic and molecular
structure from the point of view of the broken symmetry of hyperspheres. In
configuration space, Sturmian basis functions can thus be used as expansion
basis sets to build up atomic and molecular orbitals.

This can be done by using the hyperspherical approach, where the motion of
an N body system is reconducted to that of a single particle with reduced mass



Continuous and Discrete Algorithms in Quantum Chemistry 37

M = (I]mi/ > mi)" V=1 in a d-dimensional space. In this space the position
of the particle is given by an hyperradius p and a set of (d-1) hyperangles,
collectively denoted as w.

This method has been long known [41-44] and successfully applied for the
treatment of interactions among few particles (in particular for problems in-
volving nuclear dynamics [45, 46]). The formulation described in ref. |31], which
will be sketched here, has the advantage of fully exploiting the benefits one
can obtain from the use of Coulomb Sturmian basis sets. In particular, (i) The
secular equation can be very compactly formulated. All integrals can be writ-
ten in closed form as matrix elements corresponding to coupling, recoupling or
transformation coefficients of hyperangular momenta algebra. Note that this is
feasible also for the so called ‘radial’ integrals over Laguerre polynomials (see eq.
(@) in the following). As a consequence, the structure of the relevant matrices,
and in particular of their zeroes, can be foreseen and exploited, sparseness being
crucial in applications; (ii) One can resort to alternative basis sets, with different
symmetry properties, to accelerate convergence.

The method is general and thus can be applied to any N-body Coulomb prob-
lem, i.e. to whatsoever mass ratios: The central symmetry of the hydrogen atom
can be broken either by introducing electrons, leading to a multielectron atomic
system, or by introducing further nuclei, leading to a molecular multi-center
problem, to be treated without the Born-Oppenheimer approximation. Applica-
tions so far have concerned three-body problems, considering in particular the
bielectronic series and the Hj molecular ion |31].

In the general case one can write the Schrédinger equation for a system of
N particles interacting through Coulomb forces as (atomic units will be implied
throughout):

L0 400 ARa)?

rd=1 9r or 2 +2V - 28| ¥(r) = 0. (1)

A($24-1) is the Beltrami-Laplace operator on the d-dimensional sphere, with
eigenvalues A\(A+d — 2). Thus, A here plays the role of the grand orbital angular
momentum quantum number and o collectively represents the set of d-2 projec-
tions of A (i.e. the quantum numbers ¢ are eigenvalues of the rotation operators
of the subgroups related to the chosen chain reduction). The Coulomb potential
in hyperspherical coordinates takes the simple factorized form:

(2)

where Z({2) plays the role of an anisotropic charge. Owing to this term equation
([ is not separable: if Z(§2) were a constant equation (II) would coincide with
the Schrodinger equation of the multidimensional hydrogen atom, whose solu-
tions can be obtained exactly as d-dimensional Sturmian basis functions [47].
Therefore, in configuration space the many-body Coulomb problem is isomor-
phic to that of a multidimensional hydrogen atom with an anisotropic charge.
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For this reason the use of d-dimensional Sturmian basis sets to expand multi-
electronic orbitals ¥(r) seems appropriate:

W(I‘) = Z CnioUn\o (I‘) (3)

nio

where u, . (r) are polar Sturmians [47)].
If the expansion (@) is inserted into equation (I), after some manipulations,
one gets the following secular equation:

|A — poIlc =0 (4)

where the eigenvalue is the momentum pg, as appropriate for Sturmian basis
sets. The energy spectrum can be recovered by using the relation E = —p3/2.
In eq. @) I is the unit matrix, c is the eigenvector of the expansion coefficients
and A, the matrix to be diagonalized, is written in terms of radial and angular
integrals:

Ann')\)\’mm’ = Rnn')\)\’ Q)\)\’mm’ (5)

where (2)\xmm is the integral over the w angular variables
Onvorns = / Y5 () Z(2)Yro () dw (6)
and Ry,/an is the radial integral

_ (' =N = 1l(n—X—1)!
Hnne = 2\/(2n +d—3)2n +d—3)[(W + N +d—3)(n+A+d—3)3
(7)

X /exp(onr)(onr)M')‘ +d_2Li€‘:&7:f(QpOT)L?‘:&‘iHZ(2p0r)d(2por).

The result of the integration () depends on the selected parametrization for
the angular variables and on the particular Coulomb system under analysis. In
any case, it can always be expressed in terms of vector coupling and recoupling
coefficients of hyperangular momenta, because equation (@) can be handled to
give an integral over three hyperspherical harmonics.

The explicit expression of the radial integral R, ,/»» depends only on the
number of particles (i.e. on the dimension of configuration space) and not on
the nature of the particles. Furthermore, R,\,/» can be written as a linear
combination of vector coupling coefficients [31]. In the case of the three-body
problem, with d=6, its explicit expression is:

1

At )} (n+A+3)2F+(n—A)zB} (8)

R?m’)\)\’ =
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with

<n'+>\’+2 —nA+AN+2x+4 2 —nt X =X nf —nd+ N X At2 7n'+2>\’+x+4>
2 ' 2 ' 2 ' 2 2 ' 2

n X +3 A—n'+224+43 2/ —n4+ A —x-1 n/—n+k/—)\+1|n/+k+2 2A/—n/+)\+4>
2 ' 2 ' 2 ’ 2 2 ’ 2

B =Y
where F' and B are Clebsch-Gordan coefficients, so Rj,,/ax for a three-body
Coulomb problem depends on the involved quantum numbers only and not on
the nature of the system. Even if this result might seem surprising from a con-
figuration space point of view, if we look at the problem from the momentum
space perspective the whole matrix A,/ xxmm’ can be in fact obtained from
the integration over angular variables only, parametrizing the Sg hypersphere
embedded in a seven-dimensional Euclidean space. Thus the quantum numbers
n and A label the eigenvalues of the generators of the seven-dimensional hyper-
sphere Sg and of a six-dimensional subspace, respectively. Under this perspective,
the possibility of exploiting different parametrizations of Sg, whose symmetry
properties are closer to those of the system, represents an extremely attractive
feature.

Being essentially a continuation of an extensive review presented a dozen
years ago, we dedicate next Section to assess progress in straightforward com-
putational schemes, indicating the need of ”alternative”, or "non canonical”
strategies within the same mathematical framework.

4 Numerical Convergence

It is relevant to document the convergence of the direct procedure by updating
the results [31] exploiting the presently available computational power. The sys-
tem used as benchmark is the helium atom, studied at a non relativistic level
of theory by using the symmetrical parametrization [48, 138], which proved to
give better convergence upon truncation. Such a parametrization is labeled by
three quantum numbers: n the hyperangular quantum number (analogue to the
principal quantum number for the hydrogen atom); A, whose limiting value is
A <n —1 and which, in the case of zero total angular momentum, is restricted
to even values; and u, which has the following range 0 < p < A and must have
the same parity as A\/2, i.e. it changes as p = A\, A —4,...,0 (or 2 according to
the parity of A).

In this Section, we also present some new results concerning the energy of
the first excited states of He for zero total angular momentum (singlet states).
Indeed, it is worth pointing out that the method has a variational behavior and
is effective not only for the ground state but also for the excited states, unlike
most of the popular variational methods.

Here, we use as benchmark -2.903724 Hartree for the ground state [49], and
—2.1458 Hartree and —2.0611 Hartree for the first and second singlet excited
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states, 1s2s and 1s3s, respectively [50]. As mentioned before, the matrix is sym-
metrical and, in principle, infinite: using the proper truncation of the wavefunc-
tion expansion we obtain a finite dimensional matrix that can be diagonalized
with standard algorithms. Different truncation schemes were tested: We started
by using a closed shell truncation, that is by truncating on the quantum num-
ber n, considering all the allowed states in the shell (Table 1). Such a truncation
scheme clearly leads to identical results for all the possible parametrizations that
can be employed (e.g. the asymmetrical one or others [31]). The convergence is
very slow for both ground and excited states, with better numerical results for
the ground state (differences from the benchmark data are reported as A in the
Tables).

Table 1. Closed Shell Truncation

electronic state Nmax dim  FEeqc(Hartree) A(Hartree)
ground 80 11900 -2.8937 0.0100
ground 90 16744  -2.8952 0.0085
1s2s 80 11900  -2.0797 0.0661
1s2s 90 16744  -2.0882 0.0576
1s3s 80 11900  -1.9063 0.1548
1s3s 90 11900  -1.9233 0.1378

The second truncation scheme corresponds to a cut upon the A quantum number
and include all the allowed values of i (Table 2). In |31] it was found that cutting
upon appropriately chosen A values could improve the convergence for the ground
state energy. Indeed, also in the present calculations convergence gets much better
for the ground state, however for the excited states it is worse than in the closed
shell approach, even if the basis set dimension is quite larger. This suggests, not
unsurprisingly, that larger A (or u) states are needed for a correct description of
the excited states energy with respect to that of the ground state.

Table 2. Truncation on A

electronic state Nmax;Amax  dim  Feqc(Hartree) A(Hartree)
ground 280, 32 20976 -2.9001 0.0036
ground 300, 40 33110 -2.9015 0.0022
ground 350, 40 39160 -2.9016 0.0021
1s2s 280, 32 20976 -2.0692 0.0766
1s2s 300, 40 33110 -2.0934 0.0524
1s2s 350, 40 39160 -2.0934 0.0524
1s3s 280, 32 20976 -1.8262 0.2349
1s3s 300, 40 33110 -1.8820 0.1791

1s3s 350, 40 39160 -1.8820 0.1791
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Although it is possible to cut upon both A and u, here we decided to truncate
on the p quantum number only, mostly to understand which quantum number
is determinant to reach a faster convergence on the excited states (Table 3).
The results of ref. [31] indicated that the poor convergence for the ground state
energy obtained by cutting too drastically on A was in fact due to the subsequent
elimination of higher u states.

Table 3. Truncation on p

electronic state Nmax,Amax,fmax  diM  Feqic(Hartree) A(Hartree)
ground 100, 98, 44 19292 -2.8963 0.0074
ground 100, 98, 52 20592 -2.8963 0.0074
1s2s 100, 98, 44 19292 -2.0945 0.0513
1s2s 100, 98, 52 20592 -2.0949 0.0509
1s3s 100, 98, 44 20592 -1.9296 0.1315
1s3s 100, 98, 52 39160 -1.9356 0.1255

Results of Table 3 show that, although very large p values are not needed
to improve convergence for the ground state energy (results published on [31]
indicated that the inclusion of states with pi,,4, larger than 24 were not necessary
to reach convergence, at least with n ~ 100), high values of u are mandatory to
accelerate convergence for excited state energies. This fact also explains the poor
performances obtained through the A truncation scheme. Further calculations are
currently being carried out to improve convergence on the excited states.

In any case, it is clear that alternative ways are to be found: the procedure
is mathematically sound and physically motivated, but the progress towards the
description of the simplest systems is so slow that the search for alternative ways
is the most important direction motivating the further study.

Alternative Sturmian bases (mostly in configuration space) have been con-
structed, often as the product of one-electron Sturmians and applied for extensive
calculations of the energy spectrum of atoms and ions [51], also in strong ex-
ternal fields [52, 53]. Convergence of these sets is rapid, although the spectrum
of the generating eigenproblem is mixed, containing also, apart from discrete
eigenvalues, a continuum part: therefore there is no guarantee that every well-
behaved function of the same variables obeying the same boundary conditions
can be expanded in terms of this basis [54].

Remarkable performances for atomic bound states have been reached through
the introduction of optimal Sturmian basis functions, possessing the correct phys-
ical behavior at short and long distances from the nucleus [33].

5 Concluding Remarks

In general, the construction of families of continuous and discrete polynomials can
be based, according to Favard theorem, on three-term recurrence relationships,



42 D. Calderini et al.

which can be interpreted as finite difference equations. The actual construction
is thus equivalent to the diagonalization of a Jacobi matrix (see Section 2). This
is the standard procedure for the Wigner-Racah coefficients of quantum angular
momentum and for the Racah polynomials considered in 2,13, [5-7] and references
therein, but also for their continuous extensions and their g-analogues in the Askey
(or Nikiforov) schemes [1), 120]. The unique property of these families is that, be-
longing to the so-called hypergeometric or classical type, such diagonalization can
be performed in closed form.

Parallel and future work involves cases where the diagonalization cannot be
performed explicitly, yet mathematically interesting polynomial sets can be char-
acterized, and the motivation for their investigation comes from physical prob-
lems. We refer the reader to cases arising from the separation of the hydrogen
wavefunction in elliptic coordinates [55-57, 132, [58] and from the study of the
spectrum of the quantum mechanical volume operator [4].

Regarding Sturmian approaches, the momentum space perspective, not con-
sidered here but amply cited in the previous referenced literature, is also used
to shed light on the nature and symmetry properties of Coulomb Sturmians and
to obtain important mathematical connections (in terms of angular momentum
algebra) between these sets and their momentum space counterparts, which in-
volve hyperspherical harmonics. Ref. [§] contains both an updated review and a
sketch of future perspectives.
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Abstract. This paper treats 65 symbols or their orthonormal forms as
a function of two variables spanning a square manifold which we call the
“screen”. We show that this approach gives important and interesting
insight. This two dimensional perspective provides the most natural ex-
tension to exhibit the role of these discrete functions as matrix elements
that appear at the very foundation of the modern theory of classical
discrete orthogonal polynomials. Here we present 2D and 1D recursion
relations that are useful for the direct computation of the orthonormal
64, which we name U. We present a convention for the order of the ar-
guments of the 65 that is based on their classical and Regge symmetries,
and a detailed investigation of new geometrical aspects of the 65 symbols.
Specifically we compare the geometric recursion analysis of Schulten and
Gordon with the methods of this paper. The 1D recursion relation, writ-
ten as a matrix diagonalization problem, permits an interpretation as a
discrete Shrodinger-like equations and an asymptotic analysis illustrates
semiclassical and classical limits in terms of Hamiltonian evolution.

1 Introduction

Continuing and extending previous work [1-4] on 65 symbols, (or on the equiva-
lent Racah coefficients), of current use in quantum mechanics and recently also
of interest as the elementary building blocks of spin networks |5H7], in this paper
we (i) - adopt a representation (the “screen”) accounting for exchange and Regge
symmetries; (%) - introduce a recurrence relationship in two variables, allowing
not only a computational algorithm for the generation of the 65 symbols to be
plotted on the screen, but also representing a partial difference equation allow-
ing us to interpret the dynamics of the two dimensional system. (iii) - introduce

B. Murgante et al. (Eds.): ICCSA 2013, Part II, LNCS 7972, pp. 46-F9] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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a recurrence relationship as an equation in one variable, extending the known
ones which are also computationally interesting; (iv) - give a formulation of the
difference equation as a matrix diagonalization problem, allowing its interpreta-
tion as a discrete Schrédinger equation; (v) - discuss geometrical and dynamical
aspects from an asymptotic analysis. We do not provide here detailed proofs of
these results, but give sufficient hints for the reader to work out the derivations.
For some of the topics we refer to a recent problem recently tackled [8]; nu-
merical and geometrical illustrations are presented on a companion paper [9]. A
concluding section introduces aspects of relevance for the general spin networks
by sketching some features of the 95 symbols.

2 The Screen: Classical and Regge Symmetries,
Canonical Form

J3 J Je3
alternative angular momentum coupling schemes |10] by the relation

The Wigner 65 symbols {]1 J2 712 } are defined as a matrix element beetween

(12 (r2) Jagm | jijads (Gas) 3'm') = (=0 T2 H5H 6358, U (1 jada: jrzjas)
where the orthonormal transformation U is
U (jrjzjis; jizdzs) = v/ (212 + 1) (2ja3 + 1) {‘71 J2 712 } (1)
J3 7 J23
For given values of j1, jo, j3, and j the U will be defined over a range for both
j12 and jo3. These ranges are given by

J12 min =max (| j1 —Jj2 |, | 7 —Js 1), J12 maz =min(j1 +j2,7 + js) ,
J23 min =max (| j1 —j [,[j2 = Jjs [), J23 mae =min (j1 +j,j2 + J3),
and J12 min < J12 < J12 mazs  J23 min <J23 < J23 maax- (2)
The screen corresponds to the 65 or, as we specify below, the U values for all
possible values of ji12 and jo3 .
The range for jio and jos is determined by the values of the independent
variables: ji1, jo, j3, and j. In the remainder of this paper we make this clear by

introducing new variables a, b, ¢, d, = and y to replace the j values. We specify
the new variables by establishing a correspondence:

{“”}@{J”?J”} 3)
cdy Js J Ja3

Assuming that x and y remain respectively in the upper and lower right side of
the 65 symbols, there are four classical and one Regge relevant symmetries:

abz| [bazxz| [dcx| Jcdzx| [s—as—bzx ()
cdy | \dcy[ \bay[ laby[ |s—cs—dy]|’
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where s = (a+b+c+d)/2 . It can be shown [2, 1] that Zpew — Tmin =
Ymaz — Ymin = 2min (a,b,c,d, s —d, s — ¢,s — b, s — a) = 2k. The square screen
will contain (2 + 1)? values. The canonical ordering for 6§ screens can now be
specified by considering the two sets of values: a, b, ¢, d and its Regge transform
a=s—a,b=5—-b,c =s—c, and d = s — d. Take the set with the smallest
entry and use the classical 65 symmetries to place this smallest value in the
upper left corner of the 65 symbol. The placement of the other 6j arguments are
determined by the symmetry relations. The resulting symbol has the property
that LTmin = b—a <z < b+a = Tmax and Ymin = d—a < ) < d+a= Ymax-
Furthermore we require that a < b < d for the Canonical form. This may require
using Eq. Bl to ”orient” the screen in this way.

abzx| _ Jady
{cdy}_{cbx} (5)
It can be shown that any symbol to be studied as a function of two entries can
be reduced to the canonical form of Eq. Bl where ¢ < b < d < b+ ¢ — a and
min=d—a+b<c<d+a—b=cnax.

Regge transformation for the parameters of the screen is a linear O(4) trans-
formation:

-11 1 1 a s—a

111 -11 1 b s—b

211 1 —-11 c|l |s—c]|’ (6)
1 1 1 -1 d s—d

It can be checked that several functions appearing below (caustics, ridges, etc.)
are invariant under such symmetry and also when represented on the screen (See

19))-

3 Tetrahedra and 65 Symbols

In the following when we consider 6j properties as correlated to those of the
tetrahedron of Figure [Ia |3], we use the substitutions A =a+1/2, B=b+1/2,
C=c+1/2,D=d+1/2, X =2+1/2,Y = y+ 1/2 which greatly improves all
asymptotic formulas down to surprisingly low values of the entries. We show the
argument ranges where the correspondence with the tetrahedron breaks down
in section

The area of each triangular face is given by the Heron formula:

1

F(A,B.C) =,

VA+B+4+C)Y(-A+B+C)A-B+C)A+B-C) (7)
where A, B, C are the sides of the face. Upper case letters are used here to
stress that geometric lengths are used in the equation. The square of the area
can be also expressed as a Cayley-Menger determinant. Similarly, the square of
the volume of an irregular tetrahedron, can also be written as a Cayley-Menger
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determinant (Eq. B or as a Gramian determinant |11]. The latter determinant
embodies a clearer relationship with a vectorial picture but with partial spoiling
of the symmetry.

0 C?D?Y?1

, |C7 0 x*B*1
v2:288 D? X2 0 A%21]. (8)

Y2 B2 A%2 01

1 1110

An explicit formula, due to Piero della Francesca, will be used in the companion
paper [9]. Additionally mirror symmetry [1], can be used to extend screens to
cover a larger range of arguments. The appearance of squares of tetrahedron
edges entails that the invariance with respect to the exchange X < —X implies
formally x <+ —x — 1 with respect to entries in the 65 symbol. Although this is
physically irrelevant when the js are pseudo-vectors, such as physical spins or
orbital angular momenta, it can be of interest for other (e.g. discrete algorithms)
applications. Regarding the screen, it can be seen that actually by continuation
of X and Y to negative values, one can have replicas that can be glued by cutting
out regions shaded in Fig. 6 in [12], allowing mapping onto the S? manifold.
Figure [[H illustrates V2 for values of a, b, c, and d used later in this paper.

V27107
.0.000
2.000
4.000
6.000
8.000
10.00
.12400
20 30 40 50 60 70

14.00

x
(a) Ponzano-Regge tetra-

hedron built with the six (b) V? (contours for Eq. B), caustics Eq. (gray
angular momenta in the boundary), ridges (solid white Eq.[d dashed Eq.[I3)
65 symbol. for a = 30, b = 45, ¢ = 60, and d = 55.

Fig. 1.

The following equations were first introduced in Refs. [1] and [3], but they are
rewritten here with changed notation. When the values of A, B, C, D and X
are fixed, the maximum value for the volume as a function of Y is given by the
“ridge” curve
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yVmaz _ ((A2 — B%)(C?—D?) + (A2 + B2+ C? + D?)X?2 — X4)1/2 o
2X2 :

the corresponding volume is

AaB,xAc,p,x
meABC’DX:\/ 7 T 10
( ) 5y 9 ) 24X ) ( )
where
2
Ao = (0% = 82" —29% (a® + B%) +~%. (11)
Therefore the two values of Y for which the volume is zero are:
1/2
: Aa B xAc,p,x
YZ _ YVHLa&L 2 + \/ By Ly ) 12
(R )

The values for Y? mark the boundaries between classical and nonclassical re-
gions, and therefore called “caustics”.

Also when the values of A, B, C', D and Y are fixed, the maximum value for
the volume as a function of X is given by the other “ridge” curve:

sVmar _ (A= D?)(C? = B?) + (A + B2 4 C2 4 D*)Y2 -V 1/2 13
B 2y’2 . (13)

4 Recursion Formulas and Exact Calculations

The U values that are represented on the screen must be calculated by efficient
and accurate algorithms, and we employed several methods that we have previ-
ously discussed and tested. Explicit formulas are available either as sums over
a single variable and series, and we have used such calculations with multiple
precision arithmetic in previous work [13],[3], [14], [15] . These high accuracy
calculations are entirely reliable for all U that we have considered in the past,
and the results provide a stringent test for other methods. However recourse to
recursion formulas appears most convenient for fast accurate calculations and
-as we will emphasize- also for semiclassical analysis, in order to understand
high j limit and in reverse to interpret them as discrete wavefunctions obeying
Schrodinger type of difference (rather than differential) equations.

The goal is to determine the elements of the ortho-normal transformation
matrix:

U(x,y):\/(2x+1)(2y+1){i25}. (14)

Two approaches can be used to evaluate U (x,y): evaluate the 65 from recursion
formulas and then apply the normalization or to use direct calculation from
explicit formulas.
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4.1 2D («,y) Recursion for U

In this work, we first derive and computationally implement a two variable recur-
rence that permits construction of the whole orthonormal matrix. The derivation
follows our paper in [14] and is also of interest for other 3nj symbols.

By setting h = 0 in the formula in section [6] , we obtain a five term
recurrence relation for U(x, y):

(1) \/zz:{bxm}{dxlc} (r—1.4)

o L e

(1) \/;zi—f{bx—&-li}{ds&—i—lc} (4 1,9)

(1) \/Qy—l{bylc}{dyla} @y —1)
{

20 +1
2u+1 [byec dya
— U
+H=1 \/2x+1 1cy}{1ay} (@.9)

Jr(1)2y\/2y+3{ll)y+1c}{clly+1a}U(x’y+1) (15)

2z 41 c Yy a 'y

This recurrence relation Eq. [[5 will yield the entire set of U(z,y) that consti-
tute the screen. Replacing the 65 symbols of unit argument with the algebraic
expressions in Varshalovich [10], we obtain an effective method to calculate the
screen.

5 1D (x) Symmetric Recursion for U

Starting with the recurrence relation in Neville [16] and Schulten and Gordon
[17] for the 65 and carefully converting it into a recurrence relation for U, we can
write a three term symmetric recursion relationship, which is here conveniently
represented as an eigenvalue equation:

p+ (@)U (z+ Ly) +w@)U (z,y) +p- (2) U(z - Ly) = A(y) U (z,y) , (16)

where

[V

py(@)={(a+bdb+zx+2)(a+b—2z)(a—b+z+1)(—a+b+x+1)}
s{d+c+z+2) (d+c—a)(d—c+a+1)(-d+ct+az+1)}2 (17)
(x4 1) 72z +1) (22 +3)] 2
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p-(z) =p+(z—1) (18)
wE)=bb+1)—ala+1)+z(z+1)] (19)
x[dd+1)—c(c+1)—z(x+1)]/[z(z+1)
My)=2yly+1)—=bb+1)—c(c+1)] . (20)
For convenience we can also define:
wr = w (@)~ A(y) (21)

A row of the screen may be efficiently and accurately calculated from these
equations. Diagonalization of the symmetric tridiagonal matrix given by the
p+ (x), w(z), p— (x) provides an accurate check: the eigenvalues of the tridiago-
nal matrix precisely match those expected from Eq. 20land eigenvectors generate
U(z,y) . Stable results are obtained with double precision arithmetic.

5.1 Potential Functions and Hamiltonian Dynamics

For the eigenvalue equation (Eq. [I6]), interpreted as discrete Schrodinger-like
equation, two potentials W () and W™ (z) can be defined:

W () = w(e) £2] () | (22)
where [18§]
p(@) = (s (@) +p- (@) (23

or [19]
p (@) =V (p+ (@) p- (2)). (24)

The two definitions agree well except for x near the limits z,,;, Or Tmaz. With
the second choice for p(z) the values for W= are the same at the limits, but
there are differences with the first choice. See the figures [2al and Compare
with Ref. 8] where Hamiltonian dynamics is developed for a similar system.
Braun’s potential functions are closely related to the caustics illustrated in [1]
and [9].

5.2 Geometric Interpretation

The geometrical interpretations of the 65 symbols provide fundamental under-
standing and important semiclassical limits. This approach originates from Pon-
zano and Regge [20] and elaborated by others, notably Schulten and Gordon [17].

The three-term recursion relationship Eq. 6], for U admits an illustration in
terms of a geometric interpretation: with some approximations to be detailed
below one has finite difference equations (see Ref.[16], Eq.(67) for relationships



The Screen Representation of Spin Networks 53

16000 : 1600000
—— | o —
14000 ~ L 1400000 p ~
R N 12000004 / h +
; 12000 < w* ~ \/W
§ 10000 N\ < t 1000000 | 4
° @ |
S 8000 \ 5 800000 \
b \ 3 | \
g

£ 6000 \ S 600000 \
] S -
& 4000 W- £ 400000 W

2000 & 200000

0

T T T T v T 0 T T T T T T
10 20 30 40 50 60 70 80 100 200 300 400 500 600 700 800
X X

(b) Angular momenta: a = 300, b = 450,
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(a) Angular momenta corresponding to
Figurem

Fig. 2. Potential functions corresponding to Eq. 23] (dashed blue and black lines) and
Eq[24] (thin solid orange and red lines)

between recursions and finite difference). Consider the Schulten-Gordon rela-
tionships Eq.(66) and Eq.(67)(Ref. [17]). Here we show new geometric represen-
tations of the recursion relationships.
Bysettinga:A—;,b:B—;,c:C—;,d:D—%,x:X—%,and
y=Y — % one can write Eq. [I6in terms of triangle areas, a length X’, and the
cosine of a dihedral angle f3. The accuracy of this approximation is excellent,

and depends slightly on the choice for X’.

F(X-1,AB)F(X - },C,D)

(x-3)°
FIX+ Y ABFX+1LCD
R TR
(X+3)
F(X',A,B)F(X',C,D
—2cos b3 ( 2 )U(x,y)zo (25)
and Eq.(69)[17]
I 2X’2Y27X/2 (7X/2+D2+CZ) 732 (X/2+D27C2)7A2 (X'27D2+C2)7 (26)

16F (X', B, A) F (X', D, C)
where F(a,b,c) is “area” of abc triangle (Eq.[M). (This recursion relation Eq.

must be multiplied through by 8 to compare precisely with Eq. [I0l)
Here we consider two choices for X’ in Eq.

x?=(x-Y)(x+t =X2—{
2 2 4

X' =X

(27)

(28)
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The first choice (Eq. 7)) provides an almost exact approximation to Eqns. [I7]
I8T9, and 20 coefficients in Eq. The second Eq. 28 uses only integer or half
integer arguments, and for most X works as well as the first. The figures [Bal and
BBl show the errors and their significance. In these figures wy (approx) is specified
as:

F(X',A,B)F(X',C,D)

X2

For either choice of X', the recursion coefficients are connected to the geometry
of tetrahedra [20]:

wy (approx) = —2cos b3 (29)

‘;’VX’ = F(X', A, B)F(X’',C,D)sin0; , (30)

where V is the tetrahedral volume.
Equations 23 can be recast by the geometric mean approximation:

F(X+,,A,B) /F(X+1,A,B)F(X,A,B)

(x+1) VX (X +1) ’ (81)

where A and B can be also replaced by C' and D.
With Eq. 31l Eq. B5 becomes:

VF(X —1,A,B)F(X,A,B)F(X —1,C,D)F(X,C, D)
X(X-1)
VF(X +1,A,B)F(X,A,B)F(X +1,C,D)F(X,C, D)
+ X (X +1)
F(X,A B)F(X,C,D)
X2
This equation is useful, but definitely less accurate than Eq. 2 (See Figures Hal

and [4h]).

With cancellation of terms in X, this Eq. B2l becomes:

Ux-1,y)
U(x+1,y)

—2cos b3 U(z,y) =0, (32)

VE(X —1,A,B)F(X

(X-1)

N VFE(X +1,A,B)F(

(X+1)

VF(X,A,B)F(X,C, D)

X

This is equivalent to the recursion relation of Schulten and Gordon [17], that

they use to establish their semiclassical approximations for 65 symbols. Their

equation is accurate enough for T, <€ T < Tmae, but not so accurate near the

limits.

In terms of the finite difference operator, Eq. B2 becomes after using Eq.

A(z)f(z) = flz +1) = 2f(2) + f(z - 1):

[A%(X) +2—2cosfs]f(X)~0, (34)

LDy 1y

X+1,C,D
+1.6 )U(:E—i-l,y)

—2cos s U(xz,y) =0. (33)
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We have, explicitly

3VX ?
00503::|:\/1— <2F(X,A,B)F(X,C,D)> . (36)

Our Eq. B3l is only slightly different from that of Schulten and Gordon, because
we have an extra X in the denominator of the definition of f (X). This occurs
because we use the recursion for U instead of that for 6.
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5.3 Semiclassical Approximation

The following developments parallel those in B] From the above formulas, and
from that of the volume, we have that

— V = 0 implies cosf3 = +1 and establishes the classical domain between

Xmin and Xmaz
- F(X,A,B) =0 or F(X,C,D) = 0 establish the definition limits ,;, and

wmam M

For a Schrédinger type equation

¥ +p%h =0 R /2m =1 (37)
d,]jz ) )
its discrete analog in a grid having one as a step,
Yny1 + (p2 - 2)1/% +¢n-1 =0, (38)
and we then have after comparing Eq. B8 with Eq. 34
f(X+1)—2cosbsf(X)+ f(X —1)=0. (39)
The identification
p=+(2—2cosf3)/? (40)

is then evident. Here we present a x,y plot Fig. [0 of 1 — cosf3 that clearly shows
this definition of the classical region.

Fig. 5. x,y plot of cos 03 for angular momenta of Fig 1(b)

Evidentially, on the closed loop, we can enforce Bohr-Sommerfeld phase space
quantization:

]{pda::(n-l—l/Q)ﬂ. (41)
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The eigenvalues n obtained in this way may be easily related to the allowed
y. These formulas are illustrated in Fig. 6 and 7 of Ref [3].
The Ponzano-Regge formula for the 65 in the classical region is

{335}*’tirvﬁ”“@* 42)

where the Ponzano-Regge phase is: @ = A6y + B0y + X03+Cni+ D2 +Yn3+ 7 .
The angles are determined by rearranged equations: Eq. The various dihedral
angles are found from the equations in [20)].

To the extent that the Ponzano-Regge approximation is valid we see that the
6j symbols have a magnitude envelop given by V' and a phase that is a function
of X and Y determined by &. Eq. [42] works quite well for X and Y well within
the classical region. However its use near the caustics is limited because of two
factors:

1. The approximate recursion relation given by Eq. differs most from the
exact recursion Eqs. [IRIIR0 near the caustics.

2. The semiclassical approximation for the 65 also breaks down near the caus-
tics.

For piece-wise extensions , see |20] and for uniformly valid formulas see [17].

6 95 and Higher Spin Networks

In this work, we first have derived and computationally implemented a two
variable recurrence that permits construction of the whole orthonormal matrix
The derivation follows our paper in [14] and is also of interest for other 3nj
symbols.

We find in [14]; see also [10], the following 2D recurrence relationship for 9;
symbols:

( : abe+1 ( ) abe—1 ( : a be
Acti(ab, fj Ac(ab, fj A ef,a
(c—:l)(20+J1) de f + c(20+1§ de f - (d(fll)(zdf{) d+1le f
gh j gh J g hj
( : a be ( : ( : abec
Aq(ef,a _ | Ba(ag,fe Be(ab,jf
- dd(2d+1£)7 d—1le f = [ ;(dil) - c(c+f) } de f
g hj ghj )
Ag(pryst)=[(—p+r+q(p—r+q (p+r—qg+(p+r+qg+1)2

[(—
xK—s+t+qu—t+qu+t—q+1ﬂs+t+q+nﬁ
By(pr,st) =[q(g+1)—p+1)+r(+1)][glg+1)—s(s+1)+t(t+1)]
(43)

Geometrical interpretations of A’s as proportional to products of areas of trian-
gular faces and of B’s as angular functions of associated structures, will serve for
further work on the dynamical description of general spin networks. As noted in
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[14], Eq. I8l can be derived by setting h = 0 in Eq. @3] and using the property
that a 3nj symbol downgrades to a (3n — 1)j symbol when one of its entries is
zero. In conclusion, expanding the discussion of Eq. 43 in [14], we suggest that
the “screen” for the above 95 symbols is three-dimensional, and generalization
to higher spin networks should be straight forward.

Acknowledgement. We thank Professor Annalisa Marzuoli for many produc-
tive discussions during this research.
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Abstract. This article presents and discusses in detail the results of
extensive exact calculations of the most basic ingredients of spin net-
works, the Racah coefficients ( or Wigner 65 symbols), exhibiting their
salient features when considered as a function of two variables - a natu-
ral choice due to their origin as elements of a square orthogonal matrix
- and illustrated by use of a projection on a square screen introduced
recently. On these screens, shown are images which provide a systematic
classification of features previously introduced to represent the caustic
and ridge curves ( which delimit the boundaries between oscillatory and
evanescent behaviour according to the asymptotic analysis of semiclas-
sical approaches). Particular relevance is given to the surprising role of
the intriguing symmetries discovered long ago by Regge and recently re-
visited; from their use, together with other newly discovered properties
and in conjunction with the traditional combinatorial ones, a picture
emerges of the amplitudes and phases of these discrete wavefunctions, of
interest in wide areas as building blocks of basic and applied quantum
mechanics.

1 Introduction

In this paper, extensive computational results serve to illustrate the main fea-
tures of the well known Wigner 65 symbols ( or equivalently of the related Racah
coefficients). Their importance has transcended the context of the quantum the-
ory of angular momentum, where they were introduced originally: they appear
as the building blocks of spin network structures, of widespread relevance in
quantum science and its applications [I], [2].

In their introduction as matrix elements between alternative angular mo-
mentum coupling schemes, Wigner and Racah had the insight of associating
the six entries of a 6-j symbol with the lengths of the edges of a (generally
irregular) tetrahedron and established asymptotic (or semi-classical) relation-
ships with the geometrical properties, such as volumes and dihedral angles, of
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such a tetrahedron. In 1968, Ponzano and Regge [3] initiated the study of the
functional dependence of the 6j-symbol on one of its six entries, arguing for a
role of the tetrahedral volume and dihedral angles in the amplitude and phase
of a (discrete) WKB-type of approximation of a wave-function. Independently,
Neville [4] and Schulten and Gordon [5] provided rigorous derivations: the latter
also introducing efficient computational procedures [6] (for account of progress
see [7]) and numerical illustrations from this one-dimensional perspective (see
also [8], [9], [I0]). The closely related Racah polynomials [11], [I2], [13], [I4] are
at the foundation of modern approaches in the theory and applications of spe-
cial functions and orthogonal polynomials. In this account, we present for the
first time illustrations from the two-dimensional perspective, which is naturally
based on the view [], [9], [I0] of the 6-j symbols as matrix elements enjoying
a self dual property. The basic ideas of this approach are referred to in [9], [10]
as the 4-j model : accordingly here plots as a function of two discrete variables
are given in a square screen (see [I5]), in a sense generalizing the traditional
presentations in square numerical tables [16]. After a presentation of the gen-
eral case in Section II, we illustrate symmetric and limiting cases in Section IIT
(an important case being that of the Clebsch-Gordan coefficients, also known
as Wigners 3-j symbols, see [I7] ). In the order of presentation, we are closely
following the previous classification of the classical-quantum boundaries [I5]. In
section IV, we provide additional and concluding remarks.

2 Some Theory and Methods

We present screen images in the next section that include the values of the 6j
symbols or more precisely the U(z,y) = \/(2z +1) (2y + 1) {Z 25} The U
values have been calculated with a variety of methods: direct summation with
multi-precision arithmetic [I8], [19], exact integer arithmetic, three- and five-
term recursion relations [20], and checked by solving the eigenvalue equation [20].
All the calculations give precise agreement with each other.

2.1 Canonical Ordering

We choose the Canonical ordering of the a,b,c,d as proposed in [20]. In this
ordering a is the smallest of the eight values a, b, ¢, d,a’,b’, ¢, d" with the primed
quantities the Regge conjugate values of the unprimed values. The ordering
assures that the screen has dimension (2a+ 1) x (2a + 1) and the ranges b — a <
z<b+aandd—a<y<d+a. For most of the cases considered in this paper,
this Canonical form agrees with a slightly different ordering proposed in [21].

We have also found that the following expressions for s, r, u, and v are useful
for describing the topology of the screens corresponding to different values for
a,b,c and d. See Ref. [21] for more discussion.
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s=[la+c)+ (b+d)]/2 (1)
r=[a+c)—(b+d)]/2 (2)
u=[(a+bd)—(c+d)]/2 (3)
v=(a+d) = (b+c)]/2 (4)

For these definitions, s is the semiperimeter, r is the difference in the sums of
column values, u is the difference in the sums of row values, and v is the difference
between sums of diagonals. The definitions for r,u,v in equations Bl B and [
constrain the values for ¢ in the Canonical ordering such that either v or » must
be equal or less than 0, and u must also be less than 0.

Ponzano-Regge Theory. The screen images show many features most of
which are explained with the Ponzano-Regge theory and some symmetry con-
siderations. The Ponzano-Regge estimate for 65 in the classical region (V2 > 0)

is
abzx 1
~ cos (D), 5
{cdy} V12r|V| @) )

Hence the 65 symbols have a magnitude envelope determined by the tetrahedron
volume, V', and oscillations given by the Cosine of the Ponzano-Regge phase ®.
Both the volume and the phase are given by the geometry of the tetrahedron
with sides: A, B,C, D, X, and Y (See [3] for details. Here A =a+1/2,...., X =
x+1/2,)Y =y+1/2).

The square volume of the tetrahedron can be calculated with a Cayley-Menger
or a Gram determinant, but the results obtained with both determinants are
equivalent to the famous formula known to Euler but first found five centuries ago
by the Renaissance mathematician, architect and painter Piero della Francesca.
We give his formula arranged as needed in the following.

288V% = 24%C3*(—A* + B> + X2 + Y? + D? - C?)
+2B?D*(A* - B2+ X2 +Y? - D? + C?)
+2X2Y23(A* + B* - X? - Y? + D* + C?)
—(A%+C?)(B* + D*)(X? +Y?)
—(4* = C*)(B* - D*)(X* —Y?) (6)

We write the Ponzano-Regge phase as ® = At + B2+ X03+Cn1+Dna+Yn3+7)
(See [3], [5]).

2.2 Piero Line Symmetries

An important screen symmetry is the possible presence of a Piero line where the
6j and U are symmetric with respect to interchange of x and y. The classical
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Fig. 1. Plot of |U(z,y)| for a = 30,b = 45, ¢ = 60, d = 55. Ranges are 15 < x < 75 and
25 < y < 85. There are 2a+ 1 values of z and y. This corresponds to fig. 1a in [I5]. The
caustic closed curve (light gray), corresponding to zero volume (Eq. [f]) encircles the
classical region of positive volume, showing oscillatory behaviour, while outside in the
four nonclassical regions the values are exponentially decaying,. This is the canonical
form with a < b < d namely the screen is oriented, the caustic touching the sides at four
points, denoted North, West, South and Eastern gates( see Sec Concluding remarks).
The corresponding Regge conjugate can be shown to be a = 50,b = 65, c = 40,d = 35.
None of the primed quantities are smaller than a.

abz| Jady
cdy|[ lcbzx
to this interchange if b = d, if the 65 is written in the conventional order where a
is equal to the smallest argument. The Piero line is the diagonal corresponding
to x = y, and the 65 or U are symmetric with respect to this line. The Piero
equation for V2, Eq. (6) shows this symmetry very clearly. The first four lines in
Eq. (Bl are symmetric with respect to interchange of X and Y, but the symmetry
is broken with the term in the last row unless B = D. (It seems that the other
possible case where A = C, can not occur for conventional ordering unless B is
also equal to D). There appear no exact symmetries for U or 6; with respect
to the line = 4+ ¥ = Tinin + Ymaz- There will be a Piero line symmetry whenever
u = v (See Eqns. 3] H)). Piero line symmetries are found in Figures [Gal [7] Ral RL]
and [90] in Section

symmetry relation: shows that the screen will be invariant

2.3 Regge Symmetry

The Regge conjugate will be the same as the original if the sum of any two of
a,b, c,d is the same as the sum of the other two. Hence the Regge conjugate will
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20 30 40 50 60 70
X

Fig. 2. The figure shows the region of the z,y plane relevant for the 6j-symbol with
the same values of a, b, ¢ and d as in Fig. [[l The small spots are the quantized values
of z and y, at which the 6j-symbol is defined. The heavy light gray oval curve is the
caustic line, which surrounds the classically allowed region. The lighter lines and color
changes inside the classically allowed region are the contours of the Ponzano-Regge
phase @. Contour lines are separated by a phase difference of 2. As we move across a
horizontal line, varying « while holding y fixed, we can see how many spots lie between
two contour values of @. For example, near the upper right side of the caustic curve
there are up to nine spots between contour values. This means that if the 6j-symbol is
plotted in a stick diagram, as in Fig. 1 of Ref. [9], then there will be several sticks under
a single lobe of oscillation of the 6j-symbol, as shown in the right side of that figure.
But near the bottom of the caustic curve, there are approximately only two spots per
27 increment of phase, which means that the sticks alternate in sign, as shown on the
left side of Fig. 1 of Ref. [9].

be the same if the product ruv = 0. This equivalence between the original and
Regge conjugate is found for the cases corresponding to Figures [Gal, [BD, Bal, [Bal,
[BD] @al and

2.4 Location of Gates

We define a gate as the place along each of the four sides of the screen where
the caustic line, V2 = 0 touches the side. The gate will generally be some where
in the center of a side, but for specific choices for a,b, c,d the gates may coa-
lesce at the corners of the screen or occupy an entire side. Eqns. 2] B, and @l also
yield information about the location of the gates. We start with the approximate
equation (7)) for the value of y that gives the maximum volume of the tetrahedron
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(a) Plot of |U(z,y)| for a = 100,b =
110,¢ = 130 and d = 140. Ranges are
10 < z < 210 and 40 < y < 240.
This corresponds to fig 1b in [I5]. Caustic
and ridge lines are shown. . In this case
v = 0 and therefore the two Regge conju-
gates are identical. Note the coalescence
of Northern and Western gates at the up-
per left corner, also because v = 0, Eq.

@
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caustic line

240

(b) Plot of |U(z,y)| for a = 100, b = 140,
¢ =130 and d = 110. 40 < x < 240 and
10 < y < 210. This corresponds to fig.
lc in [I5]. As in the previous case Fig.
[Bal the values spanned by z and y are
both 2a + 1, but they are interchanged,
namely the convention for the orientation
of the screen is not adopted. Again, since
u = 0, the two Regge conjugates are iden-
tical. Actually the previous case and this
one are connected by a classical exchange
symmetry, and the two figures are related
by reflection with respect to the diagonal
of the screen connecting lower left and up-
per right corners. Now the coalescence is
between the East and South gates, which
are moved to the lower right corner of the
screen, because u = 0, Eq.

Fig.5

for a given x. This approximate equation assumes that all of the quantities
A,B,C,D, X,Y are large enough to be replaced by a,b, ¢, d, z,y.

2
YWmaz =

(a? —b?)(® — d?) + (a® + b* + % + d?)2? — 2*

(7)

222

This equation gives the analytic results that the values of y giving positive V2
in the corners of the screen are given as follows (We are assuming conventional
ordering). These results were first described in Ref. [I5].

1. For r = 0 (Eq. ), For = b — a, Yymaz = d — a. Positive V2 is found at
the south-west corner. As |r| increases, the lower branch of the caustic line
is found further from this corner. See figure

2. For u = 0 (Eq. B), For x = b+ a, yvmaes = d — a. Positive V2 is found at
the south-east corner. See figure [5hl

3. For v =0 (Eq.H), For z = b—a, yyvmaz = d+ a. Positive V2 is found at the

north-west corner. See figure [Gal
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(a) Plot of |U(z,y)| for a = 100, b = 130,
c = 140 and d = 110. 30 < x < 230 and
10 < y < 210. This corresponds to fig.1d
in [15], where only the caustic and ridge
curves were given. The values spanned by
z and y are both 2a + 1. As in the previ-
ous two cases, a relationship holds: here
we have r = 0 (Eq.[2)), and the two Regge
conjugates are again identical, but the co-
alescence is now between the West and
South gates, in the lower left corner of
the screen. A reflection symmetry is to
be noted with respect to the diagonal of
the screen connecting lower left and upper
right corners.

Uyl

1.000E-07

X

(b) Plot of |U(z,y)| for a = 70, b = 130,
¢ =180 and d = 180. 60 < x < 200 and
110 < y < 250. This plot of |U(z,y)| cor-
responds to Fig. 2 in [15], where only the
caustic and ridge curves were given for
a = 100,b = 100,c¢ = 150 and d = 210.
Ranges are 60 = x = 200 and 110 =y =
250. This latter plot is not canonical: in
fact, the Regge conjugate has a = 70;b =
130; ¢ = 180, d = 180.

Fig. 6.

We can note that positive V2 will never occur in the north-east corner. More
than one of these conditions may be present. See figuresBal and [RH for v = v = 0,
figure[@al for r = v = 0 ( here the west side of the caustic line is the line x = b—a,

and figure @bl for r = u = v = 0.

3 Images and Discussion

This section reports and discusses a series of graphs where the plots of caustics
and ridges published in Ref. [15] are superimposed on z — y color plots of true U.
The following features are common to all of the plots except Figures 2 B, and @l

1. The angular momenta a, b, ¢, d are written in Canonical form, which means
that the screens have dimension (2a 4 1) x (2a + 1), and the ranges of x and
yareb—a<z<bt+aandd—a<y<d+a.

2. All the figures show the caustic line (light gray oval)that encircles the central,

classical regions where (V2 > 0).

w

. All the figures also show the ridge lines solid and dashed white lines.

4. All of the figures except Figures 2 Bl and @ display |U(x,y)|.
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Fig. 7. Plot of |U(z,y)| for a = 70, b = 180, ¢ = 130 and d = 180. 110 < z < 250
and 110 < y < 250. Plot of |U(z,y)| corresponding to Fig. 3 in [I5], where only the
caustic and ridge curves were given, for a = 100;b = 150; ¢ = 100; d = 210. Since the
Regge conjugate has a = 70;b = 180;¢c = 130 and d = 180, the plot can be taken as
canonical, at variance with Fig 8a. Now since u = v = —30 there is a Piero line which
is the diagonal from the lower left corner to the upper right corner, making the plot
symmetrical by reflection.

3.1 General Case

The general case is found when there are no special symmetries, and Figure [
shows an example. This plot of |U(x,y)| shows several striking features that can
be explained inside the caustics line (boundary between V2 > 0 and V2 < 0)
with the Ponzano-Regge theory [3]. The figure shows that the U are small where
V2 is maximum. This occurs at the intersection of the two ridge lines, which
show the This occurs where the V2 is maximum as a function of y for given x
and as a function of z for given y (see Figure Ml). The magnitude of U tends
to increase as the caustic line is approached the x,y point corresponding to the
maximum. Most of the structure in Fig.[Ilis a consequence of the Ponzano-Regge
phase (Cosine term in equation[]). Figure 2 shows this phase for the same values
of a,b,c,d. Figure Bl gives the | cos ®| values for the screen, and it is obvious that
the structure in Fig. [ agrees well with the expectations of the Ponzano-Regge
theory. We have found that the same argument can also explain all of the images
in Figures 5-9 in this paper.
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(a) Plot of |U(z,y)| for a = 100, b = 200,
¢ =100 and d = 200. 100 < z < 300 and
100 < y < 300. Plot of |U(z,y)| for the
case of Fig. 4a in [15], where only the caus-
tic and ridge curves were given, the canon-
ical form being endorsed when param-
eters are rewritten exchanging columns
as follows: @ = 100;b = 200;¢ = 100
and d = 200. Here, since u = v = 0,
Regge symmetry makes conjugates iden-
tical, and there is a Piero line symmetry.
Note for comparison to the following case
that » = —100.
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(b) Plot of |U(z,y)| for a = 100, b = 110,
¢ =100 and d = 110. 10 < z < 210 and
10 < y < 210. Plot of |U(z, y)| for the case
of Fig. 4b in [15], where only the caustic
and ridge curves were given, the canonical
form being endorsed when parameters are
rewritten exchanging columns as follows:
a =100;b = 110; ¢ = 100 and d = 110. As
in Fig 9, since u = v = 0, Regge symme-
try makes conjugates identical, and there
is Piero symmetry. Note for comparison to
the previous case that now r = —10 :the
lower difference between sums of columns
shows qualitative shape changes for mis-
match between columns.

Fig. 8

Figure[also shows the general fact that the magnitude of the U are oscillatory
in the classical region, V2 > 0, and exponentially decreasing as x,y is moved
deeper into the nonclassical region. The values for U can be estimated with a
suitable extension of the Ponzano-Regge theory (See Ref. [3]).

3.2 Symmetric Cases

Figures 5-9 show images of screens with different symmetries. They illustrate
cases where the gates coalesce in the northwest, southwest, and southeast
corners, and Piero line symmetries. They also show cases where the Regge con-
jugates are the same as the 65 with the original arguments, and where the 6;

approximate 35 symbols.

4 Discussion, Additional and Concluding Remarks

The extensive images of the exactly calculated 6;’s on the square screens il-
lustrate how the caustic curves separate the classical and nonclassical regions,
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(a) Plot of |U(z,y)| for a = 100, b = 100,
¢ = 1000 and d = 1000. 0 < z < 200
and 900 < y < 1100. Case when both
r = 0 and v = 0. This corresponds to fig.5
in [I5], where only the caustic and ridge
curves were given. Now r = v = 0, and
the two Regge conjugates are again iden-
tical, but the coalescence is now of both
the North and South gates with the West
gate, on the full line from the lower left
to the upper left corners of the screen, As
noted in [I5], since a,b and z are smaller
than ¢,d and y, we can regard this plot
as that of a 3j symbol, ( : : : ) where
the entries in the upper row are the an-
gular momenta 100, 100, z and the corre-
sponding projections in the lower row are
y - 1000, 1000 — y, 0. Note that a reflec-
tion along the y line by mirror symmetry
would lead to a replica of the image on the
screen whereby the plane would consist
of a classically allowed region limited by
an ellipse as a caustic curve. In the view
of the plot as that of the 3j symbol, de-
scribed above, the operation corresponds
to that of allowing one of the nonzero pro-
jection to change sign.

Uyl

(b) Plot of |U(z,y)| for the fully symmet-
ric case: a = 100, b = 100, ¢ = 100 and
d=100. 0 <z <200 and 0 < y < 200.
This corresponds to fig.6 in [15], where
only the caustic and ridge curves were
given. The three relationships as in figures
4, 5 and 6 occur here, sincer = u = v = 0.
The two Regge conjugates are again iden-
tical: one of the coalescences is again as
in Fig 11 of both the North and South
gates with the West gate, on the full line
from the lower left to the upper left cor-
ners of the screen; :now another coales-
cence is of both the East and West gates
with the South gate, on the full line from
the lower left to the lower right corners
of the screen. Also since ruv = 0 there
is a Piero line as the diagonal from the
lower left corner to the upper right corner,
making the plot symmetrical by reflec-
tion along this line. As noted in [I5], re-
peated reflections along the x and y lines
by mirror symmetry would lead to repli-
cas of the image on the screen, whereby
the plane would consist of classically al-
lowed regions limited by circles as caus-
tics, tangent in four points.

Fig.9

where they show wavelike and evanescent behaviour respectively. Limiting cases,
and in particular those referring to 35 and Wigner’s d matrix elements can be
analogously depicted and discussed. Interesting also are the ridge lines, which
separate the images in the screen tending to qualitatively different foldings of
the quadrilateral, namely convex in the upper right region, concave in the upper
left and lower right ones, and crossed in the lower left region.



The Screen Representation of Spin Networks 71

Catastrophe theory classification. The pictures of 6-j on the screen in the
previous Section exhibit most clearly features amenable to be classified in terms
of catastrophe theory, with a panorama of valley bottoms, ridges and both elliptic
and hyperbolic umbilics arising in the two-dimensional membrane-like modes.
See [9], [22].

Chirality gates. This remark concerns the formal analogy between the present
problem of four angular momenta arranged as vectors having a (not necessarily)
planar quadrilater structure and those of the motion of tetra-atomic or four center
structures where bonds can be treated as rigid while bending and torsion modes
are allowed. If we consider A, B, C, D, as the lengths of the four bonds, and X
and Y as the diagonals of the quadrilateral, i.e. the distances between atoms not
connected by bonds, a screen representation can be set up, the caustic correspond-
ing to allowed planar configurations. It is known that transition between chirality
pairs in tetrahedral structure corresponds to flattened structures, and therefore
the caustic curves shows configurations through which such a system would find its
way to chirality exchange modes. In particular the four points where in the generic
case (figures 1-4) the caustic touches the screen, are labeled accordingly North,
West, South and East gates, since they mark where and how a planar structure
should fold to perform such chirality interchange mode. In Ref. [21] a similarity
is also pointed out with the celebrated problem of the kinematics of the four-bar
linkage, the fundamental mobile mechanism of engines.

Alternative mappings. Motivated from the phase-space analysis of semiclas-
sical dynamics in Ref. [10], alternatively to the x,y screen it is interesting to
consider other conjugated variables such as e.g. x and the associated momentum
Pz, corresponding to a dihedral torsional mode. The corresponding mapping,
rather than on a square, is on a spherical triangle on the surface of the sphere
S2. We are also exploring a third type of mappings involving the modes of torsion
angles corresponding e.g. to p, and p,, of interest for intramolecular dynamics.

Work on extensions to 3nj symbols, to ¢ analogues, and to alternative coor-
dinates of elliptic type is in progress.
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Abstract. In this paper we consider the discrete unit disk cover problem
and the rectangular region cover problem as follows.

Given a set P of points and a set D of unit disks in the plane such
that Up,ep D; covers all the points in P, select minimum cardinality
subset D* C D such that each point in P is covered by at least one
disk in D*.

Given rectangular region R and a set D of unit disks in the plane such
that R C Up,epD;, select minimum cardinality subset D** C D
such that each point of a given rectangular region R is covered by
at least one disk in D**.

For the first problem, we propose an (9 + ¢)-factor (0 < € < 6) ap-
proximation algorithm. The previous best known approximation factor
was 15 [Fraser, R., Lépez-Ortiz, A.: The within-strip discrete unit disk
cover problem, Can. Conf. on Comp. Geom. 61-66 (2012)]. For the sec-
ond problem, we propose (i) an (9 + €)-factor (0 < € < 6) approxi-
mation algorithm, (ii) an 2.25-factor approximation algorithm in reduce
radius setup, improving previous 4-factor approximation result in the
same setup [Funke, S., Kesseelman, A., Kuhn, F., Lotker, Z., Segal,
M.: Improved approximation algorithms for connected sensor cover. Wir.
Net. 13, 153-164 (2007)].

The solution of the discrete unit disk cover problem is based on a
polynomial time approzimation scheme (PTAS) for the subproblem line
separable discrete unit disk cover, where all the points in PP are on one
side of a line and covered by the disks centered on the other side of that
line.

Keywords: Discrete Unit Disk Cover, Approximation Algorithm, Com-
putational Geometry.

1 Introduction

In the unit disk cover (UDC) problem, we consider two problems, namely the dis-
crete unit disk cover (DUDC) problem and the rectangular region cover (RRC)
problem. In the DUDC problem, given a set P = {pi1,pa,...,pn} of n points
and a set D = {d1,ds,...,dm} of m unit disks in the plane, we wish to de-
termine the minimum cardinality set D* C D such that P N D* = P. In the

B. Murgante et al. (Eds.): ICCSA 2013, Part II, LNCS 7972, pp. 73-B5] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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rectangular region cover (RRC) problem, given a rectangular region R and a set
D ={di,dz,...,dn} of m unit disks in the plane, the objective is to determine
the minimum cardinality set D** C D such that R N D** = R. The DUDC
and the RRC problems are geometric versions of the general set cover problem
which is known to be NP-complete [14]. The general set cover problem is not
approximable within a factor of clogn, for some constant ¢, where n is the size
of input. However, the DUDC and the RRC problems admit constant factor ap-
proximation results. These two problems have been studied extensively due to
their wide applications in wireless networks [6, [11], [19].

1.1 Related Work

The DUDC problem has a long history in the literature. It is an NP-complete
problem [14]. The first constant factor approximation algorithm has been pro-
posed by Bronnimann and Goodrich 4] using the concept of epsilon net. After
that many authors proposed constant factor approximation algorithm for the
DUDC problem |3, 16-8, 17, [18]. A summary of such results are available in [10].
Using local search, Mustafa and Ray [17] proposed a PTAS for the DUDC prob-

lem. The time complexity of their PTAS is O(mQ'(ng)z‘Hn) for 0 < € < 2. Thus
for € = 2, we have a 3-factor approximation result in O(m%n) time, which is
not practical. This leads to further research on the DUDC problem for finding
constant factor approximation algorithm with reasonable running time. Das et
al. [10] proposed a 18-factor approximation algorithm. The running time of their
algorithm is O(mn + nlogn + mlogm). Recently, Fraser and Lépez-Ortiz [12]
proposed a 15-factor approximation algorithm for the DUDC problem, which
runs in O(m®n) time. Das et al. [9] studied a restricted version of the DUDC
problem, where the centers of all the disks in D are within a unit disk and all
the points in P are outside of that unit disk. They proposed a 2-factor approxi-
mation algorithm for this restricted version of the DUDC problem, which runs
in O((m +n)?) time.

In the way to solve the DUDC problem, some authors consider a restricted
version of the DUDC problem, which is known as line-separable discrete unit
disk cover (LSDUDC) problem in the literature [10]. In this problem, the plane
being divided into two half-planes £T and ¢~ defined by a line £, all the points
in P are in £~ and the centers of disks in D are in £T U £~ such that each point
in P is covered by at least one disk centered in £*. Carmi et al. [§] described
a 4-factor approximation algorithm for the LSDUDC problem. Later, Claude et
al. [6] proposed a 2-factor approximation algorithm for the LSDUDC problem.
Another restricted version of the DUDC problem is within strip discrete unit
disk cover (WSDUDC) problem, where all the points in P and the centers of
all the disks in D lie inside a strip of width h. Das et al. |10] proposed a 6-
factor approximation algorithm for h = 1/ V2. Later, Fraser and Lépez-Ortiz
[12] proposed a 3[1/v/1 — h2]-factor approximation result for 0 < h < 1. They
also proposed a 3-factor (resp. 4-factor) algorithm for h < 4/5 (resp. h < 2v/2/3).

Agarwal and Sharir |2] studied the Euclidean k-center problem. Here, a set
P of n points, a set O of m points, and an integer k are given. The objective
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is to find k disks centered at the points in O such that each point in P is
covered by at least one disk and the radius of largest disk is minimum. This
problem is known to be NP-hard [2]. For fixed k, Hwang et al. |[15] presented a
mOWk) _time algorithm. Latter, Agarwal and Procopiuc [1] presented MmOk )
time algorithm for the d-dimensional points. Fowler et al. [13] considered the
minimum geometric disk cover problem, where input is a set P of points in the
plane and the objective is to compute minimum cardinality set X of unit disks
such that each point in P is covered by at least one disks in X. They proved
that the problem is NP-hard. Hochbaum and Maass |L6] proposed a PTAS for
the geometric disk cover problem.

A sector is a maximal region formed by the intersection of a set of disks
i.e., all points within the sector are covered by the same set of disks. Funke
et al. [11] proposed greedy sector cover algorithm for the RRC problem. The
approximation factor of their algorithm is O(logw), where w is the maximum
number of sectors covered by a single disk. They proved that the greedy sector
cover algorithm has an approximation algorithm no better than {2(log w). In the
same paper, they proposed grid placement algorithm (based on the algorithm
proposed by Bose et al. |5]) and proved that their algorithm produce 18xn-factor
approximation result. Though the algorithm is not guaranteeing full coverage of
the region of interest, the area that remains uncovered can be bounded by the
number of chosen grids. In the same paper, they have also considered the RRC
problem in different setup. We denote this setup as reduced radius setup. Here,
we assume that the region of interest R is also covered by the disks in D after
reducing their radius to (1 — ¢). J is said to be reduce radius parameter. The
reduce radius setup has many applications in wireless sensor networks, where

coverage remains stable under small perturbations of sensing ranges/positions.
In this setup an algorithm A is said to be S-factor approximation if |'|i;“£|“ <3,
where A,y is the output of algorithm A and opt is the optimum set of disks with
reduced radius covering the region of interest. In reduce radius setup, Funke et

al. [11] proposed a 4-factor approximation algorithm for the RRC problem.

1.2 Our Results

We provide a PTAS (i.e., (1 + u)-factor approximation algorithm) for the LS-
DUDC problem, which runs in O(m3(1+i)nlogn) time (0 < p < 1). Using
this PTAS, we present an (9 + ¢)-factor approximation algorithm for the DUDC
problem in O(max(m3+2)nlogn, mSn) time, where 0 < e < 6. For the RRC
problem, we describe an (9 + €)-factor approximation algorithm using the algo-
rithm for the DUDC. We also propose an 2.25-factor approximation algorithm in
the reduce radius setup, improving previous 4-factor approximation result [11].

2 PTAS for LSDUDC Problem

Let £ be a horizontal line. We use £* and £~ to denote the half-planes above and
below ¢ respectively. The definition of the LSDUDC problem is as follows:
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A set P of points and a set D of unit disks such that each point in P is in £~
and center of each disk in D is in #t U¢~ and the union of the disks centered
in % covers all points in P are given. The objective is to find minimum
cardinality set D* C D such that union of disks in D* covers P.

Definition 1. We use U and L to denote the set of disks in D with centers
in {7 and £~ respectively. For a disk d € D, its boundary arc and center are
denoted by 0(d) and o(d) respectively. A disk d € U is said to be lower boundary
disk if there does not exist X = U \ {d} such that dN L~ C (UpexD)N L.
For a lower boundary disk d € U, we use the term lower region to denote the
region d N £~ and lower arc to denote the arc 6(d) N €~ (see Fig. [1l). We use
Dy ={d',d?,...,d*} CU to denote the set of all lower boundary disks. We use
Bregion to denote the region covered by the disks in Dy.

Left
intersection

Shaded region
is Lower

of @ and ﬁ region of &
K ' Bold portion

is lower arc
of &'

Fig. 1. Lower region, left intersection and lower boundary disks

Needless to mention that each disk in D, intersects the horizontal line ¢
and Bjegion contains all points in P. Without loss of generality assume that
d',d?,...,d? is the sorted order from left to right based on their left intersection
point with the line ¢ (see Fig. [I]). Since centers of the disks in D, are in £* the
number of intersection points (if any) of two disk arcs of D, in £ is one. For
each disk d' € Dy we define two points, namely p; and p’ as follows:

pf: If the disk d’ has intersection with d*~! in ¢, then pf is the intersection
point between 0(d'~!) and 6(d") in ¢~, otherwise p! is the left intersection
point between £ and 6(d").
pi: If the disk d° has intersection with d**! in £~ then pi is the intersection
point between (d*1) and 0(d’) in ¢~, otherwise pl. is the right intersection

point between £ and 6(d").

Where d° and d**! are the two dummy disks having no intersection with d' and
d® respectively. For each i = 1,2,...,s let P;(C P) be the set of points lying
between two vertical lines through pf and p’. Let e’ be the vertical line through
the point pi for i = 1,2,...,s. We use e¢'~ (resp. e'*) to denote the region in
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Algorithm 1. LSDUDC(P, D, k, ¢)

1: Input: Set P of points, set D of unit disks, a positive integer £ and a horizontal
line ¢ such that P N ¢~ = P and union of the disks centered in T covers all the
points in P.

2: Output: Set D* C D of disks covering all the points in P.

Set D* < 0
Find lower boundary disks set Dy and arrange them from left to right as defined
above. Let Dy = {d*,d?,...,d*} be the lower boundary disks from left to right.
for (i=1,2,...s) do
Compute the set P;(C P)
end for
Set i+ 1
while (i < s) do
Find the maximum index j such that Ui—; i11,..;P: is covered by a set D1 (C D)
of disks with size k.
11: D =D*UDy, i+ j+1
12: end while
13: Return D*

—_

the left (resp. right) side of the vertical line e’. Let D'~ (C D) and D**(C D) be
the optimum cover of the points in P N e~ and P N e’ respectively.

Before proving approximation factor of the algorithm (Algorithm [I) for the
LSDUDC problem, we first discuss some important properties of the disks in U
and L separately.

Observation 1. For two disks d',d" € L, ifd’,d" € D'~ and d’',d” € D'*, then
both d' and d" intersect €' and both the intersections between 0(d’) and 6(d") lie
n Bregion-

Proof. Both the disks d’ and d” intersect e’ because d’,d” € D'~ and d',d" €
Dit,

Since d’,d” € D~ and d’,d"” € D", then there exist points pj), pj € e~ NP
and py,py] € €T NP such that p),p; € d’ and pjj,p] € d”’ but pj,p} ¢ d’ and
o, 0] & d (see Fig. 2)). Now, if d’ and d” do not intersect, then (i) either the
distance of p{, or p} from the line ¢ is greater than 1 (assuming «(d’) is below
a(d")) or (ii) either the distance of p{j or p{ from the line ¢ is greater than 1
(assuming «(d') is above «(d")), which leads to a contradiction because each
point of P is covered by at least one disk centered above /.

Now, if 0(d’") and 6(d”) do not intersect in Bygion, then either PNd" C P Nd”
or PNd”" C Pnd (Note: the centers of the disks d’ and d” lie below the line ¢
asd',d" € L). Therefore, both d’ and d”’ cannot appear in the solutions D~ and
D", which leads to a contradiction. Thus, §(d’) and 6(d”) intersect in Byegion. O

Definition 2. A pair (d',d")(€ L x L) of disks is said to be weak (resp. strong)
cover pair if 0(d') and 0(d") intersect once (resp. twice) in Byegion -
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Fig. 2. Proof of Observation [I]

Lemma 1. For a weak cover pair (d',d")(€ L x L); d',d’ € D'~ and d',d" €
Dt cannot happen simultaneously.

Proof. On contrary, assume d’,d” € D~ and d’,d"” € D**. By the definition of
weak cover pair, 6(d’) and 6(d”") does not intersect either in e~ or e!*. Therefore,
either (i) Poi- Nd' C Poi- Nd” or Pi-Nd" C Pei- Nd’ or (ii) Pi+ Nd' C P+ Nd”
or P+ Nd" C Pai+ Nd', where Pi— (resp. Pgi+) is the set of points in P to the
left (resp. right) of e (see Fig. B)). Thus, both the disks d’, d” cannot be in D'~
and D', O

Fig. 3. Proof of Lemma [I]

Lemma 2. For a strong cover pair (d',d")(€ L x L), if d',d" € D'~ (resp.
d',d" € D'"), then one intersection between 6(d') and 6(d") lies in €'~ and
other intersection lies in e't.

Proof. If both the intersections between 0(d’) and 6(d”) lies either in e~ or
et then from Observation [l and the proof of Lemma [ d’,d” € D~ and
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d',d” € D't cannot happen simultaneously, which is a contradiction. Thus, the
lemma follows. U

Lemma 3. For a strong cover pair (d',d")(€ L x L) with a(d") above a(d"), if
the intersections of 0(d') and 6(d") lie within lower boundary disks dy and d,,
then either one intersection between 6(d,) and 6(d') or 6(d,) and 0(d') happens
above the horizontal line .

Proof. Without loss of generality assume that a(d') is above the intersection
point of d’ and d” inside d,. Let a and b be the two intersection points of 6(d)
and 0(d'). Therefore, a(d') should lie above at least one point among a and b.
Let «(d’) lies above a. By symmetry, a(d'),a and «(d),b are parallel (see Fig.
M). Thus, b must be above a(d) i.e., b must be above £. O

Fig. 4. Proof of Lemma

Lemma 4. [D"ND*FNL|I<2.

Proof. On the contrary, assume that d,, dy,d, € D'"ND**NL. Since d,, d,, d, €
D= as well as dg,dy,d, € D', the disks d,,d,,d, intersect each other in
Bicgion. If any pair (d,d') € I' = {(dz, dy), (dz,d), (dy,d;)} do not form a weak
cover pair nor a strong cover pair, then either d N Bregion € d' N Bregion OF
d N Bregion 2 d' N Bregion, which contradict the fact that d,,d,,d. € Di—n
Dt N L. Again, from Lemma [I no pair in I" form a weak cover pair because
dy,dy,d, € D'~ as well as dy,dy,d, € D*". Therefore, each pair in I" form a
strong cover pair. Without loss of generality assume that a(dy) is below «(dy)
and a(dy) is below a(d;) (see Fig. Bl). If a is the intersection between 6(d;) and
6(dy) inside the lower boundary disk d (say) and below the horizontal line ¢,
then one intersection between 6(d,) and 6(d,) lies inside of d or d’ (from Lemma
B). Therefore, (d, Ud, Ud,) NP Ne~ C (d, Ud) NP Ne'~, which implies that
D~ is not optimum, leading to a contradiction. Thus, the lemma follows. [
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Fig. 5. Proof of Lemma [

Lemma 5. |[D"- N D™ Nl < 1.

Proof. Since the center of all the disks in I/ are in T and the points in P are in
0=, two disks d,;, d, in U can not intersect twice in £~ . Therefore, |[D'~ N Dt NU|
is at most 1. Thus, the lemma follows. O

Lemma 6. |D~ N DF| < 3.
Proof. Follows from (i)D =U U L and (ii) Lemmas @ and O
The following theorem says that the LSDUDC problem admits a PTAS.

Theorem 1. Algorithm [ produces (1 + kis)—factor approximation results in
O(m*nlogn) time.

Proof. For some integer t, let j1,7jo,...,j: the values of j in the while loop
(line number 9) of the Algorithm [[l Let Q, = Ui=j, 1+1,j,_1+2,....5, Ps for v =
1,2,...,t, where jo = 0. Algorithm[Ilfinds a covering for the sets {Q1, Qa,..., O}
independently with each of size k (optimum size because in each iteration of the
while loop in line number 9, Algorithm [ finds maximum value of j’s) except
the covering of Q;. Let D', D?,.... D! be the covering for 9y, Qs,...,Q; re-
spectively. Lemma [6 says that D? N Di+! < 3. Therefore, the total number of
disks required to cover all the points by Algorithm [l is k(¢ — 1) + |D*| whereas
at least (k — 3)(t — 1) + |D*| disks required in the optimum solution. Thus, the
approximation factor of the Algorithm [M]is (1 + kis ).

The execution time to find lower boundary disks and to arrange them from
left to right (line number 4) is O(mlogm), where m = |D|. To compute P;
for i = 1,2,...s (for loop in line number 5) O(nlogn) time is required, where
n = |P|. To implement while loop (line number 9), we first create set P*(C P) of
points such that P* = U;=1 2. ,P; for each u =1,2,...,s, then for maximum
4, we choose j = 2¢ for i = 1,2,...,v such that P?" is not covered by k disks but
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P27 is covered by k disks. Now, we need to perform a binary search among
2071 4+ 1,271 4+ 2,...,2Y] for the maximum value of j. Therefore, the time
complexity of the while loop (line number 9) is O(m*nlogn). Thus, the total
time complexity of the Algorithm [[lis O(m*nlogn). O

2.1 An (9 4 e)-Factor Approximation Algorithm for DUDC
Problem

In this section, we wish to describe an (9 + ¢)-factor approximation algorithm
for the DUDC Problem. Here a set P of n points and a set D of m unit disks
are distributed in the plane; the objective is to choose minimum cardinality
set D*(C D) such that union of the disks in D* covers P. From Theorem [I]
LSDUDC problem has an (1 + p)-factor approximation algorithm (u = kis)

and the running time of the algorithm is O(m3(1+i)nlogn). Das et al. [10]
proposed an approximation algorithm for DUDC problem using the algorithms
for the LSDUDC and WSDUDC (with strip width 1/1/2) problems and proved
that the approximation factor of the algorithm for the DUDC problem is

6x (approximation factor of an algorithm for the LSDUDC problem) +
approximation factor of an algorithm for the WSDUDC (width » = 1/+/2) prob-
lem.

Fraser and Lépez-Ortiz [12] proposed a 3-factor approximation algorithm for
WSDUDC (with width h < 4/5) problem in O(m°n) time. Therefore, we have
the following theorem for the DUDC problem.

Theorem 2. The DUDC problem admits (9 + €)-factor approzimation result in

O(max(mbn, m3+Dnlogn) time.

Proof. The approximation factor of the algorithm for DUDC problem is (6x
(approximation factor of an algorithm for the LSDUDC problem) + approxima-
tion factor of an algorithm for the WSDUDC (width = 1/+/2) problem) [10].
Therefore, the approximation factor of the algorithm for the DUDC problem is
6 x (14 pu)+3=09+¢, where ¢ = 6u. The time complexity follows from time
complexity of WSDUDC [12], and the complexity result stated in Theorem [ O

3 Approximation Algorithms for RRC Problem

In the RRC problem, the inputs are (i) a set D of m unit disks and (ii) a
rectangular region R such that R C Ugepd; the objective is to choose minimum
cardinality set D** C D) such that R C Ugep++d. A sector f inside R is a
maximal region inside R formed by the intersection of a set of disks. Thus each
point within f is covered by the same set of disks. Let F be the set of all sectors
(inside R) formed by D, and |F| = O(m?). Now we construct a set of points
T as follows: for each sector f € F we add one arbitrary point p € f to T.
Therefore, covering the all sectors in F by minimum cardinality subset of D is
equivalent to cover all the points in 7 by the minimum cardinality subset of D).
Thus, we have the following theorem:
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Theorem 3. The RRC problem has (9+€)-factor approzimation algorithm with
running time O(max(m8, mS(+3/9) logm).

Proof. Consider an arbitrary point p € T. Let f € F be the sector in which
the point p lies. From the definition of sector, if a disk d € D covers p, then the
disk d also covers the whole sector f. Therefore, the instance (R, D) of the RRC
problem is exactly same as the instance (T, D) of the DUDC problem. Note that
T = O(m?). Thus, the theorem follows from Theorem 2 by putting n = m?. O

3.1 RRC Problem in Reduce Radius Setup

In this subsection we consider the RRC problem in reduce radius setup. In
this setup, a set D of unit disks and a rectangular region R such that R is
covered by the disks in D after reducing their radius to (1 — J) are given. The
objective is to choose minimum cardinality set D**(C D) whose union covers R.

In the reduce radius setup an algorithm A is said to be S-factor approximation
if [Moutl
. ‘Opt‘ . . . . . .
disks with reduced radius covering the region of interest. The reduce radius

setup has many applications in wireless sensor networks, where coverage remains
stable under small perturbations of sensing ranges and their positions. Here
we propose an 2.25-factor approximation algorithm for this problem. The best
known approximation factor for the same problem was 4 [11]].

< B, where Ay is the output of A and opt is the optimum set of

Observation 2. Let v = /26 and d be an unit disk centered at a point p. If d’
is a disk of radius (1 —0) centered within a square S of size v X v centered at p,
then d' C d.

Proof. Let ¢ be the length of the diagonal of S. Therefore, the maximum distance
of any point within the square S of size v x v from the center point p is ¢/2 = §.
Thus, the observation follows. O

Consider a grid with cells of size v x v over the region R. Like Funke et al. |11]
we also snap the center of each d € D to the closest vertex of the grid and set
its radius to (1 —0). Let D’ be the set of disks with radius (1 — §) after snapping
their centers. Let R’ be a square of size 4 x 4 on the plane contained in R. We
define the regions TOP, DOWN, LEFT, RIGHT, TOP-LEFT, TOP-RIGHT,
DOWN-LEFT, DOWN-RIGHT around R’ as shown in Fig.[6l We now construct
a set Drs(C D') such that any disk d € D' and d ¢ Dgrs cannot participate
to the optimum solution for covering the region R’ by D’. Note that, if a disk
d € DRrg, then center of d is a grid vertex. The pseudo code for construction of
Drs is given in Algorithm

Definition 3. A disk d € D' dominates another disk d' € D' with respect to the
region R if dNR' D d' NR'.

Lemma 7. If d € D' and d & Dgrs, then d cannot participate to the optimum
solution for covering R’ by minimum number of disks in D’.
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TOP-LEFT TOP TOP-RIGHT
LEFT R’ RIGHT
DOWN-LEFT DOWN DOWN-RIGHT

R

Fig. 6. Definition of different regions

Algorithm 2. Algorithm Drs(D', R',v)

1: Input: Set D’ of disks, a square region R’ of size 4 x 4 and grid size v.

2: Output: Drs(C D’) such that no disk d € Drs can participate to the optimum

solution for covering the region R’ by D’.

Set Dgrs + @,Dt «—0

For each disk d € D' having center in R, Drs = Dgrs U {d}

5: For each horizontal grid line segment h in LEFT add a disk d € D’ to Drs if (i)
dNR' # 0, (ii) center of d lies on h and (iii) center of d closest to R’ than other
disks having center on h. Similarly add disks to Drg for the regions RIGHT, TOP
and DOWN.

6: for (each horizontal grid line segment h in TOP-RIGHT from bottom to top) do

7:  Add adisk d € D’ to Dy if (i) dNR' # 0, (ii) center of d lies on h and (iii) there

does not exits any disk d’ € D; dominating d.

8: end for

9: Drs = Drs U Dy

10: repeat steps 6-9 for TOP-LEFT, DOWN-LEFT and DOWN-RIGHT.

11: Return Dgs

Proof. The center of d is in outside of R’ as d ¢ Dgrs (see line number 4 of
Algorithm [2]). With out loss of generality assume that center of d is in LEFT
and on the horizontal grid line segment h. By our construction of the set Dgg,
there exists a disk d’ € Dgg centered on h such that (a) d NR" # @, (b) center
of d’' lies on h and (c) center of d’ closest to R’ than other disks having center on
h. Therefore, d’ dominates d. Similarly, we can prove for other cases also. Thus,
the lemma follows. O

Lemma 8. |Dgs| < 1§ + 2V,

Proof. The lemma follows from the following facts: (i) the maximum number
of grid vertices in R’ is 11,25 and each of them can contribute one disk in Dgg,
(ii) the maximum number of horizontal grid line segment in the regions TOP-
LEFT, LEFT, DOWN-LEFT, DOWN-RIGHT, RIGHT and TOP-RIGHT that
can contribute a disk in Dgrg is 13 and (iii) the maximum number of vertical
grid line segment in the regions TOP and DOWN that can contribute a disk in
Drgs is i. Thus, the lemma follows. (Il

From Observation ] and Lemma [] we can compute a cover of R’ by D”(C D)
with minimum number of disks using brute-force method, where D" is the set
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of unit disks corresponding to the reduced-radius disks in Dgg. The running
time of the brute-force algorithm is O(2 S ) (see Lemma [§)). Although this
worst-case running time of the brute-force algorithm is exponential in ylz, in
practice, it is very small. We now describe approximation factor of our proposed

algorithm for RRC problem in reduce radius setup.

Theorem 4. In the reduce radius setup, the RRC problem has an 2.25-factor
16 20

approximation algorithm with running time O(q2 2 T ), where q is the minimum

number of squares of size 4 X 4 covering R.

Proof. From the above discussion, for rectangle of size 4 x 4, we have optimum
solution for the RRC problem. Note that the diameter of each disk of the RRC
instance is 2. Therefore, we can apply shifting strategy described by Hochbaum
and Maass |16] to solve the RRC problem and the approximation factor is (1 +

20

1/2)? = 2.25 and the running time of the algorithm is O(q2 BT ). Thus, the
theorem follows. g

Note that, Funke et al. [11] proposed a 4-factor approximation algorithm in

O(q2 32) time for the RRC problem in reduce radius setup. Thus, our proposed
algorithm is a significant improvement over the existing algorithm in literature.

4 Conclusion

In this paper, we have proposed a PTAS for the LSDUDC problem. Using this
PTAS, we proposed an (9 + €)-factor approximation algorithm for the DUDC
problem, improving previous 15-factor approximation result for the same prob-
lem [12]. The running time of our proposed algorithm for € = 3 (i.e., a 12-factor
approximation of the DUDC problem) is same as the running time of 15-factor
approximation algorithm. We have also proposed an (94 ¢)-factor approximation
algorithm for the RRC problem, which runs in O(max(m®, m*(1+3/¢) logm) time.
In the reduce radius setup, we proposed an 2.25-factor approximation algorithm.
The previous best known approximation factor was 4 [11]. The running time of
our proposed algorithm for the RRC problem in reduce radius setup is less than
that of 4-factor approximation algorithm proposed in |11] for reasonably small
value of (= \’/’2)7 where ¢ is the radius reduction parameter. Since the number
of disks participating in the solution of 4 x 4 square is constant for fixed value of
6, the number of disks participating in the solution of L x L square is constant.
Therefore, using the shifting strategy proposed by Hochbaum and Maass [16],
we can design a PTAS for the RRC problem in reduce radius setup.
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Abstract. Inferring community mobility of patients from GPS data has received
much attention in health research. Developing robust mobility (or physical ac-
tivity) monitoring systems relies on the automated algorithm that classifies GPS
track points into events (such as stops where activities are conducted, and routes
taken) accurately. This paper describes the method that automatically extracts
community mobility measures from GPS track data. The method uses temporal
DBSCAN in classifying track points, and temporal filtering in removing noises
(any misclassified track points). The result shows that the proposed method
classifies track points with 88% accuracy. The percent of misclassified track
points decreased significantly with our method (1.9%) over trip/stop detection
based on attribute threshold values (10.58%).

Keywords: GPS track data, DBSCAN, trip detection, community mobility.

1 Introduction

The ability to get out and be physically active in one’s life space is of significant im-
portance to health and well-being. This is a particular challenge for the elderly and
persons with physical disabilities. With Global Positioning System (GPS), one can
determine when, where and how individuals move around in the community; that is,
GPS can be used to measure community mobility of individuals. GPS-based commu-
nity mobility measures have advantages over traditional measures [1-4]; they are
more context-rich than measures based on laboratory testing, and more reliable than
measures based on self-reporting completed retrospectively.

GPS tracks the position of properly equipped users by decoding and trilaterating
signals transmitted from satellites of the U.S. Global Navigation Satellite System
(GNSS). With GPS receivers, the movement of users can be recorded at a user-
specified interval (e.g., every thirty seconds, every 10 meters). A collection of track
points recorded at a certain interval during a specific time period is called GPS track
data (or GPS stream data). Since this data contain spatiotemporal characteristics of
movement in a fine resolution, it provides rich sources for tracking the movement of
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individuals. For this reason, GPS has been used to complement travel survey in a
transportation field [5, 6]. Recently, GPS track data has increasingly found its use in a
health field.

An account of where these individuals visit when and how they get about (i.e., per-
sonal itinerary) has significance for quality of life because personal itinerary does not
only represent levels of physical activity, but also reflects access to various opportuni-
ties and social interaction [7, 8]. As GPS technology has become increasingly access-
ible with location-aware devices [2], health practitioners can make more informed
decisions about persons with disabilities’ functioning and participation by making use
of the personal itinerary extracted from GPS track data. Large volume and uncertainty
inherent in GPS data, however, pose challenges in data management and analysis.

2 Challenges with Using GPS Data

Positional accuracy of GPS measurements varies although the accuracy has improved
significantly over the last two decades [9]. The accuracy is affected by many factors,
including ionospheric delay, geometry among satellites (known as Dilution of Preci-
sion), presence of building structure in surroundings, and receiver quality (such as
precision of a clock built in GPS receivers, use of augmentation technology). Posi-
tional accuracy of GPS measurements can be assessed by comparing GPS measure-
ments to measurements derived from reference data of independent source and higher
accuracy (e.g., ground surveying, orthoimage). Performance of post-processing algo-
rithms of GPS data depends on accuracy of GPS data, thus accuracy should be taken
into account in developing a robust post-processing algorithm.

It is hard to obtain complete coverage of reliable GPS tracks over an extended pe-
riod of time; it is mainly due to insufficient battery life and signal loss especially in-
doors. Large gaps in coverage render further analysis either impossible or infeasible.
Recording interval of GPS track should be determined by judging the offset between
battery life and desired temporal resolution. One can enforce rigorous users’ protocol
regarding battery replacement to increase coverage of GPS tracks. In addition, satel-
lite signals do not penetrate building structure, making positional measurements in-
doors futile. Location fix is less accurate and reliable especially after a GPS receiver
regains signal reception (for example, the moment that subjects exits a building) espe-
cially if warm-up time is long. GPS measurements can be complemented with accele-
rometers or smart home technology [4].

Human intelligence can be applied to post-processing GPS data with uncertainty
on a case-by-case basis, but large volume of data makes manual classification tedious
and subject to human errors. Tracking the movement of a subject during a week pe-
riod with a 30 second record interval creates 20,160 track points. If this process can
be automated, processing time can be reduced significantly. Further, automated post-
processing of GPS track data is even more necessary as GPS data are increasingly
available at an unprecedented rate through mobile devices. It is estimated that person-
al sensor data will increase from 10% of all stored information to 90% within the next
decade according to the Chief Technology Officer of EMC. As GPS finds many
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application areas, it will be worthwhile developing automated algorithms that recog-
nize patterns from a stream of GPS data accurately. Below we first consider post-
processing methods of GPS data organized into data cleaning, event detection, and
event characterization before we describe the new method we developed.

3 Review of GPS Post-processing Methods

The personal itinerary is an account of a journey for a certain period of time. The
itinerary consists of two geographic entities/events: stops (or activities) and trips. A
stop is defined as a place that a subject visits in order to participate in one or more
activities for some duration. A trip is defined as a route from one stop (origin) to
another stop (destination). Post-processing of GPS track data consists of data clean-
ing, event (trip/stop) detection, and event (trip/stop) characterization.

3.1 Data Cleaning

Data cleaning attempts to remove any anomaly present in data. Positional accuracy,
completeness, and logical consistency of GPS measurements are major issues to ad-
dress. Plotting GPS track points on top of data of higher accuracy in GIS can help
gauge levels of positional accuracy. Track points with unrealistic attribute values
(e.g., altitude, speed and acceleration) can be deleted for logical consistency. Some
study considers smoothing positional values and attribute values as a means to handle
uncertainty [6].

3.2  Event (Trip/Stop) Detection

Trip/stop detection is perhaps the most studied [5, 6] [9-12]. Since trips have higher
speed than stops, trips can be detected based on speed thresholds [5]. Similarly, stops
can be identified by little or no change in position of track points for a specified time
duration [5]. Relying classification solely on thresholds (such as speed and change in
position) is not a highly reliable method for trip/stop detection because many
trips/stops apparently behave like its counterpart given the definition based on thre-
sholds. For example, waiting for traffic light in driving can be misclassified into stops
due to low speed although they are part of trips. GPS measurements after signal loss
(e.g., existing a building) may be misclassified into trips because positional errors
inflate values of change in position, and lead to false speed values.

Accuracy of threshold-based methods can be improved if more than one variable
(e.g., speed, position in time, acceleration, heading change) is considered simulta-
neously in setting thresholds [6]. Smoothing or filtering can be also considered in
detecting stops/trips; that is, instead of classifying track points one by one, track
points can be grouped into temporal neighbors and overall characteristics of temporal
neighbors (such as speed, change in position) can be considered in classification [6].

Kernel Density Estimation (KDE) has been proposed for identifying significant
places visited [12]. KDE is typically used in calculating density from discrete point
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features. KDE scans the number and proximity of points within a specified bandwidth
to regularly placed location, and transforms that information to kernel density func-
tion [13]. Frequently visited places can be identified using KDE because those places
have unusually high density values. KDE, however, does not differentiate stops that
are made in the same place but in different times. That is, KDE is for detecting spatial
clusters, not spatiotemporal clusters such as stops.

Similarly, density-based spatial clustering algorithms (such as DBSCAN) can be
considered in identifying significant places [12]. DBSCAN detects a group of dense
spatial clusters by aggregating spatial clusters that are density-reachable [14].
DBSCAN begins with scanning the number of points within a specified bandwidth
from any unvisited arbitrary data points (called seeds), and checks whether the num-
ber of points exceeds a pre-specified threshold value. If the abovementioned condition
is met, the algorithm checks whether each point within the spatial cluster (identified
above) forms another spatial cluster (i.e., expandable). An advantage of density-based
clustering algorithms is that they are relatively robust to noise. Again, DBSCAN is to
detect spatial clusters rather than spatiotemporal clusters. To detect stops, it is neces-
sary to modify DBSCAN to temporal criteria so that spatial clusters can be disaggre-
gated into stops based on when it occurred, and how long it lasted.

3.3  Event (Trip/Stop) Characterization

Trip/stop characterization assigns attributes to stops and trips. Location, arrival time,
and departure time can be assigned to stops. Similarly, attributes like origin, destina-
tion, and a route taken can be assigned to trips. Additional attributes such as mode of
navigation and purpose of trips can be extracted with further post-processing or/and
with the aid of auxiliary data.

There have been growing interests in developing methods for detecting mode of
navigation (or transportation) in recent years. Those methods typically consider mul-
tiple variables—speed, acceleration, heading change, total distance or duration, and
proximity to transportation infrastructure (such as bus stop, bike racks, highway) [15,
16]. Artificial intelligence techniques, including Relational Markov Network, and
Neural network, have been proposed [10, 11, 17]. The use of visual analytics tools
can facilitate inference of navigation mode in a semi-automated way [18]. For exam-
ple, graphing acceleration over time can help differentiate driving from walking be-
cause driving has a distinct acceleration profile. Purpose of trips is typically inferred
by matching location of stops with land use data in a fine spatial resolution [19].

A few lessons from previous studies can be discussed in regard to developing the
automated algorithm for extracting the personal itinerary from GPS track data. It is
important to have uncertainty handling built in the algorithm since misclassification
often results from uncertainty. Threshold-based methods alone cannot classify track
points reliably. Much of GPS track data is filled with noise, and enforcing rigid
thresholds without regard to context cannot escape misclassification. It appears that
eclectic approaches that combine thresholds of appropriate variables, spatiotemporal
clustering algorithms, and smoothing (or filtering) can produce reliable results.
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4 The Method for Extracting Mobility Measures from GPS
Data

We have developed a method that automates extraction of the personal itinerary from
GPS track data. The method consists of four modules: (a) data cleaning, (b) stop/trip
detection, (c) stop/trip characterization, and (d) mobility measures extraction.

4.1 Data Cleaning

After input data is geocoded and projected, data is checked for logical consistency
and accuracy. Track points with duplicate temporal values are deleted for consistency;
this problem (duplicate records) often occurs when input data is exported manually as
a collection of files rather than one file for the time period monitored. Data is checked
for completeness (that is whether there is any significant gap) due to signal loss or
delay. A program deletes a track point following a significant gap. A significant gap
is defined as temporal interval greater than 90 seconds and distance between two track
points greater than 50 meters. This (deleting a track point after a significant gap) is
necessary because signal loss or delay compromises positional accuracy of GPS mea-
surements, leading to misclassification.

4.2 Event Detection

The stop/trip detection module consists of two components: (a) classifying track
points into stops and trips, and (b) smoothing out classified track points. The unique
aspect of the method described in this paper lies in using temporal DBSCAN for the
first task (classification), and temporal filtering for the second task. The idea is that
stops are equivalent to noisy spatiotemporal clusters, thus density-based spatial clus-
tering algorithms that consider temporal information additionally are well suited to
delineating stops. Trips are track points that are not stops. Further, whether a track
point is stop or trip depends on whether temporally neighboring track points are stops
or trips. Thus re-classifying track points over temporal neighbors can render classifi-
cation less noisy.

DBSCAN is selected to detect stops over threshold-based methods described earli-
er because DBSCAN is robust to noise; this allows for classifying “track points that
are scattered around stops but are not stops” into trips reliably. Instead of choosing
seeds randomly for DBSCAN, the module narrows down the location of candidate
stops using KDE. Then the location of extreme KDE values is fed into DBSCAN as
seeds; this serves to reduce processing time for DBSCAN, and minimize possibility of
missing seeds that might be stops due to random and incomplete search of the
DBSCAN algorithm. To prevent the algorithm from being trapped in home (where
vast majority of time is spent on), track points near home location are excluded for
analysis. Spatial clusters identified from DBSCAN are checked to see if those clusters
are consecutive for some duration of time. If the abovementioned requirement is met,
spatial clusters are disaggregated into stops (as spatiotemporal clusters). So a place
visited more than once are identified as multiple stops whose cardinality is the num-
ber of visits on the place. Track points that are not stops are classified into trips.
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For KDE, pixel size is set to 30 meters, and bandwidth is set to 90 meters. Seeds
are set to pixels where kernel density is greater than or equal to 900 per square kilo-
meters. For DBSCAN, spatial search radius is set to 50 meters, minimum number of
points is set to 5. For a spatial cluster to be qualified as a spatiotemporal cluster (that
is stop), duration should be longer than 3 minutes, and track points consisting of a
stop should be continuous.

Stops and trips identified above can still remain misclassified. In particular, data
contain temporally noisy values (that is, trip/stop value is not assigned continuously,
such as stop-trip-stop). To resolve these issues, the code calculates a majority value
(the most common value among stop and trip) of consecutive track points whose total
duration is 2 minutes and 30 seconds, and assigns a majority value to those track
points as a final classification. For example, if temporally ordered track points have
an array of values [stop, trip, stop, stop, stop] (assuming 30 second recording inter-
val), then these track points are reclassified into stop. Majority filtering reclassifies
track points by smoothing values of track points that might have been misclassified by
clustering algorithms.

Unique identifiers (IDs) are assigned to stops and trips based on temporal order
and a rule that a stop is followed by a trip, and vice versa. Thus a stop is a collection
of track points that are spatially clustered and temporally continuous. A trip is a col-
lection of track points that are not spatially clustered and temporally continuous.
Track points that are classified into stops and trips with unique IDs are aggregated (or
dissolved in GIS terms) into two geographic entities called stop centers and trip
routes. Stop centers are mean centers of track points with a unique stop ID. Trip
routes are polylines that link an origin stop to a destination stop.

4.3 Event Characterization

Once stop centers and trip routes with unique IDs are created, spatiotemporal charac-
teristics are assigned. Stop centers have location, arrival time, departure time, duration
of stop, and average speed. Street addresses of stop centers can be estimated using
reverse geocoding in addition to latitude and longitude. Arrival time is derived from
date and time of the first track point, and departure time is derived from date and time
of the last track point that are classified into a stop with a unique ID. Trip routes in-
clude begin time, end time, length, and duration as attributes. Mode of navigation is
determined on the basis of speed—driving if average speed is greater than 8 kilome-
ters per hour, and walking otherwise. Other modes of navigation (e.g., bicycling, pub-
lic mode of transportation) are not considered at this point. Trip routes also include
IDs of both origin and destination stop centers.

4.4  Mobility Measures Extraction

This module calculates the number of stops, number of trips, duration of stops, dura-
tion of trips, length of trips, and number and length of walking trips. The module also
calculates the percent of track points within multiple buffers from home at 50 meter
(stay home), 1000 meter (neighborhood level), 5000 meter (town level), 20000 (out of
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Data Cleaning
Delete duplicate and potentially inaccurate records

= _—

Stop/trip Detection

Select candidate seeds with KDE

Identify stops/trips with modified DBSCAN

Reclassify records with temporal filtering

= =

Stop/trip Characterization
Assign spatiotemporal characteristics to stops and trips

= =

Mobility Measures Extraction
Calculate variables candidate for mobility measures

Fig. 1. Process of extracting mobility-related variables from GPS track data

town level), and beyond, respectively; this follows Life Space Assessment question-
naire [4, 8]. To gather baseline data about how subjects participate in real-life situa-
tions, subjects are asked to identify meaningful places (called targets) in one’s envi-
ronment, including personal, social, and/or occupational locations. The number (and
percent) of targets reached is also reported to gauge the geographic extent of commu-
nity participation of subjects. The Figure 1 depicts a simplified process of extracting
variables useful in constructing mobility measures from GPS track data.

5 Results

The method described above was applied to extract personal itineraries of a healthy
control subject during the period of week 1, week 5, week 9, and month 6 after treat-
ment. The method was applied to a subject recovering from a major injury who com-
pleted rehabilitation during the period of week 1, week 5, and week 9 after treatment.
All GPS track data were collected in one week time period. Subjects agree to carry a
GPS logger (DG-100 Data Logger) during waking hours of each week. Recording
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Fig. 3. Stop centers and trip routes of the control subject during week 1

interval was set to 30 seconds. A total of seven one-week track data from two subjects
were analyzed. Each week data amounted to about 5,000-16,000 track points depend-
ing on the extent of gaps in the data. The entire process, from preprocessing to extrac-
tion of mobility-related variables, was automated.
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Fig. 4. Stop centers and trip routes at a neighborhood scale

Figure 2 shows GPS track points of the control subject during week 1. Geocoded
track points are well aligned with orthoimagery of higher accuracy, indicating that
data have good positional accuracy. Figure 3 shows stop centers and trip routes ex-
tracted from GPS track data shown in Figure 2; different routes are shown in different
colors, and stop centers are shown as triangles. Figure 4 shows a screen shot of stop
centers and trip routes at a neighborhood scale in ArcGIS, in which a walking trip is
highlighted in a map and an attribute table.

Table 1 reports on how many stops and trips subjects made and how long those
stops and trips were in duration. For example, the control subject made 7 stops during

Table 1. Number and duration of stops and trips, and length of walking trips

Subjects Num stops Dur stops Num trips  Dur trips Len walk

CS1IWK1 21 9.50.48 32 8.0.31 1173
CSIWKS 7 3.4.43 19 4.27.30 524
CS1IWK9 11 5.11.10 26 15.21.15 132
CSIMO6 6 3.21.34 19 6.9.5 551
RS3WK1 22 9.35.56 24 2.59.18 1305
RS3WKS5 5 8.20.54 10 6.18.5 711
RS3WK9 8 11.19.59 14 8.11.40 3093

Num stops: the number of stops made

Dur stops: duration of stops in hour minute second format
Num trips: the number of trips made

Dur trips: duration of trips in hour minute second format
Len walk: length of walking trips in meters
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week 5, and stayed at those stops for about three hours in total. During the same pe-
riod, the same subject made 19 trips. Those trips took the subject approximately four
hours and thirty minutes in total. The subject walked 524 meters during week 5,
which is a decrease from 1.2 kilometers during week 1.

6 Evaluation

To evaluate how accurately the method described above classifies track points into
stops and trips, we check classification errors against results of manual classification.
For manual classification, we manually check all track points (totaling 61,557) to see
whether they constitute stops or trips by looking through all track points superim-
posed over high-resolution imagery (ArcGIS 10.1 Map Service World Imagery).

Table 2 shows an error matrix compiled from seven data sets (from CSIWKI1 to
RS3WKO9). The percent correctly classified is 94.2%, and Kappa index, a measure of
classification accuracy, is 0.88. That is, data are correctly classified 88% of the time
with the proposed method.

Table 2. Error matrix and classification accuracy of the proposed method

trip  stop Row Total
trip 133 11 144
stop 2 78 80
Column Total 135 89 224 Kappa index: 0.88

To examine effects of temporal DBSCAN and temporal filtering on classification
accuracy, we compare performance of the test method to that of the threshold-based
method (that is the control method). The control method classifies track points into
trips if average speed in kilometer per hour is greater than 4.2, and into stops other-
wise. All other aspects including data cleaning remain the same between two me-
thods. Track points that constitute “staying at home” are excluded for the comparison.
In other words, the extent to which track points are misclassified (i.e., misclassifica-
tion rates) is calculated as the total number of misclassified track points out of the
total number of track points outside of home.

Figure 5 graphs the percent of misclassified track points for seven data sets. On av-
erage, 10.58% of track points are misclassified with the control method, and 1.91% of
track points are misclassified with the test method. This indicates that temporal
DBSCAN along with temporal filtering significantly improves accuracy of differen-
tiating between stops and trips from GPS track data.
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Fig. 5. Misclassification rates of the test method that use temporal DBSCAN and temporal
filtering vs. those of the control method that does not

7 Conclusions

The method presented in this paper provides efficient, useful, and quantifiable data
for community mobility measures within the constraints of the total time for GPS data
collection. The proposed method utilizes temporal DBSCAN for detecting stops and
temporal filtering for smoothing misclassified track points. The method classifies
GPS track points into stops and trips with high accuracy (88%). This paper considers
whether a clustering-based event detection method outperforms a threshold-based
method as a predominant GPS post-processing technique. Results show that spatio-
temporal clustering is effective in detecting stops and extracting the personal itinerary
from GPS track data accurately.

Several limitations of this research can be discussed along with future research.
The performance of the method needs to be evaluated against threshold-based me-
thods in different variation. Results of the proposed method can be compared with
self-reported information completed in real-time to evaluate the mtehod. Gaps in data
need to be filled using other complementary methods of measuring mobility (e.g.,
accelerometer); accelerometry-based data can be synchronized with GPS data based
on temporal information.

We live in the world where a stream of data on individuals’ movement and activi-
ties are fed into computer systems on a real time basis. Information extracted from
GPS track data can be valuable for mining activity patterns of individuals, trajectories
of social interaction, and community participation in geographic space [20]. Once
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these data are fused with environmental and demographic data, it is possible to extract
patterns of spatial relationship; for example, one can examine how environmental
factors (e.g., exposure to air pollution, pathogen) affect occurrence of diseases like
cancer and asthma [21, 22, 23], and determine characteristics of the built environment
(e.g., presence of sidewalk, disability-friendliness) that promote mobility of those
with obesity or disability [24]. Applications of the automated post-processing of GPS
data are wide ranging. It is hoped that this study demonstrates that robust analytic
algorithms are at the core of realizing the potential of “Big Data”.
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Abstract. We present a method for approximating an open polygonal
curve by a smooth arc spline with respect to a user-specified maximum
tolerance. Additionally, straight sections of the polygon are detected re-
sulting in a finite set of pairwise disjoint line segments. The proposed
algorithm guarantees that the resulting arc spline does not exceed the
tolerance and that sections of the pre-computed lines are part of the
solution. Subject to these conditions we obtain the minimally possible
number of circular arcs and line segments. Note that in contrast to ex-
isting approaches, we do not restrict the breakpoints of the arc spline to
original points but compute them automatically.

Keywords: arc spline approximation, SMAP, minimum description length,
line segment detection, polygon, simplification.

1 Introduction

Arc splines, which are curves composed of circular arcs and line segments (shortly:
segments) have advantageous properties: exact offset and arc length computa-
tion, parameter free description and simple closest point calculation (cf. [1]).
Therefore, research on this curve system has been very active in the past few
years (e.g. [245]).

Various applications need methods guaranteeing that the resulting arc spline
does not exceed a user-specified tolerance from the input data. Often, these algo-
rithms follow geometric approaches: Suppose to approximate a simple polygonal
curve, then the e-tolerance zone is considered, which is given by the set of points
which have an euclidean distance of at most €. Heimlich and Held [6] introduced
a method which generates tolerance zones using Voronoi diagrams. Regarding
the restriction that breakpoints are original points, Drystale et al [7] proposed
an algorithm for approximating an open polygonal curve with a minimal num-
ber of circular arcs and biarcs while remaining within a given tolerance region.
This algorithm has a worst case complexity of O(n?1log(n)) for a n-vertex input
polygon. The approach of Heimlich and Held [6] achieves a better runtime of
O(nlog(n)), whereas the minimality of the segment number is lost.

B. Murgante et al. (Eds.): ICCSA 2013, Part II, LNCS 7972, pp. 99-[[T2] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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In order to construct an arc spline approximation with the actual minimal
number of segments, the positions of the corresponding breakpoints have to be
determined. The method presented by Maier [1] therefore computes an arc spline,
which achieves the actual minimal number of segments for any open polygonal
curve and user-specified tolerance. The currently best known implementation
needs O(n?) time in worst case. Note that restricting the loci of the breakpoints
can have considerable influence on the resulting segment number (cf. [g]).

2 DMotivation for Line Segments

Practical applications demand the incorporation of preliminary knowledge. In
some cases, line segments should appear at certain areas of the final approxi-
mation solution. For instance, such side conditions arise in the field of reverse
engineering, the vectorization of pixel graphics or in the generation of digital
maps. When using line segments instead of arcs with large radii numerical pitfalls
can be avoided. Beyond that, line segments are actually used for road planning
purposes, which justifies this approach.

We make extensive use of the presented algorithms to generate digital maps
of high precision on behalf of the research activities in Ko-PER, which is part
of the Ko-FAS research initiative (cf. [9]). A vehicle equipped with a calibrated
camera and a highly accurate positioning unit records measuring points on all
visible road markings. The extracted points are reconstructed in a global world
coordinate system. Measuring points belonging to the same marking are grouped.
For each group a tolerance zone is established. Within this zone we are searching
for straight sections.

In this paper we present an algorithm for the detection of line segments that
should be respected in the final arc spline approximation. That way, a curve
representation of road markings including line segments is created. Its accuracy
is controlled by a suitable tolerance zone while the number of curve segments
is minimized which leads to the shortest possible description length (cf. [10]).
Analogously, representations for individual lanes in the digital map are calcu-
lated.

Further, we integrate the constraint of respecting some line segments to our
methodology by extending the original approach. Therefore, the next sections
are devoted to some definitions and results from Maier [1] that we want to use
subsequently. Some of the following proofs are shortened or even skipped, they
can be found in Maier [1] too.

3 Tolerance Channels and Circular Visibility

The approach of Maier [1] deals with an approximation up to a given tolerance,
which can vary locally. The approximation error is controlled by focusing on
solutions staying inside a so-called tolerance channel.

Although tolerance channels can be formed by a comparatively broad class of
bounding curves, for the sake of simplicity we focus on simple closed polygons
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within this scope. Generating an appropriate tolerance channel is a problem of
its own that we do not treat here but we refer to Heimlich and Held [6]. For any
n-vertex input a corresponding channel can be computed in O(nlog(n)) time.

Definition 1. We call a triple (P, s,d) tolerance channel if P is a simple closed
polygon and s and d are two disjoint edges of P denoting the start and the
destination.

An example is depicted in Fig. 2l The term polygon P is used to denote the
union of both the boundary 9P and the interior of the corresponding polygonal
Jordan curve.

Definition 2. Any smooth (G'-continuous) arc spline staying inside the toler-
ance channel and connecting the start and destination segments with a minimum
number of segments is called Smooth Minimum Arc Path (SMAP).

Note that the breakpoints are not required to be original points but they are
determined automatically. Obviously, this has considerably positive effects on
the resulting segment number.

For the remaining part of this paper let (P, s,d) be a tolerance channel. To
keep the notation as simple as possible, we assume that the two vertices of s are
convex: A vertex v is convex if the interior angle at v is strictly smaller than
180°. The definitions for the general case can be found in [1].

Definition 3. A point a € P is said to be circularly visible (from s with respect
to P) if there exists a segment v in P that has its starting point on s and ends
in a. The set of all circularly visible points from s with respect to P is denoted
by V. An oriented arc -y, as above, is called visibility arc.

4 Alternating Restrictions

The main instrument of the SMAP algorithm is the calculus of alternating re-
strictions. These are points visibility arcs and 0P have in common, as indicated
in Fig. Pl At the points a1, as, az the plotted visibility arc is alternately touched
by OP from the left and from the right. Thus, we call them left and right re-
striction points:

Definition 4. Let v be a wvisibility arc and let a be a point on v and on the
boundary of P. The point a is called right restriction point (of v with respect
to s) if one of the following conditions holds:

e a is neither the starting nor the endpoint of v and OP is locally right of -y
at a.
e a € s is the starting point of v and s is locally left of v at a.
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Fig. 1. Illustration of right restriction points. The straight arrows indicate that v is
restriction pointed from the right according to the corresponding orientation which is
illustrated by the bended arrows.

At a right restriction point, the visibility arc cannot be moved to the right with-
out either exceeding the tolerance boundary or violating the starting condition.
The first two images in Fig. [ illustrate the first case and the following two
images show the second one. Likewise, we can define left restriction points.

Maier [1] showed that the boundary points in OV \ JP lie on arcs, and the
corresponding visibility arcs are denoted by blocking arcs if they are maximally
extended with respect to inclusion in P. These arcs distinguish themselves from
the other visibility arcs as they have at least three alternating restriction points
a1, as,az ordered as ay, as and az according to the orientation of the arc. They
satisfy the following condition: Either a; and as are left restriction points and
as is a right restriction point or a; and ag are right restriction points and asy is
a left restriction point. Arcs passing through three alternating restriction points
can be described in an efficient manner regarding to an algorithmic approach as
they determine uniquely the three degrees of freedom an arc has.

Every connected component of P\ V is separated from V' by exactly one block-
ing arc. The blocking arc corresponding to the connected component including
d is called the window (with respect to s).

Theorem 1. Let v be a mazimally extended visibility arc with endpoint on the
left side of OP. Then vy is the window if and only if there are three alternating re-
striction points a1, as, as where ag is a right restriction point. Similar conditions
hold if v has its endpoint on the right side of OP.

All possible configurations of left and right restrictions are given as follows: The
corresponding arc

e passes through three vertices
e passes through two vertices and touches an edge
e passes through one vertex and touches two edges
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We have now analyzed the circular visibility set V. The next step is to charac-
terize the sets V? of all points which can be reached by i = 2, ..., k segments till
V¥ intersects d. Therefore, the following section gives a criterion for deciding if
an oriented arc can be smoothly continued or not.

5 The Continuation Condition

Oriented arcs in P satisfying the so called continuation condition (CC) can be
smoothly joined to a visibility arc. An oriented arc -y satisfies the CC with respect
to an oriented arc n if either + smoothly joins 7 or there are two intersection
points x1,xo of v and 7 s.t. the orientation induced by + and the one induced
by n are equal. An illustration can be found in Fig. 2

Theorem 2. Let x € P\ V and let C be the connected component of P \'V
containing x. Then x € V2 if and only if there exists an oriented arc v in VUC
ending in x and satisfying the CC with respect to the corresponding blocking arc.

In this case we can even choose an arc < that is extremal, i.e. having at least
two alternating restrictions, which is fundamental for a constructive approach
and hence for the algorithmic design.

Therefore, we are able to characterize the set V2 by examining all oriented
arcs 7y satisfying the conditions above. However, we do not have to consider the
whole set V2, but only the component leading to d. This meets in elucidating
a “modified” tolerance channel with the corresponding window as starting seg-
ment. The only differences to the kind of tolerance channels we have seen till now
are the more complicated starting requirements given by Theorem [2 Maier [1]
showed that the results presented in Section 3 hold for this kind of tolerance
channel as well. Especially, the window of V2 is characterized in the same man-
ner. Recall that touching the start segment, which is here the window of V', is a
left or right restriction point.

We are now able to use Theorem [2] inductively and exploit the properties
of the sets V¥ this way. Let us assume that the successively resulting windows
have exactly three alternating restrictions. The general case requires some slight
modifications, which cannot be treated within this scope. The outcome of this
is a two step greedy algorithm traversing P from s to d in the forward step and
back again from d to s in the backward step.

The Forward Step: After having found the first window w; by identifying arcs
with three alternating restrictions, the next windows w; can be computed such
that the conditions of Theorem ] and Theorem [ are satisfied. In particular,
w; has to satisfy the CC with respect to w;_1. The procedure is stopped when
a point of d is circularly visible, and a visibility arc satisfying Theorem [2] and
ending in d is computed. As it can be seen in Fig.[2] the windows do not represent
a smooth arc spline. However, the computed windows are used in the backward
step to generate a SMAP.

The Backward Step: The lastly calculated arc wy represents the last segment
of the resulting SMAP. In particular, the minimum segment number is k. The
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Fig. 2. Visualization of the forward step of the SMAP algorithm. In the bottom left
zoom three alternating restriction points a1, a2, asz are marked with dots. In the remain-
ing two zooms z1 and x2 indicate the intersection points of two subsequent windows.

predecessor segments are then determined by touching their successor and by
two alternating restrictions. The whole procedure is finished when s has been
reached. In Fig. [3] the backward step is visualized and the box shows a single
backward step: ; joins its successor 7,41 and satisfies the CC with respect to
wi_1 as the two emphasized dots indicate.

6 Generating Line Segments

As mentioned in Section [l it is desirable to integrate pre-defined line segments
that should be respected in the approximation solution. In general, there are var-
ious possibilities where these line segments come from: Preliminary knowledge,
user interaction or heuristic approaches, like in the following which is based
on extremal line segments: A maximally extended line segment in P is called
extremal if it has two alternating restrictions aj, as such that either

e a; and the end point are on the left side and
® ay is on the right side

or vice versa. In particular, the start and end points are located on the boundary
of the channel. That way, extremal line segments are related to the characteri-
zation of circular windows from Section dl As we are only interested in “large”
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Fig. 3. Visualization of the backward step of the SMAP algorithm. The overview shows
the SMAP result. A single backward step is shown in detail. The solid dot marks a
breakpoint between the last and the current SMAP segment. In contrast the two em-
phasized dots mark intersections between the current SMAP segment and the next win-
dow. The Continuation Condition is fulfilled. Hence the next segment can be smoothly
attached.

line segments, we consider only those candidates whose ratio between the length
and ¢ is greater than a given threshold 6. The choice of # depends significantly
on the application. For our map generation purposes the threshold was chosen
to § = 10* while the tolerance was ¢ = 0.1 m.

Naively, the extremal line segments can be determined by iterating over all
combinations of restriction points on opposite sides. Though, this task is related
to the calculation of the minimum link path (cf. [11]). Using techniques known
from Chou and Woo [12], the extremal line segments can be computed in O(n)
complexity where n is the number of vertices in the input polygon. In order to
determine some line segments that should be respected in the final approximation
solution, many other heuristic approaches can be considered. However, we focus
on the extremal line segments generated by Algorithm[I]as they are advantageous
for the backward step of the SMAP algorithm. Fig. @] shows some extremal
line segment candidates and the largest segment which was chosen finally. All
candidates have two alternating restrictions and end points on the opposite side
of the last restriction point.
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Algorithm 1. Compute line segments
Require: Tolerance channel P, tolerance ¢, threshold 6
Ensure: L ={\,..., \/}
Compute all extremal line segments L’ within P
for alll € L' do
if le"g;h(l) > 0 then
insert [ in C
end if
end for
i1
while C # () do
i < get largest line segment in C'
for alll € C,l # \; do
if A; Nl # 0 then
remove [ from C
end if
end for
insert \; in L
14— 1+1
end while

Fig. 4. Section of the racing course. (a): Candidate set of extremal line segments.
(b): Selected extremal line segment with two alternating restriction points (dot) and
end point (emphasized dot) on the opposite side of the channel.

7 Integration of Line Segments

Let A1,..., A\; be extremal line segments with tangent vectors v; in P resulting
from the strategy given above. In particular, these line segments are

e pairwise disjoint,
e ordered and oriented according to P and
e maximally extended in P.
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Let & denote the set of smooth arc splines in P starting at s and ending at d
s.t. forall vy € G and all i = 1,...] we have

Vee Ny #0: () =,

where 7,(z) denotes the tangent unit vector of v at . We then search for a
candidate v € & having the minimally possible number of segments.

First, we consider [ 4+ 1 sub-problems, which we can divide into three types:
The portion between s and A1, the one between each two line segments \; and
Aix1 (i =1,...,1—1), and the one between the last line segment X; and d. If
A1 N's # B the first case lapses; in the same manner for \; Nd # @ and the
last case. Since Maier [1] treats the case of starting at a A; into direction v; as
well and the same results hold in this case, it is sufficient to focus on the first
situation.

Let A be an extremal line segment in P with tangent vector v and alternating
points a1, as pointing into direction of the polygonal path from s to d. We then
consider the set ¥ of smooth arc splines in P, which touch A with direction
v and start in s. Consequently, we search for a candidate v € ¥ having the
minimum number of segments m. This number and a “modified” SMAP can be
found using the results presented in the preceding sections since there exists a
minimum number k s.t. x € V.

Theorem 3. Let z € VF \ VE=ln ) for some k > 1, where V° := s. Then we
have k < m := minex |y| < k + 1 with || denoting the segment number of .
We can choose v s.t. its m-th segment has at least two alternating restrictions.

Proof. As shown by Maier [1] the set V*\V*~1 can be characterized by consider-
ing the 1-visibility set of a suitably shrinked tolerance channel and the particular
segments of a SMAP can be constructed by alternating restrictions. Without loss
of generality we can assume that k = 1, i.e. x € V. Hence we have to show that
1 < m < 2. If there exists a v ending at x with direction v, it is not hard to
show, for continuity reasons, that we can choose v with an additional restriction
point.

Otherwise, we have m > 2. In any case, there is a visibility arc n ending
at z := max(V N A), where max is built with respect to the orientation of A.
Since we have assumed that v has exactly three alternating restrictions and A
is maximally extended, V' N A is infinite. It is easy to see that there is an arc v
in V' touching A at xz with direction v and satisfying the CC with respect to 7.
Hence we can show the existence of a visibility arc «; touching v, and having
two alternating restriction points, when we apply Theorem [2l Therefore, the arc
spline defined by v; and 2 is an element of ¥ and we have m = 2.

This leads us to the following algorithmic strategy:

Forward Step: Assuming the situation above, we compute the corresponding
window and check if it intersects A. If such an arc cannot be found in the current
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step, we proceed with the SMAP algorithm. We continue in the same way till
a point of A is circularly visible. We then search for the next window, which
touches \. Thereafter we proceed as usual till the destination segment has been
reached.

Backward step: When we have reached \ during the backward step, we have
the situation of Theorem [l Therefore, we first try to find a visibility arc touching
A at z, defined as in the proof. Again, we are able to constructively check the
existence of a corresponding arc. There exists any valid visibility arc touching
A at x if and only if there exists one which has an additional restriction point
(cf. box 1 in Fig. B)). Otherwise, we compute an arc v in the corresponding
visibility set V? touching A at = and satisfying the CC of the predecessor window.
We can choose y2 having an additional alternating restriction or touching some
blocking arc. In any case, a valid 72 can be found in a constructive manner as
well. Since ~ fulfills the CC, the remaining part of our solution is computed
according to the steps of the SMAP algorithm. Due to Theorem [3] we can be
sure to achieve the minimally possible number of segments. In Fig.[6]l an example
is visualized.

Algorithm 2. Arc Spline Approximation with Line Segments
Require: Input points p1,...,pn, tolerance e, threshold 0
Ensure: Approximating arc spline
Compute Tolerance Channel (P, s,d) for p1,...,pny and €
Compute extremal line segments L = {A1,..., N} ordered according to P
if L =( then
return SMAP of P
end if
if A1 Ns =0 then
~1 < modified SMAP starting at s and touching A\,
Insert 1 into G
end if
fori=2,...,ldo
~i <— modified SMAP touching \;—1 and \;
Insert ~; into G
end for
if \yNd=0 then
Y141 < modified SMAP touching A; and ending in d
Insert v;41 into G
end if
return arc spline defined by G and L

To sum up, if we have the general situation formulated at the beginning of
this section, we apply the strategy presented above to [+ 1 partial approximation
problems, as already explained. This results in a set which contains arc splines
and line segments 1, A\1,...,7, A, 7i+1- We then restrict the line segments \;
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Fig. 5. The dotted lines A\; and A2 visualize two extremal line segments resulting from
Algorithm[Il In (1) the dotted window is replaced by an arc which touches the following
line segment. Breakpoints are drawn as solid points. In (2) such an arc does not exist
and hence an additional one has to be inserted. The intersection points between the
window and the inserted arc are visualized again as emphasized dots.

to the breakpoints x; and y;, where \; joins 7; and ;41, respectively. It remains
to show that the resulting curve + is simple. As the line segments \; are disjoint
and the ~y; are simple, we only have to prove that x; < y; with respect to the
orientation of \;, 1 < i < (cf. Fig. [[]). For this purpose, let 1 < i <. Since A,
has alternating restrictions a; and as and the endpoint of \; lies on the opposite
side of ag on OP and the simplicity of 9P, the difference set P\ \; has at least
three connected components. Clearly, 7; belongs to the one containing s and
~;+1 to the one containing d. Thus, 7; touches \; at portion of \; between the
start point S(v;) and ag, and 7,41 between ay and the end point of X;. Hence
we obtain z; < as < y;. Note that for ; = as = y; the line segment \; vanishes.
However, in this case A\; N~ is a singleton, where the G!-continuity is satisfied as
the according tangent vectors are equal to v;. In any case, we have y € G, i.e.
solves our approximation task as it yields the minimum number of segments. An
overview of the whole approach is summarised in Algorithm 2l

Lemma 4. The worst case complexity of Algorithm[@is O(n?) for n input points
and any tolerance €.
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Fig. 6. The resulting SMAP with the two line segments A1 and A

Yit+1 . ; 7 /. % ///;77

Yi az ai T; i

N\
S

Fig. 7. Visualization of extremal arc A; with alternating restrictions a; and az. The
grey portion indicates the connected component of P\ \; containing d and the hatched
one to the component which belongs to s.

Proof. Building the corresponding tolerance channel and computing extremal
line segments Ai,...,\; needs O(n?) time. Let us denote the sub-problems
treating the portion between A\;_; and A; by Si,...,S;+1, where A9 := s and
Ai+1 = d. Clearly, to each sub-problem S; belong n; vertices of P s.t.
> ;ni = O(n). For each S; we firstly compute a SMAP ~; from \i_; to A;
resulting in O(n?) time. If 2 < i < [, we have to check if we can replace
the last segment of ; by one touching A; in direction v;. If this is not the
case, we insert an arc satisfying the CC as described above, which can be
done in O(n?) time as well. Therefore, we have a worst case complexity of

Yo =0 (X n?) = 0m?).
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Although the worst case complexity for computing an extended SMAP does
not differ from the usual case, integrating line segments usually speeds up the
computational time significantly. The following example shall illustrate this issue:
Suppose to have an input polygon with k- N points and the extended SMAP has
k sup-problems with N points each. Then we have Z?Zl N?=Fk N? <« k% N?
if k is considerably greater than 1.

8 Future Work

It should be possible to soften the side conditions of the approximation task
in a way that not the line segments are fixed (expect a possible restriction)
but only the areas in which they should appear. These areas could be defined
by any strategy for detecting straight sections or user interaction, respectively.
Whenever the algorithm runs into such a line area, an extremal line segment is
searched satisfying the CC with respect to the last window. We are confident of
being able to show that Theorem [2] holds for line segments and linear visibility
as well. Then an optimal (new) line segment could be computed during the
backward step, which should have positive effects on the overall segment number
as the flexibility increases this way.

Acknowledgments. This work has been funded by the German Research
Foundation (DFG - Deutsche Forschungsgemeinschaft) under grant number MA
5834/1-1.
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Abstract. A skeleton is a thin centered structure within an object,
which describes its topology and its geometry. The medial surface is one
of the most known and used skeleton formulation. As other formulations,
it contains noise, which complexifies its structure with useless parts. The
connectivity of a skeleton is then unpredictable due to these useless parts.
It can be a problem to segment the skeleton into logical components
for example. We present here a technique whose purpose is to identify
and structure such skeletal noise. It only requires a skeleton as input,
making this work independent from any skeletonization process used to
obtain the skeleton. We show in this paper that we significantly reduce
the skeletal noise and produce clean skeletons that still capture every
aspects of a shape. Those clean skeletons have the same local topology
as the input ones, but with a clearer connectivity.

Keywords: skeleton, medial surface, skeletal noise, hairy pattern.

1 Introduction

A skeleton is a thin structure centered within an object, describing the topol-
ogy and the geometry of this object. Such a skeleton could be then used as a
shape representation model for every closed object. There exist several types of
skeletons and we could divide them into two main categories:

1. curve skeletons; they are composed of curves and used for shape registration
[5], mesh segmentation [4] and data reconstruction [18].

2. surface skeletons; they are composed of curves and surfaces, among them we
can find medial surfaces [6], Midpoint loci [§] and PISA axes [16].

The work presented here is part of a process to make skeletons useful shape
representation models. As stated in [I1], surface skeletons better capture the
geometry of objects than curve ones, making them best candidates for this pur-
pose. Thus, we consider only surface skeletons, and in particular medial surfaces,
because they are well defined and many algorithms exist to efficiently approxi-
mate them. A medial surface is made of atoms. An atom is a maximal inscribed
ball lying inside the described object. Each atom a is connected to other atoms,
called its neighbors A (a). Those links confer a topology on the skeleton.

B. Murgante et al. (Eds.): ICCSA 2013, Part II, LNCS 7972, pp. 113-[[28] 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Skeletons are obtained from objects through a process called skeletonization.
In such a process, a finite number of samples is used to capture an object O.
These samples cannot capture completely O, and uncertainty about the object
boundary arises: do a set of close samples capture a feature or a smooth part?
In each case, atoms will be inserted in the skeleton. Atoms that do not capture
any features produce the skeletal noise. Many methods have been proposed to
remove unwanted components associated with this skeletal noise like [I3] or [I].
A key goal of such methods is to preserve the topology of the skeleton during
the process.

We noticed that the skeletal noise can be classified into two categories: Type 0
noise, also called clusters, and Type 1 noise, commonly referred to as hairy pat-
tern. These noise types make the use of skeletons uneasy as shape representation
models. For example, it is hard to estimate the tangent plane to an atom if one of
its neighbors a belongs to Type 1 noise, since atoms such as a do not lie near the
medial surface. Also connections are unnecessarily complex due to these noises.
Connections get even worse when we look closely inside a cluster, locus of Type 0
noise, where the union of all its balls could be perfectly described by only one
ball. The Figure [l illustrates this classification.

In this paper, we propose new criteria to identify those skeletal noise. We
also present a skeleton structure that contains a hierarchy, used to reflect the
importance of atoms. Atoms are labeled by three number: 0 for Type 0 noise,
1 for Type 1 noise, and 2 otherwise. The hierarchy isolates skeletal noise from
the remaining skeleton atoms: atoms from skeletal noise cannot have connections
with relevant atoms. The neighbors are reorganized due to this isolation, in order
to preserve the skeleton structure (i.e. logical components of the skeleton) thanks
to structuring rules we created. There is no requirement about how the input
skeleton was obtained, as our method take place apart from any skeletonization
process. Thus, our work is general enough to be applied to every connected
skeleton. More importantly, we show that our cleaned skeleton is simpler with a
clearer connectivity, while not loosing any features or the original skeleton.

2 Previous Work

Since medial surfaces had always been noisy, removing this noise from it had
motivated a lot of work. This is generally done during the skeletonization pro-
cess: when the skeletonized object O is known. Thus, a noise removal technique
is strongly linked to a skeletonization method. The most popular approaches for
skeletonization are based on the Voronoi diagram or its dual Delaunay tetrahe-
dralization. We review here such noise removal techniques.

Because such techniques are related to skeletonization, they must ensure that
they provide a good skeleton. A good skeleton may be seen as a skeleton which
converges to the medial surface when the sampling density of O tends to infinity.
A very important result in 3D is that, unlike in 2D [9], the Voronoi vertices do
not converge to the medial surface, as the sampling density tends to infinity [2].

An approach that guarantees convergence uses a subset of the Voronoi ver-
tices, named the poles [I]. For a sample point p, the poles are the vertices of its
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Fig. 1. Tllustration of skeletal noise. a) This torus has 94% of its atoms belonging to
Type 0 noise, such that the englarged view contains 68 atoms, while only 4 can be seen.
b) To represent skeletons in this paper, we use a color code to transcript the radius of
an atom: from blue for small values to hot colors for big values. ¢) The blender monkey
model’s skeleton contains hairy pattern, especially at the center of the skull. d) The
cleaned skeleton of the monkey model obtained with our method.

Voronoi polyhedron that are the furthest away from p on the two sides of the
surface. The balls centered in these poles (with radii equal to the distance to
their samples) are called polar balls. The method is very robust and the produced
skeleton, called the Power Shape, is visually reasonable. However, skeletal noise
remains and many flat tetrahedra populate the skeleton. Also, this method was
firstly intended to reconstruct a shape from a point cloud. Thus, it does not take
advantage of any information contained in O except some sample positions.
Dey and Zhao [I3] presented a method where (a subsequent part of) the
output converge to the medial surface, by applying angle-based filter conditions
to the Voronoi diagram. The filter parameters are scale and density independent.
However the skeleton topology is ignored and some holes appear in many cases,
inducing loss of information or topology changes in the described object.
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In [I0], the authors introduce the notion of weak feature size F(x) at a point x.
This is the radius of the minimal ball enclosing closest object boundary points to
x. If we remove the Voronoi vertices v with F(z) < A, we obtain the A—Medial
Axis. The main disadvantage with such technique is the definition of X\ for a
shape: as A increase, more skeletal noise is removed, as well as some features.

Another method called the Scale Azis [17] produces very nice looking skele-
tons. This work is based on the Power Shape, with useful enhancements. The in-
put object is remeshed and sampled by the technique proposed in [7]. Polar balls
are efficiently obtained from an input mesh thanks to a more adapted process.
Those polar balls are scaled by a factor s. The skeleton, composed of the union
of those scaled balls, is computed and then cleaned by a topology-preserving
angle filtering. Finally, the balls in the skeleton are scaled back by a factor 1/s.
The scaling factor allows the skeletal noise removal by a spatially adaptive fea-
ture classification. With some constraints on the s parameter, the Scale Axis
transform has been proven to have topological stability guarantees [14].

We propose in this paper to perform the noise removal apart from the skele-
tonization, working directly on the skeleton with no further information. As
shown in the result section, our technique significantly remove the skeletal noise
and keeps every details. Moreover, it maintains the topology of the skeleton.

Outline

In this paper, we first describe the model we have conceived to structure the
skeleton (Section [B]). We also present the atomic operations that can be realized
on this model (Section [3.3). Then, we detail the methodology we used to identify
skeletal noise of Type 0 (Section M) and Type 1 (Section [l). We finally expose
our validation process, and conclude.

3 Structuring Model

In this section, we present the skeleton model used to identify and structure the
skeletal noise.

3.1 Atoms

Basically, atoms can be seen as balls whose union approximates an object. We
consider them as nodes of a graph: they have a position, a radius, and links
with other atoms. We add to this graph a hierarchy structure, reflecting the
importance of the atoms. Each atom has then a rank that is equal to its level
in the hierarchy: 0 for a useless atom, 1 for a unimportant atom, 2 for a more
important and so on. The rank is the label of the atom node. Since we deal with
a hierarchy, atoms may have also a father and sons. If an atom does not have
a father, we call it root. Otherwise, we call it sub-atom. The Figure 2] shows a
schematization of these concepts.
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atom of rank n Q—b@ hierarchical link

father son

Q—Q neighbors %] —»Q root

Fig. 2. Schematization of atoms

3.2 Skeleton

The skeleton has thus two structures: one composed of neighbor links (represent-
ing the topology), and another one composed of hierarchical links (reflecting the
importance of atoms). In order to combine those two structures, we introduce
the notion of n-hierarchy. A skeleton is said to be a n-hierarchy if:

i) an atom is a root <= an atom has rank n,
ii) two atoms have different ranks = they cannot be neighbors,
iii) every sub-atom has a rank lower than the one of its father.

The structuring process starts with a 0-hierarchy skeleton S: a graph where
each node is 0 labeled. Then S is structured rank by rank, using criteria to
detect when an atom a is less important than another atom b. The rank of such
atom b is changed to reflect its importance relatively to a. Such an operation
make impossible to keep the n-hierarchy property because there will be be roots
at ranks n and n + 1 (See Figure B)). We hence release some of the constraints
contained in the definition, to introduce the notion of n-consistent skeleton. This
intermediary state specify how the skeleton should be before reaching a hierarchy
of higher level. Such a skeleton meet the following requirements:

i) roots can only be at the levels n and n + 1, and every atom of rank n + 1
is a root,
ii) only two roots or two atoms with the same rank can be linked,
iii) every sub-atom has a lower rank than its father.

The roots of level n + 1 are called the processed roots, because they will remain
roots of level n 4+ 1 until the skeleton becomes a n + 1-hierarchy. Because of i),
atoms corresponding to noise are not linked to important atoms. It is a way to
isolate them. Items i) and 4ii) make the roots of a skeleton the most important
atoms. If we consider only these roots we have a connected skeleton called in
this paper clean skeleton, since the low ranks contain skeletal noise.

3.3 Structuring Operations

When an atom a is detected as less important than another atom b, we perform
a structuring operation on the skeleton, called absorption and written b > a,
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Fig. 3. Schematizations of skeletons. a) This skeleton is a 2-hierarchy. The atom in
red is promoted to a higher rank because we detected it as important. We obtain the
situation b), where this skeleton is 3-consistent.

to reflect this information. For each kind of addressed importance, a specific
absorption is defined. In this paper, we deal only with importance relatively to
noise. Thus we define one absorption for clusters and one for hairy pattern.

An absorption always sets the less important atom a as the son of a root
atom c. After such action, ¢ must update its rank r. to have the same rank as
the processed roots, i.e. n + 1. The rank r. is then greater than the rank of a,
in order to meet the constraint described in ). Then, every link between a
sub-atom and ¢ must be removed, to fulfill item ii). The last two operations are
called promotion and written promote(c).

In order to maintain the skeleton topology, during the absorption, the links
of a are transmitted to c. Moreover, we also need to remove the links between a
and the other roots in the hierarchy (item ii)).

4 Identifying and Structuring Atom Clusters

This section deals with atom clusters and proposes a solution to identify them
and structure them.

4.1 Observations about Atom Clusters

We know exactly the theoretical skeletons of simple objects, e.g. torus, sphere.
When we observe the practical skeletons obtained for such objects, we can notice
a huge difference between the number of perceived atoms and the real number
of atoms. This difference is due to the presence of clusters: a high number of
atom loci is contained in a very small spatial area. In such places, we perceive
only one atom (at a reasonable scale), while in practice, there are so many, as
shown in Figure [l a).

Atoms are maximal inscribed balls. Thus no atom can be fully contained
into other ones. If we suppose there is a difference of radii within a cluster, the
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biggest atom would contain at least one atom, as they are very close. This is a
contradiction, and then every atom in a cluster has a similar radius. So, every
atom in the cluster adds a very tiny piece of information (about the size of the
machine precision). Consequently, a cluster should then be replaced by one of
its atoms since it is useless to store a large number of atoms that add almost
nothing.

Clusters are due to parts that are locally spherical. Basically, with a Voronoi
diagram based skeletonization technique, each 4 cospherical samples produce an
atom, located at the circumsphere. If there are more than 4 cospherical samples,
duplicated atoms are created. Due to machine precision, duplicated atoms will
not be at the same location, but very close and with very similar radii. Clusters
could be then addressed in the skeletonization process by identifying samples
that are cospherical, like in [19]. In the next section, we will show an identification
criterion that is independent from the skeletonization technique.

4.2 Identification Criterion

Since atoms inside the same cluster are very close and have almost the same
radius, the volume V,\;, added by an atom a to another atom b of the same
cluster is nothing compared to the volume V,. We define a test Fy(a,b) which
indicates whether a and b belong to the same cluster and if a is less important
than b. Here is the expression of the test Fy:

Fola,b) = (@nb#0) A(Va < Vo) AVaro < V). (1)

This test allows to detect clusters with only one parameter, x, which is easy to
understand. Using a relative measure based on the volume of an atom makes this
criterion insensitive to scale while being local. Thus, it suits models of any size
while taking into account the local thickness of the shape, to avoid the labeling
of small details as Type 0 noise. In our implementation, we noticed that x = 5%o
is enough for all the tested objects.

There is no requirement on links between a and b, and we explain here why.
First, there is no need to look at links to identify a cluster. Second, links inside a
cluster are chaotic, we cannot rely on them for efficiency purpose. Finally, there
exist isolated vertices inside a cluster for skeleton based on the Power Shape
algorithm (due to the use of a regular tetrahedralization to define the links).
Ignoring links when detecting clusters allows us to remove isolated vertices from
the cleaned version of a skeleton.

4.3 Structuring Process

We process every atom of rank 0 such that there is no cluster in the clean
skeleton, i.e. among the roots. For a cluster, only one of atom a will reach the
rank 1, while every other atom will be the sons of a. Atoms that do not belong
to a cluster are promoted to the next rank at the end of the process such that
we obtain a 1-hierarchy.
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To process an atom a, we use the test function Fy with already processed
atoms P. For b € P, if Fo(a,b) = true, then a < b, otherwise if Fo(b, a) = true,
then b < a.

For clusters, the absorption is context dependent: the result is not the same
depending whether input atoms are roots or not. We give a summary of struc-
turing rules for this absorption in the Figure[dl For reasonable values of «, this
process keeps the skeleton topology because only very close atoms are removed
(and links with removed atoms are transmitted to their fathers). Also, there is no
need to impose a processing order, as every atom in a cluster is interchangeable.

5 Identifying and Structuring Hairy Pattern

This section deals with hairy pattern and propose a solution to identify them
and structure them.

5.1 Observations about Hairy Pattern

The hairy pattern is one of the most known and recognizable skeletal noise.
It consists in atoms that do not capture any feature. They are produced by
circumspheres that have some of their 4 spherical sample points close from each
other. This is why the Lambda Axzis [I0] prune atoms when distances between
these samples are below a threshold.

When we explore the skeleton looking for Type 1 atoms, we notice something
about their neighbors: they are located in a narrow cone, and most of them
belong to the stable skeleton. The stable skeleton is the visually free of noise
skeleton. This neighbor configuration gives to Type 1 atoms a spiky appearance,
making them off-centered. Also, such atoms have a radius lower than their neigh-
bors on the stable skeleton. So when we move from a Type 1 atom toward the
stable skeleton, the radii of atoms get bigger.

The ends of thin skeleton parts, e.g. for fingers, are very similar to hairy
pattern. The distinction is made with the length of such pattern: if this length
is a small compared to surrounding parts, we have a hairy pattern. So, to deal
with hairy pattern, we should limit the length of absorbed skeleton components,
to avoid the classification of thin detail parts as noise.

5.2 Identification Criterion

Since Type 1 atoms are off-centered, we have built a simple criterion based
on this. We check the location of the neighbors of an atom a by computing a
sphere BS(a), which is the minimal sphere containing their positions. If @ is not
inside BS(a), we consider that a is off-centered and thus is a Type 1 atom. This
parameter-free criterion is better suited than setting a threshold to control the
thickness of the cone containing the neighbors.

To define BS(a), the atom a must have at least 2 neighbors. Otherwise, a has
one neighbor b: it can either be noise or the termination of a thin curvilinear
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Fig. 4. Schematization of cluster absorptions. The atoms concerned by this operation
are depicted in red, a on the left that is the currently processed atom, and b on the
right which had already been processed. For simplicity purpose, we do not schematize
the operations to meet the constraints described by item i) in the definition of a
n-consistent skeleton.
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component. In the latter case, a should not be absorbed. We distinguish those
cases by counting the neighbors of b. If it is more than 2: b is not a part of a
thin curvilinear component and a is not absorbed. This gives us the following
test Fi to identify a Type-1 atom:

a € BS(a) , if tN(a) > 2
Fi(a) = N (b) < 3, if N(a) = {b} (2)

false ,in other cases

5.3 Structuring Process

Initially, S is a 1-hierarchy. We have to test and structure the following set
of atoms: P = Roots(S). Every atom a € P is re-tested when a change (an
absorption) is made in P. We assume that Fj(a) = true, otherwise we simply
take the next atom in P.

If @ has only one neighbor b we realize the operation a < b. In the other case,
we must choose among the neighbors of a, the atom b to use in the absorption.
We propose to set b as the neighbor of rank 1 with the highest radius. This has
two consequences:

— the absorption is made toward the stable skeleton because bigger atoms in
a hairy pattern are closer to the stable skeleton than smaller atoms (see
Section [B.T]).

— choosing a rank 1 atom will limit the length of an absorbed part, since in
combination with the identification criterion, there will be no further possible
absorption. Thus thin detail skeleton parts will be protected, as shown in
Figure

Structuring rules for the hairy pattern absorption are detailed in the the Figure[@l
Due to the identification criterion, atoms at crossings of skeleton components or
inside a component are not detected as hairy pattern: their neighbors are all
around them, thus they are inside the minimal bounding sphere. Only atoms
in the boundary of components and hairy pattern are detected. As there is an
effect which limits the length of the absorption, no components can completely
disappear. Moreover, the links of an absorbed atom are transmitted to its father,
without any loss of connectivity information. So, the topological structure of the
clean skeleton remains the same after this step.

We impose to process P from the lowest radius to the biggest one. The result
is then the same no matter the creation of the skeleton structure.

6 Validation

We validated our work with quantitative and qualitative comparisons. These
comparisons were made with two different skeletons for some input shapes. The
results express the “compression”realized by our technique on skeletons, while
quantifying the modification in the geometric data. Also, the qualitative study
shows the improvement in the skeleton connections and the conservation of the
skeleton structure.
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Fig. 5. Effect of the hairy pattern structuring process. The input skeleton of Homer
hand is presented in a). With the method described here we obtain the result b). If we
allow any neighbor of rank 1 to absorb an atom detected as noise, fingers disappear as
shown by c).

6.1 Protocol

We took some input shapes, and we skeletonized them by two well-known al-
gorithms that give theoretical guarantees about the results while reducing the
skeletal noise: the Power Shape and the Scale Azis. Each of these skeletons was
structured by the technique we presented previously, giving us four skeletons by
input shape.

We first computed statistics about those skeletons, to quantify their com-
plexity. We also measured the distance between the input shape and the shape
described by a skeleton. To do so, we used the Skin Surface [15], a garbing al-
gorithm which only considers the spheres. This way, we measure the possible
loss of geometric data in the cleaned skeleton relatively to the input skeleton.
If we had used a garbing algorithm that consider other primitives to enhance
the garbing mesh, like [I2] that removes surface noise in the garbing mesh, the
loss of geometric data would have been hidden. We chose the Root Mean Square
distance (RMS), and we computed the distance between the input shape and
the skin surface of each skeleton by the Mesh software [3].

Then, we compared visually the quality of the skeletons. We examined the
links between atoms, looked for remaining noise and checked that detail was not
removed.

6.2 Quantitative Comparison

First, Figure [0 expresses that the skeletons have been reduced with our struc-
turing process. In average, only 85% atoms of the Power Shape remain in the
clean skeleton, and 53% of the Scale Azis. For the Power Shape, the majority
of the skeletal noise is caused by hairy pattern. However, such a skeletonization
technique was firstly designed to remove such noise type. Thus, a noise removal
algorithm done apart from the skeletonization, like ours, is useful to produce
clearer skeletons, as noise still remains.



124 T. Delame, C. Roudet, and D. Faudot

a < b when a and b have rank 1.
- 606 ()

a < b when a has rank 2 and b rank 1, @ must be demoted.

Fig. 6. Schematization of hairy pattern absorption. The atoms concerned by such op-

NOO =00

OO

eration are depicted in red, a is on the left and b on the right.

This statement is confirmed by the huge quantity of clusters contained in the
Scale Awis. Such a skeleton is made of far more atoms than previous ones. A
trend in skeletonization techniques is to sur-sample the input object, in order to
produce more atoms. By doing so, we expect the skeleton to be more accurate and
clear. As there are more atoms, they add fewer information to their neighbors,

and our cluster identification criterion is triggered.

Table 1. RMS distances between original object and skin surfaces of both normal
and cleaned skeletons. Results are given in percent relatively to the diagonal of the

bounding box.

Power Shape
Normal Cleaned Normal Cleaned

armadillo 4.33

baby 7.15
bimba 7.36
boy 11.20
bunny 23.99
camel 16.12
dinopet 13.74
egea 4.87
fish 32.90
homer 10.16
horse 11.76

One could argue than such results are obtained because we remove details
from the skeletons. However, Table [Il prove that we only removed skeletal noise
from the skeletons. The geometric data loss with our clean skeleton obtained for

4.75
7.23
7.41
11.31
20.14
15.67
13.64
5.79
31.81
10.43
10.68

Scale-Axis

49.11
41.17
82.24
39.85
91.56
64.73
49.58
134.65
35.34
65.71
59.67

47.42
40.35
80.94
38.75
90.49
63.78
47.86
133.23
35.33
63.47
58.73
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.HMM Roots .ﬂﬂﬂﬂﬂl Type 1 -ﬂ] Type 0

dinopet
baby

homer

boy
egea
bimba
camel
fish
horse

armadillo

bunny

Power Shape Scale Axis

Fig. 7. Percentage of Type 0, Type 1 and roots in the cleaned Power Shape and the
cleaned Scale Axis

the Power Shape is very small, about 1%o. For some cases this is even better, as
skeletal noise can add material outside the original shape. For the Scale Axis,
there is no loss of data reported: the RMS distance is always better. Thus our
technique removed 47% of atoms in the Scale Azis without losing any detail
compared to the input skeleton. This demonstrates that our technique efficiently
remove skeletal noise from these skeletons.

The results also raised the question about the legitimacy of the actual trends
in skeletonization: producing skeletons with more atoms does not improve the
geometry captured, it mostly adds skeletal noise.

6.3 Qualitative Comparison

As clusters are by definition composed of atoms that cannot be distinguished
visually, their absorptions make no visual difference. Also, we absorb the skeletal
noise without any loss of detail, thus there is no missing parts in the skeleton. For
these two reasons, there is not important visual differences between a skeleton
and its cleaned version. We can only notice the removal of hairy pattern, erasing
some small spiky component, and the disappearance of some atoms in skeleton
boundaries as shown in Figure

For Scale Axis skeletons, the noise of Type 1 — the only visible noise — is closer
to the stable skeleton. Thus, the visual enhancement on the clean skeleton is less
than for the Power Shape. We checked the visual enhancement on a Power Shape
obtained with much more samples to raise the number of atoms. The produced
skeleton is visually enhanced and the atom reduction is on average 53%, with a
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g) h)

Fig. 8. Qualitative comparisons between the skeletons. The first three rows show the
visual effects of our noise removal method on the dinopet model. a) is the Scale Axis for
this model. b) shows the enhancement on the thigh from the input (top) to the cleaned
skeleton (bottom). c), d), e) and f) propose a close view of one foot of this model for the
Power Shape and its cleaned version, and for the Scale Azis and its cleaned version. A
sur-sampled version of Power Shape in g) and its cleaned version in h).
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relative proportion of Type 0 and Type 1 noise nearly the same as for the Scale
Axis. Thus, even if raising the number of atom in a skeleton increase the Type 0
noise, the Scale Axis reduces the visual importance of Type 1 noise, while our
method reduces both noises in terms of quantity.

6.4 Limitations

There are two limitations to our technique. The first one is due to the constraint
we have on detail. Indeed, to use skeletons as shape representation models in
computer graphics applications, they should be able to capture small features.
Thus, the cleaning process let untouched some hairy patterns to not absorb
small features because small features can also be detected as hairy pattern. This
effect can be handled by two or more ranks of hairy pattern when needed, but
it requires the user intervention to determine when to stop.

The second limitation comes from the definition of the x value. If it remains
small, the skeleton is perfectly clean and clear, no detail is loss. But with bigger
values of k, parts of the skeleton disappear, being iteratively absorbed. This
is especially the case on models which have a lot of small features, like the
Armadillo model, or on skeletons with highly dense atoms: an atom is very
likely to add not enough material to its neighbors, and thus is absorbed. As the
k value is meant to handle only clusters, i.e. machine precision issues, we highly
discourage the use of high values of k: the skeleton will lose its structure and
features will be missing.

7 Conclusion and Future Work

In this paper, we addressed the removal of skeletal noise, i.e. atom clusters and
hairy pattern. Such noise produces unnecessarily complex skeleton, by raising its
data size and disturbing its structure. Unlike the numerous methods that take
place in a skeletonization algorithm, our technique can be directly used on any
connected skeleton, requiring no additional data like the original shape or angle
values stored with atoms. Another originality of our work, is the use of a hierar-
chy structure to process the skeletal noise. Depending on its contribution to the
geometric data of a skeleton, an atom receive a rank, reflecting its importance.
Less important atoms are isolated from more important ones by this structure.

We showed in this paper how to take advantage of this hierarchy to clean a
skeleton, in order to use it as a true shape representation model and not only
an intermediary processing model. Indeed, atom clusters are removed, and the
majority of hairy pattern is erased, while the skeleton do not suffer from any loss
of detail. Even on input skeletons produced by skeletonization algorithms that
are known to remove skeletal noise, we significantly reduce the number of atoms.
The components of the skeletons remain the same, and no “hole” appears.

We define a level of detail, by considering only atoms with a rank greater
than a minimal one. Once we get rid of the skeletal noise, we can identify
and structure the features of the skeleton the same way we dealt with noise.
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This will build a multi-resolution shape representation model, allowing process-
ing at different level of detail like rendering, segmenting, or interaction.
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Abstract. Stochastic geometry has applications in areas such as robotics,
tomographic reconstruction with uncertainties, spatial Poisson-Vonoroi
tessellations, and imaging from medical data using tetrahedral meshes.
We examine numerical approaches for the computation of multivariate in-
tegrals for a family of problems where uniformly distributed points are
picked as polyhedron vertices for tessellations, for example, tetrahedron
vertices in a cube, tetrahedron or on a spherical surface. The classical
cube tetrahedron picking problem yields the expected volume of a ran-
dom tetrahedron in a cube, and helps furthermore assessing unsolved
extremal problems (cf., A. Zinani, 2003). We demonstrate feasible nu-
merical approaches including adaptive integration through region par-
titioning, quasi-Monte Carlo (based on a randomized Korobov lattice),
and Monte Carlo techniques, which are the basic methods of our par-
allel integration package ParInt. We then describe our implementation
of the Monte Carlo approach on GPUs (Graphics Processing Units) in
CUDA C, and demonstrate its parallel performance for various stochastic
geometry integrals.

Keywords: stochastic geometry, numerical integration, GPU.

1 Introduction

A family of problems, to determine the expected d-dimensional (dD) volume
E[V,(K)] of the polyhedron formed by n points Xi,..., X, uniformly dis-
tributed in the interior of a convex body K, is represented in [1] by

ax; ax,,

1
&k W

E[Vh(K)] = |Ilf| /K---/Kconv(Xl,...,Xn)

where | K| denotes the d-dimensional volume of K and the integrand function is
the volume conv(Xy, ..., X,) of the convex hull generated by the n points.

J. J. Sylvester considered the plane case for a random triangle 7" in a convex
set K and posed the problem to determine the shape of K for which the expected
value F[X] is minimal or maximal, for the variable X = area(T')/area(K) (see,
e.g., [2]). Note that the convex body K which maximizes the expected volume
of a random d-dimensional simplex, is unknown for d > 3.

B. Murgante et al. (Eds.): ICCSA 2013, Part II, LNCS 7972, pp. 129-[[39] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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As a direct application in R3, the mean volume of a tetrahedron whose ver-
tices are uniformly distributed on a circular domain (cap) of the unit sphere
is an essential element in the analysis of Poisson-Vonoroi and Delaunay tessel-
lations |3]. Tessellations induce a partition into space-filling random polyhedra,
and are used in such areas as molecular modeling, material science, pattern recog-
nition and statistical data analysis. Tetrahedral meshes in general are found in
applications including computer graphics, computer-aided design, robotics [4],
electromagnetic simulations |5] and medical imaging [6-g].

Efron [9] determined the probability with which N points chosen at random
in a convex region, are the vertices of a re-entrant polyhedron, where the last r
selected points lie inside the convex hull of the first N—r points. For example with
r = 1, the probability that N = 5 points chosen at random in a convex region
form the vertices of a re-entrant polyhedron (as related to () is N x E[Vy(K)].

Results of the E[V,,(K)] problem have been derived which cover specific cases
for d > 3. For example, the problem to evaluate the expected volume of a random
polytope in the interior of a sphere (ball), was considered early on in [10, [11].
Tetrahedron picking in a cube (cube tetrahedron picking) was handled, e.g., in [1,
2]. For tessellations on the surface of a sphere, 8% in 3D, (sphere-tetrahedron
picking) see |3]. The problem was solved for d-dimensional simplices, with d 4 1
random vertices on the surface of S4=1 in d > 2 dimensions [12]. The solution
of the problem for tessellations within a tetrahedron (tetrahedron-tetrahedron
picking) |13, 1, [14] refutes a conjecture from 1991 that the expected volume
would be a rational number [15, [16]. This as well as cube- and octahedron-
tetrahedron picking contributes to the results with respect to tessellations in
non-spherical convex bodies. A recurrence relation was established for E[V,,(K)]
with respect to arbitrary K in [17]. Overall, closed form solutions have been
restricted to special cases and difficult to obtain.

In this paper we first examine approaches given by automatic numerical inte-
gration including adaptive partitioning of the domain, quasi-Monte Carlo (QMC)
and Monte Carlo (MC) techniques, which have been implemented for automatic
integration in sequential and parallel packages [18-22]. We choose these particu-
lar methods because they are at the basis of our ParInt package (developed fur-
ther from ParInt 1.0 ©1999 by E. de Doncker, A. Gupta, A. Genz, R. Zanny).
Over the years our interest in these techniques for automatic numerical inte-
gration has been sparked by applications in various fields, including many in
statistics (e.g., multivariate normal, t- distributions), finite elements (e.g., auto-
motive simulations), computational finance (financial derivatives, e.g., collateral
mortgage obligations, mortgage backed security problems), high energy physics
(e.g., interaction cross sections), computational chemistry (e.g., Fock matrix rep-
resenting the electronic structure of an atom or molecule), and computational
geometry.

A brief description of the basic methods is given in Section Bl In this paper
they are mainly used for comparisons. A parallel Monte Carlo implementation
for GPUs is outlined in Section Bl Section @ gives results and addresses the
parallel performance of the CUDA C implementation.
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2 Automatic Numerical Integration

In this section we give a short description of the methods used to obtain some of
the numerical results in this paper. Each of these techniques typically underlies
an automatic numerical integration algorithm, set up as a black-box to which
the user specifies the dimension, integrand function and integration domain, a
limit on the number of function evaluations for termination, a tolerance for the
error and possibly other parameters. The method may be adaptive if the course
of its computations is governed by the behavior of the problem at hand, or non-
adaptive if it evaluates a fixed sequence of integration rules until a termination
criterion is satisfied.
The black-box algorithm yields an integral approximation

Q~1= [ f@)do

and an absolute error estimate E, where it attempts to satisfy a criterion of
the form |Q — I| < E < tolerated error, within the allowed number of function
evaluations; or indicates an error condition if the limit has been reached.

Adaptive methods are generally recommended for low to moderate dimen-
sional problems (say, up to dimension 12), whereas Monte Carlo and number-
theoretic type methods (lattice rules, QMC) can be used in higher dimensions.
Apart from the adaptive and QMC algorithms described below, we will also in-
clude results from a crude Monte-Carlo algorithm (RCRUDE from the package
MVNPACK [22]), with simple antithetic variates and a uniform (0,1) random
number generator from [23].

2.1 Adaptive Region Partitioning

Many integration problems feature varying function behavior across the integra-
tion domain (e.g., singularities or peaks). An adaptive method based on region
partitioning executes a number of iterations where, in each iteration, a subregion
is selected, subdivided, and the integral and error estimates are updated accord-
ingly. Region selection is based on the local error estimate which is obtained
together with the local integral approximation over each region. By intensive
partitioning in the vicinity of singularities or other hot spots, it is the goal to
focus on the difficult areas and sample the integrand adaptively as needed.
The integration rules of the algorithm DCUHRE [18] were chosen for the adap-
tive methods in the PARINT parallel integration package [20, 121]. Some of the
numerical results in Section ] below have been obtained using this method.

2.2 Quasi-Monte Carlo

The Quasi-Monte Carlo (QMC) method [24] samples the integration function
at the (N) points of a regular lattice, which are modified by a random vector.
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Let the sequence of randomized (Korobov) lattice rule approximations be de-
noted by

N .
Kn(B) = Y5 v+ 8D

where v is the lattice generator vector and @ is a uniformly distributed ran-
dom vector. By computing the rule for ¢ random 3 vectors, the integral can be
approximated as

_ 1<
I~Ky= Y Kn(8;), (2)
7=
which allows for a standard error estimation
B= LS k(8 - Rn)?
= N L) — N).
N glg-1) & ’

Jj=1

The program DKBVRC from the package MVNDST [19] is at the basis of the
parallel QMC method in Parint [20]. The algorithm calculates the K values
of @) for successively larger numbers N of integration points until either an
answer is found to the user-specified accuracy or the function count limit is
reached.

3 Monte Carlo Simulation of Random Tetrahedron
Picking on GPUs

3.1 Random Number Generation

The Monte Carlo approximation is obtained as the avarage of the function values
at a set of IV uniformly distributed random points. We rely on the CUDA pseudo-
random number generator library (curand) to generate N * d random floats for
the coordinates of N d-dimensional points, directly on the GPU (device). A
CUDA C program section allocating space for ndim = N x d floats in an array a
on the device, and calling the curand functions is shown below.

// allocate ndim floats on device in array a

cudaMalloc (( void **) & a , ndim * sizeof ( float )) ;

// create pseudo-random number generator
curandCreateGenerator (& gen , CURAND_RNG_PSEUDO_DEFAULT ) ;
// set seed

curandSetPseudoRandomGeneratorSeed ( gen , 1234ULL ) ;

// generate ndim random numbers on device
curandGenerateUniform ( gen , a , ndim ) ;
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3.2 Device Functions

A part of the program to launch in parallel on the GPU is coded as a CUDA
kernel. The CUDA runtime is then instructed to launch a number of parallel
copies or blocks, and how many threads to launch per block. The integrand
function evaluated at the random points from the CUDA kernel is referred to as
a device function.

For tessellations on a spherical surface (sphere-tetrahedron picking), the ver-
tices of the tetrahedron are random points on the unit spherical surface S?. The
integral (1) is 8-dimensional as it involves the integration for each of the four
vertices over K = §? (which is 2-dimensional). §? can be described in parameter
form by (z = v/1 — u2cos(0), y = V1 — u2sin(f), z = u), so that the integration
is over u € [—1,1] and 0 € [0,27]. As suggested in [16], the dimension can be
reduced from 8 to 5 by fixing the first vertex (x1,y1,21) at (0,0,1) and taking
the second (z2,y2, 22) in the xzz-plane (y = 0) without loss of generality. The
first vertex is thus obtained by u; = 1 and the second by 62 = 0, so that the
integration over the first sphere is removed and the second integration becomes
one-dimensional. The integral obtained in this form corresponds to V() of [3],

Y duy [ dus [T dug [T dO [T dO (Vi

Vir) = , 3
™ I dus 1) dus [T dug [T dOs [T d6 1 )

where |Vy| is the volume of the tetrahedron, given by the determinant

1 Y1 211
_1 l’ngZQl
6 |z3yz 23 1|’

TqYg 24 1

Va

The integrand function for the 5D integral coded as a device function (to be
called from the CUDA kernel) is given in Appendix A. The integration inter-
vals [—1,1] and [0, 27] are transformed to [0, 1]. The implementation for the 8D
integral can be given with dim = 8 and where the first and second vertex are
computed similarly to the third and fourth. -

Note that () corresponds to the special case of the expected volume V()
for @ = 7 in [3], of the spherical cap

S*(a) = { 5(¢,0) | ((sin()sin(9), cos(¢) sin(?),cos(¥)); —r1<dp<m, 0<I<a}

Thus the representation of 2 above corresponds with v = cos(d) and a = .
The expected volume of a random tetrahedron with vertices on S? is given by

V()= [ ~0.11968.

As another case, we compute the integral

3 4 1 1—xq l—x1—y1 1 l—xo l—xo—y2
E[VZL(T )] =6 / dxl/ dyl/ dzl/ d{EQ/ dyz/ dzo
0 0 0 0 0 0
1 1—x3 l1—x3—ys3 1 1—x4 1—x4—vya
/ da:g/ dyg/ dZ3/ dac4/ dy4/ dzs |Vi|
0 0 0 0 0 0
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for the expected volume of a random tetrahedron within the 3D unit sim-
plex. The integral is transformed as shown in the code of the device function
in Appendix B, so all variables range over [0,1]. The exact value is given by
EVi(Ts)] = 3 — | &5 ~ 0.017398 (see [13, l1]).

For cube-tetrahedron picking, E[V4(Cs)] is given as an integral over the 12D

unit cube, [0, 1]'2,
4 1 1 1
E[V4(C?)] H[/ dxi/ dyi/ dzi] Val, (4)
=1 Lo 0 0

and equals E[V,(T?3)] = JoT — 271“60 ~ 0.0138428 (see [1]).

4 Numerical Results and Parallel Performance

Table [l compares the programs DCUHRE [18], DkBVRC |19] and RCRUDE [22] for
the integral (@) of the cube-tetrahedron problem. Note that the problem is dif-
ficult in view of the absolute value function of the determinant integrated in 12
dimensions. The first column of Table[] gives the number of integrand evaluations
allowed. DKBVRC usually stays well under that, since it computes a sequence of
rules each with a fixed number of points INV; at level 7, and N; << N; for ¢ < j.

Table 1. Comparison for cube-tetrahedron problem (E[Va(C?)])

# EvALS PROGRAM REsuULT  ABS. ERR. ABS. ERR. TIME(s)

(M) Est.

0.1 DcunRE 1.381719e-02 3.36e-06  1.13e-02  0.3978e-02
DKVBRC  1.394575e-02 1.03e-04  1.48e-04  0.5185e-02
RCRUDE  1.363727e-02 2.06e-04  1.85e-04  0.2427e-01

1 DcuHrRE 1.373211e-02 1.11e-04  6.96e-03  0.4372e-01
DkvBRC 1.384961e-02 6.84e-06 3.67e-05  0.6687e-01
RCRUDE  1.380387e-02 3.89e-05 5.90e-05 0.1214e-01

10 DcuHRE 1.373192e-02 1.11e-04  3.32e-03  0.4391e+-00
DKVBRC  1.384268e-02 9.37e-08  5.93e-06 0.8048e+-00
RCRUDE  1.384701e-02 4.24e-06  1.87e-05  0.4403e+00

30 DcUuHRE 1.374961e-02  9.32e-05  2.36e-03  0.1323e+4-01
DKVBRC  1.384218e-02 5.97e-07  4.13e-06  0.2729e4-01
RCRUDE  1.384282e-02 4.11e-08  1.08e-05 0.7280e+01

50 DcuHRE 1.381719e-02 2.56e-05  2.22e-03  0.2206e+-01
DkvBRC  1.384249e-02 2.88e-07  2.18e-06 0.4112e+4-01
RCRUDE  1.384290e-02 1.27e-07  8.36e-06 0.1381e+02

100 DcuHRE 1.380235e-02 4.04e-05  1.85e-03 0.4410e+-01
DkvBRC  1.382480e-02 2.37e-08  1.28e-06 0.9232e+4-01
RCRUDE  1.384405e-02 1.27e-06  5.91e-06 0.2427e+02

200 DcunrRE 1.380291e-02 3.99e-05 1.57e-03 0.8827e+01
DKVBRC  1.384280e-02 2.37e-08  1.28e-06 0.9229e4-01
RCRUDE  1.384281e-02 3.50e-08  4.18e-06 0.4863e+02

Ezxact: 1.384278e-02



GPU Integral Computations in Stochastic Geometry 135

Table 2. GPU results for E[V4(S?)], E[Va(C?)] and E[Va(T?)]

# Ev. PROBLEM REsSULT ABs. ERR. SEQ. TIME PAR. TIME SPEEDUP

(M) (s) (s)

N

0.1  E[Va(S?)] 1.196144e-01 6.53e-05 2.9787e-02 1.0117e-02 2.9442e+00
E[Va(C?)] 1.383333¢-02 3.57¢-05 2.1131e-02  9.8808e-03 2.1385e-+00
E[Va(T®)] 1.743181e-02 3.36e-05 2.6249¢-02  9.9260e-03 2.6445¢-+00

1 E[Va(S?)] 1.194591e-01 2.21e-04 2.9330e-01  1.0690e-02 2.7437e+01
E[Va(C?)] 1.381283e-02 2.99e-05 2.0992e-01 1.1233e-02 1.8687e+01
E[Va(T®)] 1.734215e-02 5.61e-05 2.5701e-01 1.1108e-02 2.3139e+01

10 E[Va(S?)] 1.196825¢-01 2.74e-06 2.9632e+00 2.0068¢-02 1.4374e+02
E[Va(C?)] 1.384527¢-02 2.50e-06 2.0518¢+00 2.3818¢-02 8.6146e+01
E[Va(T?)] 1.740328¢-02 5.04¢-06 2.5688¢+00 2.4165¢-02 1.0630e+02

30 E[Va(S?)] 1.196864e-01 6.65¢-06 8.8007e+00 4.2466e-02 2.0724e+02
E[Va(C%)] 1.384298¢-02 2.06e-07 6.1744e+00 5.1855¢-02 1.1905¢+02
E[Va(T®)] 1.740763¢-02 9.39e-06 7.7047e+00 5.2874e-02 1.4572e+02

50  E[Vi(S%)] 1.196707¢-01 9.03¢-06 1.3848e+01 6.4795¢-02 2.1372e+02
E[Va(C?)] 1.384206e-02 7.11e-07 1.1376e+01 8.0151e-02 1.4193¢+02
E[Va(T?)] 1.739901e-02 7.76e-07 1.2827e+01 8.1835¢-02 1.5675¢+02

100 E[Vi(S?)] 1.196731e-01 6.65e-06 2.9287c+01 1.1908¢-01 2.4594e+02
E[Va(C?)] 1.384286e-02 8.66e-08 2.0372e+01 1.5005e-01 1.3577e+02
E[Va(T?)] 1.740003¢-02 1.79¢-06 2.5617e+01 1.5321e-01 1.6719e+02

The parameter key of DCUHRE is set to 4, which selects a cubature rule of
polynomial degree 7. DCUHRE starts the test with good accuracy. However, the
result is only considered as good as indicated by the estimated error, which
is high and decreases only slowly. The (absolute) error and error estimate are
listed in the fourth and fifth column, respectively. DKBVRC performs very well
for this problem, with respect to achieved accuracy and reliability. The accuracy
of RCRUDE starts out low, but does increase considerably, at the cost of compu-
tation time. These programs are written in Fortran (double precision). A version
of the gfortran compiler was used, and the programs were run on a MacBook
Pro with 3.06 GHz Intel Core 2 Duo processor and 8GB of memory. Elapsed
execution times obtained with etime are given in seconds.

In Table Pl we give results from the GPU implementation, run on a cluster
node with dual Intel Xeon E5-2670, 2.6GHz CPUs and 128GB of memory; and
a M2090 GPU with 512 CUDA cores, 1.3GHz GPU clock rate and 5375 MB of
global memory. The number of parallel blocks, and threads per block launched
in the GPU runs was set to 16 and 512, respectively, for the tests described
below. The problems addressed are F[V4(S?)], E[V4(C?)] and E[V4(T?)], coded
in CUDA C using single precision (float). For the timings in Table 2l we list the
parallel time, and the speedup relative to a sequential computation which uses
erand48 for random number generation. The GPU computation is timed via the
cudaEventElapsedTime mechanism. The speedup is the sequential time divided
by the parallel time.
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It emerges that for the small problem size of 100,000 sample points, the par-
allelization is not warranted. However, for larger sample sizes the speedups in-
crease to values between 100 and 200, and up to 245 for the different problems.
Indeed, as the number of samples increases by a factor of 10® (from 100,000
to 100 million), the sequential time increases by a factor of 10® but the paral-
lel time increases only by a factor of about 15. Note that the sequential times
are comparable to those of the sequential program RCRUDE in Table [I] for the
cube-tetrahedron problem.

5 Conclusions

We tested adaptive, quasi-Monte Carlo (QMC) and Monte Carlo (MC) meth-
ods for the challenging stochastic geometry problem to determine the expected
volume E[V,(K)] of a tetrahedron with uniformly distributed points in the in-
terior of a cube (C?), tetrahedron (7%) and the surface of the 3D sphere (S2).
In the numerical tests we monitored the accuracy of the methods as the number
of sample points increases. While the sequential tests are in favor of QMC for
these problems, it emerges that MC is rendered a viable and versatile numerical
candidate via its GPU implementation.

This work is part of efforts to port the PARINT package to a hybrid par-
allel environment, by adding efficient multi- and many-core capabilities (using
OpenMP [25], CUDA [26] and OpenACC [271]), to its distributed (MPT [28, 29])
computations. In a future stage we intend to develop efficient kernels for QMC as
well as MC on GPUs and (Xeon Phi) accelerators. We also plan on extending our
application in stochastic computational geometry, for further approximations of
the expected d-dimensional volume E[V,(K)] of the convex hull of n random
points in a convex body.

Acknowledgement. The authors acknowledge support under grant number
1126438 by the National Science Foundation, and by NVIDIA for the CUDA
Teaching Center awarded at Western Michigan University.
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Appendix

A CUDA C Device Function (Integrand Evaluation) for
Spherical Surface Tessellation

const int dim = 5;
struct point {

float coordinates[dim];
};

device float f( point p ) {
float u2,u3,u4,t3,t4;
float x1,y1,21,x2,y2,22,x3,y3,23,x4,y4,24;
float d1,d2,d3,d4,f0;
const float pi2 = atan(1.0)*8;

]_17
-5
]-1

)

u2 = 2*p.coordinates[0
u3 = 2*p.coordinates|1
ud = 2*p.coordinates|2
t3 = p.coordinates[3]*pi2;
t4 = p.coordinates[4]*pi2;

x1 = 0;

yl =0;

zl = 1;

x2 = sqrt(1.0-u2*u2);
y2=0;

72 = u2;

x3 = sqrt(1.0-ud*u3)*cos(t3);
y3 = sqrt(1.0-u3*u3)*sin(t3);
z3 = u3;
x4 = sqrt(1.0-ud*ud)*cos(t4);
y4 = sqrt(1.0-ud*ud)*sin(t4);
z4 = ud;

dl = x2*y3*z4+y2*23*x4+22*x3*y4-22%y3*x4-x2*23* y4-y 2*x 3% 24,
d2 = x1*y3*zd4+y1*z3*x4+21*x3*y4-21*y3*x4-x1*23*y4-y 1*x3%24;
d3 = x1*y2*z4+y1*22*x4+21*¥x2*y4-21*y 2¥x4-x1*22* y4-y 1 ¥x2%24;
d4 = x1*y2*z3+y1*22*x3+21*x2*y3-21*y2*x3-x1*22*y 3-y 1 *x2%23;

f0 = d1-d2+d3-d4;
return fabs(f0)/6.0;

B CUDA C Device Function (Integrand Evaluation) for
Tessellation in Tetrahedron

const int dim = 12;
struct point {
float coordinates|[dim];
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b
device float f( point p ) {
float x1,y1,21,x2,y2,22,x3,y3,23,x4,y4,24;
float d1,d2,d3,d4,{0;

x1 = p.coordinates|0];

yl = (1.0-x1)*p.coordinates[1];
z1 = (1.0-x1-y1)*p.coordinates|2];
x2 = p.coordinates(3];

y2 = (1.0-x2)*p.coordinates[4];
z2 = (1.0-x2-y2)*p.coordinates[5];
x3 = p.coordinates|6];

y3 = (1.0-x3)*p.coordinates|7];
z3 = (1.0-x3-y3)*p.coordinates[8];
x4 = p.coordinates[9];

y4 = (1.0-x4)*p.coordinates[10];
z4 = (1.0-x4-y4)*p.coordinates[11];

dl = x2*y3*z4+y2*23*x4+22*x3*y4-22%y3*x4-x2*23* y4-y 2*x 3% 74,
d2 = x1*y3*z4+y1*23*x4+21*x3*y4-21*y3*x4-x1*23*y4-y 1 *x3%24;
d3 = x1*y2*z4+y1*22*x4+21*x2%*y4-21*y 2*x4-x1*22%y4-y 1 *x2%24;
d4 = x1*y2*z3+y1*22*x3+21*x2*y3-21*y2*x3-x1*22*y 3-y 1 *x2%23;

f0 = fabs(d1-d2-+d3-dd4);

f0 = f0*(1.0-x1)*(1.0-x1-y1)*(1.0-x2)*(1.0-x2-y2);
f0 = f0*(1.0-x3)*(1.0-x3-y3)*(1.0-x4)*(1.0-x4-y4);
return f0*1296;
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Abstract. Face recognition is a fundamental capability of humans to recognize
each other, which predominantly made its way into computing domain. The
demand for fast and highly reliable face recognition methods is as high as ever.
This paper proposes one solution based on a novel similarity measure for
frontal facial image recognition, which can be computed rapidly while main-
taining a high recognition performance. The new proposed similarity measure is
named Integrated Random Local Similarity (/RLS), based on an appropriate
combination of holistic similarity of facial prominent points expressed in binary
image and pixel-wise local similarity of local regions in original gray-level im-
age. The holistic similarity is estimated by the ratio of intersection of the candi-
date image and the gallery image to the sum of the candidate images prominent
points in original gray-level image spatial domain. Experiments have been
conducted on AR database. The preliminary experiment results shows that IRLS
is a very robust approach which maintains high recognition performance, and
deserves to be investigated with larger dataset.

Keywords: Local Similarity, Kullback-Leibler Distance, Integrated Filter, Face
Recognition, Biometrics.

1 Introduction

Considerable efforts have been dedicated over last decade to face recognition [1, 2] in
both academic and government sectors. However, face detection, segmentation, loca-
lization and recognition under varying conditions, illumination and occlusion is still a
challenging problem [4, 6, 11, 13]. Almost all mainstream algorithms for face recog-
nition need to construct some "models" before estimating the similarity between a pair
of facial images.

The needing for more additional prior information to build such models severely
hinders the application and performance of the corresponding facial recognition me-
thod. Furthermore, if the training set changes by adding or removing facial images,
facial models such as some probability distribution functions need to be re-estimated,
the similarity value may vary accordingly, prone to some object(s) to be reclassified
and increasing training time.

B. Murgante et al. (Eds.): ICCSA 2013, Part I, LNCS 7972, pp. 140-]149] 2013.
© Springer-Verlag Berlin Heidelberg 2013
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The goal of this paper is to develop a robust similarity measure which only relies
on the information of the pairing images, none of any other images in database being
required. We make an attempt to establish a similarity measure, which is suitable to
allow recognizing faces even under partially occluded conditions, varied expressions
and inconsistent illumination. Sparse and redundant representations [3] of face images
can achieve high recognition rates [4] on occluded faces with different expressions
and illumination. However, this approach fails when only a single image sample is
available for per person, that is a common practical scenario. In addition, those me-
thods suffer from the heavy time consumption for decomposing each test image to its
sparse linear representation on the whole learning sample set. When a new image is
added to learning sample set, the training must be repeated and corresponding decom-
positions must be iterated.

A variety of face recognition methods have been developed in the past, including
those based on geometry [14], appearance [15], or fusion methods [16]. The metho-
dology started to make its way into novel application areas, such as virtual reality
domain [17] or a new generation future cognitive security systems [18]. In this paper,
we propose a radically new idea of integrating holistic image feature and local fea-
tures. Both of the holistic feature and local feature are calculated in spatial domain.
The holistic feature is the result of a serial of linear filtering of original image. The
local feature is calculated at pixel-wise and based on Kullback-Leibler [7] distance.

This approach is quite simple and also fast, with the benefits listed below:

e The estimation of the proposed similarity — IRLS - only needs the information of
two pairing images, none of any other images;

e Only one image per person in learning sample set is sufficient for the proposed
method. On contrary, performance of other methods highly depends on a large
number of varied expressions and varied illuminations images [4].

e The method allows to achieve a comparable or a better recognition rate when
compared with Gaussian mixture distribution model on eigen-representation [6],
and also outperforms the method presented in [12] for occluded images.

e The proposed approach is faster, simpler and more intuitive when compared with
Hidden Markov Models [11], while it maintains nearly equivalent high recognition
rate.

We name the measure as Integrated Random Local Similarity (IRLS). The results of a
series of experiments conducted on AR Face database [9] show that the IRLS simi-
larity can outperforms the previously proposed measures, such as PCA , LDA and
Facelt methods [8]; and is better than HHM for certain expression types while main-
taining comparable recognition rates for other cases[11].

These preliminary results suggest that IRLS similarity may be an excellent meas-
ure for frontal facial image for face recognition, with very fast recognition rate and
good generalization capabilities. IRLS deserves to be investigated with more images
and more facial expressions.
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2 The Methodology

The integrated random local similarity measure (IRLS), proposed in this paper, is a
measure that depends on the pairing of two compared images, without involving train-
ing stage or any other images to establish some model or estimate the value of the
similarity. It only relies on the weighted holistic similarity and the combined local
similarity. The holistic similarity is estimated by pairing of two binary images. Binary
facial images are actually facial prominent points which being generated from gray-
level image by linear filtering. The combined local similarity is formed by the pixel-
wise similarity, and the latter is estimated by Kullback-Leibler (KL) distance between
paired sections in the spatial domain. The paired sections can be distinct parts of orig-
inal image or can be overlapped random sections, even can be as small as a single line
of pixels or a single pixel point in an extreme case.

2.1 Binary Image of Facial Prominent Points

The binary image of facial prominent points is a binary image where only partial dis-
criminatory and distinguished points of original image x are set “on” (the pixel
value of corresponding position is 1), all other points are set “off” (the pixel value of
corresponding position is 0). Such binary image is a product of original image. Ideal-
ly, all background pixels and non-facial pixels such as facial obstructions (scarf, sun-
glasses) shall be assigned to "0" values (set “offs”) as they cannot contribute to facial
recognition.

Fig. 1. Process of Generating Facial Prominent Points Binary Image

The steps of 1% serial filtering process: (1)6x6 averaging,(2)3x3 flat filtering-out, (3)3x3 vertic-
al edge detecting, (4)3x3 horizontal edge detecting, (5)3x3 special “non-sharp” filtering;

The steps of 2™ serial filtering process: (1)6x6 averaging, (6)5x5 flat filtering-out, (7)3x3 hori-
zontal edge detecting; (8)post-filter processing: normalization, binarization.

The facial prominent points binary image is generated by a combination of two se-
ries of linear filtering processes, displayed in Figure 1. The 1st series are comprised of
five linear filters: a 6x6 averaging filter, a 3x3 flat filtering-out filter, a 3x3 vertical
edge detecting filter, a 3x3 horizontal edge detecting filter, and a 3x3 special “non-
sharp” filter. The 2nd series involve three linear filters: a 6x6 average filter, a 5x5 flat
filtering-out filter and a 3x3 horizontal edge detecting filter.
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Some typical binary images of facial prominent points are shown in Figure 2. The
original gray-level facial images in AR database are also displayed to the left of the
corresponding binary images.

N
TH?

Fig. 2. Some Binary Images of Facial Prominent Points

2.2 Holistic Similarity

After suitable alignment and scaling, the holistic similarity between two pairing im-
ages can be estimated in the spatial or frequency domains. We estimate the holistic
similarity in spatial domain by comparing two binary images of facial prominent
points: one is candidate image and another is  gallery image.

Suppose the two binary images are IG and IT, IG is a gallery binary image, and IT
is a candidate binary image. These binary images are generated by "facial prominent
points" as described in former section. Before estimating holistic similarity, if the
sizes of 1G and IT differ, the larger one is truncated to the size of the smaller one. The
holistic similarity (Sg4;) is then computed as:

(IG NIT)
SHOI = M (1)

sum(sum(IT))
where IG NIT is a matrix-wise logical AND; sum means summation;
sum(sum(IT)) means adding all the elements of matrix IT, which resulting in the total
count of “on” elements of IT; and sum(sum(/G NIT)) means the total count of value
‘1’ elements in the intersection of matrix IG and matrix IT.

The holistic similarity Sg,; is a measure which expresses the degree of overlap-
ping in a candidate binary image, being compared to the gallery binary image. The
range of Sy, is [0, 1], the larger of the Sy, value, the more similar between the
candidate image and the gallery image. If the binary image IT is identical to the bi-
nary image IG, Sy = 1.

2.3  Kullback-Leibler Distance

The Kullback-Leibler distance [7] measures the difference of two distribution proba-
bilities p(x)and g(x), where X is a random variable. If X is a continuous ran-

dom variable, the Kullback-Leibler distance can be defined as [7]:

- [~ n@ X
Dy (plg)= J_wp(x)l q(x)d ()

If x is adiscrete random variable, the two distribution probabilities p and ¢g are
also discrete variables, then the Kullback-Leibler distance is defined as [7]:
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pli)

Dy, p ! q z P\ ln_ 3)

In probability and information theory, the Kullback-Leibler distance is also named
Kullback-Leibler divergence (information divergence, information gain, relative en-
tropy, or KLIC).

The Kullback-Leibler distance between candidate image IT and gallery image IG is
defined as:

D,, = Z [IT( )In jT(i)+IG(i)ln IG(i)J 4)

Gli) IT(i)

where N is the total count of pixels in candidate or gallery image, IT(i) is the
vectorized original gray-level candidate image or its section(s), JG(i) is the vecto-

rized original gray-level gallery image or its section(s).

2.4  Local Similarity

The original candidate image or gallery image can be partitioned into a serial of sec-
tions. These sections can be distinct parts with same size of original image, with sev-
eral rows and several columns (see Fig.3.), and also can be sections (subimages) of
varied size, even can be a single line.

After the Kullback-Leibler distances of all pairing sections have been calculated
according to formula (4), the local similarities(Sy,.) can be estimated for each pairing
sections between a candidate image and a gallery image. For the sample partition in

Figure 3, we can get nine values of the Dy, :

1 2
D.,.D ...
where C is the count of sections in any of pairing images i.e. in this example C = 9.
C can also be the number of rows(m) or columns(n) in one image pairing, if section
is a horizontal line or a vertical line. It can even be the total pixels number (N = m X

n) in some image pairing, when section is just a pixel. In this case, the pixel pairing

Ba83
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Fig. 3. Partitioning into Sections of Original Gray Image



Integrated Random Local Similarity Approach for Facial Image Recognition 145

represents the same positions in the candidate as in the original image, with different
features assigned to it. If sections are generated by random strategy, € can be larger
than N, due to the sections, which is corresponded to the same image positions, being
generated in sequential partitions, can be overlapped .

Now, the local similarity S;,. measure between each of the paired sections of the
candidate image and the gallery image can defined as the follows:

S, ()=ePx, i=12,.,C ©)

wherei =1,2,...,C , and C is the count of sections in a set of paired images.
If two paired sections are identical, then the corresponding Kullback-Leibler dis-

tance DKL =0, according to (5), then S, =1 . The more difference is there be-

Loc

tween the two paired sections, the larger the value of D, will be. The range of
Dy, is [0,00), and in this range, the exponential function is monotonously descend-

ing with the maximum S, =1 at D, =0. Thus, the local similarity S;,. is

Loc
compatible and consistent with the holistic similarity Sy,,;, as their range is [0, 1].
The larger the value (Sp,c, OT Shor), the more similar the candidate image and the
gallery image.

2.5 Random Local Similarity

Random local similarity is calculated similarly to S;,.. However, the pairing sections
are not predefined, but being generated randomly. The position (x,y) and size
(w, h) of section is randomly generated from original image (the candidate or the
gallery image). For pairing those sections, the positions of sections within candidate
image and within gallery image can be different, however, their sizes must be the
same.

2.6 Integrated Random Local Similarity

There are two steps to reach the final similarity - integrated random local similarity
(IRLS) - S;g1s- First, a combined random local similarity S¢;,. is calculated from all
estimated random local similarities.

Since paired sections are randomly generated, sequential pairing sections may oc-
cupy the same part of the original image. In order to avoid repeated summation of
local similarity Sy,., the value of §;,. is replicated and assigned to each pixel in the
two pairing sections. Thus, there exist two matrixes corresponding to the candidate
image and the gallery image, with the same sizes as the corresponding images. They
serve as the storage of the maximal S;,., which re-assigned to the pixels correspond-
ing pairing sections at each iteration of random local similarity calculation.
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Adding up all the pixel-wise similarities in the candidate similarity matrix and gal-
lery similarity matrix, and then divided by corresponding total number of image pix-
els, we obtain two quantities - ST, .., S& .

1 ..
SgLoc = N_TZ:';T Zlnle S{oc (l: ])
1 . .
SgLoc = N_GZ:ZG 27:61 SIG,oc (l,]) (6)

where T means candidate image; G means gallery image; my, mg; - the row num-
bers; ny, ng - the column numbers; Ny = my X ngy,N; = mg X ng - total number of
pixels in candidate image and gallery image, respectively.
Then, the first stage of integrated random local similarity S¢p,c is the lower of
T G .
SCLoc and SCLoc"

SCLoc =min(S€Loc' SgLoc) (7)

In the end, the final integrated random local similarity S;p;s is defined as the
weighted sum of the holistic similarity and the combined local similarity:

SirLs = AShor + (1 — @) Scroc (8)

where a is an adjustable parameter within [0,1].

3 Experimentation

Facial images from AR database [9] are used as the experimental dataset to validate
the proposed similarity measure performance and computational speed. The sample
images in AR database were captured twice per subject over two weeks interval. Dur-
ing each session, 13 images with 4 varying facial expressions: neutral, smiling, angry,
screaming, three varying illumination and two types of occlusion (sunglasses and
scarves), were captured. These images belong to one hundred subjects, with twenty
six images for each subject.

These images in AR database have been calibrated, warped and normalized to the
size of 165x120 pixels. The 26 captured images are arranged as sub-datasets referred
to as ARO1,AR02, ARO3,..., AR26. Each of these 26 sub-datasets contains 100 im-
ages, one per subject, for each of 100 subjects. For example, ARO1, AR14 are neutral
expressions sub-datasets corresponding to 1st or 2nd session; AR02, AR15 are smile
expressions sub-datasets; AR0O4, AR17 are scream expressions sub-datasets; AROS,
ARI18 are left-directional illumination with neutral expressions sub-datasets; AROS,
AR21 are sub-datasets of sunglasses occlusions with normal illumination; ARI1,
AR?24 are sub-datasets of scarves occlusions with normal illumination.
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Table 1. Recognition Results of Only One Image per Person in Learning Set(ARO1)
(@

Expression Illumination
AR02 |AR15 |AR03 |ARI6 |AR04 |AR17 |ARO5 |ARI8 |[AR06 |AR19 |AR0O7 | AR20
PCA |87 71 86 69 39 30 81 61 79 59 82 62
LDA |96 78 89 67 60 40 87 54 82 60 86 60
Facelt |96 86 92 79 76 48 96 87 93 81 86 69
HMM | 99 88 99 920 99 68 99 91 98 84 97 65
IRLS |99 86 97 83 88 58 74 66 82 66 89 50

(b)
Occlusion + Illumination
AR08 |AR21 |AR09 |AR22 |ARIO |AR23 |ARI1I |AR24 |ARI2 |AR25 |ARI13 |AR26
PCA |48 35 26 25 21 13 27 14 21 14 11 09
LDA |45 25 31 18 27 17 44 32 33 25 31 20
Facelt | 10 10 09 10 06 04 81 65 72 50 72 48
HMM |99 90 95 68 95 65 94 72 85 55 83 54
IRLS |98 80 64 56 78 57 87 70 51 46 69 65
Note: * PCA, LDA, FacelT[8] and HHM resultant data are excerpted from [11].
#% JRLS -- Integrated Random Local Similarity proposed in this paper.

As can be seen from Table 1, IRLS if compared with PCA, LDA and Facelt, the
recognition algorithm proposed in this paper is clearly superior for most of the sub-
datasets. Due to S;g;s being computed in spatial domain, it’s performance is only
hindered on varied illumination samples. The computational speed for calculating the
holistic similarity Sy, and the local similarity S;,., 1is very fast, only on the
scale of 0.01 - 0.1 second for a pairing calculation on a Acer Notebook (ASPIRE
5542G, 2.0G HZ AMD Athlon CPU, 2 GB Memory). However, the calculation of
random local similarity S¢poc 1S rather time-consuming, typically on several
seconds scale, but being adjustable by adopting suitable randomizing strategy, and
obviously better than the decomposition of sparse representation[4].

4 Discussion

The newly proposed similarity measure S;p;s is computed in the spatial domain. It
requires only two paired images — one is the candidate image and another is the gal-
lery image. The value of S;g.¢ is in the range of [0, 1]. The larger the value of S;gys,
the more similar between the two pairing images is. If the candidate image is
compared one-to-one against each image in the gallery (the dataset), similarity is
computed for each pair, the class identity of the gallery image with the maximum
similarity value is used for image recognition. If the candidate image is compared
with only one specified image in the gallery, only one value of S;g;s is computed
and can be used to estimate image similarity.

It is very rare if the candidate image is identical to the specified gallery image. The
value of S;p;¢ is often less than 1. In such a case, some threshold S, s shall be spe-
cified. If S;prs = S/zLs, then the candidate image is considered to belong to the
same class of the paired gallery image.

HMM, LDA, PCA and other algorithms need large collection of images to estab-
lish some models and conduct learning processes. The proposed IRLS method only
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relies on two images-- one candidate image and one gallery images, conducts a single
image pairing to evaluate the similarity of the two compared images.

However, if the candidate image is not calibrated, warped or normalized, the value
SirLs may be low ever if the pairing image actually corresponds to the same subject.
Thus, normalization should be used as the first step for this method. Future works
shall include expanding the method to other similarity measures.
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Abstract. We devise a new algorithm for the extraction of vine leaf
veins. Our method performs a directional edge tracing on the responses
of appropriate adaptive Gabor filters in order to extract the network
of the main veins. The respective curvature vectors are used for the
classification of different cultivars using support vector machines. We
evaluate the advantageous behavior and the robustness of our approach
on a test set consisting of 150 light transmitted images of different vine
leaves.

Keywords: Leaf Classification, Feature-Based Classification, Feature
Extraction, Gabor Filter, Edge Tracing, Support Vector Machines.

1 Introduction

Population growth, climate change, and the shortage of resources have caused
an increased global interest of the agricultural community in intelligent farming
methods. As a result, the integration of agricultural concepts and modern IT has
paved the way for tremendous crop yield increases over the last decade. Dedicated
robots for farm working, usually four-wheeled vehicles with robot manipulators,
have been developed as part of the smart farming process. Equipped with recent
satellite and sensor technologies they are able to autonomously navigate through
vineyards, corn- or strawberry fields and at the same time take over the sowing
and harvesting work of the agricultural laborer. Exhausted, depleted, and pesti-
cide contaminated soils, on the other hand, reveal the disastrous consequences of
the long-term use of classical monocrops and force modern agriculture more and
more to embark on whole system approaches like sustainable agriculture, inte-
grated farming, and permacultures, i.e. well-designed agriculturally productive
ecosystems with the diversity, long-term stability, and synergistic properties of
natural ecosystems. This poses new requirements for the autonomous harvesting
vehicles: it is mandatory to furnish them with robust identification mechanisms
that ensure a correct plant recognition by means of their phenotypic charac-
teristics. Consequently, non-destructive approaches to the problem of computer
aided analysis and screening of plant phenotypes have experienced a growing
interest in the crop science community over the last decade. Matured computer
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Fig. 1. Illustration of different level veins colored in blue (level 0), red (level 1), and
yellow (level 2)

vision techniques are employed for an automated plant recognition by means
of the vein networks of their leaves which act as a unique classifier—a kind of
fingerprint—for a specific cultivar.

In our contribution we tackle the challenging problem of extracting the main
veins of vine leaves by means of a Gabor filter approach. The reason for focussing
on vine leaves is that the perennial vinegrape is one of the oldest and most
important crop plants in human history and the automated classification of
cultivars of vinegrapes is still an important and challenging topic. The extracted
vein data is a unique classifier for a certain cultivar and can thus be used as input
for support vector machines to perform the final classification. We evaluate the
robustness of our method on a test set consisting of 150 images of vine leaves
with different color patterns.

2 Related Work

Leaf vein extraction and cultivar classification is a well-established field in the
computer vision and machine learning community. In this section we give a brief
overview over the recent achievements.

In [9] the authors present a leaf vein extraction method based on the gray-
scale morphology. An independent component analysis is used in [5] to realize a
robust vein extraction method.

A leaf recognition algorithm based upon probabilistic neural networks is pre-
sented in [8]. Their approach allows for a robust plant classification. In contrast,
the method described in [4] makes use of region-based features. A rather exotic
approach is presented in [I] where the authors discuss an ant colony algorithm.
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In contrast to these methods we aim to exploit knowledge from the position
space on the first hand and extend it with information from the frequency do-
main. This is achieved on the firm basis of appropriate Gabor filters that have
originally been developed by Dennis Gabor in the last century.

In order to find the point of intersection of the five main veins, the configu-
ration of a starting template is determined by means of a principal component
analysis (cf. [6]) and a subsequent optimization step based on the simulated
annealing method that has been introduced in [3].

2.1 Problem Setting

Our goal is to automatically extract the network of main veins in vine leaves, the
so called veins of level zero. A vein emanating from a level n vein is of level n+1,
cf. Fig. (). It is important to note that we make intensive use of the fact that
the phenotypical appearance of vine leaves always shows five level zero veins.
These veins have a common start point—the so called central point of the leaf—
and a well-defined endpoint. The extraction shall be performed automatically
on a input image. The desired output is a vectorized representation of the veins
of level zero as a pixel sequence or as a so called chain code.

We demonstrate the efficiency of our approach on a test set containing 150 im-
ages of vine leaves of different cultivars, specifically Kerner (35 images), Miiller-
Thurgau respectively Rivaner (38 images), Riesling (40 images), and Scheurebe
(37 images). The images show diverse characteristics like overlapping parts,
handwritten labels, and severe discolorations, e.g. due to leaf diseases, cf. Fig. (2.

One of the major problems we have to deal with is that the difference in the
intensities of the level zero veins and their higher order branches is not large
enough to prevent a standard vein detection algorithm from spuriously changing
its tracing direction from the principal to a secondary direction at the branch-
offs. Beside this level zero veins typically tend to become smaller with increasing
distance from the center point. As a consequence, it is difficult to distinguish
between veins of different levels. This in turn promotes erroneous classifications
of the vein levels. Here, our adaptive Gabor filter-based approach comes into
play.

The choice to take veins of level zero is well founded due to the fact, that it
has become an established phenotypic feature. For example it is recorded under
the number OIV 070-1 by the International Plant Genetic Resources Institute

(ct. [21).

3 A Gabor Filter-Based Approach

In order to overcome the aforementioned problems we aim at combining knowl-
edge from the position space as well as the frequency domain. This is achieved
with so called Gabor filters that are closely related to short-time Fourier trans-
forms. In order to allow the reader to acquire a deeper understanding of how our
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Fig. 2. Some leaves from our test set. Diverse characteristics, like overlapping parts,
handwritten labels, and severe discolorations can be identified.

approach works we give a brief overview of the mathematical concepts behind
Gabor filters and explain how they can be effectively applied in the context of
leaf vein detection.

3.1 Gabor Filter

Appropriate transformations to the frequency domain allow us to study the
frequency information of a time dependent phenomenon. In the one-dimensional,
continuous case such a transformation is given by the Fourier transform

Flfl(w) = /R F(t) exp(—2miwt) dt,

which maps the signal f in the time domain to the Fourier transformed version
F[f] in the frequency domain. This transformation is represented by a scalar
product in the functional space with the arguments f and a complex exponential
with frequency w. Hence, F[f](w) can be considered as the complex amplitude
of the occurrence of the fundamental oscillation with frequency w in the signal
f. In other words, the graph of F[f] shows how much of the signal f lies within
each given frequency.

But there is no time domain information available in F[f]. Since we are in-
terested in a combination of time and frequency information, it is a common
method to add a 7-shifted time domain window function g to the first argument
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of the scalar product in the sense of a multiplication with the signal f. Therefore,
the resulting so called windowed or short-time Fourier transform

(w, T) /f g(t — 7) exp(—2miwt) dt,

describes the frequency behavior of the signal f in the time domain neighborhood
of 7.
The transformation G[f] := F,_[f] with the Gaussian window function

1 t2
9o (t) = Voro? &P ( 202) ;

with variance o is known as the Gabor transformation of the signal f and shows
how much of the signal f limited to t € [t — 0,7 + o] matches a given fre-
quency. An arbitrarily close resolution in the time as well as in the frequency
domain is not possible at the same point in time and limited by Heisenberg’s
Uncertainty principle. One can show that the Gabor transformation is a Fourier
transformation with minimal uncertainty.

The Gabor filter Gy with orientation € used in this approach is formally given

by
’*2_1_ 242 ] 2 )
GQ(X,)\,U,w,’Y):eXp <_x1 20_’}; xz) eXp <Z< ;.’L‘l +w))7 (1)

at the point x = (21,22)7. It can be regarded as an oriented two-dimensional
discrete version of the Gabor transformation G.

The left factor in Eqn. () describes a two-dimensional elliptic Gaussian in
which the spatial aspect ratio -y denotes the ellipticity. The variance is again given
by ¢ and the direction is determined by the angle 6 of the normal direction that
influences the vector x = R} - x. The matrix Ry describes the two-dimensional
mathematically positive rotation by the angle 6, which is given by

cos) —sinf
Ry = <sin9 c059> '
The right factor in Eqn. (1) analogously describes a complex exponential with
phase shift ¢ and frequency w = 1/, in which A denotes the wavelength.
With the use of Euler’s formula we can split the complex Gabor filter Eqn. ()

in a real and an imaginary part. Only the real part is evaluated in our algorithm
and given by

22 + ~242 21,
Greale (X,A707¢77) = exp <_ ! 20,}; 2) cos ( A 1+ '(/J) . (2)

The Gabor filter Gyeal, is applied to an image F' by using the two-dimensional
convolution F' ® Gieal,, pointwise defined by

F(z1,22) @ G(z1,22) = ZZF T1,72)G (21 — T1, 2 — T2).

T1 T2
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The main idea behind our approach is that for a given angle 6 a #-oriented vein
of order zero will always dominate the Gabor filter response in contrast to the
higher order veins that branch off. We exploit this fact by tracing the course of
the veins on F' ® Greal, -

3.2 The Algorithm

This motivates the following algorithm: In a precomputing step the central point
of the leaf is detected with a template-based matching strategy as illustrated in
Fig. @)). The image template is rotated so that its direction fits the orientation

Fig. 3. Illustration of the template-based strategy to detect the central point. The
orientation is found by a principal component analysis. The directions correspond to
the maximal and minimal variance respectively. Because the orientation is determined
in such a way, the simulated annealing algorithm has to minimize a scalar fitness
function of only two variables, which depends on the shift of the template image.

of the leaf which in turn is found by means of a principal component analysis (cf.
[6]) on the binarized image. The image template is then shifted along the main
directions until the color distance to the leaf pixels reaches a minimum. This
process is controlled by a simulated annealing strategy, cf. [3]. In order to reduce
the influence of minor variations, the average of the squared color distances is
used as fitness function. The barycenter is a good initial guess to start from. The
image template is created from the average image of the intensity normalized
center regions of twelve leaves from our test set.
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Fig. 4. Illustration of a single filter step of our vein tracing method. It is not possible
to decide which one of the two colored parts belongs to the level zero vein (left) by
just comparing pixel intensities. After applying Greal, to the red channel F' of the
image with angle 6 computed from prior curvature values the obtained filter response
F® Greale sheds a light on the actual course of the vein because it masks all other
directions (right).

Starting at the central point found by the procedure described above, the
algorithm traces the course of the veins by comparing the intensity values on
the red channel. Here the contrast between the veins and the other parts of
the leaf is significantly improved, cf. Fig. {@)). The reason for this is that the
leaf pigments consist of the green chlorophyll and the different reddishbrown
carotenes.

During the tracing procedure the algorithm keeps track of the curvature of
the vein. The curvature is defined as slope of the secant of the last five percent
of the main vein with respect to the estimated total length of the detected vein.
We use a simple heuristic to detect when the algorithm is about to leave the
exact course of the main vein: if the ratio of the difference of the current and
the last curvature and that of the last three curvature differences is greater
than ten percent the algorithm jumps back to the location where the curvature
has changed and applies the real Gabor filter Eqn. (@) to the red channel F'
of the image. Since we feed the Gabor filter with the angle f#—computed from
the curvature values—of the direction of the current subsection of the vein it is
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guaranteed that all subsections of veins with this particular direction will be
visible in the filter response while other directions are masked. Therefore, the
course of the vein is traced on the filter response F'®Grea), and not on the original
image. It should be clear that when the curvature and therefore the angle of the
current subsection of the vein under consideration changes “too much” the filter
response must be recomputed. Our tracing algorithm stops when the border of
the leaf is reached. This is easily detected because of the high contrast between
the background and the leaf image.

The main veins typically become thinner as their distance from the central
point increases. We account for this fact by adapting the wavelength and the
variance parameters A and o of the Gabor filter through interpolation from the
intensity values of the original image in the area where-based on the last curva-
ture values—the next part of the vein is expected. In contrast to the wavelength
and the variance, the influence of the spatial aspect ratio v and the phase shift
1 can be regarded as global. Thus, we work with a constant aspect ratio and
ignore the phase shift.

4 Cultivar Classification

Our Gabor filter-based algorithm has been implemented in a vine leaf classi-
fication system written in Java. The different steps carried out for the final
classification of a given vine leaf are illustrated in Fig. (). The curvature values
of the main veins are stored in a vector and fed into a support vector machine.
In our implementation we embark on the WEKA SVM (cf. [7]) and use a simple
linear kernel function. The training set contains 20 images of the test set: five
leaves of each of the four white vine cultivars.

5 Evaluation and Results

We apply the devised Gabor filter-based algorithm to the test set consisting of
150 images of vine leaves of different cultivars with a broad spectrum of color
characteristics, cf. Sec. (21). The set therefore contains 750 different zero order
veins. The vein extraction algorithm failed in only 13 of the 750 cases (< 2%).
This was due to the fact that there has been either a hole in the outer leaf lobes
or a shadow cast prevented the recognition of the correct course of the vein.

The cultivars of the untrained 130 images in the test set have been classified
with the following success rates: Kerner 93% (28 of 30), Miiller-Thurgau respec-
tively Rivaner 97% (32 of 33), Riesling 94% (33 of 35), and Scheurebe 100%
(32 of 32). Hence, all classifications were performed with usable success rates
significantly above the 93% threshold. The classification of a single leaf took
about 5 sec on a 3.20 GHz Intel Core i7-3930K, 32 GB RAM, under Microsoft
Windows 7. It comprises all the processing steps described in Fig. (B]). The input
images have been used in a downscaled resolution of 400x400 pixels, because
there was no significant difference in the success rate compared to the larger
scaled images.
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Fig. 5. Illustration of our full-fledged vine leaf classification system: the final classifica-

tion is based on the curvature vectors that act as a kind of fingerprint using a support
vector machine
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5.1 Conclusion and Future Work

We have demonstrated that working on appropriate Gabor filter responses allows
us to accurately extract the main veins of vine leaves. Our approach finds the
correct paths in almost all test cases. At the same time it is able to handle
challenging problems like discolorations and even in the case of equally oriented
handwritten labels it stays on the correct path because the Gabor filter masks all
differently oriented parts of the label. However, problems can still occur in the
case of holes caused by pest infestation or shadow casts. Our future work focuses
on a robust method that detects such holes and applies a gap filling algorithm,
e.g. as part of the precomputing step of our leaf classification system. Moreover,
we aim at generalizing the presented approach to other cultivars with different
phenotypical characteristics in the leaves to overcome the current restriction to
five veined vine leaves.
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Abstract. Photovoltaic power is characterized by higher costs than coal-fired
technologies. Thus, photovoltaic systems require policy support to become
more affordable. This is even more important if the goals -set by Directive
2009/28/EC- must be achieved by 2020. The present paper carefully describes
the economical feasibility of a large scale photovoltaic plant, with specific
regard to the Italian situation. An Italian case study is investigated and attention
is paid to an extremely important tool, i.e. Project Financing. In order to better
understand the economical assessment, recent public incentives and supporting
measures are taken into account. After analyzing the cash flows and evaluating
the Net Present Value (NPV) and the Internal Rate of Return (IRR), the results -
obtained by the simulation for different Feed-In Tariff (FIT)s- show that the
income is influenced by the date of commissioning and by the amount of
incentives.

Keywords: photovoltaic, economical, feasibility, large-scale plant.

1 Introduction

The Directive 2009/28/EC set many climate and energy targets in order to reach and
ensure a clean and sustainable future for the forthcoming generations. It is also well
known as “Directive 20-20-20” since its aim is to reduce greenhouses gases emissions
by 20%, to produce 20% of energy from renewable sources and to decrease the
consumption by 20% improving the energy efficiency. These goals must be achieved
by 2020 [1-2].

Each EU Member State implemented the above-mentioned regulation. To ensure
that the mandatory national overall targets are correctly reached, each Member State
worked towards an indicative trajectory which paths the achievement of the final
goals. According to that, a national renewable energy action plan must be adopted by
each Member State, focusing on the share of energy from renewable sources

B. Murgante et al. (Eds.): ICCSA 2013, Part I, LNCS 7972, pp. 160-[[75] 2013.
© Springer-Verlag Berlin Heidelberg 2013
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consumed in transport, electricity, cooling and heating. With specific regard to Italy,
the target for share of energy from renewable resources in gross final consumption in
2020 would be at least 17% [1-2].

In this scenario, solar energy could play a significant role. The amount of energy
produced by photovoltaic panels, in the future, could overtake that produced by fossil
fuels. This could lead countries from being predominantly fossil fuelled to being
fuelled by locally available sources [3-10].

Moreover, an important aspect has to be further investigated: PhotoVoltaic (PV)
systems clearly require economical feasibility in order to become more affordable.
However, it is basic to take into account the incentives for the production of
electricity by PV systems. Campoccia et al. investigated and compared the different
supporting measures adopted in several European countries, namely France,
Germany, Italy and Spain. According to this study, subsidies and prices of energy
strongly vary so that it is difficult to find out the most effective option [11-15].

In 2010, PV installations strongly increased in terms of number of plants (+ 215%)
and installed power (+ 324%) if compared with the values reported at the end of 2009.
Moreover, the European Photovoltaic Industry Association stated that Italy might
reach “Grid Parity” (GP) by the end of 2013, considering the growing trend of the
past years. GP occurs when an alternative energy source can generate electricity at
level generalized costs that is less than or equal to the price of purchasing power from
the electricity grid. Thus, it corresponds to the point when PV-generated electricity
becomes competitive with the retail rate of grid power [16].

Table 1 shows the number of PV installations in Italy -classified by size into three
different categories (i.e. less than 20kW, 20+50 kW, more than 50 kW)- and the
power produced by each typology [17]:

Table 1. PV plants

Size of PV plants Number of installations Power (MW)
<20 kW 426700 2553

2050 kW 16037 632

>50 kW 39086 13202

According to Atlasole —which is the geographic information system published by
GSE (in Italian “Gestore dei Servizi Elettrici”)- the total number of photovoltaic
plants in Italy is more than 480 000 (update on the 6™ of February 2013) and the
produced power is up to 16 387 MW. Most of the plants have small sizes (less than 20
kW), as shown in figure 1, and represent almost 90% of the total installations.
Furthermore, only the 8% of the PV systems overcome 50 kW: however, this latter
category produces more than 13 200 MW representing the 80% of the total power, as
it can be seen in figure 2 [17].
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Fig. 2. Power of PV plants in Italy

Figure 3 and 4 show the number of installations and the produced power per region
respectively. With specific regard to Latium, it can be seen that the total installed
power is equal to 1 066.7 MW corresponding to 27 045 PV plants. Furthermore,
Latium reaches the seventh rank in term of both aspects if compared with the other
Italian regions. As shown in figure 3, the highest number of installations occur in
Lombardia and Veneto. Nevertheless, the most significant amount of produced power
(figure 4) is generated in Puglia and Lombardia in second position [17].
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Fig. 3. Number of installation for each region
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Fig. 4. Produced power for each region (MW)

In order to evaluate the economical feasibility of large-scale plants in Italy,
the incentives system has to be further investigated. The current regulation is
the so-called “Fifth Feed-in Scheme”, which was approved by the Ministry of
Economy and Finance on the 5™ of July 2012 and came into force on the 27" of
August 2012 [17].

The aim of the present paper is to describe the economical feasibility of large-scale
PV plants, with specific regard to the Italian situation. More precisely, an Italian case
study will be further investigated, focusing the attention on FIT and supporting
measures. In order to better understand the economical assessment, the cash flows, the
Net Present Value (NPV) and the Internal Rate of Return (IRR) will be analyzed. The
comparison between the results is obtained by the simulation for two different
supporting measures (namely “Fourth” and “Fifth Feed-in Scheme”) and shows that
the income decreases as the incentives are reduced, since the specific cost per PV
module is having a decreasing trend.

2 Material and Methods

The so called “Feed-in Scheme” is the government tool which grants incentives for
electricity generated by photovoltaic plants connected to the grid. Italy introduced
these supporting measures in 2005. PV plants -with a minimum capacity of 1 kW-
may benefit from the tariff which varies depending on the capacity and on the
category of the plant, and is granted over a period of 20 years [17].

According to AEEG (which stands for “Autorita per ’Energia Elettrica e il Gas”),
the indicative yearly cumulative cost of incentives has reached € 6 billion. The 5"
feed-in scheme will cease to have effect 30 calendar days after reaching an
indicative cumulative cost of incentives equal to € 6,7 billion per year [18].

Three different typologies of PV plants are effected by the present Decree [17]:
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e PV plants on buildings which respect all the installation requirements
reported in Annex II of the present regulation, namely Building-Integrated
Photovoltaic plants (BIPV) with innovative features;

e  Concentrating Photovoltaic Plants (CSP);

e other PV plants, not belonging to the above described categories and
including ground-mounted solutions as long as they fulfill the requirements
specified in articles 7, 8 and 9 in order to benefit from the FIT.

The present scheme provides two different mechanisms to access incentives, depending
on the type of installation and on the nominal capacity of the plant, namely [17]:

1.

direct access for:

PV plants (up to 50 kW) installed on buildings: the modules must replace
roofs/covers from which asbestos has been completely removed;

PV plants, not exceeding 12 kW and including those with an increase in capacity
less than 12 kW;

BIPV plants with innovative features until reaching an indicative cumulative cost

of incentives equal to € 50 million;

CPV plants until reaching an indicative cumulative cost of incentives equal to € 50
million;

PV plants built by public administrations until reaching an indicative cumulative
cost of incentives of € 50 million;

PV plants applying for a tariff which is 20% lower than the one the same plants
could get via Registry.

. via registry:

All the plants not belonging to the above-listed categories may access the incentives
by enrolling into appropriate electronic Registries held by GSE. However, in order
to benefit from the FIT, their position in the relevant ranking list should not exceed
the applicable cost limit. GSE will issue the calls for applications every 6 months
which must be submitted within the next 60 days.

The 5" feed-in scheme grants an all-inclusive feed-in tariff to the share of net
electricity injected into the grid and a premium tariff to the share of net electricity
consumed on site. Thus, it is different from the previous support schemes. Table 2
defines the current incentives for PV plants according to the Fifth Feed-in scheme,
with specific regard to those plants working in the first semester of application of the
present regulation. It can be easily seen that incentives decrease as the nominal power
becomes higher, as shown in figure 5. Moreover, a lower support measure is provided
to the category “Other PV Plants” if compared with “PV Plants on Buildings”
(figure 6) [17].
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Table 2. Incentives for PV plants according to the current feed-in scheme

PV plants on buildings Other PV plants
Power (kW) All-inclusive Premium tariff All-inclusive Premium tariff
tariff (€/MWh)  (€/MWh) tariff (€/MWh)  (€/MWh)

1+3 182 100 176 94
3+20 171 89 165 83
20+200 157 75 151 69
2001000 130 48 124 42
1000+5000 118 36 113 31
>5000 112 30 106 24

200

= ‘\

2 150 \‘\ —— All-inclusive tariff

% _ -inclusive tari

5 100 ——— e Premium tariff

2 N

z 50 e

d; e

s 0

3

= » Q \} \} \} \}

— % B Q \) \) \)

N Q;\, S 7@
v S &
v \
Capacity range (kW)

Fig. 5. Incentives for PV plants on buildings: all-inclusive and premium tariff
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The Fourth Feed-in scheme will continue to be valid to [17]:

e Small photovoltaic plants, building integrated plants with innovative features and
concentrating PV plants, commissioned before 27 August 2012;

e Large PV plants whose position in the Registry does not exceed the cost limit and
which submit to be completed within 7 months (or 9 months if plant capacity is
more than 1 MW) of the publication of the ranking list;

e Plants installed on public buildings and in those areas owned by Public
Administration, commissioned before 31 December 2012.

The Fourth Feed-in scheme was published on 12 May 2011 and takes into account all
the PV plants with a nominal power at least equal to 1 kW and commissioned
between 1 June 2011 and 31 December 2016. The tariff introduced by the past
support scheme consists of two main components: the premium and the price paid for
the electricity produced by the system. Thus, the tariff included both the incentives
and the value of the electricity fed into the grid. Moreover, a specific support will be
applied to the self-consumed electricity. PV plants are considered eligible if they
belong to one of the below-listed categories [17]:

e “building -integrated PV Plants” according to the criteria defined in Annex 2;
e “Other PV Plants”, including ground-mounted PV systems.

The decree defines two types of PV plants depending on their capacity:

e small plants, namely BIPV with a nominal power lower than 1 MW, other
PV systems with a nominal power up to 1 MW and operating under net
metering; PV systems installed on buildings and in those areas belonging to
the Public Administration;

e large plants, which include those systems which do not meet the above-
mentioned criteria.

PV plants must be enrolled into an appropriate electronic registry in order to be
eligible and access the incentives: only small plants can avoid this step. It is important
to underline that the registry is held by GSE [14]. Table 3 shows the tariffs for PV
plants commissioned in 2012: it is extremely clear in figure 7 that the incentives
decrease as the nominal power grow and passing from the first to the second semester
of the year. Moreover, “other PV plants” receive lower support if compared with
BIPV, as it can be seen in figure 8 [17].

Table 3. Incentives (E/MWh) for PV plants according to the Fourth Feed-in scheme

1% Semester 2012 2" Semester 2012
Power (kW) BIPV plants Other PV plants  BIPV plants Other PV plants
1+3 274 240 252 221
3:20 247 219 227 202
20200 233 206 214 189
200+1000 224 172 202 155
1000+5000 182 156 164 140

>5000 171 148 154 133
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Fig. 8. Incentives for “BIPV Plants” and “Other PV Plants” for the first semester of 2012

In order to evaluate the economical feasibility of a large-scale PV plant and its
convenience, some economical factors need to be further defined. Actually they are
strongly related to:

efficiency decrease of PV panels every year;
maintenance and management costs;

yearly increasing of electricity prices;
inflation.
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All the above-listed parameters are connected to the cash flows (Ct*) which is
obtained by adding all the costs (C;,) and all the profits (P;,) related to the generic -th
year, as shown in the following expression [8]:

*
C = ZPJI _ch,t )
J J
The cash flows are successfully annualized by the expression [3]:

C =L.t @)
(I+0)

k

where i represents the Weighted Average Cost of Capital (WACC). It refers to the
index which defines the average expected return considering the assets of the plant’s
owner. The evaluation of the Net Present Value (NPV) and the Internal Rate
of Return (IRR) lead to assess the effectiveness of installing a PV plant and are given
by [3]:

NPV = 3)
Z(l+z) ?

N
C =0 €5
0= 2 T IRRY 1+ IRR)

t=1

respectively. N is the lifetime of the investment and C, represents the initial
investment cost.

An economical simulation is carried out in order to evaluate how the income has
changed passing from the Fourth to the Fifth Feed-in scheme. The feasibility is
investigated for a specific Italian case study which consists of a large-scale PV plant.
Three different solutions are implemented:

1. ground-mounted PV plant according to the Fifth FIT (called “Scenario 17);
2. ground-mounted PV plant according to the Forth FIT(called “Scenario 27);
3. building-integrated PV plant according to the Fifth FIT (called “Scenario 3”);

The assumptions shown in table 4 have been adopted in the simulation. From the
fiscal point of view, the “Worst Case” is represented by a PV plant located on a
commercial activity: this condition is considered in the implementation since it is the
most precautionary solution. With regard to scenario 1 and 2, the large PV plant will
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Table 4. Technical parameters of the PV plant

169

Parameters

Nominal power 9 872.52 kWp
Location Province of Viterbo, Italy
Latitude 42°25'00"

Longitude 12°06'00"

Altitude 326 m

Climatic data UNI 10349

Albedo coefficient 0.20

Tax system “the Worst Case”
Self-consumption 100%

Module Polycrystalline silicon
Power generated by the module 245W,

Total number of modules 40 296

Total surface occupied by the PV plant 67 294.32 m’
Installation fixed

Balance of system 80%

Table 5. Description of the three different scenarios: technical features

Scenario 1 Scenario 2 Scenario 3
Electricity (kWh) 13010 830.6 13 037 686.6 13 010 830.6
PV tilt (°) 32 32 6
Saved TOE 2992.49 2 998.67 2 758.60

Table 6. Description of the three different scenarios: economical features

Scenario 1 Scenario 2 Scenario 3
Total costs (€) 11 847 024 11 847 024 11 847 024
Specific cost (E/kW) 1200 1200 1200
Insurance 94 776.19 94 776.19 94 776.19
Policy support 5" FIT 4" FIT 5" FIT
Type of incentive “Other PV Plants” “Other PV Plants” BIPV
Amount of incentive
(€/MWh) 106 133 112
Self-consumption

. 2.4 0 3

tariff (E/MWh)

be installed on a land belonging to the Ministry of Defense and on an industrial cover
respectively. This choice is due to the fact that the current regulation (Ministerial
Decree 24 March 2012) does not allow the construction of PV plants on agricultural
lands. Exceptions to the law are represented by those agricultural areas which belong
to Army or achieved the authorization for the plant itself before 24 March 2012 [17].
Moreover, the energy produced by the PV plant is self-consumed. Tables 5 and 6
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Fig. 9. Mean daily solar radiation on the plane of PV module

carefully describe the main features for each scenario. Figure 9 represents the mean
daily solar radiation on the plane of the PV module (kWh/m?) for the chosen location.

3 Results and Discussion

The simulation has been implemented using a specific software for the technical and
the economical feasibility of PV plants. It leads to calculate the main economical
parameters, i.e. the cumulative cash flow, the net present value and the internal rate of

return for each scenario (figure 10-18).
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Fig. 10. Cumulative cash flow
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Fig. 18. Internal rate of return

If the three different scenarios are compared, it can be seen that the cumulative
cash flow becomes positive in 2019 for the scenario 1, in 2016 for the scenario 2, and
in 2019 for the scenario 3. The second case leads to a positive value of the cash flow
earlier than the other two situations, since the incentive amount is higher. Moreover,
the first and the third scenario start to have an income after 6 years, although they
receive different policy support and are commissioned in the same period. This is due
to the fact that the scenario 3, which gains the highest support measure, is subject to a
stronger 