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Abstract. This paper proposes an effective approach to ranked keyword search 
over graph-structured data which is getting much attraction in various 
applications. To provide more effective search results than the previous 
approaches, we suggest an extended answer structure which has no constraint 
on the number of keyword nodes and is based on a new relevance measure. For 
efficient keyword search, we also use an inverted list index which pre-computes 
connectivity and relevance information on the nodes in the graph. We present a 
query processing algorithm based on the pre-constructed inverted lists, which 
aggregates entries relevant to each node and finds top-k answer trees relevant to 
the given query. We also enhance the basic search method by storing additional 
information on the relevance of the related entries in the lists, in order to 
estimate the relevance score of each node more closely and to find top-k 
answers more efficiently. We show by experiments that the proposed keyword 
search method can provide effective top-k search results over large amount of 
graph-structured data with good execution performance.  
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1 Introduction 

Recently, graph-structured data are widely used in various applications such as XML, 
semantic web, ontologies, social network services, and bio-informatics. Keyword-
based search over graph-structured databases has been attracting much attention since 
it allows users to represent their information need using only a set of keyword terms 
without understanding and using a query language and underlying database schema 
[1-7]. Keyword-based query processing has also been studied extensively in the 
literature of relational databases. Many approaches materialize relational data as a 
directed graph where tuples are treated as nodes and foreign-key relationships among 
tuples are represented as edges [8-18].  

The previous keyword search methods for graph-structured data usually return a 
set of connected structures, either sub-trees or sub-graphs, from the database, which 
represent how the data containing query keywords are interconnected in the database. 
Given a query, since there can be a significant number of answer structures in a large 
volume of graph data, search methods usually adopt a scoring function to evaluate 
and rank the answer structures and return top-k ones most relevant to the query. 
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To satisfy users’ information need by finding more effective and relevant answers to 
a given query than the previous approaches, we suggest an extended answer structure 
which has no constraint on the number of keyword nodes chosen for each query 
keyword and is based on a new relevance measure for nodes in the graph. Then we 
propose an inverted list index to represent connectivity and relevance information on the 
nodes, as well as a query processing algorithm exploiting the pre-constructed index to 
find top-k answer trees. Aiming at improving the efficiency of the proposed method, we 
also present an enhanced inverted list which stores additional information on the 
relevance of related entries and an improved search algorithm which estimates the 
relevance score of each node more closely and can find top-k answers more efficiently. 

The rest of the paper is organized as follows. Section 2 presents related work and 
motivation of our study. Section 3 defines a new answer structure for keyword queries 
and a relevance measure for it. In Section 4, we propose an inverted list index and 
describe a top-k query processing algorithm using the index. In Section 5, we present 
an extension of the inverted list and an enhanced search algorithm to process keyword 
queries more efficiently. We provide experimental results on the effectiveness and 
efficiency of the proposed methods in Section 6 and draw a conclusion in Section 7.  

2 Related Work and Motivation 

In the previous approaches to keyword-based search on a graph-structured database, 
tree structure is popularly used to describe an answer to a given query [3, 4, 5, 8, 9, 
13, 14]. As a sub-tree of the database graph, an answer tree should have nodes 
directly containing the keywords in the query and its leaves should come from those 
keyword nodes. To rank the sub-trees satisfying the above conditions, weight 
functions were proposed in the literature based on two different semantics [19]. The 
Steiner tree-based semantics defines the weight of an answer tree as the total weight 
of the edges in the tree. Under this semantics, finding an answer tree with the smallest 
weight is the well-known optimal group Steiner tree problem which is NP-complete 
[20]. The previous approaches based on this semantics have limitations on the search 
result and performance against the large amount of graph data [4, 8, 9, 14]. 

As an alternative to the Steiner tree semantics, some approaches adopted easier 
semantics, namely distinct root semantics, to find answer trees rooted at distinct nodes 
[3, 5, 13]. For each node in the graph, only a single sub-tree is considered a possible 
answer to the query, which is rooted at the node and has the minimal weight. The 
weight of a sub-tree is defined as the sum of the shortest distances from the root to the 
keyword nodes chosen for each query keyword. Under this semantics, given a graph 
having n nodes, there can be at most n answer trees and thus we can deal with very 
large graph databases more efficiently than using the Steiner tree semantics. A 
bidirectional search algorithm proposed in BANKS-II [13] performs backward 
explorations of the graph starting from nodes containing query keywords, as well as 
forward explorations from the potential roots of answer sub-trees toward keyword 
nodes. It uses a heuristic activation strategy to prioritize nodes to expand during the 
bidirectional search. However, it does not take advantage of connectivity information 
in the graph hence it may lead to poor performance on certain graphs. In BLINKS 
approach [5], indexing schemes and query processing algorithms were proposed to 
speed up the bidirectional exploration of the graph with a good performance  
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answer tree rooted at n is a sub-tree constructed by merging the shortest paths from n 
to each keyword node s contained in the p pairs of a keyword and node chosen for n. 
For example, assuming that p = 4, possible answers to the query {volcano, 
PacificOcean} over the graph in Fig. 1 include the sub-trees that are rooted at E or B 
and have nodes J, K, L, and P together, i.e. <E, {J, K, L, P}> and <B, {J, K, L, P}>. 
According to the proposed relevance measure, they have higher scores and ranks than 
other answer trees such as <H, {N, P}> and <C, {O, P}>. Thus our answer structure 
can produce more effective top-k search results compared to the previous approaches. 

3 Problem Definition 

Let G = (V, E) be a directed graph representing a graph-structured database and K be a 
set of keyword terms extracted from the nodes in V. We define relevance of a node in 
V to a keyword term in K based on the tf-idf weighting scheme [21] which is 
popularly used in information retrieval. We consider that even if a node n does not 
contain a keyword k, it can be relevant to k if it has a path to a node s directly 
containing k, called a keyword node for k. We first define the relevance of n with 
respect to a pair of keyword k and a keyword node s as follows. 
 
Definition 1. (Relevance of a node n to a keyword k contained in a node s) Given 
a keyword k∈K and a node s∈V(G), let tf(k, s) be the number of occurrences of k in s 
and df(k) be the number of nodes in V(G) which contain k. The relevance of s to k is 
defined by , , · 1 log 1  

where N is the number of nodes in V(G). For nodes n and s in V(G), the relevance of n 
to s is defined by 

, 1,1| , 1| ,  and  a path from  to 0,   
where | , | is the length of the shortest path from n to s. The relevance of n with 
respect to k in s is defined by , , , · , .                       

According to the above definition, when s does not contain k or there is no path from 
n to s, rel(n, s, k) becomes 0. Also note that if n and s represent the same node, rel(n, 
s, k) equals to the relevance of n to the keyword k, i.e., rel(n, k). A node n is 
considered relevant to a keyword k if and only if there exists a keyword node s such 
that rel(n, s, k) > 0.  

Given a keyword query Q = {k1, k2, …, kl} and a positive integer p, an answer 
structure and its relevance to the query are defined based on Definition 1 as follows. 
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Definition 2. (Answer tree to a query Q and its relevance to Q)) Given a keyword 
query Q, a node n∈V(G), and a constant p greater than or equal to |Q|, let ,  
be the set of p pairs of a node s∈V(G) and a keyword k∈Q such that the relevance of 
n with respect to (s, k) is in the p highest among all the pairs of a node in V(G) and a 
keyword in Q. That is,  , , |  ,  , , ,  is in the  highest of , , s  for all ,   

where ties in relevances are broken at random. Let ,  be the set of keyword 
nodes selected for , , i.e., ,  | ,  , . An answer tree 
to the query Q rooted at a node n, denoted by , , is a sub-tree of G which 
contains all the nodes in ,  and consists of the shortest paths from n to each 
node in , . 

The relevance of ,  to the query Q, denoted by , , is the sum of the 
relevances of n with respect to the (node, keyword) pairs in , , i.e., , , ,  ,  ,  

 
 

Note that our approach is based on the distinct root semantics and thus there is at most 
one answer tree T(n, Q) rooted at a node n. It has multiple keyword nodes for some 
keywords in Q to which the root n is most relevant in terms of rel(n, s, k). 

4 Basic Search Method 

In this section, we propose a keyword search method including an indexing scheme 
and query processing algorithm to find k best answers to a given query based on the 
relevance measure defined in the previous section.  

4.1 Inverted List Index 

To enable efficient exploration of the graph-structured data, we use an inverted list-
style index on the nodes which pre-compute and store information on the relevant 
nodes for each keyword term. Based on the proposed relevance measure, we find all 
the relevant nodes, as well as keyword nodes, for each keyword in the graph and then 
build an inverted list per keyword which is formally defined as follows. 
 
Definition 3. (Inverted list L(k) for a keyword k) For a keyword term k in the graph, 
let S(k) be the set of nodes in V(G) which contain k. The inverted list for k, denoted by 
L(k), is a list of triples (n, s, rel(n, s, k))1 obtained from all the pairs of nodes n∈V(G) 

                                                           
1  Practically, the node IDs of n and s are stored in the entry. 
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and s∈S(k) such that rel(n, s, k) > 0. The list entries are sorted in a non-increasing 
order of their relevance values. Formally,  , , , , , , … , , , , where , ,            , ,  1 , and 0 1 1  

 

We call a list entry (n, s, r) an entry of node n. As defined above, L(k) stores entries of 
the nodes that are directly or indirectly relevant to k in a decreasing order of relevance 
values. Therefore, we can find the nodes most relevant to k by reading the entries in 
L(k) sequentially. Note that the proposed inverted list is different from the 
conventional ones used for ranked search over documents or multi-dimensional data 
[21, 22, 23] by the fact that it can have entries of the nodes that do not contain the 
keyword of the list in them, in addition to the entries of keyword nodes for k. The 
proposed list is also distinguished from the keyword-node list suggested in BLINKS 
[5] since it can have multiple entries of the same node n, one for each keyword node 
reachable from n, while the latter has only a single entry for each node n which refers 
to a keyword node in the shortest distance from n. 

4.2 Query Processing  

Our query processing model is based on the threshold algorithm [22, 23], which is 
popularly used for top-k query processing on multi-dimensional data, such as 
similarity search on multimedia objects [24, 25, 26]. Given a query Q = {k1, k2, …, 
kl}, let L(Q) be the set of inverted lists for the query keywords, i.e. L(Q) = {L(ki) | 
ki∈Q}. We perform sequential scans on the inverted lists in L(Q) in parallel by 
reading their entries in a round-robin manner. During the scan, the query processor 
maintains the relevance value of an entry at the current scan position in each list L(ki), 
denoted by curScorei. The largest one among those is called maxCurScore, i.e., . Note that since the entries in each list are stored 
in a non-increasing order of their relevance values, maxCurScore can serve as an 
upper bound of the relevance values of the entries that have not yet been read from 
the lists in L(Q).  

While reading the lists, the query processor also maintains a priority queue per a 
candidate root node n of an answer tree, called a relevance queue qn. It stores at most 
p entries of n retrieved from the lists which have the highest relevances. From a triple 
(n, s, r), only the pair of s and r is stored in the queue. The list of relevance values in 
qn that are greater than or equal to maxCurScore is denoted by Rn, i.e.  | ,  ,   . 

Since maxCurScore is an upper bound of the relevances of the entries currently 
unseen from the lists in L(Q), we ensure that the relevance values in Rn belong to the p 
highest ones of all the entries of n in the lists. Thus, the sum of the values in Rn can be 
a lower bound of , , the relevance of an answer tree rooted at n. Based on the 
observation, we define the worst score of n as follows:   ∑  .   (1) 



626 C.-S. Park 

In addition, assuming that 
the same as maxCurScore, 
be defined as follows: 

Note that since maxCurSco
the lists, worstScore(n) mo
decreases during the list sca
relevances in them are no 
worstScore(n) equal rel(n, Q
 

(a) Using basic invert

Fig. 2. An examp

Example 1. Fig. 2-(a) show
node n given a query Q =
inverted lists for the query
manner. In the lists, the ent
values and the entries at 
curScorei’s are 1.5, 2.5, 
Currently, the relevance qu
[(s1, 3.5), (s2, 3.0), (s3, 2.5
values in qn that are great
Consequently, based on Eq
= 9.0 and bestScore(n) = 9.0

As scanning the inverted lis
trees using two priority que

 A top-k queue T stor
those that have been
worst scores in a d
value from the curre

min

 A candidate queue 
smaller than min-k b
best score is smaller

the unknown values in the final top-p relevances of n 
an upper bound of , , called the best score of n, · | | .       

ore monotonically decreases as entries are retrieved fr
onotonically increases whereas bestScore(n) monotonica
an. When the relevance queue of n has p entries and all 
less than maxCurScore (i.e., | | ), bestScore(n) 

Q). 

ted lists                (b) Using extended inverted lists 

ple of computing the worst and best scores of a node 

ws an example of computing the worst and best scores o
= {k1, k2, k3, k4} and p = 6. In the figure, lines repres
y keywords, scanned from left to right in a round-ro
tries of n are indicated by closed dots with their releva

the current scan positions are denoted by rectang
1.0, and 1.5, respectively, hence maxCurScore = 2

ueue of n has 6 entries of n retrieved from the lists, i.e. q
5), (s4, 2.0), (s5, 2.0), (s6, 1.5)], and the list of releva
ter than or equal to maxCurScore is Rn = [3.5, 3.0, 2
q. (1) and Eq. (2), we have worstScore(n) = 3.5 + 3.0 + 
0 + 2.5 ⋅ 3 = 16.5.        

sts, we find a set of nodes that can be roots of top-k answ
eues. 

res at most k nodes having the highest worst scores amo
n read from the lists. The nodes in T are sorted by th
escending order. The minimum (i.e., rank-k) worst sc

ent top-k nodes is called min-k, i.e., 

n-k  ,  | |0,  

C maintains candidate nodes which have a worst sc
but could still make it into the top-k queue T. A node wh
r than min-k cannot belong to the final top-k nodes and t

are 
can 

(2) 

rom 
ally 
the 
and 

 

of a 
sent 
obin 
ance 
gles. 
2.5. 
qn = 
ance 
2.5]. 

2.5 
   

wer 

ong 
heir 
core 

core 
hose 
thus 



 An Effective Keyword Search Method for Graph-Structured Data 627 

is removed from C. The nodes in C are sorted in a descending order of their 
best scores to facilitate looking up a node with the maximum best score. 

Whenever the worst score and best score of a node change during the list scan, we 
check if the node can be entered into the top-k queue T or it should be maintained in 
the candidate queue C. Query processing can terminate safely with the correct top-k 
nodes in T when the maximum best score in C as well as the best score of any node nu 
currently unseen from the lists is no higher than min-k, i.e., when | |  and  , min-k , where  ·                 (3) 

Then, using each node in T and the set of keyword nodes stored in its relevance queue, 
we can derive top-k answer trees from the data graph as defined in Definition 2. 
 

 
 

Fig. 3. Query processing algorithm 

Algorithm 1. Basic Search 
1 For a given query Q = {k1, k2, …, kl}, let L(Q)={L(ki) |ki∈Q} and curScorei = 0 (1≤i≤l) 
2 Initialize a top-k queue T and a candidate queue C empty. 
3 repeat { 
4  Select a list Li from L(Q) in a round-robin manner. 
5  Read an entry e=(n, s, r) at the current scan position in Li. 
6  curScorei := r and maxCurScore := max{curScorei} (1≤i≤l) 
7  if (n had been evicted from C or top-p relevances of n had been found) continue 
8  Insert (r, s) into the relevance queue of n, i.e., qn. 
9  Compute worstScore(n) and bestScore(n) based on maxCurScore.  
10  if (e is the first entry of n found in L(Q)) { 
11   if (worstScore(n) > min-k)  
12    Insert n into T (re-calculate min-k). 
13   else if (bestScore(n) > min-k) Insert n into C. 
14  } 
15  else if (n is in T and worstScore(n) increases from the previous value) { 
16   Remove and re-insert n (re-calculate min-k). 
17  } 
18  else if (n is in C) { 
19   if (worstScore(n) > min-k)  
20    Move n from C into T (re-calculate min-k). 
21   else if (bestScore(n) ≤ min-k)    
22    Remove n from C. 
23   else if (bestScore(n) decreases from the previous value)  
24    Remove and re-insert n. 
25  } 
26  if (a node m was ejected from T in Line 12 or 20 and bestScore(m) > min-k)  
27   Insert m into C.  
28  if ((C = ∅ or bestScore of the top node in C ≤ min-k) and maxCurScore ⋅ p ≤ min-k) 
29   break 
30  Update T and C periodically after every pre-defined number of entries is read. 
31 } until (no entry remains in the lists in L(Q)) 
32 Build top-k answer trees using the nodes in T and the entries in their relevance queues.  
33 return top-k answer trees. 
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Fig. 3 shows a sketch of the query processing algorithm described above. At each 
step of reading an entry of a node n from inverted lists in a round-robin manner, the 
following tasks are performed repeatedly. First, if either the node n had been evicted 
from the candidate queue C or rel(n, Q) had been already determined, the current 
entry is ignored (in Line 7). In Line 8~9, the relevance queue qn of n is updated using 
the current entry, and worstScore(n) and bestScore(n) are computed based on qn and 
maxCurScore. If the current entry is the first entry of n found from the lists, n can be 
inserted into the top-k queue T or candidate queue C depending on its worst and best 
scores and the current min-k value in T (in Line 10~14). When n is already in T, T 
should be reorganized based on the new worstScore(n) (in Line 15~17). Or, when n 
already exists in C, n is moved into T, remains in C, or is eliminated from C 
depending on its new worst and best scores and min-k value (in Line 18~25). As 
mentioned earlier, if Eq. (3) is satisfied by the result of the above tasks, query 
processing stops immediately and top-k answer trees can be derived from the graph 
using the nodes in T and the entries stored in their relevance queues (in Line 28~32).  

In our method, the worst and best scores of the nodes stored in the top-k queue and 
candidate queue change as the list entries are read since they depend on 
maxCurScore. However, a naïve approach to re-calculating the worst and best scores 
of all the nodes in two queues and re-organizing the queues in every step of the list 
scan would incur very large overhead. Therefore, we perform periodic updates and 
cleaning of the queues after every pre-defined number of entries is read from the lists 
(in Line 30). We omit detailed algorithm of the queue updates due to the limit of 
space. 

5 Enhanced Search Method 

In the basic method described in Section 4, the worst and best scores of each node are 
estimated assuming that all the unknown relevance values in the entries unseen from 
the lists are equal to maxCurScore, i.e. the largest relevance value of the entries at the 
current scan positions. This strategy, however, is too conservative since the actual 
relevances of the entries unseen from a list L(ki) might be much smaller than the 
relevance of the entry at the current scan position in the list, i.e. curScorei. We 
consider that when we read an entry of n from a list, if the relevance of the entry of n 
appearing next in the same list is available, we can predict worstScore(n) and 
bestScore(n) more closely to the correct relevance score of n, i.e. rel(n, Q), by 
exploiting it instead of curScorei. Based on the consideration, we propose an extended 
structure of inverted list which has in each entry of a node, additional information on 
the relevance of the next entry of the same node, formally defined as follows.  
 
Definition 4. (Extended inverted list L'(k) for a keyword k) For a keyword term k, 
let S(k) be the set of nodes in V(G) which contain k. For a node n in V(G) and a 
keyword term k, let L(n, k) be the ordered list of triples (n, s, rel(n, s, k)) which are 
obtained from all the nodes s in S(k) such that rel(n, s, k) > 0 and are sorted in a non-
increasing order of rel(n, s, k). Formally, 
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, , , , , , , … , , , ,   where , , ,  1 , and 0 1 1 . 
Then we consider a list L'(n, k) derived from L(n, k) as follows: , , , , , , , , , … , , , , , where , 1 10,  

The extended inverted list for k, denoted by L'(k), is a list of quadruples (n, s, r, r') 
which are merged from the lists L'(ni, k) for all nodes ni∈V(G) and sorted in a non-
increasing order of the relevance value r.         
 
Now, we suggest an enhanced query processing algorithm based on the extended 
inverted lists, which can compute a narrower range of (worstScore, bestScore) for 
each node in the lists and thus can find the top-k nodes relevant to a given query 
earlier. The overall query processing strategy is similar to the basic algorithm 
described in Section 4.2. Assuming that L'(Q) = {L'(ki) | ki∈Q} for a given query Q, 
we scan the lists in L'(Q) in parallel by reading entries in a round-robin manner. Like 
the basic search algorithm, the query processor maintains a relevance value curScorei 
at the current scan position of each list L'(ki), as well as the top-k queue and candidate 
queue of the nodes with the highest worst and best scores. For each node n in the 
queues, the enhanced method maintains a relevance queue as well as a next relevance 
value of n in each list L'(ki), denoted by nextScoren,i, which is obtained from r' in an 
entry (n, s, r, r') of n read from the list L'(ki) most recently. It provides the relevance 
of the entry of n which will be found next when the scan on the list L'(ki) continues.  

When no entry of n has been retrieved from a list L'(ki) yet and nextScoren,i is 
unknown, the maximum relevance of the entries of n in the list is estimated by the 
relevance of the entry at the current scan position, i.e., curScorei. Therefore, an upper 
bound of the relevances in the entries of n unseen from the lists in L'(Q) can be 
obtained from nextScoren,i and curScorei for all i∈[1..l] as follows:  

. | , 0, 1   | , ∞, 1           (4) 

Now, a lower bound and upper bound for the relevances of a node n with respect to Q 
can be computed based on maxNextScoren instead of maxCurScore. We first identify 
from the relevance queue of n a list R'n of relevance values that are no less than the 
current maxNextScoren, i.e.  | ,  ,   . Since 
maxNextScoren is an upper bound for the relevances of n unseen from the lists, 
worstScore(n) and bestScore(n) are defined as follows:     ∑                 (5)  · | |            (6) 

Since the entries in each list are sorted in a descending order of relevance, curScorei 
and nextScoren,i monotonically decrease during the list scan. Note that when an entry 
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of n is found from L'(ki) for the first time, its next relevance value is no greater than 
the previous curScorei. Thus, maxNextScoren in Eq. (4) monotonically decreases as 
we proceed with the list scan. Therefore, for each node n, worstScore(n) 
monotonically increases while bestScore(n) monotonically decreases during the scan. 
 
Example 2. Fig. 2-(b) shows an example of computing the worst and best scores of a 
node n when evaluating a query using extended inverted lists. Assuming that the 
graph data are the same as Example 1, at the current scan positions denoted by 
rectangles, the relevance queue qn and curScorei’s have the same entries and values as 
those in Example 1. From the extended inverted lists, however, the relevances of the 
entries of n which will appear next after the current scan positions in the lists are 
available, i.e., nextScoren = [1.0, 1.7, 0.5, ∞]. Note that nextScoren,4 = ∞ since no entry 
of n has been found from L'(k4) yet. Therefore, according to Eq. (4), maxNextScoren 
becomes 1.7, which is the largest value among nextScoren,i for i∈[1..3] and curScore4, 
the current relevance value 1.5 in L'(k4). Based on it, we have R'n = [3.5, 3.0, 2.5, 2.0, 
2.0], and according to Eq. (5) and (6), worstScore(n) and bestScore(n) are 13.0 and 
14.7, respectively. Note that this range of the relevance score of n is much narrower 
than the result [9.0, 16.5] obtained from the basic inverted list in Example 1.         
 
Fig. 4 shows a sketch of the enhanced query processing algorithm we have described. 
The overall structure is the same as the basic search algorithm presented in Fig. 3. It 
should be noted that nextScoren,i is introduced for each node n to maintain the next 
relevance of n from list L'(ki) (in Line 9~10) and maxNextScoren is computed and 
used to estimate the worst and best scores of the current node n (in Line 11~12). 
Processing the current node n in the top-k queue or candidate queue, checking the 
termination condition, and updating the queues periodically, are the same as the basic 
algorithm. Note that periodic updates of the queues also exploit maxNextScoren for 
each node n in the queues instead of maxCurScore. 
 

 
Fig. 4. Enhanced query processing algorithm 

Algorithm 2. Enhanced Search  
1 For a given query Q={k1, k2, …, kl}, let L'(Q)={L'(ki) |ki∈Q} and curScorei = 0 (1≤i≤l) 
2 Initialize a top-k queue T and a candidate queue C empty. 
3 repeat { 
4  Select a list Li from L'(Q) in a round-robin manner. 
5  Read an entry e=(n, s, r, r') at the current scan position in Li. 
6  curScorei := r and maxCurScore := max{curScorei} (1≤i≤l) 
7  if (n had been evicted from C or top-p relevances of n had been found) continue 
8  Insert (r, s) into the relevance queue of n, i.e., qn. 
9  if (e is the first entry of n found in the lists in L'(Q)) nextScoren,i := ∞ (1≤i≤l) 
10  nextScoren,i := r' 
11  maxNextScoren:= max{{nextScoren,i | nextScoren,i >0, 1≤i≤l}∪{curScorei | 
nextScoren,i =∞, 1≤i≤l}} 
12  Compute worstScore(n) and bestScore(n) based on maxNextScoren.  
13~33: Refer to Line 10~30 of Algorithm 1 in Fig. 3. 
34 } until (no entry remains in the lists in L'(Q)) 
35 Build top-k answer trees using the nodes in T and the entries in their relevance queues.  
36 return top-k answer trees. 
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6 Performance Evaluation 

In this section we evaluate effectiveness and efficiency of the proposed keyword 
search methods by experiments using real datasets. We implemented the proposed 
methods, Basic Method (BM) and Enhanced Method (EM), in Java. For the 
performance comparison, we also experimented with BLINKS [5] which adopts 
distinct root semantics and uses a kind of inverted list index.  

For experimentation, we used Mondial 2  and IMDB 3  databases which store 
geographic data and movie-related data. In IMDB databases, we selected data on 
147K movies released in 2006~2010 and derived a directed graph which contains 
about 831K nodes, 2.8M edges, and 303K keyword terms. We used JGraphT4 library 
to construct and manipulate the graph. We also used Lucene 5  library to extract 
keywords from the nodes in the graph and to compute relevances of nodes to 
keywords. The top-k queue and candidate queue in the proposed algorithms were 
implemented using a Fibonacci heap. The top-k queue stores node IDs using the worst 
score value as a key to facilitate selecting of the min-k node, while the candidate 
queue uses the best score of a node as a key to find the node with the highest best 
score in the queue efficiently. We conducted experiments on a server machine with 
two 2.0GHz Quad Core CPUs and 8GB memory. 

Table 1. Test queries on Mondial dataset 

query 
ID 

keyword set 
query 

ID 
keyword set 

Q1 {Michigan, Wisconsin, Toronto} Q7 {military, communist, Asia, Africa} 
Q2 {Atlantic, cape, bay} Q8 {volcano, island, Pacific, Ocean} 
Q3 {monarchy, democracy, Europe} Q9 {Spain, Morocco, Malta, Gibraltar} 

Q4 {salt, lake, Asia} Q10 {volcano, volcanic, mountain, island} 

Q5 {republic, catholic, Europe} Q11 {Himalaya, China, Nepal, India} 

Q6 {APEC, Asia, America} Q12 {Reykjavic, Ireland, Norwegian, sea} 

  
(a) k = 10          (b) k = 20 

Fig. 5. Precisions of the top-k answers obtained by the search methods 
                                                           
2  http://www.dbis.informatik.uni-goettingen.de/Mondial/ 
3  http://www.imdb.com/ 
4  http://www.jgrapht.org/ 
5  http://lucene.apache.org/java/docs/index.html 
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In the first experiment, we evaluated precision of the search results obtained by our 
approach and BLINKS. The precision of top-k answers to a query is measured by @  | .. |

, where 1. .  is a set of top-k answer trees returned as a 

search result and Rel is a set of all the answer trees in the graph which are considered 
relevant to the given query [21]. In the experiment of our approach, parameter p is set 
to double the number of keywords in the query. 

Fig. 5 shows the precisions of top-10 and top-20 search results for the test queries 
over Mondial dataset shown in Table 1. We can observe that the precision of the 
result of our method is higher than or equal to that of BLINKS for the most queries, 
specifically, for 10 queries in top-10 search and for 11 queries in top-20 search. The 
average precisions of our method and BLINKS for the given queries are respectively 
0.53 and 0.64 in top-10 searches and 0.34 and 0.49 in top-20 searches. Note that for 
the queries with AND semantics such as Q4, Q5, and Q8, BLINKS shows higher 
precisions than our method while for the queries having OR semantics such as Q3, 
Q6, Q7, and Q11, our method achieves better performance than BLINKS. This is due 
to the fact that the previous methods including BLINKS only search for sub-trees 
containing keyword nodes for each and every keyword in the query while the 
proposed method finds sub-trees having a different number of keyword nodes for 
each query keyword which are most relevant to the root node. This enables the 
proposed method to find more relevant results than the previous methods for some 
queries such as Q10.  

 

Fig. 6. Execution time of the search methods with varying k 

    

(a) p = 8                            (b) p = query size × 2 

Fig. 7. Execution time of the proposed methods with varying p 
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In the second experiment, we evaluated performance of the proposed methods by 
measuring execution time in processing top-k queries. We generated and processed 20 
test queries having 3 or 4 keywords. The parameter p is set to double the number of 
query keywords and periodic updates of the priority queues T and C are conducted 
after reading every 15,000 entries from inverted lists. We experimented with the same 
queries to find top-k answers varying k from 5 to 30. In Fig. 6, the results over IMDB 
dataset show that the average execution time of EM is about 4.7 times longer than that 
of BLINKS. This is mainly due to the overhead in finding answers in the generalized 
structure proposed in the paper. When comparing our basic method and enhanced 
method, the average execution time of EM based on the extended inverted lists 
reduces to about 38% of that of BM. Note that as k increases 6 times from 5 to 30, 
execution time of BM and EM increases only about 21% and 41%, respectively, and 
the performance gap between EM and BM gets wider about 10%.  

Finally, we have evaluated performance of the proposed methods with respect to 
query size, i.e. the number of keywords in the query. We executed 20 test queries to 
find top-10 answers over IMDB dataset, varying the queries’ size from 2 to 6. The 
parameter p is fixed to 8 in Fig. 7-(a) and set to double the query size in Fig. 7-(b), 
and update period of priority queues is 15,000. Fig. 7-(a) shows that as the query size 
grows from 3 to 6, the execution time of BM increases about 4.9 times while that of 
EM enlarges about 3.8 times. We can observe that the performance gap between EM 
and BM increases about 6.3 times and the execution time of EM is about 59% shorter 
than that of BM when the query size is 6. Thus EM is more efficient than BM for the 
queries of large size.  

7 Conclusion 

In this paper, we propose a new keyword search method for graph-structured 
databases. To find more effective top-k answers relevant to a given query, we suggest 
a generalized answer tree structure which has no constraint on the number of keyword 
nodes chosen for each keyword and selects a set of keyword nodes based on the 
relevance of the root to a query keyword contained in a specific node in the graph. For 
efficient top-k query processing based on the new answer structure, we propose an 
inverted list index which stores relevance and connectivity information on the nodes 
relevant to each keyword term. Then we provide a query processing algorithm 
exploiting the proposed inverted lists to find top-k answer trees most relevant to the 
given query. Furthermore, we also present Enhanced Method using an extended 
inverted list containing additional next relevance information in the list entry. It can 
estimate the relevance score of each node more closely to the correct value and find 
top-k answers more efficiently than Basic Method. 

The experiments with real datasets and various test queries show that the precision 
of our approach is higher than that of BLINKS for most of the queries, especially for 
those with OR semantics. Thus, the proposed answer structure can satisfy users’ 
information need better than the conventional ones. The performance of the proposed 
search algorithms is shown to be degraded compared to BLINKS mainly due to the 
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overhead incurred by adopting the extended answer structure. However, the execution 
performance of Enhanced Method based on the extended inverted list is much better 
than Basic Method, and it is scalable with respect to the number of answers to be 
found for top-k queries. 
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