
B. Murgante et al. (Eds.): ICCSA 2013, Part V, LNCS 7975, pp. 620–635, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Effective Keyword Search Method
for Graph-Structured Data Using Extended

Answer Structure

Chang-Sup Park

Dongduk Women’s University, 23-1 Wolgok-dong, Seongbuk-gu, Seoul, Korea
cspark@dongduk.ac.kr

Abstract. This paper proposes an effective approach to ranked keyword search
over graph-structured data which is getting much attraction in various
applications. To provide more effective search results than the previous
approaches, we suggest an extended answer structure which has no constraint
on the number of keyword nodes and is based on a new relevance measure. For
efficient keyword search, we also use an inverted list index which pre-computes
connectivity and relevance information on the nodes in the graph. We present a
query processing algorithm based on the pre-constructed inverted lists, which
aggregates entries relevant to each node and finds top-k answer trees relevant to
the given query. We also enhance the basic search method by storing additional
information on the relevance of the related entries in the lists, in order to
estimate the relevance score of each node more closely and to find top-k
answers more efficiently. We show by experiments that the proposed keyword
search method can provide effective top-k search results over large amount of
graph-structured data with good execution performance.

Keywords: Graph-structured Data, Keyword Search, Top-k Query Processing.

1 Introduction

Recently, graph-structured data are widely used in various applications such as XML,
semantic web, ontologies, social network services, and bio-informatics. Keyword-
based search over graph-structured databases has been attracting much attention since
it allows users to represent their information need using only a set of keyword terms
without understanding and using a query language and underlying database schema
[1-7]. Keyword-based query processing has also been studied extensively in the
literature of relational databases. Many approaches materialize relational data as a
directed graph where tuples are treated as nodes and foreign-key relationships among
tuples are represented as edges [8-18].

The previous keyword search methods for graph-structured data usually return a
set of connected structures, either sub-trees or sub-graphs, from the database, which
represent how the data containing query keywords are interconnected in the database.
Given a query, since there can be a significant number of answer structures in a large
volume of graph data, search methods usually adopt a scoring function to evaluate
and rank the answer structures and return top-k ones most relevant to the query.

 An Effective Keyword Search Method for Graph-Structured Data 621

To satisfy users’ information need by finding more effective and relevant answers to
a given query than the previous approaches, we suggest an extended answer structure
which has no constraint on the number of keyword nodes chosen for each query
keyword and is based on a new relevance measure for nodes in the graph. Then we
propose an inverted list index to represent connectivity and relevance information on the
nodes, as well as a query processing algorithm exploiting the pre-constructed index to
find top-k answer trees. Aiming at improving the efficiency of the proposed method, we
also present an enhanced inverted list which stores additional information on the
relevance of related entries and an improved search algorithm which estimates the
relevance score of each node more closely and can find top-k answers more efficiently.

The rest of the paper is organized as follows. Section 2 presents related work and
motivation of our study. Section 3 defines a new answer structure for keyword queries
and a relevance measure for it. In Section 4, we propose an inverted list index and
describe a top-k query processing algorithm using the index. In Section 5, we present
an extension of the inverted list and an enhanced search algorithm to process keyword
queries more efficiently. We provide experimental results on the effectiveness and
efficiency of the proposed methods in Section 6 and draw a conclusion in Section 7.

2 Related Work and Motivation

In the previous approaches to keyword-based search on a graph-structured database,
tree structure is popularly used to describe an answer to a given query [3, 4, 5, 8, 9,
13, 14]. As a sub-tree of the database graph, an answer tree should have nodes
directly containing the keywords in the query and its leaves should come from those
keyword nodes. To rank the sub-trees satisfying the above conditions, weight
functions were proposed in the literature based on two different semantics [19]. The
Steiner tree-based semantics defines the weight of an answer tree as the total weight
of the edges in the tree. Under this semantics, finding an answer tree with the smallest
weight is the well-known optimal group Steiner tree problem which is NP-complete
[20]. The previous approaches based on this semantics have limitations on the search
result and performance against the large amount of graph data [4, 8, 9, 14].

As an alternative to the Steiner tree semantics, some approaches adopted easier
semantics, namely distinct root semantics, to find answer trees rooted at distinct nodes
[3, 5, 13]. For each node in the graph, only a single sub-tree is considered a possible
answer to the query, which is rooted at the node and has the minimal weight. The
weight of a sub-tree is defined as the sum of the shortest distances from the root to the
keyword nodes chosen for each query keyword. Under this semantics, given a graph
having n nodes, there can be at most n answer trees and thus we can deal with very
large graph databases more efficiently than using the Steiner tree semantics. A
bidirectional search algorithm proposed in BANKS-II [13] performs backward
explorations of the graph starting from nodes containing query keywords, as well as
forward explorations from the potential roots of answer sub-trees toward keyword
nodes. It uses a heuristic activation strategy to prioritize nodes to expand during the
bidirectional search. However, it does not take advantage of connectivity information
in the graph hence it may lead to poor performance on certain graphs. In BLINKS
approach [5], indexing schemes and query processing algorithms were proposed to
speed up the bidirectional exploration of the graph with a good performance

622 C.-S. Park

Fig. 1. A

guarantee. A single-level in
keyword map, pre-comput
nodes to keywords in the
algorithm performs graph
space efficient manner. T
proposed graph partitioning

The previous approach
answer structure employed
one node directly containin
assume that a query Q = {
data shown in Fig. 1. The s
L, N, O, P}. Denoting an a
nodes>, possible answer su
<E, {J, P}>, <E, {K, P}>,
approaches based on the d
among those having the sam
that keyword nodes J, K, L
and all the edges in the grap
{J, P}>, <E, {K, P}>, and
answer tree rooted at H, <H
answer trees rooted at B, <
weights (and thus lower ra
the shortest distance from
However, we observe that
keyword volcano than node
more relevant to the given q

To improve the quality o
has no constraint on the num
an answer tree, multiple key
keyword node can be inclu
constant p and a node n in
node s containing k, to whi
computed by the relevance

An example of keyword search on graph data

ndex, consisting of sorted keyword-node lists and a no
es and indexes all the shortest paths and distances fr

e graph. By exploiting the index, the query process
search efficiently and finds top-k answers in a time

To reduce the index space for a large graph, they a
g strategies and a bi-level indexing scheme.
es mentioned above have a common constraint in

d: for each and every keyword in the query, one and o
ng it should be included as a keyword node. For examp
{volcano, PacificOcean} is given on the graph-structu
set of nodes directly containing the keywords in Q is {J
answer sub-tree by <root node, a set of selected keyw
ub-trees containing a keyword node for each keyword

<E, {L, P}>, and <H, {N, P}>. Note that in the previ
distinct root semantics, at most one sub-tree is selec
me root and returned as an answer to the query. Assum
L, N, and O have the same relevance to keyword volca
ph have the same weight, the answer trees rooted at E,

d <E, {L, P}>, will have the same weight and rank as
H, {N, P}>, under the distinct root semantics. Moreover,
<B, {J, P}>, <B, {K, P}>, and <B, {L, P}>, have lar

anks) than the answer tree rooted at C, <C, {O, P}> si
B to P is longer than the shortest distance from C to
nodes E and B have more paths to the nodes contain

es H and C, respectively, hence they should be conside
query.
of query results, we propose a new answer structure wh
mber of keyword nodes chosen for each query keyword
yword nodes can be chosen for a certain keyword while

uded for some keywords. Specifically, given a pre-defi
the graph, we find top-p pairs of a query keyword k an

ich n is most relevant. The relevance of n to a (k, s) pai
e of s to k and the shortest distance from n to s. Then

ode-
rom
sing
and
also

the
only

mple,
ured
J, K,
word

are
ious
cted

ming
ano
<E,
the
 the
rger
ince
o P.
ning
ered

hich
d. In
e no
ined
nd a
ir is
the

 An Effective Keyword Search Method for Graph-Structured Data 623

answer tree rooted at n is a sub-tree constructed by merging the shortest paths from n
to each keyword node s contained in the p pairs of a keyword and node chosen for n.
For example, assuming that p = 4, possible answers to the query {volcano,
PacificOcean} over the graph in Fig. 1 include the sub-trees that are rooted at E or B
and have nodes J, K, L, and P together, i.e. <E, {J, K, L, P}> and <B, {J, K, L, P}>.
According to the proposed relevance measure, they have higher scores and ranks than
other answer trees such as <H, {N, P}> and <C, {O, P}>. Thus our answer structure
can produce more effective top-k search results compared to the previous approaches.

3 Problem Definition

Let G = (V, E) be a directed graph representing a graph-structured database and K be a
set of keyword terms extracted from the nodes in V. We define relevance of a node in
V to a keyword term in K based on the tf-idf weighting scheme [21] which is
popularly used in information retrieval. We consider that even if a node n does not
contain a keyword k, it can be relevant to k if it has a path to a node s directly
containing k, called a keyword node for k. We first define the relevance of n with
respect to a pair of keyword k and a keyword node s as follows.

Definition 1. (Relevance of a node n to a keyword k contained in a node s) Given
a keyword k∈K and a node s∈V(G), let tf(k, s) be the number of occurrences of k in s
and df(k) be the number of nodes in V(G) which contain k. The relevance of s to k is
defined by , , · 1 log 1

where N is the number of nodes in V(G). For nodes n and s in V(G), the relevance of n
to s is defined by

, 1,1| , 1| , and a path from to 0,
where | , | is the length of the shortest path from n to s. The relevance of n with
respect to k in s is defined by , , , · , .

According to the above definition, when s does not contain k or there is no path from
n to s, rel(n, s, k) becomes 0. Also note that if n and s represent the same node, rel(n,
s, k) equals to the relevance of n to the keyword k, i.e., rel(n, k). A node n is
considered relevant to a keyword k if and only if there exists a keyword node s such
that rel(n, s, k) > 0.

Given a keyword query Q = {k1, k2, …, kl} and a positive integer p, an answer
structure and its relevance to the query are defined based on Definition 1 as follows.

624 C.-S. Park

Definition 2. (Answer tree to a query Q and its relevance to Q)) Given a keyword
query Q, a node n∈V(G), and a constant p greater than or equal to |Q|, let ,
be the set of p pairs of a node s∈V(G) and a keyword k∈Q such that the relevance of
n with respect to (s, k) is in the p highest among all the pairs of a node in V(G) and a
keyword in Q. That is, , , | , , , , is in the highest of , , s for all ,

where ties in relevances are broken at random. Let , be the set of keyword
nodes selected for , , i.e., , | , , . An answer tree
to the query Q rooted at a node n, denoted by , , is a sub-tree of G which
contains all the nodes in , and consists of the shortest paths from n to each
node in , .

The relevance of , to the query Q, denoted by , , is the sum of the
relevances of n with respect to the (node, keyword) pairs in , , i.e., , , , , ,

Note that our approach is based on the distinct root semantics and thus there is at most
one answer tree T(n, Q) rooted at a node n. It has multiple keyword nodes for some
keywords in Q to which the root n is most relevant in terms of rel(n, s, k).

4 Basic Search Method

In this section, we propose a keyword search method including an indexing scheme
and query processing algorithm to find k best answers to a given query based on the
relevance measure defined in the previous section.

4.1 Inverted List Index

To enable efficient exploration of the graph-structured data, we use an inverted list-
style index on the nodes which pre-compute and store information on the relevant
nodes for each keyword term. Based on the proposed relevance measure, we find all
the relevant nodes, as well as keyword nodes, for each keyword in the graph and then
build an inverted list per keyword which is formally defined as follows.

Definition 3. (Inverted list L(k) for a keyword k) For a keyword term k in the graph,
let S(k) be the set of nodes in V(G) which contain k. The inverted list for k, denoted by
L(k), is a list of triples (n, s, rel(n, s, k))1 obtained from all the pairs of nodes n∈V(G)

1 Practically, the node IDs of n and s are stored in the entry.

 An Effective Keyword Search Method for Graph-Structured Data 625

and s∈S(k) such that rel(n, s, k) > 0. The list entries are sorted in a non-increasing
order of their relevance values. Formally, , , , , , , … , , , , where , , , , 1 , and 0 1 1

We call a list entry (n, s, r) an entry of node n. As defined above, L(k) stores entries of
the nodes that are directly or indirectly relevant to k in a decreasing order of relevance
values. Therefore, we can find the nodes most relevant to k by reading the entries in
L(k) sequentially. Note that the proposed inverted list is different from the
conventional ones used for ranked search over documents or multi-dimensional data
[21, 22, 23] by the fact that it can have entries of the nodes that do not contain the
keyword of the list in them, in addition to the entries of keyword nodes for k. The
proposed list is also distinguished from the keyword-node list suggested in BLINKS
[5] since it can have multiple entries of the same node n, one for each keyword node
reachable from n, while the latter has only a single entry for each node n which refers
to a keyword node in the shortest distance from n.

4.2 Query Processing

Our query processing model is based on the threshold algorithm [22, 23], which is
popularly used for top-k query processing on multi-dimensional data, such as
similarity search on multimedia objects [24, 25, 26]. Given a query Q = {k1, k2, …,
kl}, let L(Q) be the set of inverted lists for the query keywords, i.e. L(Q) = {L(ki) |
ki∈Q}. We perform sequential scans on the inverted lists in L(Q) in parallel by
reading their entries in a round-robin manner. During the scan, the query processor
maintains the relevance value of an entry at the current scan position in each list L(ki),
denoted by curScorei. The largest one among those is called maxCurScore, i.e., . Note that since the entries in each list are stored
in a non-increasing order of their relevance values, maxCurScore can serve as an
upper bound of the relevance values of the entries that have not yet been read from
the lists in L(Q).

While reading the lists, the query processor also maintains a priority queue per a
candidate root node n of an answer tree, called a relevance queue qn. It stores at most
p entries of n retrieved from the lists which have the highest relevances. From a triple
(n, s, r), only the pair of s and r is stored in the queue. The list of relevance values in
qn that are greater than or equal to maxCurScore is denoted by Rn, i.e. | , , .

Since maxCurScore is an upper bound of the relevances of the entries currently
unseen from the lists in L(Q), we ensure that the relevance values in Rn belong to the p
highest ones of all the entries of n in the lists. Thus, the sum of the values in Rn can be
a lower bound of , , the relevance of an answer tree rooted at n. Based on the
observation, we define the worst score of n as follows: ∑ . (1)

626 C.-S. Park

In addition, assuming that
the same as maxCurScore,
be defined as follows:

Note that since maxCurSco
the lists, worstScore(n) mo
decreases during the list sca
relevances in them are no
worstScore(n) equal rel(n, Q

(a) Using basic invert

Fig. 2. An examp

Example 1. Fig. 2-(a) show
node n given a query Q =
inverted lists for the query
manner. In the lists, the ent
values and the entries at
curScorei’s are 1.5, 2.5,
Currently, the relevance qu
[(s1, 3.5), (s2, 3.0), (s3, 2.5
values in qn that are great
Consequently, based on Eq
= 9.0 and bestScore(n) = 9.0

As scanning the inverted lis
trees using two priority que

 A top-k queue T stor
those that have been
worst scores in a d
value from the curre

min

 A candidate queue
smaller than min-k b
best score is smaller

the unknown values in the final top-p relevances of n
an upper bound of , , called the best score of n, · | | .

ore monotonically decreases as entries are retrieved fr
onotonically increases whereas bestScore(n) monotonica
an. When the relevance queue of n has p entries and all
less than maxCurScore (i.e., | |), bestScore(n)

Q).

ted lists (b) Using extended inverted lists

ple of computing the worst and best scores of a node

ws an example of computing the worst and best scores o
= {k1, k2, k3, k4} and p = 6. In the figure, lines repres
y keywords, scanned from left to right in a round-ro
tries of n are indicated by closed dots with their releva

the current scan positions are denoted by rectang
1.0, and 1.5, respectively, hence maxCurScore = 2

ueue of n has 6 entries of n retrieved from the lists, i.e. q
5), (s4, 2.0), (s5, 2.0), (s6, 1.5)], and the list of releva
ter than or equal to maxCurScore is Rn = [3.5, 3.0, 2
q. (1) and Eq. (2), we have worstScore(n) = 3.5 + 3.0 +
0 + 2.5 ⋅ 3 = 16.5.

sts, we find a set of nodes that can be roots of top-k answ
eues.

res at most k nodes having the highest worst scores amo
n read from the lists. The nodes in T are sorted by th
escending order. The minimum (i.e., rank-k) worst sc

ent top-k nodes is called min-k, i.e.,

n-k , | |0,

C maintains candidate nodes which have a worst sc
but could still make it into the top-k queue T. A node wh
r than min-k cannot belong to the final top-k nodes and t

are
can

(2)

rom
ally
the
and

of a
sent
obin
ance
gles.
2.5.
qn =
ance
2.5].

2.5

wer

ong
heir
core

core
hose
thus

 An Effective Keyword Search Method for Graph-Structured Data 627

is removed from C. The nodes in C are sorted in a descending order of their
best scores to facilitate looking up a node with the maximum best score.

Whenever the worst score and best score of a node change during the list scan, we
check if the node can be entered into the top-k queue T or it should be maintained in
the candidate queue C. Query processing can terminate safely with the correct top-k
nodes in T when the maximum best score in C as well as the best score of any node nu
currently unseen from the lists is no higher than min-k, i.e., when | | and , min-k , where · (3)

Then, using each node in T and the set of keyword nodes stored in its relevance queue,
we can derive top-k answer trees from the data graph as defined in Definition 2.

Fig. 3. Query processing algorithm

Algorithm 1. Basic Search
1 For a given query Q = {k1, k2, …, kl}, let L(Q)={L(ki) |ki∈Q} and curScorei = 0 (1≤i≤l)
2 Initialize a top-k queue T and a candidate queue C empty.
3 repeat {
4 Select a list Li from L(Q) in a round-robin manner.
5 Read an entry e=(n, s, r) at the current scan position in Li.
6 curScorei := r and maxCurScore := max{curScorei} (1≤i≤l)
7 if (n had been evicted from C or top-p relevances of n had been found) continue
8 Insert (r, s) into the relevance queue of n, i.e., qn.
9 Compute worstScore(n) and bestScore(n) based on maxCurScore.
10 if (e is the first entry of n found in L(Q)) {
11 if (worstScore(n) > min-k)
12 Insert n into T (re-calculate min-k).
13 else if (bestScore(n) > min-k) Insert n into C.
14 }
15 else if (n is in T and worstScore(n) increases from the previous value) {
16 Remove and re-insert n (re-calculate min-k).
17 }
18 else if (n is in C) {
19 if (worstScore(n) > min-k)
20 Move n from C into T (re-calculate min-k).
21 else if (bestScore(n) ≤ min-k)
22 Remove n from C.
23 else if (bestScore(n) decreases from the previous value)
24 Remove and re-insert n.
25 }
26 if (a node m was ejected from T in Line 12 or 20 and bestScore(m) > min-k)
27 Insert m into C.
28 if ((C = ∅ or bestScore of the top node in C ≤ min-k) and maxCurScore ⋅ p ≤ min-k)
29 break
30 Update T and C periodically after every pre-defined number of entries is read.
31 } until (no entry remains in the lists in L(Q))
32 Build top-k answer trees using the nodes in T and the entries in their relevance queues.
33 return top-k answer trees.

628 C.-S. Park

Fig. 3 shows a sketch of the query processing algorithm described above. At each
step of reading an entry of a node n from inverted lists in a round-robin manner, the
following tasks are performed repeatedly. First, if either the node n had been evicted
from the candidate queue C or rel(n, Q) had been already determined, the current
entry is ignored (in Line 7). In Line 8~9, the relevance queue qn of n is updated using
the current entry, and worstScore(n) and bestScore(n) are computed based on qn and
maxCurScore. If the current entry is the first entry of n found from the lists, n can be
inserted into the top-k queue T or candidate queue C depending on its worst and best
scores and the current min-k value in T (in Line 10~14). When n is already in T, T
should be reorganized based on the new worstScore(n) (in Line 15~17). Or, when n
already exists in C, n is moved into T, remains in C, or is eliminated from C
depending on its new worst and best scores and min-k value (in Line 18~25). As
mentioned earlier, if Eq. (3) is satisfied by the result of the above tasks, query
processing stops immediately and top-k answer trees can be derived from the graph
using the nodes in T and the entries stored in their relevance queues (in Line 28~32).

In our method, the worst and best scores of the nodes stored in the top-k queue and
candidate queue change as the list entries are read since they depend on
maxCurScore. However, a naïve approach to re-calculating the worst and best scores
of all the nodes in two queues and re-organizing the queues in every step of the list
scan would incur very large overhead. Therefore, we perform periodic updates and
cleaning of the queues after every pre-defined number of entries is read from the lists
(in Line 30). We omit detailed algorithm of the queue updates due to the limit of
space.

5 Enhanced Search Method

In the basic method described in Section 4, the worst and best scores of each node are
estimated assuming that all the unknown relevance values in the entries unseen from
the lists are equal to maxCurScore, i.e. the largest relevance value of the entries at the
current scan positions. This strategy, however, is too conservative since the actual
relevances of the entries unseen from a list L(ki) might be much smaller than the
relevance of the entry at the current scan position in the list, i.e. curScorei. We
consider that when we read an entry of n from a list, if the relevance of the entry of n
appearing next in the same list is available, we can predict worstScore(n) and
bestScore(n) more closely to the correct relevance score of n, i.e. rel(n, Q), by
exploiting it instead of curScorei. Based on the consideration, we propose an extended
structure of inverted list which has in each entry of a node, additional information on
the relevance of the next entry of the same node, formally defined as follows.

Definition 4. (Extended inverted list L'(k) for a keyword k) For a keyword term k,
let S(k) be the set of nodes in V(G) which contain k. For a node n in V(G) and a
keyword term k, let L(n, k) be the ordered list of triples (n, s, rel(n, s, k)) which are
obtained from all the nodes s in S(k) such that rel(n, s, k) > 0 and are sorted in a non-
increasing order of rel(n, s, k). Formally,

 An Effective Keyword Search Method for Graph-Structured Data 629

, , , , , , , … , , , , where , , , 1 , and 0 1 1 .
Then we consider a list L'(n, k) derived from L(n, k) as follows: , , , , , , , , , … , , , , , where , 1 10,

The extended inverted list for k, denoted by L'(k), is a list of quadruples (n, s, r, r')
which are merged from the lists L'(ni, k) for all nodes ni∈V(G) and sorted in a non-
increasing order of the relevance value r.

Now, we suggest an enhanced query processing algorithm based on the extended
inverted lists, which can compute a narrower range of (worstScore, bestScore) for
each node in the lists and thus can find the top-k nodes relevant to a given query
earlier. The overall query processing strategy is similar to the basic algorithm
described in Section 4.2. Assuming that L'(Q) = {L'(ki) | ki∈Q} for a given query Q,
we scan the lists in L'(Q) in parallel by reading entries in a round-robin manner. Like
the basic search algorithm, the query processor maintains a relevance value curScorei
at the current scan position of each list L'(ki), as well as the top-k queue and candidate
queue of the nodes with the highest worst and best scores. For each node n in the
queues, the enhanced method maintains a relevance queue as well as a next relevance
value of n in each list L'(ki), denoted by nextScoren,i, which is obtained from r' in an
entry (n, s, r, r') of n read from the list L'(ki) most recently. It provides the relevance
of the entry of n which will be found next when the scan on the list L'(ki) continues.

When no entry of n has been retrieved from a list L'(ki) yet and nextScoren,i is
unknown, the maximum relevance of the entries of n in the list is estimated by the
relevance of the entry at the current scan position, i.e., curScorei. Therefore, an upper
bound of the relevances in the entries of n unseen from the lists in L'(Q) can be
obtained from nextScoren,i and curScorei for all i∈[1..l] as follows:

. | , 0, 1 | , ∞, 1 (4)

Now, a lower bound and upper bound for the relevances of a node n with respect to Q
can be computed based on maxNextScoren instead of maxCurScore. We first identify
from the relevance queue of n a list R'n of relevance values that are no less than the
current maxNextScoren, i.e. | , , . Since
maxNextScoren is an upper bound for the relevances of n unseen from the lists,
worstScore(n) and bestScore(n) are defined as follows: ∑ (5) · | | (6)

Since the entries in each list are sorted in a descending order of relevance, curScorei
and nextScoren,i monotonically decrease during the list scan. Note that when an entry

630 C.-S. Park

of n is found from L'(ki) for the first time, its next relevance value is no greater than
the previous curScorei. Thus, maxNextScoren in Eq. (4) monotonically decreases as
we proceed with the list scan. Therefore, for each node n, worstScore(n)
monotonically increases while bestScore(n) monotonically decreases during the scan.

Example 2. Fig. 2-(b) shows an example of computing the worst and best scores of a
node n when evaluating a query using extended inverted lists. Assuming that the
graph data are the same as Example 1, at the current scan positions denoted by
rectangles, the relevance queue qn and curScorei’s have the same entries and values as
those in Example 1. From the extended inverted lists, however, the relevances of the
entries of n which will appear next after the current scan positions in the lists are
available, i.e., nextScoren = [1.0, 1.7, 0.5, ∞]. Note that nextScoren,4 = ∞ since no entry
of n has been found from L'(k4) yet. Therefore, according to Eq. (4), maxNextScoren
becomes 1.7, which is the largest value among nextScoren,i for i∈[1..3] and curScore4,
the current relevance value 1.5 in L'(k4). Based on it, we have R'n = [3.5, 3.0, 2.5, 2.0,
2.0], and according to Eq. (5) and (6), worstScore(n) and bestScore(n) are 13.0 and
14.7, respectively. Note that this range of the relevance score of n is much narrower
than the result [9.0, 16.5] obtained from the basic inverted list in Example 1.

Fig. 4 shows a sketch of the enhanced query processing algorithm we have described.
The overall structure is the same as the basic search algorithm presented in Fig. 3. It
should be noted that nextScoren,i is introduced for each node n to maintain the next
relevance of n from list L'(ki) (in Line 9~10) and maxNextScoren is computed and
used to estimate the worst and best scores of the current node n (in Line 11~12).
Processing the current node n in the top-k queue or candidate queue, checking the
termination condition, and updating the queues periodically, are the same as the basic
algorithm. Note that periodic updates of the queues also exploit maxNextScoren for
each node n in the queues instead of maxCurScore.

Fig. 4. Enhanced query processing algorithm

Algorithm 2. Enhanced Search
1 For a given query Q={k1, k2, …, kl}, let L'(Q)={L'(ki) |ki∈Q} and curScorei = 0 (1≤i≤l)
2 Initialize a top-k queue T and a candidate queue C empty.
3 repeat {
4 Select a list Li from L'(Q) in a round-robin manner.
5 Read an entry e=(n, s, r, r') at the current scan position in Li.
6 curScorei := r and maxCurScore := max{curScorei} (1≤i≤l)
7 if (n had been evicted from C or top-p relevances of n had been found) continue
8 Insert (r, s) into the relevance queue of n, i.e., qn.
9 if (e is the first entry of n found in the lists in L'(Q)) nextScoren,i := ∞ (1≤i≤l)
10 nextScoren,i := r'
11 maxNextScoren:= max{{nextScoren,i | nextScoren,i >0, 1≤i≤l}∪{curScorei |
nextScoren,i =∞, 1≤i≤l}}
12 Compute worstScore(n) and bestScore(n) based on maxNextScoren.
13~33: Refer to Line 10~30 of Algorithm 1 in Fig. 3.
34 } until (no entry remains in the lists in L'(Q))
35 Build top-k answer trees using the nodes in T and the entries in their relevance queues.
36 return top-k answer trees.

 An Effective Keyword Search Method for Graph-Structured Data 631

6 Performance Evaluation

In this section we evaluate effectiveness and efficiency of the proposed keyword
search methods by experiments using real datasets. We implemented the proposed
methods, Basic Method (BM) and Enhanced Method (EM), in Java. For the
performance comparison, we also experimented with BLINKS [5] which adopts
distinct root semantics and uses a kind of inverted list index.

For experimentation, we used Mondial 2 and IMDB 3 databases which store
geographic data and movie-related data. In IMDB databases, we selected data on
147K movies released in 2006~2010 and derived a directed graph which contains
about 831K nodes, 2.8M edges, and 303K keyword terms. We used JGraphT4 library
to construct and manipulate the graph. We also used Lucene 5 library to extract
keywords from the nodes in the graph and to compute relevances of nodes to
keywords. The top-k queue and candidate queue in the proposed algorithms were
implemented using a Fibonacci heap. The top-k queue stores node IDs using the worst
score value as a key to facilitate selecting of the min-k node, while the candidate
queue uses the best score of a node as a key to find the node with the highest best
score in the queue efficiently. We conducted experiments on a server machine with
two 2.0GHz Quad Core CPUs and 8GB memory.

Table 1. Test queries on Mondial dataset

query
ID

keyword set
query

ID
keyword set

Q1 {Michigan, Wisconsin, Toronto} Q7 {military, communist, Asia, Africa}
Q2 {Atlantic, cape, bay} Q8 {volcano, island, Pacific, Ocean}
Q3 {monarchy, democracy, Europe} Q9 {Spain, Morocco, Malta, Gibraltar}

Q4 {salt, lake, Asia} Q10 {volcano, volcanic, mountain, island}

Q5 {republic, catholic, Europe} Q11 {Himalaya, China, Nepal, India}

Q6 {APEC, Asia, America} Q12 {Reykjavic, Ireland, Norwegian, sea}

(a) k = 10 (b) k = 20

Fig. 5. Precisions of the top-k answers obtained by the search methods

2 http://www.dbis.informatik.uni-goettingen.de/Mondial/
3 http://www.imdb.com/
4 http://www.jgrapht.org/
5 http://lucene.apache.org/java/docs/index.html

0

0.2

0.4

0.6

0.8

1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12

BLINKS BM/EM

0

0.2

0.4

0.6

0.8

1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11Q12

BLINKS BM/EM

632 C.-S. Park

In the first experiment, we evaluated precision of the search results obtained by our
approach and BLINKS. The precision of top-k answers to a query is measured by @ | .. |

, where 1. . is a set of top-k answer trees returned as a

search result and Rel is a set of all the answer trees in the graph which are considered
relevant to the given query [21]. In the experiment of our approach, parameter p is set
to double the number of keywords in the query.

Fig. 5 shows the precisions of top-10 and top-20 search results for the test queries
over Mondial dataset shown in Table 1. We can observe that the precision of the
result of our method is higher than or equal to that of BLINKS for the most queries,
specifically, for 10 queries in top-10 search and for 11 queries in top-20 search. The
average precisions of our method and BLINKS for the given queries are respectively
0.53 and 0.64 in top-10 searches and 0.34 and 0.49 in top-20 searches. Note that for
the queries with AND semantics such as Q4, Q5, and Q8, BLINKS shows higher
precisions than our method while for the queries having OR semantics such as Q3,
Q6, Q7, and Q11, our method achieves better performance than BLINKS. This is due
to the fact that the previous methods including BLINKS only search for sub-trees
containing keyword nodes for each and every keyword in the query while the
proposed method finds sub-trees having a different number of keyword nodes for
each query keyword which are most relevant to the root node. This enables the
proposed method to find more relevant results than the previous methods for some
queries such as Q10.

Fig. 6. Execution time of the search methods with varying k

(a) p = 8 (b) p = query size × 2

Fig. 7. Execution time of the proposed methods with varying p

0

500

1000

1500

2000

2500

5 10 15 20 25 30

BM EM BLINKStime(msec)

k

0

2000

4000

6000

8000

10000

12000

2 3 4 5 6

BM EM

query size

time(msec)

0

2000

4000

6000

8000

10000

12000

14000

2 3 4 5 6

BM EM

query size

time(msec)

 An Effective Keyword Search Method for Graph-Structured Data 633

In the second experiment, we evaluated performance of the proposed methods by
measuring execution time in processing top-k queries. We generated and processed 20
test queries having 3 or 4 keywords. The parameter p is set to double the number of
query keywords and periodic updates of the priority queues T and C are conducted
after reading every 15,000 entries from inverted lists. We experimented with the same
queries to find top-k answers varying k from 5 to 30. In Fig. 6, the results over IMDB
dataset show that the average execution time of EM is about 4.7 times longer than that
of BLINKS. This is mainly due to the overhead in finding answers in the generalized
structure proposed in the paper. When comparing our basic method and enhanced
method, the average execution time of EM based on the extended inverted lists
reduces to about 38% of that of BM. Note that as k increases 6 times from 5 to 30,
execution time of BM and EM increases only about 21% and 41%, respectively, and
the performance gap between EM and BM gets wider about 10%.

Finally, we have evaluated performance of the proposed methods with respect to
query size, i.e. the number of keywords in the query. We executed 20 test queries to
find top-10 answers over IMDB dataset, varying the queries’ size from 2 to 6. The
parameter p is fixed to 8 in Fig. 7-(a) and set to double the query size in Fig. 7-(b),
and update period of priority queues is 15,000. Fig. 7-(a) shows that as the query size
grows from 3 to 6, the execution time of BM increases about 4.9 times while that of
EM enlarges about 3.8 times. We can observe that the performance gap between EM
and BM increases about 6.3 times and the execution time of EM is about 59% shorter
than that of BM when the query size is 6. Thus EM is more efficient than BM for the
queries of large size.

7 Conclusion

In this paper, we propose a new keyword search method for graph-structured
databases. To find more effective top-k answers relevant to a given query, we suggest
a generalized answer tree structure which has no constraint on the number of keyword
nodes chosen for each keyword and selects a set of keyword nodes based on the
relevance of the root to a query keyword contained in a specific node in the graph. For
efficient top-k query processing based on the new answer structure, we propose an
inverted list index which stores relevance and connectivity information on the nodes
relevant to each keyword term. Then we provide a query processing algorithm
exploiting the proposed inverted lists to find top-k answer trees most relevant to the
given query. Furthermore, we also present Enhanced Method using an extended
inverted list containing additional next relevance information in the list entry. It can
estimate the relevance score of each node more closely to the correct value and find
top-k answers more efficiently than Basic Method.

The experiments with real datasets and various test queries show that the precision
of our approach is higher than that of BLINKS for most of the queries, especially for
those with OR semantics. Thus, the proposed answer structure can satisfy users’
information need better than the conventional ones. The performance of the proposed
search algorithms is shown to be degraded compared to BLINKS mainly due to the

634 C.-S. Park

overhead incurred by adopting the extended answer structure. However, the execution
performance of Enhanced Method based on the extended inverted list is much better
than Basic Method, and it is scalable with respect to the number of answers to be
found for top-k queries.

Acknowledgments. This work was supported by the Dongduk Women’s University
grant.

References

1. Amer-Yahia, S., Shanmugasundaram, J.: XML full-text search: Challenges and
opportunities. In: 31st Int. Conf. on Very Large Data Bases, pp. 1368–1368 (2005)

2. Chen, Y., Wang, W., Liu, Z., Lin, X.: Keyword search on structured and semi-structured
data. In: 2009 ACM SIGMOD Int. Conf. on Management of Data, pp. 1005–1010 (2009)

3. Dalvi, B.B., Kshirsagar, M., Sudarshan, S.: Keyword search on external memory data
graphs. The Proceedings of the VLDB Endowment 1(1), 1189–1204 (2008)

4. Golenberg, K., Kimelfeld, B., Sagiv, Y.: Keyword proximity search in complex data
graphs. In: 2008 ACM SIGMOD Int. Conf. on Management of Data, pp. 927–940 (2008)

5. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs.
In: 2007 ACM SIGMOD Int. Conf. on Management of Data, pp. 305–316 (2007)

6. Kim, H., Park, C.-S., Lee, Y.J.: Improving Keyword Match for Semantic Search. IEICE
Trans. Inf. & Syst E94-D(2), 375–378 (2011)

7. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: EASE: an effective 3-in-1 keyword search
method for unstructured, semi-structured and structured data. In: 2008 ACM SIGMOD Int.
Conf. on Management of Data, pp. 903–914 (2008)

8. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword searching
and browsing in databases using BANKS. In: 18th Int. Conf. on Data Engineering, pp.
431–440 (2002)

9. Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost
connected trees in databases. In: 23rd Int. Conf. on Data Engineering, pp. 836–845 (2007)

10. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Effcient IR-Style keyword search over
relational databases. In: 29th Int. Conf. on Very Large Data Bases, pp. 850–861 (2003)

11. Hristidis, V., Hwang, H., Papakonstantinou, Y.: Authority-based keyword search in
databases. ACM Trans. Database Syst. 33(1), 1–40 (2008)

12. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword search in relational databases.
In: 28th Int. Conf. on Very Large Data Bases, pp. 670–681 (2002)

13. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H.:
Bidirectional expansion for keyword search on graph databases. In: 31st Int. Conf. on Very
Large Data Bases, pp. 505–516 (2005)

14. Kimelfeld, B., Sagiv, Y.: Finding and approximating top-k answers in keyword proximity
search. In: 25th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systems, pp. 173–182 (2006)

15. Liu, F., Yu, C.T., Meng, W., Chowdhury, A.: Effective keyword search in relational
databases. In: 2006 ACM SIGMOD Int. Conf. on Management of Data, pp. 563–574
(2006)

16. Luo, Y., Lin, X., Wang, W., Zhou, X.: Spark: top-k keyword query in relational databases.
In: 2007 ACM SIGMOD Int. Conf. on Management of Data, pp. 115–126 (2007)

 An Effective Keyword Search Method for Graph-Structured Data 635

17. Qin, L., Yu, J.X., Chang, L.: Keyword search in databases: The power of RDBMS.
In: 2009 ACM SIGMOD Int. Conf. on Management of Data, pp. 681–694 (2009)

18. Yu, J.X., Chang, L., Tao, Y.: Querying communities in relational databases. In: 25th Int.
Conf. on Data Engineering, pp. 724–735 (2009)

19. Yu, J.X., Qin, L., Chang, L.: Keyword search in relational databases: a survey. IEEE Data
Engineering Bulletin 33(1), 67–78 (2010)

20. Hwang, F.K., Richards, D.S.: The Steiner tree problem. Networks 22(1), 55–89 (1992)
21. Buttcher, S., Clarke, C., Cormack, G.: Information Retrieval: Implementing and

Evaluating Search Engine. MIT Press (2010)
22. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. Journal

of Computer and System Sciences 66(4), 614–656 (2003)
23. Güntzer, U., Balke, W.-T., Kießling, W.: Towards efficient multi-feature queries in

heterogeneous environments. In: 2001 Int. Symp. on Inf, pp. 622–628 (2001)
24. Bruno, N., Gravano, L., Marian, A.: Evaluating top-k queries over web-accessible

databases. In: 18th Int. Conf. on Data Engineering, pp. 369–380 (2002)
25. Theobald, M., Weikum, G., Schenkel, R.: Top-k Query Evaluation with Probabilistic

Guarantees. In: 30th Int. Conf. on Very Large Data Bases, pp. 648–659 (2004)
26. Best, H., Majumdar, D., Schenkel, R., Theobald, M., Weikum, G.: IO-Top-k: Index-access

Optimized Top-k Query Processing. In: 32nd Int. Conf. on Very Large Data Bases,
pp. 475–486 (2006)

	An Effective Keyword Search Method for Graph-Structured Data Using Extended Answer Structure
	1 Introduction
	2 Related Work and Motivation
	3 Problem Definition
	4 Basic Search Method
	4.1 Inverted List Index
	4.2 Query Processing

	5 Enhanced Search Method
	6 Performance Evaluation
	7 Conclusion
	References

