
A Real-Time Rendering Technique

for View-Dependent Stereoscopy
Based on Face Tracking

Anh Nguyen Hoang1, Viet Tran Hoang1, and Dongho Kim2

1 Soongsil University
{anhnguyen,vietcusc}@magiclab.kr

2 511 Sangdo-dong Dongjak-gu, South Korea
cg@su.ac.kr

Abstract. In our research, we propose and implement a virtual reality
system with the common and widely used devices such as 3D screen and
digital webcam. Our approach involves the combination of 3D stereo-
scopic rendering and face tracking technique in order to render a stereo
scene based on the position of the viewer. Our approach is to calculate
the offset values of face position to assign to the virtual camera position
relatively. We employ a technique to change the typical symmetric frus-
tum into asymmetric to achieve the head-coupled perspective. With our
system, the rendered scene observed by human eyes remains realistic and
the viewport can be seen as the physical window in the real environment.
Therefore, the right perspective can be maintained regardless of viewer
position.

Keywords: View-dependent, asymmetric frustum, stereoscopy, face
tracking.

1 Introduction

Virtual reality came into existence during the early 1960s. It has been developed
and applied widely in recent years because of the development of computer in
both hardware and software. A virtual reality system at least consists of these
kinds of devices: a computer, input devices for position or gesture tracking,
and output devices for displaying information to the user. For a simple virtual
reality system, it is typical to implement using a common desktop computer with
a digital webcam to track the viewer’s face and adjust the 3D rendered scene
appearing in the system window. Virtual reality is often used to deliver the
visual contents in various application forms which are mostly associated with
3D stereoscopic environment. Therefore, using 3D displays such as interlaced
screens or anaglyph with red-cyan glasses would be a simple and appropriated
approach for our system.

Stereoscopic rendering has been researched and implemented comprehensively
recently. The techniques for stereo display have been applied in common usages
such as the mass production of 3D screen with polarized glasses or the 3D Vision

B. Murgante et al. (Eds.): ICCSA 2013, Part I, LNCS 7971, pp. 697–707, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



698 A. Nguyen Hoang, V. Tran Hoang, and D. Kim

Fig. 1. Main interface of system. Stereoscopic rendering and face tracking.

equipment from NVIDIA. Using those kinds of technique as well as the 3D
stereoscopic rendering fundamentally well-known theories, we are able to produce
and transfer the 3D stereoscopic rendered scene to the viewer in real-time. It is
required to keep our system as simple and applicable as it should be, we are not
employing the expensive and high-technology devices, the cheap and accessible
devices are employed instead. This is one of main principles in our system. Using
the common devices for representing an interactive system between the viewer
pose and 3D stereoscopic contents involves the high challenges in the technique
to improve the performance of the face tracking as well as stereoscopic rendering.

View-dependent rendering is the terminology describing the changes of ren-
dered scene regarding to the view of observer. In our system, view-dependent
rendering is used to adjust the virtual camera position to display a scene dy-
namically with the viewer’s face. View-dependent rendering was used mostly in
terms of perspective change when the viewer is looking through the window. The
virtual scene will be changed and displayed interactively. In many researches, the
basic and simple techniques are being used to track the head position and by
controlling the virtual camera position relatively to the viewer, the scenes are
changed but they do not actually reflect the right human perspective in real
environment. In these cases, the frustum defined by the graphic API will retain
the normal symmetric shape and it therefore cannot present a right perspective
to human perception.

In our system, we also present a tracking technique based on optical flow to
track the viewer’s face. In computer vision, face tracking is always an important
and interesting research area. Face tracking in our approach is understood as
the ability to retrieve the position of a human head relatively to the computer
screen. Although it seems to be the challenges in computer vision, the recent
works of researches have been introducing variety of face tracking processes with
the high accuracy in real-time. We do not make a novel technique. Instead, we
employ a high accuracy technique with a modification to enhance the tracking
speed. More particularly, the face tracking technique will make the interactive
recognition and response to the human perspective changes. The Fig. 1 gives a
basic illustration for our system. As the result, when the human head is tracked



A Real-Time Rendering Technique for View-Dependent Stereoscopy 699

and the frustum is in the arbitrary form, the rendered scene will appear with
the right perspective to human view and the observed scene will look at most
realistic.

2 Related Works

There are a number of previous researches which have the same purpose in im-
plementation of system using view-dependent rendering. P. Slotbo [1] introduced
fundamental theories of rendering a 3D stereoscopic scene. He also implemented
system for 3D interactive and view-dependent rendering. The proposed concept
in his research was implemented using two inexpensive off-the-shelf web-cameras
and a low-end desktop computer. He used the information from cameras as the
input to track viewer’s position for setting up a view-dependent rendering. There
were some makers used to detect the interactions of the user. The developed sys-
tem showed the abilities to render the scene in real-time but non-stereo mode.
With stereoscopy enabled, the system ran slowly in only 12 fps. It also tracked
the viewer position but indirectly.

In another related study, Jens Garstka and Gabriel Peters [7] calculated a
view-dependent 3D projection of a scene which was projected on flat surfaces.
They implemented a system that enabled the single viewer to explore the scene
while walking around. They introduced a novel approach for head tracking using
depth-images retrieved from a Microsoft KINECT 3D sensor. Such device had
done most of hard works in detection head’s orientation. The delays in adaptation
of projected scene remained as a limitation. Their system is the first right step
of expandability to 3D stereoscopic view-dependent rendering.

Sebastien [4] presented a non-intrusive system that gave the illusion of a 3D
depth and interactive environment with 2D projectors. His research involved the
head-coupled perspective to give the user a 3D scene which was projected onto
a flat surface. The projected image was such that the perspective was consistent
with the viewpoint of the user. Kenvin [2] discussed characteristics of head-
coupled stereo display; he also dealt with the issues involved in implementing
head-coupled perspective correctly. His research gave a first and fundamental
theory on head-coupled stereo display. Buchanan [8] proposed a view-dependent
rendering set-up for home computer use. In his research, view-dependent render-
ing used a parallax effect to give the illusion of depth. His face tracking method
was based on the Lucas-Kanade algorithm.

3D stereoscopic rendering technique has been known and implemented re-
cently on many researches. Paul Baker [6] introduced a right method to stereo-
scopic rendering with an off axis setting for two offset cameras. His studies have
provided straightforward and fundamental theories to 3D stereoscopic rendering.
In 2011, Samuel Gateau from NVIDIA [3] presented that of technique with an
overview but concise and comprehensive information. The concrete implemen-
tation for such system can be found in the course BYO3D [12] by MIT media
laboratory. We utilize this work in our system as a part of handling the 3D
stereoscopic rendering.



700 A. Nguyen Hoang, V. Tran Hoang, and D. Kim

3 Technique Background

3.1 3D Stereoscopic Rendering

Stereoscopic rendering has been well studied and implemented widely by many
researchers in computer graphics field. With the development of display tech-
nology and the power of Graphics Card, implementing a 3D stereoscopic render
system in real-time is currently not a challenge. The systems involved that of
technique always aim to create the correct illusion of 3D depth by presenting a
left and right image to the human eyes. Human perception of depth will in turn
proceed the visual information taken from two eyes. Therefore, if the left and
right image are correctly sent to human eyes, the strong sense of depth can be
presented to the viewer as seeing the real world.

There are many methods for viewing a 3D stereoscopic rendered frame. In
our system, we use two methods to present the stereo images to the viewer. We
employ the common and traditional red and cyan glasses for a rapid 3D display
which is known as anaglyph, we also use another method called row-interlaced
stereoscopy using 3D display screen with glasses. Anaglyph is an old approach
but it is used to illustrate the basic principle of transmitting stereo images.
Anaglyph does not represent the colours faithfully. The interlaced display can
preserve the image colours but it has the restriction in view in position. The
viewer must look the screen in a straight direction and only moves the head
horizontally to observe the scene, otherwise the 3D stereo effects will no longer
be available.

In the standard graphics API, the frame is rendered and viewed by projecting
a virtual 3D scene onto the computer screen as a 2D image. A perspective projec-
tion performs perspective division to shorten and shrink objects. View frustum
defines those parts of the scene that can be seen from a particular position which
is camera position. In our approach with stereoscopy, we consider two cameras
presenting two eyes and a single projection plane. The object will be projected
differently based on the position of camera and the visibility of object will be
considered as well. It can be thought of as a window through which we can see
the world. It is obvious that when the viewer moves, the scene will change in
order that there are some parts of world being seen from one position but not
from other position, and the objects in scene are observed from different angles.

We want the system to render the scene view-dependently. It means that the
scenewill always have the right perspective to the viewer position.When the viewer
moves, the 3D scene should be rendered in such a way that the viewer is observing
the real objects. The rendered scenes will change in real-time but the scene per-
ceived by the human eyes must remain stable. Using perspective projection, the
scene will be scaled based on the depth, this projection will then be able provide a
depth cue. Therefore, such kinds of projection are called on-axis because the points
in frustum are chosen to be the points on the near plane along the z-axis which
is perpendicular to the screen plane. That projection is implemented by most of
graphics API. However, using it will result in various distortions of virtual scene



A Real-Time Rendering Technique for View-Dependent Stereoscopy 701

Fig. 2. The concept of off-axis view

because the rendered frames are observed monocularly from an incorrect view-
point in case they should be seen in a straight pose towards the screen.

In order to implement that aspect, we use head-coupled perspective [2] which
means that we directly control the camera position by attaching it relatively to
the human face position. Furthermore, we also want to achieve the most correct
perspective of a 3D stereoscopic rendered scene, we employ an off-axis view which
is illustrated by an asymmetric frustum. By using this frustum in the system,
the distortion of object arising when the viewer looks at the screen from different
angles will be reduced at most. The Fig. 2 illustrates the distortion appeared
with different viewing angles [10].

3.2 Face Tracking

When applying a head-coupled perspective into the real-time rendering system,
there is always a tracking technique involved because the system must know
where the user’s eyes are located. The user eyes will be considered as two virtual
cameras and their positions will be assigned to the virtual camera’s positions
respectively. Those techniques are used with many researches on view-dependent
rendering because they are straightforward and easy to implement.

In our approach, we employ the stereo display methods which rely on the
glasses. The viewers must wear glasses so that they can perceive the 3D illusion
of the virtual scene. Wearable glasses will affect the accuracy of eyes detection
and tracking process because the features used to detect eyes are no longer true
and distinctive enough. Thus, the result is not trust-able for tracking eyes po-
sitions and assign to the virtual cameras. Addressing this problem, we choose
to track a human face position using digital camera. The eyes position can be
computed correctly because it is true that the eye’s position is always remained
relative to the face position. In addition to that issue, the algorithm used in



702 A. Nguyen Hoang, V. Tran Hoang, and D. Kim

detection the human face is robust and adaptable with many changes. For in-
stance, the viewer can wear a anaglyph or polarized glass without any negative
effects on the first face detection step. Based on that observation, we use a robust
face detection framework implemented by OpenCV called Viola-Johns[5]. This
framework describes a approach using machine learning to detect visual objects.
It combines four concepts which are Haar features, an integral image for rapid
feature detection, a machine-learning method and a cascaded classifiers[5].

Fig. 3. The Fig. (a) shows the examples of Haar features in OpenCV. The Fig. (b)
shows the first two Haar features in the Viola-Jones cascade.

In their detection framework [5], the detection features, which are the combi-
nation of sequence rectangles, are based on Haar wavelets. The sequent rectangles
form the better method to visual detection tasks. Because of the difference from
original Haar wavelet, the features they use are called Haar-like features. The
Fig. 3 shows some examples of the Haar features used in OpenCV and the first
two Haar features which are used in the original Viola-Jones cascades. To check
whether the Haar-like features are being presented in the image, they simply
use subtraction between the average dark-region and light-region pixel value.
The differences will be compared with a threshold achieved during a machine
learning process to decide the presence of those features in image. They use the
technique called Integral image. The integral value is calculated for each pixel.
This value is recursively computed by adding the sum of all the pixels from its
top left pixels. The process starts from the top left pixel of the image and tra-
verse to the right down [11]. Thus, the features are detected efficiently in every
location with some scales.

They use a machine-learning method called AdaBoost to decide the Haar-
like features and specify the threshold value. AdaBoost method selects a small
number of critical visual features from a larger set and makes an extremely
efficient classifiers. AdaBoost combines many classifiers which are assigned the
weight to create one effective classifier. They use a training face set as the input
for AdaBoost learning method, the threshold at each filter level is set to a value
at most that face examples in the training set can pass. This method is illustrated



A Real-Time Rendering Technique for View-Dependent Stereoscopy 703

Fig. 4. The classifier cascade

in the Fig. 4 [11]. The image sub-region will pass through the filters, if that region
can pass all the filters in the chain, it will be classified as a human face.

After the first stage of face detection, we use another technique to track the
face. There are many tracking techniques based on the movement or the colour
histograms from the object we want to track. Using the techniques based on
the colour of object is fast, effective and rather widely implemented. However,
in our system when the viewer wears a glass, especially the red-cyan glass, the
incorrect tracking may occur. Tracking by using histogram can potentially miss
the face in the frame captured by camera due to the presence of some regions
having the same colours with the face such as the neck or some regions in envi-
ronment around the viewer. The inaccuracy as well as the failure of face tracking
breaks our system stability. Therefore, we involve a tracking technique based on
the movement of object, that technique is called Lucas-Kanade (LK) optical
flow [9].

The LK optical flow technique is typically used to track the optical flow of
a video. In our research, this technique will track the location of some specific
points in the face detected across multiple frames which the digital camera is
capturing. The basic idea of the LK algorithm rests on three assumptions. A
pixel from the image of an object in the scene will retain its appearance when
moving from frame to frame; this is known as brightness constancy. The motion
of a surface region changes slowly in time relatively to the scale of motion in
the image. The point belonging to the same surface will have the similar motion
with the neighbouring points in a scene.



704 A. Nguyen Hoang, V. Tran Hoang, and D. Kim

The LK optical flow technique will find the points of interest which are located
on the face of the viewer. Those points are in turn used to track the motion the
face so that we can decide the position to assign it to the virtual camera used
in stereoscopic rendering. In case that the interest points do not track the face
feature precisely, the stage of face detection will be invoked to relocate the face
and compute interest points.

4 Implementation

4.1 Stereoscopy with Asymmetric Frustums

We implement a stereoscopic real-time rendering system using OpenGL. It is
developed based upon fundamental and solid background theory on stereoscopy
made by many researchers in computer graphics field. We utilize a stereoscopic
rendering application [12] from the course ”Build your own 3D display” in SIG-
GRAPH 2011 to apply it into our research and finalize with the best performance
based on GPU rendering. The application gives the basic illustration of rendering
a scene off axis in stereoscopy.

In the system, we render the scene by locating two virtual cameras relatively
to the eye positions and the distance between two virtual cameras are computed
by eyes separation value. The pseudo code in below illustrates the steps in order
to create asymmetric frustum to each virtual camera in OpenGL. Two virtual
cameras positions will be computed by shifting main camera a half eyes sepa-
ration distance to the left and right alternatively. The width and height of the
window viewport are also computed in centimetre. The screen.pitch will return
the size of a pixel in centimetre. We continue to compute other values to form
the parameters to construct the asymmetric frustum.

OpenGL initializing asymmetric frustum pseudo code

compute x value of left/right camera position alternatively;
depthRatio = camera.near/camera.z;
halfWidth = window_width * screen.pitch/2;
halfHeight = window_height * screen.pitch/2;
left = -depthRatio * (x + halfWidth);
right = -depthRatio * (x - halfWidth);
bottom = -depthRatio * (camera.y + halfHeight);
top = -depthRatio * (camera.y - halfHeight);
set glFrustum() based on six standard frustum values;

In anaglyph stereo rendering, we use a fragment shader to specify three colour
modes of anaglyph which are full-colour, half-colour and optimized anaglyph.
The fragment shader will compute the output colour according to the user-
selected mode. We compute the anaglyph’s RGB values (ra, ga, ba) from the
RGB values of the left (r1, g1, b1) and right images (r2, g2, b2)[13]. We also use
a fragment shader for row-interlaced rendering mode. For each view of camera,
the shader evaluates the texture coordinate and extract the view mask value.
The fragment colour will then be assigned for the interlaced image.



A Real-Time Rendering Technique for View-Dependent Stereoscopy 705

4.2 Face Tracking with OpenCV

In our system, we set up a digital webcam by mounting it into the top of the
screen where it lies exactly in the middle point of the top screen edge. The viewer
position is restricted to the distance from 40 centimetres to 100 centimetres in
order that the camera can capture a face with the best quality for detection task.

The frame as individual image extracted from the webcam will be used as
the input for the face detection. The viewer face will be detected as soon as
the frames are outputted from the camera. However, there is a restriction in
enabling the tracking step. We delay tracking until the viewer’s face moves into
the centre position of the sequence frames taken by camera in both vertical and
horizontal direction. Otherwise, we must adjust the camera vertically so that the
face appears in centre. Using such restriction, the relationship between face and
virtual camera’s position can be proportional to each other because we assume
that the starting position of face is to give a look towards the screen in the
straight orientation. In addition to this issue, we are able to calculate the centre
point of two eyes because it also has the relative position to the face. Finally, we
can retrieve the spatial changes from centre of eyes and assign it to the virtual
cameras.

We use the implementation in OpenCV for those theories which have been
discussed in section 3 - Technique background. OpenCV already implemented
the Haar Cascade classifier in order to use not only for face detection but also for
object detection generally. The face detector will examine each image location
and classify whether that location contains a face. The classification uses a scale
in size 50 x 50 pixels to scan faces and it runs through the image several times
to search for faces within a range of scales. OpenCV provides an XML file name
haarcascade frontalface default.xml which is the output after the learning
process on faces data. The classifier uses that file for decision on which location is
a face in the image. The face detector task is under form of an OpenCV method
called cvHaarDetectObjects. This method will use the classifier as a parameter.
The classifier is represented by CvHaarClassifierCascade class in OpenCV.

As discussed in the previous section, we use the algorithm called Lucas-
Kanade optical flow to track the face which is already detected in the detec-
tion step. The first thing to do with this algorithm is getting the feature we
want to keep track in frame by frame. In our case, that is the face. We in-
voke the OpenCV method cvGoodFeaturesToTrack to get the interest points
in the face region we have from the detecting phase. We then use those points
as the good features for tracking. After that, we continue to invoke the method
cvCalcOpticalFlowPyrLK. This optical flow function makes use of the good
tracking features and indicates whether the tracking is proceeding well [9]. By
using the combination of these two functions, we can obtain the effective track-
ing. Our system keeps running in real-time for both face tracking and stereoscopic
rendering.



706 A. Nguyen Hoang, V. Tran Hoang, and D. Kim

5 Discussion and Result

Our paper presents a technique for real-time rendering a stereoscopic scene which
involves the view-dependent aspect. The view-dependent rendering of a normal
3D scene was studied and implemented by many researchers. However, the stud-
ies on that of stereoscopy are still interesting research field. Some implementa-
tions have been introduced while the challenges on building the real-time system
still remain attractive because the computational cost for both stereoscopy and
face tracking is extremely high.

We also present an off axis frustum or asymmetric frustum by which the
perspective will be reflected as much realistic as the scene should appear in a
real environment. These techniques would be effective in case of implementing a
virtual reality system using the popular and simple devices. The user will need
only display devices for 3D stereoscopy and they will be able to look at the real
scene by only sitting front of the working place.

We develop and run our system on Windows 7 Ultimate version with service
pack 1. Our test platform is a CPU 3.7GHz Intel Core i7, NVIDIA GTX 480
graphics card as well as 16GB of RAM. For the stereo display, we use a 27-inch
3D screen with the polarized glass. Our system runs fast and smoothly with an
average of 30 FPS. We perform many changes in viewer position. The 3D object
appears stable to the viewer perception as a real object is floating out of the
screen or located behind the screen.

In the future, we will improve the performance of the system. With the 3D
stereoscopic scene changed by human view, the system would interest the learner
in case it is applied for education. We also would like to involve the hand gesture
tracking system in order to enable the interaction between the observer and the
virtual 3D objects rendered by our system.

6 Conclusion

In our research, we present and implement a 3D stereoscopic rendering system
in real-time based on the viewer’s face position. We make the combination of
3D stereoscopic rendering and face tracking techniques. By improving them, we
achieve a system having a good performance. By using our system, the user
can perceive the realistic scene in 3D and the observed scene therefore can be
considered as the scene in reality. The combination of those techniques helps us
implement a widely applicable system.

Acknowledgments. This research was supported by Next-Generation Informa-
tion Computing Development Program through the National Research Founda-
tion of Korea(NRF) funded by the Ministry of Education, Science and
Technology (No. 2012M3C4A7032182).



A Real-Time Rendering Technique for View-Dependent Stereoscopy 707

References

1. Slotsbo, P.: 3D Interactive and View Dependent Stereo Rendering. M.Sc. thesis at
Technical University of Denmark (2004)

2. Kevin, A.: 3D task performance using head-coupled stereo displays. M.Sc thesis at
The university of Bristish Columbia, pp. 14–24 (1993)

3. Samuel, G.: 3D Vision Technology Develop, Design, Play in 3D Stereo. NVIDA
(2011)

4. Sbastien, P., Vincent, P., Antoine, L., Marc, D.: An Interactive and Immersive
System that dynamically adapts 2D projections to the location of a users eyes. In:
Proceedings of International Conference on 3D Imaging (2012)

5. Paul, V., Michael, J.: Rapid Object Detection using a Boosted Cascade of Sim-
ple Features. In: Proceedings of Conference on Computer Vision and Recognition
(2001)

6. Paul, B., Peter, M.: Stereoscopy: Theory and Practice. In: Workshop at VSMM.
Queensland University of Technology (2007)

7. Jens, G., Gabriele, P.: View-dependent 3D Projection using Depth-Image-based
Head Tracking. In: 8th IEEE International Workshop on Projector Camera Systems
(2011)

8. Buchanan, P., Green, R.: Creating a view dependent rendering system for main-
stream use. In: 23rd International Conference on Image and Vision Computing
New Zealand, IVCNZ 2008, pp. 1–6 (2008)

9. Gary, B., Adrian, K.: Learning OpenCV. O’Reilly Media publisher (2009)
10. Opera development article,

http://dev.opera.com/articles/view/head-tracking-with-webrtc/

(visited on February 20, 2013)
11. Cognotics article,

http://www.cognotics.com/opencv/servo_2007_series/index.html (visited on
February 22, 2013)

12. Build your own 3D displays course, http://web.media.mit.edu/~mhirsch/byo3d/
(visited on January 20, 2013)

13. Anaglyph Methods Comparison,
http://3dtv.at/Knowhow/AnaglyphComparison_en.aspx (visited on January 15,
2013)

http://dev.opera.com/articles/view/head-tracking-with-webrtc/
http://www.cognotics.com/opencv/servo_2007_series/index.html
http://web.media.mit.edu/~mhirsch/byo3d/
http://3dtv.at/Knowhow/AnaglyphComparison_en.aspx

	A Real-Time Rendering Technique for View-Dependent Stereoscopy Based on Face Tracking
	1 Introduction
	2 Related Works
	3 Technique Background
	3.1 3D Stereoscopic Rendering
	3.2 Face Tracking

	4 Implementation
	4.1 Stereoscopy with Asymmetric Frustums
	4.2 Face Tracking with OpenCV

	5 Discussion and Result
	6 Conclusion
	References




