
A Computational Study on Different Penalty

Functions with DIRECT Algorithm

Ana Maria A.C. Rocha1,2 and Rita Vilaça2

1 Department of Production and Systems, School of Engineering
arocha@dps.uminho.pt

2 Algoritmi R&D Centre
University of Minho, 4710-057 Braga, Portugal

rita.pinto.vilaca@gmail.com

Abstract. The most common approach for solving constrained opti-
mization problems is based on penalty functions, where the constrained
problem is transformed into an unconstrained problem by penalizing
the objective function when constraints are violated. In this paper, we
analyze the implementation of penalty functions, within the DIRECT
algorithm. In order to assess the applicability and performance of the
proposed approaches, some benchmark problems from engineering de-
sign optimization are considered.

Keywords: Global optimization, constrained optimization, DIRECT
algorithm, penalty function.

1 Introduction

This paper aims to illustrate the behavior of some penalty functions combined
with the DIRECT algorithm for solving nonlinear global optimization problems
of the form:

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . ,m

x ∈ Ω,
(1)

where f : Rn → R, g : Rn → R
m are nonlinear continuous functions, Ω = {x ∈

R
n : l ≤ x ≤ u} and x corresponds to the main variables, decision or controllable

through which will optimize f(x). We do not assume that functions f and g are
convex. There may exist many local minima in the feasible region. This class of
global optimization problems arises frequently in engineering applications. Spe-
cially for large scale problems of type (1), derivative-free and stochastic methods
are the most well-known and used methods.

DIRECT is a deterministic global optimization algorithm developed by Jones,
Perttunen and Stuckman [19] and the name “DIviding RECTangles” describes
the way the algorithm moves towards the optimum. The DIRECT method starts
the iterative process by dividing the solution space into hyperrectangles, using
criteria (size and value of the function center) well defined. Hence, the algorithm,

B. Murgante et al. (Eds.): ICCSA 2013, Part I, LNCS 7971, pp. 318–332, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Computational Study on Different Penalty Functions 319

based on a space-partitioning scheme, performs both global exploration and local
exploitation [9].

DIRECT was initially developed to solve difficult global optimization prob-
lems with simple bound constraints [9,10]. However, over the years the method
has been improved and some modifications were done in order to solve other
kind of problems [11,12].

There is a set of strategies for solving nonlinear constrained problems consist-
ing of transforming the constrained problem into a sequence of unconstrained
subproblems, whose solutions are related in some way to the solution of the
original problem. Solutions of the successive unconstrained subproblems will
eventually converge to the solution of the original constrained problem. The
subproblems created by penalty methods involve a penalty function that incor-
porates the objective function and the constraints of the problem. The penalty
function may include one or more penalty parameters which determine the rela-
tive importance of each constraint, or set of constraints. When these parameters
are suitably modified, the effects of constraints become increasingly evident in
the sequence of generated problems.

Penalty methods are simple to implement, are applicable to a broad class
of problems and take advantage of powerful unconstrained minimization meth-
ods. Thus, they have been widely accepted in practice as an effective class of
methods for constrained optimization. The appropriate selection of penalty pa-
rameter values is vital for a fast convergence. A function that determines its
value at the beginning of each round of optimization may be defined. Different
penalty functions may emerge depending on the way penalties vary throughout
the minimization process.

In this paper we intend to analyze the performance of different penalty ap-
proaches embedded in the DIRECT algorithm, namely, the l1 penalty func-
tion, Quadratic Penalty function, Dynamic Penalty function, Hyperbolic Penalty
function and Augmented Lagrangian Penalty function. Some preliminary results
are presented when solving a benchmark of engineering design optimization prob-
lems with the proposed methods.

The remainder of this paper is as follows. We briefly describe the DIRECT al-
gorithm in Section 2. In Section 3 we briefly introduce the penalty function tech-
nique and in Section 4 the proposed penalized DIRECT algorithm approaches
are outlined. Section 5 describes the experimental results and finally we draw
the conclusions of this study in Section 6.

2 DIRECT Algorithm

The DIRECT optimization algorithm was first presented in [19], and emerged
by a modification to Lipschitzian optimization, that has proven to be effective in
a wide range of application domains. The motivation for the DIRECT algorithm
comes from a different way of looking at the Lipschitz constant. In particular,
the Lipschitz constant is viewed as a weighting parameter that indicates how
much emphasis is to be placed on global versus local search.

320 A.M.A.C. Rocha and R. Vilaça

Fig. 1. First three iterations of DIRECT on a sample problem

DIRECT is a sampling algorithm and requires no knowledge of the objective
function gradient. Furthermore, the algorithm samples points in the search space,
and uses the information it has obtained to decide where to search next. DIRECT
can be very useful when the objective function is a “black box” function or
simulation. An example of using DIRECT to solve a large industrial problem
can be found in [4].

DIRECT begins the optimization by transforming the domain of the problem
into the unit hypercube and its center point, c, is evaluated. Then the hypercube
is divided in three hyperrectangles along the coordinate with best objective
function value. That is, the evaluation of the function at points c ± δei for
i = 1, 2, ..., n where c is the central point of the hypercube, δ is a third side
of the hypercube and ei is the ith unit vector. Then, the new points evaluated
in this coordinate will be the central points of the new hyperrectangles. At
each iteration, a set of potentially optimal hyperrectangles are defined for further
divisions [10]. Subsequently, the central hyperrectangle that contains c must
be partitioned into another three hyperrectangles along the coordinate with the
second best value of the objective function and so on. Figure 1 shows an example
of DIRECT algorithm.

DIRECT searches locally and globally by dividing all hyperrectangles that
meet the following criteria. Thus, for a hyperrectangle i, the value of the ob-
jective function at ci, the center of the hyperrectangle, and di, the distance
from the center point to the vertices are required. A hyperrectangle j is said
to be potentially optimal if there exists some K > 0, thought as the Lipschitz
approximation value, such that,

A Computational Study on Different Penalty Functions 321

f(cj)−Kdj ≤ f(ci)−Kdi, for all i �= j (2)

f(cj)−Kdj ≤ fmin − ε |fmin| (3)

where fmin is the current best function value and ε > 0 is a positive constant [11].
The parameter ε > 0 was introduced in order to avoid an exhaustive local search.
Tests performed with classic problems of global optimization showed that values
between 10−7 and 10−2 did not degrade the performance of DIRECT. The value
of 10−4 was suggested in [19] presenting results more robust, in practice.

In the last years many modifications have been suggested by some authors
with the aim of improving the DIRECT [11,12,14]. For global optimization of
noisy functions, [12] presented a new approach, designated by, noisy DIRECT
algorithm. This algorithm can be divided into two phases. In the first phase,
the algorithm must find multiple promising regions of interest. In the second
phase, local search algorithms must be applied around those promising regions
aiming to refine solutions. A method involving a non-traditional penalty function
and a heuristic for determining the penalty parameters, was proposed by [14].
The method only solves inequality constrained problems. For the same type of
problems, a traditional exact l1 penalty function approach was implemented with
DIRECT in [9], where the penalty parameter is maintained constant along the
optimization process.

3 Penalty Function Technique

The most common approach to solve constrained optimization problems is based
on penalty functions. In this approach, penalty terms are added to the objective
function to penalize the objective function value of any solution that violates
the constraints.

Penalty methods were originally proposed by Courant in 1940s [7] and later
expanded by Carroll [3] and Fiacco & McCormick [8]. The idea of this method
is to transform a constrained optimization problem into a sequence of uncon-
strained subproblems by adding a certain value to the objective function based
on the amount of constraint violation present in a certain solution. The solu-
tions of the successive unconstrained subproblems will eventually converge to
the solution of the original constrained problem.

Although penalty functions are very simple and easy to implement they often
require one or more penalty parameters that are usually problem dependent and
chosen with a priori knowledge by users. The basic penalty approach defines
a penalty function for each point x, herein denoted by Φ(x), by adding to the
objective function value a penalty term, P (x, μ), that aims to penalize infeasible
solutions

Φ(x) = f(x) + P (x, μ), (4)

where f(x) is the objective function of the constrained problem and μ is a positive
real number denoted by penalty parameter. The goal of the penalty method is to
solve a sequence of unconstrained subproblems, minimizing the penalty function.

322 A.M.A.C. Rocha and R. Vilaça

Ideally the penalty parameter should be kept as low as possible, just above
the limit below which infeasible solutions are near-optimal (this is called the
minimum penalty rule) [5]. This is due to the fact that if the penalty is too high
or too low, then the problemmay be difficult to solve. A large penalty discourages
the exploration of the infeasible region since the very beginning of the search
process. On the other hand, if the penalty is too low, a lot of the search time will
be spent exploring the infeasible region because the penalty will be negligible
with respect to the objective function. Thus, the selection of appropriate penalty
parameter values is vital for a fast convergence and accuracy. Further, the initial
penalty parameter value also has a key role in the convergence behavior of the
method.

According to (1) the level of constraints violation is measured by the vector

vj(x) = max{0, gj(x)}, j = 1, . . . ,m . (5)

and a measure of constraints violation for a point x, is given by

viol =
m∑

j=1

vj(x).

If viol = 0 then x is a feasible point, otherwise is infeasible.

4 The Proposed Penalized DIRECT Algorithm

Different penalty functions have been presented in the past which can be clas-
sified according to the way the penalties are added [1,5,13,23]. In this study,
the l1 penalty, the quadratic, the dynamic, the hyperbolic and the augmented
Lagrangian penalty functions are implemented within the DIRECT algorithm.
Different penalties may emerge depending on the way penalties vary throughout
the minimization process. A brief description of these penalties follows.

4.1 l1 Penalty

A traditional exact l1 penalty function approach was already implemented in
DIRECT [9]. In the linear penalty method the penalty term is the l1 norm of
the constraint violation. Although continuous, the penalty function l1 is not
differentiable at all points. This is the major disadvantage of the l1 penalty
method [18].

In this method the penalty term [9] is given by

P (x, μ) = μ

m∑

i=1

max(0, gi(x)) (6)

where μ is the penalty parameter. Finally, the sequence of subproblems, parame-
terized by the penalty parameter μ, is solved by DIRECT algorithm. We remark
that in [9] the penalty parameter is maintained constant during the optimization
process.

A Computational Study on Different Penalty Functions 323

4.2 Quadratic Penalty

In the quadratic penalty, the penalty term is based in the square of the constraint
violation [18]. The penalty term of quadratic penalty method can be defined as,

P (x, μ) = 2μ

m∑

i=1

max(0, gi(x))
2 (7)

where μ is the penalty parameter that tends to infinite. The update of the penalty
parameter, in a k iteration, is given by

μk+1 = min(μmax, αμk)

where α > 1 and μmax is an upper bound to the penalty parameter μ.

4.3 Dynamic Penalty

Joines and Houck [13] proposed that the penalty parameters should vary dy-
namically along the search according to exogenous schedule, as

P (x, μ) = μ
m∑

i=1

max(0, gi(x))
γ(max(0,gi(x))) (8)

where μ is a dynamically modified penalty parameter. This penalty parameter
is updated by

μk+1 =

{
(C(k + 1))α if viol > 0
μk otherwise

(9)

where k represents the iteration counter, and the constants C and α are set as
0.5 and 2, respectively. The power of the constraint violation, γ(.), is a violation
dependent constant: γ(z) = 1 if z ≤ 1, and γ(z) = 2, otherwise. See, examples
of dynamic penalties in [17,20].

Another interesting and quite efficient rule for the penalty update, found in
the literature [20], is given by μk+1 = k

√
k. Note that, the penalty parameter

does not depend on the number of constraints although the pressure on infeasible
solutions increases as k increases.

4.4 Hyperbolic Penalty

In the hyperbolic penalty method the sequence of subproblems is obtained by
controlling two parameters in two different phases of the optimization process. In
the first phase, the initial parameter λ increases, thus causing an increase in the
penalty, P , to the points outside the feasible region and directing the search to
the feasible region. This phase continues until a feasible point is obtained. From
this point on, λ remains constant and the values of τ decrease sequentially.

324 A.M.A.C. Rocha and R. Vilaça

In this context, [26] proposed the hyperbolic penalty function below, where
only problems with inequality constraints are considered

P (x, λ, τ) =

m∑

i=1

(λigi(x) +
√
(λi)2gi(x)2 + (τi)2) (10)

with λ ≥ 0, τ ≥ 0 are penalty parameters and λ → ∞, τ → 0.
The penalty parameters are updated by

⎧
⎨

⎩

λk+1
i = min(λmax, γλλ

k
i) and τk+1

i = τki if max(0, gi(x
k+1)) > 0,

τk+1
i = max(τmin, γττ

k
i) and λk+1

i = λk
i , otherwise

for i = 1, . . . ,m, where λmax and τmin are upper and lower bounds respectively
to the penalty parameters λ and τ . The goal is to define safeguards to prevent
the subproblems from becoming ill-conditioned and more difficult to solve as λ
increases or τ decreases.

We remark, the hyperbolic penalty function allows the use of optimization
methods which use derivatives information, such as quasi-Newton method, to
obtain the solution of the problem, since this is a continuously differentiable
function.

4.5 Augmented Lagrangian Penalty

The augmented Lagrangian method uses the Lagrangian multipliers vector which
reduces the possibility of generating ill-conditioned subproblems [2].

Combining the quadratic penalty function and the Lagrangian function, it is
possible to obtain the penalty term of the augmented Lagrangian function [16],

P (x, δ, μ) =
1

2μ

m∑

i=1

(max(0, δi + μgi(x))
2 − δ2i) (11)

where μ is the penalty parameter and δ is the Lagrange multipliers vector as-
sociated with the inequality constraints. The initial values set to the Lagrange
multipliers and penalty parameter need not be large to occur a good approxi-
mation to the solution of the first subproblem of the sequence of subproblems
to be solved [18].

An augmented Lagrangian penalty method is a multiplier-based method re-
quiring [2]:

– The sequence {δk} must be bounded;
– The sequence of penalty values {μk} must satisfy 0 < μk ≤ μk+1, for all k

and μk → ∞.

The updating scheme for the Lagrange multipliers δi associated with the con-
straints gi(x) ≤ 0, i = 1, . . . ,m is given by

δk+1
i = max(0, δki + μkgi(x

k+1))

A Computational Study on Different Penalty Functions 325

and the penalty parameter is updated by

μk+1 = min(μmax, αμk)

where α > 1 and μmax is an upper bound to the penalty parameter.

4.6 The Penalized DIRECT Algorithm

The general steps of the penalized DIRECT algorithm is described in Algo-
rithm 1. At the end of the algorithm φmin is the global optimal solution.

Algorithm 1. Penalized DIRECT algorithm

1: normalize the original domain Ω to the unit hypercube in R
n with center c1.

2: evaluate φ(c1); φmin = φ(c1); set k = 1
3: evaluate φ(c1 ± 1

3
ei), 1 ≤ i ≤ n and divide hypercube

4: while stopping criterion is not reached do
5: identify the set S of all potentially optimal hyperrectangles/cubes
6: for all j ∈ S do
7: identify the longest side(s) of hyperrectangle j
8: update the penalty parameter
9: evaluate φ at centers of new hyperrectangles and divide hyperrectangle j into

smaller hyperrectangles
10: update φmin

11: end for
12: set k = k + 1
13: end while

The stopping criterion could be based on the maximum number of iterations
and a maximum number of function evaluations.

5 Numerical Experiments

In this section, we report the numerical results obtained by running the Al-
gorithm 1 based on the linear, quadratic, dynamic, hyperbolic and augmented
Lagrangian penalty functions using six benchmark engineering design problems.

The implementation details of the proposed approach could be found in [25],
as well as its application on a well-known and hard optimization problem from
the chemical and bio-process engineering area.

Problems of practical interest are important for assessing the effectiveness
of any algorithm. Thus, Table 1 contains a summary of the characteristics of
the selected problems, where all of them have simple bounds and inequality
constraints [6,15,21,22] and where n is the number of variables of the problem,
m is the number of inequality constraints and f(x∗) is the optimal solution
known in the literature.

326 A.M.A.C. Rocha and R. Vilaça

Table 1. Characteristics of the engineering design problems

Problem n Type of Objective Function m f(x∗)
Spring 3 quadratic 4 0.0126
Speed 7 nonlinear 11 2994.4991
Brake 4 quadratic 6 0.1274
Tubular 2 linear 2 26.5313
3-Bar 2 linear 3 263.896
4-Bar 4 linear 1 1400

5.1 Parameter Sensitivity Analysis

The choice of penalty parameters is a hard and very important task since the
performance of DIRECT depends on the magnitude of the penalty parameters.
On some problems, an extremely large penalty parameter is necessary for the
algorithm to converge to a feasible point. However, a large penalty parameter
is a critical issue for DIRECT, since could bias the algorithm away from hyper-
rectangles near the boundary of feasibility [9].

Regarding this, it turns out to be very important to perform a sensitivity
analysis in order to find the best values to provide to each problem. Depending
on the penalty function and the problem, the values of the parameters could be
different.

Below, it is graphically shown the influence of the tolerance ε, see (3), when
solving different problems, for the local performance assessment of the algo-
rithm. Figure 2 shows results for the l1 penalty function when solving the 3-Bar
problem. The bars of the right plot represent the number of function evalua-
tions using the l1 penalty and the circles represents the value of the objective

Fig. 2. Sensitivity analysis of parameter ε for the 3-Bar problem when using l1 penalty
function

A Computational Study on Different Penalty Functions 327

Fig. 3. Sensitivity analysis of parameter ε for the 3-Bar problem when using the aug-
mented Lagrangian function

function attained for each ε value. Similar quantities obtained by the augmented
Lagrangian function are shown in Fig. 3.

Figures 2-3 show that for lower values of ε, the value of the achieved penalty
function value is, also, lower, although spending higher number of function eval-
uations. Thus, it is concluded that a reasonable value of ε, ε = 10−6, would be
used for both penalties.

In addition to the parameter ε, which balances between local and global search,
other parameters are associated with the penalty algorithm that affect its per-
formance. For example, with the augmented Lagrangian penalty, initial values
for the penalty parameter μ, for the multipliers vector δ, and for the penalty
update α are required.

Table 2 shows the influence of these parameters in the augmented Lagrangian
penalty algorithm, for 3-Bar problem. In the table, δ1, refers to the initial value
for all coordinates of the multipliers vector, ’Fopt’ is the obtained solution and

Table 2. Penalty and multiplier values of augmented Lagrangian function for 3-Bar
problem

μ1 δ1 α Fopt Nfe

1 1 2 141.9291∗ 1487
10 10 2 195.4431∗ 7659
100 100 2 231.6233∗ 5137
1000 1 1.5 263.8959 3567
1000 1 2 263.8959 2609
1000 10 2 263.8959 2985
1000 1000 2 263.8959 5011
∗ infeasible solution

328 A.M.A.C. Rocha and R. Vilaça

’Nfe’ denotes the number of function evaluations required to achieve a solution
with a tolerance of ε = 10−6.

The solutions marked with ∗ violate the constraints. By analyzing the Table 2
it appears that with initial higher values of μ, a better solution is obtained with
fewer number of function evaluations. On the other hand, the algorithm seems
to be more efficient with small initial values of Lagrange multipliers than with
large ones.

5.2 Comparing Different Penalty Functions

To assess the performance of the penalty functions, the previously referred en-
gineering design problems are used. The results are reported in Table 3 and
include the number of iterations (Nit), the number of objective function evalu-
ations (Nfe) and the optimal solution found (Fopt) with the l1, quadratic, hy-
perbolic, dynamic and augmented Lagrangian penalty functions. The stopping
criterion was based on three conditions: a relative tolerance to the known optimal
solution of 0.001, a maximum of 250000 function evaluations or a maximum of
3000 iterations. We remark that we also stopped the algorithm when the penalty
parameters stabilized and the solution could not improve, since DIRECT is a
deterministic algorithm.

Table 3. Comparison results of the penalty functions for the engineering problems

Spring Speed Brake Tubular 3-Bar 4-Bar

Fopt 0.0144 2995.1358 0.1303 26.5313 263.8958 1400.0013
l1 Nfe 38659 249917 164389 113713 50191 2679

Nit 890 2599 35 2785 1181 50

Fopt 0.0144 2995.1358 0.1274 26.5313 263.8958 1400.0001
Quadratic Nfe 157199 249979 14319 3841 48721 3497

Nit 3000 2616 158 108 1251 57

Fopt 0.0225 2995.6809 0.1362 26.5425 263.8969 1400.0003
Dynamic Nfe 106443 224611 295167 179545 142283 3167

Nit 3000 2074 39 3000 3000 54

Fopt 0.0225 2994.5967 0.1303 26.5316 263.8962 1400.0003
Hyperbolic Nfe 114339 200599 101887 53035 5327 1943

Nit 3000 3000 3000 1172 199 55

Fopt 0.0201 2995.7613 0.1362 26.5313 263.8958 1400.0001
Aug. Lagrangian Nfe 89387 289381 450969 6449 2609 3615

Nit 3000 3000 42 177 110 58

The results reported in Table 3 show that, in general, all functions show good
results in all problems, i.e., there is no evidence of a penalty function obtain-
ing the best results for all problems. However, the quadratic penalty function
achieved the best results for Brake, Tubular and 4-Bar problems. The hyperbolic,

A Computational Study on Different Penalty Functions 329

dynamic and augmented Lagrangian penalty functions only achieved good re-
sults for one problem. A study based on the adaptive penalty function when
solving these engineering problems could be found in [24].

During the experiments, we noticed, for some problems, the need to use a
rather low penalty parameter, i.e., the penalty function need not be so penaliz-
ing. For example, in the dynamic penalty the update of the μ parameter is based
on the number of iterations and it was realized that after some iterations it was
obtained a large penalty parameter, which does not benefit the output solution
of the algorithm.

5.3 Behavior in Search Space

For a better understanding of the algorithm’s performance, the search space
visited by DIRECT combined with the penalty functions is presented below.

Since the 3-Bar problem is a bidimensional problem it is possible to represent
the points in a Cartesian plane. Figure 4 contains a graphical representation of
the search points of the algorithm in the space of the 3-Bar problem. The fea-
sible points are marked with blue stars and the infeasible ones are marked with
red points for all tested penalties. Figure 4a) plots the feasible and infeasible
points visited by the DIRECT algorithm when combined with the augmented
Lagrangian during the 110 iterations; Fig. 4b) shows the visited points by DI-
RECT with quadratic penalty function (1251 iterations); and Fig. 4c) depicts the
points generated by DIRECT with the dynamic penalty (3000 iterations). The
contours of the 3-Bar problem’s functions (the objective and three constraints)
are exhibited in Figure 4d) where the red star locates the global optimal solution.

We may conclude that DIRECT with the tested penalties performed an effi-
cient and effective search around the area of the global optimal solution. How-
ever, the augmented Lagrangian function is able to achieve a better performance,
visiting fewer points, since the plot presents a less dense cloud when compared
with the quadratic and dynamic penalty functions.

6 Conclusion

This paper presents the performance of the DIRECT algorithm combined with
quadratic, dynamic, hyperbolic and augmented Lagrangian penalty functions
when solving six constrained engineering design problems.

In order to achieve the best solutions found by each algorithm, a sensitivity
analysis to some parameters of the algorithm, namely the ε tolerance of DI-
RECT and penalty parameters of the tested penalty functions is carried out.
We conclude that a consistent value for the penalty parameters appropriate for
all tested penalty functions and for all problems is difficult to be found.

Generally, we may conclude that the obtained results with the different penalty
functions showed competitive results when compared with the results from l1
penalty function implemented in the DIRECT [9].

330 A.M.A.C. Rocha and R. Vilaça

Fig. 4. Graphical representation of the points visited by DIRECT, for the 3-Bar prob-
lem. a) Augmented Lagrangian penalty function. b) Quadratic penalty. c) Dynamic
penalty. d) Contours of the 3-Bar problem’s functions.

Acknowledgment. The authors would like to thank the financial support from
FEDER COMPETE (Operational Programme Thematic Factors of Competi-
tiveness) and FCT (Portuguese Foundation for Science and Technology) Project
FCOMP-01-0124-FEDER-022674.

References

1. Barbosa, H.J.C., Lemonge, A.C.C.: An adaptive penalty method for genetic algo-
rithms in constrained optimization problems. In: Iba, H. (ed.) Frontiers in Evolu-
tionary Robotics, pp. 9–34. I-Tech Education Publ., Austria (2008)

2. Bertsekas, D.P.: Constrained Optimization and Lagrange Multipliers Methods.
Academic Press, New York (1982)

3. Carroll, C.W.: The created response surface technique for optimizing nonlinear
restrained systems. Operations research 184, 9–169 (1961)

4. Carter, R.G., Gablonsky, J.M., Patrick, A., Kelley, C.T., Eslinger, O.J.: Algorithms
for noisy problems in gas transmission pipeline optimization. Optimization and
Engineering 2, 139–157 (2002)

A Computational Study on Different Penalty Functions 331

5. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: a survey of the state of the art. Computer Methods
in Applied Mechanics and Engineering 191, 1245–1287 (2002)

6. Costa, M.F.P., Fernandes, E.M.G.P.: Efficient solving of engineering design prob-
lems by an interior point 3-D filter line search method. In: Simos, T.E., Psihoyios,
G., Tsitouras, C. (eds.) AIP Conference Proceedings, vol. 1048, pp. 197–200 (2008)

7. Courant, R.: Variational methods for the solution of problems of equilibrium and
vibrations. Bulletin of the American Mathematical Society 49, 1–23 (1943)

8. Fiacco, A.V., McCormick, G.P.: Extensions of SUMT for nonlinear program-
ming: equality constraints and extrapolation. Management Science 12(11), 816–828
(1966)

9. Finkel, D.E.: Global optimization with the DIRECT algorithm. PhD thesis, North
Carolina state University (2005)

10. Finkel, D.E., Kelley, C.T.: Convergence Analysis of the DIRECT Algorithm. North
Carolina State University: Center for Research in Scientific Computation, Raleigh
(2004)

11. Gablonsky, J.M.: Modifications of the DIRECT algorithm. PhD Thesis, North
Carolina State University, Raleigh, North Carolina (2001)

12. Henderson, S.G., Biller, B., Hsieh, M.-H., Shortle, J., Tew, J.D., Barton, R.R.:
Extension of the direct optimization algorithm for noisy functions. In: Proceedings
of the 2007 Winter Simulation Conference (2007)

13. Joines, J., Houck, C.: On the use of nonstationary penalty functions to solve non-
linear constrained optimization problems with GAs. In: Proceedings of the First
IEEE Congress on Evolutionary Computation, Orlando, FL, pp. 579–584 (1994)

14. Jones, D.R.: The DIRECT Global Optimization Algorithm. The Encyclopedia of
Optimization. Kluwer Academic (1999)

15. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering
optimization: Harmony search theory and practice. Computer Methods in Applied
Mechanics and Engineering 194, 3902–3933 (2005)

16. Lewis, R., Torczon, V.: A Globally Convergent Augmented Lagrangian Pattern
Search Algorithm for Optimization with General Constraints and Simple Bounds.
SIAM Journal on Optimization 4(4), 1075–1089 (2012)

17. Liu, J.-L., Lin, J.-H.: Evolutionary computation of unconstrained and constrained
problems using a novel momentum-type particle swarm optimization. Engineering
Optimization 39, 287–305 (2007)

18. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations
Research (1999)

19. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization with-
out the lipschitz constant. Journal of Optimization Theory and Application 79(1),
157–181 (1993)

20. Petalas, Y.G., Parsopoulos, K.E., Vrahatis, M.N.: Memetic particle swarm opti-
mization. Annals of Operations Research 156, 99–127 (2007)

21. Ray, T., Liew, K.M.: A swarm metaphor for multiobjective design optimization.
Engineering Optimization 34(2), 141–153 (2002)

22. Rocha, A.M.A.C., Fernandes, E.M.G.P.: Hybridizing the electromagnetism-like al-
gorithm with descent search for solving engineering design problems. International
Journal of Computer Mathematics 86, 1932–1946 (2009)

23. Tessema, B., Yen, G.G.: A Self Adaptive Penalty Function Based Algorithm for
Constrained Optimization. In: IEEE Congress on Evolutionary Computation, pp.
246–253 (2006)

332 A.M.A.C. Rocha and R. Vilaça

24. Vilaça, R., Rocha, A.M.A.C.: An Adaptive Penalty Method for DIRECT Algo-
rithm in Engineering Optimization. In: Simos, T.E., Psihoyios, G., Tsitouras, C.,
Anastassi, Z. (eds.) AIP Conference Proceedings, vol. 1479, pp. 826–829 (2012)

25. Vilaça, R.: Sofia Pinto: Extending the DIRECT algorithm to solve constrained
nonlinear optimization problems: a case study. MSc Thesis, University of Minho
(2012)

26. Xavier, A.E.: Hyperbolic penalty: a new method for nonlinear programming with
inequalities. International Transactions in Operational Research 8, 659–671 (2001)

	A Computational Study on Different Penalty Functions with DIRECT Algorithm
	1 Introduction
	2 DIRECT Algorithm
	3 Penalty Function Technique
	4 The Proposed Penalized DIRECT Algorithm
	4.1 l1 Penalty
	4.2 Quadratic Penalty
	4.3 Dynamic Penalty
	4.4 Hyperbolic Penalty
	4.5 Augmented Lagrangian Penalty
	4.6 The Penalized DIRECT Algorithm

	5 NumericalExperiments
	5.1 Parameter Sensitivity Analysis
	5.2 Comparing Different Penalty Functions
	5.3 Behavior in Search Space

	6 Conclusion
	References

