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Abstract. Pattern search methods are widely used for the minimiza-
tion of non-convex functions without the use of derivatives. One of the
main features of pattern search methods is the flexibility to incorpo-
rate different search strategies taking advantage of the imported global
optimization techniques without jeopardizing their convergence proper-
ties. Pattern search methods can also be adapted to problem contexts
where the user can provide points incorporating a priori knowledge of the
problem that can lead to an objective function improvement. Here, an
automated incorporation of a priori knowledge in pattern search methods
is implemented instead of an algorithm that requires the user’s contribu-
tion. Moreover, a priori knowledge can also play a role on the choice of
the initial point(s), an important aspect in the success of a global opti-
mization process. Our pattern search approach is tailored for addressing
the beam angle optimization (BAO) problem in intensity-modulated ra-
diation therapy (IMRT) treatment planning that consists of selecting
appropriate radiation incidence directions and may influence the quality
of the IMRT plans, both to enhance better organs sparing and to improve
tumor coverage. Beam’s-eye-view dose ray tracing metrics are used as a
priori knowledge of the problem both to decide the initial point(s) and to
be incorporated within a pattern search methods framework. A couple
of retrospective treated cases of head-and-neck tumors at the Portuguese
Institute of Oncology of Coimbra is used to discuss the benefits of in-
corporating a priori dosimetric knowledge in pattern search methods for
the optimization of the BAO problem.
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1 Introduction

Pattern search methods are widely used for the minimization of non-convex
functions without the use of derivatives or approximations to derivatives. Pat-
tern search methods are organized around two steps at every iteration: the poll
step and the search step. The poll step guarantees global convergence to station-
ary points by performing a local search in a neighborhood around the current
iterate using the concepts of positive bases. The search step consists of a search
away from the current iterate, free of rules as long as the search is finite. One
of the main features of pattern search methods is the flexibility to incorporate
different search strategies in the search step, taking advantage of the imported
global optimization techniques, without jeopardizing their convergence proper-
ties. Different techniques for global optimization have been successfully incor-
porated on the search step, including surrogate optimization, e.g., radial basis
functions [15], or global optimization, e.g., particle swarm optimization [19]. Pat-
tern search methods can also be adapted to problem contexts where the user can
provide points incorporating physical or a priori knowledge of the problem that
can lead to an objective function decrease [1]. Here, an automated incorporation
of a priori knowledge in pattern search methods is implemented instead of an
algorithm that requires the user’s contribution. Moreover, a priori knowledge
can also play a role on the choice of the initial point(s), an important aspect in
the success of a global optimization process.

The pattern search approach presented in this work is tailored for addressing
the beam angle optimization (BAO) problem in intensity-modulated radiation
therapy treatment planning. The intensity-modulated radiation therapy (IMRT)
is a modern type of radiation therapy, whose planning leads to complex opti-
mization problems, including the BAO problem - the problem of deciding which
incidence radiation beam angles should be used. The pattern search methods
framework has been used to address the BAO problem successfully due to its
ability to avoid local entrapment and its need for few function value evalua-
tions to converge [14,15]. Here, a priori knowledge of the problem is incorpo-
rated in pattern search methods using beam’s-eye-view dose ray tracing metrics.
The beam’s-eye-view concept considers topographic and/or dosimetric criteria
to rank the candidate beam directions.

The goal of the paper is twofold: to discuss the influence of a priori dose met-
ric knowledge on the choice of the initial point(s) and to discuss the benefits of
incorporating a priori knowledge in pattern search methods. A couple of retro-
spective treated cases of head-and-neck tumors at the Portuguese Institute of
Oncology of Coimbra is used to discuss these benefits for the optimization of
the BAO problem. Our approach is tailored to address this particular problem
but it can be easily extended for other general problems. The paper is organized
as follows. In the next Section we describe the BAO problem. Beam’s-eye-view
dose ray tracing metrics and its use within the pattern search methods frame-
work is presented in Section 3. Computational tests using clinical examples of
head-and-neck cases are presented in Section 4. In the last Section we have the
conclusions.
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2 Beam Angle Optimization in IMRT Treatment
Planning

The BAO problem consists on the selection of appropriate radiation incidence
directions in radiation therapy treatment planning and may be decisive for the
quality of the treatment plan, both for appropriate tumor coverage and for en-
hance better organs sparing. Many attempts to address the BAO problem can
be found in the literature including simulated annealing [3], genetic algorithms
[9], particle swarm optimization [11] or other heuristics incorporating a priori
knowledge of the problem [13]. The BAO problem is quite difficult, and yet
to be solved in a satisfactory way, since it is a highly non-convex optimization
problem with many local minima [4].

In IMRT, the radiation beam is modulated by a multileaf collimator, trans-
forming the beam into a grid of smaller beamlets of independent intensities,
allowing the irradiation of the patient using non-uniform radiation fields from
selected angles aiming to deliver a dose of radiation to the tumor minimizing the
damages on the surrounding healthy organs and tissues. The IMRT treatment
planning is usually a sequential process where initially a given number of beam
directions are selected followed by the fluence map optimization (FMO) at those
beam directions. Obtaining the optimal fluences for a given beam angle set is
time consuming due to the dosimetric calculations required. For that reason,
many of the previous BAO studies are based on a variety of scoring methods or
approximations to the FMO to gauge the quality of the beam angle set. However,
when the BAO problem is not based on the optimal FMO solutions, the resulting
beam angle set has no guarantee of optimality and has questionable reliability.
Therefore, our approach for modeling the BAO problem uses the optimal solu-
tion value of the FMO problem as the measure of the quality for a given beam
angle set. Thus, we will present the formulation of the BAO problem followed
by the formulation of the FMO problem we used. Here, we will assume that the
number of beam angles is defined a priori by the treatment planner and that all
the radiation directions lie on the same plane.

2.1 BAO Model

Let us consider n to be the fixed number of (coplanar) beam directions, i.e., n
beam angles are chosen on a circle around the CT-slice of the body that contains
the isocenter (usually the center of mass of the tumor). In our formulation,
instead of a discretized sample, all continuous [0◦, 360◦] gantry angles will be
considered. Since the angle −10◦ is equivalent to the angle 350◦ and the angle
370◦ is the same as the angle 10◦, we can avoid a bounded formulation. A simple
formulation for the BAO problem is obtained by selecting an objective function
such that the best set of beam angles is obtained for the function’s minimum:

min f(θ1, . . . , θn)

s.t. (θ1, . . . , θn) ∈ R
n.

(1)
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Here, for the reasons stated before, the objective f(θ1, . . . , θn) that measures
the quality of the set of beam directions θ1, . . . , θn is the optimal value of the
FMO problem for each fixed set of beam directions. The FMO model used is
presented next.

2.2 FMO Model

In order to solve the FMO problem, i.e., to determine optimal fluence maps,
the radiation dose distribution deposited in the patient needs to be assessed
accurately. Each structure’s volume is discretized into small volume elements
(voxels) and the dose is computed for each voxel considering the contribution of
each beamlet. Typically, a dose matrix D is constructed from the collection of
all beamlet weights, by indexing the rows of D to each voxel and the columns to
each beamlet, i.e., the number of rows of matrix D equals the number of voxels
(Nv) and the number of columns equals the number of beamlets (Nb) from all
beam directions considered. Therefore, using matrix format, we can say that the
total dose received by the voxel i is given by

∑Nb

j=1 Dijwj , with wj the weight
of beamlet j. Usually, the total number of voxels is large, reaching the tens of
thousands, which originates large-scale problems. This is one of the main reasons
for the difficulty of solving the FMO problem.

For a given beam angle set, an optimal IMRT plan is obtained by solving
the FMO problem - the problem of determining the optimal beamlet weights for
the fixed beam angles. Many mathematical optimization models and algorithms
have been proposed for the FMO problem, including linear models [18], mixed
integer linear models [10] and nonlinear models [2]. Here, we will use this later
approach that penalizes each voxel according to the square difference of the
amount of dose received by the voxel and the amount of dose desired/allowed
for the voxel. This formulation yields a quadratic programming problem with
only linear non-negativity constraints on the fluence values [18]:

minw

Nv∑

i=1

1
vS

⎡

⎣λi

(

Ti −
Nb∑

j=1

Dijwj

)2

+

+ λi

(
Nb∑

j=1

Dijwj − Ti

)2

+

⎤

⎦

s.t. wj ≥ 0, j = 1, . . . , Nb,

where Ti is the desired dose for voxel i of the structure vS , λi and λi are the
penalty weights of underdose and overdose of voxel i, and (·)+ = max{0, ·}.
This nonlinear formulation implies that a very small amount of underdose or
overdose may be accepted in clinical decision making, but larger deviations from
the desired/allowed doses are decreasingly tolerated [2].

The FMO model is used as a black-box function and the conclusions drawn
regarding BAO coupled with this nonlinear model are valid also if different FMO
formulations are considered.
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3 Pattern Search Methods Incorporating a Priori
Knowledge

The incorporation of a priori knowledge in pattern search methods is done using
beam’s-eye-view dose ray tracing metrics. We will briefly describe the concept
of beam’s-eye-view and the strategy used to take advantage of the incorporation
of the resulting metrics in the pattern search method framework applied to the
BAO problem.

3.1 Beam’s-eye-view Dose Metrics

Conventional beam’s-eye-view (BEV) tools consider only geometric criteria, i.e.,
topographic localization of tumor volume(s) versus surrounding healthy struc-
tures, to evaluate each candidate beam direction. The use of beam’s-eye-view
dose metrics (BEVD) was introduced by Pugachev and Xing [12] to evaluate
and rank the irradiation beam directions using a score function that accounts
for beam modulation unlike the traditional BEV. An intensity-modulated beam
can intercept a large volume of an organ at risk (OAR) or normal tissue and
may not be necessarily a bad beam direction, which makes the geometrical cri-
teria used by BEV limited. The computation of a metric to gauge the quality
of incidence radiation directions should also consider the dose tolerances of the
involved structures. Thus, in IMRT, a score function based on dosimetric criteria
is more appropriate to measure the quality of a radiation beam direction.

The measure of the quality of a radiation beam direction adopted is based on
sensitive structures tolerance dose as a determinant factor for deliverable target
dose. A given incidence radiation direction is preferred if it can deliver more dose
to the target without exceeding the tolerance dose of the OARs or normal tissue
located on the path of the beam [12,13]. The BEVD score for a given beam angle
corresponds to the computation of the maximum achievable intensity for each
beamlet involved, which depends on the locations and tolerances of the OARs
along the path of the beamlet.

The BEVD score calculation of a beam requires the assumption of a single
incident beam. Initially, all beamlets are assigned with an intensity that assures
the delivery of a dose that fulfills the prescription to every target voxel. Beamlet
intensities are then iteratively updated until tolerance dose for every structure’s
voxel crossed by the all the beamlets is not exceeded. The intensities obtained
for each beamlet correspond to the maximum usable intensity of the beamlet
without exceeding the tolerance of the sensitive structures. Finally, a forward
dose calculation using the maximum usable beamlet intensities is performed and
the score of a given beam direction is computed [12,13]:

Sk =
1

NT

∑

i∈Target

(
dik
DT

P

)2

,

whereNT is the number of voxels in the target,DT
P is the target prescription dose

and dik is the “maximum” dose delivered to the target voxel i by the radiation
beam direction k.
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The BEVD score is based on an intuitive consideration of the deliverable
dose capability to the target of a single beam direction. This information can
be used to construct initial point(s) whose neighborhood may be worth of being
thoroughly explored. However, the optimal beam configuration for an IMRT
treatment should balance the BEVD score and the beam interplay as a result of
the overlap of radiation fields. Thus, BEVD scores are used as a priori knowledge
to construct an insightful algorithm for beam angle optimization. This a priori
knowledge of the problem is used by a pattern search methods framework.

3.2 Pattern Search Methods Incorporating BEVD

Pattern search methods are derivative-free optimization methods that use the
directions of positive bases to explore the search space, such that iterate progres-
sion is solely based on a finite number of function evaluations in each iteration,
without explicit or implicit use of derivatives. We will briefly describe pattern
search methods for unconstrained optimization problems such as the beam angle
problem formulated in (1).

Pattern search methods use the concept of positive bases (or positive span-
ning sets) to move towards a direction that would produce a function decrease. A
positive basis for Rn can be defined as a set of nonzero vectors of Rn whose pos-
itive combinations span R

n (positive spanning set), but no proper set does. The
motivation for directional direct search methods such as pattern search methods
is given by one of the main features of positive basis (or positive spanning sets)
[7]: there is always a vector vi in a positive basis (or positive spanning set) that
is a descent direction unless the current iterate is at a stationary point, i.e., there
is an α > 0 such that f(xk +αvi) < f(xk). This is the core of directional direct
search methods and in particular of pattern search methods.

Pattern search methods are iterative methods generating a sequence of non-
increasing iterates {xk}. Given the current iterate xk, at each iteration k, the
next point xk+1, aiming to provide a decrease of the objective function, is chosen
from a finite number of candidates on a given mesh Mk defined as

Mk = {xk + αkVz : z ∈ Z
p
+},

where αk is the mesh-size (or step-size) parameter, Z+ is the set of nonnegative
integers and V denote the n × p matrix whose columns correspond to the p
(≥ n+ 1) vectors forming a positive spanning set.

Pattern search methods consider two steps at every iteration. The first step
consists of a finite search on the mesh, free of rules, with the goal of finding a new
iterate that decreases the value of the objective function at the current iterate.
This step, called the search step, has the flexibility to use any strategy, method
or heuristic, or take advantage of a priori knowledge of the problem at hand,
as long as it searches only a finite number of points in the mesh. The search
step provides the flexibility for a global search since it allows searches away from
the neighborhood of the current iterate, and influences the quality of the local
minimizer or stationary point found by the method. If the search step fails to
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produce a decrease in the objective function, a second step, called the poll step,
is performed around the current iterate. The poll step follows stricter rules and,
using the concepts of positive bases, attempts to perform a local search in a
mesh neighborhood around xk, N (xk) = {xk + αkv : for all v ∈ Pk} ⊂ Mk,
where Pk is a positive basis chosen from the finite positive spanning set V. For a
sufficiently small mesh-size parameter αk, the poll step is guaranteed to provide
a function reduction, unless the current iterate is at a stationary point [1]. So, if
the poll step also fails to produce a function reduction, the mesh-size parameter
αk must be decreased. On the other hand, if the search or the poll steps obtain an
improved value for the objective function, the mesh-size parameter is increased
or held constant.

The efficiency of pattern search methods improved significantly by reordering
the poll directions according to descent indicators built from simplex gradients
[6]. Here, the poll directions are reordered according to the BEVD scores mean-
ing that directions with higher dosimetric value are tested first. Adding to the
efficiency provided by an insightful reordering of the poll directions, the search
step was recently provided with the use of minimum Frobenius norm quadratic
models to be minimized within a trust region, which can lead to a significant
improvement of direct search for smooth, piecewise smooth, and noisy problems
[5]. The prior knowledge of the problem is also included in this step to take ad-
vantage of BEVD scores. A trial point is tested by considering the current best
beam angle configuration and replacing the beam direction with smallest BEVD
score by a beam direction with larger score that is not in the close neighborhood
of the remaining beam directions. Last, but not least, the prior knowledge of
the problem is used on the choice of initial point(s) by considering initial beam
angle sets whose beam directions correspond to the largest BEVD scores. The
strategy sketched is tailored for addressing the BAO problem taking advantage
of prior knowledge of the problem:

Algorithm 1 (PSM framework incorporating BEVD).

0. Initialization Set k = 0. Compute BEVD scores for each beam angle.
Choose a positive spanning set V, α0 > 0, and x0 ∈ R

n considering the
beam directions with largest BEVD scores.

1. Search step Evaluate f at a finite number of points in Mk with the goal
of decreasing the objective function value at xk. If xk+1 ∈ Mk is found
satisfying f(xk+1) < f(xk), go to step 4. Both search step and iteration
are declared successful. Otherwise, go to step 2 and search step is declared
unsuccessful.

2. Poll step This step is only performed if the search step is unsuccessful. Re-
order the poll directions according to the BEVD scores. If f(xk) ≤ f(x) for
every x in the mesh neighborhood N (xk), then go to step 3 and shrink Mk.
Both poll step and iteration are declared unsuccessful. Otherwise, choose a
point xk+1 ∈ N (xk) such that f(xk+1) < f(xk) and go to step 4. Both poll
step and iteration are declared successful.

3. Mesh reduction Let αk+1 = 1
2 × αk. Set k = k + 1 and return to step 1.

4. Mesh expansion Let αk+1 = αk. Set k = k + 1 and return to step 1.



286 H. Rocha et al.

4 Computational Results for Head-and-neck Clinical
Examples

Our tests were performed on a 2.66Ghz Intel Core Duo PC with 3 GB RAM. In
order to facilitate convenient access, visualization and analysis of patient treat-
ment planning data, as well as dosimetric data input for treatment plan optimiza-
tion research, the computational tools developed within MATLAB and CERR
– computational environment for radiotherapy research [8] are used widely for
IMRT treatment planning research.

The incorporation of BEVD into the pattern search methods framework was
tested using two clinical examples of retrospective treated cases of head-and-
neck tumors at the Portuguese Institute of Oncology of Coimbra (IPOC). In
general, the head-and-neck region is a complex area to treat with radiotherapy
due to the large number of sensitive organs in this region (e.g., eyes, mandible,
larynx, oral cavity, etc.). For simplicity, in this study, the OARs used for treat-
ment optimization were limited to the spinal cord, the brainstem and the parotid
glands. The spinal cord and the brainstem are some of the most critical organs
at risk (OARs) in the head-and-neck tumor cases. These are serial organs, i.e.,
organs such that if only one subunit is damaged, the whole organ functionality
is compromised. Therefore, if the tolerance dose is exceeded, it may result in
functional damage to the whole organ. Thus, it is extremely important not to
exceed the tolerance dose prescribed for these type of organs. Other than the
spinal cord and the brainstem, the parotid glands are also important OARs. The
parotid gland is the largest of the three salivary glands. A common complication
due to parotid glands irradiation is xerostomia (the medical term for dry mouth
due to lack of saliva). This decreases the quality of life of patients undergoing
radiation therapy of head-and-neck, causing difficulties to swallow. The parotids
are parallel organs, i.e., if a small volume of the organ is damaged, the rest of the
organ functionality may not be affected. Their tolerance dose depends strongly
on the fraction of the volume irradiated. Hence, if only a small fraction of the
organ is irradiated the tolerance dose is much higher than if a larger fraction is
irradiated. Thus, for these parallel structures, the organ mean dose is generally
used instead of the maximum dose as an objective for inverse planning opti-
mization. The tumor to be treated plus some safety margins is called planning
target volume (PTV). For the head-and-neck cases in study it was separated in
two parts with different prescribed doses: PTV1 and PTV2. The prescription
dose for the target volumes and tolerance doses for the OARs considered in the
optimization are presented in Table 1.

The patients’ CT sets and delineated structures are exported via Dicom RT
to a freeware computational environment for radiotherapy research – CERR.
We used CERR 3.2.2 version and MATLAB 7.4.0 (R2007a). An automatized
procedure for dose computation for each given beam angle set was developed,
instead of the traditional dose computation available from IMRTP module ac-
cessible from CERR’s menubar. This automatization of the dose computation
was essential for integration in our BAO algorithm. To address the convex
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Table 1. Prescribed doses for all the structures considered for IMRT optimization

Structure Mean dose Max dose Prescribed dose

Spinal cord – 45 Gy –
Brainstem – 54 Gy –
Left parotid 26 Gy – –
Right parotid 26 Gy – –
PTV1 – – 70.0 Gy
PTV2 – – 59.4 Gy
Body – 80 Gy –

nonlinear formulation of the FMO problem we used a trust-region-reflective al-
gorithm (fmincon) of MATLAB 7.4.0 (R2007a) Optimization Toolbox.

We choose to implement the incorporation of BEVD scores into the pattern
search methods framework taking advantage of the availability of an existing
pattern search methods framework implementation used successfully by us to
tackle the BAO problem [15,16,17] – the last version of SID-PSM [5,6]. The
spanning set used was the positive spanning set ([e − e I − I]. Each of these
directions corresponds to, respectively, the rotation of all incidence directions
clockwise, the rotation of all incidence directions counter-clockwise, the rota-
tion of each individual incidence direction clockwise, and the rotation of each
individual incidence direction counter-clockwise.

Treatment plans with five to nine equispaced coplanar beams are used at
IPOC and are commonly used in practice to treat head-and-neck cases [2]. There-
fore, treatment plans of five coplanar orientations were obtained using SID-PSM
and using an algorithm that incorporates a priori knowledge in pattern search,
denoted BEVD-PSM. These plans were compared with the typical 5-beam eq-
uispaced coplanar treatment plans denoted equi. Since we want to improve the
quality of the typical equispaced treatment plans, a starting point considered is
the equispaced coplanar beam angle set. The choice of this initial point and the
non-increasing property of the sequence of iterates generated by pattern search
methods imply that each successful iteration correspond to an effective improve-
ment with respect to the usual equispaced beam configuration. A different initial
point is considered using the BEVD scores. Beforehand, we need to compute the
BEVD scores that will be the prior knowledge of the problem to be incorpo-
rated in the BAO optimization algorithm. For each patient, the scores for every
beam angle are computed as described in Section 3.1. The initial point using the
BEVD scores is obtained considering the peaks of the BEVD score curve that
are not too close and correspond the solution obtained directly using BEVD cri-
teria [12]. The obtained scores for the two patients and the corresponding initial
points considered are displayed in Fig. 1.

The results of BAO optimization concerning the improvement of the objec-
tive function value for the two clinical cases of head-and-neck tumors using
SID-PSM and BEVD-PSM considering the equispaced configuration (equi) and
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Fig. 1. BEVD scores as a function of the gantry angle and the BEVD initial point for
cases 1 and 2, 1(a) and 1(b) respectively

the beam’s-eye-view configuration (bevd) as starting points are presented in Ta-
ble 2. Overall, the comparison of the best beam angle configurations obtained
by both approaches with the equispaced beam angle configuration in terms of
objective function value is clearly favorable to the pattern search approaches,
regardless of the initial point used. It is important to emphasize that the use of
a priori knowledge through BEVD scores has a positive influence both in the
choice of the initial point and also incorporated in the pattern search methods
algorithm. That conclusion can be also withdrawn from the simple inspection of
Fig. 2 where the performances of SID-PSM and BEVD-PSM are compared with
respect to the objective function value decrease versus the number of function
evaluations. The benefits of using an initial point that takes into account the
dosimetric characteristics of the case at hand are highlighted by the compari-
son between SID-PSM starting with the equispaced configuration (equi) and the
the beam’s-eye-view configuration (bevd), favorable to the later. Even starting
from higher function values, when the bevd configuration does not correspond
to better function values compared with the equi configuration, as in case 2, it
seems to be advantageous to start from search regions where the neighbor beam
directions of the initial configuration also have high BEVD scores. The advan-
tage of incorporating BEVD scores in pattern search methods is clear since the
best results are obtained by BEVD-PSM.

Despite the improvement in FMO value, the quality of the results can be
perceived considering a variety of metrics. Typically, results are judged by their
cumulative dose-volume histogram (DVH). The DVH displays the fraction of a
structure’s volume that receives at least a given dose. Another metric usually
used for plan evaluation is the volume of PTV that receives 95% of the prescribed
dose. Typically, 95% of the PTV volume is required. Using only 5 beam directions
makes harder to obtain a satisfactory target coverage. DVH results for the two
cases are displayed in Fig. 3. For clarity, the DVHs are split in PTV 1 and PTV 2
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Table 2. FMO value improvement obtained by SID-PSM and BEVD-PSM compared
with the typical equispaced coplanar treatment plans, equi, considering the equispaced
configuration (equi) and the beam’s-eye-view configuration (bevd) as starting points.

equi equi + SID-PSM bevd + SID-PSM bevd + BEVD-PSM

Case Fvalue Fvalue % decrease Fvalue % decrease Fvalue % decrease

1 165.8 144.1 13.1% 139.9 15.6% 136.5 17.7%
2 228.9 180.6 21.1% 179.2 21.7% 177.4 22.6%
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Fig. 2. History of the 5-beam angle optimization process using SID-PSM and BEVD-
PSM, considering the equispaced configuration (equi) and the beam’s-eye-view config-
uration (bevd) as starting points, for cases 1 and 2, 2(a) and 2(b) respectively

and the remaining structures distributed as an attempt to better visualize the
results. The asterisks indicate 95% of PTV volumes versus 95% of the prescribed
doses. The results displayed in Fig. 3 confirm the benefits of using the optimized
beam directions obtained and used in BEVD-PSM treatment plans, with an
improved target coverage and generally better organ sparing compared to the
equispaced beam angle configuration, typically used in clinical practice.

5 Conclusions

The BAO problem is a continuous global highly non-convex optimization prob-
lem known to be extremely challenging and yet to be solved satisfactorily. This
paper proposes an alternative approach to the BAO problem which is yet an-
other step on the quest that may take us closer to find the global or near global
optimum in a clinical acceptable time. The pattern search methods framework
had already proved to be a suitable approach for the resolution of the non-convex
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Fig. 3. Cumulative dose volume histogram comparing the results obtained by equi and
BEVD-PSM for cases 1 and 2, 3(a) and 3(b) respectively

BAO problem due to their structure, organized around two phases at every it-
eration. The poll step, where convergence to a local minima is assured, and the
search step, where flexibility is conferred to the method since any strategy can
be applied. The search step is provided with the use of minimum Frobenius norm
quadratic models to be minimized within a trust region, which can lead to a sig-
nificant improvement of direct search for the type of problems at hand. A novel
approach for the resolution of the BAO problem, incorporating prior knowledge
in a pattern search methods framework, was proposed and tested using a set
of clinical head-and-neck cases. For the clinical cases retrospectively tested, the
use of prior knowledge of the patient in our tailored approach showed a positive
influence on the quality of the local minimizer found. The improvement of the
solutions in terms of objective function value corresponded, for the head-and-
neck cases tested, to high quality treatment plans with better target coverage
and with improved organ sparing. Moreover, the choice of the initial point also
benefits from the prior knowledge of the problem leading to better solutions.
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