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Abstract. Bounded increase is a termination technique where it is tried
to find an argument x of a recursive function that is increased repeatedly
until it reaches a bound b, which might be ensured by a condition x < b.
Since the predicates like < may be arbitrary user-defined recursive func-
tions, an induction calculus is utilized to prove conditional constraints.

In this paper, we present a full formalization of bounded increase in
the theorem prover Isabelle/HOL. It fills one large gap in the pen-and-
paper proof, and it includes generalized inference rules for the induc-
tion calculus as well as variants of the Babylonian algorithm to compute
square roots. These algorithms were required to write executable func-
tions which can certify untrusted termination proofs from termination
tools that make use of bounded increase. And indeed, the resulting certi-
fier was already useful: it detected an implementation error that remained
undetected since 2007.

1 Introduction

A standard approach to proving termination of recursive programs is to find
a well-founded order �, such that every recursive call decreases w.r.t. this or-
der: whenever f(�1, . . . , �n) = C[f(r1, . . . , rn)] is a defining equation for f , then
(�1, . . . , �n) � (r1, . . . , rn) has to hold. For example, one can use a measure func-
tion m which maps values into the naturals where (�1, . . . , �n) � (r1, . . . , rn) is
defined as m(�1, . . . , �n) > m(r1, . . . , rn). For this approach to be sound, one
uses well-foundedness of the >-order on the naturals.

However, often termination can also be concluded since some argument is
increased until it exceeds a bound, as demonstrated in the following algorithm
which computes

∑n
i=0 i.

compute-sum n = sum 0 n

sum i n = if i ≤ n then i+ sum (i+ 1) n else 0

Also here an appropriate measure can be chosen which is decreased in every
iteration, e.g. the difference of the parameters: m(i, n) = n − i. However, one
needs more information to conclude termination: the measure maps into the
integers (and not into the naturals), where the >-order is not well-founded.
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Only in combination with the condition i ≤ n one can conclude that the value
n− i is bounded from below and thus, termination of the function.1

In the remainder of the paper, we are focussing on term rewrite systems
(TRSs), a simple yet powerful computational model that underlies much of
declarative programming and theorem proving—for example, both Haskell-func-
tions and Isabelle/HOL-functions can be translated into TRSs such that termi-
nation of the TRSs implies termination of the functions [7,15]. For TRSs, the
above kind of termination argument has been introduced as the termination
technique bounded increase [9], where measure functions like m(i, n) = n− i are
allowed in the form of polynomial orders [16].

To improve the reliability of automated termination tools for TRSs like AProVE
[8] and TTT2 [13], we already formalized several termination techniques (IsaFoR)
which resulted in a certifier (CeTA) which validates or invalidates untrusted ter-
mination proofs [20]. Other certifiers are based on the alternative formalizations
Coccinelle [6] and CoLoR [5]. Due to the certifiers, bugs have been detected in the
automated termination tools, which remained without notice for several years and
could easily be fixed after their detection.

However, CeTA can only certify those proofs where all applied termination
techniques have been formalized. And in order to achieve a high coverage, the
integration of bounded increase is essential. For example, in the latest interna-
tional termination competition in 2012, two versions of AProVE participated:
one unrestricted version, and one which only uses techniques that are supported
by CeTA; a detailed inspection of the proofs revealed that for more than half of
the termination proofs where only the unrestricted version was successful, the
method of bounded increase was applied.

Although the termination argument behind bounded increase looks quite in-
tuitive, we want to stress that the underlying soundness proofs are far from being
trivial. To this end, consider the following TRS which is a reformulation of the
previous algorithm as TRS. We list three problems that are solved in [9].

compute-sum(n) → sum(0, n)

sum(i, n) → ifsum(i ≤ n, i, n)

ifsum(true, i, n) → i + sum(i + 1, n)

ifsum(false, i, n) → 0

1. Since interpretations are used which interpreted into the integers, for strong
normalization one needs to know that there is a bound on the integers, which
is obtained from analyzing side conditions.

2. Usually, for termination analysis of TRSs one uses orders which are weakly
monotone w.r.t. contexts, i.e., whenever � � r then C[�] � C[r]. However,
polynomials like n− i result in non-monotone orders �.

1 Alternatively, one can define m(i, n) = n+1 .− i which maps into the naturals using
the truncating subtraction .−. But again one requires the condition i ≤ n for the
termination proof, namely to ensure m(i, n) > m(i+ 1, n).
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3. Since there is no builtin arithmetic for pure term rewriting, one adds rewrite
rules which compute ≤, +, etc., like the following ones in Rarith:

0 ≤ y → true 0+ y → y

s(x) ≤ 0 → false s(x) + y → s(x+ y)

s(x) ≤ s(y) → x ≤ y

Concrete numbers n in Rsum are directly replaced by sn(0) where s and 0
are the constructors for natural numbers.

As a consequence, conditions like i ≤ n are not arithmetic constraints,
but rewrite constraints i ≤ n→∗

R true where R is a TRS which contains the
rules of Rarith. As a result, one has to be able to solve conditional constraints
of the form t1 →∗

R t2 −→ t3 � t4.

The paper is structured as follows: after the preliminaries in Sect. 2, we shortly
recapitulate the solutions in [9] to all three problems in Sect. 3–5 and present
their formalization. Here, major gaps in the original proofs are revealed, and
the existing results are generalized. In Sect. 6 we illustrate complications that
occurred when trying to extend our certifier towards bounded increase, which
also forced us to formalize a precise algorithm to compute square roots.

2 Preliminaries

We briefly recall some basic notions of term rewriting [2].
The set of (first-order) terms over some signature F and variables V is written

as T (F ,V). A context C is a term with one hole �, and C[t] is the term where
� is replaced by t. The term t is a subterm of s iff s = C[t] for some C, and it
is a proper subterm if additionally s �= t. A substitution σ is a mapping from
variables to terms. It is extended homomorphically to terms where we write tσ
for the application of σ on t. A TRS is a set of rules �→ r for terms � and r. The
rewrite relation of a TRS R is defined as s→R t iff s = C[�σ] and t = C[rσ] for
some � → r ∈ R, σ, and C. By NF (R) we denote the normal forms of R, i.e.,
those terms s where there is no t such that s →R t. A substitution σ is normal
w.r.t. R iff σ(x) ∈ NF (R) for all x. A symbol f is defined w.r.t. R iff there is
some rule f(. . . ) → r ∈ R. The remaining symbols are called constructors of R.

Throughout this paper we are interested in the innermost rewrite relation
i→R which is defined like →R with the additional requirement that all proper
subterms of �σ must be normal forms w.r.t. R.2 We write SINR(t) to indicate

2 In IsaFoR we consider a more general definition of innermost rewriting, where the
proper subterms of �σ must be normal forms w.r.t. some TRS Q which is indepen-
dent from R. All results in this paper have been proven for this generalized notion of
rewriting under the condition that NF (Q) ⊆ NF (R). This generalization was impor-
tant, as it is also utilized in the termination proofs that are generated by AProVE.
Moreover, the generalized innermost rewrite relation has the advantage that it is
monotone w.r.t. R. However, to improve the readability, in this paper we just use
i→R, i.e., we fix Q = R.
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that the term t is strongly normalizing w.r.t. the innermost rewrite relation, i.e.,
there is no infinite derivation t i→R t1

i→R t2
i→R . . ., and SIN (R) denotes

innermost termination of R, i.e., strong normalization of i→R.
A popular way to prove innermost termination of TRSs is to use dependency

pairs [1,10], which capture all calls of a TRS.

Example 1. Let R := Rsum∪Rarith where additionally the number 1 in Rsum has
been replaced by s(0). Then the following set P contains those dependency pairs
of R which correspond to recursive calls.

sum�(i, n) → if�sum(i ≤ n, i, n) (1)

if�sum(true, i, n) → sum�(i + s(0), n) (2)

s(x) ≤� s(y) → x ≤� y (3)

s(x) +� y → x +� y (4)

Here, the sharped-symbols are fresh tuple-symbols (F �) which can be treated
differently from their defined counterparts when parametrizing orders, etc.

The major theorem of dependency pairs tells us for Ex. 1 that R is innermost
terminating iff there is no (minimal) innermost (P ,R)-chain. Here, a chain is an
infinite derivation of the form

s1σ1 →P t1σ1
i→∗
R s2σ2 →P t2σ2

i→∗
R . . . (�)

where all si → ti ∈ P and all siσi ∈ NF (R). The chain is minimal if SINR(tiσi)
for all i. Intuitively, the step from siσ to tiσ corresponds to a recursive call, and
the step from tiσ to si+1σi+1 evaluates the arguments before the next call.

In the remainder of this paper we assume some fixed TRS R and in examples
we always use the TRS R of Ex. 1. Consequently, in the following we use the
notion of P-chain instead of (P ,R)-chain where P is some set of (dependency)
pairs s→ t. We call P terminating iff there is no minimal P-chain.3

One major technique to show termination of P is the reduction pair processor
[10] which removes pairs from P—and termination can eventually be concluded if
all pairs have been removed. This technique has been formalized for all certifiers
[5,6,20].

Theorem 2. Let (�,�) be a reduction pair, i.e., � is an order which is strongly
normalizing, � is a quasi-order satisfying �◦�◦� ⊆ �, both � and � are stable
(closed under substitutions), and � is monotone (closed under contexts). A set
of pairs P is terminating if P ⊆ � ∪�, R ⊆ �, and P \ � is terminating.

One instance of reduction pairs stems from polynomial interpretations over the
naturals [16] where every symbol is interpreted by a polynomial over the naturals,
and s � t is defined as [[s]] ≥ [[t]] (similarly, s � t iff [[s]] > [[t]]).

3 In the literature termination of P is called finiteness of (P ,R). We use the notion
of termination here, so that “P is finite” does not have two meanings: finiteness of
the set P or absence of P-chains. In IsaFoR, the latter property is called finite-dpp,
but as for the innermost rewrite relation, IsaFoR uses a more general notion of chain,
which is essential for other termination techniques. To be more precise we do not
only consider the 3 components (P , R, and a minimality flag) to define chains, but
7: strict and weak pairs, strict and weak rules, strategy, minimality flag, and a flag
to indicate whether substitutions have to return normal forms on free variables.
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3 First Problem: No Strong Normalization

Since for bounded increase interpretations into the integers are used where > is
not strongly normalizing, the reduction pair processor has to be adapted, as the
resulting strict order � is not strongly normalizing [9]. Instead, it is required that
� is non-infinitesimal, which is defined as absence of infinite sequences t1 � t2 �
. . . which additionally satisfy ti � c for all i where c is some constant. However,
weakening strong normalization to being non-infinitesimal requires to strengthen
other preconditions in the reduction pair processor: in detail, termination of P\�
does no longer suffice, but additionally one requires that termination is ensured
if all bounded pairs are removed, i.e., termination of P \ {s→ t | s � c}.

Another adaptation is required when trying to solve term constraints, which
is a distinction between symbols of F and tuple symbols. It is easily motivated:
if every symbol is mapped to an integer, then polynomial constraints like 2x ≥ x
are no longer satisfied, since x might be instantiated by some negative value.
However, 2x ≥ x holds over the naturals. Since one wants to be able to con-
clude 2x ≥ x, one uses interpretations where all F -symbols are interpreted by
naturals, and only the tuple symbols in F � may interpret into the integers. As a
consequence, 2x ≥ x can be concluded, but � and � are no longer stable, since
we only get closure under those substitutions which instantiate all variables by
terms from T (F ,V)—this property is called F -stable and these substitutions are
called F -substitutions.

Of course, if one wants to use F -stable orders � and � in the reduction
pair processor, one has to know that all substitutions σi in a chain (�) can be
chosen as F -substitutions, a property which is named signature extension: if we
can prove termination if we only consider F -substitutions, then we can prove
termination for arbitrary larger signatures like F ∪ F �. In [9, proof of Thm.
11, technical report] signature extensions are taken for granted (“clearly”), most
likely since signature extensions are possible for (innermost) termination analysis
on the level of TRSs. However, in [17] we proved that signature extensions are
unsound on the level of minimal chains. Luckily, we were able to formalize that for
(minimal) innermost chains, signature extensions are indeed sound. The efforts
to get this result is in stark contrast to “clearly”: ≈ 900 lines, cf. the locale
cleaning-innermost within the theory Signature-Extension.thy.

Concerning the restriction to F -stable orders, in the formalization we also
added a new feature which is not present in [9]: the restriction to F -monotone
orders. For example, if we interpret [[f ]](x) = x2, then the resulting order � is
not monotone, as the arguments range over all integers. For F -monotone orders
it is instead only required that these are monotone if all arguments are terms
from T (F ,V), i.e., in the case of polynomial orders, if the arguments evaluate
to natural numbers. Hence, the interpretation [[f ]](x) = x2 is F -monotone.

Since we need to prove termination of P \ {s → t | s � c}, it is essential
that at least one of the pairs is bounded. However, if we use an interpretation
like [[sum�]](i, n) = [[if�sum]](b, i, n) = n − i, then none of the pairs (1) and (2) is
bounded. So, we will not make progress using this interpretation without further
adaptations. To this end, conditions are added where for every pair in a chain, one
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obtains the conditions from the adjacent pairs in the chain: for example, when
considering the preceding rewrite steps of some pair s→ t, instead of demanding
s � c for boundedness, one can demand that all implications v i→∗ s −→ s � c
are satisfied for every variable renamed pair u→ v ∈ P and every instantiation
of the variables with normal forms.

More formally, we consider conditional constraints which are first-order formu-
las using atomic formulas of the form s i→∗ t, s � t, and s � t. The satisfaction
relation for normal F -substitutions σ (written σ |= φ) is defined as follows.

σ |= φ iff

⎧
⎪⎨

⎪⎩

sσ � tσ, if φ = s � t

sσ � tσ, if φ = s � t

sσ i→∗
R tσ ∧ NF (tσ) ∧ SIN (sσ), if φ = s i→∗ t

The other logic connectives −→, ∧, ∀ are treated as usual, and |= φ is defined
as σ |= φ for all normal F -substitutions σ. Using these definitions, a constraint
like s � c can be replaced by

∧
u v. u→ v ∈ P =⇒ |= v i→∗ s −→ s � c.

The most tedious part when integrating this adaptation of conditional con-
straints into the formalization of the reduction pair processor was the treatment
of variable renamed pairs: in (�) we use several different substitutions of non-
renamed pairs, and we had to show that instead one can use one substitution
where all pairs are variable renamed. And of course, when certifying termination
proofs, one again has to work modulo variable names, since one does not know
in advance how the variables have been renamed apart in the termination tool.

4 Second Problem: No Monotonicity

Monotonicity and stability are important to ensure the implication R ⊆ � =⇒
i→R ⊆ �. Using this implication with the requirement R ⊆ � in the reduction
pair processor allows to replace all i→∗

R in (�) by �.
For innermost rewriting, the requirement that all rules have to be weakly

decreasing (R ⊆ � or equivalently, � � r for all � → r ∈ R) can be reduced
to demand a weak decrease of only the usable rules. Here, the usable rules of
a term t are those rules of R which can be applied when reducing tσ at those
positions which are relevant w.r.t. the order �; and the usable rules of P are the
usable rules of all right-hand sides of P . We omit a formal definition (e.g., [10,
Def. 21]) here, but just illustrate the usage in our running example.

Example 3. We use the reduction pair processor (without the adaptations from
the previous section) in combination with the polynomial order [[sum�]](i, n) =
[[if�sum]](b, i, n) = 0 and [[+�]](x, y) = [[≤�]](x, y) = [[s]](x) = 1 + x.

The only rules that are required to evaluate the arguments of right-hand sides
of P = {(1)–(4)} are the ≤-rules for (1) and the +-rules for (2). However, since
the first arguments of sum� and if�sum are ignored by the polynomial order, there
are no usable rules. Since moreover, all pairs are at least weakly decreasing,
we can delete the strictly decreasing pairs (3) and (4) by the reduction pair
processor. Hence, it remains to prove termination of P \ � = {(1), (2)}.
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From the soundness result for usable rules [10, Lem. 23] one derives that when-
ever tσ i→∗

R s for some normal substitution σ and the usable rules of t are
weakly decreasing, then tσ � s. Unfortunately, this lemma does no longer hold
if � is not monotone. To solve this problem, in [9] a monotonicity function
ord :: F ∪ F � ⇒ � ⇒ {0, 1,−1, 2}4 is defined. It determines for each symbol f
and each argument i, which relationship between si and ti must be ensured to
guarantee C[si] � C[ti] for some context C = f(u1, . . . , ui−1,�, ui+1, . . . , un):

– if there are no requirements on si and ti then ord(f, i) is defined as 0,
– if si � ti is required then � is monotonically increasing in the i-th argument

and ord(f, i) is defined as 1,
– if ti � si is required then � is monotonically decreasing in the i-th argument

and ord(f, i) is defined as −1,
– otherwise, ord(f, i) is defined as 2 (and it is demanded that si � ti ∧ ti � si

suffices to ensure C[si] � C[ti]).

Using ord the generalized usable rules are defined as follows.

Definition 4. Let R be some TRS. The generalized usable rules of term t are
defined as the least set U(t) such that

– whenever f(�1, . . . , �n) → r ∈ R, then f(�1, . . . , �n) → r ∈ U(f(t1, . . . , tn)),
– whenever �→ r ∈ U(t) then U(r) ⊆ U(t), and
– U(ti)ord(f,i) ⊆ U(f(t1, . . . , tn)).

Here, U0 = ∅, U1 = U , U−1 = {r → � | �→ r ∈ U}, and U2 = U ∪ U−1.
The generalized usable rules of a set of pairs P is U(P) =

⋃
s→t∈P U(t).

Example 5. In Ex. 3 we remained with the pairs {(1), (2)}. If we choose the
polynomial order defined by [[sum�]](i, n) = [[if�sum]](b, i, n) = n − i, [[+]](x, y) =
x + y, [[0]] = 0, and [[s]](x) = 1 + x, then U({(1), (2)}) = U(if�sum(i ≤ n, i, n)) ∪
U(sum�(i+s(0), n)) are the two reversed +-rules y → 0+y and s(x+y) → s(x)+y
which are both decreasing by this polynomial order, i.e., U({(1), (2)}) ⊆ �.

The results on the generalized usable rules and usable rules are similar.

Lemma 6. Whenever tσ i→∗
R s for some normal substitution σ, then U(t) ⊆ �

implies tσ � s.

Concerning the formalization of this result, we only added one indirection: In-
stead of directly defining U using ord , we define Uπ like U where ord is replaced
by some user defined function π :: F ∪F � ⇒ �⇒ {0, 1,−1, 2} and then demand
that π and � are compatible: Whenever π(f, i) = k and 1 ≤ i ≤ arity(f), then
� must satisfy the monotonicity condition which is required for ord(f, i) = k.

The reason is that usually, we can only approximate ord(f, i), but not decide
it. For example, for a polynomial interpretation over the naturals with [[f ]](x) =
x2 − x we have ord(f, 1) = 1, since x2 − x is monotonically increasing over

4 In IsaFoR, we use a datatype to indicate the monotonicity instead of {0, 1,−1, 2}. It
consists of the elements Ignore (0), Increase (1), Decrease (-1), and Wild (2).
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the naturals. However, we also allow to define π(f, 1) = 2 �= ord(f, i) with the
consequences, that there are more usable rules, but weaker requirements for the
monotonicity check.

Using this adaptation we proved Lem. 6 where U is replaced by Uπ and where
compatibility of π and � is added as additional assumption. Even with these
changes, we could show the result by minor adaptations of the original proof.

However, it turns out that Lem. 6 is not really helpful in the overall approach
of bounded increase as it is assumes that � is stable. But from the last section
we know that we are more interested in relations � which are only F -stable. And
then Lem. 6 does no longer hold, even if we restrict σ to be an F -substitution.
To still achieve a result similar to Lem. 6 for F -stable �, we could additionally
demand that t ∈ T (F ,V). Although this would be sound, it is still not useful,
as we require the result for terms t like sum�(i+ s(0), n) where the root symbol
is a tuple symbol that is not in F .

Hence, we formalized the following lemma where we also improved the defi-
nition of ord (or compatibility) by adding ideas from F -monotonicity: all terms
si, ti, and ui that are occurring in the definition of ord (or compatibility) are
only quantified over T (F ,V). Note that every tuple symbol is a constructor.

Lemma 7. If R is a TRS over signature F , π and � are compatible, σ is a
normal F-substitution, t = f(t1, . . . , tn)

i→∗
R s, f is a constructor of R, and all

ti ∈ T (F ,V), then Uπ(t) ⊆ � =⇒ tσ � s.

The proof of this result was an extended version of the proof for Lem. 6 where
the following main property was shown by induction on t for arbitrary k and s.

Lemma 8. If R is a TRS over signature F , π and � are compatible, σ is a
normal substitution, tσ i→R s, tσ ∈ T (F ,V) or tσ = f(t1, . . . , tn) with construc-
tor f of R and all ti ∈ T (F ,V), then Uπ(t)

k ⊆ � =⇒ {(tσ, s)}k ⊆ � and there
are u and a normal substitution δ such that Uπ(u)

k ⊆ Uπ(t)
k and s = uδ.

Using these results we are ready to present our formalized result of the adapted,
conditional general reduction pair processor which combines both modifica-
tions—where � does not have to be strongly normalizing and � does not have
to be monotone.5

Theorem 9. Let c be some constant. Let � and � be F-stable orders where �
and � are compatible, and � is non-infinitesimal. Let π be compatible with �.6

Let P, P�, P�, and Pbound be arbitrary sets of pairs. Then P is terminating if
all of the following properties are satisfied.

– P ⊆ P� ∪ P� and Uπ(P) ⊆ �
– P \ P� and P \ Pbound is terminating
– R is a TRS over signature F
– for all s→ t ∈ P� and variable renamed u→ v ∈ P: |= v i→∗ s −→ s � t
– for all s→ t ∈ P� and variable renamed u→ v ∈ P: |= v i→∗ s −→ s � t

5 In IsaFoR, this processor also integrates the generalization below Thm. 11 in [9], where
arbitrary adjacent pairs can be chosen instead of only one preceding pair, cf. lemma
conditional-general-reduction-pair-proc in Generalized-Usable-Rules.thy.

6 In IsaFoR, all these properties are summarized in the locale non-inf-order.
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– for all s→ t ∈ Pbound and variable renamed u→ v ∈ P: |= v i→∗ s −→ s � c
– all pairs in P are of the form f(s1, . . . , sn) → g(t1, . . . , tm) where g is a

constructor of R and si, tj ∈ T (F ,V) for all i and j
– the set of all symbols is countable and V is countably infinite.

Note that Thm. 9 is similar to [9, Thm. 11] with the difference, that for defining
ord for the generalized rules we only require F -monotonicity.

The last condition on the cardinality of F and V is enforced by our theorem
on signature extensions. We believe that it can be weakened to V being infinite,
but this would make the proof for signature extensions more tedious.

Even after having proven Thm. 9, there remain two tasks.
First, we actually require an executable function which computes the set of us-

able rules (which is defined as an inductive set) for some concrete TRS R and set
of pairs P . To this end, we have not been able to use Isabelle’s predicate compiler
[3], but instead we used an approach as in [18]: We characterized the general-
ized usable rules via a reflexive transitive closure. And afterwards, we could just
invoke a generic algorithm to compute reflexive transitive closures as the one in
[19]. More details can be seen in Generalized-Usable-Rules-Impl.thy.

The second task is to deal with conditional constraints that arise from the
conditional reduction pair processor, which is discussed in the upcoming section.

5 Third Problem: Solving Conditional Constraints

We start by generating conditional constraints for Ex. 5 via Thm. 9.

Example 10. Using the polynomial order from Ex. 5 we already have a weak
decrease for the usable rules. Moreover, all pairs are weakly decreasing and (2) is
strictly decreasing, even without considering the conditions: [[if�sum(true, i, n)]] =
n− i > n− (i + 1) = [[sum�(i + s(0), n)]]. To show that (2) is also bounded—so
that it can be removed—we must show |= φ1 and |= φ2.

if�sum(i
′ ≤ n′, i′, n′) i→∗ if�sum(true, i, n) −→ if�sum(true, i, n) � c (φ1)

sum�(i′ + s(0), n′) i→∗ if�sum(true, i, n) −→ if�sum(true, i, n) � c (φ2)

To handle conditional constraints like φ1 and φ2, in [9] an induction calculus
is developed with rules to transform conditional constraints, where constraints
above the line can be transformed into constraints below the line, cf. Fig. 1. Its
aim is to turn rewrite conditions s i→∗ t into conditions involving the order.

Example 11. Using the induction calculus one can transform φ1 and φ2 into φ3
and φ4. Both of these new constraints are satisfied for the polynomial order of
Ex. 5 if one chooses [[c]] ≤ 0, since then φ3 and φ4 evaluate to v ≥ [[c]] and
v − u ≥ [[c]] −→ (v + 1)− (u + 1) ≥ [[c]], respectively.

if�sum(true, 0, v) � c (φ3)

if�sum(true, u, v) � c −→ if�sum(true, s(u), s(v)) � c (φ4)

In [9] soundness of the induction calculus is proven: whenever φ can be trans-
formed into φ′ using one of the inference rules, then |= φ′ implies |= φ. During
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I. Constructor and Different Function Symbol

f(p1, . . . , pn)
i→∗ g(q1, . . . , qm) ∧ ϕ −→ ψ

TRUE
if f is a constructor and f �= g

II. Same Constructors on Both Sides

f(p1, . . . , pn)
i→∗ f(q1, . . . , qn) ∧ ϕ −→ ψ

p1
i→∗ q1 ∧ . . . ∧ pn i→∗ qn ∧ ϕ −→ ψ

if f is a constructor

III. Variable in Equation

x i→∗ q ∧ ϕ −→ ψ

ϕσ −→ ψ σ

if x ∈ V and
σ = [x/q]

q i→∗ x ∧ ϕ −→ ψ

ϕσ −→ ψ σ

if x∈V, q has no
defined symbols,
σ=[x/q]

IV. Delete Conditions
ϕ1 ∧ . . . ∧ ϕn −→ ψ

ϕ′
1 ∧ . . . ∧ ϕ′

m −→ ψ
if {ϕ′

1, . . . , ϕ
′
m} ⊆ {ϕ1, . . . , ϕn}

V. Induction

f(x1, . . . , xn)
i→∗ q ∧ ϕ −→ ψ

∧

f(�1,...,�n)→r∈R
(r i→∗ q σ ∧ ϕσ ∧ ϕ′ −→ ψ σ)

if f(x1, . . . , xn) does not unify
with q

where σ = [x1/�1, . . . , xn/�n]

and ϕ′ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∀y1, . . . , ym. f(r1, . . . , rn) i→∗ qμ ∧ ϕμ −→ ψ μ, if

• r contains the subterm f(r1, . . . , rn),
• there is no defined symbol in any ri,
• μ = [x1/r1, . . . , xn/rn], and
• y1, . . . , ym are all occurring variables except V(r)

TRUE , otherwise

VI. Simplify Condition

ϕ ∧ (∀y1, . . . , ym. ϕ′ −→ ψ′) −→ ψ

ϕ ∧ ψ′ σ −→ ψ

if DOM(σ) ⊆ {y1, . . . , ym},
there is no defined symbol and
no tuple symbol in any σ(yi),
and ϕ′ σ ⊆ ϕ

VII. Defined Symbol without Pairwise Different Variables

f(p1, . . . , pi, . . . , pn)
i→∗ q ∧ ϕ −→ ψ

pi
i→∗ x ∧ f(p1, . . . , x, . . . , pn) i→∗ q ∧ ϕ −→ ψ

if x is fresh and pi ∈ T (F ,V)

Fig. 1. Corrected and generalized rules of the induction calculus from [9]
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our formalization of this result in Bounded-Increase(-Impl).thy, we detected
five interesting facts.

Fact 1. Some of the side-conditions in the original definition are not required,
but are most likely used to derive a strategy which chooses which rules to apply.
For example, in both (V) and (VII) there have been additional side-conditions
in [9]. To be more precise, [9] demands that f is defined in (V). Consequently,
formulas with a precondition like f(x) i→∗ x for some constructor f can only be
dropped using our version of (V), but not by any of the original rules in [9].

Fact 2. Rule (VII) is unsound in [9] where we had to add the new side-condition
pi ∈ T (F ,V).

Fact 3. The textual explanation in [9] for the soundness of the induction rule
(V) is completely misleading: it is stated that induction can be performed using
the length of the reduction f(x1, . . . , xn)σ

i→∗
R qσ which is “obviously longer”

than the reduction f(r1, . . . , rn)σ
i→∗
R qσ; only in a footnote it is clarified, that

for the actual proof one uses the induction relation i→R ◦ � which is restricted
to innermost terminating terms. This restriction actually is the only reason why
minimal chains are considered and why in the semantics of σ |= s i→∗ t one
demands SIN (sσ).

Note that if one indeed were able to perform induction on the length of the
reduction, then one could drop the condition SIN (sσ) and consider arbitrary,
non-minimal chains. This would have the immediate advantage that bounded
increase would be applicable on sets of pairs and TRSs which arise from trans-
formations like [15], where termination of each tiσ in (�) cannot be ensured, cf.
[15, Footnote 3].

The bad news is that we were able to find a counterexample proving that an
induction over the length in combination with non-minimal chains is unsound.
In detail, consider R = {f → g(f), f → b, g(x) → a} and P = {h�(a) → h�(f)}.
Then there is a non-minimal innermost chain h�(a) →P h�(f) i→R h�(g(f)) i→R
h�(g(b)) i→R h�(a) →P . . . , so we should not be able to prove termination of P
if minimality is dropped from the definition of termination.

However, we show that using the induction calculus—where now σ |= s i→∗ t
is defined as sσ i→∗

R tσ ∧ tσ ∈ NF (R)—in combination with the conditional
reduction pair processor we actually can derive termination of P , where we will
see that the problem is the induction rule. To this end, we let h�(f) i→∗ h�(a) −→
φ be some arbitrary conditional constraint that may arise from the generalized
reduction pair processor where φ might be h�(a) � h�(f) or h�(a) � c. Using (II)
this constraint is simplified to f i→∗ a −→ φ. Next, we apply (V), leading to
g(f) i→∗ a ∧ (f i→∗ a −→ φ) −→ φ and b i→∗ a −→ φ where the latter constraint
is immediately solved by (I). And the former constraint is always satisfied, since
fσ = f i→∗

R a = aσ ∈ NF (R) for every F -normal substitution σ.

Fact 4. The main reason for the unsoundness of the induction rule in the previous
counterexample is the property that R is not uniquely innermost normalizing
(UIN): f can be evaluated to the two different normal forms a and b.
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And indeed, we could show that instead of minimality of the chain, one can
alternatively demand UIN of R to ensure soundness of the induction rule. To be
more precise, using UIN of R we were able to prove soundness of the induction
rule via an induction on the distance of f(x1, . . . , xn)σ to some normal form.

To have a decidable criterion for ensuring UIN, we further proved that UIN is
ensured by confluence ofR, and that confluence is ensured by weak orthogonality,
i.e., for left-linear R that only have trivial critical pairs. Here, especially for the
latter implication, we required several auxiliary lemmas like the parallel moves
lemma, cf. [2, Chapter 6.4] and Orthogonality.thy.

Fact 5. As we want to apply Isabelle’s code generator [11] on our certification
algorithm, we have to formalize conditional constraints via a deep embedding.
Therefore, we had the choice between at least two alternatives how to deal with
bound variables: we can use a dedicated approach like Nominal Isabelle [21,22],
or we perform renamings, α-equivalence, . . . on our own.7

We first formalized everything using the latter alternative, where we just
defined an inductive datatype [4] with constructors for atomic constraints, one
constructor for building implications of the shape ·∧· · ·∧· −→ · (where the set of
premises is conveniently represented as a list), and one constructor for universal
quantification which takes a variable and a constraint as argument.

Afterwards, we just had to deal with manual renamings at exactly one place:
in the definition of applying a substitution on a constraint. Here, for quantified
constraints we define (∀x.φ)σ = ∀y.(φ(σ{x := y})) where y is a fresh variable
w.r.t. the free variables in σ and φ. Note that α-equivalence of two constraints
φ and ψ can then also easily be checked by just applying the empty substitution
on both φ and ψ, since the substitution algorithm returns the same result on
α-equivalent constraints. Further note, that in our application—certification of
transformations on constraints—we require subsumptions checks instead of α-
equivalence. Therefore, being able to use equality instead of α-equivalence does
not help that much. So, by using an inductive datatype we had minimal effort
to integrate renamings. Furthermore, all required algorithms could easily be
formulated using the comfort of Isabelle’s function package [14].

We additionally tried to perform the same formalization using Nominal Is-
abelle, since we have been curious what we would gain by using a dedicated
package to treat bound variables. Here, our initial attempts have been quite
disappointing for the following reasons.

We could not define the datatype for conditional constraints as before, since
for the implications we had to manually define two datatypes: one for constraints
and one for lists of constraints. Moreover, for several functions which have been
accepted without problems using the function package, their nominal counter-
parts require additional properties which had to be manually proven, including

7 Of course, also for building sequences of pairs P (sets of rules) we could have used
nominal to avoid manual renamings in rewrite rules. However, since IsaFoR is quite
large (over 100,000 lines) we did not want to change the representation of rules until
there are extremely good reasons.
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new termination proofs. The overall overhead of these manual proofs was in our
case by far larger than the one for manual renaming. Moreover, as far as we
know, also for code generation some manual steps would be necessary. In the
end, we aborted our attempt to have a fully formalized version of conditional
constraints which are based on Nominal Isabelle.

6 Babylonian Square Root Algorithms

Eventually, all required theorems for bounded increase have been formalized,
and certification algorithms have been integrated in CeTA. Clearly, we tried to
certify the bounded increase proofs that have been generated by AProVE. Here,
nearly all proofs have been accepted, except for two problematic kinds of proofs.

The one problem was that CeTA discovered a real implementation bug which
remained undetected since 2007: AProVE applies (IV) also inside induction hy-
potheses, i.e., under certain circumstances it simplified (ψ −→ φ) −→ φ to
(∅ −→ φ) −→ φ as ∅ ⊆ {ψ}. After the bug has been fixed, for one of the TRSs,
a termination proof could not be generated anymore.

The other problem has been an alternative criterion to ensure boundedness,
cf. the following example.

Example 12. For the TRS GTSSK07/cade14 from the termination problem da-
tabase, the generalized reduction pair processor is used with the interpretation
where [diff�](x1, x2) = −1+x21+x

2
2−2x1x2, [s](x) = x+1, [0] = 0, and [c] = −1.8

After applying the induction calculus, one of the constraints is diff�(s(0), x) � c
which is equivalent to x2 − 2x ≥ −1. This inequality is valid, but it cannot be
shown using the standard criterion of absolute positiveness [12], which is also the
criterion that is used in CeTA. Here, the trick is, that [diff�](x1, x2) = (x1−x2)2−1
and hence [diff�](. . . ) ≥ 0− 1 ≥ −1 = [c].

In fact, in the previous example AProVE was configured such that tuple sym-
bols are interpreted as [f �](x1, . . . , xn) = f0 + (f1x1 + · · ·+ fnxn)

2 for suitable
values fi. Then [c] is chosen as minf�∈Σ f0 such that by construction, f �(. . . ) � c
always holds and no constraints have to be checked for boundedness.

If we knew that the tuple symbols are interpreted in this way and all val-
ues fi were provided, it would be easy to conclude boundedness. However, we
refrained from adding a special format to express interpretations of this shape,
as it would require a new dedicated pretty printer in AProVE. Instead, we want
to be able to detect during certification, whether for some arbitrary interpre-
tation [f �](x1, . . . , xn) = p we can find values fi such that p is equivalent to
f0 + (f1x1 + · · ·+ fnxn)

2 (which is equivalent to f0 +
∑
f2
i x

2
i +

∑
2fifjxixj).

To this end, we first transform p into summation normal form a0+
∑
aix

2
i+. . .

with concrete values ai, and afterwards we figure out all possible values for each
fi: f0 = a0 and fi = ±√

ai for i > 0. For each possible combination of (f0, . . . , fn)
we can then just check whether p = f0 + (f1x1 + · · ·+ fnxn)

2.

8 The detailed proof including the TRS is available at http://termcomp.uibk.ac.at/
termcomp/competition/resultDetail.seam?resultId=415507

http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=415507
http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=415507
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However, for computing the values of fiweneed an executable algorithm to com-
pute square roots of integers and rationals. To this end, we formalized variants of
the Babylonianmethod to efficiently compute square roots. Afterwards, indeed all
bounded increase proofs from AProVE could be certified by CeTA (version 2.10).

The original Babylonian algorithm is an instance of Newton’s method. It ap-

proximates
√
n by iteratively computing xi+1 :=

n
xi

+xi

2 until x2i is close enough
to n. Although we did not require it—it does not deliver precise results—for
completeness we formalized it, where the domain is some arbitrary linearly or-
dered field of type ′a. Here, the main work was to turn the convergence proof
into a termination proof. For example, we had to solve the problems that the
value to which the function converges is not necessarily a part of the domain:
consider

√
2 and ′a being the type of rationals.

The precise algorithms are based on the following adaptation. In order to compute
square roots of integers we simply use integer divisions x÷y = �x

y �. Moreover, the

result is returned as an option-type, i.e., either we return some number (the square-
root), or we return nothing, indicating that there is no integer x such that x2 = n.

int-main x n = (if x < 0 ∨ n < 0 then None else (if x2 ≤ n

then (if x2 = n then Some x else None)

else int-main ((n÷ x+ x)÷ 2) n))

Termination can be proven more easily by just using x as measure. Soundness
is also trivially proven as we only return Some x if x2 = n. Indeed, the hardest
part was to prove completeness which is stated as follows.

Theorem 13. x ≥ 0 =⇒ x2 = n =⇒ y2 ≥ n =⇒ y ≥ 0 =⇒ n ≥ 0 =⇒
int-main y n = Some x.

To this end, we had to show that once the value of x2 is below n, then there
is no solution. Here, in the proof the non-trivial inequality (x2 ÷ y) · y + y2 ≥
2xy occurred. It trivially holds if one used standard division instead of integer
division. However, it took quite a while to prove the desired inequality where
we first ran into several dead ends as we tried to use induction on x or y. The
solution was to express x2 as (y−x)2+y ·(2x−y) and then divide both summands
by y, cf. the detailed proof in Sqrt-Babylon.thy.

Using soundness and completeness of int-main, it was easy to write an algo-
rithm sqrt-int which invokes int-main with a suitable starting value of x (larger
than

√
n) and performs a case analysis on whether n is 0, positive, or negative.

Theorem 14. set (sqrt-int n) = {x :: int. x2 = n}.

In a similar way we construct a square-root algorithm sqrt-nat for the naturals,
where int-main is invoked in combination with conversion functions between
naturals and integers.

Theorem 15. set (sqrt-nat n) = {x :: nat. x2 = n}.
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Note, that since int-main only works on the positive integers, it sounds more
sensible to directly implement it over the naturals. Then conditions like x ≥ 0
can just be eliminated. Actually, when we started our formalization, we followed
this approach. But it turned out that it was by far more cumbersome to perform
arithmetic reasoning on the naturals than on the integers. The reason was that
differences like x−y+z+y easily simplify to x+z over the integers, but require
side-conditions like x ≥ y on the naturals. And the amount of required side-
conditions was by far larger than storing that certain values are non-negative.

We also formalized an algorithm sqrt-rat where we used known facts on co-
primality from the Isabelle distribution. In brief, given some rational number p

q
for integers p and q, sqrt-rat returns ±

√
p√
q , if this is well-defined, or nothing.

Theorem 16. set (sqrt-rat n) = {x :: rat. x2 = n}.

Note that using Thm. 16 one can easily figure out that
√
2 is an irrational

number, just by evaluating that sqrt-rat 2 is the empty list. Moreover, since the
Babylonian algorithm is efficient, it also is no problem to check that√
1234567890123456789012345678901234567890 is irrational.

7 Summary

We formalized the termination technique of bounded increase. To this end, in
addition to the pen-and-paper proof we had to prove the missing fact that signa-
ture extensions are sound for innermost rewriting. Moreover, we not only showed
that the “obvious reason” for soundness of the induction rule is wrong, but ad-
ditionally provided a condition under which this obvious reason is sound: unique
innermost normalization. This property follows from weak orthogonality, and
our formalization contains—as far as we know—the first mechanized proof of the
fact that weak orthogonality implies confluence. For the certification algorithm
we also required some algorithm to precisely compute square roots, where we
adapted the Babylonian approximation algorithm to obtain precise algorithms
for the naturals, integers, and rationals.

All variants for computing square roots (≈ 700 lines) have been made available
in the archive of formal proofs, and the remaining formalization (≈ 4,700 lines)
is available at http://cl-informatik.uibk.ac.at/software/ceta/.
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