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Abstract. Schematic Kleene algebra with tests (SKAT) supports the
equational verification of flowchart scheme equivalence and captures sim-
ple while-programs with assignment statements. We formalise SKAT in
Isabelle/HOL, using the quotient type package to reason equationally in
this algebra. We apply this formalisation to a complex flowchart trans-
formation proof from the literature. We extend SKAT with assertion
statements and derive the inference rules of Hoare logic. We apply this
extension in simple program verification examples and the derivation
of additional Hoare-style rules. This shows that algebra can provide an
abstract semantic layer from which different program analysis and veri-
fication tasks can be implemented in a simple lightweight way.

1 Introduction

The relevance of Kleene algebras for program development and verification has
been highlighted for more than a decade. Kleene algebras provide operations for
non-deterministic choice, sequential composition and finite iteration in comput-
ing systems as well as constructs for skip and abort. When a suitable boolean
algebra for tests and assertions is embedded, the resulting Kleene algebras with
tests (KAT) [18] can express simple while-programs and validity of Hoare triples.
Extensions of Kleene algebras support Hoare-style program verification—the
rules of Hoare logic except assignment can be derived—and provide notions of
equivalence and refinement for program construction and transformation. Rea-
soning in Kleene algebras is based on first-order equational logic. It is there-
fore relatively simple, concise and well suited for automation [15,12,13,3]. The
lightweight program semantics that Kleene algebras provide can further be spe-
cialised in various ways through their models, which include binary relations,
program traces, paths in transition systems and (guarded string) languages [4].

The relevance of Kleene algebras has further been underpinned by applica-
tions, for instance, in compiler optimisation [19], program construction [5], trans-
formation and termination [9], static analysis [11] or concurrency control [7]; but
few have used theorem provers or integrated fine-grained reasoning about assign-
ments or assertions [1,5,14]. The precise role and relevance of Kleene algebras
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in a formal environment for program development and verification has not yet
been explored. Our paper provides a first step in this direction.

We have implemented a comprehensive library for KAT in Isabelle/HOL [25],
using explicit carrier sets for modelling the interaction between actions and tests
in programs. For reasoning about assignments and assertions, we have added
first-order syntax and axioms to KAT, following Angus and Kozen’s approach
to schematic Kleene algebras with tests (SKAT) [2]. Program syntax is defined
as syntactic sugar on SKAT expressions; axiomatic algebraic reasoning about
these expressions is implemented by using Isabelle’s quotient package [16,17].

We have applied this simple algebraic verification environment by formalis-
ing a complex flowchart equivalence proof in SKAT due to Angus and Kozen.
It is an algebraic account of a previous diagrammatic proof by Manna [21]. In
their approach, flowchart schemes are translated into SKAT expressions. We
have converted the manual proof in SKAT essentially one-to-one into readable
Isabelle code. This significantly shortens a previous formalisation with a cus-
tomised interactive SKAT-prover [1]. This compression demonstrates the power
of Isabelle’s proof methods and integrated theorem provers.

To illustrate the flexibility of our approach we have extended our SKAT im-
plementation by assertions for Hoare-style partial program correctness proofs.
To obtain a predicate transformer semantics for forward reasoning à la Gor-
don [8] we have formalised the action of programs as SKAT terms which act on
a Boolean algebra of predicates or assertions via a scalar product in a Kleene
module [10,20]. We have instantiated this abstract algebra of assertions to the
standard powerset algebra over program states realised as maps from variables
to values. We have encoded validity of Hoare triples and automatically derived
the rules of Hoare logic—including assignment—in this setting. We have also
provided syntactic sugar for a simple while-language with assertions (pre/post-
conditions and invariants) similar to existing Hoare logics in Isabelle [24,26].

We have tested this enhanced environment by automatically verifying some
simple algorithms and by automatically deriving some additional Hoare-style
inference rules that would be admissible in Hoare logic. Verification is supported
by a verification condition generator that reduces program verification tasks to
the usual proof obligations for elementary program actions.

The complete Isabelle code for this paper can be found online.1

Our study points out two main benefits of using (Kleene) algebra in program
development and verification. First, it provides a uniform lightweight semantic
layer from which syntax for specifications and programs can be defined, domain-
specific inference rules be derived and fine-grained models be explored with ex-
ceptional ease. In Isabelle this is seamlessly supported by type classes and locales
and by excellent proof automation. Second, it yields a powerful proof engine
for concrete analysis tasks, in particular when transforming programs or devel-
oping them from specifications. Despite this, the automation of our flowchart
example remains somewhat underwhelming; such examples provide interesting
benchmarks for further improving proof automation.

1 http://www.dcs.shef.ac.uk/~alasdair/skat

http://www.dcs.shef.ac.uk/~alasdair/skat
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2 Kleene Algebra with Tests

Kleene algebras with tests (KAT) are at the basis of our implementation. They
provide simple encodings of while-programs and Hoare logic (without assign-
ment) and support equational reasoning about program transformations and
equivalence. This section gives a short introduction from a programming per-
spective; more details can be found in the literature [18].

A semiring is a structure (S,+, ·, 0, 1) such that (S,+, 0) is a commutative
semigroup, (S, ·, 1) is a monoid (not necessarily commutative), multiplication
distributes over addition from the left and right, and 0 is an annihilator (0 · p =
0 = p ·0). S is idempotent (a dioid) if p+p = p. In that case, the reduct (S,+, 0)
is a semilattice, hence p ≤ q ←→ p + q = q defines a partial order with least
element 0. For programming, imagine that S models the actions of a system;
addition is non-deterministic choice, multiplication is sequential composition, 1
is skip and 0 is abort. The next step is to add a notion of finite iteration.

A Kleene algebra is a dioid expanded with a star operation that satisfies
the unfold axioms 1 + pp∗ ≤ p∗ and 1 + p∗p ≤ p∗, and the induction axioms
r + pq ≤ q −→ p∗r ≤ q and r + qp ≤ q −→ rp∗ ≤ q. This defines p∗ as the
simultaneous least (pre)fixpoint of the functions λq.1 + pq and λq.1 + qp.

Program tests and assertions can be added by embedding a boolean alge-
bra of tests between 0 and 1. A Kleene algebra with tests (KAT) is a structure
(K,B,+, ·,� , 0, 1, ) where (K,+, ·,∗ , 0, 1) is a Kleene algebra and (B,+, ·, , 0, 1)
a Boolean subalgebra of K. The operations are overloaded with + as join, · as
meet, 0 as the minimal element and 1 the maximal element of B. Complemen-
tation is only defined on B. We write p, q, r for arbitrary elements of K and
a, b, c for tests in B. Conditionals and loops can now be expressed:

IF b THEN p ELSE q = bp+ bq, WHILE b DO p WEND = (bp)∗b.

Tests play a double role as assertions to encode (the validity of) Hoare triples:

{|b}| p{|c}| ←→ bpc = 0.

Multiplying a program p by a test b at the left or right means restricting its input
or output by the condition b. Thus the term bpc states that program p is restricted
to precondition b in its input and to the negated postcondition c in its output.
Accordingly, bpc = 0 means that p cannot execute from b without establishing c.
This faithfully captures the meaning of the Hoare triple {|b}| p{|c}| . It is well
known that algebraic relatives of all rules of Hoare logic except assignment can be
derived in KAT, and that binary relations under union, relational composition,
the unit and the empty relation, and the reflexive transitive closure operation
form a KAT. Its Boolean subalgebra of tests is formed by all elements between
the empty and the diagonal relation. Binary relations yield, of course, a standard
semantics for sequential programs.

A reference Isabelle implementation of Kleene algebras and their models is
available in the Archive of Formal Proofs [4]. To capture the subalgebra rela-
tionship of B and K we have implemented an alternative with carrier sets and
expanded this to KAT. Due to lack of space we cannot present further details.
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3 Schematic KAT and Flowchart Schemes

To apply KAT in program development and verification, formal treatment of
assignments and program states is required. Axioms for assignments have been
added, for instance, in schematic Kleene algebra with tests (SKAT) [2]. This ex-
tension of KAT is targeted at modelling the transformation of flowchart schemes.
A classical reference for flowchart schemes, scheme equivalence, and transforma-
tion is Manna’s book Mathematical Theory of Computation [21]. Our formali-
sation of SKAT in Isabelle is discussed in this section; our formalisation of a
complex flowchart equivalence proof [21,2] is presented in Section 5. We describe
the conceptual development of SKAT together with its formalisation in Isabelle.

A ranked alphabet or signature Σ consists of a family of function symbols f ,
g, . . . and relation symbols P , Q, . . . together with an arity function mapping
symbols to N. There is always a null function symbol with arity 0. In Isabelle, we
have implemented ranked alphabets as a type class. Variables are represented by
natural numbers. Terms over Σ are defined as a polymorphic Isabelle datatype.

datatype ′a trm = App ′a “ ′a trm list” | Var nat

We omit arity checks to avoid polluting proofs with side conditions. In practice,
verifications will fail if arities are violated. Variables and Σ-terms form assign-
ment statements; together with predicate symbols they form tests in SKAT.
Predicate expressions (atomic formulae) are also implemented as a datatype.

datatype ′a pred = Pred ′a “ ′a trm list”

Evaluation of terms, predicates and tests relies on an interpretation function. It
maps function and relation symbols to functions and relations. It is used to define
a notion of flowchart equivalence [2,21] with respect to all interpretations. It is
also needed to formalise Hoare logic in Section 6 by interpreting Σ-expressions
in semantic domains. In Isabelle, it is based on the following pair of functions.

record ( ′a, ′b) interp =
interp-fun :: ′a ⇒ ′b list ⇒ ′b
interp-rel :: ′a ⇒ ′b relation

We can now includeΣ-expressions into SKAT expressions, which model flowchart
schemes.

datatype ′a skat-expr =
SKAssign nat “ ′a trm”

| SKPlus “ ′a skat-expr” “ ′a skat-expr” (infixl “⊕” 70 )
| SKMult “ ′a skat-expr” “ ′a skat-expr” (infixl “�” 80 )
| SKStar “ ′a skat-expr”
| SKBool “ ′a pred bexpr”
| SKOne
| SKZero
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In this datatype, SKAssign is the assignment constructor; it takes a variable
and a Σ-term as arguments. The other constructors capture the programming
constructs of sequential composition, conditionals and while loops within KAT.
The type ’a pred bexpr represents Boolean combinations of predicates, which
form the tests in SKAT. The connection between the SKAT syntax and Manna’s
flowchart schemes is discussed in [2], but we do not formalise it.

Having formalised the SKAT syntax we can now define a notion of flowchart
equivalence by using Isabelle’s quotient types. First we define the obvious congru-
ence on SKAT terms that includes the KAT axioms and the SKAT assignment
axioms

x := s; y := t = y := t[x/s];x := s (y /∈ FV (s)),

x := s; y := t = x := s; y := t[x/s] (x /∈ FV (s)),

x := s;x := t = x := t[x/s],

a[x/t];x := t = x := t; a.

In the following inductive definition we only show the equivalence axioms, a single
Kleene algebra axiom and an assignment axiom explicitly. Additional recursive
functions for free variables and substitutions support the assignment axioms.

inductive skat-cong :: ( ′a::ranked-alphabet) skat-expr ⇒ ′a skat-expr ⇒ bool
(infix ≈ 55 ) where
refl [intro]: p ≈ p

| sym [sym]: p ≈ q =⇒ q ≈ p
| trans [trans]: p ≈ q =⇒ q ≈ r =⇒ p ≈ r
. . .
| mult-assoc: (p � q) � r ≈ p � (q � r)
. . .
| assign1 : [[x �= y ; y /∈ FV s]] =⇒

SKAssign x s � SKAssign y t ≈ SKAssign y (t [x /s]) � SKAssign x s
. . .

Isabelle’s quotient package [17] now allows us to formally take the quotient of
SKAT expressions with respect to skat-cong. The SKAT axioms then become
available for reasoning about SKAT expressions.

quotient-type ′a skat = ( ′a::ranked-alphabet) skat-expr / skat-cong

Using this notion of equivalence on SKAT expressions we can define additional
syntactic sugar by lifting constructors to SKAT operations, for instance,

lift-definition skat-plus :: ( ′a::ranked-alphabet) skat ⇒ ′a skat ⇒ ′a skat
(infixl + 70 ) is SKPlus

We have used Isabelle’s transfer tactic to provide nice programming syntax and
lift definitions from the congruence. For instance,
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lemma skat-assign1 :
[[x �= y ; y /∈ FV s]] =⇒ (x := s · y := t) = (y := t [x /s] · x := s)

An interpretation statement formally shows in Isabelle that the algebra thus
constructed forms a KAT.

definition tests :: ( ′a::ranked-alphabet) skat ord where
tests = (|carrier = test-set , le = (λp q . skat-plus p q = q)|)

definition free-kat :: ( ′a::ranked-alphabet) skat test-algebra where
free-kat = (|carrier = UNIV , plus = skat-plus, mult = skat-mult, one = skat-one,

zero = skat-zero, star = skat-star , test-algebra.test = tests|)

interpretation skt : kat free-kat

Proving this statement required some work. First, is uses our comprehensive
implementation of Kleene algebra with tests (and with carrier sets) in Isabelle.
Second, we needed to show that the quotient algebra constructed satisfies the
KAT axioms, including those of Boolean algebra for the subalgebra of tests. A
main complication comes from the fact that Boolean complementation is defined
as a partial operation, that is, on tests only; thus it cannot be directly lifted from
the congruence. We have defined it indirectly using Isabelle’s indefinite descrip-
tion operator. After this interpretation proof, most statements shown for KAT
are automatically available in the quotient algebra. The unfortunate exception
is again the partially defined negation symbol, which is not fully captured by the
interpretation statement. Here, KAT theorems need to be duplicated by hand.

When defining a quotient type, Isabelle automatically generates two coercion
functions. The abs-skat function maps elements of type ’a skat-expr to elements
of the quotient algebra type ’a skat, while the rep-skat function maps in the
converse direction. Both these functions are again based on Isabelle’s definite
description operator, which can be unwieldy. However, as our types are induc-
tively defined, we can as well use the following equivalent, and computationally
more appealing, recursive function instead of abs-skat, which supports simple
proofs by induction.

primrec abs :: ( ′a::ranked-alphabet) skat-expr ⇒ ′a skat (�-	 [111 ] 110 ) where
abs (SKAssign x t) = x := t

| abs (SKPlus p q) = abs p + abs q
| abs (SKMult p q) = abs p · abs q
| abs (SKBool a) = test-abs a
| abs SKOne = 1
| abs SKZero = 0
| abs (SKStar p) = (abs p)�

Mathematically, abs (or �−�) is a homomorphism. It is useful for programming
various tactics.
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4 Formalising a Metatheorem

We have formalised a metatheorem due to Angus and Kozen (Lemma 4.4 in [2])
that can be instantiated, for instance, to check commutativity conditions, elimi-
nate redundant variables or rename variables in flowchart transformation proofs.
We instantiate this theorem mainly to develop tactics that support proof au-
tomation in the flowchart example of the next section.

theorem metatheorem:
assumes kat-homomorphism f
and kat-homomorphism g
and

∧
a. a ∈ atoms p =⇒ f a · q = q · g a

shows f p · q = q · g p

We proceed by induction on p, expanding Angus and Kozen’s proof. The predi-
cate kat-homomorphism in the theorem states that f and g are KAT morphisms.
This notion is defined in Isabelle as a locale in the obvious way. The functions f
and g map from SKAT terms into the SKAT quotient algebra, hence they have
the same type as abs. The atoms function returns all the atomic subexpressions
of a SKAT term, i.e. all the assignments and atomic tests.

Angus and Kozen have observed that if q commutes with all atomic subex-
pressions of p, then q commutes with p. This is a simple instantiation of the
metatheorem. It can be obtained in Isabelle as follows:

lemmas skat-comm = metatheorem[OF abs-hom abs-hom]

This instantiates f and g using the fact that abs is a KAT morphism.
Lemma 4.5 in [2] states that if a variable x is not read in an expression p,

then setting it to null will eliminate it from p.

lemma eliminate-variables:
assumes x /∈ reads p
shows �p	 · x := null = �eliminate x p	 · x := null

In the statement of this lemma, reads p is a recursive function that returns all
the variables on the right-hand side of all assignments within p, and the function
eliminate x p removes all assignments to x in p.

We have used the metatheorem and its instances to develop tactics that check
for commutativity and eliminate variables. These tactics take expressions of
the quotient algebra and coerce them into the term algebra to perform these
syntactic manipulations. All the machinery for these coercions, such as abs, is
thereby hidden from the user. A simple application example is given by the
following lemma.

lemma comm-ex: (1 := Var 2 ; 3 := Var 4) = (3 := Var 4 ; 1 := Var 2)
by skat-comm
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5 Verification of Flowchart Equivalence

We have applied our SKAT implementation to verify a well known flowchart
equivalence example in Isabelle. It is attributed by Manna to Paterson [21]. The
flowcharts can be found at page 16f. in Angus and Kozen’s paper [2] or pages 254
and 258 in Manna’s book [21]; they are reproduced here in Figure 1. Manna’s
proof essentially uses diagrammatic reasoning, whereas Angus and Kozen’s proof
is equational. We reconstruct the algebraic proof at the same level of granularity
in Isabelle. The two flowcharts, translated into SKAT by Angus and Kozen, are
as follows.

definition scheme1 ≡ seq
[ 1 := vx , 4 := f (Var 1 ), 1 := f (Var 1 )
, 2 := g (Var 1 ) (Var 4 ), 3 := g (Var 1 ) (Var 1 )
, loop
[ !(P (Var 1 )), 1 := f (Var 1 )
, 2 := g (Var 1 ) (Var 4 ), 3 := g (Var 1 ) (Var 1 )
]

, P (Var 1 ), 1 := f (Var 3 )
, loop
[ !(P (Var 4 )) + seq
[ P (Var 4 )
, (!(P (Var 2 )); 2 := f (Var 2 ))�

, P (Var 2 ), ! (P (Var 3 ))
, 4 := f (Var 1 ), 1 := f (Var 1 )
]

, 2 := g (Var 1 ) (Var 4 ), 3 := g (Var 1 ) (Var 1 )
, loop
[ !(P (Var 1 )), 1 := f (Var 1 )
, 2 := g (Var 1 ) (Var 4 ), 3 := g (Var 1 ) (Var 1 )
]

, P (Var 1 ), 1 := f (Var 3 )
]

, P (Var 4 )
, (!(P (Var 2 )) · 2 := f (Var 2 ))�

, P (Var 2 ), P (Var 3 ), 0 := Var 2 , halt
]

definition scheme2 ≡ seq
[ 2 := f vx , P (Var 2 )
, 2 := g (Var 2 ) (Var 2 )
, loop
[ !(P (Var 2 ))
, 2 := f (f (Var 2 ))
, P (Var 2 )
, 2 := g (Var 2 ) (Var 2 )
]

, P (Var 2 ), 0 := Var 2 , halt
]



Program Analysis and Verification Based on Kleene Algebra in Isabelle/HOL 205

start

y := f(x)

P (y)

loop y := g(y, y)

P (y)

y = f(f(y)) z := y

halt

F T

F T

Scheme S6E [21, p. 258]

start

y1 := x

y4 := f(y1)

y1 := f(y1)

y2 := g(y1, y4)

y3 := g(y1, y1)

P (y1)

y1 := f(y3)

P (y4)

P (y2)

y2 := f(y2) P (y3)

z := y2

halt

F

T

T

F

TF

T

F

Scheme S6A [21, p. 254]

Fig. 1. Two equivalent flowchart schemes
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In the code, lists delimited by brackets indicate blocks of sequential code; loop
expressions indicate the star of a block of code that follows. The seq function
converts a block of code into a SKAT expression. The halt command sets all non
output variables used in the scheme to null. To make algebraic reasoning more
efficient, we follow Angus and Kozen in introducing definitions that abbreviate
atomic commands, in particular assignments, and tests. The flowchart equiva-
lence problem can then be expressed more succinctly and abstractly in KAT, as
all assignment statements, which are dealt with by SKAT, have been abstracted.

seq [x1 ,p41 ,p11 ,q214 ,q311 ,loop [!a1 ,p11 ,q214 ,q311 ],a1 ,p13
,loop [!a4 + seq [a4 ,(!a2 ·p22 )� ,a2 ,!a3 ,p41 ,p11 ]
,q214 ,q311 ,loop [!a1 ,p11 ,q214 ,q311 ],a1 ,p13 ]
,a4 ,(!a2 ·p22 )�,a2 ,a3 ,z2 ,halt ]

=
seq [s2 ,a2 ,q222 ,(seq [!a2 ,r22 ,a2 ,q222 ])� ,a2 ,z2 ,halt ]

The proof that rewrites these KAT expressions, however, needs to descend to
SKAT in order to derive commutativity conditions between expressions that
depend on variables and Σ-terms. These conditions are then lifted to KAT. The
condition expressed in Lemma comm-ex from Section 4, for instance, reduces to
the KAT identity pq = qp when abbreviating 1 := V ar 2 as p, and 3 := V ar 4 as
q. In our proof we infer these commutativity conditions in a lazy fashion. This
follows Angus and Kozen’s proof essentially line by line.

We heavily depend on our underlying KAT library, which contains about
100 lemmas for dealing with the Kleene star and combined reasoning about
the interaction between actions and tests. Typical properties are (p + q)∗ =
p∗(q · p∗)∗, (pq)∗p = p(qp)∗ or bp = pc ⇐⇒ bp!c =!bpc. We have also refined
the tactics mentioned in the previous section to be able to efficiently manipulate
the large SKAT expressions that occur in the proof. Most of these implement
commutations in lists of expressions modulo commutativity conditions on atomic
expressions which are inferred from SKAT terms on the fly.

The size of our proof as a LATEX document is about 12 pages, twice as many
as in Angus and Kozen’s manual proof, but this is essentially due to aligning
their horizontal equational proofs in a vertical way. A previous proof in a special-
purpose SKAT prover required 41 pages [1]. This impressively demonstrates the
power of Isabelle’s proof automation. Previous experience in theorem proving
with algebra shows that the level of proof automation in algebra is often very
high [15,13,12]. In this regard, our present proof experience is slightly under-
whelming, as custom tactics and low-level proof techniques were needed for our
step-by-step proof reconstruction. A higher degree of automation seems difficult
to achieve, and a complete automation of the scheme equivalence proof cur-
rently out of reach. The main reason is that the flowchart terms in KAT are
much longer, and combinatorially more complex, than those in typical textbook
proofs. Decision procedures for variants of Kleene algebras, which currently only
exist in Coq [6], might overcome this difficulty.
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6 Hoare Logic

It is well known that Hoare logic—except the assignment rule—can be encoded
in KAT as well as in other variants of Kleene algebra such as modal Kleene alge-
bras [22] and Kleene modules [10]. The latter are algebraic relatives of proposi-
tional dynamic logic. A combination of these algebras with the assignment rule
and their application in program verification has so far not been attempted.

We have implemented a novel approach in which SKAT and Kleene modules
are combined. This allows us to separate tests conceptually from the pre- and
post-conditions of programs.

A Kleene module [20] is a structure (K,L, :) where K is a Kleene algebra, L a
join-semilattice with least element ⊥ and : a mapping of type L×K → L where

P : (p+ q) = P : p � P : q,

P : (p · q) = P : p : q,

P : 0 = ⊥,

(P �Q) : p = P : p �Q : p,

(P �Q) : p ≤ Q −→ P : p∗ ≤ Q,

P : 1 = P.

In this context, L models the space of states, propositions or assertions of a
program,K its actions, and the scalar product maps a proposition and an action
to a new proposition. We henceforth assume that L is a Boolean algebra with
maximal element � and use a KAT instead of a Kleene algebra as the first
component of the module. The interaction between assertions, as modelled by
the Boolean algebra L, and tests, as modelled by the Boolean algebra B, is
captured by the new axiom

P : a = P 
 (� : a).

The scalar product � : a coerces the test a into an assertion (� does not restrict
it); the scalar product P : a is therefore equal to a conjunction between the
assertion P and the test a.

We have used Isabelle’s locales to implement modules over KAT. Hoare triples
can then be defined as usual.

definition hoare-triple :: ′b ⇒ ′a ⇒ ′b ⇒ bool ({|-|} - {|-|} [54 ,54 ,54 ] 53 ) where
{|P |} p {|Q |} ≡ P :: p �L Q

As : is a reserved symbol in Isabelle, we use :: for the scalar product. The index L
refers to the Boolean algebra of assertions and the order �L is the order on this
Boolean algebra. As is well known, the Hoare rules excluding assignment can
now be derived as theorems in these modules more or less automatically. Apply-
ing the resulting Hoare-style calculus—which is purely equational—for program
verification requires us to provide more fine-grained syntax for assertions and
refinement statements and adding some form of assignment axiom.

We obtain this first-order syntax once more by specialising KAT to SKAT,
and by interpreting the SKAT expressions in the Boolean algebra of propositions
or states. As usual, program states are represented as functions from variables
to values. Assertions correspond to sets of states. Hence the Boolean algebra L
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is instantiated as a powerset algebra over states. Similar implementations are
already available in theorem provers such as Isabelle, HOL and Coq [24,26,8,23],
but they have not been implemented as simple instantiations of more general
algebraic structures. Assignment statements are translated in Gordon style [8]
into forward predicate transformers which map assertions (preconditions) to as-
sertions (postconditions).

This is, of course, compatible with the module-based approach. To implement
the scalar product of our KAT module, we begin by writing an evaluation func-
tion which, given an interpretation and a SKAT expression, returns the forward
predicate transformer for that expression.

fun eval-skat-expr ::
( ′a::ranked-alphabet , ′b) interp ⇒ ′a skat-expr ⇒ ′b mems ⇒ ′b mems
where
eval-skat-expr D (SKAssign x t) Δ = assigns D x t Δ

| eval-skat-expr D (SKBool a) Δ = filter-set (eval-bexpr D a) Δ
| eval-skat-expr D (p � q) Δ = eval-skat-expr D q (eval-skat-expr D p Δ)
| eval-skat-expr D (p ⊕ q) Δ = eval-skat-expr D p Δ ∪ eval-skat-expr D q Δ
| eval-skat-expr D (SKStar p) Δ = (

⋃
n. iter n (eval-skat-expr D p) Δ)

| eval-skat-expr D SKOne Δ = Δ
| eval-skat-expr D SKZero Δ = {}

We can now prove that if two SKAT expressions are equivalent according to
the congruence defined in Section 3, then they represent the same predicate
transformer. The proof is by induction. This property allows us to lift the eval-
skat-expr function to the quotient algebra.

theorem skat-cong-eval :
skat-cong p q =⇒ ∀Δ. eval-skat-expr D p Δ = eval-skat-expr D q Δ

lift-definition eval ::
( ′a::ranked-alphabet , ′b) interp ⇒ ′a skat ⇒ ′b mems ⇒ ′b mems
is eval-skat-expr

Using this lifting, we can reason algebraically in instances of SKAT that have
been generated by the evaluation function. This enables us to derive an assign-
ment rule for forward reasoning in Hoare logic from the SKAT axioms.

lemma hoare-assignment : P [x /t ] ⊆ Q =⇒ {|P |} x := t {|Q |}

We could equally derive a forward assignment rule P {|x := s}| P [x/s], but this
seems less useful in practice.

To facilitate automated reasoning we have added a notion of loop invariant as
syntactic sugar for while loops. Invariants are assertions used by the tactic that
generates verification conditions.

WHILE b INVARIANT i DO p WEND = (bp)∗b.

We have also derived a refined while rule which uses the loop invariant.
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lemma hoare-while-inv :
assumes b-test : b ∈ carrier tests
and Pi : P ⊆ i and iQ : i ∩ (UNIV :: !b) ⊆ Q
and inv-loop: {|i ∩ (UNIV :: b)|} p {|i |}
shows {|P |} WHILE b INVARIANT i DO p WEND {|Q |}

This particular rule has been instantiated to the powerset algebra of states, but
it could as well have been defined abstractly.

Isabelle already provides a package for Hoare logic [26]. Since there is one
Hoare rule per programming construct, it uses a tactic to blast away the control
structure of programs.We have implemented a similar tactic for our SKAT-based
implementation, called hoare-auto.

7 Verification Examples

We have applied our variant of Hoare logic to prove the partial correctness of
some simple algorithms. Instead of applying each rule manually we use our tactic
hoare-auto to make their verification with sledgehammer almost fully automatic.
More complex examples would certainly require more user interaction or more
sophisticated tactics to discharge the generated proof obligations.

lemma euclids-algorithm:
{|{mem. mem 0 = x ∧ mem 1 = y}|}
WHILE !(pred (EQ (Var 1 ) (NAT 0 )))
INVARIANT {mem. gcd (mem 0 ) (mem 1 ) = gcd x y}
DO
2 := Var 1 ;
1 := MOD (Var 0 ) (Var 1 );
0 := Var 2

WEND
{|{mem. mem 0 = gcd x y}|}
by hoare-auto (metis gcd-red-nat)

lemma factorial :
{|{mem. mem 0 = x}|}
1 := NAT 1 ;
(WHILE !(pred (EQ (Var 0 ) (NAT 0 )))
INVARIANT {mem. fact x = mem 1 ∗ fact (mem 0 )}
DO
1 := MULT (Var 1 ) (Var 0 ); 0 := MINUS (Var 0 ) (NAT 1 )

WEND)
{|{mem. mem 1 = fact x}|}
by hoare-auto (metis fact-reduce-nat)

Finally, our algebraic approach is expressive enough for deriving further program
transformation or refinement rules, which would only be admissible in Hoare
logic. As an example we provide proofs of two simple Hoare-style inference rules.
Program refinement or transformation rules could be derived in a similar way.



210 A. Armstrong, G. Struth, and T. Weber

lemma derived-rule1 :
assumes {P1 ,P2 ,Q1 ,Q2} ⊆ carrier A and p ∈ carrier K
and {|P1 |} p {|Q1 |} and {|P2 |} p {|Q2 |}
shows {|P1 � P2 |} p {|Q1 � Q2 |}
using assms
apply (auto simp add : hoare-triple-def assms, subst A.bin-glb-var)
by (metis A.absorb1 A.bin-lub-var A.meet-closed A.meet-comm mod-closed mod-join)+

lemma derived-rule2 :
assumes {P ,Q ,R} ⊆ carrier A and p ∈ carrier K and P :: p = (� :: p) � P
and {|Q |} p {|R|}
shows {|P � Q |} p {|P � R|}
by (insert assms) (smt derived-rule1 derived-rule2 insert-subset)

Only the derivation of the first rule is not fully automatic. The side condition
P :: p = (� :: p)
P expresses the fact that if assertion P holds before execution
of program p, which is the left-hand side of the equation, then it also holds after
p is executed. The expression � :: p represents the assertion that holds after p
is executed without any input restriction.

These examples demonstrate the benefits of the algebraic approach in defining
syntax, deriving domain-specific inference rules and linking with more refined
models and semantics of programs with exceptional ease. While, in the context
of verification, these tasks belong more or less to the metalevel, they are part of
actual correctness proofs in program construction, transformation or refinement.
We believe that this will be the most important domain for future applications.

8 Conclusion

We have implemented schematic Kleene algebra with tests in Isabelle/HOL,
and used it to formalise a complex flowchart equivalence proof by Angus and
Kozen. Our proof is significantly shorter than a previous formalisation in a cus-
tom theorem prover for Kleene algebra with tests. Our proof follows Angus and
Kozen’s manual proof almost exactly and translates it essentially line-by-line
into Isabelle, despite some weaknesses in proof automation which sometimes
forced us to reason at quite a low level. We have also extended SKAT to support
the verification of simple algorithms in a Hoare-logic style. Our approach pro-
vides a seamless bridge between our abstract algebraic structures and concrete
programs. We have tested our approach on a few simple verification examples.
Beyond that, we have derived additional Hoare-style rules and tactics for proof
automation abstractly in the algebraic setting. These can be instantiated to dif-
ferent semantics and application domains. In the context of verification the main
aplications of algebra seem to be at this meta-level. The situation is different
when developing programs from specifications or proving program equivalence,
as the flowchart scheme tranformation shows. In this context, algebra can play
an essential role in concrete proofs.



Program Analysis and Verification Based on Kleene Algebra in Isabelle/HOL 211

Our Isabelle implementation sheds some light on the role of Kleene algebra
for program development and verification. Given libraries for the basic algebraic
structures and important models, we could prototype tools for flowchart equiv-
alence and Hoare-style verification proofs with little effort and great flexibility.
Moving, e.g., from a partial to a total correctness environment would require mi-
nor changes to the algebra (and of course a termination checker). We doubt that
a bottom-up semantic approach would be equally simple and flexible. Isabelle
turned out to be very well suited for our study. Hierarchies of algebras and their
models could be implemented using type classes and locales, verification tasks
were well supported by tactics and automated theorem provers. The automation
of textbook algebraic proofs is usually very high. Algebraic proof obligations
generated from verification conditions, however, turned out to be more complex,
cf. our flowchart example. Such proofs can provide valuable benchmarks for de-
velopers of theorem provers, decision procedures and domain specific solvers.
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