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Abstract. We describe a comprehensive HOL mechanisation of the theory of
ordinal numbers, focusing on the basic arithmetic operations. Mechanised results
include the existence of fixpoints such as ε0, the existence of normal forms, and
the validation of algorithms used in the ACL2 theorem-proving system.

1 Introduction

The ordinal numbers are an important foundational type in axiomatic set theory; used
there, for example, in the definition of the von Neumann hierarchy and the cardinal
numbers. In logic, ordinal numbers also provide an important characterisation of the
strength of various logical systems.

Unfortunately, the typed logic implemented in the various HOL systems (including
Isabelle/HOL) is not strong enough to define a type for all possible ordinal values (a
proper class in a set theory like NBG). It turns out, however, that for any fixed n ∈ N,
we can model all ordinals of cardinality ℵn. The user is thus able to choose an ordinal
domain of sufficient size for their purposes.

Our approach is to model ordinals as quotients of wellorders with respect to wellorder
isomorphism. This approach has not been mechanised before. Within HOL, every
wellorder has some underlying domain (represented as a polymorphic type argument).
The resulting ordinals are also parameterised by a type argument, indirectly encoding
the limit of the type. For example, the type num ordinal captures only the countable
ordinals.

One important use of ordinal numbers occurs in the ACL2 theorem-proving system,
which uses ordinal numbers as part of its termination reasoning for recursive definitions.
Recently, Manolios and Vroon [6] improved ACL2’s representation of ordinal numbers,
and implemented new, more efficient algorithms for manipulating those numbers. Their
work mechanised proofs of the correspondence between the old and new notational
systems, and also proved the expected arithmetic properties. However, ACL2 has no
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notation-independent theory of the ordinals available to it, and so no way to model the
set-theoretic ordinals. In this paper, we provide a sufficiently rich model, and are thus
able to validate Manolios and Vroon’s algorithms.

Contribution. This work makes a particular contribution in

– its definition of ordinal supremum,
– the fact that the mechanised notion of ordinal is polymorphic in an underlying

universe type (allowing ordinals of large cardinality), and
– its mechanised validation of the ACL2 algorithms for ordinal arithmetic

HOL4 Notation and Theorems. All statements appearing with a turnstile (�) are
HOL4 theorems, automatically pretty-printed to LATEX. Notation specific to this paper
is explained as it is introduced. Otherwise, HOL4’s syntax is a generally pleasant com-
bination of quantifiers (∀, ∃) and functional programming.

The option type α option, often used to encode partial functions, includes values
NONE, and SOME x for all possible values x of type α. Hilbert choice is available
through the epsilon notation. Read εx .P x as “the x that satisfies (predicate) P ”.

Sets and characteristic functions (of type α→ bool for element type α) are identified.
Sets support standard operations such as union (∪), and element removal (s DELETE e).
The term BIGUNION s denotes the union of a set of sets. We write f ‘ s for the image
of the set s under function f . BIJ f s1 s2 means that function f is a bijection between
sets s1 and s2. The universal set over type α is written U(:α). Cardinality reasoning is
expressed with s � t (“there is an injection from s to t”), and s ≈ t (“there is a bijection
between s and t”).

2 Wellorders

Definition 1. We define what it is for a relation R to be a wellorder:

wellorderR ⇐⇒
wellfounded(strictR) ∧
linear_orderR (domainR ∪ rangeR) ∧
reflexiveR (domainR ∪ rangeR)

As there is at least one value satisfying this definition (the empty set will do), we use
HOL’s standard type definition mechanism to define a new type (family) αwellorder
that captures all of the possible wellorders over values drawn from arbitrary types α.
The critical relations over wellorders are order-isomorphism and the relation that orders
them linearly. The first is straightforward.

Definition 2. Two wellorders are isomorphic if there is a bijective function (conjuncts
two and three below) between their respective fields (conjunct one) that preserves the
ordering (conjunct four):
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w1 ≈w w2 ⇐⇒
∃f .
(∀x . x ∈ fldw1 ⇒ f x ∈ fldw2) ∧
(∀x1 x2.
x1 ∈ fldw1 ∧ x2 ∈ fldw1 ⇒
(f x1= f x2 ⇐⇒ x1= x2)) ∧

(∀y. y ∈ fldw2 ⇒ ∃x . x ∈ fldw1 ∧ f x = y) ∧
∀x y. (x , y) ∈ w1

�= ⇒ (f x , f y) ∈ w2
�=

(We are using syntax overloading to simplify notation: the formula (x , y) ∈ w1
�=

means that the pair (x , y) is a strict inequality in the relation (a set of pairs) that
represents the wellorder value w1. Alternatively, read (x , y) ∈ w1

�= as “x is strictly
less than y in w1”. Read fldw as the union of the domain and range of the relation
representing w .)

The definition of the ordering relation on wellorders depends on the wobound function,
which truncates a wellorder so that it includes only those elements below a particular
point. There are two important theorems about wobound:

� (x , y) ∈ (wobound z w)�= ⇐⇒
(x , z ) ∈ w �= ∧ (y, z ) ∈ w �= ∧ (x , y) ∈ w �=

� (x , y) ∈ w �= ⇒ woboundx (wobound y w)=woboundx w

Definition 3. The ordering relation for wellorders (written w1 ≺w w2) can then be de-
fined

w1 ≺w w2 ⇐⇒ ∃x . x ∈ fldw2 ∧ w1 ≈w woboundx w2

Transitivity of ≺w follows from the transitivity of order-isomorphism and the second
result about wobound above. Well-foundedness for ≺w follows easily from the well-
foundedness of the underlying relation. Well-foundedness is also the basis for the proof
that ≺w is irreflexive. Finally, we show that ≺w is trichotomous:

Theorem 1.

� w1 ≺w w2 ∨ w1 ≈w w2 ∨ w2 ≺w w1

The proof of this result is the most involved of this section.

Proof. Let w1 and w2 be wellorders over α and β respectively. We define f of type
α→β option by well-founded recursion. The value of f x is SOME y when y is the
least element in w2 not in the image of f applied to all elements less than x. If there is
no such y, then f x =NONE. If there is an x such that f x =NONE, then w2 is less than
w1, and the least value x where f x =NONE is the bound needed to demonstrate this.
If f never has value NONE, then w2 is at least as big as w1. If the image of f on the
elements of w1 is all the elements of w2, then f is the bijection we need to demonstrate
order-isomorphism of w1 and w2. Otherwise, there is an element of w2 not in the image
of f . Take the least such element to be the bound demonstrating w1 ≺w w2. ��
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3 Constructing the Ordinals

With ≈w an equivalence relation, we can quotient all possible wellorders over the type
α, giving us a natural type of ordinals overα. However, if α is a finite type, then there are
only finitely many ordinals over this type. Clearly, all the interesting ordinals are those
over infinite types, and so our approach is to make the new type α ordinal a quotient
over the wellorders over the sum type α+ num. Henceforth, this type is abbreviated as
α inf.

This construction means that the distinct types unit ordinal, bool ordinal and num
ordinal will all be isomorphic (they will all be copies of the countable ordinals). On the
other hand, the type (num→ bool) ordinal is large enough to include the first uncount-
able ordinal, ω1.

When we quotient, and create the new type α ordinal, the (≺w) relation lifts to
the new type, defining (<). This relation inherits the irreflexivity, transitivity, well-
foundedness and trichotomy results of (≺w). Using these, it is trivial to show that the
ordinals themselves form a well-order.

Definition 4. Well-foundedness also allows the definition of a “least” operator for or-
dinals:

(oleast) (P : α ordinal→ bool)=
ε(x : α ordinal).P x ∧ ∀(y : α ordinal). y < x ⇒ ¬P y

This is well-defined as long as the predicate (or set) P is not everywhere false (the
empty set).

Syntactically, we make (oleast) a binder, allowing us to write terms such as
(oleast x . y < x ) (the definition of the successor of y , written y+), and (oleast x . T)
(the zero-ordinal).

This copy of the natural numbers is a good starting point. It is straightforward to
inject HOL’s natural numbers with a new constant: & :num→α ordinal, which is also
the basis for ordinal numerals (0, 1, 2 etc).

Definition 5. Write predsα to denote the set of all predecessors of an ordinal.

Definition 6. Define the notion of a set being downward closed:

� downward_closeds ⇐⇒ ∀a b. a ∈ s ∧ b< a ⇒ b ∈ s

Von Neumann famously characterised the ordinal numbers as those sets equal to their
own predecessors. HOL’s type system doesn’t allow this: instead we must replace
“equal” with the existence of a bijection:

Theorem 2. The preds function forms a bijection between all possible ordinals and all
but one of the downward closed sets of ordinals. The one omission is the universal set.

� BIJ preds U(:α ordinal) (downward_closed DELETE U(:α ordinal))
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3.1 Cardinality Arguments and Supremum

We want a constant (sup : (α ordinal→ bool)→α ordinal), that takes a set of ordinals
as an argument and returns their supremum. In our setting, this function can’t be well-
defined on all possible arguments: when passed the universal set of all α-ordinals, there
is no possible value to return. Nonetheless, we can characterise those situations when
sup s does have a reasonable value. First, the definition:

Definition 7. The supremum of a set is the least element not in the set’s collective
predecessors.

sup oset = oleastα. α /∈ BIGUNION (preds ‘ oset)

To characterise the reasonable arguments to sup, we need a definition and two further
theorems.

Definition 8. Let allOrds be the wellorder of all the α-ordinals (ordered by (<)).

(allOrds : α ordinal wellorder)=mkWO {(x , y) | x = y ∨ x < y}
(The constant mkWO lifts a relation into the type αwellorder. It is necessary to sepa-
rately show that the relation satisfies the wellorder predicate from Definition 1.)

Theorem 3. Any wellorder w over the type α inf is order-isomorphic to the segment of
allOrds below the element of α ordinal to which the quotienting (mkOrdinal) maps w.

� (w : α inf wellorder)≈w

wobound (mkOrdinalw) (allOrds : α ordinal wellorder)

Note how w is a wellorder over α inf, but that the right-hand side of the isomorphism is
a wellorder over all possible ordinals over α inf.

Proof. By contradiction. Then, by well-foundedness, there is a least w where the iso-
morphism doesn’t hold. If the two wellorders are not order-isomorphic, one is smaller
than the other, by trichotomy of (≺w). If w is smaller, there is a bound b (an ordinal) in
allOrds, smaller still than mkOrdinalw , such that

w ≈w woboundb allOrds

There is a wellorder bw that is a member of b’s equivalence class. As (≺w) is reflected
by (<), we have bw ≺w w . Because w was least, bw must be order-isomorphic to
woboundb allOrds. So, bw and w are order-isomorphic to the same ordinal (wobound
b allOrds), but bw ≺w w , contradicting the irreflexivity of (≺w). The other direction
(when w is larger) is similar. ��
This result means that the predecessors of any given α ordinal must be equinumerous
to a wellorder over α inf.

Corollary 1. The predecessors of any ordinal have cardinality no greater than that of
(all of) the underlying set, α inf.

� predsa � U(:α inf)
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Theorem 4. The cardinality of all of the type α ordinal is strictly greater than that of
the type α inf.

� U(:α inf) ≺ U(:α ordinal)

Proof. By contradiction. If U(:α ordinal) � U(:α inf), then the injection from left-to-
right copies the wellorder allOrds into a wellorder wo of type α inf wellorder. This gives
allOrds≈w wo. By Theorem 3, this wo is also order-isomorphic to wobound (mkOrdinal
wo) allOrds. Transitivity of (≈w) then gives us that allOrds is less than itself, which is
impossible. ��
These results then combine to give us the important characterising theorem about sup:

Theorem 5. As long as the cardinality of the set s is not greater than that of U(:α inf),
an arbitrary ordinal α is less than that set’s supremum iff there is an element of s that
is bigger than α.

� s � U(:α inf) ⇒
∀α. α< sup s ⇐⇒ ∃β. β ∈ s ∧ α<β

Proof. sup takes the union of all the predecessors of all the elements of s (Definition 7).
Let κ be the cardinality of U(:α inf). By Corollary 1 above, the predecessors of each
element of set s have that cardinality. If s has no more than the same cardinality, then
from the fact that κ×κ ≈ κ and Theorem 3 above, the union calculated in the definition
of sup cannot be the universal set of all possible ordinals. There must then be a least
ordinal not within that union, and so sup s will be well-defined.

Moreover, the set of all the combined predecessors (call it ps) is also downward
closed, and so, by Theorem 2, there must be an ordinal α whose predecessors are ex-
actly ps . So, sup s =α, and it is easy to show that the theorem’s characterisation of its
predecessors is correct. ��
An easy corollary is that there is no maximal ordinal. For any ordinal α, we observe
that s = predsα ∪ {α} is downward closed and not equal to U(:α ordinal). Then, by
Theorem 2 there must be a β > α, with s = predsβ.

3.2 Limit Ordinals

Definition 9. With sup defined, it is possible to define ω. This, the first limit ordinal, is
the supremum of the copy of the natural numbers that injects into the ordinals via (&).

(ω : α ordinal)= sup {((&i) :α ordinal) | T}
Definition 10. We also define a constant omax, which returns the maximal element of a
set of ordinals, if any. The option type is used to encode the partiality of this function, so
the type of omax is (α ordinal→ bool)→α ordinal option. If omax (predsa) is NONE,
we abbreviate this condition as islimit a.

Theorem 6. One simple consequence of these definitions is that every natural number
is less than ω, and that only the natural numbers are less than ω:

� (a : α ordinal)< (ω : α ordinal) ⇐⇒ ∃(n : num). a =((&n) :α ordinal)
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4 Arithmetic

Theorem 7. With access to a total well-founded relation (<), we have always been
able to define functions by well-founded recursion. However, we can now recast this in
a more palatable form, one that makes the ordinals look a little like an algebraic type
generated by constructors 0, x+ and sup s (with s not including its own upper bound):

� ∀(z : β) (sf : α ordinal→β→β) (lf : α ordinal→ (β→ bool)→β).
∃(h : α ordinal→β).
h (0 : α ordinal)= z ∧ (∀(a : α ordinal). h a+ = sf a (h a)) ∧
∀(a : α ordinal).
(0 : α ordinal)< a ∧ islimita ⇒ h a = lf a ((h ‘ (predsa)) :β→ bool)

This recursion theorem allows the user to specify three cases: z , a value in the desired
range (β) for zero; sf , a function for constructing a result when h is passed a successor;
and lf when the argument to h is a limit ordinal. The lf function is given the original
limit ordinal a as well as the set of all the values given by recursive calls of h on a’s
predecessors.

The recursion theorem is all we need to define ordinal addition, multiplication and
exponentiation. Working out the details for addition (a + b): we will recurse on b, and
let z be the value a, sf be (λx r . r+), and lf be (λx rs . sup rs). This gives

Definition 11. Ordinal addition:

a +0=a
a + b+ =(a + b)+

0< b ∧ islimit b ⇒ a + b= sup ((+) a ‘ (preds b))

The definitions of multiplication and exponentiation are as straightforward. For
example:

Definition 12. Ordinal exponentiation:

a0 =1

ab+

= ab · a
0< b ∧ islimit b ⇒ ab = sup ((**) a ‘ (preds b))

((**) a) is equivalent to (λb. ab); the pretty-printing obscures this because the under-
lying constant prints as (**) when it doesn’t have two arguments.

Reasoning about these operations is made easier by the observation that all three are
continuous (in their second arguments). For addition, the continuity result is

� s � U(:α inf) ∧ s �= ∅ ⇒ a + sup s = sup ((+) a ‘ s)

Rewriting with these theorems allows operators such as (+) to move under sup ar-
guments, where further simplification is usually possible. For example, the proofs (by
induction) that addition and multiplication are associative are greatly simplified by their
continuity theorems.
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4.1 Division and Modulus

The various arithmetic operations on ordinal numbers do not satisfy many of the typical
properties of number systems. For example, addition and multiplication are not com-
mutative. However, they both enjoy cancellation properties for common arguments on
the left:

� α+ β=α+ γ ⇐⇒ β= γ

� α ·β=α · γ ⇐⇒ α=0 ∨ β= γ

These then lead to the existence of unique quotients and remainders.

Theorem 8.

� 0< b ⇒ a = b · (a / b)+ a mod b ∧ a mod b < b

� 0< b ∧ a = b · q + r ∧ r < b ⇒ q = a / b ∧ r = a mod b

Proof. The existence of the division and modulus constants is shown by taking the
quotient d to be sup {c | b · c ≤ a}. (The supremum is well-defined because the
set is bounded above.) Then b · d ≤ a follows from the continuity of multiplica-
tion. The existence of the remainder follows from an earlier result that � a ≤
b ⇐⇒ ∃c. b= a + c.

The uniqueness result proceeds by first showing the uniqueness of the quotient
(uniqueness of the modulus then follows from additive cancellation). If there is an-
other quotient q′ not equal to a / b (write q), then it is either larger or smaller. If larger,
then q′ = q + δ, for some non-zero δ, and a = b(q + δ) + r′, where r′ is the remainder
accompanying q′. Then a = bq + bδ + r, and cancellation and associativity then give
us that bδ + r = a mod b. But 0 < δ, making a mod b too large. The other case is
similar. ��

4.2 Cantor Normal Forms

In a discrete domain such as the ordinals, division approximates multiplication’s in-
verse, leaving a remainder. Analogously, with exponentiation we can construct a dis-
crete logarithm. If working with base b, and e is the largest value such that be is under
the target a, then we can “drop down” to the level of multiplication and find how many
whole copies of be fit into a, giving us a c such that be · c ≤ a. Then we can repeat the
process with the remainder.

Done over the natural numbers with b = 10, we derive a’s decimal representation
(strictly, the non-zero coefficients along with their indices). Over all ordinals, with b =
ω, we derive the Cantor Normal Form of a.

Definition 13. The sequence of exponents and coefficients we derive in the above con-
struction is the same as the information needed to specify a polynomial over a sin-
gle variable. We define eval_poly to evaluate such sequences with respect to arbitrary
bases:

eval_poly b [ ]=0
eval_poly b ((c, e) :: t)= be · c+ eval_poly b t
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Definition 14. We define is_polyform to capture well-formed “polynomial” sequences,
requiring that the exponents are decreasing, and that the coefficients are always strictly
between 0 and b:

is_polyformb [ ] ⇐⇒ T
is_polyformb [(c, e)] ⇐⇒ 0< c ∧ c< b
is_polyformb ((c1, e1) :: (c2, e2) :: t) ⇐⇒
0< c1 ∧ c1 < b ∧ e2 < e1 ∧ is_polyform b ((c2, e2) :: t)

Then, just as with division, we are able to prove that “polynomial forms” always exist,
and that they are unique.

Theorem 9. For all ordinals a, and bases b greater than 1, it is possible to express a
as the sum of a sequence of pairs of coefficients and powers-of-b. In the sequence each
successive exponent is smaller than its predecessors.

� 1< b ⇒ ∃ces . is_polyformb ces ∧ a = eval_polyb ces

Define the new constant polyform to return such a sequence when given parameters b
and a (if b< 2, allow that the function has no definite value). We show that all possible
sequences with the desired property have polyform’s value:

� 1< b ∧ is_polyform b ces ∧ a = eval_polyb ces ⇒
polyform b a = ces

Proof. Both proofs are by induction on the argument a. The first proof is similar to the
proof of the existence of a quotient: the leading exponent is taken to be sup {e | be ≤
a}. After the coefficient c is calculated by division, and be · c subtracted out, the re-
maining ordinal is smaller and the inductive hypothesis applies. The uniqueness proof
hinges on the following important lemma:

� 1< b ∧ is_polyform b ((c, e) :: t) ⇒ eval_polyb t < be

4.3 Fixpoints and ε0

A function (f : α ordinal→α ordinal) can be iterated any number of times from a
starting value x. The resulting set {x, f(x), f(f(x)), . . . , fn(x), . . .} is clearly only
countably infinite, and so will always have a supremum. Under certain conditions, that
supremum will also be a fixpoint for f .

Theorem 10. If f is non-decreasing and continuous, then it has a fixpoint. In fact, for
any lower bound a, the function f has a fixpoint at least as large as a.

� (∀s . s �= ∅ ∧ s � U(:α inf) ⇒ f (sup s)= sup (f ‘ s)) ∧
(∀x . x ≤ f x ) ⇒
∀a. ∃b. a ≤ b ∧ f b= b
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Proof. Let s be the set above (all the f -iterates of a). Take the fixpoint to be the
supremum of s . We have that f (sup s)= sup (f ‘ s), and are required to show that
sup (f ‘ s)= sup s . This follows straightforwardly because f is non-decreasing. ��
Our arithmetic operations (addition, multiplication and exponentiation) are all contin-
uous in their right arguments and non-decreasing. So, for example, the first fixpoint of
((·) 2) is 0; the next is ω, and the third is ω · 2. The first non-zero fixpoint of ((·)ω) is
ωω . However, it turns out that the first fixpoint of ((**)ω) is not expressible with any of
the notation we have developed thus far.

Definition 15. Let ε0 be the least fixpoint of ((**)ω):

ε0 = oleast x .ωx = x

This is well-defined because of Theorem 10, giving us the following characterisations
of ε0:

� ωε0 = ε0

� a < ε0 ⇒ a <ωa ∧ ωa < ε0

Theorem 11. As suggested, the arithmetic operations are all closed under ε0:

� a < ε0 ∧ b< ε0 ⇒ a + b < ε0 � a < ε0 ∧ b< ε0 ⇒ a · b< ε0

� a < ε0 ∧ b< ε0 ⇒ ab < ε0

5 Uncountable Ordinals

Definition 16. The “countable ordinals” are those with countably many predecessors.
Write countableOrda for an a with this property.

An immediate consequence of Theorem 4 is that there are uncountably many countable
ordinals. To guarantee even larger ordinals, we must instantiate the α type-parameter
with known-to-be-larger types:

Definition 17. The α ucinf type has at least the cardinality of 2ℵ0 , and is thus at least
as big as ℵ1. The α ucord type contains ordinals that are quotients of wellorders over
α ucinf:

α ucinf = (α+(num→ bool)) inf

α ucord = (α+(num→ bool)) ordinal

Note that these abbreviations mean that every α ucord is also an ordinal. Every theorem
about values of type α ordinal applies to values of type α ucord.

Lemma 1. The countable ordinals are not larger than the universe of α ucinf (which
contains U(:num→ bool) as a subset).

� {a | countableOrda} � U(:α ucinf)
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Proof. By contradiction. Then U(:α ucinf) injects into the countable ordinals via some
f , but there is no bijection between the two. Let a = sup (f ‘U(:α ucinf)). (The supre-
mum is well-defined because the image cannot have greater cardinality than U
(:α ucinf).) We now consider whether or not a is a countable ordinal.

If so, then we show that there is an injection from U(:α ucinf) into the (countable)
predecessors of a, which gives an immediate contradiction. If the image of f doesn’t
includes the supremum, the injection is f itself. If there is a u such that f u = a, then f
is an injection from U(:α ucinf)DELETEu into the predecessors, and deleting a single
element from an infinite set doesn’t change its cardinality, so the contradiction can still
be obtained.

If a is not a countable ordinal, then all of the countable ordinals must be among its
predecessors. So, {b | countableOrdb} � predsa. But we also have that preds
a � U(:α ucinf), giving a contradiction by the transitivity of (�). ��
Definition 18.

(ω1 : α ucord)= sup {a | countableOrda}

The supremum is well-defined because of Lemma 1 above.

Theorem 12. The ordinal ω1 is the first uncountable ordinal:

� x <ω1 ⇐⇒ countableOrdx

(The irreflexivity of (<) means that ω1 cannot itself be countable.)

6 Validating Algorithms on ACL2’s Ordinals

The ACL2 system models ordinals up to ε0 with a representation based on Cantor Nor-
mal Form. ACL2’s manipulations of those values are defined by recursive functions
over that syntax. ACL2 then takes as axiomatic that these recursive functions are cor-
rect; that, for example, its less-than relation on these values really does correspond to
(<).

In isolation, these axiomatic assertions can only be checked manually. However,
thanks to work started by Gordon et al. [2], much of the ACL2 axiomatic system has
been embedded in HOL4. More recently, the “ACL2 in HOL” project was completed by
Kaufmann and Slind [5], who showed that ACL2’s less-than relation is well-founded,
justifying ACL2’s recursion and induction principles. Kaufmann and Slind note in
passing:

. . . we are not ascribing any semantics at all to the notation; a separate proof
would be needed to show that indeed the following definitions do correspond
to the ordinals up to ε0.

A little earlier, Manolios and Vroon [6] improved ACL’s representation of the ordinals-
up-to-ε0, and developed efficient arithmetic algorithms for that representation. They
noted:
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Note that these proofs are not mechanically verified. To do so would require
using a theorem prover that can reason both about ACL2 and set theory.

HOL4 can reason about ACL2, thanks to the embedding above, and can now also reason
about ordinals in a way that captures their nature as canonical wellorders. Thus we are
now in a position to do the mechanised proofs that could not be done in [5,6].

Kaufmann and Slind’s HOL4 theory file defines the ACL2 ordinals to be

osyntax = End of num | Plus of osyntax ⇒ num ⇒ osyntax

That is, osyntax is an algebraic type with two constructors: End takes a natural number
argument, and Plus takes a number and two osyntax values as arguments.

Definition 19. The osyntax type can be given a semantics in α ordinal:

�End n�=&n

�Plus e c t�=ω�e� ·&c+ �t�

Kaufmann and Slind define functions oless and is_ord, with the following equations for
the interesting cases:

oless (Plus e1 k1 t1) (Plus e2 k2 t2) ⇐⇒
if oless e1 e2 thenT
elseif e1 = e2 ∧ k1 < k2 thenT
elseif e1 = e2 ∧ k1 = k2 ∧ oless t1 t2 thenT
elseF

is_ord (Plus e k t) ⇐⇒
is_ord e ∧ e �= End 0 ∧ 0< k ∧ is_ord t ∧
oless (expt t) e

The is_ord function is the analogue of is_polyform from Definition 14, capturing whether
or not the notation is well-formed (non-zero coefficients and decreasing exponents).
(The expt function returns e when applied to Plus e c t , and End 0 otherwise.)

Theorem 13. The oless function is correct on well-formed osyntax values:

� is_ord x ∧ is_ord y ⇒ (oless x y ⇐⇒ �x �< �y�)

And, ultimately:

Theorem 14. The model function (�_�) is a bijection from well-formed osyntax values
into the ordinals less than ε0.

� BIJ (λx . �x �) {x | is_ord x} {a | a < ε0}

6.1 Arithmetic

The ACL2 definitions of addition and multiplication over osyntax are correct:
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Theorem 15.

� is_ord x ∧ is_ord y ⇒ �ord_add x y�= �x �+ �y�

� is_ord x ∧ is_ord y ⇒ �ord_mult x y�= �x � · �y�

Manolios and Vroon [6] note that ord_mult is very inefficient, and prove a version
with better complexity, based on new constants pmult, c1 and c2. In order to embed
it in ACL2, Manolios and Vroon have already mechanically proved pmult equivalent to
ord_mult. Nonetheless, we also proved a version of their Theorem 10:

Theorem 16 (after Manolios and Vroon). The efficient pmult algorithm correctly cal-
culates ordinal multiplication. (The natural number parameter n can be set to zero
initially.)

� is_orda ∧ is_ord b ∧ n ≤ c1 (expt a) (expt b) ⇒ �pmult a b n�= �a� · �b�

7 Another Model

Sections 2 and 3 showed how to construct a type α ordinal using wellorders. In this
section, we describe an alternative, earlier construction of ordinals that starts with the
infinitely-branching tree datatype shown below.1 The goal is to construct a wellordered
type ordinal that has upper bounds for all countable sets; from this foundation, an Is-
abelle formalization by the second author [4] develops ordinal arithmetic as described
in Section 4.

preordinal = Zero | StrictLim(num → preordinal)

We define the subterm relation � as the least transitive relation satisfying f(x) �
StrictLim(f) for all f, x. The wellfoundedness of � follows from the datatype induction
rule for preordinal. However, � is not a wellorder because it is not linear. To construct
a wellorder, we will need to quotient preordinal by a suitable equivalence relation.

We define relations � and ≺ as the smallest relations satisfying the following rules.
Intuitively, x � y iff (�) relates every subterm of x to some subterm of y. We then
define x ≈ y iff x � y ∧ y � x.

(∀x. x� y ⇒ x ≺ z) ⇒ y � z

x � y ∧ y � z ⇒ x ≺ z

Wellfounded inductions (using �) show that � is reflexive and transitive. It directly
follows that ≈ is an equivalence relation. We can similarly prove further transitivity
rules for various combinations of ≺ and �. Finally we can prove the order trichotomy
rule x ≺ y ∨ y ≺ x ∨ x ≈ y by nested inductions on x and y.

We then define type ordinal as a quotient preordinal/≈. The various transitivity rules
show that ≺ and � respect ≈, so we can lift them to relations < and ≤ on the quotient
type ordinal. The order trichotomy rule implies that ordinal is wellordered by <. Fi-
nally, we can construct a (strict) upper bound for any countably infinite set by lifting
the constructor function StrictLim to type ordinal.

1 If we replaced num with α inf in this data type, we might (this has not been pursued) then
capture uncountable ordinals as in Section 5. Similarly, it is also plausible that a supremum
constant akin to that in the model of Sections 2 and 3 should be definable for this type.
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8 Conclusion

The HOL4 theory of ordinals demonstrates that ordinals can be cleanly modelled as a
quotient of wellorders, that this approach supports ordinals of large cardinalities, and that
supremum can be modelled as a function taking a set as an argument. All these contribu-
tions are novel with this work. In addition, the utility of the approach has been demon-
strated by validating practically important algorithms in the ACL2 theorem-prover.

Related Work. There is relatively little published work on mechanisations of ordinals
within a non-set-theoretic setting. One early development is John Harrison’s
wellorder library [3]. Originally developed for HOL88, this remains part of the
HOL Light library. This theory picks out certain wellorders to be ordinals using Hilbert-
choice, and proves some consequences of the Axiom of Choice, such as Zorn’s Lemma.
It does not include any ordinal arithmetic.

In similar vein, there is a large theory of ordinals and cardinals behind Traytel
et al. [7]. This work is available at Isabelle’s Archive of Formal Proofs. It defines
wellorders and develops a number of important facts about cardinalities. It does not
quotient its wellorder type, and emulates ordinal arithmetic “synthetically” (e.g., addi-
tion as wellorder concatenation). This work does not define ordinal multiplication nor
exponentiation.

Finally, as in ACL2, it is possible to use ordinal notations (capturing countably many
ordinals). A great deal of interesting ordinal theory (up to Γ0) has been mechanised in
this style in Coq by Castéran and Contejean [1].

Availability. Most of the HOL4 theory of the ordinals described here is in the current re-
lease of HOL4. Newer material, including the validation of the ACL2 algorithms, was in
the HOL4 repository by the time of commit e3bd872ec1 and will appear in the next
release. The sources for this paper are at github.com/mn200/ordinals-paper.
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