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Preface

This volume contains the papers presented at ITP 2013, the 4th International
Conference on Interactive Theorem Proving. The conference was held during
July 23–26 in Rennes, France.

ITP brings together researchers working in interactive theorem proving and
related areas, ranging from theoretical foundations to implementation aspects
and applications in program verification, security, and formalization of math-
ematics. ITP 2013 was the fourth annual conference in this series. The first
meeting was held during July 11–14, 2010, in Edinburgh, UK, as part of the
Federated Logic Conference (FLoC). The second meeting took place during Au-
gust 22–25, 2011, in Berg en Dal, The Netherlands. The third meeting was held
during August 13–15 in Princeton, New Jersey, USA. ITP evolved from the pre-
vious TPHOLs series (Theorem Proving in Higher-Order Logics), which took
place every year from 1988 to 2009.

There were 66 submissions to ITP 2013, each of which was reviewed by at least
three Program Committee members. Out of the 66 submissions, 53 were regular
papers and 13 were rough diamonds. This year, the call for papers requested
submissions to be accompanied by verifiable evidence of a suitable implementa-
tion. In accordance with this, almost all submissions came with the source files
of a corresponding formalization, which influenced the acceptance decisions. The
Program Committee accepted 33 papers, which include 26 regular papers and
seven rough diamonds, all of which appear in this volume. We were pleased to be
able to assemble a strong program covering topics such as program verification,
security, formalization of mathematics, and theorem prover development. The
Program Committee also invited three leading researchers to present invited
talks: Dominique Bolignano (Prove & Run, France), Rustan Leino (Microsoft
Research, USA), and Carsten Schürmann (IT University of Copenhagen, Den-
mark). In addition, the Program Committee invited Assia Mahboubi and Enrico
Tassi (Inria, France) to give a tutorial on the Mathematical Components library
and Panagiotis Manolios (Northeastern University, USA) to give a tutorial on
counterexample generation in interactive theorem provers. We thank all these
speakers for also contributing articles to these proceedings.

ITP 2013 also featured two associated workshops held the day before the con-
ference: the AI4FM 2013 workshop and the Coq Workshop 2013. The work of the
Program Committee and the editorial process were facilitated by the EasyChair
conference management system. We are grateful to Springer for publishing these
proceedings, as they have done for all ITP and TPHOLs meetings since 1993.

Many people contributed to the success of ITP 2013. The Program Commit-
tee worked hard at reviewing papers, holding extensive discussions during the
on-line Program Committee meeting, and making final selections of accepted
papers and invited speakers. Thanks are also due to the additional reviewers
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enlisted by Program Committee members. Finally, we would like to thank our
sponsors: Inria, the University of Rennes 1, SISCom Bretagne, Rennes Metropole
and Région Bretagne.

May 2013 Sandrine Blazy
Christine Paulin-Mohring

David Pichardie
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Steps towards Verified Implementations of HOL Light . . . . . . . . . . . . . . . . 490
Magnus O. Myreen, Scott Owens, and Ramana Kumar

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497



Applying Formal Methods in the Large

Dominique Bolignano

Prove & Run, Paris, France

Despite intensive research done in the area of formal methods and proof tech-
niques, these techniques remain poorly adopted and only used in marginal sit-
uations, or in niche markets. The author has been applying formal methods in
industry for a few decades now. After having managed for more than ten years a
company, i.e. Trusted Logic, which is applying formal methods on critical com-
ponents, he has recently funded a new company, Prove & Run, whose objective
is to democratize and broaden the use of formal methods. In this presentation
and based on his past experience in applying formal methods and designing
formal methods he describes what he believes to be the main problems, main
challenges, to be overcome for achieving this. This involves in particular applying
the correct formal methods to the right piece of software in the right architec-
ture, correctly addressing the integration into the development phase, into the
maintenance phase, clearly delimiting and understanding the scope of formal
methods, setting up the proper organisation, finding available expertise, being
consistent with the cost and time to market requirements, using the right refine-
ments. He will explain in particular why Prove & Run will first focus on formally
verifying micro-kernels, hypervisors, and Trusted Execution Environments, and
which kind of properties will be proven correct.

S. Blazy, C. Paulin-Mohring, and D. Pichardie (Eds.): ITP 2013, LNCS 7998, p. 1, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Automating Theorem Proving with SMT

K. Rustan M. Leino

Microsoft Research, Redmond, WA, USA
leino@microsoft.com

Abstract. The power and automation offered by modern satisfiability-modulo-
theories (SMT) solvers is changing the landscape for mechanized formal theorem
proving. For instance, the SMT-based program verifier Dafny supports a number
of proof features traditionally found only in interactive proof assistants, like in-
ductive, co-inductive, and declarative proofs. To show that proof tools rooted in
SMT are growing up, this paper presents, using Dafny, a series of examples that
illustrate how theorems are expressed and proved. Since the SMT solver takes
care of many formal trivialities automatically, users can focus more of their time
on the creative ingredients of proofs.

1 Introduction

A growing number of theorems about mathematics, logic, programming-language se-
mantics, and computer programs are formalized and proved using mechanized proof
assistants. Examples of such proof assistants are ACL2 [24], Agda [9,35], Coq [6],
Guru [40], HOL Light [19], Isabelle/HOL [34], PVS [36], and Twelf [37]. The as-
sistants vary in their level of expressivity and automation as well as in the size of
their trusted computing base. Satisfiability-modulo-theories (SMT) solvers (for exam-
ple, Alt-Ergo [7], CVC3 [3], OpenSMT [10], Simplify [14], and Z3 [13]) are collec-
tions of (semi-)decision procedures for certain theories. SMT solvers provide a high
degree of automation and have, in the last couple of decades, undergone impressive
improvements in power. Therefore, it has become increasingly common for proof as-
sistants to use SMT solvers as subroutines, as is done for example in PVS [36] and in
Isabelle/HOL’s Sledgehammer tactic [8].

Although general proof assistants can be used to verify the correctness of computer
programs, there are also some verification tools dedicated to verifying programs. These
include Chalice [30], Dafny [26], F* [41], Frama-C [12], Hi-Lite Ada [18], KeY [4],
KIV [39], Pangolin [38], Spec# [2], VCC [11], VeriFast [21], and Why3 [17]. Many of
these use as their underlying reasoning engine an SMT solver, typically accessed via an
intermediate verification language like Boogie [1] or Why [16]. This tool architecture
facilitates automation, and it also tends to move the user’s interaction with the tool from
the formula level (like in general proof assistants) to the program level. This lets users
express necessary proof ingredients in program-centric declarations like preconditions
or loop invariants. We might therefore refer to this kind of program verifier as auto-
active—a mix of automatic decision procedures and user interaction at the program
level [28].

S. Blazy, C. Paulin-Mohring, and D. Pichardie (Eds.): ITP 2013, LNCS 7998, pp. 2–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Just as some proof assistants have incorporated special tactics to better handle pro-
gram verification (e.g., Ynot [33]), auto-active program verifiers are incorporating fea-
tures to better support user-guided mathematical proofs (e.g., VeriFast [22] and
Dafny [26]). While such program verifiers do not yet achieve the full expressivity of
some proof assistants and generally have a much larger trusted computing base, their
automation can be remarkable. This automation matters, since it affects the amount of
human time required to use the tool. Curiously, these SMT-based tools are primarily
program verifiers, but that seems to have happened more by serendipity; one can easily
imagine similar SMT-based tools that focus on mathematics rather than on programs.

In this paper, and in the invited talk that the paper accompanies, I argue and showcase
that the future may hold room for proof assistants that are entirely based on SMT solv-
ing. I focus on the programming language and auto-active program verifier Dafny [26],
which supports proof features like induction [27], co-induction [29], and declarative
calculations [31]. The paper is a collection of examples that give an idea of what these
proof features can do and how they are represented in the Dafny input.

Sec. 2 defines a type and a function that will be used throughout the examples.
Sec. 3 states a lemma and proves it by induction. It also shows a proof calculation.
Sec. 4 then turns to the infinite by considering co-inductive declarations and proofs.
Sec. 5 combines the inductive and co-inductive features into a famous “filter” function,
and Sec. 6 proves a theorem about filters by simultaneously applying induction and
co-induction. Sec. 7 summarizes the examples and concludes.

2 A Types and a Function

As a basis for all the examples in this paper, let us define a type Stream whose values
are infinite lists. Such a type is called a co-inductive datatype, but this fancy name need
not cause any alarms.

codatatype Stream<T> = Cons(head : T, tail : Stream)

The stream type is parameterized by the type of its elements, T. The stream type has
one constructor, Cons. The names of the parameters to the constructor (head and tail)
declare destructors. For example, for any stream s, we have

s = Cons(s.head, s.tail)

The type of tail is Stream<T>, but here and in other signatures, the type argument T
can be supplied automatically by Dafny, so I omit it.

Next, let us declare a function that returns a suffix of a given stream. In particular,
Tail(s, n) returns s.tail n . Here is its inductive definition:

function Tail(s : Stream, n : nat) : Stream
{

if n = 0 then s else Tail(s.tail, n-1)
}

Each function is checked for well-definedness. For a recursive function, this includes
a check of well-foundedness among the recursive calls. Well-foundedness is checked
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using a variant function, which conceptually is evaluated on entry to a call. If the value
of the variant function is smaller for the callee than for the caller, well-foundedness
follows. If no variant function is explicitly supplied, Dafny guesses one. The guess is
the lexicographic ordering on the tuple of the function’s arguments, omitting arguments
whose types have no ordering, like co-inductive datatypes. For Tail, Dafny (correctly)
guesses the variant function n and, using it, checks that Tail’s recursion is indeed well-
founded. No further input is required from the user—the tool automatically initiates
the check—and since the check succeeds, the user is not bothered by any messages
from the tool (except for a small indication in the margin of the integrated development
environment that for a split second shows that the verifier is active).

3 An Inductive Proof

In order to show how lemmas and proofs are set up, let us consider an alternative
definition of Tail:

function Tail_Alt(s : Stream, n : nat) : Stream
{

if n = 0 then s else Tail_Alt(s, n-1).tail
}

and let us prove that Tail and Tail_Alt give the same result.
A lemma is expressed as a method in the programming language, that is, as a code

procedure with a pre- and postcondition. As usual (e.g., [20]), such a method says that
for any values of the method parameters that satisfy the method’s precondition, the
method will terminate in a state satisfying the postcondition.1 This corresponds to what
is done in mathematics for a lemma: a lemma says that for any values of the lemma
parameters that satisfy the lemma’s antecedent, the lemma’s conclusion holds. So, we
express our lemma about Tail and Tail_Alt by declaring the following method:

ghost method Tail_Lemma(s : Stream, n : int)
requires 0 ≤ n;
ensures Tail(s, n) = Tail_Alt(s, n);

The precondition of this method (keyword requires) says that n is a natural number
(which, alternatively, we could have indicated by declaring the type of n to be nat). The
postcondition (keyword ensures) gives the property we want to prove. The designation
of the method as a ghost says that we do not want the Dafny compiler to emit any
executable code. In other words, a ghost method is for the verifier only; the compiler
ignores it.

To get the program verifier to prove the lemma, we supply a method body and let the
verifier convince itself that all code control paths terminate and establish the postcon-
dition. The body we supply typically consists of if statements and (possibly recursive)
method calls, but other statements (e.g., while loops) can also be used. A recursive call

1 In general, methods can have effects on the memory of the program. Such effects are declared
with a modifies clause in the method specification. However, since there is no need for such
effects here, I ignore further discussion of them.
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corresponds to invoking an inductive hypothesis, because the effect on the proof is to
obtain the proof goal (stated in the postcondition) for the callee’s arguments, which in
a well-foundedness check are verified to be “smaller” than the caller’s arguments. It is
common to supply assertions that act as in-place lemmas: a statement assert Q tells
the verifier to check that the boolean condition Q holds, after which the verifier can
make use of that condition. A more systematic way to direct the verifier is provided by
Dafny’s calc statement, whose verified calculations take the form of human-readable
equational proofs [31].

Here is a proof of the lemma:

ghost method Tail_Lemma(s : Stream, n : int)
requires 0 ≤ n;
ensures Tail(s, n) = Tail_Alt(s, n);

{
if n < 2 {

// def. of Tail and Tail_Alt
} else {

calc {
Tail(s, n);

= // def. Tail, since n �= 0
Tail(s.tail, n-1);

= { Tail_Lemma(s.tail, n-1); } // induction hypothesis
Tail_Alt(s.tail, n-1);

= // def. Tail_Alt, since n-1 �= 0
Tail_Alt(s.tail, n-2).tail;

= { Tail_Lemma(s.tail, n-2); } // induction hypothesis
Tail(s.tail, n-2).tail;

= // def. Tail, since n-1 �= 0
Tail(s, n-1).tail;

= { Tail_Lemma(s, n-1); } // induction hypothesis
Tail_Alt(s, n-1).tail;

= // def. Tail_Alt, since n �= 0
Tail_Alt(s, n);

}
}

}

The method body provides two code paths. For the n < 2 branch, the verifier can prove
the postcondition by unwinding the definitions of each of Tail and Tail_Alt once or
twice (which the verifier is willing to do automatically). The else branch uses a calc
statement with a number of equality-preserving steps, each of which is verified. Some
steps are simple and need no further justification; the code comments give explanations
for human consumption. Other steps are justified by hints, which are given as code
blocks (in curly braces). Here, each hint makes a recursive call to Tail_Lemma, which
in effect invokes the induction hypothesis.

In more detail, for each step in a calculation, the verifier checks that the equality
entailed by the step is provable after the code in the associated hint (if any). In the
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calculation above, each of the provided hints consists of a single recursive call. As usual
in program verification, the verifier thus checks that the precondition of the callee is met,
checks that the variant function is decreased for the call (to ensure that the recursion
will terminate), and can then assume the postcondition of the callee. For example, the
postcondition that holds after the first recursive call is:

Tail(s.tail, n-1) = Tail_Alt(s.tail, n-1)

which is essentially the induction hypothesis for s,n := s.tail,n-1. Since no variant
function is supplied explicitly, Dafny guesses n, which it verifies to decrease. Thus, the
recursion—and indeed, the induction—is well-founded.

For brevity, the equality signs between the lines in the calculation can be omitted.
Or, if desired, they can be replaced by different operators, like =⇒, ⇐=, or <.

The calculation in the example gives more detail than the Dafny verifier needs, but,
as given, yields a presentation of the proof that is better suited for a human. In fact,
the proof calculation is quite readable; it looks almost identical to how one would write
an equational-style proof by hand. For a comparison with other styles of declarative
proofs, like Isar [42], and with tactic-based proofs, see [31].

4 Co-recursion and a Co-inductive Proof

In this section, we consider how values of a co-datatype are constructed and how one
states and proves properties of such values.

Values of co-inductive datatypes may be of an infinite nature. For example, a stream
represents an infinite list of elements. Here is a function that defines such a value,
namely the stream whose elements are the integers from n upward in increasing order:

function Up(n : int) : Stream<int>
{

Cons(n, Up(n+1))
}

It may look as if invocations of Up will never terminate, but the self-call of Up is iden-
tified by Dafny as being co-recursive, because it is positioned as an argument to a co-
datatype constructor. Co-recursive calls are compiled into lazily evaluated code, so that
the arguments to the constructor are not evaluated until their values are used by the ex-
ecuting program (if ever). Consequently, for a co-recursive call, there is no need for the
verifier to enforce a decrease of a variant function.

Here is another function on streams:

function Prune(s : Stream) : Stream
{

Cons(s.head, Prune(s.tail.tail))
}

It defines a stream consisting of half of the elements of the given stream: every other
element, starting with the first. Note that the self-call to Prune is co-recursive, so the
verifier does not need to check termination.
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To define a property of a co-inductive datatype, one uses a co-predicate. For example,
the following co-predicate holds for streams that consist of even integers:

copredicate AllEven(s : Stream<int>)
{

s.head % 2 = 0 ∧ AllEven(s.tail)
}

Co-predicates are defined by greatest fix-points, that is, as the greatest solutions of the
recursive equations to which their definitions give rise. Applied to the example, this
means that AllEven(s) evaluates to true as long as there is no suffix t of s such that
t.head % 2 �= 0. Eager evaluation of a co-predicate may fail to terminate and lazy
evaluation would not be meaningful, so co-predicates are always ghost. In other words,
they are never part of executing code, but they can be used to describe and reason about
executing code.

We have now seen three features from the quartet of co-inductive features in Dafny:
co-datatypes define possibly infinite data structures, co-recursive function calls make
it possible to define values of co-datatypes, and co-predicates define properties of co-
datatypes. The fourth feature is co-methods, whose purpose is to enable co-inductive
proofs. Let us consider an example.

We will state a theorem that for any even n, Prune(Up(n)) consists only of even
integers. Because we intend to prove the theorem by co-induction, we use a co-method:

comethod Theorem(n : int)
requires n % 2 = 0;
ensures AllEven(Prune(Up(n)));

{
Theorem(n+2);

}

Ignoring the issue of termination, this proof can be understood in the same manner as
inductive proofs: AllEven says something about the head of the stream Prune(Up(n)),
which is proved automatically. It also says something about the tail of the stream, which
follows from the postcondition of the call Theorem(n+2) and the definitions of the func-
tions involved. To make this argument more explicit, the call could have been preceded
by the following calculation (where, for brevity and variety, I have chosen to omit the
optional equality signs between lines in the left margin):

calc {
Prune(Up(n)).tail;
Prune(Up(n).tail.tail);
{ assert Up(n).tail.tail = Up(n+2); }
Prune(Up(n+2));

}

In contrast to methods, whose recursive calls are checked to terminate (by checking
that they decrease the variant function), calls to co-methods are always allowed. In
other words, the co-induction hypothesis can always be obtained; however, the use of
it is restricted. Intuitively, the co-induction hypothesis can be used to discharge only
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those conjuncts that show up after one unwinding of the co-predicate in the co-method’s
postcondition. I will give some details about this in Sec. 6.

For example, suppose the body of co-method Theorem were replaced by the call
Theorem(n). With unrestricted use of the postcondition of this call, the co-induction
hypothesis obtained would trivially prove the theorem itself. However, because the
co-induction hypothesis can be used only on conjuncts from an unwinding of the
postcondition, the call Theorem(n) provides no benefit here.

5 A Filter Function

Let us now consider a more difficult function definition, namely that of a filter function
on streams. For any stream s, we want the filter function to return the stream consisting
of those elements of s that satisfy some predicate P. A filter function like this is used,
for example, in the prime number sieve of Eratosthenes (cf. [5,25,15]).

Conceptually, the filter function and all related lemmas are parameterized by the
predicate P. Lacking the higher-order features necessary to take P as a parameter, we
represent an arbitrary predicate by declaring a (here, global) generic predicate without
a defining body:2

predicate P<T>(x : T)

The definition of Filter has the following form:

function Filter(s : Stream) : Stream
// . . . specification to be written . . .

{
if P(s.head) then

Cons(s.head, Filter(s.tail))
else

Filter(s.tail)
}

The first branch of this definition is fine, because its call to Filter is co-recursive.
However, the other call to Filter is not co-recursive, so it is subject to a termination
check. This makes sense, because if the given stream has no elements that satisfy P,
then Filter would never terminate in its computation to produce the next element of
the resulting stream. Note, thus, how Dafny allows one function to be involved in both
recursive and co-recursive calls. Next, we will consider how to deal with the termination
of the recursive call.

To avoid non-termination, we must restrict Filter’s input to streams that contain
infinitely many elements that satisfy P. We give the following definitions:

predicate HasAnother(s : Stream)
{

2 Dafny allows such a body-less predicate to be placed in a module. Other modules can then be
declared as refinements of this module, and each refinement module can give its own specific
definition of the predicate.
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∃ n • 0 ≤ n ∧ P(Tail(s, n).head)
}
copredicate AlwaysAnother(s : Stream)
{

HasAnother(s) ∧ AlwaysAnother(s.tail)
}

Predicate HasAnother(s) says that, after some finite prefix of s, there is an element
that satisfies P, and AlwaysAnother(s) says that HasAnother holds at every point in the
stream. We can now restrict the input to Filter by adding a precondition:

requires AlwaysAnother(s);

Even with this precondition, the verifier complains that it cannot prove termination. To
remedy the situation, we supply a variant function explicitly. As the variant function,
we will use the length of the non-P prefix of s, that is, the number of steps to the next
element satisfying P. Using StepsToNext(s) to denote that number of steps, we add to
the specification of Filter the following clause:

decreases StepsToNext(s);

Given a stream that satisfies AlwaysAnother, function StepsToNext returns a natural
number. It is tempting to define it with a body like

if P(s.head) then 0 else 1 + StepsToNext(s.tail)

but to prove that this recursive call to StepsToNext terminates, we would need a variant
function like StepsToNext itself. Instead, we find a number of steps that will yield some
P element, and then we use this number as an upper bound in a linear search to the first
P element:

function StepsToNext(s : Stream) : nat
requires AlwaysAnother(s);

{
var n : | 0 ≤ n ∧ P(Tail(s, n).head);
Steps(s, n)

}
function Steps(s : Stream, n : nat) : nat

requires P(Tail(s, n).head);
ensures P(Tail(s, Steps(s, n)).head);
ensures ∀ i • 0 ≤ i < Steps(s, n) =⇒ ¬P(Tail(s, i).head);

{
if P(s.head) then 0 else 1 + Steps(s.tail, n-1)

}

These definitions require some explanation.
The “let such that” expression var x : | Q; E evaluates to E in which all free occur-

rences of x are bound to a value that satisfies Q. The expression is well-defined only if
there exists a value for x that satisfies Q. In StepsToNext, this proviso follows from the
precondition AlwaysAnother(s). Note that n may be set to any number of steps that
will reach a P element in s, not necessarily the smallest.
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The specification of the auxiliary function Steps requires s to reach a P element
in n steps. It ensures that the result value, which in the ensures clause is denoted by
Steps(s, n), is not only a number of steps that reaches a P element (first ensures
clause) but also the smallest such number (second ensures clause).

The body of Steps encodes a straightforward linear search.
To prove the recursive call in the body of Filter(s) to be well-founded, the verifier

checks that the given variant function decreases, that is,

StepsToNext(s.tail) < StepsToNext(s)

This condition rests on the fact that StepsToNext returns the smallest number of steps
to reach a P element, which is spelled out by the postcondition of Steps. Note that
StepsToNext does not need to declare such a postcondition, because Dafny unwinds the
definition of StepsToNext and obtains an expression in terms of Steps. Since Steps is
recursive, the needed property is not evident from any bounded number of unwindings,
so the presence of the postcondition essentially facilitates an inductive argument.

Finally, rather than introducing the auxiliary function Steps, one could consider
replacing the body of StepsToNext with one whose let-such-that condition is stronger:

var n : | 0 ≤ n ∧ P(Tail(s, n).head) ∧
∀ i • 0 ≤ i < n =⇒ ¬P(Tail(s, i).head);

n

However, Dafny is unable to prove the existence of such an n directly from the precondi-
tion AlwaysAnother(s). The use of Steps is one way to set up the necessary inductive
argument.

6 A Property of Filter

The interesting property to prove about Filter(s) is that it returns the subsequence of
s that consists of exactly those elements that satisfy P. The notion of such a subsequence
can be divided up into the property that Filter returns the right set of elements:

∀ x • x ∈ Filter(s) ⇐⇒ x ∈ s ∧ P(x)

(where I have taken the liberty of using operator ∈ as if stream were sets) and the
property that Filter(s) preserves the order of elements in s. Let us look at one possible
way to state and prove the latter.

To simplify matters, let us suppose that there is a function Ord from the elements of
streams to the integers.

function Ord<T>(x : T) : int

Using a co-predicate, we define what it means for a stream’s elements to be strictly
increasing:

copredicate Increasing(s : Stream)
{

Ord(s.head) < Ord(s.tail.head) ∧ Increasing(s.tail)
}
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Now we can state the order-preservation theorem that we want to prove:

ghost method Theorem_FilterPreservesOrdering(s : Stream)
requires AlwaysAnother(s) ∧ Increasing(s);
ensures Increasing(Filter(s));

This theorem is not the most general order-preservation theorem we can state, but it
suffices for our purpose of showing an interesting proof.

To prove the theorem, we introduce an alternative definition of Increasing:

copredicate IncrFrom(s : Stream, low : int)
{

low ≤ Ord(s.head) ∧ IncrFrom(s.tail, Ord(s.head) + 1)
}

The two definitions are interchangeable, as the following two lemmas show.

comethod Lemma_Incr0(s : Stream, low : int)
requires IncrFrom(s, low);
ensures Increasing(s);

{
}
comethod Lemma_Incr1(s : Stream)

requires Increasing(s);
ensures IncrFrom(s, Ord(s.head));

{
Lemma_Incr1(s.tail);

}

The co-inductive proof of Lemma_Incr0 is done automatically, whereas the other re-
quires an explicit appeal to the co-induction hypothesis.

We can now write the theorem in terms of IncrFrom:

comethod Lemma_FilterPreservesIncrFrom(s : Stream, low : int)
requires AlwaysAnother(s) ∧ IncrFrom(s, low) ∧ low ≤ Ord(s.head);
ensures IncrFrom(Filter(s), low);
decreases StepsToNext(s);

{
if P(s.head) {

Lemma_FilterPreservesIncrFrom(s.tail, Ord(s.head) + 1);
} else {

Lemma_FilterPreservesIncrFrom#[_k](s.tail, low);
}

}

The proof of this lemma is interesting because it uses co-induction and induction to-
gether. The first branch of the if statement makes an appeal to the co-induction hy-
pothesis. Dafny will actually fill it in automatically, so the proof also goes through with
that call omitted. In the else branch, we cannot use the co-induction hypothesis, because,
as discussed above, the co-induction hypothesis can be used only after one unwinding
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of the proof goal. To make use of the lemma’s postcondition for s.tail directly, we
instead make a recursive call to the lemma. Syntactically, this is achieved by the char-
acters “#[_k]”. The recursive call gives rise to a proof obligation of termination, which
is addressed by the explicit decreases clause.

Co-methods are used to establish the validity of co-predicates (including equality on
co-datatype values, which is a built-in co-predicate). These co-inductive proof obliga-
tions are actually carried out by induction, in conjunction with a meta-theorem. For any
co-predicate Q(x), let the prefix predicate Q#[_k](x) denote the first _k unrollings of Q,
defined inductively. For example, the prefix predicate for co-predicate AllEven is:3

predicate AllEven#[_k : nat](s : Stream<int>)
{

if _k = 0 then
true

else
s.head % 2 = 0 ∧ AllEven#[_k-1](s.tail)

}

Similarly, for each co-method M(x), Dafny generates a prefix method M#[_k](x), where
each call M(E) in the co-method’s body is turned into a call M#[_k-1](E) in the
corresponding prefix method. In more detail, the following co-method:

comethod M(x : T)
ensures Q(x);
decreases D(x);

{
. . . M(E); . . .

}

is turned into:

ghost method M#[_k : nat](x : T)
ensures Q#[_k](x);
decreases _k, D(x);

{
if _k �= 0 {
. . . M#[_k-1](E); . . .

}
}

Any explicit prefix-method call in the body of M (like the one in the else branch of the
filter lemma co-method above) is left unchanged in the corresponding prefix method.
A recursive call to M#[K] where K < _k corresponds to obtaining the co-induction
hypothesis (for use after _k - K unwindings of the co-predicate in the proof goal),
whereas a call to M#[_k] is just an ordinary recursive call corresponding to the induction

3 Prefix predicates are declared automatically. The made-up declaration syntax shown here is
suggestive of how prefix predicates are actually invoked, with the unrolling-depth argument in
square brackets, set apart from the other arguments.
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hypothesis. By verifying the inductive prefix method for any _k, the postcondition of
the co-method follows on account of the following meta-theorem [32,29]:

∀ x : T • Q(x) ⇐⇒ ∀ _k : nat • Q#[_k](x)

For more details, see [29].
Finally, the proof of Theorem_FilterPreservesOrdering is given as follows:

{
Lemma_Incr1(s);
Lemma_FilterPreservesIncrFrom(s, Ord(s.head));
Lemma_Incr0(Filter(s), Ord(s.head));

}

7 Conclusion

In this paper, I have conveyed a flavor of Dafny’s proof features by showing examples
of inductive and co-inductive definitions, proofs by induction and by co-induction, as
well as human-readable proofs. These are features that until recently were confined to
interactive proof assistants, but they can now be supported by auto-active verifiers.

To try the examples in the Dafny tool,4 the only input given to the tool are the lines
shown in this paper—no additional proof tactics need to be supplied.

The given examples showcase the high degree of automation that is possible in a
tool powered by an SMT solver and designed to keep the interaction at the problem
level (and not, for example, at the level of defining and using necessary prover tactics).
Users are not bothered with trivial details (like the associativity of logical and arith-
metic operators) and the human involvement to prove that user-defined functions are
mathematically consistent is small. Even the tricky recursive call of Filter is solved
by defining and using StepsToNext as a variant function, which does not require an
excessive amount of human effort. When more information is needed, human-readable
calculations can be used, putting proofs in a format akin to what may be done by hand.

For each function and method in the examples shown, the verifier needs to spend
only a small fraction of a second. This makes performance good enough to be running
the verifier continuously in the background of the integrated development environment,
which is what Dafny does. Most changes of the program text yield a near-instant re-
sponse, which is important when developing proofs. Note that performance is at least
as important for failed proofs as for successful proofs, because failed proofs happen
on the user’s time (see [28] for some research directions for auto-active verification
environments).

In the future, I expect a higher degree of automation to become available in proof as-
sistants. For tools like Dafny that already provide a high degree of automation, I expect
to see a richer set of features (for example, higher-order functions, drawing inspiration
from Pangolin [38], Who [23], and F* [41], and user-defined theories, drawing inspira-
tion from Coq [6] and Why3 [17]) as well as work that will seek to reduce the currently
large trusted computing base for SMT-based verifiers.

4 Dafny can be installed from http://dafny.codeplex.com. It can also be run directly in a
web browser at http://rise4fun.com/dafny

http://dafny.codeplex.com
http://rise4fun.com/dafny
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Certifying Voting Protocols

Carsten Schürmann
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Since 2000, all but eleven countries in the world have held national elections.
Most of these countries have been using computers in the voting process in one
way or the other, for example, for checking off voters of the electoral role, for
digitally recording of votes, and also for computing the social choice function.
Elections are the cornerstone of representative democracies, the collective trust
of the voters in the voting process legitimizes its result. Our work within the
DemTech research project (www.demtech.dk) aims to maintain or even increase
the level of the trust by applying modern theorem proving technology to the
domain of voting protocols and schemas.

In my talk I will report on the research activities within the DemTech project
and present in detail how we use proof assistants (such as Agda and Celf) to
bridge the gap between abstract definitions of security, declarative descriptions
of electoral law, and certifiable computations. We hope that our work will have
a positive effect on voting processes around the world, make them safer, more
reliable, less vulnerable to attack, and thus more trustworthy.
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Theorem Proving: Current Results and Future

Opportunities

Panagiotis Manolios
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This tutorial will explore the integration of counterexample generation with in-
teractive theorem proving, a capability that has long been on the wish list of
users and developers of interactive theorem provers. While the generation of
counterexamples is an undecidable problem, recent methods have shown that
it is possible to generate counterexamples to conjectures for many interesting
problems. This tutorial will review current counterexample generation technol-
ogy and how it can be used to design, analyze, and reason about systems. The
tutorial will include a demo using ACL2s, the ACL2 Sedan. During the tutorial,
we will also discuss the pedagogical use of counterexample generation in ACL2s
to help freshmen students learn about logic and program verification. Finally,
we will discuss future research opportunities.
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Canonical Structures for the Working Coq User

Assia Mahboubi and Enrico Tassi
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Abstract. This paper provides a gentle introduction to the art of
programming type inference with the mechanism of Canonical Struc-
tures. Programmable type inference has been one of the key ingredients
for the successful formalization of the Odd Order Theorem using the
Coq proof assistant. The paper concludes comparing the language of
Canonical Structures to the one of Type Classes and Unification Hints.

1 Introduction

One of the key ingredients to the concision, and intelligibility, of a mathematical
text is the use of notational conventions and even sometimes the abuse thereof.
These notational conventions are usually shaped by decades of practice by the
specialists of a given mathematical community. If some conventions may vary
according to the author’s taste, most tend to stabilize into a well-established
common practice. A trained reader can hence easily infer from the context of a
typeset mathematical formula he is reading all the information that is not explicit
in the formula but that is nonetheless necessary to the precise description of the
mathematical objects at stake.

Formalizing a page of mathematics using a proof assistant requires the descrip-
tion of objects and proofs at a level of detail that is few orders of magnitude
higher than the one at which a human reader would understand this description.
This paper is about the techniques that can be used to reproduce at the formal
level the ease authors of mathematics have to omit some part of the information
they would need to provide, because it can be inferred. In the context of a large
scale project like the formal proof of the Odd Order Theorem, which involves
a large and broad panel of algebraic theories that should be both developed
and combined, a faithful imitation of these practices becomes of crucial impor-
tance. Without them, the user of the proof assistant is soon overwhelmed by the
long-windedness of the mathematical statements at stake.

What makes the meaning of mathematical conventions unambiguous and pre-
dictable is the fact that the human process of guessing the information that is
not there can be described by an algorithm, which is usually very simple. In the
Coq proof assistant, information which is not provided by the user is encoded in
types, and the type inference algorithm is programmed to allow the user to omit
information that can be inferred. Combining programmable type inference with
user notations is a key design pattern of the libraries developed by the Mathe-
matical Components team [18]. This combination is at the core of the overloading

S. Blazy, C. Paulin-Mohring, and D. Pichardie (Eds.): ITP 2013, LNCS 7998, pp. 19–34, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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of notations [8, 2], but also of the hierarchy of algebraic theories [5, 4, 3], as well
as of various forms of automatic proof search and quotation [7].

The language used throughout the Mathematical Components libraries to pro-
gram type inference is the one of Canonical Structures. Although this feature
has been implemented in Coq from early versions of the system, it is much un-
derrated by most of the community of users. As of today Canonical Structures
actually remain poorly documented, to the notable exception of the work of
Gonthier, Ziliani, Nanevski and Dreyer [10], where the authors detail the many
technical issues one has to master in order to program proficiently proof search
algorithms using Canonical Structures. This paper aims at providing a gentler in-
troduction to Canonical Structures for the Coq user. Therefore we do not expose
new contributions here but rather try to make a clear description of the method-
ologies employed to build the Mathematical Components libraries, so that they
hopefully become accessible in practice to a wider audience. For this purpose,
all the examples we draw in what follows are written in standard Coq version
8.4, without relying on any of the Mathematical Components library nor on the
SSReflect shell extension [9] these libraries have been developed with. We ex-
pect the reader to be familiar with the vernacular language of Coq. The running
example can be download at http://ssr.msr-inria.inria.fr/doc/cs4wcu.v

2 Canonical Structures

Säıbi [14] introduced both the Canonical Structure and the coercion mechanisms
for the Coq system almost 15 years ago [14]. They have been available since ver-
sion 6.1 of Coq system. However, while coercions were given visibility by pub-
lications in international venues [13], the only detailed description of Canonical
Structures can be found in Säıbi’s Ph.D. dissertation, that is written in French.
The introduction of these mechanisms was motivated by the formalization of
category theory due to Säıbi and Huet [12], in order to enhance the support
offered by the Coq system for the formalization of algebraic concepts. The two
mechanisms were seen as dual features: coercions were used to map a rich struc-
ture into a simpler one by forgetting parts of it and canonical structures where
used to enrich a structure, in order for instance to restore the content discarded
by the earlier insertion of a coercion.

In their formalization [12], Säıbi and Huet use Canonical Structures to over-
load function symbols [14, section 4.7, page 82] and to relate an algebraic theory
with its instances. This technique has been re-used in a similar way for more
recent large scale formalizations like the Fundamental Theorem of Algebra [6].
In his dissertation (see the example [14, 8.11.2, page 155]), Säıbi already spots
that the type inference algorithm can iterate the Canonical Structure mecha-
nism, but he seems to fail to grasp its potential and hence does not advertise
this possibility. As a consequence, the documentation of Canonical Structures
in the Coq manual (see [17], chapter 2.7.17) presents this mechanism as a non
iterative one, which can only be used to link abstract theories with the instances
explicitly declared by the user.

http://ssr.msr-inria.inria.fr/doc/cs4wcu.v
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In 2005, during the first year of the project toward the formalization of the
Odd Order Theorem, Gonthier starts to make systematic use of Canonical Struc-
tures. In particular, he understands that the declaration of canonical instances can
trigger an iterative process that lets one program type inference in a way that is
reminiscent of Prolog. Combining this remark with the expressiveness of the type
system of Coq it becomes quite natural to encode proof search into type inference.

The essence of the Canonical Structures mechanism is to extend the unifi-
cation algorithm of the Coq system with a database of hints. Type inference
compares types by calling the unification algorithm, that in turn looks into this
database for solutions to problems that could not be solved otherwise. The user
fills in the database by using a specific vernacular command to register the
canonical solutions of his choice to some unification problems. Note that query-
ing this database at unification time does not extend the trusted code base of the
proof assistant. Just like the implicit arguments mechanism, this machinery is
part of the proof engine and aims at decreasing the amount of type information
provided by the user in order to describe a complete and well-formed Coq term.

In the current implementation the Canonical Structures database only stores
solutions to unification problems of a very specific shape, that is the unification
of a term with the projection of an unknown instance of a certain record type.
This situation is typical of the issues faced when modeling algebraic structures
with dependent record types. The following toy example illustrates how Canon-
ical Structures have been used by their original authors. Suppose for instance
that we have declared such a record type to define a naive interface for abelian
(commutative) groups:
�

Structure abGrp : Type := AbGrp {

carrier : Type; zero : carrier;

opp : carrier → carrier; add : carrier → carrier → carrier;

add_assoc : associative add; add_comm : commutative add;

zero_idl : left_id zero add; add_oppl : left_inverse zero opp add }.
�

Here carrier is a projection extracting the type of the objects from a commuta-
tive group; similarly zero extracts the identity element, add the binary operation,
. . .We can prove the following theorem, valid for any instance of the structure:

�

Lemma subr0 : ∀ (aG : abGrp) (x : carrier aG), add aG x (opp aG zero) = x
�

Now suppose that we have constructed an instance of this interface which equips
the type Z of integers with a structure of commutative group:
�

Definition Z_abGrp := AbGrp Z Z0 Z1 Zopp Zadd ....
�

Despite this effort, there is no way to use lemma subr0 to simplify an expression
of the form (Zadd z (Zopp Z0)), with (z : Z), since Coq’s unification algorithm
is not aware of the content of our library. More precisely Coq does not know
that “Z forms a commutative group with Zadd, Zopp and Z0”. The issue manifests
itself as the difficult problem of unifying the type Z with (carrier ?), where ?
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represents the unknown commutative group. But if we declare Z_abGrp as the
canonical commutative group over Z using the following command
�

Canonical Structure Z_abGrp : abGrp.
�

the unification algorithm is able to solve that problem by filling the hole with
Z_abGrp.

In the rest of the paper we describe how Canonical Structures works, why
these seemingly atomic hints are applied iteratively and how to build an algebraic
hierarchy exploiting this fact.

3 Type Inference and Unification

The rich type theory of the Coq system confers to type inference the power of
computing values and proofs. Due to this richness, the type inference algorithm of
Coq is way more involved than the ones of mainstream programming languages,
even in presence of a type class mechanism à la Haskell [19]. Yet only a fragment
of this algorithm plays a role in understanding how Canonical Structures work.
The purpose of this section is to give a picture of the relevant fragment of Coq’s
type inference algorithm, obviously without ambitioning to provide a complete
or fully formal exposition of type inference. Let us start by defining the common
and simplified syntax of Coq terms and types we will be working with:

t ::= t t | πn | r | x | ?x
Since binders do not play a role here we omit them in this syntax and only
consider applicative terms. On the contrary projections (resp. constructors) of
record types are central to the canonical structures mechanism and deserve to
be identified explicitly, by πi (resp. r). We also need names (x) to represent
declared or defined terms and also symbols (?x) for unification variables.

An algorithm takes as input some terms and an environment Γ that collects
declarations (t : T ∈ Γ ), definitions (x := t ∈ Γ ) and unification variable
assignments (?x := t ∈ Γ ). The output of an algorithm is of the same kind,
where the resulting environment Γ ′ is obtained from Γ by possibly assigning
some unification variables. We express the definition of an algorithm in relational
style, as inference rules. A rule defining R has the following shape:

(Γ, t1) R (Γ ′, t2) (Γ ′, t2) R (Γ ′′, t3)
rule name

(Γ, t1) R (Γ ′′, t3)

One should consider arguments on the left of the R symbol as the input of the
R algorithm while the ones on the right as the output. The premises of the rule,
representing calls to the same or other algorithms, are always performed in left
to right order. In all what follows, for sake of brevity, we omit the Γ in the rules.

Type inference, denoted by “:”, is defined by the following two rules:

t : T ∈ Γ env
t : T

t1 : ∀x :A,B t2 : A′ A′ ∼ A
app

t1 t2 : B[x/t2]
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Type inference recursively traverses a term imposing that all atoms are declared
in our implicit environment Γ (env rule) and that the type expected by the head
of an application coincides with the one of its actual argument (app rule). Type
inference performs this type comparison by calling the unification algorithm,
denoted by “∼” and defined by the following rules:

eq
t ∼ t

assign
?x ∼ t

t1 ∼ t2
fst-order

t t1 ∼ t t2

t2 � t′2 t1 ∼ t′2
redt1 ∼ t2

Unification succeeds on syntactically identical terms thanks to the rule eq. Unifi-
cation variables are assigned to terms by the rule assign, under the usual occur-
rence check and type compatibility conditions that we omit for sake of brevity.
The algorithm applies the fst-order rule whenever the head symbols of the two
compared terms are identical. The red rule replaces the term t2 by its reduced
form t′2 before continuing the unification. The fst-order rule has precedence over
the red rule. It goes without saying that the unification algorithm implemented
by Coq features many more rules than this simplified version, including the sym-
metric rules of red and assign. But we omit these extra rules which play no role
for the topic of this tutorial. The following set of five rules defines the reduction
algorithm, denoted “�”:

x := t ∈ Γ
unfold

x� t
?x := t ∈ Γ

subst
?x� t

t� r t1 . . . tn proj
πi t� ti

t1 � t′1
hd-red

t1 t� t′1 t

t1 � t′1 t′1 � t′′1
trans

t1 � t′′1
Reduction can unfold global constants, by the unfold rule, and substitute as-
signed unification variables, by the subst rule, as well as reduce projections ap-
plied to record constructors, by the proj rule. Reduction is closed transitively
(trans rule) and with respect to applicative contexts (hd-red rule).

4 Basic Overloading

In our first example we describe the infrastructure which creates an infix notation
== that can be overloaded for several instances of binary comparisons. The “right”
comparison function is chosen looking at the type of the compared objects.Theuser
is required to declare a specific comparison function for each type of interest. The
way of declaring such a function for a type is to build a dependent pair packaging
together the type and the function and declare this pair as canonical.

Unfortunately this simple idea does not scale up properly: one often needs to
attach to a type a bunch of operations (and properties) like in the abelian group
example of section 2 and eventually reuse and extend the same set of operations
later on, for example when defining a field. Hence the general pattern is to define
a special package type, called a class, to describe the set of operations of interest.
The user then builds an instance of the class by providing all the operations,
and packages that instance together with the type for which these operations
are the canonical ones.
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Going back to our example, we begin by defining the class of objects that
can be compared using ==. This class just contains the comparison operation,
named cmp, and is parametrized over the type T of the objects to be compared.
The class is modeled using a Record whose constructor is named Class. We then
define the package one has to build in order to use the == notation on a specific
type. This is again modeled using a record that packages together a type, called
obj, and an instance of the class just defined on the type obj. The commands
Structure and Record are actually synonyms in Coq, but we consistently use
Structure to define this last type of packages, given that their instances can be
made canonical using the Canonical Structure command.1

We consistently use modules as name spaces, so that the short names like
class get a qualifying prefix EQ. once the name space definition is finished. For
sake of clarity, even if we comment the code of an open name space, we use the
qualified versions of the names like EQ.type or EQ.class.
�

Module EQ.

Record class (T : Type) := Class { cmp : T → T → Prop }.

Structure type := Pack { obj : Type; class_of : class obj }.

Definition op (e : type) : obj e → obj e → Prop :=

let ’Pack _ (Class the_cmp) := e in the_cmp.

Check op. (* ∀ e : EQ.type, EQ.obj e → EQ.obj e → Prop *)

Arguments op {e} x y : simpl never.

Arguments Class {T} cmp.
�

The constant (EQ.obj : EQ.type → Type) is a projection of the EQ.type record.
In order to access the comparison operator present in the nested class record,
we define the EQ.op projection, whose type is displayed in the above code. Note
that the first argument (e : EQ.type) of op is declared as an implicit one by the
Arguments command.

In a theory name space we declare the set of notations and establish the bunch
of properties that are shared by all the instances of the EQ.type structure, here a
single infix notation == for the EQ.op operator. Since the first argument of EQ.op
is implicit, this notation actually hides a hole standing for an unknown record
of type EQ.type from which the comparison operator is extracted.
�

Module theory.

Notation "x == y" := (op x y) (at level 70).

Check ∀ (e : type) (a b : obj e), a == b.

End theory.

End EQ.

Import EQ.theory.

Fail Check 3 == 3.

(* Error: The term "3" has type "nat"

while it is expected to have type "EQ.obj ?1". *)
�

The Check command inside the EQ.theory name space verifies that we can use
the infix notation to develop the theory for objects in the EQ.type named e.

1 A more appropriate name would be Canonical Instance or simply Canonical.
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After closing the EQ.theory module, type checking the expression (3 == 3)

fails. To understand the error message we write the critical part of the execution
of the type inference algorithm, boxing the unsolvable unification problem. We
denote by τ the type of the EQ.op constant:

τ := ∀e : EQ.type, EQ.obj e → (EQ.obj e → Prop) ∈ Γ

EQ.op : τ ∈ Γ
EQ.op : τ ?e :?te ?te ∼ EQ.type

EQ.op ?e : τ [e/?e] 3 : nat nat ∼ EQ.obj ?e

(EQ.op ?e) 3 : EQ.obj ?e → Prop

We can see that the unification problem involves a projection of an unknown
instance ?e of the structure, and that the algorithm cannot invent which such
instance would project by EQ.obj on type nat. Coq will only manage to synthe-
size a closed term from the input (3 == 3) after some more work from the user.
We first need to define an instance nat_EQty of the structure which contains the
comparison operator nat_eq that we want to use for objects of type nat.
�

Definition nat_eq (x y : nat) := nat_compare x y = Eq.

Definition nat_EQcl : EQ.class nat := EQ.Class nat_eq.

Canonical Structure nat_EQty : EQ.type := EQ.Pack nat nat_EQcl.

Check 3 == 3. (* Works! *)

Eval compute in 3 == 4. (* Evaluates to Lt = Eq, indeed 3 �= 4. *)
�

We have moreover turned this definition into a canonical instance, via the
Canonical Structure command: this extends the ∼ algorithm with the rule:

nat ∼ EQ.obj nat_EQty ?x ∼ nat_EQty

nat ∼ EQ.obj ?x
(1)

This rule has two premises: the first one verifies that the obj component of the
nat_EQty structure is nat, while the second one hints the solution for ?x.

The following execution shows that the first premise is trivially satisfied:

nat_EQty := EQ.Pack nat nat_EQcl ∈ Γ
unfold

nat_EQty � EQ.Pack nat nat_EQcl
proj

EQ.obj nat_EQty � nat
eq

nat∼nat
red

nat ∼ EQ.obj nat_EQty

This reduction also shows that, once nat_EQty is assigned to ?x, thanks to the
subst rule the unification problem nat ∼ EQ.obj ?x is solved by simply reducing
the right hand side to nat.

Actually, the hint generated by the Canonical Structure command is the fol-
lowing one, where the right hand side of the first premise is obtained by reducing
the term (EQ.obj nat_EQty) into head normal form. This reduction is performed
once and for all when the instance nat_EQty is made canonical.

nat ∼ nat ?x ∼ nat_EQty

nat ∼ EQ.obj ?x
(2)
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Note that the first premise is not always trivial as this one. In the next example
it plays the crucial role of iterating Canonical Structures resolution.

The last line of the Coq script shows that type inference has indeed found the
right comparison function and can compute that 3 is different from 4.

The next step is to be able to use the == on compound objects, like a pair
of natural numbers. Hence we declare a family of hints providing a canonical
method to compare pairs of objects when they both live in equality structures.
�

Fail Check ∀ (e : EQ.type) (a b : EQ.obj e), (a,b) == (a,b).

(* Error: The term "(a, b)" has type "(EQ.obj e * EQ.obj e)"

while it is expected to have type "EQ.obj ?15". *)

Definition pair_eq (e1 e2 : EQ.type) (x y : EQ.obj e1 * EQ.obj e2) :=

fst x == fst y /\ snd x == snd y.

Definition pair_EQcl (e1 e2 : EQ.type) := EQ.Class (pair_eq e1 e2).

Canonical Structure pair_EQty (e1 e2 : EQ.type) : EQ.type :=

EQ.Pack (EQ.obj e1 * EQ.obj e2) (pair_EQcl e1 e2).
�

We use the infix * to denote the type of pairs and we declare the obvious equality
function over pairs as canonical. Note that pair_EQty has two parameters, e1 and
e2, of the same type. The following hint is added to the unification algorithm:

t1 ∗ t2 ∼ EQ.obj ?y ∗ EQ.obj ?z ?x ∼ pair_EQty ?y ?z

t1 ∗ t2 ∼ EQ.obj ?x
(3)

Note that t1 and t2 are arbitrary terms, and hence the new rule is applicable
whenever the unification problem involves the EQ.obj projection and the type
constructor *. The unification variables ?y and ?z are fresh.

The following reduction justifies the shape of the first premise.

pair_EQty := EQ.Pack . . . ∈ Γ
unfold

pair_EQty � EQ.Pack . . .
hd-red

pair_EQty ?y ?z � EQ.Pack (EQ.obj ?y ∗ EQ.obj ?z) . . .
proj

EQ.obj (pair_EQty ?y ?z)� EQ.obj ?y ∗ EQ.obj ?z

It goes without saying that the first premise of (3) composes with the fst-order
rule, given that both sides have the same head constant *. One could thus refor-
mulate the hint in the following way, where the recursive calls on smaller, but
similar, unification problems is evident:

t1 ∼ EQ.obj ?y t2 ∼ EQ.obj ?z ?x ∼ pair_EQty ?y ?z

t1 ∗ t2 ∼ EQ.obj ?x
(4)

This hint is correct by induction: if unification finds a value for ?y so that
(EQ.obj ?y) unifies with t1 and a value for ?z so that (EQ.obj ?z) unifies with
t2, then (pair_EQty ?y ?z) is a solution for the problem, because it reduces to
(EQ.obj ?y ∗ EQ.obj ?z) that unifies with (t1 ∗ t2) by the fst-order rule.

It is now clear that type inference can make sense of a comparison by the ==

infix notation of any nested pairs of objects, as soon as their types are equipped
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with registered equality structures, and that this could be made to work for
other type constructors like list, option, etc. . .

5 Inheritance

In this section we show how to organize structures depending on one others by
implementing inheritance. Let us start assuming we have defined a structure of
types equipped with an order operator in a module named LE, exactly as we did
for EQ, with an infix notation <=. As we equipped nat with an EQ.type canonical
structure nat_EQty we also equip it with an LE.type canonical structure nat_LEty.
Now we can mix the two operators == and <= on objects of type nat. This however
is not sufficient for the development of the abstract theory shared by types that
are instances of both structures:
�

Check 2 <= 3 /\ 2 == 2. (* Works! *)

Fail Check ∀ (e : EQ.type) (x y : EQ.obj e), x <= y → y <= x → x == y.

(* Error: The term "x" has type "EQ.obj e"

while it is expected to have type "LE.obj ?32". *)
�

In this failing example, the type of x and y is extracted from the equality struc-
ture, which provides no mean of guessing a related order structure. Using LE.type

and LE.obj instead of EQ.type and EQ.obj would yield a similar error.
We need to craft a structure equipped with both comparison and order, and

also impose that the two operations can be combined is a sensible way. We begin
expressing this compatibility property. The packaging of this single property into
a record is overkilling, but we aim at exposing the general schema here:
�

Module LEQ.

Record mixin (e : EQ.type) (le : EQ.obj e → EQ.obj e → Prop) :=

Mixin { compat : ∀ (x y : EQ.obj e), (le x y /\ le y x) ↔ x == y }.
�

To express the property we need a type e of objects being comparable with ==

and an additional operation named le. The mixin is the only extra component
we need to build the new class starting from the one of EQ and the one of LE.
�

Record class T := Class {

EQ_class : EQ.class T;

LE_class : LE.class T;

extra : mixin (EQ.Pack T EQ_class) (LE.cmp T LE_class) }.

Structure type := _Pack { obj : Type; class_of : class obj }.

Arguments Mixin {e le} _.

Arguments Class {T} _ _ _.
�

Some choices are arbitrary in this definition. For example one could use a sym-
metric mixin taking in input an LE.type and an operation eq. In general one
parametrizes the mixin so to ease the writing of its content.

The reason why the _Pack constructor has been named this way becomes clear
in the next section, where we implement a smarter constructor Pack to ease the
declaration of canonical instances.



28 A. Mahboubi and E. Tassi

Unfortunately we have not yet fulfilled our goals completely:
�

Module theory.

Fail Check ∀ (leq : type) (n m : obj leq), n <= m → n <= m → n == m.

(* Error: The term "n" has type "LEQ.obj leq"

while it is expected to have type "LE.obj ?44". *)
�

The error message is better explained in the following graph where the nodes are
types and the edges represent the inheritance relation. The two edges from LEQ

.type to EQ.type and LE.type are missing: Coq does not know that an instance
of the interface LEQ.type is also an instance of LE.type and EQ.type.
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Again the issue manifests as an hard unification problem, that luckily falls in the
domain of Canonical Structures. We only need to provide the following hints:
�

Definition to_EQ (leq : type) : EQ.type :=

EQ.Pack (obj leq) (EQ_class _ (class_of leq)).

Definition to_LE (leq : type) : LE.type :=

LE.Pack (obj leq) (LE_class _ (class_of leq)).

Canonical Structure to_EQ.

Canonical Structure to_LE.
�

The hint generated by the last command is the following one:

LEQ.obj t ∼ LEQ.obj ?y ?x ∼ LEQ.to_LE ?y

LEQ.obj t ∼ LE.obj ?x
(5)

The following reduction justifies the shape of the first premise and the correctness
of the hinted solution:

LEQ.to_LE := LE.Pack . . . ∈ Γ
unfold

LEQ.to_LE � LE.Pack . . .
hd-red

LEQ.to_LE ?y � LE.Pack (LEQ.obj ?y) . . .
proj

LE.obj (LEQ.to_LE ?y)� LEQ.obj ?y

Now we can state a lemma using both == and <= on an abstract type leq. In this
simple case the proof is just the content of the mixin.
�

Lemma lele_eq (leq : type) (x y : obj leq) : x <= y → y <= x → x == y

Proof. ... Qed.

Arguments lele_eq {leq} x y _ _.

End theory.

End LEQ.
�
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Even if objects of type nat can be compared with both == and <=, we did not
prove that the corresponding operations are compatible. All we have to do is to
build an instance of LEQ.type over nat and declare it as canonical.
�

Import LEQ.theory.

Example test1 (n m : nat) : n <= m → m <= n → n == m.

Proof. Fail apply (lele_eq n m). Abort.

(* Error: The term "n" has type "nat"

while it is expected to have type "LEQ.obj ?48". *)

Lemma nat_LEQ_compat (n m : nat) : n <= m → m <= n → n == m.

Proof. ... Qed.

Definition nat_LEQmx := LEQ.Mixin nat_LEQ_compat.

Canonical Structure nat_LEQty : LEQ.type :=

LEQ._Pack nat (LEQ.Class nat_EQcl nat_LEcl nat_LEQmx).
�

6 Proof Search

Just like in section 4, we can program a generic instance of equality-and-order
structure for pairs of equality-and-order instances. Then the look-up for canon-
ical instances can be iterated in a similar way, but this time for the equality,
order and equality-and-order instances at once:

�

Lemma pair_LEQ_compat (l1 l2 : LEQ.type) (n m : LEQ.obj l1 * LEQ.obj l2):

n <= m → m <= n → n == m.

Proof. ... Qed.

Definition pair_LEQmx (l1 l2 : LEQ.type) :=

LEQ.Mixin (pair_LEQ_compat l1 l2).

Canonical Structure pair_LEQty (l1 l2 : LEQ.type) : LEQ.type :=

LEQ._Pack (LEQ.obj l1 * LEQ.obj l2)

(LEQ.Class

(EQ.class_of (pair_EQty (to_EQ l1) (to_EQ l2)))

(LE.class_of (pair_LEty (to_LE l1) (to_LE l2)))

(pair_LEQmx l1 l2)).

Example test2 (n m : (nat * nat) * nat) : n <= m → m <= n → n == m.

Proof. now apply (lele_eq n m). Qed.
�

The proof of the toy example test2 illustrates that the look-up for an instance
of equality-and-order structure, which justifies the use of lemma lele_eq, truly
amounts to a proof search mechanism. Indeed, neither have we ever programmed
explicitly the operators equipping type (nat * nat) * nat, not have we proved
the requirements of lemma lele_eq by hand on that instance: both the programs
and the proofs have been synthesized from generic patterns.

7 Declaring Instances Made Easier

The declaration of the canonical structure pair_LEQty and nat_LEQty is still un-
satisfactory: it is not only very verbose, but also very redundant. Indeed we had
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to provide by hand many components the system is in principle able to infer.
In particular the EQ.type and LE.type structures for nat and the pair type are
provided explicitly by hand even if we have registered them as canonical. In this
section we show how to program a packager that given the type and the mixin
that characterizes the LEQ.type we are building, infers all the remaining fields.

The main difficulty is that the information registered in the Canonical Struc-
tures database can be retrieved only when a precise problem is posed to the
unification algorithm. We hence start with the description of some generic Swiss
knife which allows to pose arbitrary problems to the unification algorithm and
to extract the resulting information.

The first problem to overcome is that unification (and its Canonical Structures
database) is used by type inference to process types, while in many occasions we
want to enforce the unification of terms.2 However we can inject values into
types, even artificially, using the dependent types of Coq. To this purpose we
define and use a phantom type. This construction is also used in the programming
language context to trick the type system into enforcing extra invariants [11].

�

Module infrastructure.

Inductive phantom {T : Type} (t : T) : Type := Phantom.

Definition unify {T1 T2} (t1 : T1) (t2 : T2) (s : option string) :=

phantom t1 → phantom t2.

Definition id {T} {t : T} (x : phantom t) := x.

Notation "[find v | t1 ∼ t2 ] rest" :=

(fun v (_ : unify t1 t2 None) => rest) ...

Notation "[find v | t1 ∼ t2 | msg ] rest" :=

(fun v (_ : unify t1 t2 (Some msg)) => rest) ...

Notation "’Error: t msg" := (unify _ t (Some msg)) ...

End infrastructure.
�

Note that in order to improve the error messages, and to facilitate debugging,
the unify function optionally holds a string representing an error message. The
notation “[find v | t1 ∼ t2 | msg ] rest” should be read as: “find v such that
t1 unifies with t2 or fail with msg”, then continue with rest.

The second problem is that, once terms are lifted to the types level, we still
need to be able to call the unification procedure at the right moment. The in-
frastructure we want to build has to be generic, i.e. be expressed for an arbitrary
type T and mixin m, but there is no canonical structure for an arbitrary type T.
We need to run the unification procedure only when T is provided. To this extent
the terms to be unified are stored as unify t1 t2 that is defined as phantom t1

→ phantom t2.3 Each argument of type unify will be later instantiated with an
identity function, whose type phantom t → phantom t (for some t) is required to
match phantom t1 → phantom t2, and hence forces the unification of t1 with t2.

2 It is avoidable in this context, but we prefer to present this mechanism in its full
generality given its ubiquity in the Mathematical Components library.

3 On the contrary using t1 = t2 would force their type to be immediately unifiable.
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With this infrastructure we can define a packager to build an inhabitant
(LEQ._Pack T (LEQ.Class ce co m)) of the LEQ.type record given the type for
the objects T and the mixin m0.
�

Import infrastructure.

Definition packager T e0 le0 (m0 : LEQ.mixin e0 le0) :=

[find e | EQ.obj e ∼ T | "is not an EQ.type" ]

[find o | LE.obj o ∼ T | "is not an LE.type" ]

[find ce | EQ.class_of e ∼ ce ]

[find co | LE.class_of o ∼ co ]

[find m | m ∼ m0 | "is not the right mixin" ]

LEQ._Pack T (LEQ.Class ce co m).

Notation Pack T m := (packager T _ _ m _ id _ id _ id _ id _ id).
�

The parameters e0 and le0 are needed only for the argument m0 to be well-typed.
Now remark that this packager eventually builds an instance of the LEQ.type

structure from the input type T plus three components ce, co and m that are not
calculated from the input mixin m0 by a Coq function. The component ce (resp.
co) is the class field of the record e (resp. o), which is itself an EQ.type (resp.
LE.type) that is inferred as the canonical instance over T. Finally m is forced to
be equal to the input mixin m0. The Pack notation is just a macro to provide the
packager with enough unknown values _ and enough identity functions for the
unification problems to be triggered when the notation is used and T is provided.
Canonical instance declarations can then be shortened as follows:
�

Canonical Structure nat_LEQty := Eval hnf in Pack nat nat_LEQmx.

Canonical Structure pair_LEQty (l1 l2 : LEQ.type) :=

Eval hnf in Pack (LEQ.obj l1 * LEQ.obj l2) (pair_LEQmx l1 l2).
�

When we declare the first canonical instance, type inference gives a type to
(Pack nat nat_LEQmx). All the _ part of the Pack notation are inferred by the
unification algorithm that in turn finds a value for e, then o, then ce, then co

and finally m. The “Eval hnf in” command reduces away the abstractions in the
body of the packager. Error reporting is also quite accurate:
�

Fail Canonical Structure e := Eval hnf in Pack bool nat_LEQmx.

(* ... ’Error: bool "is not an EQ.type" *)

Fail Canonical Structure e := Eval hnf in Pack (nat * nat) nat_LEQmx.

(* ... ’Error: nat_LEQmx "is not the right mixin" *)
�

Note that, in this simple case, the packager could be simplified by using explicitly
the e0 parameter of the m0 mixin for the value of the e component.

8 Conclusions and Related Works

As a conclusion we compare three similar mechanisms that have been imple-
mented independently in proof assistants based on the Calculus of Inductive
Constructions: Coq’s Type Classes [15], which have also been used to develop
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hierarchies of algebraic structures [16]; Coq’s Canonical Structures [14], which
we have presented in this tutorial; and Matita’s Unification Hints [1], that can
be seen as a generalization of Canonical Structures.

Type Classes Canonical Structures Unification Hints

1st class Yes Yes Yes
local instance Yes Almost Yes
search engine ad hoc unification unification

priority/overlap explicit encodable explicit
backtracking native encodable /

package/inheritance unbundled/trivial bundled/easy bundled/easy
narrowing / No Yes

1st class: With all these mechanisms, interfaces are record types, hence first
class objects. This is fundamental to build new types and instances on the fly in
the middle of proofs — one cannot for instance declare a module in the middle of
a proof. This is also crucial to develop a generic theory by quantifying on all the
instances of such a structures to express statements like “the first order theory
of an algebraically closed field has the quantifier elimination property” [3].

Local Instance: Even if new structure instances can be built in the middle
of a proof, Canonical Structures require all the building blocks to be globally
defined. In other words there is no support for hinting the unification using a
construction one obtains in the middle of a proof. On the contrary Type Classes
take into account local instances available in the proof context. Actually one can
program unification to postpone all unification problems that fail because of a
missing Canonical Structure in the following way:
�

Canonical Structure failsafe t f : EQ.type := EQ.Pack t (EQ.Class f).

Set Printing All.

Check (true == true). (* @EQ.op (failsafe bool ?9) true true : Prop *)

Fail Lemma test : true == true.

(* Cannot infer an internal placeholder of type "bool → bool → Prop *)
�

The failsafe Canonical Structure has a special status, given that its obj com-
ponent t is a parameter. Canonical Structures of this kind are called “default”
and are used only if no other canonical structure can be applied. With this hint
type inference can give a type to (true == true) even if there is no EQ.type de-
clared as canonical for the type bool. Unfortunately Coq 8.4 handles unresolved
unification variables like ?9 in a non uniform way. For example a statement of a
theorem cannot contain unresolved variables.

Search Engine: This is certainly the major limitation of all three mecha-
nisms, that, to our knowledge, are equally undocumented for that respect. To
understand failures one may need to dig into the sources of the systems.

Backtracking and Priorities: Backtracking is a native mechanism of Type
Classes’ search engine. This mechanism offers vernacular commands to assign
weighted priorities to the instances declared by the user. Instances can overlap
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and the search engine may try all possibilities. Instances of Canonical Struc-
tures cannot overlap. However, one can alias a term by means of a definition
and encode priorities into a chain of aliases (See [10], section 2.3). Instances of
Unification Hints can overlap, and they are tried in an order provided explicitly
by the user. The language for the declaration of Unification Hints has a syntax
very close to the one we used in this paper to explain hint (4) in section 4 and a
notion of cut à la Prolog would clearly apply but is not currently implemented.

Package/Inheritance: Different mechanisms impose different styles to declare
the interfaces.TypeClasses enforce the unbundled approach,where the values used
to search instances have to be parameters of the structure. Canonical Structures
and Unification Hints enforce a bundled (also called packed) approach, where the
values used to search for instances have to be fields of the structure. Implement-
ing inheritance relation between interfaces is possible using all three mechanisms.
The tricky case is the one of multiple inheritance like our LEQ of section 5, where
a structure has to inherit from two a priori unrelated structures that nonetheless
provide operators and specifications on the same type. This problem is trivial with
unbundled structures, as the common domain type constraint can be expressed
syntactically. With structures expressed in bundled style the best solution known
is the one of packed-classes [5] we used in section 5, that provides a general solution
to single and multiple inheritance. This solution is used consistently in the whole
web of interfaces defined in the Mathematical Components libraries.

Narrowing: Type Classes do not extend unification, so this point does not ap-
ply. Canonical Structures extend unification only when dealing with problems
involving a record projection. Unification Hints let the user extend unification
more freely. For example a unification hint could enable the unification algorithm
to solve the problem “?x * (S n) ∼ 0” by assigning ?x to 0.

A very natural question is if it is possible to mix Canonical Structures and
Type Classes in Coq. The answer is yes. For example one can build an EQ.type

instance using the Type Classes search engine as follows:
�

Existing Class EQ.class.

Canonical Structure failsafe T {c : EQ.class T} : EQ.type := EQ.Pack T c.

Instance bool_EQcl : EQ.class bool := EQ.Class bool bool_cmp.

Check true == true. (* Works! ?9 assigned to bool_EQcl *)
�

The converse is also possible.
�

Class eq_class {A} : Type := Class { cmp : A → A → Prop }.

Notation "x === y" := (cmp x y) (at level 70).

Instance find_CS (e : EQ.type) : eq_class := Class (EQ.obj e) (@EQ.op e).

Set Printing All.

Check 0 === 0. (* @cmp nat (find_CS nat_EQty) O O : Prop *)
�
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Abstract. Sledgehammer integrates automatic theorem provers in the proof as-
sistant Isabelle/HOL. A key component, the relevance filter, heuristically ranks
the thousands of facts available and selects a subset, based on syntactic similar-
ity to the current goal. We introduce MaSh, an alternative that learns from suc-
cessful proofs. New challenges arose from our “zero-click” vision: MaSh should
integrate seamlessly with the users’ workflow, so that they benefit from machine
learning without having to install software, set up servers, or guide the learning.
The underlying machinery draws on recent research in the context of Mizar and
HOL Light, with a number of enhancements. MaSh outperforms the old rele-
vance filter on large formalizations, and a particularly strong filter is obtained by
combining the two filters.

1 Introduction

Sledgehammer [27] is a subsystem of the proof assistant Isabelle/HOL [25] that dis-
charges interactive goals by harnessing external automatic theorem provers (ATPs). It
heuristically selects a number of relevant facts (axioms, definitions, or lemmas) from
the thousands available in background libraries and the user’s formalization, translates
the problem to the external provers’ logics, and reconstructs any machine-found proof
in Isabelle (Sect. 2). The tool is popular with both novices and experts.

Various aspects of Sledgehammer have been improved since its introduction, notably
the addition of SMT solvers [7], the use of sound translation schemes [8], close coop-
eration with the first-order superposition prover SPASS [9], and of course advances in
the underlying provers themselves. Together, these enhancements increased the success
rate from 48% to 64% on the representative “Judgment Day” benchmark suite [9, 10].

One key component that has received little attention is the relevance filter. Meng and
Paulson [23] designed a filter, MePo, that iteratively ranks and selects facts similar to
the current goal, based on the symbols they contain. Despite its simplicity, and despite
advances in prover technology [9, 14, 30], this filter greatly increases the success rate:
Most provers cannot cope with tens of thousands of formulas, and translating so many
formulas would also put a heavy burden on Sledgehammer. Moreover, the translation
of Isabelle’s higher-order constructs and types is optimized globally for a problem—
smaller problems make more optimizations possible, which helps the automatic provers.

Coinciding with the development of Sledgehammer and MePo, a line of research
has focused on applying machine learning to large-theory reasoning. Much of this work

S. Blazy, C. Paulin-Mohring, and D. Pichardie (Eds.): ITP 2013, LNCS 7998, pp. 35–50, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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has been done on the vast Mizar Mathematical Library (MML) [1], either in its orig-
inal Mizar [22] formulation or in first-order form as the Mizar Problems for Theorem
Proving (MPTP) [33]. The MaLARea system [34,38] and the competitions CASC LTB
and Mizar@Turing [31] have been important milestones. Recently, comparative studies
involving MPTP [2, 20] and the Flyspeck project in HOL Light [17] have found that
fact selectors based on machine learning outperform symbol-based approaches.

Several learning-based advisors have been implemented and have made an impact
on the automated reasoning community. In this paper, we describe a tool that aims to
bring the fruits of this research to the Isabelle community. This tool, MaSh, offers a
memoryful alternative to MePo by learning from successful proofs, whether human-
written or machine-generated.

Sledgehammer is a one-click technology—fact selection, translation, and
reconstruction are fully automatic. For MaSh, we had four main design goals:

• Zero-configuration: The tool should require no installation or configuration steps,
even for use with unofficial repository versions of Isabelle.

• Zero-click: Existing users of Sledgehammer should benefit from machine learning,
both for standard theories and for their custom developments, without having to
change their workflow.

• Zero-maintenance: The tool should not add to the maintenance burden of Isabelle.
In particular, it should not require maintaining a server or a database.

• Zero-overhead: Machine learning should incur no overhead to those Isabelle users
who do not employ Sledgehammer.

By pursuing these “four zeros,” we hope to reach as many users as possible and keep
them for as long as possible. These goals have produced many new challenges.

MaSh’s heart is a Python program that implements a custom version of a weighted
sparse naive Bayes algorithm that is faster than the naive Bayes algorithm implemented
in the SNoW [12] system used in previous studies (Sect. 3). The program maintains a
persistent state and supports incremental, nonmonotonic updates. Although distributed
with Isabelle, it is fully independent and could be used by other proof assistants,
automatic theorem provers, or applications with similar requirements.

This Python program is used within a Standard ML module that integrates machine
learning with Isabelle (Sect. 4). When Sledgehammer is invoked, it exports new facts
and their proofs to the machine learner and queries it to obtain relevant facts. The main
technical difficulty is to perform the learning in a fast and robust way without interfering
with other activities of the proof assistant. Power users can enhance the learning by
letting external provers run for hours on libraries, searching for simpler proofs.

A particularly strong filter, MeSh, is obtained by combining MePo and MaSh. The
three filters are compared on large formalizations covering the traditional application
areas of Isabelle: cryptography, programming languages, and mathematics (Sect. 5).
These empirical results are complemented by Judgment Day, a benchmark suite that
has tracked Sledgehammer’s development since 2010. Performance varies greatly de-
pending on the application area and on how much has been learned, but even with little
learning MeSh emerges as a strong leader.
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2 Sledgehammer and MePo

Whenever Sledgehammer is invoked on a goal, the MePo (Meng–Paulson) filter selects
n facts φ1, . . . ,φn from the thousands available, ordering them by decreasing estimated
relevance. The filter keeps track of a set of relevant symbols—i.e., (higher-order) con-
stants and fixed variables—initially consisting of all the goal’s symbols. It performs the
following steps iteratively, until n facts have been selected:

1. Compute each fact’s score, as roughly given by r/(r+ i), where r is the number of
relevant symbols and i the number of irrelevant symbols occurring in the fact.

2. Select all facts with perfect scores as well as some of the remaining top-scoring
facts, and add all their symbols to the set of relevant symbols.

The implementation refines this approach in several ways. Chained facts (inserted into
the goal by means of the keywords using, from, then, hence, and thus) take absolute
priority; local facts are preferred to global ones; first-order facts are preferred to higher-
order ones; rare symbols are weighted more heavily than common ones; and so on.

MePo tends to perform best on goals that contain some rare symbols; if all the sym-
bols are common, it discriminates poorly among the hundreds of facts that could be
relevant. There is also the issue of starvation: The filter, with its iterative expansion of
the set of relevant symbols, effectively performs a best-first search in a tree and may
therefore ignore some relevant facts close to the tree’s root.

The automatic provers are given prefixes φ1, . . . ,φm of the selected n facts. The order
of the facts—the estimated relevance—is exploited by some provers to guide the search.
Although Sledgehammer’s default time limit is 30 s, the automatic provers are invoked
repeatedly for shorter time periods, with different options and different number of facts
m ≤ n; for example, SPASS is given as few as 50 facts in some slices and as many as
1000 in others. Excluding some facts restricts the search space, helping the prover find
deeper proofs within the allotted time, but it also makes fewer proofs possible.

The supported ATP systems include the first-order provers E [29], SPASS [9], and
Vampire [28]; the SMT solvers CVC3 [4], Yices [13], and Z3 [24]; and the higher-order
provers LEO-II [5] and Satallax [11].

Once a proof is found, Sledgehammer minimizes it by invoking the prover repeatedly
with subsets of the facts it refers to. The proof is then reconstructed in Isabelle by a
suitable proof text, typically a call to the built-in resolution prover Metis [16].

Example 1. Given the goal

map f xs = ys =⇒ zip (rev xs) (rev ys) = rev (zip xs ys)

MePo selects 1000 facts: rev_map, rev_rev_ident, . . . , add_numeral_special(3). The
prover E, among others, quickly finds a minimal proof involving the 4th and 16th facts:

zip_rev: length xs = length ys =⇒ zip (rev xs) (rev ys) = rev (zip xs ys)
length_map: length (map f xs) = length xs

Example 2. MePo’s tendency to starve out useful facts is illustrated by the following
goal, taken from Paulson’s verification of cryptographic protocols [26]:

used [ ]⊆ used evs
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A straightforward proof relies on these four lemmas:

used_Nil: used [ ] =
⋃

B parts (initState B)
initState_into_used: X ∈ parts (initState B) =⇒ X ∈ used evs

subsetI: (
∧

x. x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B
UN_iff : b ∈ ⋃

x∈A B x ←→ ∃x∈A. b ∈ B x

The first two lemmas are ranked 6807th and 6808th, due to the many initially irrele-
vant constants (

⋃
, parts, initState, and ∈). In contrast, all four lemmas appear among

MaSh’s first 45 facts and MeSh’s first 77 facts.

3 The Machine Learning Engine

MaSh (Machine Learning for Sledgehammer) is a Python program for fact selection
with machine learning.1 Its default learning algorithm is an approximation of naive
Bayes adapted to fact selection. MaSh can perform fast model updates, overwrite data
points, and predict the relevance of each fact. The program can also use the much slower
naive Bayes algorithm implemented by SNoW [12].

3.1 Basic Concepts

MaSh manipulates theorem proving concepts such as facts and proofs in an agnostic
way, as “abstract nonsense”:

• A fact φ is a string.
• A feature f is also a string. A positive weight w is attached to each feature.
• Visibility is a partial order ≺ on facts. A fact φ is visible from a fact φ ′ if φ ≺ φ ′,

and visible through the set of facts Φ if there exists a fact φ ′ ∈ Φ such that φ � φ ′.
• The parents of a fact are its (immediate) predecessors with respect to ≺.
• A proof Π for φ is a set of facts visible from φ .

Facts are described abstractly by their feature sets. The features may for example be the
symbols occurring in a fact’s statement. Machine learning proceeds from the hypothesis
that facts with similar features are likely to have similar proofs.

3.2 Input and Output

MaSh starts by loading the persistent model (if any), executes a list of commands, and
saves the resulting model on disk. The commands and their arguments are

learn fact parents features proof
relearn fact proof
query parents features hints

The learn command teaches MaSh a new fact φ and its proof Π. The parents specify
how to extend the visibility relation for φ , and the features describe φ . In addition to the
supplied proof Π �φ , MaSh learns the trivial proof φ �φ ; hence something is learned
even if Π = /0 (which can indicate that no suitable proof is available).

1 The source code is distributed with Isabelle2013 in the directory src/HOL/Tools/Sledge-

hammer/MaSh/src.
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The relearn command forgets a fact’s proof and learns a new one.
The query command ranks all facts visible through the given parents by their pre-

dicted relevance with respect to the specified features. The optional hints are facts that
guide the search. MaSh temporarily updates the model with the hints as a proof for the
current goal before executing the query.

The commands have various preconditions. For example, for learn, φ must be fresh,
the parents must exist, and all facts in Π must be visible through the parents.

3.3 The Learning Algorithm

MaSh’s default machine learning algorithm is a weighted version of sparse naive Bayes.
It ranks each visible fact φ as follows. Consider a query command with the features
f1, . . . , fn weighted w1, . . . ,wn, respectively. Let P denote the number of proofs in which
φ occurs, and pj ≤ P the number of such proofs associated with facts described by fj

(among other features). Let π and σ be predefined weights for known and unknown
features, respectively. The estimated relevance is given by

r(φ , f1, . . . , fn) = ln P + ∑
j : pj �=0

wj
(
ln(π pj) − ln P

)
+ ∑

j : pj=0

wj σ

When a fact is learned, the values for P and pj are initialized to a predefined weight τ .
The models depend only on the values of P, pj, π , σ , and τ , which are stored in dic-
tionaries for fast access. Computing the relevance is faster than with standard naive
Bayes because only the features that describe the current goal need to be considered,
as opposed to all features (of which there may be tens of thousands). Experiments have
found the values π = 10, σ =−15, and τ = 20 suitable.

A crucial technical issue is to represent the visibility relation efficiently as part of
the persistent state. Storing all the ancestors for each fact results in huge files that must
be loaded and saved, and storing only the parents results in repeated traversals of long
parentage chains to obtain all visible facts. MaSh solves this dilemma by complement-
ing parentage with a cache that stores the ancestry of up to 100 recently looked-up facts.
The cache not only speeds up the lookup for the cached facts but also helps shortcut the
parentage chain traversal for their descendants.

4 Integration in Sledgehammer

Sledgehammer’s MaSh-based relevance filter is implemented in Standard ML, like most
of Isabelle.2 It relies on MaSh to provide suggestions for relevant facts whenever the
user invokes Sledgehammer on an interactive goal.

4.1 The Low-Level Learner Interface

Communication with MaSh is encapsulated by four ML functions. The first function
resets the persistent state; the last three invoke MaSh with a list of commands:

2 The code is located in Isabelle2013’s files src/HOL/Tools/Sledgehammer/sledgehammer_

mash.ML, src/HOL/TPTP/mash_export.ML, and src/HOL/TPTP/mash_eval.ML.
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MaSh.unlearn ()

MaSh.learn [( fact1, parents1, features1, proof1), . . . ,
( factn, parentsn, featuresn, proofn)]

MaSh.relearn [( fact1, proof1), . . . , ( factn, proofn)]
suggestions = MaSh.query parents features hints

To track what has been learned and avoid violating MaSh’s preconditions, Sledgeham-
mer maintains its own persistent state, mirrored in memory. This mainly consists of the
visibility graph, a directed acyclic graph whose vertices are the facts known to MaSh
and whose edges connect the facts to their parents. (MaSh itself maintains a visibility
graph based on learn commands.) The state is accessed via three ML functions that use
a lock to guard against race conditions in a multithreaded environment [41] and keep
the transient and persistent states synchronized.

4.2 Learning from and for Isabelle

Facts, features, proofs, and visibility were introduced in Sect. 3.1 as empty shells. The
integration with Isabelle fills these concepts with content.

Facts. Communication with MaSh requires a string representation of Isabelle facts.
Each theorem in Isabelle carries a stable “name hint” that is identical or very similar
to its fully qualified user-visible name (e.g., List.map.simps_2 vs. List.map.simps(2)).
Top-level lemmas have unambiguous names. Local facts in a structured Isar proof [40]
are disambiguated by appending the fact’s statement to its name.

Features. Machine learning operates not on the formulas directly but on sets of fea-
tures. The simplest scheme is to encode each symbol occurring in a formula as its
own feature. The experience with MePo is that other factors help—for example, the
formula’s types and type classes or the theory it belongs to. The MML and Flyspeck
evaluations revealed that it is also helpful to preserve parts of the formula’s structure,
such as subterms [3, 17].

Inspired by these precursors, we devised the following scheme. For each term in the
formula, excluding the outer quantifiers, connectives, and equality, the features are de-
rived from the nontrivial first-order patterns up to a given depth. Variables are replaced
by the wildcard _ (underscore). Given a maximum depth of 2, the term g (h x a), where
constants g, h, a originate from theories T, U, V, yields the patterns

T.g(_) T.g(U.h(_,_)) U.h(_,_) U.h(_,V.a) V.a

which are simplified and encoded into the features

T.g T.g(U.h) U.h U.h(V.a) V.a

Types, excluding those of propositions, Booleans, and functions, are encoded using an
analogous scheme. Type variables constrained by type classes give rise to features cor-
responding to the specified type classes and their superclasses. Finally, various pieces
of metainformation are encoded as features: the theory to which the fact belongs; the
kind of rule (e.g., introduction, simplification); whether the fact is local; whether the
formula contains any existential quantifiers or λ -abstractions.
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Guided by experiments similar to those of Sect. 5, we attributed the following
weights to the feature classes:

Fixed variable 20
Constant 16
Localness 8

Type 2
Theory 2
Kind of rule 2

Presence of ∃ 2
Presence of λ 2
Type class 1

Example 3. The lemma transpose (map (map f ) xs) =map (map f ) (transpose xs)
from the List theory has the following features and weights (indicated by subscripts):

List2

List.list2

List.map16

List.map(List.map)16

List.transpose16

List.transpose(List.map)16

List.map(List.transpose)16

List.map(List.map, List.transpose)16

Proofs. MaSh predicts which facts are useful for proving the goal at hand by studying
successful proofs. There is an obvious source of successful proofs: All the facts in
the loaded theories are accompanied by proof terms that store the dependencies [6].
However, not all available facts are equally suitable for learning. Many of them are
derived automatically by definitional packages (e.g., for inductive predicates, datatypes,
recursive functions) and proved using custom tactics, and there is not much to learn
from those highly technical lemmas. The most interesting lemmas are those stated and
proved by humans. Slightly abusing terminology, we call these “Isar proofs.”

Even for user lemmas, the proof terms are overwhelmed by basic facts about the
logic, which are tautologies in their translated form. Fortunately, these tautologies are
easy to detect, since they contain only logical symbols (equality, connectives, and quan-
tifiers). The proofs are also polluted by decision procedures; an extreme example is
the Presburger arithmetic procedure, which routinely pulls in over 200 dependencies.
Proofs involving over 20 facts are considered unsuitable and simply ignored.

Human-written Isar proofs are abundant, but they are not necessarily the best raw
material to learn from. They tend to involve more, different facts than Sledgehammer
proofs. Sometimes they rely on induction, which is difficult for automatic provers; but
even excluding induction, there is evidence that the provers work better if the learned
proofs were produced by similar provers [20, 21].

A special mode of Sledgehammer runs an automatic prover on all available facts
to learn from ATP-generated proofs. Users can let it run for hours at at time on their
favorite theories. The Isar proof facts are passed to the provers together with a few
dozens of MePo-selected facts. Whenever a prover succeeds, MaSh discards the Isar
proof and learns the new minimized proof (using MaSh.relearn). Facts with large Isar
proofs are processed first since they stand to gain the most from shorter proofs.

Visibility. The loaded background theories and the user’s formalization, including local
lemmas, appear to Sledgehammer as a vast collection of facts. Each fact is tagged with
its own abstract theory value, of type theory in ML, that captures the state of affairs
when it was introduced. Sledgehammer constructs the visibility graph by using the (very
fast) subsumption order � on theory.

A complication arises because � lifted to facts is a preorder, whereas the graph must
encode a partial order �. Antisymmetry is violated when facts are registered together.



42 D. Kühlwein et al.

Despite the simultaneity, one fact’s proof may depend on another’s; for example, an
inductive predicate’s definition p_def is used to derive introduction and elimination
rules pI and pE, and yet they may share the same theory. Hence, some care is needed
when constructing � from � to ensure that p_def � pI and p_def � pE.

When performing a query, Sledgehammer needs to compute the current goal’s par-
ents. This involves finding the maximal vertices of the visibility graph restricted to
the facts available in the current Isabelle proof context. The computation is efficient
for graphs with a quasi-linear structure, such as those that arise from Isabelle theo-
ries: Typically, only the first fact of a theory will have more than one parent. A similar
computation is necessary when teaching MaSh new facts.

4.3 Relevance Filters: MaSh and MeSh

Sledgehammer’s MaSh-based relevance filter computes the current goal’s parents and
features; then it queries the learner program (using MaSh.query), passing the chained
facts as hints. This process usually takes about one second on modern hardware, which
is reasonable for a tool that may run for half a minute. The result is a list with as many
suggestions as desired, ordered by decreasing estimated relevance.

Relying purely on MaSh for relevance filtering raises an issue: MaSh may not have
learned all the available facts. In particular, it will be oblivious to the very latest facts,
introduced after Sledgehammer was invoked for the last time, and these are likely to
be crucial for the proof. The solution is to enrich the raw MaSh data with a proximity
filter, which sorts the available facts by decreasing proximity in the proof text.

Instead of a plain linear combination of ranks, the enriched MaSh filter transforms
ranks into probabilities and takes their weighted average, with weight 0.8 for MaSh and
0.2 for proximity. The probabilities are rough approximations based on experiments.
Fig. 1 shows the mathematical curves; for example, the first suggestion given by MaSh
is considered about 15 times more likely to appear in a successful proof than the 50th.
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Fig. 1. Estimated probability of the jth fact’s appearance in a proof

This notion of combining filters to define new filters is taken one step further by
MeSh, a combination of MePo and MaSh. Both filters are weighted 0.5, and both use
the probability curve of Fig. 1(a).

Ideally, the curves and parameters that control the combination of filters would
be learned mechanically rather than hard-coded. However, this would complicate and
possibly slow down the infrastructure.
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4.4 Automatic and Manual Control

All MaSh-related activities take place as a result of a Sledgehammer invocation. When
Sledgehammer is launched, it checks whether any new facts, unknown to the visibility
graph, are available. If so, it launches a thread to learn from their Isar proofs and update
the graph. The first time, it may take about 10 s to learn all the facts in the background
theories (assuming about 10 000 facts). Subsequent invocations are much faster.

If an automatic prover succeeds, the proof is immediately taught to MaSh (using
MaSh.learn). The discharged (sub)goal may have been only one step in an unstructured
proof, in which case it has no name. Sledgehammer invents a fresh, invisible name for
it. Although this anonymous goal cannot be used to prove other goals, MaSh benefits
from learning the connection between the formula’s features and its proof.

For users who feel the need for more control, there is an unlearn command that re-
sets MaSh’s persistent state (using MaSh.unlearn); a learn_isar command that learns
from the Isar proofs of all available facts; and a learn_prover command that invokes
an automatic prover on all available facts, replacing the Isar proofs with successful
ATP-generated proofs whenever possible.

4.5 Nonmonotonic Theory Changes

MaSh’s model assumes that the set of facts and the visibility graph grow monotoni-
cally. One concern that arises when deploying machine learning—as opposed to evalu-
ating its performance on static benchmarks—is that theories evolve nonmonotonically
over time. It is left to the architecture around MaSh to recover from such changes. The
following scenarios were considered:

• A fact is deleted. The fact is kept in MaSh’s visibility graph but is silently ignored
by Sledgehammer whenever it is suggested by MaSh.

• A fact is renamed. Sledgehammer perceives this as the deletion of a fact and the
addition of another (identical) fact.

• A theory is renamed. Since theory names are encoded in fact names, renaming a
theory amounts to renaming all its facts.

• Two facts are reordered. The visibility graph loses synchronization with reality.
Sledgehammer may need to ignore a suggestion because it appears to be visible
according to the graph.

• A fact is introduced between two facts φ and φ ′. MaSh offers no facility to change
the parent of φ ′, but this is not needed. By making the new fact a child of φ , it is
considered during the computation of maximal vertices and hence visible.

• The fact’s formula is modified. This occurs when users change the statement of a
lemma, but also when they rename or relocate a symbol. MaSh is not informed of
such changes and may lose some of its predictive power.

More elaborate schemes for tracking dependencies are possible. However, the bene-
fits are unclear: Presumably, the learning performed on older theories is valuable and
should be preserved, despite its inconsistencies. This is analogous to teams of hu-
mans developing a large formalization: Teammates should not forget everything they



44 D. Kühlwein et al.

know each time a colleague changes the capitalization of some basic theory name.
And should users notice a performance degradation after a major refactoring, they can
always invoke unlearn to restart from scratch.

5 Evaluations

This section attempts to answer the main questions that existing Sledgehammer users
are likely to have: How do MaSh and MeSh compare with MePo? Is machine learning
really helping? The answer takes the form of two separate evaluations.3

5.1 Evaluation on Large Formalizations

The first evaluation measures the filters’ ability to re-prove the lemmas from three for-
malizations included in the Isabelle distribution and the Archive of Formal Proofs [19]:

Auth Cryptographic protocols [26] 743 lemmas
Jinja Java-like language [18] 733 lemmas
Probability Measure and probability theory [15] 1311 lemmas

These formalizations are large enough to exercise learning and provide meaningful
numbers, while not being so massive as to make experiments impractical. They are
also representative of large classes of mathematical and computer science applications.

The evaluation is twofold. The first part computes how accurately the filters can
predict the known Isar or ATP proofs on which MaSh’s learning is based. The second
part connects the filters to automatic provers and measures actual success rates.

The first part may seem artificial: After all, real users are interested in any proof that
discharges the goal at hand, not a specific known proof. The predictive approach’s great-
est virtue is that it does not require invoking external provers; evaluating the impact of
parameters is a matter of seconds instead of hours. MePo itself has been fine-tuned using
similar techniques. For MaSh, the approach also helps ascertain whether it is learning
the learning materials well, without noise from the provers. Two (slightly generalized)
standard metrics, full recall and AUC, are useful in this context.

For a given goal, a fact filter (MePo, MaSh, or MeSh) ranks the available facts and
selects the n best ranked facts Φ = {φ1, . . . ,φn}, with rank(φj) = j and rank(φ) = n+1
for φ /∈ Φ. The parameter n is fixed at 1024 in the experiments below.

The known proof Π serves as a reference point against which the selected facts and
their ranks are judged. Ideally, the selected facts should include as many facts from the
proof as possible, with as low ranks as possible.

Definition 1 (Full Recall). The full recall is the minimum number m ∈ {0, . . . ,n} such
that {φ1, . . . ,φm} ⊇ Π, or n+ 1 if no such number exists.

Definition 2 (AUC). The area under the receiver operating characteristic curve (AUC)
is given by ∣∣{(φ ,φ ′) ∈ Π× (Φ−Π) | rank(φ) < rank(φ ′)}∣∣

|Π| · |Φ−Π|
3 Our empirical data are available at http://www21.in.tum.de/~blanchet/mash_data.tgz.

http://www21.in.tum.de/~blanchet/mash_data.tgz
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MePo MaSh MeSh
Full rec. AUC Full rec. AUC Full rec. AUC

Isar proofs Auth 430 79.2 190 93.1 142 94.9
Jinja 472 73.1 307 90.3 250 92.2
Probability 742 57.7 384 88.0 336 89.2

ATP proofs Auth 119 93.5 198 92.0 68 97.0
Jinja 163 90.4 241 90.6 84 96.8
Probability 428 74.4 368 85.2 221 91.6

Fig. 2. Average full recall and average AUC (%) with Isar and ATP proofs

Full recall tells how many facts must be selected to ensure that all necessary facts are
included—ideally as few as possible. The AUC focuses on the ranks: It gives the prob-
ability that, given a randomly drawn “good” fact (a fact from the proof) and a randomly
drawn “bad” fact (a selected fact that does not appear in the proof), the good fact is
ranked before the bad fact. AUC values closer to 1 (100%) are preferable.

For each of the three formalizations (Auth, Jinja, and Probability), the evaluation
harness processes the lemmas according to a linearization (topological sorting) of the
partial order induced by the theory graph and their location in the theory texts. Each
lemma is seen as a goal for which facts must be selected. Previously proved lemmas,
and the learning performed on their proofs, may be exploited—this includes lemmas
from imported background theories. This setup is similar to the one used by Kaliszyk
and Urban [17] for evaluating their Sledgehammer-like tool for HOL Light. It simulates
a user who systematically develops a formalization from beginning to end, trying out
Sledgehammer on each lemma before engaging in a manual proof.4

Fig. 2 shows the average full recall and AUC over all lemmas from the three for-
malizations. For each formalization, the statistics are available for both Isar and ATP
proofs. In the latter case, Vampire was used as the ATP, and goals for which it failed
to find a proof are simply ignored. Learning from ATP proofs improves the machine
learning metrics, partly because they usually refer to fewer facts than Isar proofs.

There is a reversal of fortune between Isar and ATP proofs: MaSh dominates MePo
for the former but performs slightly worse than MePo for the latter on two of the
formalizations. The explanation is that the ATP proofs were found with MePo’s help.
Nonetheless, the combination filter MeSh scores better than MePo on all the
benchmarks.

Next comes the “in vivo” part of the evaluation, with actual provers replacing
machine learning metrics. For each goal from the formalizations, 13 problems were
generated, with 16, 23 (≈ 24.5), 32, . . . , 724 (≈ 29.5), and 1024 facts. Sledgeham-
mer’s translation is parameterized by many options, whose defaults vary from prover
to prover and, because of time slicing, even from one prover invocation to another. As

4 Earlier evaluations of Sledgehammer always operated on individual (sub)goals, guided by the
notion that lemmas can be too difficult to be proved outright by automatic provers. However,
lemmas appear to provide the right level of challenge for modern automation, and they tend to
exhibit less redundancy than a sequence of similar subgoals.
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Fig. 3. Success rates for a combination of provers on Auth + Jinja + Probability

a reasonable uniform configuration for the experiments, types are encoded via the so-
called polymorphic “featherweight” guard-based encoding (the most efficient complete
scheme [8]), and λ -abstractions via λ -lifting (as opposed to the more explosive SK
combinators).

Fig. 3 gives the success rates of a combination of three state-of-the-art automatic
provers (Epar 1.6 [36], Vampire 2.6, and Z3 3.2) on these problems. Two versions of
MaSh and MeSh are compared, with learning on Isar and ATP proofs. A problem is
considered solved if it is solved within 10 s by any of them, using only one thread.
The experiments were conducted on a 64-bit Linux server equipped with 12-core AMD
Opteron 6174 processors running at 2.2 GHz. We observe the following:

• MaSh clearly outperforms MePo, especially in the range from 32 to 256 facts. For
91-fact problems, the gap between MaSh/Isar and MePo is 10 percentage points.
(The curves have somewhat different shapes for the individual formalizations, but
the general picture is the same.)

• MaSh’s peak is both higher than MePo’s (44.8% vs. 38.2%) and occurs for smaller
problems (128 vs. 256 facts), reflecting the intuition that selecting fewer facts more
carefully should increase the success rate.

• MeSh adds a few percentage points to MaSh. The effect is especially marked for
the problems with fewer facts.

• Against expectations, learning from ATP proofs has a negative impact. A closer
inspection of the raw data revealed that Vampire performs better with ATP (i.e.,
Vampire) proofs, whereas the other two provers prefer Isar proofs.

Another measure of MaSh and MeSh’s power is the total number of goals solved for
any number of facts. With MePo alone, 46.3% of the goals are solved; adding MaSh and
MeSh increases this figure to 62.7%. Remarkably, for Probability—the most difficult
formalization by any standard—the corresponding figures are 27.1% vs. 47.2%.
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MePo MaSh MeSh

E 55.0 49.8 56.6
SPASS 57.2 49.1 57.7
Vampire 55.3 49.7 56.0
Z3 53.0 51.8 60.8

Together 65.6 63.0 69.8

Fig. 4. Success rates (%) on Judgment Day goals

5.2 Judgment Day

The Judgment Day benchmarks [10] consist of 1268 interactive goals arising in seven
Isabelle theories, covering among them areas as diverse as the fundamental theorem
of algebra, the completeness of a Hoare logic, and Jinja’s type soundness. The evalu-
ation harness invokes Sledgehammer on each goal. The same hardware is used as in
the original Judgment Day study [10]: 32-bit Linux servers with Intel Xeon processors
running at 3.06 GHz. The time limit is 60 s for proof search, potentially followed by
minimization and reconstruction in Isabelle. MaSh is trained on 9852 Isar proofs from
the background libraries imported by the seven theories under evaluation.

The comparison comprises E 1.6, SPASS 3.8ds, Vampire 2.6, and Z3 3.2, which
Sledgehammer employs by default. Each prover is invoked with its own options and
problems, including prover-specific features (e.g., arithmetic for Z3; sorts for SPASS,
Vampire, and Z3). Time slicing is enabled. For MeSh, some of the slices use MePo or
MaSh directly to promote complementarity.

The results are summarized in Fig. 4. Again, MeSh performs very well: The overall
4.2 percentage point gain, from 65.6% to 69.8%, is highly significant. As noted in a
similar study, “When analyzing enhancements to automatic provers, it is important to
remember what difference a modest-looking gain of a few percentage points can make
to users” [9, §7]. Incidentally, the 65.6% score for MePo reveals progress in the under-
lying provers compared with the 63.6% figure from one year ago.

The other main observation is that MaSh underperforms, especially in the light of
the evaluation of Sect. 5.1. There are many plausible explanations. First, Judgment Day
consists of smaller theories relying on basic background theories, giving few oppor-
tunities for learning. Consider the theory NS_Shared (Needham–Shroeder shared-key
protocol), which is part of both evaluations. In the first evaluation, the linear progress
through all Auth theories means that the learning performed on other, independent pro-
tocols (certified email, four versions of Kerberos, and Needham–Shroeder public key)
can be exploited. Second, the Sledgehammer setup has been tuned for Judgment Day
and MePo over the years (in the hope that improvements on this representative bench-
mark suite would translate in improvements on users’ theories), and conversely MePo’s
parameters are tuned for Judgment Day.

In future work, we want to investigate MaSh’s lethargy on these benchmarks (and
MeSh’s remarkable performance given the circumstances). The evaluation of Sect. 5.1
suggests that there are more percentage points to be gained.
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6 Related Work and Contributions

The main related work is already mentioned in the introduction. Bridges such as Sledge-
hammer for Isabelle/HOL, MizAR [37] for Mizar, and HOL(y)Hammer [17] for HOL
Light are opening large formal theories to methods that combine ATPs and artificial
intelligence (AI) [20,35] to help automate interactive proofs. Today such large theories
are the main resource for combining semantic and statistical AI methods [39].5

The main contribution of this work has been to take the emerging machine-learning
methods for fact selection and make them incremental, fast, and robust enough so
that they run unnoticed on a single-user machine and respond well to common user-
interaction scenarios. The advising services for Mizar and HOL Light [17, 32, 33, 37]
(with the partial exception of MoMM [32]) run only as remote servers trained on the
main central library, and their solution to changes in the library is to ignore them or
relearn everything from scratch. Other novelties of this work include the use of more
proof-related features in the learning (inspired by MePo), experiments combining MePo
and MaSh, and the related learning of various parameters of the systems involved.

7 Conclusion

Relevance filtering is an important practical problem that arises with large-theory rea-
soning. Sledgehammer’s MaSh filter brings the benefits of machine learning methods to
Isabelle users: By decreasing the quantity and increasing the quality of facts passed to
the automatic provers, it helps them find more, deeper proofs within the allotted time.
The core machine learning functionality is implemented in a separate Python program
that can be reused by other proof assistants.

Many areas are calling for more engineering and research; we mentioned a few al-
ready. Learning data could be shared on a server or supplied with the proof assistant.
More advanced algorithms appear too slow for interactive use, but they could be op-
timized. Learning could be applied to control more aspects of Sledgehammer, such as
the prover options or even MePo’s parameters. Evaluations over the entire Archive of
Formal Proofs might shed more light on MaSh’s and MePo’s strengths and weaknesses.
Machine learning being a gift that keeps on giving, it would be fascinating to instrument
a user’s installation to monitor performance over several months.
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5 It is hard to envisage all possible combinations, but with the recent progress in natural lan-
guage processing, suitable ATP/AI methods could soon be applied to another major aspect of
formalization: the translation from informal prose to formal specification.
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Abstract. All existing translations between proof assistants have been notori-
ously sluggy, resource-demanding, and do not scale to large developments, which
has lead to the general perception that the whole approach is probably not practi-
cal. We aim to show that the observed inefficiencies are not inherent, but merely a
deficiency of the existing implementations. We do so by providing a new imple-
mentation of a theory import from HOL Light to Isabelle/HOL, which achieves
decent performance and scalability mostly by avoiding the mistakes of the past.
After some preprocessing, our tool can import large HOL Light developments
faster than HOL Light processes them. Our main target and motivation is the
Flyspeck development, which can be imported in a few hours on commodity
hardware. We also provide mappings for most basic types present in the devel-
opments including lists, integers and real numbers. This papers outlines some
design considerations and presents a few of our extensive measurements, which
reveal interesting insights in the low-level structure of larger proof developments.

1 Introduction

The ability to exchange formal developments between different proof assistants has
been on the wish list of users for as long as these systems have existed.

Most systems are designed in such a way that their proofs can, in principle, be ex-
ported into a form (for example tactics, or proof terms in type theory based systems, or
kernel proof steps as it is in the case of HOL Light) that could be checked or imported
by some other system. Implementations of such proof translations exist between vari-
ous pairs of systems. However, they all have in common that they are very expensive
in terms of both runtime and memory requirements, which makes their use impractical
for anything but toy examples.

For instance, Obua and Skalberg [12] describe a translation from HOL Light and
HOL4 to Isabelle/HOL. Their tool is capable of replaying the HOL Light standard li-
brary, but this takes several hours (on 2010 hardware). Similarly, Keller and Werner [10]
import HOL Light proofs in Coq and report that the standard library requires ten hours
to load in Coq. Note that the standard library takes less than two minutes to load in plain
HOL Light, so there is roughly a factor 300 of overhead involved. Other descriptions of
similar translations report comparable overhead [15,11].

So should we conclude that this sort of blowup is inherent in the approach and that
proof translations must necessarily require lots of memory and patience? This paper aims
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to refute this common belief and show that the bad performance is merely a deficiency of
the existing implementations. More specifically, we make the following contributions:

– We describe a new implementation of a proof translation from HOL Light into
Isabelle/HOL, which performs much better than previous tools: After some prepro-
cessing, the HOL Light standard library can be imported into Isabelle/HOL in 30
seconds, which reduces the overhead factor from 300 down to about 0.4.

– Large developments are routinely handled by our tool, such that we can import
major parts of the formalized proof of the Kepler Conjecture, developed in the
Flyspeck [3] project on normal hardware. Here, the overhead factor is a bit larger
(with optimizations a factor of roughly 1.2).

– By providing better mappings of HOL Light concepts to Isabelle concepts, we ob-
tain more natural results; in particular little effort is needed to map compatible but
differently defined structures like integers and real numbers.

– We present various results obtained during our measurements, which yield some
empirical insights about the low-level structure of larger formal developments.

Our work shares some visions with Hurd’s OpenTheory project [6] but has a slightly
different focus:

– Our translation is able to work directly on the sources of any HOL Light develop-
ment, without requiring any modification, such as adding special proof recording
commands. This is crucial when dealing with large developments, where such mod-
ifications would create significant work and versioning problems.
In contrast, the OpenTheory setup still needs manual arrangements to the sources,
which hinders its use out of the box. Therefore, it is also hard to assess its scalability
to developments of Flyspeck’s size.

– We do not focus on creating small, independent, reusable packages. Instead, our
approach assumes a large development, which is treated as a whole. By default, all
definitions and top-level theorems are converted, but filtering to a subset is easy.

– Our proof recording and replaying mechanisms are designed to be efficient for
big proof developments, whereas OpenTheory focuses on maximum sharing. This
means that our proof trace format has very short identifiers for the most common
steps, and is designed to be easily parsed, whereas the OpenTheory is very explicit
and includes special commands for storing objects of any kinds to be reused. The
same proof traces written in the OpenTheory format would be roughly 10 times
larger, which for proof traces whose sizes are measured in gigabytes becomes im-
portant.

This Paper is Structured as Follows. In Section 2, we give an overview of the archi-
tecture of our translation. In Section 3 we discuss memoization strategies that allow
reducing the time and memory requirements of the translation processes. In Section 4
we present the statistics of inference steps involved in the translation and interesting
statistics about HOL Light and Flyspeck discovered using our experiments and finally
we conclude in Section 5 and present some outlook on the future work.
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2 Architecture Overview

In this section we explain the four basic steps in our proof translation: the collection of
theorems that need to be exported; the instrumented kernel used to export the inference
steps performed in HOL Light; the offline proof processor, and the importer itself. The
four components are presented schematically in Figure 1.

Theory Sources Collect Export List Export List

Source Processing Step Intermediate Result

Export Proofs Inference Trace

Offline GCConcept Mappings Reduced Trace

Import
Documentation

Isabelle Image

Fig. 1. The architecture of the translation mechanism

2.1 Collecting Theorems to Export

The first issue in implementing a proof translation mechanism is to choose which theo-
rems are relevant and what are their canonical names. While many other proof assistants
manage a list of named lemmas explicitly in some form of table, HOL Light simply
represents lemmas as OCaml values of a certain type, bound on the interactive toplevel.

We first tried to follow a strategy similar to Obua and Skalberg [12], where state-
ments to export are collected heuristically, by detecting certain idioms in the theory
sources, such as the use of the function prove in the context of a toplevel binding. How-
ever, this rather superficial analysis is quite incomplete and fails to detect non-standard
means of producing lemmas occur frequently in larger developments. It also produces
false positives for bindings local to a function or module.

Instead of such guesses based on surface syntax, it is more practical to rely on the
existing update database [5] functionality, which can produce a list of name-theorem
pairs accessible from the toplevel by analyzing OCaml’s internal data structures. The
result can be saved to a file and loaded into a table that maps statements to names, before
starting the actual export. Whenever a new theorem object is created, we can then look
up the corresponding name, if any, in the table. The benefit of this mechanism is that
the original theory sources do not need to be modified.
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2.2 Exporting the Inference Trace

To export the performed proofs, we use a patched version of the HOL Light kernel,
which is modified to record all inference steps. Our recorded HOL Light session is
a sequence of steps according to the grammar in Fig. 2. Each step constructs a new
type, term or theorem, and the new object is implicitly assigned an integer id from an
increasing sequence (separately for each kind of object), by which it can be referenced
later. The arguments of proof steps are either identifiers (such as names of variables
or constants), or references to previous proof steps, with an optional tag denoting the
deletion of the referenced object.

〈Step〉 � A step is either:
〈Typ〉 a type construction step
| 〈Trm〉 a term construction step
| 〈Thm〉 a theorem construction step

〈Typ〉 � A type step is either:
TyVar 〈id〉 a named type variable
| TyApp 〈id〉 〈ref〉∗ a type application with a list of subtypes

〈Trm〉 � A term step is either:
Var 〈id〉 〈ref〉 a named variable
| Const 〈id〉 〈ref〉 a named constant with a type, the type is necessary for

polymorphic constants
| App 〈ref〉 〈ref〉 an application
| Abs 〈ref〉 〈ref〉 an abstraction; in valid HOL Light abstractions the first

subterm is always a term that is a variable

〈Thm〉 � A term step is either:
| Refl 〈ref〉 Reflexivity of a term
| Trans 〈ref〉 〈ref〉 Transitivity of two theorems
| Comb 〈ref〉 〈ref〉 Application of two theorems
| Abs 〈ref〉 〈ref〉 Abstraction of a term and a theorem
| Beta 〈ref〉 β-reduction of a term
| Assum 〈ref〉 Assumption of a term
| Eqmp 〈ref〉 〈ref〉 Equality modus-ponens of two theorems
| Deduct 〈ref〉 〈ref〉 Anti-symmetric deduction of two theorems
| Inst 〈ref〉 〈ref〉∗ Type substitution with a theorem and a list of types
| Subst 〈ref〉 〈ref〉∗ Term substitution with a theorem and a list of terms
| Axiom 〈ref〉 Axiom with a term
| Defn 〈id〉 〈ref〉 Definition of an identifier to a term
| TyDef 〈id〉 〈id〉 〈id〉

〈ref〉 〈ref〉 〈ref〉
Type definition with three identifiers, two terms and a
proof of existence

| Save 〈id〉 〈ref〉 Assign a name to a theorem

Fig. 2. The grammar of our export format. Identifiers 〈id〉 are strings with the same characters
allowed as in the input system and references 〈ref〉 are integers
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The keywords in the grammar are represented as single characters in our concrete
trace format. The trace is generated on the fly and piped to a gzip process, which
compresses it and writes it to disk.

HOL Light defines the type of theorems to be an abstract type and the types of terms
and types to be private types. For the abstract type thm, we can achieve the numbering
simply by adding an integer tag, which is filled from a global proof step counter when
the theorem is constructed.

Hence, the proof steps are recorded in the order in which they occur. This instru-
mentation is local to the kernel (module fusion.ml), which encapsulates all theorem
construction and destruction operations. No changes are required in other files.

For terms and types this is not so easy, as in OCaml for objects of private types
matching is possible. This means that we cannot add tags without breaking client code.
However, just writing out terms naively would destroy all sharing and lead to significant
blowup. To make the process manageable, we need to preserve at least some of the
sharing present in memory. Thus we employ memoization techniques that partly recover
the sharing of types and terms. Section 3 describes these techniques; all of them produce
traces in the format described above.

There is also a choice of the basic proof steps that get written. We have decided to
export the minimal set of inference rules that covers HOL Light. This is in opposition
to Obua and Skalberg’s export where some of the proof rules get exported as multiple
steps (Deduct gets exported as three rules that are easier to import) whereas other rules
get optimized proofs. We found out that such ad-hoc optimizations yield only very
small improvements in efficiency (below 2%), but unnecessarily complicate the code
and make it more prone to errors.

2.3 Offline Garbage Collection

While our trace records the creation of all relevant objects, it does not contain infor-
mation about their deletion. However, this information is equally important if we do
not want to create a memory leak in the Isabelle import, which would have to keep all
objects, even though they have long been garbage-collected in the HOL Light process.

While the information about object deletion is not directly present in the trace, it
can easily be recovered by marking the last reference to each object specially as an
indication that the importer should drop the reference to the object after using it.

We do this in a separate processing step, which in addition performs an offline
garbage collection on the whole graph and throws away all objects that do not
contribute to the proofs of a named theorem.

The offline processor takes two inputs: the inference trace and a list of theorems that
should be replaced by Isabelle theorems during import. The program first removes all the
steps that are not needed when importing. This includes theorems that were created but
never used (for example by proof search procedures that operate on theorems), theorems
that are mapped to their Isabelle counterparts, and their transitive dependencies. Next,
the last occurrences of a reference to any type, term or theorem is marked, so that the
importer can (after using the object as a dependency) immediately forget it. Currently,
our offline processor reads the whole dependency graph into memory. This is feasible
even for developments of the size of Flyspeck. Hypothetical, for larger developments
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this could be replaced by an algorithm that does several passes on the input and requires
less memory.

The output of this step has the same format as the raw trace. We call it the reduced
trace.

2.4 Import

The actual import into Isabelle now amounts to replaying the reduced trace generated
in the previous step. In addition, the import is configured with the mappings of types,
constants and theorems to the respective Isabelle concepts.

Replaying the trace is conceptually straightforward: we simply replay step by step,
keeping integer-indexed maps to look up the required objects needed for each proof step.

We use Isabelle’s cterm type (an abstract type representing type-checked terms) to
store terms, and similarly for types. This avoids repeated type-checking of terms and
reduces import runtime by a factor of two, with a slight increase in memory use.

We do not attempt to generate theory source text, which was a major bottleneck
and source of problems in Obua and Skalberg’s approach, since re-parsing the gener-
ated theories is time-consuming, and the additional layer of build artifacts only makes
the setup unnecessarily complex with little benefit. The only advantage of the gen-
erated theories were that users could use them to inspect the imported material. For
this purpose, we instead generate a documentation file (in LaTeX and HTML), which
lists lemma names and statements. Excerpts from the documentation can be seen in
Figures 3 and 4. We also provide the complete rendered documentation for the
Flyspeck import at http://cl-informatik.uibk.ac.at/∼cek/import/.
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Fig. 3. Cropped printout of the HTML documentation of the imported HOL Light library

After replaying the trace in Isabelle, it can be used interactively or saved to an image
(using Isabelle’s standard mechanisms) for later use.

Concept Mappings. In general it is desirable to map HOL Light concepts to existing
Isabelle concepts whenever they exist instead of redefining them during the import. This
makes it easier to use the imported results and combine them with existing ones. This
is a form of theory interpretation.

http://cl-informatik.uibk.ac.at/~cek/import/
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thm opposite hypermap plain:

∀H . plain hypermap H −→ plain hypermap (opposite hypermap H )

thm opposite components:

∀H x . dart (opposite hypermap H ) = dart H ∧ node (opposite hypermap H )
x = node H x ∧ face (opposite hypermap H ) x = face H x

thm opposite hypermap simple:

∀H . simple hypermap H −→ simple hypermap (opposite hypermap H )

thm hypermap eq lemma:

∀H . tuple hypermap H = (dart H , edge map H , node map H , face map H )

Fig. 4. Cropped printout of the LATEX generated PDF documentation of Flyspeck imported to
Isabelle. The documentation can be generated with or without type annotations, and we chose to
present the type annotations in Fig. 3 and no types here.

There are two scenarios: First, if the definition of the constant or type (typedef)
from the original system can be derived in the target system, it is enough to replace the
definition with the derived theorem. Second, if a definition or type is not defined in the
same way and the original definition cannot be derived, the procedure is more involved.
This is the common case for more complex definitions.

Consider the function HD which returns the first element of a given non-empty list.
Its result on the empty list is some arbitrary unknown value, but while HOL Light
makes use of the Hilbert operator ε, Isabelle/HOL uses list rec undefined, which is an
artifact of the tools used. Both these terms represent “arbitrary” values, but they are not
provably equal. However, since there are no theorems in HOL Light that talk about the
head of an empty list, we can get away with it.

In general, we can replace any set of characteristic properties from which all trans-
lated results are derived and which is provable in the target system. This need not be
the actual definition of the constant. This also means that some lemmas that are merely
used to derive the characteristic properties will not be translated. This requires some de-
pendency analysis which is hard to do during the actual export or import, which merely
write and read a stream. An offline processor (our proof garbage collector) can verify
that all needed theorems are mapped: if a constant or type is mapped, the theorems
that define this type or constant need to be mapped as well. Given that the definition
cannot be mapped, its direct dependencies need to be mapped. This means, that adding
type and constant maps can be done completely offline: as we prove mapping theorems
manually and add them to the list of maps, the offline processor either confirms that the
import will succeed or gives a list of missing theorems.

Obua and Skalberg’s import attempted to resolve mappings during import, which
would make mapping non-trivial concepts like the real numbers a tedious trial-and-
error experience.
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Mapping of constants can be provided simply by giving a theorem attribute in Is-
abelle, for example to map the HOL Light constant FST to the Isabelle/HOL constant
fst it is enough to prove the following:

lemma [import const FST]:
”fst = (λp::’A × ’B. SOME x::’A. ∃ y::’B. p = (x, y))”
by auto

and similarly to map a type:

lemma [import type prod ABS prod REP prod]:
”type definition Rep prod Abs prod (Collect
(λx::’A⇒ ’B⇒ bool. ∃ a b. x = Pair Rep a b))”

using type definition prod[unfolded Product Type.prod def] by simp

There is one more issue that we need to address. Even if the the natural numbers of
HOL Light are mapped to the natural numbers of Isabelle, the binary representation of
nat in Isabelle is different from that of num in HOL Light. To make them identical, a
set of rewrite rules is applied that rewrites the constant NUMERAL applied to bits, to
the Isabelle version thereof.

3 Time and Memory Comparison of Flyspeck vs Import

In this Section we discuss the memoization techniques used to reduce the import time
and memory footprint of the processing steps as well as the import time and give some
comparisons of the processes involved in Import with the original ones of HOL Light.

As we have noticed in Section 2 when writing the trace the sharing between terms
(and types) is lost. The number and size of types in a typical HOL Light development
is insignificant in comparison with the number and size of terms; which is why we will
focus on optimizing the terms; however the same principles are used for types.

There are many ways in which the problem can be addressed; the simplest is to sim-
ply write out all the terms. This is equivalent to not doing any sharing; and came out to
be infeasible in practice. Even when writing a compressed trace after 3 weeks runtime,
the compressed trace was 500GB, without having got past HOL Light’s Multivariate
library (a prerequisite of Flyspeck).

So is sharing always good? Then the ultimate goal would be to achieve complete shar-
ing, where the export process keeps all the terms that have been written so far, and when-
ever a new term is to be written it is checked against the present ones. However, keeping
all terms in memory obviously does not scale, as the memory requirements would grow
linearly with the size of the development. (In fact, this was true in Obua and Skalberg’s
implementation, where recorded proofs were kept in-memory eternally.) Moreover, the
import stage becomes equally wasteful, since terms are held in memory between any two
uses, where it would be much cheaper to rebuild them when needed. Running Flyspeck
with this strategy requires 70GB RAM for the export and 120GB for the import stage.

Instead, we employ a least-recently-used strategy, which keeps only a fixed num-
ber of N entries in a cache and discards those that were not referenced for the longest
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time. While this does not necessarily reflect the actual life cycle of terms in the orig-
inal process, it seems to be a good enough approximation to be useful. In particular,
it avoids wasting memory by keeping unused objects around for a long time. Our data
structures are built on top of OCaml’s standard maps in a straightforward manner, and
all operations are O(log N).

We show the impact of the size of the term cache on the export time and memory
footprint in Figure 5. The graph shows two datasets: the core of HOL Light and the
VOLUME OF CLOSED TETRAHEDRON lemma from Flyspeck. We chose the for-
mer, as it represents a typical HOL Light development, consisting of a big number of
regular size lemmas, and we chose the latter, as it creates a big proof trace. The big trace
is created using the REAL ARITH decision procedure which implements the Gröbner
bases procedure [4].
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Fig. 5. Time required to write the proof trace and the size of the resulting trace as a function
of the term cache size. We compare the time of the HOL Light standard library (HOL) and the
VOLUME OF CLOSED TETRAHEDRON theorem (VOL).

As we can see the size of the term cache has very little impact on the time and size of
HOL Light standard library. However for a proof which constructs a big number of bigger
terms using a very small cache increases the export time and trace size exponentially. This
means that the size needs to be adjusted to the size of the terms produced by the decision
procedures and if this is not known a biggest possible term cache size is advisable.

We performed a similar experiment for caching proofs. The first idea is to reuse
the proof number if a theorem with same statement has already been derived. This
can however cause problems, given that there are some mappings between constants
or types defined in different ways. For example the theorems that lead to the definition
of such a type cannot be directly reused from the cache. This means that unnamed
theorems used before a mapping cannot be reused after the mapping. To overcome this
difficulty we chose to clear the theorem cache at every named theorem. This may lose
a small amount of sharing but prevents issues with adding constant and type maps. We
have computed the impact that the size of the proof cache has on the resulting trace and
the export time in Figure 6.
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Fig. 6. Time required to write the proof trace and the size of the resulting trace as a function
of the proof cache size. We compare the time of the HOL Light standard library (HOL) and the
VOLUME OF CLOSED TETRAHEDRON theorem (VOL).

As we can see for typical proof steps (HOL Light standard library) with more shar-
ing the export time increases however not significantly. This is not the case for a proof
which constructs big intermediate results. In such a case there is an optimal number of
proofs to cache and with a bigger number the complexity of comparing the proofs with
the cache increases the time. Since in a typical HOL Light development the optima for
the different proofs may differ, we instead choose to use a small proof cache. In Sec-
tion 4 we will see that the decrease in the space does not lead to a significant decrease
in the Import time. We have compared the memory usage of the OCaml process writ-
ing the trace with the memory of the PolyML process doing the Import (Fig. 7 and the
two are roughly comparable, with two exceptions. PolyML is much less conservative
when allocating memory, and quickly uses all available memory, however most of it is
reclaimed by major collections. Also due to the garbage collection running in a separate
thread in PolyML major collections happen more often than in OCaml.

4 Statistics Over Flyspeck

In this section we look at various statistics that can be discovered when analyzing the
proof-recorded Flyspeck.

4.1 Dependencies and Steps Statistics

We first look at the dependencies between theorems, terms and types. The following
table shows the total number of theorem steps, term steps and type steps in the proof
trace. The table includes four rows, first two are for full sharing, second two are for
term caching.
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Fig. 7. Comparing the export memory (left) with import memory (right) for the core HOL Light
together with the VOLUME OF CLOSED TETRAHEDRON theorem. Export memory is com-
puted with OCaml garbage collection statistics in millions of live words. Import memory in bytes.

Strategy Types Terms Theorems
Full sharing 173,800 51,448,207 146,120,269
Full sharing processed 130,936 13,066,288 40,802,070
Term caching 173,800 101,846,215 420,253,109
Term caching processed 146,710 23,318,639 194,541,803

We first notice that the number of types is insignificant relative to the number of terms
or theorems, and the number of types that can be removed by processing is only 16–
25%. For terms, the number of terms with full sharing is 50% of that with caching,
which means that the overhead is still quite big; and the overhead reduces only to 45%
with the offline GC. Sharing has the biggest effect on theorems: the shared theorems
are 34% of the cached ones. Finally, offline GC lets reduce the number of terms and
theorems roughly a quarter of the recorded ones, which is a huge improvement.

Next we will look at the exact inference steps that were derived but not needed. We
have computed the numbers of inference steps of each kind and their percentages for
the steps that were derived but the offline processor could remove them:

Subst: 21.58%
(22734457)

Eqmp: 19.61%
(20657660)

Deduct: 16.9%
(17784353)

Comb: 16.3%
(17132840)

Refl: 10.8%
(11408827)

Beta: 6.4%
(6708576)

Trans: 3.8% (4049761)
Assum: 2.9% (2952695)
Inst: 0.9% (1028510)
Abs: 0.8% (860510)
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We compare the above to the needed steps (the steps left by the garbage collection):

Subst: 24.6%
(10033736)

Comb: 23.7%
(9722270)

Eqmp: 17.1%
(6956780)

Trans: 12.7%
(5167568)

Deduct: 11.3%
(4591953)

Refl: 4.2% (1698894)
Abs: 2.9% (1181706)
Beta: 2.0% (822249)
Inst: 1.0% (426404)

In both cases the methods that do complicated computation (Subst, Eqmp, Comb)
dominate; however for the unneeded diagram the very cheap methods Refl and Assum
occur much more often.

We next compare it to the steps that were derived multiple times. 2,515,531 theorem
steps have been derived multiple times with exactly same dependencies. It is quite in-
teresting, that many of these steps are the same ones repeated over and over again. This
suggests that the steps are performed repeatedly by decision procedures or even by the
simplifier. The unique repeated steps are only 187,164 which is just 7% of the repeated
steps! We have analyzed the kinds of steps that have been derived multiple times:

Refl: 54.4%
(191801)

Assum: 21.3%
(39806)

Subst: 20.0% (37389)

Inst: 2.2% (4129)
Deduct: 2.2% (4033)

Here we see a dominance of Refl and Assum which are the two cheapest steps.
However the third steps — Subst — is not a cheap one; and this is where the main
advantage of caching or sharing comes in.

We have also looked at the complexity of individual Subst steps; even if the
maximum is 23, the average number of term pairs in a substitution is 2.098, and the
distribution is as follows:
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We see that there are 229 substitutions with 21 simultaneously substituted terms;
however the time consumed by these substitutions is caused by the size of the terms
involved.

4.2 Theorem Name Statistics

There are 622 theorems that have been assigned more than one name. In certain cases
useful theorems from another module have been given a different name in a later one;
however in certain cases theorems have been rederived, sometimes in completely
different ways. We have computed the statistics:

Unique
statements

Number
of names

Canonical name

1 16656
2 567
3 46
4 5
5 2 Trigonometry1.ups x, Sphere.aff
7 1 Trigonometry.UNKNOWN

11 1 REAL LE POW

In certain cases, theorems with meaningful names have been assigned also random
names; but there are a few cases where meaningful names have been assigned to the-
orems twice. There are multiple possible reasons for this and we present here a few
common cases, from the more trivial ones to more involved ones.

– REAL LT NEG2 and REAL LT NEG both derived using the real decision
procedure in the same file just 70 lines further.

– Topology.LEMMA INJ and Hypermap.LEMMA INJ the proof is an exact copy,
still both are processed.

– REAL ABS TRIANGLE and Real ext.ABS TRIANGLE first one derived using a
decision procedure, second one with a complete proof.
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– INT NEG NEG and INT NEGNEG both derived using the quotient package from
real number theorems called differently.

– CONVEX CONNECTED 1 GEN and CONNECTED CONVEX 1 GEN where
one is derived from the other.

4.3 Translation Time and Size Statistics

Given the best cache sizes computed in Section 3 and the statistics over the steps we
have computed the times and sizes of the various stages of Import evaluated on the
whole Flyspeck development:

Phase Time Size
Collect Export List 4h 18MB
Export Proofs 10h 3692MB
Offline GC 48m 1089MB
Import without optimizations 54h

The created Isabelle image can be loaded in a few seconds and memory allocated by
the underlying PolyML system is 2.7GB which is almost same as the 2.7GB allocated
by HOL Light. The time required to create the image is by a factor of 13 longer than
the time required to run Flyspeck. This is still quite a lot, and is possible to do it once,
but not if such a development must be translated routinely. As we have discovered in
Section 4.1, this is caused by decision procedures; in fact REAL ARITH (an implemen-
tation of Gröbner bases) is what creates the huge terms and substitutions that constitute
a big part of the proof trace and import time.

To further optimize the Import time we tried to map the two most expensive calls
to this decision procedure (using the theorem mapping mechanism) to two counterpart
theorems proved using a similar decision procedure in Isabelle. The algebra tactic [2]
can solve the goals in Isabelle in a similar time as that needed in HOL Light:

Phase Time Size
Offline GC 48m 964MB
Import with optimizations 4.5h

The reduced proof trace is 11% smaller, but the import time becomes roughly equal
to processing of the theories with HOL Light.

5 Conclusion

We have presented a new implementation of a theory import from HOL Light to Is-
abelle/HOL, designed to achieve decent performance. The translation allows mapping
the concepts to their Isabelle counterparts obtaining natural results. By analyzing the
proof trace of Flyspeck we have also presented a number of statistics about a low-level
structure of a big formal development.

The code of our import mechanism has been included in Isabelle, together with a
component for loading the core HOL Light automatically and the documentation for it.
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The formalization includes the mappings of all the basic types present in both develop-
ments including types that are not defined in the same way, such as lists, integers and
real numbers. In total, 97 constructors have been mapped with little effort. It is easy to
generate similar components for other HOL Light developments. The code is 5 times
smaller than the code of Obua and Skalberg’s Import. The trace recording component
for HOL Light can be obtained from http://cl-informatik.uibk.ac.at/∼cek/import/.

In our development we defined a new format for proof exchange traces, despite
the existence of other exchange formats. We have tried writing the proof trace in the
OpenTheory format, and it was roughly 10 times bigger. For the proof traces whose
sizes are measured in gigabytes such an optimization does make sense; however the is
it conceivable to share the Import code with other formats.

The processed trace generated by this work is already used by machine learning tools
for HOL Light to provide proof advice [7,8].

5.1 Future Work

The most obvious future work is testing our export on other HOL Light developments,
including the most interesting ones which are not formalized in Isabelle, for example
the developments from Wiedijk’s 100 theorems list [14] and Hilbert Axiom Geometry.
Similarly the work can be extended to work with different pairs of provers, in particular
non-HOL-based ones, or the Common HOL Platform [1] intended as a minimal base
for sharing HOL proofs.

A different line of work could be to automate the mapping of results of decision pro-
cedures. We have tried to export the steps performed by REAL RING, REAL ARITH,
or REAL FIELD as a single proof step (modifying not only the kernel, but also the
theories in which these procedures are defined). Unfortunately for each of these, there
exists at least one goal that it solved, but which could not be solved by algebra; this
needs to be investigated further.

The statistics performed on the repository allow for an easy discovery of duplicate
proofs and multiple names given to same theorems. This can be used to streamline the
original developments. Conversely, for imported libraries that match ones present in the
target system, analyzing the theorems that are not present may lead to the discovery of
interesting intermediate lemmas.

Acknowledgements. Makarius Wenzel originally sparked our interest in the topic by
claiming that efficient translation should be possible, even though none existed yet.
Johannes Weigend deserves thanks for his Software EKG toolset and methodology [13],
which was a tremendous help in analyzing the various datasets from our measurements.
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Abstract. Proof-by-reflection is a well-established technique that em-
ploys decision procedures to reduce the size of proof-terms. Currently,
decision procedures can be written either in Type Theory—in a purely
functional way that also ensures termination— or in an effectful program-
ming language, where they are used as oracles for the certified checker.
The first option offers strong correctness guarantees, while the second
one permits more efficient implementations.

We propose a novel technique for proof-by-reflection that marries, in
Type Theory, an effectful language with (partial) proofs of correctness.
The key to our approach is to use simulable monads, where a monad
is simulable if, for all terminating reduction sequences in its equivalent
effectful computational model, there exists a witness from which the same
reduction may be simulated a posteriori by the monad. We encode several
examples using simulable monads and demonstrate the advantages of the
technique over previous approaches.

1 Introduction

In Type Theory, types may embed computation, thereby allowing for a proof
technique called proof by reflection. This technique reduces the time to typecheck
a proof by replacing potentially large proof-terms by small proof-terms, whose
verification consists of computing at the type level.

For instance, say that verifying a proof Δ of P a is computationally expensive,
for P : A � Prop, with A a type, and a : A. Let B be a type such that there exists
an interpretation function I from B to A, and a decision procedure D : B � bool.
Furthermore, let us assume that D decides P, that is, there is a theorem

sound : �x : B, D x � true � P �I x�

which states that for every element x of B, if the decision procedure returns true
for this element, then property P holds for the interpretation of x. With these
definitions at hand, then if we have some b : B such that I b � a, we can replace
the original proof-term Δ with

sound b �refl_equal true�

S. Blazy, C. Paulin-Mohring, and D. Pichardie (Eds.): ITP 2013, LNCS 7998, pp. 67–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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where refl_equal has type �x : bool, x � x. Typechecking that the proof-term
above has the expected type (P a) effectively amounts to (i) executing the proce-
dure D on b, (ii) checking that its result is equal to true, (iii) and checking that
the interpretation of b is equal to a.1

Previous works [11,4] have exposed several advantages and weaknesses of proof
by reflection, especially in comparison with the traditional LCF proof style [9].
In a nutshell, the former is considered more robust to change, while the latter is
easier to write. Indeed, proving by reflection has a price: the decision procedure D
must usually be written in a constrained programming language with only total
functions and no imperative features. Furthermore, soundness proofs are often
complex and thus difficult to construct [8]. These two problems, the restricted
language and the need for keeping the proof of soundness simple, incite the proof
developer to write inefficient decision procedures, which is regrettable since proof
search is intrinsically a computationally expansive process.

There is a variation of proof by reflection that alleviates some of these prob-
lems, called certifying proof by reflection [3,10]. In this technique, the decision
procedure is written in a general purpose programming language, and used by
the proof assistant as an untrusted oracle. The decision procedure returns a cer-
tificate, which is mechanically verified by the proof assistant via a certificate
checker written in Type Theory. This checker and its proof of correctness are
usually kept simple, whereas the untrusted oracle can be as sophisticated as nec-
essary to implement the decision procedure efficiently. However, this technique
has its drawbacks. First, it is not as efficient as one may expect, as the certifi-
cate embedded in the resulting proof-term can be large and, in addition, there
is a cost of executing the oracle, plus verifying the certificate with the checker.
Second, the proof developer is forced to write the certificate checker and the
decision procedure (or adapt an existing one in order to produce the certificate).
Third, the implementation of an oracle usually gives only weak guarantees about
its applicability (a perfectly valid but useless oracle could fail on every input)
because proving completeness properties about a program written in a general
purpose programming language is notoriously hard.

In this paper, we propose a novel style of proof by reflection that allows
for writing an efficient decision procedure in Type Theory. Our idea is to use
an (untrusted) compiled version of a monadic decision procedure written in
Type Theory as an efficient oracle for itself. Like in the certifying style, the
decision procedure is developed within an effectful language and used as an
oracle by the theorem prover. However, unlike in the certifying style, the decision
procedure is written in Type Theory, in a language extended with monads as
commonly found in Haskell programs [16]. In this way, programmers have a full
set of effects at their hand (references, exceptions, non-termination), together
with dependent types to enforce (partial) correctness. This decision procedure
is then automatically compiled into an impure programming language with an
efficient computational model. This compiled code is executed, and a small piece

1 Usually there is also a previous step where a b is constructed for the given a. This
step is called reification in the literature.
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of information is collected to efficiently simulate this execution in Type Theory
using the initial monadic decision procedure.

To formalize this idea we define the concept of a posteriori simulation of ef-
fectful computations in Type Theory. Roughly speaking, it involves determining,
for a computation C encapsulated in the monadic type M A, the conditions for
which there exists a piece of information p such that the evaluation of C, using p,
can witness an inhabitant of type A.

We believe this technique to be more lightweight than existing approaches
because neither a full proof of correctness nor a certificate checker is required to
execute a decision procedure once it is written in our monad.

To sum things up, our contributions are (i) a technique to perform a poste-
riori simulations of effectful computations in Type Theory in order to promote
these computations as genuine proofs by reflection; (ii) an informal discussion
of different simulable effects; (iii) a plugin2 for the Coq proof assistant, which
enables the effectful computation as an interactive decision procedure of a Coq
function written in monadic style; (iv) several examples of proofs by reflection
in this new style, showing its simplicity and efficiency.

2 Simulation-Based Proof by Reflection

In this section we give an informal presentation of the simulation-based style of
proof by reflection, in Coq. As a running example, we consider the problem of
determining if a conjunction of inequalities

�
i�I Ai � Bi between ground terms

of type T logically implies A � B by transitivity, for some A and B. A simple
decision procedure for this problem boils down to a depth-first traversal of the
graph induced by the hypotheses. In the following procedure implemented in
pseudo-code, infinite loops are avoided by marking all of the visited terms:

decide �
�

i�I Ai � Bi � A � B� �
let rec traverse : T � bool � λC

if C � B then �
else if marked C then �
else

mark C;
choice D s.t. 	j, C � D 
 Aj � Bj � traverse D

in traverse A

This procedure cannot be implemented in Coq as it is, for the simple reason
that it uses side effects (marks) and is not obviously terminating (of course, it
is, but the argument is not syntactical as Coq requires). As mentioned in the
introduction, we are going to implement procedures with side effects using a
monad M Σ T�, where Σ represents the type of the state and T� the returning
type of the monad. This procedure is then used as an oracle for itself, as we are
going to see in the second part of this section.

Here is our encoding of the decide procedure:

2 The plugin and the Coq developments of this paper are downloadable online
at http://cybele.gforge.inria.fr

http://cybele.gforge.inria.fr
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01 Program Definition decide (f : formula) : M Σ (interpret f) :�
02 let (a, b) :� goal f in
03 letrec! traverse x [ interpret_hypotheses f � x � b) ] :�
04 if x =?= b then return (� eq_refl x)
05 else if! marked x then error "Not Found"
06 else do! mark x in
07 choice ( f � x � b) (successors x (hypotheses f))
08 (λ (s : { y : T & interpret_hypotheses f � x � y }) �
09 let! Hyb :� traverse (π1 s) in
10 return (� (λ (hs : interpret_hypotheses f) � le_trans x (π1 s) b))
11 )
12 in � (traverse a).

At high level, the code looks like an ML implementation of the pseudo-algorithm,
annotated with dependent types. We are going to explain line by line why this
procedure is a faithful representation of the pseudo-code shown above, while
introducing the notations used in the rest of the paper.

We start by describing the type formula in line 1. It is a record containing a list
of pairs of elements �Ai, Bi�—the hypotheses—and a pair of elements �A, B�—the
goal. When an element f of this type is interpreted using the function interpret,
it produces the type

�
i�I Ai � Bi � A � B. This is the type returned by the

monad.
Line 2 is straightforward: it binds the pair of elements being compared in

the goal of f to variables a and b. In line 3, the keyword letrec! introduces a
(potentially nonterminating) recursive function. Behind this syntactic sugar is
hidden the application of a dependently-typed general fixpoint operator. The
returning type of the local fixpoint traverse is specified between brackets. It
returns a proof that the inequality x � b holds under the hypotheses of formula f.
As we can see in line 12, the argument x is instantiated with the element a from
the goal, therefore effectively proving a � b.

In line 4 the current element is compared with b, assuming that the type of
the elements, T, has decidable equality. If it is equal, then the reflexivity proof
is returned using the standard unit monadic combinator return [16]. We defer
the explanation of the operator �.

In line 5, an error is raised if the element x is already marked. We do not
show the implementations of functions mark and is_marked (used in next line),
but they are straightforward. In line 6 we mark the element, and in lines 7-11
we try to find a proof of x � b by transitivity, by finding a c such that x � c and
c � b. For that, we make a list with all the successors of x, that is, all c such
that x � c is in the list of hypotheses. Then, we call the function choice:
01 Fixpoint choice A {T} (cs : list T) (pred : T � M Σ A) : M Σ A :�
02 match cs with
03  nil � Error "Not found"
04  c : : cs � try! pred c with _ � choice A cs pred
05 end.



Lightweight Proof by Reflection 71

The choice operator iterates over a list to find an element c that successfully
produces a result using the function pred. At each step of the iteration, the func-
tion makes use of the exception mechanism to catch failed attempts and recurse
on the tail of the list. Coming back to traverse, in line 9 we call the function
recursively using the standard monadic bind operator let! x � e1 in e2 [16]. The
resulting proof Hyb of c � b is then used to prove x � b by transitivity.

Finally, notice that in line 1 we use the standard Coq keyword Program [15].
This keyword allows for writing a partial term, where the holes are exposed to
the user as proof obligations. In our case, the holes come from type coercions,
noted as �, and they are solved automatically by Coq.

The Compiled Decision Procedure as an Oracle. The type system of Coq will
not let us apply decide as it is on some formula f to prove the goal. The reason is
simple: an infinite loop would lead to breaking soundness of the prover. Instead,
in order for decide to be evaluated, it needs some extra information, which we
call prophecy. For instance, in our example this extra information is the number
of steps that leads to a successful result.

To get this information, we execute a compiled version C�decide� in OCaml,
which performs the effectful computation. A central property of the system is
that C��� maps the effectful computations of the monad in Coq to effectful terms
in OCaml, in such a way that a relation of a posteriori simulation stands between
the compiled term C�t� and the initial monadic term t. Intuitively, if a compiled
term C�t�, with t of type M T,3 converges to a value v, then the same evaluation
can be simulated a posteriori in Coq, using some prophecy p. This prophecy
completes computation t in order to get a term convertible to return t� for some
term t� of type T. We instrument the compiled code C�t� to produce the prophecy
along its execution.

Coming back to our example, the following is the (slightly beautified) ex-
tracted OCaml code of the function decide:
01 let rec fix f x = incrnbstep (); f (fix f) x
02
03 let rec choice cs pred0 = match cs with
04  Nil � failwith "error"
05  Cons (c, cs0) � try pred0 c with _ � choice cs0 pred0
06
07 let decide f =
08 let (a, b) = goal f in
09 let traverse = fix (fun traverse x �
10 match O.eqdec x b with
11  Left � ()
12  Right � if marked x then failwith "error" else (
13 mark x;
14 choice (successors x (hypothesis f)) (fun s0 � traverse (projT1 s0))
15 ))
16 in traverse a
3 For presentation purposes we leave out the parameter Σ representing the type of

the state.
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The compiled program has almost the same shape as the source term except
that every term in Prop has been erased and that the primitives of the monad
are replaced with combinators defined in OCaml. These combinators implement
an effect and also contribute in determining the prophecy. For instance, the fix
combinator not only implements a general fixpoint but also stores the number
of iterations that are performed by the oracle in a global variable.

Once applied to a specific formula, this compiled function may diverge or fail.
In the setting of interactive theorem proving, divergence is not an important
issue because the user stays in front of the screen waiting for an answer, and he
or she can always interrupt the oracle if it takes too much time to respond. In the
case of a successful execution of the oracle, a prophecy of type nat is extracted
from the final value of the mutable cell incremented by fix.

The final proof-term. The resulting proof-term corresponding to the application
of the procedure to some formula f is

unit_witness �decide f� p �refl_equal true�

where p has type Prophecy (in this case, a natural number), and for any type T,

unit_witness : �x : M T, Prophecy � is_unit x � true � T
is_unit : M T � bool

The execution time of checking that this term has type interpret f is split between
the execution time of typechecking the prophecy p and the weak head normal-
ization of the procedure, using p to guide the reduction. The overall execution
time of the proof-by-reflection results from executing the decision procedure in
OCaml plus typechecking the final proof-term, which as we just mentioned, es-
sentially consists of executing the decision procedure a second time in Coq.4 One
can wonder if it is not a waste of time to execute the decision procedure twice,
but, as it turns out, using the hints in p, the execution time of the simulation
can be tremendously reduced in comparison with the execution of the oracle.
This optimization is the subject of Section 5.2.

Putting all the pieces together, our plugin performs the following steps when
proving a goal with a monadic procedure proc: (1) Translates and compiles proc
into OCaml. (2) Executes the compiled code C�proc� and obtains prophecy p.
(3) Builds proof term unit_witness proc p �refl_equal true�. Notice that the proof
developer only has to develop the procedure.

3 A Posteriori Simulation of Effects

In this section we formalize the principle of a posteriori simulation of effect-
ful computations. The interested reader is invited to read the proofs from the
companion technical report [6]. In order to promote a clear formalization we
4 We assume compilation time not to be significant.
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will focus only on simply typed λ-calculus, but the results presented are easily
extensible to full Type Theory and OCaml, for the pure and impure calculus,
respectively. More precisely, we define two languages: λ, a purely functional and
strongly normalizing programming language with monadic constructs, and λv,�,
a non-terminating functional programming language. The definition of λ is pa-
rameterized by a monad M, which is abstractly specified by a set of requirements.
Accordingly, λv,� offers impure operators that match the effectful primitives of
the monad M.

Conventions. We write 	�e for a sequence e1 e2 . . . en where n 
 0. If a function F
is defined over e then we abusively write F �	�e � for the pointwise extension of F
to a sequence of e. For the sake of conciseness, we often omit universal quantifiers
in types when they appear in outermost prenex position.

3.1 λ, a Purely Functional Language

The language λ is the simply typed λ-calculus à la Curry with constants:

t, u ::� x � λx.t � t t � c T ::� T � T � C	�T
c ::� unit � bind � � � ∇ C ::� M � P

Constants include the usual monadic combinators for effects in the spirit of [16]:
unit lifts a term of type T as a computation of type M T, and bind composes two
computations. Effectful primitives of the monad are kept abstract by regrouping
them in the syntactic category ∇. The types include functional types and type
constructor applications which are assumed well-formed. M and P are the type
constructors for monad and prophecy, respectively. We omit the typing rules but
they are standard.

The constant � and the type constructor P are unusual. The role of � is
to perform a posteriori simulation using a value p of type P produced by the
oracle. We read �p t as “the reduced computation of t using the prophecy p”.
We require the existence of a total order � over values of type P and a minimal
element  for this order. A reduced computation is still a computation, so � has
type P � M T � M T.

We are interested in reasoning on βδ-convertibility between terms (where the
δ-reduction is the unfolding of constant definitions). We write Æt for �� unit t
and we say that a computation has converged if there exist a prophecy p and a
term t� such that �p t is convertible to Æt�.

Finally, the standard notion of monad is extended with a mechanism of sim-
ulation directed by a prophecy.

Definition 1 (Simulable monad). A type constructor M is a simulable monad
if it is equipped with unit , bind, � and an associated type for prophecies P, such
that the requirements 1, 2, 3 and 4 are fulfilled.
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Requirement 1 (Standard monadic laws)

bind �unit t� f � f t
bind t �λx.unit x� � t
bind �bind t1 t2� t3 � bind t1 �λx.bind �t2 x� t3�

Requirement 2 (Reduction)

� t, p1, p2, �p1 unit t ��p2 unit t.
� t, u, p1, p2, p1 � p2 and �p1 t � Æu implies that �p2 t � Æu.
� p, �p bind t1 t2 ��p bind ��p t1� t2

3.2 λv,�, A Call-By-Value Impure Functional Language

The impure functional and non-terminating language λv,� has the same syntax
as λ, except that now constants only consist of effectful operators. The language
is equipped with an instrumented big-step operational semantics for a weak call-
by-value reduction strategy. The executions are carried out under environments η
assigning closed values v to variables: η ::� � � η; x �� v, v ::� c	�v � �λx.u� �η�.
Closed values comprise full applications of effectful constants to values and clo-
sures. The judgment in this instrumented semantics is η � u �p�p� v, which
is intended to be read as “the execution of a term u under the environment η
converges to a value v and computes a prophecy p� from an initial prophecy p”.
We keep abstract the rules for constants: they will be characterized by the re-
quirement 4.

R-Var
η � x �p�p η�x�

R-Lam
η � λx.u �p�p �λx.u� �η�

R-App

η � u1 �p�p1 �λx.u� �η��
η � u2 �p1�p2 v1 η�; x �� v1 � u �p2�p� v

η � u1 u2 �p�p� v

The purpose of the instrumentation of the compiled code is to monotonically
refine the prophecy at each step of the computation:

Requirement 3 (Monotonicity of prophecy computation)

� p, p�, η � u �p�p� v implies p � p�.

Compilation Now, we define the compilation function C��� from λ to λv,�.

C�x� � x C�unit� � λx.x C�M T� � C�T�
C�λx.t� � λx.C�t� C�bind� � λx, y.y x C�C	�T � � C �C�	�T ��
C�t1 t2� � C�t1� C�t2� C��p� � undefined C�T1 � T2� � C�T1� � C�T2�

The translation replaces the monadic constructs unit and bind with their re-
spective definitions in the identity monad, and converts each effectful primitive
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of the monad to the corresponding impure construction of λv,�. The type for
prophecies is kept fully abstract to the programmer. As a consequence, only the
instrumented compiled code is allowed to generate prophecies. Therefore, the
compilation of �p is explicitly undefined because this operator cannot appear in
a well-typed user-written monadic term.

The compilation of an effectful monadic constant must extend the prophecy
in a sufficient way to make the simulation converge.

Requirement 4 (Adequate instrumented compilation) �p0, . . . , pn�1, p,

if
�
�i, η � C�ti� �pi�pi�1 vi

η � C�c �t0, . . . , tn�� �p0�p v
then �u,�p c �t0, . . . , tn� � Æu

3.3 Examples of Simulable Monads

The “Trace” Prophecy. Given a monad M with an underlying effectful compu-
tation model specified by a reduction relation, there is always a prophecy to
simulate a converging effectful reduction: the reduction chain itself. However,
such a naive implementation of prophecies is obviously inefficient.

Non-Termination and Partiality. The type nat � option T defines an adequate
monad to represent non-terminating computations of type T. A general fixpoint
operator is defined by induction over the input natural number. If the number
of iterations is sufficient then the computation produces a term Some t, oth-
erwise None. For this monad, the natural type for prophecies is nat and the
instrumentation only has to compute an over-approximation of the number of
iterations for all the fixpoints of the program. Therefore, a single global variable
is enough to represent the prophecy.

State. The type state � T� state defines an adequate monad to model stateful
computations. A state monad is naturally simulable without a need for prophe-
cies because the operations read and write are total. Yet, if the monad also
provides an operation ref to dynamically allocate mutable references, it is hard
to ensure statically that a given reference belongs to the state. In that case, the
state monad has to be composed with the partiality monad and inherit its type
for prophecies. Furthermore, the prophecy can also embed the initial state used
to evaluate the monadic term: this is an opportunity to import some precom-
puted results from the oracle (see Section 4).

Non-determinism. The type list T defines an adequate monad to model nondeter-
ministic computations, which is useful in proof search procedures. An important
operator of this monad is choice of type MT � �T � M T�� � M T�, a partial
function that picks an arbitrary choice in all the possibilities. If the list is empty,
there is no such choice. But, if a computation had converged, there exist a list
of choices that leads to a result. An interesting prophecy is exactly this list of
choices (see Section 5.2).
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3.4 A Posteriori Simulation

The main theorem states that, if the evaluation of C�t� converges for some com-
putation t, then there exists a prophecy p to simulate t back in λ.

Theorem 1 (A posteriori simulation). Let � � t : M T a computation which
compilation converges to a value, that is � � C�t� �p�p� v holds. Then there
exists a term t� such that �p� t � Æt�.

4 Implementation

We provide a plugin for Coq to develop proofs using the method described in
this work. The plugin includes (i) a library with the definition of a simulable
monad to write effectful decision procedures; (ii) a tactic called coq waiting for a
monadic term t of type M T to try to solve a goal T. Behind the scene, the tactic
compiles the monadic term into an OCaml program, executes this program and
if its execution converged, uses the resulting prophecy to produce a proof-term
in Coq.

The formal notion of simulable monad served as a guideline for the imple-
mentation: we defined a compilation function from Coq to OCaml as well as
a simulable monad in Coq that respect the requirements drawn by our formal
study. However, to improve the usability and the efficiency of our tool, some
practical aspects of the implementation differ from the formal specification.

4.1 A Simulable Monad in Coq

Our monad combines5 a partiality monad, a non-termination monad, a state
monad and a printing monad. It is still possible to implement nondeterminism
in it, as we will see in the example from Section 5.2. The monad is parametrized
by a signature Σ to type the memory (see below). Its type definition is:

M Σ α � State.t Σ � �α � string� � State.t Σ

The monad takes a state and returns a new state plus a value of type α if the
computation is successful, or an error message in case of failure. The state is
implemented as a dependent record containing: (i) the number of steps allowed
in recursion, (ii) a list of messages (used for debugging by the printing monad),
and (iii) the memory.

The size of the memory has to be dynamic, but at the same time the memory
has to be statically typed. Our solution is to parametrize the memory by a
signature Σ, containing the exact list of types T1, T2, . . . , Tn that will be used.
Then, the memory is a list of n regions of types T1, . . . , Tn respectively. The
content of a region is unbounded. For instance each region may contain a list of
elements. A reference has type Ref.t Σ Ti, and its implementation is simply the
5 In this work, unlike in Haskell, we are not interested in a fine grain control of effects

so we provide only one monad with all the effectful operations we found useful.
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natural number i corresponding to the i-th type in the signature Σ. All in all,
here are the effectful operations offered by the monad:

ref : Ti � M Σ �Ref.t Σ Ti�
read : Ref.t Σ T � M Σ T
write : Ref.t Σ T � T � M Σ ��
print : α � M Σ ��

error : string � M Σ α
try_with : ��� � M Σ α� �

�string � M Σ α� � M Σ α
dependentfix : �F � F� � F

with F � ��x : A�.M Σ �B x�

Pre-computation. The memory is partitioned into two parts: InputMem and
TmpMem. TmpMem is initially empty and corresponds to the memory in the
usual state monad. InputMem is initialized by the OCaml program and given
as the initial (read-only) memory to Coq as a prophecy. Roughly speaking, the
order on the prophecies is induced by the distance between the contents of this
initial memory and the information needed to compute the same result in Coq as
in OCaml i.e. the required number of fixpoint iterations and the values that were
pre-computed in OCaml. Inside the implementation of the monad, this forces us
to program differently for these two environments and, for this reason, we defined
a low-level internal operator, select, of type �α, ��� � α� � ��� � α� � α which
is defined in Coq as select�f, g� � f�� and compiled in OCaml as C�g���. For
more information about select, we defer the reader to Section 5.2. To fulfill the
requirements to ensure that our monad is simulable, we make sure that the
OCaml version of each operator only refines the contents of the InputMem during
its effectful execution.

4.2 In OCaml

The compilation of a monadic term written in Coq to a program in OCaml
is implemented by customizing the existing extraction mechanism of Coq [13],
where the new monadic constructs are extracted as follows:

M Σ α �� α
unit �� fun x � x
bind �� fun x f � f x
print �� fun x � print_endline x

dependentfix �� let rec fix f � fun x �
incr_nbsteps��; f �fix f� x

in fix f x

error �� fun x � failwith x
try_with �� fun f h � try f ��

with s �� h s
tmp_ref �� fun i v � ref v

input_ref �� fun i v � register_ref i v
read �� fun r � !r

write �� fun r v � r :� v

Since we are using the built-in effectful mechanisms provided by OCaml, the
monad is converted into the identity monad and, thus, the bind and unit combi-
nators are defined accordingly.

The print and partiality monad are implemented with the standard print
function and exceptions. The fixpoint operator adds instrumentation to count
the number of iterations in a global variable. The memory operators are handled
by OCaml’s references. References are divided into tmp_ref and input_ref. The
first ones are just normal OCaml’s references, while the second ones are registered
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in an array, using the function register_ref. Thus, we can collect the values of
all the input references at the end of the execution to pass them to Coq.

4.3 Communication from OCaml to Coq

Once the execution of the OCaml code is done, we generate the prophecy for Coq.
It contains two parts: the number of steps and the memory in InputMem. The first
part is easy to communicate back, as it is just a natural number. As for InputMem,
it is more tricky since we need to reify OCaml data into Coq terms. Notice that
this is not possible in general, for example for abstractions or for proof terms,
since the extraction to OCaml erases too much information from the source term.
Our solution is to provide an ad-hoc reification mechanism using binary trees:
for every type T in the input memory signature, the user needs to provide a
morphism between T and a binary tree.

5 Examples

We now show examples of Coq programs written using a simulable monad. The
first example describes how to write effectful programs, while the second example
illustrates how the performance of an algorithm is greatly improved by using
compilation to OCaml and cross-stage memoization.

5.1 Congruence-Closure

The congruence-closure problem is about proving equality of two first-order
terms, given a set of known equalities. It can be solved efficiently using the
union-find algorithm [2]. In [7], a reflexive version of the algorithm is presented,
which is purely functional and proven correct. A large part of the code is devoted
to prove termination and implementing functional arrays. We wrote this algo-
rithm in our system using the partiality monad to avoid proving termination.
We focus on the Find function:

01 Program Definition Find hash u : M Σ {u’ : Index.t  u 
 u’} :�
02 dependentfix (λ i � {j : Index.t  i 
 j}) (λ find i �
03 let! eq_proof :� MHash.Read hash i in
04 let (i’, j, Hij) :� eq_proof in
05 if i 
 i’ then (* case i = i’: should always be the case *)
06 if i 
 j then (* case i = j: we find it *) return (exist _ j Hij)
07 else (* case i <> j: we have to continue from j *)
08 let! r :� find j in
09 let (k, Hjk) :� r in
10 do! MHash.Write hash i (EqProof.Make (i :� i) (j :� k) _) in
11 return (exist _ k _)
12 else (* case i <> i’: unexpected *) error "Find : i �� i’")
13 u.
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At high level this function retrieves the representative u� of the equivalent
class of u, along with a proof of the equality among u and u�. It iterates over a
hash-table hash from expressions (Index.t in the code) to expressions, crawling
the hash table until an element points to itself. If that is the case, then we reach
the representative. The hash table also contains the proof of equality, which is
used transitively to compute the resulting equality proof.

Programming with Effects in Coq. Proving termination of the algorithm is hard
since it requires to maintain the invariant that the table is not cyclic. Luckily,
we are exempt to do such proof, thanks to the dependentfix operator that
allows for non-termination. The hash-table is a mutable structure with a read
and a write operation. It is implemented as a mutable map from expressions to
expressions, with an additional proof of equality.

Dependently-Typed Programming with Partial Functions. We keep the power of
the Coq type system despite the fact that we are working in a monad. The Find
function has a dependent type specifying that the result is the representative
term u�, equal to the input term u. The proof term is generated in the monad,
so we can rely on run-time checks, which may fail, instead of proving invariants.
For example the invariant i � i� holds but does not have to be statically proven.
Instead it is checked dynamically (comparison of i and i� on line 5). The result
is used to coerce a proof of i� � j to i � j (done automatically by the Program
command in our example). If the check fails, we raise an exception handled
by the partiality monad. In this way we can partially specify our programs.
Notice that we are not forced to use partial programs, we can also use pure Coq
functions leading to stronger static guarantees. This flexibility is not available
in mainstream functional languages like OCaml.

5.2 A Tactic for Lattices
James and Hinze [12] present a reflection-based tactic to solve lattice (in)equalities
based on the algorithm proposed by Whitman [17], which is known for being ex-
ponential in the worst case. In this work, the authors made the following remark:

“Possible future work is to turn our current implementation [...] into one that
uses dynamic programming to memoize the recursive calls. However, this is
not a trivial task. Coq’s programming language is purely functional [...], so
any data-structure that we use for memoization must be purely functional
and operations on that data-structure must all be proved terminating.”

In this section we provide a tactic similar to James and Hinze’s, but that uses
memoization. In our case, unlike in the recommendation made in the quoted
text, we use a form of cross-stage memoization to remember the successful path
of execution made by the OCaml version and to transmit it to the Coq version.
In this way, the exponential algorithm is executed only in OCaml, while Coq
just recreates the successful path made by the OCaml version mimicking what a
certificate checker would do. Unsurprisingly, the implementation presented here
greatly outperforms the one presented by James and Hinze. For details, we refer
to the original work cited above or to the accompanying code.
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Whitman’s algorithm. The algorithm, as written by James and Hinze with some
simplifications and syntax sugaring follows.
01 Program Fixpoint leq (t u : Term) : {b : bool  b � t � u} :�
02 match (t,u) with
03  (Var m, Var n) � m 
 n
04  (Join t1 t2, u) � leq t1 u � leq t2 u
05  (t, Meet u1 u2) � leq t u1 � leq t u2
06  (Var m, Join u1 u2) � leq t u1 � leq t u2
07  (Meet t1 t2, Var n) � leq t1 u � leq t2 u
08  (Meet t1 t2, Join u1 u2) � leq t1 u � leq t2 u � leq t u1 � leq t u2
09 end.

What is important to notice is the � branching in the last three cases. In par-
ticular, the last case requires the algorithm to branch four times! This is the
culprit for the exponential time taken by the algorithm in some examples.

Remembering the past. To simulate only the interesting part of the proof search,
the simulation must choose the right side of every disjunction. This optimization
lies on the following function which advantageously replaces �:
01 Fixpoint tryBranches (ref : Ref.t Σ _) (n_branch : nat) (k : TermPairMap.key) B
02 (branches : list (unit � M Σ B)) : M Σ B :� select
03 (* Coq *) (λ _ � let! map :� !ref in
04 let! n_branch :� extract_some (TermPairMap.find k map) in
05 let! branch :� extract_some (nth_error branches n_branch) in branch tt)
06 (* OCaml *) (λ _ � let! map :� !ref in
07 match TermPairMap.find k map with
08  Some n � let! branch :� extract_some (nth_error branches n) in branch tt
09  None � match branches with
10  nil � error "No branch left to try"
11  branch : : branches’ � try!
12 let! r :� branch tt in
13 let! map :� !ref in
14 do! ref :�! TermPairMap.add k n_branch map in
15 return r
16 with _ � tryBranches ref (S n_branch) k branches’
17 end
18 end).

This function uses the select operator to behave differently in OCaml than in Coq.
In OCaml, it tries to execute the code in all of the branches, and the returned
value comes from the first branch succeeding in its execution. In addition, the
position of the successful branch is added to the map referenced by ref. If no
branch succeed, then it raises an error. Before exploring the branches, it first
checks whether it is known which branch to take, and if this is the case, it
executes the code from that branch only. In Coq, it first reads the position from
the map, and executes only the code from the branch in this position. In both
cases, the key k used to store the position in the map is given as a parameter.
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This key is instantiated with a pair containing the terms from both sides of the
inequality under consideration. The Whitman’s algorithm is changed to take
advantage of the branching function just described.

There is a couple of important remarks that must be made about this opti-
mization. First, the very powerful select operator can obviously break the the-
oretical requirements to achieve the a posteriori simulation. It is provided to
allow the user to create primitive operators not present in the monad. Second,
our implementation of the non determinism assumes that there is no side-effect
in the failing branches that may affect the successful ones.

Performance. As expected, we get a great performance gain, shown in Figures 1
and 2. These plots show the time it takes Coq to typecheck the result, for two
different classes of problems. The time to typecheck the result from the original
purely functional algorithm is shown in rounded dots, while for the effectful code
it is shown in squares. In Figure 1 we consider a problem with an increasing
number of variables, where there is no repetition in the formula (therefore every
combination should be taken into account). In Figure 2, we increment the number
of times a certain pattern occurs in an inequality, showing how our method
benefits from reusing previously computed paths. To sum things up, these plots
clearly shows the benefit of using prophecies to help the typechecker save some
computation.
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6 Related Work

Extending Coq with imperative features. Coq has been extended with imperative
features [1]. The methodology behind this extension is to offer to Coq’s user a
functional interface to data structures that are efficiently compiled internally.
This solution is transparent to the user: there is no need to write decision pro-
cedures in a monad to use imperative mechanisms. Yet, the trusted base, i.e.
the kernel of Coq, had to be extended. Actually, the two systems can be used
together: we could make use of the efficient data structures provided by this
extension to define some of the effectful operators of our monad improving the
performance of the a posteriori simulation done at Qed time.
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Prophecies in Type Theory. Several works propose [5,14] methods to define and
to reason on general recursive functions in Type Theory. Bove and Capretta [5]
formally define a notion of prophecy, a coinductive predicate derived from a set
of non-overlaping recursive equations characterizing the co-domain of the partial
function defined by these equations. Our prophecies and Bove and Capretta’s
share the same role of prediction. However, our prophecies do not need to be co-
inductive because our monad uses them in direct style. Besides, our prophecies
are computed outside Coq by an efficient computational model i.e. OCaml.

7 Conclusion

In this paper, we presented a novel technique to write decision procedures in Coq.
We described its implementation as a plugin and we hope that it will simplify
the development of proofs by reflection in the future.

Acknowledgments. We would like to thank the anonymous reviewers for their
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Automatic Data Refinement
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Abstract. We present the Autoref tool for Isabelle/HOL, which auto-
matically refines algorithms specified over abstract concepts like maps
and sets to algorithms over concrete implementations like red-black-trees,
and produces a refinement theorem. It is based on ideas borrowed from
relational parametricity due to Reynolds and Wadler.

The tool allows for rapid prototyping of verified, executable algorithms.
Moreover, it can be configured to fine-tune the result to the user’s needs.
Our tool is able to automatically instantiate generic algorithms, which
greatly simplifies the implementation of executable data structures.

Thanks to its integration with the Isabelle Refinement Framework and
the Isabelle Collection Framework, Autoref can be used as a backend to a
stepwise refinement based development approach, having access to a rich
library of verified data structures. We have evaluated the tool by synthe-
sizing efficiently executable refinements for some complex algorithms, as
well as by implementing a library of generic algorithms for maps and sets.

1 Introduction

If one wants to generate efficiently executable code for an algorithm verified in
Isabelle/HOL, there are currently two alternatives. The first alternative is to
do the formalization with executability in mind, e. g. using lists instead of sets.
Then, Isabelle/HOL’s code generator [7,9] can extract executable code from the
formalization in various functional target languages like ML and Scala. However,
being limited to only executable concepts in the formalization has the disadvan-
tage of cluttering the proofs with implementation details. This makes the proofs
more complicated, and may even render proofs of medium complex algorithms
unmanageable.1 Moreover, changing the implementation later means essentially
redoing the whole formalization.

A well known solution to this problem is refinement [10], in particular re-
finement calculus [1,2]. Here, an algorithm is formulated and proven correct on
an abstract level, and then refined towards an efficient implementation in pos-
sibly multiple refinement steps. As each refinement step preserves correctness,
the resulting algorithm is correct. Stepwise refinement simplifies the proofs by
modularization: The correctness proof of the abstract algorithm focuses on the
algorithmic idea, not caring about implementation, while the proof of a refine-
ment step shows the correctness of the implementation of particular abstract
concepts, not caring about the overall correctness.

1 The author had this experience with early versions of algorithm formalizations [17,24].

S. Blazy, C. Paulin-Mohring, and D. Pichardie (Eds.): ITP 2013, LNCS 7998, pp. 84–99, 2013.
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In the context of code extraction from Isabelle/HOL, several approaches to
data refinement have been explored [15,20]. They focus on the special case of
pure data refinement, where abstract types (e. g. sets) are replaced by concrete
implementations (e. g. red-black trees), but the structure of the algorithm is pre-
served. Conceptually, this refinement is simple: Rephrase the algorithm using
efficient implementations for the abstract concepts and prove that it refines the
original algorithm. However, using existing techniques, this still requires much
effort. In particular, to produce multiple implementations from the same ab-
stract algorithm, it has to be manually rephrased for each implementation. An
alternative is to set up a parameterized version of the algorithm, e. g. by using
locales. However, this approach suffers from limited polymorphism in typical
HOL theorem provers (cf. [12]).

In this paper, we present the Autoref tool, which performs pure data refine-
ment automatically. Given an algorithm phrased over abstract concepts like sets
and maps, it automatically synthesizes a concrete, executable algorithm and the
corresponding refinement theorem. It has heuristics that try to choose suitable
implementations by default. Moreover, the defaults can easily be overridden by
the user. Thus, it can be used for both rapid prototyping and generating the
final, fine-tuned version of the code.

Autoref is based on the idea of relational parametricity [25,26], which is used
to express data refinement for higher-order types.

To make it applicable for the development of actual algorithms, Autoref is
integrated with the Isabelle Refinement Framework [19,18] and the Isabelle Col-
lection Framework [16,15]. The former supports a development approach based
on stepwise refinement, and the latter provides a large collection of verified
data structures. Both tools have already been used for successful verification of
complex algorithms [17,19,5,6]. Using Autoref as a back end greatly simplifies
this development process. As a case study, we have applied Autoref to generate
executable code for a nested depth-first search algorithm and an algorithm to
compute simulation relations on finite state machines.

Another distinguishing feature of Autoref is its support for generic program-
ming [21] in a user-transparent manner. During the synthesis, the concrete imple-
mentation of an abstract operation may be synthesized via a generic algorithm.
To demonstrate this feature, we have developed a library of generic map and set
algorithms.

Moreover, we provide implementations of data structures that overcome some
limitations of the implementations provided by the Isabelle Collection
Framework. Using Autoref’s support for parametricity reasoning, we were able to
generalize the existing implementations without redoing their correctness proofs.

The implementation of Autoref and the case studies are available at
https://www21.in.tum.de/~lammich/autoref.

Related Work We already mentioned the concepts of data refinement [10], re-
finement calculus [1], and parametricity [25,26] that underly Autoref, as well as
various manual approaches to data refinement [15,20].

https://www21.in.tum.de/~lammich/autoref
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The transfer package [13] for Isabelle/HOL can automatically transfer theo-
rems over quotient types. It is also based on parametricity, and inspired us to
use this technique in Autoref.

Parallel to our work, support for automatic data refinement has been inte-
grated into the Isabelle/HOL code generator by Haftmann et al. [8], and also
the verified code generator for HOL4 of Myreen et al. [22] supports automatic
data refinement. This work is complementary to ours, and we provide a detailed
comparison in Section 4.5.

The remainder of this paper is organized as follows: Section 2 describes the
basic ideas that underly our tool. Section 3 describes how to implement a usable
tool based on these ideas. Section 4 reports on our case studies, and, finally,
Section 5 gives a short conclusion and outlook to future work.

2 Basic Ideas

In this section, we describe the basic ideas behind the Autoref tool. After a short
introduction to Isabelle/HOL (§2.1), we describe relators (§2.2) and transfer
rules (§2.3), and, finally, our treatment of equality and type classes (§2.4).

2.1 Isabelle/HOL

Autoref is implemented in Isabelle/HOL [23], an LCF-style theorem prover for
higher order logic. However, the same approach could also be implemented within
other HOL theorem provers. We assume the reader has basic knowledge of
HOL-style theorem provers. In this subsection, we only describe some aspects of
Isabelle/HOL that are essential for this paper.

A type in Isabelle/HOL is either a type variable or a type constructor ap-
plied to a list of types. Type variables are written with leading ticks, e. g. ’a,
and application of a type constructor is written in postfix notation, e. g. ’a list
or (’a,’b)prod. Moreover, there is syntactic sugar for some standard types: the
function type ’a → ’b, the product type ’a × ’b, and the sum type ’a + ’b.

A term in Isabelle/HOL is either a constant, a variable, a bound variable,
function application, or λ-abstraction. Constants and variables are annotated
with their type, and λ-abstractions are annotated with the parameter type.

In Isabelle/HOL, there is a further distinction between schematic and free type-
/term variables. Schematic variables can be instantiated by unification, while fixed
variables cannot. Schematic variables are denoted by a leading question mark, e. g.
?’a or ?a.

Schematic variables can be used for synthesis: For example, when starting
with a proof goal of the form ?a = 1, ?a may be instantiated during the proof. If
we resolve the above goal with reflexivity, ?a is instantiated to 1, and the theorem
that is proved is 1 = 1. In contrast, free variables cannot be instantiated during
the proof. However, they are converted to schematic variables after the proof has
been finished. Thus, reflexivity is stated as the goal x=x, and later gets converted
to ?x=?x. However, by convention, we do not use question marks for variables
when referring to a theorem.
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Isabelle/HOL has no naming conventions to distinguish free variables from
constants. In this paper, the distinction between variables and constants should
always be clear from the context.

2.2 Relators

In order to refine an abstract program to an executable, concrete one, all types
and operations in the abstract program must be refined to concrete counterparts
that are executable. For example, a set in the abstract program may become a
red-black tree in the concrete program, and insertion into a set may become
insertion into a red-black tree.

We use relators [3] to express the relationship between concrete and abstract
types. Let TA be an nary type constructor, and let TC be its concrete version.
Then, a relator2 RT between TC and TA is an nary function that maps relations
between concrete and abstract argument types to a relation between TC and TA:

RT :: (’c1×’a1)set→. . .→(’cn×’an)set → ((’c1,. . . ,’cn)TC×(’a1,. . . ,’an)TA)set
We use the postfix notation 〈R1,. . . ,Rn〉RT for relators, to make them similar to
the notations (’c1,. . . ,’cn)TC and (’a1,. . . ,’an)TA for the corresponding types.

A natural relator relates a type constructor to itself, not changing the shape
of the values.

Example 1. Consider the list type ’a list ::= Nil | Cons ’a (’a list). The natural
relator for lists relates two lists element-wise according to a relation on the
elements. This relator is defined inductively: For each relation R, 〈R〉list rel is
the smallest relation that satisfies

(Nil,Nil) ∈ 〈R〉list rel
[[ (a,a’) ∈ R; (l,l’) ∈ 〈R〉list rel ]] =⇒ (Cons a l, Cons a’ l’) ∈ 〈R〉list rel

Similarly, natural relators can be defined for other algebraic types. The natu-
ral relator → for functions relates functions that produce related results when
applied to related arguments. It is defined as

(f, f’) ∈ Ra → Rr ←→ ∀(x,x’) ∈ Ra. (f x, f’ x’)∈Rr

Functions and algebraic types are usually refined to themselves using their natu-
ral relators. However, types like maps or sets need to be represented differently.
The relator list set rel, which relates distinct lists to finite sets, is defined as

〈R〉list set rel = 〈R〉list rel o { (l,s). s = set l ∧ distinct l }
Here, o is relational composition. That is, a list of concrete elements is first
related to a list of distinct abstract elements, and this list is then related to a
set of abstract elements.

2 Relators are typically required to be monotonic, commute with composition and
converse, and preserve identity [3]. However, as our technique does not rely on this,
we call relator any function with the appropriate type. Actually, most of our relators
satisfy these properties, a notable exception being the function relator.
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2.3 Transfer Rules

In Isabelle/HOL, a program is represented as a term, which contains no schematic
variables. Thus, in order to relate a concrete and an abstract term, we have to
relate applications, abstractions, constants and free variables. We assume that an
abstract constant (or free variable) f’::’a1→. . .→’an is implemented by a concrete
constant (or free variable) f::’c1→. . .→’cn of the same arity. In order to relate
these constants, we have to prove a transfer rule of the form (f,f’)∈R1→. . .→Rn.
For abstraction and application, we use the following transfer rules:

[[
∧
x x’. (x,x’) ∈ Ra =⇒ (t,t’) ∈ Rr ]] =⇒ (λx. t, λx’. t’) ∈ Ra→Rr

[[ (f,f’) ∈ Ra → Rr; (x,x’) ∈ Ra ]] =⇒ (f x, f’ x’) ∈ Rr

We now state the synthesis problem that our tool has to solve: Given an (ab-
stract) term t′ and transfer rules for its constants and free variables, synthesize
a (concrete) term t and a relation R, such that (t, t′) ∈ R can be proven by the
transfer rules.

Note that the synthesis problem is effective: As the rules decompose the struc-
ture of the abstract term, there are only finitely many proof trees for each term
t′. In Isabelle/HOL, all solutions to the synthesis problem can be enumerated
by solving the goal (?t,t’) ∈ ?R by repeated resolution with the transfer rules,
using backtracking to recover from failed attempts or to explore further solu-
tions. However, this approach may produce large search spaces. In Section 3 we
describe our actual implementation of the synthesis.

Example 2. The transfer rules for the list constructors (cf. Example 1) are

(Nil,Nil) ∈ 〈R〉list rel
(Cons,Cons) ∈ R → 〈R〉list rel → 〈R〉list rel

Now consider the relator int nat rel = {(i,n). i = int n} that relates integers to
natural numbers.3 The transfer rule for addition is

(op +, op +) ∈ int nat rel → int nat rel → int nat rel

Note that in Isabelle/HOL the +-operator is overloaded for both integers and
natural numbers.

Moreover, consider the abstract term t’ = λx y::nat. [x+y] that maps two nat-
ural numbers to a list, where [x+y] is syntactic sugar for Cons (x+y) Nil. Trying
to prove the goal (?t,t’) ∈ ?R by recursive resolution with the transfer rules
results in the theorem

(λx y::int. [x+y], t’) ∈ int nat rel → int nat rel → 〈int nat rel〉list rel

2.4 Equality and Type Classes

Some refinements also depend on operations that are implicit on the abstract
type, like equality or type class operations. In this case, the concrete operation

3 Implementing natural numbers by integers makes sense, as Isabelle/HOL uses a
binary representation for integers, but a unary one for natural numbers.
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needs to be parameterized by explicit concrete versions of these implicit ab-
stract operations. Then, the transfer rules have the more general form [[(c1, a1) ∈
R1; . . . ; (cn, an) ∈ Rn]] =⇒ (c c1 . . . cn, a) ∈ R, where the constants ai are the
implicit abstract operations, and ci are their implementations. Note that the
synthesis problem remains effective, as repeated resolution with the transfer
rules can only produce finitely many different subgoals. Thus, the finitely many
possible proof trees where no subgoal occurs twice on a path can be enumerated.

Example 3. Reconsider the relator list set rel from Example 1, which implements
finite sets by distinct lists. The membership operation ∈ is implemented by
searching the list for an equal element:

primrec glist member :: (’a→’a→bool) → ’a → ’a list → bool where
glist member eq x [] ←→ False

| glist member eq x (y#ys) ←→ eq x y ∨ glist member eq x ys

It is parameterized with an equality operation. Note that we cannot use the
default equality operation on the concrete side, as equality of abstract values
does not necessarily imply equality of their implementations. For example, the
set {1, 2} is implemented by both lists, [1, 2] and [2, 1].

The transfer rule for the membership operation is the following:

(eq,op =) ∈ R→R→Id =⇒ (glist member eq,op ∈) ∈ R → 〈R〉list set rel → Id

Thus, in order to transfer membership, we need to synthesize an additional
equality operation on the element type. Note that we relate Booleans by their
natural relator Id.

Other examples for implicit operations are hash codes and ordering operations,
which are usually defined by type classes on the abstract type. Moreover, transfer
rules with premises can be used to automatically instantiate generic algorithms,
as described in Section 3.5.

2.5 Summary

In this section, we have described the basic machinery required to synthesize a
(concrete) term t and a relation R from an (abstract) term t′ such that (t, t′) ∈ R
holds. In the next section, we tackle the additional problems that arise when
using these ideas to implement a tool for automatic transfer of abstract programs
to efficiently executable ones.

3 Tool Implementation

Given an abstract program specified by a term t′, we ideally want to synthesize
a term t and a relation R such that 1: (t,t’) ∈ R holds, 2: t is executable, 3: R
is adequate, and 4: t is optimally efficient. Criterion 1 is a by-product of our
synthesis that works by actually proving (t,t’) ∈ R. In the Isabelle/HOL setting,
Criterion 2 has to be understood w. r. t. the code generator [7,9], which exports a
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functional fragment of HOL to functional languages like ML or Scala. If the left-
hand sides of the transfer rules lay in this functional fragment, the synthesized
term is executable. Thus, it is the responsibility of the user to specify trans-
fer rules with executable left-hand sides. Otherwise, exporting the synthesized
term will fail. Criterion 3 considers the refinement relations itself. A refinement
relation should be able to uniquely represent a sufficiently large subset of the
abstract type. Again, it is the responsibility of the user not to use inadequate
refinement relations. Otherwise, the synthesized refinement theorem will be too
weak to prove useful properties about the synthesized term. Finally, Criterion 4
is the most difficult to achieve, as it depends on many parameters outside the
scope of our tool, like the algorithm itself, the expected distribution of input,
etc. However, we provide some heuristics for selecting efficient implementations,
as well as many configuration options that allow the user to fine-tune the result.

In the remainder of this section, we describe the actual implementation of
Autoref and the heuristics.

3.1 Identification of Operations

The first step to solve the synthesis problem is to identify the abstract opera-
tions. In the previous section, we optimistically assumed that relators match the
structure of the type and operations in the abstract term are expressed by single
constants. However, these assumptions are not true in practice. For example,
Isabelle/HOL represents maps from ’a to ’b by the type ’a → ’b option. Lookup
in a map is expressed by function application, the empty map is λx. None and
map update is fun upd m k (Some v)4.

To handle this mismatch, we represent conceptual types like map or set by
so called interfaces. We write f :i I to express that operation f has interface I.
In order to identify operations that are not represented by a single constant, we
define a set of pattern rewrite rules of the form pat ≡ c x 1. . . x n.

The actual operation identification is then done by solving a type inference
problem according to the following rules:

ctxt :
x : I ∈ Γ
Γ � x : I

pat :
t ≡ t′ Γ � t′ : I

Γ � t : I const :
c :i I

Γ � c : I

app :
Γ � t : I1 Γ � f : I1 → I2

Γ � f t : I2 abs :
(x : I1)Γ � t : I2

Γ � (λx. t) : I1 → I2

Here, I1 → I2 is the interface for functions. The rules are standard except for
the pat rule, which replaces the current term according to a pattern rewrite
rule. Our type inference algorithm first tries to apply the pat rule. Only if this
does not lead to a valid typing, it backtracks to use the const, app, or abs rules.
If a typing is found, the term is rewritten according to the applied pat rules5.

4 The forms Map.empty and m(k�→v) are just syntactic sugar.
5 The actual implementation combines type inference and rewriting.
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Moreover, to simplify later processing, we define tagging constants OP and $ to
indicate operations and application of operands: OP c = c and f $ x = f x.

Example 4. The interface for maps is 〈Ik,Iv〉i map. Note that we use the same
postfix notation for arguments of interfaces as for arguments of relators. The
pattern rewrite rule for map lookup is m k ≡ op map lookup m k, and we have
op map lookup :i 〈Ik,Iv〉i map → Ik → 〈Iv〉i option.

Now consider the termm k :: ’a option. Autoref has to decide whether this is a
lookup operation in the mapm, or an application of the function m. The type in-
ference first tries the pattern rewrite rule m k ≡ op map lookup m k, thus trying
to derive a map interface for m. If this fails, it backtracks and uses the app-rule
to derive a function interface for m. If m really has a map interface, after rewrit-
ing and adding the OP and $ tags, the term becomes OP op map lookup $m $ k.
Otherwise, it becomes m $ k.

3.2 Selecting the Implementation Types

After it has identified the operations of the abstract term, Autoref decides what
concrete types to use. We separate this decision from the actual synthesis mainly
for efficiency reasons. In early versions of Autoref, we had serious efficiency
problems due to extensive backtracking in the synthesis phase.

The goal of the next phase is to annotate each operation in the abstract term
by the relation that will be used to transfer it to a concrete operation. This
annotation is done by another tagging constant ::: that is defined as f ::: R = f .
In order to influence the result of this phase, the user can manually place :::-
annotations in the abstract term. This phase also implements some heuristics
that aim at choosing efficient implementations.

Internally, this phase is split into multiple sub-phases, which successively in-
stantiate relation variables to actual relations.

The first sub-phase uses the derived interface types to annotate each operation
with a relation that consists of fresh variables and function relators, and also
processes :::-annotations. After this sub-phase, every operation is annotated with
a relation. Typically, most of these relations still contain fresh variables, and only
a few have been specified by the user via explicit annotations.

The next sub-phase tries to restrict the possible instantiations of the relation
variables by what we call homogeneity rules. The idea is that operations should
preserve the implementation if possible. For this purpose, there is a set of homo-
geneity rules of the form OP f ::: R, and Autoref tries to unify the annotated
operations in the term against the homogeneity rules, using a depth-first strat-
egy. For each operation, a maximal specific homogeneity rule that has a unifier is
taken. If there is no such rule, the original relation is not changed. This method
propagates the user annotations over the operations, according to the homogene-
ity rules. The depth-first strategy ensures that user annotations are propagated
upwards in the term, until they conflict with other user annotations.

Example 5. A typical setup provides a generic implementation for the set inter-
section operation, which iterates over the first set, performs a membership query
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in the second set, and builds up the result set. It may be instantiated for any
combination of implementations of the first, second, and result set. Moreover,
consider two set implementations with the relators rbt set rel and list set rel.

Assume the user wants to translate the term a ∩ (b:::〈R〉list set rel). After
operator identification and relator annotation, the term becomes:

(OP ∩ ::: ?R1 → 〈R〉list set rel → ?R2) $ a $ b

where ?R1 and ?R2 are fresh relator variables that need to be instantiated fur-
ther. Autoref could safely use any relation for ?R1 and ?R2, as the generic
implementation of ∩ works for any combination of relations. However, the user
probably wanted both a, and the result of the intersection to be implemented via
list set rel. This can be expressed by the homogeneity rule OP ∩ ::: R→R→R.
If applied, it instantiates both ?R1 and ?R2 to 〈R〉list set rel.

Now assume the user specified (a ∩ b):::〈R〉rbt set rel, thus explicitly request-
ing the result to be implemented by rbt set rel. Again, the homogeneity rule
ensures that both a and b are implemented by rbt set rel, unless they contain
different annotations.

Another useful homogeneity rule is OP ∩ ::: R→R→R’, which tries to at least
choose the same representation for both operands.

A homogeneity rule should not be able to render a possible implementable
operation unimplementable. For example, if the only implementations of op-
eration f ′ are (f1,f’) ::: R1→R2 and (f2,f’) ::: R2→R1, the homogeneity rule
OP f ::: R → R would make the operation unimplementable.

After application of the homogeneity rules, the term may still contain unin-
stantiated relation variables. In the final sub-phase, all relation variables are in-
stantiated by means of the available transfer rules. For each operation OP f ::: R
in the term, we try to find a transfer rule with a conclusion ( ,f) ∈ R’ such that
R unifies with R′, and instantiate R accordingly. This instantiation is done in
a depth-first order, using backtracking until a solution is found. Premises of
transfer rules are taken into account only if they have the form ( , ) ∈ .

In order to influence the solution, the transfer rules are ordered by priorities,
such that rules with higher priority are tried first.

The priority of a rule is computed from a direct component, which may be
annotated to the rule, and a relator component, which prefers transfer rules in-
volving certain relators. For example, in order to prefer red-black trees over lists,
one gives the relator rbt set rel a higher priority than list set rel. On the other
hand, to prefer an optimized implementation of an operation over an unopti-
mized one, the transfer rule for the optimized implementation is annotated with
a higher direct priority.

Note that the relator annotation phase may render solvable synthesis problems
unsolvable. One reason are unsuitable homogeneity rules, as described above.
Another reason is that the last subphase does not consider all side conditions
of transfer rules. However, when carefully setting up homogeneity and transfer
rules, those effects will not occur. Thus we chose to accept this incompleteness
for the advantage of a considerably faster synthesis.
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3.3 Side Conditions

Apart from requiring implementations of equality and other type class operations,
transfer rules may have other side conditions that need to be solved. For example,
the Refinement Framework [19] sometimes requires relations to be single-valued,
and functions to be monotonic. It already provides solvers for those properties,
which we invoke from our tool.

Another complication arises for transfer rules with preconditions over operands.
For example, the hd-operation, which returns the first element of a list, can only be
transferred if the list is non-empty. Hence, the transfer rule for hd cannot be writ-
ten in the form (hd,hd) ∈ 〈R〉list rel→ R. We solve this problem by also allowing
transfer rules written in first-order form:

[[ l’ �= []; (l,l’) ∈ 〈R〉list rel ]] =⇒ (hd l, hd l’) ∈ R

When applying transfer rules in first-order form to operations that do not have
enough arguments, the operation is η-expanded. Note that η-expansion is always
possible in Isabelle/HOL, as f = λx. f x is a theorem.

In order to be able to solve the side conditions, we have to augment some trans-
fer rules to pass on additional information. For example, in order to transfer the
term If (l �= []) (hd l) a, we have to pass on information about the If statement
during the transfer. For this purpose, we again use a first-order transfer rule:

[[ (c,c’)∈Id; c =⇒ (t,t’)∈R; ¬c =⇒ (e,e’)∈R ]] =⇒ (If c t e, If c’ t’ e’)∈R
Thus, when transferring the hd-operation, l�=[] is available as an assumption.
We use similar rules for other crucial operations like the assertions from the
Refinement Framework.

Side conditions may also be used for optimized implementations. Consider,
for example, the insert operation for a set represented by a distinct list. If we
know that the element is not yet contained in the set, it can be implemented in
constant time by prepending the element to the list. Otherwise, we need linear
time to check whether the element is already contained in the list. By giving
the transfer rule for the optimized operation a higher priority, it is tried first. If
it’s side condition can be solved, the optimized version is used. Otherwise, the
synthesis backtracks and uses the general transfer rule.

3.4 Synthesis

The last phase of Autoref takes the term t′, which is completely annotated
with relations, and constructs a proof goal of the form (?t,t’)∈?R. Here, ?t is a
schematic variable that will be instantiated during the synthesis process, and R
is the relation inferred for t′ by the previous phase. Then, it tries to apply the
transfer rules to this goal in order of their priorities. After applying each transfer
rule, the process is recursively invoked for the evolving subgoals. If solving one of
the subgoals fails, the next matching transfer rule is tried. If the subgoal is not of
the form (t, t′) ∈ R, it is a side condition and Autoref analyzes its shape to find
an adequate solver. As an additional optimization, the premises of a transfer rule
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are ordered such that side conditions concerning the abstract term or the relator
come first. This avoids synthesizing the concrete term when side conditions over
the abstract term or relation fail.

3.5 Generic Programming

Many abstract operations can be implemented in terms of other abstract opera-
tions. For example, we have a∩b={} ←→ ∀x∈a. x/∈b, i. e. the disjointness test for
sets can be implemented by means of bounded quantification and membership
query. Along these lines, most operations on finite sets can be implemented by
five basic operations: Empty set, insert, membership, deletion of an element, and
iteration over the elements of the set. We extensively exploit this idea already in
the Isabelle Collection Framework [16,15]. However, there we have to manually
pre-instantiate the generic algorithms for each combination of implementations,
which does not scale. Using Autoref, generic algorithms are expressed as transfer
rules, and automatically instantiated only on demand. Moreover, the usage of
generic algorithms is transparent to the user, who specifies an abstract operation,
and lets the tool decide whether it is realized by a direct implementation or a
generic algorithm.

Example 6. Reconsider the disjointness test. We define the constant

op set disjoint a b ←→ a ∩ b = {}
and add an appropriate rewrite rule to the operation identification phase. More-
over, we define

gen disjoint ballI memI a b = ballI a (λx. ¬memI x b)

Then, we can easily prove the following transfer rule:

[[ (b,Ball) ∈ 〈Re〉Rs1 → (Re→Id) → Id; (m, op ∈) ∈ Re → 〈Re〉Rs2 → Id ]]
=⇒ ( gen disjoint b m, OP op set disjoint) ∈ 〈Re〉Rs1 → 〈Re〉Rs2 → Id

A low direct priority ensures that it does not override explicit rules for disjoint-
ness tests. Thus, whenever Autoref finds no explicit rule for a disjointness test,
it tries to find rules for bounded quantification and membership instead, and
automatically implements the disjointness test by those operations.

Using such rules, we have to be careful not to follow cycles, trying to im-
plement an operation by means of itself. Checking for such cycles is not yet
implemented. Thus, it is the responsibility of the user not to use transfer rule
setups with cyclic dependencies. However, even with this restriction, we were
able to implement generic algorithm libraries for maps and sets (cf. Section 4.3).

3.6 Summary

In this section we have described how to use the basic idea of synthesis via transfer
rules to implement the Autoref tool, which automatically synthesizes efficient im-
plementations of abstractly specified algorithms. The tool has several heuristics



Automatic Data Refinement 95

that try to automatically produce a suitable implementation. If these heuristics
produce a non-adequate result, the user can influence the result by configuration
of the heuristics and annotations to the abstract algorithm. In the next section,
we present some case studies that prove the practical usefulness of Autoref.

4 Case Studies

In this section, we describe the integration of Autoref with the Isabelle Re-
finement Framework [18,19] and the Isabelle Collection Framework [16,15].
Moreover, we describe a library of generic map and set algorithms that
demonstrates the generic programming capabilities of Autoref. Finally, we
report on the automatic refinement of some complex algorithms to efficiently
executable code.

4.1 Refinement Framework

In order to be useful for practical algorithms, we have set up Autoref as a back
end to the stepwise refinement development process provided by the Isabelle
Refinement Framework [18,19].

A detailed description of the Refinement Framework can be found in [19]. Here,
we give a very brief overview. The basic concept of the Refinement Framework is
a nondeterminism monad, whose inner type is called result. A result is either a set
of values, describing the possible outcomes of a nondeterministic computation,
or it is the special result fail, describing that one of the possible outcomes is an
exception, i. e. a failed assertion or diverging computation. By lifting the subset
ordering, with fail being the biggest element, one gets a complete lattice struc-
ture on results. The lifted ordering is called refinement ordering, where smaller
results are more refined. An algorithm is expressed as a function yielding a re-
sult. Correctness of an algorithm is expressed by refinement of its specification,
e. g. Φ =⇒ f x ≤ spec Ψ describes correctness of f w. r. t. precondition Φ and
postcondition Ψ . Here, spec Ψ is the result that contains all values satisfying Ψ .

Given a (single-valued) refinement relation R, the concretization function ⇓R
maps abstract results to concrete results w. r. t. R. Thus, data refinement is
expressed by r ≤ ⇓R r’, meaning that r refines r′ w. r. t. the relation R.

In order to integrate the Refinement Framework with Autoref, we define data
refinement as a relator for results: 〈R〉nres rel = {(c,a). c ≤ ⇓R a}. Then, we
provide transfer rules for the combinators of the Refinement Framework. Those
transfer rules are already contained in the Refinement Framework, and only
have to be rephrased in the format expected by Autoref. Some of the transfer
rules have side conditions, for which the Refinement Framework already provides
solvers, which could easily be integrated into Autoref.

4.2 Collection Framework

The Isabelle Collection Framework [15,16] provides a rich library of verified col-
lection data structures, and is already based on data refinement. Thus, it is
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straightforward to set up Autoref to use the data structures provided by the
Collection Framework.

However, the Collection Framework only supports refinement relations of the
form 〈Id,. . . ,Id〉R. For example, it is not possible to refine a set of sets of inte-
gers to a list of lists of integers. Thus, we implemented a red-black tree based
map implementation and a list-based set implementation that do not have this
restriction. Using parametricity [26], we were able to reuse the existing theorems
about red-black trees and lists, as illustrated in the following example:

Example 7. The existing implementation of sets by distinct lists gives us the
following transfer rule:

(list member,Set.member) ∈ Id → {(l,s). s = set l ∧ distinct l} → Id

Here, list member implicitly uses equality on the elements. It is straightforward
to show list member = glist member (op =), where glist member is the one from
Example 3. Moreover, Autoref easily shows that glist member is parametric6:

(glist member, glist member) ∈ (R→R→Id) → R → 〈R〉list rel → Id

Combining these theorems, one gets precisely the transfer rule from Example 3.

4.3 Generic Programming

In Section 3.5, we sketched how Autoref can be used for generic programming. In
order to demonstrate this feature, we implemented a library of generic map algo-
rithms, which provides a variety of operations based on the five basic operations
empty, update, lookup, delete, and iterate. Analogously, we implemented generic
set algorithms based on the basic operations empty, insert, member, delete,
and iterate. Finally, we implemented the basic set operations by the basic map
operations, using a map from elements to unit values to represent a set.

Thus, in order to prototype a new data structure, it is enough to implement
the five basic map operations. All other map and set operations become available
automatically. Most of the generic algorithms are reasonable efficient, such that
they can be kept even for the final version. To specialize a generic algorithm for a
particular implementation, it is sufficient to add the specialized transfer rule with
a higher priority than the generic rule. For example, we have a generic algorithm
for union of finite sets that iterates over one set and inserts its elements into the
other set. However, for red-black trees, there is a more efficient algorithm. It is
declared as a transfer rule with default priority, thus overriding the lower priority
rule for the generic algorithm.

4.4 Code Generation for Actual Algorithms

We have tested Autoref on several actual algorithms. The most complex ones
are the algorithm by Ilie, Navarro and Yu for the computation of simulation

6 Indeed, this is a theorem that you get for free in the setting of [26]!
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preorders in nondeterministic finite automata [14], and an emptiness check for
Buchi automata using a nested depth-first search [11]. For the former algorithm,
we adapted an existing formalization [5], where the refinement to executable
code was done manually7. Here, the size of the Isabelle text required for the
refinement to executable code was reduced from more than 500 lines to about
15 lines. In order to use Autoref, we had to insert two additional assertions
into the abstract algorithm, which were required to automatically discharge side
conditions of transfer rules. In the original formalization, these side conditions
were discharged using some non-trivial reasoning during the manual refinement.

For the latter algorithm, the refinement to executable code requires about 10
lines. Moreover, we require about 20 lines for setup of a custom datatype, for
which automation is not yet supported. As this algorithm was initially developed
using Autoref, we have no data how big a manual refinement would be, but we
estimate it to several hundred lines of code.

4.5 Data Refinement within the Code Generator

The Isabelle/HOL code generator also supports automatic data refinement [8].
However, it has some limitations that render it unsuitable for our purpose,
namely code generation for programs defined in the Refinement Framework. For
example, the refinement relations are restricted to the form α c = a. This is es-
sential for integration into the Isabelle/HOL code generator. However, it is not
possible to express reduction of nondeterminism, which is required to be used as
back end for the Refinement Framework. Moreover, it lacks the operation iden-
tification of our tool, thus limiting the refinement to types with their own type
constructor. On the other hand, due to the direct integration into the code gen-
erator, one gets support of the Isabelle packages for defining recursive functions
and algebraic datatypes for free, and tools like evaluate and quickcheck [4] im-
mediately profit from the more efficient code. Here, Autoref currently requires
manual setup for each non-primitive recursion scheme and for each algebraic
datatype, and automating this task would require quite some effort.

The code generator of Myreen et al. [22] for the HOL4 theorem prover trans-
lates terms to the deeply embedded MiniML language, and proves correctness of
the translation. It uses a synthesis procedure that is similar to ours, i. e. it keeps
track of a relation between the generated code and the original term. While the
currently implemented features seems to be limited8, in theory it should be pos-
sible to support the same generality as Autoref does, which yields an interesting
topic for future research.

5 Conclusions

We have presented Autoref, a tool for automatic data refinement in Isabelle/HOL.
Given an abstract algorithm that uses abstract concepts like maps or sets, it syn-
thesizes a concrete algorithm that uses efficient implementations like red-black

7 A very early prototype of Autoref was already used for some simple steps.
8 For example, equality on abstract values is mapped to equality in the target language.
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trees, and a corresponding refinement theorem. Autoref allows for both rapid
prototyping of executable code and fine-tuning the results to get the final ver-
sion. Compared to previous manual approaches, our tool saves the user from
tedious and time consuming writing of boilerplate code. To substantiate the use-
fulness of Autoref, we have shown how it can be used to refine actual algorithms
for simulation preorder computation and for nested depth-first search.

Directions of future work include to add even more automation. For example,
transfer rules with natural relators correspond to the ”theorems for free” of [26],
and could be derived automatically. Moreover, we are currently working on sev-
eral algorithm verifications using the Refinement Framework. The feedback from
those projects will lead to improvements of the tool, and extension of its data
structure and generic algorithm libraries. Another interesting topic is to use the
heuristics that we developed for Autoref as a front end to the code generator
based data refinement [8].
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comments.
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Abstract. The paper shows how the code generator of Isabelle/HOL
supports data refinement, i.e., providing efficient code for operations on
abstract types, e.g., sets or numbers. This allows all tools that employ
code generation, e.g., Quickcheck or proof by evaluation, to compute with
these abstract types. At the core is an extension of the code generator to
deal with data type invariants. In order to automate the process of setting
up specific data refinements, two packages for transferring definitions and
theorems between types are exploited.

1 Introduction

Algorithm verification is most convenient at a high level of abstraction, reasoning
about data in terms of sets, functions and other mathematical concepts. However,
when running the verified code we want to replace sets and functions by lists
and trees, to make them efficiently executable. This replacement is called data
refinement, and the ideal theorem prover should do this fully automatically once
we prove that the concrete representation is adequate.

This paper describes a data refinement framework for Isabelle/HOL that au-
tomatically replaces abstract data structures by concrete ones during code gen-
eration. Our main contribution is a lightweight infrastructure and methodology
that reduces data refinement entirely to code generation, requires zero effort
from the user and is based on a minimal extension of the code generator.

More formally, data refinement replaces an abstract data type A by a more
concrete one C in the generated code. The typical example is the implemen-
tation of sets by lists. The concrete type is also called the implementation or
representation. Refining A by C requires an abstraction function Abs :: C → A
(e.g., mapping [1, 2] to {1, 2}) and an invariant inv :: C → bool (e.g., ruling out
lists with duplicates). The basic picture is shown in Figure 1.

The standard approach is to demand that Abs is a homomorphism: for ev-
ery operation f ∈ Σ (the primitive operations that need implementing) on
the abstract type and its concrete implementation f ′ it must be shown that
f(Abs(x)) = Abs(f ′(x)). A system supporting data refinement on this basis
will require the user to prove the homomorphism property for all operations to
ensure soundness of the refinement step. This means that a new trusted compo-
nent is added to the system, the refinement manager. A typical example for this
approach is the KIV system [18].

We turn the approach on its head: Rather than check that the correct homo-
morphism theorems have been proved before code is generated, the homomor-
phism theorems themselves are the glue code between f and f ′. More precisely,
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Fig. 1. Data refinement

we instruct the code generator to view A as an algebraic data type with the
single (uninterpreted!) constructor Abs :: C → A. Now f(Abs(x)) = Abs(f ′(x))
is a code equation that performs pattern matching on Abs to turn a call of f
into a call of f ′. This is the key point of our approach: We generate code for
the actual function f , not for some other function f ′ for which some additional
theorems show that it implements f in the correct manner. This form of data
refinement is completely automatic: Once a particular refinement of A by C has
been set up, generating code involving functions on A involves no further input
by the user. This works amazingly well and is explained in §2.

Unfortunately it breaks down once we have a non-trivial invariant and can
only prove inv(c) =⇒ f(Abs(c)) = Abs(f ′(c)). This is a conditional equation
and thus unsuitable for generating code. At this point we need to introduce a
minimal extension of the code generator that deals with invariants. This is the
contents of §3, where the correctness of the extension is also proved.

As a final generalization we allow A to be a nested type expression. This
complicates matters and is the subject of §4.

Data refinement is crucial for Isabelle/HOL because it enables code genera-
tion for some of the most important types, namely sets and numbers. The details
follow, but we can already mention that this is essential for two important appli-
cations, in addition to explicit algorithm development by the user: Quickcheck,
Isabelle’s automatic counterexample search facility [2], and proof by evaluation.
Both take advantage of default implementations of sets and numbers to execute
seemingly abstract statements like {1, 1/2} ∩ {1− 1/2, 2} = {1/2}.

1.1 Code Generation

Isabelle/HOL supports code generation for a number of functional program-
ming languages (SML, OCaml, Haskell, Scala). Basically, equational theorems
in HOL, called code equations, are translated into function definitions in the
target languages. A mathematical treatment of this translation process, includ-
ing correctness proofs, can be found elsewhere [5]. We stay on the level of code
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equations here and do not need to worry about the further translation steps.
The key correctness property of the generated code is that any evaluation in the
target language corresponds to an equality provable in HOL. In other words, the
generated code is a fast rewrite engine, which can be used to derive equations.

When we want to generate code for some function f , any list of equations of
the form f . . . = . . . (with pattern matching on the lhs) can (in principle) serve
as code equations, not just the original definition of f . Thus we are free to define
a second, more efficient function g, prove f(x) = g(x), and use this equation
(together with the ones for g) as the code equations for f .

Algebraic data types in HOL are turned into equivalent algebraic data types
in the target language. Interestingly, the correctness proof revealed that in fact
any function in HOL can in principle become a constructor function in the target
language (but of course not a defined function at the same time).

1.2 Isabelle/HOL

Isabelle/HOL [17] is based on Church’s simple type theory. Types τ are built
from type variables (denoted by α, β, . . . ) and type constructors κ with a fixed
arity. The function type is → as usual. The notation t :: τ means that term t
has type τ . In concrete examples we use Isabelle/HOL’s syntax:⇒ instead of→
and ’a instead of α. The qualified name A.f refers to function f from theory A.
Besides ∀, we also use this symbol

∧
for universal quantification.

In our examples we employ the usual standard types: lists (’a list), sets (’a set),
booleans (bool), and the type of optional values (’a option) with constructors
Some and None. The primitive way of introducing new types in Isabelle/HOL is
the typedef command. It takes a non-empty set S :: τ set, defines a new type
σ, and axiomatizes two isomorphisms Abs :: τ → σ and rep :: σ → τ as follows:

∀x. rep x ∈ S (1)
∀x. Abs (rep x) = x (2)

∀x ∈ S. rep (Abs x) = x (3)

Thus the axiomatization requires that the image of rep is in S, Abs is a
left-inverse for rep and rep is a left-inverse for Abs on S.

We use another axiomatization of Abs and rep in our paper:

∀x. Abs (rep x) = x (4)
∀x. x ∈ S ←→ rep (Abs x) = x (5)

The axiomatizations are equivalent 1: (4) is the same as (2) and the left-to-right
direction of (5) is (3). The right-to-left direction of (5) can be derived from (1)
by substituting Abs x for x. On the other hand, (1) can be derived from (5)
by substituting rep x for x and using (4). If S is given by a set comprehension
{x :: τ. P x}, we often write P x instead of x ∈ S.
1 We want to thank one of the reviewers that found a bug in Nitpick, which found an

incorrect counterexample that appeared to show that the two axiomatizations are
not equivalent.
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2 Basic Data Refinement

We start by considering the situation where there is no invariant. The standard
example is the implementation of sets by lists with no restrictions on the order
or multiplicity of the elements in the lists. More efficient representations are
considered later on, but this one illustrates the basic method well.

The relation between lists and sets is an instance of Figure 1 where C = ’a list,
A = ’a set, inv is true everywhere (every list is a valid representation) and Abs =
set, a predefined function that returns the set of elements in a list. Infinite sets
are not representable (but see the end of the section).

As explained in the Introduction, for code generation purposes we will now
consider the abstraction function set as the single constructor of type ’a set. Ar-
bitrary constants (of an appropriate type) can be turned into data type construc-
tors in the generated code (see §1.1). We call such constants pseudo-constructors.
Like ordinary constructors, they have no defining code equations but other code
equations can use them in patterns on the left-hand side. There are no particu-
lar logical properties that such pseudo-constructors have to satisfy—they do not
have to be injective or exhaust the abstract type. This is how we instruct the
code generator to view the function set :: ’a list ⇒ ’a set as a constructor:

code datatype set

Thus in the generated code the type ’a set will become a data type whose ele-
ments are in fact lists, but wrapped up in the constructor set. For the primitive
set operations we can easily prove alternative equations that pattern-match on
set. Here are some examples:

lemma [code]: {} = set []
lemma [code]: Set.insert x (set xs) = set (List.insert x xs)
lemma [code]: Set.remove x (set xs) = set (List.removeAll x xs)

The [code] tag tells the code generator that a theorem should be considered a
code equation and used instead of the original definition of the function involved.

The technique allows the replacement of one type by another type with
surprising ease, based purely on the equational semantics of the code generator.

We now generalize from the example. We assume that A = (α)κ, where κ is a
type constructor and α a list of type variables, its arguments; C is unrestricted.
We start by defining Abs :: C → A and registering it as a pseudo-constructor
(via code datatype) in order to pattern-match on it in the code equations for
the f ∈ Σ. There are no restrictions per se on the type of f , but in order to
abstract the standard pattern seen in the set/list example we need to make some
assumptions on the argument types.

Definition 1. We call a type τ1 → · · · → τn → τ basic (where τ is not a
function type) iff all τi are either of the form (. . . )κ or do not contain κ.

We assume that all functions in Σ have a basic type, a property that is satisfied
by all our applications. Derived functions can of course have arbitrary types.
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Now we must prove for each f ∈ Σ a code equation

f a1 . . . an = t

where ai = Abs(xi) (if τi = (. . . )κ) or ai = xi (otherwise). The free variables of
t must be contained in {x1, . . . , xn}.

Now terms involving type κ can be handled by the code generator: the code
for all primitive functions f has just been proved, and code for derived functions
is generated as always. Hence it must be stressed that the only work we need to
do is to prove the code equations for the f ∈ Σ.

As described above, all occurrences of type κ are refined by the same type. How-
ever, our infrastructure does not by itself enforce this: Lochbihler [13] generalizes
our approach to multiple representations. He exploits the fact that there
can be multiple pseudo-constructors for any type. In fact, Isabelle’s default refine-
ment of sets supports cofinite sets, too, by means of a second pseudo-constructor
coset :: ’a list⇒ ’a set where coset xs = − set xs (“−” is complement).

3 Data Refinement with Invariants

3.1 Motivation and Example

Implementing sets by lists with possibly repeated elements, as in the previous
section, is inefficient. Therefore we now impose the invariant that all elements of
the representing lists are distinct and call such lists distinct lists. The situation is
again the one in Figure 1 with C = ’a list, A = ’a set, Abs = set, but now inv =
distinct, a predefined function that tests if all elements of a list are distinct.

But now there is the problem that our pseudo-constructor set can also be
applied to lists that are not distinct. As a consequence, some equations for the
primitive set operations only hold conditionally, for example

distinct xs =⇒ Set.remove x (set xs) = set (List.remove1 x xs)

This conditional theorem will be rejected as a code equation by the code gen-
erator. For soundness reasons the precondition cannot simply be dropped, but
without it the theorem does not hold because List.remove1 removes at most one
occurrence of x from xs and not all of them like List.removeAll. Our solution is
to introduce an intermediate type ’a dlist for distinct lists (see Figure 2). Thus
we split the implementation into two steps: the new subtype step from ’a list to
’a dlist, where ’a dlist is a new type that is isomorphic to a subset of ’a list, the
distinct lists, followed by the basic data refinement of ’a set by ’a dlist which
does not involve an invariant anymore and can be dealt with by the method of
the previous section.

The new subtype with an invariant is defined by typedef (see §1.2):

typedef ’a dlist = {xs::’a list. distinct xs}
morphisms list Dlist
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’a list

distinct lists

’a dlist ’a set

finite sets

Fig. 2. Sets by distinct lists using ’a dlist

The morphisms directive just renames the canonical rep and Abs functions to

list :: ’a dlist ⇒ ’a list
Dlist :: ’a list ⇒ ’a dlist

As presented in §1.2, we can axiomatize rep and Abs as follows:

Dlist (list dxs) = dxs (6)
distinct xs ←→ list (Dlist xs) = xs, (7)

Using the two isomorphisms we can define all primitive operations on dlist by
lifting corresponding operations on list. For example, this is the definition of
Dlist.remove :: ’a ⇒ ’a dlist ⇒ ’a dlist:

Dlist.remove x dxs = Dlist (List.remove1 x (list dxs)) (8)

Then we bridge the gap between ’a set and ’a dlist by a new pseudo-constructor
dset :: ’a dlist ⇒ ’a set:

dset dxs = set (list dxs)

If we assume that we already have all primitive operations on the type ’a dlist
together with the necessary properties, it is again straightforward to prove code
equations implementing set operations, for example for Set.remove:

lemma [code]: Set.remove x (dset xs) = dset (Dlist.remove x xs)

Therefore we turn to the problem of how to implement dlist operations by list
operations. Using Dlist as a pseudo-constructor as in the previous section runs
into the same problem as before:

distinct xs =⇒ Dlist.remove x (Dlist xs) = Dlist (List.remove1 x xs) (9)
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is only provable under the assumption distinct xs. Therefore we try the definition
of Dlist.remove (8) itself as a code equation. Now we need to execute list on the
rhs and face the same problem:

list (Dlist xs) = xs (10)

is only provable if distinct xs. Therefore we extend the code generator for this
special case as follows. Attaching attribute [code abstype] to property (6)

lemma [code abstype]: Dlist (list dxs) = dxs

instructs the code generator to make Dlist a pseudo-constructor and to turn the
composition around and make (10) a code equation, although it is not a theorem.
The justification is a meta-theoretic one: we ensure that in code equations, Dlist
is only applied to distinct lists, for which (10) is provable. This property of
Dlist will be guaranteed by a check that Dlist is only applied to the result of
operations on lists that have been proved to preserve the invariant. That is, we
ensure that the implementations of the dlist operations on lists preserve distinct.
For List.remove1, the implementation of Dlist.remove, we need to show

distinct xs =⇒ distinct (List.remove1 x xs) (11)

However, we can do better and combine (8) and (11) like this:

lemma list remove[code abstract]:
list (Dlist.remove x dxs) = List.remove1 x (list dxs)

The attribute [code abstract] instructs the code generator to derive the actual
code equation (8) from it (this is a direct consequence of (6)). The lemma also
entails (11): if distinct xs then

list (Dlist (List.remove1 x xs)) = list (Dlist.remove x (Dlist xs))
= List.remove1 x (list (Dlist xs)) = List.remove1 x xs,

i.e., distinct (List.remove1 x xs) (by (9), list remove, (7)). Thus lemma list remove
also certifies that distinct is preserved by List.remove1.

This concludes the presentation of code generation for dlist. The advantage
of our approach is that we have relaxed the principle to only ever generate code
from theorems in only one place, equation (10). Above we sketched why this is
admissible. In the next subsection we explain our approach in its general form
and give a formal correctness proof.

3.2 Subtype Step: The General Case

Now we look at the general form of the subtype step from ’a list (now C) to
’a dlist (now A = (α)κ). We have functions Abs : C → A (Dlist) and rep :
A→ C (list) such that Abs(rep(y)) = y and inv : C → bool (distinct) such that
inv(x)←→ rep(Abs(x)) = x. We assume that the result type of all functions in
Σ contains κ at most at the very outside, e.g., ’a dlist is allowed but ’a dlist list
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is not. We discuss this restriction (which does not apply to derived functions) at
the end of this section. The format for the code equations is now

ψ(f y) = t

where ψ is rep (if τ = (. . . )κ) or the identity (otherwise). The free variables of
t must be contained in y. The code generator turns this into f y = φ(t) (by a
proof step), where φ is Abs (if τ = (. . . )κ) or the identity (otherwise). The only
liberty that the code generator takes is that it turns the theorem Abs(rep y) = y
into the non-theorem rep(Abs x) = x. Of course the latter is implied by inv(x),
and we will show that inv(s) holds for all terms Abs(s) that may arise during a
computation. But this requires a careful proof (see below). The following table
summarizes the behavior of the code generator.

E E′

rep(f y) = t f y = Abs(t)
Abs(rep y) = y rep(Abs x) = x

Let E be the set of all code equations at the point when the code generator is
invoked and let E′ be the result of the translation shown in the table above. That
is, most equations are moved from E to E′ unchanged, but rep(f y) = t and
Abs(rep y) = y are translated as above. Moreover, the code generator enforces
that Abs must not occur on the rhs of any equation in E. (This is not a restriction
because if one really needed an operation that behaved like Abs one could define
it separately from Abs to avoid confusion.)

In [5] correctness of the code generation process is shown by interpreting
code equations as higher-order rewrite rules and proving that code generation
preserves the reduction behavior. Our translation from E to E′ is a first step
that happens before the steps considered in [5]. We will now prove correctness of
that first step by relating the equational theory of E (written E 	 u = v) with
reduction in E′. Notation E′ 	 u→ v means that there is a rewrite step from u
to v using either a rule from E′ or β-reduction.

We call a term t invariant iff (i) E 	 rep(Abs s) = s for all subterms (Abs s)
of t and (ii) every occurrence of Abs in t is applied to an argument.

Lemma 1. If u is invariant and E′ 	 u→∗ v, then v is invariant.

Proof. By induction on the length of the reduction sequence. In each step, we
need to check invariance of newly created Abs terms. Because user-provided code
equations with Abs on the rhs are forbidden, only the derived code equation
f y = Abs(t) can introduce a new Abs term, namely Abs(t) itself, where Abs
is applied and for which we have E 	 rep(Abs(t)) = rep(Abs(rep(f y))) =
rep(f y) = t. Invariance is preserved by β-reduction because it cannot create
new Abs terms because all Abs must already be applied to arguments.

Lemma 2. If u is invariant and E′ 	 u→∗ v, then E 	 u = v.

Proof. By induction on the length of the reduction sequence. In each step, either
β-reduction, or an equation from E, or f y = Abs(t) (which is a consequence of
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E), or rep(Abs x) = x is used. Only the last case needs special consideration. By
the previous lemma, the subterm Abs(t) of the lhs of the reduction rep(Abs(t))→
t is invariant, and hence E 	 rep(Abs(t)) = t.
Thus we know that if we start with an invariant term, reduction with E′ only
produces equations that are already provable in E. Invariance of the initial term
is enforced by Isabelle very easily: the initial term must not contain Abs.

We have already mentioned that we cannot register a code equation for a basic
operation by [code abstract] if the abstract type κ occurs inside the result type
rather than at the top level. A workaround is to introduce for each such result
type a new abstract type with appropriate projection functions. For example,
· · · → (α)κ× (α)κ becomes · · · → (α)κ′, where κ′ is a new abstract type, a copy
of (α)κ × (α)κ with two projection functions of type (α)κ′ → (α)κ. This leads
to simultaneous refinement, which is covered by our approach. Sometimes the
workaround can be avoided because the offending operation can be split up into
different functions. For example, a function of type · · · → (α)κ×(α)κ is replaced
by two separate functions of type · · · → (α)κ. We believe that the limitation on
the result type can be lifted, but it requires a generalization of the correctness
proof by employing map functions for each container type involved.

3.3 Using Lifting/Transfer
Building a theory library that implements a new abstract type like ’a dlist can
take a bit of work. The main reason is that the type system requires us to convert
between values of the concrete and the abstract type with the isomorphisms. This
happens in all definitions, for example of Dlist.remove (8). For more complicated
types involving higher-order types or other type constructors, more complex
combinations of the isomorphisms are required. Then we need to prove the code
equations for [code abstract], e.g., lemma list remove, from those definitions. And
finally we need to transfer properties from the concrete to the abstract type. Thus
the manual construction of such an abstract type is at least tedious. If one is
unfamiliar with the details of the type definition facility, it is not just tedious but
cryptic. Hence the success of our approach to invariants depends on the amount
of automation we are able to provide for this task.

To automate the construction of abstract types we use the Lifting and Transfer
packages [8], which were implemented as general tools but also with the motiva-
tion of data refinement in mind. These tools provide automation for building ab-
stract types (subtypes and quotients) in Isabelle/HOL and were inspired by [10].
The Lifting package defines new constants on the abstract level, which is done
by lifting terms from the concrete level to the abstract level, and proves transfer
rules relating a term on the concrete level and the newly defined constant. The
Transfer package helps to prove theorems on the abstract level (mainly prop-
erties of the lifted constants), which is done by transferring the goals on the
abstract level to goals on the concrete level by using the provided transfer rules.

How to use Lifting/Transfer for implementation of a data structure with an
invariant? First of all, we have to set up the lifting infrastructure, which is done
by a theorem generated by typedef for ’a dlist:
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setup lifting type definition dlist

This canonical boilerplate command already registers ’a dlist as an abstract
datatype with a constructor Dlist (via [code abstype]).

Then each operation can be lifted by lift definition command:

lift definition remove :: ’a ⇒ ’a dlist ⇒ ’a dlist is List.remove1

This command opens a proof environment with the following goal:∧
a list. distinct list =⇒ distinct (List.remove1 a list)

The goal merely expresses that the operation on the concrete level preserves the
invariant. After the proof is finished, a new constant remove is automatically
defined via the correct combination of isomorphisms and also the corresponding
code equation list remove is proved (from the definition and the above goal) and
registered in the code generator via [code abstract].

Transfer helps us to prove properties of operations on ’a dlist, in particular
code equations:

lemma [code]: Set.remove x (dset dxs) = dset (Dlist.remove x dxs)
apply transfer

Command transfer turns the goal into∧
x dxs. distinct dxs =⇒ Set.remove x (set dxs) = set (List.remove1 x dxs),

which talks about lists rather than distinct lists and can thus be proved easily.
Note that dxs is now universally quantified and has type ’a list.

A detailed explanation of the Lifting and Transfer packages is beyond the
scope of this paper and full details are going to be published in a forthcom-
ing paper. Here provided description of the Lifting package abstracts from our
concrete example of ’a dlist to give a glimpse how the package works internally.

Let us assume we have two morphisms Abs :: C ⇒ A, rep :: A ⇒ C and an
invariant inv :: C ⇒ bool and we want to lift a function f :: C ⇒ (C) ϑ⇒ C to
a function f ′ whose type should be A ⇒ (A) ϑ ⇒ A, where ϑ is a non-abstract
type.2 Then the Lifting package will ask us to prove the correctness condition

inv x =⇒ predϑ inv y =⇒ inv (f x y),

where predϑ :: (α ⇒ bool)⇒ (α) ϑ ⇒ bool is a “predicator” for type ϑ extend-
ing the predicate inv operating on α’s to the predicate predϑ inv operating on
(α) ϑ. If we prove the correctness condition, the Lifting package will produce a
definition of f ′ that is equivalent to

f ′ x y = Abs (f (rep x) (mapϑ rep y)),

2 Our example does not cover the most general type that f could have but it already
covers the key concepts: an abstract type, the function type and an abstract type
inside of a “container type” (in our example ϑ).
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where mapϑ is a map function for type ϑ. The following code equation is
generated and registered in the code generator:

rep (f ′ x y) = f (rep x) (mapϑ rep y)

Finally, a transfer rule relating f and f ′ is derived and registered in the Transfer
package.

In general, if corresponding morphisms, map functions and “predicators” are
known to the system, the Lifting package will produce an expected definition
for any combination of abstract and concrete types including higher-order and
nested types. Except for proving that an operation on the concrete level preserves
the invariant, and this is in general unavoidable, everything is fully automatic.

4 From Type Constructors to Type Expressions

4.1 Motivation and Example

The limitation of the code generator is that the type that is being refined has
to be of the form (α) κ. The type of maps ’a ⇒ ’b option does not have this
form, yet one would still like to refine it by some efficient type of tables. Because
’a ⇒ ’b option is not a plain type constructor, a new type (’a, ’b) mapping has
to be introduced. This type is merely a copy of ’a ⇒ ’b option for code gener-
ation purposes. It can be refined further, for example, by red-black trees using
the techniques from §2 and §3. See Figure 3 for the complete picture. The im-
plementation type rbt-impl is just a plain datatype of binary trees with a color
in each node; on top of it the subtype rbt of well-shaped trees satisfying the
invariant of red-black trees is defined. This example represents the most general
form of data refinement discussed in this paper.

But now all definitions using ’a ⇒ ’b option must be lifted to (’a, ’b) mapping.
Of course, it has to be done for primitive operations on maps like a lookup or an
update only once for all. But it also has to be done for all other definitions using
these primitive functions. The reason is that one has to provide for such derived
operations new code equations that use primitive operations of (’a, ’b) mapping
and not ’a ⇒ ’b option. On the other hand, no code equations have to be provided
for the primitive operations on (’a, ’b) mapping in this phase because these will
be provided later on in the phase described in §2 and §3. Of course, it is also
possible to base the formalization on the lifted type (’a,’b) mapping from the
beginning but this contradicts the very idea of data refinement.

The complications of this general setting are as follows. For a start, you do not
obtain code for f but for some f ′. This means in particular that none of the tools
that build on code generation, e.g., Quickcheck profit from such refinements.
Moreover you have to refine every function f to some f ′, not just the primitive
ones, and you have to look carefully at the definition of f ′ that lift definition
actually produced and at the abstraction relations involved to convince yourself
that f and f ′ are in the desired relationship. But it is not quite as bad as this.
As soon as you define a derived function h where ’a ⇒ ’b option is no longer
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(’a,’b) rbt-impl

well-shaped trees

(’a,’b) rbt (’a, ’b) mapping

finite mappings

’a ⇒ ’b option

Fig. 3. Maps implemented by red-black trees

present in the type of h, but which still uses maps inside its body, you no longer
need to lift h to some h′, but you still have to prove a code equation for h itself
that uses mappings internally. This is done again by transfer.

4.2 Using Lifting/Transfer

We can again use the Lifting and Transfer packages to automate the lifting.
First, (’a, ’b) mapping is defined as a copy of ’a ⇒ ’b option and all primitive
operations on maps are lifted:

typedef (’a, ’b) mapping = UNIV :: (’a ⇒ ’b option) set ..
setup lifting(no code) type definition mapping

lift definition empty :: (’a, ’b) mapping is (λ . None) .
lift definition lookup :: (’a, ’b) mapping ⇒ ’a ⇒ ’b option is λm k. m k .
lift definition update :: ’a ⇒ ’b ⇒ (’a, ’b) mapping ⇒ (’a, ’b) mapping

is λk v m. m(k 
→ v) .

We showed only 3 such operations here but in reality there are more of them.
Notice that we do not have to prove anything in the lift definition command
because the formal invariant preservation theorem is proved automatically if we
work with type copies.

Now let us assume we used maps in our formalization to implement a special
data type that behaves like a multiset and the multiplicity of elements is limited.
Now we can implement an insert for this data structure that ensures that if the
limit is reached, the map is not changed.

definition insert lim :: (’a ⇒ nat option) ⇒ ’a ⇒ nat ⇒ ’a ⇒ nat option
where insert lim m k lim = (case m k of

Some n ⇒ if n < lim then m(k 
→ n + 1) else m
| None ⇒ m(k 
→ 1))
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We use lift definition to define a copy of insert lim that operates on the code
generation type (’a, nat) mapping.

lift definition insert lim′ :: (’a, nat) mapping ⇒ ’a ⇒ nat ⇒ (’a, nat) mapping
is insert lim .

Function insert lim′ is defined in terms of the original function insert lim with
the help of the morphisms between maps and mappings. In contrast to the
situation in §3, we cannot use this definition as a code equation because it goes
in the wrong direction: it reduces a computation on mappings to maps. The
desired code equation for insert lim′ is proved by transfer from the definition of
the original function.

lemma [code]: insert lim′ m k lim = (case Mapping.lookup m k of
Some n ⇒ if n < lim then Mapping.update k (n + 1) m else m
| None ⇒ Mapping.update k 1 m)

by transfer (fact insert lim def)

It is inconvenient that one has to write down the lifted code equation even if the
proof is trivial thanks to Lifting/Transfer. In principle we can use the Transfer
package to transfer goals in the other direction, i.e., from the concrete level to the
abstract level and thus we would not have to write down the lifted code equation
at all. But there is the problem that if we go in this direction, it is not clear which
parts of a term should really be transferred. The transfer method can eagerly
transfer all terms from the ’a ⇒ ’b option to the (’a, ’b) mapping level according
to the transfer rules. But maybe the user would want some subterms to remain
maps. This would require some mechanism that allows users to annotate a term
and say which parts should not be transferred. This is work in progress and
we intend to profit from the heuristics developed by Lammich [12]. Transferring
from (’a, ’b) mapping to ’a ⇒ ’b option instead is unambiguous: all occurrences
of mapping are replaced.

5 Applications

The following examples are the most important applications of data refinement
in the Isabelle distribution.

Sets are implemented by lists by default. There is also an efficient implemen-
tation by red-black trees (in Library/RBT_Set.thy). In a recent application [19]
a decision algorithm for MSO formulas was unusable with the default implemen-
tation of sets, but when theory RBT_Set.thy was loaded (no change of the client
code is necessary!), it allowed us to decide small MSO formulas.

Mappings were described in §4. The distribution provides two implementa-
tions: red-black trees (as in §4) and association lists (’a × ’b) list.

Integers (type int) are defined as a total quotient of pairs of natural numbers
nat × nat by the Lifting and Transfer packages. Two pairs of natural numbers
(x, y) and (u, v) represent the same integer if x + v = u + y. We do not use this
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definition for execution of integers because of efficiency reasons but we execute
them by binary numerals num defined as a datatype:

datatype num = One | Bit0 num | Bit1 num

Operations on num are just usual binary arithmetic. Then, all integers are in-
terpreted as binary numerals by employing three pseudo-constructors 0 :: int,
Pos :: num ⇒ int and Neg :: num ⇒ int. The last step is to implement common
integer operations by pattern-matching on these three pseudo-constructors and
using corresponding operations on num.

Rationals (type rat) are defined as a partial quotient of pairs of integers
int × int, again with the help of Lifting and Transfer. The quotient is partial
because we do not include pairs ( ,0) with a zero denominator. This is a logical
definition of rational numbers used for formalizations but because the quotient
is partial, we cannot use it directly for execution. Instead we interpret type
rat as a subtype of int × int based on an observation that each rational num-
ber can be represented by a pair of co-prime integers with a non-zero denom-
inator. Given the pseudo-constructor Frct :: int × int ⇒ rat, the rep function
quotient of :: rat ⇒ int × int is defined as follows

quotient of r = (THE (n, d). r = Frct (n, d) ∧ d > 0 ∧ coprime n d)

and allows us to use the invariant mechanism described in §3 and execute rational
numbers.

Reals (type real) are executed by rationals using the pseudo-constructor
Ratreal :: rat ⇒ real and code equations for +, −, ∗, /, but not much more be-
cause only the rational reals are representable in this manner. But it is still
useful. For example, it enables Quickcheck to find rational counterexamples to
conjectures involving polynomials.

Basic arithmetic on complex numbers is executable without data refinement.
Outside the Isabelle distribution, data refinement has found a number of

applications, too. For example, five entries in the Archive of Formal Proofs
http://afp.sf.org define their own data abstractions, some of which are also
discussed in the literature [14].

6 Related Work

Data refinement is a perennial topic that was first considered by Hoare more
than 40 years ago [7], who already introduced abstraction functions and invari-
ants. This principle of data refinement became an integral part of the model
oriented specification language VDM [9] (and was later generalized to nonde-
terministic operations [15,6]). In the first-order context of universal algebra it
was shown that there are always fully abstract models such that any concrete
implementation can be shown correct with a homomorphism [16].

The infrastructure presented in this paper has been available in Isabelle for a
few years but has never been published properly: [5] merely shows an example
(similar to §2); the core of the present paper, the treatment of invariants as in

http://afp.sf.org
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§3, was not available at that time. Nevertheless the infrastructure has already
been used in many places (see §5). Based on this infrastructure, Lochbihler [13]
has recently overcome some limitations of our approach (e.g., see the end of §2).

Lammich [12] has implemented a new framework for data refinement that has
some similarity with §4: you do not obtain code for f but for some f ′ that is in a
certain relationship to f . As a result he can work with a more general notion of
refinement supporting (for example) nondeterministic operations and multiple
implementations of the same type. Of course he also faces the complications
explained in §4.1. A difference is that his system proves invariance preservation
for derived functions as an explicit theorem whereas for us the type checker
does the work. In a nutshell, his is a general framework for heavy duty data
refinement, ours is a lightweight infrastructure for completely transparent but
more limited data refinement.

ACL2 supports data refinement, too. In the Mu-calculus case study [11] Mano-
lios shows how to implement sets by lists (using a congruence on lists) whereas
Greve et al. [4] explain how to deal with invariants. The details are rather differ-
ent from our work because ACL2 is untyped. In Coq [1], parametrized modules
support a form of data refinement [3]: perform your development inside the con-
text of a specification of finite sets (or whatever abstract type you have), and
later instantiate the module with some implementation of finite sets that has
been proved to satisfy the finite set axioms. The drawback is that you do not
really work with the actual abstract type (e.g., sets), but some axiomatization
of it, which may not have the same nice syntax and proof support.

7 Conclusion

We have presented Isabelle/HOL’s infrastructure for a lightweight approach to
data refinement. Its distinctive feature is the tight integration with the code
generator and hence also any tool that builds on it. The key principle is that when
you want to execute function f , you really execute f , which in turn calls a more
efficient implementation f ′ that was proved equivalent to f . As a result, data
refinement is completely transparent to the user: just load a specific refinement
theory and the code generator does the rest. This completely automatic approach
assumes that refinement happens on a per type constructor basis. To remove
this assumption we presented a more general approach that sacrifices some of
the above advantages. It relies strongly on two packages for lifting definitions
and theorems from one type to another automatically.
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Abstract. In Isabelle/HOL, we develop an approach to efficiently im-
plement container types such as sets and maps in generated code. Thanks
to type classes and refinement during code generation, our light-weight
framework is flexible, extensible, and easy to use. To support arbitrary
nesting of containers, we devise an efficient linear order on sets that can
even compare complements and non-complements. Our evaluation shows
that it is both efficient and usable.

1 Introduction

Recently, executable implementations have been generated from increasingly
large developments in theorem provers. Early works [3,8,16] implemented con-
tainers inefficiently, in particular as lists and closures, or burdened the formalisa-
tion with complex data structure details. Today, refinement approaches [5,6,9,10]
enable the verification to operate on abstract types like sets and functions – for
code generation, the refinement replaces them with efficient implementations.
For use in large-scale projects, they should meet four requirements:

ease of use. It requires little effort to apply the refinement to an application.
flexibility. Applications themselves can choose which implementations to use

for which container, and can easily switch between them; multiple imple-
mentations for the same container type are supported simultaneously.

extensibility. When a user adds another implementation or a new type of
stored data, he need not touch the existing parts. This is crucial for modu-
larisation: Libraries can be included unchanged and extended incrementally.

nesting. Containers can be nested arbitrarily, e.g., amap from sets to sets of sets.

For the proof assistant Isabelle/HOL and its code generator [7], the existing ap-
proaches differ in where the refinement happens. On the one hand, the Isabelle
Collections Framework (ICF) [9] explicitly models refinement inside the logic:
it defines a uniform interface to various verified data structures. It meets the
above criteria except for ease of use and nesting. First, users must manually
introduce copies for all definitions such that they use the interface and prove
refinement subject to invariants of the data structure. In practice, refinement
can make up a substantial part of the development [15]. Second, Isabelle’s proof
automation assumes unique representation of objects, but ICF-style refinement
introduces multiple ones, e.g., both lists [a, b] and [b, a] implement the same set
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{ a, b }. So, at present, the ICF does not support a set of sets implemented as
unordered lists or red-black trees (RBT) – although demand for nested sets has
been expressed on the Isabelle mailing list, e.g., posts 4D779F63.9050506@irit.fr
and 89A2F83C-2AE8-44B7-B1ED-5EDD4E160C1F@loria.fr.

On the other hand, Haftmann et al. [6] advocate for refinement inside the
code generator, see §1.1 for an introduction. This is easy to use, as the user
need not bother about the details of implementations. In particular, represen-
tations remain unique in the logic, so nesting is possible. Yet, the current state
in Isabelle2013 is far from fully exploiting the available features. For example, it
supports only one implementation for each type, i.e., all sets are implemented
either as lists or as RBTs. In a case study on extracting a Java interpreter [15],
the elements of some sets could not be ordered linearly (as required for RBTs),
so all sets were inefficiently implemented as lists.

Contributions. We present an easy to use approach (called LC for light-weight
containers) based on Haftmann’s [6]. It supports multiple implementations and
is flexibile, extensible, and nestable (§2). We devise a configurable scheme to
automatically choose a suitable implementation based on the type of what is to
be stored (§2.3). To avoid type class restrictions, we adapt a Haskell approach
with type constructor classes [17] to Isabelle’s single-parameter type classes. For
the presentation, we focus on sets implemented as closures, lists, distinct lists, or
RBTs. As our development covers all set operations from Isabelle, it can replace
the default setup for code generation in applications without much ado. We have
also covered maps, i.e., support the two fundamental container types.

Second, to support arbitrary nesting of sets, we devise an efficient linear order
on sets (§3). It requires only linearly many comparisions between the elements
and supports comparisons even between complements and non-complements. As
Isabelle’s automated disprover quickcheck [2] relies on code generation, it is
important to support complements, too.

Third, we evaluate our approach in two micro-benchmarks and a case study
(§4). The benchmarks show that our approach generates code as efficient as the
ICF and that the linear order on sets is also efficient. The case study with the
Java interpreter shows that our approach integrates seamlessly with the existing
Isabelle setup and is therefore as easy to use; switching from Isabelle’s default
setup to ours did not require any adaptations. Moreover, multiple implementa-
tions for sets and maps improve the execution times.

Moreover, our way of combining the powerful features of the code generator
is novel; we describe the ideas in §5. We would like to stress that we have proven
all lemmas and refinements in this paper in Isabelle; LC is available online [14].

1.1 Background: The Code Generator Framework and Refinement

Isabelle’s code generator [6,7] turns a set of equational theorems into a functional
program with the same equational rewrite system. The translation guarantees
partial correctness by construction, as it builds on equational logic.

Program refinement separates code generation issues from the rest of the
formalisation in Isabelle. As any (executable) equational theorem suffices for

http://mid.gmane.org/4D779F63.9050506@irit.fr
http://mid.gmane.org/89A2F83C-2AE8-44B7-B1ED-5EDD4E160C1F@loria.fr
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code generation, the user may locally derive new (code) equations to use upon
code generation. Hence, existing definitions and proofs remain unaffected.

For data refinement, the user replaces constructors of a datatype by other
constants and derives equations that pattern-match on these new (pseudo-)con-
structors. Neither need the new constructors be injective and pairwise disjoint,
nor exhaust the type. Again, this is local as it affects only code generation, but
not the logical properties of the refined type. Thus, one cannot exploit the type’s
new structure inside the logic.

For example, Isabelle’s default code generator setup represents sets (type
α set) with the two pseudo-constructors set and coset of type α list⇒ α set,
which represent the (complement of the) finite set of elements in the given list.
Note that they are neither injective (set [1, 2] = set [2, 1], but [1, 2] �= [2, 1]), nor
do they exhaust the type α set if α is infinite (e.g., {1, 3, 5, . . .}), nor are they
disjoint if α is finite (set [True] = coset [False] for booleans). Nevertheless, the
following equations implement the membership test ∈ on type α set:

(x ∈ set xs) = (memb xs x) (x ∈ coset xs) = (¬memb xs x) (1)

where memb xs x checks if x equals one of xs’s elements by traversing xs – the
type class equal provides the implementation of these equality tests.

This is an example of sort refinement : The equality test in memb’s code
equations requires that α is of sort equal, but memb’s specification in the logic
as λxs x. x ∈ set xs does not. The code generator collects, propagates, and checks
all sort constraints upon code generation. Thus, it propagates α :: equal via (1) to
∈, too. Sorts intersect: Suppose that another pseudo-constructor tree represents
finite sets as binary search trees and we use (x ∈ tree t) = (lookup t x �= None),
where lookup obtains the linear order on α from the type class linorder. Then,
the code generator enforces that any invocation of ∈ operates on sets whose
element type instantiates both equal and linorder.

1.2 Related Work

The ICF approach [9] considers refinement inside the logic superior to refinement
in the code generator, as the implementation can exploit the refined structure
and, e.g., resolve non-determinism from underspecification such as the order of
iteration over a set. However, the ICF requires more adaptations; some automa-
tion has been developed for monadic programs [10], but this still requires adapt-
ing the application to the refinement calculus. We argue that both approaches
complement each other, and recommend to use the ICF only when necessary, and
to stick with the simpler refinement in the code generator whenever possible. For
example, in [15], we used Haftmann’s approach when sets and maps are accessed
only through membership tests and lookup operations, respectively, and the ICF
to resolve non-determinism, e.g., to pick an arbitrary element from a set.

Peyton Jones [17] and Chen et al. [4] show that Haskell’s single-parameter type
classes do not suffice for bulk-type polymorphism (flexibility and extensibility
in our terminology). Our approach nevertheless succeeds, because refinement is
incremental and we do not have to extend the generated code itself.
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Lescuyer’s Containers library [11] for Coq efficiently implements finite sets
and maps with type classes, but he cannot represent set complements. His linear
order on sets is based on the lexicographic ordering of the sorted list of elements.

2 Multiple Implementations for Containers

Sort intersection as described in §1.1 creates problems in large-scale applications
that use the same HOL container type such as α set for different α, as some el-
ement types α fail to meet all sort constraints. In previous work [15], e.g., some
sets contain strings (a sequence of characters) and others functions. Unfortu-
nately, we could not make strings an instance of linorder, because the order on
lists had already been fixed to the partial prefix order elsewhere, and functions
lack computable equality for the type class equal. Thus, we had to stick with
inefficient lists which allow duplicates, see §4.3 for details.

In this section, we introduce new type classes which any type can be made
an instance of and show how to support multiple implementations (§2.1). Thus,
sort intersection is no longer a show-stopper. Then, we demonstrate extensibility
by adding new data and a new implementation (§2.2). To improve usability,
we devise a configurable scheme for automatically choosing an implementation
(§2.3) and show how to deal with binary operations (§2.4).

2.1 New Type Classes and Multiple Implementations

To avoid instantiation obstacles, Peyton Jones [17, §3] introduces new type
classes whose parameters already tell whether the operation is supported. Here,
we borrow his idea and adapt it to the theorem prover setting. We introduce a
new type class ceq for equality on container elements (to make the overloading
explicit, we write the type parameter as a superscript to type class parameters):

class ceq = fixes ceqα :: (α⇒ α⇒ bool) option
assumes ceqα = �eq� =⇒ eq = (op =)

The declared equality operator ceqα tells whether elements of type α may be
tested for equality at all. If so (ceqα = �eq� for some eq; � � denotes definedness),
the assumption enforces that eq in fact implements HOL equality op = (we
forbid other congruence relations, as Isabelle’s proof automation cannot handle
them well). Otherwise (ceqα = None), ceq does not impose any constraints on
the implementation and – as all proofs rely only on the specified assumptions
– neither must any usage of ceqα. Thus, every type can be made an instance
of ceq. For example, the instantiations for the function space constructor fun
(written infix as ⇒) and natural numbers nat are as follows:

instantiation fun :: (type, type) ceq begin instantiation nat :: ceq begin
definition ceqα⇒β = None definition ceqnat = �op = �
instance 〈〈proof〉〉 end instance 〈〈proof〉〉 end
Unfortunately, we cannot follow Peyton Jones’ development any further: he in-
troduces a type constructor class for collection type constructors that specifies
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the operations, but Isabelle does not support type constructor classes. Instead,
we use data refinement. For the moment, we only consider three implementa-
tions: lists with and without duplicates and characteristic functions; in §2.2, we
add efficient RBTs. To that end, we define four pseudo-constructors for α set
that replace set and coset for the code generator:

char. function ChF :: (α⇒ bool)⇒ α set ChF P = { x. P x }
monad style MSet :: α list⇒ α set MSet xs = set xs
distinct list DSet :: α dlist⇒ α set DSet ds = { x. dmemb ds x }
complement Compl :: α set⇒ α set Compl A = A

For α of sort ceq, the type α dlist consists of all lists from α list whose elements
are pairwise distinct w.r.t. the equality operator from ceq; if ceqα is undefined,
α dlist consists of all lists. dmemb ds x checks if x occurs in ds using ceq’s equality
operator. We model the complement of a set A (notation A) as Compl A.

Monad-style sets (MSet) can be used to model non-determinism. They allow
duplicates and avoid equality checks whenever possible, e.g., for insert, ∪, and
bind. Still, we do implement operations that require equality, but they may fail
at run time when ceqα is None. Membership, e.g., uses the following equation:

(x ∈ MSet xs) = (case ceqα of None⇒ error (λ . x ∈MSet xs)
| �eq� ⇒ memb’ eq xs x)

(2)

where error logically returns its argument applied to the unit value (), but it
raises an exception in the generated code at run time; the unit closure ensures
termination in call-by-value languages like ML. As memb’ takes the equality
operation as a parameter, we do not depend on the type class equal. Note that
membership ∈ cannot be total, as we deliberately do not require an implemen-
tation for equality. Like in the common case of missing patterns in functional
programs, the user himself must ensure that ceqα is defined for the element type
α whenever he calls ∈ on MSet. The other pseudo-constructors do not need such
a run time check, as we have defined them logically in terms of membership:

(x∈ChF P ) = P x (x∈DSet ds) = dmemb ds x (x∈Compl A) = (x �∈A)

2.2 Extensibility

Extensibility expresses that one may use containers with new types of elements
and add new implementations for a container without editing the existing code
base. This ensures that users can freely extend a container framework. In this
section, we demonstrate that our light-weight approach achieves this.

To use a new type of elements, one merely has to instantiate the new type
classes, i.e., ceq in the example. As the operations can default to None, this is
always possible. For example, arithmetic expressions:

datatype expr = Val nat | Var string | Plus expr expr | Times expr expr
instantiation expr :: ceq begin
definition ceqexpr = �op = �
instance 〈〈proof〉〉 end

Note that the datatype declaration al-
ready generates code equations for op =.
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Next, we show how to add an implementation of sets backed by RBTs. This
requires a linear order on container elements, i.e., a new type class corder (where
class.linorder leq lt denotes that leq is a linear order and lt its strict version):

class corder = fixes corderα :: ((α⇒ α⇒ bool)× (α⇒ α⇒ bool)) option
assumes corderα = �(leq, lt)� =⇒ class.linorder leq lt

Our RBT implementation builds on the verified RBT formalisation in Isabelle’s
library, which is based on the linorder type class; we only have to adapt it to
corder. Analogous to α dlist, the type α srbt of RBT sets contains all RBTs
that are sorted according to corder, if corder is defined; otherwise, it contains
all binary trees irrespective of sorting and balancing. Then, we define the new
pseudo-constructor RSet rs = { x. rmemb rs x } where rmemb denotes the
lookup operation on α srbt, which uses corder for comparing elements. To finish,
we declareRSet as another pseudo-constructor for α set and prove code equations
for all set operations. Again, operations like insert are correctly implemented only
if corder implements some linear order; otherwise, they fail with an exception
during execution.

(x ∈ RSet rs) = rmemb rs x
insert x (RSet rs) = (case corderα of None⇒ error (λ . insert x (RSet rs))

| � � ⇒ RSet (rinsert x rs))
(3)

Sort refinement requires that from now on all element types inhabit corder, too,
as α has sort corder in (3). Hence, we instantiate corder for the element types.
Since it is very similar to the linorder type class, the instantiations are canonical
and full Isabelle support is available, e.g., Thiemann’s order generator for data
types [19]. For example, the proofs in the following are automatic.

derive linorder expr
instantiation nat :: corder begin instantiation expr :: corder begin
definition ceqnat = �(op ≤, op <)� definition ceqexpr = �(op ≤, op <)�
instance 〈〈proof〉〉 end instance 〈〈proof〉〉 end

2.3 Automatically Choosing an Implementation

Recall from (2) and (3) that the generated code raises a run-time exception in
case of an unsupported operation. One can analyse the code equations to that
end before code generation, but we have not yet implemented such an analysis.
Instead, we let the generated code choose the implementation based on the oper-
ations the element type provides, e.g., use RSet only if corderα is defined. Then,
we are sure that the necessary operations are available, i.e., the exception in (3)
cannot occur. However, exceptions can still occur when a set operation has no
implementation at all. For a set of functions, e.g., ∈ will still fail in (2). This is a
design choice: We want to support α set for all α. If α does not permit to imple-
ment a set operation at all, it is the user’s fault to apply the operation to α set.
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Peyton Jones [17, §3.3] proposes a similar approach, but his is neither exten-
sible nor flexible. He avoids the implementability problem by requiring equality
for all element types, but this does not fit to how sets are used in Isabelle.

All sets originate from either a set comprehension ChF P or the empty set ∅.
We ignore the pseudo-constructor ChF, as the operations for ChF do not depend
on ceq or corder. For ∅, our code equations heuristically pick an implementation.
The following is a first, näıve attempt in the style of [17]:

∅ = (case corderα of � � ⇒ RSet rempty
| None⇒ case ceqα of � � ⇒ DSet dempty | None⇒ MSet [])

(4)

This equation uses RBTs if there is a linear order on the elements. Otherwise,
it tries distinct lists for equality and picks monad-style sets as last resort. This
way, RBTs are only used for element types that do provide a linear order corder.
Thus, the error in (3) cannot trigger. Nevertheless, we cannot eliminate the
check, as the user still can misuse RSet in his own equations. However, (4) offers
too little control over the choice and thus violates flexibility. For some types, it is
sensible to use distinct lists even if there is a linear order – for bool with just two
elements, e.g., the DSet implementation is four times faster than the RSet one.1

Instead, we let an overloaded operation choose the implementation:

class set-impl = fixes set-implα :: set-impl

The type set-impl (inhabited by only one value Set-IMPL) has a pseudo-con-
structor for each implementation: Set-ChF, Set-dlist, Set-RBT, Set-Monad, plus
Set-Auto for automatic selection like in (4). They are only pseudo-constructors
such that we can add more for new implementations later. Then, we implement
∅ via ∅ = sempty set-implα, where the function sempty, logically defined by
sempty Set-IMPL = ∅, chooses the desired implementation:

sempty Set-ChF = ChF (λ . False) sempty Set-dlist = DSet dempty
sempty Set-RBT = RSet rempty sempty Set-Monad = MSet []
sempty Set-Auto = (case corderα of � � ⇒ RSet rempty | . . .)
Note that we could have overloaded ∅ directly without the detour set-impl and
sempty. Yet, as Isabelle allows overloading only for constants with exactly one
type parameter, this does not extend to other container types like maps with
multiple type parameters. Our approach also works such container types.

Below, we give three example instantiations for set-impl. As motivated above,
bool chooses distinct lists although corderbool is defined. α option (the type of
� � and None) inherits the choice from its type argument, as it adds only one
value. In contrast, a set of sets discards any preference from the element type
and falls back on automatic selection. This seems sensible, as a set of sets can
become much larger than a set of the elements.

set-implbool=Set-dlist set-implα option=set-implα set-implα set=Set-Auto

1 Build, e.g., the set {True,False } and check membership for both elements. Under
PolyML, 1M (10M) iterations take .05 s (.47 s) for DSet and .21 s (2.05 s) for RSet.
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Moreover, users can later change the implementations for a type α, if they want
to: as all pseudo-constructors are logically equivalent, proving a different code
equation for set-implα is straightforward: As all pseudo-constructors are logically
equal to Set-IMPL, we can, e.g., prove set-implα option = Set-ChF and use this
code equation to choose characteristic functions as default for α option.

2.4 Binary Operations

Binary operations like ∩ and ∪ require pattern-matching on both sets, i.e., the
number of possible combinations grows quadratically with the number of imple-
mentations. In the ICF [9], a Ruby script automatically generates implementa-
tions for all combinations, all of which use a generic implementation parametrised
by iterators and basic operations. More efficient implementations for special com-
binations (like intersecting two RSets [1]) are not supported.

With our approach, sequential pattern matching in the target language offers
a better solution. First, we derive general equations that pattern-match only on
one constructor and compute the result generically. Second, we show equations
for special cases with more efficient implementations, which take precedence
over the generic ones as pattern matching is sequential. This keeps the number
of equations linear in the number of implementations plus the optimised cases.
Moreover, the general equations automatically cover future set implementations.

For intersection and RSet, e.g., we obtain the following, where rfilter P rs
retains only rs’s elements that satisfy the predicate P and rint is the fast inter-
section algorithm on α srbt.

RSet rs1 ∩ RSet rs2 = (case corderαof None ⇒ . . . | � � ⇒ RSet (rint rs1 rs2))

RSet rs ∩ A = (case corderαof None⇒ . . . | � � ⇒ RSet (rfilter (λx. x∈A) rs))
A ∩ RSet rs = (case corderαof None⇒ . . . | � � ⇒ RSet (rfilter (λx. x∈A) rs))
When we prove these equations, we cannot exploit sequentiality of pattern
matching, i.e., we implicitly prove that all right-hand sides are equal when the
left-hand sides unify. This is only possible as refinement happens in the code gen-
erator, i.e., our pseudo-constructors abstract from the concrete representation.
As the ICF models the refinement in the logic, it cannot prove such equalities.

3 Executable Linear Order on Sets

Recall that our approach abstracts from different implementations in the logic.
Thus, it directly supports arbitrary nesting of containers, provided that we make
the container type an instance of the type classes – in our example, ceq and corder
for α set. Not to lose on efficiency, we now devise a linear order � on sets and
implement corderα set = �(�,�)�. This is one example where the separate type
class corder is crucial: As Isabelle fixes the canonical order ≤ on α set to the
non-linear subset order ⊆, we cannot make α set an instance of linorder.

By the axiom of choice, there is a linear order on every set, but we cannot
implement this order, so it is useless here. Fortunately, it suffices if we can decide
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the ordering on representable sets. Given a linear order ≤ on the elements, we
first define a linear order on the finite and cofinite sets. Then, we extend it to a
linear order on all sets by the axiom of choice (§3.1), as corder requires a linear
order on all elements. Our equations for code generation (§3.2) pattern-match
on the pseudo-constructors which represent only finite or cofinite sets. If the
(co)finite sets are given as sorted lists of their (non-)elements, � requires at most
linearly (in the size of the lists) many ≤-comparisons – except for comparing a
finite and a cofinite set when α is finite, because a set may be both finite and
cofinite. For the latter case, we show that further operations on α are necessary,
and implement them for α set to ensure nestability and extensibility (§3.3).

Moreover, our order � satisfies the following properties for all sets A, A′ and
finite sets F , F ′, which facilitate proving the code equations in §3.2:
(P1) ∅ � A and A � UNIV
(P2) If F ⊆ F ′, then F � F ′

(P3) A � A′ iff A′ � A
(P4) If α is infinite, then F � F ′

Properties P1 and P2 describe the similarity with the subset order: the empty
set ∅ and the full set UNIV of all elements are the least and greatest sets, resp.,
and � extends ⊆ on finite sets. Hence, when iterating over a set of finite sets in
ascending order, one visits subsets before supersets. P3 allows to drop the Compl
constructor on both sides if the relation is reversed, i.e., complement is anti-mo-
notone. P4 expresses that finite sets are always less than cofinite sets, if α’s uni-
verse is infinite. If α is finite, F � F ′ is inconsistent with P2 (∅ ⊆ { a } � UNIV =
∅, i.e., { a } = ∅, a contradiction), because then sets are both finite and cofinite.

3.1 Definition

We construct our linear order � from two intermediate partial orders �1 and
�2, where each step extends the previous order.

First, we define that A �1 B holds whenever both A and B are finite and
B contains the mininum element of the symmetric difference of A and B. Intu-
itively, if A = set as and B = set bs with as and bs duplicate-free and ≤-sorted
in ascending order, A �1 B iff as precedes bs in the lexicographic list order w.r.t.
the converse ≥ of ≤ (Lem. 1). For a three-value type with order 0 < 1 < 2, e.g.,
�1 orders the sets as follows:

∅ �1 { 2 } �1 { 1 } �1 { 1, 2 } �1 { 0 } �1 { 0, 2 } �1 { 0, 1 } �1 { 0, 1, 2 } (5)

Taking the converse of ≤ is crucial for the above properties. In the example,
the lexicographic list order w.r.t. ≤ would give { 0, 1, 2 } �1 { 1 }, which violates
P1 and P2. Moreover, note the symmetry with complements in (5): the n-th set
from the left is the complement of the n-th set from the right.

For finite types like in (5), �1 completely determines �. So let us move on to
infinite types. Fix a set of sets C :: α set set with two properties: (i) If A :: α set
is finite, then A ∈ C. (ii) If α is infinite, then A ∈ C iff A �∈ C. Such a C exists:
If α is finite, take UNIV. Otherwise, consider the subset order restricted to sets
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of sets that satisfy (i) and the “only if” direction of (ii). For any chain in this
order, the union of the chain’s sets of sets is an upper bound. Thus, by Zorn’s
lemma, the order has a maximal element – and all maximal elements satisfy (i)
and (ii). For infinite α, the set C decides for each set A if � treats it like a finite
set (A ∈ C) or like a cofinite set (A �∈ C). If A is infinite, this decision does
not matter, as we do not care about infinite sets, but it ensures complement
symmetry P3.

Next, �2 extends �1 to a linear order on C such that ∅ is the least element.
Hence, ∅ �2 A even if A ∈ C is infinite. By the order extension principle, �2

exists. This suffices for our purpose, as we care only about finite sets, i.e., we
need not specify �2 completely for infinite A and B.

Finally, we mirror �2 at the boundary of C to obtain complement symmetry
P3. We define � as follows:

A � B = (if A ∈ C then A �2 B ∨B �∈ C else B �∈ C ∧B �2 A)

Property P4 holds as the cofinite sets, which are not in C, are greater than the
finite ones (which are members of C). Note that if α is finite, C = UNIV and
therefore, � is identical to �2 and �1.

3.2 Code Equations

Now, we derive code equations to implement � and � for finite and cofinite
sets. In the following, we assume that a (co)finite set is given as a sorted and
duplicate-free list of (the complement’s) elements. Thanks to the above prop-
erties, some combinations are straightforward: P3 reduces comparisons between
two cofinite sets to comparing their complements; and P4 already decides com-
parisons between one finite and one cofinite set if α is infinite. Thus, only two
cases are left: comparing two finite sets and – if α is finite – comparing a finite
and a cofinite set.

For the first case, we show that �1 is a kind of lexicographic ordering:

Lemma 1. Let A and B be non-empty, finite sets and let Min A and Min B
denote their respective minimum elements. Then, A �1 B iff Min A > Min B,
or Min A = Min B and A− {Min A } �1 B − {Min B }.
Corollary 1. Let xs and ys be sorted, duplicate-free lists. Then, set xs �1 set ys
iff lexord (>) xs ys, where lexord (>) is the lexicographic order on lists for the
element order >.

Thus, we can implement comparisons between finite sets efficiently as a lexico-
graphic order. If we store the sets in sorted order (like RBTs do), the number of
element comparisons is linear in the size of the sets.

Now, only comparisons between a finite and a cofinite set remain if α is finite.
Unfortunately, we cannot (computationally) decide such comparisons solely by
looking at the representations of finite and cofinite sets. This is not a fault of our
choice for �, but impossible for any linear order � implemented as a polymorphic
function of type α set⇒α set⇒bool. To see this, compare the sets { a } and ∅. If
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a is the only value that inhabits α, { a } = ∅ and therefore { a } �� ∅ and ∅ �� { a },
as� is irreflexive. Otherwise, { a } �= ∅ and thus { a } � ∅ or ∅ � { a } by linearity.
Thus, � must know whether α contains further values, but it cannot compute
that solely from its arguments { a } and ∅. Similar examples show that � has to
know if there are further values above, below, or between any two values.

Therefore, we introduce another overloaded operation proper interval piα of
type α option⇒α option⇒bool that checks whether an open interval is proper,
i.e., non-empty. Intervals are given by their bounds, None represents unbounded-
ness. Hence, all implementations of piα satisfy the following specification (note
that (∃z. True) = True as all HOL types are inhabited):

piα None None = True piα None �y� = (∃z. z < y)
piα �x� None = (∃z. x < z) piα �x� �y� = (∃z. x < z ∧ z < y)

(6)

Now, we present the case of comparing a complement with a non-complement.
To decide A �1 B, where A = set xs and B = set ys are given by sorted and
duplicate-free lists, we use the following function cle of type α option⇒α list⇒
α list⇒ bool – a similar function lec (not shown) deals with other case A �1 B:

cle b [] [] = ¬piα b None
cle b (x · xs) [] = ¬piα b �x� ∧ cle �x� xs []
cle b [] (y · ys) = ¬piα b �y� ∧ cle �y� [] ys
cle b (x · xs) (y · ys) = (if x < y then ¬piα b �x� ∧ cle �x� xs (y · ys)

else if y < x then ¬piα b �y� ∧ cle �y� (x · xs) ys
else ¬piα b �x�)

(7)

The additional parameter b acts as a lower bound: cle b interprets the comple-
ment set xs with respect to the set of values greater than b (notation b↑) instead
of UNIV. As it further assumes set xs ∪ set ys ⊆ b↑, it ignores all values not
in b↑. For example, cle �0� treats the type from (5) as if it were 1 < 2, i.e., it
considers only the left half of (5).

Lemma 2. Let α be finite, and xs and ys be sorted and duplicate-free, and
set xs ∪ set ys ⊆ b↑. Then, set xs ∩ b↑ � set ys iff cle b xs ys.

Corollary 2. If α is finite, xs and ys are sorted and duplicate-free, then

set xs � set ys = cle None xs ys.

Let us see how cle works. The first two cases correspond to A ∩ b↑ � ∅ for
A = set [] or A = set (x · xs). By P1, this holds iff A ∩ b↑ = ∅ – and the
two equations use piα to test if A exhausts b↑. The third case is symmetric:
b↑ � set (y · ys) holds iff b↑ ⊆ set (y · ys), i.e., set (y · ys) exhausts b↑. The last
case is the most interesting one. Suppose that x < y. Then, there must not be a
value between b and x; otherwise (piα b �x�), the minimum element of A ∩ b↑ is
lower than the minimum element y of B, so A ∩ b↑ �1 B by Lem. 1. Moreover,
neither y · ys nor the complement of x · xs contain x, as the lists are sorted
and duplicate-free. Thus, set (x · xs) ∩ b↑ = set xs ∩ �x�↑ and cle recurses. Now
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suppose that y < x. Then, there must not be a value between b and y; otherwise
Min (A ∩ b↑) < Min B and thus B �1 A ∩ b↑ by Lem. 1. As y < x and the
lists are sorted, y is the minimum element of both A ∩ b↑ and B. Thus, we can
remove y from both sets in the recursive call by raising b to �y� and dropping y
from B. This is correct by Lem. 1. Finally, if x = y, we have found an element
in which the sets differ. If ¬pi b �x�, then y ∈ B is the minimum element of
the symmetric difference between A ∩ b↑ and B, so B � A ∩ b↑. Otherwise, the
converse holds.

As can be seen from cle’s definition, every case requires at most two compar-
isons and one call to pi, and every recursive call consumes one list element. Thus,
deciding A � B is linear in the size of A and B if α is finite – for infinite α, this
takes constant time by P4. To decide whether α is infinite, we use another type
class to overload FINα with the meaning of finite UNIV. Finite types implement
FINα as True, infinite ones as False.

In summary, (8) below implements the total order on sets, where . . . represents
the usual test for corderα being defined and that A and B are finite (except for
the first equation). The function s2l A returns A’s elements as a sorted (w.r.t.
corderα) and duplicate-free list – for A = RSet rs, s2l rs traverses rs in-order; for
DSet (MSet), s2l sorts the elements (and removes duplicates); it fails with an ex-
ception for ChF and Compl as expected. The element type αmust instantiate the
type classes corder, pi and FIN. Note how (8) exploits that pattern matching is
sequential (cf. §2.4): the last equation, e.g., executes only if A and B are no com-
plements. Thus, sequentiality saves us from manually implementing all 28 cases.

Compl A � Compl B = . . . B � A
Compl A � B = . . . FINα ∧ cle None (s2l A) (s2l B)

A � Compl B = . . . FINα −→ lec None (s2l A) (s2l B)
A � B = . . . lexord (>) (s2l A) (s2l B)

(8)

3.3 Nesting and Extensibility

Still, we cannot use RBTs for sets of sets of sets, as we have not yet instantiated
pi for sets. To implement piα set, we must also know α’s cardinality – to that end,
we use the overloaded constant card-UNIVα from [12]. To see why cardinality
matters, consider the sets ∅ and UNIV = ∅. Now, piα set �∅� �∅� holds iff there
is a set A with ∅ � A � UNIV iff more than one value inhabits α. Yet, piα does
not suffice to decide this: As we represent UNIV as ∅, we do not get hold of any
value of α, which we need for calling piα.

We now implement piα set. The border cases are easy thanks to P1:

piα set None �B� = (B �= ∅) piα set �A� None = (A �= UNIV)

However, we can compute piα set �A� �B� only if A and B are (co)finite, i.e.,
we need to pattern-match on the pseudo-constructors like in (8). Note that
piα set �Compl A� �Compl B� = piα set �B� �A� holds by P3. For the other
cases, we define auxiliary functions PI, PIc, and cPI. For example,

piα set �A� �Compl B� = . . . PIc None 0 (s2l A) (s2l B) (9)
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where PIc satisfies (10) if α is finite, xs and ys are sorted and duplicate-free
lists, and set xs∪ set ys ⊆ b↑; ||A|| denotes the number of elements of the set A.

PIc b ||UNIV− b↑|| xs ys = (∃A ⊆ b↑. set xs �1 A ∧A �1 set ys ∩ b↑) (10)

Like cle, the three functions traverse the list representations and call piα at most
linearly many times. Their definitions are technical, but provide no new insights.

At last, we can order arbitrary nestings of sets and thus implement them as
RBTs efficiently. Yet, the specification (6) for piα violates our rule of making
sure that every type can be instantiated: They depend on the default linear order
<, which does not work for α set. Therefore, we introduce another overloaded
constant cpiα – its specification is the same as (6) except that corder replaces <
and corderα �= None and FINα guard the equations. Hence, we have to implement
cpiα sensibly only for finite types α, for which we have provided an order, too.
As most types are infinite, the restriction to finite types saves a lot of work.

4 Evaluation

To evaluate the efficiency and usability of our approach, we have performed two
micro-benchmarks (§4.1 and §4.2) and integrated it with the Java interpreter
(§4.3). All run-time tests ran on a Pentium DualCore E5300 2.6GHz with 2GB
of RAM using Ubuntu GNU/Linux 9.10 and PolyML 5.4.1 or mlton 20100608;
the figures are the average of four runs.

In preliminary tests, we noticed that Isabelle’s default implementation based
on lists sometimes outperformed LC with RBTs, even for large sets. We found
that intermediate lists caused the slowdown. When we represent the sets as
RBTs, s2l in code equations such as (8) and (9) first converts them into lists.
While this simplifies the definitions and proofs, constructing the whole inter-
mediate list is costly at run time - especially as the first few elements often
suffice. Thus, we have manually eliminated such intermediate lists using the
destroy/unfoldr pattern from shortcut fusion [18] before performing the bench-
marks; we have proved the transformation correct in Isabelle.

4.1 Comparison with Other Approaches

The first micro-benchmark compares our approach with Isabelle’s default imple-
mentation for sets, the ICF [9], and a conventional, RBT-based implementation.
We start with the empty set, insert n numbers, then remove n numbers, then
test n numbers for membership, and iterate over the set counting those elements
less than n. All numbers are chosen randomly between 0 and 2n and imple-
mented with ML’s arbitrary precision integers. As discussed in [9], this bench-
mark measures the efficiency of the most common operations insertion, removal,
membership and iteration, which all of the above implementations support.

Table 1 shows the run times under mlton for different n. As the first three
rows all use RBTs, we can estimate the overhead that our approach (LC) and
ICF add to a direct implementation with RBTs. LC’s overhead is less than 1%,
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Table 1. mlton run times in seconds for the comparison benchmark; the last column
bounds standard deviation (in percent of the run times) over all n

Impl. / n 10k 20k 30k 40k 50k 100k 500k 1M 1.5M 2M std. dev.

LC .065 .138 .213 .295 .375 .825 5.17 10.8 17.0 23.3 < 2.0%
ICF .066 .139 .217 .300 .387 .839 5.17 11.8 17.4 23.9 < 1.4%
RBT .065 .135 .211 .292 .376 .818 5.59 10.8 17.0 23.3 < 2.3%
default 1.50 5.72 3.08 22.8 36.2 <10 %

the ICF’s varies between 2% and 10%. The last row refers to Isabelle’s (much
slower) default setup with lists, which has quadratic complexity. Under PolyML,
the RBT-based implementations take more than twice as long, and the average
overheads are 2.5% for both ICF and LC. In conclusion, our approach is as
efficient as the ICF and would be a good replacement for Isabelle’s default setup.

4.2 Nested Sets

This benchmark exercises the linear order on sets from §3. It starts with ∅ and in-
serts n sets to obtain a set A of sets. We generate each member set by inserting a
random number of random numbers and randomly taking the complement; ran-
dom numbers are chosen between 0 and m. Then, we check whether A contains
another 100 sets generated the same way, and compute the size of the union of all
sets in A. We now use unsigned 32-bit words from Isabelle’s word library for the
numbers; so we exercise the pi implementation, too, as the word type is finite.
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Fig. 1. mlton run times for the benchmark with nested sets

Figure 1 shows the mlton run times for Isabelle’s default setup and ours
– like in §4.1, PolyML runs take twice as long. In the log-log plot on the left,

m is fixed and n varies. From n = 1000 on, the plots are linear with slope 2 and
1, respectively. As the slope denotes the exponent of the polynomial complexity,
this confirms that Isabelle’s setup is quadratic and ours almost linear. While
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default is almost as fast as LC for small sets, LC is much faster for larger n and
m. For n = 25000 and m = 100, e.g., it is 5.6min vs. 35.6min.

On the right, we now vary the size m of the inner sets for fixed numbers n
of sets, but show only our approach LC. As the scales are linear, the plots fit a
m logm curve. This shows that our linear order on α set is indeed efficient.

4.3 Case Study: Java Interpreter

In [15], we generated an interpreter for multithreaded Java from JinjaThreads, a
large (86kLoC) Isabelle formalisation. Already for small programs, we achieved
performance gains of 13% by pre-computing the lookup functions that extract
information from the program declaration. We cached the information in (asso-
ciative) lists using data refinement from α set and (α, β) mapping, Isabelle’s type
for finite executable maps. Type class restrictions disallowed more efficient im-
plementations like RBTs, because the keys are (class) names, i.e., lists of chars,
and ordering for lists has already been fixed to the (partial) prefix order.

Switching to our new approach was straightforward: we only had to import our
new Isabelle files and instantiate the new type classes ceq, corder, and set-impl
for the custom types as explained in §2. All existing definitions and proofs re-
mained untouched. All in all, it took less than two hours. This shows that our
approach is indeed easy to use.

Table 2. PolyML run times [s]
for the Java interpreter

WF SC VM

w/o 2.51 5.81 .086
lists .013 5.39 .053
LC .009 5.35 .106 (.053)

To assess the impact on run-time, we took
a Java program with 99 classes, converted it
to JinjaThreads input syntax using Java2Jinja
[13, §6.5], and ran the well-formedness checker
(WF), the source code interpreter (SC), and the
virtual machine (VM) on it. Table 2 shows the
timings; the first row gives the timing for the
original JinjaThreads versions without caching,
the second with list-based caching. LC denotes
our new approach: it gains 30% over the list-
based implementation for WF, which heavily exercises the lookup functions and
profits most from caching. As the interpreter calls the lookup functions less fre-
quently, the gain is much smaller (1%). Surprisingly at first, LC ruins the VM
performance – it is even slower than without caching. The bottleneck is the au-
tomatic selection of the set implementation. Internally, the VM uses sets also as
a non-determinism monad the type of whose elements is built from 84 type con-
structors and 3 type variables. Hence, the execution of each bytecode instruction
needs to query the available operations of all these constructors before it picks
a set implementation. As a remedy, we disabled the automatic selection locally
by replacing ∅ with MSet [] in the VM’s code equations. This improves the run-
time to .068 s and requires only three Isabelle declarations. To achieve the same
performance as list-based tabulation (.053 s), we further replace the other opera-
tions on these sets with those that only have code equations for MSet. Hence, we
save the dictionary constructions that emulate the type classes ceq and corder
in ML.
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5 Conclusion and Future Work

We have proposed a light-weight approach to getting efficient code from Isabelle
formalisations based on type classes and code generator refinement. It is flexible,
extensible, and nestable. Our benchmarks and a case study show that it is indeed
efficient, easy to use, and fits in the existing Isabelle libraries.

Four features of Isabelle’s code generator have been crucial for this work:

Incremental declarations are the key to extensibility, as we can adjust the
code generator setup right until code generation. This allows us, e.g., to
bypass the impossibility results for single-parameter type classes [4,17].

Data refinement permits to represent values differently in logic and code. For
configuration options for code generation, we suggest to take this to extremes
(as shown in §2.3): Merge all cases in the logic! So, users can add further
cases (data refinement) and change the configuration (program refinement).

Type classes enable overloading, our generated code uses them to query
polymorphic type parameters. Type classes for code generation should be
independent of those for logical concepts (e.g., corder vs. linorder, §2). For
extensibility, they should be definitional such that every type can instantiate
them.

Sequential pattern matching has helped to keep the effort linear in the num-
ber of implementations, see §2.4 and (8). This feature is hardly known; in
Isabelle2013, such equations must be declared in the reversed order.

The next step is to cover more container types and implementations, e.g., bags
and hash tables. Moreover, we want to integrate LC with Isabelle’s packages
such that they instantiate the type classes automatically. Also, we hope to equip
Isabelle’s code generator with an analysis that catches exceptions due to unsup-
ported operations already at generation time. Future case studies will show how
much effort LC saves in new developments.
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Abstract. We describe a comprehensive HOL mechanisation of the theory of
ordinal numbers, focusing on the basic arithmetic operations. Mechanised results
include the existence of fixpoints such as ε0, the existence of normal forms, and
the validation of algorithms used in the ACL2 theorem-proving system.

1 Introduction

The ordinal numbers are an important foundational type in axiomatic set theory; used
there, for example, in the definition of the von Neumann hierarchy and the cardinal
numbers. In logic, ordinal numbers also provide an important characterisation of the
strength of various logical systems.

Unfortunately, the typed logic implemented in the various HOL systems (including
Isabelle/HOL) is not strong enough to define a type for all possible ordinal values (a
proper class in a set theory like NBG). It turns out, however, that for any fixed n ∈ N,
we can model all ordinals of cardinality ℵn. The user is thus able to choose an ordinal
domain of sufficient size for their purposes.

Our approach is to model ordinals as quotients of wellorders with respect to wellorder
isomorphism. This approach has not been mechanised before. Within HOL, every
wellorder has some underlying domain (represented as a polymorphic type argument).
The resulting ordinals are also parameterised by a type argument, indirectly encoding
the limit of the type. For example, the type num ordinal captures only the countable
ordinals.

One important use of ordinal numbers occurs in the ACL2 theorem-proving system,
which uses ordinal numbers as part of its termination reasoning for recursive definitions.
Recently, Manolios and Vroon [6] improved ACL2’s representation of ordinal numbers,
and implemented new, more efficient algorithms for manipulating those numbers. Their
work mechanised proofs of the correspondence between the old and new notational
systems, and also proved the expected arithmetic properties. However, ACL2 has no
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notation-independent theory of the ordinals available to it, and so no way to model the
set-theoretic ordinals. In this paper, we provide a sufficiently rich model, and are thus
able to validate Manolios and Vroon’s algorithms.

Contribution. This work makes a particular contribution in

– its definition of ordinal supremum,
– the fact that the mechanised notion of ordinal is polymorphic in an underlying

universe type (allowing ordinals of large cardinality), and
– its mechanised validation of the ACL2 algorithms for ordinal arithmetic

HOL4 Notation and Theorems. All statements appearing with a turnstile (�) are
HOL4 theorems, automatically pretty-printed to LATEX. Notation specific to this paper
is explained as it is introduced. Otherwise, HOL4’s syntax is a generally pleasant com-
bination of quantifiers (∀, ∃) and functional programming.

The option type α option, often used to encode partial functions, includes values
NONE, and SOME x for all possible values x of type α. Hilbert choice is available
through the epsilon notation. Read εx .P x as “the x that satisfies (predicate) P ”.

Sets and characteristic functions (of type α→ bool for element type α) are identified.
Sets support standard operations such as union (∪), and element removal (s DELETE e).
The term BIGUNION s denotes the union of a set of sets. We write f ‘ s for the image
of the set s under function f . BIJ f s1 s2 means that function f is a bijection between
sets s1 and s2. The universal set over type α is written U(:α). Cardinality reasoning is
expressed with s � t (“there is an injection from s to t”), and s ≈ t (“there is a bijection
between s and t”).

2 Wellorders

Definition 1. We define what it is for a relation R to be a wellorder:

wellorderR ⇐⇒
wellfounded(strictR) ∧
linear_orderR (domainR ∪ rangeR) ∧
reflexiveR (domainR ∪ rangeR)

As there is at least one value satisfying this definition (the empty set will do), we use
HOL’s standard type definition mechanism to define a new type (family) αwellorder
that captures all of the possible wellorders over values drawn from arbitrary types α.
The critical relations over wellorders are order-isomorphism and the relation that orders
them linearly. The first is straightforward.

Definition 2. Two wellorders are isomorphic if there is a bijective function (conjuncts
two and three below) between their respective fields (conjunct one) that preserves the
ordering (conjunct four):
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w1≈w w2 ⇐⇒
∃f .
(∀x . x ∈ fldw1 ⇒ f x ∈ fldw2) ∧
(∀x1 x2.
x1 ∈ fldw1 ∧ x2 ∈ fldw1 ⇒
(f x1= f x2 ⇐⇒ x1= x2)) ∧

(∀y. y ∈ fldw2 ⇒ ∃x . x ∈ fldw1 ∧ f x = y) ∧
∀x y. (x , y) ∈ w1

�= ⇒ (f x , f y) ∈ w2
�=

(We are using syntax overloading to simplify notation: the formula (x , y) ∈ w1
�=

means that the pair (x , y) is a strict inequality in the relation (a set of pairs) that
represents the wellorder value w1. Alternatively, read (x , y) ∈ w1

�= as “x is strictly
less than y in w1”. Read fldw as the union of the domain and range of the relation
representing w .)

The definition of the ordering relation on wellorders depends on the wobound function,
which truncates a wellorder so that it includes only those elements below a particular
point. There are two important theorems about wobound:

� (x , y) ∈ (wobound z w)�= ⇐⇒
(x , z ) ∈ w �= ∧ (y, z ) ∈ w �= ∧ (x , y) ∈ w �=

� (x , y) ∈ w �= ⇒ woboundx (wobound y w)=woboundx w

Definition 3. The ordering relation for wellorders (written w1≺w w2) can then be de-
fined

w1≺w w2 ⇐⇒ ∃x . x ∈ fldw2 ∧ w1≈w woboundx w2

Transitivity of ≺w follows from the transitivity of order-isomorphism and the second
result about wobound above. Well-foundedness for ≺w follows easily from the well-
foundedness of the underlying relation. Well-foundedness is also the basis for the proof
that ≺w is irreflexive. Finally, we show that ≺w is trichotomous:

Theorem 1.

� w1≺w w2 ∨ w1≈w w2 ∨ w2≺w w1

The proof of this result is the most involved of this section.

Proof. Let w1 and w2 be wellorders over α and β respectively. We define f of type
α→β option by well-founded recursion. The value of f x is SOME y when y is the
least element in w2 not in the image of f applied to all elements less than x. If there is
no such y, then f x =NONE. If there is an x such that f x =NONE, then w2 is less than
w1, and the least value x where f x =NONE is the bound needed to demonstrate this.
If f never has value NONE, then w2 is at least as big as w1. If the image of f on the
elements of w1 is all the elements of w2, then f is the bijection we need to demonstrate
order-isomorphism of w1 and w2. Otherwise, there is an element of w2 not in the image
of f . Take the least such element to be the bound demonstrating w1≺w w2. � 
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3 Constructing the Ordinals

With ≈w an equivalence relation, we can quotient all possible wellorders over the type
α, giving us a natural type of ordinals overα. However, if α is a finite type, then there are
only finitely many ordinals over this type. Clearly, all the interesting ordinals are those
over infinite types, and so our approach is to make the new type α ordinal a quotient
over the wellorders over the sum type α+ num. Henceforth, this type is abbreviated as
α inf.

This construction means that the distinct types unit ordinal, bool ordinal and num
ordinal will all be isomorphic (they will all be copies of the countable ordinals). On the
other hand, the type (num→ bool) ordinal is large enough to include the first uncount-
able ordinal, ω1.

When we quotient, and create the new type α ordinal, the (≺w) relation lifts to
the new type, defining (<). This relation inherits the irreflexivity, transitivity, well-
foundedness and trichotomy results of (≺w). Using these, it is trivial to show that the
ordinals themselves form a well-order.

Definition 4. Well-foundedness also allows the definition of a “least” operator for or-
dinals:

(oleast) (P : α ordinal→ bool)=
ε(x : α ordinal).P x ∧ ∀(y : α ordinal). y < x ⇒ ¬P y

This is well-defined as long as the predicate (or set) P is not everywhere false (the
empty set).

Syntactically, we make (oleast) a binder, allowing us to write terms such as
(oleast x . y < x ) (the definition of the successor of y , written y+), and (oleast x . T)
(the zero-ordinal).

This copy of the natural numbers is a good starting point. It is straightforward to
inject HOL’s natural numbers with a new constant: & :num→α ordinal, which is also
the basis for ordinal numerals (0, 1, 2 etc).

Definition 5. Write predsα to denote the set of all predecessors of an ordinal.

Definition 6. Define the notion of a set being downward closed:

� downward_closeds ⇐⇒ ∀a b. a ∈ s ∧ b< a ⇒ b ∈ s

Von Neumann famously characterised the ordinal numbers as those sets equal to their
own predecessors. HOL’s type system doesn’t allow this: instead we must replace
“equal” with the existence of a bijection:

Theorem 2. The preds function forms a bijection between all possible ordinals and all
but one of the downward closed sets of ordinals. The one omission is the universal set.

� BIJ preds U(:α ordinal) (downward_closed DELETE U(:α ordinal))
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3.1 Cardinality Arguments and Supremum

We want a constant (sup : (α ordinal→ bool)→α ordinal), that takes a set of ordinals
as an argument and returns their supremum. In our setting, this function can’t be well-
defined on all possible arguments: when passed the universal set of all α-ordinals, there
is no possible value to return. Nonetheless, we can characterise those situations when
sup s does have a reasonable value. First, the definition:

Definition 7. The supremum of a set is the least element not in the set’s collective
predecessors.

sup oset = oleastα. α /∈ BIGUNION (preds ‘ oset)

To characterise the reasonable arguments to sup, we need a definition and two further
theorems.

Definition 8. Let allOrds be the wellorder of all the α-ordinals (ordered by (<)).

(allOrds : α ordinal wellorder)=mkWO {(x , y) | x = y ∨ x < y}
(The constant mkWO lifts a relation into the type αwellorder. It is necessary to sepa-
rately show that the relation satisfies the wellorder predicate from Definition 1.)

Theorem 3. Any wellorder w over the type α inf is order-isomorphic to the segment of
allOrds below the element of α ordinal to which the quotienting (mkOrdinal) maps w.

� (w : α inf wellorder)≈w

wobound (mkOrdinalw) (allOrds : α ordinal wellorder)

Note how w is a wellorder over α inf, but that the right-hand side of the isomorphism is
a wellorder over all possible ordinals over α inf.

Proof. By contradiction. Then, by well-foundedness, there is a least w where the iso-
morphism doesn’t hold. If the two wellorders are not order-isomorphic, one is smaller
than the other, by trichotomy of (≺w). If w is smaller, there is a bound b (an ordinal) in
allOrds, smaller still than mkOrdinalw , such that

w ≈w woboundb allOrds

There is a wellorder bw that is a member of b’s equivalence class. As (≺w) is reflected
by (<), we have bw ≺w w . Because w was least, bw must be order-isomorphic to
woboundb allOrds. So, bw and w are order-isomorphic to the same ordinal (wobound
b allOrds), but bw ≺w w , contradicting the irreflexivity of (≺w). The other direction
(when w is larger) is similar. � 
This result means that the predecessors of any given α ordinal must be equinumerous
to a wellorder over α inf.

Corollary 1. The predecessors of any ordinal have cardinality no greater than that of
(all of) the underlying set, α inf.

� predsa � U(:α inf)
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Theorem 4. The cardinality of all of the type α ordinal is strictly greater than that of
the type α inf.

� U(:α inf) ≺ U(:α ordinal)

Proof. By contradiction. If U(:α ordinal) � U(:α inf), then the injection from left-to-
right copies the wellorder allOrds into a wellorder wo of type α inf wellorder. This gives
allOrds≈w wo. By Theorem 3, this wo is also order-isomorphic to wobound (mkOrdinal
wo) allOrds. Transitivity of (≈w) then gives us that allOrds is less than itself, which is
impossible. � 
These results then combine to give us the important characterising theorem about sup:

Theorem 5. As long as the cardinality of the set s is not greater than that of U(:α inf),
an arbitrary ordinal α is less than that set’s supremum iff there is an element of s that
is bigger than α.

� s � U(:α inf) ⇒
∀α. α< sup s ⇐⇒ ∃β. β ∈ s ∧ α<β

Proof. sup takes the union of all the predecessors of all the elements of s (Definition 7).
Let κ be the cardinality of U(:α inf). By Corollary 1 above, the predecessors of each
element of set s have that cardinality. If s has no more than the same cardinality, then
from the fact that κ×κ ≈ κ and Theorem 3 above, the union calculated in the definition
of sup cannot be the universal set of all possible ordinals. There must then be a least
ordinal not within that union, and so sup s will be well-defined.

Moreover, the set of all the combined predecessors (call it ps) is also downward
closed, and so, by Theorem 2, there must be an ordinal α whose predecessors are ex-
actly ps . So, sup s =α, and it is easy to show that the theorem’s characterisation of its
predecessors is correct. � 
An easy corollary is that there is no maximal ordinal. For any ordinal α, we observe
that s = predsα ∪ {α} is downward closed and not equal to U(:α ordinal). Then, by
Theorem 2 there must be a β > α, with s = predsβ.

3.2 Limit Ordinals

Definition 9. With sup defined, it is possible to define ω. This, the first limit ordinal, is
the supremum of the copy of the natural numbers that injects into the ordinals via (&).

(ω : α ordinal)= sup {((&i) :α ordinal) | T}
Definition 10. We also define a constant omax, which returns the maximal element of a
set of ordinals, if any. The option type is used to encode the partiality of this function, so
the type of omax is (α ordinal→ bool)→α ordinal option. If omax (predsa) is NONE,
we abbreviate this condition as islimit a.

Theorem 6. One simple consequence of these definitions is that every natural number
is less than ω, and that only the natural numbers are less than ω:

� (a : α ordinal)< (ω : α ordinal) ⇐⇒ ∃(n : num). a =((&n) :α ordinal)



Ordinals in HOL: Transfinite Arithmetic up to (and Beyond) ω1 139

4 Arithmetic

Theorem 7. With access to a total well-founded relation (<), we have always been
able to define functions by well-founded recursion. However, we can now recast this in
a more palatable form, one that makes the ordinals look a little like an algebraic type
generated by constructors 0, x+ and sup s (with s not including its own upper bound):

� ∀(z : β) (sf : α ordinal→β→β) (lf : α ordinal→ (β→ bool)→β).
∃(h : α ordinal→β).
h (0 : α ordinal)= z ∧ (∀(a : α ordinal). h a+ = sf a (h a)) ∧
∀(a : α ordinal).
(0 : α ordinal)< a ∧ islimita ⇒ h a = lf a ((h ‘ (predsa)) :β→ bool)

This recursion theorem allows the user to specify three cases: z , a value in the desired
range (β) for zero; sf , a function for constructing a result when h is passed a successor;
and lf when the argument to h is a limit ordinal. The lf function is given the original
limit ordinal a as well as the set of all the values given by recursive calls of h on a’s
predecessors.

The recursion theorem is all we need to define ordinal addition, multiplication and
exponentiation. Working out the details for addition (a + b): we will recurse on b, and
let z be the value a, sf be (λx r . r+), and lf be (λx rs . sup rs). This gives

Definition 11. Ordinal addition:

a +0=a
a + b+ =(a + b)+

0< b ∧ islimit b ⇒ a + b= sup ((+) a ‘ (preds b))

The definitions of multiplication and exponentiation are as straightforward. For
example:

Definition 12. Ordinal exponentiation:

a0 =1

ab+

= ab · a
0< b ∧ islimit b ⇒ ab = sup ((**) a ‘ (preds b))

((**) a) is equivalent to (λb. ab); the pretty-printing obscures this because the under-
lying constant prints as (**) when it doesn’t have two arguments.

Reasoning about these operations is made easier by the observation that all three are
continuous (in their second arguments). For addition, the continuity result is

� s � U(:α inf) ∧ s �= ∅ ⇒ a + sup s = sup ((+) a ‘ s)

Rewriting with these theorems allows operators such as (+) to move under sup ar-
guments, where further simplification is usually possible. For example, the proofs (by
induction) that addition and multiplication are associative are greatly simplified by their
continuity theorems.
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4.1 Division and Modulus

The various arithmetic operations on ordinal numbers do not satisfy many of the typical
properties of number systems. For example, addition and multiplication are not com-
mutative. However, they both enjoy cancellation properties for common arguments on
the left:

� α+ β=α+ γ ⇐⇒ β= γ

� α ·β=α · γ ⇐⇒ α=0 ∨ β= γ

These then lead to the existence of unique quotients and remainders.

Theorem 8.

� 0< b ⇒ a = b · (a / b)+ a mod b ∧ a mod b < b

� 0< b ∧ a = b · q + r ∧ r < b ⇒ q = a / b ∧ r = a mod b

Proof. The existence of the division and modulus constants is shown by taking the
quotient d to be sup {c | b · c ≤ a}. (The supremum is well-defined because the
set is bounded above.) Then b · d ≤ a follows from the continuity of multiplica-
tion. The existence of the remainder follows from an earlier result that � a ≤
b ⇐⇒ ∃c. b= a + c.

The uniqueness result proceeds by first showing the uniqueness of the quotient
(uniqueness of the modulus then follows from additive cancellation). If there is an-
other quotient q′ not equal to a / b (write q), then it is either larger or smaller. If larger,
then q′ = q + δ, for some non-zero δ, and a = b(q + δ) + r′, where r′ is the remainder
accompanying q′. Then a = bq + bδ + r, and cancellation and associativity then give
us that bδ + r = a mod b. But 0 < δ, making a mod b too large. The other case is
similar. � 

4.2 Cantor Normal Forms

In a discrete domain such as the ordinals, division approximates multiplication’s in-
verse, leaving a remainder. Analogously, with exponentiation we can construct a dis-
crete logarithm. If working with base b, and e is the largest value such that be is under
the target a, then we can “drop down” to the level of multiplication and find how many
whole copies of be fit into a, giving us a c such that be · c ≤ a. Then we can repeat the
process with the remainder.

Done over the natural numbers with b = 10, we derive a’s decimal representation
(strictly, the non-zero coefficients along with their indices). Over all ordinals, with b =
ω, we derive the Cantor Normal Form of a.

Definition 13. The sequence of exponents and coefficients we derive in the above con-
struction is the same as the information needed to specify a polynomial over a sin-
gle variable. We define eval_poly to evaluate such sequences with respect to arbitrary
bases:

eval_poly b [ ]=0
eval_poly b ((c, e) :: t)= be · c+ eval_poly b t
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Definition 14. We define is_polyform to capture well-formed “polynomial” sequences,
requiring that the exponents are decreasing, and that the coefficients are always strictly
between 0 and b:

is_polyformb [ ] ⇐⇒ T
is_polyformb [(c, e)] ⇐⇒ 0< c ∧ c< b
is_polyformb ((c1, e1) :: (c2, e2) :: t) ⇐⇒
0< c1 ∧ c1< b ∧ e2< e1 ∧ is_polyform b ((c2, e2) :: t)

Then, just as with division, we are able to prove that “polynomial forms” always exist,
and that they are unique.

Theorem 9. For all ordinals a, and bases b greater than 1, it is possible to express a
as the sum of a sequence of pairs of coefficients and powers-of-b. In the sequence each
successive exponent is smaller than its predecessors.

� 1< b ⇒ ∃ces . is_polyformb ces ∧ a = eval_polyb ces

Define the new constant polyform to return such a sequence when given parameters b
and a (if b< 2, allow that the function has no definite value). We show that all possible
sequences with the desired property have polyform’s value:

� 1< b ∧ is_polyform b ces ∧ a = eval_polyb ces ⇒
polyform b a = ces

Proof. Both proofs are by induction on the argument a. The first proof is similar to the
proof of the existence of a quotient: the leading exponent is taken to be sup {e | be ≤
a}. After the coefficient c is calculated by division, and be · c subtracted out, the re-
maining ordinal is smaller and the inductive hypothesis applies. The uniqueness proof
hinges on the following important lemma:

� 1< b ∧ is_polyform b ((c, e) :: t) ⇒ eval_polyb t < be

4.3 Fixpoints and ε0

A function (f : α ordinal→α ordinal) can be iterated any number of times from a
starting value x. The resulting set {x, f(x), f(f(x)), . . . , fn(x), . . .} is clearly only
countably infinite, and so will always have a supremum. Under certain conditions, that
supremum will also be a fixpoint for f .

Theorem 10. If f is non-decreasing and continuous, then it has a fixpoint. In fact, for
any lower bound a, the function f has a fixpoint at least as large as a.

� (∀s . s �= ∅ ∧ s � U(:α inf) ⇒ f (sup s)= sup (f ‘ s)) ∧
(∀x . x ≤ f x ) ⇒
∀a. ∃b. a ≤ b ∧ f b= b
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Proof. Let s be the set above (all the f -iterates of a). Take the fixpoint to be the
supremum of s . We have that f (sup s)= sup (f ‘ s), and are required to show that
sup (f ‘ s)= sup s . This follows straightforwardly because f is non-decreasing. � 
Our arithmetic operations (addition, multiplication and exponentiation) are all contin-
uous in their right arguments and non-decreasing. So, for example, the first fixpoint of
((·) 2) is 0; the next is ω, and the third is ω · 2. The first non-zero fixpoint of ((·)ω) is
ωω . However, it turns out that the first fixpoint of ((**)ω) is not expressible with any of
the notation we have developed thus far.

Definition 15. Let ε0 be the least fixpoint of ((**)ω):

ε0 = oleast x .ωx = x

This is well-defined because of Theorem 10, giving us the following characterisations
of ε0:

� ωε0 = ε0

� a < ε0 ⇒ a <ωa ∧ ωa < ε0

Theorem 11. As suggested, the arithmetic operations are all closed under ε0:

� a < ε0 ∧ b< ε0 ⇒ a + b < ε0 � a < ε0 ∧ b< ε0 ⇒ a · b< ε0

� a < ε0 ∧ b< ε0 ⇒ ab < ε0

5 Uncountable Ordinals

Definition 16. The “countable ordinals” are those with countably many predecessors.
Write countableOrda for an a with this property.

An immediate consequence of Theorem 4 is that there are uncountably many countable
ordinals. To guarantee even larger ordinals, we must instantiate the α type-parameter
with known-to-be-larger types:

Definition 17. The α ucinf type has at least the cardinality of 2ℵ0 , and is thus at least
as big as ℵ1. The α ucord type contains ordinals that are quotients of wellorders over
α ucinf:

α ucinf = (α+(num→ bool)) inf

α ucord = (α+(num→ bool)) ordinal

Note that these abbreviations mean that every α ucord is also an ordinal. Every theorem
about values of type α ordinal applies to values of type α ucord.

Lemma 1. The countable ordinals are not larger than the universe of α ucinf (which
contains U(:num→ bool) as a subset).

� {a | countableOrda} � U(:α ucinf)
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Proof. By contradiction. Then U(:α ucinf) injects into the countable ordinals via some
f , but there is no bijection between the two. Let a = sup (f ‘U(:α ucinf)). (The supre-
mum is well-defined because the image cannot have greater cardinality than U
(:α ucinf).) We now consider whether or not a is a countable ordinal.

If so, then we show that there is an injection from U(:α ucinf) into the (countable)
predecessors of a, which gives an immediate contradiction. If the image of f doesn’t
includes the supremum, the injection is f itself. If there is a u such that f u = a, then f
is an injection from U(:α ucinf)DELETEu into the predecessors, and deleting a single
element from an infinite set doesn’t change its cardinality, so the contradiction can still
be obtained.

If a is not a countable ordinal, then all of the countable ordinals must be among its
predecessors. So, {b | countableOrdb} � predsa. But we also have that preds
a � U(:α ucinf), giving a contradiction by the transitivity of (�). � 
Definition 18.

(ω1 : α ucord)= sup {a | countableOrda}

The supremum is well-defined because of Lemma 1 above.

Theorem 12. The ordinal ω1 is the first uncountable ordinal:

� x <ω1 ⇐⇒ countableOrdx

(The irreflexivity of (<) means that ω1 cannot itself be countable.)

6 Validating Algorithms on ACL2’s Ordinals

The ACL2 system models ordinals up to ε0 with a representation based on Cantor Nor-
mal Form. ACL2’s manipulations of those values are defined by recursive functions
over that syntax. ACL2 then takes as axiomatic that these recursive functions are cor-
rect; that, for example, its less-than relation on these values really does correspond to
(<).

In isolation, these axiomatic assertions can only be checked manually. However,
thanks to work started by Gordon et al. [2], much of the ACL2 axiomatic system has
been embedded in HOL4. More recently, the “ACL2 in HOL” project was completed by
Kaufmann and Slind [5], who showed that ACL2’s less-than relation is well-founded,
justifying ACL2’s recursion and induction principles. Kaufmann and Slind note in
passing:

. . . we are not ascribing any semantics at all to the notation; a separate proof
would be needed to show that indeed the following definitions do correspond
to the ordinals up to ε0.

A little earlier, Manolios and Vroon [6] improved ACL’s representation of the ordinals-
up-to-ε0, and developed efficient arithmetic algorithms for that representation. They
noted:
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Note that these proofs are not mechanically verified. To do so would require
using a theorem prover that can reason both about ACL2 and set theory.

HOL4 can reason about ACL2, thanks to the embedding above, and can now also reason
about ordinals in a way that captures their nature as canonical wellorders. Thus we are
now in a position to do the mechanised proofs that could not be done in [5,6].

Kaufmann and Slind’s HOL4 theory file defines the ACL2 ordinals to be

osyntax = End of num | Plus of osyntax ⇒ num ⇒ osyntax

That is, osyntax is an algebraic type with two constructors: End takes a natural number
argument, and Plus takes a number and two osyntax values as arguments.

Definition 19. The osyntax type can be given a semantics in α ordinal:

�End n�=&n

�Plus e c t�=ω�e� ·&c+ �t�

Kaufmann and Slind define functions oless and is_ord, with the following equations for
the interesting cases:

oless (Plus e1 k1 t1) (Plus e2 k2 t2) ⇐⇒
if oless e1 e2 thenT
elseif e1 = e2 ∧ k1< k2 thenT
elseif e1 = e2 ∧ k1 = k2 ∧ oless t1 t2 thenT
elseF

is_ord (Plus e k t) ⇐⇒
is_ord e ∧ e �= End 0 ∧ 0< k ∧ is_ord t ∧
oless (expt t) e

The is_ord function is the analogue of is_polyform from Definition 14, capturing whether
or not the notation is well-formed (non-zero coefficients and decreasing exponents).
(The expt function returns e when applied to Plus e c t , and End 0 otherwise.)

Theorem 13. The oless function is correct on well-formed osyntax values:

� is_ord x ∧ is_ord y ⇒ (oless x y ⇐⇒ �x �< �y�)

And, ultimately:

Theorem 14. The model function (�_�) is a bijection from well-formed osyntax values
into the ordinals less than ε0.

� BIJ (λx . �x �) {x | is_ord x} {a | a < ε0}

6.1 Arithmetic

The ACL2 definitions of addition and multiplication over osyntax are correct:
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Theorem 15.

� is_ord x ∧ is_ord y ⇒ �ord_add x y�= �x �+ �y�

� is_ord x ∧ is_ord y ⇒ �ord_mult x y�= �x � · �y�

Manolios and Vroon [6] note that ord_mult is very inefficient, and prove a version
with better complexity, based on new constants pmult, c1 and c2. In order to embed
it in ACL2, Manolios and Vroon have already mechanically proved pmult equivalent to
ord_mult. Nonetheless, we also proved a version of their Theorem 10:

Theorem 16 (after Manolios and Vroon). The efficient pmult algorithm correctly cal-
culates ordinal multiplication. (The natural number parameter n can be set to zero
initially.)

� is_orda ∧ is_ord b ∧ n ≤ c1 (expt a) (expt b) ⇒ �pmult a b n�= �a� · �b�

7 Another Model

Sections 2 and 3 showed how to construct a type α ordinal using wellorders. In this
section, we describe an alternative, earlier construction of ordinals that starts with the
infinitely-branching tree datatype shown below.1 The goal is to construct a wellordered
type ordinal that has upper bounds for all countable sets; from this foundation, an Is-
abelle formalization by the second author [4] develops ordinal arithmetic as described
in Section 4.

preordinal = Zero | StrictLim(num → preordinal)

We define the subterm relation � as the least transitive relation satisfying f(x) �
StrictLim(f) for all f, x. The wellfoundedness of � follows from the datatype induction
rule for preordinal. However, � is not a wellorder because it is not linear. To construct
a wellorder, we will need to quotient preordinal by a suitable equivalence relation.

We define relations ! and ≺ as the smallest relations satisfying the following rules.
Intuitively, x ! y iff (!) relates every subterm of x to some subterm of y. We then
define x ≈ y iff x ! y ∧ y ! x.

(∀x. x� y ⇒ x ≺ z)⇒ y ! z

x ! y ∧ y � z ⇒ x ≺ z

Wellfounded inductions (using �) show that ! is reflexive and transitive. It directly
follows that ≈ is an equivalence relation. We can similarly prove further transitivity
rules for various combinations of ≺ and !. Finally we can prove the order trichotomy
rule x ≺ y ∨ y ≺ x ∨ x ≈ y by nested inductions on x and y.

We then define type ordinal as a quotient preordinal/≈. The various transitivity rules
show that ≺ and ! respect ≈, so we can lift them to relations < and ≤ on the quotient
type ordinal. The order trichotomy rule implies that ordinal is wellordered by <. Fi-
nally, we can construct a (strict) upper bound for any countably infinite set by lifting
the constructor function StrictLim to type ordinal.

1 If we replaced num with α inf in this data type, we might (this has not been pursued) then
capture uncountable ordinals as in Section 5. Similarly, it is also plausible that a supremum
constant akin to that in the model of Sections 2 and 3 should be definable for this type.
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8 Conclusion

The HOL4 theory of ordinals demonstrates that ordinals can be cleanly modelled as a
quotient of wellorders, that this approach supports ordinals of large cardinalities, and that
supremum can be modelled as a function taking a set as an argument. All these contribu-
tions are novel with this work. In addition, the utility of the approach has been demon-
strated by validating practically important algorithms in the ACL2 theorem-prover.

Related Work. There is relatively little published work on mechanisations of ordinals
within a non-set-theoretic setting. One early development is John Harrison’s
wellorder library [3]. Originally developed for HOL88, this remains part of the
HOL Light library. This theory picks out certain wellorders to be ordinals using Hilbert-
choice, and proves some consequences of the Axiom of Choice, such as Zorn’s Lemma.
It does not include any ordinal arithmetic.

In similar vein, there is a large theory of ordinals and cardinals behind Traytel
et al. [7]. This work is available at Isabelle’s Archive of Formal Proofs. It defines
wellorders and develops a number of important facts about cardinalities. It does not
quotient its wellorder type, and emulates ordinal arithmetic “synthetically” (e.g., addi-
tion as wellorder concatenation). This work does not define ordinal multiplication nor
exponentiation.

Finally, as in ACL2, it is possible to use ordinal notations (capturing countably many
ordinals). A great deal of interesting ordinal theory (up to Γ0) has been mechanised in
this style in Coq by Castéran and Contejean [1].

Availability. Most of the HOL4 theory of the ordinals described here is in the current re-
lease of HOL4. Newer material, including the validation of the ACL2 algorithms, was in
the HOL4 repository by the time of commit e3bd872ec1 and will appear in the next
release. The sources for this paper are at github.com/mn200/ordinals-paper.
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Abstract. We formalise results from computability theory in the theorem prover
Isabelle/HOL. Following the textbook by Boolos et al, we formalise Turing ma-
chines and relate them to abacus machines and recursive functions. We “tie the
know” between these three computational models by formalising a universal
function and obtaining from it a universal Turing machine by our verified trans-
lation from recursive functions to abacus programs and from abacus programs to
Turing machine programs. Hoare-style reasoning techniques allow us to reason
about concrete Turing machine and abacus programs.

1 Introduction

We like to enable Isabelle/HOL users to reason about computability theory. Reasoning
about decidability of predicates, for example, is not as straightforward as one might
think in Isabelle/HOL and other HOL theorem provers, since they are based on classical
logic where the law of excluded middle ensures that P ∨ ¬ P is always provable no
matter whether the predicate P is constructed by computable means.

Norrish formalised computability theory in HOL4. He choose the λ-calculus as the
starting point for his formalisation because of its “simplicity” [7, Page 297]. Part of
his formalisation is a clever infrastructure for reducing λ-terms. He also established the
computational equivalence between the λ-calculus and recursive functions. Neverthe-
less he concluded that it would be appealing to have formalisations for more operational
models of computations, such as Turing machines or register machines. One reason is
that many proofs in the literature use them. He noted however that [7, Page 310]:

“If register machines are unappealing because of their general fiddliness,
Turing machines are an even more daunting prospect.”

In this paper we take on this daunting prospect and provide a formalisation of Turing
machines, as well as abacus machines (a kind of register machines) and recursive func-
tions. To see the difficulties involved with this work, one has to understand that Turing
machine programs (similarly abacus programs) can be completely unstructured, behav-
ing similar to Basic programs containing the infamous goto [3]. This precludes in the
general case a compositional Hoare-style reasoning about Turing programs. We provide
such Hoare-rules for when it is possible to reason in a compositional manner (which is
fortunately quite often), but also tackle the more complicated case when we translate
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abacus programs into Turing programs. This reasoning about concrete Turing machine
programs is usually left out in the informal literature, e.g. [2].

We are not the first who formalised Turing machines: we are aware of the work by
Asperti and Ricciotti [1]. They describe a complete formalisation of Turing machines
in the Matita theorem prover, including a universal Turing machine. However, they
do not formalise the undecidability of the halting problem since their main focus is
complexity, rather than computability theory. They also report that the informal proofs
from which they started are not “sufficiently accurate to be directly usable as a guideline
for formalization” [1, Page 2]. For our formalisation we follow mainly the proofs from
the textbook by Boolos et al [2] and found that the description there is quite detailed.
Some details are left out however: for example, constructing the copy Turing machine
is left as an exercise to the reader—a corresponding correctness proof is not mentioned
at all; also [2] only shows how the universal Turing machine is constructed for Turing
machines computing unary functions. We had to figure out a way to generalise this result
to n-ary functions. Similarly, when compiling recursive functions to abacus machines,
the textbook again only shows how it can be done for 2- and 3-ary functions, but in the
formalisation we need arbitrary functions. But the general ideas for how to do this are
clear enough in [2].

The main difference between our formalisation and the one by Asperti and Ricciotti
is that their universal Turing machine uses a different alphabet than the machines it
simulates. They write [1, Page 23]:

“In particular, the fact that the universal machine operates with a different
alphabet with respect to the machines it simulates is annoying.”

In this paper we follow the approach by Boolos et al [2], which goes back to Post [8],
where all Turing machines operate on tapes that contain only blank or occupied cells.
Traditionally the content of a cell can be any character from a finite alphabet. Although
computationally equivalent, the more restrictive notion of Turing machines in [2] makes
the reasoning more uniform. In addition some proofs about Turing machines are sim-
pler. The reason is that one often needs to encode Turing machines—consequently if the
Turing machines are simpler, then the coding functions are simpler too. Unfortunately,
the restrictiveness also makes it harder to design programs for these Turing machines.
In order to construct a universal Turing machine we therefore do not follow [1], instead
follow the proof in [2] by translating abacus machines to Turing machines and in turn
recursive functions to abacus machines. The universal Turing machine can then be con-
structed by translating from a (universal) recursive function. The part of mechanising
the translation of recursive function to register machines has already been done by Za-
mmit in HOL4 [10], although his register machines use a slightly different instruction
set than the one described in [2].

Contributions: We formalised in Isabelle/HOL Turing machines following the descrip-
tion of Boolos et al [2] where tapes only have blank or occupied cells. We mechanise
the undecidability of the halting problem and prove the correctness of concrete Tur-
ing machines that are needed in this proof; such correctness proofs are left out in the
informal literature. For reasoning about Turing machine programs we derive Hoare-
rules. We also construct the universal Turing machine from [2] by translating recursive
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functions to abacus machines and abacus machines to Turing machines. This works
essentially like a small, verified compiler from recursive functions to Turing machine
programs. When formalising the universal Turing machine, we stumbled in [2] upon an
inconsistent use of the definition of what partial function a Turing machine calculates.

2 Turing Machines

Turing machines can be thought of as having a head, “gliding” over a potentially infinite
tape. Boolos et al [2] only consider tapes with cells being either blank or occupied,
which we represent by a datatype having two constructors, namely Bk and Oc. One
way to represent such tapes is to use a pair of lists, written (l, r), where l stands for the
tape on the left-hand side of the head and r for the tape on the right-hand side. We use
the notation Bkn (similarly Ocn) for lists composed of n elements of Bks. We also have
the convention that the head, abbreviated hd, of the right list is the cell on which the
head of the Turing machine currently scans. This can be pictured as follows:

left list right list

head

. . . . . .

Note that by using lists each side of the tape is only finite. The potential infinity is
achieved by adding an appropriate blank or occupied cell whenever the head goes over
the “edge” of the tape. To make this formal we define five possible actions the Turing
machine can perform:

a ::= WBk (write blank, Bk)
| WOc (write occupied, Oc)
| L (move left)
| R (move right)
| Nop (do-nothing operation)

We slightly deviate from the presentation in [2] (and also [1]) by using the Nop oper-
ation; however its use will become important when we formalise halting computations
and also universal Turing machines. Given a tape and an action, we can define the fol-
lowing tape updating function:

update (l, r) WBk
def
= (l, Bk::tl r)

update (l, r) WOc
def
= (l, Oc::tl r)

update (l, r) L
def
= if l = [] then ([], Bk::r) else (tl l, hd l::r)

update (l, r) R
def
= if r = [] then (Bk::l, []) else (hd r::l, tl r)

update (l, r) Nop
def
= (l, r)

The first two clauses replace the head of the right list with a new Bk or Oc, respectively.
To see that these two clauses make sense in case where r is the empty list, one has to
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know that the tail function, tl, is defined such that tl []
def
= [] holds. The third clause

implements the move of the head one step to the left: we need to test if the left-list l is
empty; if yes, then we just prepend a blank cell to the right list; otherwise we have to
remove the head from the left-list and prepend it to the right list. Similarly in the fourth
clause for a right move action. The Nop operation leaves the tape unchanged.

Next we need to define the states of a Turing machine. We follow the choice made
in [1] by representing a state with a natural number and the states in a Turing machine
program by the initial segment of natural numbers starting from 0. In doing so we can
compose two Turing machine programs by shifting the states of one by an appropriate
amount to a higher segment and adjusting some “next states” in the other.

An instruction of a Turing machine is a pair consisting of an action and a natural
number (the next state). A program p of a Turing machine is then a list of such pairs.
Using as an example the following Turing machine program, which consists of four
instructions

dither
def
= [(WBk, 1), (R, 2), (L, 1), (L, 0)]︸ ︷︷ ︸

1st state
= starting state

︸ ︷︷ ︸
2nd state

Bk-case︷ ︸︸ ︷ Oc-case︷︸︸︷

(1)

the reader can see we have organised our Turing machine programs so that segments
of two pairs belong to a state. The first component of such a segment determines what
action should be taken and which next state should be transitioned to in case the head
reads a Bk; similarly the second component determines what should be done in case of
reading Oc. We have the convention that the first state is always the starting state of
the Turing machine. The 0-state is special in that it will be used as the “halting state”.
There are no instructions for the 0-state, but it will always perform a Nop-operation
and remain in the 0-state. We have chosen a very concrete representation for Turing
machine programs, because when constructing a universal Turing machine, we need to
define a coding function for programs.

Given a program p, a state and the cell being scanned by the head, we need to fetch
the corresponding instruction from the program. For this we define the function fetch

fetch p 0 = (Nop, 0)

fetch p (Suc s) Bk
def
= case nth of p (2 ∗ s) of

None ⇒ (Nop, 0) | Some i ⇒ i

fetch p (Suc s) Oc
def
= case nth of p (2 ∗ s + 1) of

None ⇒ (Nop, 0) | Some i ⇒ i

(2)

In this definition the function nth of returns the nth element from a list, provided it
exists (Some-case), or if it does not, it returns the default action Nop and the default state
0 (None-case). We often have to restrict Turing machine programs to be well-formed: a
program p is well-formed if it satisfies the following three properties:

wf p
def
= 2 ≤ length p ∧ is even (length p) ∧ (∀ (a, s)∈ p. s ≤ length p div 2)
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The first states that p must have at least an instruction for the starting state; the second
that p has a Bk and Oc instruction for every state, and the third that every next-state is
one of the states mentioned in the program or being the 0-state.

A configuration c of a Turing machine is a state together with a tape. This is written
as (s, (l, r)). We say a configuration is final if s = 0 and we say a predicate P holds for
a configuration if P holds for the tape (l, r). If we have a configuration and a program,
we can calculate what the next configuration is by fetching the appropriate action and
next state from the program, and by updating the state and tape accordingly. This single
step of execution is defined as the function step

step (s, (l, r)) p
def
= let (a, s ′) = fetch p s (read r)

in (s ′, update (l, r) a)

where read r returns the head of the list r, or if r is empty it returns Bk. We lift this
definition to an evaluation function that performs exactly n steps:

steps c p 0
def
= c

steps c p (Suc n)
def
= steps (step c p) p n

Recall our definition of fetch (shown in (2)) with the default value for the 0-state. In
case a Turing program takes according to the usual textbook definition, say [2], less
than n steps before it halts, then in our setting the steps-evaluation does not actually
halt, but rather transitions to the 0-state (the final state) and remains there performing
Nop-actions until n is reached.

We often need to restrict tapes to be in standard form, which means the left list of the
tape is either empty or only contains Bks, and the right list contains some “clusters” of
Ocs separated by single blanks. To make this formal we define the following overloaded
function encoding natural numbers into lists of Ocs and Bks.

〈n〉 def
= Ocn + 1

〈(n, m)〉 def
= 〈n〉 @ [Bk] @ 〈m〉

〈[]〉 def
= []

〈[n]〉 def
= 〈n〉

〈n::ns〉 def
= 〈(n, ns)〉

(3)

A standard tape is then of the form (Bkk,〈[n1,...,nm]〉 @ Bkl) for some k, l and n1...m.
Note that the head in a standard tape “points” to the leftmost Oc on the tape. Note also
that the natural number 0 is represented by a single filled cell on a standard tape, 1 by
two filled cells and so on.

We need to be able to sequentially compose Turing machine programs. Given our
concrete representation, this is relatively straightforward, if slightly fiddly. We use the
following two auxiliary functions:

shift p n
def
= map (λ(a, s). (a, if s = 0 then 0 else s + n)) p

adjust p
def
= map (λ(a, s). (a, if s = 0 then Suc (length p div 2) else s)) p

The first adds n to all states, except the 0-state, thus moving all “regular” states to the
segment starting at n; the second adds Suc (length p div 2) to the 0-state, thus redirecting
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cbegin
def
=

[(WBk, 0), (R, 2), (R, 3),
(R, 2), (WOc, 3), (L, 4),
(L, 4), (L, 0)]

cloop
def
=

[(R, 0), (R, 2), (R, 3),
(WBk, 2), (R, 3), (R, 4),
(WOc, 5), (R, 4), (L, 6),
(L, 5), (L, 6), (L, 1)]

cend
def
=

[(L, 0), (R, 2), (WOc, 3),
(L, 4), (R, 2), (R, 2),
(L, 5), (WBk, 4), (R, 0),
(L, 5)]

⇒ ⇒ ⇒︷ ︸︸ ︷
cbegin

︷ ︸︸ ︷
cloop

︷︸︸︷
cend

Fig. 1. The three components of the copy Turing machine (above). If started (below) with the tape
([], 〈2〉) the first machine appends [Bk, Oc] at the end of the right tape; the second then “moves”
all Ocs except the first from the beginning of the tape to the end; the third “refills” the original
block of Ocs. The resulting tape is ([Bk], 〈(2, 2)〉).

all references to the “halting state” to the first state after the program p. With these two
functions in place, we can define the sequential composition of two Turing machine
programs p1 and p2 as

p1 ; p2
def
= adjust p1 @ shift p2 (length p1 div 2)

Before we can prove the undecidability of the halting problem for our Turing machines
working on standard tapes, we have to analyse two concrete Turing machine programs
and establish that they are correct—that means they are “doing what they are supposed
to be doing”. Such correctness proofs are usually left out in the informal literature, for
example [2]. The first program we need to prove correct is the dither program shown in
(1) and the second program is copy defined as

copy
def
= cbegin ; cloop ; cend (4)

whose three components are given in Figure 1. For our correctness proofs, we introduce
the notion of total correctness defined in terms of Hoare-triples, written {P} p {Q}.
They implement the idea that a program p started in state 1 with a tape satisfying P will
after some n steps halt (have transitioned into the halting state) with a tape satisfying
Q. This idea is very similar to the notion of realisability in [1]. We also have Hoare-
pairs of the form {P} p ↑ implementing the case that a program p started with a tape
satisfying P will loop (never transition into the halting state). Both notion are formally
defined as

{P} p {Q} def
=

∀ tp.
if P tp holds then
∃ n. such that
is final (steps (1, tp) p n) ∧
Q holds for (steps (1, tp) p n)

{P} p ↑ def
=

∀ tp.
if P tp holds then
∀ n. ¬ is final (steps (1, tp) p n)
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For our Hoare-triples we can easily prove the following Hoare-consequence rule

P ′ "→ P {P} p {Q} Q "→ Q ′

{P ′} p {Q ′} (5)

where P ′ "→ P stands for the fact that for all tapes tp, P ′ tp implies P tp (similarly for Q
and Q ′).

Like Asperti and Ricciotti with their notion of realisability, we have set up our Hoare-
rules so that we can deal explicitly with total correctness and non-termination, rather
than have notions for partial correctness and termination. Although the latter would al-
low us to reason more uniformly (only using Hoare-triples), we prefer our definitions
because we can derive below some simple Hoare-rules for sequentially composed Tur-
ing programs. In this way we can reason about the correctness of cbegin, for example,
completely separately from cloop and cend.

It is relatively straightforward to prove that the Turing program dither shown in (1)
is correct. This program should be the “identity” when started with a standard tape
representing 1 but loops when started with the 0-representation instead, as pictured
below.

start tape

halting case: . . . ⇒ . . .

non-halting case: . . . ⇒ loops

We can prove the following two Hoare-statements:

{λtp. ∃ k. tp = (Bkk, 〈1〉)} dither {λtp. ∃ k. tp = (Bkk, 〈1〉)}
{λtp. ∃ k. tp = (Bkk, 〈0〉)} dither ↑

The first is by a simple calculation. The second is by an induction on the number of
steps we can perform starting from the input tape.

The program copy defined in (4) has 15 states; its purpose is to produce the standard
tape (Bks, 〈(n, n)〉) when started with (Bks, 〈n〉), that is making a copy of a value n
on the tape. Reasoning about this program is substantially harder than about dither. To
ease the burden, we derive the following two Hoare-rules for sequentially composed
programs.

{P} p1 {Q} {Q} p2 {R}
{P} p1 ; p2 {R} wf p1

{P} p1 {Q} {Q} p2 ↑
{P} p1 ; p2 ↑

wf p1

The first corresponds to the usual Hoare-rule for composition of two terminating pro-
grams. The second rule gives the conditions for when the first program terminates gen-
erating a tape for which the second program loops. The side-conditions about wf p1 are
needed in order to ensure that the redirection of the halting and initial state in p1 and
p2, respectively, match up correctly. These Hoare-rules allow us to prove the correct-
ness of copy by considering the correctness of the components cbegin, cloop and cend
in isolation. This simplifies the reasoning considerably, for example when designing
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I1 n (l, r)
def
= (l, r) = ([], Ocn) (starting state)

I2 n (l, r)
def
= ∃ i j. 0 < i ∧ i + j = n ∧ (l, r) = (Oci, Ocj)

I3 n (l, r)
def
= 0 < n ∧ (l, tl r) = (Bk::Ocn, [])

I4 n (l, r)
def
= 0 < n ∧ (l, r) = (Ocn, [Bk, Oc]) ∨ (l, r) = (Ocn − 1, [Oc, Bk, Oc])

I0 n (l, r)
def
= 1 < n ∧ (l, r) = (Ocn − 2, [Oc, Oc, Bk, Oc]) ∨ (halting state)

n = 1 ∧ (l, r) = ([], [Bk, Oc, Bk, Oc])

J1 n (l, r)
def
= ∃ i j. i + j + 1 = n ∧ (l, r) = (Oci, Oc::Oc::Bkj @ Ocj) ∧ 0 < j ∨

0 < n ∧ (l, r) = ([], Bk::Oc::Bkn @ Ocn) (starting state)

J0 n (l, r)
def
= 0 < n ∧ (l, r) = ([Bk], Oc::Bkn @ Ocn) (halting state)

K1 n (l, r)
def
= 0 < n ∧ (l, r) = ([Bk], Oc::Bkn @ Ocn) (starting state)

K0 n (l, r)
def
= 0 < n ∧ (l, r) = ([Bk], Ocn @ (Bk::Ocn)) (halting state)

Fig. 2. The invariants I0,. . . ,I4 are for the states of cbegin. Below, the invariants only for the
starting and halting states of cloop and cend are shown. In each invariant, the parameter n stands
for the number of Ocs with which the Turing machine is started.

decreasing measures for proving the termination of the programs. We will show the
details for the program cbegin. For the two other programs we refer the reader to our
formalisation.

Given the invariants I0,. . . , I4 shown in Figure 2, which correspond to each state of
cbegin, we define the following invariant for the whole cbegin program:

Icbegin n (s, tp)
def
= if s = 0 then I0 n tp

else if s = 1 then I1 n tp
else if s = 2 then I2 n tp
else if s = 3 then I3 n tp
else if s = 4 then I4 n tp
else False

This invariant depends on n representing the number of Ocs on the tape. It is not hard
(26 lines of automated proof script) to show that for 0 < n this invariant is preserved
under the computation rules step and steps. This gives us partial correctness for cbegin.

We next need to show that cbegin terminates. For this we introduce lexicographically
ordered pairs (n, m) derived from configurations (s, (l, r)) whereby n is the state s, but
ordered according to how cbegin executes them, that is 1 > 2 > 3 > 4 > 0; in order
to have a strictly decreasing measure, m takes the data on the tape into account and is
calculated according to the following measure function:

Mcbegin(s, (l, r))
def
= if s = 2 then length r

else if s = 3 then (if r = [] ∨ r = [Bk] then 1 else 0)
else if s = 4 then length l
else 0
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With this in place, we can show that for every starting tape of the form ([], Ocn) with
0 < n, the Turing machine cbegin will eventually halt (the measure decreases in each
step). Taking this and the partial correctness proof together, we obtain the Hoare-triple
shown on the left for cbegin:

{I1 n} cbegin {I0 n} {J1 n} cloop {J0 n} {K1 n} cend {K0 n}
where we assume 0 < n (similar reasoning is needed for the Hoare-triples for cloop
and cend). Since the invariant of the halting state of cbegin implies the invariant of the
starting state of cloop, that is I0 n "→ J1 n holds, and also J0 n = K1 n, we can derive
the following Hoare-triple for the correctness of copy:

{λtp. tp = ([], 〈n〉)} copy {λtp. tp = ([Bk], 〈(n, n)〉)}
That means if we start with a tape of the form ([], 〈n〉) then copy will halt with the tape
([Bk], 〈(n, n)〉), as desired.

Finally, we are in the position to prove the undecidability of the halting problem. A
program p started with a standard tape containing the (encoded) numbers ns will halt
with a standard tape containing a single (encoded) number is defined as

halts p ns
def
= {λtp. tp = ([], 〈ns〉)} p {λtp. ∃ k n l. tp = (Bkk, 〈n〉 @ Bkl)}

This roughly means we considering only Turing machine programs representing func-
tions that take some numbers as input and produce a single number as output. For un-
decidability, the property we are proving is that there is no Turing machine that can
decide in general whether a Turing machine program halts (answer either 0 for halting
or 1 for looping). Given our correctness proofs for dither and copy shown above, this
non-existence is now relatively straightforward to establish. We first assume there is
a coding function, written code M, which represents a Turing machine M as a natural
number. No further assumptions are made about this coding function. Suppose a Tur-
ing machine H exists such that if started with the standard tape ([Bk], 〈(code M, ns)〉)
returns 0, respectively 1, depending on whether M halts or not when started with the
input tape containing 〈ns〉. This assumption is formalised as follows—for all M and all
lists of natural numbers ns:

halts M ns implies {λtp. tp = ([Bk], 〈(code M, ns)〉)} H {λtp. ∃ k. tp = (Bkk, 〈0〉)}
¬ halts M ns implies {λtp. tp = ([Bk], 〈(code M, ns)〉)} H {λtp. ∃ k. tp = (Bkk, 〈1〉)}
The contradiction can be derived using the following Turing machine

contra
def
= copy ; H ; dither

Suppose halts contra [code contra] holds. Given the invariants P1. . . P3 shown on the
left, we can derive the following Hoare-pair for contra on the right.

P1
def
= λtp. tp = ([], 〈code contra〉)

P2
def
= λtp. tp = ([Bk], 〈(code contra, code contra)〉)

P3
def
= λtp. ∃ k. tp = (Bkk, 〈0〉) {P1} copy {P2} {P2} H {P3}

{P1} copy ; H {P3} {P3} dither ↑
{P1} contra ↑



156 J. Xu, X. Zhang, and C. Urban

This Hoare-pair contradicts our assumption that contra started with 〈code contra〉 halts.
Suppose ¬ halts contra [code contra] holds. Again, given the invariants Q1. . . Q3

shown on the left, we can derive the Hoare-triple for contra on the right.

Q1
def
= λtp. tp = ([], 〈code contra〉)

Q2
def
= λtp. tp = ([Bk], 〈(code contra, code contra)〉)

Q3
def
= λtp. ∃ k. tp = (Bkk, 〈1〉) {Q1} copy {Q2} {Q2} H {Q3}

{Q1} copy ; H {Q3} {Q3} dither {Q3}
{Q1} contra {Q3}

This time the Hoare-triple states that contra terminates with the “output” 〈1〉. In both
cases we come to a contradiction, which means we have to abandon our assumption that
there exists a Turing machine H which can in general decide whether Turing machines
terminate.

3 Abacus Machines

Boolos et al [2] use abacus machines as a stepping stone for making it less laborious
to write Turing machine programs. Abacus machines operate over a set of registers R0,
R1, . . . , Rn each being able to hold an arbitrary large natural number. We use natural
numbers to refer to registers; we also use a natural number to represent a program
counter and to represent jumping “addresses”, for which we use the letter l. An abacus
program is a list of instructions defined by the datatype:

i ::= Inc R increment register R by one
| Dec R l if content of R is non-zero, then decrement it by one

otherwise jump to instruction l
| Goto l jump to instruction l

For example the program clearing the register R (that is setting it to 0) can be defined
as follows:

clear R l
def
= [Dec R l, Goto 0]

Running such a program means we start with the first instruction then execute one
instructions after the other, unless there is a jump. For example the second instruction
Goto 0 above means we jump back to the first instruction thereby closing the loop. Like
with our Turing machines, we fetch instructions from an abacus program such that a
jump out of “range” behaves like a Nop-action. In this way it is again easy to define a
function steps that executes n instructions of an abacus program. A configuration of an
abacus machine is the current program counter together with a snapshot of all registers.
By convention the value calculated by an abacus program is stored in the last register
(the one with the highest index in the program).

The main point of abacus programs is to be able to translate them to Turing machine
programs. Registers and their content are represented by standard tapes (see definition



Mechanising Turing Machines and Computability Theory in Isabelle/HOL 157

shown in (3)). Because of the jumps in abacus programs, it is impossible to build Turing
machine programs out of components using our ;-operation shown in the previous sec-
tion. To overcome this difficulty, we calculate a layout of an abacus program as follows

layout []
def
= []

layout (Inc R::is)
def
= 2 ∗ R + 9::layout is

layout (Dec R l::is)
def
= 2 ∗ R + 16::layout is

layout (Goto l::is)
def
= 1::layout is

This gives us a list of natural numbers specifying how many states are needed to trans-
late each abacus instruction. This information is needed in order to calculate the state
where the Turing machine program of an abacus instruction starts. This can be defined
as

address p n = Suc (Σ (take n (layout p)))

where p is an abacus program and take n takes the first n elements from a list.
The Goto instruction is easiest to translate requiring only one state, namely the Tur-

ing machine program:

translate Goto l
def
= [(Nop, l), (Nop, l)]

where l is the state in the Turing machine program to jump to. For translating the in-
struction Inc R, one has to remember that the content of the registers are encoded in the
Turing machine as a standard tape. Therefore the translated Turing machine needs to
first find the number corresponding to the content of register R. This needs a machine
with 2 ∗ R states and can be constructed as follows:

TMFindnth 0
def
= []

TMFindnth (Suc n)
def
=

TMFindnth n @ [(WOc, 2 ∗ n + 1), (R, 2 ∗ n + 2), (R, 2 ∗ n + 3), (R, 2 ∗ n + 2)]

Then we need to increase the “number” on the tape by one, and adjust the following
“registers”. For adjusting we only need to change the first Oc of each number to Bk and
the last one from Bk to Oc. Finally, we need to transition the head of the Turing machine
back into the standard position. This requires a Turing machine with 9 states (we omit
the details). Similarly for the translation of Dec R l, where the translated Turing machine
needs to first check whether the content of the corresponding register is 0. For this we
have a Turing machine program with 16 states (again the details are omitted).

Finally, having a Turing machine for each abacus instruction we need to “stitch” the
Turing machines together into one so that each Turing machine component transitions
to next one, just like in the abacus programs. One last problem to overcome is that an
abacus program is assumed to calculate a value stored in the last register (the one with
the highest register). That means we have to append a Turing machine that “mops up”
the tape (cleaning all Ocs) except for the Ocs of the last register represented on the tape.
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This needs a Turing machine program with 2 ∗ R + 6 states, assuming R is the number
of registers to be “cleaned”.

While generating the Turing machine program for an abacus program is not too diffi-
cult to formalise, the problem is that it contains Gotos all over the place. The unfortunate
result is that we cannot use our Hoare-rules for reasoning about sequentially composed
programs (for this each component needs to be completely independent). Instead we
have to treat the translated Turing machine as one “big block” and prove as invariant
that it performs the same operations as the abacus program. For this we have to show
that for each configuration of an abacus machine the step-function is simulated by zero
or more steps in our translated Turing machine. This leads to a rather large “monolithic”
correctness proof (4600 loc and 380 sublemmas) that on the conceptual level is difficult
to break down into smaller components.

4 Recursive Functions and a Universal Turing Machine

The main point of recursive functions is that we can relatively easily construct a uni-
versal Turing machine via a universal function. This is different from Norrish [7] who
gives a universal function for the lambda-calculus, and also from Asperti and Ricciotti
[1] who construct a universal Turing machine directly, but for simulating Turing ma-
chines with a more restricted alphabet. Unlike Norrish [7], we need to represent recur-
sive functions “deeply” because we want to translate them to abacus programs. Thus
recursive functions are defined as the datatype

r ::= z (zero-function)
| s (successor-function)
| idn

m (projection)

| Cnn f fs (composition)
| Prn f 1 f 2 (primitive recursion)
| Mnn f (minimisation)

where n indicates the function expects n arguments (in [2] both z and s expect one
argument), and fs stands for a list of recursive functions. Since we know in each case
the arity, say l, we can define an evaluation function, called eval, that takes a recursive
function f and a list ns of natural numbers of length l as arguments. Since this evaluation
function uses the minimisation operator from HOL, this function might not terminate
always. As a result we also need to inductively characterise when eval terminates. We
omit the definitions for eval f ns and terminate f ns. Because of space reasons, we
also omit the definition of translating recursive functions into abacus programs. We can
prove, however, the following theorem about the translation: If terminate f ns holds for
the recursive function f and arguments ns, then the following Hoare-triple holds

{λtp. tp = ([Bk, Bk], 〈ns〉)} translate f {λtp. ∃ k l. tp = (Bkk, 〈eval f ns〉 @ Bkl)}
for the Turing machine generated by translate f. This means the translated Turing ma-
chine if started with the standard tape ([Bk, Bk], 〈ns〉) will terminate with the standard
tape (Bkk, 〈eval f ns〉 @ Bkl) for some k and l.

Having recursive functions under our belt, we can construct a universal function,
written UF. This universal function acts like an interpreter for Turing machines. It takes
two arguments: one is the code of the Turing machine to be interpreted and the other
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is the “packed version” of the arguments of the Turing machine. We can then consider
how this universal function is translated to a Turing machine and from this construct the
universal Turing machine, written UTM. It is defined as the composition of the Turing
machine that packages the arguments and the translated recursive function UF:

UTM
def
= arg coding ; (translate UF)

Suppose a Turing program p is well-formed and when started with the standard tape
containing the arguments args, will produce a standard tape with “output” n. This as-
sumption can be written as the Hoare-triple

{λtp. tp = ([], 〈args〉)} p {λtp. tp = (Bkm, 〈n〉 @ Bkk)}
where we require that the args stand for a non-empty list. Then the universal Turing
machine UTM started with the code of p and the arguments args, calculates the same
result, namely

{λtp. tp = ([], 〈code p::args〉)} UTM {λtp. ∃m k. tp = (Bkm, 〈n〉 @ Bkk)}
Similarly, if a Turing program p started with the standard tape containing args loops,
which is represented by the Hoare-pair

{λtp. tp = ([], 〈args〉)} p ↑
then the universal Turing machine started with the code of p and the arguments args
will also loop

{λtp. tp = ([], 〈code p::args〉)} UTM ↑
While formalising the chapter in [2] about universal Turing machines, an unexpected
outcome of our work is that we identified an inconsistency in their use of a definition.
This is unexpected since [2] is a classic textbook which has undergone several editions
(we used the fifth edition; the material containing the inconsistency was introduced in
the fourth edition of this book). The central idea about Turing machines is that when
started with standard tapes they compute a partial arithmetic function. The inconsis-
tency arises when they define the case when this function should not return a result.
Boolos at al write in Chapter 3, Page 32:

“If the function that is to be computed assigns no value to the arguments that
are represented initially on the tape, then the machine either will never halt,
or will halt in some nonstandard configuration. . . ”

Interestingly, they do not implement this definition when constructing their universal
Turing machine. In Chapter 8, on page 93, a recursive function stdh is defined as:

stdh(m, x, t)
def
= stat(conf (m, x, t)) + nstd(conf (m, x, t)) (6)

where stat(conf (m, x, t)) computes the current state of the simulated Turing machine,
and nstd(conf (m, x, t)) returns 1 if the tape content is non-standard. If either one eval-
uates to something that is not zero, then stdh(m, x, t) will be not zero, because of the
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+-operation. On the same page, a function halt(m, x) is defined in terms of stdh for
computing the steps the Turing machine needs to execute before it halts (in case it halts
at all). According to this definition, the simulated Turing machine will continue to run
after entering the 0-state with a non-standard tape. The consequence of this inconsis-
tency is that there exist Turing machines that given some arguments do not compute a
value according to Chapter 3, but return a proper result according to the definition in
Chapter 8. One such Turing machine is:

counter example
def
= [(L, 0), (L, 2), (R, 2), (R, 0)]

If started with standard tape ([], [Oc]), it halts with the non-standard tape ([Oc, Bk], [])
according to the definition in Chapter 3—so no result is calculated; but with the standard
tape ([Bk], [Oc]) according to the definition in Chapter 8. We solve this inconsistency
in our formalisation by setting up our definitions so that the counter example Turing
machine does not produce any result by looping forever fetching Nops in state 0. This
solution implements essentially the definition in Chapter 3; it differs from the definition
in Chapter 8, where perplexingly the instruction from state 1 is fetched.

5 Conclusion

In previous works we were unable to formalise results about computability because
in Isabelle/HOL we cannot, for example, represent the decidability of a predicate P,
say, as the formula P ∨ ¬ P. For reasoning about computability we need to formalise
a concrete model of computations. We could have followed Norrish [7] using the λ-
calculus as the starting point for formalising computability theory, but then we would
have to reimplement on the ML-level his infrastructure for rewriting λ-terms modulo β-
equality: HOL4 has a simplifer that can rewrite terms modulo an arbitrary equivalence
relation, which Isabelle unfortunately does not yet have. Even though, we would still
need to connect λ-terms somehow to Turing machines for proofs that make essential
use of them (for example the undecidability proof for Wang’s tiling problem [9]).

We therefore have formalised Turing machines in the first place and the main com-
putability results from Chapters 3 to 8 in the textbook by Boolos et al [2]. For this we
did not need to implement anything on the ML-level of Isabelle/HOL. While formalis-
ing the six chapters of [2] we have found an inconsistency in Boolos et al’s definitions
of what function a Turing machine calculates. In Chapter 3 they use a definition that
states a function is undefined if the Turing machine loops or halts with a non-standard
tape. Whereas in Chapter 8 about the universal Turing machine, the Turing machines
will not halt unless the tape is in standard form. Like Nipkow [6] observed with his
formalisation of a textbook, we found that Boolos et al are (almost) right. We have not
attempted to formalise everything precisely as Boolos et al present it, but use definitions
that make our mechanised proofs manageable. For example our definition of the halting
state performing Nop-operations seems to be non-standard, but very much suited to a
formalisation in a theorem prover where the steps-function needs to be total.

Norrish mentions that formalising Turing machines would be a “daunting prospect”
[7, Page 310]. While λ-terms indeed lead to some slick mechanised proofs, our ex-
perience is that Turing machines are not too daunting if one is only concerned with
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formalising the undecidability of the halting problem for Turing machines. As a point
of comparison, the halting problem took us around 1500 loc of Isar-proofs, which is
just one-and-a-half times of a mechanised proof pearl about the Myhill-Nerode theo-
rem. So our conclusion is that this part is not as daunting as we estimated when reading
the paper by Norrish [7]. The work involved with constructing a universal Turing ma-
chine via recursive functions and abacus machines, we agree, is not a project one wants
to undertake too many times (our formalisation of abacus machines and their correct
translation is approximately 4600 loc; recursive functions 2800 loc and the universal
Turing machine 10000 loc).

Our work is also very much inspired by the formalisation of Turing machines of
Asperti and Ricciotti [1] in the Matita theorem prover. It turns out that their notion
of realisability and our Hoare-triples are very similar, however we differ in some ba-
sic definitions for Turing machines. Asperti and Ricciotti are interested in providing a
mechanised foundation for complexity theory. They formalised a universal Turing ma-
chine (which differs from ours by using a more general alphabet), but did not describe
an undecidability proof. Given their definitions and infrastructure, we expect however
this should not be too difficult for them.

For us the most interesting aspects of our work are the correctness proofs for Turing
machines. Informal presentations of computability theory often leave the constructions
of particular Turing machines as exercise to the reader, for example [2], deeming it to
be just a chore. However, as far as we are aware all informal presentations leave out any
arguments why these Turing machines should be correct. This means the reader is left
with the task of finding appropriate invariants and measures for showing the correctness
and termination of these Turing machines. Whenever we can use Hoare-style reasoning,
the invariants are relatively straightforward and again as a point of comparison much
smaller than for example the invariants used by Myreen in a correctness proof of a
garbage collector written in machine code [5, Page 76]. However, the invariant needed
for the abacus proof, where Hoare-style reasoning does not work, is similar in size as
the one by Myreen and finding a sufficiently strong one took us, like Myreen, something
on the magnitude of weeks.

Our reasoning about the invariants is not much supported by the automation be-
yond the standard automation tools available in Isabelle/HOL. There is however a tan-
talising connection between our work and very recent work by Jensen et al [4] on
verifying X86 assembly code that might change that. They observed a similar phe-
nomenon with assembly programs where Hoare-style reasoning is sometimes possible,
but sometimes it is not. In order to ease their reasoning, they introduced a more prim-
itive specification logic, on which Hoare-rules can be provided for special cases. It
remains to be seen whether their specification logic for assembly code can make it eas-
ier to reason about our Turing programs. That would be an attractive result, because
Turing machine programs are very much like assembly programs and it would con-
nect some very classic work on Turing machines to very cutting-edge work on machine
code verification. In order to try out such ideas, our formalisation provides the “play-
ground”. The code of our formalisation is available from the Mercurial repository at
http://www.dcs.kcl.ac.uk/staff/urbanc/cgi-bin/repos.cgi/tm/.

http://www.dcs.kcl.ac.uk/staff/urbanc/cgi-bin/repos.cgi/tm/
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Abstract. This paper reports on a six-year collaborative effort that cul-
minated in a complete formalization of a proof of the Feit-Thompson Odd
Order Theorem in the Coq proof assistant. The formalized proof is con-
structive, and relies on nothing but the axioms and rules of the founda-
tional framework implemented by Coq. To support the formalization, we
developed a comprehensive set of reusable libraries of formalized math-
ematics, including results in finite group theory, linear algebra, Galois
theory, and the theories of the real and complex algebraic numbers.

1 Introduction

The Odd Order Theorem asserts that every finite group of odd order is solvable.
This was conjectured by Burnside in 1911 [34] and proved by Feit and Thomp-
son in 1963 [14], with a proof that filled an entire issue of the Pacific Journal
of Mathematics. The result is a milestone in the classification of finite simple
groups, and was one of the longest proof to have appeared in the mathematical
literature to that point. Subsequent work in the group theory community aimed
at simplifying and clarifying the argument resulted in a more streamlined version
of the proof, described in two volumes [6, 36]. The first of these, by H. Bender
and G. Glauberman, deals with the “local analysis”, a term coined by Thompson
in his dissertation, which involves studying the structure of a group by focusing
on certain subgroups. The second of these, by T. Peterfalvi, invokes character
theory, a more “global” approach that involves studying a group in terms of the
ways it can be represented as a group of matrices.

Both the size of this proof and the range of mathematics involved make formal-
ization a formidable task. The last couple of decades have brought substantial ad-
vances in the use of interactive theorem provers, or“proof assistants,”towards ver-
ifying substantial mathematical results [5, 16, 23]. The technology has also been
used to verify the correctness of hardware and software components with respect
to given specifications; significant successes in that area include the formal proof
of correctness of a realistic compiler [32] and of a small operating system [29]. For-
mal methods have been especially useful when it comes to verifying the correctness
of mathematical proofs that rely on computations that are too long to be checked
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by hand. For example, Appel and Haken’s proof of the four-color theorem [1] has
been verified [16] in the Coq system [7], and Thomas Hales’ Flyspeck project [23]
is working towards verifying a proof of the Kepler conjecture, which Hales himself
first established with contributions by Samuel Ferguson.

The formalization described in the present article, however, is of a different
nature. The proof of the Odd Order Theorem does not rely on mechanical com-
putation, and the arguments were meant to be read and understood in their
entirety. What makes the formalization difficult — and interesting — is the
combination of theories involved. Working with these theories formally required
developing a methodology that makes it possible to switch, efficiently, between
the various views a mathematical text can superimpose on the same mathemat-
ical object. Another important task has been to formalize common patterns of
mathematical reasoning. When it comes to formal verification of software, inter-
action with a proof assistant is commonly based on case analysis and structural
induction. In contrast, the proof of the Odd Order Theorem relies on a variety
of argument patterns that require new kinds of support.

In Section 2 we outline the statement and proof of the Odd Order Theorem.
Section 3 provides some examples of the design choices we adopted to repre-
sent mathematical concepts in the type theory underlying the Coq system. In
Section 4 we review some examples of the techniques we used to represent effi-
ciently different kinds of proof patterns encountered in this proof. In Section 5
we provide three examples of advanced mathematical theories whose formaliza-
tion require a robust combination of several areas of formalized mathematics,
before scaling to the main proof. Section 6 concludes the paper with comments
and some quantitative facts about this work.

2 An Overview of the Odd Order Theorem

2.1 Preliminaries

A group G consists of a set, usually also named G, together with an associative
binary law ∗, usually denoted by juxtaposition, and an identity element 1, such
that each element g of G has an inverse g−1, satisfying gg−1 = g−1g = 1. When
there is no ambiguity, we identify an element g of a group with the correspond-
ing singleton set {g}. In particular the trivial group {1} is denoted by 1. The
cardinality of G is called the order of the group. Examples of finite groups in-
clude the cyclic group Z/nZ of integers modulo n under addition, with identity
0; the set Sn of permutations of {0, . . . , n− 1}, under composition; and the set
of isometries of a regular n-sided polygon. These examples have order n, n!, and
2n, respectively. The cartesian product G1 × G2 of two groups G1 and G2 is
canonically a group with law (a1, a2)∗ (b1, b2) := (a1b1, a2b2); the group G1×G2

is called the direct product of G1 and G2.
The law of an abelian group is commutative; in a non-abelian group G, we

only have ab = bab = ba[a, b], where ab := b−1ab is the b-conjugate of a, and
[a, b] := a−1b−1ab is the commutator of a and b. Product and conjugation extend
to subsets A,B of G, with AB := {ab | a ∈ A, b ∈ B} and Ab := {ab | a ∈ A}.
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A subset A of G is B-invariant when Ab = A for all b in B; in that case we have
AB = BA.

One says that H is a subgroup of a group G, and writes H < G, when H
is a subset of G containing 1 and closed under product and inverses — thus
itself a group. For finite H , H < G is equivalent to 1 ∪ H2 ⊂ H ⊂ G. The set
of subgroups of G is closed under intersection, conjugation, and commutative
product (such as product with an invariant subgroup). If G is finite and H < G,
then the order of H necessarily divides the order of G. It is not generally the
case that for each divisor of the order of G there exists a subgroup of G of this
order, but if G is a group of order n and p is a prime number dividing n with
multiplicity k, then there exists a subgroup of G having order pk, called a Sylow
p-subgroup of G.

The notion of a normal subgroup is fundamental to group theory:

Definition 1 (Normal subgroup). H is a normal subgroup of a group G,
denoted H � G, when H is a G-invariant subgroup of G.

If H�G, the set {Hg | g ∈ G} of H-cosets is a group, as (Hg1)(Hg2) = H(g1g2).
This group, denoted G/H , is called the quotient group of G and H because it
identifies elements of G that differ by an element of H . If G1 and G2 are groups,
G1 and G2 are both normal in the group G1 ×G2.

Every finite abelian group is isomorphic to a direct product of cyclic groups
Z/pki

i Z, where the pi are prime numbers. The far more complex structure of
nonabelian groups can be apprehended using an analogue of the decomposition
of a natural number by repeated division:

Definition 2 (Normal series, factors). A normal series for a group G is a
sequence 1 = G0�G1 · · ·�Gn = G, and the successive quotients (Gk+1/Gk)0≤k<n

are called the factors of the series.

A group G is simple when its only proper normal subgroup is the trivial group
1, i.e., if its only proper normal series is 1 � G. A normal series whose factors
are all simple groups is called a composition series. The Jordan-Hölder theorem
states that the (simple) factors of a composition series play a role analogous to
the prime factors of a number: two composition series of the same group have
the same factors up to permutation and isomorphism. Unlike natural numbers,
however, non-isomorphic groups may have composition series with isomorphic
factors. The class of solvable groups is characterized by the elementary structure
of their factors:

Definition 3 (Solvable group). A group G is solvable if it has a normal series
whose factors are all abelian.

Subgroups and factors of solvable groups are solvable, so by the structure the-
orem for abelian groups, a finite group is solvable if and only if all the factors
of its composition series are cyclic of prime order. We are now able to state the
Odd Order Theorem.
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2.2 The Odd Order Theorem

Theorem 1 (Odd Order theorem [14]). Every finite group of odd order is
solvable.

It is striking that the theorem can be stated in such elementary terms, whereas
its proof requires much more baggage. The file stripped_Odd_Order1 of [39]
provides a minimal, self-contained formulation of the Odd Order theorem, using
only the bare Coq logic, and avoiding any use of extra-logical features such as
notations, coercions or implicit arguments.

The proof of Theorem 1 proceeds by induction, showing that no minimal
counterexampleG exists. At the outset G is only known to be simple, nonabelian
of odd order, but all proper subgroups of G should be solvable. The first half
of the proof exploits these meager facts to derive a detailed description of the
maximal proper subgroups of G, reducing the general structure of G to five cases.
The second half of the proof uses character norm inequalities to rule out four
of these, and extract some algebraic identities in a finite field from the last one.
Galois theory is then used to refute these, completing the proof.

The study of the (solvable) subgroups of G exploits their decomposition into
prime factors, reconstructing the structure of a maximal subgroup M from that
of its p-factors for individual primes p. An A-invariant subgroup H of M has a
normal series with A-invariant elementary abelian factors, that is, direct prod-
ucts of prime cycles. Identifying each one with a vector space over a finite field
Fp makes it possible to analyze the action of A on H via the representations
mapping A to a group of matrices over Fp, and use linear algebra techniques
such as eigenspace decomposition. Indeed, the proof starts by showing that 2×2
representations are abelian, then that no representation of A has a quadratic
minimal polynomial (this replaces the use of the Hall-Higman theorem in [14]).
This p-stability is combined with Glauberman’s ZJ∗ factorization to establish
a Uniqueness theorem (Chapter II of [6]): any subgroup of rank 3 (containing
an elementary abelian subgroup of order p3) lies in a unique maximal subgroup
of G.

Combining the Uniqueness theorem with results of Blackburn on odd groups
of rank 2 yields that any maximal subgroupM of G is a semidirect product MσE
withMσ�M andMσ, E of coprime order. Furthermore, very few elements ofMσ

and E commute — M is similar to a Frobenius group. Further analysis reveals
that most M are of type I: M is very nearly a Frobenius group, with Mσ equal
to the direct product MF of the normal Sylow subgroups of M . However some
M can be of type P, withM =MFUW1, whereW1 is cyclic, UW1 is a Frobenius
group, and all w1 inW1 commute precisely with the same cyclic groupW2 < MF

(W1 acts in a prime manner on MF ). Type P is subdivided into types V, II, III
or IV, according to whether U is trivial, included in a different maximal group,
abelian, or nonabelian, respectively. If any, there are exactly two type P groups
up to conjugation, with W1 and W2 interchanged; at least one has type II, and
over half of the elements of G lie in conjugates of W =W1W2.

1 http://coqfinitgroup.gforge.inria.fr/doc/stripped_odd_order_theorem.html

http://coqfinitgroup.gforge.inria.fr/doc/stripped_odd_order_theorem.html
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The second part of the proof [36] uses characters. The character of a complex
representation ρ : H "→ GL(n,C) is the function mapping each h ∈ H to the
trace of ρ(h). In general, a character is not a group homomorphism, but it is a
class function, constant on conjugacy classes of H . Convolution over H makes
the set of class functions on a group H into a Hermitian space, for which the set
irr H of irreducible characters of H forms an orthonormal basis. Characters of
H have natural integer coordinates in irr H , hence integral norm.

Local analysis provides us both with a precise description of the characters of a
maximal subgroupM , and an isometry mapping certain virtual characters ofM
(differences of characters) to virtual characters of G. This Dade isometry is only
defined on functions that vanish on 1, so in order to extract usable information
on G one needs coherence theorems extending it to a set of proper characters.
The first, due to Sibley, covers Frobenius and type V maximal subgroups, and
the second type II–IV subgroups.

For any χ ∈ irr G, coherence for a set (Mi) of non-conjugate maximal sub-
groups implies a numerical inequality bounding the sum of the (Hermitian)
norms of the inverse images of the restrictions of χ to the support of the image
of the Dade isometries for the Mi, and the (complex) norms of the values of χ
elsewhere. For types III–V this bound yields a non-coherence theorem, which
successively eliminates types V and IV; this implies that type I groups are actu-
ally Frobenius, and then the coherence bound forces type P groups to exist.

More inequalities then force the MF , U , and W1 subgroups of the type P
groups to be isomorphic to the additive, unitary multiplicative, and Galois groups
of a finite field Fpq of order pq, then rule out type III, and imply that U is
W y

2 -invariant for some y ∈ HF , where H is the other type II group such that
W1 < HF . Intricate calculations show that this implies that if a ∈ Fpq and 2− a
both have Galois norm 1, then so does τ(a) := 2−1/a, and hence τ(a) . . . τk(a) =
(1− 1/a)k + 1; for a �= 1 the Galois norm of (1− 1/a)x+ 1 yields a polynomial
of degree q which has 0, ..., p − 1 as roots, whence q ≤ p and hence q = p by
symmetry, so the orders of MF and E > W1 are not coprime, a contradiction.

2.3 Mathematical Sources

Our formalization follows the two books describing the revised proof [6, 36],
with a small number of exceptions, for which we formalized the original argu-
ments [14]. We followed Huppert’s proof [27] of the Wielandt fixed point order
formula. The elementary finite group theory part follows standard references
[31]. For more advanced material we have used Aschbacher’s and Gorenstein’s
books [3, 22] and some sources adapted to Galois theory and commutative alge-
bra [30, 33, 37]. The formalization of character theory is based on Isaacs [28].

3 Mathematical Structures and Interfaces in Coq

3.1 The Calculus of Inductive Constructions and the Coq System

Most mathematical papers and textbooks do not explicitly specify a formal ax-
iomatic foundation, but can generally be viewed as relying on set theory and
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classical logic. Many interactive theorem provers, however, use alternative for-
mal systems based on some form of type theory. Just as in the domain of pro-
gramming languages, types help classify expressions passed to the checker, and
hence facilitate the verification of claims in which they appear. The Coq proof
assistant [7] is based on a logical foundation known as the Calculus of Inductive
Constructions, or CIC [11, 12], a powerful and expressive version of constructive
dependent type theory.

The advantage to using dependent type theory is that types can express com-
plex specifications. For example, in our formalization, if G is an object of type
finGroupType, then G is a record type which packages the type representing the
elements ofG, the binary group operation, the identity, and the inverse, as well as
proof that these items satisfy the group axioms. In addition,Coq’s type inference
algorithm can eliminate the need to provide information that can be reconstructed
from type constraints, just as implicit information is reconstructed by an experi-
enced reader of a page of mathematics. For example, if g and h are elements of the
carrier type of G an object of type finGroupType, then when presented with the
expression g ∗ h, Coq can infer that ∗ denotes the binary operation of G, as well
as the fact that that operation is associative, and so on. Thus, type inference can
be used to discover not only types, but also data and useful facts [19, 4]. Working
with such an elaborate type system in a proof assistant can be delicate, however,
and issues like the decidability of type checking impose severe restrictions on the
nature of the dependent types one can work with in practice.

The status of computation in Coq’s formalism also plays a central role in the
present formalization. Every term or type has a computational interpretation,
and the ability to unfold definitions and normalize expressions is built in to
the underlying logic. Type inference and type checking can take advantage of
this computational behavior, as can proof checking, which is just an instance of
type checking. The price to pay for this powerful feature is that Coq’s logic is
constructive. In Coq many classical principles, such as the law of the excluded
middle, the existence of choice functions, and extensionality are not available at
the level of the logic. These principles can be recovered when they are provably
valid, in the constructive sense, for specific objects like finite domains, or they
can be postulated as axioms if needed. The present formalization, however, does
not rely on any such axiom. Although it was not the primary motivation for this
work, we eventually managed to obtain a completely constructive version of the
proof and of the theories it requires.

In short, the success of such a large-scale formalization demands a careful
choice of representations that are left implicit in the paper description. Taking
advantage of Coq’s type mechanisms and computational behavior allows us to
organize the code in successive layers and interfaces. The lower-level libraries
implement constructions of basic objects, constrained by the specifics of the
constructive framework. Presented with these interfaces, the users of the higher-
level libraries can then ignore these constructions, and they should hopefully be
able to describe the proofs to be checked by Coq with the same level of comfort
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as when writing a detailed page in LATEX. The goal of this section is to describe
some of the design choices that were made in that respect.

3.2 Principles of Boolean Reflection

The equality relation x = y on a given type is generally not decidable, which is
to say, the alternative x = y∨ x �= y is not generally provable. In some contexts,
one can prove that equality is equivalent to a boolean relation x ≡ y, for which
the law of the excluded middle holds. In our formalization, an eqType is a type
paired with such a relation. Working with an eqType thus provides a measure
of classical reasoning.

Using boolean values and operations to reason about propositions is called
boolean reflection. This makes it possible, in a sense, to “calculate” with propo-
sitions, for example, by rewriting with boolean identities. More generally, to
take advantage of propositions that can be represented as boolean values, the li-
braries provides infrastructure theorems to link logical connectives on (boolean)
propositions with the corresponding boolean connectives. The SSReflect tac-
tic language also provides support to facilitate going back and forth between
different but equivalent descriptions of the same notion, like between boolean
predicates and their logical equivalents. An explicit coercion is used through-
out the formalization, which inserts automatically and silently an injection from
a boolean value b to the formula (b = true) in the type Prop of propositions.
This strategy is central to our methodology, and explains the name SSReflect,
which is short for small scale reflection [18, 20].

Decidable equality plays another important role in facilitating the use of sub-
types. If A is a type, a subset of A can be represented by a predicate B on A, that
is, a map B from A to the type Prop. An element of this subset can be represented
by an element a ofA, and a“proof”p thatB holds for a. The dependent pair 〈a, p〉
is an element of the dependent sum, or Sigma type, Σx:ABx. As B takes values in
Prop, Σx:ABx is also called a subtype of A, for the reasons just described.

The problem is that the equality on a subtype is not as simple as one would
like. Two elements 〈a1, p1〉 and 〈a2, p2〉 are equal if and only if a1 = a2 but also,
now considering both p1 and p2 as proofs that a1 satisfies B, p1 and p2 are the
same proof. However, a theorem due to Hedberg [25], formalized in our library as
eq_irrelevance2, implies that if B is a boolean-valued rather than Prop-valued
predicate, then any two proofs p1 and p2 that a1 satisfies B are equal. Thus,
in this case, two elements 〈a1, p1〉 and 〈a2, p2〉 of the subtype are equal if and
only if a1 = a2. Our libraries provide support [18] for the manipulations of these
boolean subtypes, which are used pervasively in the formalization.

3.3 Finite Group Theory

Given the substantial amount of group theory that needed to be formalized, we
relied on two important observations to optimize the data structures used to

2 http://coqfinitgroup.gforge.inria.fr/doc/eqtype.html

http://coqfinitgroup.gforge.inria.fr/doc/eqtype.html
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represent finite groups. First, in many proofs, one can take most or all of the
groups involved to be subgroups of a larger ambient group, sharing the same
group operation and identity. Moreover, local notions like the normalizer of H
inside of G, denoted NG(H), are often used “globally,” as in N(H), a practice
which implicitly assumes that the normalizer is to be computed within an am-
bient container group. Second, and more importantly, many theorems of group
theory are equally effective when stated in less generality, in terms of subgroups
of such an ambient group. For example, given a theorem having to do with two
unrelated groups, it does not hurt to assume that the two groups are subgroups
of a larger group; this can always be made to hold by viewing them as subgroups
of their direct product.

In our formalization, we represent such ambient groups as finGroupTypes,
and then represent the groups of interest as subsets of that type that contain
the identity and are closed under the group operation. This is much simpler than
having to maintain a plurality of types and morphisms between them. We form
a new finGroupType only when strictly necessary, for example when forming a
quotient group, which requires a new group operation [19].

A delicate point we had to cope with is that many constructions are partial.
For example, the quotient group G/N can be formed only if N � G (see Sec-
tion 2.1), and the direct product G ×H of two subgroups of an ambient group
can be formed only if they commute and G ∩ H = 1. In addition, given our
encoding of groups as subsets of a container group type, morphisms are unlikely
to be defined on the whole group type, but rather on a specific subset.

Such constructions are ubiquitous. Forming subtypes as described in Sec-
tion 3.2 in each case would be unwieldy and would make the application of
lemmas mentioning partial constructions particularly cumbersome. The general
approach has been to make each of these constructions total, either by modifying
the input when it is invalid, or returning a default value. For example, the direct
product construction returns the empty set (which is not a group) if the input
groups have a nontrivial intersection; applying a morphism to a set automati-
cally shrinks the input set by intersecting it with the domain of the morphism.
The downside of this approach is that lemmas involving partial constructions
often, but not always, depend on side conditions that need to be checked when
the lemma is applied.

3.4 Dependent Records as First Class Interfaces

Records are just a generalization of the dependent pair construction described
in Section 3.2, and, in the same way, can be used to package together types,
data, operations and properties. They can thus play the role of abstract “inter-
faces.” Such interfaces are very natural in abstract algebra, but are also useful in
developing a theory of iterated operations [8], a theory of morphisms, a theory
of algebraic structures [15] and so on. For an extensive list of interfaces used in
the SSReflect library, the reader can refer to Section 11.3 of the SSReflect
documentation [20].



A Machine-Checked Proof of the Odd Order Theorem 171

In addition to the hierarchy of algebraic structures, we also provide a hierarchy
for numeric fields [9], which are fields equipped with a boolean order relation,
possibly partial. The purpose of this small hierarchy is to capture the operations
and the theory of the complex number field and its subfields (cf Section 5.2).

Here we simply provide an example to illustrate how, using record types and
setting up type inference carefully, one can obtain a hierarchy of interfaces that
provides multiple inheritance, notation overloading, and (as we will see in the
next section) a form of proof search. Consider the expression (x + x * x ==

0), where x is taken to be of type int. The symbols *, + and == are overloaded,
and correspond to the multiplication of a ring, the addition operation in an
additive group, and a decidable comparison operation. Type inference has to
check that operations are applied to arguments of the right type; for example
x of type int is used as an argument of *, hence the type int is unified with
the carrier of an unspecified ring structure. Unification can be programmed,
thanks to Coq’s canonical structures mechanism, to solve such a unification
problem by fixing the unknown structure to be the canonical ring structure
on the integers. Given that int has been proved to be an instance of all the
structures involved, unification always succeeds and type inference can make
sense of the input expression, binding the overloaded symbols to the respective
integer operations.

3.5 Searching Proofs by Programming Type Inference

Very often, the verification of small, uninteresting details is left implicit in an
ordinary mathematical text, and it is assumed that a competent reader can fill
these in. Canonical structures can be programmed to play a similar role. In
particular, structures can package data with proofs, as in Section 3.2, in which
case searching for a particular structure that contains a certain value can amount
to looking for a proof that some property holds for that value.

A slight difficulty is that canonical structures are designed to guide unifica-
tion, which is used by type inference to process types (like int), while here we
need to process values (like the intersection of two sets). The crucial observation
is that Coq’s logic features dependent types, which means that values can be
injected into types, even artificially, to make them available to unification, and
hence to canonical structure resolution. We call the mechanism for doing this a
phantom type. The use is similar to the use of phantom types in functional pro-
gramming [26], where one enriches a type with a dummy (phantom) annotation
to trick the type system into enforcing additional invariants.

Manifestations of this automatic proof search machinery are ubiquitous. For
example, we can prove (1 \in f @* (G :&: H)) by applying the group1 lemma,
which states that a set contains the unit element 1 if it happens to be a group.
The canonical structure mechanism infers this group structure automatically for
f @* (G :&: H): if G and H have a group structure, then so does their intersec-
tion, as well as the image of that intersection under a group morphism f.

An advanced use of canonical structures is found in the definition of the
mxdirect predicate, which states that its argument is a finite sum

∑n
i=1 Ei
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of vector spaces (Ei)i∈[1...n] that is moreover direct. What makes the mxdirect

predicate unusual is that it is computed from the syntax of its argument, by
comparing the rank r(

∑n
i=1Ei) of the vector space defined by the whole expres-

sion with the sum
∑n

i=1 r(Ei) of the ranks of its components. If the two numbers
are equal, the sum is direct. The canonical structure mechanism is programmed
to recognize the syntax of an arbitrary sum of vector spaces, to collect the single
spaces, to sum up their ranks. The mxdirect predicate is then defined as the
comparison of the result with the rank of the whole initial expression [17].

The canonical structures inference mechanism essentially provides a Prolog
like resolution engine that is used throughout the libraries to write statements
that are more readable and easier to use. Programming this resolution engine
can be quite tricky, and a more technical explanation would go beyond the scope
of this paper [21].

4 Mathematical Proofs in Coq

4.1 Symmetries

One commonly invokes a symmetry argument in a mathematical proof by assert-
ing that “without loss of generality” some extra assumption holds. For example,
to prove a statement P (x, y) in which x and y play symmetric roles, adding the
assumption x ≤ y does not change the resulting theorem. Whereas an ordinary
mathematical proof will leave it to the reader to infer the tacit argument, when
doing formal proofs, it is useful to have support to fill in the details [24].

The SSReflect proof language provides a simple but effective tool in that
regard: the wlog tactic [20]. This tactic performs a logical cut with a formula
constructed from the names of the context items involved in the symmetry ar-
gument and the statement of the extra property the symmetry will exploit, both
provided by the user. The logical cut generated by the proof shell involves the
selected piece of context and the ongoing, usually very large, goal. For instance,
when attempting to prove the statement (P a b), the command wlog H: a b /

a <= b, generates a first subgoal requiring a proof that (H : forall x y, x

<= y -> P x y) holds, and another one to prove (P a b) under the assumption
of H, which boils down to two applications of H if the statement (P a b) is ac-
tually symmetric in a and b. This simple tool has been instrumental at several
places of the formalization, especially in large proofs using character theory [36].

4.2 Cycles of Inequalities

A standard pattern of reasoning seems to conclude out of blue that some assertion
holds, from a proof that a chain of nonstrict inequalities in which the first and last
terms are the same. The implicit content is a three-step proof: the circularity
of the chain forces each inequality to be an equality; for each inequality, the
equality case is characterized by a certain condition; hence the conjunction of
these conditions holds and the desired statement follows from these. Typical
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examples of such inequalities come from the properties of convex functions, e.g.,
the inequality between the arithmetic and geometric means is related to the strict
convexity of the exponential function. The equality conditions can, however, be
more elaborate; for example, the rank of a sum of finite dimensional vector spaces
is smaller than the sum of the ranks of the summed vector spaces and equality
holds if and only if the sum is direct.

In order to formalize this kind of proof efficiently, the SSReflect library uses
notation to pair an inequality with the condition under which equality holds. For
example, consider the following lemma:

Lemma nat_Cauchy m n : 2 * (m * n)<= m ^ 2 + n ^ 2 ?= iff (m == n)

This hides the conjunction of the following statements:
2 * (m * n) <= m ^ 2 + n ^ 2

(2 * (m * n) == m ^ 2 + n ^ 2) = (m == n)
The second statement is an equality reflecting the equivalence of the two boolean
statements. Because the rewrite tactic can take multi-rules as arguments [20],
rewriting with nat_Cauchy can affect several kinds of comparisons. The library
provides support for using these statements, including the transitivity lemma
collecting the equality conditions that is instrumental in capturing the pattern
of reasoning described above. This technique has been a key ingredient in the
formalization of advanced results3 using character theory [36].

4.3 Proof Search by Large-Scale Reflection

Most of the proofs we worked from were not amenable to automation. A notable
exception is found in Section 3 of the second volume of the proof [36], which
deals with an indexed family of virtual characters (βij). These are defined to
be integer linear combinations βij =

∑
k zk χk of irreducible characters, where

the collection of irreducible characters (χk) form a family of class functions that
is orthonormal for the inner product 〈·, ·〉. The array of virtual characters in
question satisfies certain combinatorial constraints:

– For each i, 〈βij , βij〉 = 3.
– For any two distinct elements on the same row or the same column (i = i′

or j = j′ but not both), 〈βij , βi′j′〉 = 1.
– Any two elements on distinct rows and columns (i �= i′ and j �= j′) are

orthogonal, that is, 〈βij , βi′j′ 〉 = 0.

These conditions impose tight constraints on the βij ’s.
A two-page combinatorial argument [36] shows that if there are at least four

rows and two columns, then elements of the same column have a common irre-
ducible character, and the respective coefficients are equal. We initially formal-
ized this argument by hand. Later, Pascal Fontaine (one of the developers of
the SMT solver veriT), provided us with an encoding4 that made it possible

3 See, for instance, http://coqfinitgroup.gforge.inria.fr/doc/PFsection9.html
4 The SmtLib file is available at http://coqfinitgroup.gforge.inria.fr/
smt/th3_5.smt

http://coqfinitgroup.gforge.inria.fr/doc/PFsection9.html
http://coqfinitgroup.gforge.inria.fr/smt/th3_5.smt
http://coqfinitgroup.gforge.inria.fr/smt/th3_5.smt
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to automate the proof using a trusted connection between Coq and an SMT
solver [2]. In order to have an automated version of the proof within the Coq
system, we ultimately encoded the proof search directly, taking advantage of the
symmetry of the problem. This was done using large-scale reflection, supported
by notation-based reification. This automated version is shorter than our ini-
tial version, compiles twice as fast, and is intellectually more satisfying, as it
eliminates unnecessary steps from the original proof [36].

4.4 Classical Reasoning

The instances of the mathematical structures of our hierarchy (see Section 3.4)
are required to have boolean operators for the comparison and, possibly, the
ordering of their inhabitants. We provide instances for all these structures, and
all the instances needed for this formalization are in fact either finite types or
countable types. We therefore benefit from other classical properties otherwise
not available in the constructive logic of Coq. Indeed, countable types satisfy the
functional choice axiom for boolean predicates (Markov’s principle); functions on
finite types can be represented by their graphs, which are extensional: the graphs
of any two functions that are pointwise equal are in fact equal [18].

Boolean reflection extends to any first-order theory that has a decision pro-
cedure. In particular, the algebraic hierarchy mentioned in Section 3.4 has an
interface for fields with a decidable first-order theory. The specification of this
property uses a deep embedding of first-order formulas together with a boolean
satisfiability predicate. Finite fields are of course instances of this interface, as
are algebraically closed fields, which enjoy quantifier elimination [38, 10]. Decid-
able fields are used in the formalization of representation theory, both in dealing
with modular representations, which are based on finite fields, and complex rep-
resentations, which are based on algebraic complex numbers.

In other cases first-order decidability fails, notably for the rationals and for
number fields. As a result, we elected not to rely on this interface for some basic
results in the theory of group modules that cannot be proved constructively.
Instead, we proved their double negation, expressed using the classically

monadic operator [17, 35]:

Definition classically (P : Prop) : Prop :=

forall b : bool, (P -> b) -> b.

Note the implicit use in this statement of the coercion mentioned in Section 3.2.
The statement (classically P) is logically equivalent to (~~ P), but this for-
mulation is more useful in practice, because when using a hypothesis of the form
(classically P) in the proof of a statement expressed as a boolean (on which
excluded middle holds), one can constructively assume that P itself holds.

The classically operator is used only in the file formalizing the theory of
group modules for representations. Note that although we use the classically
operator to weaken the statement of some theorems we formalized, we did
not need to alter the statement of Odd Order Theorem to describe its proof
completely within the calculus of inductive constructions.
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5 Mathematical Theories

5.1 Representations and Characters

Our treatment of linear algebra is organized in two levels. On the abstract level,
a hierarchy of structures (see Section 3.4) provides interfaces, notations and
shared theories for vectors, F -algebras and their morphisms. On the concrete
level, these structures are instantiated by particular models, centered on matri-
ces [17]. The central ingredient to this latter formalization is an extended Gaus-
sian elimination procedure similar to LUP decomposition. This formalization of
matrix algebra itself contains proofs of nontrivial results, covering determinants,
Laplace expansion for cofactors, and properties of direct sums.

The choices we have made are validated by the successful formalization of
representation theory, which depends on both finite group theory and linear
algebra. Thanks to the underlying formalization of linear algebra in terms of
concrete matrices, it is fairly easy to define the representations of a given group
G in terms of square matrices with coefficients in a given field F , as well as other
important notions, like the enveloping algebra of a representation, or a group
module. Part of the theory of group modules requires the extra assumption
that F has a decidable first-order theory. The library includes formal proofs
of the fundamental results of representation theory, including Schur’s lemma,
Maschke’s theorem, the Jacobson density theorem, the Jordan-Hölder theorem,
Clifford’s theorem, the Wedderburn structure theorem for semisimple rings, etc.

The next step is the finite group character theory, the main prerequisite for the
second part of the proof [36]. Characters are defined as class functions with com-
plex values, equipped with their standard convolution product. We first define
the tuple of class functions on a given group G that are irreducible characters
of G; then characters are class functions that are linear combinations of irre-
ducible characters with natural number coordinates. Finally, we define virtual
characters: class functions that are integer linear combinations of a given list of
class functions. All these definitions are constructive, thanks to the finiteness
of the group, the decidability of the first order theory of the coefficient field
(Section 4.4) (here the complex algebraic numbers) and the Smith normal form
for integer matrices. The formalization includes results like the theory of inertia
groups, Burnside’s paqb theorem, and Burnside’s vanishing theorem [28].

5.2 Complex Algebraic Numbers

Our formalizationof the character theoryused in the secondvolumeof theproof [36]
is parametrized by a decidable field of complex numbers. In order to provide a con-
crete instance of this interface, we formalized a construction of the algebraic num-
bers. Standard presentations of character theory use arbitrary complex numbers,
but as characters can only take algebraic values, the restriction is innocuous.

The algebraics can be described as an algebraic closure of the rationals equipped
with an involutive conjugation automorphism z "→ z̄. The latter yields both a
norm (|z| = tt̄ for some t2 = z) and a partial order (x ≤ y if |y − x| = y − x)
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whose restriction to the real (conjugation-invariant) algebraics is total; that is, an
implementation of our“numeric field” interface (Section 3.4).

We first obtained the algebraics as the complex extension R[i] of the real
closed field of real algebraic numbers R which we had constructed explicitly [9];
we adapted an elementary proof of the Fundamental Theorem of Algebra (FTA)
based on matrix algebra [13] to show that R[i] is algebraically closed.

We then refactored that construction to eliminate the use of the real alge-
braics. We construct the algebraics directly as a countable algebraic closure,
then construct conjugation by selecting a maximal real subfield. Because we are
within a closure we can use Galois theory and adapt the usual proof of the FTA
to show that conjugation is total.

5.3 Galois Theory

Galois theory establishes a link between field extensions and groups of auto-
morphisms. A field extension is built by extending a base field with roots of
polynomials that are irreducible on this base field. The vector space structure of
such an extension plays an important role. The remarks and methods described
in Section 3.3 apply in this situation: instead of assigning a type to each new
extension, field extensions are formalized as intermediate fields between a fixed
base field F and a fixed ambient splitting field extension L. A splitting field
extension of F is a field extension of F generated by an explicit finite list of all
the roots of a given polynomial.

All the constructions of this formalized Galois theory hence apply to exten-
sions of a field F that are subfields of a field L. If K and E are intermediate
extensions between F and L, the Galois group type (see Section 3.3) of E is
the type of automorphisms of E. Then the Galois group Gal(E/K) of a field
extension E/K is the set of automorphisms of the Galois group type that fix K.
Partiality issues are dealt with in a manner similar to their treatment in finite
group theory (see Section 3.3): the definitions take as arguments subspaces of
the ambient field, but the theory is available for those vector spaces that are
fields, a fact that can generally be inferred via a canonical structure. For exam-
ple, Gal(E/K) is a set when E and K are vector spaces, but is equipped with a
group structure as soon as E is a field.

It is interesting to note that standard Galois theory is usually carried out
on normal extensions rather than on splitting fields. While the two notions are
constructively equivalent, splitting fields are much easier to construct in practice.

6 Conclusion

The success of the present formalization relies on a heavy use of the inductive
types [12] provided by Coq and on various flavors of reflection techniques. A
crucial ingredient was the transfer of the methodology of “generic programming”
to formal proofs, using the type inference mechanisms of the Coq system.

Our development includes more than 150,000 lines of proof scripts, includ-
ing roughly 4,000 definitions and 13,000 theorems. The roughly 250 pages of
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mathematics in our two main sources [6, 36] translate to about 40,000 lines of
formal proof, which amounts to 4-5 lines of SSReflect code per line of informal
text. During the formalization, we had to correct or rephrase a few arguments
in the texts we were following, but the most time-consuming part of the project
involved getting the base and intermediate libraries right. This required system-
atic consolidation phases performed after the production of new material. The
corpus of mathematical theories preliminary to the actual proof of the Odd Or-
der theorem represents the main reusable part of this work, and contributes to
almost 80 percent of the total length. Of course, the success of such a large for-
malization, involving several people at different locations, required a very strict
discipline, with uniform naming conventions, synchronization of parallel devel-
opments, refactoring, and benchmarking for synchronization with Coq.

As we have tried to make clear in this paper, when it comes to formalizing this
amount of mathematics, there is no silver bullet. But the combined success of the
many techniques we have developed shows that we are now ready for theorem
proving in the large. The outcome is not only a proof of the Odd Order Theorem,
but also, more importantly, a substantial library of mathematical components,
and a tried and tested methodology that will support future formalization efforts.

Acknowledgments. The authorswould like to thank theCoq team for their con-
tinuous development, improvement and maintenance of the Coq proof assistant.
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Kleene Algebra with Tests

and Coq Tools for while Programs
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Abstract. We present a Coq library about Kleene algebra with tests,
including a proof of their completeness over the appropriate notion of
languages, a decision procedure for their equational theory, and tools for
exploiting hypotheses of a certain kind in such a theory.

Kleene algebra with tests make it possible to represent if-then-else
statements and while loops in imperative programming languages. They
were actually introduced as an alternative to propositional Hoare logic.

We show how to exploit the corresponding Coq tools in the context
of program verification by proving equivalences of while programs, cor-
rectness of some standard compiler optimisations, Hoare rules for par-
tial correctness, and a particularly challenging equivalence of flowchart
schemes.

Introduction

Kleene algebra with tests (KAT) have been introduced by Kozen [19], as an
equational system for program verification. A Kleene algebra with tests is a
Kleene algebra (KA) with an embedded Boolean algebra of tests. The Kleene al-
gebra component deals with the control-flow graph of the programs—sequential
composition, iteration, and branching—while the Boolean algebra component
deals with the conditions appearing in if-then-else statements, while loops, or
pre- and post-assertions. This formalism is both concise and expressive, which
allowed Kozen and others to give detailed paper proofs about various problems
in program verification (see, e.g., [3,19,21,23]). More importantly, the equational
theory of KAT is decidable and complete over relational models [24], and hy-
potheses of a certain kind can be eliminated [11, 15]. This suggests that a proof
using KAT should not be done manually, but with the help of a computer. The
goal of the present work is to give this possibility, inside the Coq proof assistant.

The underlying decision procedure cannot be formulated, a priori, as a simple
rewriting system: it involves automata algorithms, it cannot be defined in Ltac,
at the meta-level, and it does not produce a certificate which could easily be
checked in Coq, a posteriori. This leaves us with only one possibility: defining a
reflexive tactic [1,8,14]. Doing so is quite challenging: we basically have to prove
completeness of KAT axioms w.r.t. the model of guarded string languages (the
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natural generalisation of languages for KA, to KAT), and to provide a provably
correct algorithm for language equivalence of KAT expressions.

The completeness theorem is far from trivial; we actually have to formalise
a lot of preliminary material: finite sums, finite sets, unique decomposition of
Boolean expressions into sums of atoms, regular expression derivatives, expan-
sion theorem for regular expressions, matrices, automata. . . As a consequence,
we only give here a high-level overview of the involved mathematics, leaving
aside standard definitions, technical details, or secondary formalisation tricks.
The interested reader can consult the library, which is documented [30].

This work is a natural continuation of our previous work on KA [9]; the
whole development [30] was however restarted from scratch: the few parts that
could have been reused were rewritten more uniformly, and simplified a lot (e.g.,
construction of matrices, and KA completeness proof).

Outline.We first present KAT and its models (§1). We then sketch the complete-
ness proof (§2), the decision procedure (§3), and the method used to eliminate
hypotheses (§4). We finally illustrate the benefits of our tactics on several case-
studies (§5), before discussing related works (§6), and concluding (§7).

1 Kleene Algebra with Tests

A Kleene algebra with tests consists of:

– a Kleene algebra 〈X, ·,+, ·�, 1, 0〉 [18], i.e., an idempotent semiring with a
unary operation, called “Kleene star”, satisfying an axiom: 1 + x · x� ≤ x�

and two inference rules: y · x ≤ x entails y� · x ≤ x and the symmetric one.
(The preorder (≤) being defined by x ≤ y 	 x+ y = y.)

– a Boolean algebra 〈B,∧,∨,¬,$,⊥〉;
– a homomorphism from 〈B,∧,∨,$,⊥〉 to 〈X, ·,+, 1, 0〉, that is, a function

[·] : B → X such that [a∧ b] = [a] · [b], [a∨ b] = [a]+ [b], [$] = 1, and [⊥] = 0.

The elements of the setB are called “tests”; we denote them by a, b. The elements
of X , called “Kleene elements”, are denoted by x, y, z. We usually omit the
operator “·” from expressions, writing xy for x · y. The following (in)equations
illustrate the kind of laws that hold in all Kleene algebra with tests:

[a ∨ ¬a] = 1 [a ∧ (¬a ∨ b)] = [a][b] = [¬(¬a ∨ ¬b)]
x�x� = x� (x+ y)� = x�(yx�)� (x+ xxy)� ≤ (x+ xy)�

[a]([¬a]x)� = [a] [a]([a]x[¬a] + [¬a]y[a])�[a] ≤ (xy)�

The laws from the first line come from the Boolean algebra structure, while
the ones from the second line come from the Kleene algebra structure. The two
laws from the last line are more interesting: their proof must mix both Boolean
algebra and Kleene algebra reasoning. They are left to the reader as a non-trivial
exercice; the tools we present in this paper allow one to prove them automatically.
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1.1 The Model of Binary Relations

Binary relations form a Kleene algebra with tests; this is the main model we are
interested in, in practice. The Kleene elements are the binary relations over a
given set S, the tests are the predicates over this set, and the star of a relation
is its reflexive transitive closure:

X = P (S × S)

x · y = {(p, q) | ∃r, (p, r) ∈ x ∧ (r, q) ∈ y}
x+ y = x ∪ y
x� = {(p0, pn) | ∃p1 . . . pn−1, ∀i < n, (pi, pi+1) ∈ x}
1 = {(p, p) | p ∈ S}
0 = ∅ [a] = {(p, p) | p ∈ a}

B = P (S)

a ∧ b = a ∩ b
a ∨ b = a ∪ b
¬a = S \ a
$ = S

⊥ = ∅
The laws of a Kleene algebra are easily proved for these operations; note however
that one needs either to restrict to decidable predicates (i.e., to take S → bool

or {p: S → Prop | forall p, S p ∨¬S p} for B), or to assume the law of excluded
middle: B must be a Boolean algebra, so that negation has to be an involution.
This choice for B is left to the user of the library.

This relational model is typically used to interpret imperative programs: such
programs are state transformers, i.e., binary relations between states, and the
conditions appearing in these programs are just predicates on states. These con-
ditions are usually decidable, so that the above constraint is actually natural.

The equational theory of Kleene algebra with tests is complete over the rela-
tional model [24]: any equation x = y that holds universally in this model can be
proved from the axioms of KAT. We do not need to formalise this theorem, but
it is quite informative in practice: by contrapositive, if an equation cannot be
proved from KAT, then it cannot be universally true on binary relations, meaning
that proving its validity for a particular instantiation of the variables necessarily
requires one to exploit additional properties of this particular instance.

1.2 Other Models

We describe two other models in the sequel: the syntactic model (§1.3) and the
model of guarded string languages (§1.4); these models have to be formalised to
build the reflexive tactic we aim at.

There are other important models of KAT. First of all, any Kleene algebra
can be extended into a Kleene algebra with tests by embedding the two-element
Boolean lattice. We also have traces models (where one keeps track of the whole
execution traces of the programs rather than just their starting and ending
points), matrices over a Kleene algebra with tests, but also models inherited
from semirings like min-plus and max-plus algebra. The latter models have a de-
generate Kleene star operation; they become useful when one constructs matrices
over them, for instance to study shortest path algorithms.

Also note that like for Kleene algebra [9,20,29], KAT admits a natural “typed”
generalisation, allowing for instance to encompass heterogeneous binary relations
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and rectangular matrices. Our Coq library is actually based on this generalisa-
tion, and this deeply impacts the whole infrastructure; we however omit the
corresponding details and technicalities here, for the sake of clarity.

1.3 KAT Expressions

Let p, q range over a set Σ of letters (or actions), and let a1, . . . , an be the
elements of a finite set Θ of primitive tests. Boolean expressions and KAT ex-
pressions are defined by the following syntax:

a, b ::= ai ∈ Θ | a ∧ a | a ∨ a | ¬a | $ | ⊥ (Boolean expressions)

x, y ::= p ∈ Σ | [a] | x · y | x+ y | x� | 1 | 0 . (KAT expressions)

Given a Kleene algebra with tests K = 〈X,B, [·]〉, any pair of maps θ : Θ →
B and σ : Σ → X gives rise to a KAT homomorphism allowing to interpret
expressions in K. Given two such expressions x and y, the equation x = y
is a KAT theorem, written KAT � x = y, when the equation holds in any
Kleene algebra with tests, under any interpretation. One checks easily that KAT
expressions quotiented by the latter relation form a Kleene algebra with tests;
this is the free Kleene algebra with tests over Σ and Θ. (We actually use this
impredicative encoding of KAT derivability in the Coq library.)

1.4 Guarded Strings Languages

Guarded string languages are the natural generalisation of string languages for
Kleene algebra with tests. We briefly define them.

An atom is a function from elementary tests (Θ) to Booleans; it indicates
which of these tests are satisfied. We let α, β range over atoms, the set of which
is denoted by At. (Technically, we represent elementary tests as finite ordinals
of a given size n (Θ = ord n), and we encode atoms as ordinals (At = ord 2n).
This allows us to avoid functional extensionality problems.) We let u, v range
over guarded strings : alternating sequences of atoms and letters, which both start
and end with an atom:

α1, p1, . . . , αn, pn, αn+1 .

The concatenation u ∗ v of two guarded strings u, v is a partial operation: it is
defined only if the last atom of u is equal to the first atom of v; it consists in
concatenating the two sequences and removing one copy of the shared atom in
the middle.

The Kleene algebra with tests of guarded string languages is obtained by
considering sets of guarded strings for X and sets of atoms for B:
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X = P ((At×Σ)� ×At)

x · y = {u ∗ v | u ∈ x ∧ v ∈ y}
x+ y = x ∪ y
x� = {u1 ∗ · · · ∗ un | ∃u1 . . . un, ∀i ≤ n, ui ∈ x}
1 = {α | α ∈ At}
0 = ∅ [a] = {α | α ∈ a}

B = P (At)

a ∧ b = a ∩ b
a ∨ b = a ∪ b
¬a = At \ a
$ = At

⊥ = ∅
Note that we slightly abuse notation by letting α denote either an atom, or a
guarded string reduced to an atom. Also note that the set B = P (At) has to be
represented by the Coq type At→ bool, to get a Boolean algebra on it.

2 Completeness

Let G be the unique homomorphism from KAT expressions to guarded string
languages such that

G(ai) = {α | α(ai) is true} G(p) = {αpβ | α, β ∈ At}
Completeness of KAT over guarded string languages can be stated as follows.

Theorem 1. For all KAT expressions x, y, G(x) = G(y) entails KAT � x = y.

This theorem is central to our development: it allows us to prove (in)equations in
arbitrary models of KAT, by resorting to an algorithm deciding guarded string
language equivalence (to be described in §3).

We closely follow Kozen and Smith’ proof [24]. This proof relies on the com-
pleteness of Kleene algebra over languages, which we thus need to prove first.

2.1 Completeness of Kleene Algebra Axioms

Let R be the Kleene algebra homomorphism from regular expressions to (plain)
string languages mapping a letter p to the language consisting of the single-letter
word p. KA completeness over languages can be stated as follows [18]:

Theorem 2. For all regular expressions x, y, R(x) = R(y) entails KA � x = y.

(Like for KAT, the judgement KA � x = y means that x = y holds in any Kleene
algebra, under any interpretation.) We already presented a Coq formalisation of
this theorem [9], but our development was over-complicated. We re-proved it
from scratch here, following a simpler path which we now describe.

The main idea of Kozen’s proof consists in replaying automata algorithms
algebraically, using matrices to encode automata. The key insight that allowed
us to considerably simplify the corresponding formalisation is that the algorithm
used for this proof need not be the same as the one to be executed by the reflexive
tactic we eventually define. Indeed, we can take the simplest possible algorithm
to prove KA completeness, ignoring all complexity aspects, thus allowing us to
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focus on conciseness and mathematical simplicity. In contrast, the algorithm to
be executed by the final reflexive tactic should be relatively efficient, but we do
not need to prove it complete, nor to replay its correctness algebraically: we only
need to prove its correctness w.r.t. languages, which is much easier.

A preliminary step for the proof consists in proving that matrices over a
Kleene algebra form a Kleene algebra. The Kleene star for matrices is non-trivial
to define and to prove correct, but this can be done with a reasonable amount of
efforts once appropriate lemmas and tools for block matrices have been set up.

A finite automaton can then be represented using three matrices (u,M, v)
over regular expressions, where u is a (1, n)-matrix, M is a (n, n)-matrix, and
v is a (n, 1)-matrix, n being the number of states of the automaton. Such a
“matricial automaton” can be evaluated into a regular expression by taking the
product u ·M� · v, which is a scalar. The various classes of automata can be
recovered by imposing conditions on the coefficients of the three matrices. For
instance, a non-deterministic finite automaton (NFA) is such that u and v are
01-vectors and the coefficients of M are sums of letters.

Given a regular expression x, we construct a deterministic finite automaton
(DFA) (u,M, v) such that KA � x = uM�v, as follows.

1. First construct a NFA with epsilon transitions (u′′,M ′′, v′′), such that KA �
x = u′′M ′′�v′′. This is easily done by induction on x, using Thompson con-
struction [31] (which is compositional, unlike the construction we used in [9]).

2. Remove epsilon transitions to obtain a NFA (u′,M ′, v′) such that KA �
u′′M ′′�v′′ = u′M ′�v′. We do it purely algebraically, in one line. In particular
the transitive closure of epsilon transitions is computed using Kleene star on
matrices. (Unlike in [9] we do not need a dedicated algorithm for this.)

3. Use the powerset construction to convert this NFA into a DFA (u,M, v) such
that KA � u′M ′�v′ = uM�v. Again, this is done algebraically, and we do
not need to perform the standard ‘accessible subsets’ optimisation.

We can prove that for any DFA (u,M, v), R(uM�v) is the language recognised
by the DFA. Therefore, to obtain Theorem 2, it suffices to prove that if two DFA
(u,M, v) and (s,N, t) recognise the same language, then KA � uM�v = sN�t.
For this last step, it suffices to exhibit a Boolean matrix that relates exactly
those states of the two DFA that recognise the same language. We need for
that an algorithm to check language equivalence of DFA states; we reduce the
problem to DFA emptiness, and we perform a simple reachability analysis.

All in all, the KA completeness proof itself only requires 124 lines of specifi-
cations, and 119 lines of proofs (according to coqwc).

2.2 Completeness of KAT Axioms

To obtain KAT completeness (Theorem 1), Kozen and Smith [24] define a func-
tion ·̂ on KAT expressions that expands the expressions in such a way that we
have KAT � x = y iff KA � x̂ = ŷ. While this function can be thought as
a reduction of KAT to KA, it cannot be used in practice: it produces expres-
sions that are almost systematically exponentially larger than the given ones.
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It is however sufficient to establish completeness; as explained earlier, we defer
actual computations to a completely different algorithm (§3).

More precisely, the function ·̂ is defined in such a way that we have:

KAT � x̂ = x (i)

G(x̂) = R(x̂) (ii)

We deduce KAT completeness as follows:

G(x) = G(y)

⇔ G(x̂) = G(ŷ) (G is a KAT morphism, and (i))

⇔ R(x̂) = R(ŷ) (by (ii))

⇒ KA � x̂ = ŷ (KA completeness)

⇒ KAT � x̂ = ŷ (any KAT is a KA)

⇔ KAT � x = y (by (i))

(Note that the last equation entails the first one, so that all these statements
are in fact equivalent.)

The function ·̂ is defined recursively over KAT expressions, using an inter-
mediate datastructure: formal sums of externally guarded terms (i.e., either an
atom, or a product of the form αxβ). The case of a starred expression x� is
quite involved: x̂� is defined by an internal recursion on the length of the formal
sum corresponding to x̂. The proof of the first equation (i) is not too difficult to
formalise, using appropriate tools for finite sums (i.e., a simplified form of big
operators [7], which we actually use a lot in the whole development). The second
one (ii) is more cumbersome, notably because we must deal with the two implicit
coercions appearing in its statement: formally, it has to be stated as follows:

i(G(x̂)) = R(j(x̂)) ,

where i takes a guarded string language and returns a finite word language on
the alphabet Σ ' Θ ' Θ, and j takes a KAT expression and returns a regular
expression over this extended alphabet, by pushing all negations to the leaves.

Apart from the properties of these coercion functions, the proof of (ii) mainly
consists in rather technical arguments about regular and guarded string lan-
guages concatenation. All in all, once KA completeness has been proved, KAT
completeness requires us 278 lines of specifications, and 360 lines of proofs.

3 Decision Procedure

To check whether two expressions denote the same language of guarded strings,
we use an algorithm based on a notion of partial derivatives for KAT expressions.
Derivatives were introduced by Brzozowski [10] for regular expressions; they
make it possible to define a deterministic automaton where the states of the
automaton are the regular expressions themselves.
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δ′α,p(x+ y) = δ′α,p(x) ∪ δ′α,p(y)

δ′α,p(xy) =

{
δ′α,p(x)y ∪ δ′α,p(y) if εα(x)

δ′α,p(x)y otherwise

δ′α,p(x
�) = δ′α,p(x)x

�

δ′α,p(q) =

{
{1} if p = q

∅ otherwise

δ′α,p([a]) = ∅

Fig. 1. Partial derivatives for KAT expressions

Derivatives can be extended to KAT expressions in a very natural way [22]: we
first define a Boolean function εα, that indicates whether an expression accepts
the single atom α; this function is then used to define the derivation function
δα,p, that intuitively returns what remains of the given expression after reading
the atom α and the letter p. These two functions make it possible to give a
coalgebraic characterisation of the function G, which underpins the correctness
of the algorithm we sketch below:

G(x)(α) = εα(x) G(x)(α p u) = G(δα,p(x))(u) .

Like with standard regular expressions, the set of derivatives of a given KAT
expression (i.e., the set of expressions that can be obtained by repeatedly deriv-
ing w.r.t. arbitrary atoms and letters) can be infinite. To recover finiteness, we
switch to partial derivatives [4]. Their generalisation to KAT should be folklore;
we define them in Fig. 1. We use the notation Xy to denote the set {xy | x ∈ X}
when X is a set of expressions and y is an expression. The partial derivation
function δ′α,p returns a (finite) set of expressions rather than a single one; this
corresponds to the fact that we build a non-deterministic automaton. Still abus-
ing notations, by letting a set of expressions denote the sum of its elements, we
prove that KAT � δα,p(x) = δ′α,p(x).

Now call bisimulation any relation R between sets of expressions such that
whenever X R Y , we have

– ε(X) = ε(Y ) and
– ∀α ∈ At, ∀p ∈ Σ, δ′α,p(X) R δ′α,p(Y ).

We show that if there is a bisimulation R such that X R Y , then G(X) = G(Y )
(the converse also holds). This gives us an algorithm to decide language equiva-
lence of two KAT expressions x, y: it suffices to try to construct a bisimulation
that relates the singletons {x} and {y}. This algorithm terminates because the
set of partial derivatives reachable from a pair of expressions is finite (we do not
need to formalise this fact since we just need the correctness of this algorithm).

There is a lot of room for optimisation in our implementation—for instance,
we use unordered lists to represent binary relations. An important point in our
design is that such optimisations can be introduced and proved correct indepen-
dently from the completeness proof for KAT, which gives us much more flexibility
than in our previous work on Kleene algebra [9].
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3.1 Building a Reflexive Tactic

Using standard methodology [1, 8, 14], we finally pack the previous ingredients
into a Coq reflexive tactic called kat, allowing us to close automatically any goal
which belongs to the equational theory of KAT.

The tactic works on any model of KAT: those already declared in the library
(relations, languages, matrices, traces), but also the ones declared by the user.
The reification code is written in OCaml; it is quite complicated for at least two
reasons: KAT is a two-sorted structure, and we actually deal with “typed” KAT,
as explained in §1.2, which requires us to work with a dependently typed syntax.

For the sake of simplicity, the Coq algorithm we implemented for KAT does
not produce a counter-example in case of failure. To be able to give such a
counter-example to the user, we actually run an OCaml copy of the algorithm
first (extracted from Coq, and modified by hand to produce counter-examples).
This has two advantages: the tactic is faster in case of failure, and the counter-
example—a guarded string—can be pretty-printed in a nicer way.

4 Eliminating Hypotheses

The above kat tactic works for the equational theory of KAT, i.e., the
(in)equations that hold in any model of KAT, under any interpretation. In partic-
ular, this tactic does not make use of any hypothesis which is specific to the model
or to the interpretation. Some hypotheses can however be exploited [11,15]: those
having one of the following shapes.

(i) x = 0;
(ii) [a]x = x[b], [a]x ≤ x[b], or x[b] ≤ [a]x;
(iii) x ≤ [a]x or x ≤ x[a]
(iv) a = b or a ≤ b;
(v) [a]p = [a] or p[a] = [a], for atomic p (p ∈ Σ);

Equations of the first kind (i) are called “Hoare” equations, for reasons to become
apparent in §5.2. They can be eliminated using the following implication:{

x+ uzu = y + uzu

z = 0
entails x = y . (†)

This implication is valid for any term u, and the method is complete [15] when
u is taken to be the universal KAT expression, Σ�. Intuitively, for this choice
of u, uzu recognizes all guarded strings that contain a guarded string of z as
a substring. Therefore, when checking that x + uzu = y + uzu are language
equivalent rather than x = y, we rule out all counter-examples to x = y that
contain a substring belonging to z: such counter-examples are irrelevant since z
is known to be empty.

Equations of the shape (iii) and (iv) are actually special cases of those of the
shape (ii), which are in turn equivalent to Hoare equations. For instance, we have
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[a]x ≤ x[b] iff [a]x[¬b] = 0. Moreover, two hypotheses of shape (i) can be merged
into a single one using the fact that x = 0 ∧ y = 0 iff x + y = 0. Therefore, we
can aggregate all hypotheses of shape (i-iv) into a single one (of shape (i)), and
use the above technique just once.

Hypotheses of shape (v) are handled differently, using the following equivalence:

[a]p = [a] iff p = [¬a]p+ [a] , (‡)
This equivalence allows us to substitute [¬a]p+[a] for p in the considered goal—
whence the need for p to be atomic. Again, the method is complete [15], i.e.,

KAT � ([a]p = [a]⇒ x = y) iff KAT � xθ = yθ (θ = {p "→ [¬a]p+ [a]})

4.1 Automating Elimination of Hypotheses in Coq

The previous techniques to eliminate some hypotheses in KAT can be easily
automated in Coq. We first prove once and for all the appropriate equivalences
and implications (the tactic kat is useful for that). We then define some tactics
in Ltac that collect hypotheses of shape (i-iv), put them into shape (i), and ag-
gregate them into a single one which is finally used to update the goal according
to (†). Separately, we define a tactic that rewrites in the goal using all hypothe-
ses of shape (v), through (‡). Finally, we obtain a tactic called hkat, that just
preprocesses the conclusion of the goal using all hypotheses of shape (i-v) and
then calls the kat tactic. Note that the completeness of this method [15] is a
meta-theorem; we do not need to formalise it.

5 Case Studies

We now present some examples of Coq formalisations where one can take ad-
vantage of our library.

5.1 Bigstep Semantics of ‘While’ Programs

The bigstep semantics of ‘while’ programs is taught in almost every course on
semantics and programming languages. Such programs can be embedded into
KAT in a straightforward way [21], thus providing us with proper tools to reason
about them. Let us formalise such a language in Coq.

Assume a type state of states, a type loc of memory locations, and an update

function allowing to update the value of a memory location. Call arithmetic
expression any function from states to natural numbers, and Boolean expression
any function from states to Booleans (we use a partially shallow embedding).
The ‘while’ programming language is defined by the inductive type below:

Variable loc, state: Set.
Variable update: loc → nat → state → state.

Definition expr := state → nat.
Definition test := state → bool.

Inductive prog :=
| skp

| aff (l: loc) (e: expr)
| seq (p q: prog)
| ite (b: test) (p q: prog)
| whl (b: test) (p: prog).
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The bigstep semantics of such programs is given as a “state transformer”, i.e.,
a binary relation between states. Following standard textbooks, one can define
this semantics in Coq using an inductive predicate:

Inductive bstep: prog → rel state state :=
| s_skp: ∀ s, bstep skp s s

| s_aff: ∀ l e s, bstep (aff l e) s (update l (e s) s)
| s_seq: ∀ p q s s’ s’’, bstep p s s’ → bstep q s’ s’’ → bstep (seq p q) s s’’
| s_ite_ff: ∀ b p q s s’, ¬ b s → bstep q s s’ → bstep (ite b p q) s s’
| s_ite_tt: ∀ b p q s s’, b s → bstep p s s’ → bstep (ite b p q) s s’
| s_whl_ff: ∀ b p s, ¬ b s → bstep (whl b p) s s

| s_whl_tt: ∀ b p s s’, b s → bstep (seq p (whl b p)) s s’ → bstep (whl b p) s s’.

Alternatively, one can define this semantic through the relational model of KAT,
by induction over the program structure:

Fixpoint bstep (p: prog): rel state state :=
match p with

| skp ⇒ 1
| seq p q ⇒ bstep p·bstep q

| aff l e ⇒ upd l e

| ite b p q ⇒ [b]·bstep p+ [¬b]·bstep q

| whl b p ⇒ ([b]·bstep p)�·[¬b]
end.

(Notations come for free since binary relations are already declared as a model of
KAT in our library.) The ‘skip’ instruction is interpreted as the identity relation;
sequential composition is interpreted by relational composition. Assignments are
interpreted using an auxiliary function, defined as follows:

Definition upd l e: rel state state := fun s s’ ⇒ s’ = update l (e s) s.

For the ‘if-then-else’ statement, the Boolean expression b is a predicate on states,
i.e., a test in our relational model of KAT; this test is used to guard both branches
of the possible execution paths. Accordingly for the ‘while’ loop, we iterate the
body of the loop guarded by the test, using Kleene star. We make sure one cannot
exit the loop before the condition gets false by post-guarding the iteration with
the negation of this test.

This alternative definition is easily proved equivalent to the previous one. Its
relative conciseness makes it easier to read (once one knows KAT notation); more
importantly, this definition allows us to exploit all theorems and tactics about
KAT, for free. For instance, suppose that one wants to prove some program
equivalences. First define program equivalence, through the bigstep semantics:

Notation "p ∼ q" := (bstep p == bstep q).

(The “==” symbol denotes equality in the considered KAT model; in this case,
relational equality.) The following lemmas about unfolding loops and dead code
elimination, can be proved automatically.

Lemma two_loops b p: whl b (whl b p) ∼ whl b p.
Proof. simpl. kat. Qed.
(* ([b]·(([b]·bstep p)�·[¬b]))�·[¬b] == ([b]·bstep p)�·[¬b] *)
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Lemma fold_loop b p: whl b (p ; ite b p skp) ∼ whl b p.
Proof. simpl. kat. Qed.
(* ([b]·(bstep p·([b]·bstep p+ [¬b]·1)))�·[¬b] == ([b]·bstep p)�·[¬b] *)

Lemma dead_code a b p q r: whl (a∨ b) p ; ite b q r ∼ whl (a∨ b) p ; r.
Proof. simpl. kat. Qed.
(* ([a∨ b]·bstep p)�·[¬(a∨ b)]·([b]·bstep q+ [¬b]·bstep r)

== ([a∨ b]·bstep p)�·[¬(a∨ b)]·bstep r *)

(The semicolon in program expressions is a notation for sequential composition;
the comments below each proof show the intermediate goal where the bstep

fixpoint has been simplified, thus revealing the underlying KAT equality.)
Of course, the kat tactic cannot prove arbitrary program equivalences: the the-

ory of KAT only deals with the control-flow graph of the programs and with the
Boolean expressions, not with the concrete meaning of assignments or arithmetic
expressions. We can however mix automatic steps with manual ones. Consider
for instance the following example, where we prove that an assignment can be
delayed. Our tactics cannot solve it automatically since some reasoning about
assignments is required; however, by asserting manually a simple fact (in this
case, an equation of shape (ii)), the goal becomes provable by the hkat tactic.

Definition subst l e (b: test): test := fun s ⇒ b (update l (e s) s).
Lemma aff_ite l e b p q: (l←e; ite b p q) ∼ (ite (subst l e b) (l←e; p) (l←e; q)).
Proof.
simpl. (* upd l e·([b]·bstep p+ [¬b]·bstep q) ==

[subst l e b]·(upd l e·bstep p)·[¬subst l e b]·(upd l e·bstep q) *)

assert (upd l e·[b] == [subst l e b]·upd l e) by (cbv; firstorder; subst; eauto).
hkat.

Qed.

5.2 Hoare Logic for Partial Correctness

Hoare logic for partial correctness [16] is subsumed by KAT [21]. The key in-
gredient in Hoare logic is the notion of a “Hoare triple” {A} p {B}, where p is
a program, and A,B are two formulas about the memory manipulated by the
program, respectively called pre- and post-conditions. A Hoare triple {A} p {B}
is valid if whenever the program p starts in some state s satisfying A and termi-
nates in a state s′, then s′ satisfies B. Such a statement can be translated into
KAT as a simple equation:

[A]p[¬B] = 0

Indeed, [A]p[¬B] = 0 precisely means that there is no execution path along
p that starts in A and ends in ¬B. Such equations are Hoare equations (they
have the shape (i) from §4), so that they can be eliminated automatically. As
a consequence, inference rules of Hoare logic can be proved automatically using
the hkat tactic. For instance, for the ‘while’ rule, we get the following script:
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Lemma rule_whl A b p: {A∧ b} p {A} → {A} whl b p {A∧¬b}.
Proof. simpl. hkat. Qed.
(* [A∧ b]·bstep p·[¬A] == 0 → [A]·(([b]·bstep p)�·[¬b])·[¬(A∧¬b)] == 0 *)

5.3 Compiler Optimisations

Kozen and Patron [23] use KAT to verify a rather large range of standard
compiler optimisations, by equational reasoning. Citing their abstract, they
cover “dead code elimination, common subexpression elimination, copy propaga-
tion, loop hoisting, induction variable elimination, instruction scheduling, alge-
braic simplification, loop unrolling, elimination of redundant instructions, array
bounds check elimination, and introduction of sentinels”. They cannot use au-
tomation, so that the size of their proofs ranges from a few lines to half a page
of KAT computations.

We formalised all those equational proofs using our library. Most of them can
actually be solved instantaneously, by a simple call to the hkat tactic. For the
few remaining ones, we gave three to four line proofs, consisting of first rewriting
using hypotheses that cannot be eliminated, and then a call to hkat.

The reason why hkat performs so well is that most assumptions allowing to
optimise the code in these examples are of the shape (i-v). For instance, to state
that an instruction p has no effect when [a] is satisfied, we use an assumption
[a]p = [a]. Similarly, to state that the execution of a program x systematically
enforces [a], we use an assumption x = x[a]. The assumptions that cannot be
eliminated are typically those of the shape pq = qp: “the instructions p and q
commute”; such assumptions have to be used manually.

5.4 Flowchart Schemes

The last example we discuss here is due to Paterson, it consists in proving the
equivalence of two flowchart schemes (i.e., goto programs—seeManna’s book [26]
for a complete description of this model). Manna proves their equivalence us-
ing several successive graph transormations. His proof is really high-level and
informal; it is one page long, plus three additional pages to draw intermediate
flowcharts schemes. Angus and Kozen [3] give a rather detailed equational proof
in KAT, which is about six pages long. Using the hkat tactic together with some
ad-hoc rewriting tools, we managed to formalise Angus and Kozen’s proof in
three rather sparse screens.

Like in Angus and Kozen’s proof, we progressively modify the KAT expres-
sion corresponding to the first schema, to make it evolve towards the expression
corresponding to the second schema. Our mechanised proof thus roughly con-
sists in a sequence of transitivity steps closed by hkat, allowing us to perform
some rewriting steps manually and to move to the next step. This is illustrated
schematically by the code presented in Fig. 2.

Most of our transitivity steps (the yi’s) already appear in Angus and Kozen’s
proof; we can actually skip a lot of their steps, thanks to hkat. Some of these
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Lemma Paterson: x_1 == z.
Proof.
transitivity y_1. hkat. (* x_1 == y_1 *)

a few rewriting steps transforming y_1 into x_2.
transitivity y_2. hkat. (* x_2 == y_2 *)

a few rewriting steps transforming y_2 into x_3.
(* ... *)

transitivity y_12. hkat. (* x_12 == y_12 *)

a few rewriting steps transforming y_12 into x_13.
hkat. (* x_13 == z *)

Qed.

Fig. 2. Squeleton for the proof of equivalence of Paterson’s flowchart schems

simplifications can be spectacular: for instance, they need one page to justify
the passage between their expressions (24) and (27), while a simple call to hkat

does the job; similarly for the page they need between their steps (38) and (43).

6 Related Works

Several formalisations of algorithms and results related to regular expressions
and languages have been proposed since we released our Coq reflexive decision
procedure for Kleene algebra [9]: partial derivatives for regular expressions [2],
regular expression equivalence [6, 12, 25, 27], regular expression matching [17].
None of these works contains a formalised proof of completeness for Kleene
algebra, so that they cannot be used to obtain a general tactic for KA (note
however that Krauss and Nipkow [25] obtain an Isabelle/HOL tactic for binary
relations using a nice trick to sidestep the completeness proof—but they cannot
deal with other models of KA).

On the more algebraic side, Struth et al. [5, 13] showed how to formalise
and use relation algebra and Kleene algebra in Isabelle/HOL; they exploit the
automation tools provided by this assistant, but they do not try to define decision
procedures specific to Kleene algebra, and they do not prove completeness.

To the best our knowledge, the only formalisation of KAT prior to the present
work is due to Pereira and Moreira [28], in Coq. They state all axioms of KAT,
derive some simple consequences of these axioms (e.g., Boolean disjunction dis-
tribute over conjunction, Kleene star is monotone), and use them to manually
prove the inference rules of Hoare logic, as we did automatically in §5.2. They
do not provide models, automation, decision procedure, or completeness proof.

7 Conclusion

We presented a rather exhaustive Coq formalisation of Kleene algebra with tests:
axiomatisation, models, completeness proof, decision procedure, elimination of
hypotheses. We then showed several use-cases for the corresponding library:
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proofs about while programs and Hoare logic, certification of standard compiler
optimisations, and equivalence of flowchart schemes.

Most of the theoretical material is due to Kozen et al. [3, 15, 18–24], so that
our contribution mostly lies in the Coq mechanisation of these ideas. The com-
pleteness proof was particularly challenging to formalise, and lots of aspects of
this work could not be explained in this extended abstract: how to encode the
algebraic hierarchy, how to work efficiently with finite sets and finite sums, how
to exploit symmetry arguments, reflexive normalisation tactics, tactics about
lattices, finite ordinals and encodings of set-theoretic constructs in ordinals. . .

The Coq library is available online [30]; it is documented and axiom-free. This
library actually has a larger scope than what we presented here: our long-term
goal is to formalise and automate other fragments of relation algebra (residuated
structures, Kleene algebra with converse, allegories. . . ), so that the library is
designed to allow for such extensions. For instance normalisation tactics and
an ad-hoc semi-decision procedures are already defined for algebraic structures
beyond Kleene algebra and KAT.

According to coqwc, the library consists of 4377 lines of specifications and
3020 lines of proofs, that distribute as follows. Overall, this is slightly less than
our previous library for KA [9] (5105+4315 lines), and we do much more: not
only we handle KAT, but we also lay the ground for the mechanisation of other
fragments of relation algebra, as explained above.

specifications proofs comments
ordinals, comparisons, finite sets. . . 674 323 225
algebraic hierarchy 490 374 216
models (languages, relations, expressions. . . ) 1279 461 404
linear algebra, matrices 534 418 163
completeness, decisions procedure, tactics 1400 1444 740

The resulting theorems and tactics allowed us to shorten significantly a
number of paper proofs—those about Hoare logic, compiler optimisations, and
flowchart schemes. Getting a way to guarantee that such proofs are correct is
important: although mathematically simple, they tend to be hard to proofread
(we invite the skeptical reader to check Angus and Kozen’s paper proof of Pater-
son example [3]). Moreover, automation greatly helps when searching for such
proofs: being able to get either a proof or a counter-example for any proposed
equation is a big plus: it makes it much easier to progress in the overall proof.
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Abstract. Schematic Kleene algebra with tests (SKAT) supports the
equational verification of flowchart scheme equivalence and captures sim-
ple while-programs with assignment statements. We formalise SKAT in
Isabelle/HOL, using the quotient type package to reason equationally in
this algebra. We apply this formalisation to a complex flowchart trans-
formation proof from the literature. We extend SKAT with assertion
statements and derive the inference rules of Hoare logic. We apply this
extension in simple program verification examples and the derivation
of additional Hoare-style rules. This shows that algebra can provide an
abstract semantic layer from which different program analysis and veri-
fication tasks can be implemented in a simple lightweight way.

1 Introduction

The relevance of Kleene algebras for program development and verification has
been highlighted for more than a decade. Kleene algebras provide operations for
non-deterministic choice, sequential composition and finite iteration in comput-
ing systems as well as constructs for skip and abort. When a suitable boolean
algebra for tests and assertions is embedded, the resulting Kleene algebras with
tests (KAT) [18] can express simple while-programs and validity of Hoare triples.
Extensions of Kleene algebras support Hoare-style program verification—the
rules of Hoare logic except assignment can be derived—and provide notions of
equivalence and refinement for program construction and transformation. Rea-
soning in Kleene algebras is based on first-order equational logic. It is there-
fore relatively simple, concise and well suited for automation [15,12,13,3]. The
lightweight program semantics that Kleene algebras provide can further be spe-
cialised in various ways through their models, which include binary relations,
program traces, paths in transition systems and (guarded string) languages [4].

The relevance of Kleene algebras has further been underpinned by applica-
tions, for instance, in compiler optimisation [19], program construction [5], trans-
formation and termination [9], static analysis [11] or concurrency control [7]; but
few have used theorem provers or integrated fine-grained reasoning about assign-
ments or assertions [1,5,14]. The precise role and relevance of Kleene algebras

S. Blazy, C. Paulin-Mohring, and D. Pichardie (Eds.): ITP 2013, LNCS 7998, pp. 197–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



198 A. Armstrong, G. Struth, and T. Weber

in a formal environment for program development and verification has not yet
been explored. Our paper provides a first step in this direction.

We have implemented a comprehensive library for KAT in Isabelle/HOL [25],
using explicit carrier sets for modelling the interaction between actions and tests
in programs. For reasoning about assignments and assertions, we have added
first-order syntax and axioms to KAT, following Angus and Kozen’s approach
to schematic Kleene algebras with tests (SKAT) [2]. Program syntax is defined
as syntactic sugar on SKAT expressions; axiomatic algebraic reasoning about
these expressions is implemented by using Isabelle’s quotient package [16,17].

We have applied this simple algebraic verification environment by formalis-
ing a complex flowchart equivalence proof in SKAT due to Angus and Kozen.
It is an algebraic account of a previous diagrammatic proof by Manna [21]. In
their approach, flowchart schemes are translated into SKAT expressions. We
have converted the manual proof in SKAT essentially one-to-one into readable
Isabelle code. This significantly shortens a previous formalisation with a cus-
tomised interactive SKAT-prover [1]. This compression demonstrates the power
of Isabelle’s proof methods and integrated theorem provers.

To illustrate the flexibility of our approach we have extended our SKAT im-
plementation by assertions for Hoare-style partial program correctness proofs.
To obtain a predicate transformer semantics for forward reasoning à la Gor-
don [8] we have formalised the action of programs as SKAT terms which act on
a Boolean algebra of predicates or assertions via a scalar product in a Kleene
module [10,20]. We have instantiated this abstract algebra of assertions to the
standard powerset algebra over program states realised as maps from variables
to values. We have encoded validity of Hoare triples and automatically derived
the rules of Hoare logic—including assignment—in this setting. We have also
provided syntactic sugar for a simple while-language with assertions (pre/post-
conditions and invariants) similar to existing Hoare logics in Isabelle [24,26].

We have tested this enhanced environment by automatically verifying some
simple algorithms and by automatically deriving some additional Hoare-style
inference rules that would be admissible in Hoare logic. Verification is supported
by a verification condition generator that reduces program verification tasks to
the usual proof obligations for elementary program actions.

The complete Isabelle code for this paper can be found online.1

Our study points out two main benefits of using (Kleene) algebra in program
development and verification. First, it provides a uniform lightweight semantic
layer from which syntax for specifications and programs can be defined, domain-
specific inference rules be derived and fine-grained models be explored with ex-
ceptional ease. In Isabelle this is seamlessly supported by type classes and locales
and by excellent proof automation. Second, it yields a powerful proof engine
for concrete analysis tasks, in particular when transforming programs or devel-
oping them from specifications. Despite this, the automation of our flowchart
example remains somewhat underwhelming; such examples provide interesting
benchmarks for further improving proof automation.

1 http://www.dcs.shef.ac.uk/~alasdair/skat

http://www.dcs.shef.ac.uk/~alasdair/skat
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2 Kleene Algebra with Tests

Kleene algebras with tests (KAT) are at the basis of our implementation. They
provide simple encodings of while-programs and Hoare logic (without assign-
ment) and support equational reasoning about program transformations and
equivalence. This section gives a short introduction from a programming per-
spective; more details can be found in the literature [18].

A semiring is a structure (S,+, ·, 0, 1) such that (S,+, 0) is a commutative
semigroup, (S, ·, 1) is a monoid (not necessarily commutative), multiplication
distributes over addition from the left and right, and 0 is an annihilator (0 · p =
0 = p ·0). S is idempotent (a dioid) if p+p = p. In that case, the reduct (S,+, 0)
is a semilattice, hence p ≤ q ←→ p + q = q defines a partial order with least
element 0. For programming, imagine that S models the actions of a system;
addition is non-deterministic choice, multiplication is sequential composition, 1
is skip and 0 is abort. The next step is to add a notion of finite iteration.

A Kleene algebra is a dioid expanded with a star operation that satisfies
the unfold axioms 1 + pp∗ ≤ p∗ and 1 + p∗p ≤ p∗, and the induction axioms
r + pq ≤ q −→ p∗r ≤ q and r + qp ≤ q −→ rp∗ ≤ q. This defines p∗ as the
simultaneous least (pre)fixpoint of the functions λq.1 + pq and λq.1 + qp.

Program tests and assertions can be added by embedding a boolean alge-
bra of tests between 0 and 1. A Kleene algebra with tests (KAT) is a structure
(K,B,+, ·,� , 0, 1, ) where (K,+, ·,∗ , 0, 1) is a Kleene algebra and (B,+, ·, , 0, 1)
a Boolean subalgebra of K. The operations are overloaded with + as join, · as
meet, 0 as the minimal element and 1 the maximal element of B. Complemen-
tation is only defined on B. We write p, q, r for arbitrary elements of K and
a, b, c for tests in B. Conditionals and loops can now be expressed:

IF b THEN p ELSE q = bp+ bq, WHILE b DO p WEND = (bp)∗b.

Tests play a double role as assertions to encode (the validity of) Hoare triples:

{|b}| p{|c}| ←→ bpc = 0.

Multiplying a program p by a test b at the left or right means restricting its input
or output by the condition b. Thus the term bpc states that program p is restricted
to precondition b in its input and to the negated postcondition c in its output.
Accordingly, bpc = 0 means that p cannot execute from b without establishing c.
This faithfully captures the meaning of the Hoare triple {|b}| p{|c}| . It is well
known that algebraic relatives of all rules of Hoare logic except assignment can be
derived in KAT, and that binary relations under union, relational composition,
the unit and the empty relation, and the reflexive transitive closure operation
form a KAT. Its Boolean subalgebra of tests is formed by all elements between
the empty and the diagonal relation. Binary relations yield, of course, a standard
semantics for sequential programs.

A reference Isabelle implementation of Kleene algebras and their models is
available in the Archive of Formal Proofs [4]. To capture the subalgebra rela-
tionship of B and K we have implemented an alternative with carrier sets and
expanded this to KAT. Due to lack of space we cannot present further details.
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3 Schematic KAT and Flowchart Schemes

To apply KAT in program development and verification, formal treatment of
assignments and program states is required. Axioms for assignments have been
added, for instance, in schematic Kleene algebra with tests (SKAT) [2]. This ex-
tension of KAT is targeted at modelling the transformation of flowchart schemes.
A classical reference for flowchart schemes, scheme equivalence, and transforma-
tion is Manna’s book Mathematical Theory of Computation [21]. Our formali-
sation of SKAT in Isabelle is discussed in this section; our formalisation of a
complex flowchart equivalence proof [21,2] is presented in Section 5. We describe
the conceptual development of SKAT together with its formalisation in Isabelle.

A ranked alphabet or signature Σ consists of a family of function symbols f ,
g, . . . and relation symbols P , Q, . . . together with an arity function mapping
symbols to N. There is always a null function symbol with arity 0. In Isabelle, we
have implemented ranked alphabets as a type class. Variables are represented by
natural numbers. Terms over Σ are defined as a polymorphic Isabelle datatype.

datatype ′a trm = App ′a “ ′a trm list” | Var nat

We omit arity checks to avoid polluting proofs with side conditions. In practice,
verifications will fail if arities are violated. Variables and Σ-terms form assign-
ment statements; together with predicate symbols they form tests in SKAT.
Predicate expressions (atomic formulae) are also implemented as a datatype.

datatype ′a pred = Pred ′a “ ′a trm list”

Evaluation of terms, predicates and tests relies on an interpretation function. It
maps function and relation symbols to functions and relations. It is used to define
a notion of flowchart equivalence [2,21] with respect to all interpretations. It is
also needed to formalise Hoare logic in Section 6 by interpreting Σ-expressions
in semantic domains. In Isabelle, it is based on the following pair of functions.

record ( ′a, ′b) interp =
interp-fun :: ′a ⇒ ′b list ⇒ ′b
interp-rel :: ′a ⇒ ′b relation

We can now includeΣ-expressions into SKAT expressions, which model flowchart
schemes.

datatype ′a skat-expr =
SKAssign nat “ ′a trm”
| SKPlus “ ′a skat-expr” “ ′a skat-expr” (infixl “⊕” 70 )
| SKMult “ ′a skat-expr” “ ′a skat-expr” (infixl “�” 80 )
| SKStar “ ′a skat-expr”
| SKBool “ ′a pred bexpr”
| SKOne
| SKZero
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In this datatype, SKAssign is the assignment constructor; it takes a variable
and a Σ-term as arguments. The other constructors capture the programming
constructs of sequential composition, conditionals and while loops within KAT.
The type ’a pred bexpr represents Boolean combinations of predicates, which
form the tests in SKAT. The connection between the SKAT syntax and Manna’s
flowchart schemes is discussed in [2], but we do not formalise it.

Having formalised the SKAT syntax we can now define a notion of flowchart
equivalence by using Isabelle’s quotient types. First we define the obvious congru-
ence on SKAT terms that includes the KAT axioms and the SKAT assignment
axioms

x := s; y := t = y := t[x/s];x := s (y /∈ FV (s)),

x := s; y := t = x := s; y := t[x/s] (x /∈ FV (s)),

x := s;x := t = x := t[x/s],

a[x/t];x := t = x := t; a.

In the following inductive definition we only show the equivalence axioms, a single
Kleene algebra axiom and an assignment axiom explicitly. Additional recursive
functions for free variables and substitutions support the assignment axioms.

inductive skat-cong :: ( ′a::ranked-alphabet) skat-expr ⇒ ′a skat-expr ⇒ bool
(infix ≈ 55 ) where
refl [intro]: p ≈ p
| sym [sym]: p ≈ q =⇒ q ≈ p
| trans [trans]: p ≈ q =⇒ q ≈ r =⇒ p ≈ r
. . .
| mult-assoc: (p � q) � r ≈ p � (q � r)
. . .
| assign1 : [[x �= y ; y /∈ FV s]] =⇒

SKAssign x s � SKAssign y t ≈ SKAssign y (t [x /s]) � SKAssign x s
. . .

Isabelle’s quotient package [17] now allows us to formally take the quotient of
SKAT expressions with respect to skat-cong. The SKAT axioms then become
available for reasoning about SKAT expressions.

quotient-type ′a skat = ( ′a::ranked-alphabet) skat-expr / skat-cong

Using this notion of equivalence on SKAT expressions we can define additional
syntactic sugar by lifting constructors to SKAT operations, for instance,

lift-definition skat-plus :: ( ′a::ranked-alphabet) skat ⇒ ′a skat ⇒ ′a skat
(infixl + 70 ) is SKPlus

We have used Isabelle’s transfer tactic to provide nice programming syntax and
lift definitions from the congruence. For instance,



202 A. Armstrong, G. Struth, and T. Weber

lemma skat-assign1 :
[[x �= y ; y /∈ FV s]] =⇒ (x := s · y := t) = (y := t [x /s] · x := s)

An interpretation statement formally shows in Isabelle that the algebra thus
constructed forms a KAT.

definition tests :: ( ′a::ranked-alphabet) skat ord where
tests = (|carrier = test-set , le = (λp q . skat-plus p q = q)|)

definition free-kat :: ( ′a::ranked-alphabet) skat test-algebra where
free-kat = (|carrier = UNIV , plus = skat-plus, mult = skat-mult, one = skat-one,

zero = skat-zero, star = skat-star , test-algebra.test = tests|)

interpretation skt : kat free-kat

Proving this statement required some work. First, is uses our comprehensive
implementation of Kleene algebra with tests (and with carrier sets) in Isabelle.
Second, we needed to show that the quotient algebra constructed satisfies the
KAT axioms, including those of Boolean algebra for the subalgebra of tests. A
main complication comes from the fact that Boolean complementation is defined
as a partial operation, that is, on tests only; thus it cannot be directly lifted from
the congruence. We have defined it indirectly using Isabelle’s indefinite descrip-
tion operator. After this interpretation proof, most statements shown for KAT
are automatically available in the quotient algebra. The unfortunate exception
is again the partially defined negation symbol, which is not fully captured by the
interpretation statement. Here, KAT theorems need to be duplicated by hand.

When defining a quotient type, Isabelle automatically generates two coercion
functions. The abs-skat function maps elements of type ’a skat-expr to elements
of the quotient algebra type ’a skat, while the rep-skat function maps in the
converse direction. Both these functions are again based on Isabelle’s definite
description operator, which can be unwieldy. However, as our types are induc-
tively defined, we can as well use the following equivalent, and computationally
more appealing, recursive function instead of abs-skat, which supports simple
proofs by induction.

primrec abs :: ( ′a::ranked-alphabet) skat-expr ⇒ ′a skat (�-� [111 ] 110 ) where
abs (SKAssign x t) = x := t
| abs (SKPlus p q) = abs p + abs q
| abs (SKMult p q) = abs p · abs q
| abs (SKBool a) = test-abs a
| abs SKOne = 1
| abs SKZero = 0
| abs (SKStar p) = (abs p)�

Mathematically, abs (or �−�) is a homomorphism. It is useful for programming
various tactics.
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4 Formalising a Metatheorem

We have formalised a metatheorem due to Angus and Kozen (Lemma 4.4 in [2])
that can be instantiated, for instance, to check commutativity conditions, elimi-
nate redundant variables or rename variables in flowchart transformation proofs.
We instantiate this theorem mainly to develop tactics that support proof au-
tomation in the flowchart example of the next section.

theorem metatheorem:
assumes kat-homomorphism f
and kat-homomorphism g
and

∧
a. a ∈ atoms p =⇒ f a · q = q · g a

shows f p · q = q · g p

We proceed by induction on p, expanding Angus and Kozen’s proof. The predi-
cate kat-homomorphism in the theorem states that f and g are KAT morphisms.
This notion is defined in Isabelle as a locale in the obvious way. The functions f
and g map from SKAT terms into the SKAT quotient algebra, hence they have
the same type as abs. The atoms function returns all the atomic subexpressions
of a SKAT term, i.e. all the assignments and atomic tests.

Angus and Kozen have observed that if q commutes with all atomic subex-
pressions of p, then q commutes with p. This is a simple instantiation of the
metatheorem. It can be obtained in Isabelle as follows:

lemmas skat-comm = metatheorem[OF abs-hom abs-hom]

This instantiates f and g using the fact that abs is a KAT morphism.
Lemma 4.5 in [2] states that if a variable x is not read in an expression p,

then setting it to null will eliminate it from p.

lemma eliminate-variables:
assumes x /∈ reads p
shows �p� · x := null = �eliminate x p� · x := null

In the statement of this lemma, reads p is a recursive function that returns all
the variables on the right-hand side of all assignments within p, and the function
eliminate x p removes all assignments to x in p.

We have used the metatheorem and its instances to develop tactics that check
for commutativity and eliminate variables. These tactics take expressions of
the quotient algebra and coerce them into the term algebra to perform these
syntactic manipulations. All the machinery for these coercions, such as abs, is
thereby hidden from the user. A simple application example is given by the
following lemma.

lemma comm-ex: (1 := Var 2 ; 3 := Var 4) = (3 := Var 4 ; 1 := Var 2)
by skat-comm
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5 Verification of Flowchart Equivalence

We have applied our SKAT implementation to verify a well known flowchart
equivalence example in Isabelle. It is attributed by Manna to Paterson [21]. The
flowcharts can be found at page 16f. in Angus and Kozen’s paper [2] or pages 254
and 258 in Manna’s book [21]; they are reproduced here in Figure 1. Manna’s
proof essentially uses diagrammatic reasoning, whereas Angus and Kozen’s proof
is equational. We reconstruct the algebraic proof at the same level of granularity
in Isabelle. The two flowcharts, translated into SKAT by Angus and Kozen, are
as follows.

definition scheme1 ≡ seq
[ 1 := vx , 4 := f (Var 1 ), 1 := f (Var 1 )
, 2 := g (Var 1 ) (Var 4 ), 3 := g (Var 1 ) (Var 1 )
, loop
[ !(P (Var 1 )), 1 := f (Var 1 )
, 2 := g (Var 1 ) (Var 4 ), 3 := g (Var 1 ) (Var 1 )
]

, P (Var 1 ), 1 := f (Var 3 )
, loop
[ !(P (Var 4 )) + seq
[ P (Var 4 )
, (!(P (Var 2 )); 2 := f (Var 2 ))�

, P (Var 2 ), ! (P (Var 3 ))
, 4 := f (Var 1 ), 1 := f (Var 1 )
]

, 2 := g (Var 1 ) (Var 4 ), 3 := g (Var 1 ) (Var 1 )
, loop
[ !(P (Var 1 )), 1 := f (Var 1 )
, 2 := g (Var 1 ) (Var 4 ), 3 := g (Var 1 ) (Var 1 )
]

, P (Var 1 ), 1 := f (Var 3 )
]

, P (Var 4 )
, (!(P (Var 2 )) · 2 := f (Var 2 ))�

, P (Var 2 ), P (Var 3 ), 0 := Var 2 , halt
]

definition scheme2 ≡ seq
[ 2 := f vx , P (Var 2 )
, 2 := g (Var 2 ) (Var 2 )
, loop
[ !(P (Var 2 ))
, 2 := f (f (Var 2 ))
, P (Var 2 )
, 2 := g (Var 2 ) (Var 2 )
]

, P (Var 2 ), 0 := Var 2 , halt
]
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start

y := f(x)

P (y)

loop y := g(y, y)

P (y)

y = f(f(y)) z := y

halt

F T

F T

Scheme S6E [21, p. 258]

start

y1 := x

y4 := f(y1)

y1 := f(y1)

y2 := g(y1, y4)

y3 := g(y1, y1)

P (y1)

y1 := f(y3)

P (y4)

P (y2)

y2 := f(y2) P (y3)

z := y2

halt

F

T

T

F

TF

T

F

Scheme S6A [21, p. 254]

Fig. 1. Two equivalent flowchart schemes
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In the code, lists delimited by brackets indicate blocks of sequential code; loop
expressions indicate the star of a block of code that follows. The seq function
converts a block of code into a SKAT expression. The halt command sets all non
output variables used in the scheme to null. To make algebraic reasoning more
efficient, we follow Angus and Kozen in introducing definitions that abbreviate
atomic commands, in particular assignments, and tests. The flowchart equiva-
lence problem can then be expressed more succinctly and abstractly in KAT, as
all assignment statements, which are dealt with by SKAT, have been abstracted.

seq [x1 ,p41 ,p11 ,q214 ,q311 ,loop [!a1 ,p11 ,q214 ,q311 ],a1 ,p13
,loop [!a4 + seq [a4 ,(!a2 ·p22 )� ,a2 ,!a3 ,p41 ,p11 ]
,q214 ,q311 ,loop [!a1 ,p11 ,q214 ,q311 ],a1 ,p13 ]
,a4 ,(!a2 ·p22 )�,a2 ,a3 ,z2 ,halt ]

=
seq [s2 ,a2 ,q222 ,(seq [!a2 ,r22 ,a2 ,q222 ])� ,a2 ,z2 ,halt ]

The proof that rewrites these KAT expressions, however, needs to descend to
SKAT in order to derive commutativity conditions between expressions that
depend on variables and Σ-terms. These conditions are then lifted to KAT. The
condition expressed in Lemma comm-ex from Section 4, for instance, reduces to
the KAT identity pq = qp when abbreviating 1 := V ar 2 as p, and 3 := V ar 4 as
q. In our proof we infer these commutativity conditions in a lazy fashion. This
follows Angus and Kozen’s proof essentially line by line.

We heavily depend on our underlying KAT library, which contains about
100 lemmas for dealing with the Kleene star and combined reasoning about
the interaction between actions and tests. Typical properties are (p + q)∗ =
p∗(q · p∗)∗, (pq)∗p = p(qp)∗ or bp = pc ⇐⇒ bp!c =!bpc. We have also refined
the tactics mentioned in the previous section to be able to efficiently manipulate
the large SKAT expressions that occur in the proof. Most of these implement
commutations in lists of expressions modulo commutativity conditions on atomic
expressions which are inferred from SKAT terms on the fly.

The size of our proof as a LATEX document is about 12 pages, twice as many
as in Angus and Kozen’s manual proof, but this is essentially due to aligning
their horizontal equational proofs in a vertical way. A previous proof in a special-
purpose SKAT prover required 41 pages [1]. This impressively demonstrates the
power of Isabelle’s proof automation. Previous experience in theorem proving
with algebra shows that the level of proof automation in algebra is often very
high [15,13,12]. In this regard, our present proof experience is slightly under-
whelming, as custom tactics and low-level proof techniques were needed for our
step-by-step proof reconstruction. A higher degree of automation seems difficult
to achieve, and a complete automation of the scheme equivalence proof cur-
rently out of reach. The main reason is that the flowchart terms in KAT are
much longer, and combinatorially more complex, than those in typical textbook
proofs. Decision procedures for variants of Kleene algebras, which currently only
exist in Coq [6], might overcome this difficulty.
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6 Hoare Logic

It is well known that Hoare logic—except the assignment rule—can be encoded
in KAT as well as in other variants of Kleene algebra such as modal Kleene alge-
bras [22] and Kleene modules [10]. The latter are algebraic relatives of proposi-
tional dynamic logic. A combination of these algebras with the assignment rule
and their application in program verification has so far not been attempted.

We have implemented a novel approach in which SKAT and Kleene modules
are combined. This allows us to separate tests conceptually from the pre- and
post-conditions of programs.

A Kleene module [20] is a structure (K,L, :) where K is a Kleene algebra, L a
join-semilattice with least element ⊥ and : a mapping of type L×K → L where

P : (p+ q) = P : p  P : q,

P : (p · q) = P : p : q,

P : 0 = ⊥,

(P  Q) : p = P : p  Q : p,

(P  Q) : p ≤ Q −→ P : p∗ ≤ Q,

P : 1 = P.

In this context, L models the space of states, propositions or assertions of a
program,K its actions, and the scalar product maps a proposition and an action
to a new proposition. We henceforth assume that L is a Boolean algebra with
maximal element $ and use a KAT instead of a Kleene algebra as the first
component of the module. The interaction between assertions, as modelled by
the Boolean algebra L, and tests, as modelled by the Boolean algebra B, is
captured by the new axiom

P : a = P � ($ : a).

The scalar product $ : a coerces the test a into an assertion ($ does not restrict
it); the scalar product P : a is therefore equal to a conjunction between the
assertion P and the test a.

We have used Isabelle’s locales to implement modules over KAT. Hoare triples
can then be defined as usual.

definition hoare-triple :: ′b ⇒ ′a ⇒ ′b ⇒ bool ({|-|} - {|-|} [54 ,54 ,54 ] 53 ) where
{|P |} p {|Q |} ≡ P :: p �L Q

As : is a reserved symbol in Isabelle, we use :: for the scalar product. The index L
refers to the Boolean algebra of assertions and the order �L is the order on this
Boolean algebra. As is well known, the Hoare rules excluding assignment can
now be derived as theorems in these modules more or less automatically. Apply-
ing the resulting Hoare-style calculus—which is purely equational—for program
verification requires us to provide more fine-grained syntax for assertions and
refinement statements and adding some form of assignment axiom.

We obtain this first-order syntax once more by specialising KAT to SKAT,
and by interpreting the SKAT expressions in the Boolean algebra of propositions
or states. As usual, program states are represented as functions from variables
to values. Assertions correspond to sets of states. Hence the Boolean algebra L
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is instantiated as a powerset algebra over states. Similar implementations are
already available in theorem provers such as Isabelle, HOL and Coq [24,26,8,23],
but they have not been implemented as simple instantiations of more general
algebraic structures. Assignment statements are translated in Gordon style [8]
into forward predicate transformers which map assertions (preconditions) to as-
sertions (postconditions).

This is, of course, compatible with the module-based approach. To implement
the scalar product of our KAT module, we begin by writing an evaluation func-
tion which, given an interpretation and a SKAT expression, returns the forward
predicate transformer for that expression.

fun eval-skat-expr ::
( ′a::ranked-alphabet , ′b) interp ⇒ ′a skat-expr ⇒ ′b mems ⇒ ′b mems
where
eval-skat-expr D (SKAssign x t) Δ = assigns D x t Δ
| eval-skat-expr D (SKBool a) Δ = filter-set (eval-bexpr D a) Δ
| eval-skat-expr D (p � q) Δ = eval-skat-expr D q (eval-skat-expr D p Δ)
| eval-skat-expr D (p ⊕ q) Δ = eval-skat-expr D p Δ ∪ eval-skat-expr D q Δ
| eval-skat-expr D (SKStar p) Δ = (

⋃
n. iter n (eval-skat-expr D p) Δ)

| eval-skat-expr D SKOne Δ = Δ
| eval-skat-expr D SKZero Δ = {}

We can now prove that if two SKAT expressions are equivalent according to
the congruence defined in Section 3, then they represent the same predicate
transformer. The proof is by induction. This property allows us to lift the eval-
skat-expr function to the quotient algebra.

theorem skat-cong-eval :
skat-cong p q =⇒ ∀Δ. eval-skat-expr D p Δ = eval-skat-expr D q Δ

lift-definition eval ::
( ′a::ranked-alphabet , ′b) interp ⇒ ′a skat ⇒ ′b mems ⇒ ′b mems
is eval-skat-expr

Using this lifting, we can reason algebraically in instances of SKAT that have
been generated by the evaluation function. This enables us to derive an assign-
ment rule for forward reasoning in Hoare logic from the SKAT axioms.

lemma hoare-assignment : P [x /t ] ⊆ Q =⇒ {|P |} x := t {|Q |}

We could equally derive a forward assignment rule P {|x := s}| P [x/s], but this
seems less useful in practice.

To facilitate automated reasoning we have added a notion of loop invariant as
syntactic sugar for while loops. Invariants are assertions used by the tactic that
generates verification conditions.

WHILE b INVARIANT i DO p WEND = (bp)∗b.

We have also derived a refined while rule which uses the loop invariant.
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lemma hoare-while-inv :
assumes b-test : b ∈ carrier tests
and Pi : P ⊆ i and iQ : i ∩ (UNIV :: !b) ⊆ Q
and inv-loop: {|i ∩ (UNIV :: b)|} p {|i |}
shows {|P |} WHILE b INVARIANT i DO p WEND {|Q |}

This particular rule has been instantiated to the powerset algebra of states, but
it could as well have been defined abstractly.

Isabelle already provides a package for Hoare logic [26]. Since there is one
Hoare rule per programming construct, it uses a tactic to blast away the control
structure of programs.We have implemented a similar tactic for our SKAT-based
implementation, called hoare-auto.

7 Verification Examples

We have applied our variant of Hoare logic to prove the partial correctness of
some simple algorithms. Instead of applying each rule manually we use our tactic
hoare-auto to make their verification with sledgehammer almost fully automatic.
More complex examples would certainly require more user interaction or more
sophisticated tactics to discharge the generated proof obligations.

lemma euclids-algorithm:
{|{mem. mem 0 = x ∧ mem 1 = y}|}
WHILE !(pred (EQ (Var 1 ) (NAT 0 )))
INVARIANT {mem. gcd (mem 0 ) (mem 1 ) = gcd x y}
DO
2 := Var 1 ;
1 := MOD (Var 0 ) (Var 1 );
0 := Var 2

WEND
{|{mem. mem 0 = gcd x y}|}
by hoare-auto (metis gcd-red-nat)

lemma factorial :
{|{mem. mem 0 = x}|}
1 := NAT 1 ;
(WHILE !(pred (EQ (Var 0 ) (NAT 0 )))
INVARIANT {mem. fact x = mem 1 ∗ fact (mem 0 )}
DO
1 := MULT (Var 1 ) (Var 0 ); 0 := MINUS (Var 0 ) (NAT 1 )

WEND)
{|{mem. mem 1 = fact x}|}
by hoare-auto (metis fact-reduce-nat)

Finally, our algebraic approach is expressive enough for deriving further program
transformation or refinement rules, which would only be admissible in Hoare
logic. As an example we provide proofs of two simple Hoare-style inference rules.
Program refinement or transformation rules could be derived in a similar way.
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lemma derived-rule1 :
assumes {P1 ,P2 ,Q1 ,Q2} ⊆ carrier A and p ∈ carrier K
and {|P1 |} p {|Q1 |} and {|P2 |} p {|Q2 |}
shows {|P1 � P2 |} p {|Q1 � Q2 |}
using assms
apply (auto simp add : hoare-triple-def assms, subst A.bin-glb-var)
by (metis A.absorb1 A.bin-lub-var A.meet-closed A.meet-comm mod-closed mod-join)+

lemma derived-rule2 :
assumes {P ,Q ,R} ⊆ carrier A and p ∈ carrier K and P :: p = (� :: p) � P
and {|Q |} p {|R|}
shows {|P � Q |} p {|P � R|}
by (insert assms) (smt derived-rule1 derived-rule2 insert-subset)

Only the derivation of the first rule is not fully automatic. The side condition
P :: p = ($ :: p)�P expresses the fact that if assertion P holds before execution
of program p, which is the left-hand side of the equation, then it also holds after
p is executed. The expression $ :: p represents the assertion that holds after p
is executed without any input restriction.

These examples demonstrate the benefits of the algebraic approach in defining
syntax, deriving domain-specific inference rules and linking with more refined
models and semantics of programs with exceptional ease. While, in the context
of verification, these tasks belong more or less to the metalevel, they are part of
actual correctness proofs in program construction, transformation or refinement.
We believe that this will be the most important domain for future applications.

8 Conclusion

We have implemented schematic Kleene algebra with tests in Isabelle/HOL,
and used it to formalise a complex flowchart equivalence proof by Angus and
Kozen. Our proof is significantly shorter than a previous formalisation in a cus-
tom theorem prover for Kleene algebra with tests. Our proof follows Angus and
Kozen’s manual proof almost exactly and translates it essentially line-by-line
into Isabelle, despite some weaknesses in proof automation which sometimes
forced us to reason at quite a low level. We have also extended SKAT to support
the verification of simple algorithms in a Hoare-logic style. Our approach pro-
vides a seamless bridge between our abstract algebraic structures and concrete
programs. We have tested our approach on a few simple verification examples.
Beyond that, we have derived additional Hoare-style rules and tactics for proof
automation abstractly in the algebraic setting. These can be instantiated to dif-
ferent semantics and application domains. In the context of verification the main
aplications of algebra seem to be at this meta-level. The situation is different
when developing programs from specifications or proving program equivalence,
as the flowchart scheme tranformation shows. In this context, algebra can play
an essential role in concrete proofs.
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Our Isabelle implementation sheds some light on the role of Kleene algebra
for program development and verification. Given libraries for the basic algebraic
structures and important models, we could prototype tools for flowchart equiv-
alence and Hoare-style verification proofs with little effort and great flexibility.
Moving, e.g., from a partial to a total correctness environment would require mi-
nor changes to the algebra (and of course a termination checker). We doubt that
a bottom-up semantic approach would be equally simple and flexible. Isabelle
turned out to be very well suited for our study. Hierarchies of algebras and their
models could be implemented using type classes and locales, verification tasks
were well supported by tactics and automated theorem provers. The automation
of textbook algebraic proofs is usually very high. Algebraic proof obligations
generated from verification conditions, however, turned out to be more complex,
cf. our flowchart example. Such proofs can provide valuable benchmarks for de-
velopers of theorem provers, decision procedures and domain specific solvers.
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Abstract. In intensional type theory, it is not always possible to form
the quotient of a type by an equivalence relation. However, quotients are
extremely useful when formalizing mathematics, especially in algebra.
We provide a Coq library with a pragmatic approach in two complemen-
tary components. First, we provide a framework to work with quotient
types in an axiomatic manner. Second, we program construction mecha-
nisms for some specific cases where it is possible to build a quotient type.
This library was helpful in implementing the types of rational fractions,
multivariate polynomials, field extensions and real algebraic numbers.

Keywords: Quotient types, Formalization of mathematics, Coq.

Introduction

In set-based mathematics, given some base set S and an equivalence ≡, one
may see the quotient (S / ≡) as the partition {π(x) | x ∈ S} of S into the sets
π(x) =̂ {y ∈ S | x ≡ y}, which are called equivalence classes.

We distinguish several uses of quotients in the literature. On the one hand,
we have structuring quotients, where the quotient can often be equipped with
more structure than the base set. For instance, the quotient of pairs of integers
to get rational numbers can be equipped with a field structure. Similarly, a
quotient of the free algebra of terms generated by constants, variables, sums and
products gives multivariate polynomials (i.e. polynomials with arbitrarily many
variables). This kind of quotient is often left implicit in mathematical papers.

On the other hand, we have algebraic quotients, for which we can transfer
the structure from the base set to the quotient. For instance, the quotient of
a group by a normal subgroup or the quotient of a ring by an ideal belong to
this category. For this kind of quotient, the structure on the base set and on the
quotient set matter and the canonical surjection onto the quotient is a morphism
for this structure.

In type theory, there are two known options to represent the notion of quo-
tient. The first option is to consider quotients of setoids. A setoid is a type
with an equivalence relation called setoid equality [1]. Now, quotienting a setoid
amounts to changing the setoid equality to a broader one. However, we still con-
sider elements from the base type, i.e. the type underlying both the base setoid
and the quotient setoid. This point of view is more the study of equivalence

S. Blazy, C. Paulin-Mohring, and D. Pichardie (Eds.): ITP 2013, LNCS 7998, pp. 213–228, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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relations than the study of quotients. Moreover, although rewriting with setoid
equality is supported by the system [2], it is still not as practical nor efficient as
rewriting with Leibniz equality, because it must check the context (of the term
to rewrite) commutes with the setoid equality.

The second option, and the one we focus on is to forge a quotient type, i.e.
a type where each element represents one and only one equivalence class of the
base type. This point of view leads to study the quotient as a new type, on which
equality is the standard (Leibniz) equality of the system. In this framework, the
equivalence that led to the quotient type is not a primitive notion. In Coq, the
problem with quotient types is that there is no general way of forming them,
without axioms [3].

In this paper, we do not focus on the theoretical problem of existence of
quotients, but on the way to use them. We first describe our definition of a
quotient interface in Section 1. We also show in which way it captures the desired
properties of quotients and how we instrumented type inference to help the user
to be concise. Surprisingly, this interface does not rely on an equivalence relation
in its axiomatization, so we explain how we recover quotients by an equivalence
relation from it in Section 2. We provide in Section 3 examples of applications
of quotient types to rational fractions, multivariate polynomials, field extensions
and real algebraic numbers. In Section 4, we compare our interface to previous
designs of quotient types.

The Coq code for this framework and the examples are available at the
following address: http://perso.crans.org/cohen/work/quotients/. We use
the SSReflect tactic language [4] and the mathematical components project
libraries [5].

1 A Framework for Quotients

Definition 1 (Quotient type). A type Q is a quotient type of a base type
T if there are two functions (pi: T -> Q) and (repr: Q -> T) and a proof
reprK1 that pi is a left inverse for repr, i.e. forall x, pi (repr x)= x (see
Figure 1).

The function pi is called the canonical surjection and we call the function
repr the representative function.

1.1 A Small Interface

The interface for quotients has a field for the quotient type, a field for the
representative function repr, a field for the canonical surjection pi and a field
for the axiom reprK, which says the representative function is a section of the
canonical surjection. The definition of the quotient interface is split into two
parts, in the same way the interfaces from the SSReflect algebraic hierarchy
are [6], in order to improve modularity.
1 The name reprK comes from a standard convention in the SSReflect library to

use the suffix “K” for cancellation lemmas.

http://perso.crans.org/cohen/work/quotients/
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x1

x2

xn

y1

ym

Base Type T

x

y

Quotient Type Q

canonical surjection (pi) to x

canonical surjection to y

representative (repr) of x

representative of y

Fig. 1. Quotients without equivalence relation

Record quot_class_of (T Q : Type) := QuotClass {
repr : Q -> T;
pi : T -> Q;
reprK : forall x : Q, pi (repr x) = x

}.
Record quotType (T : Type) := QuotType {

quot_sort :> Type; (∗ quotient type ∗)
quot_class : quot_class_of T quot_sort (∗ quotient class ∗)

}

Definition 2 (Quotient structure). An instance of the quotient interface is
called a quotient structure.

Example 1. Let us define the datatype int of integers as the quotient of pairs
of natural numbers by the diagonal. In other words, integers are the quotient of
N× N by the equivalence relation

((n1, n2) ≡ (m1, m2)) =̂ (n1 + m2 = m1 + n2).

Now, we explicitly define the type of canonical representatives: pairs of nat-
ural numbers such that one of them is zero. For example, the integer zero is
represented by (0, 0), one by (1, 0) and minus one by (0, 1).
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Definition int_axiom (z : nat * nat) := (z.1 == 0) || (z.2 == 0).
Definition int := {z | int_axiom z}.

We then define the particular instances reprZ of repr and piZ of pi and we
show that reprZ is indeed a section of piZ:

Definition reprZ (n : int) : nat * nat := val n.

Lemma sub_int_axiom x y : int_axiom (x - y, y - x).

Definition piZ (x : nat * nat) : int :=
exist _ (x.1 - x.2, x.2 - x.1) (sub_int_axiom _ _).

Lemma reprZK x : piZ (reprZ x) = x.

where val is the first projection of a Σ-type and where exist is the constructor
of a Σ-type.

Now, we pack together reprZ, piZ and reprZK into the quotient class, and in
the quotient structure int_quotType.

Definition int_quotClass := QuotClass reprZK.
Definition int_quotType := QuotType int int_quotClass.

We created a data type int which is the candidate for being a quotient, and a
structure int_quotType which packs int together with the evidence that it is a
quotient.

Remark 1. For various reasons we do not detail here, we selected none of the
implementation of int from this paper to define the integer datatype int from
SSReflect library [7]. Our examples use int only for the sake of simplicity and
we provide a compilation of the ones about int in the file quotint.v. However,
this framework is used in practice for more complicated instances (see Section 3).

1.2 Recovering an Equivalence and Lifting Properties

The existence of a quotient type Q with its quotient structure qT over the base
type T induces naturally an equivalence over T: two elements (x y : T) are
equivalent if (pi qT x = pi qT y). We mimic the notation of the SSReflect
library for equivalence in modular arithmetic on natural numbers, which gives us
the following notation for equivalence of x and y of type T modulo the quotient
structure qT:

Notation "x = y %[mod qT]" := (pi qT x = pi qT y).

We say an operator on T (i.e. a function which takes its arguments in T and
outputs an element of T) is compatible with the quotient if given two lists of
arguments which are pairwise equivalent, the two outputs are also equivalent.
In other words, an operator is compatible with the quotient if it is constant on
each equivalence class, up to equivalence.
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When an operator op on T is compatible with the quotient, it has a lift-
ing, which means there exists an operator Op on the quotient type Q such that
following diagram commutes:

(T ∗ . . . ∗ T)

op

��

pi ��




(Q ∗ . . . ∗ Q)

Op

��
T

pi
�� Q

.

The canonical surjection is a morphism for this operator.
For example, a binary operator (Op : Q -> Q -> Q) is a lifting for the binary

operator (op : T -> T -> T) with regard to the quotient structure qT as soon
as the canonical surjection (pi qT : T -> Q) is a morphism for this operator:

forall x y, pi qT (op x y) = Op (pi qT x) (pi qT y) :> Q

which can be re-expressed in a standardized form for morphisms of binary op-
erators in SSReflect:

{morph (pi qT) : x y / op x y >-> Op x y}

Example 2. Let us define the add operation on int as the lifting of the point-wise
addition on pairs of natural numbers.

Definition add x y := (x.1 + y.1, x.2 + y.2).
Definition addz X Y := \pi_int (add (repr X) (repr Y)).
Lemma addz_compat : {morph \pi_int : x y / add x y >-> addz x y}.

Where the statement of addz_compat can be read as follows:

forall x y, \pi_int (add x y) = addz (\pi_int x) (\pi_int y).

and where \pi_int stands for (pi int_quotType) (see Example 4).
Similarly, given an arbitrary type R, we say that a function with values in R is

compatible with the quotient if it is constant on each equivalence class. When a
function f with arguments in T and values in R is compatible with the quotient,
it has a lifting, which means there exists an operator F with arguments in the
quotient type Q and values in R such that the following diagram commutes:

(T ∗ . . . ∗ T)

f
������

����
����

����
����

��
pi ��




(Q ∗ . . . ∗ Q)

F
��
R

The canonical surjection is a morphism for this function.
For example, a binary function (F : Q -> Q -> R) is a lifting of a binary

function (f : T -> T -> R) if:
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forall x y, (f x y) = F (pi qT x) (pi qT y) :> R

or in a standardized form for morphisms of relations in SSReflect:
{mono (pi qT) : x y / f x y >-> F x y}

1.3 Inference of Quotient Structures

We recall that given a base type T, we say Q is a quotient type for T if there is
a quotient structure qT and if the projection (quot_sort qT) is Q. In practice,
given x in Q we want to be able to write (repr x), but such a statement would
be ill-typed.

Remark 2. The problem comes from the fact repr has an implicit argument
which must have type quotType. The expanded form for (repr x) is (@repr
?quotType x), where x must have type (quot_sort ?quotType). But if x has type Q,
the type inference algorithm encounters the unification problem

(quot_sort ?quotType) ≡ Q

which it cannot solve without a hint, although we guess a solution is qT.

However, it is possible to make Coq type this statement anyway, by providing
the information that the quotient structure qT is a canonical structure [8] for
the quotient type Q. Registering a structure as canonical provide the unification
mechanism a solution for the kind of equations we encounter.

Example 3. We make int_quotType the canonical quotient structure for the
quotient type int by using the following Coq vernacular command:
Canonical Structure int_quotType.

Now, given x of type int, the system typechecks (repr x) as an element of
(nat * nat), as expected.

Since a quotient structure is canonically attached to every quotient type, we may
also simplify the use of pi. Indeed, for now, pi has the following type.

forall (T : Type) (qT : quotType T), T -> quot_sort qT

Hence, (pi qT) has type T -> Q, but it is not possible to use (pi Q) to refer
to this function. To circumvent this problem we provide a notation \pi_Q which
gives exactly (pi qT) where qT is the canonical quotient structure attached to
Q if it exists (otherwise, the notation fails). This notation uses a phantom type
to let the system infer qT automatically [7].

Example 4. The canonical surjection function \pi_int from pairs of naturals to
integers is in fact (@pi int_quotType) and has type (nat * nat -> int).

We also adapted the notation for equivalence modulo quotient, so that we can
provide Q instead of qT, as follows:
Notation "x = y %[mod Q]" := (\pi_Q x = \pi_Q y).
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1.4 Automatic Rewriting

When an operation (or a function) is compatible with the quotient, we can forge
the lifting by hand by composing the initial operation with pi and repr. In
this case the canonical surjection is indeed a morphism for the operator (cf the
example of addz in Section 1.2).

Then we want to show elementary properties on the lifting, and those can
often be derived from the properties of the initial operation. Thanks to the
compatibility lemma, it is easy to go back and forth between the operation and
its lifting by making pi and the operation commute.

Example 5. We show that zero is a neutral element on the right for addition:

Definition zeroz := \pi_int (0, 0).
Lemma add0z x : addz zeroz x = x.

Then, by rewriting backwards with reprK, the statement of add0z is equivalent to:

addz (\pi_int (0, 0)) (\pi_int (repr x)) = (\pi_int (repr x))

which can be solved by rewriting backwards with addz_compat.

However, when faced with more complex expressions involving lifted operators,
it becomes more complicated to control where rewriting must happen. In order
to save the user from the need to use a chain of rewriting rules of the form
[pattern]op_compat, we introduce an automated mechanism to globally turn
an expression on the quotient into an expression on the base type. For this, an
operation Op (respectively a function F) which is a lifting has to be recognized
automatically. We must register in some way that the value associated with (
Op (\pi_Q x)(\pi_Q y)) is (\pi_Q (op x y)) (respectively, that the value
associated with (F (\pi_Q x)(\pi_Q y)) is (f x y)). For this purpose, we
define a structure equal_to u, the type of all elements of Q that are equal to
(u : Q):

Record equal_to Q u := EqualTo {equal_val : Q; _ : u = equal_val}.
Notation "{pi a}" := (equal_to (\pi a)) : quotient_scope.
Lemma piE (Q : Type) (u : Q) (m : equal_to u) : equal_val m = u.

The type parameter u of the structure is the translation to infer, while the
content of the field equal_val is the information present in the goal. We also
introduce a notation {pi a} for the type of all elements of Q which are equal
to (\pi a). Rewriting with lemma piE, will trigger an instantiation of the left
hand side of the equality, which will infer a value for m, and thus for its type,
which contains u.

To declare an instance for an operator op, we must provide a lifted operator Op
and a proof that given two elements that are the canonical surjections of x and
y, it returns a value which is the canonical surjection of (op x y).
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Canonical Structure op_equal_to (x y : T) (qT : quotType T)
(X : {pi x}) (Y : {pi y}) : {pi (op x y)} :=

EqualTo (Op X Y) (_ : pi qT (op x y) = Op X Y).

We declare that any term of the form (\pi x) has a trivial {pi x} structure
(where both u and equal_val are (\pi x)):

Canonical Structure equal_to_pi T (qT : quotType T)
(x : T) : {pi x} := EqualTo (\pi x) (erefl _).

Example 6. For the addition in int, we can write:

Lemma addz_pi (x y : nat * nat) (X : {pi x}) (Y : {pi y}) :
\pi_int (add x y) = addz (equal_val X) (equal_val Y).

Canonical Structure addz_equal_to (x y : nat * nat)
(X : {pi x}) (Y : {pi y}) : {pi (add x y)} :=

EqualTo (addz (equal_val X) (equal_val Y)) (addz_pi X Y).

By declaring addz_equal_to as canonical, we can now use piE to rewrite an
expression of the form (addz x̃ ỹ)) into (\pi_int (add x y)), where x̃ and ỹ
are arbitrarily complicated expressions that can be canonically recognized as
elements of respectively {pi x} and {pi y}, i.e. as being canonically equal to
respectively (\pi_int x) and (\pi_int y).

In the examples above, we defined by hand the quotient int of pairs of natural
numbers nat * nat. Moreover, the equivalence was left implicit in the code. We
could expect a generic construction of this quotient by the equivalence relation
mentioned in the first example. We now deal with this deficiency.

1.5 Recovering Structure

This interface for quotient does not require the base type or the quotient type
to be discrete (i.e. to have decidable equality), a choice type (see Section 2.1)
or an algebraic structure. However, in the special case where the base type is
discrete (respectively a choice type), we provide a mechanism to get the decidable
equality structure (respectively the choice structure) on the quotient type.

Preserving structure through quotienting is more difficult to do for algebraic
structures, but we provide such a support for quotients by an ideal, which we
do not detail in this paper for the sake of space. Given a ring R with an ideal
I, one can form the quotient {ideal_quot I} which has again a ring structure.
Moreover, in that case, the canonical surjection pi is a ring morphism.

2 Quotient by an Equivalence Relation

Until now we have shown a quotient interface with no equivalence in its signa-
ture, and a notion of equivalence which is defined from the quotient. Now, we
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explain how to get the quotient structure of a type by an equivalence relation.
Given a type T and an equivalence relation equiv, we have to find a data type
representing the quotient i.e. such that each element is an equivalence class.

A natural candidate to represent equivalence classes is the Σ-type of pred-
icates that characterize a class. The elements of a given equivalence class are
characterized by a predicate P that satisfies the following is_class property:

Definition is_class (P : T -> Prop) : Prop :=
exists x, (forall y, P y <-> equiv x y).

Thus, we could define the quotient as follows.

Definition quotient := {P : T -> Prop | is_class P}.

However, because Coq equality is intensional, two predicates which are exten-
sionally equal (i.e. equal on every input) may not be intensionally equal, and
also, the proof that a given predicate is a class is not unique either. Hence,
in order for quotient to have only one element by equivalence class, it would
suffice to have both propositional extensionality and proof irrelevance for the
sort Prop.

However, this is not enough to make quotient a quotient type. We have
enough information to build the canonical surjection pi, but we do not know
how to select a representative element for each class.

2.1 Quotient of a Choice Structure

If a type T has a choice structure [6], there exists an operator

xchoose : forall P : T -> bool, (exists y : T, P y) -> T.

which given a proof of exists y, P y returns an element z, such that z is the
same if xchoose is given a proof of exists y, Q y when P and Q are logically
equivalent.

Given a base type T equipped with a choice structure and a decidable equiva-
lence relation (equiv : T -> T -> bool), it becomes possible to build a
quotient type. The construction is slightly more complicated than above.

For each class we can choose an element x in a canonical fashion, using the
following canon function:

Lemma equiv_exists (x : T) : exists y, (equiv x) y.
Proof. by exists x; apply: equiv_refl. Qed.

Definition canon (x : T) := xchoose (equiv_exists x).

We recall that xchoose takes a proof of existence of an element satisfying a
predicate (here the predicate (equiv x)) and returns a witness which is unique,
in the sense that two extensionally equal predicates lead to the same witness.
This happens for example with the two predicates (equiv x) and (equiv y)
when x and y are equivalent: the choice function will return the same element z
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which will be equivalent both to x and y. Such a canonical element is a unique
representative for its class.

Hence, the type formed with canonical elements can represent the quotient.
Record equiv_quot := EquivQuot {

erepr : T;
erepr_canon : canon erepr == erepr

}.

Indeed, thanks to Boolean proof irrelevance [9], the second field (erepr_canon)
of such a structure is unique up to equality, which makes this Σ-type a sub-type.

The representative function is trivial as it is exactly the projection erepr on
the first field of the Σ-type equiv_quot. However, more work is needed to build
the canonical surjection. Indeed we first need to prove that canon is idempotent.
Lemma canon_id (x : T) : canon (canon x) == canon x.
Definition epi (x : T) := EquivQuot (canon x) (canon_id x).

Finally, we need to prove that the canonical surjection epi cancels the represen-
tative erepr:
Lemma ereprK (u : equiv_quot T) : epi (erepr u) = u.

The proof of ereprK relies on the proof irrelevance of Boolean predicates.
Proof. Two elements of equiv_quot are equal if and only if their first projec-
tion erepr are equal, because the second field erepr_canon of equiv_quot is a
Boolean equality, and has only one proof. Thanks to this (epi (erepr u)) and u
are equal if and only if (erepr (epi (erepr u)) is equal to (erepr u). But
by definition of epi, (erepr (epi (erepr u)) is equal to (canon (erepr u)),
and thanks to the property (erepr_canon u), we get that (canon (erepr u))
is equal to (erepr u), which concludes the proof.
We then package everything into a quotient structure:
Definition equiv_quotClass := QuotClass ereprK
Canonical Structure equiv_quotType := QuotType equiv_quot

equiv_quotClass.

We declare this structure as canonical, so that any quotient by an equivalence
relation can be recognized as a canonical construction of quotient type.

However, we omitted to mention that the proof of canon_id and hence the
code of epi requires a proof that equiv is indeed an equivalence relation. In
order to avoid to add unbundled side conditions ensuring equiv is an equivalence
relation, we define an interface for equivalence relations which coerces to binary
relations:
Structure equiv_rel := EquivRelPack {

equiv_fun :> rel T;
_ : reflexive equiv
_ : symmetric equiv
_ : transitive equiv

}.
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The whole development about equiv_quot takes (equiv : equiv_rel T) as a
parameter.

Remark 3. Given an equivalence relation equiv on a choice type T, we intro-
duced the notation {eq_quot equiv} to create a quotient by inferring both the
equivalence structure of equiv and the choice structure of T and applying the
latter construction.

We recall that we defined the equivalence induced by the quotient by saying x
and y are equivalent if (\pi_Q x = \pi_Q y), where Q is the quotient type. We
refine the former notation for equivalence modulo Q to specialize it to quotients
by equivalence, as follows.

Notation "x = y %[mod_eq equiv]" := (x = y %[mod {eq_quot equiv}]).

In the present situation, it seems natural that this induced equivalence coincides
with the equivalence by which we quotiented.

Lemma eqmodP x y : reflect (x = y %[mod_eq equiv]) (equiv x y).

Example 7. Let us redefine once again int as the quotient of N × N by the
equivalence relation ((n1, n2) ≡ (m1, m2)) defined by (n1 + m2 = m1 + n2).

In this second version, we directly perform the quotient by the relation, so we
first define the equivalence relation.

Definition equivnn (x y : nat * nat) := x.1 + y.2 == y.1 + x.2.

Lemma equivnn_refl : reflexive equivnn.
Lemma equivnn_sym : symmetric equivnn.
Lemma equivnn_trans : transitive equivnn.

Canonical Structure equivnn_equiv : equiv_rel (nat * nat) :=
EquivRel equivnn equivnn_refl equivnn_sym equivnn_trans.

Then int is just the quotient by this equivalence relation.

Definition int := {eq_quot equivnn}.

This type can be equipped with a quotient structure by repackaging the quotient
class of equiv_quotType equivnn_equiv together with int.

2.2 Quotient of Type with an Explicit Encoding to a Choice Type

In Section 3.4, we quotient by a decidable equivalence a type which is not a choice
type, but has an explicit encoding to a choice type. Let us first define what we
mean by explicit encoding, and then show how to adapt the construction of the
quotient.

Definition 3 (Explicit encoding). We say a type T with a equivalence relation
equivT is explicitly encodable to a type C if there exists two functions (T2C : T
-> C) and (C2T : C -> T) such that the following coding property holds:
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forall x : T, equivT (C2T (T2C x)) x.

The function T2C is called the encoding function because it codes an element
of T into C. Conversely, the function C2T is called the decoding function.

Remark 4. Here T can be seen as a setoid, and the coding property can be
interpreted as: C2T is a left inverse of T2C in the setoid T. It expresses that
encoded elements can be decoded properly.

There is no notion of equivalence on the coding type C yet, but we can provide one
using the equivalence induced by T. Thus, we define equivC by composing equivT
with C2T.

Definition equivC x y := equivT (C2T x) (C2T y).

When equivT is a Boolean relation, so is equivC. When C is a choice type and
equivC is a decidable equivalence on this choice type, we can reproduce the exact
same construction of quotient as in Section 2.1, so that we getereprC : equiv_quot
-> C, epiC: C -> equiv_quot and a proof of cancellation ereprCK. Now we can
compose these operators with T2C and C2T.

Definition ereprT (x : equiv_quotient) : T := C2T (ereprC x).
Definition epiT (x : T) : equiv_quotient := epiC (T2C x).

And we can prove the cancellation lemma ereprTK using ereprCK and the coding
property.

Lemma ereprTK (x : equiv_quotient) : epiT (ereprT x) = x.

Finally, we have everything we need to create a quotient type, like in Section 2.1.

3 Applications

3.1 Rational Fractions

Given an integral domain D, i.e. a ring where ab = 0⇔ a = 0 ∨ b = 0. One can
build a field of rational fractions of D by quotienting {(x, y) ∈ D ×D | y �= 0}
by the equivalence relation defined by:

(x, y) ≡ (x′, y′) := xy′ = yx′

For example, rational numbers Q and the polynomial fractions Q(X) can be
obtained through this construction.

In Coq, we first formalize the type ratio of pairs in a discrete ring, where
the second element is non zero, and the above relation. Then, we prove it is an
equivalence and quotient by it:

Inductive ratio := mkRatio { frac :> R * R; _ : frac.2 != 0 }.
Definition equivf x y := equivf_def (x.1 * y.2 == x.2 * y.1).
Canonical Structure equivf_equiv : equiv_rel.
Definition type := {eq_quot equivf}.



Pragmatic Quotient Types in Coq 225

Remark 5. First restricting the domain to “ratios” and then quotienting is our
way to deal with the partiality of the equivalence relation between pairs.

We then recover the decidability of the equality and the choice structure for free,
through the quotient.2 However, the ring and field structures cannot be derived
automatically from the ring structure of R×R and have to be proven separately.

This development on rational fractions has been used in a construction of
elliptic curves by Bartzia and Strub [10].

3.2 Multivariate Polynomials

The goal is to have a type to represent polynomials with an arbitrary number
of indeterminates. From this we could start formalizing the theory of symmetric
polynomials. Possible applications are another Coq proof of the Fundamental
Theorem of Algebra [11] or the study of generic polynomials in Galois Theory.

We provide this construction for a discrete ring of coefficients R and a count-
able type of indeterminates. We form the quotient of the free algebra generated
by constants in R, addition, multiplication and indeterminates (Xn), which we
quotient by the relation defined by t1 ≡ t2 if t1 and t2 represent the same uni-
variate polynomial in (. . . (R[X1])[X2] . . .) [Xn] where n is big enough [12].

In order to know if two terms represent the same univariate polynomial
in (. . . (R[X1])[X2] . . .) [Xn] with n fixed, we iterate the univariate polynomial
construction {poly R} from the SSReflect library.

3.3 Field Extensions

The proof of the Feit-Thompson Theorem relies on Galois theory and on a
construction of the algebraic closure for countable fields (including finite fields).
Both these constructions involve building a field extension through quotienting,
but in two different ways. Although we did not develop the formal proof of these
constructions, we briefly mention how quotients were used.

Galois theory studies the intermediate fields between a base field F and a
given ambient field extension L. In this context, we build the field extension of
F generated by the root z ∈ L of a polynomials P ∈ F [X ] of degree n. It amounts
in fact to building a subfield F [z] of dimension n between F and L. This is done
by quotienting the space Kn[X ] of polynomials with coefficients in K of degree
at most n by the equivalence relation defined by P ≡ Q := (P (z) = Q(z)).

To build the algebraic closure of a countable field F , one can iterate the con-
struction of a field extension by all irreducible polynomials of F [X ]. Each itera-
tion consists in building a maximal ideal and quotienting by it, which happens
to be constructive because we have countably many polynomials.

2 As there are two possible equality operators available (one obtained from the equality
of the base type, the other from the equivalence relation), we must be very careful
to let the user choose the one he wants, once and for all.
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3.4 Real Algebraic Numbers

Finally, we used a quotient with an explicit encoding to a choice type (see
Section 2.2) to build the real closed field of real algebraic numbers [13,7].

4 Related Work on Quotient Types

Given a base type (T : Type) and an equivalence (equiv : T -> T -> Prop),
the Coq interface below is due to Laurent Chicli, Loïc Pottier and Carlos Simp-
son [3], following studies from Martin Hofmann [14]. It sums up the desired
properties of a the quotient type: its existence, a surjection from the base type T
to it, and a way to lift to the quotient functions that are compatible with the
equivalence equiv.

Record type_quotient (T : Type) (equiv : T -> T -> Prop)
(Hequiv : equivalence equiv) := {
quo :> Type;
class :> T -> quo;
quo_comp : forall (x y : T), equiv x y -> class x = class y;
quo_comp_rev : forall (x y : T), class x = class y -> equiv x y;
quo_lift : forall (R : Type) (f : T -> R),

compatible equiv f -> quo -> R;
quo_lift_prop :

forall (R : Type) (f : T -> R) (Hf : compatible equiv f),
forall (x : T), (quot_lift Hf \o class) x = f x;

quo_surj : forall (c : quo), exists x : T, c = class x
}.

where \o is the infix notation for functional composition and where equivalence
and compatible are predicates meaning respectively that a relation is an equiv-
alence (reflexive, symmetric and transitive) and that a function is constant on
each equivalence class. We believe3 they are defined as below:

Definition equivalence (T : Type) (equiv : T -> T -> Prop) :=
reflexive equiv /\ symmetric equiv /\ transitive equiv.

Definition compatible (T R : Type) (equiv : T -> T -> Prop)
(f : T -> R) := forall x y : T, equiv x y -> f x = f y.

Once this type_quotient defined, they [3] add the existence of the quotient as
an axiom.

Axiom quotient : forall (T : Type) (equiv : T -> T -> Prop)
(p:equivalence R), (type_quotient p).

Although this axiom is not provable in the type theory of Coq, its consistency
with the Calculus of Constructions has been proved in [14]. The construction of
this interface was made in order to study the type theory of Coq augmented
3 No definitions for equivalence or compatible are explicitly given in [3].
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with quotient types. This is not our objective at all. First, we want to keep the
theory of Coq without modification, so quotient types do not exist in general.
Second, we create an interface to provide practical tools to handle quotients
types that do exist.

The reader may notice that here the field quo plays the role of our quot_sort
and class the role of pi of our interface. The combination of repr and reprK
is a skolemized version of quo_surj.

Remark 6. This is not exactly the case, because quot_surj is a Prop existen-
tial, which unlike existentials in Type cannot be extracted to a function repr
which has the property reprK. This was already observed [3] in the study of the
consistency of Coq with variants of type_quotient.

However, the parameters about equiv and properties about the lifting of mor-
phism disappear completely in our interface, because they can all be encoded as
explained in Section 1.2.

Example 8. For example, quo_lift can be encoded like this:

Definition new_quo_lift (T R : Type) (qT : quotType T)
(f : T -> R) (x : Q) := f (repr x)

Note that the precondition (compatible equiv f) was not needed to define
the lifting new_quo_lift. Only the property quo_lift_prop still needs the
precondition.

Our approach can also be compared to Normalized Types [15]. The function pi
can be seen as a user defined normalization function inside Coq.

5 Conclusion

This framework for quotient types is not a substitute for setoids and especially
not for setoid rewriting. Indeed, it is not designed to make it easy to rewrite
modulo equivalence, but to rewrite directly using equality inside the quotient
type. Quotient types can mimic to some extend the behaviour of quotients in
set-based mathematics.

This framework has already been useful in various non trivial examples. It
handles quotients by ideals in the sense of the SSReflect library. Also, a nat-
ural continuation would be to study quotients of vector spaces, algebras and
modules.

Also, in the SSReflect library, quotients of finite groups [16] are handled
separately, taking advantage of the support for finite types. Maybe they could
benefit from a connection with this more generic form of quotient.

Finally, it seems that this framework could work to quotient lambda-terms
modulo alpha-equivalence. I did not attempt to do this construction, but it seems
worth a try.
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Mechanical Verification of SAT Refutations
with Extended Resolution

Nathan Wetzler, Marijn J.H. Heule, and Warren A. Hunt Jr.�

The University of Texas at Austin

Abstract. We present a mechanically-verified proof checker developed with the
ACL2 theorem-proving system that is general enough to support the growing
variety of increasingly complex satisfiability (SAT) solver techniques, including
those based on extended resolution. A common approach to assure the correct-
ness of SAT solvers is to emit a proof of unsatisfiability when no solution is
reported to exist. Contemporary proof checkers only check logical equivalence
using resolution-style inference. However, some state-of-the-art, conflict-driven
clause-learning SAT solvers use preprocessing, inprocessing, and learning tech-
niques, that cannot be checked solely by resolution-style inference. We have
developed a mechanically-verified proof checker that assures refutation clauses
preserve satisfiability. We believe our approach is sufficiently expressive to vali-
date all known SAT-solver techniques.

1 Introduction

Satisfiability (SAT) solvers are becoming commonplace for a variety of applications,
including model checking [1], equivalence checking, hardware verification, software
verification, and debugging. These tools are often used not only to find a solution for
a Boolean formula, but also to make the claim that no solution exists. If a solution
is reported for a given formula, one can check the solution linearly in the size of the
formula. But when no solution is reported to exist, we want to be confident that a SAT
solver has fully exhausted the search space. This is complicated by the fact that state-
of-the-art solvers employ a large array of complex techniques to maximize efficiency.
Errors may be introduced at a conceptual level as well as a implementation level. Formal
verification, then, is a reasonable approach to detect errors or to assure that results
produced by SAT solvers are correct.

One method of assurance is to apply formal verification to the SAT solver itself. This
involves modeling a SAT solver, specifying the desired behavior, and using a tool—such
as a theorem prover—to show that the model meets its specification. The benefit of such
a direct approach is that the solver would only need to run once for a given input. There
are many problems with this approach, however. SAT solvers are constantly evolving,
and each new implementation would require a new proof. Furthermore, it is hard to
balance verification requirements with efficiency. Lescuyer and Conchon [2] formal-
ized and verified the basic Davis-Putnam-Logemann-Loveland (DPLL) [3,4] algorithm
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using Coq [5]. Shankar and Vaucher [6] verified a DPLL solver using PVS. Marić [7,8]
verified pseudocode fragments of a conflict-driven clause-learning (CDCL) [9] solver
in 2009 and verified a CDCL-style solver using Isabelle/HOL [10] in 2010. Oe et al.
[11] provided an verified CDCL-style solver in Guru. Several key techniques, such as
clause minimization during conflict analysis, have yet to be mechanically verified.

Another approach is to validate the output of a SAT solver. A proof trace is a se-
quence of clauses that are claimed to be redundant with respect to a given formula. If
a SAT solver reports that a given formula is unsatisfiable, it can provide a proof trace
that can be checked by a smaller, trusted program called a proof checker. A refuta-
tion is a verified proof trace containing the empty clause. Ideally, a proof trace should
be compact, easy to obtain, efficient to verify, and should facilitate a simple checker
implementation. Moreover, we “only” need to formally verify the proof checker. By
focusing verification efforts on a proof checker, we gain assurance while avoiding the
need to verify a variety of solvers with differing implementations.

Proof traces have traditionally established redundancy in the form of resolution
chains [12,13,14]. In resolution-style proofs, clauses are iteratively added to a formula
provided that they can be derived from a sequence of applications of the resolution rule.
Resolution proof traces are simple to express and can be efficiently validated, but they
tend to be enormous and difficult to obtain from a solver. Weber [15,16] demonstrated
the first mechanically-verified resolution-based proof checker using Isabelle/HOL. Dar-
bari et al. [17] verified a resolution-based proof checker in Coq which is able to exe-
cute outside of the theorem-prover environment. Armand et al. [18] extended a SAT
resolution-based proof checker to include SMT proofs using Coq.

Alternatively, one can use unit propagation, one of the basic SAT simplification tech-
niques, to check proof traces. Each proof clause is shown to be redundant by adding the
complement of the clause as unit clauses, performing unit propagation with respect
to the conjunction of the original formula and all verified proof clauses so far, and
then checking for a conflict. This process is known as reverse unit propagation (RUP)
[13,19]. RUP proofs are compact and easy to obtain; however, RUP checkers are some-
what inefficient and more complicated than their resolution-based counterparts. Oe and
Stump [20] implemented a non-verified RUP proof checker in C++ and proposed a
verified RUP proof checker in Guru.

However, both resolution and RUP proof formats lack the expressivity to capture a
growing number of techniques used in state-of-the-art SAT solvers. SAT solvers often
use preprocessing and inprocessing in addition to (CDCL-style) learning, and some of
these techniques cannot be expressed by resolution-style inference such as bounded-
variable addition [21], blocked-clause addition [22], and extended learning [23]. These
techniques can be expressed, however, by extended resolution (ER) [24] or a generaliza-
tion of ER [22]. Järvisalo et al. [25] demonstrated a hierarchy of redundancy properties,
the most expressive of which is Resolution Asymmetric Tautology (RAT), which is a
generalization of RUP. All preprocessing, inprocessing, and learning techniques used
in contemporary solvers can be expressed by the addition and removal of RAT clauses.
One key difference, however, between RAT and RUP (or resolution) is that RAT checks
satisfiability equivalence instead of logical equivalence.
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In [26], we proposed a new proof format based on the RAT redundancy property and
described a fast implementation of a proof checker for this format written in C. In this
paper, we present a mechanically-verified SAT proof checker using ACL2 [27] based
on the RAT redundancy property. This includes a mechanical proof of the redundancy
(via satisfiability equivalence) of RAT clauses. Our implemented proof checker is the
most expressive proof checker to date and it is mechanically verified.

In Section 2 we will introduce ACL2 and formalize key SAT concepts including unit
propagation and resolution. We will also discuss a redundancy hierarchy and provide
our implementation of RAT and our RAT proof checker. We will give a specification for
our RAT proof checker in Section 3, and present our mechanical proof of correctness in
Section 4. Finally, we conclude in Section 5.

2 Formalization

2.1 ACL2

We used the ACL2 system [27] to develop our formalization, specification, and proof.
ACL2 is a freely-available system that provides a theorem prover and a programming
language, both of which are based on a first-order logic of recursive functions. The logic
is compatible with Common Lisp—indeed, “ACL2” is an acronym that might be written
as “ACL2” and stands for “A Computational Logic for Applicative Common Lisp”—
and an executable image can be built on a number of Common Lisp implementations.
ACL2 provides efficient execution by way of Common Lisp compilers.

The initial theory for ACL2 contains axioms for primitive functions such as cons
(the constructor for an ordered pair), car (the head of a list or first component of a pair),
and cdr (the tail of a list or second component of a pair). It also contains axioms for
Common Lisp functions, such as member, and it introduces axioms for user-supplied def-
initions. ACL2 provides a top-level read-eval-print loop. Arbitrary ACL2 expressions
may be submitted for evaluation. Of special interest are events, including definitions
and theorems; these modify the the theorem prover’s logical database for subsequent
proof and evaluation. Function definitions are typically expressed using the defun event
and theorems using the defthm event. We call an ACL2 function a predicate if it returns
a Boolean value.

As is the case for Lisp, the syntax of ACL2 is generally case-insensitive and is based
on prefix notation: (function argument1 ... argumentk). For example, the term de-
noting the sum of x and y is (+ x y). A semicolon “;” starts a comment. ACL2 also
supports the functions let and and let* for parallel and sequential bindings, respec-
tively. Functions may return mulitple values using the constructor mv which stands for
“multiple value”. Elements of mv may be accessed with the function mv-nth which ac-
cesses the nth value of an mv. The function mv-let takes three arguments: a list of
bindings, a function that returns an mv (with the same number of values as the bind-
ings), and a body. For example, suppose that a function f returns two values and we
wish to compute their sum. We can compute this with the following term:

(mv-let (x y)
(f ...)
(+ x y))



232 N. Wetzler, M.J.H. Heule, and W.A. Hunt Jr.

ACL2 does not have native support for quantification in the logic; however, ACL2 al-
lows a user to define Skolemized functions using the defun-sk event. This event intro-
duces a witness function that will return a witness object if such an object exists. For
example, if we wanted to express the mathematical statement, “there exists an x such
that x < y”, we could do so with the event:

(defun-sk exists-x-<-y (y) (exists x (< x y)))

This event defines a non-executable, one-argument function exists-x-<-y-witness
that will return an x if one exists. The non-executable function exists-x-<-y returns
true if exists-x-<-y-witness finds such an object.

Links to papers that apply ACL2, as well as detailed hypertext documentation and
installation instructions, may be found on the ACL2 home page.1

2.2 Satisfiability Basics

We will now begin introducing some SAT concepts. We will forego providing the tradi-
tional SAT notation and will instead use ACL2 notation. In this way, we can define key
SAT terminology while describing our formalization.

We model Boolean variables with positive integers. For a Boolean variable v, there
are two literals, the positive literal l and the negative literal computed by (negate l).
We represent positive and negative literals as positive and negative integers, and we rec-
ognize them with the predicate literalp. A clause is a finite disjunction of literals, and
a clause is a tautology if it contains the conflicting literals l and (negate l) for some l.
We introduce the predicate no-conflicting-literalsp to recognize non-tautological
lists, and we define the predicate clausep to recognize non-tautological ACL2 lists of
unique literals.2 A conjunctive normal form (CNF) formula, recognized by predicate
formulap, is a finite conjunction of clauses which we represent as an ACL2 list of non-
tautological clauses. We do not require clauses to be unique within a formula. In the rest
of this paper, we will assume all formulas to be in CNF. The set of literals occurring in
a formula f is computed by the function all-literals.

A truth assignment for a formula f is a partial function that maps literals l in
(all-literals f) to Boolean values. We model an assignment, with predicate
assignmentp, as a ACL2 list of unique non-conflicting literals (note that the imple-
mentations of assignmentp and a clausep are the same). In our ACL2 representation,
we define special values true, false, and undef with corresponding predicates truep,
falsep, undefp. The evaluation of literal l with respect to assignment ta is computed by
the function evaluate-literal which returns true if (member l ta), false if (member
(negate l) ta), and undef otherwise. The evaluation of a clause c with respect to
assignment ta is computed by the function evaluate-clause which returns true if
(evaluate-literal l ta) is true for some literal l in c, false if (evaluate-literal
l ta) is false for all literals l in c, and undef otherwise. The evaluation of a for-
mula f with respect to assignment ta is computed by the function evaluate-formula
which returns true if (evaluate-clause c ta) is true for all clauses c in f, false if
(evaluate-clause c ta) is false for some clause c in f, and undef otherwise.

1 www.cs.utexas.edu/users/moore/acl2/
2 This is the same representation as the SAT competition DIMACS format.

www.cs.utexas.edu/users/moore/acl2/
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We say a clause c, or a formula f, is satisfied by an assignment ta if evaluation of
c, or f, with respect to ta is true. An assignment that satisfies a formula is called a
solution. We say a clause c, or a formula f, is falsified by an assignment ta if evaluation
of c, or f, with respect to ta is false. A formula f is satisfiable if there exists a solution
for f and unsatisfiable if there does not exist a solution for f. Two formulas are logically
equivalent if and only if they have the same set of satisfying assignments. Two formulas
are satisfiability equivalent if and only if they are both satisfiable or both unsatisfiable.

The negation of a clause is an assignment computed by negate-clause. For example,
(negate-clause ’(1 -2 3)) returns the assignment (-1 2 -3). The negation of an
assignment is a clause computed by negate-assignment. Both functions share the same
implementation and are complements of each other.

2.3 Proof Traces

Conflict-driven clause learning (CDCL) [9] is the leading paradigm of modern SAT
solvers. A core aspect of CDCL solvers is the addition and removal of clauses. The main
form of CDCL reasoning is known as conflict analysis, which adds conflict clauses en-
countered during search. Additionally, state-of-the-art CDCL solvers use preprocessing
and inprocessing techniques that both add and remove clauses.

A clause c is redundant with respect to a formula f if (cons c f) is satisfiability
equivalent to f. A formula is a set of clauses, and we write (cons c f) to extend a
formula. We say the addition of a redundant clause c to f preserves satisfiability.

A proof trace is a sequence of clauses that are redundant with respect to an input
formula. Note that a proof trace is a sequence because the order of the clauses in a proof
trace is essential. As an example, two clauses c1 and c2 may both be redundant with
respect to a formula f, but c2 may not be redundant with respect to the extended formula
(cons c1 f). A proof trace can be validated by a proof checker tool that iteratively
(or recursively) removes the first clause c from a proof trace, checks the clause c for
redundancy with respect to the current formula f, and then extends the set f with c. A
validated proof trace that contains the empty clause, which cannot be satisfied, is called
a refutation.

2.4 Resolution and Resolution Proofs

The early approaches to verify proof traces were based on resolution [12]. The resolu-
tion rule states that given a clause c1 containing literal l and a clause c2 containing lit-
eral (negate l) that the resolvent is the union of c1 without l and c2 without (negate
l). The resolvent is logically implied by c1 and c2. We compute resolvents with the
function (resolution l c1 c2). Note that one can compute resolution without the use
of a resolving literal, i.e. l. We chose this form in our model because it is more explicit
and eases proof burdens.

Example 1. The clauses (1 -2) and (2 -3) contain a conflicting literal, i.e, one clause
contains l and the other contains (negate l). Therefore, we can apply resolution on
them. (resolution -2 ’(1 -2) ’(2 -3)) results in (1 -3).
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Resolution proof traces are a sequence of clauses whose redundancy can be established
by a sequence of resolutions on clauses from an input formula. Clauses added by CDCL
solvers can be simulated by a sequence of resolutions [28]. Because resolution is such
an elementary operation, simple and fast checking algorithms exist [12] that assure that
a trace of resolution applications is correct. However, resolution proofs tend to be very
large, and it may be hard to modify a SAT solver to emit a resolution refutation; for
instance, one must determine the clauses on which to apply resolution, and specifying
the order of resolutions can be difficult.

2.5 Extended Resolution

For a given formula f, the extension rule [24] allows one to iteratively add clauses to
f encoding the logical AND of two existing literals as a new Boolean variable. More
specifically, given variables 1, 2 that appear in f and a variable 3 which does not appear
in f, the clauses ((3 -1 -2) (-3 1) (-3 2)) can be added to f. Extended Resolution
(ER) [24] is a proof system in which the extension rule is repeatedly applied to a formula
f, followed by applications of the resolution rule. This proof system surpasses what can
be expressed using only resolution.

ER [24] is the basis for some techniques used during learning [23] and preprocess-
ing [21] in state-of-the-art SAT solvers. Refutations using ER can be exponentially
smaller than refutations based solely on resolution. Examples include the pigeon-hole
problems where Haken [29] showed that all resolution proofs are exponential in size,
while Cook [30] demonstrated that some ER proofs can be polynomial in size. Our
proof checker supports techniques that are based on ER.

2.6 Unit Propagation and Clausal Proofs

Goldberg and Novikov [19] proposed an alternative to resolution-based proofs. They
observed that each clause added by CDCL conflict analysis can be checked using unit
propagation, also known as Boolean constraint propagation. This technique simplifies
a formula f based on unit clauses. A clause of any length is unit if all literals in the
clause c evaluate to false under an assignment ta except for one, which evaluates to
undef; this literal is called a unit literal and is added to ta. Adding the unassigned
literal to ta makes c evaluate to true under the extended assignment. This procedure
continues until a unit clause cannot be found.

Unit propagation can be used to check if a clause c is logically implied by a formula
f. Start with the assignment (negate-clause c). Apply unit propagation until a conflict
arises, i.e., some clause in f is falsified. If a conflict occurs, then adding c to f preserves
logical equivalence [19]. Clauses that can be checked using this procedure are also
known as reverse unit propagation (RUP) clauses [13].

Example 2. Consider the formula f = ((-1 2) (-2 -3) (3 4)) and the assignment
ta = (1 -4). Formula f under ta contains two unit clauses: (-1 2) with unit literal
2 and (3 4) with unit literal 3. Extending ta with the unit literals results in the ex-
tended assignment (1 2 3 -4). The extended assignment falsifies clause (-2 -3), so
unit propagation results in a conflict. Unit propagation on f under (1 -4) results in a
conflict, which shows that clause (-1 4) is redundant with respect to f.
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Because unit propagation will play a key role in our proof checker, we formalize this
technique below. The function (is-unit-clause c ta) returns the unit literal if one
exists or nil if c is not unit. The function (find-unit-clause f ta) recursively checks
if each clause in f is unit, returns the multiple-value pair containing the unit literal and
unit clause if a unit clause exists, and returns the multiple-value pair (mv nil nil)
otherwise. Unit propagation for a formula f with respect to assignment ta is defined
as follows:

(defun unit-propagation (f ta) ;; Formula f, assignment ta
(declare (xargs :measure (num-undef f ta))) ;; Termination measure
(mv-let (ul uc) ;; Unit literal, unit clause

(find-unit-clause f ta) ;; Found by find-unit-clause
(declare (ignorable uc)) ;; Unit clause not needed
(if (not ul) ;; No unit literal?

ta ;; Then, return assignment
(unit-propagation f (cons ul ta))))) ;; Recur with new ta

The mv-let (Section 2.1) calls find-unit-clause, binds the results to ul and uc, de-
clares that uc will be ignored, and executes the body which tests for a unit literal and
recurs with an extended assignment if a unit literal is found.

ACL2 proves the termination of each function admitted to the logic. In most in-
stances, ACL2 will be able to prove the termination of a function without additional
help, but sometimes one might need to explicitly provide a measure. A measure is a
function which computes a value that must decrease (with respect to a well-defined re-
lation) during every recursive call. We provide a measure for unit-propagation in the
definition above called num-undef that computes the number of clauses in f that evalu-
ate to undef under ta. While ta is recursively extended during unit-propagation, the
measure will decrease because each unit literal added to ta will make one undef clause
become true.

2.7 Redundancy Hierarchy

There are many properties that can establish the redundancy of a clause. Järvisalo et
al. [25] offers a hierarchy of fifteen redundancy properties that can be computed in
polynomial time with respect to a formula. If a clause has one of those fifteen prop-
erties with respect to a given formula, then adding the clause to the formula preserves
satisfiability. A discussion of all fifteen properties goes beyond the scope of this paper,
so we will focus on the four properties that are related to our proof checker. A reduced
hierarchy is shown in Fig 1.

We have already presented two redundancy properties. A clause has T (tautology) if
and only if it contains the literals l and (negate l) for some l. A clause has AT (asym-
metric tautology) if and only if reverse unit propagation results in a conflict. Note that
any clause with property T trivially has the property AT. Many techniques used in SAT
solvers can be expressed as a trace of clauses with AT including CDCL learning [31],
variable elimination (DP resolution) [3,32] and subsumption. Adding clauses with T or
AT to a formula preserves logical equivalence.
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The other two redundancy properties are related to resolution. For a given literal l
and a formula f, let f-neg-l denote the subset of clauses in f that contain the
literal (negate l). First, a clause c has RT (resolution tautology) if and only if c has
T or it contains a literal l such that all resolvents between c and a clause in f-neg-l
have T. Second, a clause c has RAT (resolution asymmetric tautology) if and only if
c has AT or it contains a literal l such that all resolvents between c and a clause in
f-neg-l have AT. If a clause has any redundancy property in the hierarchy, then it also
has RAT [25]. Techniques that can be expressed using RAT but not with AT include
blocked clause addition [22], bound variable addition [21], extended resolution [24],
and extended learning [23].

Example 3. Let formula f be ((1 2) (2 3) (-2 -3)).

– The clause (1 -1) is a tautology (has T) because it contains 1 and (negate 1).
– The clause (1 -3) does not have T. However, it has RT (and RAT) with respect to f

and literal 1, because f contains no clauses with literal -1. Furthermore, it also has
AT because unit propagation with the assignment (-1 3) results in a conflict.

– The clause (-1 3) has RAT, but not T, AT, or RT. Unit propagation under the as-
signment (1 -3) does not result in a conflict, so (-1 3) does not have AT. Also,
(-1 3) does not have RT, because there are non-tautological resolvents with (1 2)
and (-2 -3). Finally, the only resolvent on literal -1 is computed by resolving (-1
3) with (1 2) to obtain (2 3), which is already in f. So, unit propagation on the
negation of the resolvent, (-2 -3), results in a conflict. Hence, (-1 3) has RAT.

T

AT

CDCL learning

DP resolution

subsumption

RAT

extended learning

bounded variable addition

RT

extended resolution

blocked clauses
preserve

logical equivalence
preserve

satisfiability

Fig. 1. Relationships between clause redundancy properties that can be computed in polynomial
time with respect to the size of a formula. Techniques, shown in italics, are positioned based
on the most efficient check to verify that technique. All techniques used in state-of-the-art SAT
solvers can expressed as a sequence of RAT clauses [25]. The dashed line separates techniques
that preserve logical equivalence and techniques that preserve satisfiability.

2.8 RAT

RAT is the strongest redundancy property in the hierarchy of [25] that preserves satisfi-
ability. All preprocessing, inprocessing, and solving techniques in state-of-the-art SAT
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solvers can be expressed in terms of addition and removal of RAT clauses [25]. Re-
call that a clause c has RAT if and only if c has AT or it contains a literal l such that
all resolvents between c and a clause in f-neg-l have AT. A clause c has AT if unit
propagation on the assignment (negate c) results in a conflict.

We define resolution asymmetric tautology (RAT) as follows:

(defun ATp (f c) ;; Given formula f, clause c
(falsep (evaluate-formula f

(unit-propagation f (negate-clause c)))))

;; Given clause list cl, formula f, clause c, and literal l
(defun RATp1 (cl f c l)

(if (atom cl) ;; End of clause list?
t ;; Then, success

(if (not (member (negate l) (car cl))) ;; No resolution?
(RATp1 (cdr cl) f c l) ;; Then, continue

(let ((r (resolution l c (car cl)))) ;; Make resolvent
(if (tautologyp r)) ;; Resolvent has T?

(RATp1 (cdr cl) f c l) ;; Then, continue
(and (ATp f r) ;; Resolvent has AT?

(RATp1 (cdr cl) f c l))))))) ;; Then recur, else fail

(defun RATp (f c l) ;; Given formula f, clause c, and literal l
(RATp1 f f c l)) ;; Copy f for recursion in helper function

The function RATp destructively recurs over a formula but needs a copy of the formula
to compute asymmetric tautologies. Therefore, we begin by calling a helper function
RATp1 which has two copies of formula f. The first copy will be used for recursion
and bound as cl while the second copy will remain untouched. If we have checked all
clauses in cl, then we return t because c has RAT. If (negate l) is not a member of the
current clause (car cl), then we recur. We next perform the resolution of c and (car
cl) on l and bind the result to r. Finally, we check if r is a tautology or if r has AT. If
either of these is true, we recur, and we return nil otherwise.

2.9 Proof Checker

We now present the implemenation of our proof checker. Our checker works by ensur-
ing that each clause c in a proof trace pt has ATp with respect to formula f or RATp with
respect to formula f on the first literal of the clause. If c can be verified, then c is added
to f before recurring.

(defun verify-clause (c f) ;; Given clause c, formula f
(or (ATp f c) ;; Verify by AT, OR

(and (not (atom c)) ;; Check for non-empty clause, AND
(RATp f c (car c))))) ;; Verify by RAT w.r.t. 1st literal

(defun verify-proof (pt f) ;; Proof trace pt, formula f
(if (atom pt) ;; End of proof trace?

t ;; Then, success
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(if (verify-clause (car pt) f) ;; First clause in pt verified?
(verify-proof (cdr pt) ;; Then, recur with

(cons (car pt) f)) ;; extended formula
nil))) ;; Else, fail

To be clear, we assume that the first literal of the clause (car c) is the literal on which
to perform resolution during the RATp check. This is a design choice and the efficiency
of this method is described in [26]. Note that the empty clause () will fail the (not
(atom c)) case in verify-clause. We do this because () does not have an explicit
resolution literal.

One can simply redefine verify-clause to only check clauses for ATp, removing the
call to RATp. This creates a traditional RUP proof checker.

Example 4. Let formula f = ((1 2 -3) (-1 -2 3) (2 3 -4) (-2 -3 4) (-1 -3 -4) (1 3 4)
(-1 2 4) (1 -2 -4)). A refutation for f is ((1) (2) ()).

3 Specification

We will introduce a few new concepts and then state our main theorem. The func-
tion clause-listp recognizes lists of clauses, similar to formulap. We define a proofp
object to be a clause list that has been checked by our proof checker. A proof is a
refutationp object if it also contains the empty clause. The predicate solutionp
recognizes assignments that satisfy a given formula.

(defun proofp (pt f) ;; A proof is a clause sequence
(and (clause-listp pt) ;; that has been verified with

(verify-proof pt f))) ;; respect to a formula

(defconst *empty-clause* nil) ;; The empty clause

(defun refutationp (p f) ;; A refutation is a proof that
(and (proofp p f) ;; contains the empty clause

(member *empty-clause* p)))

(defun solutionp (ta f) ;; A solution is an assignment
(and (assignmentp ta) ;; that satisfies a formula

(truep (evaluate-formula f ta))))

We use the defun-sk event (Section 2.1) to define the notion that there exists a solution
for a formula.

(defun-sk exists-solution (f)
(exists ta (solutionp ta f)))

With those definitions, we can state our main theorem.

(defthm main-theorem

(implies (and (formulap f) ;; Given a formula f
(refutationp r f)) ;; And refutation r

(not (exists-solution f)))) ;; Then f is unsatisfiable
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This theorem reads that if given a refutation r and a formula f, then there does not
exist a solution for f. In other words, a refutation that has been verified by our RAT
checker implies that a formula is unsatisfiable. Note that this is only a specification for
correctness of our proof checker as defined above.

4 Proof

We will now describe the mechanical proof of main-theorem. ACL2-style proofs are
generally a sequence of defthm and defun events. While ACL2 processes events in a
bottom-up fashion, we provide a top-down description of our ACL2 proof. We want to
prove that a refutation r for a formula f implies that the formula is unsatisfiable. An
outline of the proof is as follows:

1. We will prove the contrapositive—if there exists a solution s for f, then we should
not be able to verify the refutation.

2. We prove that the empty clause cannot be redundant with respect to f provided s is
a solution for f.

3. We show that every clause c in r is redundant. This contradicts (2) because the
empty clause is a member of r. We use structural induction on r to prove this.
(a) We show that clauses with ATp are redundant.
(b) We show that clauses with RATp are redundant. We case split based on the result

of (evaluate-clause c s).
i. If (evaluate-clause c s) is true, then s is a solution for c.

ii. If (evaluate-clause c s) is undef, then we construct a new solution s+
that consists of s with an undef literal in c.

iii. If (evaluate-clause c s) is false, then we construct a new solution s*
that is s with the exception that one literal in s has been negated.

In order to prove main-theorem, we first expand the definition of refutationp and
contrapose the call of verify-proof with exists-solution. We will now use structural
induction on the proof trace pt.

(defthm verify-proof-induction
(implies (and (clause-listp pt)

(formulap f)
(exists-solution f)
(member *empty-clause* pt))

(not (verify-proof pt f))))

Recall that at each step verify-proof adds a clause from the proof trace pt to the
formula. In our induction step, we will show that clauses in the proof with ATp or RATp
are redundant. This allows us to derive a contradiction because *empty-clause* is a
member of the refutation, does not have ATp or RATp with respect to a satisfiable formula,
and is therefore not satisfiability equivalent.

(defthm *empty-clause*-lemma
(implies (solutionp s f)

(not (ATp f *empty-clause*))))
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We prove this lemma with set reasoning. Specifically, if an assignment falsifies a for-
mula, then a superset of that assignment will falsify a formula. Any solution must be
a superset of the assignment constructed by performing unit propagation on the empty
clause. Furthermore, the empty clause does not have RATp because there is no literal
with which to perform resolution. We exclude this case by performing a (not (atom
c)) check in verify-clause.

We now return to the induction step of verify-proof-induction. This is a rather
odd induction step because it needs to be expressed in terms of existentials. We will
prove that if there exists a solution for the formula, then there exists a solution for the
formula extended with a clause from the proof trace. In other words, we want to show
that the extended formula is satisfiability equivalent to the original formula.

Here the proof diverges based on whether a proof clause has ATp or RATp. We consider
the ATp case in Section 4.1 and the RATp case in Section 4.2.

4.1 ATp

If a clause c has ATp with respect to a formula f, then we will show that (cons c f) is
logically equivalent to f (and therefore satisfiability equivalent to f).

(defthm ATp-lemma
(implies (and (ATp f c)

(exists-solution f)
(formulap f)
(clausep c))

(exists-solution (cons c f))))

We expand (exists-solution f) to obtain a witness solution s. We will use s as a
witness for the term (exists-solution (cons c f)) in the conclusion. We know that
s satisfies every clause in the original formula, so it is sufficient to show that s sat-
isfies the ATp clause. Recall the definition of ATp. We replace the clause c with an
abstraction (negate-assignment ta). As previously stated, negate-assignment and
negate-clause are complements of each other; (negate-clause (negate-assignment
ta)) simplifies to ta. We are then left with the following theorem.

(defthm ATp-lemma-induction
(implies (and (falsep (evaluate-formula f (unit-propagation f ta)))

(truep (evaluate-formula f s))
(formulap f)
(assignmentp ta)
(assignmentp s))

(truep (evaluate-clause (negate-assignment ta) s))))

We want to show that there is an l such that l is a member of s and (negate l) is a
member of ta. Let assignment up-ta be the result of (unit-propagation f ta). Be-
cause up-ta falsifies f, there must be a clause c* that is falsified by up-ta. Since s
satisfies f, s also satisfies c*. Let l* be the literal that is a member of c* and s. Notice
that (negate l*) is a member of up-ta.

We will induct on the extended assignment up-ta. In the base case, up-ta is equal
to ta. Thus, (negate l*) is a member of ta and l* is a member of s. In the induction
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step, up-ta is (cons ul ta) for some unit clause uc with unit literal ul. Again, there
must be a clause c* that is falsified by up-ta but satisfied by s. Let l* be the literal that
is a member of c* and s. Either (negate l*) is equal to ul or (negate l*) is in ta.
If (negate l*) is in ta, then we are done. Otherwise, ul is equal to (negate l*), i.e.
(negate ul) is in s. Consquently, uc was not satisfied by ul. All literals in uc not equal
to ul are falsified by ta from the definition of unit clause. Let l** be the literal in s that
satisfies uc. Since l** cannot be ul, (negate l**) is in ta and l** is in s.

Commentary. The induction for ATp-lemma-induction is the most difficult part of the
proof of ATp-lemma. First, the induction is blocked by (negate-clause c). We tried
several abstractions, all of which affected the goal (truep (evaluate-clause c s)),
before settling on the use of negate-assignment. This abstraction lets us perform the
correct induction without significantly changing the goal. Second, the induction itself is
subtle because of the custom measure provided to unit-propagation. The assignment
continues to grow during every recursive call of unit-propagation, but the number of
undef clauses decreases.

4.2 RATp

We wish to show that if there exists a solution s for formula f and a clause c has RATp
with respect to f and literal l in c, then there is a solution for the set (cons c f).

(defthm RATp-lemma
(implies (and (formulap f)

(clausep c)
(member l c)
(exists-solution f)
(RATp f c l))

(exists-solution (cons c f))))

Let assignment s satisfy f. Consider the cases for (evaluate-clause c s).

– true: There exists a solution for (cons c f), namely s.
– undef: Choose literal l+ in c such that (evaluate-literal l+ s) returns undef.

Let assignment s+ be the result of (cons l+ s+). (evaluate-clause c s+) returns
true because (evaluate-literal l+ s+) returns true. Consider any clause c1 in
f. We know (evaluate-clause c1 s+) returns true, because (evaluate-clause
c1 s) returns true. Therefore, f is satisfied by s+ and there exists a solution for
(cons c f), namely s+.

– false: Make a new assignment s* such that (evaluate-literal l s*) is true by
removing (negate l) from s and then adding l to s. By construction, we have
that (evaluate-clause c s*) is true. We now need to show (evaluate-clause
c1 s*) is true for all c1 in f.

Consider a clause c1 in f. If literal (negate l) is not a member of c1, then we know
that (evaluate-clause c1 s*) is still true (because l is the only literal that changed
in s). Recall c has RATp so the resolvent r computed by (resolution l c c1) has ATp
with respect to f. By ATp-lemma, r is also satisfied by s. Therfore, there exists a literal



242 N. Wetzler, M.J.H. Heule, and W.A. Hunt Jr.

lr in r such that (evaluate-literal lr s) is true. Now, lr cannot be in c because
(evaluate-clause c s) is false. Because lr is in r and not in c, we know lr is in c1.
Furthermore, lr cannot be equal to (negate l) because (negate l) is not in r by the
definition of resolution. Therefore, (evaluate-clause c1 s*) is true, and there exists
a solution for (cons c f), namely s*.

Commentary. One key observation during the proof of RATp-lemma was the need for
a case split on (evaluate-clause c s). We previously tried to use an induction on
clause list from RATp1 with (not (truep (evaluate-clause c s))) as a hypothesis,
which was insufficient. Feedback from ACL2 led us to a full three-way case split, which
strengthened the condition to (falsep (evaluate-clause c s)).

Another subtle part of the proof was the case of tautologyp for the resolvent during
an induction of the clause list in RATp1. In this proof, we needed to find a conflicting
literal in the resolvent and then show that the existence of a conflicting literal implies
that a clause from the formula is satisfied by the modified solution.

4.3 Statistics

Our RAT proof checker formalization, specification, and mechanical proof of correct-
ness3 contain 93 ACL2 defun events and 282 ACL2 defthm events and certifies in
approximately 45 seconds. Of those, 32 defun and 140 defthm events are specific to
the RAT proof checker while the other 61 defun and 142 defthm events are part of our
“library” of SAT concepts. This library includes code about sets, literals, clauses, eval-
uation, unit propagation, and parsing. The RAT proof checker contains 1088 lines of
uncommented non-blank lines of ACL2 source and 2080 lines total; the associated SAT
library contains 1121 uncommented non-blank lines of ACL2 and 1836 lines total. We
can extract only the definitions that are necessary to create an executable version of the
RAT proof checker; this can be expressed in just 26 defun events. ACL2 allows the user
to supply custom hints for conjectures that are not proved automatically; hints are used
to guide the theorem prover towards a proof. We had to provide custom hints for 33
of the 140 defthm events that are specific to the RAT proof checker and 12 of the 142
defthm events in the SAT library.

5 Conclusion

We presented the formalization, specification, and proof of correctness for a SAT proof
checker in ACL2. Our proof checker is based the strong redundancy property RAT
that preserves satisfiability. This allows us to validate refutations generated by state-
of-the-art SAT solvers that make use of techniques based on extended resolution. We
describe the first mechanically-verified proof checker to be complete with respect to all
contemporary SAT-solving techniques.

We are developing a faster checker that will employ watched-literal data structures.
Our current checker, although proven to be correct, is still too slow to use to check large

3 The implementation and proof presented in this paper are available at the address
http://cs.utexas.edu/~nwetzler/itp13/

http://cs.utexas.edu/~nwetzler/itp13/
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proofs. We do not expect it to be too difficult to map clauses from list data structures to
memory arrays represented in a heap since the ACL2 formalization of arrays is actually
given with a list-based semantics. The inclusion of pointers to implement watched-
literals will require that we prove an invariant assuring that the watched-literal data
structure is always properly maintained. A fast, verified RAT proof checker could be
used improve ACL2 by way of a verified clause processor. In other words, ACL2 could
construct a SAT encoding for a given subgoal and then call any off-the-shelf SAT solver
that produces a solution or a proof trace, that could then be checked by our tool to
admit a theorem of unsatisfiablity into the logic. A framework for this proof strategy is
explored by Davis et al. in [33].

We submit that all SAT solvers should be able to emit UNSAT proofs that can be
checked. Experimentation has shown us that UNSAT proofs can generally be checked
using a C-based program with watched literals in a time similar to that required by
contemporary solvers. In the future, we encourage all SAT-solver developers to make
provisions for emitting RAT proof traces that can be verified using a checker, like the
one presented here. Furthermore, it should be the focus of future research to devise
elegant and efficient ways of producing RAT proof traces.
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Abstract. Bounded increase is a termination technique where it is tried
to find an argument x of a recursive function that is increased repeatedly
until it reaches a bound b, which might be ensured by a condition x < b.
Since the predicates like < may be arbitrary user-defined recursive func-
tions, an induction calculus is utilized to prove conditional constraints.

In this paper, we present a full formalization of bounded increase in
the theorem prover Isabelle/HOL. It fills one large gap in the pen-and-
paper proof, and it includes generalized inference rules for the induc-
tion calculus as well as variants of the Babylonian algorithm to compute
square roots. These algorithms were required to write executable func-
tions which can certify untrusted termination proofs from termination
tools that make use of bounded increase. And indeed, the resulting certi-
fier was already useful: it detected an implementation error that remained
undetected since 2007.

1 Introduction

A standard approach to proving termination of recursive programs is to find
a well-founded order (, such that every recursive call decreases w.r.t. this or-
der: whenever f(�1, . . . , �n) = C[f(r1, . . . , rn)] is a defining equation for f , then
(�1, . . . , �n) ( (r1, . . . , rn) has to hold. For example, one can use a measure func-
tion m which maps values into the naturals where (�1, . . . , �n) ( (r1, . . . , rn) is
defined as m(�1, . . . , �n) > m(r1, . . . , rn). For this approach to be sound, one
uses well-foundedness of the >-order on the naturals.

However, often termination can also be concluded since some argument is
increased until it exceeds a bound, as demonstrated in the following algorithm
which computes

∑n
i=0 i.

compute-sum n = sum 0 n

sum i n = if i ≤ n then i+ sum (i+ 1) n else 0

Also here an appropriate measure can be chosen which is decreased in every
iteration, e.g. the difference of the parameters: m(i, n) = n − i. However, one
needs more information to conclude termination: the measure maps into the
integers (and not into the naturals), where the >-order is not well-founded.

� Supported by the Austrian Science Fund (FWF), project P22767.
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Only in combination with the condition i ≤ n one can conclude that the value
n− i is bounded from below and thus, termination of the function.1

In the remainder of the paper, we are focussing on term rewrite systems
(TRSs), a simple yet powerful computational model that underlies much of
declarative programming and theorem proving—for example, both Haskell-func-
tions and Isabelle/HOL-functions can be translated into TRSs such that termi-
nation of the TRSs implies termination of the functions [7,15]. For TRSs, the
above kind of termination argument has been introduced as the termination
technique bounded increase [9], where measure functions like m(i, n) = n− i are
allowed in the form of polynomial orders [16].

To improve the reliability of automated termination tools for TRSs like AProVE
[8] and TTT2 [13], we already formalized several termination techniques (IsaFoR)
which resulted in a certifier (CeTA) which validates or invalidates untrusted ter-
mination proofs [20]. Other certifiers are based on the alternative formalizations
Coccinelle [6] and CoLoR [5]. Due to the certifiers, bugs have been detected in the
automated termination tools, which remained without notice for several years and
could easily be fixed after their detection.

However, CeTA can only certify those proofs where all applied termination
techniques have been formalized. And in order to achieve a high coverage, the
integration of bounded increase is essential. For example, in the latest interna-
tional termination competition in 2012, two versions of AProVE participated:
one unrestricted version, and one which only uses techniques that are supported
by CeTA; a detailed inspection of the proofs revealed that for more than half of
the termination proofs where only the unrestricted version was successful, the
method of bounded increase was applied.

Although the termination argument behind bounded increase looks quite in-
tuitive, we want to stress that the underlying soundness proofs are far from being
trivial. To this end, consider the following TRS which is a reformulation of the
previous algorithm as TRS. We list three problems that are solved in [9].

compute-sum(n)→ sum(0, n)

sum(i, n)→ ifsum(i ≤ n, i, n)

ifsum(true, i, n)→ i + sum(i + 1, n)

ifsum(false, i, n)→ 0

1. Since interpretations are used which interpreted into the integers, for strong
normalization one needs to know that there is a bound on the integers, which
is obtained from analyzing side conditions.

2. Usually, for termination analysis of TRSs one uses orders which are weakly
monotone w.r.t. contexts, i.e., whenever � � r then C[�] � C[r]. However,
polynomials like n− i result in non-monotone orders �.

1 Alternatively, one can define m(i, n) = n+1 .− i which maps into the naturals using
the truncating subtraction .−. But again one requires the condition i ≤ n for the
termination proof, namely to ensure m(i, n) > m(i+ 1, n).
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3. Since there is no builtin arithmetic for pure term rewriting, one adds rewrite
rules which compute ≤, +, etc., like the following ones in Rarith:

0 ≤ y → true 0+ y → y

s(x) ≤ 0→ false s(x) + y → s(x+ y)

s(x) ≤ s(y)→ x ≤ y

Concrete numbers n in Rsum are directly replaced by sn(0) where s and 0
are the constructors for natural numbers.

As a consequence, conditions like i ≤ n are not arithmetic constraints,
but rewrite constraints i ≤ n→∗

R true where R is a TRS which contains the
rules of Rarith. As a result, one has to be able to solve conditional constraints
of the form t1 →∗

R t2 −→ t3 ( t4.

The paper is structured as follows: after the preliminaries in Sect. 2, we shortly
recapitulate the solutions in [9] to all three problems in Sect. 3–5 and present
their formalization. Here, major gaps in the original proofs are revealed, and
the existing results are generalized. In Sect. 6 we illustrate complications that
occurred when trying to extend our certifier towards bounded increase, which
also forced us to formalize a precise algorithm to compute square roots.

2 Preliminaries

We briefly recall some basic notions of term rewriting [2].
The set of (first-order) terms over some signature F and variables V is written

as T (F ,V). A context C is a term with one hole �, and C[t] is the term where
� is replaced by t. The term t is a subterm of s iff s = C[t] for some C, and it
is a proper subterm if additionally s �= t. A substitution σ is a mapping from
variables to terms. It is extended homomorphically to terms where we write tσ
for the application of σ on t. A TRS is a set of rules �→ r for terms � and r. The
rewrite relation of a TRS R is defined as s→R t iff s = C[�σ] and t = C[rσ] for
some � → r ∈ R, σ, and C. By NF (R) we denote the normal forms of R, i.e.,
those terms s where there is no t such that s→R t. A substitution σ is normal
w.r.t. R iff σ(x) ∈ NF (R) for all x. A symbol f is defined w.r.t. R iff there is
some rule f(. . . )→ r ∈ R. The remaining symbols are called constructors of R.

Throughout this paper we are interested in the innermost rewrite relation
i→R which is defined like →R with the additional requirement that all proper
subterms of �σ must be normal forms w.r.t. R.2 We write SINR(t) to indicate

2 In IsaFoR we consider a more general definition of innermost rewriting, where the
proper subterms of 	σ must be normal forms w.r.t. some TRS Q which is indepen-
dent from R. All results in this paper have been proven for this generalized notion of
rewriting under the condition that NF (Q) ⊆ NF (R). This generalization was impor-
tant, as it is also utilized in the termination proofs that are generated by AProVE.
Moreover, the generalized innermost rewrite relation has the advantage that it is
monotone w.r.t. R. However, to improve the readability, in this paper we just use
i→R, i.e., we fix Q = R.
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that the term t is strongly normalizing w.r.t. the innermost rewrite relation, i.e.,
there is no infinite derivation t i→R t1

i→R t2
i→R . . ., and SIN (R) denotes

innermost termination of R, i.e., strong normalization of i→R.
A popular way to prove innermost termination of TRSs is to use dependency

pairs [1,10], which capture all calls of a TRS.

Example 1. Let R := Rsum∪Rarith where additionally the number 1 in Rsum has
been replaced by s(0). Then the following set P contains those dependency pairs
of R which correspond to recursive calls.

sum�(i, n)→ if�sum(i ≤ n, i, n) (1)

if�sum(true, i, n)→ sum�(i + s(0), n) (2)

s(x) ≤� s(y)→ x ≤� y (3)

s(x) +� y → x +� y (4)

Here, the sharped-symbols are fresh tuple-symbols (F �) which can be treated
differently from their defined counterparts when parametrizing orders, etc.

The major theorem of dependency pairs tells us for Ex. 1 that R is innermost
terminating iff there is no (minimal) innermost (P ,R)-chain. Here, a chain is an
infinite derivation of the form

s1σ1 →P t1σ1
i→∗
R s2σ2 →P t2σ2

i→∗
R . . . (�)

where all si → ti ∈ P and all siσi ∈ NF (R). The chain is minimal if SINR(tiσi)
for all i. Intuitively, the step from siσ to tiσ corresponds to a recursive call, and
the step from tiσ to si+1σi+1 evaluates the arguments before the next call.

In the remainder of this paper we assume some fixed TRS R and in examples
we always use the TRS R of Ex. 1. Consequently, in the following we use the
notion of P-chain instead of (P ,R)-chain where P is some set of (dependency)
pairs s→ t. We call P terminating iff there is no minimal P-chain.3

One major technique to show termination of P is the reduction pair processor
[10] which removes pairs from P—and termination can eventually be concluded if
all pairs have been removed. This technique has been formalized for all certifiers
[5,6,20].

Theorem 2. Let (�,() be a reduction pair, i.e., ( is an order which is strongly
normalizing, � is a quasi-order satisfying �◦(◦� ⊆ (, both ( and � are stable
(closed under substitutions), and � is monotone (closed under contexts). A set
of pairs P is terminating if P ⊆ ( ∪�, R ⊆ �, and P \ ( is terminating.

One instance of reduction pairs stems from polynomial interpretations over the
naturals [16] where every symbol is interpreted by a polynomial over the naturals,
and s � t is defined as [[s]] ≥ [[t]] (similarly, s ( t iff [[s]] > [[t]]).

3 In the literature termination of P is called finiteness of (P ,R). We use the notion
of termination here, so that “P is finite” does not have two meanings: finiteness of
the set P or absence of P-chains. In IsaFoR, the latter property is called finite-dpp,
but as for the innermost rewrite relation, IsaFoR uses a more general notion of chain,
which is essential for other termination techniques. To be more precise we do not
only consider the 3 components (P , R, and a minimality flag) to define chains, but
7: strict and weak pairs, strict and weak rules, strategy, minimality flag, and a flag
to indicate whether substitutions have to return normal forms on free variables.
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3 First Problem: No Strong Normalization

Since for bounded increase interpretations into the integers are used where > is
not strongly normalizing, the reduction pair processor has to be adapted, as the
resulting strict order ( is not strongly normalizing [9]. Instead, it is required that
( is non-infinitesimal, which is defined as absence of infinite sequences t1 ( t2 (
. . . which additionally satisfy ti ( c for all i where c is some constant. However,
weakening strong normalization to being non-infinitesimal requires to strengthen
other preconditions in the reduction pair processor: in detail, termination of P\(
does no longer suffice, but additionally one requires that termination is ensured
if all bounded pairs are removed, i.e., termination of P \ {s→ t | s � c}.

Another adaptation is required when trying to solve term constraints, which
is a distinction between symbols of F and tuple symbols. It is easily motivated:
if every symbol is mapped to an integer, then polynomial constraints like 2x ≥ x
are no longer satisfied, since x might be instantiated by some negative value.
However, 2x ≥ x holds over the naturals. Since one wants to be able to con-
clude 2x ≥ x, one uses interpretations where all F -symbols are interpreted by
naturals, and only the tuple symbols in F � may interpret into the integers. As a
consequence, 2x ≥ x can be concluded, but ( and � are no longer stable, since
we only get closure under those substitutions which instantiate all variables by
terms from T (F ,V)—this property is called F -stable and these substitutions are
called F -substitutions.

Of course, if one wants to use F -stable orders � and ( in the reduction
pair processor, one has to know that all substitutions σi in a chain (�) can be
chosen as F -substitutions, a property which is named signature extension: if we
can prove termination if we only consider F -substitutions, then we can prove
termination for arbitrary larger signatures like F ∪ F �. In [9, proof of Thm.
11, technical report] signature extensions are taken for granted (“clearly”), most
likely since signature extensions are possible for (innermost) termination analysis
on the level of TRSs. However, in [17] we proved that signature extensions are
unsound on the level of minimal chains. Luckily, we were able to formalize that for
(minimal) innermost chains, signature extensions are indeed sound. The efforts
to get this result is in stark contrast to “clearly”: ≈ 900 lines, cf. the locale
cleaning-innermost within the theory Signature-Extension.thy.

Concerning the restriction to F -stable orders, in the formalization we also
added a new feature which is not present in [9]: the restriction to F -monotone
orders. For example, if we interpret [[f ]](x) = x2, then the resulting order � is
not monotone, as the arguments range over all integers. For F -monotone orders
it is instead only required that these are monotone if all arguments are terms
from T (F ,V), i.e., in the case of polynomial orders, if the arguments evaluate
to natural numbers. Hence, the interpretation [[f ]](x) = x2 is F -monotone.

Since we need to prove termination of P \ {s → t | s � c}, it is essential
that at least one of the pairs is bounded. However, if we use an interpretation
like [[sum�]](i, n) = [[if�sum]](b, i, n) = n − i, then none of the pairs (1) and (2) is
bounded. So, we will not make progress using this interpretation without further
adaptations. To this end, conditions are added where for every pair in a chain, one
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obtains the conditions from the adjacent pairs in the chain: for example, when
considering the preceding rewrite steps of some pair s→ t, instead of demanding
s � c for boundedness, one can demand that all implications v i→∗ s −→ s � c
are satisfied for every variable renamed pair u→ v ∈ P and every instantiation
of the variables with normal forms.

More formally, we consider conditional constraints which are first-order formu-
las using atomic formulas of the form s i→∗ t, s � t, and s ( t. The satisfaction
relation for normal F -substitutions σ (written σ |= φ) is defined as follows.

σ |= φ iff

⎧⎪⎨⎪⎩
sσ � tσ, if φ = s � t

sσ ( tσ, if φ = s ( t

sσ i→∗
R tσ ∧ NF (tσ) ∧ SIN (sσ), if φ = s i→∗ t

The other logic connectives −→, ∧, ∀ are treated as usual, and |= φ is defined
as σ |= φ for all normal F -substitutions σ. Using these definitions, a constraint
like s � c can be replaced by

∧
u v. u→ v ∈ P =⇒ |= v i→∗ s −→ s � c.

The most tedious part when integrating this adaptation of conditional con-
straints into the formalization of the reduction pair processor was the treatment
of variable renamed pairs: in (�) we use several different substitutions of non-
renamed pairs, and we had to show that instead one can use one substitution
where all pairs are variable renamed. And of course, when certifying termination
proofs, one again has to work modulo variable names, since one does not know
in advance how the variables have been renamed apart in the termination tool.

4 Second Problem: No Monotonicity

Monotonicity and stability are important to ensure the implication R ⊆ � =⇒
i→R ⊆ �. Using this implication with the requirement R ⊆ � in the reduction
pair processor allows to replace all i→∗

R in (�) by �.
For innermost rewriting, the requirement that all rules have to be weakly

decreasing (R ⊆ � or equivalently, � � r for all � → r ∈ R) can be reduced
to demand a weak decrease of only the usable rules. Here, the usable rules of
a term t are those rules of R which can be applied when reducing tσ at those
positions which are relevant w.r.t. the order �; and the usable rules of P are the
usable rules of all right-hand sides of P . We omit a formal definition (e.g., [10,
Def. 21]) here, but just illustrate the usage in our running example.

Example 3. We use the reduction pair processor (without the adaptations from
the previous section) in combination with the polynomial order [[sum�]](i, n) =
[[if�sum]](b, i, n) = 0 and [[+�]](x, y) = [[≤�]](x, y) = [[s]](x) = 1 + x.

The only rules that are required to evaluate the arguments of right-hand sides
of P = {(1)–(4)} are the ≤-rules for (1) and the +-rules for (2). However, since
the first arguments of sum� and if�sum are ignored by the polynomial order, there
are no usable rules. Since moreover, all pairs are at least weakly decreasing,
we can delete the strictly decreasing pairs (3) and (4) by the reduction pair
processor. Hence, it remains to prove termination of P \ ( = {(1), (2)}.
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From the soundness result for usable rules [10, Lem. 23] one derives that when-
ever tσ i→∗

R s for some normal substitution σ and the usable rules of t are
weakly decreasing, then tσ � s. Unfortunately, this lemma does no longer hold
if � is not monotone. To solve this problem, in [9] a monotonicity function
ord :: F ∪ F � ⇒ � ⇒ {0, 1,−1, 2}4 is defined. It determines for each symbol f
and each argument i, which relationship between si and ti must be ensured to
guarantee C[si] � C[ti] for some context C = f(u1, . . . , ui−1,�, ui+1, . . . , un):

– if there are no requirements on si and ti then ord(f, i) is defined as 0,
– if si � ti is required then � is monotonically increasing in the i-th argument

and ord(f, i) is defined as 1,
– if ti � si is required then � is monotonically decreasing in the i-th argument

and ord(f, i) is defined as −1,
– otherwise, ord(f, i) is defined as 2 (and it is demanded that si � ti ∧ ti � si

suffices to ensure C[si] � C[ti]).

Using ord the generalized usable rules are defined as follows.

Definition 4. Let R be some TRS. The generalized usable rules of term t are
defined as the least set U(t) such that

– whenever f(�1, . . . , �n)→ r ∈ R, then f(�1, . . . , �n)→ r ∈ U(f(t1, . . . , tn)),
– whenever �→ r ∈ U(t) then U(r) ⊆ U(t), and
– U(ti)ord(f,i) ⊆ U(f(t1, . . . , tn)).

Here, U0 = ∅, U1 = U , U−1 = {r → � | �→ r ∈ U}, and U2 = U ∪ U−1.
The generalized usable rules of a set of pairs P is U(P) = ⋃

s→t∈P U(t).
Example 5. In Ex. 3 we remained with the pairs {(1), (2)}. If we choose the
polynomial order defined by [[sum�]](i, n) = [[if�sum]](b, i, n) = n − i, [[+]](x, y) =
x + y, [[0]] = 0, and [[s]](x) = 1 + x, then U({(1), (2)}) = U(if�sum(i ≤ n, i, n)) ∪
U(sum�(i+s(0), n)) are the two reversed +-rules y → 0+y and s(x+y)→ s(x)+y
which are both decreasing by this polynomial order, i.e., U({(1), (2)}) ⊆ �.

The results on the generalized usable rules and usable rules are similar.

Lemma 6. Whenever tσ i→∗
R s for some normal substitution σ, then U(t) ⊆ �

implies tσ � s.

Concerning the formalization of this result, we only added one indirection: In-
stead of directly defining U using ord , we define Uπ like U where ord is replaced
by some user defined function π :: F ∪F � ⇒ �⇒ {0, 1,−1, 2} and then demand
that π and � are compatible: Whenever π(f, i) = k and 1 ≤ i ≤ arity(f), then
� must satisfy the monotonicity condition which is required for ord(f, i) = k.

The reason is that usually, we can only approximate ord(f, i), but not decide
it. For example, for a polynomial interpretation over the naturals with [[f ]](x) =
x2 − x we have ord(f, 1) = 1, since x2 − x is monotonically increasing over

4 In IsaFoR, we use a datatype to indicate the monotonicity instead of {0, 1,−1, 2}. It
consists of the elements Ignore (0), Increase (1), Decrease (-1), and Wild (2).
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the naturals. However, we also allow to define π(f, 1) = 2 �= ord(f, i) with the
consequences, that there are more usable rules, but weaker requirements for the
monotonicity check.

Using this adaptation we proved Lem. 6 where U is replaced by Uπ and where
compatibility of π and � is added as additional assumption. Even with these
changes, we could show the result by minor adaptations of the original proof.

However, it turns out that Lem. 6 is not really helpful in the overall approach
of bounded increase as it is assumes that � is stable. But from the last section
we know that we are more interested in relations � which are only F -stable. And
then Lem. 6 does no longer hold, even if we restrict σ to be an F -substitution.
To still achieve a result similar to Lem. 6 for F -stable �, we could additionally
demand that t ∈ T (F ,V). Although this would be sound, it is still not useful,
as we require the result for terms t like sum�(i+ s(0), n) where the root symbol
is a tuple symbol that is not in F .

Hence, we formalized the following lemma where we also improved the defi-
nition of ord (or compatibility) by adding ideas from F -monotonicity: all terms
si, ti, and ui that are occurring in the definition of ord (or compatibility) are
only quantified over T (F ,V). Note that every tuple symbol is a constructor.

Lemma 7. If R is a TRS over signature F , π and � are compatible, σ is a
normal F-substitution, t = f(t1, . . . , tn)

i→∗
R s, f is a constructor of R, and all

ti ∈ T (F ,V), then Uπ(t) ⊆ � =⇒ tσ � s.

The proof of this result was an extended version of the proof for Lem. 6 where
the following main property was shown by induction on t for arbitrary k and s.

Lemma 8. If R is a TRS over signature F , π and � are compatible, σ is a
normal substitution, tσ i→R s, tσ ∈ T (F ,V) or tσ = f(t1, . . . , tn) with construc-
tor f of R and all ti ∈ T (F ,V), then Uπ(t)

k ⊆ � =⇒ {(tσ, s)}k ⊆ � and there
are u and a normal substitution δ such that Uπ(u)

k ⊆ Uπ(t)
k and s = uδ.

Using these results we are ready to present our formalized result of the adapted,
conditional general reduction pair processor which combines both modifica-
tions—where ( does not have to be strongly normalizing and � does not have
to be monotone.5

Theorem 9. Let c be some constant. Let � and ( be F-stable orders where �
and ( are compatible, and ( is non-infinitesimal. Let π be compatible with �.6

Let P, P�, P�, and Pbound be arbitrary sets of pairs. Then P is terminating if
all of the following properties are satisfied.

– P ⊆ P� ∪ P� and Uπ(P) ⊆ �
– P \ P� and P \ Pbound is terminating
– R is a TRS over signature F
– for all s→ t ∈ P� and variable renamed u→ v ∈ P: |= v i→∗ s −→ s ( t
– for all s→ t ∈ P� and variable renamed u→ v ∈ P: |= v i→∗ s −→ s � t

5 In IsaFoR, this processor also integrates the generalization below Thm. 11 in [9], where
arbitrary adjacent pairs can be chosen instead of only one preceding pair, cf. lemma
conditional-general-reduction-pair-proc in Generalized-Usable-Rules.thy.

6 In IsaFoR, all these properties are summarized in the locale non-inf-order.
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– for all s→ t ∈ Pbound and variable renamed u→ v ∈ P: |= v i→∗ s −→ s � c
– all pairs in P are of the form f(s1, . . . , sn) → g(t1, . . . , tm) where g is a

constructor of R and si, tj ∈ T (F ,V) for all i and j
– the set of all symbols is countable and V is countably infinite.

Note that Thm. 9 is similar to [9, Thm. 11] with the difference, that for defining
ord for the generalized rules we only require F -monotonicity.

The last condition on the cardinality of F and V is enforced by our theorem
on signature extensions. We believe that it can be weakened to V being infinite,
but this would make the proof for signature extensions more tedious.

Even after having proven Thm. 9, there remain two tasks.
First, we actually require an executable function which computes the set of us-

able rules (which is defined as an inductive set) for some concrete TRS R and set
of pairs P . To this end, we have not been able to use Isabelle’s predicate compiler
[3], but instead we used an approach as in [18]: We characterized the general-
ized usable rules via a reflexive transitive closure. And afterwards, we could just
invoke a generic algorithm to compute reflexive transitive closures as the one in
[19]. More details can be seen in Generalized-Usable-Rules-Impl.thy.

The second task is to deal with conditional constraints that arise from the
conditional reduction pair processor, which is discussed in the upcoming section.

5 Third Problem: Solving Conditional Constraints

We start by generating conditional constraints for Ex. 5 via Thm. 9.

Example 10. Using the polynomial order from Ex. 5 we already have a weak
decrease for the usable rules. Moreover, all pairs are weakly decreasing and (2) is
strictly decreasing, even without considering the conditions: [[if�sum(true, i, n)]] =
n− i > n− (i + 1) = [[sum�(i + s(0), n)]]. To show that (2) is also bounded—so
that it can be removed—we must show |= φ1 and |= φ2.

if�sum(i
′ ≤ n′, i′, n′) i→∗ if�sum(true, i, n) −→ if�sum(true, i, n) � c (φ1)

sum�(i′ + s(0), n′) i→∗ if�sum(true, i, n) −→ if�sum(true, i, n) � c (φ2)

To handle conditional constraints like φ1 and φ2, in [9] an induction calculus
is developed with rules to transform conditional constraints, where constraints
above the line can be transformed into constraints below the line, cf. Fig. 1. Its
aim is to turn rewrite conditions s i→∗ t into conditions involving the order.

Example 11. Using the induction calculus one can transform φ1 and φ2 into φ3
and φ4. Both of these new constraints are satisfied for the polynomial order of
Ex. 5 if one chooses [[c]] ≤ 0, since then φ3 and φ4 evaluate to v ≥ [[c]] and
v − u ≥ [[c]] −→ (v + 1)− (u + 1) ≥ [[c]], respectively.

if�sum(true, 0, v) � c (φ3)

if�sum(true, u, v) � c −→ if�sum(true, s(u), s(v)) � c (φ4)

In [9] soundness of the induction calculus is proven: whenever φ can be trans-
formed into φ′ using one of the inference rules, then |= φ′ implies |= φ. During
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I. Constructor and Different Function Symbol

f(p1, . . . , pn)
i→∗ g(q1, . . . , qm) ∧ ϕ −→ ψ

TRUE
if f is a constructor and f �= g

II. Same Constructors on Both Sides

f(p1, . . . , pn)
i→∗ f(q1, . . . , qn) ∧ ϕ −→ ψ

p1
i→∗ q1 ∧ . . . ∧ pn

i→∗ qn ∧ ϕ −→ ψ
if f is a constructor

III. Variable in Equation

x i→∗ q ∧ ϕ −→ ψ

ϕσ −→ ψ σ

if x ∈ V and
σ = [x/q]

q i→∗ x ∧ ϕ −→ ψ

ϕσ −→ ψ σ

if x∈V, q has no
defined symbols,
σ=[x/q]

IV. Delete Conditions
ϕ1 ∧ . . . ∧ ϕn −→ ψ

ϕ′
1 ∧ . . . ∧ ϕ′

m −→ ψ
if {ϕ′

1, . . . , ϕ
′
m} ⊆ {ϕ1, . . . , ϕn}

V. Induction

f(x1, . . . , xn)
i→∗ q ∧ ϕ −→ ψ∧

f(�1,...,�n)→r∈R
(r i→∗ q σ ∧ ϕσ ∧ ϕ′ −→ ψ σ)

if f(x1, . . . , xn) does not unify
with q

where σ = [x1/	1, . . . , xn/	n]

and ϕ′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀y1, . . . , ym. f(r1, . . . , rn)
i→∗ qμ ∧ ϕμ −→ ψ μ, if

• r contains the subterm f(r1, . . . , rn),
• there is no defined symbol in any ri,
• μ = [x1/r1, . . . , xn/rn], and
• y1, . . . , ym are all occurring variables except V(r)

TRUE , otherwise

VI. Simplify Condition

ϕ ∧ (∀y1, . . . , ym. ϕ′ −→ ψ′) −→ ψ

ϕ ∧ ψ′ σ −→ ψ

if DOM(σ) ⊆ {y1, . . . , ym},
there is no defined symbol and
no tuple symbol in any σ(yi),
and ϕ′ σ ⊆ ϕ

VII. Defined Symbol without Pairwise Different Variables

f(p1, . . . , pi, . . . , pn)
i→∗ q ∧ ϕ −→ ψ

pi
i→∗ x ∧ f(p1, . . . , x, . . . , pn)

i→∗ q ∧ ϕ −→ ψ
if x is fresh and pi ∈ T (F ,V)

Fig. 1. Corrected and generalized rules of the induction calculus from [9]
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our formalization of this result in Bounded-Increase(-Impl).thy, we detected
five interesting facts.

Fact 1. Some of the side-conditions in the original definition are not required,
but are most likely used to derive a strategy which chooses which rules to apply.
For example, in both (V) and (VII) there have been additional side-conditions
in [9]. To be more precise, [9] demands that f is defined in (V). Consequently,
formulas with a precondition like f(x) i→∗ x for some constructor f can only be
dropped using our version of (V), but not by any of the original rules in [9].

Fact 2. Rule (VII) is unsound in [9] where we had to add the new side-condition
pi ∈ T (F ,V).
Fact 3. The textual explanation in [9] for the soundness of the induction rule
(V) is completely misleading: it is stated that induction can be performed using
the length of the reduction f(x1, . . . , xn)σ

i→∗
R qσ which is “obviously longer”

than the reduction f(r1, . . . , rn)σ
i→∗
R qσ; only in a footnote it is clarified, that

for the actual proof one uses the induction relation i→R ◦  which is restricted
to innermost terminating terms. This restriction actually is the only reason why
minimal chains are considered and why in the semantics of σ |= s i→∗ t one
demands SIN (sσ).

Note that if one indeed were able to perform induction on the length of the
reduction, then one could drop the condition SIN (sσ) and consider arbitrary,
non-minimal chains. This would have the immediate advantage that bounded
increase would be applicable on sets of pairs and TRSs which arise from trans-
formations like [15], where termination of each tiσ in (�) cannot be ensured, cf.
[15, Footnote 3].

The bad news is that we were able to find a counterexample proving that an
induction over the length in combination with non-minimal chains is unsound.
In detail, consider R = {f → g(f), f → b, g(x) → a} and P = {h�(a) → h�(f)}.
Then there is a non-minimal innermost chain h�(a) →P h�(f) i→R h�(g(f)) i→R
h�(g(b)) i→R h�(a) →P . . . , so we should not be able to prove termination of P
if minimality is dropped from the definition of termination.

However, we show that using the induction calculus—where now σ |= s i→∗ t
is defined as sσ i→∗

R tσ ∧ tσ ∈ NF (R)—in combination with the conditional
reduction pair processor we actually can derive termination of P , where we will
see that the problem is the induction rule. To this end, we let h�(f) i→∗ h�(a) −→
φ be some arbitrary conditional constraint that may arise from the generalized
reduction pair processor where φ might be h�(a) ( h�(f) or h�(a) � c. Using (II)
this constraint is simplified to f i→∗ a −→ φ. Next, we apply (V), leading to
g(f) i→∗ a ∧ (f i→∗ a −→ φ) −→ φ and b i→∗ a −→ φ where the latter constraint
is immediately solved by (I). And the former constraint is always satisfied, since
fσ = f i→∗

R a = aσ ∈ NF (R) for every F -normal substitution σ.

Fact 4. The main reason for the unsoundness of the induction rule in the previous
counterexample is the property that R is not uniquely innermost normalizing
(UIN): f can be evaluated to the two different normal forms a and b.
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And indeed, we could show that instead of minimality of the chain, one can
alternatively demand UIN of R to ensure soundness of the induction rule. To be
more precise, using UIN of R we were able to prove soundness of the induction
rule via an induction on the distance of f(x1, . . . , xn)σ to some normal form.

To have a decidable criterion for ensuring UIN, we further proved that UIN is
ensured by confluence ofR, and that confluence is ensured by weak orthogonality,
i.e., for left-linear R that only have trivial critical pairs. Here, especially for the
latter implication, we required several auxiliary lemmas like the parallel moves
lemma, cf. [2, Chapter 6.4] and Orthogonality.thy.

Fact 5. As we want to apply Isabelle’s code generator [11] on our certification
algorithm, we have to formalize conditional constraints via a deep embedding.
Therefore, we had the choice between at least two alternatives how to deal with
bound variables: we can use a dedicated approach like Nominal Isabelle [21,22],
or we perform renamings, α-equivalence, . . . on our own.7

We first formalized everything using the latter alternative, where we just
defined an inductive datatype [4] with constructors for atomic constraints, one
constructor for building implications of the shape ·∧· · ·∧· −→ · (where the set of
premises is conveniently represented as a list), and one constructor for universal
quantification which takes a variable and a constraint as argument.

Afterwards, we just had to deal with manual renamings at exactly one place:
in the definition of applying a substitution on a constraint. Here, for quantified
constraints we define (∀x.φ)σ = ∀y.(φ(σ{x := y})) where y is a fresh variable
w.r.t. the free variables in σ and φ. Note that α-equivalence of two constraints
φ and ψ can then also easily be checked by just applying the empty substitution
on both φ and ψ, since the substitution algorithm returns the same result on
α-equivalent constraints. Further note, that in our application—certification of
transformations on constraints—we require subsumptions checks instead of α-
equivalence. Therefore, being able to use equality instead of α-equivalence does
not help that much. So, by using an inductive datatype we had minimal effort
to integrate renamings. Furthermore, all required algorithms could easily be
formulated using the comfort of Isabelle’s function package [14].

We additionally tried to perform the same formalization using Nominal Is-
abelle, since we have been curious what we would gain by using a dedicated
package to treat bound variables. Here, our initial attempts have been quite
disappointing for the following reasons.

We could not define the datatype for conditional constraints as before, since
for the implications we had to manually define two datatypes: one for constraints
and one for lists of constraints. Moreover, for several functions which have been
accepted without problems using the function package, their nominal counter-
parts require additional properties which had to be manually proven, including

7 Of course, also for building sequences of pairs P (sets of rules) we could have used
nominal to avoid manual renamings in rewrite rules. However, since IsaFoR is quite
large (over 100,000 lines) we did not want to change the representation of rules until
there are extremely good reasons.
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new termination proofs. The overall overhead of these manual proofs was in our
case by far larger than the one for manual renaming. Moreover, as far as we
know, also for code generation some manual steps would be necessary. In the
end, we aborted our attempt to have a fully formalized version of conditional
constraints which are based on Nominal Isabelle.

6 Babylonian Square Root Algorithms

Eventually, all required theorems for bounded increase have been formalized,
and certification algorithms have been integrated in CeTA. Clearly, we tried to
certify the bounded increase proofs that have been generated by AProVE. Here,
nearly all proofs have been accepted, except for two problematic kinds of proofs.

The one problem was that CeTA discovered a real implementation bug which
remained undetected since 2007: AProVE applies (IV) also inside induction hy-
potheses, i.e., under certain circumstances it simplified (ψ −→ φ) −→ φ to
(∅ −→ φ) −→ φ as ∅ ⊆ {ψ}. After the bug has been fixed, for one of the TRSs,
a termination proof could not be generated anymore.

The other problem has been an alternative criterion to ensure boundedness,
cf. the following example.

Example 12. For the TRS GTSSK07/cade14 from the termination problem da-
tabase, the generalized reduction pair processor is used with the interpretation
where [diff�](x1, x2) = −1+x21+x22−2x1x2, [s](x) = x+1, [0] = 0, and [c] = −1.8
After applying the induction calculus, one of the constraints is diff�(s(0), x) � c
which is equivalent to x2 − 2x ≥ −1. This inequality is valid, but it cannot be
shown using the standard criterion of absolute positiveness [12], which is also the
criterion that is used in CeTA. Here, the trick is, that [diff�](x1, x2) = (x1−x2)2−1
and hence [diff�](. . . ) ≥ 0− 1 ≥ −1 = [c].

In fact, in the previous example AProVE was configured such that tuple sym-
bols are interpreted as [f �](x1, . . . , xn) = f0 + (f1x1 + · · ·+ fnxn)

2 for suitable
values fi. Then [c] is chosen as minf�∈Σ f0 such that by construction, f �(. . . ) � c
always holds and no constraints have to be checked for boundedness.

If we knew that the tuple symbols are interpreted in this way and all val-
ues fi were provided, it would be easy to conclude boundedness. However, we
refrained from adding a special format to express interpretations of this shape,
as it would require a new dedicated pretty printer in AProVE. Instead, we want
to be able to detect during certification, whether for some arbitrary interpre-
tation [f �](x1, . . . , xn) = p we can find values fi such that p is equivalent to
f0 + (f1x1 + · · ·+ fnxn)

2 (which is equivalent to f0 +
∑
f2
i x

2
i +

∑
2fifjxixj).

To this end, we first transform p into summation normal form a0+
∑
aix

2
i+. . .

with concrete values ai, and afterwards we figure out all possible values for each
fi: f0 = a0 and fi = ±√ai for i > 0. For each possible combination of (f0, . . . , fn)
we can then just check whether p = f0 + (f1x1 + · · ·+ fnxn)

2.

8 The detailed proof including the TRS is available at http://termcomp.uibk.ac.at/
termcomp/competition/resultDetail.seam?resultId=415507

http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=415507
http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=415507
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However, for computing the values of fiweneed an executable algorithm to com-
pute square roots of integers and rationals. To this end, we formalized variants of
the Babylonianmethod to efficiently compute square roots. Afterwards, indeed all
bounded increase proofs from AProVE could be certified by CeTA (version 2.10).

The original Babylonian algorithm is an instance of Newton’s method. It ap-

proximates
√
n by iteratively computing xi+1 :=

n
xi

+xi

2 until x2i is close enough
to n. Although we did not require it—it does not deliver precise results—for
completeness we formalized it, where the domain is some arbitrary linearly or-
dered field of type ′a. Here, the main work was to turn the convergence proof
into a termination proof. For example, we had to solve the problems that the
value to which the function converges is not necessarily a part of the domain:
consider

√
2 and ′a being the type of rationals.

The precise algorithms are based on the following adaptation. In order to compute
square roots of integers we simply use integer divisions x÷y = �xy �. Moreover, the

result is returned as an option-type, i.e., either we return some number (the square-
root), or we return nothing, indicating that there is no integer x such that x2 = n.

int-main x n = (if x < 0 ∨ n < 0 then None else (if x2 ≤ n

then (if x2 = n then Some x else None)

else int-main ((n÷ x+ x)÷ 2) n))

Termination can be proven more easily by just using x as measure. Soundness
is also trivially proven as we only return Some x if x2 = n. Indeed, the hardest
part was to prove completeness which is stated as follows.

Theorem 13. x ≥ 0 =⇒ x2 = n =⇒ y2 ≥ n =⇒ y ≥ 0 =⇒ n ≥ 0 =⇒
int-main y n = Some x.

To this end, we had to show that once the value of x2 is below n, then there
is no solution. Here, in the proof the non-trivial inequality (x2 ÷ y) · y + y2 ≥
2xy occurred. It trivially holds if one used standard division instead of integer
division. However, it took quite a while to prove the desired inequality where
we first ran into several dead ends as we tried to use induction on x or y. The
solution was to express x2 as (y−x)2+y ·(2x−y) and then divide both summands
by y, cf. the detailed proof in Sqrt-Babylon.thy.

Using soundness and completeness of int-main, it was easy to write an algo-
rithm sqrt-int which invokes int-main with a suitable starting value of x (larger
than

√
n) and performs a case analysis on whether n is 0, positive, or negative.

Theorem 14. set (sqrt-int n) = {x :: int. x2 = n}.
In a similar way we construct a square-root algorithm sqrt-nat for the naturals,
where int-main is invoked in combination with conversion functions between
naturals and integers.

Theorem 15. set (sqrt-nat n) = {x :: nat. x2 = n}.
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Note, that since int-main only works on the positive integers, it sounds more
sensible to directly implement it over the naturals. Then conditions like x ≥ 0
can just be eliminated. Actually, when we started our formalization, we followed
this approach. But it turned out that it was by far more cumbersome to perform
arithmetic reasoning on the naturals than on the integers. The reason was that
differences like x−y+z+y easily simplify to x+z over the integers, but require
side-conditions like x ≥ y on the naturals. And the amount of required side-
conditions was by far larger than storing that certain values are non-negative.

We also formalized an algorithm sqrt-rat where we used known facts on co-
primality from the Isabelle distribution. In brief, given some rational number p

q
for integers p and q, sqrt-rat returns ±

√
p√
q , if this is well-defined, or nothing.

Theorem 16. set (sqrt-rat n) = {x :: rat. x2 = n}.
Note that using Thm. 16 one can easily figure out that

√
2 is an irrational

number, just by evaluating that sqrt-rat 2 is the empty list. Moreover, since the
Babylonian algorithm is efficient, it also is no problem to check that√
1234567890123456789012345678901234567890 is irrational.

7 Summary

We formalized the termination technique of bounded increase. To this end, in
addition to the pen-and-paper proof we had to prove the missing fact that signa-
ture extensions are sound for innermost rewriting. Moreover, we not only showed
that the “obvious reason” for soundness of the induction rule is wrong, but ad-
ditionally provided a condition under which this obvious reason is sound: unique
innermost normalization. This property follows from weak orthogonality, and
our formalization contains—as far as we know—the first mechanized proof of the
fact that weak orthogonality implies confluence. For the certification algorithm
we also required some algorithm to precisely compute square roots, where we
adapted the Babylonian approximation algorithm to obtain precise algorithms
for the naturals, integers, and rationals.

All variants for computing square roots (≈ 700 lines) have been made available
in the archive of formal proofs, and the remaining formalization (≈ 4,700 lines)
is available at http://cl-informatik.uibk.ac.at/software/ceta/.
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Abstract. This paper extends the proof methods used by the Nuprl
proof assistant to reason about the computational behavior of its untyped
programs. We have implemented new methods to prove non-trivial bisim-
ulations between programs and have successfully applied these methods
to formally optimize distributed programs such as our synthesized and
verified version of Paxos, a widely used protocol to achieve software based
replication. We prove new results about the basic computational equality
relation on terms, and we extend the theory of partial types as the ba-
sis for stating internal results about the computation system that were
previously treated only in the meta theory of Nuprl. All the lemmas
presented in this paper have been formally proved in Nuprl.

1 Introduction

This paper presents proof techniques implemented in the Nuprl proof assis-
tant [16,27,4] to reason about its own computation system and programming
language, an applied lazy (call-by-name) λ-calculus. Since the computation sys-
tem is universal (Turing complete), we need to reason using partial types in-
troduced by Constable and Smith [35,17] and extended by Crary [18].1 The
bisimulation relation defined by Howe turned out to form a contextual equiva-
lence relation [23,24], and is therefore the basic computational equality on Nuprl
terms. Internally it becomes the equality on the partial type Base of all untyped
Nuprl terms, both programs and data. The canonical values of this type are the
terminating terms, the values of the type system.

Nuprl’s logic is defined on top of this computation system. It is an extensional
Constructive Type Theory (CTT) [16] which relies on ternary partial equivalence
relations that express when two terms are equal in a type. For example, the type
1+1 =N 2 expresses that 1+1 and 2 are equal natural numbers (we write x ∈ T ,
for x =T x ). Each type is defined by such a relation.

Over the past two decades much progress has been made to enrich Nuprl and
make it a practical programming language as well as a logical system in which
one can verify properties of Nuprl programs [35,17,18,21,25,26]. During that pe-
riod, Nuprl’s theory was extended with, e.g., intersection types, union types,
partial types, a call-by-value operator, rules to reason about computation, and
in particular rules about the fixpoint operator. Recently, we have extended Nuprl

1 Crary gave a denotational semantics for an ML dialect using partial types.

S. Blazy, C. Paulin-Mohring, and D. Pichardie (Eds.): ITP 2013, LNCS 7998, pp. 261–278, 2013.
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with new operators called canonical form tests (similar to Lisp and Scheme’s type
predicates) so that programs can distinguish between primitive canonical oper-
ators such as the pair or lambda constructors, and we have developed new ways
to reason about these new constructs. This gives us more tools to program in
Nuprl and reason about these programs.

Nuprl’s intersection and partial types add expressive power. They allow us
to reason about a larger class of practical programs and express more program
properties. However, using typed equivalences to transform programs can be
unnecessarily complex because programs are not annotated with types and both
type checking and type inference are undecidable in Nuprl. Instead, we can reason
about untyped program equivalences (e.g., between partial functions), which are
easier to use because they only require trivial type reasoning. Such equivalences
are highly useful for program transformation such as program optimization.

Using untyped reasoning, we have proved many bisimulations involving data
structures such as lists. We have also used these techniques in our work on
process synthesis [11,33], where processes are defined as recursive functions of a
co-recursive type. Our synthesized processes were initially too slow to be used in
industrial strength systems. In response to that issue, we have developed a proof
methodology to simplify and optimize them. We have applied that methodology
to various synthesized consensus protocols such as 2/3-consensus [14] or Multi-
Paxos [28], and observed a significant speed-up. These synthesized consensus
protocols have successfully been used in a replicated database [34]. This paper
illustrates these proof techniques using a simple running example: appending
the empty list to a term. It then illustrates their use to optimize distributed
processes synthesized from protocol specifications.

Finally, being able to reason about Nuprl’s programming language directly
in Nuprl is another step towards a longstanding goal of building a correct-by-
construction, workable logical programming environment [22]. An obvious ques-
tion is then, could we build a verified compiler for Nuprl in Nuprl that generates
reasonably fast code? Modern proof assistants that implement constructive type
theories such as Coq [9,1], Isabelle [8,7], or Nuprl rely on unverified compilers.
Even though the programs they generate, e.g., by extraction from proofs, are
correct-by-construction, one could argue whether the machine code obtained af-
ter compilation is still correct. Thus, we would like these proof assistants to be
expressive enough to program and verify optimized compilers for their underlying
programming languages, and to program these proof assistants in themselves.

The contributions of this paper are as follows: (1) we introduce new formal
untyped reasoning techniques for proving bisimulations, which expose more of
the computation system to formal reasoning; and (2) we apply these techniques
to optimize distributed processes.
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v ::= n (integer) | λx .t (lambda)
| 〈t1, t2〉 (pair) | inl(t) (left injection)
| inr(t) (right injection) | Ax (axiom)

t ::= x (variable) | isaxiom( t1 , t2, t3) (isaxiom)
| v (value) | ispair( t1 , t2, t3) (ispair)
| t1 t2 (application) | islambda( t1 , t2, t3) (islambda)
| fix( t ) (fixpoint) | isinl( t1 , t2, t3) (isinl)
| let x := t1 in t2 (call-by-value) | isinr( t1 , t2, t3) (isinr)
| let x ::= t1 in t2 (call-by-valueall) | isint( t1 , t2, t3) (isint)
| let x , y = t1 in t2 (spread)
| case t1 of inl(x)⇒ t2 | inr(y)⇒ t3 (decide)
| if t1 = t2 then t3 else t4 (integer equality)

Fig. 1. Syntax of Nuprl’s programming language

2 Nuprl’s Programming Language

2.1 Syntax

Nuprl is defined on top of an applied lazy untyped λ-calculus. Fig. 1 introduces
a subset of this language, where n ranges over integers. Because this language
is lazy, its values2 (or canonical forms) are either integers, lambda abstractions,
pairs, injections, or Ax. The canonical form Ax (sometimes written as �) is the
unique canonical inhabitant of true propositions that do not have any nontrivial
computational meaning in CTT, such as 0 =N 0 which is an axiom of the logic.
Non-canonical terms (non-values) have arguments that are said to be principal.
These principal arguments indicate which subterms of a non-canonical term
have to be evaluated before checking whether the term itself is a redex or not.
Principal arguments of terms are marked with boxes in the above table. In the
rest of this paper, variables will be obvious from the context (we often use x and
y such as in Fig. 1), we use v for values, and the other letters can be any term.
When it is more readable we write t1(t2) instead of t1 t2.

As mentioned above, we have recently added new primitive operators to
Nuprl: the canonical form tests such as ispair. Adding these primitive forms
was a design decision we made to distinguish between canonical forms (e.g.,
see list ind’s definition below) and therefore exploit Howe’s bisimulation even
further. Our experiments with them have proven to be very fruitful.

Let us now define a few useful abstractions: let ⊥ (bottom) be fix(λx .x ), let
π1(t) be (let x , y = t in x ), and let π2(t) be (let x , y = t in y).

Free and bound variables are defined as usual. We write t [x\u] (and more
generally t [x1\u1; · · · ; xn\un]) for the term t in which all the free occurrences of
x have been replaced by u. Terms are identified up to alpha-equivalence.

2 The only other values currently in Nuprl are tokens, atoms, and types, but more
values can be added because the system is open-ended.
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Core calculus:

(λx .F ) a → F [x\a]
let x , y = 〈t1, t2〉 in F → F [x\t1 ; y\t2]
case inl(t) of inl(x)⇒ F | inr(y)⇒ G → F [x\t ]
case inr(t) of inl(x)⇒ F | inr(y)⇒ G → G[y\t ]
if n1 = n2 then t1 else t2 → t1, if n1 = n2

if n1 = n2 then t1 else t2 → t2, if n1 �= n2

fix(t) → t fix(t)
let x := t1 in t2 → t2[x\t1 ], if t1 is a value

Canonical form tests:

ispair(〈t , t ′〉, t1, t2) → t1 ispair(v , t1, t2) → t2, if v is not a pair
isaxiom(Ax, t1, t2) → t1 isaxiom(v , t1, t2) → t2, if v is not axiom
islambda(λx .t , t1, t2) → t1 islambda(v , t1, t2) → t2, if v is not a lambda
isinl(inl(t), t1, t2) → t1 isinl(v , t1, t2) → t2, if v is not a left injection
isinr(inr(t), t1, t2) → t1 isinr(v , t1, t2) → t2, if v is not a right injection
isint(n, t1, t2) → t1 isint(v , t1, t2) → t2, if v is not an integer

Fig. 2. Nuprl’s operational semantics

Let Top be the following type: for all closed terms t1 and t2, t1 =Top t2.
Top’s equality is trivial because it identifies all elements. This type is especially
useful to assign types to terms in contexts where their structure or behavior is
irrelevant. When discussing types it is important to remember that a type is an
equivalence relation on a set of terms and not simply a set of terms. Type A is
a subtype of type B (written A � B) if x =A y implies x =B y. This means not
only that every term in A is also in B , but that equality in A refines equality
in B . Hence, T � Top for every type T . Sec. 3.1 discusses the type Base, which
contains all Nuprl terms, but does not have this property (i.e. not every type T
is a subtype of Base3) because equality on Base is Howe’s bisimulation relation.

2.2 Operational Semantics

Fig. 2 presents some of Nuprl’s reduction rules. This figure does not show the
reduction rule for the call-by-valueall operator because it is slightly more com-
plicated. This operator is like call-by-value but continues recursively evaluating
subterms of pairs and injections.4

At any point in a computation, either a value is produced, or the computation
is stuck, or we can take another step. For example, (let x , y = Ax in F ) is a
meaningless term that cannot evaluate further. It is stuck on the wrong kind of

3 Being extentional, function types are in general not subtypes of Base.
4 The call-by-valueall operator is similar to a restricted form of Haskell’s deepseq oper-
ator. It can be defined using the other primitive operators (see the expanded version
of this article at http://www.nuprl.org/Publications/), but for simplicity reasons
we introduce it as a primitive in this paper.

http://www.nuprl.org/Publications/
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principal argument: Ax instead of a pair. Using the proof techniques presented
below, in Sec. 4.3 we prove that this term is computationally equivalent to ⊥.
We can prove such results using ispair and isaxiom, and do not know of any
other way discussed in the literature to accomplish this. Intuitively, we prove this
lemma using the fact that isaxiom can compute to different values depending on
whether its first argument computes to Ax or not. For example, isaxiom(t , 0, 1)
reduces to 0 if t is Ax and to 1 if t is, e.g., a pair. Note that even though
they are computationally equal, (let x , y = Ax in F ) and ⊥ are fundamentally
different in the sense that one could potentially detect whether a term is stuck
(by slightly modifying our destructors such as spread or decide), but one cannot
detect whether a term diverges or not.

2.3 Datatypes

Booleans. As usual, we define Booleans using the disjoint union type as follows:
B = Unit + Unit. The Unit type is defined as 0 =Z 0 and therefore Ax is its only
inhabitant (up to computation). We define the Boolean true tt as inl(Ax), and
the Boolean false ff as inr(Ax). Using the decide operator we define a conditional
operator as follows: if t1 then t2 else t3 = case t1 of inl(x )⇒ t2 | inr(x )⇒ t3.

Lists. We define lists as follows using Nuprl’s union type [26] and recursive
type [32] that allows one to build inductive types:5 List(T ) = rec(L.Unit ∪ T×
L). The type constructor ∪ creates the union of two types, not the disjoint union.
The members of A ∪ B are members of A or B, not injections of them. A list
is either a member of Unit, i.e., Ax, or a pair. The empty list nil is defined
as Ax, and the cons operation, denoted by •, as the pair constructor. We can
distinguish an empty list and a non empty list because Unit and the product
type are disjoint. Using fix, we define the following “list induction” operator:

list ind(L, b, f ) =
fix(λF .λL.ispair(L, let h, t = L in f h t (F t), isaxiom(L, b,⊥))) L

To define such a function that takes a list as input, we need to be able to test
whether it is a pair or Ax. If we were to use the spread operator, we could destruct
pairs, but computations would get stuck on Ax which we use to represent the
empty list. Therefore, we need an operator such as the ispair canonical form test
which allows us to perform two different computations depending on whether its
first argument computes to a pair or not. Note that if list ind’s first argument
does not compute to a pair or to Ax, then the term diverges as opposed to
returning an arbitrary value. This is necessary to prove untyped equivalences
between list operations. We define the append and map operations as follows:

t1 @ t2 = list ind(t1 , t2 , λh.λt .λr .h • r)
map(f , t) = list ind(t , nil, λh.λt .λr .(f h) • r)

5 This new definition of lists replaces the one from Nuprl’s book [16] where lists are
considered as primitive objects. Using Nuprl’s replay functionality, we were able to
successfully replay the entire Nuprl library using this new definition of lists.
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3 Computational Equivalence

3.1 Simulations and Bisimulations

Howe [23,24] defined the simulation or approximation relation ≤ using the fol-
lowing co-inductive rule: t1 ≤ t2 if and only if (if t1 computes to a canonical
form Θ(u1, . . . , un) of the language defined in Sec. 2.1, then t2 computes to a
canonical form Θ(u ′

1, . . . , u
′
n) such that for all i ∈ {1, . . . , n}, ui ≤ u ′

i). We say
that t1 approximates t2 or that t2 simulates t1. This relation is reflexive (w.r.t.
the terms defined in Sec. 2.1) and transitive. Howe then defined the bisimulation
relation ∼ as the symmetric closure of ≤ (i.e., t1 ∼ t2 iff t1 ≤ t2 and t2 ≤ t1),
and proved that ≤ and ∼ are congruences w.r.t. Nuprl’s computation system.6

The following context property follows from the fact that ∼ is a congruence:

∀i : {1, . . . , n}. ti ≤ ui ⇒ G[x1\t1; · · · ; xn\tn] ≤ G[x1\u1; · · · ; xn\un]

Howe’s bisimulation relation respects computation, i.e., if t1 ∼ t2 then (1) t1
computes to a value iff t2 computes to a value, and (2) if t1 computes to a value
v1 then t2 computes to a value v2 with same outer operator such that v1 ∼ v2.

Because ⊥ does not compute to a canonical form, by definition ⊥ ≤ t is
true for any term t ; hence for example 〈Ax,⊥〉 ≤ 〈Ax, Ax〉. Similarly, because
Ax is not a pair, (let x , y = Ax in x ) does not compute to a canonical form,
and by definition, let x , y = Ax in x ≤ t is true for any term t (we prove
let x , y = Ax in F ∼ ⊥ in Sec. 4.3). However, Ax ≤ ⊥ is not true because ⊥
diverges while Ax is a value; hence 〈Ax, Ax〉 ≤ 〈Ax,⊥〉 is not true either.

Let us write halts(t) if t reduces to a value—we say that t converges. We
can define convergence using call-by-value because the call-by-value operator
(let x := t1 in t2) first evaluates t1. The term t1 converges if and only if the
term (let x := t1 in Ax) evaluates to Ax. So we simply define halts(t) to be
the simulation Ax ≤ (let x := t in Ax). Because Ax is a canonical value then
Ax ≤ (let x := t in Ax) is true if and only if (let x := t in Ax) computes to
Ax, i.e., if and only if t computes to a value.

Constable and Smith [35,17] introduced partial types to reason about com-
putations that might not halt. For any type T , the partial type T contains all
members of T as well as all divergent terms, and has the following equality: two
terms are equal in T if they have the same convergence behavior (i.e., either
neither computes to a value or both compute to a value), and when they con-
verge, they are equal in T . An important partial type is Base = Value where
Value is the type of all closed canonical terms of the computation system with
∼ as its equality. Because Base is a partial type, it contains converging as well
as diverging terms, and equal terms have the same convergence behavior.

6 Howe proved that ∼ is a congruence w.r.t. a lazy computation system by proving
that all the operators of the system satisfy a property called extensionality. The
expanded version of this article proves that the new operators introduced in this
paper satisfy that property.
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3.2 Simple Facts about Lists

Sec. 4 proves that for all terms f and t in Top, map(f , t) @ nil ∼ map(f , t).
If t is a list, the first expression (map(f , t) @ nil) requires two passes over

the list t while the second expression (map(f , t)) requires only one. This simple
bisimulation will be our running example to illustrate the techniques we use to
optimize our distributed processes (discussed in Sec. 5).

Note that this lemma would be easy to prove by induction on the list t if we
were using the list type instead of Top. However, we might need to instantiate t
with a term for which it would be non-trivial to prove that it is a list because
Nuprl is based on an extension of the untyped λ-calculus and type inference and
type checking are undecidable. In addition, if we were to use a typed equality
(instead of ∼) for substitution in some context, then we would also have to prove
that the context is functional over the type of the equality. That is, to rewrite in
the term C[t] of type B using t =A u, we have to prove that λz.C[z] is of type
A → B. Moreover, the above equivalence is indeed true for any term t , e.g., it
is true when t is a stream.

Note that it is not true that for all terms t , t @ nil ∼ t . For example, by
definition of @, (λx .x ) @ nil ∼ ⊥. However, the bisimulation λx .x ∼ ⊥ is not
true because the simulation λx .x ≤ ⊥ is not true. This shows that there are
some terms t for which t ≤ t @ nil does not hold.7 However, Sec. 4 proves that
for all terms t , t @ nil ≤ t . A corollary of that lemma is that map(f , t) @ nil ≤
map(f , t).

4 Proof Techniques

This section presents three proof techniques we use to prove bisimulations:
Crary’s least upper bound property [18], patterns of reasoning regarding our
new canonical form tests, and patterns of reasoning regarding our halts opera-
tor. It also presents three derived proof techniques called lifting, normalization,
and strictness. Using these techniques, we prove map(f , t) @ nil ∼ map(f , t), and
in Sec. 5, we optimize distributed processes.

4.1 Least Upper Bound Property

Using the properties of ≤ and that fix(f ) = f fix(f ), it is easy to prove by
induction on n that ∀n : N. f n(⊥) ≤ fix(f ) [18]. So fix(f ) is an upper bound
of its approximations. The least upper bound property [18, Theorem 5.9] is:

Rule [least-upper-bound]. ∀n : N. G(f n(⊥)) ≤ t ⇒ G(fix(f )) ≤ t .

7 The expanded version of this article provides a characterization of the terms that
satisfy that property.
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4.2 Canonical Form Tests

In order to reason about its programs, we gave Nuprl the ability to reason about
the canonical form tests such as ispair, isaxiom, etc.8 These effective oper-
ations on Base allow us to reason in the programming language, where in the
past we resorted to reflection in the logic [6].

Membership Rules

Rule [ispair-member]. To prove that ispair(t1, t2, t3) ∈ T, it is enough to
prove halts(t1), and that both t2 and t3 are members of T.

We introduce similar rules for the other canonical form tests. Using this rule
we can trivially prove the following fact:

Lemma 1. For all terms t in Base, if halts(t) then ispair(t , tt, ff) ∈ B.

The same is true for the other tests. Using these facts, we can, e.g., decide
whether a converging term is a pair or not.

Semi-decision Rules. Depending on how ispair computes we can deduce
various pieces of information. If we know that ispair(t1, t2, t3) always computes
to t2 and cannot compute to t3 then we know that t1 is a pair. If we know that
ispair(t1, t2, t3) always computes to t3 and cannot compute to t2 then we know
that t1 is not a pair. These properties are captured by the following two rules:

Rule [ispair]. To prove t ∈ Top× Top (i.e., t is a pair), it is enough to prove
ispair(t , inl(a), inr(b)) ∼ inl(a) for some terms a and b.

Rule [not-ispair]. To prove ispair(t1, t2, t3) ∼ t3, it is enough to prove that
ispair(t1, inl(a), inr(b)) ∼ inr(b) for some terms a and b.

We introduce similar rules for the other canonical form tests. Using these rules
we can prove such results as (similar results are true for the other tests):

Lemma 2. For all terms t, a, b in Base, if halts(t) then t ∼ 〈π1(t), π2(t)〉 ∨
ispair(t , a, b) ∼ b.

Proof. By Lemma 1, ispair(t , tt, ff) ∈ B. Therefore, either ispair(t , tt, ff) ∼
tt or ispair(t , tt, ff) ∼ ff (this is true for any Boolean). If ispair(t , tt, ff) ∼
tt then using rule [ispair] we obtain that t is a pair and therefore t ∼
〈π1(t), π2(t)〉. If ispair(t , tt, ff) ∼ ff then using rule [not-ispair] we obtain
that ispair(t , a, b) ∼ b.

8 The proofs that the rules introduced in this section are valid w.r.t. Allen’s PER
(Partial Equivalence Relations) semantics [2,3] are presented in the expanded version
of this article.
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� ∀F:Top. (let x,y = Ax in F[x;y] ∼ bottom())

|

BY (SqReasoning

THEN Assert �(if Ax is a pair then 0 otherwise 1) = 1�·
THEN (Reduce 0 THEN Auto THEN AutoPairEta [2;1] (-1)))

Fig. 3. Computational equivalence between ⊥ and a stuck term

4.3 Convergence

Rule [convergence]. To prove t1 ≤ t2, one can assume halts(t1).

This rule follows directly from ≤’s definition. For example, to prove let x , y =
p in F ≤ let x , y = q in G, one can assume that halts(let x , y = p in F ).

Nuprl also has rules to reason about halts(t). If a non-canonical term con-
verges, then its principal arguments have to converge to the appropriate canon-
ical forms as presented in Fig 2. For example the following two rules follow from
the operational semantics of spread and ispair (we have similar rules for the
other non-canonical operators):

Rule [halt-spread]. If halts(let x , y = p in F ) then p computes to a pair.

Rule [halt-ispair]. If halts(ispair(t1, t2, t3)) then halts(t1).

Let us go back to the example presented in Sec. 2.2. We now have enough
tools to prove the following lemma:

Lemma 3. For all terms F in Top, let x , y = Ax in F ∼ ⊥
Proof. Fig 3 presents our Nuprl proof of that fact. That proof goes as fol-
lows: By definition of ∼, we have to prove let x , y = Ax in F ≤ ⊥ and
⊥ ≤ let x , y = Ax in F . The second simulation is trivial. Let us prove the first
one. Using [convergence], we can assume halts(let x , y = Ax in F ) and using
[halt-spread], that Ax is a pair. This reasoning is done by our SqReasoning tac-
tic. Finally, the term ispair(Ax, 0, 1) computes to 1, and because we deduced
that Ax is a pair, it also reduces to 0, and we have an absurdity.

4.4 Lifting

Now we describe the following derived proof techniques: lifting, normalization
(see Sec. 4.5 below), and strictness (see Sec. 4.6 below) which are used in Sec. 4.7
below. Lifting transforms a term t into t ′ such that t ∼ t ′ and such that t ′ has
a smaller path to the principal argument of a subterm of t . Let us now provide
a few examples. The following bisimulation specifies a lifting operation, where
the path to p is shorter in the second term than in the first term:

Lemma 4. For all terms F and G in Top:

let c, d = (let a, b = p in F ) in G ∼ let a, b = p in (let c, d = F in G)
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Proof. To prove that bisimulation, we have to prove that the first term simulates
the second one and vice versa. Let us prove that the second one simulates the first
one (the other direction is similar), i.e., let c, d = (let a, b = p in F ) in G ≤
let a, b = p in (let c, d = F in G). Using [convergence], we can assume
halts(let c, d = (let a, b = p in F ) in G), from which, using [halt-spread]

twice, we obtain that p is a pair. More precisely, we can prove that p is the
pair 〈π1(p), π2(p)〉. By replacing p by 〈π1(p), π2(p)〉 in the above simulation,
and by reducing both sides, we obtain let c, d = F [a\π1(p); b\π2(p)] in G ≤
let c, d = F [a\π1(p); b\π2(p)] in G, which is true by reflexivity of ≤.
Using this lemma, one can, e.g., derive the following chain of rewrites:

let a, b = (let c, d = p in 〈c, d〉) in F
∼ let c, d = p in (let a, b = 〈c, d〉 in F )
∼ let c, d = p in F [a\c; b\d ]

The following bisimulation specifies another lifting operation where the path to
t1 is shorter in the second term than in the first one:

Lemma 5. For all terms t1, t2, t3, t4, and t5 in Top:

ispair(ispair(t1, t2, t3), t4, t5)
∼ ispair(t1, ispair(t2, t4, t5), ispair(t3, t4, t5))

The proof of this is similar to the proof of Lemma 4. Because lifting does not
always result in a smaller term it must therefore be used in a controlled way.

4.5 Normalization

Normalization allows one to make use of the information given by destructors
such as spread or decide, i.e., that some terms are forced to be pairs or injec-
tions by the computation system. Normalization achieves some kind of common
subexpression elimination, which is a standard optimization technique. For ex-
ample, the next lemma says that the expression on left-hand-side has a value if
and only if p (which can be an arbitrary large term) is a pair, and more precisely
in F it has to be the pair 〈a, b〉:
Lemma 6. For all terms p and F in Top:

let x , y = p in F [z\p] ∼ let x , y = p in F [z\〈x , y〉]

The proof of this is similar to the proof of Lemma 4.

4.6 Strictness

Strictness says that if ⊥ is one of the principal arguments of a term then this
term is computationally equal to ⊥. For example we proved the following lemma:
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Lemma 7. For all terms F in Top, (let x , y = ⊥ in F ) ∼ ⊥.
The proof of this is similar to the proof of Lemma 4. Intuitively, such lemmas
are true because to evaluate a non-canonical term, one has to evaluate its prin-
cipal arguments. If one of these principal arguments is ⊥, then the computation
diverges. Therefore, the entire term is computationally equal to ⊥.

4.7 Back to Our List Example

As explained in Sec. 3.2, to prove map(f , t) @ nil ∼ map(f , t), we first prove the
following lemma:

Lemma 8. For all terms t in Top, t @ nil ≤ t .

Proof. Because @ is defined using fix (see Sec. 2.3), we prove that lemma us-
ing the [least-upper-bound] rule (see Sec.4.1). We now have to prove that any
approximation of the fixpoint is simulated by t . Let

F = λF .λL.ispair(L, let x , y = L in x • (F y), isaxiom(L, nil,⊥))

We have (t @ nil) = (fix(F ) t) by definition of append and beta-reduction. We
have to prove that for all natural numbers n, and for all terms t ,

Fn ⊥ t ≤ t

which we prove by induction on n. The base case boils down to proving that
⊥ t ≤ t which is true using strictness. In the interesting induction case, assuming
that for all terms t , Fn−1 ⊥ t ≤ t , we have to prove F (Fn−1 ⊥) t ≤ t , i.e.,

ispair(t , let x , y = t in x • ((Fn−1 ⊥) y), isaxiom(t , nil,⊥)) ≤ t (1)

Let P be ispair(t , let x , y = t in x • ((Fn−1 ⊥) y), isaxiom(t , nil,⊥)). Us-
ing [convergence], we can assume halts(P). Using [halt-ispair], we obtain
halts(t). By Lemma 2, we get t ∼ 〈π1(t), π2(t)〉 or P ∼ isaxiom(t , nil,⊥).

If t ∼ 〈π1(t), π2(t)〉, we have to prove the following simulation obtained from
simulation 1 by replacing t by 〈π1(t), π2(t)〉 and by reducing:

π1(t) • ((Fn−1 ⊥) π2(t)) ≤ 〈π1(t), π2(t)〉

Because the cons operator is defined as the pair constructor, by the context
property it remains to prove the following simulation, which is true by induction
hypothesis: ((Fn−1 ⊥) π2(t)) ≤ π2(t).

If P ∼ isaxiom(t , nil,⊥), we have to prove isaxiom(t , nil,⊥) ≤ t . Using the
version of Lemma 2 for isaxiom, we obtain t ∼ Ax or isaxiom(t , nil,⊥) ∼ ⊥.
Both cases are trivial: in the first case we have to prove Ax ≤ Ax and in the
second we have to prove ⊥ ≤ t .

Let us now prove the lemma we set out to prove in Sec. 3.2:
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Lemma 9. For all terms t and f in Top, map(f , t) @ nil ∼ map(f , t).

Proof. By definition of ∼, we have to prove map(f , t) @ nil ≤ map(f , t) (which
is true by Lemma 8), and map(f , t) ≤ map(f , t) @ nil. Because map is a fixpoint,
we can prove the latter using the [least-upper-bound] rule. Let

F = λF .λL.ispair(L, let x , y = L in (f x ) • (F y), isaxiom(L, nil,⊥))
We then have to prove that for all natural numbers n and for all terms f and t ,

Fn ⊥ t ≤ map(f , t) @ nil

which we prove by induction on n. Once again, the base case is trivial. As-
sume that for all terms t , Fn−1 ⊥ t ≤ map(f , t) @ nil, we have to prove that
F (Fn−1 ⊥) t ≤ map(f , t) @ nil, i.e., we have to prove the following simulation:

ispair(t , let x , y = t in (f x ) • ((Fn−1 ⊥) y), isaxiom(t , nil,⊥))
≤ map(f , t) @ nil

(2)

Let P = ispair(t , let x , y = t in (f x ) • map(f , y), isaxiom(t , nil,⊥)), which
is map(f , t) unfolded once. We obtain the following sequence of bisimulations by
unfolding the definitions of map and @ in (map(f , t) @ nil):

map(f , t) @ nil ∼ P @ nil

∼ ispair(P , let x , y = t in x • (y @ nil), isaxiom(P , nil,⊥))
Using lifting (Lemma 5) and normalization, we obtain the following bisimulation:

map(f , t) @ nil

∼ ispair(t , let x , y = t in (f x ) • (map(f , y) @ nil), isaxiom(t , nil,⊥))
Therefore, given that we have to prove simulation 2, it means that we have to
prove the following simulation:

ispair(t , let x , y = t in (f x ) • ((Fn−1 ⊥) y), isaxiom(t , nil,⊥))
≤ ispair(t , let x , y = t in (f x ) • (map(f , y) @ nil), isaxiom(t , nil,⊥))

which is true by induction hypothesis and the context property.

5 Process Optimization

Nuprl implements a Logic of Events (LoE) [10,12,13] to specify and reason about
distributed programs, as well as a General Process Model (GPM) [11] to imple-
ment them. We have proved a direct relationship between some LoE combinators
and some GPM combinators. This allows us to automatically generate processes
that are guaranteed to satisfy the logical specifications of LoE.

Using the proof techniques presented in the above section, we were able to
optimize many automatically generated GPM processes. For example, we opti-
mized our synthesized version of Paxos, which is used by the ShadowDB repli-
cated database [34]. Because our synthesized Paxos was initially too slow, it was
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only used to handle database failures, which are critical to handle correctly but
are not frequent. When a failure occurs, Paxos ensures that the replicas agree
on the next set of replicas. We can now also use Paxos to consistently order the
transactions of the replicated databases. Initially, our synthesized code could
only handle one transaction every few seconds. Thanks to our automatic opti-
mizer, the code we synthesize is now about an order of magnitude faster. Our
goal is to be able to handle several thousands of transactions per second. Even
though we have not yet reached that goal, this work is already an encouraging
first step towards generating fast correct-by-construction code.

A GPM process is modeled as a function that takes inputs and computes a new
process as well as outputs. For distributed programs based on message passing,
these inputs and outputs are messages. Formally, a process that takes inputs
of type A, and outputs elements of type B , is an element of (a variant of) the
following co-recursive type:

corec(λP .A→ P × Bag(B))

where corec is defined as follows:

corec(G) = ∩n : N.fix(λP .λn.if n = 0 then Top else G (P (n − 1))) n

Note the use of bags, also called multisets, formally defined as quotiented lists.
The reason for using that type is outside the scope of this paper. However,
let us mention that processes can output more than one element and these
elements need not be ordered. In the rest of this paper, we use curly braces
to denote specific bag instances. Lists and bags have many similar operations
such as: bmap the map operation on bags, bnull the null operation, bconcat
the concat operation which flattens bags of bags, and >>= the bind operation
of the bag monad, defined as b >>= f = bconcat(bmap(f , b)). For example,
({1; 2; 2; 4} >>= λx .{x ; x + 1}) = {1; 2; 2; 3; 2; 3; 4; 5}= {1; 2; 2; 2; 3; 3; 4; 5}.

Many of the GPM combinators are defined using fix. Because processes are
typically defined using several combinators, fixpoints end up being deeply nested
which affects the computational complexity of the processes. Using, among other
things, the least upper bound property, we can often reduce the number of
fixpoints occurring in processes. This is our main process optimization technique.

Let us now present some GPM combinators. Processes often need to maintain
an internal state. Therefore, the combinators defined below will all be of the
form fix(λF .λs .λm.G) init , where init is an initial state, and G is a transition
function that takes the current state of the process (s) and an input (m), and
generates a new process and some output.

5.1 Combinators

Base Combinator. It builds a process that applies a function to its inputs:

base(f ) = fix(λF .λs.λm.〈F s, f m〉) Ax

Base processes are stateless, which is modeled using the term Ax as the state of
the base combinator.



274 V. Rahli, M. Bickford, and A. Anand

Composition Combinator. It builds a process that applies a function f to
the outputs of its sub-component X :

f o X = fix(λF .λX .λm.

⎛
⎝ let X ′, out = X m in

let out ′ ::= bmap(f , out) in
〈F X ′, out ′〉

⎞
⎠) X

The state maintained by f o X is the state maintained by X . Note that for
efficiency issues, we use the call-by-valueall operator ::= in order to generate the
outputs out ′.

Buffer Combinator. From an initial buffer init and a process X producing
transition functions, this combinator builds a process that buffers its outputs:

buffer(X , init) =

fix(λF .λs.λm.

⎛
⎜⎜⎝

let X , buf = s in

let X ′, b = X m in

let b′ ::= b >>= λf .(buf >>= f ) in
〈F 〈X ′, if bnull(b′) then buf else b′〉, b′〉

⎞
⎟⎟⎠) 〈X , init〉

The state maintained by buffer(X , init) is the pair of the state maintained by
X and its previous outputs (initially init).

5.2 Example

The following process uses the three combinators presented above:

P = buffer((λn.λbuf .{n + buf }) o base(λm.{m}), {0})

This process maintains a state constituted of a single integer, initialized to 0. Its
inputs are integers. At any point in time, its state is the sum of all the inputs
it has received in the past. Because the combinators used in P are defined as
fixpoints, P contains three nested occurrences of fix. We will now show that P
is computationally equivalent to the following even simpler process:

P ′ = fix(λF .λs.λm.let x ::= m + s in 〈F x , {x}〉) 0

Using Nuprl’s powerful tactic mechanism we automatically generate P ′ from P ,
and we automatically prove that P ∼ P ′. Our experiments showed that it takes
between 100 and 200 computation steps for P to process a single input while it
takes less than 10 computation steps for P ′ to process a single input.

Standard Form To optimize our processes we take advantage of the fact that
many of them are of the following form:

process(n,L,S ,R, I ) =

fix(λF .λs.λm.

⎛
⎜⎜⎝

let x1 ::= L s m 1 in

. . .
let xn ::= L s m n x1 · · · xn−1 in

〈F (S s m x1 · · · xn ),R s m x1 · · · xn 〉

⎞
⎟⎟⎠) I
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where L is a sequence of instructions defined as a function, n is the number of
instructions that the process executes on each input, S computes the next state
of the process, R computes the outputs, and I is its initial state.

Transformations. We prove the next three lemmas using the same proof tech-
nique as in Sec. 4.7. These lemmas show that if processes are built using the
base, composition, and buffer combinators (and many other primitive combina-
tors of the GPM not presented in this paper), then they are guaranteed to be of
the standard form process(n,L, S ,R, I ).

Lemma 10. Given a term f of type Top, the following bisimulation is true:

base(f ) ∼ process(0, λx .⊥, λs.λm.Ax, λs.λm.f m, Ax)

Lemma 11. Given f , L, S , R, and I terms of type Top, and n a natural number,
the following bisimulation is true:

f o process(n,L,S ,R, I )
∼ process( n + 1,

λs.λm.λi .if i = n + 1 then λx1 . . . . λxn . bmap(f ,R s m x1 · · · xn )
else L s m

,

λs.λm.λx1 . . . . λxn . λxn+1 .S s m x1 · · · xn ,
λs.λm.λx1 . . . . λxn . λxn+1 .xn+1 ,
I )

Lemma 12. Given L, S , R, I , and I ′ terms of type Top, and n a natural
number, the following bisimulation is true:

buffer(process(n,L,S ,R, I ), I ′)
∼ process(n + 1,

λs.λm.λi . if i = n + 1
then λx1 . . . . λxn . (R π1(s) m x1 · · · xn ) >>= λf .(π2(s) >>= f )
else L π1(s) m

,

λs.λm.λx1 . . . . λxn . λxn+1 . 〈 S π1(s) m x1 · · · xn
, if bnull(xn+1 ) then s else xn+1 〉

,

λs.λm.λx1 . . . . λxn . λxn+1 .xn+1 ,
〈I , I ′〉)

Transformation of P into P ′. Using the bisimulations presented above, we
automatically rewrite P into P ′, and because our bisimulations are untyped,
proving that P is computationally equivalent to P ′ is also trivial: it only requires
us to prove that some terms are in Top, and all closed terms are trivially in Top.

6 Related Work and Conclusion

This paper describes computational proof techniques based on bisimulations
which we use in the Nuprl proof assistant in order to optimize distributed pro-
cesses (programs in general). McCarthy [31] recognized the value of type free
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reasoning, and we took that to heart in the design of CTT by providing type
free rules about computation, called “direct computation rules”. Now we know
that this kind of reasoning can be made even richer.

Gordon [20] characterizes contextual equivalence as some form of
co-inductively defined bisimulation. Using co-inductive reasoning, Gordon can
easily prove, e.g., various bisimulations between streams. For example, he proves
that iterate(f , f x ) and map(f , iterate(f , x )) are bisimilar, where iterate(f , x )
is defined in Nuprl as fix(λF .λx .〈x ,F (f x )〉) x . Nuprl’s corresponding method
to prove such results is the least upper bound property. Gordon proves this re-
sult using a co-inductive reasoning, while we prove it by induction on the natural
number we obtain by approximating the two fixpoints used to define map and
iterate. Apart from that difference, the resulting proofs are similar in spirit.

Note that we have not yet formally proved that the processes returned by our
optimizer have a better complexity than the processes it takes as inputs. Using
Isabelle/HOL, Aspinall, Beringer, and Momigliano [5] developed an optimization
validation technique, based on a proof-carrying code approach, to prove that op-
timized programs use less resources than the non-optimized versions. Currently,
we cannot measure the complexity of programs inside Nuprl because if t1 reduces
to t2 then t1 ∼ t2, and hence we cannot distinguish between them in any context.

We hope to solve this issue by either using some kind of reflection, or intro-
ducing a subtype of Base where equality would be alpha-equality. Also, in order
to enhance the usability of our processes in industrial strength systems, we need
to identify and verify other optimizations. As mentioned in Sec. 1, we view this
work as a step towards making Nuprl a usable programming framework. In the
meantime, we have built a Lisp translator for our processes.

In the last two decades, much work has been done on compiler verification.
See Dave [19] for earlier references. To name a few: Using Coq, Leroy has de-
veloped and certified a compiler for a C-like language [29]. He generated the
compiler using Coq’s extraction mechanism to Caml code. The compiler is cer-
tified thanks to “a machine-checked proof of semantic preservation” [29]. Also
using Coq, Chlipala [15] developed a verified compiler for an impure functional
programming language with references and exceptions that produces code in an
idealized assembly language. He proved the correctness of the compiler using
a big-step operational semantics. Li [30] designed a verified compiler in HOL,
from an high-level ML-like programming language implemented in HOL to ARM
assembly code. Each transformation of the compiler generates a correctness ar-
gument along with a piece of code.

Following this line of work, we now would like to tackle the task of building
a verified compiler for Nuprl in Nuprl.
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1 Introduction

Mathematical analysis studies a hierarchy of abstract objects, including various
topological, metric, and vector spaces. However, previous formalizations of math-
ematical analysis have not captured this hierarchical structure. For example, in
HOL Light’s multivariate analysis library [4] most theorems are proved only for
the fixed type Rn of finite Cartesian products. Similarly, Isabelle’s original library
of analysis by Fleuriot and Paulson [1] supported most concepts only on R and C.

Isabelle/HOL’s new library for mathematical analysis derives from these two
earlier libraries, but brings them closer to the mathematical ideal: Isabelle/HOL
provides the concept of type classes, which allows us to state lemmas generi-
cally for all types that provide the necessary operations and satisfy the corre-
sponding assumptions. This approach is therefore perfectly suited to exhibit the
hierarchical structure of spaces within mathematical analysis.

In the following text we present the new hierarchy of type classes for mathe-
matical analysis in Isabelle/HOL and preview some example class instances:

– Finite Cartesian products Rn, R, and C are all Euclidean spaces.
– The extended reals R = R ∪ {∞,−∞} are a non-metric topological space.
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– Finite maps (maps with finite domain) N ⇁f R, are a complete metric space
but not a vector space. They are used to construct stochastic processes [6].

– Bounded continuous functions R →bc R form a Banach space but not a
Euclidean space; their dimension is infinite. They are used to prove that
ordinary differential equations have a unique solution [7].

Figure 1 shows the type class hierarchy we present in this paper. Full lines are
inheritance relations and dashed lines are proved subclass relations. We group
the type classes into topological, metric, vector and algebraic type classes. For
completeness we show some of the algebraic type classes, but they are not the
main focus of this paper. All type classes described in this paper are available
in Isabelle 2013 and carry the same names in the formalization. An exception is
the order topology, available in Isabelle’s development repository1.

Our formalization of filters and limits is another primary contribution of our
work. While filters have long been used to express limits in topology, our generic
limit operator parameterized by two filters is novel (see Section 4.2). Filters
are also useful for more than just limits—e.g. a filter can express the almost
everywhere quantifier, which recognizes predicates that hold with probability 1
on a probability space.

Topological

Vector

Metric

Algebraic

topological-space

t0-space

t1-space

t2-space perfect-space

first-countable-topology

second-countable-topology

linorder-topology
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heine-borel

ab-group-add

ring

field

real-vector

real-algebra

real-field

real-normed-vector

real-normed-algebra

real-normed-field

banachreal-inner

euclidean-space

Fig. 1. Type class hierarchy

1 http://isabelle.in.tum.de/repos/isabelle/rev/4392eb046a97

http://isabelle.in.tum.de/repos/isabelle/rev/4392eb046a97
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2 Preliminaries

The term syntax used in this paper follows Isabelle/HOL, i.e. as usual in λ-
calculus function application is juxtaposition as in f t. The notation t :: τ
means that term t has type τ . Types are built from the base types B (booleans),
N (natural numbers), R (reals), type variables (α, β, etc), via the function type
constructor α → β, and via the set type constructor α set. The universe of a
type α, i.e. the set of all elements of type α, is written Uα. We use =⇒ for
logical implication; it binds – in contrast to Isabelle/HOL notation – stronger
than universal quantification, i.e. ∀x. P x =⇒ Q x equals ∀x. (P x =⇒ Q x).

Isabelle/HOL provides (axiomatic) type classes [2], which allow to organize
polymorphic specifications. A type class C specifies assumptions P1, . . . , Pk for
constants c1, . . . , cm (that are to be overloaded) and may be based on other type
classes B1, . . . , Bn. The command class declares type classes in Isabelle/HOL:

class C = B1 + B2 + . . . + Bn+
fixes c1 :: α κ1 and c2 :: α κ2 and · · · and cm :: α κm

assumes P1 and P2 and · · · and Pk

In the type class specification only one type variable, α, is allowed to occur.
Variables in P1, . . . , Pk are implicitly universally quantified. A type α is said to
be an instance of the type class C if it provides definitions for the respective
constants and respects the required assumptions. In this case we write α :: C.

With the command instance we can add subclass relations in addition to the
declared base classes. We have for example the type class finite for types α where
Uα is finite and a type class countable for types α where Uα is countable. Then
we can use instance finite ⊆ countable to add a subclass relation stating that all
finite types are also countable types.

3 Related Work

Isabelle’s original theory of real analysis was due to Fleuriot and Paulson [1]. It
covered sequences, series, limits, continuity, transcendental functions, nth roots,
and derivatives. These notions were all specific to R, although much was also
duplicated at type C. This material has since been adapted to the new type class
hierarchy. The non-standard analysis part with ∗R and ∗C is not adapted.

Much of the work presented in this paper comes from the Isabelle/HOL port of
Harrison’s multivariate analysis library for HOL Light [4]. In addition to limits,
convergence, continuity, and derivatives, the library also covers topology and
linear algebra. The Heinstock-Kurzweil integral is not yet described in [4], but
it is now available in HOL Light and also ported to Isabelle/HOL. Compared to
the work presented in this paper the HOL Light library is mostly specific to Rn.

Instead of formalizing limits with filters, Harrison invented a variant of nets
which also bore some similarities to filter bases. His library provided a tends-to
relation parameterized by a single net, but did not have an equivalent of our more
general limit operator which is parameterized by two filters (see Section 4.2).
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Lester [9] uses PVS to formalize topology. He formalizes topological spaces,
T2-spaces, second countable space, and metric spaces. He does not provide vector
spaces above metric spaces and he does not use filters or nets to express limits.

Spitters and van der Weegen [10] formalize a type class hierarchy for algebraic
types in Coq. Their goal is efficient computation, hence they support different
implementations for isomorphic types. In contrast, our goal is to share definitions
and proofs for types which share the same mathematical structure. They also
introduce type classes in category theory which is not possible in Isabelle as type
classes are restricted to one type variable. However, for mathematical analysis
and also for the algebraic type class hierarchy in Isabelle/HOL they suffice.

Hölzl and Heller [5], Immler and Hölzl [7], and Immler [6] provide instances of
the type classes presented in this paper: they formalize extended real numbers,
bounded continuous functions, and finite maps.

4 Topology

Topology is concerned with expressing nearness of elements in a space. An open
set contains for each element also all elements which are in some sense near
it. This structure is sufficient to express limits and continuity of functions on
topological spaces. This generality is actually needed to formulate a notion of
limits and convergence that is also suitable for extended real numbers. More
specific formulations (e.g. in terms of metric spaces) do not work for them. For a
introduction into topology the reader may look into standard textbooks like [8].

4.1 Topological Spaces

A topological space is defined by its predicate of open sets. In mathematics
the support space X , the union of all open sets, is usually explicitly given. In
Isabelle/HOL a topological space is a type in the following type class:

class topological-space =
fixes open :: α set→ B
assumes open Uα and open U =⇒ open V =⇒ open (U ∩ V )

and (∀U ∈ S. open U) =⇒ open
⋃

S
closed :: α set→ B
closed U ⇐⇒ open (Uα \ U)

On a topological space, we define the limit points, interior, closure and frontier
of a set in the usual way.

On the real numbers, the canonical topology contains all half-bounded open
intervals: ]a,∞[ and ]∞, a[. It is also generated by them, i.e. it is the small-
est topology containing all half-bounded open intervals. This is called an order
topology on a linear order:

class linorder-topology = linorder + topological-space +
assumes open = generated-topology

⋃
x{]x,∞[, ]∞, x[}
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Here generated-topology A is the smallest topology where the sets in A are open.
A is a subbase, i.e. A need not be closed under intersection. Instances for order
topologies are the real numbers and the extended real numbers.

Separation Spaces. As the open sets of a topology describe only nearness, it is
still possible that two distinct elements are always near, i.e. they are topologically
indistinguishable. This is not desirable when formulating unique limits in terms
of open sets. To prevent this, different classes of separation spaces are specified,
called T0-, T1-, and T2-spaces:

class t0-space = topological-space +
assumes x �= y =⇒ ∃U. open U ∧ (

x ∈ U ⇐⇒ y /∈ U
)

class t1-space = topological-space +
assumes x �= y =⇒ ∃U. open U ∧ (

x ∈ U ∧ y /∈ U
)

In T1-spaces singleton sets are closed, i.e. closed {x}. A T2-space (also called
a Hausdorff space) is the strongest separation space we provide. A T2-space
provides for any distinct elements x and y two disjoint open sets around them:

class t2-space = topological-space +
assumes x �= y =⇒

∃U, V. open U ∧ open V ∧ x ∈ U ∧ y ∈ V ∧ U ∩ V = ∅
We provide type class inclusion for these spaces according to their numbering;
i.e. a T2-space is also a T1-space is also a T0-space. In Section 5.1 we also prove
that each metric space and each linearly ordered topology is a T2-space.

instance t1-space ⊆ t0-space
instance t2-space ⊆ t1-space
instance linorder-topology ⊆ t2-space

While the T1-spaces tell us that two elements can always be separated, we also
need its dual: in a perfect space each open set containing an element always
contains elements around it; the singleton set is never open. This is the dual to
closed {a}. Only in perfect spaces is limx→a meaningful for each point a.

class perfect-space = topological-space + assumes ¬open {a}
Instances of perfect spaces are Euclidean spaces and the extended real numbers.

Topologies with Countable Basis. A first countable topology assumes a
countable basis for the neighborhoods of every point; i.e. it allows us to con-
struct a sequence of open sets that converges towards a point x. Together with
a T1-space this allows us to construct a sequence of points that converges to a
point x.

class first-countable-topology = topological-space +
assumes ∃A. countable A ∧ (∀a ∈ A. open a ∧ x ∈ a) ∧

(∀U. open U ∧ x ∈ U =⇒ ∃a ∈ A. a ⊆ U)
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Examples of first countable topologies are metric spaces.
Second countability is an extension of first countability; it provides a countable

basis for the whole topology, not just for the neighborhoods of every point. This
implies that compactness is equivalent to sequential compactness (which will be
introduced in Section 4.4).

class second-countable-topology = topological-space +
assumes ∃B. countable B ∧ open = generated-topology B

instance second-countable-topology⊆ first-countable-topology

Instances for second countable spaces are Euclidean spaces, the extended real
numbers, and finite maps (α :: countable) ⇁f (β :: second-countable-topology).

4.2 Filters and Limits

A filter is a set of sets (or equivalently a predicate on predicates) with a certain
order structure. As we will see shortly, filters are useful in topology because they
let us unify various kinds of limits and convergence, including limits of sequences,
limits of functions at a point, one-sided and asymptotic limits.

Many varieties of logical quantification are filters, such as “for all x in set
A”; “for sufficiently large n”; “for all but finitely many x”; “for x sufficiently
close to y”. These quantifiers are similar to the ordinary universal quantifier (∀)
in many ways. In particular, each holds for the always-true predicate, preserves
conjunction, and is monotonic:

(�x. True)
(�x. P x) =⇒ (�x. Q x) =⇒ (�x. P x ∧Q x)
(∀x. P x =⇒ Q x) =⇒ (�x. P x) =⇒ (�x. Q x)

We define a filter F as a predicate on predicates that satisfies all three of the
above rules. (Note that we do not require filters to be proper ; that is, we ad-
mit the trivial filter “for all x in {}” which holds for all predicates, including
λx. False.)

is-filter :: ((α→ B)→ B)→ B
is-filter F =
F (λx.True) ∧
(∀P, Q. F (λx. P x) =⇒ F (λx. Q x) =⇒ F (λx. P x ∧Q x)) ∧
(∀P, Q. (∀x. P x =⇒ Q x) =⇒ F (λx. P x) =⇒ F (λx. Q x))

We define the type α filter comprising all filters over the type α. The command
typedef provides functions Repfilter and Absfilter to convert between α filter and
(α → B) → B; we use eventually :: (α → B) → α filter → B (defined as Repfilter
with swapped argument order) to apply a filter to a predicate.

typedef α filter = {F | is-filter F}
Note: For each filter F :: α filter, we will usually show only its characteristic
equation eventually P F ⇐⇒ F P , leaving the raw definition F = Absfilter F and
the proof obligation is-filter F implicit.
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Finer-than Ordering. We define the ordering F1 ≤ F2 to mean that filter F1
is finer than F2, i.e., ∀P. eventually P F2 =⇒ eventually P F1. For filters that
represent bounded quantifiers, ≤ agrees with the subset order: “for all x in A”
≤ “for all x in B” iff A ⊆ B. This ordering also makes α filter into a complete
lattice, with the trivial filter as the bottom element and ∀ as the top element.

� ≤ � :: α filter→ α filter→ B
F1 ≤ F2 ⇐⇒ (∀P. eventually P F2 =⇒ eventually P F1)

Basic Filters. On any linearly ordered type, we define filters at-top to mean
“for sufficiently large y” or “as y −→ +∞”, and at-bot as “for sufficiently small
y” or “as y −→ −∞”. We use sequentially as an abbreviation for at-top as a filter
on the naturals.

lemma
eventually P (at-top :: (α :: linorder) filter)⇐⇒ (∃x. ∀y ≥ x. P y)
eventually P (at-bot :: (α :: linorder) filter)⇐⇒ (∃x. ∀y ≤ x. P y)

In the context of a topological space, we define nhds x as the neighborhood filter,
which means “for all y in some open neighborhood of x”.

lemma
eventually P (nhds x)⇐⇒ (∃U. open x ∧ x ∈ U ∧ (∀y ∈ U. P y))

The principal filter of a set B represent a bounded quantifier, i.e. “for all x in
B”. It is useful for constructing refinements of the neighborhood filter. We define
at x within U as the punctured neighborhood filter, “for all y ∈ U and y �= x
in some neighborhood of x”. We also define one-sided filters at-left and at-right.
at x is an abbreviation for at x within Uα. F1 � F2 is the infimum of the filters
F1 and F2.

lemma
eventually P (principal S)⇐⇒ (∀x ∈ S. P x)

at � within � :: (α :: topological-space)→ α set→ α filter
at-left, at-right :: (α :: linorder-topology)→ α filter
at x within U = nhds x � principal (U \ {x})
at-left x = at x within ]∞, x[
at-right x = at x within ]x,∞[

When we apply a function to the argument of each predicate in a filter we get
a filter again. With filtermap f F we transform the filter F by a function f . We
will shortly use it for expressing general limits.

lemma
eventually P (filtermap f F )⇐⇒ eventually (λx. P (f x)) F

lemma
filtermap (λx :: R. − x) at-top = at-bot
filtermap (λx :: R. 1/x) at-top = at-right 0
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Limits. Filters can be used to express a general notion of limits. To illustrate
this, we start with the usual epsilon-delta definitions of limits of functions and
sequences on reals, and then incrementally generalize the definitions. Finally we
end up with a single definition, parameterized over two filters, that can express
diverse kinds of limits in arbitrary topological spaces. Here are the usual epsilon-
delta definitions of limits for sequences and for functions at a point.

(yn −−−→ L) = (∀ε > 0. ∃n0. ∀n ≥ n0. |yn − L| < ε)
( lim
x→a

f(x) = L) = (∀ε > 0. ∃δ > 0. ∀x. 0 < |x− a| < δ =⇒ |f(x)− L| < ε)

The reader may recognize “∃n0. ∀n ≥ n0” as the filter sequentially. Also note
that “∃δ > 0. ∀x. 0 < |x− a| < δ” is equivalent to the punctured neighborhood
filter (at a). Therefore we can rewrite the above definitions as follows.

(yn −−−→ L) = (∀ε > 0. eventually (λn. |yn − L| < ε) sequentially)
( lim
x→a

f(x) = L) = (∀ε > 0. eventually (λx. |f(x) − L| < ε) (at a))

Already we can unify these two definitions by parameterizing over the filter.
(This yields the same definition as the tendsto relation from HOL Light.)

(f −→ L) F = (∀ε > 0. eventually (λx. |f(x)− L| < ε) F ) (1)

We express many kinds of limits with (f −→ x) F by instantiating F with
various filters: sequentially for sequences, at a for a function at a point, at-top or
at-bot for a function at ±∞, at-left a or at-right a for one-sided limits.

(xn −−−→ L) = (x −→ L) sequentially
( lim
x→a

f(x) = L) = (f −→ L) (at a)

( lim
x→a+

f(x) = L) = (f −→ L) (at-right a)

( lim
x→−∞ f(x) = L) = (f −→ L) at-bot

Up to now, we generalized how the limit is approached, but we can also generalize
the right-hand side L. First we rewrite (1) using filtermap:

(f −→ L) F = (∀ε > 0. eventually (λy. |y − L| < ε) (filtermap f F ))

This says that filtermap f F is eventually in every open neighborhood of L,
which is equivalent to the following:

(f −→ L) F = (filtermap f F ≤ nhds L)

Finally, we can generalize nhds L to an arbitrary filter G and obtain the gener-
alized limit LIM x in F. f x :> G (in Isabelle/HOL also written filterlim f F G).

LIM � in �. � :> � :: (α→ β)→ α filter→ β filter→ B
LIM x in F. f x :> G⇐⇒ filtermap f F ≤ G

(� −→ �) � :: (α→ β)→ (β :: topological-space)→ α filter→ B
(f −→ L) F ⇐⇒ LIM x in F. f x :> nhds L

� −−−→ � :: (N→ α)→ (α :: topological-space)→ B
X −−−→ L ⇐⇒ (X −→ L) sequentially
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This abstract notion of limit is only based on filters and does not even require
topologies. Now we can express new limits (that are not expressible in HOL
Light’s library), e.g., LIM x in at-bot. −x :> at-top says that −x goes to infinity
as x approaches negative infinity, limx→−∞−x =∞.

For filterlim we can provide a composition rule for convergence. Further rules
about e.g. elementary functions are available for normed vector spaces.

lemma
(LIM x in F1. f x :> F2) =⇒ (LIM x in F2. g x :> F3) =⇒
(LIM x in F1. g (f x) :> F3)

We can prove e.g. ((λx. exp (−1/x)) −→ 0) (at-right 0) from (exp −→ 0) at-bot,
LIM x in at-top. − x :> at-bot, and LIM x in at-right 0. 1/x :> at-top.

On the order topology, a function converges to x iff for all upper and lower
bounds of x the function is eventually in these bounds.

lemma fixes f :: α→ (β :: linorder-topology)
shows (f −→ x) F ⇐⇒ (∀b > x. eventually (λx. f x < b) F ) ∧

(∀b < x. eventually (λx. b < f x) F )

Filters vs nets. As an alternative to filters, limits may also be defined using
nets, which generalize sequences. While sequences are indexed by natural num-
bers, a net may be indexed by any directed set. Like filters, nets support an
“eventually” operator: N eventually satisfies P iff ∃x. ∀y ≥ x. P (N(y)).

In terms of formalizing limits and convergence, filters and nets are equally
expressive. However, nets are not as convenient to formalize in HOL. A type
α net of all nets over α does not work; nets require a second parameter type to
allow arbitrary index sets.

4.3 Continuity
Continuity of a function f at a filter F says that the function converges on F
towards its value f x where F converges to x. We use filters to unify continuity
at a point, continuity from left, continuity from right etc. With Lim F (λx. x)
we select the convergence point of the filter F with definite choice. To have a
unique value for x, the domain of the function needs to be a T2-space.

Lim :: α filter→ (α→ β)→ (β :: t2-space)
Lim F f = THE L. (f −→ L) F

continuous :: α filter→ (α :: t2-space→ β :: topological-space)→ B
continuous F f ⇐⇒ (f −→ f (Lim F (λx. x))) F

This is similar to the definition in HOL Light, but generalized to topological
spaces instead of Euclidean spaces.

Often a function needs to be continuous not only at a point, but on a set. For
this we introduce continuous-on. Its domain is not restricted to a T2-space.

continuous-on :: α set→ (α :: topological-space→ β :: topological-space)→ B
continuous-on S f ⇐⇒ ∀x ∈ S. (f −→ f x) (at x within S)
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4.4 Compactness
An important topological concept is compactness of sets. There are different
characterizations of compactness: sequential compactness, cover compactness
and countable cover compactness. Unfortunately these characterizations are not
equal on each topological space, but we will show in which type classes they are.

First we introduce cover compactness; it does not require any other topological
concepts besides open sets. A cover of a set U is a set of open sets whose union
is a superset of U . A set U is compact iff for each cover C there exists a finite
subset of C which is also a cover:

compact :: (α :: topological-space) set→ B
compact U ⇐⇒

(∀C. (∀c ∈ C. open c) ∧ U ⊆ ⋃
C =⇒ ∃D ⊆ C. finite D ∧ U ⊆ ⋃

D)
Topology usually talks about compact spaces U , where the open sets are re-
stricted to the topological space U , which would be Uα in our case. This would
not be very helpful, we would need to define a type for each compact space.
Luckily, cover compactness works also with covers which are proper supersets,
which will be the case when we use it.

Cover compactness can be expressed using filters. A space U is compact iff
for each proper filter on U exists an x ∈ U , s.t. a neighborhood of x is contained
in the filter.

lemma
compact U ⇐⇒

(∀F > ⊥. eventually (λx. x ∈ U) F =⇒ (∃x ∈ U. nhds x � F > ⊥))
Similarly to cover compactness we define countably-compact, where a set is
compact iff for each countable cover exists a finite subcover. Then compact
obviously implies countably-compact, the other direction holds at least for a
second-countable-topology space.

With limits and filters, characterizations of compactness apart from cover or
countable compactness are possible. One often used characterization of compact-
ness is sequential compactness, where for each sequence on the compact space U ,
there exists a subsequence converging in U (a subsequence of X is defined by
selecting increasing indices into X , subseq r states that r is strictly increasing).

seq-compact :: α set→ B
seq-compact U ⇐⇒

(∀X. (∀n. X n ∈ U) =⇒ ∃r. subseq r ∧ ∃x ∈ U. (X ◦ r) −−−→ x)
On a first countable topology sequential equals countable cover compactness. On
a second countable topology sequential, countable cover, and cover compactness
are equal.

lemma fixes U :: (α :: first-countable-topology) set
shows countably-compact U ⇐⇒ seq-compact U

lemma fixes U :: (α :: second-countable-topology) set
shows compact U ⇐⇒ seq-compact U
shows compact U ⇐⇒ countably-compact U
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5 Mathematical Analysis

Analysis works with infinite sequences and limits and develops concepts like dif-
ferentiation and integration. As seen in the previous section, limits have been
formalized generically for topological spaces. The formalization leading to differ-
entiation and integration has largely been ported from Harrison’s formalization
in HOL Light [4] for the type Rn. In this section, we present the generalization
to our hierarchy of type classes. Following Fig. 1, we start with the type classes
for metric spaces and then present the type classes for vector spaces, which
culminate in Euclidean spaces.

5.1 Metric Spaces

Metric spaces are specializations of topological spaces: while topological spaces
talk about nearness, metric spaces require to explicitly give a distance between
elements. This distance then induces a notion of nearness: a set is open iff for
every element in that set, one can give a distance within which every element is
near, i.e. in the open set. The following type class formalizes open sets induced
by a distance:

class open-dist = fixes open :: α set→ B and dist :: α→ α→ R
assumes open U ⇐⇒ (∀x ∈ U. ∃e > 0. ∀y. dist x y < e =⇒ y ∈ U)

If the distance is a metric, it induces a particular topological space, namely a
metric space. It is a first countable space and satisfies the Hausdorff separation
property, i.e. it is actually a T2-space.

class metric-space = open-dist +
assumes dist x y = 0⇐⇒ x = y and dist x y ≤ dist x z + dist y z

instance metric-space ⊆ t2-space, first-countable-topology

One aspect that makes real numbers an interesting metric space is the fact that
they are complete, which means that every sequence where the elements get
arbitrarily close converges. Such a sequence is called Cauchy sequence, and a
metric space is complete iff every Cauchy sequence converges.

Cauchy :: (N→ α :: metric-space)→ B
Cauchy X ⇐⇒ (∀e > 0. ∃M. ∀m, n ≥M. dist (X m) (X n) < e)
complete :: (α :: metric-space) set→ B
complete U ⇐⇒ (∀X. (∀i. X i ∈ U) ∧ Cauchy X =⇒ ∃x ∈ U. X −−−→ x)
class complete-space = metric-space + assumes complete Uα

We have generalized Harrison’s formalization of the Banach fixed point theorem
to metric spaces and we completed a characterization of compactness on metric
spaces with total boundedness: compact sets are the complete ones that can, for
every e > 0, be covered by a finite number of balls with radius e.

lemma ∀U :: (α :: metric-space) set. compact U ⇐⇒
complete U ∧ (∀e > 0. ∃T. finite T ∧ U ⊆ ⋃

t∈T {s | dist s t < e})
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One instance of complete metric spaces is the type of finite maps α ⇁f (β ::
complete-space): the distance of two finite maps f, g with domains F, G is given
by maxi∈F ∪G (dist (f i) (g i)) + (if F = G then 0 else 1). Then every Cauchy
sequence eventually stabilizes at one particular finite domain and then con-
verges uniformly. Another example is the type of bounded continuous functions
(α :: topological-space)→bc (β :: complete-space). Equipped with the supremum
distance, they form a complete metric space.

Heine-Borel Spaces. One can provide the convenient characterization that
compact sets are exactly the bounded and closed sets on a metric space if the
additional assumption that bounded sequences possess a convergent subsequence
holds. We summarize this assumption in a type class, which allows for convenient
access to the characterization and the theorems it implies. Euclidean spaces like
R, C and Rn are examples of instances.

class heine-borel = metric-space +
assumes bounded (

⋃
x{X x}) =⇒ ∃x, r. subseq r ∧ (X ◦ r) −−−→ x

instance heine-borel ⊆ complete-space
lemma ∀U :: (α :: heine-borel) set. compact U ⇐⇒ bounded U ∧ closed U

5.2 Vector Spaces

One aspect that is often abstracted away from products of real numbers is their
property of being a vector space, i.e. a space where addition and scaling can be
performed. Let us present in this section the definition of vector spaces, normed
vector spaces, and how derivatives are generalized for normed vector spaces.

Definition. Usually, a vector space is defined on an Abelian group of vectors
V , which can be scaled with elements of a field F , and where distributive and
compatibility laws need to be satisfied by scaling and addition. The type class
based approach restricts the number of type variables to one; we therefore use
locales (Isabelle’s module system for dealing with parametric theories [3]) to
abstractly reason about vector spaces with arbitrary combinations of F and V
(which may be of different types). We define the type class real-vector for the
common usage of R for the field F : the type class ab-group-add, which formalizes
an Abelian group, provides the operations for addition and additive inverse for
the type of vectors α (subtraction is defined in terms of these operations).

class real-vector = ab-group-add + fixes ·R :: R→ α→ α
assumes r ·R (a + b) = r ·R a + r ·R b and (r + q) ·R a = r ·R a + q ·R a

and r ·R (q ·R a) = (r · q) ·R a and 1 ·R a = a

A generalization of the length of a vector of real numbers is given by the norm
in a vector space. The norm induces a distance in a vector space. Similar to
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open-dist, which describes how dist induces open sets, we describe here how the
norm induces the distance.

class dist-norm = fixes norm :: α→ R and − :: α→ α→ α
assumes dist x y = norm (x − y)

A normed vector space is then defined as a vector space real-vector together with
the usual assumptions of a separating and positively scalable norm, for which the
triangle equality holds. The distance for the instantiation as metric space and
open sets for the topology are induced by dist-norm and open-dist, respectively.
Then every normed vector space is a metric space.

class real-normed-vector = real-vector + dist-norm + open-dist +
assumes norm x = 0⇐⇒ x = 0 and norm (r ·R x) = |r| · norm x

and norm (x + y) ≤ norm x + norm y
instance real-normed-vector ⊆ metric-space

We define a filter to describe that the norm tends to infinity (at-infinity =
filtermap norm at-top). We have lemmas about limits of vector space operations
– for example LIM x in F. f x + g x :> G for G = nhds L (if f and g converge)
or G = at-infinity (if f or g tend to infinity) – and hence continuity.

Complete normed vector spaces are called Banach spaces; we provide an
extra type class for them. For example bounded continuous functions (α ::
topological-space) →bc (β :: real-normed-vector) equipped with pointwise addi-
tion and scaling form a Banach space.

class banach = complete-space + real-normed-vector

Derivatives. The HOL Light formalization includes derivatives of functions
from Rn to Rm. This derivative is a linear mapping, it is called Fréchet deriva-
tive or total derivative, and its matrix is called the Jacobian matrix. Our type
class based formalization allows us to generalize (in accordance with textbook
mathematics) the notion of Fréchet derivative to arbitrary normed vector spaces
real-normed-vector, where the derivative is a bounded linear approximation. The
limit may be approached from within an arbitrary set s:

bounded-linear :: (α :: real-normed-vector→ β :: real-normed-vector)→ B
bounded-linear f ′ ⇐⇒ (f ′ (x + y) = f ′ x + f ′ y ∧ f ′ (a ·R x) = a ·R (f ′ x) ∧

(∃K. ∀x. norm (f ′ x) ≤ K · norm x))

FDERIV � � : � :> � :: (α→ β)→ α→ α set→ (α→ β)
FDERIV f x : s :> f ′ ⇐⇒ (bounded-linear f ′ ∧

((λy. norm (f y − f x− f ′ (y − x))/norm (y − x)) −→ 0) (at x within s))

We have generalized Harrison’s results about derivatives of arithmetic opera-
tions, and the chain rule for differentiation to real-normed-vector spaces.

We provide a set of rules FDERIV-eq-intros that allows to compute deriva-
tives: each of the rules assumes composition of a differentiable function with an
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additional function and matches a variable to the derivative, which has to be
solved by Isabelle’s rewrite engine. Consider e.g., the following rule where the
first assumption has to be solved by a repeated application of FDERIV-eq-intros
and the second assumption needs to be solved by the simplifier:

lemma
assumes FDERIV f x : s :> f ′ and (λx. r ·R (f ′ x)) = D
shows FDERIV (λx. r ·R (f x)) x : s :> D

Algebraic Vector Spaces. Further specializations of (normed) vector spaces
are available by including multiplication of vectors for a real-normed-algebra
or real-normed-field. The only instances currently used are real and complex
numbers R and C so we will not go into more detail here.

5.3 Euclidean Spaces

Another abstraction with geometric intuition is given by an inner product on
normed vector spaces: while the norm can be interpreted as the length of a
vector, the inner product can be used to describe the angle between two vectors
together with their lengths (the cosine of the angle is the inner product divided
by the product of the lengths). dist-norm and open-dist specify the induced metric
and topology. The inner product is used to induce a norm. An inner product is
a commutative bilinear operation • on vectors, for which 0 ≤ x • x holds with
equality iff x = 0.

class real-inner = real-vector + dist-norm + open-dist +
fixes • :: α→ α→ R
assumes norm x =

√
x • x and x • y = y • x

and (x + y) • z = x • z + y • z and (r ·R x) • y = r ·R (x • y)
and 0 ≤ x • x and x • x = 0⇐⇒ x = 0

instance real-inner ⊆ real-normed-vector

For vector spaces with inner products, there is for example orthogonality of
vectors formalized, i.e. vectors with inner product zero.

Finally, we introduce Euclidean spaces as spaces with inner product and a
finite coordinate basis, that means a finite set of orthogonal vectors of length 1.
In addition, the zero vector is characterized by zero “coordinates” with respect to
the basis. Any Euclidean space is a Banach space with a perfect second countable
topology and satisfies the Heine-Borel property:

class euclidean-space = real-inner +
fixes Basis :: α set
assumes finite Basis and Basis �= ∅ and (∀u ∈ Basis. x • u = 0)⇐⇒ x = 0

and u ∈ Basis =⇒ v ∈ Basis =⇒ u • v = if u = v then 1 else 0
instance euclidean-space ⊆ perfect-space, second-countable-topology,

banach, heine-borel
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Linear algebra has been ported from Harrison’s basic formalization, which in-
cludes notions of independence and span of a set of vectors. We prove for example
independence of the basis and that the basis spans the whole Euclidean space.

For functions between euclidean-spaces, we have ported from HOL Light that
the Fréchet derivative can be described as the Jacobian matrix, the mean value
theorem, and Brouwer’s fixed point theorem, which allows to prove that the
derivative of an inverse function is the inverse of the derivative.

Moreover we have ported Harrison’s formalization of the gauge (or Heinstock-
Kurzweil) integral and related properties (linearity, monotone and dominated
convergence, and the fundamental theorem of calculus).

Instances for the type class euclidean-space are real numbers R, complex num-
bers C and the Cartesian types Rα where α :: finite (which are isomorphic to
α → R). One advantage of our type class based approach is that we can use
the same formalizations of Euclidean space (e.g. of the integral) for the different
types, whereas in HOL Light, one needs to project e.g. from R1 to R.

5.4 Real Numbers

The type of real numbers R is a special instance of Euclidean spaces; some
parts of our formalization are only available for this case. For a function on real
numbers, one usually thinks of the “derivative” as the slope of the function (or
of the linear approximation), we therefore use the constant DERIV:

DERIV � � :> � :: (R→ R)→ R→ R
DERIV f x :> f ′ ⇐⇒ FDERIV f x : UR :> (λx. f ′ · x)

It turns out that the general formalization of limits with filters allows to con-
veniently express e.g. l’Hôpital’s rules in Isabelle/HOL: if the denominator of
a quotient tends to infinity, then the quotient tends to the quotient of the
derivatives of nominator and denominator (if they exist).

lemma
fixes f g :: R→ R
assumes LIM x in at-top. g x :> at-top

and eventually (λx. g′ x �= 0) at-top
and eventually (λx. DERIV f x :> f ′ x ∧ DERIV g x :> g′ x) at-top
and ((λx. f ′ x/g′ x) −→ L) at-top

shows ((λx. f x/g x) −→ L) at-top

6 Summary

We used the type class mechanism in Isabelle/HOL to formalize a hierarchy of
spaces often used in mathematical analysis: starting with topological spaces, over
metric spaces to Euclidean spaces. As in mathematics, the intention of using a
hierarchical structure is to share definitions and proofs.
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The reuse occurs for the introduction of extended reals R, the spaces of
bounded continuous functions α →bc β, and finite maps α ⇁f β. The extended
reals R need to exploit the topological type classes, as they do not form a met-
ric space. The bounded continuous function space α →bc β is a Banach space.
Immler and Hölzl [7] apply them to the Banach fixed point theorem to prove the
existence of unique solutions of ordinary differential equations. Immler [6] uses
finite maps α ⇁f β to construct stochastic processes via a projective limit.

Our approach still has the problem that all operations are defined on Uα. The
usage of finite maps α ⇁f β in [6] illustrates this. We need a metric space whose
dimensionality depends on a variable inside of a proof. Luckily, the disjoint union
of metric spaces can be extended to a metric space. But such a trick is not always
applicable, i.e. this is not possible for normed vector spaces. This can only be
avoided by adding a carrier set to each operation or by extending HOL.

Despite the last point, our work shows that Isabelle’s type class system suffices
to describe many abstract structures occurring in mathematical analysis.

Acknowledgements. We want to thank John Harrison and his colleagues for
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Amine Chaieb and Robert Himmelmann for porting it to Isabelle/HOL.
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Abstract. Classified Markov chains have been extensively applied to
model and analyze various stochastic systems in many engineering and
scientific domains. Traditionally, the analysis of these systems has been
conducted using computer simulations and, more recently, also proba-
bilistic model-checking. However, these methods either cannot guarantee
accurate analysis or are not scalable due to the unacceptable computa-
tion times. As an alternative approach, this paper proposes to reason
about classified Markov chains using HOL theorem proving. We provide
a formalization of classified discrete-time Markov chains with finite state
space in higher-order logic and the formal verification of some of their
widely used properties. To illustrate the usefulness of the proposed ap-
proach, we present the formal analysis of a generic LRU (least recently
used) stack model.

1 Introduction

In analyzing the stationary behaviors of Markovian models, it is quite common
to categorize Markov chains into different classes depending on the properties
exhibited by their states [3]. Some commonly used classes include reducible, ir-
reducible, periodic, aperiodic, regular and absorbing Markov chains. Classified
Markov chains are very useful for the dynamic analysis of systems as their prop-
erties allow us to judge long-run characteristics of Markovain systems, such as if
a system will re-visit a particular state or to determine the time of the first visit
to a state. Some of the widely used application areas of the classified Markov
chains are reliability analysis, performance analysis and validation of models.

Traditionally, simulation is the most commonly applied computer-based anal-
ysis technique for Markovian systems. The main idea here is to utilize an equilib-

rium vector to approximate vp
(n)
ij , where v is any probability vector and p

(n)
ij is

the n-step transition probability. The main reason behind using the equilibrium

vector is the high computational costs associated with vp
(n)
ij for large values of

n. Moreover, many rounding errors also creep into the analysis due to the in-
volvement of computer arithmetic. Such approximations and inaccuracies pose a
serious problem while analyzing highly sensitive and safety-critical applications.

Due to the extensive usage of Markov chains for safety-critical systems, prob-
abilistic model checking has been recently proposed for analyzing Markovian
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c© Springer-Verlag Berlin Heidelberg 2013



296 L. Liu et al.

systems. Probabilistic model checking tools, such as PRISM [15], VESTA [16]
and Ymer [19], provide precise system analysis by modeling the stochastic be-
haviors, including its random components, using probabilistic state machines and
exhaustively verifying their probabilistic properties. However, some algorithms
implemented in these model checking tools are based on numerical methods.
For example, the Power method [14], which is a well-known iterative method,
is applied to compute the steady-state probabilities (or limiting probabilities)
of Markov chains in PRISM. For this reason, most of the stationary properties
analyzed in model checkers are time bounded. Moreover, probabilistic model
checking often utilizes unverified algorithms and optimization techniques. Fi-
nally, model checking cannot be used to verify generic mathematical expressions
for probabilistic analysis. In order to overcome these limitations, we proposed
to use higher-order-logic theorem proving for analyzing Discrete Time Markov
Chains (DTMCs) [10], where we presented a formal definition of DTMC and ver-
ified some of its properties using the HOL theorem prover. This formalization
enabled us to formally analyze some simple Markovian models in HOL. In order
to extend the capabilities of higher-order-logic theorem proving based analysis
of Markovian models and thus be able to analyze a wider range of real-world
systems, we present in the current paper the formalization of classified DTMCs.

In [8], the authors formally defined a time-homogeneous Markov chain based
on the state space and the transition matrix in Isabelle/HOL, and they assumed
no initial distribution or start state. Compared to their definition and the formal-
ization presented in [10], which was based on the probability theory developed
in [6], this paper describes a more generic higher-order-logic formalization of
finite-state DTMC. Our work is based on a more general formalization of proba-
bility theory [11], which provides us with the flexibility to model inhomogeneous
DTMCs or several random processes (involving DTMCs) containing distinct
types of state spaces. We then build upon the formal DTMCs to formalize clas-
sified DTMCs and to formally verify the properties of aperiodic and irreducible
DTMCs. For illustration purposes, we formally validate a least recently used
(LRU) stack model using our formalization.

2 Formalization of DTMCs

A probability space is a measure space (Ω,Σ,Pr) such that Pr(Ω) = 1 [3]. Σ is
a collection of subsets of Ω (these should satisfy some closure axioms that we do
not specify here) which are called measurable sets. In [12], a higher-order logic
probability theory is developed, where given a probability space p, the functions
space and subsets return the corresponding Ω and Σ, respectively. Mathemat-
ically, a random variable is a measurable function between a probability space
and a measurable space, which refers to a pair (S,A), where S is a set and A is a
σ-algebra, i.e., a collection of subsets of S satisfying some particular properties
[3]. In HOL, we write random variable X p s to state that a function X is a
random variable on a probability space p and the measurable outcome space s.
Building on these foundations, measure theoretic formalizations of probability,
Lebesgue integral and information theories are presented in [12].
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A stochastic process [3] is a function X : T → Ω where T = N (discrete-time
process) or T = R (continuous-time process) and Ω is a measurable set called
the state space of X . A (finite-state) DTMC is a discrete-time stochastic process
that has a finite Ω and satisfies the Markov property [4]: for 0 ≤ t0 ≤ · · · ≤ tn
and f0, · · · , fn+1 in the state space, then: Pr{Xtn+1 = fn+1|Xtn = fn, . . . , Xt0 =
f0} = Pr{Xtn+1 = fn+1|Xtn = fn}.

This allows to formalize the Markov property as follows:

Definition 1 (Markov Property).

� ∀ X p s. mc property X p s =

(∀ t. random variable (X t) p s) ∧
∀ f t n.

increasing seq t ∧ P(
⋂

k∈ [0,n−1]{x | X tk x = f k}) �= 0 ⇒
(P({x | X tn+1 x = f (n + 1)}|{x | X tn x = f n} ∩⋂

k∈ [0,n−1]{x | X tk x = f k}) =

P({x | X tn+1 x = f (n + 1)}|{x | X tn x = f n}))
where increasing seq t is defined as ∀ i j. i < j ⇒ t i < t j, thus for-
malizing the notion of increasing sequence. The first conjunct indicates that the
Markov property is based on a random process {Xt : Ω → S}. The quantified
variable X represents a function of the random variables associated with time
t which has the type num. This ensures the process is a discrete time random
process. The random variables in this process are the functions built on the
probability space p and a measurable space s. The conjunct P(

⋂
k∈ [0,n−1]{x |

X tk x = f k}) �= 0 ensures that the corresponding conditional probabilities
are well-defined, where f k returns the kth element of the state sequence.

A DTMC is usually expressed by specifying: an initial distribution p0 which
gives the probability of initial occurrence Pr(X0 = s) = p0(s) for every state;
and transition probabilities pij(t) which give the probability of going from i to
j for every pair of states i, j in the state space [13]. For states i, j and a time t,
the transition probability pij(t) is defined as Pr{Xt+1 = j|Xt = i}, which can
be easily generalized to n-step transition probability.

p
(n)
ij =

⎧⎪⎨⎪⎩
{
0 if i �= j

1 if i = j
n = 0

Pr{Xt+n = j|Xt = i} n > 0

This is formalized in HOL as follows Definition 2 below so that the discrete-time
Markov chain (DTMC) can be formalized as Definition 3:

Definition 2 (Transition Probability).

� ∀ X p s t n i j.

Trans X p s t n i j =

if n = 0 then

if i ∈ space s ∧ j ∈ space s then

if (i = j) then 1 else 0
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else 0

else P({x | X (t + n) x = j}|{x | X t x = i})
Definition 3 (DTMC).

� ∀ X p s Linit Ltrans. dtmc X p s Linit Ltrans =

mc property X p s ∧ (∀ i. i ∈ space s ⇒ {i} ∈ subsets s) ∧
∀ i. i ∈ space s ⇒ (Linit i = P{x | X t x = i}) ∧
∀ t i j. (P{x | X t x = i} �= 0) ⇒

(Ltrans t i j = Trans X p s t 1 i j)

It is important to note that X is polymorphic, i.e., it is not constrained to a
particular type, which is a very useful feature of our definition.

In practice, many applications actually make use of time-homogenous DTMCs,
i.e., DTMCs with finite state-space and time-independent transition probabilities
[2]. They can be formalized as follows:

Definition 4 (Time homogeneous DTMC).

� ∀ X p s p0 pij. th dtmc X p s p0 pij =

dtmc X p s p0 pij ∧ FINITE (space s) ∧
∀ t i j. Trans X p s (t + 1) 1 i j = Trans X p s t 1 i j

For time-homogenous DTMCs, ∀ t t′. pij(t) = pij(t
′) and thus pij(t) is simply

written as pij .
It is often the case that we are interested in the probability of some specific

states as time tends to infinity under certain conditions. This is the main rea-
son why stationary behaviors of stochastic processes are frequently analyzed in
engineering and scientific domains. There is no exception for Markovian systems.

Let {Xt}t≥0 be a Markov chain having state spaceΩ and transition probability
pij for going from a state with value i to a state with value j. If π(i), i ∈ Ω, are
nonnegative numbers summing to one, and if j ∈ Ω, then π(j) =

∑
i∈Ω π(i)pij is

called a stationary distribution. The corresponding HOL definition is as follows.

Definition 5 (Stationary Distribution).
� ∀ p X f s. stationary dist p X f s =∑

k∈space s (f k) = 1 ∧
∀ i. i ∈ space s ⇒

0 < f i ∧ ∀ t. f i =
∑

k∈space sf k * Trans X p s t 1 k i

Using these fundamental definitions, we formally verified most of the classical
properties of DTMCs with finite state-space in HOL. Some of the relevant ones
to the context of this paper are presented later.

3 Formalization of Classified DTMCs

In this section, we first formalize some foundational notions of classified Markov
chains. Then, we use these results along with our formal definition of DTMC to
formalize classified Markov chains. The foremost concept of states classification
is the first passage time τj , or the first hitting time, which is defined as the
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minimum time required to reach a state j from the initial state i:

τj = min{t > 0 : Xt = j}.
The first passage time can be defined in HOL as:

Definition 6 (First Passage Time).

� FPT X x j = MINSET {t | 0 < t ∧ (X t x = j)}
where X is a random process and x is a sample in the probability space associated
with the random variable Xt. Note that the first passage time is also a random
variable.

The conditional distribution of τj defined as the probability of the events

starting from state i and visiting state j at time n is expressed as f
(n)
ij = Pr{τj =

n|X0 = i}. It can be formalized in HOL as follows:

Definition 7 (Probability of First Passage Events).

� f X p i j n = P({x | FPT X x j = n}|{x | X 0 x = i})
Another important notion, denoted as fij , is the probability of the events starting

from state i and visiting state j at all times n, is expressed as fij =
∑∞

n=1 f
(n)
ij . It

can be expressed in HOL as (λ n. f X p i j n) sums fij . Another interesting
concept is fjj , which provides the probability of events starting from state j and
eventually returning back to j. If fjj = 1, then the mean return time of state j

is defined as μj =
∑∞

n=1 nf
(n)
jj . The existence of this infinite summation can be

specified as summmable (λ n. n ∗ f X p j j n) in HOL.
A state j in a DTMC {Xt}t≥0 is called transient if fjj < 1, and persistent

if fjj = 1. If the mean return time μj of a persistent state j is finite, then j is
said to be persistent nonnull state (or positive persistent state). Similarly, if μj

is infinite, then j is termed as persistent null state.
The greatest common divisor (gcd) of a set is a frequently used mathematical

concept in defining classified states. We formalize the gcd of a set as follows:

Definition 8 (gcd of a Set).

� GCD SET A = MAXSET {r | ∀ x. x ∈ A ⇒ divides r x}
For a state j, a period of j is any n such that p

(n)
jj is greater than 0. We write

dj = gcd {n : p
(n)
jj > 0} as the gcd of the set of all periods.

A state i is said to be accessible from a state j (written j → i), if the n-step
transition probability of the events from state i to j is nonzero. Two states i, j
are called communicating states (written i ↔ j) if they are mutually accessible.
A state j is an absorbing state if pjj = 1. The formalization of some other foun-
dational notions of classified states is given in Table 1. Now, we build upon the
above mentioned definitions to formalize classified DTMCs. Usually, a DTMC
is said to be irreducible if every state in its state space can be reached from any
other state including itself in finite steps.
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Table 1. Formalization of Classified States

Definition Condition HOL Formalization

Transient State fjj < 1
� ∀ X p j. Transient state X p j =

∀ x. {t | 0 < t ∧ (X t x = j)} �= ∅ ∧
(∃ s. s < 1 ∧ (λ n. f X p j j n) sums s)

Persistent State fjj = 1
� ∀ X p j. Persistent state X p j =

∀ x. {t | 0 < t ∧ (X t x = j)} �= ∅ ∧
(λ n. f X p j j n) sums 1

Persistent
Nonnull State

fjj = 1
μj < ∞

� ∀ X p j. Nonnull state X p j =

Persistent state X p j ∧
summable (λ n. n * f X p j j n)

Persistent
Null State

fjj = 1
μj = ∞

� ∀ X p j. Null state X p j =

Persistent state X p j ∧
∼ summable (λ n. n * f X p j j n)

Periods of a State
0 < n
0 < pnjj

� ∀ X p s j. Period set X p s j =

{n | 0 < n ∧ ∀ t. 0 < Trans X p s t n j j}
GCD of a
Period Set

dj
� ∀ X p s j. Period X p s j =

GCD SET (Period set X p s j)

Periodic State dj > 1
� ∀ X p s j. Periodic state X p s j =

(1 < Period X p s j) ∧
(Period set X p s j �= ∅)

Aperiodic State dj = 1
� ∀ X p s j. Aperiodic state X p s j =

(Period X p s j = 1) ∧
(Period set X p s j �= ∅)

Accessibility i → j
� ∀ X p s i j.Accessibility X p s i j =

∀ t. ∃ n. 0 < n ∧ 0 < Trans X p s t n i j

Communicating
State

i ↔ j
� ∀ X p s i. Communicating states X p s i j =

(Accessibility X p s i j) ∧
(Accessibility X p s j i)

Absorbing
State

pjj = 1
� ∀ X p s j. Absorbing states X p s j =

(Trans X p s t 1 j j = 1)

Definition 9 (Irreducible DTMC).

� Irreducible mc X p s p0 pij =

th dtmc X p s p0 pij ∧
(∀ i j. i ∈ space s ∧ j ∈ space s ⇒

Communicating states X p s i j)

whereas if there exists a state in the state space of a DTMC, which cannot reach
some other states, then this DTMC is called reducible.

Definition 10 (Reducible DTMC).

� Reducible mc X p s p0 pij =

th dtmc X p s p0 pij ∧
(∃ i j. i ∈ space s ∧ j ∈ space s ∧

∼ Communicating states X p s i j)
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A DTMC is considered as aperiodic if every state in its state space is an aperiodic
state; otherwise it is a periodic DTMC.

Definition 11 (Aperiodic DTMC).

� Aperiodic mc X p s p0 pij =

th dtmc X p s p0 pij ∧
∀ i. i ∈ space s ⇒ Aperiodic state X p s i

Definition 12 (Periodic DTMC).

� Periodic mc X p s p0 pij =

th dtmc X p s p0 pij ∧
∃ i. i ∈ space s ∧ Periodic state X p s i

If at least one absorbing state exists in a DTMC and it is possible to go to the
absorbing state from every non-absorbing state, then such a DTMC is named as
absorbing DTMC.

Definition 13 (Absorbing DTMC).

� Absorbing mc X p s p0 pij =

th dtmc X p s p0 pij ∧
∃ i. i ∈ space s ∧ Absorbing state X p s i ∧

∀ j. j ∈ space s ⇒ Communicating state X p s i j

Finally, if there exists some n such that p
(n)
ij > 0 for all states i and j in a DTMC,

then this DTMC is defined as a regular DTMC.

Definition 14 (Regular DTMC).

� Regular mc X p s p0 pij =

th dtmc X p s p0 pij ∧
∃ n. ∀ i j. i ∈ space s ∧ j ∈ space s ⇒

Trans X p s t n i j > 0

To the best of our knowledge, the above mentioned definitions constitute the
first formalization of classified DTMCs in higher-order logic. Their main utility
is to formally specify and analyze the dynamic features of Markovian systems
within a sound theorem prover as will be demonstrated in Section 5.

4 Verification of DTMC Properties

In this section, we utilize the definitions given above, to verify some of the
most frequently used properties of DTMCs and classified DTMCs. The formal
verification of these properties not only ensure the correctness of our definitions
but also plays a vital role in formal reasoning about DTMCs and classified
DTMCs in a theorem prover.
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4.1 DTMC Properties

The joint probability distribution of a DTMC is the probability of a chain of states
to occur. It is very useful in analyzing multi-stage experiments. In addition, this
concept is the basis for the frequently used joint probability generating functions.

Theorem 1 (Joint Probability Distribution).

A joint probability distribution of n discrete random variables X0, . . . Xn in a
finite DTMC {Xt}t≥0 satisfies:

Pr(Xt = L0, · · · , Xt+n = Ln) =
∏n−1

k=0 Pr(Xt+k+1 = Lk+1|Xt+k = Lk)Pr(Xt = L0)

� ∀ X p s p L p0 pij n.

dtmc X p s p0 pij ⇒
P(
⋂n

k=0{x | X (t + k) x = EL k L}) =∏n−1
k=0P({x | X (t + k + 1) x = EL (k + 1) L}|

{x | X (t + k) x = EL k L})P{x | X t x = EL 0 L}
The proof of Theorem 1 is based on induction on the variable n, Definition 3
and some arithmetic reasoning.

The Chapman-Kolmogorov equation [3] is a widely used property of time
homogeneous DTMCs. It basically gives the probability of going from state i to
j in m + n steps. Assuming the first m steps take the system from state i to
some intermediate state k and the remaining n steps then take the system from
state k to j, we can obtain the desired probability by adding the probabilities
associated with all the intermediate steps.

Theorem 2 (Chapman-Kolmogorov Equation).

For a finite time homogeneous DTMC {Xt}t≥0, its transition probabilities
satisfy the Chapman-Kolmogorov Equation

p
(m+n)
ij =

∑
k∈Ω p

(m)
ik p

(n)
kj

� ∀ X p s i j t m n p0 pij.

th dtmc X p s p0 pij ⇒
Trans X p s t (m + n) i j =∑

k∈space s(Trans X p s t m i k * Trans X p s t n k j)

The proof of Theorem 2 again involves induction on the variables m and n and
both of the base and step cases are discharged using the following lemma:

Lemma 1 (Multistep Transition Probability).

� ∀ X p s i j t m p0 pij.

th dtmc X p s p0 pij ⇒
Trans X p s t (m + 1) i j =∑

k∈space s(Trans X p s t 1 k j * Trans X p s t m i k)

The proof of Lemma 1 is primarily based on Definitions 3 and 4 and the additivity
property of probabilities.
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The unconditional probabilities associated with a Markov chain are called ab-
solute probabilities, which can be computed by applying the initial distributions

and n-step transition probabilities. From now, let us write p
(n)
i for the probability

Pr(Xn = j). We then have the following result:

Theorem 3 (Absolute Probability).

In a finite time homogeneous DTMC, the absolute probabilities p
(n)
j satisfy

p
(n)
j = Pr(Xn = j) =

∑
k∈Ω Pr(X0 = k)Pr(Xn = j|X0 = k)

� ∀ X p s j n p0 pij.

th dtmc X p s p0 pij ⇒
P{x | X n x = j} =∑

k∈space sP{x | X 0 x = k}P({x | X n x = j}|{x | X 0 s = k})
The proof of Theorem 3 is based on the Total Probability theorem along with
some basic arithmetic and probability theoretic reasoning.

The formal proof script for the above mentioned properties and many other
useful properties is available at [9].

4.2 Classified DTMC Properties

Among the classified DTMCs formalized in the previous section, aperiodic and

irreducible DTMCs are considered to be the most widely used ones in analyzing
Markovian systems because of their attractive stationary properties, i.e., their
limit probability distributions are independent of the initial distributions. For
this reason, we now focus on the verification of some key properties of aperiodic
and irreducible DTMCs [5].

Theorem 4 (Closed Period Set).

In an aperiodic DTMC, the set of the times when state i has a non-null
probability of being visited is closed under addition.

� ∀ X p s p0 pij i.

Aperiodic DTMC X p s p0 pij ∧ i ∈ space s ⇒
∀ a b. a ∈ Period set X p s i ∧ b ∈ Period set X p s i ⇒

(a + b) ∈ Period set X p s i

We verified the above theorem by using Theorem 2 and arithmetic and set
theoretic reasoning.

Another key property of an aperiodic DTMC states that the transition prob-

ability p
(n)
ij is greater than zero, for all states i and j in its state space, after

n steps. It is very useful in analyzing the stability or reliability of real-world
systems.

Theorem 5 (Positive Return Probability).

For any state i in the finite state space S of an aperiodic DTMC, there exists

an N < ∞ such that 0 < p
(n)
ii , for all n ≥ N .
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� ∀ X p s p0 pii i t.

Aperiodic DTMC X p s p0 pii ∧ i ∈ space s ⇒
∃ N. ∀ n. N ≤ n ⇒ 0 < Trans X p s t n i i

The formal reasoning about the correctness of the above theorems involves The-
orems 2 and 4 and the following lemmas, along with some arithmetic reasoning
and set theoretic reasoning.

Lemma 2 (Positive Element in a Closed Set).

If an integer set S contains at least one nonzero element and S is closed under
addition and subtraction, then S = {kc; k ∈ Z}, where c is the least positive
element of S.

� ∀ s:int → bool. s �= ∅ ∧
(∀ a b. a ∈ s ∧ b ∈ s ⇒ (a + b) ∈ s ∧ (a - b) ∈ s) ⇒
0 < MINSET {r | 0 < r ∧ r ∈ s} ∧
(s = {r | ?k. r = k * MINSET {r | 0 < r ∧ r ∈ s}})

Lemma 3 (Linearity of Two Integer Sequences).

For a positive integer sequence a1, a2, · · · , ak, there exists an integer sequence
n1, n2, · · · , nk, such that d =

∑k
i=1niai, where d is the greatest common

divisor of sequence a1, a2, · · · , ak.
� ∀ a k. 0 < k ∧ (∀ i. i ≤ k ⇒ 0 < a i) ⇒

(∃ n. GCD SET {a i | i ∈ [0, k]} =
∑k

i=0n i * a i)

Lemma 4 (Least Number).

If a set of positive integers A is nonlattice, i.e., its gcd is 1, and closed under
addition, then there exists an integer N < ∞ such that n ∈ A for all N ≤ n.

� ∀ (A:int → bool) a.

(A = {a i | 0 < a i ∧ i ∈ UNIV(:num)}) ∧ (GCD SET A = 1) ∧
(∀a b. a ∈ A ∧ b ∈ A ⇒ (a + b) ∈ s) ⇒ (∃N. {n | N ≤ n} ⊂ A)

The proofs of Lemmas 2, 3 and 4 are based upon various summation properties
of integer sets. These properties are not available in the HOL libraries and thus
had to be verified as part of our development.

Theorem 6 (Existence of Positive Transition Probabilities).

For any aperiodic and irreducible DTMC with finite state space S, there exists

an N , for all n ≥ N , such that the n-step transition probability p
(n)
ij is

non-zero, for all states i and j ∈ S.

� ∀ X p s p0 pij i j t.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ∧
i ∈ space s ∧ j ∈ space s ⇒
∃ N. ∀ n. N ≤ n ⇒ 0 < Trans X p s t n i j
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We proceed with the proof of Theorem 6 by performing case analysis on the
equality of i and j. The rest of the proof is primarily based on Theorems 2 and
5, Definition 1 and Lemmas 3 and 4.

Theorem 7 (Existence of Long-run Transition Probabilities).

For any aperiodic and irreducible DTMC with finite state space S and

transition probabilities pij , there exists lim
n→∞ p

(n)
ij , for all states i and j ∈ S.

� ∀ X p s p0 pij i j t.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ⇒
∃ u. (λ n. Trans X p s t n i j → u)

We firstly prove the monotonic properties of Mn
j and mn

j , which are the max-

imum and minimum values of the set {n ≤ 1: p
(n)
ij >0}, respectively. Then, the

proof is completed by verifying the convergence of the sequence (Mn
j - mn

j ) for
all n by applying Theorem 2 and some properties of real sequences. It is im-
portant to note that we do not need to use the assumption j ∈ space s here,

like all the other theorems, as ∀ n j. j /∈ space s ⇒ (p
(n)
j = 0), which in turn

implies limn→∞ p
(n)
j = 0 and limn→∞ p

(n)
ij = 0. The long-run probability dis-

tributions are often considered in the convergence analysis of random variables
in stochastic systems. It is not very easy to verify that the limit probability
distribution of a certain state exists in a generic non-trivial DTMC, because the
computations required in such an analysis are often tremendous. However, in the
aperiodic and irreducible DTMCs, we can prove that all states possess limiting
probability distribution, by the following two theorems.

Theorem 8 (Existence of Long-run Probability Distributions).

For any aperiodic and irreducible DTMC with finite state space S, there exists

lim
n→∞ p

(n)
i , for any state i ∈ S.

� ∀ X p s p0 pij i.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ⇒
∃ u. (λ n. P{x | X n x = i} → u)

We used Theorems 3 and 7, along with some properties of the limit of a sequence,
to prove this theorem in HOL.

Theorem 9 (Existence of Steady State Probability).

For every state i in an aperiodic and irreducible DTMC, lim
n→∞ p

(n)
i is a

stationary distribution.

� ∀ X p s p0 pij.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ⇒
(stationary dist p X (λ i. lim

n→∞P{x | X n x = i}) s)
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The proof of Theorem 9 involves rewriting with Definition 5 and then splitting
it into the following three subgoals:

– 0 ≤ limn→∞ p
(n)
j

–
∑

i∈Ω limn→∞ p
(n)
i = 1

– limn→∞p
(n)
j =

∑
i∈Ω limn→∞p

(n)
i pij

Utilizing the probability bounds theorem, we can prove the first subgoal. The
proof of the second subgoal is primarily based on the additivity property of
conditional probability [7]. Then the last subgoal can be proved by applying the
linearity of limit of a sequence and the linearity of real summation.

All theorems presented in this section would facilitate the formal reasoning
about the system properties that can be modeled using classified Markov chains.
For illustration purposes, we present the formal analysis of a LRU stack model
in the next section.

5 Formal Validation of LRU Stack Model

With the rapid development of computer technology, cache memory management
becomes indispensable in computer architectures. The memory reference behav-
iors of various programs is one of the main deciding factors in designing efficient
virtual memory operating systems. The Least Recently Used (LRU) stack model
describes a behavior of reference strings where the probability of referencing a
given page i at time t depends on the pages referenced in the closest past. In [1],
the authors assumed the distance string for referencing a page as a sequence of
independent identically distributed (IID) random variables in their LRU stack
model, which was described as an aperiodic and irreducible DTMC [18]. How-
ever, in [17], the authors argued that the model constructed in [1] was not able
to correctly depict the behavior of the LRU algorithm in multiprogramming. We
want to formally verify the results of the latter authors using our formalization
of aperiodic and irreducible DTMC.

5.1 LRU Stack Model

In a Least Recently Used (LRU) stack model, as shown in Figure 1, a sequence
of stacks s1s2· · · st· · · are associated with a reference string w = x1x2· · · xt+1· · · .
Any stack st is a n-tuple (j1, j2, · · · , jn), where ji refers to the ith most recently
referenced page at time t [18]. Let Dt be the position of the page xt in the
stack st−1. Then the distance string is D1D2· · ·Dt· · · , which is associated with
the referencing string. This distance string can be modeled as a sequence of
independent and identically distributed (IID) random variables [1], which makes
their probability mass function (PMF) as Pr(Dt = i) = ai, where i = 1, 2, . . . ,
n and refers to the position of the least recently used page in the stack at time
t, and

∑n
j=1aj = 1. This way the distribution function becomes Pr(Dt ≤ i) =∑i

j=1aj. If a tagged page occupies the ith position in the stack at time t, which
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Fig. 1. LRU Stack updating Procedure [18]

is expressed as st in Figure 1, then the position of this page in the stack st+1

depends on the next reference xt+1 and the position of this page in the stack st.
Based on the described updating procedure in the LRU stack, the evaluation

of the page-fault rate of the LRU paging algorithm becomes quite simple. If the
evaluated program has been allocated i page frames of main memory, then a
page fault will occur at time t when Dt > i. Hence, the page fault probability is

F(LRU) = Pr(Dt > i) = 1−∑i
j=1 aj

The movement of the tagged page through the LRU state is then a random
process {Et}t≥0. If the page occupies the ith position in stack st, then Et = i,
for all i, 1 ≤ i ≤ n. Now, we have the following transition probabilities [18]:

pi1 = Pr(Et+1 = 1|Et = i) = Pr(Dt+1 = i) = ai, 1 ≤ i ≤ n

pii = Pr(Et+1 = i|Et = i) = Pr(Dt+1 < i) =

i−1∑
j=1

aj−1, 2 ≤ i ≤ n

pi,i+1 = Pr(Et+1 = i+ 1|Et = i) = Pr(Dt+1 > i) = 1−
i∑

j=1

aj−1, 1 ≤ i ≤ n− 1

pi,j = 0, otherwise.

The LRU stack is then described as an aperiodic and irreducible DTMC by
assuming ai > 0 for all i ∈ [1, n] [18]. The state diagram of this aperiodic and
irreducible DTMC is shown in Figure 2, where we can find that the transition
probabilities can be expressed as the following higher-order logic function [18]:

Definition 15 (Transition Probability Matrix).

� Lt a t i j =

if (j = 1) then a i else

if (j - i = 1) then 1 -
∑i

j=1 a j else

if (j = i) then
∑i−1

j=1 a j else 0

which can be used to formalize the LRU stack model as:
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1 2 3 n - 1 n

Fig. 2. The State Diagram for the LRU Stack Model

Definition 16 (LRU Model).

� LRU model X p a n p0.

Aperiodic DTMC X p ([1, n], POW ([1, n])) p0 (Lt a) ∧
Irreducible DTMC X p ([1, n], POW ([1, n])) p0 (Lt a) ∧
1 <= n ∧ (∀ j. 0 < j ∧ j ≤ n ⇒ 0 < a j) ∧ (

∑n
j=1 a j = 1)

where the state space is described as a pair ([1, n], POW ([1, n])), in which
the first element contains all the states {1, 2, · · · , n} and the second one is the
sigma algebra of the first element. The condition (1 ≤ n) is used to avoid the
case when the length of the referencing string is zero. The other two conditions
represent the specification of the model mentioned above.

5.2 Verification of the Property

Using the formal definition of this LRU stack model, we can now formally reason
about its limiting distributions, which are mainly used to describe the stationary
behaviors of this model.

Theorem 10 (Existence of LRU in the Limiting State Distribution).

In the LRU stack model, there exists limt→∞ p
(n)
i , for every i ∈ [1, n].

� ∀ X p a n p0 i.

LRU model X p a n p0 ∧ i ∈ [1, n] ⇒
∃ u. (λ t. P{x | X t x = i} → u)

We verified this property by directly applying Theorem 8 and the definition of
limit of a real sequence.

Theorem 11 (LRU Stationary Limiting State Distribution).

In the LRU stack model, limt→∞ p
(n)
i = 1

n , for every i ∈ [1, n].

� ∀ X p a n p0 i.

LRU model X p a n p0 ∧ i ∈ [1,n] ⇒ limt→∞P{x | X t x = i} = 1
n

The proof of this property is primarily based on Theorems 3 and 11 along with
the following lemma:
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Lemma 5 (Identity Limiting State Distribution).

� ∀ X p a n p0 i j.

LRU model X p a n p0 ∧ i ∈ [1, n] ∧ j ∈ [1, n] ⇒
limt→∞P{x | X t x = i} = limt→∞P{x | X t x = j}

The HOL proof of the above lemma is based on Theorem 3 along with some
arithmetic reasoning.

Theorem 11 implies that limt→∞ p
(n)
i (for any tag i) is independent of its

initial distribution and the position of the tagged page has an equal probabil-
ity to be in any stack position. This means that any page is equally likely to
be referenced in the long run. As a result, it concludes that this LRU stack
specification does not cover the case of nonuniform page referencing behavior
of programs. Thus, we have been able to formally verify the numerical methods
result presented in [17].

The HOL code developed for the formalization and verification of the classified
DTMCs is totally around 8000 lines and the proof script for verifying Theorems
11 and 10 is about 300 lines long, which are available at [9]. The ability to
formally verify theorems involving classified Markovian models and the short
script clearly indicates the usefulness of the formalization, presented in the earlier
section of the paper, as without them the reasoning could not have been done
in such a straightforward manner.

6 Conclusion

This paper presents the formalization of classified DTMCs along with some
important prerequisites related to the formalization of DTMCs with finite state-
space in a higher-order logic theorem prover. Our results facilitate the formal
analysis of classified DTMCs and provides the foundations for formalizing more
advanced concepts of Markov chain theory, like hidden Markov chains, Markov
decision process and other useful properties. Due to the inherent soundness of
theorem proving, our work guarantees to provide accurate results, which is a
very useful feature while analyzing stationary behaviors of a system associated
with safety or mission-critical systems. In order to illustrate the usefulness of the
proposed approach, we formally analyzed a LRU stack model using the defini-
tions of aperiodic and irreducible DTMC and their formally verified properties.
Our results exactly matched the conclusion and the corresponding experimental
results in [17], which ascertains the precise nature of the proposed approach.

The presented work opens the door to a new and very promising research di-
rection, i.e., integrating HOL theorem proving in the domain of analyzing classi-
fied DTMCs. We are currently working on extending the set of formally verified
properties regarding DTMCs and extending our work to time-inhomogeneous
discrete-time Markov chains and Markov Decision Process (MDP), which will
enable us to formally analyze a wider range of systems. We also plan to build
upon the formalization of continuous random variables and statistical properties
to formalize Continuous-Time Markov Chains (CTMC) to be able to formally
reason about statistical characteristics of a broader scope of Markovian models.
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Abstract. Building on our published mechanisation of the probabilistic
program logic pGCL we present a verified lattice scheduler, a standard
covert-channel mitigation technique, employing randomisation as an el-
egant means of ensuring starvation-freeness. We show that this sched-
uler enforces probabilistic non-leakage, in addition to non-starvation.
The refinement framework employed is compatible with that used in the
L4.verified project, supporting our argument that full-scale verification of
probabilistic security properties for realistic systems software is feasible.

1 Introduction

In this paper, we demonstrate that mechanically verifying realistic probabilis-
tic software, with probabilistic properties, is feasible. Our ‘realistic probabilistic
program’ is a hybrid probabilistic lattice-lottery scheduler, designed to mitigate
information flow through a shared cache, while guaranteeing fairness and re-
maining simple and efficient. The probabilistic properties are: stochastic fairness
— that the probability of starvation for any domain is zero, and non-leakage
— that the distribution of observable outputs is independent of hidden inputs.
Finally, we make our argument for feasibility by proving our results in a refine-
ment framework compatible with the L4.verified [KEH+09] proof stack, which
established by refinement that the seL4 microkernel faithfully implements its
specification. We are able to restrict probabilistic reasoning to small regions,
allowing the remainder of the proof to proceed in a traditional manner.

We begin with an abstract, nondeterministic specification, which we refine
iteratively. Our first refinement is to a probabilistic version, and then to a prac-
tical implementation based on lottery scheduling. We demonstrate that this re-
finement could be continued using the L4.verified results. Finally, we attach a
hardware model, allowing us to demonstrate that we do in fact eliminate leakage
through the cache.

We express our results using the probabilistic Guarded Command Language
(pGCL) of McIver and Morgan [MM04], previously mechanised in HOL4 [HMM05].
This language has been applied in a practical context, namely analysing parts of the
FireWire protocol [FS03]. We demonstrate that it is equally applicable to systems-
level software. Our own mechanization of pGCL in Isabelle/HOL, specifically aimed
at the lightweight integration of existing results, has been described previously
[Coc12].
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We assume a lattice-based security policy, an established idea, motivated by in-
stitutional classification policies [DoD86], and formally treated by authors includ-
ing Denning [Den76]. Lattice scheduling, due to Hu et al. [Hu92], arose from the
VAX VMM project [KZB+91], and is intended to mitigate precisely the kind of
leakage that we consider. Lottery scheduling is an established technique for efficient
hierarchical allocation of execution time, introduced by Waldspurger et al. [WW94]
Our approach uses it only as an elegant way to implement probabilistic scheduling:
we do not take advantage of hierarchical resource distribution.

While the threat from cache-based channels has long been recognised, inter-
est has been spurred by recent work demonstrating the feasibility of attack-
ing cryptographic algorithms in a co-hosted system [Ber04, Per05]. Alternative
mechanical approaches include that of Barthe et al. [BBCL12] Our work con-
trasts with this by incorporating probability, and interfacing with a large existing
verification effort [KEH+09].

Many authors have analysed the leakage properties of scheduling algorithms
[CM07,HN12,GKV11], some employing mechanical proof. Most existing analyses
focus on leakage due to the actions of the scheduler itself, or due to the order of
updates to shared variables. We are specifically concerned with mitigating a side
channel, outside any explicitly shared state. The absence of unintended channels
through explicit mechanisms in seL4 has already been established [MMB+12].

1.1 pGCL in Isabelle

We first summarise pGCL, noting small variations in syntax relative to the
standard presentation. This summary is naturally incomplete, and the interested
reader is directed to the aforementioned work of McIver and Morgan [MM04],
and to our own previous summary of the mechanisation [Coc12].

Programs in pGCL have two interpretations: The first is as a probabilis-
tic state transformer, taking a given starting state to one of several possi-
ble final states, with well-defined probability. The second interpretation is as
an expectation transformer, mapping a real-valued function on final states (a
post-expectation), to one on initial states (a pre-expectation). The weakest pre-
expectation (wp) of a post-expectation, under a program, and evaluated at some
initial state is the smallest expected value (minimised over demonic choices) of
the post-expectation in the final state, if the program were to execute from the
given initial state. For example, the weakest pre-expectation of the expression
x, under the program

(x := 1 ⊕1/2 x := 0) � (x := 2 ⊕1/3 x := 1) ,

(where a ⊕p b is probabilistic choice and a � b demonic) is

min
(

1
2
× 1 + 1

2
× 0

) (
1
3
× 2 + 2

3
× 1

)
= 1

2
.

While our mechanisation is in terms of expectation transformers, the two
interpretations are equivalent, and the forward transformer is generally more
intuitive, giving the most straightforward way to visualise results.
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Programs are constructed using several operators, including:

– Sequential composition: a ; ; b.
– Name binding: n is f in a n, where f is a function from state to value.
– Demonic choice: x :∈S, where S is a set-valued function, and x a variable

(field) name.
– Probabilistic choice: x :∈S at p, where p is a distribution over S.
– Finite repetition: an = a ; ; . . . ; ; a︸ ︷︷ ︸

n

.

– Lifting from a non-probabilistic monad: Exec M .
– Applying a state transformer: Apply f .

While programs may operate on any state type, in practice we use Isabelle’s
record types: tuples with labelled fields, similar to C structures. The advantage
is that with support from our mechanisation, we are able to use Isabelle field
identifiers directly as pGCL variable names. For example we may write x := v,
which is translated internally to Apply λs. x_update (λ. v) s, an Isabelle record
update. This program could be applied to the following state, expressing a record
of two fields, of types τ and μ:

record state = x :: τ

y :: μ

The assertion language is shallowly embedded, and closely resembles the
predicate-transformer semantics of Dijkstra’s GCL [Dij75]. There are a few novel
probabilistic constructions, including:

– Entailment: P � Q = ∀s. P s ≤ Q s (standard syntax �).
– Conjunction: P && Q = λs. max 0 (P s + Q s− 1) (standard syntax &).
– Embedding: «P » = λs. if P s then 1 else 0 (standard syntax [P ]).

Probabilistic entailment is a straightforward generalisation of predicate entail-
ment, P 	 Q⇔ ∀s. P s→ Q s, while embedding is simply syntactic sugar. The
form of probabilistic conjunction is chosen for compatibility with its boolean
equivalent i.e. «P » && «Q» = «λs. P s∧Q s». That we use this particular form
(rather than, for example P && Q = λs. P s × Q s, which gives the same re-
sults on embedded predicates) is for technical reasons concerning the underlying
semantic interpretation1.

The following is an example specification in expectation-entailment style that
illustrates the essential features of the logic:

«P » && (λ_. p) � wp (a ; ; b) «Q»
1 Briefly, the definition given is the only option that is sub-linear, a generalisation (to

real-valued functions), and weakening, of the linearity condition required of expec-
tation transformers in pure GCL. All sub-linear transformers are linear, and sub-
linearity reduces to linearity in the case of embedded boolean predicates, but (for
example) demonic choice, a�b = λs. min (a s) (b s), is not linear if a or b take values
other than 0 and 1. All pGCL primitives are sub-linear, this being the healthiness
condition for transformers. For further details, see McIver & Morgan [MM04].
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This states that from any initial state satisfying P , after executing a followed
by b, we reach a state satisfying Q with probability at least p.

Conventions. For simplicity, we employ the following conventions throughout:
Unbound variables are implicitly universally quantified, and all expectations are
non-negative, and bounded by 1.

2 Security Policies and Covert Channels

We consider a hierarchically partitioned system, as depicted in Figure 1. Here,
all data is classified with one (or both) of the labels A and B. An agent (or
program) may be cleared to process one, both, or neither of these, giving rise to
4 clearance domains: 1 for A only, 2 for B only, 3 for both and ⊥ for neither.
Our goal is to ensure that information derived from labelled data can only flow
into a domain cleared to process it. The formulation of access control policies for
such systems, encompassing explicit channels, is a well-studied problem [Den76].
This work is concerned with formalising implementation techniques to prevent
leakage through unintended, implicit channels (either covert- or side-channels).

3 : {A, B}

1 : {A}

��

2 : {B}

��

⊥ : { }

��

��

��

Fig. 1. The classification/clearance lattice
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Fig. 2. The cache-contention channel
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Figure 2 outlines such a channel, exploiting cache contention. The cache is
represented by an array of cells (lines), and 3 and 2 are two of our supposedly
isolated domains. We ignore the associativity of the cache (one cell may in fact
hold several lines), as it only serves to reduce contention.

As domain 3 executes and accesses memory, it gradually fills the cache with
its own data. On switching to domain 2, domain 3’s data remains in the cache,
but is now inaccessible (the greyed-out cells). This access control is enforced by
the hardware. As 2 starts to fill the cache, it may eventually attempt to store a
value in one of the grey squares, encountering a conflict, as indicated.

When a conflict occurs, the cache silently writes (cleans) the old value (domain
3’s) into main memory, before storing domain 2’s new value2. This process is in
principle invisible to domain 2. However, if 2 is able to measure its own execution
time, the delay caused by writing (cleaning) the cache line to memory can be
detected. Domain 2 can thus infer which cache lines 3 has accessed, in violation
of the security policy.

The leakage is dramatic: On a uniprocessor, where domains cannot execute
concurrently, the bandwidth tops 10kb/s, while on a multiprocessor, bandwidths
in excess of 1Mb/s are easily achieved.

3 Countermeasures through Refinement

The simplest countermeasure to the cache channel is to flush the cache on every
domain switch, returning it to a known secure state. This is, however, a very ex-
pensive option: A modern processor, for example an Intel Xeon E7-8870, might
have a 30MiB cache, taking ≈ 2.5 × 106 cycles to refill (at the peak theoreti-
cal bandwidth of the memory subsystem), or 89% of the 2.8 × 106 cycles per
preemption interval at 1000Hz.

3

��

1

��

2

��

��
⊥

�� ��

Fig. 3. The scheduling graph, S

A simple optimisation [Hu92] is to clear the cache only when essential. Con-
sidering our partitioned system, it is acceptable to permit leakage from a domain
to any other domain whose clearance includes that of the first. Thus it is only
necessary to flush when decreasing clearance level. This is the essence of lattice

2 In a write-back cache with write-allocate. Read contention occurs in all caches.
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scheduling: Transition upward in the classification lattice for as long as possi-
ble, before finally starting again at the bottom, employing countermeasures to
protect the downward transition.

To implement this, we construct the scheduling graph in Figure 3; consistent
with the classification graph in Figure 1. The scheduling graph gives valid do-
main transitions for the system, and contains only edges from the classification
graph, or transitions to the downgrader, ⊥. These latter are emphasised with
a dashed arrow. In the implementation, the shared cache must be flushed on
entering the downgrader. We omit the edges from ⊥ to 3, and from 1 to ⊥, to
emphasise that not all edges need be included.

The conditions on the scheduling graph (modelled as a relation) are captured
as assumptions on S (encapsulated within an Isabelle locale), with the most
important being downgrading:

Lemma 1 (Downgrading). If S allows a downward transition, it is to the
downgrader, ⊥:

(c, n) ∈ S clearance c � clearance n

n = ⊥

We specify the scheduler nondeterministically over the valid transitions from the
current domain, using the unconstrained demonic choice operator:

record stateA = current_domain :: dom_id
scheduleS =

c is current_domain in
current_domain :∈ (λ_. {n. (c, n) ∈ S})

3.1 A Randomised Scheduler

The classically nondeterministic specification of scheduleS, together with the
downgrading property, capture the requirement that all downward transitions
pass through the downgrader. As a practical specification however, it has a
disadvantage: it allows starvation. A refinement of this specification is free to

3

1.0

��

1

1.0
��

2

0.5
��

0.5

��
⊥

0.25

��

0.75

��

Fig. 4. The transition graph, T



Practical Probability: Applying pGCL to Lattice Scheduling 317

follow any trace within the graph, for example (⊥, 2,⊥, 2, . . . ), never scheduling
domain 3.

We could extend the specification to guarantee starvation freeness, by dic-
tating its behaviour over traces in a modal logic. This would risk obscuring
the present simplicity of the specification, and would require a more complex
implementation, needing to take into account more than just the current
domain.

Randomisation provides an elegant alternative: By assigning a probability to
each edge in Figure 3, we produce the transition graph in Figure 4. We only
require that the outgoing probabilities from each node sum to 1, and that any
transition with non-zero probability appears as an edge in Figure 3. Implemen-
tation remains simple, needing only to consider the current state in choosing a
transition. More importantly, with appropriately chosen transition probabilities,
the probability of starvation can be made zero. We specify the new scheduler
using the probabilistic choice operator:

scheduleT =
c is current_domain in
current_domain :∈ (λ_. {⊥, 1, 2, 3} at (λ_ n. T (c, n))

The scheduler is now a Markov process, with T fixing its transition rule. Under
the appropriate conditions (strong-connectedness, or positive recurrence inter-
val for all states), there exists an asymptotic equilibrium distribution. These
conditions are satisfied by T , and thus in addition to avoiding starvation, the
randomised lattice scheduler guarantees statistical fairness, over the long run.

3.2 Program Refinement and Starvation-Freedom

In order to eventually show non-leakage, we need to demonstrate that the down-
grading property is also shared by scheduleT. We do so by establishing that
scheduleT is a probabilistic refinement of scheduleS.

Definition 1. Program b refines program a, written a � b, exactly when all
expectation-entailments on a also hold on b:

P � wp a Q

P � wp b Q

Lemma 2. The transition scheduler refines the lattice scheduler:

scheduleS � scheduleT

Note that, in the terminology of pGCL, the specification of scheduleT is com-
pletely ‘deterministic’, referring to the absence of demonic nondeterminism. This
terminology makes sense in light of the refinement order: Demonic nondetermin-
ism can be restricted by refinement, whereas probabilistic choice cannot. Once a
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specification is fully probabilistic, it is maximal in the refinement lattice, and one
can take it no further. This implies that any further refinement is, in fact, seman-
tic equivalence. We make use of this fact shortly, as a shortcut to establishing
program correspondence.

Having fixed transition probabilities, we can establish non-starvation. Pro-
ceeding in stages, we first show that starting in any domain, the probability of
ending in domain ⊥ after 4 steps is at least 1/64:

(in_dom di) &&
(

λ_.
1
64

)
� wp scheduleT4 (in_dom ⊥)

where

in_dom d ↔ «λs. current_domain s = d»

We further establish that from domain ⊥, after a further 4 steps, there is a
non-zero probability of ending in any given final domain:

(in_dom ⊥) &&
(

λ_.
1
64

)
� wp scheduleT4 (in_dom df )

Combining these, we have:(
λ_.

1
4096

)
� wp scheduleT8 (in_dom df ) (1)

Finally:
Lemma 3 (Non-starvation). Taking at least 8 steps from any initial domain,
we reach any final domain with non-zero probability:

∀s. 0 < wp scheduleT 8+n (in_dom df ) s

Proof. By induction on n. Equation 1 establishes the result for n = 0. By in-
spection of Figure 4, we see that every domain is reachable in one step, and
with non-zero probability, from at least one other, and thus if all domains are
reachable after n steps then all are reachable after n + 1. �!

Downgrading �� scheduleS

��
Non-Starvation �� scheduleT

Fig. 5. First Refinement Diagram

Figure 5 summarises these results. We have downgrading for scheduleS by as-
sumption, and non-starvation for the probabilistic scheduleT, as indicated by the
dotted arrows. Refinement is depicted as a solid arrow. The arrow directions sum-
marise the compositionality of results: composing with refinement, downgrading
also holds for scheduleT, but non-starvation does not hold for scheduleS.
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3.3 Data Refinement and the Lottery Scheduler

It is not sufficient to have an elegant specification, unless that specification can be
practically implemented. Therefore we implement our randomised lattice sched-
uler as a lottery scheduler. We only require the assumption of randomness for a
single operation: drawing a ticket.

We extend the abstract state with a lottery for each domain. Every possible
successor domain holds a certain set of tickets, given by the function ‘lottery’.
To transition, the scheduler draws a ticket (32 word) and consults the table to
choose a successor. To emphasise that the probabilistic component can be iso-
lated, and to demonstrate compatibility with our existing framework, we divide
the implementation into a core, in the nondeterministic state monad [CKS08],
which is then lifted into pGCL using the Exec operator, allowing us to employ
probabilistic choice. Both scheduleC and scheduleM operate on the same state
space: stateC. The syntax r�x := y� is an Isabelle record update, assigning value
y to field x of record r.

record domain = lottery :: 32 word⇒ dom_id
record stateC = current_domain :: dom_id

domains :: dom_id⇒ domain
scheduleM t = do c← gets current_domain

dl ← gets domains
let n = lottery (dl c) t in
modify (λs. s�current_domain := n�)

od
scheduleC = t from (λs. UNIV) at 2−32 in

Exec (scheduleM t)

Having moved to a new state space, we cannot have direct program refinement
between scheduleT and scheduleC. Noting, however, that the abstract state
can be recovered from the concrete by projection, we instead have (projective)
probabilistic data refinement:

Definition 2 (Probabilistic Data Refinement). Program b, on state type σ,
refines program a, state τ , given precondition G : σ → Bool and under projection
θ : σ → τ , written a �G,θ b, exactly when any expectation entailment on a implies
the same for b, on the projected state and with a guarded pre-expectation:

P � wp a Q

«G» && (P ◦ θ) � wp b (Q ◦ θ)

Lemma 4. Let ‖S‖ be the cardinal measure (element count) of set S.
Under condition LR, that ‘lottery’ reflects the transition matrix,

T (c, n) = 2−32‖{t. lottery (domains s c) t = n}‖
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then under projection φ, which extracts the current domain,

current_domain (φ s) = current_domain s

scheduleC is a data refinement of scheduleT:

scheduleT �LR,φ scheduleC

3.4 Probabilistic Correspondence

As mentioned in Section 3.2, scheduleT is maximal in the refinement order, and
thus any refinement is an equivalence. This is probabilistic correspondence:

Downgrading �� scheduleS

��
Non-Starvation �� scheduleT

φ,LR
��

scheduleC

Fig. 6. Second Refinement Diagram

Definition 3 (Probabilistic Correspondence). Programs a and b are said
to be in probabilistic correspondence, pcorres θ G a b, given condition G and
under projection θ if, for any post-expectation Q, the guarded pre-expectations
coincide:

«G» && (wp a Q ◦ θ) = «G» && wp b (Q ◦ θ)

Probabilistic correspondence is guarded equality on distributions: From an initial
state satisfying G, a and b establish Q with equal probability. The advantage of
detouring via refinement, rather than directly showing correspondence, is that
the proof is simpler; the next result follows directly from Lemma 4:

Lemma 5. The specifications scheduleT and scheduleC correspond given
condition LR and under projection φ:
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pcorres φ LR scheduleT scheduleC

This extends Figure 5 to Figure 6, with correspondence indicated by the dou-
ble arrow. As correspondence implies refinement, both downgrading and non-
starvation hold for scheduleC, as implied by the arrows. Properties represented
by a single dotted arrow (e.g. downgrading), are preserved by both refinement
(single arrow) and correspondence (double arrow).

3.5 Proof Reuse: Composing with seL4

Our argument for the feasibility of this approach rests on the compatibility of
probabilistic correspondence with its non-probabilistic equivalent at the heart
of the L4.verified proof. We have previously demonstrated the ease with which
monadic specifications, in the style of seL4, can be re-used in a probabilistic
setting [Coc12], automatically lifting Hoare triples to probabilistic predicate en-
tailment relations. With the following result we go further, and lift the bulk of
the refinement stack. The predicate corres_underlying in the following lemma
is the fundamental definition which underlies the refinement results at all levels
of the L4.verified proof [CKS08]. Here, we need only note that this is the form
of the top-level theorem3.

Lemma 6 (Lifting Correspondence). Given correspondence between monadic
programs M and M ′, with precondition G and projective state relation φ,

corres_underlying {(s, s′). s = φ s′} True rrel G (G ◦ φ) M M ′

where M does not fail given G,

no_fail G M

and neither diverges without failing,

empty_fail M empty_fail M ′

and that M is deterministic on the image of the projection,

∀s. ∃(r, s′). M (φ s) = {(False, (r, s′))}
3 Briefly, corres_underlying srel nf rrel G G′ m m′ is defined as:

∀(s, s′) ∈ srel. G s ∧ G′ s′ → (∀(r′, t′) ∈ fst (m′ s′).
∃(r, t) ∈ fst (m s). (t, t′) ∈ srel ∧ rrel r r′ ∧ (nf → ¬snd (m′ s′)))

Where guards G and G′ hold on initial states s and s′ satisfying state relation srel, for
any pair of (result, final state) obtained by executing m′, there exists a corresponding
pair obtainable by executing m. If the non-failure flag, nf is set, then the predicate
additionally asserts that m′ does not fail.

We use the predicate with a projective relation derived from φ, no failure, an
arbitrary result relation, and a concrete guard which is the anti-projection of the
abstract guard (G ◦ φ).
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Downgrading �� scheduleS

��
Non-Starvation �� scheduleT

φ,LR
��

callKernelD ��� ���

��

stepKernel; ; scheduleC scheduleC
φ,LR

��

callKernelH

��
callKernelC

Fig. 7. Composed Refinement Diagram

then we have probabilistic correspondence between their lifted counterparts:

pcorres φ (G ◦ φ) (Exec M) (Exec M ′)

Note that the final assumption is exactly the determinism4 condition that we
previously established for scheduleT, restricted to the components of interest.
M is free to behave nondeterministically on components which are masked by
the projection.

Thus we may compose our probabilistic results with the deterministic levels
of the L4.verified proof (the executable, or more recent deterministic abstract
[MM12], specification). For the problem at hand, it is only necessary to make a
few assumptions on the kernel:

Lemma 7. If the kernel preserves the lottery relation,

{|LR|} stepKernel {|λ_. LR|}
and the current domain,

{|λs. CD s = d|} stepKernel {|λ_ s. CD s = d|}
and is total,

no_fail # stepKernel empty_fail stepKernel
4 Determinism gives us correspondence, rather than just refinement. Consider monads

A and A′, and variable x : N, preserved by projection φA. Let A s be nondeterminis-
tic, giving eithers�x := x s + 1� or s�x := x s + 2�, while A′ s is deterministic, giving
s�x := x s + 2�. All behaviours of A′ are included in A, and thus corres_underlying
holds. However, wp A x = λs. x s + 1 whereas wp A′ (x ◦ φA) = λs. x s + 2: a re-
finement, but not correspondence. As previously mentioned, if A were deterministic
then by maximality, this refinement would be correspondence.
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then with the concrete scheduler, it refines the transition scheduler:

scheduleT �LR,φ stepKernel;;scheduleC

With this (again using refinement to show correspondence), Figure 6 becomes
Figure 7, now including the lifted kernel. The L4.verified refinement stack is
depicted on the left to indicate how the results would compose, to take our
result down to the real, executable kernel. Here callKernelD is the deterministic
refinement of original abstract specification of seL4, callKernelH is the executable
model derived from the Haskell prototype, and callKernelC is the concrete model,
comprising the final C and assembly language implementation.

So far, we have only shown that our results are compatible: we do not yet
have a mechanised proof. The remaining results are the first two assumptions
of Lemma 7, which will hold by construction as the existing kernel clearly can-
not modify the additional scheduler state, and the fact that the state relation
is projective: that is, that the abstract state is uniquely recoverable from the
concrete state. This is the intended behaviour of the state relation, and we have
no reason to suspect that this result will not hold.

3.6 Non-leakage with a Concrete Machine Model

Our ultimate goal is to show the absence of information leakage via shared state
(specifically the processor cache), and so we extend our scheduler with a simple
hardware model. We model a private state per domain (memory), and a single
shared state (cache):

record (sh, pr) machine = private :: dom_id⇒ pr

shared :: sh

The action of a domain is modelled by the underspecified function runDom ::
sh × pr ⇒ sh × pr, acting on both the current domain’s private state and the
shared state. Only the action of domain ⊥ is specified, and then only on the
shared state, resetting it.

The model exposes the essential information-flow characteristics of the cache
channel, as illustrated by Figure 8. Initially, the states associated with domain
3 (black) and 2 (grey) are isolated. After a single step, domain 3’s influence
propagates to the cache (S), but as yet no other private state has been affected.
It is only after the second step that influence propagates to 2’s private state, it
and the cache now being influenced by both 2 and 3’s initial states. As this mixing
of private states cannot occur in less than 2 steps, and may take an unbounded
time (2’s state cannot be influenced until 2 is scheduled), we cannot formulate a
one-step security property. Instead we have a trace property, enforcing that after
any number of steps, the distribution of outcomes visible to a low observer is
independent of any initial high state, a form of probabilistic non-leakage [vO04]:

Lemma 8 (Non-leakage). If the clearance of domain h is not entirely
contained within that of domain l,

clearance h � clearance l
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Fig. 8. A schematic depiction of flow from 3 to 2, via shared state S

then any function of the state after execution, which depends only on elements
within l’s clearance,

Q ◦mask l

is invariant under modifications to h’s private state (as represented by replace):

wp (runDom;;scheduleT)n (Q ◦mask) =
(wp (runDom;;scheduleT)n (Q ◦mask)) ◦ (replace h p)

We also have correspondence between scheduleT and runDom;;scheduleC:

Lemma 9. Assuming that the lottery relation LR holds, then under projection
ψ, which drops the machine state, we have the correspondence:

pcorres LR ψ (scheduleT) (runDom;;scheduleT)

and thus by compositionality,

pcorres LR (ψ ◦ φ) (scheduleT) (runDom;;scheduleC)

Downgrading �� scheduleS

��

Non-Leakage

��
Non-Starvation �� scheduleT

φ,LR
��

ψ,LR

�	 runDom ;; scheduleT

φ,LR
��

stepKernel ;; scheduleC scheduleC
φ,LR

��
ψ,LR

�	 runDom ;; scheduleC

Fig. 9. The Complete Refinement Diagram
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Therefore, finally, we have all three results: downgrading, non-starvation and
non-leakage, on the concrete lottery scheduler composed with the hardware
model, as depicted in Figure 9. Here, non-leakage is shown using a double dot-
ted arrow to emphasise that it is only preserved by correspondence, and not by
refinement.

4 Conclusions

We have presented a hybrid probabilistic lattice-lottery scheduler, which allows
efficient mitigation of the cache channel, while simultaneously guaranteeing non-
starvation. Working in pGCL, our system is produced by iterative refinement,
supplemented by mechanical proof. This demonstrates that given adequate tool
support (namely Isabelle/HOL and our mechanisation of pGCL), refinement-
driven development and verification of realistic probabilistic systems software is
no more difficult than the existing non-probabilistic case. We have shown that
our refinement framework is compatible with that of the L4.verified project,
and set out the steps necessary to combine this work with a system such as
seL4, giving a mechanical proof down to a real system of probabilistic top-level
properties. Above all, we argue that verifying probabilistic security properties
on realistic systems software is entirely feasible with current technology.

5 Ongoing and Future Work

We have established non-starvation in Lemma 3 as a property of finite traces
(of length at least 8). While weaker than this, it would be nice to derive the
standard formulation of non-starvation: that any given domain will eventually
be scheduled, or ∀d. ♦(current_domain = d) in the syntax of a boolean modal
logic. In our case, of course, the result must necessarily be probabilistic: that it is
’almost certain’ that any domain is eventually scheduled. We have already par-
tially mechanised the quantitative temporal logic, qTL, of Morgan and McIver
[MM99], which allows us to express this result as ∀d. ♦(current_domain =
d) = 1, with boolean predicates generalised to real-valued expectations, as for
pGCL. We have so far managed to feed our unmodified pGCL results into qTL,
and anticipate that these results will appear in a forthcoming work.

Progress on the assumptions of Lemma 7, required for the connection to seL4,
is ongoing. In a separate work, currently under submission, our colleagues Daum
& Billing have shown that the seL4 state relation is indeed projective, satisfying
the implicit assumption. Formally proving the explicit assumptions (lottery rela-
tion and current domain preservation) presents no theoretical challenges, simply
requiring a large but trivial proof. Integrating the projectivity result should be
similarly straightforward. The more interesting question is what form that the
final top-level statement should take to cleanly integrate the probabilistic and
classical properties of seL4, and is the subject of ongoing research.
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Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

Abstract. Even when programming purely mathematical functions,
mutable state is often necessary to achieve good performance, as it un-
derlies important optimisations such as path compression in union-find
algorithms and memoization. Nevertheless, verified programs rarely use
mutable state because of its substantial verification cost: one must either
commit to a deep embedding or follow a monadic style of programming.
To avoid this cost, we propose using adjustable state instead. More con-
cretely, we extend Coq with a type of adjustable references, which are like
ML references, except that the stored values are only partially observable
and updatable only to values that are observationally indistinguishable
from the old ones.

1 Introduction

Interactive proof assistants (Coq [3], Isabelle [13], HOL [11], etc.) are generally
very good at reasoning about terminating purely functional computations, as
these are just mathematical functions, which the provers support natively. In
contrast, however, they are not so good at reasoning about real computations,
which are not necessarily always terminating or purely functional. Such compu-
tations are not supported natively, but have to be encoded in some non-trivial
way. This is a problem, because while requiring termination or productiveness
for real computations may seem a reasonable restriction, disallowing mutable
state is not at all reasonable, as many programs use mutable state for efficiency.

There are essentially two approaches for encoding stateful computations in an
interactive proof assistant, both of which have their limitations.

First, in the deep embedding approach (e.g., [1,4,14]), impure computations
are represented as terms of a custom data structure. Then, to reason about such
terms, the user effectively has to build a specialized theorem prover for such
terms. This is at the same time a rather challenging and a rather mundane task,
as one cannot reuse much of the infrastructure of the interactive theorem prover,
but may rather have to (re)implement standard features such as variable binding
(cf. the PoplMark challenge [2]) or equating terms up to reduction.

Alternatively, there is the monadic approach (e.g., [8,9]), where imperative
code is written in a monadic style against the state monad. This approach is
usually preferable to the deep embedding approach as it reuses the interactive
prover’s infrastructure. It is nevertheless problematic because one cannot use
global state to optimise purely functional code without forcing all the code de-
pending on it to be written in a monadic style. Consider, for example, a math-
ematical function of type A → B. If we apply the memoization optimisation

S. Blazy, C. Paulin-Mohring, and D. Pichardie (Eds.): ITP 2013, LNCS 7998, pp. 328–337, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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(remembering the results of earlier function invocations in a hashtable so as to
avoid recomputation), we will get a function of type A→ StateMonadB. Thus,
the memoized function, although intuitively equivalent to the original one, has
a different type and can, therefore, no longer be used in arbitrary contexts, but
only within contexts expecting monadic stateful computations as arguments.

To avoid these problems, we introduce a restricted form of mutable state,
which we call adjustable references, that can be used freely inside pure com-
putations (see §2). Similar to mutable references in ML, adjustable references
store some internal value, but unlike ML references, the values stored cannot
be arbitrarily updated. They can only be ‘adjusted’ so that the represented
value remains the same, but perhaps affecting the cost of returning/computing
it. From a verification point of view, we have to show that every adjustment is
effectively an identity function. Then, when reasoning about code using adjust-
ments, we can simply ignore the adjustments. In the extracted implementations,
however, we perform the adjustments, as these can be very beneficial in terms
of performance.

Adjustable references allow us to implement advanced persistent data struc-
tures by enabling imperative updates provided that they affect only the efficiency
of the data structure accessor methods and not their results. As examples, we
present two standard imperative optimisations that can be easily expressed us-
ing adjustable references: (i) memoization of function calls (see §3) and (ii) path
compression of the union-find representation tree (see §4). The formal develop-
ment associated with this paper can be found at the URL below:

http://www.mpi-sws.org/~viktor/arefs/

2 Adjustable References

In this section, we present an axiomatisation of adjustable references in Coq [3]
and two implementations: (i) a purely-functional one in Coq that ensures the
logical consistency of the axioms, and (ii) an efficient imperative one in OCaml.
While adjustable references can be encoded in other proof assistants, we remark
that our axiomatisation uses dependent types.

Our axiomatisation uses the Coq Axiom x : T and Parameter x : T decla-
rations, which extend the context axiomatically with a new global constant, x,
having the given type, T. (The former is typically used for propositions, and the
latter for other types.)

Adjustable references internally store values of a representation type, R, but
do not allow direct read-access to those values. The values are instead observable
only at a possibly different type, T . Each adjustable reference type, aref f , thus
has an associated observation function, f : R→ T , mapping values of its internal
representation type to ones of its observation type.

Parameter aref : ∀R T, (R → T) → Type.

http://www.mpi-sws.org/~viktor/arefs/
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Adjustable references have a canonical constructor, aref_valf v, which creates
a new reference of type aref f holding the internal value v. Our first axiom
insists that every adjustable reference contains some internal value.

Parameter aref_val : ∀R T (f: R → T), R → aref f.
Axiom aref_inh :

∀ R T (f: R → T) (r: aref f), ∃v, r = aref_val f v.

Further, we have an operation, aref_get r, which reads the adjustable reference
r and returns its ‘external’ value—namely, the result of applying the observation
function to its internal value.

Parameter aref_get : ∀R T (f: R → T), aref f → T.
Axiom aref_get_val :

∀ R T (f: R → T) v, aref_get (aref_val f v) = f v.

Next, we need a way of adjusting the contents of the reference cell. Naively, one
might think of axiomatising an operation of the following type:

∀R, T. ∀f : R→ T. ∀r : aref f. ∀v : R. f(v) = aref_get (r) → unit .

That is, we should be able to replace the r’s current internal value with any
value, v, that is observationally indistinguishable: i.e., f(v) = aref_get (r).

There are, however, three problems with this type.

1. First, Coq does not fix an evaluation order. In particular, the evaluation of
e1; e2 (standing for let x = e1 in e2 where x /∈ fv(e2)) may run e1 and e2
in any order. Moreover, it may not even evaluate e1 at all since its value is
never used. Coq’s extraction [7], for example, does exactly so. It transforms
e1; e2 into e2, thereby erasing any ‘adjustments’ made in e1. This problem
on its own is not insurmountable, as we can force the evaluation of e1 by
redefining e1; e2 to mean match e1 with tt⇒ e2 end.

2. Second, the type above is overly restrictive. It requires the new internal value
to be provided directly, thereby allowing it to depend only on the observable
values of adjustable reference cells. In particular, it cannot depend on the
previous internal value of the same reference cell. This is problematic if we
want to use adjustable references to store some sort of cache. A typical
adjustment of such a reference would be to extend the cache with one more
entry, but to do so, the adjusted cache should clearly be able to depend on
the old cache.

3. Third, unless the externally observable type, T , is a function type, A→ B,
there is not much point in using adjustable references: we can just as simply
calculate f(v) at creation time, and then store the result in an immutable
reference. For a function type, however, one may gradually refine the stored
internal value each time the function is called, and therefore potentially
improve the performance of future function calls.

For these reasons, we provide a combined adjustment read operation customized
to the case of T = (A→ B).
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Parameter aref_getu :
∀ R A B (f : R → A → B) (upd : R → A → R * B)

(PF: ∀x a, f (fst (upd x a)) = f x)
(PF’: ∀x a, snd (upd x a) = f x a),

aref f → A → B.

Here, we must provide a function, upd, which when given the current internal
representation and the function argument returns a pair consisting of the new
representation and the result of calling f with these two arguments.

Adjusting reads have a remarkably simple axiomatisation: logically they are
exactly the same as normal reads!

Axiom aref_getuE : ∀R A B (f : R → A → B) upd PF PF’,
aref_getu upd PF PF’ = aref_get (f:= f).

Coq experts will note that the proof obligations of aref_getu use the normal
propositional Leibniz equality, and may be concerned that these proof obligations
will be difficult to satisfy if B is itself a function type. This apparent problem,
however, is not very serious as there are multiple ways around it. For example,
one may assume the functional extensionality axiom when doing such proofs,
as the axiom is consistent with Coq and its use will moreover not impact exe-
cution, since extraction erases these arguments. Alternatively, one may uncurry
the function type, T , or simply extend the definition to one expecting a curried
function of n arguments; i.e., with T = (A1 → . . .→ An → B).

When adjusting the value of a reference cell, we have seen that it is useful for
the new internal value to depend on the old internal value of the cell. Something
similar holds for allocation of new adjustable reference cells: it is useful for the
new internal value to depend on the internal value of some old reference cell.
Thus, we also assume the following operation:

Parameter aref_new :
∀ R1 T1 (f1: R1 → T1) (r: aref f1)
R2 T2 (f2 : R2 → T2) (g: ∀v, aref_get r = f1 v → R2)
(PF: ∀x pfx y pfy, f2 (g x pfx) = f2 (g y pfy)),
aref f2.

Axiom aref_new_val :
∀ R1 T1 (f1: R1 → T1) v R2 T2 (f2: R2 → T2) g PF,
aref_new (aref_val f1 v) g PF
= aref_val f2 (g v (aref_get_val f1 v)).

Having the internal value of a new reference cell depend on that of one old
reference cell suffices for our examples, but it may easily be extended to making
the internal value of the new cell depend on the internal values of a list of existing
reference cells.

2.1 Logical Consistency of Adjustable References

In order to show that the new axioms about adjustable references are logi-
cally consistent, we present a very naive implementation satisfying them. We
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model the adjustable reference type as its internal representation type, and have
aref_get apply the function f to it. Adjusting reads simply ignore the adjust-
ment and behave as normal reads.

Definition aref R T (f : R → T) := R.
Definition aref_val R T (f: R → T) (v : R) := v.
Definition aref_get R T (f: R → T) (r : aref f) := f r.
Definition aref_getu R A B (f : R → A → B) (upd : R → A → R * B)

(PF: ∀x a, f (fst (upd x a)) = f x)
(PF’: ∀x a, snd (upd x a) = f x a) := aref_get f.

Definition aref_new R1 T1 (f1: R1 → T1) (r: aref f1)
R2 T2 (f2 : R2 → T2) (g: ∀v, aref_get f1 r = f1 v → R2)
(PF: ∀x pfx y pfy, f2 (g x pfx) = f2 (g y pfy)) :=
g r eq_refl.

With this representation, it is straighforward to prove the associated axioms:
our proof scripts are ‘one-liners.’

2.2 Extraction to Efficient Imperative Code

Coq’s extraction mechanism [7] generates OCaml code from the Coq definitions
by erasing proofs and inserting suitable type casts to work around OCaml’s type
system. For types and operations that are specified as parameters, such as the
aref, Coq allows us to specify their OCaml implementations.

There is also a way, using the Extraction Implicit directive, to remove
further arguments (besides the propositional ones), if we know that a certain
argument will not be used by the OCaml implementation. We use this fea-
ture to remove the unused observation function argument f from aref_val and
aref_getu, as well as f1 and f2 from aref_new.

In OCaml, we implement adjustable references as a mutable reference cells
storing the representation type. A normal read, aref_get, just reads the contents
of the cell and applies the observation function, f , to it. An adjusting read,
aref_getu, applies the update function, u, instead, and updates the reference
cell as appropriate. Finally, aref_new simply creates a new reference cell as
expected. Unfortunately, extraction cannot fully remove the second argument of
g despite it being a proposition; so we call g with a dummy second argument.
Below, we show our OCaml implementation with the OCaml types in comments.

type (’r,’t) aref = ’r ref
let aref_val x = ref x (∗ ’ r → (’r ,’ t) ref ∗)
let aref_get f r = f !r (∗ (’ r → ’t) → (’r ,’ t) aref → ’t ∗)
let aref_getu u r a =

let (v, b) = u !r a in r := v; b
(∗ (’ r → ’a → ’r ∗ ’b) → (’r, ’a → ’b) aref → ’a → ’b ∗)

let aref_new r g = ref (g !r ())
(∗ (’ r1 ,’ t1) aref → (’r1 → unit → ’r2) → (’r2 ,’ t2) aref ∗)
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3 Memoization Using Adjustable References

A simple use of adjustable references is in the memoization optimisation. Given
a function f : A → B, we construct the function memo f which is extensionally
equal to f , but which caches the results of previous f invocations, so that if
memo f is called with the same argument again, the cached version is used. To
implement the cache, we also require a decidable equality on A, as well as a hash
function mapping elements of A to machine integers. We use the Coq Section
mechanism to avoid repeating these assumptions for every definition.

Section Memo.
Variables (A B : Type) (f : A → B).
Variable eqA : ∀x y : A, { x = y } + { x �= y }.
Variable hash : A → int.

The cache is just an array of pairs (a, b) such that f(a) = b. In Coq,

Definition cache :=
{ c : Parray.t (option (A * B)) |

∀ x a b, Parray.get c x = Some (a, b) → b = f a }.

where we assume a module, Parray, implementing functional arrays.
The main program, memo, creates an adjustable reference cell holding an ini-

tially empty cache that represents the function f , and then returns a function
that does an adjusting read from that reference cell. The main work of the ad-
justing read is performed by the memo_upd function, which reads the cache to
determine if it contains an appropriate entry (a, b): if so, it returns b; if not, it
calculates f(a) and stores (a, f(a)) into the cache. In case of a hash collision, for
simplicity, we simply overwrite the old colliding array entry.

We define these operations using the Program feature of Coq which allows
us to write functions in a natural style and emits missing proof obligations as
goals to be proved interactively at the end of the definition. In this example, we
are basically asked to show that the initial and updated arrays are valid caches.
For simplicity, we omit these easy proofs.

Program Definition memo_upd (c : cache) (a : A) : (cache * B) :=
let h := hash a in
match Parray.get c h with
| None ⇒

let b := f a in (Parray.set c h (Some (a, b)), b)
| Some (a’, b) ⇒

if eqA a a’ then (c, b) else
let b := f a in (Parray.set c h (Some (a, b)), b)

end. 〈. . .〉

Program Definition memo :=
let r := aref_val (fun c : cache ⇒ f)

(Parray.create (Int.repr 100) None) in
aref_getu memo_upd _ _ r. 〈. . .〉
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We can now easily prove that the memo function is equivalent to f : we unfold
the definition of memo and rewrite using two adjustable reference axioms.

Lemma memo_eq : memo = f.
Proof. by unfold memo; rewrite aref_getuE, aref_get_val. Qed.

Finally, we close the Coq section, which will parametrize all the functions and
lemmas declared within the section by the variables A, B, f, eqA, and hash.

End Memo.

4 Union-Find Path Compression

As a second example, we implement the path compression optimisation, which
is crucial for achieving good performance in the union-find algorithm [12].

The union-find data structure describes a partition of a finite set, and supports
two operations: (1) find returning the representative of an element (such that
two elements are in the same partition iff they have the same representative),
and (2) union that coalesces two partitions.

The data-structure is organised as an upward pointing forest so that elements
of the same partition belong to the same tree. In this setting, find follows the
parent-pointing edges from its argument until it reaches the root of its tree,
which it returns as the representative, whereas union simply adds an edge from
the root of the one partition to the root of the other.

To achieve practically constant (inverse Ackerman) time per operation, find
‘compresses’ the paths during look up. There are many ways of doing so, the
simplest being to make all the nodes along the path from the input node to the
root point directly to the root.

Below, we implement two functions that do the path lookup: get_aux (simply
returning the root) and find_aux (also returning the updated path-compressed
graph). When writing these functions in Coq, we have (as an orthogonal problem)
to prove termination for the path lookups. For conciseness, however, we omit
these proofs from the presentation.

Definition get_rel (a : Parray.t int) (x y : int) : Prop :=
x �= y ∧ Parray.get a y = x.

Program Fixpoint get_aux a x (WF : Acc (get_rel a) x) :=
let y := Parray.get a x in
if y ≡ x then x else get_aux a y 〈. . .〉.

Program Fixpoint find_aux a x (WF : Acc (get_rel a) x) :=
let y := Parray.get a x in
if y ≡ x then (a, x)
else let ’(f, r) := find_aux a y 〈. . .〉 in

(Parray.set f x r, r).
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Our main data structure then consists of a rank array returning an approxi-
mate size of each partition (so that when union merges two partitions, it makes
the smaller point to the larger one) and an adjustable reference to the parent-
pointing array representing the union-find forest. Formally, we represent the
latter as a refinement type, as we need to ensure that it has the same length as
the rank array and actually represents a forest (so that path lookups terminate).

Definition closed_arr_cond (length: int) (a: Parray.t int) :=
Parray.length a = length
∧ (∀ x, Int.ltu (Parray.get a x) (Parray.length a))
∧ well_founded (get_rel a).

Definition closed_arr length := { a | closed_arr_cond length a }.

Record t := { ranks : Parray.t int ;
parr : aref (@get_closed (Parray.length ranks)) }.

With these definitions, it is now easy to implement the main union-find op-
erations. The omitted proof obligations have to do with ensuring ‘forestness’
is maintained when compressing paths or adding edges, and the soundness of
find_aux with respect to get_aux.

Program Definition create (size: int) : t :=
{| ranks := Parray.create size Int.zero ;
parr := aref_val _ (Parray.init size id) |}.

Definition find (uf: t) : int → int :=
aref_getu (fun a x ⇒ @find_aux (proj1_sig a) x 〈. . .〉) 〈. . .〉〈. . .〉

(parr uf).

Definition union (uf : t) (a b : int) : t :=
let a’ := find uf a in
let b’ := find uf b in
if a’ ≡ b’ then uf
else

let ra := Parray.get (ranks uf) a’ in
let rb := Parray.get (ranks uf) b’ in
if Int.ltu ra rb then
{| ranks := Parray.set (ranks uf) b’ (Int.add ra Int.one) ;
parr := aref_new (parr uf) (fun r PF ⇒

existT _ (Parray.set (proj1_sig r) b’ a’) 〈. . .〉) 〈. . .〉|}
else
{| ranks := Parray.set (ranks uf) a’ (Int.add rb Int.one) ;
parr := aref_new (parr uf) (fun r PF ⇒

existT _ (Parray.set (proj1_sig r) a’ b’) 〈. . .〉) 〈. . .〉|}.



336 V. Vafeiadis

In our Coq development, we proceed further to prove various properties about
create, find, and union which together entail the correctness of our union-find
implementation. We also use this union-find data structure to implement an
efficient certified separation logic satisfiability checker.

5 Conclusion

This paper has presented adjustable references, a referentially transparent data
type that enables imperative programming in a local and semantically unobserv-
able fashion. We have seen how adjustable references can be used to implement
and verify memoization and path compression, two important optimisations that
cannot be programmed in a purely functional style.

One clear omission from this paper is a formal proof that the efficient im-
perative OCaml implementation of §2.2 is equivalent to the naive one of §2.1.
Formally, we have to prove contextual equivalence in the context of a language
with higher-order state, and a type and effect system including abstract, recur-
sive and dependent types. To show that the two implementations are equivalent,
one would have to extend the proof techniques for showing contextual equiva-
lence, such as Kripke logical relations [10] or relation transition systems [6], to
this setting. This task is by no means trivial, and is left as future work.

This work was largely inspired by a paper by Conchon and Filliâtre [5], who
built persistent array and union-find implementations, whose performance is
very close to that of the standard imperative implementations. In that paper,
Conchon and Filliâtre used Coq to verify a monadic encoding of a slightly simpli-
fied form of those implementations against an axiomatisation of ML references.
Adjustable references allows us to make a step further and program the exact
path-compressing union-find algorithm directly in Coq.

It should be noted, however, that adjustable references are not a panacea.
For example, they cannot directly be used to program the Conchon and Filliâtre
persistent array [5]. The issue is that their implementation performs a sequence
of updates that temporarily change the externally observable values of reference
cells only to restore them at the end of the sequence. By definition, adjustable
references do not permit such value-changing updates. To program such persis-
tent data structures we need a more general primitive that can take a sequence
of updates to multiple references and check that the entire sequence does not
alter the observable value of any individual cell.

In essence, what we would like to have is an adjustable state monad, within
which unrestricted read-write access to the internal values of adjustable refer-
ences is allowed, together a primitive operation for converting internally stateful
computations into pure computations:

runST : ∀c : AdjStateMonad A. c is logically pure → A .

The somewhat informal condition that c is logically pure is supposed to check
that (1) c’s output is independent of the internal values of any reference cells it
accessed, and (2) c’s end-to-end behaviour does not change the external values of
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any reference cells that were not newly created by its execution. Again, properly
defining runST and formally justifying its soundness seems quite a challenging
task, which we leave for future work.

Even though adjustable references as presented in this paper are clearly not
applicable to every internally imperative, persistent data structure, we have iden-
tified and presented two examples that can easily be programmed with them.
We hope that they will be equally useful in programming other similar persistent
data structures directly inside interactive theorem provers.

Acknowledgements. I would like to thank Beta Ziliani and the anonymous
ITP 2013 reviewers for their constructive feedback, which helped improve the
presentation of the paper.
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Abstract. When reasoning on formulas involving large-size inductively
defined relations, such as the semantics of a real programming language,
many steps require the inversion of a hypothesis. The built-in “inversion”
tactic of Coq can then be used, but it suffers from severe controllability,
maintenance and efficiency issues, which makes it unusable in practice
in large applications.

To circumvent this issue, we propose a proof technique based on the
combination of an antidiagonal argument and the impredicative encoding
of inductive data-structures. We can then encode suitable helper tactics
in LTac, yielding scripts which are much shorter (as well as corresponding
proof terms) and, more importantly, much more robust against changes
in version changes in the background software. This is illustrated on
correctness proofs of non-trivial C programs according to the operational
semantics of C defined in CompCert.

1 Introduction

The work described here is motivated by an experiment reported in [3,14], called
SimSoc-Cert (a certified simulator of Systems on Chips) where we develop proofs
of C programs using the operational semantics of a large subset of the C lan-
guage as defined in the CompCert project [6]. An important characteristic of our
framework is the large complexity of the specification, driving us to use powerful
features such as higher-order functions, dependent types, modules, not only for
convenience, but in order to keep the specification as readable and reusable as
possible. Still, its size is rather large by force, since it includes the behavior of
several commercial processors (currently: ARM and SH4). In such a framework,
there is little hope for full automation. Proofs are performed by alternating clues
given by the human user and tedious steps that are expected to be automated.
Though all this is well-known, the situation can become very tricky when au-
tomated steps produce goals with many new variables and hypotheses in the
environment. In an interactive setting, their names can be refered to later in
the script. This issue cannot be overlooked, despite the lack of a nice theory
on massive names management – up to our knowledge. And it actually occurs
with SimSoc-Cert, because proofs rely heavily on inversion steps on hypotheses
relating memory states of the program, according to a large inductive transi-
tion relation which is the heart of the operational semantics of C defined in
CompCert.
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In a few words, an inversion is a kind of forward reasoning step, which allows
us to extract all useful information contained in a hypothesis. It is nothing but a
case analysis on a carefully prepared goal (more detail to come in Section 2). The
practical need for automating inversion has been identified many years ago and
most proof assistants (Isabelle, Coq, Matita,...) provide an appropriate mecha-
nism. The first implementations for Coq and LEGO are analyzed and explained
in [5] for Coq and [7] for LEGO. Since then, the main tool available to the Coq
user is a tactic called inversion which, basically performs a case analysis over
a given hypothesis according to its specific arguments, removes absurd cases,
introduces relevant premises in the environment and performs suitable substitu-
tions in the whole goal. This tactic works remarkably well, though it fails in rare
intricate cases, as reported in mailing lists (see also Section 3.5). An additional
approach called BasicElim was proposed in [8]. It is implemented in Matita [13],
for instance. BasicElim is available in Coq as well.

However, the price to pay for the generality of inversion and BasicElim
is a high complexity of underlying proof-terms. Does it reflect an unnecessar-
ily complex formalization of a (at first sight) rather simple idea? A practical
consequence is that unpleasantly heavy proof terms can unexpectedly occur in
functions defined in interactive mode. For developments which make an inten-
sive use of inversion, such as SimSoc-Cert, the evaluation of scripts is painfully
slowed down.

However, the abovementioned issue on name management turns out to be still
much more important: hardly controlled names are introduced in the environ-
ment. This would not be an issue if we don’t see them, e.g., if the generated goals
can be automatically discharged. But this is hopeless when dealing with complex
specifications, as in our case. In general, the sequel of the script refers to gener-
ated hypotheses. Typically, introduced hypotheses could be inverted again, and
so on. This poses a very serious problem of robustness: updating the inductive
relation or even minor modifications in another part of the development may re-
sult in a complete renaming inside a proof script, which has then to be debugged
line by line. In the previous stage of our work reported in [14], we could perform
a proof on a single instruction of the ARM processor. So in theory, everything
was solved. However, the number of inversion steps was so large this proof could
not survive the various updates of Coq and CompCert.

The available version of inversion where explicit names can be given in the
script (inversion... as) is better for robustness, but too heavy for our needs:
each inversion would require the introduction of many (often more than ten)
additional names. BasicElim raises similar issues, though its behaviour is more
regular.

In order to get scripts which are both robust and much shorter, we want to
provide programmable inversion tactics, requiring only a few explicit names. To
this effect, we propose a handcrafted approach to inversion. The initial idea for
this inversion was exposed in [9] (and is recalled here in Section 3.2) but, in
order to be general enough, it had to be revisited with inspiration coming from
the impredicative encoding of inductive datatypes.
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The concrete setting considered here is the Coq proof assistant, but the tech-
nique can be adapted to any proof assistant based on the Calculus of Inductive
constructions or a similar type theory, such as LEGO or Matita.

The rest of the paper is organized as follows. Section 2 recalls the basics on
inversion. Section 3 explains our technique for performing inversions. Section 4
contains a summary of the application to SimSoC-cert. We conclude in Section 5
with a comment on our achievements and some perspectives.

2 Inversion

Type-theoretic settings such as Coq [15,2,4] offer two elementary ways of con-
structing new objects: functions and inductive types1. For instance, even Peano
natural numbers can be inductively characterized by the following two rules:

E0
even i 0

even i n
E2

even i (S (S n))

Rules E0 and E2 serve as canonical justifications for even i, they are called the
constructors of the inductive definition.

Now, assume a hypothesis H claiming that even i (S (S (S x))) for some
natural number x. Then, by looking at the definition of even i, we see that only
E2 could justify H , and we can conclude that even i (S x). Similarly, even i 1
can be considered as an absurd hypothesis, since (S 0) matches neither 0 nor (S
(S n)), none of the two possible canonical ways of proving even i, namely E0
and E2 can be used. Such proof steps are called inversions, because they use
justifications such as E0 and E2 in the opposite way, i.e., from their conclusion
to their premises. Note that even i 3, even i 5, etc. do not immediately yield
the contradiction by inversion. However, by iterating the first inversion step, we
eventually get even i 1 and then the desired result using a last inversion. This
illustrates that inversion is closer to case analysis than to induction.

Indeed, as we will see below, inversion can be decomposed into elementary
proof steps, where the key step is a primitive case analysis on the considered
inductive object (the hypothesis H , in our previous example). However, this
decomposition is very often far from trivial because, in the general case, rules
may include several premises, premises and conclusions may have several argu-
ments and some of these arguments can be shared. Still, inversion turns out to
be extremely useful in practice. Well-known instances are related to program-
ming languages, whose semantics is described using complex inductively defined
relations.

Note that it may be worth considering a (recursive) function for defining a
predicate, rather than an inductive relation. For instance, in Coq syntax, an
alternative way to specify even numbers is as follows:

1 Co-inductive types are available as well. However, this paper does not depend on
issues related to finiteness of computations: what is said about inductive types holds
as well for co-inductive types.
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Fixpoint even f (n: nat) : Prop :=
match n with

| O ⇒ True
| 1 ⇒ False
| S (S n) ⇒ even f n
end.

Here True denotes a trivially provable proposition, and False denotes an absurd
proposition. Using even f is much simpler in the previous situations: for instance,
even f (S (S (S x))) just reduces to even f (S x) using computation. In other
words, computation provides inversion for free. Therefore, one may wonder why
we should bother with inductively defined relations. Two kinds of answers can
be given.

One of them is that an inductive definition allows us to focus exactly on the
relevant values whereas, with functional definitions, we have to deal with the full
domain, which can be much bigger in general. In our example above, suppose
that we want to prove a statement such as ∀n, even n ⇒ P n. We can always
attempt an induction on n, but this strategy forces to reason on all numbers,
including odd numbers. If even is the recursive function above even f, there is
no other option. However, using even i, we have the additional opportunity to
make an induction on (the shape of) even i n, without needing to bother about
odd numbers.

Another issue is that it is not always convenient or even possible to provide
a functional definition of a predicate. Whenever possible, an n-ary relation R
on A1 × . . . An, is advantageously modeled by a function from A1, . . . An−1 to
An. But it requires R to be functional (deterministic) and moreover, in type-
theoretical settings such as CIC, to be total. If the relation is non-deterministic,
we still can try to define it by a function returning either True or False, as is
the case for even f ; this essentially amounts to providing a decision procedure
for the intended predicate2. This is not always possible and, even if we can find
such an algorithm, it may be hindered by undesired encoding tricks, which will
induce additional complications in proofs. Moreover, a requirement of formal
methods expresses that high-level definitions and statements should be as clear
as possible in order to be convincing. The inductive style is not always better than
the functional style, but it is often enough the case so that we cannot ignore it.
For technical reasons, it is sometimes worth considering a functional version and
an inductive version of the same notion. Even if the functional version is much
better at inversion-like proof steps, the two versions have to be proved equivalent
and there, the need for inverting the inductive version almost inevitably shows
up.

Inductive relations are commonly used for defining the operational semantics
of programming languages, either in small-step or in big-step style [11]. Such
semantics define transitions between states, language constructs and, very often,

2 Note that a 1-ary relation P on A1 is isomorphic to a binary relation on 1 × A1,
where 1 is a type with exactly one inhabitant. If P holds for at least two values on
A1, it can be clearly considered as a non-deterministic function from 1 to A1.
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additional arguments such as input/output events. A tutorial example of a toy
(but Turing-complete) language formally defined in Coq along these lines is
given in [12] and routinely used as a teaching support in many universities. The
Compcert project [6] is of course a much more involved example.

3 A Handcrafted Inversion

As noticed above, the heart of inversion is a suitable pattern matching on the
hypothesis to be analyzed. With dependent types, it is possible for different
branches to return a result whose type depends on the constructor. We make a
systematic use of this feature: our key ingredient is a diagonalization function
diag, which will be used for specifying the type returned on each branch. The
exact shape of diag range from very simple to somewhat elaborated according
to the goal at hand.

We recall the basics on dependent pattern matching, then we successively con-
sider three situations, corresponding to increasingly complex variants of diag. In
the two first situations, we consider inductive predicates with exactly one argu-
ment, for simplicity. The first situation is when all cases are absurd. The second
is when a case is successful (or several cases) and we need to extract the informa-
tion contained in successful cases, making new hypotheses in the environment.
Then we show how to deal with additional arguments, so that constraints com-
ing from the conclusion have to be propagated on the new hypotheses. Finally,
we consider more elaborate dependent types and show how our technique works
on a case where inversion fails.

3.1 Dependent Pattern Matching

To start with, let us take again the example of even numbers. Here is the corre-
sponding Coq inductive definition.

Inductive even i : nat → Prop :=
| E0 : even i 0
| E2 : ∀ n, even i n → even i (S (S n)).

We see that each rule is given by a constructor in a dependent data type – also
called an inductive predicate or relation because its sort is Prop. Therefore, the
elementary way to decompose an object of type even i n is to use dependent
pattern matching. This is already done by primitive tactics of Coq such as case
and destruct, which turn out to be powerful enough in many situations, when
a condition is satisfied: the conclusion of the current goal fits all arguments of
the hypothesis to be analyzed by pattern matching.

Let us first illustrate dependent pattern matching on even numbers. Consider
a proof PE of type even i n for some natural number n. For each possible
constructor, E0 or E2 , we provide a proof term, respectively tE0 and tE2. As
usual, this term may depend on the arguments of the corresponding constructor,
none for E0 and, say x and ex for E2 . More importantly for us, tE0 and tE2
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may have different types : the type P n of the whole expression depends on n; in
the first branch, the type of tE0 is P 0 and in the second branch, the type of tE2

is P (S (S x)). Therefore, the syntax of the match construct contains a return

clause with the expected type of the result P n as an argument; moreover, there
is also an in clause for the type of PE which binds n:

match PE in even i n return P n with

| E0 ⇒ tE0

| E2 e ex ⇒ tE2

end

Most of the time, Coq users do not need to go to this level of detail: in interactive
proof mode, if n and P n are clear from the context, case PE will do the job.
More precisely, if we have an hypothesis H of type even i n and a desired
conclusion of type P n, case H will construct a proof term having the previous
shape and answer with two new subgoals: one for P 0 and one for P (S (S x)),
with even i x as an additional assumption.

As a last remark, let us recall that an inductive type may have two kinds of
arguments. We don’t care about arguments which are “fixed” for all construc-
tors: they are not even considered in pattern matching. In Coq they are called
parameters. The other arguments are called indexes. For example, even i has
one index and no parameter.

3.2 Auxiliary Diagonalization Function

More work is needed precisely when there is no obvious relationship between the
conclusion and the hypothesis to be analyzed. This happens in particular whenH
is absurd: the goal should be discharged whatever is its conclusion. This situation
is covered as follows: the conclusion is converted to an expression diag V , where
V is a value coming from H and diag a suitable diagonal function, such that
the dependent case analysis on H provides only trivial subgoals. For example,
assume that we want to conclude 4 = 7 from the hypothesis H : even i 1. Our
diagonal function is then defined as follows.

diag x := match x with 1 ⇒ 4 = 7 | ⇒ True end

Then the conclusion is converted to diag 1, and the case analysis on H auto-
matically provides two subgoals diag 0 and diag (S (S y)) for an arbitrary even
natural number y. Each of these goals reduce to True, and we are done. The
proof term behind this reasoning is very short (I is the standard proof of True):

match H in even i n return diag n with E0 ⇒ I | E2 ⇒ I end

Such functions were already introduced in [9], but they work well only for han-
dling absurd hypotheses. For instance, the examples presented below are out
of reach of [9]. In order to explain how to extract information from satisfiable
hypotheses, we start with an obvious generalization of the previous function for
inverting absurd hypotheses.
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3.3 Handling Successful Cases

A first easy improvement makes diag independent from the conclusion. To this
effect, we replace it with (∀X,X) in the first branch of diag. In our previous
example, this yields

diag x := match x with 1 ⇒ ∀ (X : Prop), X | ⇒ True end

Then the previous proof term (match H in even i n return diag n with 1
. . .) has the type ∀X,X and then can be successfully applied to any current
conclusion. Alternatively, we can define a general function as follows:

Definition pr 1 {n} (en: even i n) :=
let diag x := match x with 1 ⇒ ∀ (X : Prop), X | ⇒ True end in

match en in even i n return diag n with E0 ⇒ I | ⇒ I end.

Next consider the following theorem:

∀ n m, even i n → even i (n+m) → even i m.

The proof is by induction on even i n. In the inductive step, we have to prove
even i m from the induction hypothesis even i (n+m) → even i m and a new
hypothesis H : even i (S (S (n+m))). Intuitively, we want to invert H in order
to push even i (n+m) in the environment. We can then adapt pr 1 as follows:

Definition premises E2 {n} (en: even i n) :=
let diag x :=
match x with

| S (S y) ⇒ ∀ (X : Prop), (even i y → X ) → X
| ⇒ True

end in

match en in even i n return diag n with

| E2 p e ⇒ fun X k ⇒ k e
| ⇒ I

end.

Then, applying premises E2 toH yields a function in continuation passing style.
Its type parameter X is automatically identified to the conclusion even i m,
while y is bound to n+m, so that we get a new goal even i(n+m)→ even i m.
That is, we have exactly the expected inversion. Functions such as pr 1 and
premises E2 can be seen as inversion lemmas, but note that their type is the
dependent type expressed by their own diag.

More generally, let us then invert an hypothesis H having the type AP where
A(u) is an inductive type with index u : U and P : U is an expression made
of constructors in the type U . Given a constructor of type ∀p, A p, where p is
a telescope we proceed similarly: the match of diag has a first branch filtering
P and returning ∀X : Prop, (∀p, X) → X . If n constructors are possible for
AP , say respectively C1 : ∀p1, AP , . . ., and Cn : ∀pn, AP , the inverting lemma
corresponding to A P will be:

Definition premises Ap {u} (a: A u) :=
let diag x :=
match x with

| P ⇒ ∀ (X : Prop), (∀p1, X)→ . . . (∀pn, X)→ X
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| ⇒ True
end in

match a in A p return diag p with

| C1 e1 ⇒ fun X k1... kn ⇒ k1 e1

...
| Cn en ⇒ fun X k1... kn ⇒ kn en

| ⇒ I
end.

Remark the close relationship with the impredicative encoding of data-types in
system F.

3.4 Dealing with Constrained Arguments

The next stage to be considered is the case of an inductive type with more
than one index. This raises new issues, because additional identities between
arguments of the premises or the conclusion of a constructor may occur. This
happens routinely in the inductive definitions for the operational semantics of C
provided by CompCert. In order to explain the problems and how to deal with
them in our framework, we introduce a toy language, together with an inductively
defined evaluation rule eval having two indexes: the first one is the input type tm,
tm const and tm plus are the expected cases in pattern matching; the second
index is an output of type val, which is either nat or bool.

Inductive tm : Type :=
| tm const : nat → tm
| tm plus : tm → tm → tm.

Inductive val : Type :=
| nval : nat → val
| bval : bool → val.

Inductive eval : tm → val → Prop :=
| E Const : ∀ n,

eval (tm const n) (nval n)
| E Plus : ∀ t1 t2 n1 n2,

eval t1 (nval n1 ) → eval t2 (nval n2 ) →
eval (tm plus t1 t2 ) (nval (plus n1 n2 )).

In constructor E Plus, the two premises share the variables t1, t2, n1, n2 with
the conclusion. If we use the last solution with continuation passing style, as
it is presented above, we are able to keep the premises but the relationship
between the output values as specified in the inductive definition will be lost in
the generated subgoal. This issue is handled using an additional argument to
X corresponding to the second index of the inductive relation. The function for
extracting the premises of E Plus is:

Definition pr plus 1 {t} {v} (e: eval t v) :=
let diag t v :=
match t with

| tm plus t1 t2 ⇒ ∀ (X :val → Prop),
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(∀ n1 n2, eval t1 (nval n1 ) → eval t2 (nval n2 ) → X (nval (plus n1 n2 )))
→ X v

| ⇒ True
end in match e in (eval t v) return diag t v with

| E Plus n1 n2 H1 H2 ⇒ (fun X k ⇒ k n1 n2 H1 H2 )
| ⇒ I

end.

Now, consider the following examples.

Lemma ex1 : ∀ v, eval (tm plus (tm const 1) (tm const 0)) v → v = nval 1.
Lemma ex2 : ∀ n, eval (tm plus (tm const 1) (tm const 0)) (nval n) → n = 1.

In ex1, by applying pr plus 1, v will be equated to nval (plus n1 n2) according
to the rule specified by E plus. In ex2, we need to analyze at the same time
the two arguments of eval. The corresponding premises are extracted using a
function pr plus 1 2 having the same body as pr plus 1, but whose type is:

match t, v with

| tm plus t1 t2, nval n ⇒ ∀ (X :nat → Prop),
(∀ n1 n2, eval t1 (nval n1 ) → eval t2 (nval n2 ) → X (plus n1 n2 )) → X n

| , ⇒ True
end.

A similar situation happens with E Const in the two previous examples.
Defining an inverting function for each constructor is most convenient for

debugging. However the method is flexible and several such functions can be
merged. In particular, an elegant alternative3 is to provide a unique inverting
function managing all cases of the argument(s) under focus. For instance, an
exhaustive inverting function pr eval 1 2 suitable for ex2 has the type:

match t, v with

| tm const c, nval n ⇒ ∀ (X :nat → Prop), X c → X n
| tm plus t1 t2, nval n ⇒ ∀ (X :nat → Prop),

(∀ n1 n2, eval t1 (nval n1 ) → eval t2 (nval n2 ) → X (plus n1 n2 )) → X n
| , ⇒ ∀ X :Prop, X

end.

Full definitions as well as additional examples can be found on-line [10].

3.5 Beating inversion

Let us consider now a predicate defined on a dependent type. We take intervals
[1...n], formalized as t in the standard library Fin, then we restrict them to have
an odd length.

Inductive t : nat → Set :=
| F1 : ∀ {n}, t (S n)
| FS : ∀ {n}, t n → t (S n).

Inductive odd : ∀ n : nat, t n → Prop :=

3 We want to thank the anonymous reviewer who offered this remark.
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| odd 1 : ∀ n, odd (S n) F1
| odd SS : ∀ n i, odd n i → odd (FS (FS i)).

Finding the premises for the second constructor is a function similar to the one
provided for E2 above:

Definition premises odd SS {n} {i : t n} (of : odd n i) :=
let diag n i :=
match i with
| FS (FS y) ⇒ ∀ (X : Prop), (odd y → X ) → X
| ⇒ True

end in

match of in odd n i return diag n i with
| odd SS n i o ⇒ fun X k ⇒ k o
| ⇒ I

end.

In particular we can easily prove:

Lemma odd SS inv : ∀ n i, odd (FS (FS i)) → odd n i.
Proof. intros n i o. apply (premises odd SS o). trivial. Qed.

Standard inversion happens to fail here. Note that BasicElim may work (we
actually could not succeed) but would need an additional axiom related to John
Major equality.

4 Application to SimSoC-Cert

SimSoC-Cert [3,14] aims at certifying the simulator SimSoC, which is a complex
hardware simulator written in C and C++. SimSoC is able to simulate various
architectures including ARM and SH4 and is efficient enough to run Linux on
them at a realistic speed. The main objective of SimSoC is to help designers
of embedded systems: a large part of the design can be performed on software,
which is much more convenient, flexible and less expensive than with real specific
hardware components. However, this only makes sense if the simulator is actually
faithful to the real hardware. Therefore we engaged in an effort to provide a
formal certification of sensitive parts of SimSoC. More precisely, we consider the
Instruction Set Simulator (ISS) for the ARM, which is at the heart of SimSoC.
This ISS is called Simlight.

To this effect, first we defined a formal model in Coq of the ARM architec-
ture, as defined in the reference manual [1]. Our second input is the operational
semantics of the ISS encoded in C. This program is actually written in a large
enough subset of C called Compcert-C, which is fully formalized in Coq [6].

We can then compare the behavior of the ISS encoded in C with the expected
reference model directly defined in Coq. To this effect, a projection between
the Coq model of the memory state of Simlight to the states in the reference
model is defined. Then, correctness statements express that from a C memory
m1 corresponding to an abstract state s1, performing the function claimed to
represent a given instruction I in Simlight will result in a C memory m2 which
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operation semantics operation semantics

Coq State

Coq State’

State

State’

in C in Coq

CompCert−C

CompCert−C 

projection

projection

Fig. 1. Correctness of the simulation of an ARM operation

actually corresponds to the abstract state s2 obtained by running the Coq model
of I. This can be put under the form of a commutative diagram as schematized
in Fig. 1.

The operational semantics of C defining the evaluation is used everywhere
in the proof: it provides the decomposition of the vertical arrow on the left
column of Fig. 1 and drives the proof accordingly. We use the big step semantics,
which is defined in CompCert by 5 mutually inductive transition relations. The
largest inductive type for the evaluation of C expressions is eval expr. It has 17
constructors, one for each CompCert C expression such as assignment, binary
operation, dereference, etc.

In a typical proof step, we start from a goal containing a conclusion stat-
ing that a C memory state mn and an ARM state stn in the reference model
are related by our projection, a hypothesis R0 stating a similar relation be-
tween a C memory state m0 and an ARM state st0, and additional hypothe-
ses He1, He2, . . . , Hen. relating pairs of successive C memory states (m0,m1),
(m1,m2), . . . , (mn−1,mn) respectively with (ASTs for) C expressions e1, e2, . . . ,
en, according to the relevant transition relation provided by CompCert. The
general strategy is to propagate information from m0 to m1 using R0 and He1,
then so on until mn. To this effect we invert He1, He2, etc. However, according
to the structure of e1, inverting He1 generates intermediate memory states and
corresponding hypotheses that have to be inverted before going to He2, unless
e1 is a base case. And sometimes, other kind of reasoning steps are needed, e.g.,
lemmas on the reference model of ARM.

For illustration, the following code shows a small excerpt from an old proof
script in SimSoC-Cert using inversion. It corresponds to one line taken in
an instruction called ADC (add with carry). It sets the CPSR (Current Pro-
gram Status Register) with the value of SPSR (Saved Program Status Register).
Lemma same cp SR states that the C memory state of the simulator and the
corresponding formal representation of ARM processor state evolve consistently
during this assignment. The pseudo-code from the ARM reference manual is just
CPSR = SPSR. The corresponding C code is represented by the identifier
cp SR in the statement of the lemma.
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Lemma same cp SR :
∀ e m l b s t m’ v em,

proc state related proc m e (Ok tt (mk semstate l b s)) →
eval expression (Genv.globalenv prog adc) e m cp SR t m’ v →
proc state related proc m’ e

(Ok tt (mk semstate l b
(Arm6 State.set cpsr s (Arm6 State.spsr s em)))).

After a couple of introductions and other administrative steps, we get the fol-
lowing goal, where cp SR is unfolded in hypothesis H .

. . .
l’ : local
b’ : bool
a’ : expr
H : eval expr (Genv.globalenv prog adc) e m RV

(Ecall (Evalof (Evar copy StatusRegister T14 ) T14 )
(Econs

(Eaddrof
(Efield (Ederef (Evalof (Evar proc T3 ) T3 ) T6 )

adc compcert.cpsr T7 ) T8 )
(Econs

(Ecall (Evalof (Evar spsr T15 ) T15 )
(Econs (Evalof (Evar proc T3 ) T3 ) Enil) T8 ) Enil))

T12 ) t m’ a’
============================
proc state related m’ e st’

Then we have to invertH and similar generated hypotheses until all constructors
used in it type are exhausted. Here 18 consecutive inversions are needed. Using
inv, which performs standard inversion, clearing the inverted hypothesis and
rewriting of all auxiliary equations, the sequel of the script started as follows.

inv H. inv H4. inv H9. inv H5. inv H4. inv H5.
inv H15. inv H4. inv H5. inv H14. inv H4. inv H3.
inv H15. inv H5. inv H4. inv H5. inv H21. inv H13.

The names used there (H4, H9, etc.) are not under our control. The program for
simulating an ARM instruction usually contains expression more complex than
in the example given here. And unfortunately there is no clear way to share parts
of the proofs involved since the corresponding programs are rather specific, at
least for instructions belonging to different categories.

The drawbacks of the standard tactic inversion presented in the introduc-
tion show up immediatly. A first clue is the response time of Coq when inverting
hypotheses Hi. Compiling the proof script corresponding to one instruction took
more than a minute. About the naming issue, the constructors we face have up
to 19 variables and 6 premises, yielding 25 names to provide. We could try to au-
tomate this naming using an ad-hoc wrapper around inversion, but things are
complicated by the fact that this inversion program inserts additional hypothe-
ses putting equational constraints between variables of the inverted constructor.
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There are different ways to state and to place such constraints, and different
releases of Coq may make different choices. The BasicElim approach introduces
equations as well but from on our experiments, generated goals are much more
regular than with inversion. In contrast, our approach does not suffer from
such interferences, so we are anyway in a better position.

First, we define the diagonal-based function for each constructor of eval expr,
following the lines given in the previous section. For example, the evaluation of
a field is defined in CompCert by the following rule.

Inductive eval expr :
env → mem → kind → expr → trace → mem → expr → Prop :=
...
| eval field : ∀ e m a t m’ a’ f ty,

eval expr e m RV a t m’ a’ →
eval expr e m LV (Efield a f ty) t m’ (Efield a’ f ty)

We then define (observe that 2 variables and 1 hypothesis will be generated):

Definition inv field {g} {e} {m} {ex} {t} {m’} {ex’}
(ee:eval expr g e m LV ex t m’ ex’ ) :=
let diag e ex ex’ m m’ :=
match ex with

| Efield a b c ⇒
∀(X :expr→Prop),

(∀ t a’, eval expr g e m RV a t m’ a’ → X (Efield a’ b c)) → X ex’
| ⇒ True

end in

match ee in (eval expr e m ex m’ ex’ ) return diag e ex ex’ m m’ with
| eval field t a’ H1 ⇒ fun X k ⇒ k t a’ H1
| ⇒ I

end.

Next we introduce a high-level tactic for each inductive type, gathering all the
functions defined for its constructors. For example, eval expr contains:

Ltac inv eval expr m m’ :=
...
let t1 :=fresh ”t” in

let v1 :=fresh ”v” in

let ev ex1 := fresh ”ev ex” in

...
match goal with

...
| [ee: eval expr ?ge ?e m LV (Efield ?a ?f ?ty) ?t m’ ?a’ " ?cl ] ⇒
apply (inv field ee); clear ee; intros t1 a1 ev ex1 ; intros;
inv eval expr m m’

This tactic has two argumentsm andm′, corresponding to C memory states. The
first intros introduces the 3 generated components with names respectively
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prefixed by t, v and ev ex. The second intros is related to previously reverted hy-
potheses, their names are correctlymanagedbyCoq.Alltogether, such a tacticwill:

1. Automatically find the hypothesis matching the arguments to be inverted;
2. Repeatedly perform our hand-crafted inversions for type eval expr until all

constraints between two memory states m and m′ are derived;
3. Give meaningful names to the derived constraints;
4. Update all other related hypotheses according to the new variable names or

values;
5. Clean up useless variables and hypotheses.

For example the 18 inv in the example above are solved in one step using
inv eval expr m m′, Note that the names are not explicitly given in the script,
which would be cumbersome, but generated in our tactic.

Coq version changes had no impact on our scripts. Unexpectedly, changes in
CompCert C semantics between versions 1.9 and 1.11 had no impact as well on
proof scripts using our inversion. Of course, we still had to update the definition
of diagonal functions.

Comparing development times provides additional hints. In our first try, using
built-in inversion, more than two months were spent (by one person) on the
development of the correctness proof of instruction ADC. Much time was actually
wasted at maintaining the proofs since, as mentioned, a little change resulted in
a complete revision of proof scripts. We then designed the inversion technique
presented here. With the new approach, proofs for 4 other simple instructions
could be finished in only one week, taking of course advantage of the previous
experience with ADC. The high-level tactic described above required less than
2 weeks.

Finally, let us compare the efficiency of Coq built-in inversions (inversion,
derive inversionwhich can generate an inversion principle once for all, and Ba-
sicElim [8]) with our inversion. We apply the four methods to the same examples,
the lemma cp SR and a single inversion on type eval expr from CompCert C se-
mantics. The first row is about the whole expression given in the example above.
The other rows are inversions of specific expressions: Ecall is the CompCert-C
expression of function calls, Evalof is to get the value of the specified location,
Eval is to express constant, and Evar is to express variables. We can observe a
gain of about 4 to 5 times. And generated object files are 5 times smaller.

Table 1. Time costs (in seconds)

standard inversion derive inversion BasicElim our inversion

Full example 1.628 0.976 1.428 0.312

Ecall 0.132 0.076 0.112 0.028

Evalof 0.132 0.072 0.092 0.020

Evar 0.128 0.064 0.084 0.024

Eaddrof 0.140 0.076 0.104 0.020



352 J.-F. Monin and X. Shi

Table 2. Size of compilation results (in KBytes)

standard inversion derive inversion BasicElim our inversion

Full example 191 460 171 37

5 Conclusion

We see no reason why the technique developed above for performing inversions
could not be automated and implemented in Coq or in proof assistants based on
a similar calculus. One good motivation for that would be to get terms which
are much smaller, easier to typecheck, than with the currently available inver-
sion tactics. This can be very useful when interactively defining functions on
dependent types, for instance.

But we want to insist first on a much more important feature of our approach,
according to our experience with SimSoC-Cert: its impact on goals during in-
teractive proof development is actually controllable. We think that having much
shorter underlying functions is helpful in this respect: they are short enough
to be written by hand, providing an exact view on what is to be generated.
We claim that this feature is especially relevant to applications which make an
intensive use of inversion steps: in this situation, partial automation obtained
by programming small controllable building blocks turns out to be effective,
whereas automation tends to generate a response of the proof assistant which is
not completely predictible. This may not harm too much if the generated goals
can be fully discharged without further interaction, but this is not the general
case. In particular, this hope is vain when we deal with complex properties, as
in our application. A better alternative would be to automatically generate aux-
iliary definitions such as inv field. However, we consider that our technique is
already useful and worth to be offered.

In contrast to available techniques [5,8] we argue against the use of auxiliary
equations or disequations: the latter are better to be cleaned, in order to avoid
clumsy additional hypotheses, which hamper the management of proof scripts;
however, it is not that simple to do. The brute use of a tactic which performs all
possible rewriting steps, then cleans equalities avalaible in the goal, for instance,
is not satisfactory because some equalities already introduced by the user on
purpose could then disappear. Therefore, a special machinery is needed in order
to trace equalities coming from the inversion step under consideration (e.g., the
use of block in BasicElim). Our use of CPS encoding of Leibniz equality, on the
other hand, completely avoids this issue.

Our method was experimented on large proofs relying on big inductive rela-
tions independently defined in the Compcert project.

The current development can be found on-line [10], as well as examples given
in Section 3.

Our group recently started another project dedicated to a certifying compiler
from a high-level component-based language dedicated to embedded systems



Handcrafted Inversions 353

(BIP), with CompCert C as its target. We expect the work presented here and
our high-level tactics to be reused there.

Let us mention another possible application of the technique. Inversion is
sometimes needed to write a function whose properties will be established later
(as opposed to providing a monolithic and exhaustive Hoare-style specification
and along with a VC generator such as Program). In this context simply using
the proof engine and the inversion tactic tends to generate unmanageably large
terms. We expect our technique to be very helpful in such situations.
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Abstract. We investigate methods for proving equality of infinite ob-
jects using circular coinduction, a combination of coinduction with term
rewriting, in the Coq proof assistant. In order to ensure productivity, Coq
requires the corecursive construction of infinite objects to be guarded.
However, guardedness forms a severe confinement for defining infinite
objects, and this includes coinductive proof terms. In particular, circu-
lar coinduction is troublesome in Coq, since rewriting usually obstructs
guardedness. Typically, applications of transitivity are in between the
guard and the coinduction hypothesis. Other problems concern the use of
lemmas, and rewriting under causal contexts. We show that the method
of bisimulation-up-to allows for an elegant rendering of circular coinduc-
tion, and we use this to overcome the troubles with guardedness.

1 Introduction

As any construction of infinite objects, constructive bisimilarity proofs have to
be productive. That is, it has to be guaranteed that the proof term has an infinite
constructor normal form with respect to the lazy evaluation of the calculus at
hand [5]. One way of ensuring productivity is by guarded corecursion [5,11].
Guardedness is a simple syntactic criterion implemented in proof assistants based
on type theory like Coq [4] and Agda [2]. A corecursive definition is guarded if
every corecursive call is guarded by at least one constructor of the coinductive
type we are building a term in, and only by such constructors. Then, in the
infinite process of unfolding a guarded definition, evermore building blocks of
the infinite structure are produced, yielding in the limit a term consisting of
constructors only.

Guardedness can be easily checked and it is readily seen why guarded core-
cursion implies productivity. On the other hand, guardedness is notorious for
confining the programmer to a restricted set of tools for defining coinductive
objects. Already the most simple examples of productive definitions fail to be
guarded. Coquand [5] considers the following corecursive definition

nats = 0 :: map (λn. n+ 1) nats map f (x :: s) = f x :: map fs (1)
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of the sequence of natural numbers nats = 0::1::2::. . . ; where :: is the constructor
of the coinductive type of infinite sequences, or streams as we call them. The
definition of nats is clearly productive, yet it is not guarded, for the recursive call
is argument of the map function.

A similar problem occurs for definitions of morphic sequences (see Section 2),
like the following definition of the Thue-Morse sequence M = 0 :: 1 :: 1 :: 0 :: 1 :: 0 ::
0 :: 1 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 1 :: 0 :: . . .,

M = 0 :: tail (h M) h (0 :: s) = 0 :: 1 :: h s h (1 :: s) = 1 :: 0 :: h s (2)

where tail (x :: s) = s. The corecursive call of M is not a direct argument of :: ,
and so Coq rejects this productive definition.

As indicated by Coquand [5], the problem of guardedness in (1), the definition
of nats, can be overcome by the alternative definition

nats = nats from 0 nats from n = n :: nats from (n+ 1)

The ‘computation’ is now embedded in the argument of the corecursion, and
no longer obstructs the guarding constructor :: . In Section 2 we give a similar
solution for (2), by generalizing the corecursive construction to carry a nonempty
list as argument. We show that every morphic sequence can be defined in Coq.

The main objective of this paper is to enable the use of circular coinductive
rewriting [12] in Coq. In type theories, where proofs are first-class citizens, the
problem of guardedness also occurs in proving coinductive statements. In partic-
ular, equational reasoning and rewriting on terms of a coinductive type may very
well destroy guardedness. Let us consider an example where we want to show
that two stream terms are bisimilar. Bisimilarity as a relation between streams
can be defined coinductively as follows (where head is defined by head (x::s) = x):

head s = head t tail s ∼ tail t

s ∼ t
∼intro

This means that ∼ is the greatest bisimulation (a bisimulation is a relation R
such that for all stream terms related by R the heads are equal and the tails
are again related by R). Let s and t be closed stream terms (i.e., containing no
variables, only constants from a given signature). A proof of s ∼ t evaluates, in
the limit, to an infinite constructor normal form ∼intro d0 (∼intro d1 (∼intro d2 · · · ))
where di is a proof of the equality of the i-th elements of s and of t, that is,
di : head (taili s) = head (taili t) for all i ∈ N.1

Suppose we want to prove that alt is bisimilar to g alt, given the assumptions2:

alt ∼ 0 :: 1 :: alt g (0 :: s) ∼ 0 :: 1 :: g s g (1 :: s) ∼ g s (3)

1 Throughout the paper, we use = to denote Coq’s equality, defined as the ⊆-least re-
flexive relation, equivalent to Leibniz equality. We note that = includes convertibility
induced by Coq’s native evaluation.

2 The flexibility to use assumptions, in addition to definitions, is essential to allow
for application of lemmas, and for unguarded or partial specifications of objects and
functions. E.g., the second equation for g is not guarded. In fact, g is productive only
for streams that contain infinitely many 0s.
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Our coinductive proof that alt is a fixed point of g has the following shape:

d0

d1 d′′ : tail2 alt ∼ tail2 (g alt)

tail alt ∼ tail (g alt)
∼intro

alt ∼ g alt
∼intro

alt ∼ g alt
cofix π

(d)

We explain the proof tree in a bottom-up fashion. By the rule cofix π we first
introduce the coinduction hypothesis π : alt ∼ g alt into the context.3 Next we
apply the constructor ∼intro twice. Here we have not displayed proofs d0 and d1
of type head alt = head (g alt) and head (tail alt) = head (tail (g alt)), respectively;
both are obtained by plain equational reasoning and cause no problem. The
point we want to make concerns the subproof d′′ of tail2 alt ∼ tail2 (g alt). Left-
and right-hand side can be converted by rewriting, using the hypothesis π and
the assumptions (3), as follows:

tail2 alt
alt→ tail2 (0 :: 1 :: alt)

tail→ · tail→ alt
π→ g alt

tail← · tail← tail2 (0 :: 1 :: (g alt))
g← · g← tail2 (g (0 :: 1 :: alt))

alt← tail2 (g alt)

This conversion gives rise to the proof tree d′′ of the form:

e1 : tail
2 alt ∼ alt

π : alt ∼ g alt e2 : g alt ∼ tail2 (g alt)

alt ∼ tail2 (g alt)
∼trans

tail2 alt ∼ tail2 (g alt)
∼trans

(d′′)

The omitted proofs e1 and e2 are obtained by equational reasoning without the
use of the coinduction hypothesis π. But let us reconsider the proof tree d with
d′′ filled in by the concrete subtree above. Note that the corecursive call (or coin-
duction hypothesis) π is not a direct argument of the guarding constructor ∼intro,
but nested within applications of ∼trans, as becomes even more apparent in the
corresponding proof term4:

d = cofix π (∼intro d0 (∼intro d1 (∼trans e1 (∼trans π e2)))) (4)

This corecursive construction is not guarded and Coq rejects it. However the
term d is productive, and reduces to a constructor normal form in the limit.

Guardedness problems occur in the vast majority of cases when coinduction is
combined with equational reasoning. The transformation of (productive) proof
terms into guarded proof terms is the main topic of our paper. For this purpose
we adopt techniques from process algebra and employ the method of ‘bisim-
ulation-up-to’ [18], a generalization of Milner’s bisimulation up to bisimilar-
ity [16]. Let R be a binary relation on streams, and U a function from relations
to relations. Then R is a bisimulation up to U if 〈s, t〉 ∈ R implies head s = head t

3 Of course, now concluding the proof by π immediately yields a non-productive term,
and is rightfully rejected by the guardedness checker.

4 In a form analogous to stream definitions (1) and (2), the bisimilarity proof term (4)
can also be written as d = ∼intro d0 (∼intro d1 (∼trans e1 (∼trans d e2))).
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and 〈tail s, tail t〉 ∈ U(R). Under certain conditions, the fact that a relation R is
a bisimulation up to U is sufficient to conclude that R is a subrelation of ∼, and
so stream terms related by R are bisimilar. Typically R is included in U(R), and
thus, in comparison with a full bisimulation, less diagrams have to be checked.

For the purpose of formalizing circular coinduction in Coq, we take U(R)
to be the least relation including R and ∼, and closed under causal functions,
transitivity and symmetry. A stream function F is causal (called ‘special’ in [15])
if the first n elements of the resulting stream F s only depend on the first n
elements of the argument stream s. For the validity of a bisimilarity proof, it
does not harm to use the coinduction hypothesis under a causal function [15].

We show soundness of the bisimulation-up-to method for this mapping U , that
is, if R is a bisimulation up to U , then U(R) is a bisimulation. We also show that
every circular coinduction proof can be transformed, in a structure-preservingway,
to a proof thatR is a bisimulation up to U , where the relationR consists of all pairs
(u, v) such that u ∼ v is a coinduction hypothesis in the original proof.

We thereby overcome the guardedness problem. The reason is that for proving
that a relation is a bisimulation-up-to there is no need for corecursion, and hence
guardedness is not an issue. The corecursive construction of bisimilarity proofs
is now part of the general soundness result. In order to formalize a proof by
circular coinduction in Coq, one can use our translation to obtain a proof by
bisimulation-up-to U , and then apply the soundness result to obtain a (guarded)
bisimilarity proof accepted by Coq.

Related Work. Danielsson [6] works around the guardedness problem for stream
definitions by defining a problem-specific language where the functions that ob-
struct guardedness are constructors, and defining an interpreter for the language
by guarded corecursion. Recent work [14] supports compositionality in coinduc-
tion proofs by what is called ‘parameterized coinduction’, which allows for se-
mantic rather than syntactic guardedness checking. In the present paper we are
concerned with equational reasoning, and provide a systematic way for a Coq
formalization of proofs by circular coinduction.

Overview. Sections 2 and 3 form a step-up to the main topic treated in Section 4.
This order chronologically reflects how we came about to use up-to techniques.
Sections 2 and 3 provide an informal discussion of how to overcome guardedness
problems for several examples. In particular, in Section 2 we show how to define
morphic sequences in Coq, using the idea explained above: postpone computation
(viz. iterations of the morphism) in favour of guarding the corecursive call. The
same idea is used in Section 3: to ensure guardedness of bisimilarity proofs,
applications of transitivity are postponed by reformulating a goal s ∼ t into the
equivalent statement ∀s′, t′. s′ ∼ s ⇒ t ∼ t′ ⇒ s′ ∼ t′. In Section 4 we give a
proof system for circular coinduction, restricted to the setting of streams over a
two-element alphabet. We define our notion of bisimulation up-to U , and discuss
the soundness proof which states that if R is a bisimulation-up-to U then U(R)
is a bisimulation. Finally we show that every proof by circular coinduction can
be transformed to a bisimilarity proof accepted by Coq. The supporting Coq
development is available as [10]. We conclude in Section 6.
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2 Morphic Sequences in Coq

We show how to define morphic sequences by means of guarded corecursion. A
morphic sequence (typically) is an infinite sequence obtained as the iterative fixed
point of a morphism (also called a ‘substitution’). Morphisms for transforming
and generating infinite words provide a fundamental tool for formal languages,
and have been studied extensively; we refer to [3]. We first give a standard
definition of morphic sequences. Then we provide a ‘direct’ corecursive definition,
using a productive version of the fixed point equation h(w) = w. Finally we show
how to turn such an equation into a definition by guarded corecursion, and prove
that the thus defined sequence is indeed the unique fixed point of h.

A morphism is a map h : A∗ → B∗, with A and B finite alphabets, such that
h(ε) = ε and h(uv) = h(u)h(v) for all words u, v ∈ A∗, and can thus be defined
by giving its values on the symbols of A.5

Let h : A∗ → A∗ be a morphism prolongable on the letter a0 ∈ A, that is,
h(a0) = a0x for some x ∈ A∗ such that hi(x) �= ε for all i ≥ 0. Then we see
that hi+1(a0) = hi(h(a0)) = hi(a0x) = hi(a0)h

i(x) , and hence hi(a0) is a strict
prefix of hi+1(a0), for all i ≥ 0. So then limi→∞ hi(a0) exists and is infinite; this
limit is denoted by hω(a0) = limi→∞ hi(a0) = a0 xh(x)h

2(x)h3(x) · · · and it is
readily seen to be the unique fixed point of h that starts with the letter a0, that
is, h(hω(a0)) = hω(a0). A sequence w ∈ Aω is (purely) morphic if w = hω(a0)
for some morphism h and starting letter a0.

Without loss of generality [3], we may assume morphisms to be non-erasing,
i.e., h(a) �= ε for all a ∈ A. Hence, we replace the condition that h be prolongable
on starting letter a0, by the simpler h(a0) = a0x for some non-empty word x.
Now we can define h as a function in Aω → Aω by guarded corecursion and
pattern matching, as follows; for all b ∈ A and u ∈ Aω:

h(b :: u) = b0 :: b1 :: . . . :: bk−1 :: h(u) where b0b1 · · · bk−1 = h(b),

We now give a productive (yet unguarded) definition of w = hω(a). This method
is based on the work [7,8]. Clearly, the fixed point equation w = h(w), where we
now view w as a recursion variable, is not productive (and, typically, also does
not have a unique solution for w). By using the knowledge that the first letter
of w is a0, we can turn it into

w = a0 :: w′ w′ = tail(h(w)) (5)

In order to see that this specification is productive indeed, we plug in the infor-
mation that h(a0) = a0x where, say, x = a1a2 · · · ak with k ≥ 1. We do so by
replacing w by a0 ::w

′, in the right-hand side of the equation for w′ and rewriting
h and tail ; we then obtain

w = a0 :: w′ w′ = a1 :: a2 :: . . . :: ak :: h(w′) (6)

This is clearly a productive equation, because h ‘consumes’ one stream ele-
ment at most, and, being non-erasing, produces one stream element at least.

5 Juxtaposition of words denotes concatenation.
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However, as will be clear by now, the corecursive equation for w′ is not guarded,
because the recursive call is nested within h.

In order to solve this problem, we generalize the construction by adding an
argument on which h is applied, and from which we can always extract the
next element to produce. The construction is reminiscent of Emile Post’s tag
systems [17]. Let the type of our morphism h be A+ → A+, mapping nonempty
words to nonempty words. Then we can define the morphic stream w = hω(a0) by

w = a0 :: tagh(x) tagh(ay) = a :: tagh(yh(a)) (7)

where we recall that the morphism h, the starting letter a0 and the non-empty
word x are such that h(a0) = a0x. We note that the function tagh : A+ → Aω

is defined by guarded corecursion, and hence (7) is accepted by Coq.
In this general set-up we prove (in Coq, see [10]) that the stream w defined

by (7) is indeed the fixed point of h (and so satisfies also the equations (5)
and (6)). That w is the unique fixed point (starting with a0) follows from the
fact that h is non-erasing and prolonging on a0.

Example 1. The Fibonacci word 0100101001001 · · · [3] is generated by iterating
the morphism f defined by f(0) = 01 and f(1) = 0, on the starting letter 0. In
Coq we define nonempty lists inductively, we use [a] for the singleton list, and
overload the symbol :: to also denote the constructor for nonempty lists. The
Fibonacci word fib is thus defined by

fib = 0 :: tagf [1] tagf [a] = a :: tagf (f a) tagf (a :: u) = a :: tagf (u ++ f a)

f [0] = 0 :: [1] f (0 :: u) = 0 :: 1 :: f u [a] ++ v = a :: v

f [1] = [0] f (1 :: u) = 0 :: f u (a :: u) ++ v = x :: (u++ v)

3 Coinduction Loading

The idea of guarding the corecursive call by hiding the computation in an extra
argument, as outlined in the previous section, turns out to be useful in the
setting of bisimilarity proofs as well. We present the method of coinduction
loading, which in some cases suffices to turn a productive bisimilarity proof into
a guarded one. Here we want to avoid that transitivity of ∼ is applied to the
coinduction hypothesis (= corecursive call). The idea is to reformulate a goal
s ∼ t into the equivalent statement

∀s′, t′. s′ ∼ s ⇒ t ∼ t′ ⇒ s′ ∼ t′ .

This enables us to move applications of transitivity to the argument of the
corecursive call, as illustrated by the following example. Suppose we are given
the following definitions (=) and assumption (∼):

dup (x :: s) = x :: x :: dup s exp (x :: s) ∼ x :: dup (exp s)

odd (x :: y :: s) = y :: odd s log (x :: s) = x :: log (odd s)

The behavior of these functions is illustrated by applying them to the stream
nats = 0 :: 1 :: 2 :: . . . :
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dup nats = 0 :: 0 :: 1 :: 1 :: 2 :: 2 :: . . . exp nats = 0 :: 1 :: 1 :: 2 :: 2 :: 2 :: 2 :: . . .

odd nats = 1 :: 3 :: 5 :: 7 :: 9 :: . . . log nats = 0 :: 2 :: 6 :: 14 :: 30 :: 62 :: . . .

The assumption for exp can, in Coq, not be taken as a definition, because the core-
cursive call is nested within dup, and so is not guarded, although certainly produc-
tive. On the other hand, the corecursive equation for log is perfectly guarded. The
function loghas a logarithmically increasingproduction function [7], i.e.,n elements
in leads to �log2(n+1)� elements out. Definitions are always preferable to assump-
tions since Coq’s native evaluation does not harm guardedness of proofs, whereas
rewriting terms by using bisimilarity proofs does. Consider the following corecur-
sive proof term6, which witnesses that odd ◦ dup is the identity function:

cofix π (λ(x :: s′). ∼intro (=refl x) (π s
′)) : ∀s. odd (dup s) ∼ s (8)

Note that this proof term is defined by guarded corecursion. After we have
destructed s into x :: s′, the terms tail (odd (dup (x :: s′))) and odd (dup s′) are
convertible by Coq’s native evaluation; similarly the subgoal head (odd (dup (x ::

s′))) = x is proved by reflexivity. Finally, the application of the coinduction
hypothesis π : ∀s. odd (dup s) ∼ s to s′ proves that odd (dup s′) is bisimilar to s′.

Now we want to prove that also the composition log ◦ exp is the identity:

∀s. log (exp s) ∼ s (9)

The proof that we want to construct (but which is not accepted by Coq) looks as
follows; here we have omitted the subterms d of type head (log (exp (x ::s′))) = x,
and e whose type is indicated in the tree:

d

e : tail (log (exp (x :: s′))) ∼ log (exp s′) π s′ : log (exp s′) ∼ s′

tail (log (exp (x :: s′))) ∼ s′
∼trans

log (exp (x :: s′)) ∼ x :: s′
∼intro

∀s. log (exp s) ∼ s
λ(x :: s′)

∀s. log (exp s) ∼ s
cofix π

Guardedness of the corecursive call π s′ is here obstructed by the application of
∼trans, transitivity of ∼. We explain why we cannot do without ∼trans in this case.
In order to prove that tail (log (exp (x ::s′))) is bisimilar to s′ we cannot use Coq’s
native evaluation, for example because exp is not a defined function. Instead we
proceed by rewriting using the coinduction hypothesis π s′, the assumption for
exp and the lemma (8), as follows:

tail (log (exp (x :: s′))) exp→ tail (log (x :: dup (exp s′))) log→
tail (x :: log (odd (dup (exp s′)))) tail→ log (odd (dup (exp s′)))

(8)→ log (exp s′) π→ s′

All these rewrite steps are connected by applications of ∼trans. The proof tree
above arises from splitting this rewrite sequence at the term log (exp s′) (the
middle term in the displayed application of ∼trans). In whatever way we split
the sequence, the coinduction hypothesis is argument of at least one application
of ∼trans, resulting in an unguarded proof term.

6 We use the syntax λ(x :: s′). t to denote abstraction and pattern matching at once.
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This can be fixed with coinduction loading, thereby turning the above proof
of (9) into a guarded proof of the equivalent statement ∀s, t1, t2.(t1 ∼ log (exp s) ⇒
s ∼ t2 ⇒ t1 ∼ t2), as follows:

d′ (π s′ (tail t1) (tail t2) d1 d2) : tail t1 ∼ tail t2
t1 ∼ t2

∼intro

t1 ∼ log (exp (x :: s′)) ⇒ x :: s′ ∼ t2 ⇒ t1 ∼ t2
λγ1, γ2

∀s, t1, t2. (t1 ∼ log (exp s) ⇒ s ∼ t2 ⇒ t1 ∼ t2)
λ(x :: s′), t1, t2

∀s, t1, t2. (t1 ∼ log (exp s) ⇒ s ∼ t2 ⇒ t1 ∼ t2)
cofix π

We note that λ-abstractions (introductions of ∀ and ⇒) do not obstruct guard-
edness. We ignore the term d′ : head t1 = head t2 which is a modification of
d : head (log (exp (x :: s′))) = x using the hypotheses γ1 : t1 ∼ log (exp (x ::s′)) and
γ2 : s ∼ t2. The other subtrees, d1 and d2, are given by the trees below. Here
comptail is an instance of compf referring to the compatibility of a unary stream
function f, i.e., f s ∼ f t whenever s ∼ t. In Coq, compatibility cannot be proved
for arbitrary f, but for concrete instances this forms no problem.

γ1 : t1 ∼ log (exp (x :: s′))
tail t1 ∼ tail (log (exp (x :: s′)))

comptail
e

d1 : tail t1 ∼ log (exp s′)
∼trans

γ2 : x :: s′ ∼ t2
d2 : s′ ∼ tail t2

comptail

Instead of giving a more formal definition of the transformation suggested by the
above example, we continue our exposition with incorporating bisimulation-up-to
techniques. The transformation described above will turn out to be an instance of
the theory of bisimulation-up-to, namely as bisimulations up to transitivity and
bisimilarity.

4 Circular Coinduction

We introduce a proof system for circular coinduction [12,15,19,21]. For the sake
of presentation, we focus on streams over {0, 1}, but it is straightforward to
generalize the method to infinite terms (ranked trees).

We assume that the signature is declared in Coq. We emphasize that the terms
introduced below are just a notation for Coq terms. We have sorts B and S for
{0, 1} and streams over {0, 1}, respectively. A signature Σ is a set of symbols each
having a fixed type in {B,S}∗×{B,S}. We write f : t1× . . .× tn → s whenever
f ∈ Σ has type 〈〈t1, . . . , tn〉, s〉. Let Σ be a signature, and X = XB ∪ XS be
a set of variables such that X ∩ Σ = ∅. The set of data terms TB and stream
terms TS over Σ and X are inductively defined by the grammar:

Ts ::= x | f(Ts1 , . . . , Tsn) (x ∈ Xs, f ∈ Σ, f : s1 × . . .× sn → s)

for s ∈ {B,S}. We write T for TB∪TS. A substitution is a mapping σ : X → T
that respects the sorts, that is, σ(x) ∈ TB for every x ∈ XB, and σ(x) ∈ TS for
every x ∈ XS. We write {x1 "→ t1, . . . , xn "→ tn} to abbreviate the substitution
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defined by σ(x1) = t1, . . . , σ(xn) = tn and σ(x) = x for every x �∈ {x1, . . . , xn}.
For terms s ∈ T and substitutions σ, we define sσ inductively by f(t1, . . . , tn)

σ =
f(tσ1 , . . . , t

σ
n) and x

σ = σ(x). A stream context C is a term of sort S over Σ and
X ∪ {�} where � is a fresh variable of sort S. For terms s ∈ TS and contexts
C, we write C[s] for the term C� �→s.

We define bisimilarity up to depth n on stream terms inductively as follows:

s ∼0 t

head s = head t tail s ∼n tail t

s ∼n+1 t

A causal context is a context C such that for all stream terms s, t we have:

s ∼n t ⇒ C[s] ∼n C[t] , for all n ∈ N.

Examples of causal contexts are dup �, exp �, and log (exp �); examples of non-
causal contexts are tail �, odd �, and log �, (see previous section). Note that for
every causal context C we have that tail C[a ::�] is again causal.

Definition 2. The set Π of (circular coinduction) proof terms is inductively
defined as follows (the superscript ‘cc’ stands for circular coinduction):

Π ::= ∼cc
hyp γ C σ | ∼cc

cut γ Π Π | ∼cc
cohyp δ D σ | ∼cc

coin δ E Π |
∼cc

refl s | ∼cc
sym Π | ∼cc

trans Π Π | ∼cc
caseB

x Π Π | ∼cc
caseS

y Π

where γ, δ are names for hypotheses, s ∈ TS is a stream term, x ∈ XB and
y ∈ XS are variables of type B and S, respectively, σ : X → T is a substitution,
and C,D ∈ T are stream contexts, with D causal. The class E of equational
proofs on data terms (equality of the heads) is left implicit.

The constructor ∼cc
coin represents the combination of the Coq constructs cofix

and ∼intro introduced earlier. We leave universal quantification implicit. That is,
for stream terms s, t that contain variables x1, . . . , xn, and for a relation R on
stream terms, we write s R t to denote ∀x1, . . . , xn. s R t.

We now define ‘typing judgments’ for proof terms depending on two proof
contexts Γ and Δ, consisting of triples written as γ : s ∼cc t. Here Γ contains
assumptions, and Δ contains the coinduction hypotheses that are introduced in
the construction of the proof. The intuition is that Γ,Δ � d : s ∼cc t means
that for all n ∈ N, if all pairs in Γ are (fully) bisimilar, and all pairs in Δ are
bisimilar up to depth n, then s is bisimilar to t up to depth n+1. The semantics
for judgments, will be given in Section 5 where we translate them into Coq
bisimilarity.

Definition 3. Let Γ,Δ be sets of triples γ : u ∼cc v, where every name γ appears
at most once in Γ ∪Δ. Let d ∈ Π be a proof term, and s, t stream terms. We
define the judgment Γ,Δ � d : s ∼cc t inductively by the rules in Figure 1.

Next we introduce rewriting as a syntax for constructing proof terms.

Definition 4. Let γ : u ∼cc v ∈ Γ and δ : u ∼cc v ∈ Δ. Let C be a context, σ a
substitution, and abbreviate s = C[uσ] and t = C[vσ]. Then we define

s
γ→ t = (∼cc

hyp γ C σ) s
γ← t = (∼cc

sym (∼cc
hyp γ C σ))
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Γ,Δ " (∼cc
hyp γ C σ) : C[sσ] ∼cc C[tσ]

(γ : s ∼cc t) ∈ Γ

Γ,Δ " (∼cc
cohyp δ D σ) : D[sσ] ∼cc D[tσ ]

(δ : s ∼cc t) ∈ Δ, D is causal

Γ,Δ " (∼cc
refl s) : s ∼cc s

Γ,Δ " d : t ∼cc s

Γ,Δ " (∼cc
sym d) : s ∼cc t

Γ,Δ " d1 : s ∼cc u Γ,Δ " d2 : u ∼cc t

Γ,Δ " (∼cc
trans d1 d2 ) : s ∼cc t

Γ " d0 : (head s = head t) Γ,Δ ∪ {δ : s ∼cc t} " d′ : (tail s ∼cc tail t)

Γ,Δ " (∼cc
coin δ d0 d′) : s ∼cc t

δ �∈ Δ

Γ,Δ " d0 : (s ∼cc t)x �→0 Γ,Δ " d1 : (s ∼cc t)x �→1

Γ,Δ " (∼cc
caseB

x d0 d1) : s ∼cc t
x ∈ XB

Γ,Δ " d : (s ∼cc t)x �→y::z

Γ,Δ " (∼cc
caseS

x d) : s ∼cc t
y ∈ XB, z ∈ XS fresh for s, t; and x ∈ XS

Γ ∪ {γ : u ∼cc v},Δ " d1 : s ∼cc t Γ,∅ " d2 : u ∼cc v

Γ,Δ " (∼cc
cut γ d1 d2) : s ∼cc t

γ �∈ Γ

Fig. 1. Proof rules for circular coinduction for stream terms

s
δ→ t = (∼cc

cohyp δ C σ) s
δ← t = (∼cc

sym (∼cc
cohyp δ C σ))

where in the case of
δ→ and

δ←, C is additionally required to be a causal context.

Furthermore, let Ξ = { γ→,
γ← | γ ∈ Γ} ∪ { δ→,

δ← | δ ∈ Δ}. Then for every ↔ ∈ Ξ
the judgment Γ,Δ � s ↔ t : s ∼cc t holds. We define s0 ↔1 s1 ↔2 . . . ↔n sn
inductively by (∼cc

trans (s0 ↔1 s1) (s1 ↔2 . . . ↔n sn) ) where ↔i ∈ Ξ for
1 ≤ i ≤ n.

For uniformity we work with assumptions only, but functions specified by guarded
corecursion (like log in Section 3) can of course be taken as definitions in Coq,
and then rewriting comes ‘for free’, i.e., are not reflected in the proof tree.

The following example illustrates the use of the syntax of Definition 4.

Example 5. Given the assumptions7 Γ = {γ1 : z1 ∼cc (0::z2), γ2 : z2 ∼cc (0::z1)},
our goal is to construct a proof term witnessing z1 ∼cc z2. As usual we first apply
the ∼cc

coin-rule, i.e., we assume what we have to prove as a coinduction hypothesis
δ : z1 ∼cc z2, and then construct terms d0 and d′ so that

Γ � d0 : head z1 = head z2 Γ, {δ : z1 ∼cc z2} � d′ : tail z1 ∼cc tail z2

Γ,∅ � (∼cc
coin δ d0 d

′) : z1 ∼cc z2
∼cc

coin

7 These mutual corecursive equations can actually be taken as definitions in Coq.
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By rewriting we obtain

d0 = head z1
γ1→ head (0 :: z2)

γhead→ 0
γhead← head (0 :: z1)

γ2← head z2

d′ = tail z1
γ1→ tail (0 :: z2)

γtail→ z2
δ← z1

γtail← tail (0 :: z1)
γ2← tail z2

So the proof tree corresponding to d′ is as follows, where we write s′ to denote
tail s, and where we omit contexts and proof terms:

γ1 : z1 ∼cc (0 :: z2)

z′1 ∼cc (0 :: z2)
′ ∼cc

hyp

γtail : (x :: s)′ ∼cc s

(0 :: z2)
′ ∼cc z2

∼cc
hyp

δ : z1 ∼cc z2
z1 ∼cc z2

∼cc
cohyp

z2 ∼cc z1
∼cc

sym

γtail : (x :: s)′ ∼cc s

(0 :: z1)
′ ∼cc z1

∼cc
hyp

z1 ∼cc (0 :: z1)
′ ∼

cc
sym

γ2 : z2 ∼cc 0 :: z1
z′2 ∼cc (0 :: z1)

′ ∼cc
hyp

(0 :: z1)
′ ∼cc z′2

∼cc
sym

z1 ∼cc z′2
∼cc

trans

z2 ∼cc z′2
∼cc

trans

(0 :: z2)
′ ∼cc z′2

∼cc
trans

z′1 ∼cc z′2
∼cc

trans

Next, we give a detailed example of a proof by circular coinduction, i.e., using
the system introduced in Definition 3. In Section 5 we discuss how this proof is
translated into a proof that Coq accepts.

Consider the following guarded equations (here taken as assumptions) of func-
tions D,T,+

γD : D s ∼cc s+ tail s γT : T s ∼cc head s :: T (D s)

γ+ : (x :: s) + (y :: t) ∼cc (x+ y) :: (s+ t)

where 0 + 0 = 1 + 1 = 0 and 0 + 1 = 1 + 0 = 1.
Our goal is to prove by circular coinduction that T is an involution, that is,

T (T s) ∼ s, for all stream terms s. For this we use some easily proven facts
about addition, and distribution of D over +:

γ+ass : x+ (y + z) ∼cc (x+ y) + z γ+com : x+ y ∼cc y + x

γ+id : x+ zeros ∼cc x γ+ann : x+ x ∼cc zeros

γDdistr : D (x+ y) ∼cc D x+ D y

and we let Γ = { γhead , γtail , γ+ , γD , γT , γ+ass , γ+com , γ+id , γ+ann , γDdistr }.
Another lemma that we need, is distributivity of T over +. This in turn uses

distributivity of D over +, which in Coq would destroy guardedness by invoking
transitivity. The proof of T (x+ y) ∼cc T x+ T y has the following shape:

d0

d′ : tail (T ((a :: x′) + (b :: y′))) ∼cc tail (T (a :: x′) + T (b :: y′))
tail (T ((a :: x′) + y)) ∼cc tail (T (a :: x′) + T y)

∼cc
caseS

tail (T (x+ y)) ∼cc tail (T x+ T y)
∼cc

caseS

T (x+ y) ∼cc T x+ T y
∼cc

coin δ

We ignore the proof d0 of head (T (x+ y)) ∼cc head (T x+ T y), but define d′ by
rewriting, using the coinduction hypothesis δ : T (x+ y) ∼cc T x+ T y :

tail (T ((a :: x′) + (b :: y′)))
γ+→γT→γtail→ T (D (x′ + y′))

γDdistr→ T (D x′ + D y′)
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δ→ T (D x′) + T (D y′)
γtail←γ+←γT←γT← tail (T (a :: x′) + T (b :: y′))

Thus we have shown that the following judgment holds using the proof system
for circular coinduction given in Figure 1:

Γ,∅ � (∼cc
coin δ (∼cc

caseS
x (∼cc

caseS
y d′))) : T (x+ y) ∼cc T x+ T y

We now continue with showing that T is an involution. Let Γ ′ = Γ ∪ {γTdistr :
T (x + y) ∼cc T x + T y}, i.e., we take up the lemma we have just proved as an
assumption. The proof again starts by:

e0 : head (T (T s)) ∼cc head s e′ : tail (T (T s)) ∼cc tail s

T (T s) ∼cc s
∼cc

coin δ

and the proof term e′ witnessing bisimilarity of tail (T (T s)) and tail s is con-
structed by the following rewrite sequence:

tail (T (T s))
γT→ · γtail→ T (D (T s))

γD→ T (T s+ tail (T s))
γT→ · γtail→ T (T s+ T (D s))

γTdistr→ T (T s) + T (T (D s))
δ→ s+ T (T (D s))

δ→ s+ D s
γD→ s+ (s+ tail s)

γ+ass→ (s+ s) + tail s
γ+ann→ zeros+ tail s

γ+id→ tail s

Here we have used the coinduction hypothesis δ twice. The first application (from
left to right) under the causal context �+T (T (D s)), and the second under the
causal context s+�.

The above example illustrates several features of circular coinduction that
cannot be captured by the method of coinduction loading introduced in the
previous section (and certainly not by guarded corecursion). Without further
generalizing, the method of coinduction loading cannot deal with more than one
application of the coinduction hypothesis, and also does not allow for the use of
the coinduction hypotheses under causal contexts.

The next section shows how to translate circular coinduction into Coq proofs.

5 Bisimulation-Up-To

To avoid the problems with guardedness in constructing a corecursive proof
term for proving s ∼ t, the user can instead define a relation R on stream
terms with 〈s, t〉 ∈ R, and then show that R is a bisimulation. This suffices to
obtain a proof of s ∼ t in Coq, as follows: let h : ∀s, t : Aω. s R t ⇒ head s =
head t∧ (tail s) R (tail t), witnessing that R is a bisimulation. A (Coq) proof term
of type ∀s, t. s R t⇒ s ∼ t is

cofix δ (λs, t : Aω. λγ : s R t. (∼intro d0 (δ (tail s) (tail t) d′)))

where d0 = pj1 (h s t γ) and d′ = pj2 (h s t γ), with pji : p1 ∧ p2 → pi (i = 1, 2).
However, it is often cumbersome to construct such bisimulations. The reason

is that for a relation R to be a bisimulation, it needs (a) to be closed under
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taking tail, (b) include all lemmas, and (c) all compositions of the required causal
contexts. This typically gives rise to a large, or infinite relation.

We borrow a solution from process algebra [16,18], namely the method of
bisimulation-up-to. A bisimulation-up-to is a relation which is included in a
bisimulation, but which typically is not a bisimulation itself. A relation R is
a bisimulation-up-to U if for every s R t we have head s = head t and tail s U(R)
tail t. For suitable U , it is possible to prove that U(R) is a bisimulation when-
ever R is a bisimulation-up-to U . Since R can be substantially smaller than the
enclosing bisimulation U(R), this may save a lot of work, because less pairs have
to be checked.

Definition 6. Let R, R′ be relations on stream terms. Then R progresses to R′

if for every s R t we have head s = head t and tail s R′ tail t.

Definition 7. Let S, T ⊆ TS×TS, C a stream context and σ a substitution. We
define C[S] = {〈C[s], C[t]〉 | 〈s, t〉 ∈ S}, and Sσ = {〈sσ, tσ〉 | 〈s, t〉 ∈ S}. For x ∈
XB we let SgenB(x) = {〈s, t〉 | 〈sx �→i, tx �→i〉 ∈ S for all i ∈ {0, 1}}, and for x ∈ XS,
SgenS(x) = {〈s, t〉 | 〈sx �→y::z, tx �→y::z〉 ∈ S for some y ∈ XB, z ∈ XS fresh for s, t}.
We abbreviate Sgen =

⋃
x∈XB

SgenB(x) ∪ ⋃
x∈XS

SgenS(x). Also, we let S−1 =
{〈s, t〉 | 〈t, s〉 ∈ S} and S · T = {〈s, t〉 | 〈s, u〉 ∈ S, 〈u, t〉 ∈ T }.
Definition 8. Let R ⊆ TS × TS. We define U(R) inductively by the grammar

U(R) ::= R | ∼ | U(R)σ | C[U(R)] | U(R)−1 | U(R) · U(R) | U(R)gen

where C is a causal context. R is a bisimulation-up-to U if R progresses to U(R).
In words, U(R) is the smallest relation that contains R and ∼, and is closed
under substitution, causal contexts, symmetry, transitivity and generalization.
Actually, the clauses for substitution and generalization are immediate in Coq,
as there the pairs in U(R) are explicitly universally quantified.

Theorem 9 (Soundness). If R is a bisimulation-up-to U , then U(R) is a
bisimulation.

Proof. Let R be a bisimulation-up-to U , and let s, t be terms such that s U(R) t.
We prove head s = head t and tail s U(R) tail t by induction on the definition of
s U(R) t. We distinguish the following cases:

(i) s R t : follows from R being a bisimulation-up-to U ;
(ii) s ∼ t : head s = head t and tail s ∼ tail t, and so tail s U(R) tail t;
(iii) s U(R)σ t : for some u, v ∈ TS, we have s = uσ, t = vσ and u U(R) v.

By the induction hypothesis (IH) we have head u = head v and so head s =
head t; also tail u U(R) tail v by IH and so tail s U(R)σ tail t;

(iv) s C[U(R)] t : for some u, v ∈ TS, s = C[u], t = C[v], and u U(R) v. Then
head s = head t follows from IH and causality of C; moreover, tail s D[U(R)]
tail t follows from causality of D = tail C[head u ::�] and IH;

(v) s U(R)−1
t : direct from IH;
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(vi) s U(R) u U(R) t : direct from IH;

(vii) s U(R)genB(x)
t : then sx �→i U(R) tx �→i for i ∈ {0, 1} and so by IH head s =

head t for all possible values of x ∈ XB, and tail s U(R)genB(x)
tail s by IH;

(viii) s U(R)genS(x)
t : similar to previous case.

From a proof using circular coinduction, we extract a bisimulation-up-to U :
Definition 10. Let d : Γ,Δ � s ∼cc t be a proof using circular coinduction. We
define Rd to consist of all pairs (u, v) such that the proof d contains a sub-proof
of the form ∼cc

coin . . . : u ∼cc v.

In what follows, we assume all contexts to be compatible with bisimilarity, i.e.,
u ∼ v ⇒ C[u] ∼ C[v]. This is used in item (i) of the proof of Theorem 12 below.
In practice, this assumption can be dropped as proving it for concrete C forms
no problem.

Lemma 11. If R progresses to R, and S progresses to S, then R∪S progresses
to R ∪ S. � 
Theorem 12. Assume Γ,Δ � d : s ∼cc t and u ∼ v for all pairs γ : u ∼cc v
in Γ . Let R = Rd ∪Δ. Then s U(R) t and Rd progresses to U(R).
Proof. The proof proceeds by induction on the structure of Γ,Δ � d : s ∼cc t
(see Figure 1), as follows. In each case, we let R abbreviate Rd ∪Δ. In the first
three cases, we have Rd = ∅ and so Rd trivially progresses to U(R).
(i) Γ,Δ � d : C[uσ] ∼cc C[vσ] with d = ∼cc

hyp γ C σ. Then (γ : u ∼cc v) ∈ Γ , and
uσ ∼ vσ by assumption. Hence, by compatibility we have C[uσ] ∼ C[vσ ]
and, using ∼ ⊆ U(R) we get C[uσ] U(R) C[vσ].

(ii) Γ,Δ � d : D[uσ] ∼cc D[vσ] with d = ∼cc
cohyp δ D σ, and D a causal context.

Then (δ : u ∼cc v) ∈ Δ and so u R v, uσ U(R) vσ and D[uσ] U(R) D[vσ].

(iii) Γ,Δ � d : u ∼cc u with d = ∼cc
refl u. Then u U(R) u by reflexivity of ∼ and

∼ ⊆ U(R).
(iv) Γ,Δ � d : u ∼ v with d = ∼cc

sym d1 and Γ,Δ � d1 : v ∼ u. Then v U(R) u by
the induction hypothesis (IH), and u U(R) v by symmetry of U(R). Also,
Rd progresses to U(R) by IH, because Rd = Rd1 .

(v) Γ,Δ � d : u ∼cc v with d = ∼cc
trans d1 d2 , and Γ,Δ � d1 : u ∼cc w and

Γ,Δ � d2 : w ∼cc v for some stream term w. We conclude u U(R) v from
u U(R) w, and w U(R) v by IH and transitivity of U(R). By IH we have
that Rd1 progresses to U(Rd1 ∪Δ), and Rd2 progresses to U(Rd2 ∪Δ). By
Lemma 11 Rd = Rd1 ∪Rd2 progresses to U(R).

(vi) Γ,Δ � d : u ∼cc v with d = ∼cc
coin δ d0 d

′ and Γ � d0 : head u = head v,
and Γ,Δ′ � d′ : tail u ∼cc tail v where Δ′ = Δ ∪ {δ : u ∼cc v}. Note
that Rd = Rd′ ∪ {δ : u ∼cc v} and so R = Rd ∪ Δ = Rd′ ∪ Δ′. From
the IH we obtain that Rd′ progresses to U(Rd′ ∪Δ′) = U(R). Moreover,
{δ : u ∼cc v} progresses to U(R) since d0 is a proof of head u = head v, and
tail u U(R) tail v by IH. With Lemma 11 we conclude that Rd progresses
to U(R). Furthermore, u U(R) v by 〈u, v〉 ∈ Rd ⊆ R ⊆ U(R).
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(vii) Γ,Δ � d : u ∼cc v with d = ∼cc
cut γ d1 d2 and Γ ′, Δ � d1 : u ∼cc v, and

Γ,∅ � d2 : q ∼cc r for some stream terms q, r, where Γ ′ = Γ ∪ {γ :
q ∼cc r}. We note that q ∼ r holds by Theorem 9, since by IH we have
q U(Rd2) r, and Rd2 progresses to U(Rd2). Hence Γ

′ ⊆ ∼, and by IH we
obtain u U(Rd1 ∪Δ) v and we conclude u U(R) v from Rd = Rd1 ∪ Rd2

(clearly, U is a monotone function with respect to ⊆). Moreover, by IH Rd1

progresses to U(Rd1 ∪Δ), and Rd2 progresses to U(Rd2). So by Lemma 11
we obtain that Rd = Rd1 ∪Rd2 progresses to U(R).

(viii) Γ,Δ � d : u ∼cc v with d = ∼cc
caseB

x d0 d1 and Γ,Δ � di : (u ∼cc v)x �→i for
i ∈ {0, 1} and x ∈ XB. By IH we get ux �→i U(R) vx �→i for i ∈ {0, 1}, hence
u U(R) v by U(R)genB ⊆ U(R). Furthermore, Rd = Rd0 ∪ Rd1 progresses
to U(R) by IH and Lemma 11.

(ix) Γ,Δ � d : u ∼cc v with d = ∼cc
caseS

x e and Γ,Δ � e : ux �→y::z ∼cc

vx �→y::z. From IH we obtain ux �→y::z U(R) vx �→y::z. So u U(R) v follows
from U(R)genS ⊆ U(R). Furthermore, Rd = Re progresses to U(R) by IH.

From Theorems 9 and 12 it follows that every proof by circular coinduction can
be transformed to a bisimilarity proof accepted by Coq. We have formalized
Theorem 9 in Coq, see [10]. We are currently working on automating the trans-
lation of circular coinductive proofs as produced by the prover Circ [12,15], or
Streambox [21] into Coq proofs.

Corollary 13. If Γ,∅ � d : s ∼cc t, then Rd is a bisimulation-up-to U and
s U(Rd) t. Hence s ∼ t is provable from Γ in Coq. � 

6 Discussion

Generally speaking, for programming with infinite objects, translating a pro-
ductive specification into a guarded definition may take considerable effort.
In doing so, the elegance and ‘directness’ of the original specification is often
lost, thereby complicating further processing of the defined object. For pro-
gramming, we therefore believe that alternative approaches are favorable. Here
one may think of implementing a more flexible productivity checker by using
a type-based approach as advocated in [13,1,20]. It would also be convenient
if Coq would allow productivity of the corecursive program to be proved sepa-
rately (for recursive programs, wellfoundedness can be proved separately in Coq).
This then would open the door for more advanced tactics based on methods as
described in [7,8,9].

However, for reasoning about infinite objects the situation is different, as we
have shown. The reason is that for bisimilarity proofs the coinduction hypoth-
esis is usually not subject to further pattern matching. This is in contrast to
programming where recursive calls are usually manipulated further.
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19. Roşu, G., Lucanu, D.: Circular Coinduction: A Proof Theoretical Foundation. In:
Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 127–
144. Springer, Heidelberg (2009)

20. Severi, P., de Vries, F.-J.: Pure Type Systems with Corecursion on Streams: From
Finite to Infinitary Normalisation. In: Proc. Int. Conf. on Functional Programming
(ICFP 2012), pp. 141–152. ACM (2012)

21. Zantema, H., Endrullis, J.: Proving Equality of Streams Automatically. In: Proc.
Conf. on Rewriting Techniques and Applications (RTA 2011). LIPIcs, vol. 10, pp.
393–408. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)

http://wiki.portal.chalmers.se/agda
http://coq.inria.fr
http://www.cs.vu.nl/~diem/research/up_to.tgz


Program Extraction from Nested Definitions

Kenji Miyamoto1,�, Fredrik Nordvall Forsberg2,�,��

and Helmut Schwichtenberg1

1 Ludwig-Maximilians-Universität München, Germany
2 Swansea University, UK

Abstract. Minlog is a proof assistant which automatically extracts com-
putational content in an extension of Gödel’s T from formalized proofs.
We report on extending Minlog to deal with predicates defined using a
particular combination of induction and coinduction, via so-called nested
definitions. In order to increase the efficiency of the extracted programs,
we have also implemented a feature to translate terms into Haskell pro-
grams. To illustrate our theory and implementation, a formalisation of a
theory of uniformly continuous functions due to Berger is presented.

1 Introduction

Program extraction is a method for obtaining certified algorithms by extracting
the computational content hidden in proofs. To get successful algorithms, the
formalization of the proof is not a superficial issue but rather an essential one.
The Theory of Computable Functionals [24], TCF in short, has been developed
in order to provide a concrete framework for program extraction. TCF is im-
plemented straightforwardly in the Minlog [18] proof assistant. As available in
TCF, Minlog supports inductive and coinductive definitions and program extrac-
tion from classical proofs as well as from constructive ones. The internal term
language of Minlog can be exported to general-purpose programming languages.

This paper reports on new contributions to TCF and Minlog, focusing on two
aspects. One is a certain combination of inductive and coinductive definitions,
called nested definitions [6]. We make use of such definitions in a case study on
exact real arithmetic. The other is a feature to translate Minlog algebras and
terms into Haskell programs. This makes efficient execution of the extracted
programs possible. Translation to a lazy language such as Haskell is especially
beneficial when computing with infinite objects, such as in our case study.

We first describe TCF, with an emphasis on nested definitions. Then an ap-
plication of TCF and program extraction from nested definitions to exact real
arithmetic is presented: a translation of the usual type-1 representation of uni-
formly continuous functions into a type-0 representation. We also extract a pro-
gram which computes the definite integral of such functions. These case studies
are available in the Minlog distribution [18].
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2 Formal System

We study higher type functionals as well as functions and ground type objects.
Functionals in TCF are not necessarily total but partial in general. Based on
the understanding that evaluation must be finite, we assume two principles for
our notion of computability: the finite support principle and the monotonicity
principle. During the evaluation of some functional Φ, only finitely many inputs
ϕ0, . . ., ϕn−1 are used. Moreover, each of ϕi must be presented to Φ in a finite
form. This is the finite support principle. Assume Φ(ϕ0) evaluates to a value k
and let ϕ1 be more informative than ϕ0. Then Φ(ϕ1) results in k as well. This
is the monotonicity principle.

The notion of abstract computability is formulated as follows: an object is
computable when its set of finite approximations is primitive recursively enu-
merable. In this section, we begin by making the notion of such computable
objects, called partial continuous functionals, concrete. Then we proceed to our
term calculus, its Haskell translation, and inductive/coinductive predicates.

2.1 Algebras and Their Total and Cototal Ideals

The formal term language of TCF is an extension of Gödel’s T, which is appro-
priate for higher type computation involving functionals. Types are built from
base types by the formation of function types. The base types themselves are
formed by free algebras given by their constructors. For instance the list alge-
bra Lα, where α is a type parameter, is defined by the two constructors empty
list []

Lα and the “cons” operator ::α→Lα→Lα . Formally, a constructor type is a
type expression of the form τ0 → . . . → τn−1 → ξi, where each τi is a type

expression where all "ξ appear strictly positively (i.e. not to the left of an arrow).
For any finite list of constructor types "κ, we (simultaneously) define algebras

μξ("κ), provided there is at least one constructor type such that "ξ does not oc-

cur in "τ (this ensures that all algebras are inhabited). For example, the algebra
of natural numbers N is defined by N = μξ(ξ, ξ → ξ). We also adopt the no-

tation Lα = μξ([]
ξ, ::α→ξ→ξ) in order to specify constructor names. Another

example is the algebra of branching trees. We simultaneously define (Ts,T)
by μξ,ζ(Emptyξ,Tconsζ→ξ→ξ, Leafζ ,Branchξ→ζ). Using the list algebra, we can
define another algebra of branching trees without the simultaneity by defining
NT = μξ(Lf

ξ,BrLξ→ξ). This is an example of a nested algebra [6]. Support for
such algebras has recently been added to Minlog.

The intended semantics of the term language is based on Scott’s information
systems [25] (see also Schwichtenberg and Wainer [24]). Algebras are interpreted
as sets of ideals, i.e. consistent and deductively closed sets of tokens, which are
type correct constructor trees possibly involving the special symbol ∗, meaning
“no information”. Consider a constructor tree P (∗) with a distinguished occur-
rence of ∗. An arbitrary P (C"∗), where C is a constructor, is called a one-step
predecessor of P (∗), written P (C"∗) (1 P (∗). Here P (C"∗) is obtained by sub-
stituting C"∗ for the distinguished ∗ in P (∗). Among ideals, we are especially
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interested in total and cototal ideals. A cototal ideal x is an ideal whose every
constructor tree P (∗) ∈ x has a one-step predecessor P (C"∗) ∈ x. A total ideal
is a cototal ideal such that the relation (1 is well founded. For instance, the
cototal ideal {∗::∗, 0::∗, ∗::∗ ::∗, 0::∗ ::∗, ∗::1::∗, 0::1::∗, ∗::∗ ::∗ ::∗, . . .} denotes the
non-well founded list of natural numbers [0, 1, . . .].

A binary tree with a (possibly) infinite height is informally defined by a term
t := Br(t::t::[]) whose denotation is an NT-cototal LNT-total ideal (see also
Section 2.5). Total ideals of (Ts,T) are isomorphic (as information systems) to
pairs of LNT-total NT-total ideals and NT-total LNT-total ideals.

2.2 Corecursion

An arbitrary term in Gödel’s T is terminating and hence denotes a total ideal.
Constructors are used to construct total ideals whereas recursion operators are
used to inspect a total ideal from its leaves to the root. In order to accommodate
cototal as well as total ideals, we add to Gödel’s T two more kinds of constants,
namely destructors and corecursion operators, which this section describes. De-
structors, the dual of constructors, are used to inspect the structure of cototal
ideals, while corecursion operators give a way to construct cototal ideals.

As an example, we consider the algebraNT of nested trees. Define the disjoint
sum of α and β by α + β = μξ(inl

α→ξ, inrβ→ξ), and the unit type U = μξ(u
ξ).

The destructor DNT has the following type and conversion relation:

DNT : NT→ U+ LNT

DNT Lf "→ inl u, DNT (Br as) "→ inr as.
(1)

Corecursion operators give a way to construct cototal ideals. The corecursion
operator coRτ

NT has the following type and conversion relation:

coRτ
NT : τ → (τ → U+ LNT+τ )→ NT

coRτ
NTN M "→ case MN of

inl u→ Lf

inr qs→ Br (MNT+τ→NT
λαLα

qs [id, λx(
coRxM)]).

where [f, g]ρ+σ→τ is defined for fρ→τ and gσ→τ by

[f, g](inl xρ) "→ fx, [f, g](inr yσ) "→ gy,

and the map constant Mσ→ρ
λαLα

witnesses the functoriality of Lα. It has the fol-
lowing type and conversion relation:

M : Lσ → (σ → ρ)→ Lρ

M [] f "→ [], M (x ::xs) f "→ fx :: (M xs f).

In the conversion rule for coRτ
NT, the first argument of the corecursion operator

is passed to the second functional argument. The result of this application deter-
mines what the construction of the cototal ideal is. In the case of nested algebras,
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the value algebra of corecursion operators occurs inside of other algebras as a
parameter. Map operators play a crucial role in reaching the value algebra so
that the corecursion operator can do its work.

2.3 Realizability

We now address the issue of extracting computational content from proofs. The
method of program extraction is based on modified realizability as introduced
by Kreisel [16] and described in detail in Schwichtenberg and Wainer [24]. In
short, from every constructive proof M of a non-Harrop formula A (in natural
deduction) one extracts a program et(M) “realizing” A, essentially by removing
computationally irrelevant parts from the proof (proofs of Harrop formulas have
no computational content). The extracted program has some simple type τ(A)
which depends solely on the logical shape of the proven formula A. In its original
form the extraction process is fairly straightforward, but often leads to unnec-
essarily complex programs. In order to obtain better programs, proof assistants
(for instance Coq [9], Isabelle/HOL [13], Agda [1], Nuprl [21], Minlog [18]) offer
various optimizations of program extraction. Below we describe optimizations
implemented in Minlog [22], which are relevant for our present case study.

Quantifiers without Computational Content. Besides the usual quanti-
fiers, ∀ and ∃, Minlog has so-called non-computational quantifiers, ∀nc and ∃nc,
which allow for the extraction of simpler programs. These quantifiers, which were
first introduced by Berger [2], can be viewed as a refinement of the Set/Prop
distinction in constructive type systems like Coq. Intuitively, a proof of ∀ncx A(x)
(A(x) non-Harrop) represents a procedure that assigns to any x a proofM(x) of
A(x) where M(x) does not make “computational use” of x, i.e., the extracted
program et(M(x)) does not depend on x. Dually, a proof of ∃ncx A(x) is a proof
of M(x) for some x where the witness x is “hidden”, that is, not available
for computational use; in fact, ∃nc can be seen as inductively defined by the
clause ∀ncx (A→ ∃ncx A). The types of extracted programs for non-computational
quantifiers are τ(∀ncxρA) = τ(∃ncxρA) = τ(A) as opposed to τ(∀xρA) = ρ →
τ(A) and τ(∃xρA) = ρ × τ(A). The extraction rules are, for example in the
case of ∀nc-introduction and -elimination, et((λxM

A(x))∀
nc
x A(x)) = et(M) and

et((M∀nc
x A(x)t)A(t)) = et(M) as opposed to et((λxM

A(x))∀xA(x)) = et(λxM) and
et((M∀xA(x)t)A(t)) = et(Mt). For the extracted programs to be correct the vari-
able condition for ∀nc-introduction must be strengthened by additionally requir-
ing that the abstracted variable x does not occur in the extracted program et(M),
and similarly for ∃nc. Note that for a Harrop formula A the formulas ∀ncx A, ∀xA
are equivalent.

2.4 Translation to a General-Purpose Programming Language

The programs extracted from proofs in Minlog are once again represented as
terms in the internal term language. This has the advantage that a general
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soundness theorem can be stated (and automatically proven) in the system.
However, for efficiency and interoperability reasons, it is sometimes beneficial
to translate the extracted terms into programs in a general-purpose program-
ming language. We now describe our new translation from Minlog terms into
Haskell programs (there is also limited support for translating into Scheme).
Coq [17], Isabelle/HOL [5] and Agda [26] provide similar features.

Terms of Gödel’s T – lambda abstraction, application, variables etc – are
translated to corresponding Haskell terms. For recursion and corecursion opera-
tors, polymorphic functions are generated. For example, the translation of the
corecursion operator coRτ

NT above is implemented as

ntCoRec :: a -> (a -> Maybe [Either NT a]) -> NT

ntCoRec e f = case (f e) of

Nothing -> Lf

Just z ->

Br (fmap (\ w -> case w of

Left x -> x

Right y -> ntCoRec y f) z)

Here Haskell’s lazy evaluation means that we do not need to worry about guard-
ing the recursive call. The occurrence of the map operator MNT+τ→NT

λαLα
gets

translated to the fmap function from the Functor type class. In this case, the
list algebra from Minlog gets translated to the list data type in Haskell, which
already has a Functor instance. For custom data types, the instance is derived
automatically by GHC using the DeriveFunctor flag.

Lists, integers, rational numbers, sum types, product types and the unit type
are translated to their standard implementation in the Haskell prelude. For ef-
ficiency reasons, natural numbers are translated to integers. Other algebras are
translated into algebraic data types.

Program constants and their computation rules are translated to functions
defined by pattern matching. Here some care must be taken for e.g. natural
numbers, since they are translated to integers, for which no pattern matching is
available. Instead guard conditions are used, as in the translation of the following
parity function for natural numbers:

parity :: Integer {-Nat-} -> Bool

parity 0 = True

parity 1 = False

parity n | n > 1 = parity (n - 2)

The realizer for ex-falso-quodlibet ff → A makes use of a canonical inhabitant
inhabτ(A) of type τ(A). This is justified since all types are inhabited in the
intended semantics, but not so in Haskell. Hence we define a type class

class Inhabited a where

inhab :: a

and ensure we generate instances and track inhabitedness constraints in the
types of the generated functions.
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2.5 Inductive and Coinductive Definitions

We are particularly interested in dealing with a combination of induction and
coinduction in TCF. Starting from simultaneous inductive definitions, we de-
scribe nested inductive definitions and furthermore nested inductive/coinductive
definitions. See e.g. Jacobs and Rutten [14] for a gentle introduction to coinduc-
tion.

As an example, consider the simultaneously defined algebras (Ts,T)
= μξ,ζ(Emptyξ,Tconsζ→ξ→ξ, Leafζ ,Branchξ→ζ) of finitely branching trees again.
The totality predicates (TTs, TT) of (Ts,T), of arity (Ts) and (T) respectively,
are simultaneously inductively defined by the following four clauses:

TTs Empty, ∀nca,as(TT a→ TTs as→ TTs (Tcons a as)),

TT Leaf, ∀ncas (TTs as→ TT (Branch as)).

From the above, a nested definition of branching trees is derived by removing the
simultaneity. This leads to the definition of the algebras Lα = μξ([]

ξ
, ::α→ξ→ξ)

and NT = μξ(Lf
ξ,BrLξ→ξ). To define the totality predicate for NT, we first

define the relativised totality predicate RTX for lists, with arity (Lα) for X
of arity (α). Relativised totality means the totality relative to the parameter
predicate X . It is given by the following clauses:

RTX [], ∀ncx,xs(Xx→ RTX xs→ RTX (x::xs)).

We can now define the totality predicate of nested trees using the relativised
totality predicate RTX of lists, with X instantiated to TNT:

TNT Lf, ∀as(RTTNT as→ TNT (Br as)).

We call a predicate definition nested if the predicate to be defined occurs strictly
positively as a parameter of an already defined predicate in a clause formula.
Witnesses of nested predicates have nested algebras as their types.

Coinductive predicates arise as “duals” of inductive ones. For example, for
the totality predicate TNT we can define its companion predicate coTNT by the
single clause

∀nca (coTNTa→ a = Lf ∨ ∃ncas (RTcoTNTas ∧ a = Bras)). (2)

We call such a companion predicate definition derived from an inductive one a
coinductive definition. A witness for a proposition coTNT a is an NT-cototal
LNT-total ideal, which is a finitely branching tree of (possibly) infinite height.
The computational content of (2) is the destructor DNT. We still need to express
that RTX is the least predicate satisfying the clauses, and that coTNT is the
greatest predicate satisfying the clause. The former is done by means of the
least-fixed-point axiom

∀ncxs (RTX xs→P []→
∀ncx,xs(Xx→ RTX xs→ P xs→ P x::xs)→
P xs).

(3)
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The latter is done by means of the greatest-fixed-point axiom.

∀nca (Q a→∀nca (Q a→ a = Lf ∨ ∃ncas (RTcoTNT∨Q as ∧ a = Br as))→
coTNT a).

(4)

The predicates P and Q are called competitor predicates which satisfy the same
clause(s) as RTX and TNT, respectively. From (3) and (4), we see that P is a
superset of RTX and Q is a subset of coTNT.

The term extracted from (3) is Gödel’s (structural) recursion operator RLα ,
and the term extracted from (4) is the corecursion operator coRNT defined in
Section 2.2.

3 Case Study: Uniformly Continuous Functions

To illustrate program extraction in TCF, we formalize the theory of uniformly
continuous functions from constructive analysis [7,23]. Our first case study pro-
vides an alternative view of uniformly continuous functions of type-1 as a cototal
object of type-0; i.e. of ground type. We then extract a program which computes
the definite integral of a uniformly continuous function of type-0. This was first
studied by Berger [3] in the setting of program extraction. We now offer machine
extraction from formalized proofs of these results in Minlog. Before continuing,
we review representations of real numbers of type-1 and type-0. In this section,
we only consider real numbers and uniformly continuous functions in the interval
[−1, 1] in order to work with stream represented real numbers [8] and uniformly
continuous functions on them.

A real number of type-1 is a Cauchy real with a modulus, namely a pair
〈x,M〉, where x is a bounded function of type N→ Q and M : N→ N satisfies
the following Cauchy condition:

∀kN∀n,m≥Mk(|xn− xm| ≤ 2−k).

Define the type of signed digits by SD = μξ(−1ξ, 0ξ, 1ξ). A real number of
type-0 is a signed digit stream d0::d1:: . . ., where di is of type SD. Informally,
the stream d0::d1:: . . . denotes the real number

∑
i=0

di

2i+1 . We represent such an
object by a cototal ideal of LSD, which is a possibly infinite list of signed digits.
An arbitrary real number can be represented by a type-0 object, for example by
a stream of integers in {−9,−8, . . . , 8, 9} with a decimal point [27,28].

3.1 Data Types of Uniformly Continuous Functions

Consider a triple 〈h, α, ω〉, where h : Q→ N→ Q is a bounded function and α
and ω are of type N→ N. Suppose that it satisfies

∀aQ,kN,n≥α(k),m≥α(k)(|h an− h am| ≤ 2−k),

∀aQ,bQ,kN,n≥α(k)(|a− b| ≤ 2−ω(k)+1 → |h an− h b n| ≤ 2−k).
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The first formula states the Cauchyness of 〈h a, α〉. Classically this can be stated
by the formula ∀a,k∃l∀n,m≥l(|h an − h am| ≤ 2−k), while constructively the
way to determine l has to be given, for instance by a Cauchy modulus α. The
second formula states the uniform continuity of 〈h, α〉, once again with explicit
modulus of uniform continuity ω for constructive reasons. Finally, we assume that
h is bounded between −1 to 1. We adopt objects of this kind as our uniformly
continuous functions of type-1, namely of first order function type. Application
of a type-1 uniformly continuous function 〈h, α, ω〉 to a Cauchy real 〈x,M〉 is
defined to be

〈λn(h (xn)n), λk max(α(k + 2),M(ω(k + 1)− 1))〉.

For our type-0 representation of uniformly continuous functions we adopt so-
called read-write machines [3] or stream processors [11,12]. These are W-cototal
RW-total ideals where

Rα := μξ(Put
SD→α→ξ,Getξ→ξ→ξ→ξ),

W := μξ(Stop
ξ,ContRξ→ξ).

A read-write machine is a potentially non-well founded tree with internal Put
nodes and branching at Get nodes. It intuitively represents a function from signed
digit streams to signed digit streams as follows: start at the root of the tree. If
we are at the node (Put d t), output the digit d and carry on with the tree t.
If we are at the node (Get t−1 t0 t1), read a digit d from the input stream and
continue with the tree td. If we reach a Stop node, we return the rest of the input
unprocessed as output. Because a read-write machine is a W-cototal RW-total
ideal, the output might be infinite, but RW-totality ensures that the machine
can only read finitely many input digits before producing another output digit;
the machine represents a continuous function.

3.2 Formalization

We work with the abstract theory of uniformly continuous functions. Suppose
that ϕ is a type variable representing abstract uniformly continuous functions.
Due to the use of non-computational connectives, any object of type ϕ appear-
ing in the proofs will disappear when a program is extracted. This theory is
axiomatized in Appendix A. Note that all axioms are non-computational.

Let f range over the type variable ϕ, and also p, q range over Q and k, l
range over N. We define a comprehension term C (for “continuous”) of abstract
uniformly continuous functions as follows.

C := {f |∀k∃lBl,kf}, where Bl,k := {f |∀p∃q(f [Ip,l] ⊆ Iq,k)}.

Here, Iq,k represents the interval [q − 2−k, q + 2−k] of length 21−k centered at
q, while f [Ip,l] represents the image of Ip,l under f ; the exact behavior is ax-
iomatized in Appendix A. We write I for the interval I0,0 = [−1, 1]. Witnesses
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for Bl,kf and Cf are total ideals of type (an isomorphic copy of) Q → Q and
N → N × (Q → Q), respectively. The latter represents 〈h, α, ω〉 by a term
λn〈ω n, λa h a (αn)〉. Let (Outd ◦ f)(x) = 2f(x)− d, (f ◦ Ind)(x) = f(x+d

2 ) and

Id = [d−1
2 , d+1

2 ] for each d ∈ {−1, 0, 1}. We call Id a basic interval. We inductively
define a predicate ReadX of arity (ϕ) by the following clauses

∀ncf ∀d(f [I] ⊆ Id → X(Outd ◦ f)→ ReadXf), (ReadX)+0

∀ncf (ReadX(f ◦ In−1)→ ReadX(f ◦ In0)→ ReadX(f ◦ In1)→
ReadXf).

(ReadX)+1

The least-fixed-point axiom (ReadX)− is defined to be

∀ncf (ReadXf →∀ncf ∀d(f [I] ⊆ Id → X(Outd ◦ f)→ Pf)→
∀ncf (ReadX(f ◦ In−1)→ P (f ◦ In−1)→

ReadX(f ◦ In0)→ P (f ◦ In0)→
ReadX(f ◦ In1)→ P (f ◦ In1)→ Pf)→

Pf).

(ReadX)−

Furthermore, we give a nested inductive definition of a predicate Write of
abstract uniformly continuous functions by the following clauses

Write(Id), ∀ncf (ReadWritef →Writef),

where Id is the identity function. Witnesses for ReadXf and Writef are total
ideals of Rα and W, respectively. We define coWrite, a companion predicate of
Write, by the following clause

∀ncf (coWritef → f = Id ∨ReadcoWritef). (coWrite)−

The greatest-fixed-point axiom (coWrite)+ of coWrite is

∀ncf (Qf → ∀ncf (Qf → f = Id ∨ ReadcoWrite∨Qf)→ coWrite f). (coWrite)+

A witness for coWritef is a W-cototal RW-total ideal. Intuitively, coWritef
says that f is productive as a function on signed digit representations. If we
can use axiom (ReadcoWrite)

+
0 , we know that the image of f is contained in an

interval of radius 1
2 centered at the digit d, so that the first output digit must

be d independently of the input. By using the function Outd ◦ f , we remove the
leading digit and shift the input sequence one digit to the left. We continue to
prove that f is productive on the rest of the input sequence. If the image of f is
not contained in a basic interval, we can split the interval in three subintervals
and check that f is productive on all of them by using axiom (ReadcoWrite)

+
1 . This

corresponds to reading another input digit. Since ReadX is inductively defined,
we can only use (ReadcoWrite)

+
1 finitely many times before we are forced to use

(ReadcoWrite)
+
0 and another output digit is determined.

In our Minlog formalization, ϕ is given as a type variable, and Ind, Outd and
Id are defined as constants without computational meaning with value type ϕ.
This is not a problem, since all such constants will disappear in the program
extraction process due to careful use of non-computational connectives.
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3.3 Informal Proofs

We present informal proofs from which programs on uniformly continuous func-
tions are extracted. Formalized proofs can be found in the Minlog distribution
in the file examples/analysis/readwrite.scm.

For the first case study, Axiom 1 in Appendix A is used.

Theorem 1 (Type-1 u.c.f. into type-0 u.c.f.).

∀ncf (Cf → coWritef).

Proof. Let f be given and assume Cf . We prove coWritef by the greatest fixed
point axiom coWrite+ with C for the competitor. It suffices to prove ∀ncf (Cf →
f = Id∨ReadcoWrite∨Cf). Again let f be given and assume Cf , i.e. in particular
Bl,2f for some l. By Lemma 2, the right disjunct of the goal holds. � 
The above proof considerably depends on the following lemma, which in turn
depends on the next ones.

Lemma 2. ∀l∀ncf (Bl,2f → Cf → ReadcoWrite∨Cf).

Proof. By induction on l. Base: l = 0. Let f be given, and assume B0,2f and Cf .
Applying Lemma 3, there is a d such that f [I] ⊆ Id. By Lemma 4, Cf implies
C(Outd ◦ f), hence (coWrite ∨ C)(Outd ◦ f). Now use the introduction axiom
(ReadcoWrite∨C)

+
0 . Step: l "→ l+ 1. Suppose the following induction hypothesis

∀ncf (Bl,2f → Cf → ReadcoWrite∨Cf), (5)

and prove ∀ncf (Bl+1,2f → Cf → ReadcoWrite∨Cf). Assume Bl+1,2f and Cf for
a given f . Our goal is ReadcoWrite∨Cf . By Lemma 4, we have Bl,2(f ◦ Ind) and
C(f ◦ Ind) for each d. The induction hypothesis (5) yields ReadcoWrite∨C(f ◦ Ind)
for each d, hence we can apply the introduction axiom (ReadcoWrite∨C)

+
1 to finish

the proof. � 
Lemma 3. ∀ncf (B0,2f → ∃d(f [I] ⊆ Id)).

Proof. Assume f and B0,2f . From the definition of Bl,k, f [I0,0] ⊆ Iq,2 for some
q holds. Because q is a rational number, either q ≤ − 1

4 , − 1
4 ≤ q ≤ 1

4 or 1
4 ≤ q.

Recall that our uniformly continuous function is bounded in [−1, 1]. It is possible
to determine either of Iq,2 ⊆ I−1, Iq,2 ⊆ I0 or Iq,2 ⊆ I1, hence ∃d(f [I] ⊆ Id). � 
Lemma 4. (i) ∀ncf,k,l∀d(f [I] ⊆ Id → Bl,k+1f → Bl,k(Outd ◦ f)).
(ii) ∀ncf ∀d(f [I] ⊆ Id → Cf → C(Outd ◦ f)).
(iii) ∀ncf,k,l∀d(Bl+1,kf → Bl,k(f ◦ Ind)).
(iv) ∀ncf ∀d(Cf → C(f ◦ Ind)). � 
We now turn to calculating the definite integral of uniformly continuous functions
to an arbitrary precision. In order to stay in the interval [−1, 1], we compute the

definite integral from −1 to 1 divided by two. We abbreviate 1
2

∫ 1

−1
f by

∫ H
f

(H for “half”). The properties we need of the integral and the real numbers are
axiomatized in Axiom 2 and Axiom 3 in Appendix A.
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Theorem 5 (Definite integral from −1 to 1).

∀ncf (coWritef → ∀n∃p(
∫ H

f ∈ Ip,n)).

Proof. Let f be given and assume coWritef . We finish the proof by induction

on n. Case n = 0. Choose p to be 0; then
∫ H

f ∈ I0,0 by the axiom. Case

n "→ n + 1. We prove ∃p(
∫ H

f ∈ Ip,n+1)). By (coWritef)−, we can do case
distinction on f = Id ∨ ReadcoWritef . Left case. Suppose f = Id. Let p be

0, then our goal is
∫ H

Id ∈ I0,n+1, which is clear by the axioms. Right case.
Suppose ReadcoWritef and use (ReadcoWrite)

−. Side base case. Let f and d be

given and assume f [I] ⊆ Id and coWrite(Outd ◦ f). We prove ∃p(
∫ H

f ∈ Ip,n+1).

By i.h. there is a p′ such that
∫ H

(Outd ◦ f) ∈ Ip′,n, which implies
∫ H

f ∈
I p′+d

2 ,n+1
as desired. Side step case. Let f be given and assume side i.h. We prove

∃p(
∫ H

f ∈ Ip,n+1). By the side i.h., there are pd such that
∫ H

(f ◦ Ind) ∈ Ipd,n+1

for each d, thus 1
2 (
∫ H

(f ◦ In−1) +
∫ H

(f ◦ In1)) ∈ I p−1+p1
2 ,n+1

holds. This implies∫ H
f ∈ I p−1+p1

2 ,n+1
as desired. � 

3.4 Extraction

From a proof, Minlog extracts a term in an extension of Gödel’s T. In the next
stage, these, together with relevant algebras and program constants, can be
translated into a Haskell program using the term-to-haskell-program function
of Minlog. We present the Haskell programs obtained from our formalized proofs.
For aesthetic reasons, we present slightly formatted versions of the programs as
suggested by e.g. HLint [19].

The algebras involved get translated to the following Haskell data types:

data AlgB = CInitB (Rational -> Rational)

data AlgRead a = Put Sd a

| Get (AlgRead a) (AlgRead a) (AlgRead a)

deriving (Show, Read, Eq, Ord, Functor)

data AlgWrite = Stop | Cont (AlgRead AlgWrite)

deriving (Show, Read, Eq, Ord)

data Sd = L | M | R

deriving (Show, Read, Eq, Ord)

We see how AlgB is just an isomorphic copy of Rational -> Rational, and
how AlgRead has a type parameter a which gets instantiated to AlgWrite in the
constructor Cont.
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The extracted program from Lemma 3 is

cLemmaThree :: AlgB -> Sd

cLemmaThree (CInitB g) =

if (numerator ((g 0) + (1/4)) > 0) then

if (numerator ((g 0) - (1/4)) > 0) then R else M

else L

This program computes a signed digit d such that the image of f – an abstract
function which does not appear in the extracted term – is contained in Id. It
takes a rational function g which realizes Bl,2 f as input; hence the image is
contained in an interval of length 1

2 , centered at g 0. The calculation of the
output is reduced to a simple decision of rational inequalities.

The extracted program from Lemma 2 is

cLemmaTwo :: Integer -> AlgB -> (Integer -> (Integer, AlgB)) ->

AlgRead (Either AlgWrite

(Integer -> (Integer, AlgB)))

cLemmaTwo n =

natRec n

(\ w h ->

Put (cLemmaThree w)

(Right (cLemmaFour_ii (cLemmaThree w) h)))

(\ n3 g w h ->

Get (g (cLemmaFour_iii L w) (cLemmaFour_iv L h))

(g (cLemmaFour_iii M w) (cLemmaFour_iv M h))

(g (cLemmaFour_iii R w) (cLemmaFour_iv R h)))

The extracted term cLemmaTwo takes as input a natural number n, a rational
function w and a function h : N → N × AlgB (in our application, we only call
cLemmaTwo with 〈n, w〉 = h 2). Using recursion over n, it computes an approxima-
tion of h by a complete tree of height n with 3n leaves – a RW+(N→N×AlgB)-total
ideal. At the leaves, a signed digit d – computed from w using cLemmaThree –
and the remainder of the approximation of h – computed by cLemmaFour_ii

below, using d – is stored. At internal branching nodes, we split the domain of
h into three subdomains – left, middle and right – modify w and h accordingly
(using cLemmaFour_iii and cLemmaFour_iv below), and recurse.

The above term involves terms extracted from Lemma 4. They work in the
following ways.

cLemmaFour_i :: Sd -> AlgB -> AlgB

cLemmaFour_i sd (CInitB h) =

CInitB (\ a -> (2 * h a) - (sDToInt sd % 1))

cLemmaFour_ii :: Sd -> (Integer -> (Integer, AlgB)) ->

Integer -> (Integer, AlgB)

cLemmaFour_ii sd g n = case g (n + 1) of

(n1, w1) -> (n1 , cLemmaFour_i sd w1)
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cLemmaFour_iii :: Sd -> AlgB -> AlgB

cLemmaFour_iii sd (CInitB h) =

CInitB (\ a -> h ((a + (sDToInt sd % 1)) / 2))

cLemmaFour_iv :: Sd -> (Integer -> (Integer, AlgB)) ->

Integer -> (Integer, AlgB)

cLemmaFour_iv sd g n = case g n of

(n1, w) -> if n1 == 0 then (0, cLemmaFour_iii sd w)

else (n1 - 1, cLemmaFour_iii sd w)

The extracted term from Theorem 1 is

type1to0 :: (Integer -> (Integer, AlgB)) -> AlgWrite

type1to0 r = algWriteCoRec r

(\ h -> (Just (case h 2 of (n, w) -> cLemmaTwo n w h)))

This program corecursively constructs a W-cototal RW-total ideal by stacking
RW-total ideals computed by cLemmaTwo. It uses the modulus of continuity n

at precision 2 to calculate an approximation of s as an RW-total ideal, as in
Lemma 2. In fact, n is the number of input signed digits to be read to determine
one output signed digit. The extracted term from Theorem 5 is

integration :: AlgWrite -> Integer -> Rational

integration h n = natRec n (const 0)

(\ n1 t h1 ->

(case algWriteDestr h1 of

Nothing -> 0

Just s -> algReadRec s

(\ sd h2 -> (t h2 + (sDToInt sd % 1)) / 2)

(\ s1 a1 s2 a2 s3 a3 -> (a1 + a3) / 2)))

h

This program reads the given type-0 function to accumulate the possible output
digits to compute the definite integral. The second argument is a number n to
specify the bound of the computation in such a way that the program processes
the read-write machine from its root up to the nth RW-total ideals. At a branch,
the recursively computed integral on the middle interval, i.e. a2, is ignored be-
cause it suffices to see value on the left and the right subintervals, i.e. [−1, 0]
and [0, 1]. At a leaf, the output digit is counted to contribute to the output with
its height in the tree.

3.5 Experiment

As a first example, we instantiate the theorems to the function f(x) := −x. From
a type-1 representation of f , we compute a type-0 representation by means of
our extracted program. We define f by 〈h, α, ω〉 where h an := −a, αn := 0
and ω n := n + 1. The input of type1to0 is λn〈ωn, λa(ha(αn))〉 which turns
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Fig. 1. Type-0 representation of f(x) = −x

into the Haskell expression fIn = \ n -> (n+1, CInitB (\ x -> -x)). The
output type1to0 fIn is graphically presented in Figure 1, where Cont is omitted,
Get is a branching node and Put d is denoted by −, 0 or + respectively for
d = −1, 0 or 1.

In our next example, we compute half of the definite integral for the function
f(x) :=

√
x+ 2 − 1. This integrand is defined to be 〈h, α, ω〉, where h an :=

(RN n 1λ , b (
b+ a+2

b

2 ))−1, αn := n+1, and ω n := Predn where Pred : N→ N is
the predecessor function. Converting this to the Haskell function it represents, we
end up with \ n -> (Main.pred n, CInitB (\ x -> h x (n+1))). We give
two arguments to integration, a type-0 function and a natural number, the
accuracy. The first input to integration is computed by type1to0 from the
above type-1 function. Specifying 8 as the second argument, the output is 1633
% 4096 whose decimal expansion is 0.398681640625 · · ·. Comparing our result

with the manually calculated definite integral 1
2

∫ 1

−1
f(x)dx =

√
3− 4

3 , the error

is 0.00003583 · · · , which indeed is smaller than 2−8 = 0.00390625.

4 Conclusion

We presented the formal theory TCF and its implementation Minlog which sup-
port nested inductive/coinductive definitions. Minlog extracts programs in an
extension of Gödel’s T from proofs involving nested definitions. Moreover, terms
in the extension of Gödel’s T can be translated into programs in programming
languages such as Haskell. We gave an application to the theory of uniformly
continuous functions as an illustration.

Related Work. Nested definitions are used by Ghani, Hancock and Pattinson
[11,12] to define uniformly continuous functions. They are also studied by Bird
and Meertens [6] from a purely programming perspective. Krebbers and Spit-
ters [15] give effective certified programs for exact real number computation.
Berger and Seisenberger [4] considers “pen and paper” program extraction for
a system with induction and coinduction. Berger [3] studies program extrac-
tion and its application to exact real arithmetic. He manually extracts programs
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from proofs dealing with uniformly continuous functions. Our case study is heav-
ily based on his results. More case studies based on Berger’s work, e.g. function
application and composition, are available in the Minlog distribution. Also other
researchers have studied the combination of induction and coinduction. Nakata
and Uustalu [20] study the semantics of interactive programs by means of induc-
tion nested into coinduction, and give a formalization in Coq. Danielsson and
Altenkirch [10] study so-called mixed induction and coinduction, using Agda.
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A Axioms

Axiom 1 (Abstract Theory of Uniformly Continuous Functions)

∀f,d,p,l,q,k(f [I ] ⊆ Id → Outd ◦ f [Ip,l] ⊆ Iq,k → f [Ip,l] ⊆ I q+d
2

,k+1
), (OutElim)

∀f,d,p,l,q,k(f [I ] ⊆ Id → f [Ip,l] ⊆ I q+d
2

,k+1
→ Outd ◦ f [Ip,l] ⊆ Iq,k), (OutIntro)

∀f,d,p,l,q,k(f ◦ Ind[Ip,l] ⊆ Iq,k → f [I p+d
2

,l+1
] ⊆ Iq,k), (InElim)

∀f,d,p,l,q,k(f [I p+d
2

,l+1
] ⊆ Iq,k → f ◦ Ind[Ip,l] ⊆ Iq,k), (InIntro)

∀f,p(f [Ip,0] ⊆ I), (UcfBound)

∀p,l(Id[Ip,l] ⊆ Ip,l), (UcfId)

∀f,p,l,q,k(f [Ip,l] ⊆ Iq,k → f [Ip,l+1] ⊆ Iq,k), (UcfInputSucc)

∀f,q(q ≤ − 1
4
→ f [I ] ⊆ Iq,2 → f [I ] ⊆ I−1), (UcfLeft)

∀f,q(− 1
4
≤ q ≤ 1

4
→ f [I ] ⊆ Iq,2 → f [I ] ⊆ I0), (UcfMiddle)

∀f,q( 14 ≤ q → f [I ] ⊆ Iq,2 → f [I ] ⊆ I1). (UcfRight)

Axiom 2 (Abstract Theory of Real Numbers)

∀n(0 ∈ I0,n), (RealZero)

∀x,p,n,d(x ∈ Ip,n → x+d
2
∈ I p+d

2
,n+1

), (AvIntro)

∀x,y,p,q,n(x ∈ Ip,n → y ∈ Iq,n → x+y
2
∈ I p+q

2
,n
). (RealAvrg)

Axiom 3 (Abstract Theory of Integration)

∀f,d(
∫ H

f = 1
2
(
∫ H

(Outd ◦ f) + d)), (HIntOut)

∀f (
∫ H

f = 1
2
(
∫ H

(f ◦ In−1) +
∫ H

(f ◦ In1))), (HIntIn)∫ H
Id = 0, (HIntId)

∀f (
∫ H

f ∈ I0,0). (HIntBound)

http://www.nuprl.org/
http://www.math.lmu.de/~schwicht/seminars/semws11/constr11.pdf
https://lists.chalmers.se/pipermail/agda/2008/000219.html
https://lists.chalmers.se/pipermail/agda/2008/000219.html
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Abstract. Current techniques for building formal proofs interactively
involve one or several proof languages for instructing an interpreter of
the languages to build or check the proof being described. These linguistic
approaches have a drawback: the languages are not generally portable,
even though the nature of logical reasoning is universal. We propose
a somewhat speculative alternative method that lets the user directly
manipulate the text of the theorem, using non-linguistic metaphors. It
uses a proof formalism based on linking subformulas, which is a variant
of deep inference (inference rules are allowed to apply in any formula
context) where the relevant formulas in a rule are allowed to be arbitrarily
distant. We substantiate the design with a prototype implementation of
a linking-based interactive prover for first-order classical linear logic.

1 Introduction
Formal proofs are more fundamentally computational than mathematical. Say
we want to prove (a⊃ b)⊃ (b⊃c)⊃ (a⊃ c). Current proof languages are generally
always languages of interaction, so a proof is an arrangement of instructions to a
stateful interpreter that allows it to build (or check) an underlying proof object
in a trusted natural deduction or a sequent calculus formulation of the logic. A
formal proof of this theorem is, therefore, something like this;

Suppose (1) a⊃ b, (2) b⊃ c, (3) a; to show c, we backchain (2) to change
the goal to b, then we backchain (1) to change it to a, which we already
have by (3).

(Most proof languages can express the above more succinctly.) This proof nat-
urally resembles a computational trace where the steps of the computation are
the (primitive or derived) inference rules of the logic, possibly with the use of
additional lemmas. However, this formal proof obscures the simple mathematical
intuition behind the proof, function composition; indeed, the composition is fully
unfolded and sequentialized. In order to write the more natural mathematical
proof, the user would first have to find a lemma in the standard library (or write
one) that implements this intuition.

Because formal proof languages are more closely tied to the underlying calcu-
lus, and often to formal theories, they are generally not portable as such across
different systems. In the rare instances where two different formal proof systems
(take, e.g., Coq and Isabelle) do exchange proof objects, they tend to be low-
level “logical bytecode” (λ-terms built internally by the proof tactics or rewriting

S. Blazy, C. Paulin-Mohring, and D. Pichardie (Eds.): ITP 2013, LNCS 7998, pp. 386–401, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://chaudhuri.info
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traces) that bear no resemblance to the proof text a user actually writes and
are not expected to be read by humans (some examples: [17,5]). Only the most
committed (and masochistic) user learns to be proficient in many systems, so
the communities of users of formal systems have become rather balkanized. It is
worth asking if there is a sense in which one can build an interactive prover free
of the shackles of language.

To answer this question, let us begin by noting that a proof fundamentally
consists of two varieties of reasoning: reasoning about the subformula structure,
and reasoning about links between different subformulas. Examples of the first
variety are: to prove the goal A ∧B create two independent subgoals for A and
B, or to use an assumption ∀x. A add an instantiation [t/x]A as an additional
assumption. Examples of the second variety are: to prove the goal A search for an
assumption A (use of hypothesis), or to prove the goal C first prove A and then
show that C follows from A (cut or substitution). The language for establishing
the links is surprisingly similar across proof languages; they generally always use
hypothesis labels and terms such as apply or assert. Structural reasoning differs
widely, however; at one end of a spectrum are languages based on tactics that
drive a stateful prover through a proof tree, while at the other end are languages
that reify the proof tree textually in the proof document but do not prescribe an
order of evaluation. Crucially, though, the entire point of the structural reasoning
is to enable the links, which are the only ways to finish and compose proofs and
are therefore the essence of a proof, so the surprising design focus on structural
reasoning seems misplaced.

How can one make linking the primary aspect of formal proof construction?
Unsurprisingly, this question has been asked and answered a number of times,
but never satisfactorily. This paper combines two existing answers—proof by
pointing [4] and the calculus of structures [7,15]—in a way that improves on
both and suggests a research direction.

Proof by pointing is the first attempt to systematically construct a non-
linguistic interaction method on top of an existing proof interaction language
such as the tactics language of Coq [3]. The user proves a theorem by a sequence
of mouse clicks on subformulas; each click brings the indicated formula to the fore-
ground of the current goal, and possibly creates additional background subgoals.
Depending on the occurrence of the subformula, each click is interpreted as a
sequence of tactics that mimics a sequence of sequent rules. Once a subformula is
brought into the foreground on both sides of the sequent arrow, the correspond-
ing link is established and the goal is closed. The problem with the pointing
approach appears after this closure: the remaining subgoals that were produced
to establish the link are left in an “exposed” state and may be difficult to reason
about subsequently. To illustrate, in the earlier example of (a⊃b)⊃(b⊃c)⊃(a⊃c)
the user can click on (i.e., point to) the two occurrences of b. The residual goals
after the main goal is closed are: a ⊃ b	 a and a ⊃ b, b⊃ c, c	 a⊃ c; the former
goal is unprovable! This does not correspond to the intuition of linking the two
bs, i.e., of composing the assumptions a⊃ b and b ⊃ c to get a new assumption
a⊃ c, which would match the succedent of the original theorem.
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The problem with the example above is that interpreting clicks as applica-
tions of sequent rules destroys the surrounding formula context by bringing the
indicated subformula to the top of the sequent. The interaction method is in-
herently deep (working on arbitrary subformulas), but the underlying shallow
calculus prevents deep reasoning. The user is forced to think about the order
of clicks to ensure that the sequents have the right shape. For instance, in the
above example the user would have to click on the rightmost a first, which would
ensure that when the bs are finally clicked on that the first residual subgoal is
not a⊃ b	 a but a, a⊃ b	 a.

To escape the bureaucracy of sequential syntax, we require a calculus of deep
inference that can preserve formula contexts and thereby perform logically un-
related reasoning steps in a free order. In this paper we use the calculus of
structures where there is no difference between a formula and a sequent, and
proof steps are allowed to apply in any formula context. Unfortunately, the cal-
culus of structures by itself cannot support our desired linking procedure above
either, because every rule in the calculus is still limited to immediate operands
of the principal connectives. (The two bs in the example were only ancestrally
linked.) We need to generalize the calculus of structures so that the interacting
subformulas may be themselves separated by other subformulas.

As the main technical contribution, this paper gives a calculus for linked struc-
tures for first-order classical linear logic (Sec. 3). We pick linear logic because:
(1) it seamlessly encodes many intuitionistic and classical logics and has clean
proof-theoretic foundations; (2) it directly represents resource-nondeterministic
choices (splitting and sharing) that are essential when reasoning about computa-
tions; and (3) it is an extension to proof by pointing that was left to future work
in [4,11]. We substantiate the claims in the paper by a prototype implementation
of a linking-based proof-assistant called Profound (Sec. 4). Our implementation
is not currently integrated with any mainstream theorem proving system, so it
should be seen as conceptual and somewhat speculative.

2 The Calculus of Structures for Linear Logic
Let us begin with an overview of the calculus of structures for classical first-order
linear logic. Formulas (written A, B, . . . ) have the following grammar,

A, B, . . . ::= a A⊗⊗⊗B 1 A⊕⊕⊕B 0 !A ∃x. A
| a A

&

B

T

A & B T ?A ∀x. A

Atomic formulas (or atoms) are written using a, b, . . . , and the negation of a is
written as a. We use the term literal to refer to either an atom or a negated atom.
Each atomic formula is of the form p(t1, . . . , tn) where p is a predicate symbol and
t1, . . . , tn are first-order terms (written s, t, . . . ) formed from term variables (writ-
ten x, y, . . . ) and applications of function symbols (written f, g, . . . ) to terms. As
is standard, we assume an ambient signature for the logic that assigns arities to
predicate and function symbols. Formulas are in negation-normal form with each
vertical column in the above grammar depicting one De Morgan dual pair; we
write A for the dual of A.
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� a, a init � Γ
� Γ, ?A weak

� Γ, ?A, ?A
� Γ, ?A

contr

� Γ, A � Δ, B
� Γ, Δ, A ⊗⊗⊗ B

⊗⊗⊗ � 1 1
� Γ, Ai

� Γ, A1 ⊕⊕⊕ A2
⊕⊕⊕ � ?Γ, A

� ?Γ, !A !
� Γ, [t/x]A
� Γ, ∃x. A ∃

� Γ, A � Γ, B
� Γ, A & B & � Γ, T T

� Γ, A, B
� Γ, A

&

B

& � Γ
� Γ,

T T � Γ, A
� Γ, ?A ?

� Γ, A
� Γ, ∀x. A ∀

Fig. 1. Rules of LLK. In the ⊕⊕⊕ rule, i ∈ {1, 2}. In the ! rule, ?Γ stands for a multiset of
formulas each of which is prefixed by ?. In the ∀ rule, x is not free in the conclusion.

1
a

&

a id B

&

A
A

&

B
com (A

&

B)

&

C

A

&

(B

&

C) asc A
A

& Tbot

T

?A wk ?A

&

?A
?A

con

(A

&

C) ⊗⊗⊗ B

(A ⊗⊗⊗ B)

&

C
lsp

B ⊗⊗⊗ (A

&

C)
A

&

(B ⊗⊗⊗ C)
rsp Ai

A1 ⊕⊕⊕ A2
chc

!(?A

&

B)
?A

&

!B bng
[t/x]A
∃x. A wit

(A

&

B) & (A

&

C)
A

&

(B & C) add T
A

&

T top A
?A drl

∀x. (A

&

B)
(∀x. A)

&

B
all

1
1 ⊗⊗⊗ 1

1
1 & 1

1
T

1
!1

1
∀x. 1

Fig. 2. Rules of CLS. In the chc rule, i ∈ {1, 2}. In the all rule, x is not free in B.

For our definition of truth in this logic, we use a standard one-sided cut-free
sequent calculus—called system LLK—consisting of sequents of the form 	Γ,
where Γ is a multiset of formulas. Figure 1 contains the rules of LLK. The meta-
theory of this calculus can be found in any standard reference [10,19].

The calculus of structures is a formalism where there is no difference between
formula and sequent. It is a rewrite system where some entailment 	A, B are
turned into rewrite rules that replace, reading from conclusion to premises, a
subformula B in a formula with A. The system is best described in a contextual
form, where a formula context (written χ, ξ, . . . ) is formed by replacing a single
subformula of a formula by the hole (�). We write χ{A} for the formula formed
by replacing the hole in χ by A (possibly capturing the free variables of A).

Figure 2 contains the rules of the classical linear system CLS, which is a minor
variant of the system LS from [7]. Each rule is to be understood as closed over a
formula context; to illustrate, the rule id represents this general schema.

χ{1}
χ{a

&

a}

The first line of rules in Fig. 2 are the structural rules of the system. They are, in
order, the atomic identity rule; rules for commutativity, associativity, and unit
for

&

(due to which 〈 &

,

T〉 behaves as a commutative monoid structure); and
weakening and contraction for ?-formulas. The second line contains logical rules



390 K. Chaudhuri

corresponding to the positive connectives: splits (lsp and rsp) for ⊗⊗⊗, choices (chc)
for ⊕⊕⊕, promotion (bng), and instantiation (wit). In the wit rule, the witness term
t is only allowed to mention the bound variables in scope at the hole; in other
words, the signature over which conclusion and premise are well-formed does not
change on the application of any rule. The third line of rules contain the logical
rules for the negative connectives: distributivity (add) for &, absorption (top) for
T, dereliction (drl) for ?, and scope-enlargement of universal quantification (all).
The final line of rules define the mechanisms of combining different successful
“branches” of a CLS proof.

A derivation φ of B from A in any unary proof-system S, written φ : A
S−−→B,

is a sequence of rules of S with the bottom-most rule having conclusion B and
the top-most rule having premise A. We write just A

S−−→B to assert that there
is a φ such that φ : A

S−−→B. A proof φ of A in CLS is a derivation φ : 1 CLS−−−→A.
Under this notion of proof, CLS is sound and complete with respect to the usual
linear truth given in terms of LLK.

Theorem 1 (Soundness of CLS wrt. LLK). If A
CLS−−−→B, then 	A, B in LLK.

Proof. Every inference rule in CLS with premise A and conclusion B corresponds
to a provable sequent 	A, B of LLK. The result follows by a sequence of appli-
cations of cut in LLK. �!

Theorem 2 (Completeness of CLS wrt. LLK). If 	A1, . . . , An in LLK, then
1 CLS−−−→A1

&· · · &
An.

Proof. Under the interpretation of an LLK sequent 	A1, . . . , An as the formula
A1

&· · · &

An, every rule of LLK is derivable in CLS. Generally speaking, one
LLK rule corresponds to a sequence of CLS rules; in particular, the ⊗⊗⊗ rule of
LLK corresponds to a sequence of applications of lsp and rsp, while the & rule
corresponds to a sequence of applications of add. �!

Although the system CLS is cut-free, the following cut rule is admissible:

χ
{

A ⊗⊗⊗ A
}

χ{ T} cut

As usual, this rule is just the dual of the generalized identity (gid) rule:

χ{1}
χ
{

A

&

A
} gid

Indeed, every rule of CLS has a dual form where the premise and conclusion
are exchanged and dualized. The dual system of CLS, which we write as CLS,
is a system of refutation, where a refutation of A is a proof A

CLS−−−→ T

, and the
system that contains both CLS and CLS is a system where both cut and identity
can be reduced to their atomic forms [7,15]. Note that the rules lsp and rsp are
self-duals, and therefore in the intersection of CLS and its dual system.
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3 Formula Linking

The system CLS forms the foundation of the underlying calculus of the formula
linking approach. As mentioned in the introduction, we would like to support a
mode of interaction where the user can indicate that any two subformulas are
to be linked. The rules of CLS are not well suited for such interactions because
each inference rules operates on two immediately

&

-joined formulas.
The essence of linking is to generalize the interaction from

&

-joined formu-
las to formulas that are (eventually) ancestrally joined by

&

. Then, the user
can simply mark the formulas they wish to link and the system will apply the
right sequence of CLS rules to bring the linked formulas into the same context.
If the linked formulas are dual literals, then the system can simply replace the&

-formula with 1. The user can therefore repeatedly link dual literals when
constructing a proof. (The user is of course free to link other non-atomic subfor-
mulas as well.) Importantly, the user is allowed to make incorrect linkages that
render the formula unprovable. We require only that any provable formula be
also provable by a linkage simplification procedure.

First, let us make the notion of linkage formal. We enlarge the syntax of
formulas with a new form, u::A, called a linkage, which indicates that the formula
A is marked by a link u. (Links are drawn from some infinite set that is disjoint
from the set of variables.) We write u ∈ C to assert that C contains a subformula
of the form u::A. We require that every linkage in a formula occurs exactly
twice, and that the two subformulas marked by a link be ancestrally joined
by

&
in the subformula ordering. In other words, for each link u ∈ C, there

must exist formula contexts ξ, χ1, χ2 and subformulas A and B of C such that
C = ξ{χ1{u::A} &

χ2{u::B}}. These restrictions will be preserved by the linkage
simplification rules.

The user initiates a linkage by marking two distinct ancestrally

&

-joined sub-
formulas of the goal formula by a fresh link. We write this as an inference rule
that produces a new kind of connective ∗∗∗ (called interaction), as follows:

ξ{χ1{u::A} ∗∗∗ χ2{u::B}}
ξ{χ1{A} &

χ2{B}} lnk

We restrict this rule to only be applicable when the conclusion formula is free of
all linkages, although this restriction can often be relaxed. Note that unlike the
rules of CLS (Fig. 2), the rule lnk is doubly deep: not only is the principal formula
allowed to occur in any formula context, but also the result of applying the rule
has an effect on subformulas that are not necessarily the immediate descendants
of the principal formula.

Semantically, ∗∗∗ has the same truth value as

&

, but the rules applicable to ∗∗∗
have more restrictions than the analogous rules for

&

. If the immediate operands
of the interaction are the linkages—i.e., if the context χ1 and χ2 in the rule lnk
above are just holes—then one of the following two rules will be applied.

χ{1}
χ{u::a ∗∗∗ u::a} lnid

χ{A

&

B}
χ{u::A ∗∗∗ u::B} unlnk
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where the unlnk rule is only applicable when A and B are not dual literals.
The remaining rules for interaction connectives are used to permute it into

smaller contexts. Defining these rules requires a bit of caution, as best illustrated
by an example.

Example 3. Let us temporarily ignore linkages and just consider the interaction
connective ∗∗∗. Consider the provable formula (a⊗⊗⊗ b)

&

(a & b)

&

(a⊕⊕⊕ b). Suppose
the common

&

-ancestor a and the leftmost a is turned into ∗∗∗ with lnk.(
(a ⊗⊗⊗ b) ∗∗∗ (a & b)

) &

(a ⊕⊕⊕ b)
(a ⊗⊗⊗ b)

&

(a & b)

&

(a ⊕⊕⊕ b) lnk

Let us attempt to use the same rules as

&

in CLS for the ∗∗∗-formulas. If we
immediately apply a lsp to the interaction formula in the premise above, we
would obtain an unprovable formula:(

(a ∗∗∗ (a & b)) ⊗⊗⊗ b
) &

(a ⊕⊕⊕ b)(
(a ⊗⊗⊗ b) ∗∗∗ (a & b)

) &

(a ⊕⊕⊕ b)
lsp

The issue here is that lsp forces both a and b (that are &-joined) to be “sent” to
exactly one of the operands of the ⊗⊗⊗, but the theorem is only provable if exactly
one of the ⊗⊗⊗-operands gets exactly one of the &-operands. This can be achieved
by a different order of the inference rules, performing add before lsp as follows.(

((a ∗∗∗ a) ⊗⊗⊗ b) & (a ⊗⊗⊗ (b ∗∗∗ b))
) &

(a ⊕⊕⊕ b)(
((a ⊗⊗⊗ b) ∗∗∗ a) & ((a ⊗⊗⊗ b) ∗∗∗ b)

) &

(a ⊕⊕⊕ b)
lsp and rsp

(
(a ⊗⊗⊗ b) ∗∗∗ (a & b)

) &

(a ⊕⊕⊕ b)
add

The formula in the premise is now provable in CLS under the interpretation of ∗∗∗
as

&

. As a general principle, if there is more than one way to interpret a linkage,
we should pick an interpretation that preserves provability.

3.1 Polarities as Organizational Hints

To build our provability-preserving interaction rules, we use the well known con-
cept of polarity. Some rules of CLS such as the split rules lsp and rsp or the choice
rule chc add information to the proof; they correspond to proper implications
and are not invertible as rules. Other rules such as add or all are equivalences (the
conclusion implies the premise), and therefore the rules are invertible. Following
general terminology, we say that the connectives with non-invertible interactions
have positive polarity, while those with invertible interactions have negative po-
larity. More precisely, the formulas are separated into positive formulas (written
P, Q, . . . ) and negative formulas (written N, M, . . . ) according to the following
grammar.

A, B, . . . ::= P N
P, Q, . . . ::= a A⊗⊗⊗B 1 A⊕⊕⊕B 0 !A ∃x. A
N, M, . . . ::= a A

&

B

T

A & B T ?A ∀x. A
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(χ{u::A} ∗∗∗ ρ{u::C}) ⊗⊗⊗ B

(χ{u::A} ⊗⊗⊗ B) ∗∗∗ ρ{u::C} lnspl
B ⊗⊗⊗ (ρ{u::A} ∗∗∗ χ{u::C})
ρ{u::A} ∗∗∗ (B ⊗⊗⊗ χ{u::C}) lnspr

!(?χ{u::A} ∗∗∗ ξ{u::B})
?χ{u::A} ∗∗∗ !ξ{u::B} lnbng

(χ{u::A} ∗∗∗ ξ{u::C}) & (B

&

ξ{C})
(χ{u::A} & B) ∗∗∗ ξ{u::C} lnaddl

(A

&

ξ{C}) & (χ{u::B} ∗∗∗ ξ{u::C})
(A & χ{u::B}) ∗∗∗ ξ{u::C} lnaddr

∀x. (χ{u::A} ∗∗∗ ξ{u::C})
(∀x. χ{u::A}) ∗∗∗ ξ{u::C} lnall B ∗∗∗ A

A ∗∗∗ B lncom

Fig. 3. Rules of CLn

Note that the dual of a positive formula is a negative formula and vice versa.
The key feature of polarity is that the rules for positive connectives commute

with those for other positive connectives, and likewise for negative connectives
with other negative connectives, but the rules for positive and negative connec-
tives do not necessarily commute with each other. It is common to use this
observation to design a focused version of a sequent calculus with alternate pos-
itive and negative phases of rules [1,8,12]. Focusing drastically reduces the non-
determinism during proof search (see the experimental results in, e.g., [8,13]),
but it also clarifies the structure of sequent proofs by identifying, precisely, the
informative portions of full sequent proofs. The calculus of structures can also
be focused [7], although the phase structure is not as evident there because
of the incremental and interleaved nature of deep inference. We can, of course,
adopt the full focusing discipline in this paper, but the additional structure on
proofs is sometimes counter-intuitive from a user’s perspective. Instead, we will
use features from focusing solely to handle the interaction connective ∗∗∗; in other
words, A

&

B is the ordinary unfocused formula, while A ∗∗∗B denotes a focused
interaction where, if either A or B is positive then it behaves as the analogue
of a focused formula (called the head in [7]). Note that, unlike the system in [7],
there can be zero, one, or two positive formulas in a focused interaction.

Figure 3 defines the system CLn of these focused rules for the interaction
connective. In these rules, ρ represents a positive formula context, i.e., for any
formula A, the substitution ρ{A} is either A itself or a positive formula. CLn can
obviously be seen as a subsystem of CLS with the interpretation of ∗∗∗ as

&

and
ignoring the linkage information. In particular, it corresponds to that fragment
of CLS that defines the interaction of two

&

-joined formulas. The number of
occurrences of interaction formulas and marked subformulas is the same in both
premise and conclusion in every rule of CLn. The add rule of CLS splits into two
forms in CLn, depending on which of the operands of the & contains the linkage.

The system CLn defines all the rules for simplifying interactions. We embed
it into a larger system, named CLnS, that contains:
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– the rules lnk, lnid, and unlnk (from above);
– the rules of CLn (Fig. 3); and
– the CLS rules com, asc, bot, wk, con, chc, wit, top, drl and all the rules in the

final line in Fig. 2.

CLnS is relatively complete with respect to CLS. This does not mean, of course,
that any application of lnk will be valid; consider, for example, linking the a and
the a in !a

&

a. Instead, we have the following correspondence.

Theorem 4 (Completeness of CLnS Relative to CLS).
1. χ{ξ3{1}} CLS−−−→χ{ξ1{a} &

ξ2{a}} iff χ{ξ3{1}} CLnS−−−−→χ{ξ1{a} &

ξ2{a}}.
2. If A and B are not dual literals, then χ{ξ3{A &

B}} CLS−−−→χ{ξ1{A} &

ξ2{B}}
iff χ{ξ3{A &

B}} CLnS−−−−→χ{ξ1{A} &

ξ2{B}}.
Proof. Every CLnS proof is manifestly a CLS proof under the interpretation of
∗∗∗ as

&

and eliding the links. In the other direction, it suffices to observe that
the lnk rule can be applied in such a way that the linked subformulas are the
immediate operands of the principal

&

. Thus, every CLS rule that involves an
interaction of two

&

-joined formulas can be simulated by a lnk, the corresponding
CLn rule, and then unlnk or lnid. Once the full CLS derivation has been simulated
in CLnS in this way, we remove all but the deepest linkages on A and B, and the
corresponding instances of unlnk or lnid. �!
Corollary 5. A is provable in CLS if and only if it is provable in CLnS.

Proof. CLnS lacks all the CLS rules that permute a

&

into a smaller context: lsp,
rsp, bng, add, and all. Thus, the only way for two

&

-joined formulas to interact
is by means lnk followed by CLn rules. We can thus appeal to Thm. 4. �!
The CLn rules preserve the number of occurrences of linkages and interactions.
Moreover, they are biased to permute the negative connectives (i.e., & and ∀)
out of the positive connectives. This guarantees that if the conclusion of any
CLn rule is provable in CLnS, then so is its premise; in other words, every rule
of CLn is invertible. The order of application of the CLn rules is therefore imma-
terial. While different orders can produce different premises, the premises are
equivalent.

Theorem 6 (Order Independence of CLn). If A
CLn−−−→B and A′ CLn−−−→B,

then A ≡ A′.1

Proof. Straightforward inspection of the rules of CLn. �!
As a consequence, the only choices the user needs to explicitly instantiate an ∃
using wit, and contract a ?-formula using drl. The other choices in a proof—the
multiplicative splits for ⊗⊗⊗ and disjunctive choices for ⊕⊕⊕—are deterministically
inferred directly from the links.
1 A ≡ B can be defined as usual as (A

&

B) & (B

&

A).
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Example 7. The following CLnS proof illustrates the use of linking.
∀y, z. 1

∀y, z. u::p(y) ∗∗∗ u::p(y)
lnid

∀y, z. (u::p(y) ⊕⊕⊕ p(z)) ∗∗∗ (p(c) ⊕⊕⊕ u::p(y))
chc × 2

∀y.
(
∀z. u::p(y) ⊕⊕⊕ p(z)

)
∗∗∗

(
p(c) ⊕⊕⊕ u::p(y)

) lnall

∀y.
(
∃x. ∀z. u::p(x) ⊕⊕⊕ p(z)

)
∗∗∗

(
p(c) ⊕⊕⊕ u::p(y)

) wit
(
∃x. ∀y. u::p(x) ⊕⊕⊕ p(y)

)
∗∗∗

(
∀y. p(c) ⊕⊕⊕ u::p(y)

) lnall
(
∃x. ∀y. u::p(x) ⊕⊕⊕ p(y)

)
∗∗∗

(
∃x. ∀y. p(x) ⊕⊕⊕ u::p(y)

) wit
(
∃x. ∀y. p(x) ⊕⊕⊕ p(y)

) &(∃x. ∀y. p(x) ⊕⊕⊕ p(y)
) lnk

Observe that the CLn rules are interleaved with the other rules of CLnS.

It is instructive to compare the CLn rules with the similar focused interaction
rules of LSF [7], which is a polarized and focused variant of CLS. Most of the
rules for positive connectives are the same, except for lnbng,2 which differs only
in the fact that the interaction ∗∗∗ does not dissipate into a

&

in CLn. As a result,
CLn requires rules for interactions between negative formulas as well, while LSF
defines focused interactions only for one positive interacting with one negative
formula. Conceptually, a CLnS proof can be viewed as an LSF proof where several
neighbouring (focused) interactions are merged into one.

3.2 Positive Equality and First-Order Effects

Let us call a sequence of applications of CLnS rules that begin at the bottom
with lnk and end at the top with its corresponding unlnk or lnid a linking phase.
Of the non-CLn rules in Ex. 7, the instances of drl and chc are all forced and
can be done automatically. The instances of wit, on the other hand, require
user guidance. The quantifier structure of this theorem requires the applica-
tion of at least one lnall before a wit, so in the general case the system will
not be able to keep all the rules of a single linking phase together in a block,
i.e., the linking phase are not atomic. Notice that this problem is only signifi-
cant in the first-order case; for the propositional connectives, we can add rules
such as the following to perform a non-CLn rule in the middle of a CLn deriva-
tion.
(χ{u::A}) ∗∗∗ ξ{u::B}
(?χ{u::A}) ∗∗∗ ξ{u::B} lndrl

χ{u::A} ∗∗∗ ξ{u::C}
(χ{u::A} ⊕⊕⊕ B) ∗∗∗ ξ{u::C} lnlch

χ{u::B} ∗∗∗ ξ{u::C}
(A ⊕⊕⊕ χ{u::B}) ∗∗∗ ξ{u::C} lnrch

To make the linking phase atomic, we add an equality predicate to the language,
change lnid to introduce equations between the terms, and add the following
lnwit rule to CLn.

s1 = t1 ⊗⊗⊗ · · · ⊗⊗⊗ sn = tn

u::p(s1, . . . , sn) ∗∗∗ u::p(t1, . . . , tn)
lnid

∃x.
(

χ{u::A} ∗∗∗ ξ{u::B}
)

(
∃x. χ{u::A}

)
∗∗∗ ξ{u::B} lnwit

2 In the polarized setting, there would be a similar case for the ↓ connective that can
be seen as a purely linear variant of !.
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Example 8. Let us revisit Ex. 7 using the above rules. We have this derivation.

∃x. ∀y. ∃x1. ∀y1. x1 = y

∃x. ∀y. ∃x1. ∀y1. u::p(x1) ∗∗∗ u::p(y)
lnid

∃x. ∀y. ∃x1. ∀y1. (u::p(x1) ⊕⊕⊕ p(y1)) ∗∗∗ (p(x) ⊕⊕⊕ u::p(y))
lnlch, lnrch

∃x. ∀y. ∃x1.
(
∀z. u::p(y) ⊕⊕⊕ p(y1)

)
∗∗∗

(
p(x) ⊕⊕⊕ u::p(y)

) lnall

∃x. ∀y.
(
∃x1. ∀y1. u::p(x1) ⊕⊕⊕ p(y1)

)
∗∗∗

(
p(x) ⊕⊕⊕ u::p(y)

) lnwit

∃x.
(
∃x1. ∀y. u::p(x1) ⊕⊕⊕ p(y)

)
∗∗∗

(
∀y. p(x) ⊕⊕⊕ u::p(y)

) lnall
(
∃x. ∀y. u::p(x) ⊕⊕⊕ p(y)

)
∗∗∗

(
∃x. ∀y. p(x) ⊕⊕⊕ u::p(y)

) lnwit
(
∃x. ∀y. p(x) ⊕⊕⊕ p(y)

) &(∃x. ∀y. p(x) ⊕⊕⊕ p(y)
) lnk

The derivation can now keep all the CLn rules together.

A linking phase now ends (reading from conclusion to premise) with either lnid
or unlnk. In Ex. 8 above, the residual premise after the lnid is essentially a first-
order unification problem. The equations formed by the instances of lnid are all
positively signed atomic formulas, with the following two rules.

1
x = x

refl s1 = s2 ⊗⊗⊗ · · · ⊗⊗⊗ sn = tn

f(s1, . . . , sn) = f(t1, . . . , tn)
cong

Fact 9. The rules refl, cong, and 1−→1⊗⊗⊗ 1 suffice to show that t = t for any
term t. �!
Since every derivation can be embedded in any formula context, we thus obtain
a smooth continuum between deduction and unification in terms of the equality
predicate. This freedom comes at a price: the order of the applications of lnwit
and lnall is now important.

Example 10. This is what happens if the lnwit and lnall rules of Ex. 8 are done
in the wrong order. ∃x, x1. ∀y, y1. x1 = y1

∃x, x1. ∀y, y1. u::p(x1) ∗∗∗ u::p(y1)
lnid

∃x, x1. ∀y, y1.
(
u::p(x1) ⊕⊕⊕ p(y)

)
∗∗∗

(
p(x) ⊕⊕⊕ u::p(y1)

) lnlch, lnrch

∃x, x1. ∀y.
(
u::p(x1) ⊕⊕⊕ p(y)

)
∗∗∗

(
∀y1. p(x) ⊕⊕⊕ u::p(y1)

) lnall

∃x, x1.
(
∀y. u::p(x1) ⊕⊕⊕ p(y)

)
∗∗∗

(
∀y. p(x) ⊕⊕⊕ u::p(y)

) lnall

∃x.
(
∃x1. ∀y. u::p(x1) ⊕⊕⊕ p(y)

)
∗∗∗

(
∀y. p(x) ⊕⊕⊕ u::p(y)

) lnwit
(
∃x. ∀y. u::p(x) ⊕⊕⊕ p(y)

)
∗∗∗

(
∃x. ∀y. p(x) ⊕⊕⊕ u::p(y)

) lnwit
(
∃x. ∀y. p(x) ⊕⊕⊕ p(y)

) &(∃x. ∀y. p(x) ⊕⊕⊕ p(y)
) lnk

The residual premise is unprovable.

It is not possible to fix this problem without further user guidance, because de-
termining the correct quantifier nesting is equivalent to the full theorem proving
problem for first-order logic, which is unsolvable. Fortunately, there is only a sin-
gle critical pair that needs to be resolved: an interaction between two ∃-formulas.
In every other case, we can appeal to Thm 6, suitably generalized.
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Our solution therefore involves a modification to linkages. We now have two
kinds of oriented linkages, u(A (called a source) and u)A (called a sink), with
u::A standing for either form when irrelevant. The lnk rule is modified to produce
a single source and sink pair:

ξ{χ1{u�A} ∗∗∗ χ2{u�B}}
ξ{χ1{A} &

χ2{B}} lnk

Most of the remaining rules stay the same, except for the following new rule for
resolving an interaction between ∃-formulas.

∃y.
(
(∃x. χ{u�A}) ∗∗∗ ξ{u�B}

)
(
∃x. χ{u�A}

)
∗∗∗

(
∃y. ξ{u�B}

) lnex

Intuitively, the source is “brought to” the sink. The rules are prioritized so that
the lnwit rule is only applicable in the case that lnex is not. Note that if the
source is not on the left of the interaction ∗∗∗, then the lncom rule can be used to
put it there. Let CLonS stand for:

CLnS ∪ {lndrl, lnlch, lnrch, lnwit, lnex} ∪ {refl, cong}

(with the understanding that the lnk rule introduces oriented linkages), and let
CLon stand for CLonS \ CLS.

Theorem 11 (Order Independence of CLon). If A
CLon−−−−→B and A′ CLon−−−−→B,

then A ≡ A′.

Proof. Same idea as for Thm. 6. �!
Theorem 12. For any formula A free of =-subformulas, 1 CLonS−−−−→A if and only
if 1 CLnS−−−−→A.

Proof (Sketch). For the forward direction (only if), the CLonS rules lnwit, lnex,
lndrl, lnlch and lnrch are admissible in CLnS. To recover the CLnS proof, it suffices
to use the wit, drl and chc rules to rewrite all the instances of lnwit, lnex, lndrl,
lnlch and lnrch. Then, these rules can be permuted below any occurrences of (the
CLonS variant of) lnid on subformulas. This leaves just the instances of refl and
cong above the CLonS variants of lnid; but, these rules do not interact with any
other rules, and can therefore be permuted to stand in a block right above the
lnid that gives rise to them; the entire block can then be replaced with the CLnS
variant of lnid.

The reverse direction (if) is a simple consequence of Fact 9. �!

4 Implementation Notes
The classical system CLonS has been implemented as part of the interactive
proving tool Profound [6]. The tool is launched by giving it a goal theorem either
on the command line or using an input file. It then presents the user with an
interface where the text of the theorem may be directly manipulated (using the
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keyboard or the mouse) in two modes: a logical mode and a linking mode. In
the logical mode, the user is allowed to perform any of the rules in CLonS \
CLon. In other words, the only non-trivial actions available in this mode are:
(1) instantiating ∃ (wit) and choice (chc) when there are no linkages, and (2)
contraction (con) and weakening (wk). The user is also allowed the freedom to
freely reorganize the formula using associativity and commutativity of

&

. The
system lets the user also treat the other binary connectives as associative and
commutative (the corresponding rules are admissible in CLS and CLnS).

In the linking mode, the user indicates an oriented link between a pair of
subformulas. Using the keyboard, this amounts to traversing the subformula tree
and marking two subformulas that are ancestrally

&

-linked as source and sink.
This action is more intuitive with a pointing device such as the mouse, where one
subformula is simply dragged and dropped on another. The main difficulty with
pointing is to determine which subformulas the user wishes to point to, as most
cursor positions occur within many subformulas. The system uses the heuristic
of selecting the smallest subformula surrounding the cursor position, and letting
the user go up in the subformula tree by scrolling the mouse-wheel.3

The current implementation of Profound is in OCaml and uses the GTK+
windowing library for its graphical interface, and has been tested to run on
POSIX-compatible systems such as Linux and Mac OS X. In the future, we will
probably re-implement it as a server/client setup using Javascript and using the
HTML5 Canvas library for the user interface, which would make it portable
across a wide range of platforms that support graphical web-browsers. Systems
that can support multiple pointers and different interaction metaphors such as
“pinching” might also enable Profound to perform marking or linking of formulas
more directly.

In the rest of this section, we will describe some additional features of Profound
that are not strictly part of the CLonS proof system, but are nevertheless very
important for practical use of linking-based interaction.

4.1 Implicit Contraction

Perhaps the most natural aspect of the linking-based interaction metaphor is the
ability to treat a logical problem as a kind of matching puzzle: bits of the current
obligation are linked to bits of known facts and lemmas until the problem reduces
to a known and manageable form. However, the formal CLonS system does require
an additional step of explicit contraction that can complicates this simple aspect.
For example, suppose we want to prove ?(a⊗⊗⊗b)

&

?(a⊗⊗⊗c)

&

?a

&

(b⊗⊗⊗c). The ideal
linking-based proof would just link the a to the two occurrences of a. However,
the first link would “consume” the ?a. The user is forced to explicitly contract
it before drawing the links.

3 Unfortunately, this turns out to be fairly frustrating when trying to select, for in-
stance, the subformula B

&

C from A

&

B

&

C, because

&

is internally treated as a
left-associative binary operator. The user is forced to first bring the entire subformula
they wish to select to the left (which can be done freely in the logical mode).



Subformula Linking as an Interaction Method 399

In Profound, this issue is solved by means of special variants of lnk that store
a copy of the ?formula for reuse in subsequent links. One such rule is as follows.

ξ
{

?χ1{A} &(
?χ1{u�A} ∗∗∗ χ2{u�B}

)}
ξ{?χ1{A} &

χ2{B}}

Of course, this incurs the dual overhead of ?-formulas that survive unnecessarily.
The user will need to clear them with explicit instances of wk, which can quickly
become burdensome. From our experimentation, there does not seem to be a
preferable default, so Profound allows both contracting and non-contracting uses
of lnk. Indeed, Profound allows the user to independently decide to contract the
source and the sink when marking them.

There is a related issue when marking the source and the sink that are not
ancestrally

&

-related, but that have an ancestral ?. The simplest example is ?(a⊕⊕⊕
a). With the CLonS calculus and implicit linking as described, the user will still
not be able to link the a and the a without first explicitly contracting the formula.
This is not an altogether contrived example: consider the actual representation
of the classical Drinker’s formula, ?∃x. ∀y. (p(x)⊕⊕⊕ p(y)), as opposed to its linear
version in Ex. 7. To solve this issue, we further extend the lnk rule to allow
contraction at an ancestral ? when there is no ancestral

&

as follows.

ξ{?(χ1{u�A} ◦ χ2{B}) ∗∗∗ ?(χ1{A} ◦ χ2{u�B})}
ξ{?(χ1{A} ◦ χ2{B})}

where ◦ ∈ {⊗⊗⊗,⊕⊕⊕, &}.

4.2 Other Convenience Features

The CLonS system is cut-free, but in practice it is invaluable to use cuts in a
proof, both for conceptual and textual simplicity. The Profound implementation
therefore allows the user to introduce a cut at any moment, even in the middle
of constructing a link. Instead of the general cut rule, however, we actually
implement the following variant, which is a composition of the usual cut rule
and rsp.

A ⊗⊗⊗ (A

&

C)
C

The rules for conjunctive truth on the last line of Fig. 2, while sufficient for
completeness, are generally too cumbersome to use in practice. Instead, Profound
actually implements the following monoidal versions (which are all derivable);

A
A ◦ †

A
† ◦ A

1
1 ◦ 1

A
∀x. A

A
∃x. A

where 〈◦, †〉 ∈ {〈⊗⊗⊗, 1〉 , 〈⊕⊕⊕, 0〉 , 〈&, T〉}, and in the final two rules x is not free in
A. In fact, these rules are not explicitly presented to the user, but are instead
folded into the traversal mechanism. That is, whenever the cursor on † in A ◦ †
or † ◦ A, traversing to the parent simply changes the entire formula to A. This
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allows us to implement chc in a very simple manner: we just add the following
general rule:

0
A del

The user can use del to change any subformula to 0, and if it is the operand of a
⊕⊕⊕ then traversing to the parent will remove the 0 as a side effect. We find this to
be a solid improvement over a direct use of chc, which would otherwise require
a further clarification from the user.

5 Caveats
It is important to point out that Profound is only a research prototype at this
point. To make it more broadly viable, we need at least two more crucial features
that would require basic research on the calculus of structures.

– Support for intensional equality and induction: in order to make Profound
suitable as a user interface for reasoning about computational specifications,
the logic must be extended to support intensional (predicate) equality and
induction. Equality can be supported by the rules of unification logic, which
can be turned into a contextual and incremental form without too much
effort. However, for practical uses it will need to support reasoning about
equality transitively (e.g., to show

(
(x �= z)⊗⊗⊗ (x �= s(z)

) &0 where z and
s represent zero and successor, respectively). In the general case this will
amount to (incremental) congruence-closure.

The general induction rules in the style of LINC [18] or μMALL [2] can be
readily added to the deep inference formalism. However, experience suggests
that proofs written using such induction rules tend to be verbose and confus-
ing. It is more standard to use more restricted induction schemas based on
subterm or lexicographic ordering, such as in the Abella system [9]. Unfor-
tunately, such restricted schemas tend to have a global and shallow flavour
that runs counter to the incremental nature of deep inference. However, the
final word is far from written on this matter.

– Support for typed and higher-order reasoning: supporting typed first-order
terms is completely straightforward and Profound already assumes that the
predicates and terms are simply typed. We intend to extend it to support
polymorphically typed predicates and terms in the near future. Supporting
dependently typed terms is not particularly critical as dependent restric-
tions can be recovered relationally; nevertheless, constructing a variant of
the calculus of structure for dependent types is an open problem. Second-
order quantification [16] should be straightforward. Extending the calculus
of structures to full higher-order logic is also open.

Acknowledgements. We thank Dale Miller and Lutz Straßburger for their
help with many aspects of this work.
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Abstract. Dealing with variable binding during the formalization of
programming languages metatheory is notorious for being a very com-
plex issue. This paper introduces a new framework, DBEB, and a tool
based on it, DBGen, whose purpose is to generate Coq code providing a
rather complete infrastructure for de Bruijn encodings of a large variety
of languages. DBEB is an abstract syntax with explicit binding informa-
tions that captures the great regularity of de Bruijn syntaxes. From this
abstract syntax it is then possible to derive all the definitions and prop-
erty statements and proofs required for the formalization of the syntactic
infrastructure of the language.

Thereby, from a Coq inductive definition of a syntax in de Bruijn
style, annotated with comments that make explicit its binding structure
within DBEB, DBGen produces a Coq module with term structures defi-
nitions and a significant amount of properties (and their proof), up to the
substitution lemma. Mutually defined syntaxes are supported, and such
definitions may contain several distinct sets of variables. Moreover, this
framework handles the generation of a named syntax for “usual” binding
with explicit variables together with a smart translation function that
greatly improves the readability of de Bruijn terms.

Keywords: De Bruijn syntax, formalization, infrastructure generation,
Coq proof assistant.

1 Introduction

The large amount of work done in the last decade around the issue of variable
binding in the mechanical formalization of programming languages metatheory
highlights its importance and its complexity. Indeed, there is nowadays a wide
choice of proof assistants, and of means to address this issue, each of them
having their own strenghts and drawbacks. If we restrict ourselves to first-order
encodings, the price of binders formalization is quite always to be paid, either
by changing the formal foundations of term representations, or by requiring a
sophisticated encoding of the original syntax or by a increasing the complexity
of the whole metatheory.
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Historically, the naive approach which consisted of using named variables in
the minds of pencil-and-paper proofs has long since been abandoned because
of the exorbitant management cost of α-conversion (i.e. irrelevance of bound
variable names), and syntax encodings using de Bruijn indices [1] has then be
preferred, even with the additional burden of arithmetic reasoning and the loss
of readability it induced. From that starting point, many works have been done
to address this issue, at the theoretical or at the practical level. To cite the
most relevant w.r.t. the work presented here, we focus on three of them (for
a more complete state of the art see [2] for instance): at the beginning of this
century, Gabbay and Pitts [3,4] set the foundations of a new approach based on
a slightly different basis for terms representation, which gave rise to the nominal
framework [5]; More recently, Aydemir, Charguéraud at al. [2,6] proposed an
interesting solution based on the locally nameless representation of terms by
taking into account the difference between free and bound variables in the term
structure; based on this approach, Aydemir and Weirich [7] developed the tool
LNgen that generates locally nameless representations and infrastructure for
some term grammars – this tool is probably the most proximate work to ours.

By contrast to the first two works, our contribution is indeed a very pragmatic
one as it does not intend to address the theoretical issue of variable binding at
the meta-level of programming languages theories, but rather aims at develop-
ping a tool that alleviates the burden of binding formalization and allows the
user to concentrate on the interesting parts of its theories, while providing many
infrastructure facilities. To achieve this goal, we resolutely choose to work with
de Bruijn encodings, for several reasons. First, it is a well-known framework in
the community, and it has clear merits since it is close to implementation mech-
anisms (abstract machines, etc.), completely first-order and thus very relevant
to use with any proof assistant, there is furthermore an abundant literature that
makes use of it. Second, despite the charges of opacity, it is quite close to pencil-
and-paper: no complex binding structures, less adequacy problems (i.e. correct-
ness of the encoding w.r.t. the informal specification), only standard meta-level
foundations. Third, proof assistants are usually very efficient in their arithmetic
reasoning capabilities, and automation can be widely used to deal with the extra
arithmetic facts induced by de Bruijn encodings. Fourth, de Bruijn representa-
tions are very regular, as well as the main functions of lifting and substitution,
as well as the main properties about those functions and their proof. Thus, the
key idea is to take advantage of that regularity and of the arithmetic strength
of proof assistant to completely automatize the generation of the needed in-
frastructure for de Bruijn representations. Furthermore, this approach allows us
to generate a named syntax and its translation function to the de Bruijn one,
providing a handy way to write de Bruijn terms in the user work.

DBGen1 [8] is a tool in the spirit of LNgen: it takes as input a grammar
and produces definitions, lemmas, proofs and tactics for the Coq proof assistant.
It has been successfully used to generate infrastructure for quite complex lan-
guages, involving mutually defined term structures and multiple variable sets.

1 Available at http://www.lacl.fr/~polonowski/Develop/DBGen/dbgen.html
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The generated code is well-organized in a hand-written style, allowing the user
to browse through it and reuse parts of it as needed. It takes advantage of the
module system of Coq: the infrastructure can be compiled only once, until a
modification of the input grammar; and such modifications are easily managed
since all the infrastructure can be immediately generated again. DBGen is devel-
oped in OCaml with a clear structure designed to be easily extended: functions
and properties regular w.r.t. the de Bruijn representation can be added at a very
small development cost.

The remainder of the paper is organized as follows: we recall in Section 2
how the de Bruijn setting eases the definitions of term structures and lifting and
substitution operations; Section 3 introduces de Bruijn with Explicit Binding
abstract syntax as a relevant framework that captures the regularity of de Bruijn
structures needed for automatic generation; two examples of DBGen usage are
detailed in Section 4; Section 5 concludes and gives hints to further work.

2 Usual de Bruijn Syntaxes and Their Infrastructure

De Bruijn syntaxes are nowadays well-known and do not require a detailed intro-
duction here. Let us simply recall that, in his early work [1], de Bruijn introduced
an alternative representation of λ-terms [9] which does not rely upon a dynamic
binding with names (which comes with α-equivalence): it uses indices to stati-
cally link the place of a variable with its binder.

Despite the benefits of this approach, two flaws are commonly pointed out (see
for instance POPLmark Challenge [10]): the loss of readability and the arithmetic
additional work needed to deal with this binding mechanism. However, it has a
very regular infrastructure which extends naturally to complex term structures
involving several distinct variable sets, mutually defined syntactic categories and
binding of several variables at a time.

Let us illustrate this with an example combining the first both difficulties: an
extension of Girard’s system F [11] with arithmetic expressions, noted Fexpr.
The named and de Bruijn syntax definitions of Fexpr are given as follows:

Named syntax De Bruijn syntax
A ::= X | A→ A | ΠX.A A ::= X̄ | A→ A | ΠA
t ::= λx : A.t | t t | t A | ΛX.t | e t ::= λA.t | t t | t A | Λt | e
e ::= x | n | e+ e | t e ::= x̄ | n | e + e | t
Note that in usual de Bruijn grammar there is no formal way to know which
construction is a binder, and, for those ones, which index category is bound. In a
pencil-and-paper work, one may leave to the reader the formal definition of the
substitution functions, discarding the tedious details of the mutual definitions
induced by this grammar. Figure 1 and 2 give the named substitution definitions,
we show it to make explicit the complexity of this task and exhibit some crucial
points.

Let us point out the rule (ΛY.t) {e/x} = ΛZ.t {Z/Y } {e/x} which makes use
of renaming for the bound variable Y because of its possible occurrence in e;
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X {B/X} = B
Y {B/X} = Y if X �= Y
(A1 → A2) {B/X} = A1 {B/X} → A2 {B/X}
(ΠY.A) {B/X} = ΠZ.A {Z/Y } {B/X} with Z fresh

(λy : A.t) {B/X} = λy : A {B/X} .t {B/X}
(t1 t2) {B/X} = t1 {B/X} t2 {B/X}
(t A) {B/X} = t {B/X} A {B/X}
(ΛY.t) {B/X} = ΛZ.t {Z/Y } {B/X} with Z fresh

y {B/X} = y
n {B/X} = n
(e1 + e2) {B/X} = e1 {B/X}+ e2 {B/X}

Fig. 1. Fexpr type substitution functions

(λy : A.t) {e/x} = λz : A.t {z/y} {e/x} with z fresh
(t1 t2) {e/x} = t1 {e/x} t2 {e/x}
(t A) {e/x} = t {e/x} A
(ΛY.t) {e/x} = ΛZ.t {Z/Y } {e/x} with Z fresh

x {e/x} = e
y {e/x} = y if x �= y
n {e/x} = n
(e1 + e2) {e/x} = e1 {e/x}+ e2 {e/x}

Fig. 2. Fexpr expression substitution functions

this case is quite tricky since three syntactic categories are involved, and the
fact that type variables may be bound in expression is not obvious in usual de
Bruijn syntax definition.

The syntax of this language in the de Bruijn setting leads to the defini-
tion of five lifting and five substitution functions... One can easily imagine the
amount of work needed to perform those definitions, and furthermore to prove
the infrastructure properties for all of them. Moreover, if errors happen to be in
the language definition or if the syntax has to be modified, extended or short-
ened, all this work has to be modified and checked carefully. Automation can be
very helpful for this issue, which is also one of the other approaches of binding
formalization.

3 An Abstract Syntax for De Bruijn Infrastructure
Generation

With the merits and the flaws of usual de Bruijn encodings in mind, we can
now introduce a suitable framework for infrastructure formalization generation.
We begin with the definition of an abstract syntax that captures the required
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regularity of term structures, then we use it to generate lifting and substitution
functions and properties and furthermore named syntax and translation.

3.1 De Bruijn with Explicit Binding Abstract Syntax

To proceed with automation, we need a clear and regular structure for such
term definitions. The abstract syntax we propose here follows the tradition of
abstract higher-order reduction systems (HORS, see [12] for a survey) with a
main difference: where they propose a framework to define arbitrary reduction
systems, we clearly restrict ours to a “standard” substitution mechanism in order
to be able to generate the systems infrastructure.

Following the usual encodings of term structures in proof assistants, a syn-
tactic category in the de Bruijn setting is defined by the mean of constructors of
two kinds: index constructors and non-index constructors, the latter potentially
having parameters (or sub-terms); those parameters are then given by a name
and a type, and they can optionally bind in the subterm several variables of
several distinct categories.

We introduce the de Bruijn with Explicit Binding abstract syntax (DBEB)
as follows:

T, U ::= x̄ Index variable constructor
| C p1 . . . pn Ordinary constructor with parameters

p ::= s : T Ordinary parameter
| [n U ] p Parameter with binding in the subterm

The parameter with binding needs some attention because all the binding infor-
mation needed for de Bruijn infrastructure generation depends on it. Between
every brackets are given a natural number ni and a syntactic category Ui, which
says that the first ni index of category Ui are bound in the subterm s of this pa-
rameter. For instance, the abstraction of ordinary λ-calculus λx.t (in a category
named term) can be defined with this grammar as λ ([1 term] t : term).

Note that if we remove the binding information from the definition as DBEB
we obtain the usual de Bruijn definition. Figure 3 gives the definition of Fexpr

as DBEB .
In addition to the explicit binding information, our syntax differs from usual

higher-order systems by considering binders in constructor parameters instead
of constructors themselves. It is of course possible to encode DBEB structures
as HORS, but at the cost of splitting constructor parameters and defining them
as new constructors, and the resulting term structure is then further away from
the pencil-and-paper definition.

To conclude with this section, let us point out that DBEB serves only as a
theoretical background for DBGen development but is not actually defined in
Coq (neither in the content generated by DBGen). Such an approach of a meta-
language with its own proofs and an encoding mechanism would certainly have
its merits (see GMeta [13] for instance) but would also give rise to non-trivial
adequacy issues whereas our choice is to stick to usual de Bruijn encoding.
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A ::= type ::=
| X | X̄
| A→ A | (A : type)→ (A : type)
| ΠX.A | Π ([1 type]A : type)

t ::= term ::=
| λx : A.t | λ (A : type) ([1 expr] t : term)
| t t | (t : term) (t : term)
| t A | (t : term) (A : type)
| ΛX.t | Λ ([1 type] t : term)
| e | (e : expr)

e ::= expr ::=
| x | x̄
| n | (n : nat)
| e+ e | (e : expr) + (e : expr)
| t | (t : term)

Fig. 3. Fexpr definition as DBEB

3.2 DBEB Infrastructure Generation

DBEB definitions provide all the needed information to deal with lifting and sub-
stitution functions generation, and moreover with basic infrastructure properties
generation. Let us note that no specific induction schemes are needed to work
with the languages we consider, all proofs proceeds by straightforward induction
on the structure of terms.

We consider the following predicates overDBEB structures: indexed (T ) stands
if the syntactic category T does have an index constructor, reach (T, U) stands
if indexed (T ) stands and if there is a path from the syntactic category U to T ,
possibly through other categories, via their parameters; for instance, for Fexpr

the following statements hold: indexed (type), indexed (expr), reach (type, term),
reach (type, expr), reach (expr, term).

Indeed, the lifting and the substitution functions proceed with a great regu-
larity over DBEB term structures. For each function, we indicate the name of the
indexed category on which it works and the actual category which is processed.
For instance in system Fexpr, the substitution function of type variable which
goes through expressions will be noted e

{
B/X̄

}
type/expr

and the corresponding

lifting function e ↑nm:type/expr.
Figure 4 presents the lifting function definition for an indexed category T in a

processed category U , the key cases are those for a variable and a binder. Notice
that crossing a binder of a distinct index category has no effect on the lifting
operation.

For the same involved categories, we show in Figure 5 the substitution function
definition. Let us point out the cases for a binder, where we make use of the lifting
function in order to update the indices of the substituted term.
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(x̄) ↑nm:T/U = x̄ if T �= U

(x̄) ↑nm:U/U = x+ n if m � x

(x̄) ↑nm:U/U = x̄ if x < m

(C p1 . . . pk) ↑nm:T/U = C p1 ↑nm:T/U . . . pk ↑nm:T/U

(s : V ) ↑nm:T/U = s : V if ¬reach (T, V )

(s : V ) ↑nm:T/U = s ↑nm:T/V : V if reach (T, V )

([k T ] p) ↑nm:T/U = [k T ] p ↑nm+k:T/U

([k V ] p) ↑nm:T/U = [k V ] p ↑nm:T/U if T �= V

Fig. 4. Lifting in DBEB

(x̄) {t/n}T/U = x̄ if T �= U

(x̄) {t/n}U/U = x− 1 if n < x

(x̄) {t/x}U/U = t

(x̄) {t/n}U/U = x̄ if x < n

(C p1 . . . pk) {t/n}T/U = C p1 {t/n}T/U . . . pk {t/n}T/U

(s : V ) {t/n}T/U = s : V if ¬reach (T, V )

(s : V ) {t/n}T/U = s {t/n}T/V : V if reach (T, V )

([k T ] p) {t/n}T/U = [k T ] p
{
t ↑k

0:T/T
/n+ k

}
T/U

([k V ] p) {t/n}T/U = [k V ] p{t ↑k
0:V/T

/n}T/U if T �= V and reach (V, T )

([k V ] p) {t/n}T/U = [k V ] p {t/n}T/U if T �= V and ¬reach (V, T )

Fig. 5. Substitution in DBEB

Those two definitions are given inside DBEB but, for DBGen purpose, we
will generate definitions in the usual de Bruijn syntax by removing the explicit
binding and typing informations.

The next step is to generate properties about lifting and substitution. This
will allow the DBGen user to concentrate on more important properties of the
language he considers. Indeed, DBEB is enough to generate a lot of property
statements and, moreover, it generates correct Coq proofs. This is due to the
regularity ofDBEB structures where all the proofs we consider proceeds solely by
structural induction and let the complexity of the binding structure management
be in arithmetic properties for which proof assistants are usually powerful. Since
DBEB is not defined in the generated content, all the proofs are generated on a
ad-hoc basis for the given language.

A first set of properties we need is about the independence of functions that
deals with distinct indexed categories. For instance in system Fexpr, the lift-
ing functions for type and expression variables can freely commute, this is also
true for lifting and substitution functions. The second set of properties is more
usual in de Bruijn infrastructure and talks about lifting simplification, lifting
composition with itself, lifting composition with substitution and substitution
composition with itself, also known as the substitution lemma. All those prop-
erties are listed in Figure 6.
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− t ↑n′
m′:T/U↑nm:V/U= t ↑nm:V/U↑n

′
m′ :T/U

− t {u/p}T/U ↑
n
m:V/U= t ↑nm:V/U {u ↑nm:V/T /p}T/U

− t ↑0m:T/U= t

− m′ � m � n′ +m′ ⇒ t ↑n′
m′:T/U↑nm:T/U= t ↑n′+n

m′ :T/U

− n′ +m′ � m⇒ t ↑n′
m′ :T/U↑nm:T/U= t ↑nm−n′:T/U↑n

′
m′:T/U

− m � p < m+ n⇒ (t ↑nm:T/U ) {u/p}T/U = t ↑n−1
m:T/U

− 0 < n⇒ t ↑nm+1:T/U {m̄/m}T/U = t ↑n−1
m+1:T/U

− m � p⇒ t {u/p}T/U ↑
n
m:T/U= t ↑m:T/U

{
u ↑m:T/T /p+ n

}
T/U

− p � m⇒ t {u/p}T/U ↑
n
m:T/U= t ↑nm+1:T/U {u ↑nm:T/T /p}T/U

− m � n⇒ t {v/m}T/U {u/n}T/U = t{u ↑1m:T/T /n+ 1}T/U{v {u/n}T/T /m}T/U

Fig. 6. Generic DBEB infrastructure statements

3.3 Named Syntax Generation and Translation

With DBEB it is very easy to define new syntaxes and functions and to gen-
erate them. We illustrate this with a named syntax and a translation function
from it to the de Bruijn syntax, which are interesting enough themselves to be
introduced here as they provide a way to greatly improve the readability of de
Bruijn terms.

First, we take a type for named variables, say name (usual instances would be
string or nat), and we only require a decidable equality over its values.Since we
have binders of arbitrary arity in DBEB, we need a way to define named binders
with the same capabilities, so we choose to bind over lists of variables. We assume
the definition of length-indexed list of names and we shall note namesk such a
list of length k (this is easy to define in a proof assistant with dependent types,
like Coq).

In addition to the constructions of the named syntax, we want to be able to
embed a de Bruijn term inside a named term. We design this embedding to be
smart enough to provide a way to use named terms as a way to write more clearly
definitions and statements within the de Bruijn setting (we shall see an example
in the next section), so we add to each syntactic category a new constructor
named DB that takes as parameter the embedded de Bruijn term and a list of
variable names capturing its first free indices.

We are now ready to generate the named syntax, as defined in Figure 7.
For instance, the generated named syntax for usual λ-calculus is the follow-

ing grammar, where we note ”x” a named variable x and t �”x1”, . . . , ”xk”� the
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Named (x̄)T = x : name
Named (C p1 . . . pk)T = C Named (p1)T . . . Named (pk)T

+ DB (k : nat)
(
l : namesk

)
(t : T )

Named (s : V )T = s : V

Named ([k V ] p)T =
[
l : namesk

]
Named (p)T

Fig. 7. Named syntax generation

special DB constructor for a given variable list ”x1”, . . . , ”xk” and a de Bruijn
term t:

t ::= ”x” | (t u) | λ”x”.t | t �”x1”, . . . , ”xk”�
Interesting examples of terms with this syntax involve the special DB construc-
tor. For instance, the named term λ”x”.λ”y”.t �”x”, ”y”� corresponds to the
term t with its two first variables captured by ”x” and then by ”y”, which is
different from the term λ”x”.λ”y”.t �”y”, ”x”�. The named term λ”x”.t �� is a
function whose argument is useless since it does not capture any free variable
of t; λ”x”. (t �� ”x”) is even a more interesting term since it corresponds to the
left hand side of the usual η-reduction rule where the bound variable ”x” must
not be free in the left subterm.

To use this named syntax as a front-end for complex de Bruijn terms, we
need a translation function that exactly captures the intuition of the previous
examples. This is not a difficult task, but requires a little bit of attention since we
potentially deal with several categories of variables. The idea of the translation
function is standard: we collect the variable names along the traversal of the
term, and when we arrive at a variable, we replace it by its position in the
ordered collection; this strategy gives the usual account for name scopes.

More work has to be done with respect to the special constructor DB since
it performs some non-trivial operation on the embedded de Bruijn term. Let us
take as examples the following terms: λ”x”.λ”y”. (0̄ 1̄) �”y”, ”x”� must be trans-
lated to λλ (0̄ 1̄) and λ”x”.λ”y”. (0̄ 1̄) �”x”, ”y”� must be translated to λλ (1̄ 0̄),
remark that some permutation of free indices are needed here. Moreover, free
indices of the embedded term that are not to be captured need to be lifted and
thus remain free.

To achieve this transformation, we need a function that is able to permute
free indices of a de Bruijn term and also lift some of them. This function takes
to parameters: k the amount of binders introduced upon the de Bruijn term,
this will be used to perform the lifting; [i1, . . . , in] the permutation given as a
list of indices; m the number of local binders that have been crossed, since the
bound variables of the embedded term must remain unchanged. Figure 8 gives
the definition of this function on DBEB terms.

With the help of this function, we easily write the named to de Bruijn trans-
lation function. Some elementary operations on lists are used: dependent list
concatenation (noted ◦), permutation definition from two ordered lists (noted
&), list scanning (noted #); we refer the interested reader to the technical
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(x̄) �k,m,T
[i1,...,in]

= x̄ if x < m

(x̄) �k,m,T
[i1,...,in]

= x+ k if m � x and n � x−m

(x̄) �k,m,T
[i1,...,in]

= m+ ix−m if m � x and x−m < n

(C p1 . . . pl) �k,m,T
[i1,...,in]

= C (p1) �k,m,T
[i1,...,in]

. . . (pl) �k,m,T
[i1,...,in]

(s : V ) �k,m,T
[i1,...,in]

= s : V if ¬reach (T, V )

(s : V ) �k,m,T
[i1,...,in]

= s �k,m,T
[i1,...,in]

: V if reach (T, V )

([l T ] p) �k,m,T
[i1,...,in]

= [l T ] p �k,m+1,T
[i1,...,in]

([l V ] p) �k,m,T
[i1,...,in]

= [l V ] p �k,m,T
[i1,...,in]

if T �= V

Fig. 8. Free indices permutation and lifting in DBEB

x
〈
lm1
T1

, . . . , lmn
Tn

〉Ti = lTi#x

(C p1 . . . pk)
〈
lm1
T1

, . . . , lmn
Tn

〉Ti = C p1
〈
lm1
T1

, . . . , lmn
Tn

〉Ti . . . pk
〈
lm1
T1

, . . . , lmn
Tn

〉Ti

(DB k l t)
〈
lm1
T1

, . . . , lmn
Tn

〉Ti = t $mi−k,0,Ti
lTi

&l

(s : V )
〈
lm1
T1

, . . . , lmn
Tn

〉Ti = s
〈
lm1
T1

, . . . , lmn
Tn

〉Ti : V([
l′ : namesk

]
p
) 〈

lm1
T1

, . . . , lmn
Tn

〉Ti = [k Ti] p
〈
lm1
T1

, . . . , (l′ ◦ l)k+mi
Ti

, . . . , lmn
Tn

〉Ti

Fig. 9. Named to de Bruijn translation function in DBEB

documentation for further details. The translation function takes as argument
one dependent list of collected bound variable names per index category, together
denoted

〈
lm1

T1
, . . . , lmn

Tn

〉
, its definition is given in Figure 9.

To illustrate this definition, we give here the generated function for the named
syntax given above for usual λ-calculus.

x 〈lm〉 = l#x
(t u) 〈lm〉 = t 〈lm〉 u 〈lm〉
(t �”x1”, . . . , ”xn”�) 〈lm〉 = t .m−n,0

l&[”x1”,...,”xn”]

(λ”x”.t) 〈lm〉 = λt
〈
”x” :: lm+1

〉
With this function, we can translate our examples:

(λ”x”.λ”y”. (0̄ 1̄) �”y”, ”x”�) 〈〉 = λλ ((0̄ 1̄) �”y”, ”x”�) 〈[”y”, ”x”]〉
= λλ (0̄ 1̄) .0,0[0,1]

= λλ (0̄ 1̄)

(λ”x”.λ”y”. (0̄ 1̄) �”x”, ”y”�) 〈〉 = λλ ((0̄ 1̄) �”x”, ”y”�) 〈[”y”, ”x”]〉
= λλ (0̄ 1̄) .0,0[1,0]

= λλ (1̄ 0̄)
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We also easily check that the translation of a term λ”x”. (t �� ”x”), for any t,
gives the term λ (t′ 0̄) where t′ is t with all its free indices lifted by 1; it is then
exactly the left hand side of the η-reduction rule, which can thus be written
(λ”x”. (t �� ”x”)) 〈〉 → t without having to explicitely write the correct lifting
operation at the left hand side.

To conclude, this translation function allows us to write de Bruijn terms as
named terms with a fine notion of capture which proves to be enough to handle
many definitions involving freshness. A detailed example of this usage is given
in Section 4.2.

3.4 DBEB and DBGen Generation Questions

To conclude with the DBGen approach of generating content, even named syn-
taxes, from DBEB initial syntaxes (and not the contrary), we discuss here the
limits and the future of this approach.

Can DBGen fail ? Syntactically invalid DBGen input will of course cause the
tool to fail to produce any output, and presumably there are errors in the source
code that might cause the generation to fail in unexpected circumtances... How-
ever the following question remains: Can DBGen fail to generate a valid (w.r.t.
Coq) de Bruijn infrastructure from a valid DBEB syntax ? The answer we give
is two-fold: no, we have not found any example that gives rise to an invalid
generated content; perhaps, since the concept of valid DBEB should be more
precisely described (a type system have recently been formalized for that purpose
and integrated into DBGen v0.5.2).

Why using de Bruijn-like syntax as input ? Let us point out that it is of course
possible to derive a DBEB structure from a named syntax provided that the
necessary information is given as input (mainly the arity and the category of
binders); Ott [14] would be a very good choice for that purpose, with a backend
in the spirit of that for the locally-nameless representation of terms. However
this would have two major flaws : first, the user would not be able to validate his
de Bruijn definition before generating content over it, and we cannot (for now)
ensure the correctness of DBGen output for incorrect inputs w.r.t. Coq inductive
definitions; second, the user might consider that knowledge about de Bruijn
structure is unnecessary while further uses of the generated content requires it
(for now).

4 DBGen at Work

We focus now on the tool DBGen itself and we illustrate the usage of the gener-
ated infrastructure with two motivating example. The second one makes use of
the tactics generated by DBGen that uses the infrastructure properties to sim-
plify arbitrary terms with lifting and substitutions. This provides a very handy
framework to prove further properties without the pain of knowing the details of



Automatically Generated Infrastructure for De Bruijn Syntaxes 413

the de Bruijn infrastructure. This section requires some knowledge about induc-
tive syntax definitions, we will use very simple Coq definitions and only some
notations to facilitate the reading of the final example.

4.1 An Example of Generation

The language chosen as input is Coq itself as its knowledge is a requirement to
be able to use the output of DBGen, the user gives his source syntax in the de
Bruijn setting, and add comments to indicate where are the index constructors
and the binders, i.e. describe it as a DBEB syntax.

The source syntax of λ-calculus with n-ary let and tuples is given as follows:

Module STLCletn.

Inductive term : Type :=

| var ((* index *) x : nat)

| app (t1 : term) (t2 : term)

| lam ((* bind term in *) t : term)

| tuple (tl : terms)

| letn (n : nat) (t : term) ((* bind [ n term ] in *) u : term)

with terms : Type :=

| tnil

| tcons (t : term) (ts : terms).

End STLCletn.

DBGen output is around 1300 lines long, organized as a module named STLCletn

(given in the source file) that contains the definition itself (without the com-
ments) and the following lifting and substitution definitions (we present only
the prototypes):

Fixpoint term_lift_in_term (_n : nat) (_m : nat) (_arg : term) : term

with term_lift_in_terms (_n : nat) (_m : nat) (_arg : terms) : terms.

Fixpoint term_subst_in_term (_a : term) (_m : nat) (_arg : term) : term

with term_subst_in_terms (_a : term) (_m : nat) (_arg : terms) : terms.

The named syntax is also automatically defined (where name list is the type
of dependent lists of names), along with the translation function:

Inductive _term : Type :=

| _var (x : string)

| _app (t1 : _term) (t2 : _term)

| _lam (xl : _name_list 1) (t : _term)

| _tuple (tl : _terms)

| _letn (n : nat) (t : _term) (xl : _name_list n) (u : _term)

| _db_term (_xn : nat) (_xl_term : _name_list _xn) (_arg : term)

with _terms : Type :=
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| _tnil

| _tcons (t : _term) (ts : _terms)

| _db_terms (_xn : nat) (_xl_term : _name_list _xn) (_arg : terms).

Fixpoint named_to_db_term

(_n : nat) (_l : _name_list _n) (_arg : _term) : term

with named_to_db_terms

(_n : nat) (_l : _name_list _n) (_arg : _terms) : terms.

Other examples are provided in the DBGen distribution, among them is the
language Fexpr presented before (DBGen output is around 3200 lines long) and
also the even more complex language Loopω [15,16] (6 syntactic categories with
2 of them having index constructors; DBGen output is around 5300 lines long).

4.2 An Example of Generated Content Usage

Let us take as concluding example the definitions of the abbreviations val and
let val for the continuation monad in the λ-calculus (see [15] for more details
about this example). Notice that we have here simplified the example for the
sake of readability (and of character encodings) – the complete and Coq-checked
example is available with the DBGen distribution2.

The pencil-and-paper definitions are the following, where z is a fresh variable:

val u = λz. (z u)

let val x = u in t = λz. (u λx. (t z))

The corresponding definitions in the de Bruijn setting are quite complex, they
require the use of the lifting function to preserve the binding structure with the
addition of the new binder λz. An important property to establish for those
abbreviations is the following.

Proposition 1. For any terms t and u,

let val x = val u in t = t {u/x}

Proof. We expand the abbreviations, and get for the left hand side of the
equation

λz. ((λz′. (z′ u)) λx. (t z))

The proof the proceeds in 3 steps:

1. We perform a first reduction step: by the contextual rule for λ
we can apply β-contraction to the inner redex (λz′. (z′ u)) λx. (t z)
and get the term λz. ((z′ u) {λx. (t z) /z′}); this term is α-equivalent to
λz. ((λx. (t z)) u) by definition of substitution.

2 Available at http://www.lacl.fr/~polonowski/Develop/DBGen/dbgen.html
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2. We perform a second reduction step: by the contextual rule for λ we
can apply β-contraction to the inner redex (λx. (t z)) u and get the term
λz. ((t z) {u/x}); this term is α-equivalent to λz. (t {u/x} z) by definition
of substitution.

3. We perform a third reduction step: we can apply η-contraction and get
the term t {x/u} modulo α-equivalence.

Indeed, from the source syntax of ordinary λ-calculus, with the help of Coq
Notations, we can proceeds to define val and let val as follows. We start with
some notations:

Notation "t ’[||]’" := (_db_term 0 _xnil t).

Notation "t ’[|’ x ’|]’" := (_db_term 1 (_xcons x 0 _xnil) t).

Notation "’(!’ t ’!)’" := (named_to_db_term 0 _xnil t).

The first notation is the embedding of a de Bruijn term t inside a named term
with no mapping of the free indices of t, this means that any named variable
bound over it will be free in t. The second one is similar except it maps a variable
to the first free index of t. The third one is the named to de Bruijn translation
function.

As said before, this provides a handy way to deal with variable fresh- and
freeness. The first usage we make is to define η-reduction, usually written

λx. (t x)→ t if x is not free in t

Indeed, we can define it in the reduction relation as follows (where /\X. is the
notation for λx. in the name setting, @ is for the application and &X is for a
named variable X):

Inductive red : term -> term -> Prop :=

...

| eta :

forall X (t a : term),

a = (! /\ X.(t[||] @ &X) !) ->

a |-> t

...

This reads almost as in the pencil-and-paper definition, t[||] asserting that the
variable X is not free in t (no capture of the indices of t). We then define the
val and let val abbreviations as follows:

Definition _val (t : term) : _term := /\ "x".(&"x" @ t[||]).

Definition _letval Y (t : term) (u : _term) : _term :=

/\ "X".(t[||] @ /\ Y.(u @ &"X")).

Notation "’let_val’ x ’=_’ t ’in_’ u" := (_letval x t u) (at level 50).

Here again, this is a nice improvement in the usage of de Bruijn infrastructure.
We can then state our lemma and do the proof easily:
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Lemma letval_val :

forall (t u : term),

(! let_val "y" =_ val u in_ (t[|"y"|]) !) |--> t[u].

Proof.

intros t u. unfold _letval, val, _val. simpl.

eapply reds_step. apply ctx_lam. apply beta. simpl; dbgen_tac.

eapply reds_step. apply ctx_lam. apply beta. simpl; dbgen_tac.

apply reds_step with (t[u]). apply (eta "X"); simpl; dbgen_tac.

apply reds_zero.

Qed.

Notice that no direct invocation of infrastructure properties is needed, although
this proof involves relatively complex lifting and substitution interactions (be-
tween those of the abbreviations definition and those created by the reduction
steps). All the infrastructure treatment is performed by the dbgen tac tactic,
and only the interesting steps remain in the proof script.

This definitely looks close to the pencil-and-paper proof: the proof begins with
macros unfolding and simplification, then each apply ... or eapply ... corre-
sponds to a proof step (performing one reduction step is defined as reds step;
the rule for contextual reduction under a λ is ctx lam; reduction rules are
beta and eta respectively), and each simpl; dbgen tac deals with the sub-
goal of equivalence modulo lifting and substitution definitions. The last apply
reds zero concludes the proof with the reflexivity of the multi-step reduction
relation noted |--> in the lemma statement.

5 Conclusion and Further Work

We have seen that this approach is satisfactory at the user level as it provides an
easy way to formalize higher-order languages without having neither to embed
it in a complex theory (potentially subject to adequacy problems) nor to encode
it as a more complex syntax. It comes with a rather complete generation of the
de Bruijn infrastructure, and a set of tactics that makes further proofs involving
this infrastructure quite easy. We also believe the proposed translation from the
generated named syntax to be a good incentive for users not very familiar with de
Bruijn ones. Besides alleviating the burden of formalization, this framework also
allows as many modifications of the source language as needed, without having
to parse and correct hundred or thousands of lines of formal specifications and
proofs.

DBGen is already more than a prototype, it handles complex languages and
can be easily extended for further content generation. Forthcoming extension are,
at the infrastructure level, the definition of free and bound variables computa-
tion functions and the properties of lifting and substitution w.r.t. those notions.
At the language level, we plan to add support for indexed relations (like typing
relations, or reduction with an environment) and perhaps to automatically pro-
vide some commutation lemmas (such as subject reduction). DBGen could also
be adapted to generate Locally Nameless syntaxes (as did LNgen in a recent
past) and translation functions for named and de Bruijn syntaxes.
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Abstract. We address the multicore problem for interactive theorem
proving, notably for Isabelle. The stagnation of CPU clock frequency
since 2005 means that hardware manufactures multiply cores to keep
up with “Moore’s Law”, but this imposes the burden of explicit paral-
lelism to application developers. To cope with this trend, Isabelle has
started to support parallel theory and proof processing in 2007, and con-
tinuously improved the use of multicore hardware in recent years. This
is of practical relevance to theory and proof development, since their
size and complexity is roughly correlated with the real time required for
re-checking. Scaling up the prover on parallel hardware will facilitate
maintenance of larger theory libraries, for example.

Our approach to parallel processing in Isabelle is mostly implicit, with-
out user intervention. The system is able to exploit the inherent problem-
structure of LCF-style proof checking, although it requires substantial
reforms of the prover architecture and its implementation. Thus the user
gains significant speedup factors on typical commodity hardware with
2–32 cores; saturation of 8 cores is already routine in many applications.

The present paper provides an overview of the current state of shared-
memory multiprocessing in Isabelle2013, which also benefits from recent
improvements of parallel memory management in Poly/ML (by David
Matthews). We discuss common requirements, problems, and solutions.
Concrete performance figures are analyzed for some applications from
the Isabelle distribution and the Archive of Formal Proofs (AFP).

1 Introduction

1.1 The Multicore Problem

Software developers have become accustomed to Moore’s Law of computing,
which states that chip density and integrated functionality doubles every two
years. This is essentially a social contract of hardware manufactures with its
customers, the producers of computer systems and application software. In the
past, it was correlated with an increase in clock frequency, so existing programs
would become exponentially faster over time, or the complexity of programs
could be increased without the user noticing such “software bloat”.
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The rules have changed substantially around 2005, when clock frequency has
reached a plateau at 3GHz — due to excessive power dissipation and overheating
at higher rates. Thus the continued exponential growth leads to a multiplication
of explicitly visible CPU cores, presently in the range of 2–32.

Multiplication of cores naturally poses challenges to application software de-
velopment. Sequential code that fails to adapt to this evolutionary pressure suf-
fers from exponential decline of relative performance. For example, a single-core
program on 16 cores is confined to 6.25% of the nominal CPU power. Even if
the number of cores becomes stagnant, which might well happen especially in
the consumer market, we are left with the problem of a large gap in potential
application performance, and the era of sequentialism is not coming back.

Multiprocessing does not provide “spare CPU cycles” for free: extra effort is
required to use the available CPU power in applications. Performance matters for
interactive theorem proving, since the real time spent for re-checking is correlated
with the total size of formal developments. Big Isabelle applications (e.g. from
the Archive of Formal Proofs) typically grow until the time for full re-checking
approaches 10min to 1 h. It is up to the prover implementation to stretch the
amount of formal content that can be processed in that time-span.

An important characteristic of the hardware class with 2–32 cores is that the
convenient programming model of shared memory can still be supported, with
reasonable memory bandwidth for transfers between CPUmodules. This requires
hardware manufacturers to provide an increasingly complex memory hierarchy
of caches and quick paths for physically distributed memory, but it is one area
where the exponential increase of hardware capabilities still happens (apart from
graphics performance). There is some variance in the different product lines of
Intel vs. AMD: in 2013 high-end CPUs by Intel emphasize the performance of
shared memory access, while AMD maximizes the number of cores per chip.

For the concrete measurements in this paper, we shall use a 3rd generation
Mac Pro (early 2009) with 8 CPU cores and 16 hardware threads (2 × 4-core
hyperthreading Intel Xeon at 2.93GHz) and 32GB main memory (DDR3 at
1066MHz), running Mac OS X Mountain Lion in genuine 64 bit mode. This
represents a typical (slightly dated) workstation. The performance of current
high-end laptops (e.g. based on Intel Core i7) is only a factor of 2 lower than
that — there is usually just one CPU module on mobile systems.

1.2 LCF-Style Provers as Multi-threaded Applications

Due to various characteristics, interactive theorem provers like HOL [19, §1],
Coq [19, §4], Isabelle [19, §6], or ACL2 [19, §8] fit quite well into the model of
shared-memory multiprocessing.

Functional Programming with Mainly Immutable Data. Typical provers
are implemented in a higher-order functional programming language (LISP,
ML, Haskell) with a strong emphasis on large symbolic data structures that
are immutable (e.g. big λ-terms for syntax or proof terms).
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In the multicore era, immutability is one of the inherent advantages of
pure functional programming, and even Java programmers have noticed that
(cf. the attention that functional-object-oriented Scala and the LISP/Haskell
dialect Clojure have gained in the JVM world). Shared memory allows to
pass pointers to immutable data without requiring copying, and without the
danger of data corruption between application threads.

Moreover, structural equality of pure values (as defined in Standard ML
and Haskell) enables the runtime system to produce distributed copies with-
out special precautions about coherence between different processors. This
is exploited in the parallel garbage collector of Glasgow Haskell [8] and
Poly/ML.

Thus pure functional programs can afford thread-based parallelism, with-
out the hazards known from C or FORTRAN. Nonetheless, threads and
synchronization primitives are difficult to use directly in application code,
so higher principles of parallel functional programming are required.

LCF-Style Abstraction of Formally Certified Entities. In the LCF ar-
chitecture [5] that is observed by the HOL family and Isabelle, certified enti-
ties like theorems, well-formed terms, and theory certificates are represented
as entities of abstract datatypes. The corresponding proof constructions only
exist as Platonistic ideas, without representation in memory.

Such abstract datatype values can be easily transferred in shared memory
by the runtime system, with the same type-safety properties as the original
ML design [4]. In contrast, explicit communication of results between separate
process address spaces requires externalization of formal entities. Depending
how thoroughly proof checking is treated at the kernel level, this may demand
full proof terms to be communicated, say over a network of CPUs.

Continuous Interaction with a Large Prover Process. Our prover inter-
action model is centered around a single process with a large background
context, where the user produces small additions incrementally. This sce-
nario can be efficiently represented by a single multi-threaded process.

Using separate prover processes instead, say via Unix-fork with the usual
“copy-on-write” implementation of virtual memory, is faced with some prob-
lems. First, the initially shared physical memory map diverges after some
run-time of the ML system, notably due to garbage collection that moves
equal content in different ways and thus produces separate copies. Second,
the results of a fork need to be communicated back by explicit inter-process
communication, using some externalized form of proof objects. On non-Unix
systems (Windows), startup time of a fresh prover process might be even
considered too high in immediate user interaction.

In contrast, the advanced parallel memory management of multi-threaded
Poly/ML retains the original structure of data on a shared heap. Recent
Poly/ML 5.5 explicitly recovers structural sharing of equivalent data in a
long-running ML process, as a special phase in its parallel garbage collection.
This allows to scale to more threads working on less memory: 32bit mode
with small 2–3GB address space has become interesting again for big Isabelle
applications, due to reduced memory bandwidth requirements.
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These introductory observations should make sufficiently clear that interactive
theorem proving and shared-memory multiprocessing are worth investigating
and turning into practice. We shall provide a general overview of many questions
that arise when embarking on such a project, and provide some clues how the
answers of Isabelle could be transferred to other interactive provers.

2 Strategies for Parallel Proof Checking

Subsequently, the running example is the medium-sized entry Slicing from AFP
(http://afp.sf.net/entries/Slicing.shtml). Its sequential runtime is 12min.

2.1 Peep-Hole Parallelism

Inspecting the sources of AFP/Slicing reveals the following situation at line 1167
of Slicing/JinjaVM/JVMCFG_wf.thy:

(* This takes veeery long! *)

by simp_all

This solves a goal state of 1225 subgoals by simplification in 77 s elapsed time.
Since all subgoals are independent, without any schematic variables whose in-
stantiation could influence each other, it is an “embarrassingly parallel problem”.
The obvious idea is to simplify these subgoals separately and recombine the re-
sults by back-chaining with the original goal state. In Isabelle2013, the proof
method simp all is smart enough to detect this situation and to operate in par-
allel by default. It uses the general-purpose tactical PARALLEL_GOALS, based on
Par_List.map in Isabelle/ML. 1225 simplification tasks are forked, and all re-
sults joined before proceeding. Timings for this experiment are given in figure 1.
Empirical results of parallel performance need to be treated carefully, looking
closely what is measured and how. The figures of elapsed time vs. CPU times are
based on standard facilities of the operating system, which we take for granted.
The column “pseudo speedup” gives some impression how much nominal CPU
cycles are spent, but generally does not tell what the user gains (apart from

worker threads elapsed time CPU time pseudo speedup real speedup
m ε(m) ζ(m) ζ(m) / ε(m) ε(1) / ε(m)

1 77.0 s 77.3 s 1.0 1.0
2 38.5 s 76.5 s 2.0 2.0
4 19.7 s 76.8 s 3.9 3.9
6 13.8 s 79.5 s 5.8 5.6
8 10.7 s 80.0 s 7.5 7.2

12 9.1 s 99.1 s 11 8.5
16 8.1 s 113 s 14 9.5

Fig. 1. Simplification of 1225 independent subgoals, with hyperthreading for m > 8

http://afp.sf.net/entries/Slicing.shtml
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extra heat production by the computer). The “real speedup” ε(1) / ε(m) rep-
resents the success of parallelization more faithfully, but it is usually lower and
less exciting in the presentation, and ε(1) is unknown in practice without the se-
quential run for comparison. Isabelle batch mode displays the ratio ζ(m) / ε(m)
as speedup factor by default, and it happens to approximate the real speedup
above reasonably well, before the multicore system is pushed towards its limits.

What have we gained so far? Reducing a single tactic application from roughly
80 s to 8 s gives an impressive speedup factor 10, an isolated boost of performance
that might be useful for the user working at that spot. Looking at the bigger
picture, though, the overall runtime of AFP/Slicing merely shortens from 720 s
to 648 s (factor 1.1), as there are no further “embarrassingly parallel problems”.
This means the total performance improvement with 16 worker threads is not
1000%, but 10%. In other applications it might be as low as 1%.

This effect is typical for “peephole parallelization”, it applies to most problem
domains when the aspect of parallelism is considered naively. Amdahl’s Law
(from 1967) estimates the sub-linear speedup as 1 / (s + p/m), where s is
the part of the program running sequentially, and p the part running in parallel
(normalized such that s + p = 1). For m −→ ∞ this converges to 1 / s. In other
words, the overall success of parallelization depends on the remaining fraction
of inherently sequential code. The prediction would become more pessimistic by
including losses due to organization of parallel computation, so for large number
of cores the speedup eventually becomes smaller than 1, and ultimately tends
towards 0.

2.2 Pervasive Theory and Proof Parallelization

The main conclusion of the previous experiment is that parallelism needs be
pervasive to gain significant speedup, i.e. the remaining sequential part of the
application runtime needs to approach 0. In order to get anywhere close to that
we need to investigate our problem structure more thoroughly. We shall do that
at different levels of granularity, as specified by parameter q below.

Granularity q = 0: parallel theories.
Typical formalizations consist of an acyclic graph of theory nodes, often with
a reasonable degree of independent paths, e.g. see figure 2 (left). Traversing
this graph in depth-first order and composing nodes in a bottom-up manner,
we gain some potential for parallelism in correlation with the breadth of the
graph and the runtime for each node. This resembles make -j on the Unix
command-line, but we run multiple threads within the same ML process,
using our own scheduler for DAG-structured evaluation in Isabelle/ML.

Granularity q = 1: parallel theories and toplevel proofs.
As sketched in figure 2 (right), each theory node consists of a sequence of
definition–statement–proof. Results are specified beforehand as propositions
in the text, and later justified by the proofs, which are irrelevant in practice.
Likewise, some definitional forms require proofs internally (e.g. inductive).
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inductive P . . .

theorem A 〈proof 〉
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theorem C 〈proof 〉

have X ∧ Y
proof

show X by simp
show Y by blast

qed

theorem A1 and . . . and An

by simp all

Fig. 2. Typical theory dependencies and content structure

Even though proofs are hard to produce and take long to check, they are not
required to process the outermost sequence of specifications. Proofs can be
forked immediately and are only joined in the very end, when the whole graph
of loaded theories is consolidated. Proofs may refer to previous theorems, but
not to their proofs.1

So the totality of proofs emerging from a given theory graph poses again
some “embarrassingly parallel problem” as in §2.1, but with slightly differ-
ent characteristics: proof problems emerge dynamically during the ongoing
theory processing, and need to be joined only in the very end. Instead of
static skeletons like Par_List.map, the appropriate programming model is
that of dynamic fork / join of eventual results (cf. §3.1).

Granularity q = 2: parallel theories, toplevel proofs, and end-proofs in Isar.
Incidentally, the structured proof language Isabelle/Isar [16] provides high
degree of compositionality, and thus extra potential for parallel checking. In
principle, every Isar sub-proof could be treated recursively like q = 1, but for
simplicity we only do this for Isar end-proofs “by method”. This is sufficient
for structured proof outlines, because most of the time for checking is spent
at terminal positions, where claims emerging from top-down decomposition
are finally established by arbitrary proof tools (simp, blast, auto, force etc.).

Concrete results for these parallelization strategies are given in figure 3. In each
column for q, the speedup curve for increasing m flattens according to Amdahl’s

1 Despite the different foundational approach in the Dependent Type Theory of Coq,
proof irrelevance still holds in practice, since most proofs are “opaque”.
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Law. This is inevitable, but it matters how far the relative decline can be post-
poned. The combination of parallelization strategies for q = 2 achieves fairly
good speedup of 6.2 on 8 cores, more than 75% of the nominal CPU power.

worker threads real speedup real speedup real speedup
m q = 0 q = 1 q = 2

2 1.6 1.8 2.0
4 2.0 3.0 3.3
6 2.1 3.5 4.1
8 2.2 3.7 6.2

Fig. 3. Real speedup of AFP/Slicing depending on granularity q

The results of this single experiment can be extrapolated — it has been cho-
sen to represent typical Isabelle applications seen today. Thus we conclude the
following rules of thumb for multicore scalability:

– Parallel theory loading alone scales to 2 cores,
– with additional toplevel proof parallelization it scales to 4 cores,
– with additional sub-structural proof parallelization it scales to 8 cores.

Another parameter that is not measured here is the level of sophistication of
the parallel prover implementation. In 2011 AFP/Slicing did not scale beyond
4 cores, and in 2009 only few Isabelle applications managed to go significantly
beyond 2 cores — see [15, §5] for the best that could be achieved on 4-core Intel
Xeon hardware in that time.

3 Parallel Prover Architecture

Despite good side-conditions for multi-threaded proof checking (§1.2), substan-
tial reforms of the prover architecture (and its implementation) are required
to make it actually work and perform well. This affects a broad spectrum of
core prover aspects: parallel functional programming, parallel inference kernel,
explicit organization of theory and proof structure.

There is further impact on outer system integration layers. For example,
Isabelle2013 provides an advanced build system (implemented in Isabelle/Scala)
to manage re-checking of large theory libraries efficiently, by managing a tree of
multi-threaded processes that run in parallel. Thus by exploiting the outer hier-
archy of “sessions” and the inner structure of theories and proofs, full re-checking
of AFP has been reduced from several hours to 30min on 8 cores.

Further integration of parallel checking and asynchronous interaction hap-
pens in the Prover IDE [17]. In Isabelle2013 it exploits more fine-grained proof
parallelism during regular interaction. Combining erratic edits by the user and
continuous parallel checking by the prover poses further challenges that are be-
yond the scope of the present paper (some aspects are discussed in [18]).

Subsequently, we provide an overview of Isabelle2013 prover architecture,
putting it into perspective of earlier work and pointing out recent refinements.
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3.1 Parallel ML

LCF-style theorem proving has been intertwined with functional programming
in ML since the inception of both in LCF [4]. Originally implemented as an
interpreted language within LISP, ML has become a standalone language in the
1990-ies. Some of its implementations have managed to catch up with multi-
threading already, such as Poly/ML [9] (with its own parallel runtime system)
and F# (which re-uses the common language runtime of the .NET platform).
Other interesting functional languages with good support for parallel program-
ming are Haskell [8] and Scala, and of course LISP where important ideas of
task-parallel evaluation was first explored in the 1980-ies [6].

The most notable exception is OCaml, which is still subject to early decisions
by its main architects of not supporting parallel threads in ML, despite [3].

The host language for particular provers is inherited from distant past and
somehow accidental, but it impacts chances of survival in the multicore era.
Isabelle has always supported more than one implementation of Standard ML,
especially Poly/ML and SML/NJ. Starting in 2006, David Matthews made
substantial renovations for Poly/ML to support native multithreading. The
Poly/ML 5.5 release from September 2012 is notable for its support of parallel
garbage collection and compaction of large heaps. There is now a considerable
performance gap towards SML/NJ: in 2013 the factor is of the order 102 for
medium-sized Isabelle applications, and big ones are already infeasible.

In a system like Poly/ML, the raw power of shared-memory multicore hard-
ware is made available as threads–and–locks. Poly/ML offers an ML view on
POSIX threads, with its mutexes and condition variables for synchronization
and signaling [9, §2]. This first approximation to parallel computation is then
augmented by a concept for task parallel programming which organizes evalua-
tion of future values in Isabelle/ML [9, §3]. Threads do not scale beyond 101–102,
but a limited number of worker threads can operate efficiently on a task queue
of 105–106 pending evaluations. The idea of data-oriented parallelism dates back
to Multiplisp [6] at the least. It has been re-implemented over decades in many
variations, and is routinely available in Isabelle/ML, F#, Haskell, Scala, LISP.

The Isabelle/ML implementation of futures is careful to transfer the semantics
of Standard ML adequately into the parallel environment, with strict functional
evaluation, synchronous program exceptions, and asynchronous interrupts. The
main programming interface is as follows:

type α future
val Future.fork : (unit → α) → α future
val Future.join: α future → α
val Future.cancel : α future → unit

Type α future represents the eventual result of a given expression, which is
associated with an evaluation task of the future scheduler in the background.
The task queue supports both priorities and dependencies, and is implemented
as explicit graph structure. Joining with an unfinished future synchronizes with
the evaluation process, where the full complexity of inter-thread communication
happens. In contrast, there is no special overhead to access finished futures later.
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The key property is that Future.join (Future.fork (fn () ⇒ expr)) produces
the same result (or exception) as expr outright, but the fork can be separated
from the join for parallel evaluation. The overhead for fork + join is about
10−5 s. On Intel hardware similar to our’s, Rager [13] reports 50μs for his LISP
system, and we measure exactly the same for Isabelle/ML. This overhead roughly
determines the granularity of tasks that are feasible to fork. For example, 20000
tasks that run a few microseconds each will waste 1 s, but this not a problem if the
application manages to produce thousands of tasks in the range of milliseconds.

Futures can be used to implement higher-level combinators like parallel map
(or the renowned reduce). Isabelle/ML already provides such derived combina-
tors, but proof parallelization uses Future.fork and Future.join directly, because
proofs emerge dynamically during the exploration of yet unknown theory con-
tent. Since forks are under program control, we can exploit potential parallelism
while exploring the proof, and easily restrain substructural parallelization tasks.

3.2 Theory Context and Proof Promises

Logical derivations work in a context, whose precise structure depends on the
formulation of the underlying logic. In the HOL family and in Isabelle, there is
a global theory context that we call Θ, and a local proof context that we call Γ .

The theory Θ contains declarations and specifications of type constructors,
term constants, and axioms (definitions), which are polymorphic in the sense
that their type schemes may get instantiated arbitrarily during proof.

The proof context Γ contains local hypotheses (premises) to support =⇒
introduction in Natural Deduction. Locally fixed parameters for

∧
quantifier

introduction are implicit (in contrast to dependent type theory in Coq).
The inference kernel produces sequents Θ, Γ � ϕ, but we have Γ = ∅ for global

results and the background theory Θ is managed implicitly. Thus end-users may
think just of theorems � ϕ that establish a certain proposition ϕ.

Nonetheless, the global context Θ turns out as essential for management of
forked proofs in parallel Isabelle. Lets say that at stage Θ1 of the ongoing theory
development, theorem ϕ is claimed and its proof forked for independent checking,
while the theory is continued monotonically towards Θ2, adding more definitions
and theorems. When the forked proof is eventually joined, it needs to establish
Θ1 � ϕ in the original theory context for proper foundation of logical results.

This means the inference kernel needs to work explicitly with theory contexts,
with some operations to extend, merge, compare theories according to Θ1 ⊆ Θ2,
and transfer of theorems from the smaller to the bigger theory.

Incidently, Paulson [11] had already introduced a notion of theory context for
theorems in Isabelle89. This was motivated by the logical framework approach
of that time, to allow the user to work in different background contexts. The
concept has been refined many times, notably for efficient checking of Θ1 ⊆ Θ2

via symbolic theory certificates that represent the stages of extend and merge
operations, without inspecting the theory content directly.
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Another important aspect is extra-logical theory data: concrete syntax, hints
for proof tools etc. are managed in a value-oriented manner as part of Θ (and Γ )
in the implementation. Thus tools may run in parallel and refer safely to their
private data within the context, without worrying about mutable state.

This is in contrast to original LCF and members of the HOL family, who
accumulate theory content as implicit global state of the ML process. The state
growsmonotonically as the user adds new definitions, without returning to earlier
states (undo) and without isolation of independent instances of proof tools. Coq
is slightly more flexible by multiplexing different contexts, with operations freeze
and unfreeze for tool hints that are associated with them, although this concept
is still restricted to a single active view of the state.

These observations reveal accidental side-conditions in the long history of
LCF-style provers. In the past, the interaction model was that of a single-
threaded TTY loop where individual commands were applied one after another,
so simplistic treatment of the context could be afforded. But this should not pre-
vent Coq and HOL systems to become more stateless and timeless eventually.

Taking sequents Θ, Γ � ϕ with explicit context values for granted in Isabelle,
we can proceed in the next stage to support a notion of proof promises natively
in the inference kernel. The new rule promise produces a hole (with specified
result) in the reasoning, which can be amended later by another rule fulfill. Holes
are managed formally by the context Π that maps identifiers of proof promises
to actual derivations. The original version from 2008 of this slightly extended
Natural Deduction system for Isabelle/Pure is given in [15, §3]; according to
Isabelle2013 the main rules are as follows:

FVA = ∅ TVA = {?α}
Θ, {a : A}, ∅ � a[?α] : A[?α]

(promise)

Θ, Π, Γ � p : B Θ0, ∅, ∅ � q : A Θ0 ⊆ Θ

Θ, Π − {a : A}, Γ � p[a := q] : B
(fulfill)

The underlying formulation of Isabelle/Pure with proof terms goes back to [2];
it emphasizes the role of proof promises as polymorphic proof constants, which
may be substituted by closed proof terms later. In reality, proof terms are merely
a second option of the Isabelle kernel. By default it only maintains a proof body
as a digest of proof promises, oracles, and external theorem references.

A notable refinement of fulfill compared to [15, §3] is that the replacement
proof q : A is required to be fully closed (Π = ∅). This avoids complications
of holes depending on other holes, and speculative well-founded ordering of the
same, which would be hard to implement in practice. The restricted form means
that future proofs need to be joined in a bottom-up manner before passing
through the inference kernel. The well-founded order is given by the physical
process of Isabelle/ML consolidating values. In best LCF tradition, this might
lead to non-termination, but cannot produce unfounded results.

Management of free type variables is explained further in [15, §3]. It is pos-
sible to quantify term variables and thus demand FV A = ∅ w.l.o.g., but type
variables need to be tracked separately to retain the schematic polymorphism of
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the logic. Otherwise it would be impossible to fork a proof and instantiate types
of the result. Our context Π acts like Θ in this respect. This is in contrast to
shallow proof holes of [1], which are monomorphic due to the use of Γ in HOL.

The ML interface of the inference kernel presents promise and fulfill together
as a single operation Thm.future: thm future → term → thm. It makes a theorem
based on a proof promise that will be fulfilled by the eventual result of the given
future. The side-conditions are checked on finished future derivations. Thus the
implicit policy of future evaluation is re-used, but the kernel stays in control of
checking the outcome as plain ML value; it does not even care about parallelism.

ML values of type thm are theorems on the surface only, as they may depend
on unfinished futures. The kernel operation Thm.join proofs : thm list → unit
consolidates results by recursive joining of the graph of pending proof promises,
and produces a digest of parallel error messages about failed proofs.

3.3 Goals with Forked Proofs

The notions of proof promises and future theorems of the inference kernel mainly
serve foundational purposes in the spirit of the LCF architecture. The main
programming interface works via goals with forked proofs. There is some ad-
ditional infrastructure for accounting and reporting of structural errors within
forked proofs. As already observed in [15, §4], the Isabelle/ML operation for
goal-directed proof Goal .prove: Proof .context → term → tactic → thm can be
turned into an alternative version Goal .prove future of the same signature. Its
internal use of future theorems is hidden, thanks to the full specification of the
intended result as proposition. This is a key advantage of backward-proof.

There are delicate differences in the semantics of proof failure, though, if
errors in forked proofs are postponed until the final join over all theories. This
is important for derived definitional packages like inductive in Isabelle/HOL,
where failure of its internal monotonicity proof means that the user specification
is malformed. Any further derivations inside inductive are irrelevant to the
user: they always work under the assumption that the package is implemented
properly. This critical treatment of forked proofs was still relatively crude in 2008
[15], resulting in more conservative use of sequential proofs in some situations.

To avoid such conflicts of parallelism and reliability of the prover, the high-
level infrastructure for goal-directed parallel proof has been reworked signifi-
cantly for Isabelle2013. The main aspects are summarized as follows:

– λ-lifting wrt. to the proof context Γ according to [15, §4.1], to allow goal
statements work with premises and parameters, despite the restrictions of
Thm.future thm due to the promise and fulfill rules (§3.2).

– Global accounting of forked proofs within the running process, to avoid un-
necessary forks when the system is flooded with future tasks already, accord-
ing to the bound of m ∗ parallel proofs threshold (default 100).

– Systematic tracking of errors stemming from forked proofs according to the
originating command transaction.
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Consequently, derived elements like inductive and datatype may now fork
their internal proofs more aggressively, even relevant ones. This is especially im-
portant for increased parallelism in the asynchronous document model of the
Prover IDE. An explicit notion of stable command in its document model in-
dicates the status of all goal forks, without requiring a global join. The system
will reset failed command transactions whose forked proofs were failing or inter-
rupted, and thus retry evaluation in the next editing phase.

4 Performance and Scalability

Asymptotically, the multicore problem cannot be solved, but we do our best to
exploit the capabilities of our hardware. Subsequently we review further results
of measuring the parallel performance, to see trends beyond 8/16 cores. Current
Poly/ML 5.5 and Isabelle2013 allow monitoring of CPU and memory usage,
status of parallel garbage collection, future tasks and worker threads.

For users the main result is the real speedup ε(1) / ε(m), which is presented
in figure 4 for various Isabelle sessions.
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A HOL 210 s 85 s
B HOL-UNITY 69 s 13 s
C HOL-Nominal Examples 526 s 91 s
D Slicing 720 s 122 s
E HOL-Decision Procs 415 s 67 s
F HOL-Hoare Parallel 218 s 34 s

Fig. 4. Sequential runtime and real speedup of some Isabelle sessions

Session HOL is special here in compiling big ML modules for tools like Sledge-
hammer, and comparatively few regular theory and proof developments. Factor
2.5 for 8 cores might look disappointing, but it is already an improvement over
1.7 in [15, §5], where the base-line performance was much lower as well.
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The other sessions are more conventional, with good speedup in the range
of 5.2–6.4 for 8 cores. To scale further, potential losses in the implementation
of the parallel ML infrastructure are only of minor concern: they can be ironed
out eventually. The main challenge is proper partitioning of parallel tasks ac-
cording to the structure of the application. The histograms in figure 5 illustrate
distribution of the runtime of tasks for m = 8 and q = 2 (cf. §2.2).
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Fig. 5. Distribution of task runtimes (m = 8)

The examples HOL-UNITY vs. AFP/Slicing are very different in their abso-
lute runtime and overall structure of theories and proofs. Both scale to 8 cores,
which can be explained by a good amount of tasks in the millisecond range.
AFP/Slicing tends to more longer-running proofs (many slow automated steps),
with a few monolithic tasks in the range 101–102 s.

In figure 6 we see more precisely how this portfolio of future tasks popu-
lates the Isabelle/ML task queue and corresponding worker threads, over the
elapsed runtime of each session. This changes significantly for different
values of m.

The fluctuation of thousands of ready tasks is mainly due to forked proofs.
These easily saturate 4 worker threads during most of the elapsed runtime, but
for 8 there are increasing drop-outs with inactive workers: HOL-UNITY has a
slow startup-ramp, until sufficiently many proof tasks are forked; AFP/Slicing
has a slow tail-end with a few long-running tasks. The final theory of AFP/Slicing
consists of one huge proof, with many automated steps; this is where many of its
101–102 s tasks emerge. The sudden peak near the start of AFP/Slicing is due
parallel checking of 1225 subgoals, as discussed in §2.1.
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Fig. 6. Task queue population and worker thread utilization (m = 4 and m = 8)

5 Conclusion

We have demonstrated that proof checking in the LCF tradition can exploit
the computing power of shared-memory multicore hardware adequately. Our
main strategy for parallelization is based on the observation that formal theo-
ries consist of explicit statements with irrelevant proofs. Additional aspects of
Isabelle/Isar sub-proofs are important for further scalability.

Implementations of parallel ML should in principle be commonplace, but
we had to rebuild significant infrastructure for SML from scratch (starting in
2006/2007), based on parallel Poly/ML provided by David Matthews. Versions
of HOL that are also implemented in SML could re-use that, but some prover-
specific infrastructure needs to be reworked. Coq faces more serious challenges
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since its home platform OCaml is optimized for sequential execution, although
its predecessor Caml once had a multithreaded runtime system [3].

To relate performance figures of earlier versions of parallel Isabelle, note that
[15, §5] also uses the top-end Mac Pro at that time (4-core Intel Xeon), but [9, §5]
is different in using a fat-node of a computing-cluster (32 AMD Opteron CPUs
and 64GB main memory); the measurements of [9, §5.3] stretch the available
resources, to explore the limits of ML memory management and application task
structure [9, §5.3]. The present results require much less memory, and work even
within the restricted address space of the 32-bit version of Poly/ML 5.5.

The challenge of explicit parallelism in application code has happened before
in the late 1980-ies and early 1990-ies, when classic CISC machines became
stagnant and “transputers” or workstation clusters were considered a viable
alternative to gain more performance. Some parallel prover projects from that
time include the Distributed Larch Prover [7], or the MP refiner [10] as parallel
tactical engine for NuPrl, using an extinct parallel version of SML/NJ. This
pioneering work had little impact on mainstream interactive provers later on,
and the boost of performance of RISC machines and reformed CISC machines
has postponed the problem of mainstream parallelism until 2005.

The only other major proof assistant that answers the multicore challenge is
ACL2: Rager [12, 13, 14] provides parallel execution within the LISP system, and
reworks the main stages of the interactive proof development process (“the ACL2
waterfall”) to support parallelism in many practical situations. Performance is
evaluated into the range of 32 cores on latest Intel hardware. ACL2 6.0 from
December 2012 includes the parallel variant ACL2(p) already.

ACL2(p) emphasizes parallel enhancement of interactive proof discovery and
case-splitting. This roughly corresponds to our sub-structural Isar proof paral-
lelization, as far as it is already supported in Isabelle2013, but the side-conditions
of the proof languages are quite different. Isabelle/Isar emphasizes fast recheck-
ing of structured proof texts, while ACL2(p) emphasizes the search involved in
its “waterfall” of interactive proof exploration.

As cores continue to multiply at an exponential rate, our prover infrastructure
needs to catch up by more sophisticated parallelization strategies: the multicore
problem poses a new challenge for every power of 2 in the CPU multiplication
phenomenon. The advanced monitoring facilities of Isabelle2013 will help to
isolate bottle-necks in the granularity of future tasks.

We anticipate further sub-structural proof parallelization, exploiting virtues
of the Isar proof language more thoroughly: recursive proof forking to accom-
modate nested Isar proofs that spend substantial time in their outline structure.
Another possibility is to introduce more explicit parallelism in specific proof
tools, including parallel proof search. Isabelle/ML already provides combinators
like PARALLEL_CHOICE for tactics, or Par_List.exists for generic ML functions.

As the Isabelle Prover IDE manages to support more and more parallelism in
its asynchronous editing process, we expect significant shifts of paradigms how
large proofs are developed, beyond the raw speedup from the underlying parallel
hardware. This requires users to get acquainted with a timeless and stateless
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model of document-oriented proof development, and to give up manual control in
“driving” the prover in single sequential steps. An advanced proof assistant acts
like system software in this respect, and does the parallel scheduling implicitly
and automatically without user intervention.
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Abstract. In order to take best advantage of modern multi-core sys-
tems, interactive theorem provers need to parallelize execution effectively.
We describe our modification to a particular theorem prover, ACL2, to
use parallel execution automatically in its proof process. Since the ACL2
prover is written primarily in the ACL2 programming language, our ap-
proach to parallelization takes advantage of ACL2 language primitives
for parallel execution. We demonstrate that the resulting system often
provides earlier useful feedback from failed proofs and significant reduc-
tion of execution time for successful proofs. Thus, our system not only
incorporates parallelism into its proof process, but it also provides a plat-
form for writing and verifying parallel programs written in the ACL2
programming language.

Keywords: parallel theorem proving, parallel execution for a formal
logic, functional language, ACL2.

1 Introduction

The ACL2 theorem-proving system [1] is used in large industrial formal veri-
fication efforts [2,3,4] that continue to drive its development. ACL2 is written
primarily in its own functional language, based on an applicative subset of Com-
mon Lisp. Our contribution is ACL2(p): by extending the ACL2 programming
language with parallelism primitives [5,6,7] and modifying its associated prover,
we have enhanced ACL2 to take advantage of multi-core machines and perform
simultaneous proofs on dynamically-created subgoals. Our parallelization not
only reduces the duration of proofs, but it also provides early feedback for failed
proof attempts, which, in turn, can reduce user time required to formulate new
lemmas to guide subsequent proof attempts. The addition of parallelism primi-
tives to the ACL2 language enables not only parallelism during proofs, but also
proofs about parallel programs written in that language. Our focus for ACL2(p)
has been on the CCL implementation of Common Lisp, but we have prelim-
inary implementations for two others that also provide native threads: SBCL
and LispWorks.
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We make use of the ACL2 regression suite [8,9] to determine the utility of
theorem prover parallelism at the subgoal level. Our key results include perfor-
mance statistics and analysis for these proofs on a contemporary 32-core Intel-
based E5-4650 machine. These include proofs about a wide variety of systems
and protocols, including one for a theorem about the Java Virtual Machine [10]
that experiences a speedup of 25.78x and one for a theorem about deadlock
detection [11] that obtains a speedup of 6.21x.

The average factor by which the 200 longest-running proofs are sped up is
5.13x. Reducing the total duration of proof attempts is one way that parallel
execution provides earlier feedback to users. A second type of early feedback
occurs from concurrently executing the proofs of two or more subgoals. Suppose
we have a proof with two independent subgoals, where the first subgoal’s proof
takes ten seconds and succeeds, and the second subgoal’s proof attempt takes
one second and fails. In a serial execution starting with the first subgoal, the
user has to wait eleven seconds to obtain feedback from failure. To improve this
situation, ACL2(p) starts both subgoals immediately, so with two or more CPU
cores feedback is provided in only one second.

This paper begins with a discussion of other uses of parallelism in theorem
provers. After introducing ACL2’s parallel programming primitives, we discuss
our parallelization of ACL2’s main proof process. We then analyze different
types of proofs with respect to parallelization and present our experimental
results. Finally, we discuss future work and conclude. Further details of closely-
related topics are available elsewhere [12], including the parallelism library’s
implementation, interactive issues, related work on parallelism for programming
languages, performance results on a variety of smaller machines, how we limit
parallelism, our methodology used during system development, and how hyper-
threading and garbage collection affect performance.

2 Related Work

Several theorem proving systems have supported the parallel execution of dif-
ferent parts of a proof attempt. Some examples are Moten’s parallel interactive
theorem prover MP refiner [13], Maude’s implementation of concurrent rewriting
logic [14], the Peers distributed theorem proving prototype [15], the Distributed
Larch Prover [16], Partheo [17], and SiCoTHEO [18]. Closest to our work is Wen-
zel’s parallelization of Isabelle/Isar [19,20,21], but first we review parallelism in
ACL2 and its predecessor, NQTHM [22].

ACL2 has long taken advantage of the process-level parallelism provided by
GNU Make to execute proofs in parallel for a set of files. Of course, this file-level
granularity does not speed up an interactive attempt to prove a single theorem.
A 1989 report [23] discusses an NQTHM utility for dispatching prover calls in
parallel for a set of theorems, but this theorem-level parallelism also did not
speed up proof attempts for individual theorems.

A Boyer-Moore style rewriter was the target of an application of Multilisp [24],
Qlisp [25], and Parcel [26,27], which compared the ability of the Parcel compiler
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to automate the discovery of opportunities for parallel execution with the manual
use of future and qlet. We considered parallelizing execution within the ACL2
rewriter, but our preliminary experiments in that direction were discouraging,
so our focus is on parallelism at the subgoal level.

Wenzel’s parallelization of Isabelle/Isar [19,20] includes three main opportu-
nities for parallel execution in that system ([19], Section 5.1). The first two are
similar to ACL2’s file-level and theorem-level parallelism, described earlier in
this section. The third opportunity involves checking subcomponents of a the-
orem’s proof. Wenzel calls this parallelism at the sub-proof level [20] — this is
analogous to our subgoal-level parallelism — and states that he has parallelized
the checking of Isar proofs but not the search for Isar proofs ([19], Section 1.3).
The point seems to be that individual subgoals presented explicitly by the user
are parallelized, but not the proof search performed within the proof of a spec-
ified subgoal. By contrast, ACL2 (and ACL2(p)) heuristics generate subgoals
dynamically, beyond what is submitted directly by the user; and for any goal
that appears, ACL2(p) generally proves its generated subgoals in parallel (when
parallelism is enabled). In summary, our work contrasts with the Isabelle/Isar
parallelization work in that we parallelize subgoals that are generated during the
search for a proof. A second difference is the capability provided by ACL2(p)
for reasoning about parallel programming primitives. By contrast, the futures
library in Isabelle is only available in the programming language used to im-
plement the prover — it is not available for programming in the object logic,
and one can not reason about what it means to have a future. Finally, our work
may be more amenable to scaling: we report a speedup in excess of 25x on a
32-core machine for some proofs, which contrasts with speedups not exceeding
approximately 6.5x on 16 cores reported for Isabelle [19].

We are unaware of any use of parallelism in other interactive proof assistants
currently being used, including Coq [28], HOL4 [29], and PVS [30,31].

3 Parallel Programming Primitives

ACL2(p) introduces programming primitives that are embedded in the ACL2
logic and enable ACL2 programs to execute in parallel. We designed these prim-
itives for both logical transparency and efficient parallel execution, so that ACL2
programmers can obtain the benefits of parallel execution without complicating
their proofs with implementation details like threads and signaling mechanisms.
Below we describe one primitive, plet, which is a variant of let that permits
parallel execution, but with no change in reasoning since it is semantically equiv-
alent to let. Other parallelism primitives include boolean operators with early
termination (pand, por), parallel argument evaluation (pargs), and a combina-
tion of such capabilities (spec-mv-let) [5,6,7,32,12].

We illustrate the simplicity of plet with the following two definitions of the
Fibonacci function, one that uses let for the recursive calls and the other that
uses plet. Note that the one that uses plet includes a granularity form, which is
used to restrict parallel execution to sufficiently large inputs. As expected, ACL2
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proves automatically that (fib x) is equal to (pfib x) and reports that the
proof takes “0.01 seconds.”

(defun fib (x)
(cond ((or (zp x) (<= x 0))

0)
((= x 1) 1)
(t (let ((a (fib (- x 1)))

(b (fib (- x 2))))
(+ a b)))))

(defun pfib (x)
(cond ((or (zp x) (<= x 0))

0)
((= x 1) 1)
(t (plet (declare (granularity

(> x 30)))
((a (pfib (- x 1)))
(b (pfib (- x 2))))

(+ a b)))))

We use threads to implement our parallelism primitives, as these incur less over-
head than processes. We also “recycle” threads: instead of spawning a new thread
for each subgoal, the system places subgoals in a work queue and ensures that
there are enough threads in existence ready to execute the proofs of these sub-
goals; after a thread finishes a subgoal, the thread waits for another subgoal to
process, and if none arrives, it terminates and becomes available to be garbage
collected.

4 Parallelizing ACL2’s Main Proof Process

Preparing ACL2’s main proof process for parallel execution was a significant por-
tion of this project. Knowledge of some of our difficulties and solutions may help
others who wish to parallelize the execution of an interactive theorem prover.
We begin our discussion with an introduction to ACL2’s main proof process and
where we incorporate parallel execution.

The main ACL2 proof process is implemented by the application of nontrivial,
heuristic prover steps. Each prover step takes a clause and attempts to produce
zero or more clauses with the property that if each produced clause is a theorem,
then so is the input clause. If the attempt fails, then the clause is saved to a
pool of clauses whose proofs will later be attempted with induction. But if the
attempt succeeds, a prover step is (recursively) applied to each produced clause.
When there are at least two produced clauses and there are parallelism resources
available, ACL2(p) applies these prover steps in parallel (using spec-mv-let),
providing subgoal-level parallelism. When no clauses remain to be processed, the
proof is complete if the pool is empty, and otherwise a proof by induction is
attempted with the clauses remaining in the pool. Each induction proof again
employs the main ACL2 proof process, typically resulting in more parallelism.

A key problem in parallelizing a system is discovering an appropriate level
of granularity for parallelization. As previously described, parallel proof had al-
ready been used in ACL2 at the level of files; but we are concerned here with
direct interaction with ACL2, in its read-eval-print loop. Furthermore, prelim-
inary experiments indicated that parallelizing the rewriter did not show much
promise. Finally, we determined that parallelizing proofs at the subgoal level
would incur insignificant overhead, with only 0.58% of subgoals observed to take
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less time than the overhead associated with parallelizing a computation ([12],
Section 8.3.1). Thus, we decided to parallelize execution at the subgoal level.

Despite the relatively insignificant overhead, when a user stressed an early
version of ACL2(p) by producing tens of thousands of subgoals, the proof at-
tempt sometimes caused the machine to reboot ([12], Section 8.3.2.3). Unlike
other proofs with many subgoals, in this case the task load average (as reported,
for example, by the Linux “top” utility) for the machine increased to the point
that the Linux daemon “Watchdog” decided that the machine must have be-
come unstable and rebooted the machine. To solve this problem we changed
four aspects of our implementation. First, we placed a limit on the total num-
ber of subgoals that can be enqueued for parallel execution, that can already
be executing, or that are waiting on other subgoals to finish executing. Beyond
this limit, the subgoals prove serially; but this is not a hindrance in practice,
as this limit is reached only in extreme circumstances. Second, we changed the
default parallelism mode to limit the length of the work queue to three times
the number of CPU cores in the system. Third, we changed the implementation
of the main proof process from a list-based linear approach to a hierarchical ap-
proach that allows the parallelism system to reclaim more quickly the underlying
parallelism resources (threads). Finally, we changed how long a thread waits for
a subgoal to process before terminating itself, from a constant 15 seconds to a
random number between 10 and 120 seconds. This last optimization addresses
an interaction between the underlying Lisp and the OS — it prevents thousands
of threads from waking up simultaneously, which can cause a spike in the load
average for the machine and result in the previously mentioned reboot.

Another difficulty that any developer of a parallel system will face is ensuring
that code is free from race conditions. Although the ACL2 theorem prover is
written in a language with functional semantics, there are constructs involving
a single-threaded state, such as output, that produce side effects. Our work
involved modifying the code that implements ACL2’s main proof process to be
thread-safe. As an example, we removed side effects from the mechanism that
translates a user-level term into its internal representation (2138 lines in the
resulting ACL2 6.0 source code for the primary routines).

When parallelizing a system, a key behavior to preserve is the output provided.
ACL2 has long provided an English proof narrative. But such a narrative could
look awkward when parallel execution changes the order in which subgoals are
processed, and reconstruction of the original order could delay useful feedback
to the user about how to proceed from failure. Fortunately, the default mode
of ACL2 only prints key checkpoints: clauses where the theorem prover becomes
“stuck” and where intervention from the user would be most helpful (see ACL2
documentation [5] topics “the-method” and “introduction-to-key-checkpoints”).
Furthermore, the order in which key checkpoints are presented is not important.
Thus, we have implemented a similar capability for ACL2(p). We use locks for
proof output to avoid nonsensical interleaving of characters. But since relatively
little printing typically occurs, even for large proofs, locking does not significantly
impact performance for parallel execution.
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5 Proof Parallelism Potential

The four informal categories below describe proofs according to how they lend
themselves to more or less parallelism. They form a progression, where proofs
in Category I do not benefit from parallel execution and proofs in Category IV
benefit the most. The characteristics that lead us to these categories are: the
duration of a proof, how long a proof takes to arrive at a case split, and how
much a proof’s critical path dominates its execution time.

ACL2(p) provides both early feedback on failure and faster execution for
proofs. Proofs from categories I and II do not benefit from either of these, Cat-
egory III proofs benefit from early feedback on failure, and Category IV proofs
benefit from faster execution and therefore also benefit from early feedback on
failure.

Category I. Short-lived proofs: little time is required
Category II. Mostly-linear proofs, possibly with late case splitting: the proof is

nearly complete before any case splitting occurs
Category III. Mostly-linear proofs with early case splitting: early case splitting

provides the opportunity for early feedback about failed subgoals, but most
of the proof’s CPU time is attributable to a critical path of subgoals derived
from the original goal

Category IV. Proofs with time-consuming and independent subgoals: paral-
lelism can reduce the time required to complete a proof attempt and also
provide early feedback for failed subgoals

The boundaries separating the categories are subjective. For example, for a proof
to be eligible for Category IV, we require that its critical path take less than
half of the proof’s total processing time.

5.1 Examples of Each Category

We now provide examples for each of the above categories.

Category I: Short-Lived Proofs. Parallel execution is useless for proof at-
tempts that complete very quickly. For example, we have used ACL2 Version
6.0 to prove the associativity of append in about 0.01 seconds. Our focus is on
speeding up the user’s interactive experience, so we do not target these proofs.

Category II: Mostly Linear Proofs, Possibly with Late Case Splitting.
Consider the theorem named ste-thm-weaken-strengthen, from ACL2 regression
file workshops/1999/ste/inference.lisp [8]. This theorem does not experi-
ence significant speedup when executing in parallel. We conclude from the proof
tree shown in Figure 1 that almost all of the time is spent processing the goal
that ACL2 names Goal’6’, after which the proof finishes almost immediately.
There is no improvement in the proof’s duration, and the other potential benefit
from parallelism is missing: there is no early feedback for unproved subgoals.
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Goal'6' [24100838]

Goal [653]

Goal' [706]

Subgoal 8 [781]

Subgoal 2 [611]

Subgoal 1 [613]

Subgoal 7 [567]

Subgoal 6 [558]

Subgoal 3 [324209]

Subgoal 5 [570]

Subgoal 4 [564]

Subgoal 1' [200386]

Fig. 1. Proof Dependency Tree for Theorem Ste-thm-weaken-strengthen (times shown
in microseconds)

Category III: Mostly Linear Proofs with Early Case Splitting. We con-
sider theorem r-lte-r-deftraj-r-lte-r-deftrajs, from the same file as the previous
example. When executing serially, about 80% of the proof time is spent pro-
cessing three dependent goals: Subgoal *1/1’, Subgoal *1/1.15, and Subgoal

*1/1.15’, as shown in the proof dependency tree in Figure 2. Thus, there is
little opportunity for speeding up the total proof time by using subgoal-level
parallelism. But with parallelism enabled, if Subgoal *1/2 or Subgoal *1/2’

had generated a key checkpoint, it would have been immediately available to the
user, instead of requiring the user to wait for other subgoals to complete1.

Category IV: Proofs with Time-Consuming and Independent Sub-
goals. The opportunity for parallelism is clearly greatest for proofs that take
nontrivial time and contain many independent subgoals. Here we discuss two
proofs that demonstrate the ability of our system to scale and a third proof that
illustrates a weakness in our implementation: (1) the proof of a theorem designed
to set the baseline for the speedup we can hope to obtain on our implementation
and test machine, (2) a proof about the JVM that takes a long time and has
many case splits, and (3) a proof that exhibits the case where the critical path
becomes stuck in the work queue.

1 ACL2 users will notice that a sequential proof would actually have reached these
checkpoints before Subgoal *1/1’ and its descendents, but it is easy to imagine a
similar example with the subgoals of *1 reversed.
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Subgoal *1/1' [7950467]

Subgoal *1/1.12 [295236]

Subgoal *1/1.8 [254]

Subgoal *1/1.15 [1934642]

Subgoal *1/1.14 [368998]

Subgoal *1/1.11 [315734]

Subgoal *1/1.10 [243195]

Subgoal *1/1.4 [2235]

Subgoal *1/1.1 [1415]

Subgoal *1/1.2 [2101]

Subgoal *1/1.7 [249]

Subgoal *1/1.3 [1431]

Subgoal *1/1.13 [428546]

Subgoal *1/1.5 [3039]

Subgoal *1/1.6 [3685]

Subgoal *1/1.9 [280]

Subgoal *1/1.12.2 [314]

Subgoal *1/1.12.1 [153978]

Subgoal *1 [0]

Subgoal *1/1 [687]

Subgoal *1/2 [484]

Subgoal *1/1.15' [1770186]

Subgoal *1/1.14.2 [420]

Subgoal *1/1.14.1 [326]

Subgoal *1/1.11.1 [307]

Subgoal *1/1.11.2 [409]

Subgoal *1/2' [30441]

Goal [1091]

Subgoal *1/1.10.1 [35915]

Subgoal *1/1.10.2 [294]

Subgoal *1/1.13' [458]

Fig. 2. Proof Dependency Tree for Theorem R-lte-r-deftraj-r-lte-r-deftrajs (times
shown in microseconds)

Case Study: Theorem Ideal-32-way. The proof of ideal-32-way involves 32 dis-
tinct function calls, each counting down from a very large number and testing
that the value returned is not equal to a particular constant. The prover com-
pletes each of the thirty-two generated subgoals by executing these functions,
while spending only negligible time in other parts of the proof process. This
proof illustrates the best speedup that we can hope to achieve with our imple-
mentation and machine. Ideal-32-way obtains a speedup of 25.42x on the 32-core
machine. As such, it would be surprising if any proof were to obtain speedup
significantly greater than 25.42x in these results.

Case Study: JVM Theorem [2b]. The proof of theorem [2b], from ACL2 re-
gression file models/jvm/m5/apprentice.lisp [8], is an example of a time-
consuming proof that has many subgoals (2,385) and a relatively short critical
path. Indeed this proof has the potential to speed up by a factor of 240.27x, and
it obtains a speedup of 25.60x on our test machine.

Case Study: Theorem Step2-marks-3marked-node-either-2-or-3-or-4. When the
underlying system has a large number of CPU cores, it is often the case that the
work queue is quickly emptied of all pending subgoals. However, when the system
has a smaller number of CPU cores (perhaps four) the work queue often stays
non-empty for nontrivial durations. This sometimes results in letting the critical
path of a proof sit idly in the work queue, when it would be better to prioritize
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Fig. 3. Proof Dependency Tree for Theorem Step2-marks-3marked-node-either-2-or-3-
or-4 (times shown in microseconds)
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the critical path and keep executing it. This lack of prioritization delays the
proof attempt from finishing. We can witness the performance effects of letting
the critical path sit unprocessed in the work queue by examining the proof
of theorem step2-marks-3marked-node-either-2-or-3-or-4, from ACL2 regression
file workshops/2011/verbeek-schmaltz/sources/correctness.lisp [8].

Figure 3 illustrates the dependencies between each subgoal of this proof. Note
that Subgoal *1/23’, Subgoal *1/12’, Subgoal *1/9’, and Subgoal *1/5’

take more time than the others. As such, it would make sense to start each
of these subgoals as soon as they become available. In practice, however, this
does not occur. On a machine with eight cores, the start of Subgoal *1/5’ is
always delayed [12]. This results in an observed experimental speedup that is
significantly less than the potential speedup that the proof could obtain if we
prioritized Subgoal *1/5’.

Indeed, as shown in Figure 5, many proofs experience far from optimal speedup,
and we hypothesize that this lack of prioritization is part of the cause. It would
be ideal to prioritize the critical path, but predicting which path is critical is
a known difficult problem ([33], Section 5.9.3). With this in mind, we have a
mode that uses timing information from prior executions, but it is only in an
experimental state and we leave its further development and investigation of this
issue as future work.

6 Experimental Results

In this section we present timing information and corresponding analysis, indi-
cating that we have successfully sped up the execution time for many proofs. Of
course, these proofs all succeed since they are part of the regression suite. But
successful parallelization can also lead to quicker feedback upon failure.

Our test machine has four Intel E5-4650 8-core processors and 128 gigabytes of
RAM. Hyper-threading adds relatively little ([12], Section 7.3.2) and is disabled.
This yields a total of 32 cores and 32 hardware threads. We measure proofs from
the ACL2 regression suite, omitting sets of files with features that are inherently
single-threaded and using a version of ACL2 6.0 that we only modified to save
raw performance data [9]. The numbers reported in this section are averages of
at least four runs of each test.

We use the default parallelism mode, resource-based, for measuring the time
it takes to run the prover in parallel, and we use a serial mode named pseudo-
parallel to measure the time it takes to run the prover serially. The pseudo-
parallel mode is a good choice for comparison because it has the same code
base as the resource-based mode, with one exception: whenever the system asks
whether to parallelize execution, it opts to continue serially. Nevertheless, a
comparison with ACL2 instead of with the pseudo-parallel mode in ACL2(p)
would have yielded slightly different results: the time measured for a test run [9]
using ACL2 was 136.59 minutes, and the corresponding time measured using
ACL2(p)’s pseudo-parallel mode was 153.14 minutes; thus, ACL2 takes approx-
imately 11% less time than the pseudo-parallel mode. For a comparison against
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(non-parallel) ACL2, one should multiply the reported speedup results by a fac-
tor of 0.89.

We run all of our tests with a garbage collection threshold of 96 gigabytes.
Since garbage collectors are single-threaded in our host Lisp implementations,
one might wonder whether having a smaller garbage collection threshold (as
might be necessary on a laptop) would cause poorer speedup. Indeed, when we
run the proof of theorem [2b] with a 2 gigabyte threshold on a machine with only
8 cores, the speedup decreases from 7.48x to 6.65x [12]. This decrease suggests
that running our tests with a lower garbage collection threshold would reduce
performance, though the reduction would be modest.

6.1 Defining Our Metrics

A crucial determinant of the performance improvement possible with our par-
allelization of a given proof is its potential speedup. We define the potential
speedup for a proof to be the quotient of the sequential proof time on a given
machine divided by the time required to complete the proof’s critical path. If,
for example, a proof’s critical path completes in 10 seconds and the entire proof
completes in 21 seconds, then the potential speedup is 21/10, or 2.1x. The grade
for a given run is then defined to be the theorem’s observed speedup divided by
the theorem’s potential speedup for a particular machine. By this we mean that
the denominator of a grade is the minimum of the potential speedup and the
number of cores available on the machine that generated that observed speedup.
Consider the following two examples running on an 8-core machine: if a proof’s
potential speedup is 100x, then an observed speedup of 4x results in a 50%
grade; while if a proof’s potential speedup is 2x, then an observed speedup of
1.8x results in a 90% grade.

6.2 Performance Results

Table 1 shows the observed speedup, potential speedup, and calculated grade for
each of the twenty-five proofs measured to have the longest execution times on
our test machine. This table also includes our category labels for each theorem.
Of these theorems, we label twenty as Category IV. This implies that many
lengthy proof attempts can benefit from parallel execution in both execution
time and early feedback. Of the remaining five proofs, three of them fall into
Category III, and two of them fall into Category II. Thus, only 8% of this sample
fails to benefit from parallel execution, suggesting that proof attempts that take
nontrivial time can generally benefit from parallel execution.

Many of these twenty-five proofs experience a speedup that is quite useful. In
particular, of these twenty-five proofs, eight of them obtain a speedup in excess
of 10x. Although the proof of theorem [2a] has a potential speedup much larger
than 32x, it is perhaps surprising that its speedup falls short of ideal-32-way’s
speedup of 25.42x. Our study of theorem step2-marks-3marked-node-either-2-or-
3-or-4, among others, provides a plausible explanation: the critical path is left
stuck in the work queue. Future work may attempt to affirm this hypothesis.
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Table 1. Performance Improvement of Twenty-Five Longest Running Theorems

Theorem Obs SU Pote SU Grade Ser Time Par Time Cat

[2b] 25.60 240.27 80% 411.59 16.08 IV

[3b] 25.78 151.94 81% 225.17 8.74 IV

dlf->not3 1.63 1.64 99% 224.02 137.57 II

spec-body 17.22 21.86 79% 141.30 8.21 IV

step1-puts-dest-to-neighb... 6.21 6.64 94% 121.04 19.48 IV

step1-puts-all-neighbors-... 4.72 4.98 95% 105.28 22.31 IV

step1-puts-all-neighbors-... 4.50 4.77 94% 94.04 20.90 IV

step1-preserves-dl->not2-... 4.06 4.27 95% 92.24 22.71 IV

step1-puts-all-neighbors-... 4.41 4.67 94% 90.56 20.55 IV

[2a] 20.05 50.95 63% 87.64 4.37 IV

step1-preserves-invariant... 5.23 5.69 92% 82.91 15.84 IV

ub-g-chain-=-g-chain-skol... 10.41 12.46 84% 80.33 7.71 IV

fw 1.95 1.96 99% 71.43 36.67 III

step1-gives-0marked-node-... 3.60 3.66 98% 66.94 18.60 IV

temp14.00 3.03 3.17 96% 60.72 20.02 IV

convert-normalized-term-t... 19.67 73.92 61% 57.36 2.92 IV

[3a] 21.21 36.51 66% 51.41 2.42 IV

cases-on-th 24.31 65.80 76% 49.71 2.04 IV

lemma5-for-utf8-combine4-... 1.00 1.00 100% 48.56 48.46 II

lemma1 last route is to 2.73 2.81 97% 47.70 17.49 IV

simple-genoc-is-correct 1.28 1.29 99% 46.65 36.35 III

wp-zcoef-g=h 1.71 1.74 98% 46.42 27.18 III

inside-universalp-step 7.59 8.92 85% 45.91 6.05 IV

step1-preserves-invariant... 3.30 3.34 99% 42.57 12.89 IV

equal-wp-zcoef-g 4.61 5.08 91% 39.84 8.63 IV

Fig. 4. Number of Theorems (of the top 200 longest running theorems) for Each Range
of Grade
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Fig. 5. Number of Theorems (of the top 200 longest running theorems) with Given
Observed Speedup

In Figure 4, we group the two hundred longest proofs into batches based
on their grade. As shown in the figure, 152 theorems achieve a grade of 90%
or higher, 21 achieve a grade between 80% and 90%, and 27 achieve a grade
less than 80%. The theorems at the lowest tiers function as starting points for
improving the efficiency of our subgoal-level parallelism implementation in the
future. Figure 5 groups the same 200 proofs into batches based on their observed
speedup. While it is good that many of the theorems obtain nontrivial speedup,
it is equally noteworthy that no theorem slows down by more than 10% of its
serial time (known because there are no theorems in the column labeled “0.0x -
0.9x”). The theorems with nontrivial proof durations that obtain little speedup
provide a foundation for researching alternatives to subgoal-level parallelism.

We discuss the speedup achieved by our system because speedup, or speedup
per core, is a common metric for success when parallelizing software. However,
focusing exclusively on speedup undermines a more important result: how much
time we are able to save the user. Take, for example, the proof of theorem
[2b]. This proof takes 412 seconds when executing serially on our state-of-the-
art machine. Needless to say, it takes even more time when running on older,
less well-equipped systems [12]. However, when users enable parallel execution
for this proof, they only need to wait 16 seconds for the proof to complete. This
time difference is qualitatively significant, as it can help a user to avoid switching
contexts or, as we discuss in the conclusion, building theories to avoid case splits.

It is encouraging that speedup has occurred in so many proofs from the ACL2
regression suite, which were developed when it was useful to spend effort to
minimize large case splits that now could be sped up by ACL2(p). As we look
forward, we expect that users will avoid expending that effort, choosing instead
to benefit from the parallel execution that ACL2(p) provides.
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7 Conclusion and Future Work

The introduction of parallel execution into the proof process improves a user’s
interactive experience with the ACL2 prover. In essence, we have used the ACL2
language, extended with parallelism features, to parallelize a very large program
— the ACL2 prover — providing significant speedup for interactive use. This
effort required thorough study of the ACL2 theorem-proving process and the
careful introduction of parallelism into that process; our early attempts provided
insufficient benefit.

Our strategy for parallelization of the ACL2 theorem-proving process in-
volved: improving the mechanisms necessary to execute ACL2 programs robustly
in parallel; using these mechanisms to parallelize the main proof process of ACL2,
while continuing to provide useful (and early) feedback to users; and designing
and analyzing experimental results that confirm the benefits of parallel execution
for automated proof. The resulting system, ACL2(p), can be built by download-
ing ACL2 and using a compile-time switch. It is thus available for development
of parallel ACL2 programs, and it is used to speed up the development and
replaying of proofs.

A parallel proof environment on a modern multi-core machine also offers the
opportunity to initiate concurrent proof attempts automatically on a given goal,
using different proof strategies, and without much penalty. Future work may
pursue this opportunity, for example by parallelizing ACL2’s or-hints [5] mech-
anism. Future work may also improve the parallelism mode that uses timing
information from a theorem’s proof attempt to prioritize the critical path dur-
ing that theorem’s subsequent proof attempts.

As parallel proof becomes more common, users will discover that their inter-
active experience improves in qualitative ways beyond faster execution and early
feedback. As an example, ACL2 users have often put significant effort into man-
aging their theories to avoid large case splits, by proving additional theorems
that help guide the ACL2 prover to proofs with fewer cases. For subgoals gener-
ated from case splits, much of this proof-engineering effort becomes unnecessary.
The benefit goes beyond shortening the user’s wait for a proof — the user may
be able to avoid development of lemmas that prevent case splits. Thus, the result
of our work is not just a change in performance; it supports a paradigm shift in
how users interact with a mechanical theorem-proving system.
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P., Le Métayer, D. (eds.) Research Directions in High-Level Parallel Programming
Languages 1991. LNCS, vol. 574, pp. 253–293. Springer, Heidelberg (1992)

15. Bonacina, M.P., McCune, W.: Distributed theorem proving by peers. In: Bundy,
A. (ed.) CADE 1994. LNCS, vol. 814, pp. 841–845. Springer, Heidelberg (1994)

16. Kapur, D., Vandevoorde, M.T.: DLP: a paradigm for parallel interactive theorem
proving (1996)

17. Schumann, J., Letz, R.: PARTHEO: A high-performance parallel theorem prover.
In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 40–56. Springer, Heidelberg
(1990)

18. Schumann, J.: SicoTHEO: Simple competitive parallel theorem provers. In:
McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 240–244.
Springer, Heidelberg (1996)

http://www.cs.utexas.edu/users/moore/acl2/v6-0/acl2-doc.html#User's-Manual
http://www.cs.utexas.edu/users/moore/acl2/v6-0/acl2-doc.html#User's-Manual
https://code.google.com/p/acl2-books/
http://www.cs.utexas.edu/users/ragerdl/papers/itp2013/


450 D.L. Rager, W.A. Hunt Jr., and M. Kaufmann

19. Matthews, D.C.J., Wenzel, M.: Efficient parallel programming in poly/ML and
isabelle/ML. In: DAMP 2010: Proceedings of the 5th ACM SIGPLAN Workshop
on Declarative Aspects of Multicore Programming, pp. 53–62. ACM, New York
(2010)

20. Wenzel, M.: Parallel proof checking in Isabelle/Isar. In: Reis, G.D., Théry, L.
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Abstract. We introduce a platform for presenting and cross-linking for-
mal and informal proof developments together. The platform supports
writing natural language ‘narratives’ that include islands of formal text.
The formal text contains hyperlinks and gives on-demand state informa-
tion at every proof step. We argue that such a system significantly lowers
the threshold for understanding formal development and facilitates col-
laboration on informal and formal parts of large developments. As an
example, we show the Flyspeck formal development (in HOL Light) and
the Flyspeck informal mathematical text as a narrative linked to the
formal development. To make this possible, we use the Agora system,
a MathWiki platform developed at Nijmegen which has so far mainly
been used with the Coq theorem prover: we show that the system itself
is generic and easily adapted to the HOL Light case.

1 Introduction

Formal proof development is gradually becoming accepted as a means for estab-
lishing the correctness of mathematical theory in particular. Large repositories
of formal proof have been created in various proof assistants to prove impressive
results, for example, the development of the odd order theorem in Coq [1], the
proof of the 4 color theorem in Coq [2] and the proof of the Kepler conjecture [3]
in HOL Light. A major issue is how to communicate these large formalizations:
to people that want to cooperate or want to build further on the development,
to people who want to understand the precise choices (of definitions and proofs)
chosen in the formalization and to people who want to convince themselves that
it is really the proper theorem that has been proven. At the moment, commu-
nicating a formal proof is hard, as can also be noticed from the fact that the
number of publications about the impressive formalizations mentioned above is
low. Moreover, these publications hardly give access to the formalization, but
describe the project on a rather high level of abstraction. The Journal of Formal-
ized Reasoning1, the Archive of Formal Proofs2 and the Journal of Formalized

1 http://jfr.unibo.it/
2 http://afp.sf.net
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Mathematics3 try to improve on this by explicitly giving a platform for formal-
izations (the latter for Mizar), but that is not really taking off.

In the present paper we present a wiki based approach towards the communi-
cation of large formal proof developments. Formal proofs are close to programs
written in a high-level programming language, which need to be documented to
be understandable and maintainable. However, a mathematical proof develop-
ment is also special, because there (almost always) already is documentation,
which is the mathematical document (a book or an article) describing the math-
ematics (definitions, notation, lemmas, proofs, examples).4 This is what we call
informal mathematics as opposed to formal mathematics which is the math-
ematics as it lives inside a proof assistant. These days, informal mathematics
consists of LATEX files and formal mathematics usually consist of a set of text
files that are given as input to a proof assistant to be checked for correctness.
Our approach is to provide tools that allow users to do the following.

1. One can automatically generate wiki files from formal proof developments.
These wiki files can then be displayed in a browser, where we maintain
all linking that is inherently available in the formal development (e.g. via
definitions and applications of lemmas).

2. When hovering over the formal proofs, one sees the proof state at that point,
so a reader can observe what the action of the proof commands is. This uses
the Proviola technology that we have previously developed and described [4].

3. One can also automatically generate wiki files from a set of LATEX files. These
wiki files can then be displayed in a browser, where we maintain the linking
inside the LATEX files, but more importantly, also the linking with the formal
proof development.

4. One can write a wiki document about mathematics and include snippets of
formal proof text via an inclusion mechanism. This allows one to dynam-
ically insert a piece of formal proof, by referencing the formal object in a
repository, which is then automatically rendered and displayed inside the
wiki document.

The tools we describe are part of the Agora system we are developing in
Nijmegen, which aims at being a “Wiki for Formal Mathematics”: a web plat-
form to present and document formalizations, but also to cooperate on joint
formalizations. With Agora, we want to lower the threshold for participating in
formalization projects by:

– Providing an easy-to-use web interface to a proof assistant [5].
– Marking up formal mathematics for the Web without effort by authors [6],

allowing users to browse this database for examples and inspiration.

3 http://fm.mizar.org/
4 Formalizations of (software) systems typically have an informal specification, which
serves a similar role as a mathematical document, and which could be served by the
tools described in this paper, although some of the workflows described here might
not match completely.

http://fm.mizar.org/
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– Providing tools for linking informal and formal text [7].
– Providing additional tools for users of proof assistants, like automation or

proof advice.

The system is designed to support the dissemination of formal mathematics to an
audience that does not necessarily have prior exposure to an interactive theorem
prover. Our general claim is that this type of technology is crucial to further
the field of formalized mathematics. One has to develop computer support for
documenting and communicating formal proofs and for linking formal proofs to
a high level ‘narrative’.

Until recently, the system only fully supported formalizations written for the
Coq theorem prover, having been tested on smaller test cases. However, the
system is designed to be generic, reusing components that can be specialized for
specific theorem provers. This paper describes the extension of Agora to include
the HOL Light theorem prover [8], to allow the system to serve the files of the
Flyspeck project in a wiki.

2 Presenting Flyspeck in Agora

In the present paper we will not go into the general goals or design of Agora,
but only show the tools that support the 4 activities mentioned above. We show
the practical usability of the tools by presenting a page of the Flyspeck formal
development in HOL Light, together with the page of the informal mathematical
description (Figure 1). By discussing these pages, the links between them and
how they have been created, we describe our tools.

An example document resides in Agora,5 and is shown in part in Figure 1. For
the best experience, we suggest the reader follows along at the demonstration
page while reading this section. Implementing low-threshold interactive web-
editing of formal HOL Light code is currently work in progress.

2.1 Description of a Formal Proof

The first noticeable feature of the document is that it is almost isomorphic to
Chapter 5 of the text accompanying the Flyspeck formalization [9] (our source
document). As mentioned above, important formalizations are not merely tech-
nical proof scripts: they go hand-in-hand with informal (in this case Hales’s)
mathematical narrative. To obtain the informal text, we have processed the
LATEX sources of Hales’s text, transforming it into the Creole syntax [10]. This
syntax is similar to Wikipedia’s input language: a light-weight markup language
that is easy to translate to HTML. The formulae in the source document are
kept largely intact: they are processed at render-time by MathJax6: a JavaScript
tool for rendering mathematics in a browser-independent way. This approach
makes the resulting document editable as a wiki page written in Creole. A more
complete approach would be to also accept LATEX as input language for writing
the documentation, something we intend to address as a follow-up.

5 http://mws.cs.ru.nl/agora_flyspeck/flyspeck/fly_demo
6 http://mathjax.org

http://mws.cs.ru.nl/agora_flyspeck/flyspeck/fly_demo
http://mathjax.org
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(V , E) v ∈ V R
3

= aff{0, v} ∪ (x) ∪ ({0, v}, w).R
3 ⋃

node(x)=v

W 0
dart ⋃

{v,w}∈E

aff0
+

R
3

aff{0, v}
card(E(v)) ≤ 1

card(E(v)) > 1 u {v, u} ∈ E σ E(v)
α(i) = azim(0, v, u, u)σi σi+1 α(i) 2π

Fig. 1. An informal proof together with its formal counterpart. Cropped screenshots
from document pages at http://mws.cs.ru.nl/agora_flyspeck/flyspeck/fly_demo.

2.2 Integration with Formal Proof

A nicely marked up paper, whether or not it appears as a Web page, is not a
description of a formal proof: for this, it needs to include parts of the formal-
ization, in order to showcase and document them: this inclusion does not have
to be complete, as this might muddle the description with details that are not
immediately necessary for understanding. So, the second feature of the docu-
ment is that the definitions and lemmas in it are surrounded by a box, and
marked with buttons marked “formal” and “informal”: using these buttons, a
reader can toggle between the informal text of such a text and the corresponding
formalization.

This functionality is made possible thanks to (Hales’s) annotations of the
source text, combined with a previously developed technology for Agora. For
(almost) each island of ‘mathematics’ (definitions, lemmas, theorems. . . ), the
source text defines the corresponding entity or entities in the formal development.
The corresponding entity can be included in the page using Agora’s inclusion
facility [7], by transforming the correspondence into a kind of hyperlink. The
necessary syntax can be also hand-written in the wiki (this can be used for
gradual addition of more and more cross-links to the formal code), but so far
everything was generated from the source text annotations.

This approach differs from Isabelle/Isar [11], which supports a user in writing
a formal proof and its documentation in a more literate way: the full proof is

http://mws.cs.ru.nl/agora_flyspeck/flyspeck/fly_demo
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part of the document, and can be verified by the system. Agora’s documentation
tools, on the other hand, allow writing a documentation layer on top of the
formal code within the system.

2.3 Dynamic Display

The Proviola tool integrated in Agora’s rendering chain reduces the task of evalu-
ating proof state to just pointing at parts of the proof: it shows a proof script as
HTML7 and when the user points at a particular command, the associated state
is computed in the background, caching it for retrieval without computation at
a later moment.. This interaction model has two advantages: (i) it eliminates
the overhead of installing, configuring, and learning about a theorem prover;
inspection of an interesting proof state or tactic is reduced to pointing a cursor
at it, and (ii) it reduces the amount of task switches a reader will have to make.

Proviola has a generic design, and the inclusion of HOL Light for its batch
task was simple: writing a parser that recognizes input to the prover, and some
glue that allows the Proviola to send these commands to HOL Light, and read
the output.

3 Conclusion and Future Work

Agora is an online platform that facilitates collaborative gradual formalization
of mathematical texts, and allows their dual presentation as both informal and
formal. In particular, the platform takes both LATEX and formal input, cross-links
both of them based on simple user-defined macros and on the formal syntax,
and allows one to easily browse the formal counterparts of an informal text.
One future direction is to allow even the non-mathematical parts of the wiki
pages to be written directly with (extended) LATEX, as it is done for example in
PlanetMath. This could facilitate the presentation of the projects developed in
the wiki as standalone LATEX papers. On the other hand, it is straightforward
to provide a simple script that translates the wiki syntax to LATEX, analogously
to the existing script that translates from LATEX to wiki. We also still have to
instantiate the interactive editing capability (now available for Coq) to HOL
Light. This editing capability would allow a reader to directly edit the formal
islands in the wiki pages by talking to a server-side HOL Light instance (with a
reasonably advanced checkpointed state), loaded with additional prerequisities
(in particular the previous formal islands). Allowing ‘anyone’ to edit does raise
questions about how to maintain the integrity of a formalization. While we do
not have an implemented solution to this in Agora, there are several options
available [12,13] to deal with these issues, which still need to be evaluated on
usability: an ideal solution needs to prevent a user thrashing the library, but
does not shut out new users by overly complex or time-consuming protocols.

We are working on integrating the recently developed proof advice system [14]
for HOL Light. The advisor uses machine learning to find lemmas that can be use-
ful in solving a goal, encodes the goal together with the advised lemmas in TPTP

7 E.g., http://mws.cs.ru.nl/agora_flyspeck/flyspeck/fan/fan_misc/index

http://mws.cs.ru.nl/agora_flyspeck/flyspeck/fan/fan_misc/index
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format and runs a number of ATPs to find a minimal set of needed lemmas to then
reconstruct the goal in HOL. This can be especially useful in a Wiki environment
with many (possibly non-expert) contributing users, where it can be also used to
automatically discover redundancies and refactor the formalization. Another di-
rection is adding good linguistic techniques for translating informal texts to formal
ones based on training on the annotated corpora (arising through this work). We
could also try to include (or even better: track) informal wikis like ProofWiki, and
start adding formal counterparts and annotations to them. Similarly for papers
and books that were formalized in various systems: for example the books leading
to the proof of Feit-Thomson theorem and their recent Coq formalization, and the
Compendium of Continuous Lattices and itsMizar formalization.
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Square Root and Division Elimination in PVS

Pierre Neron
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Abstract. In this paper we present a new strategy for PVS that imple-
ments a square root and division elimination in order to use automatic
arithmetic strategies that were not able to deal with these operations in
the first place. This strategy relies on a PVS formalization of the square
root and division elimination and deep embedding of PVS expressions
inside PVS. Therefore using computational reflection and symbolic com-
putation we are able to automatically transform expressions into division
and square root free ones before using these decision procedures.

Introduction. Proof verification systems such as PVS [7] embed proofs strate-
gies that allow the user to deal with arithmetic problems automatically. However
most of these techniques such as the use of SMT solvers [2,4] or quantifier elimi-
nation [3] are not able to manage all arithmetics operations, in particular division
and mainly square roots. Being able to transform any goal or hypothesis con-
taining square roots or divisions into an equivalent one that is free of them would
allow the use of arithmetic decision procedures to resolve the current goal.

A program transformation that removes square roots and divisions from pro-
grams has been defined and proved correct in PVS, see [6]. We now aim at
using this implementation of the transformation and the proof of the semantics
equivalence between the input and the output formulas to define a PVS strategy
[1]. This strategy, elim-sqrt, transforms any goal or hypothesis by eliminating
square roots and divisions from it e.g.,

{-1} x <= 1
|–––-

{1} x <= sqrt(x)

−→
elim-sqrt

{-1} x <= 1
|–––-

{1} x * x - x <= 0
This is realized by doing a deep embedding [8] of a fragment of PVS inside PVS
in order to use computational reflection for transformation computation [5]. This
is a big difference with PVS or Coq fields strategies, that are written in the
strategy language, since the size of the proof does not depend on the input terms.

1 Deep Embedding

First of all we need to sketch how this transformation is specified in PVS, the
complete definition can be found in [6].

Definitions. The transformation in PVS is defined on programs represented in
an abstract datatype program. It represents variables, constants, some operators,
pairs, projections, variable definitions and conditional expressions:

S. Blazy, C. Paulin-Mohring, and D. Pichardie (Eds.): ITP 2013, LNCS 7998, pp. 457–462, 2013.
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Definition 1.1 (program abstract datatype)

program : DATATYPE
value(va : variable) : value?
const(co : constant) : const?
uop(uop : unop, pr : program) : uop?
bop(bop : binop, pl : program, pr : program) : bop?
pair( pl : program, pr : program) : pair?
fst( pr : program) : fst?
snd( pr : program) : snd?
letin( x : variable, body : program, scope : program) : letin?
ift(fm : program, prt : program, prf : program) : ift?

The operators in the binop and unop datatypes represent +,−, ∗, /, >,≥,=,∨,∧
and ¬. Functions computing the type and the semantics of a program in a given
environment are defined in PVS. The semantics of a program is either a failure
(e.g., division by 0) or a tuple of boolean and numerical values:

Definition 1.2 (Semantics function)
sem(p : program, env : eval_env) : RECURSIVE prog_val

where prog_val : DATATYPE
numv(re : real): numv?
boolv(bo : bool): boolv?
pairv(vl : prog_value, vr : prog_value): pairv?
failv: failv?

and eval_env = [variable -> prog_val]

Given these definitions, we can now introduce the main definition of the trans-
formation as a PVS function elim defined on program. PVS subtyping allows
us to embed the preservation of the semantics in the type of this function:

Definition 1.3 (Main transformation)
elim(p : program) :

{pp : program_N_sq | preserves_semantics_no_fail(p)(pp)}
where program_N_sq is the subtype of program without square roots and divisions
and preserves_semantics_no_fail(p)(pp) the following statement:

∀ env, nofailv(sem(p,env)) IMPLIES sem(p,env) = sem(pp,env)

In order to use this transformation, we have to transpose a PVS statement into
this formalism, this realizes a deep embedding of a fragment of PVS inside PVS.

Deep Embedding. Given a proof context in PVS, we aim at transforming a
statement (either a goal or an hypothesis) into an equivalent one which is free
of divisions and square roots. First of all, as we can see in definition 1.1 the
formalism only represents a fragment of PVS, therefore the statement we want
to transform has to match this formalism. Given such a statement, we call it S,
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the first step of this embedding is to compute the equivalent p : program and
the corresponding evaluation environment env such that:

sem(p,env) = boolv(S)
Indeed, the variable of the program type are not PVS variables but identifiers
(e.g., string or natural numbers), therefore we need the environment to make the
link between these identifiers and their value, i.e., the value of the correspond-
ing PVS variables. From now on, given a PVS variable x in a statement and
the corresponding environment env, its identifier will be the string "X". These
elements, the program and environment, have to be computed as their PVS
string representation:

Example 1.1 (Equivalent program in environment)

|––- {1}
sqrt(x‘1) > y −→

p = "bop(gt,uop(sqrt,fst(var("X"))), var("Y"))"
env = "LAMBDA (z : string) :
IF z = "X" THEN pairv(numv(x‘1),numv(x‘2))
ELSIF z = "Y" THEN numv(y) ELSE 0 ENDIF"

This string representation allows us to introduce these items in the current con-
text with some PVS prover commands.

Equivalent program Computation. Given a PVS context and a statement S,
by using the strategy language we can access to the corresponding lisp tree struc-
ture that represents the abstract syntax of the PVS statement. Therefore if the
statement matches the embedded fragment, computing the equivalent program
can be done by decomposing this lisp structure and building the corresponding
string. As most of the cases are staightforward, we only detail a few of them:

– the variable: as mentioned earlier, the variables of the program type are
identifiers (e.g., string) and we need to have a mapping beetween every PVS
variable and its corresponding string identifier.

– the projections: in PVS, tuples are represented as arrays (int → element),
the corresponding lisp object is a list and we need to translate it as a binary
tree, e.g., list (e1 e2 e3) gives pair(e1,pair(e2,e3)) and the projection
x‘3 is translated into "snd(snd(Value"X"))"

Corresponding Evaluation Environment. As we can see in example 1.1, the
correspondence between identifiers and variables is not straightforward either.
Indeed, we need to build the value corresponding to each identifier. Given an
identifier "X" and its associated variable x, if x has a basic type, number or
bool, then the semantics of value("X") is x, but if x is a tuple, then we need
to extract its elements and build the corresponding prog_val. For example if
x is a triple of type [bool,real,real] then the associated value prog_val is
pairv(boolv(x‘1),pairv(numv(x‘2),numv(x‘3))).

Given a PVS statement E, we are able to compute the corresponding program
p and environment env, such that E can be replaced by the semantics of p,
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i.e., bo(sem(p,env)). This allows us to work on the program p in order to apply
the transformation.

2 Strategy Definition

In this section we present how to build the strategy that transforms a current
goal or hypothesis into an equivalent square root and division free one. In the
program expressions we will avoid writing constructors that are obvious, e.g.,
we will write "A" and plus(e1,e2) instead of val("A") and bop(plus,e1,e2).

Strategy Principles. Fig. 1 describes the main steps of the elim-sqrt
strategy:

|–––-
{1} sqrt(a) > b

|–––-
{1} -b > 0
{2} a > b * b

sem(gt(sqrt("A"),"B"),env)

sem(elim(gt(sqrt(A),B)),env)

sem(or(gt(0,B),gt(A,times(B,B))),env)

strategy

(1) grind

(2) typepred "elim" (3) eval-expr

(4) grind

Fig. 1. elim-sqrt strategy outlines

(1) we introduce the equivalent program and environment and prove this equiv-
alence using symbolic evaluation with grind

(2) using the type predicate of elim we apply this function to the program
(3) we compute the elimination using computational reflection eval-expr
(4) we return into the PVS language itself using symbolic evaluation of the

square root and division free program semantics

In section 2, we gave the main steps of the transformation strategy, we will
now see how these different expressions can be introduced in the PVS prover,
and their equivalence proved. In this section we will assume that we have an
hypothesis, H, we want to remove square roots from, the elimination in a positive
formula (e.g., a Goal) being similar.

From PVS Expression to Program Datatype. As mentioned in section 1 the
transformation is defined using the program abstract datatype, the first step of
the strategy is therefore to transpose the PVS statement into this datatype. In 1
we introduced a lisp function that, given a PVS statement, builds the correspond-
ing program, p and environment env. The first step of the strategy is to intro-
duce this program equivalent to H using its boolean semantics bo(sem(p,env)).
The extraction of the boolean part of the semantics with bo such as the use of
the type of the elim function will require to prove that sem(p,env) does not
fail and is a boolean prog_val, this can be done by doing a symbolic evaluation
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of sem(p,env) but this evaluation is not very efficient. Therefore in order to do
it only once, we introduce explicitly this hypothesis with the following command:

(case "boolv?(sem(p,env)) AND bo(sem(p,env))")

This rule introduces a new hypothesis we first have to prove in the current con-
text. The proof of boolv?(sem(p,env)) AND bo(sem(p,env)) only uses the
symbolic evaluation of sem(p,env) that produces boolv(H) and therefore fin-
ishes that case. Now that we have introduced bo(sem(p,env)) equivalent to H,
we can delete H from the context.

elim Function Introduction. We now want to eliminate square roots and
divisions from p. Hence, we introduce the type of elim(p), with the typepred
command (1), nofail(sem(p,env)) is straightforward using the -2 hypothesis
and thus it allows the use of the semantics equality to replace p by elim(p) (2):

(1)

{-1} nofail(sem(p,env)) IMPLIES
sem(p,env) = sem(elim(p),env)
{-2} boolv?(sem(p,env))
{-3} bo(sem(p,env))
{-4} Hypothesis

|–––-
{1} Goal

(2)

{-1} boolv?(sem(elim(p),env))
{-2} bo(sem(elim(p),env))
{-3} Hypothesis

|–––-
{1} Goal

Computational Reflection. The next step is to produce the equivalent square
root and division free formula, this is done by computational reflection of elim(p).
The use of this technique requires two hypotheses:

– the function, (i.e., elim) has to be completely defined with computable struc-
tures (e.g., use list instead of sets), so there is a corresponding executable
lisp function,

– the arguments have to be ground (do not contain any PVS variable), this is
ensured by using identifiers to represent the original PVS variable, the link
between these identifiers and variables being handled separately by env.

Therefore we can compute elim(p) in order to get the equivalent program, p’,
free of square roots and divisions with the eval-expr strategy.

Semantics Evaluation. From our new square root and division free program
p’ we want to get the corresponding PVS expression. Therefore we have to
compute the semantics of this program. This is done once again by symbolic
evaluation and in the end we get a new PVS statement H’, equivalent to H, free
of square roots and divisions. Square roots and divisions being eliminated in this
hypothesis we can now continue the proof using our favorite arithmetic strategy.

Conclusion

We have described how to turn a PVS computable specification and the corre-
sponding proof of a program transformation into a PVS strategy. We realized
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it by doing a deep embedding of PVS inside PVS, using symbolic evaluation
to prove the correspondence between PVS and its embedding when the trans-
formation itself uses computational reflection. This kind of embedding can be
generalized for any transformation defined in PVS on an abstract datatype rep-
resenting a fragment of PVS.

This strategy has been tested on various examples, from simple comparisons
to more complex statements that embed variable definitions and conditional ex-
pressions. The strategy takes between 20 sec to few minutes mainly depending
on the number of square roots. These results can be explained by the low perfor-
mances of the PVS symbolic evaluation whereas the transformation itself that
uses reflection, is almost instantaneous.

This strategy is also the first step of a larger scale transformation that aims at
eliminating square roots and divisions from full PVS specifications and producing
a semantics equivalence proof certificate.
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The Picard Algorithm for Ordinary Differential

Equations in Coq
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Abstract. Ordinary Differential Equations (ODEs) are ubiquitous in
physical applications of mathematics. The Picard-Lindelöf theorem is the
first fundamental theorem in the theory of ODEs. It allows one to solve
differential equations numerically. We provide a constructive develop-
ment of the Picard-Lindelöf theorem which includes a program together
with sufficient conditions for its correctness. The proof/program is writ-
ten in the Coq proof assistant and uses the implementation of efficient
real numbers from the CoRN library and the MathClasses library. Our
proof makes heavy use of operators and functionals, functions on spaces
of functions. This is faithful to the usual mathematical description, but
a novel level of abstraction for certified exact real computation.

Keywords: Coq, Exact real computation, Ordinary Differential Equa-
tions, Constructive mathematics, Type classes.

1 The Picard-Lindelöf Theorem

Before embarking on the formalization, we give a concise presentation of the
mathematical ideas behind it. Let v : [−a, a]× [−K,K]→ R be continuous such
that v(x, 0) = 0. Assume that L > 0 is such that aL < 1 and

|v(x, y)− v(x, y′)| ≤ L|y − y′| (1)

for all x ∈ [−a, a] and y, y′ ∈ [−K,K]. If v is differentiable in the second argu-
ment, then we can choose L := supx supy∈[−K,K]

d
dyv(x, y). Consider the initial

value problem
f ′(x) = v(x, f(x)), f(0) = 0.

To solve this equation we define the Picard operator Pf(t) :=
∫ t

0
v(x, fx)dx and

observe that a fixed point f = Pf is a solution to the differential equation,
which can be seen by differentiating both sides. To find such a fixed point, we
first show that P is a contraction.

Lemma 1. The Picard operator is a contraction, with constant aL < 1, on the
metric space C([−a, a], [−K,K]). If f ⊂ [−a, a]× [−K,K], then so is Pf .

� The research leading to these results has received funding from the European Union’s
7th Framework Programme under grant agreement nr. 243847 (ForMath).
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Proof.

sup
t∈[−a,a]

∣∣∣∣∫ t

0

v(x, fx)dx −
∫ t

0

v(x, gx)dx

∣∣∣∣ ≤ sup
t∈[−a,a]

∫ t

0

|v(x, fx)− v(x, gx)|dx

(1)
≤ aL‖f − g‖∞

Here ‖h‖∞ is supx∈[−a,a] |h(x)|. Since v(x, 0) = 0,

|Pf(t)| =
∣∣∣∣∫ t

0

v(x, fx)dx

∣∣∣∣ ≤ t sup
x∈[−a,a]

|v(x, fx)|

≤ a sup
x∈[−a,a]

|v(x, fx)− v(x, 0)| ≤ aLK ≤ K.

�
We can now apply the Banach fixed point theorem to the Picard operator on
the complete metric space C([−a, a], [−K,K]) and obtain a fixed point. Having
completed this mathematical introduction, we now discuss its formalization in
Coq.

2 A Computational Library for Analysis

We depend a huge code base, the CoRN library [1] combined with the recent
MathClasses library [2,3]. Part of this work1 is adapting code from the old library
to the new coding style.

2.1 Metric Spaces Using Type Classes

As presented above, we want to apply the Banach fixed point theorem. So we first
apply a type-class based presentation of metric spaces, roughly following [4,3].
This definition of metric spaces uses a closed ball relation ball e x y which intu-
itively means that d(x, y) ≤ e. We define the completion monad on metric spaces
and we define complete metric spaces as the existence of a retract of the embed-
ding of X into its completion. The completion consists of regular functions, a
refinement of the notion of a Cauchy sequence.

Class Limit := lim : RegularFunction → X.
Class CompleteMetricSpaceClass ‘{Limit} := cmspc :> Surjective reg unit (inv := lim).

To be able to reuse some of the old results, we prove that each old complete
metric space — using only records, but no type class automation — defines one
based on type classes. We want to consider the complete metric space C[−a, a],
so we define closed metric subspaces determined by a ball.

We have defined various classes of functions — uniformly continuous, Lips-
chitz, and so on. In order to be able to treat them all at once, we define a type
class. In this way we can define e.g. the supremum metric once for all relevant
spaces of functions.

1 https://github.com/EvgenyMakarov/corn/tree/master/ode

https://github.com/EvgenyMakarov/corn/tree/master/ode
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Class Func (T X Y : Type) := func : T → X → Y.

Here T is the type of the function space with func as coercion to the type of
functions together with the declaration of Class Func. We need to be careful,
since this introduces an equality on function spaces, determined by the metric
space of functions, but we already have the extensional equality. We want Coq
to automatically find the latter for us. Moreover, we want to prevent Coq from
looping. This could happen in the following way. Suppose we define the equality
on a metric space using the ball, then one way to find an equality is to find a ball
relation for each e — informally a proof that two elements have zero distance.
Consider:

Global Instance Linf func metric space ball : MetricSpaceBall T :=
λ e f g, forall x, ball e (func f x) (func g x).

This has two class arguments: Func T X Y and MetricSpaceBall Y. If we put
MetricSpaceBall Y first, then the equality on some type T may require a ball on
a fresh Y (since Y is not in the conclusion of Linf func metric space ball), and this
would call Linf func metric space ball again and require a ball on a fresh Y1, etc.

We can prevent this by using the fact that instances of the leftmost type class
arguments are searched first. So we made Func T X Y the first Class argument in
Linf func metric space ball. We have few instances of Func, and the first argument of
Func in those instances is of the form, say, UniformlyContinuous X Y, or Lipschitz X

Y. So, if T does not have this form, then the search for an instance of Func T X Y

fails immediately. As a result, if T is, e.g., A → B, then the equality on T found by
Coq is extensional equality, not the one is obtained not through MetricSpaceBall.
For more on this kind of logic programming see [5,2].

The uniformly continuous functions between two complete metric spaces form
a complete metric space. The distance between two functions may be infinite.

2.2 An Axiomatic Treatment of Integration

As explained in the first section, we turn a differential equation into an integral
equation. To do so, we will now develop a theory of integration. There are at
least two constructive Coq formalizations of the integral. The CoRN formal-
ization closely follows Bishop’s treatment of the Riemann integral. It computes
in principle, but in practice it is impossible to evaluate it inside Coq. Hence
it is not suitable for our purpose. As argued by Dieudonné, it seems better to
treat the Cauchy integral (only continuous functions) and develop the full the-
ory of Lebesgue integration when we need to go further. This is roughly the
approach taken by Spitters and O’Connor [6] who developed Cauchy integration
theory for C[0, 1] and then define the completion in order to obtain a flavor
of Lebesgue integration. This version computes inside Coq. Here we develop a
very similar approach based on type classes. This time, we choose a less abstract,
but slightly faster treatment. We define the integral for locally uniformly con-
tinuous functions Q → R with an abstract specification similar to the one by
Bridger [7, Ch5.].
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Class Integral (f: Q → CR) := integrate: forall (from: Q) (w: QnonNeg), CR.
Class Integrable ‘{!Integral f}: Prop :=

{ integral additive:
forall (a: Q) b c,

∫
f a b +

∫
f (a+‘ b) c ==

∫
f a (b+c)%Qnn

; integral bounded prim: forall (from: Q) (width: Qpos) (mid: Q) (r: Qpos),
(forall x, from ≤ x ≤ from+width → ball r (f x) (’mid)) →
ball (width ∗ r)

∫
( f from width) (’ (width ∗ mid))

; integral wd:> Proper (Qeq =⇒ QnonNeg.eq =⇒ @st eq CRasCSetoid) (
∫
f) }.

Here CR is the completion of the rationals, i.e. the reals. The types Qpos and Qnn

are the positive and nonnegative rational numbers respectively. The last line says
that the integral respects the various setoid equalities. This specification is com-
plete in that it uniquely characterizes the integral — that is, the Riemann sums
approximate the integral to within arbitrary precision, so any two integrals must
be setoid equal. The class thus expresses that a function

∫
is an implementation

of the integral. We provide a reference implementation using the technology of
type classes. It is less abstract, but twice as fast as the development in [6].

2.3 Picard Iteration

As a final ingredient, we define the Picard operator from uniformly continuous
functions to uniformly continuous functions. We define a function extend which
extends a function from an interval to the real line in a constant way. This allows
us to define:

Definition picard’ (f : sx → sy) ‘{!IsUniformlyContinuous f mu} : Q → CR :=
λ x, y0 + int (extend x0 rx (v ◦ (together Datatypes.id f) ◦ diag)) x0 x.

Here int is (basically) in instance of the type class Integral and (v ◦ (together

Datatypes.id f)◦ diag) is a pointfree definition of λx.v(x, f(x)). By defining this
function using combinators we automatically define a uniformly continuous, and
hence integrable, function. Moreover, the type class mechanism automatically
proves that the extension

(extend x0 rx (v ◦ (together Datatypes.id f) ◦ diag))

from the ball with radius rx around x0 to the real line is integrable. This requires
some care as all assumptions, such as 0 ≤ rx, need to be in the context. We then
prove that the Picard operator is a contraction.

The Picard operator maps [−a, a]× [−K,K] to itself. Hence, we can iterate
it and apply the Banach Fixed Point theorem.

Context ‘{MetricSpaceClass X}{Xlim : Limit X}{Xcms : CompleteMetricSpaceClass X}.
Context (f : X → X) ‘{!IsContraction f q} (x0 : X).
Let x n := nat iter n f x0.
Let a := lim (reg fun x cauchy x).
Lemma banach fixpoint : f a = a.

Applying this to the Picard operator on the metric space C[−a, a], we find that
there is an f such that Pf = f . This is the required solution to the integral
equation.
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2.4 Timings

We have made very initial experiments with computation inside Coq. For the
differential equation f = f ′, with solution λx, ex, we compute the value for
x = 1/2. We use x0 = 0, a = 1/2, y0 = 1,K = 1 and v(x, y) = y is uniformly
continuous with modulus λe, e and Lipschitz on the second argument with L = 1.

Time results in seconds are in the table below. The rows correspond to re-
quested approximation (10−n) and the columns correspond to the number of
iterations. An empty cell means that it took too long. Note that it takes 2 itera-
tions (i.e., 1+ x+ x2/2) to produce 1 correct digit after the decimal point and 3
iterations (1+x+x2/2+x3/6) to produce 2 correct digits. Evaluating the fixed
point function takes too long, since the Banach fixpoint theorem requests more
iterations than necessary.

1 2 3 4
1 0 0 1 35
2 0 1 670
3 0 216

The timings show that our implementation performs reasonably well, but there
are a number of possible improvements:

– Use reals based on dyadic rationals, as in [3].
– Use Newton iteration instead of Picard iteration. A variant of the work in [8]

might be useful here.
– Use an improved algorithm for the integral such as Simpson integration. A

constructive proof of Simpson integration can be found in [9].
– Use Coq’s experimental native compute; see [10].

Conclusion

We are working towards a verified implementation of a simple ODE-solver in
Coq. We formally solved the integral equation. To show that this also solves the
differential equation requires gluing the new code to the older formalization of
the fundamental theorem of calculus. This should be straightforward, but has
not been done yet.

We mention related work by Immler and Hölzl in Isabelle [11]. They go further
in that they also implement the Euler method. At times, our implementation
seems more natural, in that we can use dependent types to express for instance
the type of continuous functions on a given interval. Their code can be extracted
from Isabelle to SML and produces approximately two verified decimal digits.
We obtain a bit less, but we compute inside the Coq proof assistant. Hence,
all our computations are actually verified. Finally, we would like to mention the
work on verifying a C-program for the wave equation [12,13].

Acknowledgements. We would like to thank Jelle Herold and Eelis van der
Weegen who were involved in earlier initiatives to formalize the Picard Theorem.
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Abstract. There have been numerous extensions to classical higher-
order logic, but not all of them interact non-trivially. Two such exten-
sions, stateless HOL and HOL extended with quantified types, generate
an interesting conflict in the way that type operator variables are im-
plemented and handled. This paper details a proposed solution to that
conflict and explores the key impacts to the logical kernel. A proto-
type system, implemented in GHC Haskell, is discussed and compared to
related systems.

1 Introduction

LCF-style implementations of higher-order logic (HOL) have been in existence
for a little over three decades. In that time, the original proof system has spawned
an impressive family tree with each descendant imparting their own spin on the
HOL design. This paper focuses on the confluence of the logics of two such
systems: Freek Wiedijk’s Stateless HOL [15] and Norbert Vöelker’s HOL2P [14].
The intersection of these logics is problematic in that each introduces the notion
of type operators in different ways to serve different purposes.

Taking a step back, it’s important to address why these extensions are attrac-
tive to users in the first place. There’s a growing desire in the Haskell community
to formally verify software written in the language. Following from the ”eat your
own dog food” attitude, there’s an equally strong inclination for those tools to
be implemented in Haskell itself. There have been numerous attempts to meet
these goals that we are aware of, but ultimately they all rely on passing the ver-
ification to an external tool at some point in the process [5,8]. It is our goal to
simplify that work-flow by providing a general purpose theorem prover written
in Haskell for Haskell.

We targeted HOL as the base logic for our proof system due to its applicability
in a wide variety of problem domains [4,10,9] and its use in a large number of
theorem provers with active communities [11,13,6]. After a less than successful
attempt to naively translate HOL Light directly into Haskell [1], the authors
sought out systems with modified logics that could assist their implementation
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efforts. Stateless HOL was attractive due to its reformulated logical kernel that
represented a large leap towards a pure and total implementation that aligned
more closely with Haskell’s ideology. HOL2P was targeted for its potential to
improve the connection between language and logic in the opposite direction,
as it is based on a polymorphic lambda calculus that could be used to capture
several of Haskell’s language features more directly in HOL.

In this paper we make the following contributions. In Section 2 we review the
primitive logics for the systems mentioned above, focusing on changes that are
relative to our desired features. Then, in Section 3 we identify the inconsistency
that occurs with the melding of these systems and propose a modified logic that
solves the problem. Finally, in Section 4 we discuss a prototype system based on
this logic, HaskHOL, that is implemented using GHC Haskell.

2 Background

The foundation of both Stateless HOL and HOL2P is John Harrison’s HOL
Light. The goal of HOL Light is to provide a full powered HOL proof assis-
tant with a logical kernel that is simpler compared to those of related systems.
The simplified kernel paired with an embedded domain-specific language im-
plementation approach that allows HOL Light to inherit many of its primitive
operations from its host language gives the entire system a very lightweight feel,
as the name would imply.

Central to the logical kernel is the representation of HOL types and terms.
HOL Light’s elected representation maps almost directly to the simply-typed
lambda calculus. The only significant difference between the two is that, rather
than fixing the set of base types, HOL Light supports type extension through
its TyApp constructor. The first field of the constructor is a string identifier for a
type constant with the second field containing a list of type arguments to apply
to the constant.

HOL Light includes two primitive type constants that represent boolean and
function types. Any other type constants must be introduced through HOL
Light’s theory extension mechanisms. This restriction is necessary to guarantee
that a user can not provide conflicting definitions of a constant within the same
working theory. In order to facilitate this design decision, HOL Light leverages
global memory references to both track constants as they are introduced and
store any information associated with the constant.

2.1 Stateless HOL

Stateless HOL modifies the logical kernel of HOL Light in an effort to sever
the dependence on global state for the previously mentioned primitive extension
mechanisms. The principal idea behind the stateless modification is a simple
one: embed properties of the kernel types directly such that you no longer need
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to query global state in order to retrieve them. We focus on the embedding of
type constant information given its relevance to our work:

data HOLType

= TyVar String

| TyApp TypeOp [HOLType]

data TypeOp

= TyPrim String Int

| TyDefined String Int

Theorem

Compared to the original HOL Light system, the first field in the TyApp con-
structor has been changed from String to a new auxiliary data type, TypeOp,
representing type operators1.

There are two possible cases for type operators: primitive operators and de-
fined operators, those introduced via theory extension. In either case the TypeOp

instance carries both the operator identifier and its arity; instances of defined
type operators also carry their definitional theorem. This theorem can be used
to differentiate between operators of the same name, where as previously global
state was used to guarantee uniqueness of operator names.

2.2 HOL2P

Excluding the redefinition of the kernel types, the logic of Stateless HOL is
largely unchanged compared to that of the original HOL Light system. This
is not the case with HOL2P, as it looks to extend HOL Light’s logic rather
than reimplement it in an alternative manner. The ”2P”, in this case, refers to
the move from a simply-typed lambda calculus to a second-order, polymorphic
lambda calculus.

Added to the logic are universal types, type abstractions and combinations,
and type operator variables, as made familiar by numerous System F based
programming languages. Thanks to Coquand, however, we know that the com-
bination of HOL and System F is inconsistent [3] To avoid this problem HOL2P
introduces a “smallness” constraint on bound types: universal types cannot ab-
stract over other universal types or type variables that are otherwise uncon-
strained.

HOL2P makes only one modification to the implementation of HOL types;
the addition of a constructor for universal types. All other type features of the
system are added via auxiliary definition or syntactic distinction in the parser.
In the case of type operator variables, the only thing that separates them from
regular type variables is the presence or lack of an _ character prefixing the
variable name. As will be discussed in the next section, we are of the opinion
that the lack of a structural distinction among these elements complicates a
number of primitive operations of the logic.

1 Note that the data type implementation shown above is written in Haskell, not
OCaml, using HaskHOL’s data types to make comparisons between systems more
direct.
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3 Stateless HOL with Type Quantifiers

Excluding the additional rules that HOL2P added to bring congruence and beta
reduction to the type level, both it and Stateless HOL share the same primitive
rules of the original HOL Light system. Of these rules, only one had significant
differences between its implementations:

INST TYPE
[(ty1, tv1), ..., (tyn, tvn)] A � t

A[ty1, ..., tyn/tv1, ..., tvn] � t[ty1, ..., tyn/tv1, ..., tvn]
Implicit in the INST_TYPE rule is the definition of type instantiation; this is where
the key change between systems occurs.

In the simplest case, type instantiation is a substitution performed over type
variables. For Stateless HOL this substitution is trivially defined by the following
rules:

x[ty/x] = ty
y[ty/x] = y (y �= x)
(c a1...an)[ty/x] = (c a′1...a

′
n)

Note that we use a tick notation to indicate recursive application of substitution.
The intent here is to show that in the TyApp case only the first field is left
unchanged.

This is not the case in HOL2P where the first argument to a type application
may be a type operator variable and, therefore, may be subject to substitution.
To handle this possibility we need to add two additional rules. For the sake
of completeness, we also show the name capture avoiding substitution rules for
universal types:

( x a1...an)[c/ x] = (c a′1...a
′
n) (arity c = n)

( x a1...an)[Πb1.....Πbm.ty/ x] = ty[a′1/b1...a
′
n/bm] (m = n, ty is small)

(Πx.a)[ty/x] = (Πx.a)
(Πy.a)[ty/x] = (Πy.a′) (y �= x, y is not free in ty)

In order to facilitate substitution of type operator variables, HOL2P dictates
that they have two different, but conceptually equivalent, representations. The
first representation is a string value that can be used as an argument to the TyApp
constructor. The second representation is a type variable value that can be used
as part of a substitution pair in the implementation of the above rules. In its
type_subst function, HOL2P relies on the mk_tyvar and dest_tyvar methods to
convert between these representations.

The type variable representation is nonsensical, though, as there are no con-
stant terms that can inhabit types of that form. The only real purpose of this
representation is to serve as a mechanism for making the inclusion of type op-
erator variables in substitution environments well-typed. Furthermore, in the
case where a type constant is to be substituted for a type operator variable,
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the same trick must be played to represent the constant as a type variable.
Given this reliance on disingenuous type representations, we find these rules to
be ill-defined at best.

Regardless of our qualms, the integration of a stateless approach eliminates
the alternative representation work around described above. In a stateless sys-
tem, the mk_type function can no longer be used to query the current working
theory for a unique type constant that matches a given name. This prevents
type operators from being derived during substitution in the same manner as
HOL2P, thus they must be constructed beforehand. This changes the type of a
substitution pair involving type operator variables from (HOLType, HOLType) to
(?, TypeOp)2.

In the above explanation we indicate that the first type of the new substitution
pair is unknown because it is dependent on a system’s implementation of type
operator variables. In HaskHOL, we elect to make the distinction of type operator
variables purely structural by adding a new constructor to the TypeOp data type.
As such, we end up with three separate substitution functions. The rules for
these functions are shown below along with their associated argument types for
clarity’s sake:

(HOLType, HOLType) Substitution
x[ty/x] = ty
y[ty/x] = y (y �= x)
(c a1...an)[ty/x] = (c a′1...a

′
n)

(Πx.a)[ty/x] = (Πx.a)
(Πy.a)[ty/x] = (Πy.a′) (y �= x, y is not free in ty)

In all cases, ty must preserve the smallness of x.

(TypeOp, TypeOp) Substitution
x[c/ x] = x
( x a1...an)[c/ x] = (c a′1...a′n) (arity c = n)
(Πx.a)[c/ x] = (Πx.a′)

(TypeOp, HOLType) Substitution
x[Πb1.....Πbm.ty/ x] = x
( x a1...an)[Πb1.....Πbm.ty/ x] = ty[a′1/b1...a

′
n/bm] (m = n, ty is small)

(Πy.a)[Πb1.....Πbm.ty/ x] = (Πy.a′) (y is not free in ty)

2 Note that substitution in most HOL systems matches the mathematical definition,
such that the first element of a pair is substituted for the second. In HaskHOL, we
flip this ordering to more closely match other, popular, Haskell libraries. References
to the types of substitution pairs in this paper match the HaskHOL ordering.
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4 HaskHOL

As has been mentioned multiple times, HaskHOL is our prototype implemen-
tation of a stateless HOL system with quantified types. Going a step beyond
Stateless HOL, we’ve striven to make the logical kernel of HaskHOL not only
pure, but also total. The stateful layer of the system is built on top of this kernel
using monads, as is the tradition when simulating side-effects in Haskell.

The implementation of the kernel types in HaskHOL follows closely from
the union of Stateless HOL and HOL2P’s primitive types. Only two significant
changes have been made, both with the goal of being able to implement the
substitution functions covered at the end of the previous section as near direct
transcriptions of the rules that define them.

data HOLType

= TyVarIn Bool String

| TyAppIn TypeOp [HOLType]

| UTypeIn HOLType HOLType

data TypeOp

= TyOpVar String

| TyPrim String Int

| TyDefined String Int

Theorem

The first, already discussed, change is the new constructor for type operator vari-
ables in the TypeOp data type. The second change is the embedding of smallness
constraints in a new boolean field in type variables.

We elected to utilize Haskell’s type class system to provide an ad hoc poly-
morphic view of the new substitution functions. This allows us to expose an
interface to the user that is nearly identical in form and function to those of the
HOL systems that have inspired HaskHOL’s development. Using these polymor-
phic methods requires no additional work by the user with one small exception.
Given Haskell’s predilection for most general types, a type inference error will
be thrown when a user attempts to use an empty list as a substitution environ-
ment. This is easily remedied by giving the list any suitable type annotation,
as is done in this example: mkConst "="([]::[(HOLType, HOLType)]). Such cases
occur infrequently in the system’s implementation, so the overall inconvenience
level is relatively low.

At the time of this writing, a release of the source code for the
HaskHOL system is being made available on the first author’s website at
http://people.eecs.ku.edu/~eaustin/. A more complete version of the sys-
tem which includes documentation should be available on Hackage in the near
future.

5 Related Work

HaskHOL is not alone in trying to bring a general purpose theorem prover to the
Haskell community. Agda [2], a combination of a dependently typed program-
ming language and proof assistant, has been attempting to grow a sizable user
base for the past few years. While not exactly fitting the ”in Haskell for Haskell”
paradigm that HaskHOL is striving to fill, Agda gets close thanks largely to the

http://people.eecs.ku.edu/~eaustin/
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fact that its syntax and design was heavily inspired by Haskell itself. Because of
this, it is possible to translate between Haskell code and Agda specification with
relative ease which seems to be one of its main appeals to the Haskell community.

MProver [12] is another proof system developed in Haskell. Like HaskHOL, it
is a relative newcomer to the field and still appears to be in an early, developmen-
tal stage. The system shows great promise, though, especially with its approach
to tackling verification of lazy code through equational reasoning. Rather than
selecting an established logic as its base, the foundation of MProver appears to
be a new, purpose built logic designed to target the more interesting aspects of
the Haskell language.

On the HOL side of things, HaskHOL is hardly unique in its attempt to de-
velop a different and improved proof system. HOL Omega [7] is one such system
that we’re keeping a close eye on. We’re doing so largely in part because it is simi-
larly influenced by HOL2P, though it chooses to go a different direction by making
logical extensions to HOL4 rather than HOL Light. The unique portion of HOL
Omega’s logic that we’re really interested in is the inclusion of a kind system sim-
ilar to the one found in System Fω. As Haskell users, we’re no strangers to using
kinds in our day to day work, so we’re excited to see if a proof system can capture
that style of programming in a natural and straightforward way.

6 Conclusions and Future Work

The goal of HaskHOL has always been to be a general purpose theorem prover
used in support of Haskell based projects. With the current iteration of its logic
described in this paper we feel closer to achieving that goal than we ever have
before. This is obviously largely thanks to the authors of the HOL systems that
have inspired us up to this point. However, like any good research project, Haskell
represents a moving target that seems to have an ever increasing velocity.

Recently, the work on kind promotion has had a serious impact on Haskell’s
type system and core language [16]. This change opens the door to a wide variety
of useful programming techniques that HaskHOL will remain unable to verify
until it adds a compatible kind system to its logic. HOL Omega was intentionally
mentioned last in the related work section for this reason. It comes very close
to what we desire for the next evolutionary step of HaskHOL. We’re hoping to
one day implement a similar kind system in order to close the capability gap
between HaskHOL and Haskell as much as we can.
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Abstract. We report on three different approaches to use hash-consing
in programs certified with the Coq system, using binary decision dia-
grams (BDD) as running example. The use cases include execution in-
side Coq, or execution of the extracted OCaml code. There are different
trade-offs between faithful use of pristine extracted code, and code that is
fine-tuned to make use of OCaml programming constructs not available
in Coq. We discuss the possible consequences in terms of performances
and guarantees.

1 Introduction

Hash-consing is an implementation technique for immutable data structures that
keeps a single copy, in a global hash table, of semantically equivalent objects,
giving them unique identifiers and enabling constant time equality testing and
efficient memoization (also known as dynamic programming). A prime example
of the use of hash-consing is reduced ordered binary decision diagrams (ROB-
DDs, BDDs for short), representations of Boolean functions [3] often used in
software and hardware formal verification tools, in particular model checkers.

A Boolean function f : {0, 1}n → {0, 1} can be represented as a complete
binary tree with 2n − 1 decision nodes, labeled by variables xi according to the
depth from the root (thus the adjective ordered) and with subtrees labeled 0
and 1, and leaves labeled T (for true) or F (for false) . Such a tree can be reduced
by merging identical subtrees, thus becoming a connected directed acyclic graph
(see second diagram below); choice nodes with identical children are removed
(see third diagram below). The reduced representation is canonical : a function
is (up to variable ordering x1, . . . , xn) represented by a unique ROBDD.

For instance, the function f(0, 0) = T, f(0, 1) = F, f(1, 0) = T, f(1, 1) = F is
represented, then simplified as:
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In practice, one directly constructs the reduced tree. To do so, a BDD library
usually maintains a global pool of diagrams and never recreates a diagram that is
isomorphic to one already in memory, instead reusing the one already present. In
typical implementations, this pool is a global hash table. Hence, the phrase hash
consing denotes the technique of replacing nodes creation by lookup in a hash ta-
ble returning a preexisting object, or creation of the object followed by insertion
into the table if previously nonexistent. A unique identifier is given to each object,
allowing fast hashing and comparisons. Thismakes it possible to do efficientmemo-
ization: the results of an operation are tabulated so as to be returned immediately
when an identical sub-problem is encountered. For instance, in a BDD library,
memoization is crucial to implement the or/and/xor operations with time com-
plexity in O(|a|.|b|) where |a| and |b| are the sizes of the inputs; in contrast, the
naive approach yields exponential complexity.

In this article, we investigate how hash-consing and memoization, imperative
techniques, may be implemented using the Coq proof assistant, using the exam-
ple of a BDD library, with two possible uses: 1) to be executed inside Coq with
reasonable efficiency, e.g. for proofs by reflection; 2) or to be executed efficiently
when extracted to OCaml, e.g. for use in a model-checking or static analysis tool
proved correct in Coq.

2 A Problem and Three Solutions

In the following, we propose to implement a BDD library using three different
approaches. We focus on a minimal set of operations: node creation, Boolean
operations (or, and, xor, not) and equality testing on formulas represented as
ROBDDs; and we provide formal guaranties of their correctness. (Note that, in
some of our solutions, we do not prove the completeness of the equality test.
That is, we prove that the equality test returning true implies equality of the
formulas; but proving the converse is not essential for many applications.)

The typical way of implementing hash-consing (a global hash table) does not
translate easily to Coq. The reason is that the Gallina programming language
at the heart of the Coq proof assistant is a purely applicative language, without
imperative traits such as hash tables, or pointers or pointers equality.

Therefore, there are two approaches to the implementation of hash-consing for
data-structures in Coq. The first one is to model the memory using finite maps
inside Coq, and use indices in the maps as surrogates for pointers, implementing
all the aforementioned operations on these persistent maps. Such an implemen-
tation was described in [5,4], and we propose a new one in §2.1. The second
one is to recover imperative features by fine-tuning the extraction of Coq code:
either by realizing selected Coq constants by efficient OCaml definitions, e.g.,
extracting Coq constructors into smart OCaml constructors and fixpoint combi-
nators into memoizing fixpoint combinators (see §2.2); or by explicitly declaring
as axioms the OCaml code implementing the hash constructs and its properties
(see §2.3).
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Inductive expr :=
F | T | N : positive → expr.

Definition node := (expr ∗ var ∗ expr).
Record hashcons := {
graph: positive � node;
hmap : node � positive;
next : positive }.

Definition mk_node (l : expr) (v: var) (h : expr) st :=
if expr_eqb l h then (l,st)
else match find (l,v, h) (hmap st) with

| Some x ⇒ (N x, st)
| None ⇒ (N st.(next), upd (l,v, h) st)

end.

Fig. 1. Hash-consing in pure Coq

2.1 Pure Coq

Our first implementation of BDDs is defined as follows in Coq. First, we assign a
unique identifier to each decision node. Second, we represent the directed acyclic
graph underlying a BDD as a Coq finite map from identifiers to decision nodes
(that is, tuples that hold the left child, the node variable and the right child).
For instance, the following graph, on the left, can be represented using the map
on the right.

x1
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x2

��

��
���

x3
���� ��

��

F T

1 "→ (F, x1, N 2)
2 "→ (F, x2, N 3)
3 "→ (F, x3, T)

Then, we implement the hash-consing pool using another map from decision
nodes to node identifiers and a next counter that is used to assign a unique
identifier to a fresh node. Equality between BDDs is then provided by decidable
equality over node identifiers. We present on Fig. 1 our inductive definitions (left)
and the code of the associated allocation function mk_node (right), knowing that
upd n st allocates the fresh node n in the hash-consing state st (taking care of
updating both finite maps and incrementing the “next fresh” counter).

We define well-formedness as follows. A node identifier is valid in a given
global state when it is lower than the value of the next counter. Then, the
notion of well-formedness of global states covers the facts that graph maps all
valid node identifiers to valid nodes (nodes whose children are valid); and hmap

is a left-inverse of graph.
Then, all operations thread the current global state in a monadic fashion that

is, of course, reminiscent of a state monad. The correctness of BDD operations
corresponds to the facts that 1) the global state is used in a monotonic fashion
(that is the structure of the resulting global state is a refinement of the input one
and that the denotation of expressions is preserved); 2) the resulting global state
is well-formed; 3) the denotation of the resulting BDD expression is correct. As
can be expected from our data structure, BDD operations cannot be defined
using structural recursion (there is no inductive structure on which to recurse).
Using well-founded recursion is difficult here because the well-founded relation
involves both parameters of the function and the global state. Proving it to be
well-founded would involve merging non-trivial proofs of monotonicity within
programs. In the end, we resorted to define partial functions that use a fuel
argument to ensure termination.
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Finally, it is possible to enrich our hash-consing structure with memoization
tables in order to tabulate the results of BDD operations.
Record memo := {
mand : (positive ∗ positive) � expr;
mor : (positive ∗ positive) � expr;
mxor : (positive ∗ positive) � expr;
mneg : positive � expr}.

Record BDD := { ... :> hashcons; ... :> memo}.

The memoization tables are passed around by the state monad, just as the
hash-consing structure. It is then necessary to maintain invariants on the mem-
oization information. Namely, we have to prove that the nodes referenced in the
domain and in the codomain of those tables are valid; and that the memoization
information is semantically correct.

As a final note: this implementation currently lacks garbage collection (allo-
cated nodes are never destroyed until the allocation map becomes unreachable
as a whole); it could be added e.g. by reference counting.

2.2 Smart constructors

In the previous approach, we use a state monad to store information about hash-
consing and memoization. However, one can see that, even if these programming
constructs use a mutable state, they behave transparently with respect to the
pure Coq definitions. If we abandon efficient executability inside Coq, we can
write the BDD library in Coq as if manipulating decision trees without sharing,
then add the hash-consing and memoization code by tweaking the extraction
mechanism. An additional benefit is that, since we use native hash tables, we
may as well use weak ones, enabling the native garbage collector to reclaim
unused nodes without being prevented from doing so by the pointer from the
table.

More precisely, we define our BDDs as in Fig. 2a. Moreover, we tell Coq to
extract the bdd inductive type to a custom bdd OCaml type (see left of Fig. 2b)
and to extract constructors into smart constructors maintaining the maximum
sharing property. These smart constructors make use of generic hash-consing
library by Conchon and Filliâtre [2] that defines the α hash_consed type of
hash-consed values of type α and the hashcons function that returns a unique
hash-consed representative for the parameter. Internally, the library uses suitable
hash and equality functions on BDDs together with weak hash tables to keep
track of unique representatives.

In Coq, we define the obvious bdd_eqb function of type bdd → bdd → bool,
that decides structural equality of BDDs. Then, we extract this function into
OCaml’s physical equality. From a meta-level perspective, the two are equivalent
thanks to the physical unicity of hash-consed structures.

The last ingredient needed to transform a decision tree library into a BDD
library is memoization. We implement it by using special well-founded fixpoint
combinators in Coq definitions, which we extract into amemoizing fixpoint combi-
nator in OCaml. As an example, we give the definition of the bdd_not operation in
Fig. 2c. The fixpoint combinator is defined using the Coq general Fixwell-founded
fixpoint combinator that respects a fixpoint equality property. The definition of
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Inductive bdd: Type :=
| T | F | N: var → bdd → bdd → bdd.

Extract Inductive bdd ⇒
"bdd hash_consed" ["hT" "hF" "hN"] "bdd_match".

(a) BDDs in Coq as decision trees

type bdd =
| T | F
| N of var ∗ bdd hash_consed ∗ bdd hash_consed

let bdd_tbl = hashcons_create 257

let hT = hashcons bdd_tbl T
let hF = hashcons bdd_tbl F
let hN (p, b1, b2) = hashcons bdd_tbl (N(p, b1, b2))

let bdd_match fT fF fN b =
match b.node with
| T → fT () | F → fF ()
| N(p, b1, b2) → fN p b1 b2

(b) Hash-consed OCaml BDD type

Definition memoFix1 :=
Fix (well_founded_ltof bdd bdd_size).

Lemma memoFix1_eq : ∀ Ty F b,
memoFix1 Ty F b =
F b (fun b’ _ ⇒ memoFix1 Ty F b’).

Proof. [...] Qed.

Program Definition bdd_not : bdd → bdd :=
memoFix1 _ (fun b rec ⇒ match b with

| T ⇒ F | F ⇒ T
| N v bt bf ⇒
N v (rec bt _) (rec bf _)

end).

(c) Using a fixpoint combinator for bdd_not

Fig. 2. Implementing BDDs in Coq, extracting them using smart constructors

Axiom var : Set.

Axiom uid : Set.
Axiom uid_eqb : uid → uid → bool.
Axiom uid_eq_correct: ∀ x y : uid,

(uid_eqb x y =true) ↔ x=y.

Inductive bdd : Set :=
| T | F
| N : uid → var → bdd → bdd → bdd.

Axiom mkN : var → bdd → bdd → bdd.

Axiom mkN_ok :
∀ v : var, ∀ bt bf : bdd,

∃ id, mkN v bt bf = N id v bt bf.

Inductive valid : bdd → Prop :=
| valid_T : valid T
| valid_F : valid F
| valid_N : ∀ var bt bf,

(valid bt) → (valid bf) →
(valid (mkN var bt bf)).

Axiom shallow_equal_ok :
∀ id1 id2 : uid,
∀ var1 var2 : var,
∀ bt1 bf1 bt2 bf2 : bdd,
valid (N id1 var1 bt1 bf1) →
valid (N id2 var2 bt2 bf2) →
id1 = id2 →
N id1 var1 bt1 bf1 =
N id2 var2 bt2 bf2.

Fig. 3. Axiomatization of equality using unique identifiers

bdd_not then uses memoFix1 and requires proving that the BDDs sizes are de-
creasing (these trivial proof obligations are automatically discharged).

We extract the memoFix1 combinator to a memoizing construct, that is obser-
vationally equivalent to the original one. However, this new construct tabulates
results in order to avoid unnecessary recursive calls. We use similar techniques
for binary operations. As all Coq definitions are kept simple, proofs are straight-
forward: we can prove semantic correctness of all operations directly using struc-
tural induction on decision trees.

2.3 Axioms

In the previous approach, hash-consing and memoization are done after the
fact, and are completely transparent for the user. In the following, we make
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more explicit the hypotheses that we make on the representation of BDDs. That
is, we make visible in the inductive type of BDDs that each BDD node has a
“unique identifier” field (see Fig. 3) and we take the node construction function
as an axiom, which is implemented in OCaml. Note that nothing prevents the
Coq program from creating new BDD nodes without calling this function mkN.
Yet, only objects created by it (or copies thereof) satisfy the valid predicate; we
must declare another axiom stating that unique identifier equality is equivalent
to Coq’s Leibniz equality for valid nodes. Then, we can use unique identifiers to
check for equality.

This approach is close to the previous one. It has one advantage, the fact that
unique identifiers are accessible from the Coq code. They can for instance be used
for building maps from BDDs to other data, as needed in order to print BDDs
as a linear sequence of definitions with back-references to shared nodes. Yet,
one could also expose unique identifiers in the “smart constructor” approach by
stating as axioms that there exists an injection from the BDD nodes to a totally
ordered type of unique identifiers.

The use of axioms is debatable. On the one hand, the use of axioms somewhat
lowers the confidence we can give in the proofs, and they make the code not exe-
cutable within Coq. On the other hand, these axioms are actually used implicitly
when extracting Coq constructors to “smart constructors”: they correspond to
the metatheoretical statement that these constructors behave as native Coq con-
structors. Thus, they make explicit some of the magic done during extraction.

3 Discussion

We compare our approaches on different aspects:

Executability Inside Coq. Both the “smart constructors” and the “pure” im-
plementations can be executed inside Coq, even if the former has dreadful
performances (when executed inside Coq, it uses binary decision trees). The
“axiomatic” approach cannot be executed inside Coq.

Efficiency of the Extracted OCaml Code. We have yet to perform exten-
sive testing, but preliminary benchmarks indicate that the “pure” approach
yields code that is roughly five times slower than the “smart constructors”
approach (and we assume that the latter is also representative of the “ax-
iomatic” approach) on classic examples taken from previous BDD experi-
ments in Coq [5]. We have yet to measure memory consumption.

Trust in the Extracted Code. Unsurprisingly, the “smart constructors” and
the “axiomatic” approaches yield code that is harder to trust, while the
“pure” approach leaves the extracted code pristine.

Proof. From a proof-effort perspective, the “smart constructors” is by far the
simplest. The “axiomatic” approach involves the burden of dealing with
axioms. However, it makes it easier to trust that what is formally proven
corresponds to the real behavior of the underlying runtime. By comparison,
the “pure” approach required considerably more proof-engineering in order
to check the validity of invariants on the global state.
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Garbage Collection. Implementing (and proving correct) garbage collection
for the “pure” approach would require a substantial amount of work. By con-
trast, the “smart” and “axioms” approaches make it possible to use OCaml’s
garbage collector to reclaim unreachable nodes.

4 Conclusion and Directions for Future Works

In this paper, we proposed two solutions to implement hash-consing in programs
certified with the Coq system. The first one is to implement it using Coq data-
structures; the second is to use the imperative features provided by OCaml
through the tuning of the extraction mechanism. The difference in flavor between
the mapping of Coq constants to smart OCaml realizers or the axiomatization of
there realizers in Coq is a matter of taste. In both cases, some meta-theoretical
reasoning is required and requires to “sweep something under the rug”.

We conclude with directions for future works. First, we believe that the smart
constructors approach is generalizable to a huge variety of inductive types. One
can imagine that it could be part of the job of Coq’s extraction mechanism
to implement on-demand such smart constructors and memoizers as it was the
case for other imperative constructs [1]. Second, we look forward to investigate
to what extent one could provide a certified version of the hash-consing library
proposed by Conchon and Filliâtre [2].

Ackowledgements. We thank the reviewers for their helpful comments and
Jean-Christophe Filliâtre for fruitful discussions.
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1 Result Certification for Network Calculus

Network Calculus (NC) [5] is an established theory for determining bounds
on message delays and for dimensioning buffers in the design of networks for
embedded systems. It is supported by academic and industrial tool sets and
has been widely used, including for the design and certification of the Airbus
A380 AFDX backbone [1,3,4]. However, while the theory of NC is generally
well understood, results produced by existing tools have to be trusted: some
algorithms require subtle reasoning in order to ensure their applicability, and
implementation errors could result in faulty network design, with unpredictable
consequences.

Tools used in design processes for application domains with strict regulatory
requirements are subject to a qualification process in order to gain confidence
in the soundness of their results. Nevertheless, given the safety-critical nature
of network designs, we believe that more formal evidence for their correctness
should be given. We report here on work in progress towards using the interactive
proof assistant Isabelle/HOL [6] for certifying the results of NC computations.
In a nutshell (cf. Figure 1), the NC tool outputs a trace of the calculations it
performs, as well as their results. The validity of the trace (w.r.t. the applicability
of the computation steps and the numerical correctness of the result) is then
established offline by a trusted checker.

The approach of result certification is useful in general for computations per-
formed at design time, as is the case with the use of NC tools, and the idea of
using interactive theorem provers for result certification is certainly not new. In
particular, it is usually easier to instrument an existing tool in order to produce
a checkable trace than to attempt a full-fledged correctness proof. Also, the NC
tool can be implemented by a tool provider using any software development
process, programming language, and hardware, and it can be updated without
having to be requalified, as long as it still produces certifiable traces.

In the remainder, we give a brief introduction to NC, outline our ongoing
work on formalizing NC in Isabelle/HOL, and finally illustrate its use for the
certification of bounds on the message delay in a toy network.
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Fig. 1. Proof by instance of NC computations

2 Network Calculus

Network calculus [5] is a theory for computing upper bounds in networks. Its
mathematical background is a theory of the set of functions

F = { f : R≥0 → R≥0 ∪ {∞} | x ≤ y =⇒ f (x ) ≤ f (y) } (1)

that form a dioid under the operations � and + defined as pointwise minimum
and addition. Practical applications make frequent use of four families of func-
tions, defined as δd(t) = 0 if t ≤ d and ∞ otherwise, βR,T (t) = 0 if t ≤ T and
R(t−T ) otherwise, and γr ,b(t) = 0 if t ≤ 0 and rt+ b otherwise (all parameters
denote real numbers).

Operations of interest on F include convolution ∗, deconvolution 0, and the
sub-additive closure f ∗.

(f ∗ g)(t) = inf
0≤u≤t

(f (t − u) + g(u)) (2)

(f 0 g)(t) = sup
0≤u

(f (t + u)− g(u)) (3)

f ∗ = δ0 � f � (f ∗ f ) � (f ∗ f ∗ f ) � · · · (4)

A flow is represented by its cumulative function R ∈ F , where R(t) is the total
number of bits sent by this flow up to time t . A flow R has function α ∈ F as
arrival curve (denoted R ! α) if ∀t , s ≥ 0 : R(t + s) − R(t) ≤ α(s), meaning
that, from any instant t , the flow R will produce at most α(s) new bits of data
in s time units. Using convolution, this condition can be equivalently expressed
as R ≤ R ∗ α. If α is an arrival curve for R, so is α∗, and also any α′ ≥ α.

R ! α =⇒ R ! α∗ (5) R ! α, α ≤ α′ =⇒ R ! α′ (6)

A server S is a relation between an input flow R, and an output flow R′ (denoted
R

S−→ R′) such that R′ ≤ R (representing the intuition that the flow crosses the
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Fig. 2. Common curves and delay

server, and that the output is produced after the input). Such a server has a
service curve β if R′ ≥ R ∗ β holds. The delay incurred by the flow R can be
bounded by the maximal horizontal difference between curves α and β, formally
defined as

h(α, β) = sup
s≥0

(inf { τ ≥ 0 | α(s) ≤ β(s + τ) }) (7)

(cf. also Fig. 2). If R has arrival curve α and S has service curve β then α 0 β
and α0 δh(α,β) are two possible arrival curves for R′.

This presentation gives a flavor of network calculus as a collection of algebraic
results useful for computing bounds on curves and delays. Consider a configu-

ration with a flow R crossing two servers S1, S2 in sequence: R
S1−→ R′ S2−→ R′′.

Assume that R has arrival curve α and that each server Si offers a service of
curve βi . Then, the delay of R in S1 can be bounded by d = h(α, β1), and
α′ = α 0 δd is a possible arrival curve for R′. Its sub-additive closure (α′)∗ is
also an arrival curve for R′ (by Eq. 5), but may be too expensive to compute. A
simpler approximation is given by α′ � δ0 ≥ (α′)∗ (using Eq. 6), and the delay
of R′ in S2 can be bounded by h(α′ � δ0, β2). The end-to-end delay can also be
bounded by the sum of bounds on local delays, i.e. h(α, β1) + h(α′ � δ0, β2).

This simple example illustrates that implementations of NC analysis may
choose between different approximations, involving tradeoffs between the accu-
racy of the result, the difficulty of implementing the necessary computations,
and their time complexity.

3 Encoding Network Calculus in Isabelle

The first step towards developing a result certifier consists in formalizing the the-
ory underlying NC to the extent that it is used by algorithms we are interested in.
As a side benefit of this formalization, we obtain a rigorous development of NC,
including all possible corner cases that may be overlooked in pencil-and-paper
proofs. The objective of the work reported here was to evaluate the feasibility
of developing a result certifier in Isabelle that would at least be able to check
computations for simple, but representative networks. Our NC formalization is
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currently incomplete, with many theorems only partly proved; we nevertheless
outline the main definitions and results.

The set F (Eq. 1) of non-decreasing functions used to represent flows is rep-
resented in Isabelle/HOL as the type

typedef ndf = { f :: ereal ⇒ ereal . (∀r ≤ 0. f r = 0) ∧mono f }
where ereal is a pre-defined type corresponding to R ∪ {∞}. Compared to (1),
we extend the domain of f to R∪{∞} (including negative numbers and ∞) but
require that f r be zero for negative r . This insignificant change of definition
turned out to simplify the subsequent development. Over type ndf , we define
operations such as addition, multiplication, and comparison by pointwise exten-
sion and establish some basic algebraic properties: for example, the resulting
structure forms an ordered commutative monoid with 0 and 1.

We introduce operations such as convolution and deconvolution (Eq. 2) and
characteristic properties such as sub-additivity, and prove fundamental results.
For example, the convolution of two sub-additive flows is itself sub-additive.1

definition is-sub-additive where
is-sub-additive f ≡ ∀x y. f ·(x + y) ≤ f ·x + f ·y

lemma convol-sub-add-stable:
assumes is-sub-additive f and is-sub-additive g
shows is-sub-additive (f ∗ g)

A simple server is represented as a left-total relation between flows such that
the output flow is not larger than the input flow

typedef server = { s :: (ndf × ndf ) set . (∀in. ∃out . (in, out) ∈ s)
∧ (∀(in, out) ∈ s . out ≤ in) }

and we define what it means for a flow to be constrained by an arrival curve α
and for a server to provide minimum service β:

R ! α ≡ R ≤ R ∗ α S  β ≡ ∀(in, out) ∈ S : in ∗ β ≤ out .

Again, we prove results relating these constraints to bounds on delays and back-
logs. For example, the following theorem provides a bound on the delay of a
simple server:

theorem d-h-bound :
assumes in ! α and S  β
shows worst-delay-server in S ≤ h-dev α β

where the horizontal deviation is defined in (Eq. 7) and worst-delay-server in S
denotes the maximal delay incurred by input flow in at server S .

Building on these results about simple servers, we derive theorems about
sequences of servers. We also formalize concepts such as packetization, which
refers to servers that group individual bits into larger packets, introducing extra
delays. Finally, these concepts are extended to multiple-input multiple-output
servers that takes vectors of flows as input and output. We do not describe these
concepts in detail, as they are not used in the following example.

1 f ·x denotes the result of applying f :: ndf to x .
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Producer �
1MBit/s

Switch1

θ1 = 1μs
�

10MBit/s

Switch2

θ2 = 20μs
�

5MBit/s
Consumer

in % γr,b
S1  βR1,θ1

mid
S2  βR2,θ2

out

Fig. 3. A simple system and its Network Calculus representation.

4 Certifying a Simple Network Computation

In order to illustrate the use of our theories on a simple example, let us consider
the producer-consumer setup shown in Fig. 3. The producer is assumed to send
at most one frame every T = 20ms. We further assume that the maximum
frame size is MFS = 8000bits. This flow is sent to a consumer via two switches
with switching delays θ1 = 1μs and θ2 = 20μs . The physical links between the
producer, the switches, and the consumer are assumed to have bandwidths of 1,
10 and 5MBit/s, respectively.

The NC model appears in the lower part of Fig. 3. Flow in is constrained by
the arrival curve αin = γr ,b where b equals MFS and r = MFS

T = 8000
20×103 = 2

5 .
The service curves are given by the function βRi ,θi where the bandwidths are

R1 = 10 bit/μs and R2 = 5bit/μs , and the delays are θ1 and θ2.
We are interested in the maximal delays that frames may incur. Using theorem

d-h-bound , the delay at server 1 is bounded by h(αin , β10,1), which evaluates to
801μs. As explained in Section 2, the arrival curve of flow mid can be computed
as

αmid = (αin 0 δ801) � δ0 = (γ 2
5 ,8000

0 δ801) � δ0 = γ 2
5 ,

41602
5
.

Continuing for the second server, its delay is at most h(αmid , β5,20) =
42102
25 μs.

Consequently, the overall delay incurred by frames equals

801μs +
42102

25
μs =

62127

25
μs.

These computations are performed by the pegase Network Calculus tool [2] and
certified using Isabelle.

5 Conclusion

We have presented preliminary work aiming at ensuring the correctness of embed-
ded network designs by certifying the result of standard NC tools within a theory
developed in the proof assistant Isabelle/HOL. A prototype has been developed
and it can handle a realistic industrial configuration, with 8 switches and more
than 5.000 flows, in 8 hours on a standard laptop computer. Much remains to be
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done: the proofs of many theorems of the NC formalization are still incomplete.
Moreover,we only support simple arrival curves and therefore obtainworse bounds
than state-of-the-art tools for NC analysis. Nevertheless, we believe that our work
demonstrates the feasibility and the interest of the approach.

Developing a Network Calculus engine that is able to handle an AFDX con-
figuration requires about one or two years of implementation. The effort for de-
veloping a qualified version of such an engine, using state-of-the-art techniques
(documentations, testing, peer-review, etc.) is higher by a factor of 5 or 10.

Although one should not confuse result certification with the development of
a qualified NC tool, the approach that we suggest here promises to reduce the
overhead while increasing the confidence in the results produced by the software.
We have so far invested less than 1 development year for encoding some funda-
mental concepts of Network Calculus in Isabelle/HOL, and for instrumenting
an existing tool so that it produces a trace that can be checked in Isabelle. We
estimate that the overall effort for producing the proof for a realistic network
should be between 2 and 3 years. This includes effort to complete the formaliza-
tion of the basic concepts, extensions to more complicated types of servers, and
developing special-purpose proof methods for checking the proof traces.

In other words, we believe that result certification could reduce the overhead
for developing a trustworthy version of a Network Calculus tool to a factor of 2
or 3, while significantly improving its quality.
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Abstract. This short paper describes our plans and progress towards
construction of verified ML implementations of HOL Light: the first for-
mally proved soundness result for an LCF-style prover. Building on Har-
rison’s formalisation of the HOL Light logic and our previous work on
proof-producing synthesis of ML, we have produced verified implementa-
tions of each of HOL Light’s kernel functions. What remains is extending
Harrison’s soundness proof and proving that ML’s module system pro-
vides the required abstraction for soundness of the kernel to relate to
the entire theorem prover. The proofs described in this paper involve the
HOL Light and HOL4 theorem provers and the OpenTheory toolchain.

1 Introduction

We are developing a new verification friendly dialect of ML, called CakeML. This
ML dialect is approximately a subset of Standard ML carefully carved out to be
convenient to program in and to reason about formally. We plan to build verified
implementations of CakeML (a compiler, an implementation of a read-eval-print
loop and possibly custom hardware) and also produce tools for generating and
reasoning about CakeML programs (e.g. tools for synthesising CakeML from
high-level specifications). One of our initial challenge examples is to construct
and verify implementations of HOL Light [1] expressed in CakeML.

This short paper describes our plans and progress towards our HOL Light
case study, which we believe could be the first formal proof of soundness for an
implementation of an LCF-style prover. The theorem we are aiming for relates
the semantics of higher-order logic (i.e. HOL) with the execution of the concrete
machine code which runs the prover. We want to prove that only sound theorems
can be derived in our CakeML implementations.

We build on previous work where Harrison [2] has formalised HOL in the HOL
Light prover, and on our proof-producing synthesis tool [5] for MiniML, a pure
version of CakeML. Throughout, we will simply write ML for CakeML.

2 Method

The following are the high-level steps we have taken in our effort to construct
verified implementations of HOL Light.

S. Blazy, C. Paulin-Mohring, and D. Pichardie (Eds.): ITP 2013, LNCS 7998, pp. 490–495, 2013.
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HOL Light (OCaml)

monadic functions

deep embedding

machine code

Harrison’s syntax HOLdef

Harrison’s semantics HOLdef semantics

Harrison

this paper

future work

manual extension

manual extension

interactive proof
(soundness)

interactive proof
(soundness)

manual translation

automatic translation certificate theorems

automatic translation compiler verification

manual translation

interactive proof

1. Extending Harrison’s formalisation of HOL. We started by adding
support for user-defined constants, types and axioms to Harrison’s speci-
fication of the syntactic inference rules of HOL. (We have yet to update
Harrison’s soundness proof, i.e. this extension of the inference rules has yet
to be proved sound.) We will refer to this extension as HOLdef.

2. Kernel as monadic functions. Next, we took the sources for the HOL
Light kernel (fusion.ml in the HOL Light code repository) and manually
translated each HOL Light kernel function (written in OCaml) into a def-
inition inside HOL. Since the OCaml code is stateful and uses exceptions,
these HOL functions were written using a state-exception monad. We will
refer to these functions as the monadic functions.

3. Verification of the monadic functions. We then proved that any com-
putation the monadic functions can perform is something HOLdef allows: if
the monadic functions allow construction of a theorem thm then thm is also
derivable in HOLdef. If HOLdef is proved sound, then the monadic functions
are also sound.

Note that, Harrison’s formalisation lives within the HOL Light theorem
prover, but the rest of our work lives within the HOL4 theorem prover [7]. To
bridge this gap, we transported our extension of Harrison’s development from
HOL Light into HOL4 using the OpenTheory toolchain [3]. OpenTheory
replays the primitive inferences from one prover inside another.

4. Verified kernel in ML. Next, we constructed an actual ML implemen-
tation, a deep embedding, from the monadic functions. We constructed this
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ML implementation using an automatic shallow-to-deep-embedding transla-
tor [5] which, for each translation, proves a certificate theorem w.r.t. a formal
specification of the operational semantics of ML. These certificate theorems
allowed us to carry over the correctness results for each monadic function
(shallow embedding) over to the ML code (the deep embedding).

Our original translator only produced pure ML functions. For this work,
we extended our previously developed translator to map the state-exception
monads to appropriate stateful ML constructs.

The final — and currently missing — steps lift our kernel verification to a sound-
ness result for the entire theorem prover running on a verified ML runtime:

5. Verified theorem prover in ML. We then hope to package up the deep
embedding constructed above into an ML module (the HOL Light kernel)
and prove that ML’s module system provides the necessary restrictions which
imply that only the kernel can construct values of type theorem (thm).

6. Verified theorem prover running on a verified ML runtime.

The rest of this paper describes these steps and discusses related work.

2.1 Formalising HOL with a Definition Mechanism

As mentioned above, we build on Harrison’s formalisation of HOL inside HOL.
We extended his model of the syntax with support for user-defined type operators
(Tyapp) and term constants (Const):

type = Tyvar string | Bool | Ind | Fun type type

| Tyapp string (type list) We added this line

term = Var string type | Equal type | Select type

| Comb term term | Abs string type term

| Const string type . . . and this line.

We also define the ‘state’ of the logic. The state consists of a list of definitions:
a definition defines a new constant, type or axiom:

def = Constdef string term term name, expression
| Typedef string term string string type name, prop, abs, rep
| Axiomdef term statement of axiom

The inference rules were extended to include the new state component. Each
judgement hyps � concl is now defs, hyps � concl, where defs is a list of
definitions, i.e. defs has HOL type def list. There are also five new inference
rules: one which allows extension of the definitions with a new definition,

defs, asl " p ∧ def_ok d defs =⇒ (CONS d defs), asl " p

and four inference rules which provide theorems that arise from the definitions.
For example, the following inference rule provides a description of a term defi-
nition. The constant name is equal to term tm, if the constant is defined as such
in the list of definitions defs (which must be well-formed).
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context_ok defs ∧ MEM (Constdef name tm) defs

=⇒ defs, [] " Const name (typeof tm) === tm

Every attempt was made to be as minimal as possible in the extension of Harri-
son’s work. The hope is that his semantics and soundness proof can be updated
to work with this extension of his original formalisation. No attempt has yet
been made to extend his semantics or soundness proof.

2.2 Defining the HOL Light Kernel in HOL Using Monads

We use implementation friendly versions of the main datatypes when defining
the kernel of HOL Light as functions in HOL.

hol type = Tyvar string | Tyapp string (hol type list)

hol term = Var string hol type | Const string hol type

| Comb hol term hol term | Abs hol term hol term

thm = Sequent (hol term list) hol term

The kernel of HOL Light makes use of exceptions and maintains state. The
state consists of three references: the type constants, the term constants,
the axioms. When defining the kernel of HOL Light as functions in HOL (the
monadic functions), we model the state using a record. This record contains two
new components: the definitions keeps track of the ‘state’ of the logic; and
the clash var is used to hold data that should be carried in an exception.1

hol refs = <| the type constants : (string # num) list ;

the term constants : (string # hol type) list ;

the axioms : thm list ;

the definitions : def list ;

the clash var : hol term |>

We then defined each function of HOL Light’s kernel using a state-exception
monad based on this record type. We make use of HOL4’s special syntax for
monads (due to Michael Norrish). For example, HOL Light’s mk const function

let mk const(name,theta) =

let uty = try get const type name with Failure ->

failwith "mk const: not a constant name" in

Const(name,type subst theta uty)

is defined in HOL as follows:

mk const(name,theta) =

do uty <- try get const type name

"mk const: not a constant name" ;

return (Const name (type subst theta uty))

od

1 At the time of writing, CakeML did not support carrying of arbitrary information
in exceptions. This use of an extra reference is our temporary workaround.
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The monad-bind operator that hides under the syntactic sugar propagates the
state and exceptions appropriately. In some cases, the monadic version is neces-
sarily more verbose than the original OCaml code, e.g.

let REFL tm = Sequent([],mk eq(tm,tm))

must be split with a semicolon since mk eq is a monadic function:

REFL tm = do eq <- mk eq(tm,tm); return (Sequent [] eq) od

For each of these functions (mk const, REFL, etc.) we proved that the types,
terms, theorems and states they produce are wellformed, given wellformed in-
puts. A theorem is wellformed if it is derivable (�) in our extension of Harrison’s
formalisation of HOL w.r.t. the current list of definitions (the definitions).

2.3 Proof-Producing Synthesis of Stateful ML

The HOL Light kernel, as defined above, carries around state. In the generated
ML, we implement this state using five references, one for each component of
the state record from above. In order to use our previously developed proof-
producing synthesis tool [5], we had to extend it with support for making use of
such top-level references.

The extension essentially just threads a state (from the monadic functions)
and reference store (from the ML semantics) through the entire development. At
each point, the state and the reference store must agree according to a refinement
invariant which relates the two representations of state.

The new state-aware synthesis tool produces deep embeddings and certificate
theorems much like the original tool. For example, the monadic function REFL

from above turns into the following ML code. Bind is translated into ML let.

val REFL = fun tm =>

let val eq = mk eq (Pair tm tm) in Sequent ([], eq) end;

The automatically proved certificate theorem for REFL makes a statement about
the generated ML code (deep embedding) w.r.t. the operational semantics of ML:
if the kernel has been loaded, then the name "REFL" refers to an ML function
(deep embedding), which given an input, returns an output and accesses the state
in a manner that exactly follows the monadic function (shallow embedding).

The details of this extension of our synthesis tool will be described in a forth-
coming extension of the original conference publication [5].

3 Results, Discussion and Related Work

At the time of writing, we have a verified ML implementation (deep embedding)
for each function in HOL Light’s kernel. We have proved that all types, terms and
theorems this ML code produces are wellformed w.r.t. our extension of Harrison’s
formalisation of HOL. What remains is: proving HOLdef sound; proving that the
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module system successfully prevents construction of theorems (values of type
thm) outside of the kernel; and construction of verified implementations of ML.

Why not verify HOL light as it is? Such a proof would require dealing with
a semantics of OCaml [6]. Real OCaml includes problematic features such as
mutable strings and unsafe primitives (e.g. Obj.magic), which can be used to
seemingly or actually produce unsoundness in HOL Light. As mentioned at the
beginning, our interest lies in developing a verification friendly ML dialect.

Would Wiedijk’s stateless version of HOL light [8] have been easier to verify?
Wiedijk’s version of HOL is very neat. However, the fact that Harrison’s HOL
Light is stateful is not a major hurdle and Harrison’s work on formalising HOL
inside HOL fits better with his version of HOL Light. Our initial efforts concen-
trate on Harrison’s stateful version, but we are also looking into constructing
verified implementations of Wiedijk’s stateless version.

What is the most closely related project? Our previous project [4] on proving
soundness of Davis’ ACL2-inspired Milawa theorem prover had similar aims: to
prove that every theorem admitted by the Milawa system (when run on our
implementation of Lisp) must be true by the semantics of the Milawa logic.

Acknowledgements. FreekWiedijk initially got us started by asking: “Can you
do forHOLLightwhatyoudid forMilawa?”Weare also grateful for encouragement
fromJohnHarrison and appreciate comments received fromMikeGordon andDan
Synek on drafts this paper. The first author was funded by the Royal Society, UK,
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Lammich, Peter 84
Leino, K. Rustan M. 2
Le Roux, Stéphane 163
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Schürmann, Carsten 17
Schwichtenberg, Helmut 370
Shi, Xiaomu 338
Solovyev, Alexey 163
Spitters, Bas 463
Struth, Georg 197



498 Author Index

Tahar, Sofiène 295
Tankink, Carst 451
Tassi, Enrico 19, 163
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Urban, Christian 147
Urban, Josef 35, 451

Vafeiadis, Viktor 328

Weber, Tjark 197

Wenzel, Makarius 418

Wetzler, Nathan 229

Xu, Jian 147

Zhang, Xingyuan 147

Ziliani, Beta 67


	Preface
	Organization
	Table of Contents
	Invited Talks
	Applying Formal Methods in the Large
	Automating Theorem Proving with SMT
	1 Introduction
	2 A Types and a Function
	3 An Inductive Proof
	4 Co-recursion and a Co-inductive Proof
	5 A Filter Function
	6 A Property of Filter
	7 Conclusion
	References

	Certifying Voting Protocols

	Invited Tutorials
	Counterexample Generation Meets Interactive Theorem Proving: Current Results and Future Opportunities
	Canonical Structures for the Working Coq User
	1 Introduction
	2 Canonical Structures
	3 Type Inference and Unification
	4 Basic Overloading
	5 Inheritance
	6 ProofSearch
	7 Declaring Instances Made Easier
	8 Conclusions and Related Works
	References


	Regular Papers
	MaSh: Machine Learning for Sledgehammer
	1 Introduction
	2 Sledgehammer and MePo
	3 The Machine Learning Engine
	3.1 Basic Concepts
	3.2 Input and Output
	3.3 The Learning Algorithm

	4 Integration in Sledgehammer
	4.1 The Low-Level Learner Interface
	4.2 Learning from and for Isabelle
	4.3 Relevance Filters: MaSh and MeSh
	4.4 Automatic and Manual Control
	4.5 Nonmonotonic Theory Changes

	5 Evaluations
	5.1 Evaluation on Large Formalizations
	5.2 Judgment Day

	6 Related Work and Contributions
	7 Conclusion
	References

	Scalable LCF-Style Proof Translation
	1 Introduction
	2 Architecture Overview
	2.1 Collecting Theorems to Export
	2.2 Exporting the Inference Trace
	2.3 Offline Garbage Collection
	2.4 Import

	3 Time and Memory Comparison of Flyspeck vs Import
	4 Statistics Over Flyspeck
	4.1 Dependencies and Steps Statistics
	4.2 Theorem Name Statistics
	4.3 Translation Time and Size Statistics

	5 Conclusion
	5.1 FutureWork

	References

	Lightweight Proof by Reflection Using a Posteriori Simulation of Effectful Computation
	1 Introduction
	2 Simulation-Based Proof by Reflection
	3 A PosterioriSimulation of Effects
	3.1 a Purely Functional Language
	3.2, A Call-By-Value Impure Functional Language
	3.3 Examples of Simulable Monads
	3.4 A Posteriori Simulation

	4 Implementation
	4.1 A Simulable Monad in
	4.2 In OCaml
	4.3 Communication from

	5 Examples
	5.1 Congruence-Closure
	5.2 A Tactic for Lattices

	6 Related Work
	7 Conclusion
	References

	Automatic Data Refinement
	1 Introduction
	2 BasicIdeas
	2.1 Isabelle/HOL
	2.2 Relators
	2.3 Transfer Rules
	2.4 Equality and Type Classes
	2.5 Summary

	3 Tool Implementation
	3.1 Identification of Operations
	3.2 Selecting the Implementation Types
	3.3 Side Conditions
	3.4 Synthesis
	3.5 Generic Programming
	3.6 Summary

	4 Case Studies
	4.1 Refinement Framework
	4.2 Collection Framework
	4.3 Generic Programming
	4.4 Code Generation for Actual Algorithms
	4.5 Data Refinement within the Code Generator

	5 Conclusions
	References

	Data Refinement in Isabelle/HOL
	1 Introduction
	1.1 Code Generation
	1.2 Isabelle/HOL

	2 Basic Data Refinement
	3 Data Refinement with Invariants
	3.1 Motivation and Example
	3.2 Subtype Step: The General Case
	3.3 Using Lifting/Transfer

	4 From Type Constructors to Type Expressions
	4.1 Motivation and Example
	4.2 Using Lifting/Transfer

	5 Applications
	6 Related Work
	7 Conclusion
	References

	Light-Weight Containers for Isabelle: Efficient, Extensible, Nestable
	1 Introduction
	1.1 Background: The Code Generator Framework and Refinement
	1.2 Related Work

	2 Multiple Implementations for Containers
	2.1 New Type Classes and Multiple Implementations
	2.2 Extensibility
	2.3 Automatically Choosing an Implementation
	2.4 Binary Operations

	3 Executable Linear Order on Sets
	3.1 Definition
	3.2 Code Equations
	3.3 Nesting and Extensibility

	4 Evaluation
	4.1 Comparison with Other Approaches
	4.2 Nested Sets
	4.3 Case Study: Java Interpreter

	5 Conclusion and Future Work
	References

	Ordinals in HOL: Transfinite Arithmetic up to (and Beyond) ω1
	1 Introduction
	2 Wellorders
	3 Constructing the Ordinals
	3.1 Cardinality Arguments and Supremum
	3.2 Limit Ordinals

	4 Arithmetic
	4.1 Division and Modulus
	4.2 Cantor Normal Forms
	4.3 Fixpoints and ε0

	5 Uncountable Ordinals
	6 Validating Algorithms on ACL2’s Ordinals
	6.1 Arithmetic

	7 Another Model
	8 Conclusion
	References

	Mechanising Turing Machines and ComputabilityTheory in Isabelle/HOL
	1 Introduction
	2 Turing Machines
	3 Abacus Machines
	4 Recursive Functions and a Universal Turing Machine
	5 Conclusion
	References

	A Machine-Checked Proof of the Odd Order Therorem
	1 Introduction
	2 An Overview of the Odd Order Theorem
	2.1 Preliminaries
	2.2 The Odd Order Theorem
	2.3 Mathematical Sources

	3 Mathematical Structures and Interfaces in Coq
	3.1 The Calculus of Inductive Constructions and the Coq System
	3.2 Principles of Boolean Reflection
	3.3 Finite Group Theory
	3.4 Dependent Records as First Class Interfaces
	3.5 Searching Proofs by Programming Type Inference

	4 MathematicalProofsinCoq
	4.1 Symmetries
	4.2 Cycles of Inequalities
	4.3 Proof Search by Large-Scale Reflection
	4.4 Classical Reasoning

	5 Mathematical Theories
	5.1 Representations and Characters
	5.2 Complex Algebraic Numbers
	5.3 Galois Theory

	6 Conclusion
	References

	Kleene Algebra with Tests and Coq Tools for while Programs
	Introduction
	1 Kleene Algebra with Tests
	1.1 The Model of Binary Relations
	1.2 Other Models
	1.3 KAT Expressions
	1.4 Guarded Strings Languages

	2 Completeness
	2.1 Completeness of Kleene Algebra Axioms
	2.2 Completeness of KAT Axioms

	3 Decision Procedure
	3.1 Building a Reflexive Tactic

	4 Eliminating Hypotheses
	4.1 Automating Elimination of Hypotheses in Coq

	5 Case Studies
	5.1 Bigstep Semantics of ‘While’ Programs
	5.2 Hoare Logic for Partial Correctness
	5.3 Compiler Optimisations
	5.4 Flowchart Schemes

	6 Related Works
	7 Conclusion
	References

	Program Analysis and Verification Based on Kleene Algebra in Isabelle/HOL
	1 Introduction
	2 Kleene Algebra with Tests
	3 Schematic KAT and Flowchart Schemes
	4 Formalising a Metatheorem
	5 Verification of Flowchart Equivalence
	6 Hoare Logic
	7 Verification Examples
	8 Conclusion
	References

	Pragmatic Quotient Types in COQ
	Introduction
	1 A Framework for Quotients
	1.1 A Small Interface
	1.2 Recovering an Equivalence and Lifting Properties
	1.3 Inference of Quotient Structures
	1.4 Automatic Rewriting
	1.5 Recovering Structure

	2 Quotient by an Equivalence Relation
	2.1 Quotient of a Choice Structure
	2.2 Quotient of Type with an Explicit Encoding to a Choice Type

	3 Applications
	3.1 Rational Fractions
	3.2 Multivariate Polynomials
	3.3 Field Extensions
	3.4 Real Algebraic Numbers

	4 Related Work on Quotient Types
	5 Conclusion
	References

	Mechanical Verification of SAT Refutations with Extended Resolution
	1 Introduction
	2 Formalization
	2.1 ACL2
	2.2 Satisfiability Basics
	2.3 Proof Traces
	2.4 Resolution and Resolution Proofs
	2.5 Extended Resolution
	2.6 Unit Propagation and Clausal Proofs
	2.7 Redundancy Hierarchy
	2.8 RAT
	2.9 Proof Checker

	3 Specification
	4 Proof
	4.1 ATp
	4.2 RATp
	4.3 Statistics

	5 Conclusion
	References

	Formalizing Bounded Increase
	1 Introduction
	2 Preliminaries
	3 First Problem: No Strong Normalization
	4 Second Problem: No Monotonicity
	5 Third Problem: Solving Conditional Constraints
	6 Babylonian Square Root Algorithms
	7 Summary
	References

	Formal Program Optimization in Computational Equivalence and Partial Types
	1 Introduction
	2 Nuprl's Programming Language
	2.1 Syntax
	2.2 Operational Semantics
	2.3 Datatypes

	3 Computational Equivalence
	3.1 Simulations and Bisimulations
	3.2 Simple Facts about Lists

	4 Proof Techniques
	4.1 Least Upper Bound Property
	4.2 Canonical Form Tests
	4.3 Convergence
	4.4 Lifting
	4.5 Normalization
	4.6 Strictness
	4.7 Back to Our List Example

	5 Process Optimization
	5.1 Combinators
	5.2 Example

	6 Related Work and Conclusion
	References

	Type Classes and Filters for Mathematical Analysis in Isabelle/HOL
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Topology
	4.1 Topological Spaces
	4.2 Filters and Limits
	4.3 Continuity
	4.4 Compactness

	5 Mathematical Analysis
	5.1 Metric Spaces
	5.2 Vector Spaces
	5.3 Euclidean Spaces
	5.4 Real Numbers

	6 Summary
	References

	Formal Reasoning about Classified Markov Chains in HOL
	1 Introduction
	2 Formalization of DTMCs
	3 Formalization of Classified DTMCs
	4 Verification of DTMC Properties
	4.1 DTMC Properties
	4.2 Classified DTMC Properties

	5 Formal Validation of LRU Stack Model
	5.1 LRU Stack Model
	5.2 Verification of the Property

	6 Conclusion
	References

	Practical Probability: Applying pGCL to Lattice Scheduling
	1 Introduction
	1.1 pGCL in Isabelle

	2 Security Policies and Covert Channels
	3 Countermeasures through Refinement
	3.1 A Randomised Scheduler
	3.2 Program Refinement and Starvation-Freedom
	3.3 Data Refinement and the Lottery Scheduler
	3.4 Probabilistic Correspondence
	3.5 Proof Reuse: Composing with seL4
	3.6 Non-leakage with a Concrete Machine Model

	4 Conclusions
	5 Ongoing and Future Work
	References

	Adjustable References
	1 Introduction
	2 Adjustable References
	2.1 Logical Consistency of Adjustable References
	2.2 Extraction to Efficient Imperative Code

	3 Memoization Using Adjustable References
	4 Union-Find Path Compression
	5 Conclusion
	References

	Handcrafted Inversions Made Operational on Operational Semantics
	1 Introduction
	2 Inversion
	3 A Handcrafted Inversion
	3.1 Dependent Pattern Matching
	3.2 Auxiliary Diagonalization Function
	3.3 Handling Successful Cases
	3.4 Dealing with Constrained Arguments
	3.5 Beating

	4 Application to SimSoC-Cert
	5 Conclusion
	References

	Circular Coinduction in Coq Using Bisimulation-Up-To Techniques
	1 Introduction
	2 Morphic Sequences in Coq
	3 Coinduction Loading
	4 Circular Coinduction
	5 Bisimulation-Up-To
	6 Discussion
	References

	Program Extraction from Nested Definitions
	1 Introduction
	2 FormalSystem
	2.1 Algebras and Their Total and Cototal Ideals
	2.2 Corecursion
	2.3 Realizability
	2.4 Translation to a General-Purpose Programming Language
	2.5 Inductive and Coinductive Definitions

	3 Case Study: Uniformly Continuous Functions
	3.1 Data Types of Uniformly Continuous Functions
	3.2 Formalization
	3.3 Informal Proofs
	3.4 Extraction
	3.5 Experiment

	4 Conclusion
	References

	Subformula Linking as an Interaction Method
	1 Introduction
	2 The Calculus of Structures for Linear Logic
	3 Formula Linking
	3.1 Polarities as Organizational Hints
	3.2 Positive Equality and First-Order Effects

	4 Implementation Notes
	4.1 Implicit Contraction
	4.2 Other Convenience Features

	5 Caveats
	References

	Automatically Generated Infrastructure for De Bruijn Syntaxes
	1 Introduction
	2 Usual de Bruijn Syntaxes and Their Infrastructure
	3 An Abstract Syntax for De Bruijn Infrastructure Generation
	3.1 De Bruijn with Explicit Binding Abstract Syntax
	3.2 DBEBInfrastructure Generation
	3.3 Named Syntax Generation and Translation
	3.4 DBEBand DBGen Generation Questions

	4 DBGenatWork
	4.1 An Example of Generation
	4.2 An Example of Generated Content Usage

	5 Conclusion and Further Work
	References

	Shared-Memory Multiprocessing for Interactive Therorem Proving
	1 Introduction
	1.1 The Multicore Problem
	1.2 LCF-Style Provers as Multi-threaded Applications

	2 Strategies for Parallel Proof Checking
	2.1 Peep-Hole Parallelism
	2.2 Pervasive Theory and Proof Parallelization

	3 Parallel Prover Architecture
	3.1 Parallel ML
	3.2 Theory Context and Proof Promises
	3.3 Goals with Forked Proofs

	4 Performance and Scalability
	5 Conclusion
	References

	A Parallelized Theorem Prover for a Logic with Parallel Execution
	1 Introduction
	2 Related Work
	3 Parallel Programming Primitives
	4 Parallelizing ACL2’s Main Proof Process
	5 Proof Parallelism Potential
	5.1 Examples of Each Category

	6 Experimental Results
	6.1 Defining Our Metrics
	6.2 Performance Results

	7 Conclusion and Future Work
	References


	Rough Diamonds
	Communicating Formal Proofs: The Case of Flyspeck
	1 Introduction
	2 Presenting Flyspeck in
	2.1 Description of a Formal Proof
	2.2 Integration with Formal Proof
	2.3 Dynamic Display

	3 Conclusion and Future Work
	References

	Square Root and Division Elimination in PVS
	1 Deep Embedding
	2 Strategy Definition
	References

	The Picard Algorithm for Ordinary Differential Equations in Coq
	1 The Picard-Lindel¨of Theorem
	2 A Computational Library for Analysis
	2.1 Metric Spaces Using Type Classes
	2.2 An Axiomatic Treatment of Integration
	2.3 Picard Iteration
	2.4 Timings

	Conclusion
	References

	Stateless Higher-Order Logic with Quantified Types
	1 Introduction
	2 Background
	2.1 Stateless HOL
	2.2 HOL2P

	3 Stateless HOL with Type Quantifiers
	4 HaskHOL
	5 Related Work
	6 Conclusions and Future Work
	References

	Implementing Hash-Consed Structures in Coq
	1 Introduction
	2 A Problem and Three Solutions
	2.1 Pure Coq
	2.2 Smart constructors
	2.3 Axioms

	3 Discussion
	4 Conclusion and Directions for Future Works
	References

	Towards Certifying Network Calculus
	1 Result Certification for Network Calculus
	2 Network Calculus
	3 Encoding Network Calculus in Isabelle
	4 Certifying a Simple Network Computation
	5 Conclusion
	References

	Steps towards Verified Implementations of HOL Light
	1 Introduction
	2 Method
	2.1 Formalising HOL with a Definition Mechanism
	2.2 Defining the HOL Light Kernel in HOL Using Monads
	2.3 Proof-Producing Synthesis of Stateful ML

	3 Results, Discussion and Related Work
	References


	Author Index



