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Abstract. The preservation of any security property for the composition of com-
ponents in software engineering is typically regarded a non-trivial issue. Amongst
the different possible properties, confidentiality however poses the most challeng-
ing one. The naive approach of assuming that confidentiality of a composition is
satisfied if it is provided by the individual components may lead to insecure sys-
tems as specific aspects of one component may have undesired effects on others.
In this paper we investigate the composition of components that each on its own
provide confidentiality of their data. We carve out that the complete behaviour
between components needs to be considered, rather than focussing only on the
single interaction points or the set of actions containing the confidential data. Our
formal investigation reveals different possibilities for testing of correct compo-
sitions of components, for the coordinated distributed creation of composable
components, and for the design of generally composable interfaces, ensuring the
confidentiality of the composition.

1 Introduction

Software design and engineering makes strong use of composition in many ways. From
the orchestration of web services in a Business Process Engines to the integration of
libraries or object files compilers and linkers the principles of composition apply on
any of these layers of abstraction.

Beyond the general problems of feature interaction, there exist many specific secu-
rity related challenges that can introduce serious flaws in a software product. A promi-
nent example for such a flaw is the integration of TLS libraries into the German eID
Application [1] that caused the acceptance of update packages by any server with a
valid certificate, as the name within the certificate was not checked. In other cases, inte-
grators of TLS libraries do not provide enough entropy for key generation which leads
to a series of servers on the Internet with similar private key values [2].

Practical solutions for composition include the provisioning of verbal best-practice
catalogues [3], tool-based solution databases [4,5,6] or guides, tutorials and code exam-
ples in general. However, there does not exist much research that targets the challenges
imposed by composition on a more general and broader scope.

In this contribution we present an approach based on the formal semantics of our Se-
curity Modelling Framework SeMF (see e.g. [7,8,9]) that targets the investigation and
validation of general component composition regarding the property of data confiden-
tiality. SeMF has available a comprehensive vocabulary for statements of confidentiality
that provides the necessary expressiveness to reason about conditions of general com-
posability decoupled from any specific scenario.
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In the following Section we introduce a scenario that serves as test case for our
approach. It is composed of two components that (each on its own) provide a certain
confidentiality property, but fail to do so when composed into a joined system. Section 3
gives a brief introduction to the SeMF framework. In Section 4 we introduce our formal-
ization of system composition and demonstrate it using the example scenario. We then
explain and formalize the conditions for confidentiality composition in Section 5 and
illustrate them by means of the example scenario in Section 6. Section 7 provides an
overview of related work on composition of security and Section 8 finalizes the paper
and provides an outlook to ongoing and future work.

2 Example Scenario

The provisioning and quality of entropy is a central aspect for many security functionali-
ties. However, the generation of entropy and randomness in computers is a hard problem
on its own [10] and at the same time programmers are usually not introduced to its chal-
lenges in a correct way. Many code examples and explanations for randomness today
advice to use the current time or uptime as seed for a random number generator. This ap-
proach may be adequate for desktop applications started by the user at an unforeseeable
as well as undetectable point in time. Whenever these conditions do not hold however
– as is the case especially in e.g. system service applications or embedded platforms
[11] – such date/uptime values do not provide enough entropy. These scenarios rather
require specialized entropy sources in CPU through a TPM or a SmartCard.

In our example scenario, we investigate such a case, i.e. a system which is com-
posed of a security library for key generation that targets desktop applications whilst
being utilized by an embedded platform system service. The KeyGenerator compo-
nent hereby uses the current time of the system when being called in order to initialize
its random number generator and to create the corresponding key. The Application
component of the system represents a system service that is started during boot and
calls the KeyGenerator for a key to be generated. Both components have the property
of confidentiality for the key that is generated / further used. However, their composition
introduces side effects that make the key calculable for a third party.

3 Formal Semantics of SeMF

In our Security modelling Framework SeMF, the specification of any kind of cooperat-
ing system is composed of (i) a set P of agents (e.g. an application and a key generator),
(ii) a set Σ of actions, (iii) the system’s behaviour B ⊆ Σ∗ (Σ∗ denoting the set of all
words composed of elements in Σ), (iv) the local views λP : Σ∗ → Σ∗

P , and (v) initial
knowledge WP ⊆ Σ∗ of agents P ∈ P. The behaviour B of a discrete system S can be
formally described by the set of its possible sequences of actions (which is always prefix
closed). An agent P ’s initial knowledge WP about the system consists of all traces the
agent initially considers possible. This includes a representation of conclusions that an
agent may be able to derive; i.e. that the reception of a message implies the sending of
this message to have happened before. Finally, an agent’s local view essentially captures
what an agent can see from the system. Together, the local view and initial knowledge
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represent what an agent may know about the system at a given point in time based on
what he/she knows in general, has seen and has concluded from this. Different formal
models of the same system are partially ordered with respect to the level of abstraction.
Formally, abstractions are described by alphabetic language homomorphisms that map
action sequences of a finer abstraction level to action sequences of a more abstract level
while respecting concatenation of actions. In fact, the agents’ local views are expressed
by homomorphisms. Note that homomorphisms are in general neither injective nor sur-
jective. For Σ1 ⊆ Σ2, the homomorphism h : Σ2 −→ Σ1 that keeps all actions of Σ1

and maps those in Σ2 \ Σ1 onto the empty word is called projection homomorphism.
In SeMF, security properties are defined in terms of such a system specification.

Note that system specification does not require a particular level of abstraction. The
underlying formal semantics then allows formal validation, i.e. allows to prove that a
specific formal model of a system provides specific security properties.

3.1 Confidentiality in SeMF

Based on the SeMF semantics, we have specified various instantiations of security
properties such as precedence, integrity, authenticity and trust (see e.g. [7,12,13]). In
this paper however we focus on our notion of parameter confidentiality [8,9]. Various
aspects are included in this concept. First, we have to consider an attacker Eve’s lo-
cal view λEve of the sequence ω she has monitored and thus the set of sequences
λ−1

Eve(λEve(ω)) that are, from Eve’s view, identical to ω. Second, Eve can discard
some of the sequences from this set, depending on her knowledge of the system and the
system assumptions, all formalized in WEve. For example, there may exist interdepen-
dencies between the parameter p to be confidential in different actions, such as a credit
card number remaining the same for a long time, in which case Eve considers only
those sequences of actions possible in which an agent always uses the same credit card
number. The set of sequences Eve considers possible after ω is λ−1

Eve(λEve(ω))∩WEve .
Third, we need to identify the actions in which the respective parameter(s) shall be con-
fidential. Many actions are independent from these and do not influence confidentiality,
thus need not be considered. For this we use a homomorphism μ : Σ∗ −→ (Στ ×M)∗

that maps actions to be considered onto a tuple (actiontype, parameter).
Essentially, parameter confidentiality is captured by requiring that for the actions

that shall be confidential for Eve with respect to some parameter p, all possible (combi-
nations of) values for p occur in the set of actions that Eve considers possible. What are
the possible combinations of parameters is the fourth aspect that needs to be specified,
as we may want to allow Eve to know some of the interdependencies between param-
eters (e.g. in some cases Eve may be allowed to know that the credit card number
remains the same, in others we may want to require Eve not to know this). The notion
of (L, M)–Completeness captures which are the dependencies allowed to be known
within a set of sequences of actions. For the formal definition of (L, M)–completeness,
some additional notations are needed: For f : M −→ M ′ and g : N −→ N ′ we define
(f, g) : M × N −→ M ′ × N ′ by (f, g)(x, y) := (f(x), g(y)). The identity on M is
denoted by iM : M −→ M , while M IN denotes the set of all mappings from IN to M ,
and pτ : (Σt × M) −→ Σt is a mapping that removes the parameters.
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Definition 1 ((L,M)-completeness) Let L ⊆ (Σt × IN)∗ and let M be a set of param-
eters. A language K ⊆ (Σt × M)∗ is called (L, M)–complete if

K =
⋃

f∈MIN
(iΣt , f)(L)

The definition of parameter confidentiality captures all the different aspects described
above:
Definition 2 (Parameter Confidentiality) Let M be a parameter set, Σ a set of ac-
tions, Σt a set of types, μ : Σ∗ → (Σt × M)∗ a homomorphism, and L ⊆ (Σt ×
IN)∗. Then M is parameter-confidential for agent R ∈ P with respect to (L, M)-
completeness if there exists an (L, M)–complete language K ⊆ (Σt × M)∗ with
K ⊇ μ(WR) such that for each ω ∈ B holds

μ(λ−1
R (λR(ω)) ∩ WR) ⊇ p−1

τ (pτ (μ(λ−1
R (λR(ω)) ∩ WR))) ∩ K

Here p−1
τ ◦pτ first removes and then adds again all values of the parameter that shall be

confidential, i.e. constructs all possible value combinations. (L, M)–completeness of
K captures that R is required to consider all combinations of parameter values possible
except for those that it is allowed to disregard (i.e. those that are not in K). Hence the
right hand side of the inequality specifies all sequences of actions agent R shall consider
as the ones that have possibly happened after ω has happened. In contrast, the left hand
side represents those sequences that R actually does consider as those that have possibly
happened. For further explanations we refer the reader to [8,9].
Notation: We will use ΛR(ω, WR) = λ−1

R (λR(ω)) ∩ WR) as an abbreviation.

4 Modelling Composition

Based on SeMF we now introduce the definition of the composition of two systems with
the same set of agents and a shared interface. Applying this definition, we then specify
the composition of the scenario application and key generator.

4.1 Formalizing Composition

The idea of our formalization is to interpret the individual components S1 and S2 as
homomorphic images of the composed system and to express this system in terms of
the inverses of the components with respect to the homomorphisms. Figure 1 illustrates
the relationship between the systems: Both components S1 and S2 are abstractions (i.e.
images of homomorphisms h1 and h2, respectively) of their composition S0, while S1

and S2 in turn are abstracted (by homomorphisms hIF
1 and hIF

2 , respectively) onto their
joined interface. Agent P ’s initial knowledge about the composition does only contain
those sequences that P considers possible for both S1 and S2, hence it is given by the
intersection of the inverses of the two homomorphisms. Further, agents’ local views
for the composed system need to capture what agents can see in both S1 and S2. The
projections of S1 and S2 into the interface system will be of interest for a theorem to be
introduced in Section 6.2. In the following we formalize this composition approach.



Preserving Confidentiality in Component Compositions 37

SIF

S1 S2

S0

h
1 h2

h
IF
1

h IF2
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Definition 3 (System Composition) Let S1 and S2 be two systems with Σi their re-
spective sets of actions, P1 = P2 their set of agents, λi

P their agents’ local views, and
W i

P their agents’ initial knowledge, respectively (i = 1, 2). Let further Σ0 := Σ1 ∪Σ2,
and hi : Σ∗

0 → Σ∗
i the projection homomorphisms into Σi (i = 1, 2). Then the compo-

sition S0 of S1 and S2 is constructed as follows:

– P0 := P1 = P2,
– B0 := h−1

1 (B1) ∩ h−1
2 (B2)

– W 0
P := h−1

1 (W 1
P ) ∩ h−1

2 (W 2
P )

– In order to define the local view of agents in S0, we define for i = 1, 2: λi′

P : Σ0 →
ΣP,i

λi′

P (a) =
{

λi
P (a) if a ∈ Σi

ε else
Then the local view of S0 can be defined as follows:
λ0

P (a) := (λ1′

P (a), λ2′

P (a))

Further, for ΣIF := Σ1 ∩Σ2, the projection homomorphisms into Σ∗
IF are denoted by

hIF
i : Σ∗

i → Σ∗
IF (i = 1, 2).

Note, the above definition is equivalent to λ1′

P (a) = λ1
P (h1(a)), λ2′

P (a) = λ2
P (h2(a)).

Also from the above definition it follows Σ0,P = (Σ1,P × Σ2,P ) with Σi,P being the
image of λi

P (i = 1, 2), and (λ0
P )−1((x, y)) = (λ1′

P )−1(x) ∩ (λ2′

P )−1(y).

4.2 Composing the Scenario Systems

We now model the interface composition of an application (S1) and a key generation
module (S2) following the above definition. We assume that the application generates a
key directly after each system boot. The model for the application is independant from
any key generation modul that is actually being used, and abstracts from the actual key
generation (this is not part of the application model and happens magically).
The application model S1 can be specified as follows:

– Agents of this model (and of S2) are the application, the key genration module, and
a third agent that is not allowed to know the key:
P1 = {App, KGen, Eve}
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– The system is booted, the application calls the key generation module, and the key
generation module returns a key key ∈ K, all actions happening at time t ∈ T :
Σ1 =

⋃
t∈T,key∈K{boot(t), callGenKey(App, t), returnKey(KGen, key, t)}

– We assume that Eve can see the time of system boot but can neither see the key
generation request nor the key that is returned:
λ1

Eve(boot(t)) = boot(t); ∀a ∈ Σ1 \ {boot(t)|t ∈ T } : λ1
Eve(a) = ε

– Eve knows that before a key generation request, the system has been booted. For
simplicity we assume the period of time between these two actions to be equal to δ1.
Eve may further know that the time of actions in a sequence is strictly monotonic
increasing. This is however not relevant for the given scenario. Hence sequences
of actions that contradict this fact are not included in Eve’s initial knowledge. For-
mally:
W 1

Eve = Σ∗
1 \

⋃
tj−ti=δ1

(Σ1 \ {boot(ti)})∗{callGenKey(App, tj)}Σ∗
1

– We focus on the confidentiality of the key returned to the application, hence μ1

maps returnKey(KGen, key, tj) onto (returnKey(KGen), key) and all other
actions onto the empty word.

According to this system model, it is easy to see that the returned key is parameter
confidential for Eve regarding μ1 and (L,M)-completeness regarding an adequate L
and the set of possible keys M .

We now model a concrete key generation module. This module is not able to retrieve
a seed for key generation other than the system clock.

– P2 = {App, KGen, Eve}
– The key generation module is called by the application, generates a key, and returns

this key, all actions occurring at a specific time t ∈ T :
Σ2 =

⋃
t∈T,key∈K{callGenKey(App, t), genKey(KGen, key, t),

returnKey(KGen, key, t)}
– We assume that Eve cannot see any of the actions of the key generation module,

hence λ2
Eve(Σ2) = ε

– Eve knows that before a key can be generated, the respective key generation call
must have happened, and that the time passing between these two actions is at most
δ2. Eve also knows that the key generator only returns keys it has generated before.
Eve finally knows that the system time is used as seed for key generation. Formally:
W 2

Eve = Σ∗
2 \

⋃
tj−ti=δ2

(Σ2 \ {callGenKey(App, ti)})∗

{genKey(App, key, tj)}Σ∗
2

\
⋃

keym=keyn

(Σ2 \ {genKey(KGen, keym, tj})∗

{returnKey(KGen, keyn, tk)}Σ∗
2

\
⋃

key=k(tj )

(Σ2 \ {genKey(KGen, key, tj})∗

– As above, we focus on the confidentiality of the key returned to the application,
hence μ2 maps returnKey(KGen, key, tj) onto (returnKey(KGen), key) and
all other actions onto the empty word.
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Also in this system model, it is easy to see that the returned key is parameter confidential
for Eve regarding μ2 and (L,M)-completeness regarding the same L and set of possible
keys M .
Following Definition 3 we can now construct the composed system S0 with
ΣIF =

⋃
t∈T,key∈K{callGenKey(App, t), returnKey(KGen, key, t)}:

– P0 = {App, KGen, Eve}
– Σ0 =

⋃
t∈T,key∈K{ boot(t), callGenKey(App, t),

genKey(KGen, key, t), returnKey(KGen, key, t)}
– λ0

Eve(boot(t)) = (boot(t), ε), ∀a ∈ Σ0 \
⋃

t∈T {boot(t)} : λ0
Eve(a) = (ε, ε)

– W 0
Eve = Σ∗

0 \
⋃

tj−ti=δ1

(Σ0 \ {boot(ti)})∗{callGenKey(App, tj)}Σ∗
0

\
⋃

tk−tj=δ2

(Σ0 \ {callGenKey(App, tj)})∗

{genKey(App, key, tk)}Σ∗
0

\
⋃

keym=keyn

(Σ0 \ {genKey(KGen, keym, tk})∗

{returnKey(KGen, keyn, tl)}Σ∗
0

\
⋃

key=k(tj )

(Σ0 \ {genKey(KGen, key, tk})∗

The question that now needs to be answered is whether or not confidentiality is pre-
served in this system composition. In the following section, we will introduce theorems
that can be used to answer this question.

5 Investigating the Composition of Confidentiality

In this section we provide sufficient conditions under which a composition of two sys-
tems preserves the confidentiality properties of each of its components. We start with a
very generic approach that is most broadly applicable – however depends on concrete in-
quiry regarding the satisfaction of the sufficient conditions. Then we provide two more
specialized conditions that are less broadly applicable but easier testable.

For each of these cases we first provide a verbal explanation of the concept and then
its formal representation. Readers not interested in these formalizations may skip the
latter parts. The formalizations all refer to the representation of composition as described
in the previous section. An application to the example scenario will be given in Section 6.

For the proofs in this Section we utilize the following lemmata and considerations:
The first lemma provides a relation between the local view in the composed system
based on the local views from each of the component systems within the integration.
This directly reflects the construction rules from Definition 3:

Lemma 1. (λ0
P )−1(λ0

P (ω)) = h−1
1 ((λ1

P )−1(λ1
P (h1(ω))))∩

h−1
2 ((λ2

P )−1(λ2
P (h2(ω))))

Proof. (λ0
P )−1(λ0

P (ω)) = (λ0
P )−1((λ1′

P (ω), λ2′

P (ω))
= (λ1′

P )−1(λ1′

P (ω)) ∩ (λ2′

P )−1(λ2′

P (ω))
= h−1

1 ((λ1
P )−1(λ1

P (h1(ω)))) ∩ h−1
2 ((λ2

P )−1(λ2
P (h2(ω))))



40 A. Fuchs and S. Gürgens

Given a composition we need to find the traces of actions in Component 1 that cor-
respond to those traces in Component 2 – and vice versa. The construction of these
relations can be performed via the interface system Si as well as via the composed
system Sc as expressed by the following lemma:

Lemma 2. Given a system composition as in Definition 3, h1 ◦ h−1
2 = (hIF

1 )−1 ◦ hIF
2 .

Proof. For x ∈ Σ∗
2 always holds hIF

2 (x) = h1(x). For ♦ denoting the shuffle product,
h1(h−1

2 (x)) = h1(x♦(Σ1 \ Σ2)∗) = h1(x♦(Σ1 \ ΣIF )∗) = h1(x)♦(Σ1 \ ΣIF )∗

= hIF
2 (x)♦(Σ1 \ ΣIF )∗ = (hIF

1 )−1(hIF
2 (x)).

For arbitrary sets X and Y and A, C ⊆ X , B, D ⊆ Y and a mapping f : X −→ Y
we always have the equality f−1(B) ∩ f−1(D) = f−1(B ∩D), but only the inclusion
f(A ∩ C) ⊆ f(A) ∩ f(C). However, for particular intersections we have equality:

Lemma 3. Let X, Y be arbitrary sets, f : X −→ Y a mapping, and A ⊆ X, B ⊆ Y .
Then f(A ∩ f−1(B)) = f(A) ∩ B.

For the proof of this lemma we refer the reader to [9].

5.1 General Conditions for Confidentiality Composition

The definition of confidentiality in SeMF relies on the extraction and testing of those
actions and data that are identified as being confidential. This extraction is applied to ev-
ery state that the system may take and bases on what an attacker has observed up to this
point and what she can deduce from these observations through her initial knowledge.

When two systems that both provide confidentiality are composed into a new sys-
tem (w.r.t. to some common interface), the conclusion about some data that an attacker
may derive at any given state in the composed system is the combination of conclusions
she has derived with regards to each of the components. If this combination results in
what the attacker is allowed to know in the system composition, then obviously confi-
dentiality is satisfied in the composition.

Within the semantics for confidentiality of SeMF this combination of conclusions
about the sequences that may have happened in the individual systems and the value
of data used in these sequences is represented as the intersection of these sets – i.e. the
smaller a set becomes the more conclusions an attacker can draw, because she considers
less values as possible candidates for the confidential data.

It should be noted though that these considerations have to be executed for every
state – i.e. every possible sequence of actions – that the system may take. Further, they
require a level of detail that would allow for the direct assessment of confidentiality of
the composed system instead. However, while these conditions are of less practical rele-
vance, they form the basis for the more restricted conditions presented in the subsequent
sections. Formally this approach can be expressed as follows:
Definition 4 Given a composition as defined in Definition 3, we call h1 confidentiality
composable with h2 for R with respect to μ0, μ1 and μ2, if for all ω ∈ B0 holds:

μ0[ΛR0(ω, W 0
R)] = μ1[ΛR1(h1(ω), W 1

R)] ∩ μ2[ΛR2(h2(ω), W 2
R)]
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Theorem 1 Given a confidentiality composable composition as defined in Definition 4,
if S1 and S2 both are parameter confidential for agent R with respect to some μ1 and
μ2 with μ1 ◦ h1 = μ2 ◦ h2, then S0 is parameter confidential for R with respect to
μ0 := μ1 ◦ h1 = μ2 ◦ h2 and L0 := L1 = L2, M0 := M1 = M2.

Proof. S1, S2 parameter confidential, h1(B0) ⊆ B1, h2(B0) ⊆ B2 implies ∀ω ∈ B0 :
μ1[ΛR1(h1(ω), W 1

R)] ⊇ p−1
t (pt(μ1[ΛR1(h1(ω), W 1

R)])) ∩ K and
μ2[ΛR2(h2(ω), W 2

R)] ⊇ p−1
t (pt(μ2[ΛR2(h2(ω), W 2

R)])) ∩ K .
Taking the intersection of these equations leads to
μ1[ΛR1(h1(ω), W 1

R)] ∩ μ2[ΛR2(h2(ω), W 2
R)]

⊇ p−1
t (pt(μ1[ΛR1(h1(ω), W 1

R)])) ∩ p−1
t (pt(μ2[ΛR2(h2(ω), W 2

R)])) ∩ K
= p−1

t [pt(μ1[ΛR1(h1(ω), W 1
R)]) ∩ pt(μ2[ΛR2(h2(ω), W 2

R)]) ∩ K]
⊇ p−1

t (pt(μ1[ΛR1(h1(ω), W 1
R)] ∩ μ2[ΛR2(h2(ω), W 2

R)])) ∩ K .
By assumption of h1 and h2 being confidentiality composable it follows that
μ0[ΛR0(ω, W 0

R)] = p−1
t (pt(μ0[ΛR0(ω, W 0

R)])) ∩ K .

5.2 Independantly Testable Conditions for Confidentiality Composition

Testing for the confidentiality of data by analysing data values considered possible by
the attacker, as presented in the previous approach, is performed on the same level
of detail as the direct assessment of confidentiality. In the approach presented in this
section, we instead perform an assessment of the usage of the interface by the composed
components regarding observations and knowledge that can be gained by an attacker.

Following this approach it is possible for two component designers to agree about
the information regarding the components’ interface that an attacker may get and there-
by allows for a more distributed development of each of the components.

For a given state (i.e. sequence of actions) in the composed system, the conclusions
regarding the interface behaviour that an attacker can draw from her observations and
initial knowledge from each of the components must be equal. Consequently, during the
design of the interface the component designers must agree on the interface behaviour
that shall be considered possible by the attacker when observing the behaviour of the
individual components.

The interaction of designers can be further decoupled by overestimating the set
of possible states: Instead of considering all possible states / sequences of actions of
the composed system, the designers may only define the set of possible sequences of
actions at the interface (interface behaviour). This set can then be associated with the
sequences considered possible by the attacker in each of the components, which leads
to an agreement over the attacker’s deductive capabilities.

The component designers can then independently assess if their component fulfils
this requirement (equality of interface behaviour concluded from the individual compo-
nents) by focussing on all sequences of actions that their component can take that will
result in one of the agreed interface behaviour sequences.
Definition 5 A composition following Definition 3 is called confidentiality preserving
if the following assumption holds for all P ∈ P0, ω ∈ B0:

a) hIF
1 ((λ1

P )−1(λ1
P (h1(ω))) ∩ W 1

P ) = hIF
2 ((λ2

P )−1(λ2
P (h2(ω))) ∩ W 2

P )
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Alternatively, for all P ∈ P0, ω ∈ BIF , ω1 ∈ (hIF
1 )−1(ω), ω2 ∈ (hIF

2 )−1(ω):

b) hIF
1 ((λ1

P )−1(λ1
P (ω1)) ∩ W 1

P ) = hIF
2 ((λ2

P )−1(λ2
P (ω2)) ∩ W 2

P )

which implies condition a) by overestimation of possible component state combinations.
Theorem 2 Given a confidentiality preserving composition according to Definition 5
and given that system S1 has a confidentiality property w.r.t. some μ1 and K then S0

has the confidentiality property regarding μ0 = μ1 ◦ h1 and the same K .

Proof. μ0[λ−1
0 (λ1(ω)) ∩ W0] = μ1(h1[λ−1

0 (λ1(ω)) ∩ W0])
= μ1(h1[λ−1

0 (λ1(ω)) ∩ h−1
1 (W 1

P ) ∩ h−1
2 (W 2

P )])
Using Lemma 3 leads to equality with
μ1[W 1

P ∩ h1(λ−1
0 (λ1(ω)) ∩ h−1

2 (W 2
P ))]

= μ1W
1
P ∩ [h1(h−1

1 ((λ1
P )−1(λ1

P (h1(ω))))∩ h−1
2 ((λ2

P )−1(λ2
P (h2(ω))))∩h−1

2 (W 2
P ))]

Again applying Lemma 3 implies equality with
μ1[(λ1

P )−1(λ1
P (h1(ω))) ∩ W 1

P ∩ h1(h−1
2 ((λ2

P )−1(λ2
P (h2(ω)))) ∩ h−1

2 (W 2
P ))]

= μ1[(λ1
P )−1(λ1

P (h1(ω))) ∩ W 1
P ∩ h1(h−1

2 ((λ2
P )−1(λ2

P (h2(ω)))) ∩ W 2
P )]

Applying Lemma 2 leads to equality with
= μ1[(λ1

P )−1(λ1
P (h1(ω))) ∩ W 1

P ∩ hIF
1

−1(hIF
2 ((λ2

P )−1(λ2
P (h2(ω)))) ∩ W 2

P )]
which by Assumption equals
μ1[(λ1

P )−1(λ1
P (h1(ω))) ∩ W 1

P ∩ hIF
1

−1(hIF
1 ((λ1

P )−1(λ1
P (h1(ω)))) ∩ W 1

P )]
which is finally equal to
μ1[(λ1

P )−1(λ1
P (h1(ω))) ∩ W 1

P ] which concludes our proof.

5.3 Design of Generally Composable Component Interfaces

This final approach for composition targets the design of interfaces between components.
The goal is to design the interface between two components in such a way that no addi-
tional considerations have to be made when composing confidentiality properties.

This is for example possible if an interface handles only the single transfer of confi-
dential data. Obviously, if this data is handled in a confidential way by both components,
there cannot be any side effects within the interface that may destroy the confidential-
ity property. This is expressed by testing that for any two combinations of sequences
of actions within the interface, the extraction of confidential data from their combina-
tion will equal those candidates that result from the combinations of candidates derived
independently from each of the sequences.

Most notably in this approach, it is not necessary to assess the capabilities (in terms
of local view and initial knowledge) of a possible attacker. The design of the interface
will make it impossible for any attacker to gain advantage by the composition of the
components as long as they each provide confidentiality of the data. Formally, this is
expressed as:
Definition 6 A composition following Definition 3 has a generally composable inter-
face with respect to some μIF if

∀A ⊆ hIF
1 (W 1

P ), B ⊆ hIF
2 (W 2

P ) : μIF (A ∩ B) = μIF (A) ∩ μIF (B)

Trivially, if μIF is an isomorphism, the above property is implied.
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Theorem 3 Given a generally composable interface composition as defined in Defini-
tion 6, if S1 and S2 both are parameter confidential for agent R with respect to some
μ1 and μ2 , then S0 is parameter confidential for R with respect to μ0 = μ1 ◦ h1 =
μ2 ◦ h2 = μIF ◦ h′

1 ◦ h1 = μIF ◦ h′
2 ◦ h2.

Proof. μ0[λ−1
0 (λ1(ω)) ∩ W0] = μ1(h1[λ−1

0 (λ1(ω)) ∩ W0])
= μ1(h1[λ−1

0 (λ1(ω)) ∩ h−1
1 (W 1

P ) ∩ h−1
2 (W 2

P )]).
Using Lemma 3 leads to equality to
μ1[W 1

P ∩ h1(λ−1
0 (λ1(ω)) ∩ h−1

2 (W 2
P ))]

= μ1W
1
P ∩ [h1(h−1

1 ((λ1
P )−1(λ1

P (h1(ω))))∩ h−1
2 ((λ2

P )−1(λ2
P (h2(ω))))∩h−1

2 (W 2
P ))]

By Lemma 3 this is equal to
μ1[(λ1

P )−1(λ1
P (h1(ω))) ∩ W 1

P ∩ h1(h−1
2 ((λ2

P )−1(λ2
P (h2(ω)))) ∩ h−1

2 (W 2
P ))]

= μ1[(λ1
P )−1(λ1

P (h1(ω))) ∩ W 1
P ∩ h1(h−1

2 ((λ2
P )−1(λ2

P (h2(ω))) ∩ W 2
P ))]

By Lemma 2 this is equal to
μ1[(λ1

P )−1(λ1
P (h1(ω))) ∩ W 1

P ∩ hIF
1

−1(hIF
2 ((λ2

P )−1(λ2
P (h2(ω))) ∩ W 2

P ))]
As μ1 = μIF ◦ hIF

1 and using Lemma 3 leads to equality with
μIF [hIF

1 ((λ1
P )−1(λ1

P (h1(ω))) ∩ W 1
P ) ∩ hIF

2 ((λ2
P )−1(λ2

P (h2(ω))) ∩ W 2
P )].

By assumption, this equals
μIF [hIF

1 ((λ1
P )−1(λ1

P (h1(ω))) ∩ W 1
P )] ∩ μIF [hIF

2 ((λ2
P )−1(λ2

P (h2(ω))) ∩ W 2
P )]

= μ1[(λ1
P )−1(λ1

P (h1(ω))) ∩ W 1
P ] ∩ μ2[(λ2

P )−1(λ2
P (h2(ω))) ∩ W 2

P ]
which satisfies Definition 4.

6 Revisiting the Scenarios

In this section, we revisit the scenario composition introduced in Section 4.2 and demon-
strate where and how this composition fails with regards to the formal considerations
presented in Section 5. From the description in Section 2 it is already known that the ex-
ample scenario does not preserve confidentiality during composition. In this section we
demonstrate how our sufficient conditions, if not met, give hints regarding the possible
reasons of confidentiality being violated in the composition, and how the components
can be changed in order to preserve confidentiality.

For the following illustrations, we do not require the point in time at which a
key is returned for assessing the confidentiality of the key; hence we define Σt :=
{returnKey(KGen)}. For the ease of reading we further simplify the system by re-
stricting it to one single run; i.e. ∀a ∈ Σ, ω ∈ B : card(a, alph(ω)) = 1. This results
in a considerable reduction of complexity but does not affect the applicability of our
methods. Analogous results can be obtained for the full system behaviour.

6.1 General Conditions for Confidentiality Composition

Following the system definitions in Section 4.2 we investigate the preservation of confi-
dentiality in the example composition. We demonstrate that Theorem 1 is not applicable
and show how this fact can be used to identify the side effects that violate the confiden-
tiality in the composed system. We use the following sequence of actions:

ω0 =boot(t1) callGenKey(App, t2) genKey(KGen, key0, t3)
returnKey(KGen, key0, t4) with t2 = t1 + δ1 and t3 = t2 + δ2
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We start by assessing the left hand side of the equation of Definition 4, followed by the
two sets for the right hand side.

Given ω0, we can assess the sequences that Eve considers possible in S0 (with
pre(ω) denoting the set of prefixes of ω):

Λ0
Eve(ω0, W

0
Eve) =

pre[
⋃

tx∈T
{boot(t1) (callGenKey(App, t1 + δ1)

genKey(KGen, key0, t1 + δ1 + δ2) returnKey(KGen, key0, tx)}]
\{ε}

Since Eve knows δ1 and δ2, and since the key is completely determined by its time of
generation, she only considers one value possible for the returned key

μ0[Λ0
Eve(ω0, W

0
Eve)] ={(returnKey(KGen), key0)} with key0 = k(t1 + δ1 + δ2)

Regarding the conception of Eve with respect to each of the component systems, we
again assess all those sequences that Eve considers possible for the respective images
of ω0 in these systems:

Λ1
Eve(h1(ω0),W 1

Eve) = pre[
⋃

tx∈T ,keyi∈K
{boot(t1)

callGenKey(App, t1 + δ1) returnKey(KGen, keyi, tx)] \ {ε}

Λ2
Eve(h2(ω0),W 2

Eve) = pre[
⋃

tx,ty∈T
{callGenKey(App, tx)

genKey(KGen, keyj, tx + δ2) returnKey(KGen, keyj, ty)}]
with keyj = k(tx + δ2)

This leads to the following sets of values that Eve considers as candidates for the con-
fidential data (as tx originates from all of T , every keyi ∈ K is possible):

μ1[Λ1
Eve(h1(ω0), W 1

Eve)] =
⋃

keyi∈K
{(returnKey(KGen), keyi)}

μ2[Λ2
Eve(h2(ω0), W 2

Eve)] =
⋃

keyj∈K
{(returnKey(KGen), keyj)} ∪ {ε}

Coming back to Definition 4 we can see that the values considered possible by Eve in
the composition do not equal the combined (i.e. intersected) knowledge from each of
the component systems:

{(returnKey(KGen), key0} 
=
( ⋃

keyi∈K
{(returnKey(KGen), keyi)}

)

∩
( ⋃

keyj∈K
{(returnKey(KGen), keyj)} ∪ {ε}

)

implies μ0[Λ0
Eve(ω0, W

0
Eve)] 
=μ1[Λ1

Eve(h1(ω0), W 1
Eve)] ∩ μ2[Λ2

Eve(h2(ω0), W 2
Eve)]
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It can be seen however, that if t1 or δ1 were unknown to Eve, the confidentiality would
be preserved. This relates to the use case as Desktop Application where an attacker
does not know at which point in time a user initiates a key generation. It can further be
seen that if key was not derived from these values but for example from a non-pseudo
random number generator, Eve would also not be able to derive the key’s value in the
composition.

6.2 Independantly Testable Conditions for Confidentiality Composition

Similarly, Definition 5 can be used to illustrate that the condition of Theorem 2 suffi-
cient for preserving confidentiality does not hold. Using the same ω0 as in the previous
section results in the same sets Λ1

Eve(h1( ω0), W 1
Eve) and Λ2

Eve(h2(ω0), W 2
Eve). We

now investigate the projections of these sets into the interface system in order to com-
pare the interface expectations of both components.

hIF
1 [Λ1

Eve(h1(ω0),W 1
Eve)] = pre[

⋃

tx∈T ,keyi∈K
{

callGenKey(App, t1 + δ1) returnKey(KGen, keyi, tx)] \ {ε}

hIF
2 [Λ2

Eve(h2(ω0),W 2
Eve)] = pre[

⋃

ty,tz∈T
{

callGenKey(App, ty) returnKey(KGen, keyi, tz)}]
with keyi = k(ty + δ2)

As we can see, these sets are not equal. The dependence of keyi on the point in time of
callGenKey being performed is not expected by the App component, which hints to
the confidentiality preservation error.

In order to avoid such a situation, the developers of the components could have
agreed a priory to a common assumed interface behaviour when they agreed on the
interface design. Following option b) of Definition 5 this could have been

BIF = pre[
⋃

tx<ty−δ∈T ,keyi∈K
callGenKey(App, tx) returnKey(KGen, keyi, ty)]

In this case the developer of the key generator would have needed to alter his/her imple-
mentation to reflect the functional independence of tx and keyi, leading to a confiden-
tiality preserving composition.

6.3 Design of Generally Composable Component Interfaces

Finally, we demonstrate that our example scenario does not satisfy the sufficient condi-
tion specified in Definition 6 and show how in particular scenarios the system specifica-
tion can be corrected in order for the condition to hold and thus confidentiality to hold
as well in the composition. We choose the following two sequences of actions from the
respective sets:
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– hIF
1 (W 1

Eve) � A = {callGenKey(App, t1) returnKey(KGen, keyA, ty)}
with keyA ∈ K (keyA can be chosen independently of t1).

– hIF
2 (W 2

Eve) � B = {callGenKey(App, t2) returnKey(KGen, keyB, ty)}
with keyB = k(t2 + δ2) according to S2.

Obviously, as for t1 
= t2 A and B are distinct sets, μIF (A ∩ B) = ∅. However, for
keyA = k(t2 + δ2) = keyB, it follows μ(A) = μ(B) = {(returnKey(KGen),
keyA)} = μIF (A) ∩ μIF (B).

In order to construct a system that fulfills the condition for a generally composable
interface, SIF must be designed in such a way that μIF is an isomorphism. This is the
case e.g. if the interface only consists of a stream of generated keys that are handed over
from the key generator to the application with ΣIF = {provideKey(KGen, keyi)}.
As there exists no functional relation from App to KeyGen there cannot be side-effects
that destroy the confidentiality property on the key generator’s side during composition.

7 Related Work

The model based composition of systems is a field of growing research activity in the last
decade. Tout et al. [14] have developed a methodology for the composition of web ser-
vices with security. They use the Business Process Execution Language (BPEL) for the
specification of web services composition and expand it in order to specify the security
properties independently from the business logic based on policy languages using a UML
Profile for specifying the required security properties. Their approach focusses on how
to specify security requirements of web service compositions and does not address veri-
fication of security properties in such compositions. Sun et al. propose in [15] a service
decomposition-based approach for service composition in which the utility of a compos-
ite service can be computed from the utilities of component services, and the constraints
of components services can be derived from the constraints of the composite service.
Their approach manages the selection of each component service, leading to more scala-
bility and more flexibility for service composition in a dynamic environment. However,
this approach focusses on maximizing the utility of the composition and does not ad-
dress security properties. A method for composing a system from service components
with anonymous dependencies is presented by Sora et al. in [16]. They specify com-
ponent descriptions by means of semantic-unaware properties, an application-domain
independent formalism for describing the client-specific configuration requests in terms
of desired properties, and propose a composition algorithm. Using a different approach,
Lei Zhang and Jun Wu [17] analyse the relationship between trustworthiness attributes
and propose models of these attributes and their relationship. They use a Trustworthy
Software Composition Architecture (TSCA) software as evaluation method.

Rossi presents in [18] a logic-based technique for verifying both security and correct-
ness properties of multilevel service compositions. Service compositions are specified in
terms of behavioural contracts which provide abstract descriptions of system behaviours
by means of terms of a process algebra. Multi-party service compositions are modelled
as the parallel composition of such contracts. Modal mu-calculus formulae are used to
characterize non-interference and compliance (i.e. deadlock and livelock free) proper-
ties. The well-known concepts of non-interference or information flow control address
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confidentiality with respect to actions. In the above approach, these concepts are used
to specify that public synchronizations (i.e. actions concerned with the communication
between services) are unchanged as confidential communications are varied. Hence it
is not clear how this approach can be extended to cover cases in which satisfaction of
confidentiality depends solely on whether specific parameters of an action are visible.

Universal Composability is another prominent branch of research addressing the
composition of cryptographic protocols while preserving certain security properties (see
for example [19,20,21]). A common paradigm in this area of research is that a proto-
col that “securely realizes” its task is equivalent to running an idealized computational
process (also called “ideal functionality”) where security is guaranteed. A main disad-
vantage of the Universal Composability approach seems to be that for every property
that shall be proven, a new ideal process has to be constructed whose interactions with
the parties result in providing this property.

Pino et al. present in [22] an approach for constructing secure service compositions,
making use of composition patterns and security rules. They prove integrity and confi-
dentiality of service compositions based on specific security properties provided by the
individual components of such a composition. While the proofs are based on the same
formal framework as the one presented in this paper, their approach uses an interme-
diate orchestration component. We in contrast focus on the direct composition of any
type of components, deriving security proofs from specific conditions concerning the
component interfaces.

8 Conclusions & Future Work

In this paper we presented the formalization of the composition of two systems that al-
lows to formally reason about the preservation of confidentiality properties. The central
idea is to view each of the systems as an abstraction of their composition, and to de-
scribe each aspect of the composition (e.g. its behaviour, agents’ local views and initial
knowledge) in terms of these abstractions. We then introduced conditions that allow to
prove that a specific confidentiality property holds for the composition if it holds for
the individual components. Using the composition of an application with a key gener-
ation module as scenario, we then demonstrated that the fact that these conditions do
not hold reveals side effects with non-trivial implications regarding confidentiality. In
particular, we presented a general sufficient condition for preservation of confidential-
ity that is of more theoretical interest, and derived two more specific conditions that are
applicable in distributed system engineering and point to particular aspects of the two
components that need to be taken into consideration by the developers. The first con-
cerns additional agreements on interface level between component developers that can
be independently tested for each component, the second provides sufficient conditions
regarding the interface itself that rules out side effects during composition and thereby
guarantees the preservation during composition of any two components that implement
these interfaces.

Currently we are working on other types of conditions sufficient for proving confi-
dentiality of a system. Finding relations of these conditions to the ones presented in this
paper may broaden their scope of application. Future work includes the application of
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the foundations layed out in this paper to general software engineering by projecting the
semantic knowledge onto rules and guidelines for composition of software components.
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